U N I X
USER’S MANUAL

Supplementary Documents

Printed by the USENIX Association as a service to the UNIX
Community. This material is copyrighted by The Regents of the
University of California and/or Bell Telephone Laboratories, and
is reprinted by permission. Permission for the publication or
other use of these materials may be granted only by the Licen-
sors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

First Printing July 1984
Second Printing December 1984

UNIX USER’S MANUAL

Supplementary Documents

4.2 Berkeley Software Distribution
Virtual VAX—11 Version

March, 1984

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, 1980 Regents of the University of California.
Permission to copy these documents or any portion thereof as
necessary for licensed use of the software is granted to licensees
of this software, provided this copyright notice and statement of
permission are included.

The document ‘‘Writing Tools — The STYLE and DICTION
Programs’’ is copyrighted 1979 by Bell Telephone Laboratories.
Holders of a UNIXT™/32V software license are permitted to
copy this document, or any portion of it, as necessary for
licensed use of the software, provided this copyright notice and
statement of permission are included.

This manual reflects system enhancements made at Berkeley and
sponsored in part by NSF Grants MCS-7807291, MCS-8005144,
and MCS-74-07644-A04; DOE Contract DE-AT03-76SF00034
and Project Agreement DE-AS03-79ER10358; and by Defense
Advanced Research Projects Agency (DoD) ARPA Order No.
4031, Monitored by Naval Electronics Systems Command under
Contract No. N00039-80-K-0649.

PREFACE

This manual is part of a five volume set intended for use with the 4.2 Berkeley Software Distribution for
the VAX-11 computer. While the five volumes together contain virtually the same material presented in
the four volume UNIX Programmer’s Manual distributed with 4.2BSD, the manuals reflect a revised
organization necessitated by the large quantity of information. The documentation is divided into three
logically distinct manuals:

® UNIX User’s Manual,
® UNIX Programmer’s Manual, and
® UNIX System Manager’s Manual.

Each of the User and Programmer manuals are two volumes: a Reference Guide, containing relevant sec-
tions from Volume 1 of the old UNIX Programmer’s Manual, and a volume of Supplementary Docu-
ments, containing pertinent material from Volume 2 of the old UNIX Programmer’s Manual. The Sys-
tem Manager’s manual consists of a single volume containing information from both Volumes 1 and 2.
We acknowledge those who have assisted us in putting together these manuals. In particular, we thank
Tom Ferrin for pursuing the printing particulars.

M. J. Karels
S. J. Leffler

Preface to the 4.2 Berkeley distribution

This update to the 4.1 distribution of June 1981 provides support for the VAX 11/730, full networking
and interprocess communication support, an entirely new file system, and many other new features. It is
certainly the most ambitious release of software ever prepared here and represents many man-years of
work. Bill Shannon (both at DEC and at Sun Microsystems) and Robert Elz of the University of Mel-
bourne contributed greatly to this distribution through new device drivers and painful debugging episodes.
Rob Gurwitz of BBN wrote the initial version of the code upon which the current networking support is
based. Eric Allman of Britton-Lee donated countless hours to the mail system. Bill Croft (both at SRI
and Sun Microsystems) aided in the debugging and development of the networking facilities. Dennis
Ritchie of Bell Laboratories also contributed greatly to this distribution, providing valuable advise and
guidance. Helge Skrivervik worked on the device drivers which enabled the distribution to be delivered
with a TU58 console cassette and RX01 console flopppy disk, and rewrote major portions of the stan-
dalone i/0 system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release, while
many groups of people on campus suffered patiently through the low spots of development. As always,
we are grateful to the UNIX user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully ack-
nowledged.

S.J. Leffler
W. N. Joy
M. K. McKusick

UNIX User’s Manual
Supplementary Documents
4.2 Berkeley Software Distribution, Virtual vAX—11 Version

March, 1984

This volume contains documents which supplement the information in The UNIXt User’s
Manual Reference Guide for the Virtual vAX-11 version of the system as distributed by U.C.
Berkeley.

Getting Started

1. 7th Edition UNiX — Summary.

A concise summary of the facilities available on UNIX.
2. The UNIX Time-Sharing System.

The original UNIX paper; reprinted from CACM.
3. UNIX for Beginners — Second Edition.

An introduction to the most basic use of the system.

4. Learn — Computer Aided Instruction on UNIX.
Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software.

Basic Utilities

5. An Introduction to the UNIX Shell.
An introduction to the capabilities of the command interpreter, the shell.

6. An Introduction to the C Shell.
Introducing a popular command interpreter and many of the commonly used com-
mands, assuming little prior knowledge of UNIX.

7. Mail Reference Manual (Revised)
Complete details on the mail processing program.

8. DC — An Interactive Desk Calculator.
A super HP calculator, if you don’t need to do floating point.

9. BC — An Arbitrary Precision Desk-Calculator Language.
A front end for DC that provides infix notation, control flow, and built-in functions.

Text Editing

10. A Tutorial Introduction to the UNIX Text Editor.
An easy way to get started with the editor.

11. Advanced Editing on UNIX.
The next step.

t UNIX is a trademark of Bell Laboratories.

12.

13.

14.

15.

16.

Edit: A Tutorial (Revised)
For those who prefer line oriented editing, an introduction assuming no previous
knowledge of UNIX or of text editing.

An Introduction to Display Editing with Vi.
The document to read to learn to use the vi screen editor.

Ex Reference Manual (Version 3. — Oct. 1980).
The final reference for the ex editor, which underlies both edit and vi. Also includes
“Ex Changes — Version 3.1 to 3.5”".

SED — A Non-interactive Text Editor.
A variant of the editor for processing large inputs.

AWK — A Pattern Scanning and Processing Language.
Makes it easy to specify many data transformations and selection operations.

Document Preparation

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Typesetting Documents on the UNIX System.
Describes the basic use of the formatting tools. Also describes ‘‘—ms’’; a standard-
ized package of formatting requests that can be used to lay out most documents
(including this volume).

A Revised Version of —ms.
A quick description of the revisions made to the —ms formatting macros for nroff
and troff.

Writing Papers with NROFF using —me.
A popular macro package for nroff.

—me Reference Manual
The final word on —me.

A System for Tyepsetting Mathematics.
Describes EQN an easy-to-learn language for doing high-quality mathematical typeset-
ting.

Tyepsetting Mathematics — User’s Guide (Second Edition).
This is the user’s guide for EQN.

TBL — A Program to Format Tables.
A program to permit easy specification of tabular material for typesetting. Again,
easy to learn and use.

Some Applications of Inverted Indexes on the UNIX System.
Describes, among other things, the program refer which fills in bibliographic citations
from a data base automatically.

Refer — A Bibliography System.
An introduction to the tools used to maintain bibliographic databases. The major
program, refer, is used to automatically retrieve and format references based on
document citations.

Writing Tools — the Style and Diction Programs.
Description of programs which help you understand and improve your writing style.

NROFF/TROFF User’s Manual.
The basic formatting program.
A TROFF Tutorial.
An introduction to troff for those who really want to know such things.

The Berkeley Font Catalog
Samples of fonts currently available for the raster plotters.

Amusements

30. A Guide to the Dungeons of Doom (Revised)
An introduction to the popular game of rogue.

7th Edition UNIX — Summary

September 6, 1978

Bell Laboratories
Murray Hill, New Jersey 07974

A. What's new: highlights of the 7th edition UNIXt System

Aimed at larger systems. Devices are addressable to 2% bytes, files to 20 bytes. 128K:
memory (separate instruction and data space) is needed for some utilities.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured pro-
gramming, user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBL provides an easy to learn language for prepar-
ing complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.
Data processing. SED stream editor does multiple editing functions in parallel on a data

stream of indefinite length. AWK report generator does free-field pattern selection and arith-
metic operations.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and
data spaces, floating point, etc.

C language. The language now supports definable data types. generalized initialization, block
structure, long integers, unions, explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com-
piled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream 1/0 is integrated with format-
ted input and cutput.

Other. The operating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

t UNIX is a Trademark of Bell Laboratories.

B. Hardware

The 7th 2dition UNIX operating system runs on a DEC PDP-11/45 or 11/70% with at least
the following equipment:

128K to 2M words of managed memory: parity not used.
disk: RP03, RP04, RP06. RK03 (more than 1| RK0S) or equivalent.
console typewriter.
clock: KW11l-L or KW11-P.
The following equipment is strongly recommended:
communications controller such as DL11 or DH11.
full duplex 96-character ASCII terminals.
9-track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line.
or to handle a large number of users, big data bases, diversified complements of devices. or
large programs. The resident code occupies 12-20K words depending on configuration; system
data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on PDP-11/34, 11/40 and 11/60
hardware.

C. Software

Most of the programs available as UNIX commands are listed. Source code and printed
manuals are distributed for all of the listed software except games. Almost all of the code is
written in C. Commands are seif-contained and do not require extra setup information, unless
specifically noted as ‘‘interactive.” Interactive programs can be made to run from a prepared
script simply by redirecting input. Most programs intended for interactive use (e.g., the editor)
allow for an escape to command level (the Shell). Most file processing commands can also go
from standard input to standard output (**filters™). The piping facility of the Shell may be used
to connect such filters directly to the input or output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, a machine language assem-
bler and a compiler for the programming language C—enough software to write and run new
applications and to maintain or modify UNIX itseif.

1.1. Operating System

o UNIX The basic resident code on which everything eise depends. Supports the system
calls, and maintains the file system. A general description of UNIX design phi-
losophy and system facilities appeared in the Communications of the ACM,
July, 1974, A more extensive survey is in the Bell System Technical Journal
for July-August 1978. Capabilities include:

Q Reentrant code for user processes.

QO Separate instruction and data spaces.

QO*Group™ access permissions for cooperative projects, with overlapping
memberships.

O Alarm-clock timeouts.

°PDP is a Trademark of Digital Equipmeat Corporation.

3 DEVICES

0O BOOT
0O MKCONF

-3.

OTimer-interrupt sampling and interprocess monitoring for debugging and
measurement.
O Multiplexed 1/0 for machine-to-machine communication.

All 1/0 is logically synchronous. 1/0 devices are simply files in the file system.

Normally, invisible buffering makes all physical record structure and device

characteristics transparent and exploits the hardware’s ability to do overlapped

[/0. Unbuffered physical record [/O is available for unusual applications.

Drivers for these devices are available; others can be easily written:

O Asynchronous interfaces: DHI1, DL11. Support for most common ASCII
terminals.

O Synchronous interface: DP11.

O Automatic calling unit interface: DNI11.

OLine printer: LP11.

O Magnetic tape: TU10 and TUI16.

O DEC1ape: TC11.

QO Fixed head disk: RS11, RS03 and RS04.

O Pack type disk: RP03, RP04, RP06; minimume-latency seek scheduling.

O Cartridge-type disk: RKOS, one or more physical devices per logical device.

O Null device.

C Physical memory of PDP-11, or mapped memory in resident sysiem.

O Phototypesetter: Graphic Systems System/1 through DRI11C.

Procedures 1o get UNIX started.

Tailor device-dependent system code to hardware configuration. As distributed.
UNIX can be brought up directly on any acceptable CPU with any acceptable
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to devices, inclusion of floating point simula-
tor. or installation of device names in file system, can then be made at leisure.

1.2. User Access Control

O LOGIN

O PASSWD

a NEWGRP

Sign on as a new user.

O Verify password and establish user's individual and group (project) identity.
O Adapt to characteristics of terminal.

O Establish working directory.

O Announce presence of mail (from MAIL).

O Publish message of the day.

O Execute user-specified profile.

O Start command interpreter or other initial program.

Change a password.
Q User can change his own password.
O Passwords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes to pro-
jects.

1.3. Terminal Handling

O TABS
O STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deducible
from the input, these options are set automatically by LOGIN.

O Half vs. full duplex.

O Carriage return+line feed vs. newline.

O Interpretation of tabs.

O Parity.

O Mapping of upper case to lower.

O Raw vs. edited input.

O Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

O CAT

ace

QPR

O LPR

o CMP
O TAIL

O SPLIT

o DD

C SUM

Concatenate one or more files onto standard output. Particularly used for una-
dorned printing, for inserting data into a pipeline, and for buffering output that
comes in dribs and drabs. Works on any file regardless of contents.

Copy one file to another, or a set of files to a directory. Works on any file
regardless of contents.

Print files with title, date, and page number on every page.
O Multicolumn output.
QO Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.
Compare two files and report i different.

Print last # lines of input
O May print last n characters, or from # lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit-
ing (ED).

Physical file format transiator. for exchanging data with foreign sysiems, espe-
cially IBM 370’s.

Sum the words of a file.

1.5. Manipulation of Directories and File Names

O RM

QLN

a My

O CHMOD
0 CHOWN
Q CHGRP
0 MKDIR
G RMDIR
aocD

Q FIND

Remove a file. Only the name goes away if any other names are linked to the
file.

O Step through a directory deleting files interactively.

QO Delete entire directory hierarchies.

*Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files’ owner.
Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.

OCriteria include:

name matches a given pattern,

creation date in given range,

date of last use in given range,

given permissions,

given owner,

given special file characteristics.

boolean combinations of above.
O Any directory may be considered to be the root.
O Perform specified command on each file found.

1.6. Running of Programs

O SH The Shell, or command language interpreter.
O Supply arguments to and run any executable program.
O Redirect standard input, standard output, and standard error files.
O Pipes: simultaneous execution with output of one process connected to the
input of another. .
O Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
O Initiate background processes.
O Perform Shell programs, i.e., command scripts with substitutable arguments.
O Construct argument lists from all file names satisfying specified patterns.
O Take special action on traps and interrupts.
O User-settable search path for finding commands.
O Executes user-settable profile upon login.
O Optionally announces presence of mail as it arrives.
O Provides variables and parameters with default setting.

O TEST Tests for use in Shell conditionals.
O String comparison.
OFile nature and accessibility.
O Boolean combinations of the above.

0 EXPR String computations for calculating command arguments.
O Integer arithmetic
O Pattern matching

o WAIT Wait for termination of asynchronously running processes.

a READ Read a line from terminal, for interactive Shell procedure.

g ECHO Print remainder of command line. Useful for diagnostics or prompts in Shell
programs, or for inserting data into a pipeline.

O SLEEP Suspend execution for a specified time.

O NOHUP Run a command immune to hanging up the terminal.

O NICE Run a command in low (or high) priority.

KILL
CRON

]

S AT
S TEE

Terminate named processes.

Schedule regular actions at specified times.

C Actions are arbitrary programs.

C Times are conjunctions of month. day of month. day of week, hour and
minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

CLs

i

FILE

DATE

W]

c DF
c DU
C QuoT
C WHO

C PS

O IOSTAT

cTTY
T PWD

List the names of one, several, or all files in one or more directories.

O Alphabetic or temporal sorting, up or down.

C Optional information: size, owner. group, date last modified. date last
accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file sys-
tem index and by reading the file itself.

Print today's date and time. Has considerable knowledge of calendric and horo-
logical peculiarities.
O May set UNIX's idea of date and time.

Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Print summary of file space usage by user id.

Tell who's on the system.
Q List of presently logged in users, ports and times on.
O Optional history of all logins and logouts.

Report on active processes.

QO List your own or everybody's processes.

O Tell what commands are being executed.

Q Optional status information: state and scheduling info, priority, attached ter-
minal. what it's waiting for, size.

Print statistics about system 1/0 activity.
Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

O MOUNT

T UMOUNT

(]

MKFS
MKNOD

4]

Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

Remove the file sysiem contained on a device from the tree of directories.
Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical
devices, virtual devices, physical memory, etc.

oTP
O TAR

0O DUMP

O RESTOR
o suU

O DCHECK
O ICHECK
O NCHECK

O CLRI

O SYNC

Manage file archives on magnetic tape or DECtape. TAR is newer.
O Collect files into an archive.

O Update DECtape archive by date.

O Replace or delete DECtape files.

O Print table of contents.

O Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

Check consistency of file system.

O Print gross statistics: number of files, number of directories. number of spe-
cial files, space used, space free.

O Report duplicate use of space.

O Retrieve lost space.

O Report inaccessible files.

© Check consistency of directories.

O List names of all files.

Peremptorily expunge a file and its space from a file system. Used to repair
dimaged file systems.

Force all outstanding 1/0 on the system to completion. Used to shut down
gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off

completely.
0O AC

O SA

Publish cumulative connect time report.
O Connect time by user or by day.
O For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed. -

O Number of times used.

O Total system time, user time and elapsed time.

Q Optional averages and percentages.

O Sorting on various fields.

1.10. Colﬁmunicatlon

O MAIL

Mail a message to one or more users. Also used to read and dispose of incom-
ing mail. The presence of mail is announced by LOGIN and optionally by SH.
Q Each message can be disposed of individually.

O Messages can be saved in files or forwarded.

-8

o CALENDAR Automatic reminder service for events of today and tomorrow.

T WRITE
T WALL
T MESG
cCuU

S uuce

Establish direct terminal communication with another user.
Write to all users.
Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.

O Transparent interface to remote machine.

Q File ransmission.

Q© Take remote input from local file or put remote output into local file.
O Remote system need not be UNIX.

UNIX to UNIX copy.

O Automatic queuing until line becomes available and remote machine is up.
O Copy between two remote machines.

O Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec-

tion 2.
O AR

O AS

C Library

Maintain archives and libraries. Combines several files into one for housekeep-
ing efficiency.

Q Create new archive.

O Update archive by date.

QO Replace or delete files.

O Print table of contents.

D Retrieve from archive.

Assembler. Similar to PAL-11, but different in detail.
QO Creates object program consisting of
code, possibly read-only,
initialized data or read-write code,
uninitialized data.
Q Relocatable object code is directly executable without further transformation.
Q Object code normally includes a symbol table.
O Multiple source files.
O Local labels.
O Conditional assembly.
O “*Conditional jump” instructions become branches or branches pius jumps
depending on distance.

The basic run-time library. These routines are used freely by all software.

QO Buffered character-by-character 1/0.

O Formatied input and output conversion (SCANF and PRINTF) for standard
input and output, files, in-memory conversion.

O Storage allocator.

O Time conversions.

Q Number conversions.

O Password encryption.

Q Quicksort.

O Random number generator.

O Mathematical function library, including trigonometric. functions and
inverses, ex onential, logarithm. square root, bessel functions.

T ADB

oob

JLD

O LORDER

o NM

O SIZE
O STRIP

C TIME
J PROF

O MAKE

Interactive debugger.
O Postmortem dumping.
O Examination of arbitrary files. with no limit on size.
O Interactive breakpoint debugging with the debugger as a separate process.
O Symbolic reference to local and global variables.
O Stack trace for C programs.
O Output formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassernbled machine instructions
O Patching. -
O Searching for integer, character, or floating patterns.
O Handles separated instruction and data space.

Dump any file. Output options include any combination of octal or decimal by
words, octal bv bytes, ASCII, opcodes, hexadecimal.
O Range of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from
specified libraries.

O Resulting code may be sharable.

O Resulting code may have separate instruction and data spaces.

Places objepl file names in proper order for loading, so that files depending on
others come after them.

Print the namelist (symbol table) of an object program. Provides control over
the style and order of names that are printed.

Report the core requirements of one or more object files.

Remove ‘the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time-
sampling the execution of a program. Uses floating point.
O Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.

O Knows about CC, YACC, LEX, etc.

1.12. UNIX Programmer’s Manual

O Manual

Machine-readable version of the UNIX Programmer’s Manual.

QO Systerm overview.

O All commands.

O All system calls.

O All subroutines in C and assembler libraries.

O All devices and other special files.

O Formats of file system and kinds of files known to system software.
O Boot and maintenance procedures.

T MAN

.10 -

Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

T LEARN

2. Languages

A program for interpreting CAI scripts, plus scripts for learning about UNIX by

using it.

O Scripts for basic files and commands, editor, advanced files and commands,
EQN, MS macros, C programming language.

2.1. The C Language

cCC

O LINT

m:]
2.2. Fortran

CF77

O RATFOR

Compile and/or link edit programs in the C language. The UNIX operating sys-
tem, most of the subsystems and C itself are written in C. For a full descrip-
tion of C, read . The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, 1978.

O General purpose language designed for structured programming.

O Data types include character, integer, float, double, pointers to all types,
functions returning above types, arrays of all types, structures and unions of
all types.

O Operations intended 1o give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

O Macro preprocessor for parameterized code and inclusion of standard files.

QO All procedures recursive, with parameters by value.

O Machine-independent pointer manipulation.

Q Object code uses full addressing capability of the PDP-11.

O Runtime library gives access o all system facilities.

QO Definable data types.

Q Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.
O Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.

O Compatible with C and supporting tools at object level.

O Optional source compatibility with Fortran 66.

O Free format source.

QO Optional subscript-range checking, detection of uninitialized variables.

O All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 3- and 16-
bytle complex.

Ratfor adds rational control structure 4 la C to Fortran.
Q Compound statemnents.

211 -

O If-else, do, for, while, repeat-until, break, next staternents.
O Symbolic constants.

O File insertion.

O Free format source

O Translation of relationals like >, > ==,

O Produces genuine Fortran to carry away.

QO May be used with F77.

0O STRUCT Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

O BAS An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon ‘run’.
O Statements include:
comment,
dump,
for...next,
goto,
if...else...fi,
list,
print,
prompt,
return,
run,
save.
Q All calculations double precision.
O Recursive function defining and calling.
O Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
QO Escape to ED for complex program editing.

0o DC Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
O Unlimited precision decimal arithmetic.
O Appropriate treatment of decimal fractions.
O Arbitrary input and output radices, in particular binary, octal, decimal and
hexadecimal.
O Reverse Polish operators:
+ -/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

a BC A C-like interactive interface to the desk calculator DC.
O All the capabilities of DC with a high-level syntax.
O Arrays and recursive functions.
O Immediate evaluation of expressions and evaluation of functions upon call.
O Arbitrary precision elementary functions: exp, sin, cos, atan.
O Go-to-less programming.

2.4. Macroprocessing

.12.

o M4 A general purpose macroprocessor.
C Swream-oriented, recognizes macros anywhere in text.
QO Syntax fits with functional syntax of most higher-level languages.
C Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

Z YACC An LR(1)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called 1o do code generation or semantic
actions.

QO BNF syntax specifications.
Q Precedence relations.
O Accepts formally ambiguous grammars with non-BNF resolution rules.

T LEX Generator of lexical analyzers. Arbitrary C functions may be called upon isola-
tion of each lexical token.
QO Full regular expression, plus left and right context dependence.
O Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing
3.1. Decument Preparation

C ED Interactive context editor. Random access to all lines of a file.

O Find lines by number or pattern. Partterns may include: specified characters,
don’t care characters, choices among characters, repetitions of these con-
structs, beginning of line, end of line.

O Add, delete, change, copy, move or join lines.

O Permute or split contents of a line.

O Replace one or all instances of a pattern within a line.

O Combine or split files.

O Escape to Shell (command language) during editing.

O Do any of above operations on every pattern-selected line in a given range.

O Optional encryption for exira security.

o PTX Make a permuted (key word in context) index.
Q SPELL Look for spelling errors by comparing each word in a document against a word
list.

© 25,000-word list includes proper names.
O Handles common prefixes and suffixes.
Q Collects words to help tilor local spelling lists.

0 LOOK Search for words in dictionary that begin with specified prefix.
o TYPO Look for spelling errors by a statistical technique; not limited to English.
O CRYPT Encrypt and decrypt files for security.

3.2. Document Formatting

Z ROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con-
trol lines, such as

.5p 2 insert two lines of space
.ce center the next line
ROFF is deemed to be obsolete; it is intended only for casual use.

- 13-

O Justification of either or both margins.

O Automatic hyphenation.

O Generalized running heads and feet, with even-odd page capability, number-
ing, etc.

O Definable macros for frequently used control sequences (no substitutable
arguments).

O All 4 margins and page size dynamically adjustable.

O Hanging indents and one-line indents.

O Absolute and relative parameter settings.

O Optional legal-style numbering of output lines.

O Multiple file capability.

O Not usable as a filter.

O TROFF

0O NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.

O All ROFF capabilities available or definable.

O Completely definable page format keyed to dynamically planted ‘‘interrupts’’
at specified lines.

O Maintains several separately definable typesetting environments (e.g., one for
body text, one for footnotes, and one for unusually elaborate headings).

O Arbitrary number of output pools can be combined at will.

O Macros with substitutable arguments, and macros invocable in mid-line.

O Computation and printing of numerical quantities.

O Conditional execution of macros.

O Tabular layout facility.

O Positions expressible in inches, centimeters, ems, points, machine units or
arithmetic combinations thereof.

O Access to character-width computation for unusually difficult layout prob-
lems.

O Overstrikes, built-up brackets, horizontal and vertical line drawing.

O Dynamic relative or absolute positioning and size selection, globally or at the
character level.

O Can exploit the characteristics of the terminal being used, for approximating
special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultane-
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi-
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate proof copy on terminals before actual typesetting. The preprocessors MS, TBL,
and REFER are fully compatible with TROFF and NROFF.

o MS A standardized manuscript layout package for use with NROFF/TROFF. This
document was formatted with MS.

J EQN

O NEQN

O TBL

O REFER

aTC

O GREEK

g coL
O DEROFF
O CHECKEQ

-4

O Page numbers and draft dates.

O Automatically numbered subheads.

QO Footnotes.

O Single or double column.

C Paragraphing, display and indentation.
C Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For-
mulas are written in a style like this:

sigma sup 2 =" 1 over N sum from i=1to N (x subi — x bar) sup 2
which produces:

5 1 N =\
o= N,;.(X' X)
QO Automatic calculation of size changes for subscripts, sub-subscripts, etc.
O Full vocabulary of Greek letters and special symbols, such as ‘zamma’,
‘GAMMA’, ‘integral’.
O Automatic calculation of large bracket sizes.
O Vertical “piling’’ of formulae for matrices, conditional alternatives, etc.
O Integrals, sums, etc., with arbitrarily complex limits.
O Diacriticals: dots, double dots, hats, bars, etc.
O Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares for-
mulas for display on any terminal that NROFF knows about, for example,
those based on Diablo printing mechanism.

O Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF/TROFF that translates simple descriptions of table

layouts and contents into detailed typesetting instructions.

O Computes column widths.

Q Handles left- and right-justified columns, centered columns and decimal-point
alignment.

O Places column titles.

O Table entries can be text, which is adjusted to fit.

O Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
O References may be printed in any style, as they occur or collected at the end.
O May be numbered sequentially, by name of author, etc.

Simulate Graphic Sysiems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminais like DASI-300 and DASI-450,
and on Tektronix 4014,

Q Gives half-line forward and reverse motions.

O Approximates Greek letters and other special characters by overstriking.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

-15-

4. Information Handling

O SORT

O TSORT
0 UNIQ

OTR

O DIFF

O COMM

0 JOIN
O GREP

O LOOK
o wWC
O SED

0O AWK

Sort or merge ASCII files line-by-line. No limit on input size.
O Sort up or down.

O Sort lexicographically or on numeric key.

O Multiple keys located by delimiters or by character position.
O May sort upper case together with lower into dictionary order.
O Optionally suppress duplicate data.

Topological sort — converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
O Publish lines that were originally unique, duplicated, or both.
O May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
O May coalesce selected repeated characters.
O May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.

O May produce an editor script to convert one file into another.

O A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
O May print all lines that fail to match.

O May print count of hits.

O May print first hit in each file.

Binary search in sorted file for lines with specified prefix.
Count the lines, “‘words’” (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.

O Lines may be selected by address or range of addresses.

O Control flow and conditional testing.

O Multiple output streams.

O Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and per-

forms actions on each line of input that satisfies the pattern.

O Patterns include regular expressions, arithmetic and lexicographic conditions,
boolean combinations and ranges of these.

O Data treated as string or numeric as appropriate.

O Can break input into fields; fields are variables.

O Variables and arrays (with non-numeric subscripts).

O Full set of arithmetic operators and control flow.

O Multiple output streams to files and pipes.

O Output can be formatted as desired.

O Multi-line capabilities.

5. Graphics

- 16 -

The programs in this section are predominantly intended for use with Tektronix 4014 storage

scopes.
Z GRAPH

T SPLINE
© PLOT

Prepares a graph of a set of input numbers.

QO Input scaled to fit standard piotting area.

O Abscissae may be supplied automatically.

O Graph may be labeled.

QO Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer/plotter.

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

C BACKGAMMON

C CHESS
T CHECKERS
C BCD

A player of modest accomplishment.
Plays good class D chess.
Ditto, for checkers.

Converts ascii to card-image form.

a PPT Converts ascii to paper tape form.

aBJ A blackjack dealer.

0 CUBIC An accomplished player of 4x4x4 tic-tac-toe.

T MAZE Constructs random mazes for you to soive.

0 MOO A fascinating number-guessing game.

a CAL Print a calendar of specified month and year.

O BANNER Print output in huge letters.

O CHING The / Ching. Place your own interpretation on the output.

QO FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

O UNITS Convert amounts between different scales of measurement. Knows hundreds
of units. For example, how many km/sec is a parsec/megayear?

CTIT A tic-tac-toe program that learns. It never makes the same mistake twice.

O ARITHMETIC
Speed and accuracy test for number facts.

O FACTOR Factor large integers.

g QuIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

a WUMP Hunt the wumpus, thrilling search in a dangerous cave.

O REVERSI A two person board game, isomorphic to Othello®.

S HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

-17 -

C FISH Children's card-guessing game.

The UNIX Time-Sharing System®

D. M. Rirchie and K. Thompson

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

i A hierarchical file system incorporating demountable volumes,
i Compatible file, device, and inter-process [/0,

ili The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small, most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro-
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as 340,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver-
sion of an article that appeared in Communications of the acm, /7, No. 7 (July 1974), pp. 365-375. That aru-
cle was a revised version of a paper presented at the Fourth acM Symposium on Operating Systems Princi-
ples, 18M Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

tUNIX is a Trademark of Bell Laboratories.

.2

characteristics of the system are its simplicity, elegance. and ease of use.
Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs> 3

Dozens of languages including Fortran 77, Basic. Snobol, APL, Algol 68, M6,
TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. It is worth noting that the system is totally self-supporiing. All UNIX
software is maintained on the system; likewise, this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX sysiem is installed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system. however, inciudes a very large
number of device drivers and enjoys a generous allotment of space for [/0 buffers and system
lables: a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; sae the description of the
PWB/UNIX systems.* 3 for example. There are aiso much smaller, though somewhat restricted,
versions of the system.®

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data
sets, and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfacss
used for machine-l0-machine file transfer. Finally, there is a variety of miscellaneous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi-
1al switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.” Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new sysiem not only became much easier to undersiand and to modify
but also included many functional improvements, including multiprogramming and the ability
10 share reentrant code among several user programs, we consider this increase in size quite
acceptable.

I11. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
exzacuting. A few user programs manipulate files with more structure; for example, the assem-
bler generates, and the loader expects, an object file in a particular format. However, the struc-
ture of files is controlled by the programs that use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, *‘/”°, and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
tem to search the root for directory alpha, then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name ‘‘/”" refers to the root itself.

A path name not starting with *‘/’’ causes the systemn to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name “.”" in each directory refers to
the directory itself. Thus a program may read the current directory under the name ‘.’
without knowing its complete path name. The rame *‘..”" by convention refers to the parent

of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted :ree. Except for the
special entries *“."" and ‘‘..”", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a dirsctory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
I/0 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

-4.

There is a thresfold advantage in ireating [/O devices this way: file and device [/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name: finally, special files are sub-
ject 1o the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file sysitem is always siored on the same device. it is not necss-
sary that the entire file sysiem hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of mount is to cause refer-
ences to the heretofore ordinary file to refer instead 1o the root directory of the file system on
the removable volume. In effect, mount replacss a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per-
manent file system. In our installation, for example, the root directory resides on a small parti-
tion of one of our disk drives, while the other drive, which contains the user’s files, is mounted
by the systemn initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file sysiem. or one
may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.5 Protection

Although the access con:rol scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created. it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and exascute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on. the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program thar cails
for it. The set-user-1D feature provides for privileged programs that may use files inaccessible
10 other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-iD bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program’s user. Since the actual user ID of the invoker of any program is always available, set-
user-ID programs may take any measures desired to satisfy themselves as to their invoker’s
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the
“super-user’’ (below) that creates an empty directory. As indicated above, directories are
expected to have entries for **,"" and ‘*.."". The command which creates a directory is owned
by the super-user and has the set-user-ID bit set. After it checks its invoker’s authorization to
create the specified directory, it creates it and makes the entries for **,"" and **..".

Because anyone may set the set-user-iD bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by **Aleph-null.”$

The system recognizes one particular user ID (that of the ‘‘super-user’’) as exempt from
the usual constraints on file access; thus (for example), programs may be written (o0 dump and
reload the file system without unwanted interference from the protection system.

3.6 1/0 calls

The system calls to do [/O are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’ 1/0,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or “‘updated,”” that is, read and writ-
ten simultaneously.

The returned value filep is called a file descripror. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac-
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next 1/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If » bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as I/0 errors or end of physi-
cal medium on special files; in a read, however, m may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used.

-6-

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) I/0 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = |seek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with /O and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec-
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ-
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-list) stored in a known part of the device on which the directory resides. The entry
found thereby (the file’s i-node) contains the description of the file:

i the user and group-ID of its owner

ii its protection bits

ili ~ the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number {rom the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc-
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0O up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev-
ice address points to an indirect block containing up to 128 addresses of additional biocks in the
file. Still larger files use the twelfth device address of the i-node to point to a double-indirect
block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir-
teenth device address is a triple-indirect bilock. Thus files may conceptually grow to
[(10+128+128°+128%)-512] bytes. Once opened, bytes numbered beiow 5120 can be read
with a single disk access; bytes in the range 3120 to 70,656 require two accesses; bytes in the

.7.

range 70,656 to 8,459,264 require three accesses: bytes from there to the largest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an [/O request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/0 on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user’s workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of [/O operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/O may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system’s buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz-
ing the file systemn has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a compuler execution environment. It includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it (10
be swapped out to the disk.

Thwwﬁf_gg/@ﬂgij’dividcd into three logical segments. The program
le/g;qwl_@n_\in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins.a nop-shared, writable data segment, the size of which may be

extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates. T

5.1 Processes

Except while the system is bootstrapping itself into operation, a2 new process can come
into existence only by use of the fork system call:

processid = fork ()

When fork is executled. the process splits into two independently executing processes. The two
processes have independent copies of the original .memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system [/O. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A’
read using a pipe file descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable ool (see Section 6.2),

it is not a completely general mechanism, because the pipe must be set up by a common ances-
tor of the processes involved.

5.3 Execution of programs
Another major system primitive is invoked by
execute (file, arg,, arg,, ... , arg)

which requests the systemn to read in and execute the program named by file. passing it string
arguments arg,, arg,, ..., arg, All the code and data in the process invoking execute is
replaced from the file. but open files, current directory, and inter-process relationships are
unaltered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive; it

.9.

resembles a ‘‘jump’’ machine instruction rather than a subroutine call.
J

5.4 Process synchronization
Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination
Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fully elsewhere,®
so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

command arg, arg, ... arg,

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought, command may be a path name including the *‘/” character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory /bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard 1I/0

The discussion of 1/0 in Section III above seems to imply that every file used by a pro-
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user’s
terminal. Thus programs that wish to write informative information ordinarily use file descrip-
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user’s terminal printer and keyboard. If one of the arguments to a command is prefixed by
“>"", file descriptor 1 will, for the duration of the command, refer to the file named after the
““>". For example:

.10 .-

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The com-
mand:

Is >there

‘creates a file called there and places the listing there. Thus the argument >there means “'place
output on there.”” On the other hand:

ed

(]
ordinarily enters the editor, which takes requests from the user via his keyboard. The com-
mand

ed <script

interprets script as a file of editor commands; thus <script means ‘‘take input from script.”

Although the file name following ** <" or **>"" appears to be an argument to the com-
mand, in fact it is interpreted completely by the shell and is not passed (0 the command at all.
Thus no special coding to handle 1/O redirection is needed within each command: the com-
mand need merely use the standard file descriptors 0 and | where appropriate.

File descriptor 2 is, like file |, ordinarily associated with the terminal output stream.
When an output-diversion request with "> is specified, file 2 remains attached to the termi-
nal, so that commands may produce diagnostic messages that do not silently end up in the out-
put file.

6.2 Filters

An extension of the standard [/O notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each com-
mand be delivered 10 the standard input of the next command in the sequence. Thus in the
command line:

Islpr =2 |opr

Is lists the names of the files in the current directory; its output is passed to pr, which paginates
its input with dated headings. (The argument **=2’" requests double-column output.) Likewise,
the output from pr is input 10 opr; this command spools its input onto a file for off-line print-
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr =2 <templ >emp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the ls command to accept user
requests to paginate its output, to print in multi-colurnn format, and to arrange that its output
be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency reasons.
1o expect authors of commands such as ls to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process-
ing) is called a filter. Somne filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

.11 -

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by ‘‘&,’” the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output, no matter how long the
assembly takes, the shell returns immediately. When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed. This
identification may be used to wait for the completion of the command or to terminate it. The
“&" may be used several times in a line:

as source >output & Is >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:
(date; Is) >x &

writes the current date and time followed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out tc be renamed testprog. a.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to con-
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When the newline character ending the line is
typed, the shell’s read call returns. The shell analyzes the command line, putting the argu-
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the

-12.

child process to die. When this happens, the shell knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial: whenever a
command line contains ‘‘&,"”" the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files to read command lines and to
write its prompts and diagnostics, and in the ordinary case its children—the command
programs—inherit them automatically. When an argument with **<'" or “*>"" is given. how-
ever, the offspring process, just before it performs execute, makes the standard 170 file descrip-
tor (0 or 1, respectively) refer to the named file. This is easy because, by agreement, the smal-
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces-
sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through, the association between a file specified after
<™ or **>"" and file descriptor 0 or 1 is ended automatically when the process dies. There-
fore the shell need not know the actual names of the files that are its own standard input and
output, because it need never reopen them.

Filters are straightforward extensions of standard [/O redirection with pipes used instead
of files.

In ordinary circumstances, the main loop of the sheil never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process: that is, the branch
that does a wait, then reads another command line.) The one thing that causes the shell to ter-
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe-
cuted as a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached: then the instance
of the shell invoked by sh will terminate. Because this shell process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single pro-
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal charnel. The various subinstances of init open the appropriate termi-
nals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be estabiished
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification, the appropriate instance of init wakes up, receives the
log-in line, and reads a password file. If the user’s name is found, and if he is able to supply
the correct password, init changes to the user’s default current directory, sets the process’s user
D to that of the person logging in, and performs an execute of the shell. At this point, the
shell is ready 10 receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of iwself that
will later become shells) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out-
put files and types another log-in message. Thus a user may log out simply by typing the end-
of-file sequence to the shell.

- 13-

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protecrion mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro-
gram is free to interpret the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys-
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir-
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus-
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange-
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the ‘‘delete’” character. Unless special action has been taken, this signal simply causes the pro-
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log-
ging the user cut. The editor catches interrupts and returns to its command level. This is use-
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used pDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting
system. When in turn the 11/20 was outgrown, the system had proved useful enough to per-
suade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32
machines, upon which it developed 1o its present form. Our goals throughout the effort, when

.14 -

articulated at all, have always been to build a comfortable relationship with the machine and to
explore ideas und inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. Ine most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver-
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a “‘batch’ sysitem. Moreover, such a system is
rather easily adaptable (0 noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the “‘salvation through suffering’” philosophy,
but in our case it worked.

Third: nearly from the siart, the system was able to, and did, mainain itseif. This fact is
more important than it might seem. If designers of a sysiem are forced to use that sysiem.
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail-
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface 1o the file system, for example, is extremely convenient
from a prograrnming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large ‘‘access method’" routines are required 0 insulate the programmer from the system calls;
in fact. all user programs either call the sysiem directly or use a small library program, less than
a page long, that buffers a number of characters and reads or writes them all at once.

Another imporiant aspect of programming convenience is that there are no ‘‘control
blocks™ with a complicated structure partially maintained by and depended on by the file sysiem
or other system calls. Generally speaking, the contents of a program'’s address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or output, it is also desirable to push device-dependent considerations into the operating system
itself. The only alternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or 10 depend on some means of dynamically linking
10 the routine appropriate t0 each device when it is actually needed, which is expeasive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con-
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no ‘‘wired-down’’ space in the system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of [/O redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully seiected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

-15.

The fork operation, essentially as we implemented it, was present in the GENIE time-
sharing system.!® On a number of points we were influenced by Multics, which suggested the
particular form of the I/0 systern calls!! and both the name of the shell and its general func-
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.12

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important ‘‘applications’ programs.

Overall, we have today:

125 user population
33 maximum simultaneous users
1,630 directories

28,300 files
301,700 512-byte secondary storage blocks used

There is a ‘“‘background’ process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant e,
and other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours

230 connect hours
62 different users
240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys-
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcliroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, ‘“‘An online editor,”” Comm. Assoc. Comp. Mach.
10(12) pp. 793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, ‘A System for Typesetting Mathematics,”” Comm.
Assoc. Comp. Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, ‘“UNIX Time-Sharing System: Docu-
ment Preparation,” Bell Sys. Tech. J. §7(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J. R. Mashey, ‘‘An Introduction to the Programmer’s Workbench,”
Proc. 2nd Int. Conf. on Software Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘“UNIX Time-Sharing System: The
Programmer’s Workbench,” Bell Sys. Tech. J. 57(6) pp. 2177-2200 (1978).

10.

11

12

-16 -

H. Lycklama, ‘‘UNIX Time-Sharing System: UNIX on a Microprocessor,” Bell Sys. Tech. J.
57(6) pp. 2087-2101 (1978).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Aleph-null, “‘Computer Recreations,”” Software Pracrice and Experience 1(2) pp. 201-204
(April-June 1971).

S. R. Bourne, *‘UNiX Time-Sharing System: The UNIX Shell,”” Bell Sys. Tech. J. 57(6) pp.
1971-1990 (1978).

L. P. Deutsch and B. W. Lampson, ‘‘sSDs 930 time-sharing system preliminary reference
manual,” Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

R. J. Feiertag and E. [. Organick, ““The Multics input-ouiput system,”’ Proc. Third Sympo-
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).
D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX, a Paged

Time Sharing System for the PDP-10,” Comm. Assoc. Comp. Mach. 15(3) pp. 135-143
(March 1972).

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT .

This paper is meant to help new users get started on the UNIXt operating
system. It includes:

® basics needed for day-to-day use of the system — typing commands, correct-
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting 1/0, pipes, and the shell.

® document preparation — a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software.

® UNIX programming — using the editor, programming the shell, program-
ming in C, other languages and tools.

® An annotated UNIX bibliography.

September 30, 1978

fUNIX is a Trademark of Bell Laboratories.

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user's point of view, the UNIX
operating system is easy to learn and use. and
presents few of the usual impediments o getting
the job done. It is hard. however, for the
beginner to know where to swart, and how 0
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX sysiem
and start making effective use of it quickly.

You should have a couple of other docu-
ments with you for easy reference as you read
this one. The most important is The UNIX
Programmer’s Manual: it’s often easier 1o tell you
to read about something in the manual than to
repeat its contents here. The other useful docu-
ment is 4 Turorial [niroduction 1o the UNIX Text
Editor. which will tell you how to use the editor
to get text — programs. data, documents = into
the computer.

A word of warning: the UNIX system has
become quite popular. and there are several
major variants in widespread use. Of course
details also change with time. So aithough the
basic structure of UNIX and how to use it is com-
mon to all versions. there will certainly be a few
things which are different on your system from
what is described here. We have tried to minim-
ize the problem, but be aware of it. In cases of
doubt. this paper describes Version 7 UNIX.

This paper has five sections:

. Getting Started: How to log in. how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use. so this
section must necessarily be supplemented by
local information.

2. Day-to-day Use: Things you need every day
to use the system effectively: generally use-
ful commands: the file system.

3. Document Preparation: Preparing manu-
scripts is one of the most common uses for
UNIX systems. This section conains advice.
but not extensive instructions on any of the.
formatting tools.

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

. A UNIX Reading List. An annotated

bibliography of documents that new users
should be aware of.

[V

I. GETTING STARTED

Logging In

You must have a UNIX login name. which
vou can get from whoever administers your sys-
tem. You also need to know the phone number.
unless your system uses permanently connected
terminais. The UNIX systerm is capable of deal-
ing with a wide variety of terminals: Terminet
300°s: Execuport. Tl and similar portables: video
(CRT) terminals like the HP2640, etc.. high-
priced graphics terminals like the Tektronix
4014: plotting terminals like those from GSI and
DASI. and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower case. If your
terminal produces only upper case (e.3.. model
33 Teletype. some video and portable terminals).
life will be so difficult that vou should look for
another terminal.

Be sure 1o set the switches appropriatelv on
your device. Switches that might need to be
adjusted inciude the spesd. upper/lower :case
mode, (ull duplex, even parity, and any others
that local wisdom advises. Establish a connec-
tion using whatever magic is needed for your ter-
minal; this mav invoive dialing a telephone call
or merely flipping a switch. [n either case. UNIX
should type ““login:'" at you. [f it types garbage.
you may be at the wrong speed. check the
switches. [f that fails. push the “break™ or

‘“‘interrupt’ key a few times, slowly. If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don’t forget
RETURN.

The culmination of your login efforts is a
“‘prompt character,’’ a single character that indi-
cates that the system is ready to accept com-
mands from you. The prompt character is usu-
ally a dollar sign $ or a percent sign %. (You
may also get a message of the day just before the
prompt character, or a notification that you have
mail.)

Typing Commands

Once you've seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap-
pen. RETURN won't be mentioned again, but
don’t forget it — it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like
mb tty0l Jan 16 09:11
ski tty0S Jan16 09:33
gam ttyll Jan16 13:07

The time is when the user logged in; ‘‘ttyxx" is
the system’s idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar-
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section [of the manual.
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:

dd#atte# #e

is the same as date.

The at-sign @ erases all of the characters
typed so far on the current input line, so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a
backslash. Don't worry — the at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively. in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. [f you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after ancther without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “‘DEL' (perhaps called ‘‘delete” or
‘“‘rubout’” on your terminal). The “‘interrupt’™ or
“‘break’ key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail

When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com-
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes-
sage, and RETURN, which does not (so it will
still be there the next time you read your mail-
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one) message at a time, but are otherwise simi-
lar.

How do you send mail to someone eise?
Suppose it is to go to ‘‘joe’” (assuming ‘‘joe’" is
someone's login name). The easiest way is this:

mail joe

now (ype in the text of the letter

on as many lines as you like ...

After the lasz line of the letter

ype the characrer ‘conrrol—d’’,

that is. hold down ‘‘control’’ and type
a lewer “d"".

And that's it. The ‘“‘control-d’’ sequence, often
called “EOF" for end-of-file. is used throughout
the system to mark the end of input from a ter-
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn't as strange as it might sound - mail to one-

self is a handy reminder mechanism.)

There are other ways to send mail = vou
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details ses mail(1). (The notation mail(l)
means the command mail in section | of the
UNIX Programmer's Manual)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07...

accompanied by a startling beep. [t means that
Joe wants to talk to you, but unless wou take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor — read
the editor tutorial.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it's like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (o), which stands
for “‘over”.

Now Smith types a reply, also terminated
by (o).

This cycle repeats until someone gets
tired: he then signals his intent to quit
with (e0), for “*over and out’".

To terminate the conversation. each side
must type a ‘‘coatrol-d’’ character alone
on a line. (“Delete’” also works.) When
the other person types his ‘“‘control-d’’,
you will get the message EOF on your
terminal.

If you write to someone who isa’t logged in.
or who doesn't want to be disturbed, you'll be
told. If the target is logged in but doesn’t answer
after a decent interval, simply type “"control-d™".

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can’t find an expert 0 assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type ‘‘man command-
name’’. Thus to read up on the whe command,
type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the comi-
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX ‘‘text editor” ed. Since ed is
thoroughly documented in ed(1) and explained
in A Tutorial Inroduction w the UNIX Text Editor,
we won't spend any time hiere describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file called junk with some text in
it, do the following:

ed junk

a

now [ype in
whatever text you want ...

. (signals the end of adding text)

(invokes the text editor)
(command 10 “ed’, to add text)

The **.”" that signals the end of adding text must
be at the beginning of a line by itself. Don’t for-
get it, for until it is typed, no other ed com-
mands will be recognized - everything you type
will be wreated as text to be added.

At this point you can do various editing
operations on the lext you typed in, such as

correcting spelling mistakes, rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor cormmand w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per- .
manently, so if you hang up and go home the
information is lost.t But after w the information
is there permanently; you can re-access it any
time by typing

ed junk

Type a q command to quit the editor. (If you try
10 quit without writing, ed will print a ? to rem-
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp.

What files are out there?

The Is (for *list”’) command lists the names
(not contents) of any of the files that UNIX
knews about. If you type

Is
the response will he

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is =t

causes the files to be listed in the order in which
they were last changed, most recent first. The
=] option gives a “'long’" listing:

iz =1
will produce something like

=gw=rw=rw= 1 bwk 41 Jul 22 2:56 junk
=gw—gw=rw= 1bwk 78 Jul 22 2:57 temp

The date and time are of the last change 10 the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that s,
the person who created it. The =yw=—rw—rw=
tells who has permission to read and write the
file, in this case everyone.

+ This is noz nivictly wue - if you hang up while editing,

the dats you were working on i saved in a file called

ad. hup, which you can conlinu® wilh at your next session.

Options can be combined: Is =It gives the
same thing as Is =1, but sorted into time order.
You can also name the files you're interested in.
and Is will list the information about them oaly.
More details can be found in Is(1).

The use of optional arguments that begin
with a minus sign, like =t and =It. is a com-
mon convention for UNIX programs. [n general.
if a program accepts such optional arguments,
they precede any filename arguments. [t is also
vital that you separate the various arguments
with spaces: Is—1 is not the same as Is =L

Printing Files

Mow that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are nesded.

One simple thing is to use the editor, since
printing is often done just before rnaking
changes anyway. You can say

ed junk

1,5p
ed will reply with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want to print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk
prints one file, and

cat junk temp
prints two. The files are simply concatenated
(hence the name ‘‘cat”) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

pr =3 junk
prints junk in 3-column format. You can use
any reasonable number in place of **3"" and pr
will do its best. pr has other capabiiities as well:
see pr(l).

[t shouid be noted that pr is nora formatting
program in the sense of shuffling lines around
and justifying margins. The true formaiters are
nroff and troff, which we will get to in the sec-
tion on document preparation.

There are also programs that print files on a
high-speed printer. Loek in your manual under
opr and lpr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys-
term and some experience in printing them, you
can try bigger things. For example. you can
move a file from one place to another (which
armounts (o giving it a new name), like this:

mv junk precious

This means that what used 10 be "“junk™ is now
“*precious’”. If you do an Is command now. you
will get

precious
temp

Beware that if you move a file to another one
that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is.
to have (wo versions of something), you can use
the cp command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get lired of creating and
moving files, there is a command o remove files
from the file system, called rm.

rm temp iempl
will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm. like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What's in a Filename

So far we have used filenames without ever
saying what's a legal name, so it’s time for a
couple of rules. First, filenimes are limited to
14 characters, which is enoui,h to be descriptive.

Second, although you can use almost any charac-
ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the ls command. Is =t means
o list in time order. So if you had a file whose
name was =t, you would have a tough time list-
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam-
iliar with the situation.

On to some more positive suggestions. Sup-
pose you’'re typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2
etc...

Or, if each chapter were broken into several files,
you might have

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages (o a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.2 chapl.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap®

The ® means “‘anything at all,” so this translates
into “‘print all files whose names begin with
chap'’, listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. [t is system-wide,
a service of the program that interprets com-
mands (the ‘‘shell,” sh(l)). Using that fact,
you can see how to list the names of the files in
the book:

1s chap®
produces

chapl.1

chapl.2

chapl.3

The ® is not limited to the last position in &
filename - it can be anywhere and can occur
several times. Thus

rm *junk® *temp®
removes all files that contain jenk or temp as
any part of their name. As a special case, ® by
itself matches every filename, so

pr®
prints all your files (alphabetical order), and

rm*

removes all files. (You had better be very sure
that's what you wanted to say!)

The ® is not the only pattern-matching
feature available. Suppose you want to print
only chapters | through 4 and 9. Then you can
say

pr chapl12349]*
The l...] means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr chapl{l—49]*
Letters can also be used within brackets: la=zl
matches any character in the range a through z.

The ? pattern matches any single character,

S0

Is ?
lists all files which have single-character names,
and

is =1 chap?.1
lists information about the first file of each
chapter (chapl.1, chap2.1, etc.).

Of these niceties, ® is certainly the most use-
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of *, ?, etc., enciose the entire
argument in single quotes, as in

Is '?

We'll see some more examples of this shortly.

What’s in 2 Filename, Continued

When you first made that file called junk,
how did the sysiem know that there wasn’t
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private direcrory, which contains only the
files that belong o him. When you log in. you
are ‘‘in"" your directory. Unless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone else’s directory.

The set of all files is organized into a (usu-
ally big) tree, with your files located several
branches into the tree. [t is possible for you to
“walk™ around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con-
versely, you can start where you are and walk
toward the root.

Let's try the latter first. The basic tools is
the command pwd (‘“‘print working directory’’),
which prints the name of the directory you are
curreatly in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory
/usr, which is in turn in the root directory called
by conveation just /. (Even if it's not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, 1s
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, wy

Is /usr
This should print a long series of names, amoang
which is your own login name your-name. On
many systems, usr is a directory that contains

the directories of all the normal users of the sys-
temn, like you.

The next step is to try
ls /

You should get a response something like this
(although again the details may be different):

bin
dev
ete
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try
cat /usr/your-name/junk

(if junk is still around in your direstory). The
name

/usr/your-name/junk

is called the pathname of the file that you nor-
mally think of as “‘junk’. ‘“‘Pathmame’’ has an
obvious meaning: it represents the full name of
the path you have to follow from the root
througn the tree of directories to get to a particu-
lar file. Itis a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can use a pathname.

Here is a picture which may make this
clearer:

\ junk
junk temp
Notice that Mary’s junk is unrelated to Eve's.

This isn’t too exciting if all the files of
interest are in your own directory, but if you
work with someone eise or on several projects
concurrently, it becomes handy indesd. For
example, your (riends can print your book by
saying

pt /usr/your-name/chap®

Similarly, you can find out what files your neigh-
bor has by saying

Is /usz/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
everyone else, which can be set 1o control access.
See Is(1) and chmod(l) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find it), then
in /bin and finally in /usr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say “‘l want to
work on his files instead of my own’”. This is
done by changing the directory that you are
currently in:

cd /usr/your-friend

(On some sysiems, e¢d is spelled chdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend’s directory.
Changing directories doesn’t affect any permis-
sions associated with a file = if you couldn’t
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in,
type

pwd
to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book
then go to it with
ed book

then start typing chapters.
found in (presumably)

The book is now

/usr/your-name/hook
To remove the directory beok, type

rm book/®
rmdir book

The first command removes all files from the
directory; the second removes the empty direc-
tory.

You can go up one level in the tree of files
by saying

cd ..

*.."" is the name of the parent of whatever direc-
e

tory you are currently in. For completeness,
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

Is > filelist

a list of your files will be placed in the file filelist
(which will be created if it deesn’t already exist,
or overwritten if it does). The symbol > means
“‘put the output on the following file, rather than
on the terminal.”” Nothing is produced on the
terminal. As another example, you could com-
bine several files into one by capturing the out-
put of cat in a file:

cat f1 {2 3 >temp

The symbol > > operates very much like >
does, except that it means ‘‘add to the end of.”
That is,

cat fl 2 £3 > > temp

means (o concatenate f1, f2 and {3 to the end of
whatever is already in temp, instead of overwrit-
ing the existing contents. As with >, if temp
doesn’t exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file cailed seript.
Then you can run the script on a file by saying

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

masil adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes — a pipeline.

For example,
prfgh

will print the files f, g, and h. beginning each on
a new page. Suppose you want them run
together instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So let us use a
pipe:

catfghlpr

The vertical bar | means to take the output from
cat, which would normally have gone to the ter-
minal, and put it into pr to be neatly formatted.

There are many other-exampies of pipes.
For example,

ls|pr =3

prints a list of your files in three coiumns. The
program we¢ counts the number of lines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged on people,
one per line. Thus

who | we
tells how many pecple are logged on. And of
course

Is | we
counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terrninal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr=3abe

prinis files a, b and ¢ in order in three columns.
Butin

catabe|pr =3

pr prints the information coming down the pipe-
line, still in three columns.

The Shell

We have already mentioned once or twice
the mysterious ‘‘shell,”” which is in fact sh(l).
The shell is the program :ihat interpress what you
type as commands and arguments. [t also looks
after translating *, etc., into lists of filenames,
and <, >, and | into changes of input and out-
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon: the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simultaneously if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and you
don't want to wait around for the results before
starting something else, you can say

ed file <script &

The ampersand at the end of a command line
says ‘‘start this command running, then take
further commands from the terminal immedi-
ately,” that is, don't wait for it to complete.
Thus the script will begin. but vou can do some-
thing eise at the same time. Of course, o keep
the output from interfering with what you're
doing on the terminal. it would be better (o say

ed file <script >script.out &
which saves the output lines in a file cailed
script.out.

When you initiate a command with &, the
system replies with a number called the process
fumber, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command
ps will teil you about everything you have run-
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you're curious about
other people, ps a will tell you about afl pro-
grams that are currently running.

You can say
(command-1; command-2; command-3) &

o start three commands in the background. or
you can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some simi-

lar program to take its input from a file instead
of from the terminal. you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want 1o set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
(tabs, date, who) into a file, let’s call it startup,
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con-
tents of startup on the terminal.

If this is to be a regular thing, you can elim-
inate the need to type sh: simply type, once only,
the command

chmod +x startup
and thereafter you need only say
startup

to run the sequence of commands. The
chmod(1) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file-in your login
directory called .profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We'll get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major format-
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro-
nounced ‘‘tee-roff”’) instead drives a photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it ‘“‘format-
ting commands”™ that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

-10-

Because nroff and troff are relatively hard to
learn to use effectively, several ‘‘packages” of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the ‘‘manuscript’”’ package known as —ms.
Formatting requests typically consist of a period
and two upper-case letters, such as .TL, which is
used to introduce a litle, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL

title of document
AU

author name

.SH

section heading

PP

paragraph ...

PP

another paragraph ...
SH

another section heading
PP

ete.

The lines that begin with a period are the for-
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, =—ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 2 line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard
format using =—ms, use the command
troff —ms files ...
for the typesetter, and
nroff —ms files ...

for a terminal. The —ms argument tells troff
and oroff to use the manuscript package of for-
matting requests.

There are several similar packages, check

with a local expert to determine which ones are
in comimon use on your machine.

Supporting Tools

[n addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document, in an easy-io-learn
language that closely resembies the way you
would speak it aloud. For example, the eqn
input

sum from i=0 to n x sub i "=~ pi over 2

produces the output
Tx =l
) 2

The program tbl provides an analogous ser-
vice for preparing tabular material; it does all the
computations necessary to align complicated
columns with elements of varying widths.

refer prepares hibliographic citations from a
data base, in whatever style is defined by the for-
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author’s initials
and the journal name right, and so on.

spell and typo detect possible spelling mis-
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. [t
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are “‘unusual’, and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor’s context search does, but on a bunch
of files). For example,

grep 'ing$’ chap®

will find all lines that end with the letters ing in
the files chap®. (It is almost 2iways a good prac-
tice to put single quotes around the pattern
you're searching for, in case it contains charac-
ters like * or § that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspeiled words
detected by spell are actually located.

diff prints a list of the differences between
two files. so vou can compare two versions of
something autornatically (which certainly beats
proofreading by hand).

- 11 -

we counts the words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A=Z a=—z <input >output

sort sorts files in a variety of ways: cref
makes cross-references: ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and t6 conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen-
dently documented (like eqn and tbl), or are
sufficiently simple that the description in the
UNIX Programmer’s Manual is adequate explana-
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finaily finished. Accordingly, you should do
whatever possible 10 make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi-
colons, rather than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifteen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis-
take it's better to have clobbered a small file
than a big one. Split into files at natural boun-
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack-
ages like =—ms is that they permit you to delay
decisions (o the last possible moment. [ndeed.
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re-
formatted by a judicious combination of editing
commands and request definitions.

1V. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 170 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ... collect the files

|tr ... put each word on a new line
|tz ... delete punctuation, er.

| sort into dictionary order

| uniq discard duplicates

|comm print words in text

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ed
e chapl.1

But you can do the job much more easily. One
way is to type

Is chap® > temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

-12-

commands (using the global commands of ed),
and write it into script. Now the command

ed <script

will produce the same output as the laboricus
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap®
do

ed $1 <script
done

This sets the shell variable i to each file name in
turn, then dees the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the buiiding blocks
with sheil command files.

We will not go into any details here; exam-
ples and rules can be found in An Inzroduction to
the UNIX Shell, by S. R. Bourne.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program-
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do 1/0 and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 1/0 library, which provides a
set of I/0 functions that exist in compatible
form on most machines that have C compilers.
In general, it’s wisest 1o confine the system
interactions in a program to the facilities pro-
vided by this library.

C programs that don’t depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com-
pilers. The list of such machines grows daily; in
addition to the original PDP-11, it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2100, Harris /7, VAX 11/780, SEL 86, and
Zilog Z80. Calls to the standard 1/0 library will
work on all of these machines.

There are a number of supporting programs
that go with C. lint checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini-
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver-
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru-
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
=p option; after the test run, use prof 1o print
an execution profile. The command time will
give you the gross run-time statistics of a pro-
gram, but they are not super accurate Or repro-
ducible.

Other Langusages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free-
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
large and relatively slow-running programs.
Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro-
grams. There may.also be a Fortran 77 compiler
on your system. If so, this is a viable aiternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yace compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed

. 13-

as regular expressions. [t can be used by itself,
or as a front end to recognize inputs for a
yuce-based program. Both yace and lex require
some sophistication to use, but the initial ¢fort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algol 68, APL, Basic.
Lisp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares abou: the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it’s worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Riwchie, The UNIX
Programmer's Manual Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro-
cedures. You can't live without this, although
you will probably only need to read section 1.

Documenis for Use with the UNIX Time-sharing
System. Velume 2 of the Programmer’s Manual.
This contains more exiensive deseriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men-
tioned above.

D. M. Riwchie and K. L. Thompson. ‘“The UNIX
Time-sharing System.”” CACM, July 1974, An
overview of the sysiem, for people interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

The Beil System Technical Journal (BSTJ) Spe-
cial Issue on UNLX, July/August, 1978, conuins
many papers describing recent developments.
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer's
Workbench (PWB) version of UNIX

Document Preparation:

B. W. Kernighan, **A Tutorial Introduction to
the UNIX Text Editor’” and ‘‘Advanced Editing
on UNIX,”" Bell Laboratories, 1978. Beginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk, "“Typing Documents on UNIX," Bell
Laboratories, 1978. Describes the —ms macro
package, which isolates the novice from the
vagaries of nroff and troff, and takes care of

most formatting situations. If this specific pack-
age isn’t available on your system, something
similar probably is. The most likely alternative is
the PWB/UNIX macro package —mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, ‘A System
for Typesetting Mathematics,’’ Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, “Tbl -~ A Program to Format
Tables,” Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., “NROFF/TROFF User’s
Manual,” Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by —ms, eqn
and tbL The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, “A TROFF Tutorial,”” Bell
Laboratories, 1976. An attempt to unravel the
intricacies of troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, 1978. Con-
tains a tutorial introduction, complete discussions
of all language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, ““UNJX Pro-
gramming,’’ Bell Laboratories, 1978. Describes
how to interface with the system from C pro-
grams: /0 calls, signals, processes.

S. R. Bourne, ‘‘An Introduction to the UNIX
Shell,”” Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, ‘‘Yacc — Yet Another Compiler-
Compiler,”” Bell Laboratories CSTR 32, 1978.

M. E. Lesk, “Lex = A Lexical Analyzer Gen-
erator,”” Bell Laboratories CSTR 39, 1975.

S. C. Johnson, ‘“‘Lint, a C Program Checker,”
Bell Laboratories CSTR 65, 1977.

S. I. Feldman, “MAKE — A Program for Main-
taining Computer Programs,”” Bell Laboratories
CSTR 57, 1977.

J. F. Maranzano and S. R. Bourne, “A Tutorial
Introduction to ADB,” Bell Laboratories CSTR
62, 1977. An introduction to a powerful but
compiex debugging tool.

S. 1. Feldman and P. J. Weinberger, ‘‘A Portable

Fortran 77 Compiler,”” Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems.

-14-

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret-
ing CAI scripts on the UNIXT operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the egn program for mathematical typing,
the “*—ms”’ package of formatting macros, and an introduction to the C pro-
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc-
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived iime because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark of Bell Laboratories.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan
Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIXT facilities to create a controlied UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts: and (2) the lesson scripts themselves. At present there are six scripts:

— basic file handling commands

= the UNIX text editor ed

— advanced file handling

= the egn language for typing mathematics

-~ the *“~—ms"" macro package for document formatting

= the C programming language

The purported advantages of CAI scripts for training in computer skills include the follow-
ing:

(a) students are forced to perform the exercises that wre in fact the basis of training in

any case;
(b) students receive immediate feedback and confirmation of progress;
(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them,;
(e) the lessons may be improved individually and the improvements are immediately
available to new users;
(f) since the student has access to a computer for the CAI script there is a place to do
exercises;
(g) the use of high technology will improve student motivation and the interest of their
management.
Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAI is used without a ‘‘counselor’” or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAIl has been used for
many years in a variety of educational areas.!:2.3 The use of a computer to teach itself, how-
ever, offers unique advantages. The skills developed to get through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is 2 Trademark of Bell Laboratories.

.2.

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer. but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation; they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right, rein-
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer o a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say
How many files are there in the current directory? Type “‘answer N, where N is the number
of files.
The student is expected to respond (perhaps after experimenting) with
answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
Nby 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure |
shows a sample dialog that illustrates the last of these, using two lessons about the car (con-
catenate, i.e., print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les-
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
‘‘speed’” rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully; it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly ‘‘under-
stands’ what he or she is doing. accordingly, the current learn scripts only measure perfor-
mance, not comprehension. If the student can perform a given task, that is deemed to be
*‘learning.”™¢

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAI scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure; the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi-
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

-3.

Figure 1. Sample dialog from basic files script
(Student responses in italics: ‘S’ is the prompt)

A file can be printed on your terminal
by using the "cat” command. Just say
"cat file" where "file” is the file name.
For example, there is a file named
"food” in this directory. List it
by saying “cat food"; then type “ready”.
$ cat food

this is the file

named food.
$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat”.
In particular, it is common to first use

“1s" to find the name of a file and then "cat”
to print it. Note the difference between

"Is", which tells you the name of the file,
and "cat®, which tells you the contents.

One file in the current directory is named for
a President. Print the file, then type "ready”.
$ cat President

cat: can’t open President

$ ready

Sorry, that’s not right. Do you want to try again? yes

Try the problem again.

Sis

.0Copy

X1

roosevelt

$ cat roosevelt
this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)
The "cat” command can also print several files

at once. In fact, it is named "cat" as an abbreviation
for “concatenate”....

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone. (The lessons of Fig-
ure 1 are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons: this makes it profitable for a shaky user to back up

.4

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis-
cussed.in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sornetimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of /earn allows the
student to skip a lesson that he cannot pass; a ‘“‘no’’ answer to the ‘Do you want to try again?”’
question in Figure 1 will pass to the next lesson. It is still true that /earn will not tell the stu-
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu-
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort ‘‘you can't cross a ditch in two jumps.”
Since writing CAI scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives.to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. -Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis-
tance, however, need not be highly skilled.

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is, car, mv, rm, cp and diff commands. It also deals with
the abbreviation characters *, ?, and [] in file names. It does not cover pipes or I/0 redirec-
tion, nor does it present the many options on the /s command.

This script contains 31 lessons in the fast track: two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc-
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching. All editor features except encryption, mark names and

.’ in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial® is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort. '

The advanced file handling script deals with /s options, 1/0 diversion, pipes, and support-
ing programs like pr, we, rail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro-
vides much less of a full three-track sequence than they do. On the other hand, since it is per-
ceived as ‘‘advanced,” it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the egn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics. for instance the DASI 300 and similar Diablo-
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The —ms script for formatting macros is a short one-track only script. The macro pack-
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. [t was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con-
verted to follow the order of presentation in The C Programming Language,” but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a relatively complete introduction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc-
tional materials, it should provide a useful supplement to existing tutorials and reference manu-
als.

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les-
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
every one failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our systern at Murray Hill, there have been nearly 4000 iessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some-
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ-
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les-
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx-
imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

5. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer
to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named /ib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named /og), and one in which user sub-
directories are created (named play). The subject directory contains master copies of all les-
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control,

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and

(5) alist of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort

involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

Figure 2: Directory structure for learn

lib
play
student |
files for studentl...
student2
files for student2...
files
LO.1a tessons for files course
L0.1b
editor

(other courses)
log

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (1) commands to the script interpreter to print something, to create
a files, to test something, etc.; (2) text to be printed or put in a file; (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user's work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,
#print
causes printing of any text that follows, up to the next line that begins with a sharp.
#prine file
prints the contents of file; it is the same as car file but has less overhead. Both forms of #prins

have the added property that if a lesson is failed, the #prinr will not be executed the second
time through; this avoids annoying the student by repeating the preamble to a lesson.

#create filename
creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

H#user
gives control to the student; each line he or she types is passed to the shell for execution. The

#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
H#Huncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets
the script writer interrogate the student’s responses upon regaining control.

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat”
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat”, which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt

and contains three lines of

text.
#copyout
#user
#uncopyout
tail —3 .ocopy >X1
#cmp X1 roosevelt

#log
#next
3.2b 2
#copyout
#uncopyour

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student’s actual input.
#pipe
H#Hunpipe
Normally the student input and the script commands are fed to the UNIX command interpreter
(the *‘shell’) one line at a time. This won’t do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyour is also desired the copyour brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#emp filel file2
is an in-line implementation of c¢mp, which compares two files for identity.

#maich suff
The last line of the student’s input is compared to swu/ff, and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #march lines: this provides a convenient mechanism for handling
multiple *‘right’’ answers. Any text up to a # on subsequent lines after a successful #march is
printed; this is illustrated in Figure 4, another sample lesson.

#bad stuff

This is similar to #march. except that it corresponds to specific failure answers: this can be
used to produce hints for particular wrong answers that have been anticipated by the script

Figure 4: Another Sample Lesson

#print

What command will move the current line
to the end of the file? Type

"answer COMMAND", where COMMAND is the command.
#copyin

#user

#uncopyin

#match m$

#match .m$

*m$" is easier.

#log

#next

63.1d 10

writer.
#succeed
#fail
. . . .) .
print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘‘commands’ yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student’s work can begin. This can be
done either by the built-in commands above, such as #march and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:
#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

#log

by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.1a 10
2522 S
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main-
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim-
ited to 10 and the minimum to 0. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu-
dent fails, a false status is returned and the program reverts to the previous lesson and tries

-10 -

another alternative. [f it can not find another alternative, it skips forward a lesson. The stu-
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu-
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of
response, .or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to.
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro-
gram, and made more use of the facilities of the UNIX system itself. For example, file com-
parison was done by creating a ¢mp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #print had to be followed by a file name. Thus the initialization for each les-
son was to extract the archive into the working directory (typically 4-8 files), then #print the
lesson text.

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #creare can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula-
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-
programmers who have used /learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com-
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of ‘‘substitutable argument’’ is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time

for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable

ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

-11-

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini-
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime: when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.®

One disadvantage of training with learn is that students come to depend completely on the
CAIl system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them; the scripts ought to be altered to recommend suit-
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student’s
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some-
times this is due to poor explanations, but just as often it is some error in the lesson itself — a
botched setup, a missing file, an invalid test for correctness, or some systern facility that
doesn't work on the local system in the same way it did on the development systemn. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer’'s. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les-
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) — it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some seripts, notably egn, are intrinsically slow. egn, for
example, must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by rermoving critical files, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental — some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is ¢d, which
changes to another directory. The prospect of a student who is learning about directories inad-
vertently moving to some random directory and removing files has deterred us from even writ-
ing lessons on cd, but ultimately lessons on such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox,
and M. J. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

® We have even known an expert programmer 1o decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

-12-

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1.

D. L. Bitzer and D. Skaperdas, ‘“The Economics of a Large Scale Computer Based Educa-
tion System: Plato IV, pp. 17-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
“COALA - A Minicomputer CAl System,” [EEE Trans. Education E-20(1), pp.73-77
(Feb. 1977).

P. Suppes, ““On Using Computers to Individualize Instruction,” pp. 11-24 in The Com-
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

B. F. Skinner, ‘““Why We Need Teaching Machines,”” Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

K. Thompson and D. M. Ritchie, Unix Programmer’s Manual, Bell Laboratories (1978).
See section ed (I).

B. W. Kernighan, 4 rurorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIX? operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
eithes from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section: see, for example, "UNIX for beginners".!
Section 2 describes those features of the shell primarily intended for use within shell pro-
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "see
pipe (2)" are to a section of the UNIX manual.2

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who
is a command that prints the names of users logged in. The command

Is =1
prints a list of files in the current directory. The argument —/ tells /s to print status informa-
tion, size and the creation date for each file.

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1.3 Input output redirection
Most commands produce output on the standard output that is initially connected to the termi-
nal. This output may be sent to a file by writing, for example,

Is =1 >file

The notation > file is interpreted by the shell and is not passed as an argument to /s. If file does
not exist then the shell creates it; otherwise the original contents of file are replaced with the
output from /s. Output may be appended to a file using the notation

Is ~1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

we —| <file
could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the ‘pipe’ operator, indicated by |, as in,

Is =1 | we
Two commands connected in this way constitute a pipeline and the overall effect is the same as
Is =1 >file; we <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when
there is nothing to read and halting /s when the pipe is full.

A filer is a command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

Is | grep old

prints those lines, if any, of the output from /s that contain the string o/d. Another useful filter
is sorr. For example,

who | sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,
Is | grep old | wec —|

prints the number of file names in the current directory containing the string old.

1.5 File name generation
Many commands accept arguments which are file names. For example,
Is =l main.c
prints information relating to the file main.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For
example,
Is =1 =¢c

generates, as arguments to /s, all file names in the current directory that end in .c. The charac-
ter * is a pattern that will match any string including the null string. In general parrerns are
specified as follows.

.3.

* Matches any string of characters including the null string.
? Matches any single character.

[... Matches any one of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,
la—z]*

matches all names in the current directory beginning with one of the letters a through =.
/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. [t
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character ‘.’ at the start of a
file name must be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with ‘..
echo .+
will echo all those file names that begin with ‘.. This avoids inadvertent matching of the

v

names ‘. and °..' which mean ‘the current directory’ and ‘the parent directory’ respectively.
(Notice that /s suppresses information for the files *." and *..".)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > » ? | &, are called metachar-
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quored and loses its special meaning, if any. The \ is elided so that

echo \?
will echo a single ?, and
echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos-
ing the string between single quotes. For example,

echo xx'esee'xx
will echo
Xxsessxx

The quoted string may not contain a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

-4-

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discyssion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is *$’. It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed
then the shell will issue the prompt ‘> . Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com-
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following /ogin (1) the shell is called to read and execute commands typed at the terminal. If
the user’s login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

L] Is
Print the names of files in the current directory.
e s >file

Put the output from /s into file.
° Is | we =l

Print the number of files in the current directory.
L] Is | grep old

Print those file names containing the string o/d.

® Is| grepold | we—l
Print the number of files whose name contains the string o/d.

® cc pgm.c &
Run cc in the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,
sh file [args ...]

calls the shell to read commands from file. Such a file is called a comunand procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi-
tional parameters S1, $2, For example, if the file wg contains

who | grep S1
then
sh wg fred
is equivalent to
who | grep fred
UNIX files have three independent attributes, read, wrire and execute. The UNIX command
chmod (1) may be used to make a file executable. For example,
chmod +x wg
will ensure that the file wg has execute status. Following this, the command
wg fred
is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as SO.

A special shell parameter $» is used to substitute for all positional parameters except S0. A
typical use of this is to provide some default arguments, as in,

nroff =T450 —ms $=
which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments (S1, $2, ...) executing
commands once for each argument. An example of such a procedure is re/ that searches the file
/usr/lib/telnes that contains lines of the form

cs e

fred mh0123
bert mh0789

see

The text of ref is

for i
do grep $i /usr/lib/telnos; done

The command
tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

tel fred bert

prints those lines containing fred followed by those for ber:.
The for loop notation is recognized by the shell and has the general form
for name in wl w2 ...

do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. name is a shell variable that is set to the words w/ w2 ... in
turn each time the command-list following do is executed. If in w/ w2 ... is omitted then the
loop is executed once for each positional parameter; that is, in $*is assumed.

Another example of the use of the for loop is the crearte command whose text is
for i do >3$i; done

The command
create alpha beta

ensures that two empty files alpha and bera exist and are empty. The notation > file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new-
line) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,
case $# in
1) cat >>81;;
2) cat >>82 <81 ;;
#) echo ‘usage: append [from] to” ;;
esac

is an append command. When called with one argument as
append file
$# is the string / and the standard input is copied onto the end of file using the car command.
append filel file2
appends the contents of file/ cnto file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.
The general form of the case command is
case word in
pattern) command-list ;;

e

esac

The shell attempts to match word with each parern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com-
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

case S# in
*) 5
®) Lo
esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

fori
do case Si in
—[ocs]) veel
—=+) echo “unknown flag Si’ ;;
s¢) /lib/c0Si ...
*) echo ‘unexpected argument $i’ ;;
esac
done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a | . For example,

case Si in
—“Xi=y) ...
esac
is equivalent to
case Si in
-[xy]) vee
esac

The usual quoting conventions apply so that
case Si in
\?)
will match the character ?.

2.3 Here documents

The shell procedure re/ in section 2.1 uses the file /usr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

fori

do grep Si <<!
fred mho123
bert mh0789

1
done
In this example the shell takes the lines between <<!and ! as the standard input for grep.

The string ! is arbitrary, the document being terminated by a line that consists of the string fol-
lowing << .

Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg.

ed $3 <<%
g/S1/s//%2/8
w
%
The call
edg stringl string?2 file
is then equivalent to the command

ed file <<%
g/stringl/s//string2/g
w

%

and changes all occurrences of stringl in file to siring2. Substitution can be prevented using \ to
quote the special character § as in

ed 83 <<+
1,\8s/81/82/g
w

+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep Si <<\#

#
The document is presented without modification to grep. If parameter substitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user =f{red box =m000 acct =mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null=
The value of a variable is substituted by preceding its name with §; for example,
echo Suser

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b==/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen-
eral notation is available for parameter (or variable) substitution, as in,

echo S{user}

which is equivalent to

echo Suser

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >S{tmpla

will direct the output of ps to the file /tmp/psa, whereas,

ps a >Stmpa

would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initially by the shell. $? is set after executing each com-

mand.
¥4

$!
$—

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, othérwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/psSS
rm /tmp/psSS

The process number of the last process run in the background (in decimal).
The current shell flags, such as —x and -v.

Some variables have a special meaning to the shell and should be avoided for general use.

SMAIL

When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user’s
login directory. For example,

MAIL = /usr/mail/fred

SHOME The default argument for the ¢d command. The current directory is used to

SPATH

resolve file name references that do not begin with a /, and is changed using the
cd command. For example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin.
cat wn

will print on the terminal the file wn in this directory. The command c¢d with no
argument is equivaient to

cd SHOME
This variable is also typically set in the the user’s login profile.

A list of directories that contain commands (the search parh). Each time a com-
mand is executed by the shell a list of directories is searched for an executable

- 10 -

file. If SPATH is not set then the current directory, /bin, and /usr/bin are
searched by default. Otherwise SPATH consists of directory names separated by
:. For example,

PATH = :/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own ‘private’ commands that are accessible
independently of the current directory. If the command name contains a / then
this directory search is not used; a single attempt is made to execute the com-
mand.

$PS1 The primary shell prompt string, by default, ‘S°.

$PS2 The shell prompt when further input is needed, by default, ‘> °.

SIFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command
The rest command, although not part of the shell, is intended for use by shell programs. For
example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general ress evaluates
a predicate and returns the result as its exit status. Some of the more frequently used resr argu-
ments are given here, see resr (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists
test —r file true if file is readable

test —w file true if file is writable
test —d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list; is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do ...
done

shifi is a shell command that renames the positional parameters $2, $3, ... as $1, $2, ... and
loses $1.

-11-

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam-
ple,

until test —f file
do sleep 300; done
commands

will loop until fife exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,
if command-list
then command-list
else command-list
fi
that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the resr command to test for the existence of
a file as in

if test —f file
then - process file
else do something else

fi

An example of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if ...

then ...

else if ..
then ...
else if ...

fi

fi

fi

may be written using an extension of the if notation as,

if ...

then

elif ves

then

elif cee

fi

The following example is the rouch command which changes the ‘last modified’ time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

-12-

flag =
for i
do case Si in
—c) flag=N ;;
*) if test —f Si
then In Si junkSS; rm junk$$
elif test Sflag
then echo file \'Si\" does not exist
else >8i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari-
able flag is set to some non-null string if the —c argument is encountered. The commands

In...rm...
make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written
commandl && command2
Conversely,
command! || command2
executes command? only if command] fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,
{ command-list ; }

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)
executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk.

have the same effect but leave the invoking shell in the directory x.

213 -

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh =v proc ...
where proc is the name of the shell procedure. This flag may be used in conjunction with the

—n flag which prevents execution of subsequent commands. (Note that saying ser —n at a ter-
minal will render the terminal useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set —

and the current setting of the shell flags is available as §—.

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is
called, for example, as

man sh
man —t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified, section 1 is used.
The second example will typeset (—t option) the manual section for ed. The last prints the fork
manual page from section 2.

-14-

cd /usr/man

: ‘colon is the comment command’
: “default is nroff (SN), section 1 (Ss)’
Na=pn g=]

for i
do case Si in

(1-91+) s=Si;;

=1) N=t;;

—n) N=n ;;

—=) echo unknown flag \'Si\" ;;

*) if test —f manSs/Si.$s
then ${N]roff man0/S{N}aa manS$s/$i.8s
else : "look through all manual sections’
found=no
forjin123456789
do if test —f man$j/$i.Sj
then man §j Si
found=yes
fi
done
case $found in
no) echo ‘Si: manual page not found’
esac

esac
done
Figure 1. A version of the man command

- 15 -

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value 10 be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to jred The —k flag causes arguments of the form
name =value 10 be interpreted in this way anywhere in the argument list. Such names are some-
times called keyword parameters. If any arguments remain they are available as positional
parameters S1, 82,

The ser command may also be used to set positional parameters from within a procedure. For
example,

set — *

will set S1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, —, ensures correct treatment when the first file name begins with a —.

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are 10 be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari-
able d is not set

echo $d

or
echo S{d}

will echo nothing. A default string may be given as in
echo S{d—.}

which will echo the value of the variable d if it is set and ‘.” otherwise. The default string is
evaluated using the usual quoting conventions so that

echo S{d—"+'}

will echo # if tae variable d is not set. Similarly

- 16 -

echo ${d—S1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo S{d=.}
which substitutes the same string as
echo ${d—.}

and if d were not previously set then it will be set to the string *.”. (The notation ${...=...} is
not available for positional parameters.)

If there is no sensible default then the notation
echo S{d?message)

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: S{user?} S{acct?} ${bin?}

cee

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command

d="pwd’
is equivalent to
d=/usr/fred/bin
The entire string between grave accents ('...") is taken as the command to be executed and is

replaced with the output from the command. The command is written using the usual quoting
conventions except that a ' must be escaped using a \. For example,

Is ‘echo "81™
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a cc command.

case SA in
*c) B="basename SA .c’

esac

.17-

that sets B to the part of SA with the suffix .c stripped.
Here are some composite examples.

foriin'ls =t';do...

The variable i is set to the names of files in time order, most recent first.
set ‘date’; echo $6 S2 3, S4

will print, e.g., /1977 Nov I, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
thése evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com-
mand is executed the following substitutions occur.

parameter substitution, e.g. Suser
command substitution, e.g. ‘pwd’
Only one evaluation occurs so that if. for exampie, the value of the variable X is the
string Sy then
echo SX

will echo $y.
blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose ‘blanks’ are the characters of the
string SIFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

echo ™
will pass on the null string as the first argument to echo, whereas
echo Snull

will call echo with no arguments if the variable null is not set or set to the null
string.

file name generation

Each word is then scanned for the file pattern characters #, ? and l...l and an alpha-
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and "..." a third quoting mechan-
ism is provided using double quotes. Within double quotes parameter and command substitu-
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \ .

M parameter substitution
) command substitution
" ends the quoted string
\ quotes the special characters $° "\

For example,

echo "Sx"

-18 -

will pass the value of the variable x as a single argument to echo. Similarly,
echo "S#"

will pass the positional parameters as a single argument and is equivalent to
echo "$1 82 ..."

The notation $@ is the same as $#* except when it is quoted.
echo "S@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo "S1* "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter

\ s L] A L] .
’ n n n n n t
' y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mechanisms
In cases where more than one evaluation of a string is required the built-in command eva/ may
be used. For example, if the variable X has the value 3y, and if y has the value pgr then
eval echo $X
will echo the string pgr.

In general the eval/command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

wg='eval wholgrep’
Swg fred

is equivalent to
who | grep fred

In this example, evalis required since there is no interpretation of metacharacters, such as |,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive sheil is one whose input and output are con-
nected to a terminal (as determined by gry (2)). A shell invoked with the —i flag is also
interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

® Input output redirection may fail. For example, if a file does not exist or cannot be
created.

-19 -

The command itself does not exist or cannot be executed.

The command terminates abnormally, for example, with a "bus error” or "memory fault".
See Figure 2 below for a complete list of UNIX signals.

® The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter-
minal. Such errors include the following.

® Syntax errors. e.g., if ... then .., done

® A signal such as interrupt. The shell waits for the current command, if any, to finish exe-
cution and then either exits or returns to the terminal.

® Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any error is detected.

1 hangup

2 interrupt

3° quit

4° illegal instruction

5* trace trap

6* 10T instruction

7* EMT instruction

8 floating point exception

9 kill (cannot be caught or ignored)

10* bus error
11* segmentation violation
12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kil (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam-
ple,

trap ‘rm /ump/ps$S; exit’ 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com-
mands

rm /tmp/psSS; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required; otherwise, after the trap has been taken, the shell will resume executing the pro-
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig-

nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

-20-

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then wap com-
mands (and the signal) are ignored.

The use of rap is illustrated by this modified version of the rouch command (Figure 4). The
cleanup action is to remove the file junk$S.

flag =
trap ‘rm —f junkS$S; exit" 1 23 IS
for i
do case Si in
—c) flag=N;;
*) if test —f Si
then In Sijunk$S; rm junk$S
elif test $flag
then echo file \'$i\" does not exist
else >8i
fi
esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; olhelrwise it would be pos-
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe-
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap 12315
which causes hangup, interrupt, quirand kill to be ignored both by the procedure and by invoked
commands.
Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of rrap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

-21 -

d="pwd'
foriin*
do if test —d Sd/Si
then cd Sd/Si
while echo "Si:"

trap exit 2
read x
do trap : 2; eval Sx; done
fi
done

Figure S. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nohup command looks like

trap 12315
exec $»

The trap turns off the signals specified so that they are ignored by subsequently created com-
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo... >*c¢
will write its output into a file whose name is *.c. Input output specifications are evaluated left
to right as they appear in the command.

> word The standard output {(file descriptor 1) is sent to the file word which is created if it
does not already exist.

>> word The standard output is sent to file word If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

<< word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub-
stitution occur and \ is used to quote the characters \ § * and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

>& digit The file descriptor digiris duplicated using the system call dup (2) and the result is
used as the standard output.

<& digir The standard input is duplicated from file descriptor digir.

-9 -

<&— The standard input is closed.
>&— The standard output is closed.
Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or I. For example,
co. 22>file
runs a command with message output {file descriptor 2 directed to file.
ees 22&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as
list®.c | lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null. This prevenis two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input ai the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to | (ignored) then it is never changed even
for a short time. Note that the shell command rap has no effect for an ignored signal.

3.8 Invoking the shell

The following [lags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

=C Siring
If the —c¢ flag is present then commands are read from swing.

=5 If the —s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

—i If the —i {lag is present or if the shell input and output are attached to a terminal (as told
by groy) then this shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell’ and the PWB/UNIX shell,*
some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access System’ and of CTSS.6

I would like to thank Dennis Riichie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

.23.

References

B. W. Kernighan, UNLX for Beginners, Bell Laboratories internal memorandum (1978).

K. Thompson and D. M. Ritchie, UvNix Programmer’s Manual, Bell Laboratories (1978).
Seventh Edition.

K. Thompson, “The UNIx Command Language,”” pp. 375-384 in Swuctured
Programming—Infotech State of the Art Report, Infotech International Lid., Nicholson
House, Maidenhead, Berkshire, England (March 1975).

J. R. Mashey, PWBIUNIX Shell Tutorial, Bell Laboratories internal memorandum (Sep-
tember 30, 1977).

D. F. Hartley (Ed.)., The Cambridge Multiple Access System — Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (1968).

P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.L.T. Press, Cambridge, Mass.
(1965).

.%.

Appendix A - Grammar

irem: word
input-output
name = value

simple-command. item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline | command

andor: pipeline
andor && pipeline
andor | | pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file

< file
>> word
<< word
Sile: word
& digit
& -
case-part: pattern) command-list 3;
pattern: word
pattern | word
else-part: elif command-list then command-list else-part
else command-list
empty
empy:
word: a sequence of non-blank characters
name: a sequence of letters, digits or underscores starting with a letter

digit: 0123456789

225

Appendix B - Meta-characters and Reserved Words
a) syntactic

| pipe symbol

&& ‘andf" symbol

1 ‘orf” symbol

; command separator

H case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document

> output creation

>> output append

b) patterns

*® match any character(s) including none
match any single character
[...] match any of the enclosed characters

-3

¢) substitution
${...] substitute shell variable
‘... substitute command output

d) quoting
\ quote the next character
‘... quote the enclosed characters except for *

..." quote the enclosed characters except for $\ "

¢) reserved words

if then else elif fi
case in esac
for while until do done

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXT systems. It incor-
porates good features of other shells and a Aistory mechanism similar to the redo
of INTERLISP. While incorporating many features of other shells which make
writing shell programs (shell scripts) easier, most of the features unique to cs/
are designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun to become acquainted with the shell. Later sections introduce features
which are useful, but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

November 8, 1980

+UNIX is a Trademark of Bell Laboratories.

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

Introduction

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi-
nal into system actions, such as invocation of other programs. Cs4 is a user program just like
any you might write. Hopefully, csh will be a very useful program for you in interacting with
the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX programmer’s
manual. The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in iralics. These are important words; names of
commands, and words which have special meaning in discussing the shell and uNIx. Many of
the words are defined in a glossary at the end of this document. If you don't know what is
meant by a word, you should look for it in the giossary.

Acknowledgements

Numerous people have provided good input about previous versions of cs# and aided in
its debugging and in the debugging of its documentation. 1 would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text, and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful comments
on the shell, helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O’Brien suggested the pathname hashing mechan-
ism which speeds command execution. Jim Kulp added the job control and directory stack
primitives and added their documentation to this introduction.

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked.
While it has a set of builtin functions which it performs directly, most commands cause execu-
tion of programs that are, in fact, external to the shell. The shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program. and by
the fact that it is used almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a com-
mand name followed by arguments. Thus the command

mail bill

consists of two words. The first word maif names the command to be executed, in this case the
mail program which sends messages to other users. The shell uses the name of the command
in attempting to execute it for you. It will look in a number of directories for a file with the
name mail which is expected to contain the mail program.

The rest of the words of the command are given as argumenis to the command itself when
it is executed. In this case we specified also the argument bill which is interpreted by the mail
program to be the name of a user to whom mail is to be sent. In normal terminal usage we
might use the mail command as follows.

% mail bill
1 have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed 2 message to send to i/l and ended this message with a |D which sent an
end-of-file to the mail program. (Here and throughout this document, the notation **1x"" is to
be read ‘“‘control-x and represents the striking of the x key while the control key is held
down.) The mail program then echoed the characters ‘EQT" and transmitted our message. The
characters ‘% ° were printed before and after the mail command by the shell 1o indicate that
input was needed.

After typing the ‘% ’ prompt the shell was reading command input from our terminal.
We typed a complete command ‘mail bill’. The shell then executed the mai program with
argument bill and went dormant waiting for it to complete. The mail program then read input
from our terminal until we signalled an end-of-file via typing a {D after which the shell noticed
that mail had completed and signaled us that it was ready to read from the terminal again by
printing another ‘% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete
command is typed at the terminal, the shell executes the command and when this execution
completes, it prompts for a new command. If you run the editor for an hour, the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the rser command, which sets
the default erase and kill characters on your terminal — the erase character erases the last char-
acter you typed and the kill character erases the entire line you have entered so far. By default.
the erase character is ‘#’ and the kill character is ‘@’. Most people who use CRT displays
prefer to use the backspace (1H) character as their erase character since it is then easier to see
what you have typed so far. You can make this be true by typing

tsel —e

which tells the program rset to set the erase character, and its default setting for this character is
a backspace.

1.2. Flag arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention, such arguments begin with the character
‘=" (hyphen). Thus the command

Is

will produce a list of the files in the current working direcrory. The option —sis the size option.
and

Is —s

causes /s to also give, for each file the size of the file in blocks of 512 characters. The manual
section for each command in the UNIX reference manual gives the available options for each
command. The /s command has a large number of useful and interesting options. Most other
commands have either no options or only one or two options. It is hard to remember options
of commands which are not used very frequently, so most UNIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

1.3. Qutput to files

Commands that normally read input or write output on the terminal can also be executed
with this input and/or output done to a file.

Thus suppose we wish to save the current date in a file called ‘now’. The command
date

will print the current date on our terminal. This is because our terminal is the default standard
output for the date command and the dale command prints the date on its standard output. The
shell lets us redirect the standard outpur of a command through a notation using the meracharac-
ter *>" and the name of the file where output is to be placed. Thus the command

date > now

runs the dare command such that its standard output is the file ‘now’ rather than the terminal.
Thus this command places the current date and time into the file ‘now’. It is important to
know that the date command was unaware that its output was going to a file rather than to the
terminal. The shell performed this redirection before the command began executing.

One other thing to note here is that the file ‘now’ need not have existed before the dare
command was executed; the shell would have created the file if it did not exist. And if the file
did exist? If it had existed previously these previous contents would have been discarded! A
shell option noclobber exists to prevent this from happening accidentally; it is discussed in sec-
tion 2.2.

The system normally keeps files which you create with *>" and all other files. Thus the
default is for files to be permanent. If you wish to create a file which will be removed automat-
ically, you can begin its name with a ‘#° character, this ‘scratch’ character denotes the fact that
the file will be a scratch file.® The system will remove such files after a couple of days. or

*Note that if your erase character is a ‘#’, you will have to precede the “#’ with a *\". The fact that the *#°
character is the old (pre-CRT) standard erase characier means that it seldom appears in a file name. and allows
this convention 1o be used for scratch files. If you are using a CRT. your erase character should be a [H. as
we demonstrated in section 1.1 how this could be set up.

.4-

sooner if file space becomes very tight. Thus, in running the dare command above, we don't
really want to save the output forever, so we would more likely do

date > #now

1.4. Metacharacters in the shell

The shell has a large number of special characters (like *>") which indicate special func-
tions. We say that these notations have syaractic and semantic meaning to the shell. In general,
most characters which are neither letters nor digits have special meaning 1o the shell. We shall
shortly learn a2 means of quorarion which allows us to use meracharacters without the shell treat-
ing them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need
not worry about placing shell metacharacters in a letter we are sending via mail, or when we are
typing in text or data to some other program. Note that the shell is only reading input when it
has prompted with ‘% °.

1.5. Input from files; pipelines

We learned above how to redirect the standard outpur of a command to a file. It is also
possible 1o redirect the standard inpur of a command from a file. This is not often necessary
since most commands will read from a file whose name is given as an argument. We can give
the command

sort < data

10 run the sort command with standard input, where the command normally reads i(s input,
from the file ‘data’. We would more likely say

sort data

letting the sort command open the file ‘data’ for input itself since this is less to type.
We should note that if we just typed

sort

then the sort program would sort lines {rom its standard inpur. Since we did not redirecr the
standard input, it would sort lines as we typed them on the terminal until we typed a {D to
indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of another, i.e. to run the commands in a sequence known as a pipeline.
For instance the command

Is —s

normally produces a list of the files in our directory with the size of each in blocks of 512 char-
acters. If we are interested in learning which of our files is largest we may wish to have this
sorted by size rather than by name, which is the default way in which /s sorts. We could look at
the many options of /s to see if there was an option to do this but would eventually discover
that there is not. Instead we can use a couple of simple options of the sorr command. combin-
ing it with /s to get what we want.

The —n option of sort specifies a numeric sort rather than an alphabetic sort. Thus
Is —s|sort —n
specifies that the output of the /s command run with the option —sis to be piped to the com-
mand sort run with the numeric sort option. This would give us a sorted list of our files by

size, but with the smallest first. We could then use the -r reverse sort option and the head
command in combination with the previous command doing

Is —s|sort —n —r|head =5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We
have run this to the standard input of the sorr command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines. In this case we have asked head for the first 5 lines. Thus this command gives
us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by *|°
characters are connected together by the shell and the standard output of each is run into the
standard input of the next. The leftmost command in a pipeline will normally take its standard
input from the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism: one important
use of pipes which is illustrated there is in the routing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX path-
names consist of a number of components separated by ‘/’. Each component except the last
names a directory in which the next component resides, in effect specifying the parh of direc-
tories to follow to reach the file. Thus the pathname

/etc/motd

specifies a file in the directory ‘etc’ which is a subdirectory of the roor directory */°. Within this
directory the file named is ‘motd’ which stands for ‘message of the day'. A parthname that
begins with a slash is said to be an absolure pathname since it is specified from the absolute top
of the entire directory hierarchy of the system (the roor). Pathnames which do not begin with
/" are interpreted as starting in the current working directory, which is, by default, your home
directory and can be changed dynamically by the cd change directory command. Such path-
names are said to be relarive to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each component of the path-
name. If the pathname contains no slashes at all then the file is contained in the working direc-
tory itself and the pathname is merely the name of the file in this directory. Absolute path-
names have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and *.’s (periods). In fact,
all printing characters except */° (slash) may appear in filenames. It is inconvenient to have
most non-alphabetic characters in filenames because many of these have special meaning to the
shell. The character ‘.’ (period) is not a shell-metacharacter and is often used to separate the
extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing ‘. and following characters which are not *." are stripped off).
The file ‘prog.c’ might be the source for a C program, the file ‘prog.o’ the corresponding object
file, the file ‘prog.errs’ the errors resulting from a compilation of the program and the file
‘prog.output’ the output of a run of the program.

If we wished to refer to all four of these files in a command. we could use the notation
prog.*®
This word is expanded by the shell, before the command to which it is an argument is exe-
cuted, into a list of names which begin with ‘prog.”. The character ‘*’ here matches any
sequence (including the empty sequence) of characters in a file name. The names which match
are alphabetically sorted and placed in the argument list of the command. Thus the command
echo prog.*

will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above.
The echo command receives four words as arguments, even though we only typed one word as
as argument directly. The four words were generated by filename expansion of the one input
word.

Other notations for filename expansion are also available. The character *?’ matches any
single character in a filename. Thus

echo ? 77 777
will echo a line of filenames; first those with one character names, then those with two charac-

ter names, and finally those with three character names. The names of each length will be
independently sorted.

Another mechanism consists of a sequence of characters between ‘[* and ‘]'. This
metasequence matches any single character from the enclosed set. Thus

prog. [co]
will match

prog.c prog.o

in the example above. We can also place two characters around a ‘=" in this notation to denote
arange. Thus
chap.[1-5]

might match files
chap.1 chap.2 chap.3 chap.4 chap.5
if they existed. This is shorthand for
chap.[12345]
and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an argument
list) contains filename expansion syntax, and if this filename expansion syntax fails to match
any existing file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character ‘." at the beginning are
treated specially. Neither *** or *?° or the ‘[’ ‘I’ mechanism will match it. This prevents
accidental matching of the filenames ‘.’ and ‘.." in the working directory which have special
meaning to the system. as well as other files such as .csarc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc-
tory of other users. This notation consists of the character ‘™ (tilde) followed by another users’
login name. For instance the word ‘“bill’ would map to the pathname ‘/usr/bill" if the home
directory for ‘bill’ was ‘/usr/bill’. Since, on large systems, users may have login directories
scattered over many different disk volumes with different prefix directory names, this notation
provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ‘=" alone, e.g. ‘"/mbox’. This notation is
expanded by the shell into the file ‘mbox’ in your home directory, i.e. into ‘/usr/bill/mbox" for
me on Ernie Co-vax, the UCB Computer Science Department VAX machine. where this docu-
ment was prepared. This can be very useful if you have used cd to change to another directory
and have found a file you wish to copy using cp. If I give the command

cp thatfile ©
the shell will expand this command to
cp thatfile /usr/bill

since my home directory is /usr/bill.

There also exists a mechanism using the characters ‘[’ and ‘]’ for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files, are the names of files which do not yet exist, are not thus conveniently
described. This mechanism will be described much later, in section 4.2, as it is used less fre-
quently.

1.7. Quotation
We have already seen a number of metacharacters used by the shell. These metacharac-
ters pose a problem in that we cannot use them directly as parts of words. Thus the command
echo *
will not echo the character ‘*’. It will either echo an sorted list of filenames in the current
working directory, or print the message ‘No maltch’ if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers. digits,
/7. " or ‘=" in an argument word to a command is to enclose it with single quotation charac-
ters *, i.e.

echo ™’

There is one special character *!” which is used by the hisrory mechanism of the shell and which
cannot be escaped by placing it within * characters. It and the character ‘"’ itself can be pre-
ceded by a single *\’ to prevent their special meaning. Thus

echo \\!
prints

!
These two mechanisms suffice to place any printing character into a word which is an argument
1o a shell command. They can be combined, as in

roge

echo \

which prints

w

since the first ‘\” escaped the first ‘> and the **’ was enclosed betwesn *’ characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are
several ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely
to continue for several minutes unless you stop it. You can send an INTERRUPT signal to the car
command by typing the DEL or RUBCUT key on your terminal.* Since car does not take any pre-
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it to terminate. The
shell notices that car has terminated and prompts you again with ‘% . If you hit INTERRUPT

*Many users use sin'(1) to change the interrupt character to 1C.

-8-

again, the shell will just repeat its prompt since it handles INTERRUPT signals and chooses to
continue to execute commands rather than terminating like car did. which would have the effect
of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their
standard input. Thus the mail/ program in the first example above was terminated when we
typed a {D which generates an end-of-file from the standard input. The shell also terminates
when it gets an end-of-file printing ‘logout’; UNIX then logs you off the system. Since this
means that typing too many {D’s can accidentally log us off, the shell has a mechanism for
preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command will terminate without our typing a {D. This is because it read to the end-
of-file of our file ‘prepared.text’ in which we placed a message for ‘bill" with an editor program.
We could also have done

cat prepared.text | mail bill

since the car command would then have written the text through the pipe to the standard input
of the mail command. When the car command completed it would have terminated, closing
down the pipeline and the mail command would have received an end-of-file from it and ter-
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been stopped by sending an INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily. with
"the possibility of continuing execution later. This is done by sending a STOP signal via typing a
1Z. This signal causes all commands running on the terminal (usually one but more if a pipe-
line is executing) to become suspended. The shell notices that the command(s) have been
suspended, types ‘Stopped’ and then prompts-for a new command. The previously executing
command has been suspended, but otherwise unaffected by the STOP signal. Any other com-
mands can be executed while the original command remains suspended. The suspended com-
mand can be continued using the fg command with no arguments. The shell will then retype
the command to remind you which command is being continued, and cause the command to
resume execution. Unless any input files in use by the suspended command have been
changed in the meantime, the suspension has no effect whalsoever on the execution of the
command. This feature can be very useful during editing, when you need to look at another
file before continuing. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and its name is

funnyfile

prog.c

prog.o

% jobs

{11 + Stopped mail harold
% fg

mail haroid

funnyfile. Do you know who did it?
EOT

%

In this example someone was sending a message to Harold and forgot the name of the file he
wanted o mention. The mail command was suspended by typing 1Z. When the shell noticed

.9.

that the mail program was suspended, it typed ‘Stopped’ and prompted for a new command.
Then the /s command was typed to find out the name of the file. The jobs command was run to
find out which command was suspended. At this time the fg command was typed to continue
execution of the mail program. Input to the mail program was then continued and ended with
a 1D which indicated the end of the message at which time the mail program typed EOT. The
Jjobs command will show which commands are suspended. The {Z should only be typed at the
beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. This also happens on INTERRUPT, and QUIT signals. More information on
suspending jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by
typing a {\. This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file ‘core’ has been created containing information about the program ‘a.out’s
state when it terminated due to the QUIT signal. You can examine this file yourself, or forward
information to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the Aill com-
mand. See section 2.6 for an example.

If you want to examine the output of a command without having it move off the screen as
the output of the

cat /etc/passwd
command will, you can use the command

more /etc/passwd

s

The more program pauses after each complete screenful and types ‘— —More— =" at which
point you can hit a space to get another screenful, a return to get another line, or a *q’ to end
the more program. You can also use more as a filter. i.e.

cat /etc/passwd | more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the 1S key to stop the
typeout. The typeout will resume when you hit {Q or any other key, but 1Q is normally used
because it only restarts the output and does not become input to the program which is running.
This works well on low-speed terminals, but at 9600 baud it is hard to type [S and [Q fast
enough to paginate the output nicely, and a program like more is usually used.

An additional possibility is to use the 1O flush output character; when this character is
typed. all output from the current command is thrown away (quickly) until the next input read
occurs or until the next shell prompt. This can be used to allow a command to complete
without having to suffer through the output on a slow terminal; O is a toggle. so flushing can
be turned off by typing {O again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way
in which it operates. The remaining sections will go yet further into the internals of the shell.
but you will surely want to try using the shell before you go any further. To try it you can log
in to UNIX and type the following command to the system:

chsh myname /bin/csh

Here ‘myname’ should be replaced by the name you typed to the system prompt of ‘login:’ to
get onto the system. Thus I would use ‘chsh bill /bin/csh’. You only have to do this once: it

.10 -

takes effect at next login. You are now ready to try using csh.

Before you do the ‘chsh’ command, the shell you are using when you log into the system
is */bin/sh’. In fact, much of the above discussion is applicable to ‘/bin/sh’. The next section
will introduce many features particular to csh so you should change your shell to cs/ before you
begin reading it.

<11 -

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by
reading commands from a file .csarc in this directory. All shells which you may start during
your terminal session will read from this file. We will later see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshre, read commands from a file ./ogin also in your home directory. This file contains com-
mands which you wish to do each time you login to the UNIX system. My .login file looks
something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt}users” ; users
alias ts\
‘set noglob ; eval ‘tset —s —m dialup:c100rvdpna —m plugboard:?hp2621inl *™;
ts; stty intr {C kill U crt
set time==15 history=10
msgs —f
if (=~e Smail) then
echo "${prompt)mail”
mail
endif

This file contains several commands to be executed by UNIX each time [login. The first is
a ser command which is interpreted directly by the shell. It sets the shell variable ignoreeof
which causes the shell to not log me off if I hit {D. Rather, I use the logour command to log
off of the system. By setting the mail variable, I ask the shell to watch for incoming mail to
me. Every 5 minutes the shell looks for this file and tells me if more mail has arrived there.
An alternative to this is to put the command

biff y
in place of this ser; this will cause me to be notified immediately when mail arrives, and to be
shown the first few lines of the new message.

Next I set the shell variable ‘time’ to ‘15° causing the shell to automatically print out
statistics lines for commands which execute for at least 15 seconds of cpPu time. The variable
‘history’ is set to 10 indicating that I want the shell to remember the last 10 commands | type
in its history list, (described later).

I create an alias **ts” which executes a rser(1) command setting up the modes of the ter-
minal. The parameters to rser indicate the kinds of terminal which I usually use when not on a
hardwired port. [then execute *‘ts’” and also use the siry command to change the interrupt
character to 1C and the line kill character to 1U.

I then run the ‘msgs’ program, which provides me with any system messages which |
have not seen before; the ‘~{ option here prevents it from telling me anything if there are no
new messages. Finally, if my maiibox file exists, then I run the ‘mail’ program to process my
mail.

When the ‘mail’ and ‘msgs’ programs finish, the shell will finish processing my .login file
and begin reading commands from the terminal, prompting for each with ‘% '. When [log off
(by giving the logout command) the shell will print ‘logout’ and execute commands from the
file *.logout’ if it exists in my home directory. After that the shell will terminate and UNIX will
log me off the system. If the system is not going down, I will receive a new login message. In

<12 -

any case, after the ‘logout’ message the shell is committed to terminating and will take no
further input from my terminal.

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and rime which
had values ‘10’ and ‘15°. In fact, each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by the set command. It has several forms, the
most useful of which was given above and is

set name=value

Shell variables may be used to store values which are to be used in commands later
through a substitution mechanism. The shell variables most commonly referenced are. how-
ever, those which the shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the shell.

One of the most important variables is the variable parh. This variable contains a
sequence of directory names where the shell searches for commands. The ser command with
no arguments shows the value of all variables currently defined (we usually say ser) in the shell.
The default value for path will be shown by ser to be

% set

argy 0

cwd /usr/bill
home /usr/bill
path (. /usr/ucb /bin /usr/bin)
prompt %

shell /bin/csh
status 0

term ¢100rv4pna
user bill

%

This output indicates that the variable path points to the current directory *.” and then
*/usr/ucb’, ‘/bin’ and ‘/usr/bin’. Commands which you may write might be in *." (usually one
of your directories). Commands developed at Berkeley, live in ‘/usr/ucb’ while commands
developed at Bell Laboratories live in */bin’ and ‘/usr/bin’.

A number of locally developed programs on the system live in the directory ‘/usr/local’.
If we wish that all shells which we invoke to have access to these new programs we can place
the command

set path= (. /usr/ucb /bin /usr/bin /usr/local)
in our file .cshrc in our home directory. Try doing this and then logging out and back in and do
set

again to see that the value assigned to parh has changed.

One thing you should be aware of is that the shell examines each directory which you
insert into your path and determines which commands are contained there. Except for the
current directory ‘", which the shell treats specially, this means that if commands are added to
a directory in your search path after you have started the shell, they will not necessarily be
found by the shell. If you wish to use a command which has been added in this way. you
shouid give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it
will find the newly added command. Since the shell has to look in the current directory *." on

.13 -

each command, placing it at the end of the path specification usually works equivalently and
reduces overhead.

Other useful built in variables are the variable home which shows your home directory,
cwd which contains your current working directory, the variable ignoreeof which can be set in
your .login file to tell the shell not to exit when it receives an end-of-file from a terminal (as
described above). The variable ‘ignoreeof” is one of several variables which the shell does not
care about the value of, only whether they are ser or unser. Thus to set this variable you simply
do

set ignoreeof
and to unset it do
unset ignoreeof

These give the variable ‘ignoreeof” no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobber and mail.
The metasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous con-
tents of the named file. In this way you may accidentally overwrite a file which is valuable. If
you would prefer that the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do
date > now

would cause a diagnostic if ‘now" existed already. You could type
date >! now

if you really wanted to overwrite the contents of ‘now’. The ‘>!" is a special metasyntax indi-
cating that clobbering the file is ok.}

2.3. The shell’s history list

The shell can maintain a hisrory list into which it places the words of previous commands.
It is possible 1o use a notation to reuse commands or words from commands in forming new
commands. This mechanism can be used to repeat previous commands or to correct minor typ-
ing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechan-
ism of the shell. In this exampie we have a very simple C program which has a bug (or two) in
it in the file ‘bug.c’, which we ‘cat’ out on our terminal. We then try to run the C compiler on
it, referring to the file again as ‘!$’, meaning the last argument to the previous command. Here
the ‘!’ is the history mechanism invocation metacharacter, and the ‘S’ stands for the last argu-
ment, by analogy to ‘S’ in the editor which stands for the end of the line. The shell echoed the
command, as it would have been typed without use of the history mechanism, and then exe-
cuted it. The compilation yielded error diagnostics so we now run the editor on the file we
were trying to compile, fix the bug, and run the C compiler again, this time referring to this
command simply as ‘!¢’, which respeats the last command which started with the letter ‘c’. If
there were other commands starting with ‘¢’ done recently we could have said ‘!cc’ or even
*lcc:p’ which would have printed the last command starting with ‘cc’ without executing it.

———————
tThe space between the *!” and the word ‘now' is critical here. as *'now’ would be an invocation of the fusrory
mechanism. and have a totally different effect.

.14 -

% cat bug.c
main()

]
|

printf("hello):

% cc IS
cc bug.c
"bug.c”, line 4: newline in string or char constant
"bug.c”, line 5: syntax error
% ed !S
ed bug.c
29
4s/)./"&/p
printf("hello”);
w

30

q

% ¢

cc bug.c

% a.out

hello% 'e

ed bug.c

30

4s/lo/1o\\n/p
printf("hello\n");

w

32

q
% !c —o bug
cc bug.c —o bug
% size a.out bug
a.out: 27844-364+1028 = 4176b = 0x1050b
bug: 2784 +364+1028 = 4176b = 0x1050b
% 1s —11*
Is =1 a.out bug
—rwxr—xr—x 1 bill 3932 Dec 19 09:41 a.out
—rwxr—xr—x 1 bill 3932 Dec 19 09:42 bug
% bug
hello
% num bug.c | spp
spp: Command not found.
% Tspp{ssp
num bug.c | ssp
1 main()
3
4 printf("hello\n");
5)
% ' | lpr
num bug.c|ssp|lpr
%

215 -

After this recompilation, we ran the resulting ‘a.out’ file, and then noting that there still
was a bug, ran the editor again. After fixing the program we ran the C compiler again. but
tacked onto the command an extra ‘—o bug’ telling the compiler to place the resultant binary
in the file ‘bug’ rather than ‘a.out’. In general, the history mechanisms may be used anywhere
in the formation of new commands and other characters may be placed before and after the
substituted commands.

We then ran the ‘size’ command to see how large the binary program images we have
created were, and then an ‘lIs —I" command with the same argument list, denoting the argu-
ment list **’. Finally we ran the program ‘bug’ to see that its output is indeed correct.

To make a numbered listing of the program we ran the ‘num’ command on the file
‘bug.c’. In order to compress out blank lines in the output of ‘num’ we ran the output through
the filter *ssp’, but misspelled it as spp. To correct this we used a shell substitute, placing the
old text and new text between ‘1’ characters. This is similar to the substitute command in the
editor. Finally, we repeated the same command with *!!’, but sent its output to the line printer.

There are other mechanisms available for repeating commands. The Aistory command
prints out a number of previous commands with numbers by which they can be referenced.
There is a way to refer to a previous command by searching for a string which appeared in it.
and there are other, less useful, ways to select arguments to include in a new command. A
complete description of all these mechanisms is given in the C shell manual pages in the UNIX
Programmers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input
commands. This mechanism can be used to simplify the commands you type. to supply default
arguments to commands, or to perform transformations on commands and their arguments.
The alias facility is similar to a macro facility. Some of the features obtained by aliasing can be
obtained also using shell command files, but these take place in another instance of the shell
and cannot directly affect the current shells environment or involve commands such as cd
which must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the system
called ‘newmail’ you wish to use, rather than the standard mail program which is called ‘mail".
If you place the shell command

alias mail newmail
in your .cs/irc file, the shell will transform an input line of the form
mail bill

into a call on ‘newmail’. More generally, suppose we wish the command ‘s’ to always show
. We can do

sizes of files, that is to always do ‘—s’.
alias Is Is —s
or even
alias dir Is —s
creating a new command syntax ‘dir’ which does an ‘Is —s’. If we say
dir ~bill
then the shell will translate this to
Is —s /mnt/bill
Thus the alias mechanism can be used to provide short names for commands, to provide

default arguments, and to define new short commands in terms of other commands. It is also
possible to define aliases which contain multiple commands or pipelines. showing where the

.16 -

arguments to the original command are to be substituted using the facilities of the history
mechanism. Thus the definition
aliased "cd \!* ; Is”

would do an /s command after each change directory ¢d command. We enclosed the entire alias
definition in * characters to prevent most substitutions from occurring and the character *:°
from being recognized as a metacharacter. The ‘!’ here is escaped with a *\’ to prevent it from
being interpreted when the alias command is typed in. The ‘\!*’ here substitutes the entire
argument list to the pre-aliasing ¢d command, without giving an error if there were no argu-
ments. The *;’ separating commands is used here to indicate that one command is to be done
and then the next. Similarly the definition

alias whois ‘grep \!1 /etc/passwd’
defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a
large number of commands there, shells will tend to start slowly. A mechanism for saving the
shell environment after reading the .cshrc file and quickly restoring it is under development, but
for now you should try to limit the number of aliases you have 1o a reasonable number... 10 or
15 is reasonable, 50 or 60 will cause a noticeable delay in starting up shells, and make the sys-
tem seem sluggish when you execute commands from within the editor and other programs.

2.5. More redirection; >> and > &

There are a few more notations useful to the terminal user which have not been intro-
duced yet.

In addition to the standard output, commands also have a diagnostic output which is nor-
mally directed to the terminal even when the standard output is redirected to a file or a pipe. It
is occasionally desirable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to
have a record of any error diagnostic it produces you can do

command >& file

The *>&’ here tells the shell to route both the diagnostic output and the standard output into
‘file’. Similarly you can give the command

command |& lpr

to route both standard and diagnostic output through the pipe to the line printer daemon /pr.#
Finally, it is possible to use the form

command > > file

to place output at the end of an existing file.t

#A command form
command >&! file
exists, and is used when noclobber is set and file already exists.
i naclodber is set. then an error will result il file does not exist, otherwise the sheli will create file if it
doesn’t exist. A form

command > >! file

makes it not be an error {or file 1o not exist when neclobber is set.

217

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of com-
mands separated by semicolons. a single job is created by the shell consisting of these com-
mands together as a unit. Single commands without pipes or semicolons create the simplest
jobs. Usually, every line typed to the shell creates a job. Some lines that create jobs (cne per
line) are

sort < data
Is —s|sort —n|head =5
mail harold

If the metacharacter ‘&’ is typed at the end of the commands. then the job is started as a
background job. This means that the shell does not wait for it to complete but immediately
prompts and is ready for another command. The job runs in the background at the same time
that normal jobs, called foreground jobs. continue to be read and executed by the shell one at a
time. Thus

du > usage &

would run the du program, which reports on the disk usage of your working directory (as well
as any directories below it), put the output into the file ‘usage’ and return immediately with a
prompt for the next command without out waiting for du to finish. The du program would con-
tinue executing in the background until it finished. even though you can type and execute more
commands in the mean time. When a background job terminates, a message is typed by the
shell just before the next prompt telling you that the job has completed. In the following
example the du job finishes sometime during the execution of the mail command and its com-
pletion is reported just before the prompt after the mail job is finished.

% du > usage &

(1] 503

% mail bill

How do you know when a background job is finished?
EOT

(11 = Done du > usage

%

If the job did not terminate normally the ‘Done’ message might say something else like
‘Killed’. If you want the terminations of background jobs to be reported at the time they occur
(possibly interrupting the output of other foreground jobs), you can set the norifi- variable. In
the previous example this would mean that the ‘Done’ message might have come right in the
middle of the message to Bill. Background jobs are unaffected by any signals from the key-
board like the STOP, INTERRUPT. or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table. the shell
remembers the command names, arguments and the process numbers of all commands in the job
as well as the working directory where the job was started. Each job in the table is either run-
ning in the foreground with the shell waiting for it to terminate, running in the background. or
suspended. Only one job can be running in the foreground at one time, but several jobs can be
suspended or running in the background at once. As each job is started. it is assigned a small
identifying number called the job number which can be used later to refer to the job in the com-
mands described below. Job numbers remain the same until the job terminates and then are
re-used.

When a job is started in the backgound using ‘&’, its number, as well as the process
numbers of all its (top level) commands, is typed by the shell before prompting you for another
command. For example,

.18 -

% Is —s|sort —n > usage &
[2] 2034 2035
%

runs the ‘Is’ program with the ‘—s’ options, pipes this output into the ‘sort’ program with the
*—n’ option which puts its output into the file ‘usage’. Since the ‘&’ was at the end of the line.
these two programs were started together as a background job. After starting the job. the shell
prints the job number in brackets (2 in this case) followed by the process number of each pro-
gram started in the job. Then the shell immediates prompts for a new command, leaving the
job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing {Z which sends
a STOP signal to the currently running foreground job. A background job can become
suspended by using the stop command described below. When jobs are suspended they merely
stop any further progress until started again, either in the foreground or the backgound. The
shell notices when a job becomes stopped and reports this fact, much like it reports the termi-
nation of background jobs. For foreground jobs this looks like

% du > usage
1Z

Stopped

%

‘Stopped’ message is typed by the shell when it notices that the di program stopped. For back-
ground jobs, using the srop command, it is

% sort usage &

[1] 2345

% stop %l

[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you
are doing (execute other commands) and then return to the suspended job. Also, foreground
jobs can be suspended and-then continued as background jobs using the bg command, allowing
you to continue other work and stop waiting for the foreground job to finish. Thus

% du > usage

1Z

Stopped

% bg

[1] du > usage &
%

starts ‘du’ in the foreground, stops it before it finishes, then continues it in the background
allowing more foreground commands to be executed. This is especially helpful when a fore-
ground job ends up taking longer than you expected and you wish you had started it in the
backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job
name arguments begin with the character ‘%’, since some of the job control commands also
accept process numbers (printed by the ps command.) The default job (when no argument is
given) is called the currens job and is identified by a ‘+' in the output of the jobs command.
which shows you which jobs you have. When only one job is stopped or running in the back-
ground (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the current job and the existing current job
becomes the previous job — identified by a ‘=" in the output of jobs. When the current job ter-
minates, the previous job becomes the current job. When given, the argument is either “%—"
(indicating the previous job); '%#’, where # is the job number; ‘%pref” where pref is some

.19 -

unique prefix of the command name and arguments of one of the jobs: or ‘%?" followed by
some string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands and status
(‘Stopped’ or ‘Running’) of each backgound or suspended job. With the *—1" option the pro-
cess numbers are also typed.

% du > usage &

[1] 3398

% Is —s|sort —n > myfile &

(2] 3405

% mail bill

1Z

Stopped

% jobs

[1] = Running du > usage
2] Running Is —s|sort —n > myfile
[3] + Stopped mail bill

% fg %ls

Is —=s|sort —n > myfile

% more myfile

The fz command runs a suspended or background job in the foreground. It is used to res-
tart a previously suspended job or change a background job to run in the foreground (allowing
signals or input from the terminal). In the above example we used fz 10 change the ‘ls’ job
from the background to the foreground since we wanted to wait for it to finish before looking at
its output file. The bg command runs a suspended job in the background. It is usually used
after stopping the currently running foreground job with the STOP signal. The combination of
the STOP signal and the bg command changes a foreground job into a background job. The srop
command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition to
jobs, it may be given process numbers as arguments, as printed by ps. Thus, in the example
above, the running du command could have been terminated by the command

% kill %1
(1] Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of
a specific job should be reported at the time it finishes instead of waiting for the next prompt.

If 2 job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is then run in the foreground, input can be given to the job. If
desired, the job can be run in the background again until it requests input again. This is illus-
trated in the following sequence where the ‘s’ command in the text editor might take a long
time.

% ed bigfile

120000
1,Ss/thisword/thatword/
1Z

Stopped

% bg

[1] ed bigfile &

%

.. . some foreground commands
(1] Stopped (tty input) ed bigfile
% fg

220 -

ed bigfile
w
120000

q
%

So after the ‘s’ command was issued, the ‘ed’ job was stopped with 1Z and then put in the
background using bg. Some time later when the ‘s’ command was finished, ed tried to read
another command and was stopped because jobs in the backgound cannot read from the termi-
nal. The fg command returned the ‘ed’ job to the foreground where it could once again accept
commands from the terminal.

The command
stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to
the terminal. This prevents messages from background jobs from interrupting foreground job
output and allows you to run a job in the background without losing terminal output. It also
can be used for interactive programs that sometimes have long periods without interaction.
Thus each time it outputs a prompt for more input it will stop before the prompt. It can then
be run in the foreground using fg, more input can be given and, if necessary stopped and
returned to the background. This siy command might be a good thing to put in your ./ogim file
if you do not like output from background jobs interrupting your work. It also can reduce the
need for redirecting the output of background jobs if the output is not very big:

% stty tostop

% wc hugefile &

{11 10387

% ed text

.. .some time later

q
(1] Stopped (tty output) wc hugefile
% fg wc
wc hugefile
13371 30123 302577
% stty —tostop

Thus after some time the ‘wc’ command, which counts the lines, words and characters in a file.
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in
the foreground we allowed it to write on the terminal exactly when we were ready to look at its
output. Programs which attempt to change the mode of the terminal will also block, whether or
not rosrop is set, when they are not in the foreground. as it would be very unpleasant to have a
background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows
nothing about background jobs started in other login sessions or within shell files. The ps can
be used in this case to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The
‘change directory’ command chdir (its short form cd may also be used) changes the working
directory of the shell, that is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files
related to that project in that directory. The ‘make directory’ command, mkdir, creates a new
directory. The pwd (‘print working directory’) command reports the absolute pathname of the
working directory of the shell, that is, the directory you are located in. Thus in the example
below:

.21 -

% pwd

/usr/bill

% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example. he might place
a group of related files.
No matter where you have moved to in a directory hierarchy, you can return to your
‘home’ login directory by doing just
cd

with no arguments. The name
hierarchy, thus

cd ..

changes the shell’s working directory to the one directly above the current one. The name *..°
can be used in any pathname, thus,

[

always means the directory above the current one in the

cd ../programs

means change to the directory ‘programs’ contained in the directory above the current one. If
you have several directories for different projects under, say, your home directory, this short-
hand notation permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the variable

cwd. The shell can also be requested to remember the previous directory when you change to a
new working directory. If the ‘push directory’ command pushd is used in place of the ¢d com-
mand, the shell saves the name of the current working directory on a directory stack before
changing to the new one. You can see this list at any time by typing the ‘directories’ command
dirs.

% pushd newpaper/references

“/newpaper/references -

% pushd /usr/lib/tmac

/usr/lib/tmac ~/newpaper/references ~

% dirs

/usr/lib/tmac ~/newpaper/references

% popd

“/newpaper/references ~

% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde (7) as shorthand for
your home directory—in this case ‘/usr/bill’. The directory stack is printed whenever there is
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually
faster and more informative than pwd since it shows the current working directory as well as
any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first direc-
tory in the list. The ‘pop directory’ popd command without an argument returns you to the
directory you were in prior to the current one, discarding the previous current directory from
the stack (forgetting it). Typing popd several times in a series takes you backward through the
directories you had been in (changed to) by pushd command. There are other options to pushd
and popd to manipulate the contents of the directory stack and to change to directories not at
the top of the stack; see the csh manual page for details.

<22

Since the shell remembers the working directory in which each job was started. it warns
you when you might be confused by restarting a job in the foreground which has a different
working directory than the current working directory of the shell. Thus if you start a back-
ground job, then change the shell’s working directory and then cause the background job to run
in the foreground, the shell warns you that the working directory of the currently running fore-
ground job is different from that of the shell.

% dirs —!
/mnt/bill

% cd myproject
% dirs
“/myproject

% ed prog.c
1143

1Z

Stopped

% cd ..

% Is

myproject
textfile

% fg

ed prog.c (wd: “/myproject)

This way the shell warns you when there is an implied change of working directory, even
though no cd command was issued. In the above example the ‘ed’ job was still in
‘/mnt/bill/project’ even though the shell had changed to ‘/mnt/bill’. A similar warning is
given when such a foreground job terminates or is suspended (using the STOP signal) since the
return to the shell again implies a change of working directory.

% fg

ed prog.c (wd: “/myproject)
. . . after some editing

q

(wd now: 7)

%

These messages are sometimes confusing if you use programs that change their own working
directories, since the shell only remembers which directory a job is started in, and assumes it
stays there. The ‘=1’ option of jobs will type the working directory of suspended or background
jobs when it is different from the current working directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argu-
ment such as

alias Is

to show the current alias for, e.g.. ‘ls’.

The echo command prints its arguments. It is often used in shell scripts or as an interac-
tive command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers given with
the history events can be used to reference previous events which are difficult to reference
using the contextual mechanisms introduced above. There is also a shell variable called prompr.

-23 -

By placing a ‘!* character in its value the shell will there substitute the number of the current
command in the history list. You can use this number to refer to this command in a history
substitution. Thus you could

set prompt="\! % °
Note that the *!” character had to be escaped here even within *** characters.

The limit command is used to restrict use of resources. With no arguments it prints the
current limitations:

cputime unlimited
filesize unlimited
datasize 5616 kbytes
stacksize 512 kbytes

coredumpsize unlimited
Limits can be set, e.g.:
limit coredumpsize 128k

Most reasonable units abbreviations will work: see the cs# manual page for more details.
The logour command can be used to terminate a login shell which has ignoreeof sel.

The rehash command causes the shell to recompute a table of where commands are
located. This is netessary if you add a command to a directory in the current sheil’s search
path and wish the shell to find it, since otherwise the hashing algorithm may tell the shell that
the command wasn’'t in that directory when the hash table was computed.

The repear command can be used to repeal a command several limes. Thus to make §
copies of the file one in the file five you could do

repeat 5 cat one > > five

The setenv command can be used to set variables in the environment. Thus
setenv TERM adm3a

will set the value of the environment variable TERM to ‘adm3a’. A user program prinieny exists
which will print out the environment. It might then show:

% printenv

HOME == /usr/bill

SHELL =/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a

USER =bill

%

The source command can be used to force the current shell to read commands from a file.
Thus
source .cshre

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login.

The time command can be used to cause a command to be timed no matter how much
CPU time it takes. Thus

.24.

% time cp /etc/rc /usr/bill/rc
0.0u 0.1s 0:01 8% 2+ 1k 3+2io 1pf+0w
% time wc /etc/rc /usr/bill/rc

52 178 1347 /etc/re

52 178 1347 /usr/bill/rc

104 356 2694 total
0.1u 0.1s 0:00 13% 343k 5+ 3io 7Tpf+0w
%

indicates that the ¢p command used a negligible amount of user time (u) and about 1/10th of a
system time (s); the elapsed time was 1 second (0:01), there was an average memory usage of
2k bytes of program space and lk bytes of data space over the cpu time involved (2+1k): the
program did three disk reads and two disk writes (3+2i0), and took one page fault and was not
swapped (1pf+0w). The word count command wc on the other hand used 0.1 seconds of user
time and 0.1 seconds of system time in less than a second of elapsed time. The percentage
‘13%" indicates that over the period when it was active the command ‘wc¢’ used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions
from the shell, and unserenv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more
features of the shell to be discussed here, and all features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the foreach built-in command
which can be used to run the same command sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and
the shell manual pages to become familiar with the other facilities which are available to you.

.925.

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commarnds in files and to cause shells to be invoked to read and exe-
cute commands from these files, which are called shell scripts. We here detail those features of
the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are nor useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of opera-
tions on related files. For instance a large program consisting of one or more files can have its
dependencies described in a makefile which contains definitions of the commands used to create
these different files when changes occur. Definitions of the means for printing listings, cleaning
up the directory in which the files reside, and installing the resultant programs are easily, and
most appropriately placed in this makefile. This format is superior and preferable to maintain-
ing a group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how
different versions of the document are to be created and which options of nroff or trofi are
appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying
% csh script ...

where scripr is the name of the file containing a group of csh commands and *..." is replaced by a
sequence of arguments. The shell places these arguments in the variable argv and then begins
to read .commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other shell variables.

If you make the file ‘script’ executable by doing
chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a *#’
character) then a */bin/csh’ will automatically be invoked to execute ‘script’ when you type
script

If the file does not begin with a ‘#’ then the standard shell ‘/bin/sh’ will be used to execute il.
This allows you to convert your older shell scripts to use csk al your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it. the
input line is parsed into distinct commands. Before each command is executed a mechanism
know as variable substitution is done on these words. Keyed by the character ‘S’ this substitu-
tion replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable argy to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

$7name

expands to ‘1’ if name is ser or to ‘0’ if name is not ser. It is the fundamental mechanism used

226 -

for checking whether particular variables have been assigned values. All other forms of refer-
ence to undefined variables cause errors.

The notation
S#name
expands to the number of elements in the variable name. Thus

% set argv=(a b c)
% echo $?argv
‘}h echo S#argv
sﬁm unset argyv
% echo $?argv
‘?/o echo Sargv
Undefined variable: argv.
%
It is also possible to access the components of a variable which has several values. Thus
Sargv(1]
gives the first component of argv or in the example above ‘a’. Similarly
Sargv(S#argv]
would give ‘¢, and
Sargv[l—2]
would give ‘a b'. Other notations useful in shell scripts are
Sn
where nis an integer as a shorthand for
Sargv(n]
the nh parameter and
g
which is a shorthand for
Sargv
The form
SS

expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names. The form

§<

is quite special and is replaced by the next line of input reaqs from the shell’s standard input
(not the script it is reading). This is useful for writing shell scripts that are interactive, reading
commands from the terminal, or even writing a shell script that acts as a filter, reading lines
from its input file. Thus the sequence

echo 'yes or no?\c’
set a=(S<)

would write out the prompt ‘yes or no?’ without a newline and then read the answer into the

.27.

variable ‘a’. In this case ‘S#a’ would be ‘0’ if either a blank line or end-of-file ({D) was typed.

One minor difference between ‘Sn' and ‘Sargv(n]’ should be noted here. The form
‘Sargv([n]’ will yield an error if n is not in the range ‘1 —S#argv' while ‘Sn’ will never yield an
out of range subscript error. This is for compatibility with the way older shells handled parame-
ters.

Another important point is that it is never an error to give a subrange of the form 'n—":
if there are less than n components of the given variable then no words are substituted. A
range of the form ‘m—n’ likewise returns an empty vector without giving an error when m
exceeds the number of elements of the given variable, provided the subscript # is in range.

3.5. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate
expressions in the shell based on the values of variables. In fact, all the arithmetic operations
of the language C are available in the shell with the same precedence that they have in C. In
particular, the operations ‘= =" and ‘!=" compare strings and the operators ‘&&" and 1| imple-
ment the boolean and/or operations. The special operators ‘=""and ‘!"" are similar to "= ="
and ‘!==" except that the string on the right side can have pattern matching characters (like *. ?
or []) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form
- ? filename
where ‘2’ is replace by a number of single characters. For instance the expression primitive
—e filename
tell whether the file ‘filename’ exists. Other primitives test for read. write and execule access
to the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form
‘| command |" which returns true. i.e. ‘1" if the command succeeds exiting normally with exit
status 0. or ‘0’ if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required. it can be executed
and the variable ‘Sstatus’ examined in the next command. Since ‘Sstatus’ is set by every com-
mand. it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and
some of its control structure follows:

- 28 -

% cat copyc

#

Copyc copies those C programs in the specified list
to the directory ~/backup if they differ from the files
already in ~/backup

#

set noglob

foreach i ($argv)

if (Si !~ *.cj continue # not a .c file so do nothing

if (! —r “/backup/Si:t) then
echo Si:t not in backup... not cp\’ed
continue

endif

cmp —s Si “/backup/Si:t # to set $status

if (Sstatus != Q) then
echo new backup of Si
cp Si “/backup/Si:t
endif
end

This script makes use of the foreach command, which causes the shell to execute the com-
mands between the foreach and the matching end for each of the values given between ‘(’ and
‘)" with the named variable, in this case ‘i’ set to successive values in the list. Within this loop
we may use the command break to stop executing the loop and conrinue to prematurely ter-
minate one iteration and begin the next. After the foreach loop the iteration variable (i in this
case) has the value at the last iteration.

We set the variable noglob here 1o prevent filename expansion of the members of argv.
This is a good idea, in general, if the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters. It
is also possible to quote each use of a ‘S’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementation of the
shell.t

+The following two formats are not currently acceptable o the shell:

if (expression) # Won't work!
then

command
endif

and

if (expression) then command endif # Won't work

.29.

The shell does have another form of the if statement of the form
if (expression) command
which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve
‘I, *& or ;" and must not be another control command. The second form requires the final
‘\’ to immediately precede the end-of-line.

The more general if statements above also admit a sequence of efse—if pairs followed by a
single efse and an endif, e.g.:

if (expression) then

commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the *:" modifier. We can use the
modifier *:r’ here to extract a root of a filename or “:e’ to extract the exrension. Thus if the
" variable / has the value ‘/mnt/foo.bar’ then

% echo Si Si:r Sice
/mnt/foo.bar /mnt/foo bar
%

shows how the ‘:r’ modifier strips off the trailing ‘.bar’ and the the ‘e’ modifier leaves only the
‘bar’. Other modifiers will take off the last component of a pathname leaving the head “:h" or
all but the last component of a pathname leaving the tail *:t". These modifiers are fully
described in the csh manual pages in the programmers manual. [t is also possibie to use the
command substitution mechanism described in the next major section to perform modifications
on strings to then reenter the shells environment. Since each usage of this mechanism involves
the creation of a new process, it is much more expensive to use than the ‘' modification
mechanism.# Finally, we note that the character ‘#’ lexically introduces a shell comment in
shell scripts (but not from the terminal). All subsequent characters on the input line after a
‘#’ are discarded by the shell. This character can be quoted using * or *\" to place it in an
argument word.

#It is also important to note that the current implementation of the shell limits the number of ' modifiers
on a ‘S substitution to 1. Thus

% echo Si Sichit

/afblc /alb

%

does not do what one would expect.

-30-

3.7. Other control structures

The shell also has control structures while and swirch similar to those of C. These take the
forms

while (expression)
commands
end

and
switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to
exit from a swirch while break exits a while or foreach loop. A common mistake to make in c¢s/i
scripts is 1o use break rather than breaksw in switches.

Finally, csh allows a goro statement. with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplyving input to commands

Commands run from shell scripts receive by default the standard input of the shell which
is running the script. This is different from previous shells running under UNIX. It allows shell
scripts to fully participate in pipelines, but mandates extra notation for commands which are to
take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example, consider this script which runs the editor to delete leading blanks from the lines in
each argument file

.31-

% cat deblank

deblank — — remove leading blanks
foreach i (Sargv)

ed — $i << 'EOF

1.8s/101%//

w

q
"EOF
end
%

The notation ‘< < "EOF” means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly *‘EOF". The fact that
the ‘EOF" is enclosed in *” characters. i.e. quoted. causes the shell to not perform variable sub-
stitution on the intervening lines. In general, if any part of the word following the *< <" which
the shell uses to terminate the text to be given to the command is quoted then these substitu-
tions will not be performed. In this case since we used the form ‘1.S" in our editor script we
needed to insure that this ‘S’ was not variable substituted. We could also have insured this by
preceding the ‘S’ here with a *\’, i.e.:

1\Ss/1[1*//

but quoting the *EOF" terminator is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish 1o catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a ‘goto label’
and we can remove the temporary files and then do an exir command (which is buiit in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(1)

e.g. to exit with status ‘1",

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbosce
and echo options and the related —v and —x command line options can be used to help trace
the actions of the shell. The —n option causes the shell only to read commands and not 1o
execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with
the character ‘#’, that is shell scripts that do not begin with a comment. Similarly. the
‘/bin/sh’ on your system may well defer to ‘csh’ to interpret shell scripts which begin with "#".
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using which allows only some of the
expansion mechanisms we have so far discussed to occur on the quoted string and serves (0
make this string into a single word as ‘" does.

s

-32.

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal 10 aid in per-
forming a number of similar commands. For instance, there were at one point three shells in
use on the Cory UNIX system at Cory Hall, ‘/bin/sh’, ‘/bin/nsh’, and ‘/bin/csh’. To count the
number of persons using each shell one could have issued the commands

% grep —c cshS /etc/passwd

27

% grep —c nshS /etc/passwd
128

% grep —c¢ —v shS /etc/passwd
430

%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i ("sh$” ‘cshS” "—v shS")
? grep —c $i /etc/passwd

? end

27

128

430

%

Note here that the shell prompts for input with *? * when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can, for example, do

% set a=('ls")
% echo Sa
csh.n csh.rm
% Is

csh.n

csh.rm

% echo S#a

2

%

The ser command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within *** characters is converted by the shell to a list of words.
You can also place the ‘™ quoted string within ‘"’ characters to take each (non-empty) line as a
component of the variable; preventing the lines from being split into words at blanks and tabs.
A modifier “x’ exists which can be used later to expand each component of the variable into
another variable splitting it into separate words at embedded bianks and tabs.

I3l

4.2. Braces | ...] in argument expansion

Another form of filename expansion. alluded to before involves the characters *{* and ‘|’
These characters specify that the contained strings, separated by *,’ are to be consecutively sub-
stituted into the containing characters and the results expanded left to right. Thus

Alstrl,str2,...stm)B

expands to

-33-

Astr1B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively
(i.e. nested). The results of each expanded string are sorted separately. left to right order being
preserved. The resulting filenames are not required to exist if no other expansion mechanisms
are used. This means that this mechanism can be used to generate arguments which are not
filenames, but which have common parts.

A typical use of this would be
mkdir ~/{hdrs,retrofit,csh}

to make subdirectories ‘hdrs’, ‘retrofit’ and ‘csh’ in your home directory. This mechanism is
most useful when the common prefix is longer than in this example, i.e.

chown root /usr/{ucb/{ex,edit}.lib/{ex?.7*, how_ex]}

4.3. Command substitution

A command enclosed in ** characters is replaced. just before filenames are expanded. by
the output from that command. Thus it is possible to do

A

set pwd="pwd"
1o save the current directory in the variable pwd or to do
ex ‘grep —! TRACE *.¢’

to run the editor ex supplying as arguments those files whose names end in ‘.c’ which have the
string ‘TRACE’ in them.*

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of
different substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX pro-
grams, and debugging shell scripts. See the shells manual section for a list of these options.

*Command expansion also occurs in input redirected with * < <' and within '"" quotations. Refer to the shell
manual section for full details.

-34-

Appendix — Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the csh manual section for a complete list.

Syntactic metacharacters

; 2.4 separates commands to be executed sequentially

| 1.5 separales commands in a pipeline

) 2.2.3.6 brackets expressions and variable values

& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters

/ 1.6 separates components of a file’s pathname

? 1.6 expansion character matching any single character

* 1.6 expansion character matching any sequence of characters

[1 1.6 expansion sequence matching any single character from a set

- 1.6 used at the beginning of a filename to indicate home directories

{) 4.2 used to specify groups of arguments with common parts
Quotation metacharacters

\ 1.7 prevents meta-meaning of following single character

: 1.7 prevents meta-meaning of a group of characters

" 4.3 like °, but allows variable and command expansion

Input/output metacharacters

< 1.5 indicates redirected input
> 1.3 indicates redirected output

Expansion/substitution metacharacters

S 34 indicates variable substitution

! 2.3 indicates history substitution

: 3.6 precedes substitution medifiers

1 2.3 used in special forms of history substitution
' 43 indicates command substitution

Other metacharacters

1.3.3.6 begins scratch file names; indicates shell comments
- 1.2 prefixes option (flag) arguments to commands
% 2.6 prefixes job name specifications

Glossary

-35-

This glossary lists the most important terms introduced in the introduction to the shell
and gives references to sections of the shell document for further information about them
References of the form ‘pr (1)’ indicate that the command pr is in the UNIX programmer’s
manual in section 1. You can get an onlire copy of its manual page by doing

man | pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this

manual.

a.out

Your current directory has the name ‘." as well as the name printed by the
command pwd; see also dirs. The current directory *." is usually the first com-
ponent of the search path contained in the variable parh. thus commands which
are in *." are found first (2.2). The character *." is also used in separating con:-
ponents of filenames (1.6). The character .’ at the beginning of a component of
a pathname is treated specially and not matched by the filename expansion meta-

characters *?°, ***, and ‘[‘" pairs (1.6).

Each directory has a file *..” in it which is a reference to its parent directory.
After changing into the directory with chdir. i.e.

chdir paper
you can return to the parent directory by doing
chdir ..

The current directory is printed by pud (2.7).

Compilers which create executable images create them, by default, in the file
a.out. for historical reasons (2.3).

absolute pathname

alias

argument

argv

background

base

A pathname which begins with a */’ is absolure since it specifies the pai/r of
directories from the beginning of the entire directory system — called the roor
directory. Pathnames which are not absolute are called relanve (see definition of
relative pathname) (1.6).

An alias specifies a shorter or different name for a UNIX command. or a
transformation on a command to be performed in the shell. The shell has a
command alias which establishes aliases and can print their current values.
The command wnalias is used to remove aliases (2.4).

Commands in UNIX receive a list of argument words. Thus the command
echoabc

consists of the command name ‘echo’ and three argument words *a’. ‘b" and ‘¢’
The set of arguments after the command name is said to be the argument lisi of
the command (1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called argv within the shell.
This name is taken from the conventional name in the C programming
language (3.4).

Commands started without waiting for them to complete are called background
commands (2.6).

A filename is sometimes thought of as consisting of a base part, before any °."

character, and an exrension — the part after the *.". See filename and extension
(1.6)

bg

bin

break

breaksw

builtin

case

cat

cd

chdir

chsh

cmp

command

command name

«36 -

The bg command causes a suspended job lo continue execulion in the back-
ground (2.6).

A directory containing binaries of programs and shell scripts 1o be executed is
typically called a bin directory. The standard system bin directories are ‘/bin’
containing the most heavily used commands and ‘/usr/bin’ which contains
most other user programs. Programs developed at UC Berkeley live in
‘/usr/uch’, while locally written programs live in ‘/usr/local’. Games are kept
in the directory ‘/usr/games’. You can place binaries in any directory. If you
wish to execute them often, the name of the directories should be a component
of the variable path.

Break is a builtin command used to exit from loops within the control struc-
ture of the shell (3.7).

The breaksw builtin command is used to exit from a swirch control structure,
like a break exits from loops (3.7).

A command executed directly by the shell is called a builtin command. Most
commands in UNIX are not built into the shell, but rather exist as files in bin
directories. These commands are accessible because the directories in which
they reside are named in the parh variable.

A case command is used as a label in a swirch statement in the shell’s control
structure, similar to that of the language C. Details are given in the shell
documentation ‘esh(1)’ (3.7).

The car program catenates a list of specified files on the siandard ourpur. 1t is
usually used to look at the contents of a single file on the termiral, to ‘cat a
file’ (1.8, 2.3).

The ¢d command is used to change the working directory. With no arguments,
cd changes your working directory 10 be your home directory (2.4, 2.7).

The chdir command is a synonym for cd. (d is usually used because it is easier
to type.

The chsh command is used to change the shell which you use on UNIX. By
default, you use an different version of the shell which resides in ‘/bin/sh’.
You can change your shell to */bin/csh’ by doing

chsh your-login-name /bin/csh
Thus I would do
chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after
doing this command, you will be using c¢s# rather than the shell in ‘/bin/sh’
(1.9).

Cmp is a program which compares files. It is usually used on binary files, or 10
see if two files are identical (3.6). For comparing text files the program diff.
described in ‘diff (1)’ is used.

A function performed by the system, either by the shell (a builtin command)
or by a program residing in a file in a directory within the UNIX system. is
called a command (1.1).

When a command is issued, it consists of a command name, which is the first
word of the command, followed by arguments. The convention on UNIX is
that the first word of a command names the function to be performed (1.1).

.37

command substitution

component

continue

control-

core dump

csh
.cshre

cwd

date
debugging

default;

DELETE
detached

diagnostic

The replacement of a command enclosed in ‘™ characters by the text output by
that command is called command substitution (4.3).

A part of a pathname between ‘/° characters is called a component of that path-
name. A variable which has multiple strings as value is said lo have several
componenrs; each string is a component of the variable.

A builtin command which causes execution of the enclosing foreach or while
loop to cycle prematurely. Similar to the conrinue command in the program-
ming language C (3.6).

Certain special characters, called conrol characters, are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character, much like the SHIFT key is used to produce upper case characters.
Thus control< is produced by holding down the CONTROL key while pressing
the ‘¢’ key. Usually UNIX prints an up-arrow (]) followed by the corresponding
letter when you type a control character (e.g. ‘1C" for controlc (1.8).

When a program terminates abnormally, the system places an image of its
current state in a file named ‘core’. This core dump can be examined with the
system debugger ‘adb(1)’ or ‘sdb(1)’ in order to determine what went wrong
with the program (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where ‘lllegal instruction’ is only one of several possible messages). you
should report this to the author of the program or a system administrator, sav-
ing the ‘core’ file.

The ¢p (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execu-
tion. It is usually used to change the setting of the variable pars and to set
alias parameters which are to take effect globally (2.1).

The cwd variable in the shell holds the absolute pathname of the current work-
ing directory. 1t is changed by the shell whenever your current working directory
changes and should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label defaulr: is used within shell swirch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be
sent to the current job. Many users change the interrupt character to be [C.

A command that continues running in the background after you logout is said
to be derached.

An error message produced by a program is often referred to as a diagnosic.
Most error messages are not written to the standard output, since that is often
directed away from the terminal (1.3, 1.5). Error messsages are instead writ-
ten to the diagnostic outpur which may be directed away from the terminal. but
usually is not. Thus diagnostics will usually appear on the terminal (2.5).

directory

directory stack

dirs
du

echo
else

endif

EOF

escape

/etc/passwd

exit

exit status

.38-

A structure which contains files. At any time you are in one particular dwecror:
whose names can be printed by the command pwd. The chdir command will
change you to another direcrory, and make the files in that direcrory visible. The
directory in which you are when you first login is your home directory (1.1.
2.7).

The shell saves the names of previous working direcrories in the directory siack
when you change your current working directory via the pushd command. The
directory stack can be printed by using the dirs command, which includes vour
current working directory as the first directory name on the left (2.7).

The dirs command prints the shell’s directory stack (2.7).

The du command is a program (described in ‘du(1)’) which prints the number
of disk blocks is all directories below and including your current working direc-
tory (2.6).

The echo command prints its arguments (1.6, 3.6).

The else command is part of the ‘if-then-else-endif” control command con-
struct (3.6).

If an if statement is ended with the word then, all lines following the ifup to a
line starting with the word endif or else are executed if the condition between
parentheses after the ifis true (3.6).

An end-of-file is generated by the terminal by a control-d, and whenever a
command reads to the end of a file which it has been given as input. Com-
mands receiving input from a pipe receive an end-of-file when the command
sending them input completes. Most commands terminate when they receive
an end-of-file. The shell has an option to ignore end-of-file from a terminal
input which may help you keep from logging out accidentally by typing too
many control-d’s (1.1, 1.8, 3.8).

A character *\" used to prevent the special meaning of a metacharacter is said
to escape the character from its special meaning. Thus

echo *
will echo the character **’ while just
echo *

will echo the names of the file in the current directory. In this example. \
escapes **’ (1.7). There is also a non-printing character called escape, usually
labelled ESC or ALTMODE on terminal Keyboards. Some older UNIX systems use
this character to indicate that output is to be suspended. Most systems use
control-s to stop the output and control-q to start it.

This file contains information about the accounts currently on the system. [t
consists of a line for each account with fields separated by *:’ characters (1.8).
You can look at this file by saying

cat /etc/passwd

The commands finger and grep'are often used to search for information in this
file. See ‘finger(1)’, ‘passwd(5)’, and ‘grep(1)’ for more details.

The exit command is used to force termination of a shell script, and is built
into the shell (3.9).

A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exis siarus, a status of zero being considered ‘normal
termination’. The exir command can be used to force a shell command script

expansion

expressions

extension

fg

filename

-39.

to give a non-zero exit starus (3.6).

The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expansion. Thus the replacement
of the word ‘*’ by a sorted list of files in the current directory is a ‘filename
expansion’. Similarly the replacement of the characters *!!I" by the text of the
last command is a ‘history expansion’. Expansions are also referred to as subsii-
tutions (1.6, 3.4, 4.2).

Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C (3.5).

Filenames often consist of a base name and an exrension separated by the char-
acter ‘.’. By convention, groups of related files often share the same roor
name. Thus if ‘prog.c’ were a C program, then the object file for this program
would be stored in ‘prog.o’. Similarly a paper written with the ‘—me’ nroff
macro package might be stored in ‘paper.me’ while a formatted version of this
paper might be kept in ‘paper.out’ and a list of spelling errors in ‘paper.errs’
(1.6).

The job control command Jfg is used to run a background or suspended job in the
foreground (1.8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not includ-
ing the character ‘/* which is used in pathname building. Most filenames do not
begin with the character ‘.°, and contain only letters and digits with perhaps a
‘.’ separating the base portion of the filename from an extension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

Filename expansion uses the metacharacters ‘**, *?” and *[* and ‘1" to provide a
convenient mechanism for naming files. Using filename expansion it is easy 1o
name all the files in the current directory, or ail files which have a common
root name. Other filename expansion mechanisms use the metacharacter '~ and
allow files in other users’ directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred to as flag options, and by convention consist of one or more letters
preceded by the character ‘=" (1.2). Thus the /s (list files) command has an
option ‘—s’ to list the sizes of files. This is specified

Is =s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell vari-
able ranges through a specified list (3.6, 4.1).

When commands are executing in the normal way such that the shell is waiting
for them to finish before prompting for another command they are said to be
JSoreground jobs or running in the foreground. This is as opposed to background.
Foreground jobs can be stopped by signals from the terminal caused by tvping
different control characters at the keyboard (1.8, 2.6).

The shell has a command goro used in shell scripts to transfer control to a
given label (3.7).

The grep command searches through a list of argument files for a specified
string. Thus

grep bill /etc/passwd

will print each line in the file /erc/passwd which contains the string “bill".

head

history

home directory

if

ignoreeof

input

interrupt

job

- 40 -

Actually, grep scans for regular expressions in the sense of the editors ‘ed(1)’
and ‘ex(1)’. Grep stands for ‘globally find regular expression and print’ (2.4).

The head command prints the first few lines of one or more files. If you have
a bunch of files containing text which you are wondering about it is sometimes
useful to run head with these files as arguments. This will usually show
enough of what is in these files to let you decide which you are interested in
(1.5).

Head is also used to describe the part of a parhname before and including the
last */" character. The /ail of a pathname is the part after the last */°. The “:h’
and “:t’ modifiers allow the head or tail of a pathname stored in a shell variable
to be used (3.6).

The history mechanism of the shell allows previous commands (o be repeated.
possibly after modification 1o correct lyping mistakes or o change the meaning
of the command. The shell has a hisiory list where these commands are kept,
and a history variable which controls how large this list is (2.3).

Each user has a home directory, which is given in your entry in the password
file, fetc/passwd. This is the directory which you are placed in when you first
login. The c¢d or chdir command with no arguments takes you back to this
directory, whose name is recorded in the shell variable home. You can also
access the home directories of other users in forming filenames using a filename
expansion notation and the character ‘™" (1.6).

A conditional command within the shell, the {fcommand is used in shell com-
mand scripts to make decisions about what course of action to take next (3.6).

Normally, your shell will exit, printing ‘logout’ if you type a control-d at a
prompt of ‘% . This is the way you usually log off the system. You can ser
the ignoreeof variable if you wish in your ./ogin file and then use the command
logour 1o logout. This is useful if you sometimes accidentally type too many
control-d characters, logging yourself off (2.2).

Many commands on UNIX take information from the terminal or from files
which they then act on. This information is called inpur. Commands normally
read for inpur from their standard inpur which is, by default, the terminal. This
standard input can be redirected from a file using a shell metanotation with the
character ‘<’. Many commands will also read from a file specified as argu-
ment. Commands placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipeline reads from the
terminal if you neither redirect its input nor give it a filename to use as sian-
dard input. Special mechanisms exist for supplying input to commands in shell
scripts (1.5, 3.8).

An interrupr is a signal to a program that is generated by hitting the RUBOUT or
DELETE key (although users can and often do change the interrupt character,
usually to {C). It causes most programs to stop execution. Certain programs.
such as the shell and the editors, handle an interrupr in special ways, usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command: and waiting for it to finish, the shell does
not listen to interrupts. The shell often wakes up when you hit inrerrupi
because many commands die when they receive an inrerrupr (1.8, 3.9).

One or more commands typed on the same input line separated by | or .’
characters are run together and are called a job. Simple commands run by
themselves without any f or ‘;" characters are the simplest jobs. Jobs are
classified as foreground, background, or suspended (2.6).

job control

job number

jobs

kill
login

login shell

logout

Jlogout

lpr

mail

make

makefile
manual

metacharacter

-4] -

The builtin functions that control the execution of jobs are called job control
commands. These are bg, /g, stop, kill (2.6).

When each job is started it is assigned a small number called a job number
which is printed next to the job in the output of the jobs command. This
number, preceded by a ‘%’ character, can be used as an argument to job control
commands to indicate a specific job (2.6).

The jobs command prints a table showing jobs that are either running in the
background or are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6).

The file ./ogin in your home directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of com-
mands which are usefully placed here, especially ser commands to the shell
itself (2.1).-

The shell that is started on your terminal when you login is called your logm
shell. 1t is different from other shells which you may run (e.g. on shell scripts)
in that it reads the ./ogin file before reading commands from the terminal and it
reads the .logour file after you logout (2.1).

The logour command causes a login shell to exit. Normally, a login shell will
exit when you hit control-d generating an end-of-file, but if you have set
ignoreeof in you .login file then this will not work and you must use logour 10
log off the UNIX system (2.8).

When you log off of UNIX the shell will execute commands from the file ./ogour
in your home directory after it prints ‘logout’.

The command /pr is the line printer daemon. The standard input of /pr spooled
and printed on the UNIX line printer. You can also give /pr a list of filenames
as arguments to be printed. It is most common to use /pr as the last com-
ponent of a pipeline (2.3).

The /s (list files) command is one of the most commonly used UNIX com-
mands. With no argument filenames it prints the names of the files in the
current directory. It has a number of useful flag arguments, and can also be
given the names of directories as arguments, in which case it lists the names of
the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users
(1.1, 2.1).

The make command is used to maintain one or more related files and to organ-
ize functions to be performed on these files. In many ways make is easier 10
use, and more helpful than shell command scripts (3.2).

The file containing commands for make is called makefile (3.2).

The manual often referred to is the ‘UNIX programmer’s manual’. It contains a
number of sections and a description of each UNIX program. An online version
of the manual is accessible through the man command. Its documentation can
be obtained online via

man man

Many characters which are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called meracharacters. If it
is necessary to place these characters in arguments to commands without them
having their special meaning then they must be quoted. An example of a mera-
character is the character ‘>’ which is used to indicate placement of output

mkdir
modifier

more

noclobber

noglob

notify

onintr

output

pushd

path

.42 .

into a file. For the purposes of the history mechanism, most unquoted mera-
characters form separate words (i.4). The appendix to this user’s manual lists
the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character *!" or of vari-
ables using the metacharacter ‘S’, are oftlen subjected to modifications. indi-
cated by placing the character ;" after the substitution and following this with
the modifier itself. The command substiturion mechanism can also be used lo
perform medification in a similar way, but this notation is less clear (3.6).

The program more writes a file on your terminal allowing you to control how
much text is displayed at a time. More can move through the file screenful by
screenful, line by line, search forward for a string, or start again at the begin-
ning of the file. It is generally the easiest way of viewing a file (1.8).

The shell has a variable noclobber which may be set in the file ./ogin to prevent
accidental destruction of files by the ‘>’ output redirection metasyntax of the
shell (2.2, 2.5).

The shell variable noglob is set to suppress the filename expansion of arguments
containing the metacharacters ‘™", ***, *2", *(* and *]" (3.6).

The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just
before the next prompt to report the termination. The norifi variable, if set.
causes the shell to always report the termination of background jobs exactly
when they occur (2.6).

The oninir command is built into the shell and is used to control the action of
a shell command script when an inrerrupr signal is received (3.9).

Marny commands in UNIX result in some lines of text which are called their our-
put. This ourpur is usually placed on what is known as the siandard output
which is normally connected to the user’s terminal. The shell has a syntax
using the metacharacter ‘> for redirecting the siandard outpur of a command
to a file (1.3). Using the pipe mechanism and the metacharacter I it is also
possible for the standard output of one command to become the standard mpur
of another command (1.5). Certain commands such as the line printer dae-
mon p do not place their results on the standard outpur but rather in more use-
ful places such as on the line printer (2.3). Similarly the wrire command places
its output on another user’s terminal rather than its swuandard outpur (2.3).
Commands also have a diagnosiic output where they write their error messages.
Normally these go to the terminal even if the siandard output has been sent to
a file or another command, but it is possible to direct error diagnostics along
with standard output using a special metanotation (2.5).

The pushd command, which means ‘push directory’, changes the shell’s work-
ing directory and also remembers the current working directory before the change
is made, allowing you to return to the same directory via the popd command
later without retyping its name (2.7).

The shell has a variable path which gives the names of the directories in which
it searches for the commands which it is given. It always checks first o see if
the command it is given is built into the shell. If it is. then it need not search
for the command as it can do it internally. If the command is not builtin, then
the shell searches for a file with the name given in each of the directories in
the path variable, left to right. Since the normal definition of the parh variable
is

pathname

pipeline

popd

port

pr

printenv

process

program

.43 .

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard sys-
tem directories ‘/usr/ucb’, ‘/bin’ and ‘/usr/bin’ for the named command
(2.2). If the command cannot be found the shell will print an error diagnostic.
Scripts of shell commands will be executed using another shell 1o interpret
them if they have ‘execute’ permission set. This is normally true because a
command of the form

chmod 755 script

was executed to turn this execute permission on (3.3). If you add new com-
mands to a directory in the parh, you should issue the command rehash (2.2).

v

A list of names, separated by ‘/° characters, forms a pathname. Each com-
ponent, between successive ‘/° characters, names a directory in which the next
component file resides. Pathnames which begin with the character */" are inter-
preted relative to the roor directory in the filesystem. Other parhnames are
interpreted relative to the current directory as reported by pwd. The last com-
ponent of a parhname may name a directory. but usually names a file.

A group of commands which are connected together, the srandard outpur of
each connected to the siandard input of the next, is called a pipeline. The pipe
mechanism used to connect these commands is indicated by the shell meta-
character { (1.5, 2.3).

The popd command changes the shell’s working directory to the directory vou
most recently left using the pushd command. It returns to the directory
without having to type its name, forgetting the name of the current workmy
directory before doing so (2.7).

The part of a computer system to which each terminal is connected is called a
port. Usually the system has a fixed number of porrs, some of which are con-
nected to telephone lines for dial-up access, and some of which are per-
manently wired directly to specific terminals.

The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the date and time at which the file was
last modified (2.3).

The printenv command is used to print the current setting of variables in the
environment (2.8).

An instance of a running program is called a process (2.6). UNIX assigns each
process a unique number when it is started — called the process number. Pro-
cess numbers can be used to stop individual processes using the kill or siop com-
mands when the processes are part of a detached background job.

Usually synonymous with command, a binary file or shell command script
which performs a useful function is often called a program.

programmer’s manual

prompt

Also referred to as the manual. See the glossary entry for ‘manual’.

Many programs will print a prompr on the terminal when they expect inpul.
Thus the editor ‘ex(1)” will print a *:* when it expects input. The shell prompts
for input with ‘% ° and occasionally with ‘? ' when reading commands from
the terminal (1.1). The shell has a variable prompt which may be set to a
different value to change the shell’s main prompt. This is mostly used when
debugging the shell (2.8).

ps

pwd
quit

quotation

redirection

rehash

<44 -

The ps command is used to show the processes you are currently running.
Each process is shown with its unique process number, an indication of the
terminal name it is attached to, an indication of the state of the process
(whether it is running, stopped. awaiting some event (sleeping). and whether
it is swapped out), and the amount of CPU time it has used so far. The com-
mand is identified by printing some of the words used when it was invoked
(2.6). Shells, such as the cs# you use to run the ps command, are not nor-
mally shown in the output.

The pwd command prints the full pathname of the current working directory.
The dirs builtin command is usually a better and faster choice.

The quit signal, generated by a control-\, is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning. usu-
ally by using the character * in pairs, or by using the character *\', is referred
to as quotation (1.7).

The routing of input or output from or 10 a file is known as redirection of input
or output (1.3).

The renash command tells the shell to rebuild its internal table of which com-
mands are found in which directories in your parh. This is necessary when a
new program is installed in one of these directories (2.8).

relative pathname

repeat
root

RUBOUT

scratch file

seript

set

A pathname which does not begin with a */’ is called a relative pathname since it
is interpreted relarive to the current working directory. The first component of
such a pathname refers to some file or directory in the working directory, and
subsequent components between ‘/° characters refer to directories below the

working directory. Pathnames that are not relative are called absolute pathnames
(1.6).

The repear command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is cailed the
roor directory since it is the ‘root’ of the entire tree structure of directories.
The name used in pathnames to indicate the rooris */°. Paihnames starting with
/ are said to be absolute since they start at the roor directory. Roor is also
used as the part of a pathname that is left after removing the extension. See
filename for a further explanation (1.6).

The RUBOUT or DELETE key sends an interrupt to the curreat job. - Most
interactive commands return to their command level upon receipt of an inter-
rupt, while non-interactive commands usually terminate, returming control to
the shell. Users often change interrupt to be generated by [C rather than
DELETE by using the sizy command.

Files whose names begin with a ‘#" are referred to as scrarch files, since they
are automatically removed by the system after a couple of days of non-use, or
more frequently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command scriprs.
It is often possible to perform simple tasks using these scriprs without writing a
program in a language such as C, by using the shell to selectively run other
programs (3.3, 3.10).

The builtin ser command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the ser command the behavior of
the shell can be affected (2.1).

.45.

setenv Variables in the environment ‘environ(5)" can be changed by using the seren
builtin command (2.8). The printenv command can be used to print the value
of the variables in the environment.

shell A shell is a command language interpreter. It is possible to write and run your
own shell, as shells are no different than any other programs as far as the sys-
tem is concerned. This manual deals with the details of one particular s/hell.

called csh.
shell script See scripr (3.3, 3.10).
signal A signal in UNIX is a short message that is sent to a running program which

causes something to happen to that process. Signals are sent either by typing
special control characters on the keyboard or by using the kil or stop commands

(1.8, 2.6).

sort The sorr program sorts a sequence of lines in ways that can be controlled by
argument flags (1.5).

source The source command causes the shell to read commands from a specified file.

It is most useful for reading files such as .cshrc after changing them (2.8).

special character
See metacharacters and the appendix to this manual.

standard We refer often to the standard input and standard outpur of commands. See
input and outpur (1.3, 3.8).
status A command normally retumns a srarus when it finishes. By convention a siatus

of zero indicates that the command succeeded. Commands may return non-
zero starus to indicate that some abnormal event has occurred. The shell vari-
able szarus is set to the srarus returned by the last command. It is most usefui
in shell commmand scripts (3.6).

stop The srop command causes a background job to become suspended (2.6).

string A sequential group of characters taken together is called a siring. Strings can
contain any printable characters (2.2).

stty The sny program changes certain parameters inside UNIX which determine how
your terminal is handled. See ‘stty(1)’ for a complete description (2.6).

substitution The shell implements a numiber of substitutions where sequences indicated by

metacharacters are replaced by other sequences. Notable examples of this are
history substitution keyed by the metacharacter *!" and variable substirution indi-
cated by ‘S’. We also refer to substitutions as expansions (3.4).

suspended A job becomes suspended after a STOP signal is sent o it, either by typing a
control-z at the terminal (for foreground jobs) or by using the stop command
(for background jobs). When suspended, a job temporarily stops running until it
is restarted by either the fg or g command (2.6).

switch The swirch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3.7).

termination When a command which is being executed finishes we say it undergoes rernu-
nation or terminares. Commands normally terminate when they read an end-
of-file from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (1.8). The kill program terminates
specified jobs (2.6).

then The then command is part of the shell’s ‘if-then-else-endif” control construct
used in command scripts (3.6).

time

tset

tty

unalias
UNIX

unset

.46 -

The time command can be used to measure the amount of CPU and real time
consumed by a specified command as well as the amount of disk i/o. memory
utilized, and number of page faults and swaps taken by the command (2.1.
2.8).

The rset program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a ./ogm file
2.1).

The word ny is a historical abbreviation for ‘teletype’ which is frequently used
in UNIX to indicate the porr to which a given terminal is connected. The v
command will print the name of the my or porr to which your terminal is
presently connected.

The unalias command removes aliases (2.8).

UNIX is an operating system on which c¢sh runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formatters which
you may wish to use.

The unser command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

we

while
word

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path, noclobber, and
ignoreeof for examples. Variables such as argv are also used in writing shell
programs (shell command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts. The
verbose variable is set by the shell’s —v command line option (3.10).

The wc program calculates the number of characters, words, and lines in the
files whose names are given as arguments (2.6).

The while builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms an argument to a command is called a
word. Many characters which are neither letters, digits, ‘=", *." nor */° form
words all by themselves even if they are not surrounded by blanks. Any
sequence of characters may be made into a word by surrounding it with '
characters except for the characters ‘"’ and ‘!" which require special treatment
(1.1). This process of placing special characters in words without their special
meaning is called quoring. '

-working directory

write

Al any given time vou are in one particular directory, called your working direc-
tory. This directory’s name is printed by the pwd command and the files listed
by /s are the ones in this directory. You can change working directories using
chdir.

The write command is used to communicate with other users who are logged in
10 UNIX.

MAIL REFERENCE MANUAL

Kurt Shoens
Revised by
Craig Leres

Version 2.18

July 27, 1983

1. Introduction

Mail provides a simple and friendly environment for sending and receiving mail. It
divides incoming mail into its constituent messages and allows the user to deal with them in
any order. In addition, it provides a set of ed-like commands for manipulating messages and
sending mail. Mail offers the user simple editing capabilities to ease the composition of outgo-
ing messages, as well as providing the ability to define and send to names which address groups
of users. Finally, Mail is able to send and receive messages across such networks as the
ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mail program to send and receive messages. The
reader is not assumed to be familiar with other message handling systems, but should be fami-
liar with the UNIX' shell, the text editor, and some of the common UNIX commands. ‘‘The
UNIX Programmer’s Manual,”” ‘‘An Introduction to Csh,” and ‘‘Text Editing with Ex and Vi”
can be consulted for more information on these topics.)

Here is how messages are handled: the mail system accepts incoming messages for you
from other people and collects them in a file, called your system mailbox. When you login, the
system notifies you if there are any messages waiting in your system mailbox. If you are a csh
user, you will be notified when new mail arrives if you inform the shell of the location of your
mailbox. On version 7 systems, your system mailbox is located in the directory /usr/spool/mail
in a file with your login name. If your login name is ‘‘sam,” then you can make csh notify you
of new mail by including the following line in your .cshre file:

set mail =/usr/spool/mail/sam

When you read your mail using Mail, it reads your system mailbox and separates that file into
the individual messages that have been sent to you. You can then read, reply to, delete, or
save these messages. Each message is marked with its author and the date they sent it.

L UNIX is a trademark of Bell Laboratories.

Mail Reference Manual 7/27/83 2

2. Common usage

The Mail command has two distinct usages, according to whether one wants to send or
receive mail. Sending mail is simple: to send a message to a user whose login name is, say,
““root,” use the shell command:

% Mail root
then type your message. When you reach the end of the message, type an EOT (control—d) at

the beginning of a line, which will cause Mail to echo ‘““EOT”’ and return you to the Shell.
When the user you sent mail to next logs in, he will receive the message:

You have mail.
to alert him to the existence of your message.
If, while you are composing the message you decide that you do not wish to send it after
all, you can abort the letter with a RUBOUT. Typing a single RUBOUT causes Mail to print
(Interrupt -- one more to kill letter)
Typing a second RUBOUT causes Mail to save your partial letter on the file ‘‘dead.letter’’ in your

home directory and abort the letter. Once you have sent mail to someone, there is no way to
undo the act, so be careful.

The message your recipient reads will consist of the message you typed, preceded by a
line telling who sent the message (your login name) and the date and time it was sent.

If you want to send the same message to several other people, you can list their login
names on the command line. Thus,
% Mail sam bob john
Tuition fees are due next Friday. Don’t forget!!
<Control—d>
EOT
%
will send the reminder to sam, bob, and john.
If, when you log in, you see the message,
You have mail.
you can read the mail by typing simply:
% Mail
Mail will respond by typing its version number and date and then listing the messages you have
waiting. Then it will type a prompt and await your command. The messages are assigned
numbers starting with 1 — you refer to the messages with these numbers. Mail keeps tack of
which messages are new (have been sent since you last read your mail) and read (have been
read by you). New messages have an N next to them in the header listing and old, but unread
messages have a U next to them. Mail keeps track of new/old and read/unread messages by
putting a header field called ‘‘Status” into your messages.

To look at a specific message, use the type command, which may be abbreviated to simply
t. For example, if you had the following messages:

N 1root Wed Sep 21 09:21 "Tuition fees"
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:
type 1
which might cause Mail to respond with, for example:

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees

Mail Reference Manual 7/27/83 3

Status: R

Tuition fees are due next Wednesday. Don’t forget!!

Many Mail commands that operate on messages take a message number as an argument like the
type command. For these commands, there is a notion of a current message. When you enter
the Mail program, the current message is initially the first one. Thus, you can often omit the
message number and use, for example,

t

to type the current message. As a further shorthand, you can type a message by simply giving
its message number. Hence,

1
would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another.
You can read the next message in Mail by simply typing a newline. As a special case, you can
type a newline as your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the
reply command. Reply, like type, takes a message number as an argument. Mail then begins a
message addressed to the user who sent you the message. You may then type in your letter in
reply, followed by a <control-d> at the beginning of a line, as before. Mail will type EOT,
then type the ampersand prompt to indicate its readiness to accept another command. In our
example, if, after typing the first message, you wished to reply to it, you might give the com-
mand:

reply
Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode described
at the beginning of this section and Mail will gather up your message up to a control—d. Note
that it copies the subject header from the original message. This is useful in that correspon-
dence about a particular matter will tend to retain the same subject heading, making it easy to
recognize. If there are other header fields in the message, the information found will also be
used. For example, if the letter had a ‘‘To:” header listing several recipients, Mail would
arrange to send your replay to the same people as well. Similarly, if the original message con-
tained a ““Cc:” (carbon copies to) field, Mail would send your reply to those users, too. Mail is
careful, though, not too send the message to you, even if you appear in the *“To:” or “Cc:”
field, unless you ask to be included explicitly. See section 4 for more details.

After typing in your letter, the dialog with Mail might look like the following:
reply
To: root
Subject: Tuition fees

Thanks for the reminder
EOT
&

The reply command is especially useful for sustaining extended conversations over the
message system, with other ‘‘listening’ users receiving copies of the conversation. The reply
command can be abbreviated to r.

Sometimes you will receive a message that has been sent to several people and wish to
reply only to the person who sent it. Reply with a capital R replies to a message, but sends a

Mail Reference Manual 7/27/83 4

copy to the sender only.

If you wish, while reading your mail, to send a message to someone, but not as a reply to
one of your messages, you can send the message directly with the mail command, which takes
as arguments the names of the recipients you wish to send to. For example, to send a message
to “‘frank,”” you would do:

mail frank

This is to confirm our meeting next Friday at 4.
EOT

&

The mail command can be abbreviated to m.

Normally, each message you receive is saved in the file mbox in your login directory at the
time you leave Mail. Often, however, you will not want to save a particular message you have
received because it is only of passing interest. To avoid saving a message in mbox you can
delete it using the delete command. In our example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving deleted
messages, Mail will not let you type them, either. The effect is to make the message disappear
altogether, along with its number. The delete command can be abbreviated to simply d.

Many features of Mail can be tailored to your liking with the set command. The set com-
mand has two forms, depending on whether you are setting a binary option or a valued option.
Binary options are either on or off. For example, the ‘“‘ask’’ option informs Mail that each time
you send a message, you want it to prompt you for a subject header, to be included in the mes-
sage. To set the ‘‘ask’ option, you would type

set ask

Another useful Mail option is “‘hold.”” Unless told otherwise, Mail moves the messages
from your system mailbox to the file mbox in your home directory when you leave Mail. If you
want Mail to keep your letters in the system mailbox instead, you can set the ‘‘hold’’ option.

Valued options are values which Mail uses to adapt to your tastes. For example, the
“SHELL” option tells Mail which shell you like to use, and is specified by

set SHELL =/bin/csh

for example. Note that no spaces are allowed in ‘“SHELL =/bin/csh.”” A complete list of the
Mail options appears in section 5.

Another important valued option is ‘‘crt.”’ If you use a fast video terminal, you will find
that when you print long messages, they fly by too quickly for you to read them. With the
‘“‘crt” option, you can make Mail print any message larger than a given number of lines by
sending it through the paging program more. For example, most CRT users should do:

set crt=24

to paginate messages that will not fit on their screens. More prints a screenful of information,
then types --MORE--. Type a space to see the next screenful.

Another adaptation to user needs that Mail provides is that of aliases. An alias is simply a
name which stands for one or more real user names. Mail sent to an alias is really sent to the
list of real users associated with it. For example, an alias can be defined for the members of a
project, so that you can send mail to the whole project by sending mail to just a single name.
The alias command in Mail defines an alias. Suppose that the users in a project are named
Sam, Sally, Steve, and Susan. To define an alias called “‘project’’ for them, you would use the
Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone whose user
name is inconvenient. For example, if a user named ‘‘Bob Anderson’ had the login name

Mail Reference Manual 7/27/83 5

"y

‘‘anderson,
alias bob anderson
so that you could send mail to the shorter name, ‘‘bob.”

While the alias and set commands allow you to customize Mail, they have the drawback
that they must be retyped each time you enter Mail To make them more convenient to use,
Mail always looks for two files when it is invoked. It first reads a system wide file
“‘/usr/lib/Mail.rc,” then a user specific file, ‘‘.mailrc,” which is found in the user’s home
directory. The system wide file is maintained by the system administrator and contains set
commands that are applicable to all users of the system. The ‘‘.mailrc”’ file is usually used by
each user to set options the way he likes and define individual aliases. For example, my .mailrc
file looks like this:

set ask nosave SHELL =/bin/csh

As you can see, it is possible to set many options in the same set command. The ‘‘nosave’’
option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery system send-
mail. These aliases are stored in the file /usr/lib/aliases and are accessible to all users of the
system. The lines in /usr/lib/aliases are of the form:

you might want to use:

alias: name,, name,, name,

where alias is the mailing list name and the name, are the members of the list. Long lists can
be continued onto the next line by starting the next line with a space or tab. Remember that
you must execute the shell command rewaliases after editing /usr/lib/aliases since the delivery
system uses an indexed file created by newaliases.

We have seen that Mail can be invoked with command line arguments which are people
to send the message to, or with no arguments to read mail. Specifying the —f flag on the com-
mand line causes Mail to read messages from a file other than your system mailbox. For exam-
ple, if you have a collection of messages in the file ‘“‘letters’ you can use Mail to read them
with:

% Mail —f letters

You can use all the Mail commands described in this document to examine, modify, or delete
messages from your “‘letters’” file, which will be rewritten when you leave Mail with the quit
command described below.

Since mail that you read is saved in the file mbox in your home directory by default, you
can read mbox in your home directory by using simply

% Mail —f

Normally, messages that you examine using the type command are saved in the file
“‘mbox’’ in your home directory if you leave Mail with the quit command described below. If
you wish to retain a message in your system mailbox you can use the preserve command to tell
Mail to leave it there. The preserve command accepts a list of message numbers, just like type
and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your

system mailbox automatically. If you wish to have such a message saved in mbox without read-
ing it, you may use the mbox command to have them so saved. For example,

mbox 2

in our example would cause the second message (from sam) to be saved in mbox when the quit
command is executed. Mbox is also the way to direct messages to your mbox file if you have
set the ““hold” option described above. Mbox can be abbreviated to mb.

When you have perused all the messages of interest, you can leave Mail with the quit
command, which saves the messages you have typed but not deleted in the file mbox in your

Mail Reference Manual 7/27/83 6

login directory. Deleted messages are discarded irretrievably, and messages left untouched are
preserved in your system mailbox so that you will see them the next time you type:

% Mail
The quit command can be abbreviated to simply q.

If you wish for some reason to leave Mail quickly without altering either your system
mailbox or mbox, you can type the x command (short for exit), which will immediately return
you to the Shell without changing anything.

If, instead, you want to execute a Shell command without leaving Mail, you can type the
command preceded by an exclamation point, just as in the text editor. Thus, for instance:

Idate
will print the current date without leaving Mail.

Finally, the help command is available to print out a brief summary of the Mail com-
mands, using only the single character command abbreviations.

Mail Reference Manual 7/27/83 7

3. Maintaining folders

Mail includes a simple facility for maintaining groups of messages together in folders.
This section describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your folders. Each
folder of messages will be a single file. For convenience, all of your folders are kept in a single
directory of your choosing. To tell Mail where your folder directory is, put a line of the form

set folder=letters

in your .mailrc file. If, as in the example above, your folder directory does not begin with a ¢/,’
Mail will assume that your folder directory is to be found starting from your home directory.
Thus, if your home directory is /usr/person the above example told Mail to find your folder
directory in /usr/person/letters.

Anywhere a file name is expected, you can use a folder name, preceded with ‘+.” For
example, to put a message into a folder with the save command, you can use:

save +classwork

to save the current message in the classwork folder. If the classwork folder does not yet exist, it
will be created. Note that messages which are saved with the save command are automatically
removed from your system mailbox.

In order to make a copy of a message in a folder without causing that message to be
removed from your system mailbox, use the copy command, which is identical in all other
respects to the save command. For example,

copy +classwork
copies the current message into the classwork folder and leaves a copy in your system mailbox.

The folder command can be used to direct Mail to the contents of a different folder. For
example,

folder +classwork

directs Mail to read the contents of the classwork folder. All of the commands that you can use
on your system mailbox are also applicable to folders, including type, delete, and reply. To
inquire which folder you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the —f option described in section
2. For example:

% Mail —f -+classwork
will cause Mail to read your classwork folder without looking at your system mailbox.

Mail Reference Manual 7/27/83 8

4. More about sending mail

4.1. Tilde escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the
text editor on the partial message, print the message, execute a shell command, or do some
other auxiliary function. Mail provides these capabilities through tilde escapes, which consist of a
tilde (7) at the beginning of a line, followed by a single character which indicates the function
to be performed. For example, to print the text of the message so far, use:

P

which will print a line of dashes, the recipients of your message, and the text of the message so
far. Since Mail requires two consecutive RUBOUT’s to abort a letter, you can use a single
RUBOUT to abort the output of “p or any other ~ escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it
using the escape

[

which causes the message to be copied into a temporary file and an instance of the editor to be
spawned. After modifying the message to your satisfaction, write it out and quit the editor.
Mail will respond by typing

(continue)

after which you may continue typing text which will be appended to your message, or type
<control-d> to end the message. A standard text editor is provided by Mail You can over-
ride this default by setting the valued option ‘“‘EDITOR”’ to something else. For example, you
might prefer:

set EDITOR = /usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text editor, such as
the vi editor from UC Berkeley. To use the screen, or visual editor, on your current message,
you can use the escape,

v

“v works like “e, except that the screen editor is invoked instead. A default screen editor is
defined by Mail. If it does not suit you, you can set the valued option ‘“VISUAL” to the path
name of a different editor.

It is often useful to be able to include the contents of some file in your message; the
escape

“r filename

is provided for this purpose, and causes the named file to be appended to your current message.
Mail complains if the file doesn’t exist or can’t be read. If the read is successful, the number
of lines and characters appended to your message is printed, after which you may continue
appending text. The filename may contain shell metacharacters like * and ? which are
expanded according to the conventions of your shell.
As a special case of “r, the escape
“d
reads in the file ‘‘dead.letter” in your home directory. This is often useful since Mail copies
the text of your message there when you abort a message with RUBOUT.
To save the current text of your message on a file you may use the
“w filename

escape. Mail will print out the number of lines and characters written to the file, after which
you may continue appending text to your message. Shell metacharacters may be used in the
filename, as in “r and are expanded with the conventions of your shell.

Mail Reference Manual 7/27/83 9

If you are sending mail from within Mail’s command mode you can read a message sent
to you into the message you are constructing with the escape:

“mé4
which will read message 4 into the current message, shifted right by one tab stop. You can

name any non-deleted message, or list of messages. Messages can also be forwarded without
shifting by a tab stop with “f. This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list
of message recipients, you can do so with the escape

"t namel name2 ...

You may name as few or many additional recipients as you wish. Note that the users originally
on the recipient list will still receive the message; you cannot remove someone from the reci-
pient list with ~t.

If you wish, you can associate a subject with your message by using the escape
“s Arbitrary string of text

which replaces any previous subject with ‘‘Arbitrary string of text.”” The subject, if given, is
sent near the top of the message prefixed with “‘Subject:”” You can see what the message will
look like by using “p.

For political reasons, one occasionally prefers to list certain people as recipients of carbon
copies of a message rather than direct recipients. The escape

“¢ namel name?2 ...

adds the named people to the “‘Cc:” list, similar to “t. Again, you can execute “p to see what
the message will look like.

The recipients of the message together constitute the ‘“To:” field, the subject the ‘‘Sub-
ject:” field, and the carbon copies the “‘Cc:” field. If you wish to edit these in ways impossible
with the “t, 7s, and "¢ escapes, you can use the escape

“h
which prints “To:” followed by the current list of recipients and leaves the cursor (or print-
head) at the end of the line. If you type in ordinary characters, they are appended to the end
of the current list of recipients. You can also use your erase character to erase back into the
list of recipients, or your kill character to erase them altogether. Thus, for example, if your
erase and kill characters are the standard # and @ symbols,

To: root kurt####bill

would change the initial recipients ‘‘root kurt’’ to ‘“‘root bill.”” When you type a newline, Mail
advances to the “‘Subject:’’ field, where the same rules apply. Another newline brings you to
the “‘Cc:”’ field, which may be edited in the same fashion. Another newline leaves you append-
ing text to the end of your message. You can use “p to print the current text of the header
fields and the body of the message.

To effect a temporary escape to the shell, the escape
“lcommand

is used, which executes command and returns you to mailing mode without altering the text of
your message. If you wish, instead, to filter the body of your message through a shell com-
mand, then you can use

“kommand

which pipes your message through the command and uses the output as the new text of your
message. If the command produces no output, Mail assumes that something is amiss and
retains the old version of your message. A frequently-used filter is the command fmy, designed
to format outgoing mail.

Mail Reference Manuza 7/27/83 10

To effect a temporary escape to Mail command mode instead, you can use the
“:Mail command
escape. This is especially useful for retyping the message you are replying to, using, for exam-
ple:
“it
It is also useful for setting options and modifying aliases.

If you wish (for some reason) to send a message that contains a line beginning with a
tilde, you must double it. Thus, for example,

““This line begins with a tilde.
sends the line
“This line begins with a tilde.
Finally, the escape
-?
prints out a brief summary of the available tilde escapes.

On some terminals (particularly ones with no lower case) tilde’s are difficult to type. Mail
allows you to change the escape character with the ‘‘escape’ option. For example, I set

set escape=]
and use a right bracket instead of a tilde. If I ever need to send a line beginning with right

bracket, I double it, just as for ~. Changing the escape character removes the special meaning
of ..

4.2. Network access

This section describes how to send mail to people on other machines. Recall that sending
to a plain login name sends mail to that person on your machine. If your machine is directly
(or sometimes, even, indirectly) connected to the Arpanet, you can send messages to people on
the Arpanet using a name of the form

name@host

where name is the login name of the person you’re trying to reach and host is the name of the
machine where he logs in on the Arpanet.

If your recipient logs in on a machine connected to yours by UUCP (the Bell Laboratories
supplied network that communicates over telephone lines), sending mail to him is a bit more
complicated. You must know the list of machines through which your message must travel to
arrive at his site. So, if his machine is directly connected to yours, you can send mail to him
using the syntax:

host!name

where, again, host is the name of his machine and rame is his login name. If your message
must go through an intermediate machine first, you must use the syntax:

intermediate!host!name

and so on. It is actually a feature of UUCP that the map of all the systems in the network is
not known anywhere (except where people decide to write it down for convenience). Talk to
your system administrator about the machines connected to your site.

If you want to send a message to a recipient on the Berkeley network (Berknet), you use
the syntax:

host:name

where host is his machine name and name is his login name. Unlike UUCP, you need not
know the names of the intermediate machines.

Mail Reference Manual 7/27/83 11

When you use the reply command to respond to a letter, there is a problem of figuring
out the names of the users in the ‘“To:”’” and *‘Cc:” lists relative to the current machine. If the
original letter was sent to you by someone on the local machine, then this problem does not
exist, but if the message came from a remote machine, the problem must be dealt with. Mail
uses a heuristic to build the correct name for each user relative to the local machine. So, when
you reply to remote mail, the names in the “To:”” and ““Cc:”’ lists may change somewhat.

4.3. Special recipients

As described previously, you can send mail to either user names or alias names. It is also
possible to send messages directly to files or to programs, using special conventions. If a reci-
pient name has a ‘/’ in it or begins with a ‘+’, it is assumed to be the path name of a file into
which to send the message. If the file already exists, the message is appended to the end of the
file. If you want to name a file in your current directory (ie, one for which a ‘/> would not usu-
ally be needed) you can precede the name with “./’ So, to send mail to the file ‘“‘memo” in the
current directory, you can give the command:

% Mail ./memo

If the name begins with a ‘<, it is expanded into the full path name of the folder name in
your folder directory. This ability to send mail to files can be used for a variety of purposes,
such as maintaining a journal and keeping a record of mail sent to a certain group of users.
The second example can be done automatically by including the full pathname of the record file
in the alias command for the group. Using our previous alias example, you might give the
command:

alias project sam sally steve susan /usr/project/mail_record

Then, all mail sent to "project” would be saved on the file ‘“‘/usr/project/mail_record’ as well as
being sent to the members of the project. This file can be examined using Mail —f

It is sometimes useful to send mail directly to a program, for example one might write a
project billboard program and want to access it using Mail To send messages to the billboard
program, one can send mail to the special name ‘billboard’ for example. Mail treats recipient
names that begin with a as a program to send the mail to. An alias can be set up to refer-
ence a | prefaced name if desired. Caveats: the shell treats { specially, so it must be quoted on
the command line. Also, the | program’ must be presented as a single argument to mail. The
safest course is to surround the entire name with double quotes. This also applies to usage in
the alias command. For example, if we wanted to alias ‘rmsgs’ to ‘rmsgs —s’ we would need
to say:

alias rmsgs " rmsgs -s"

Mail Reference Manual 7/27/83 12

5. Additional features

This section describes some additional commands of use for reading your mail, setting
options, and handling lists of messages.

5.1. Message lists

Several Mail commands accept a list of messages as an argument. Along with type and
delete, described in section 2, there is the from command, which prints the message headers
associated with the message list passed to it. The from command is particularly useful in con-
junction with some of the message list features described below.

A message list consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers, which directly specify mes-
sages, or one of the special characters ‘1> *“.”> or “‘$”’ to specify the first relevant, current, or
last relevant message, respectively. Relevant here means, for most commands ‘‘not deleted”’
and ‘‘deleted” for the undelete command.

A range of messages consists of two message numbers (of the form described in the pre-
vious paragraph) separated by a dash. Thus, to print the first four messages, use

type 1—4
and to print all the messages from the current message to the last message, use
type .—$
A name is a user name. The user names given in the message list are collected together
and each message selected by other means is checked to make sure it was sent by one of the
named users. If the message consists entirely of user names, then every message sent by one

those users that is relevant (in the sense described earlier) is selected. Thus, to print every
message sent to you by ‘‘root,”” do

type root
As a shorthand notation, you can specify simply ‘“*> to get every relevant (same sense)

message. Thus,

type *
prints all undeleted messages,

delete *
deletes all undeleted messages, and

undelete *
undeletes all deleted messages.

You can search for the presence of a word in subject lines with /. For example, to print
the headers of all messages that contain the word “PASCAL,” do:

from /pascal
Note that subject searching ignores upper/lower case differences.

5.2. List of commands
This section describes all the Mail commands available when receiving mail.
! Used to preface a command to be executed by the shell.

— The — command goes to the previous message and prints it. The — command may be
given a decimal number # as an argument, in which case the nth previous message is gone
to and printed.

PrintLike print, but also print out ignored header fields. See also print and ignore.

Mail Reference Manual 7/27/83 13

Reply

Note the capital R in the name. Frame a reply to a one or more messages. The reply (or
replies if you are using this on multiple messages) will be sent ONLY to the person who
sent you the message (respectively, the set of people who sent the messages you are
replying to). You can add people using the “t and “c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with ‘‘Re:”’ unless it
already began thus. If the original message included a ‘“‘reply-to”’ header field, the reply
will go only to the recipient named by ‘“‘reply-to.”” You type in your message using the
same conventions available to you through the mail command. The Reply command is
especially useful for replying to messages that were sent to enormous distribution groups
when you really just want to send a message to the originator. Use it often.

Type Identical to the Print command.
alias Define a name to stand for a set of other names. This is used when you want to send

messages to a certain group of people and want to avoid retyping their names. For exam-
ple

alias project john sue willie kathryn
creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.

alternates

If you have accounts on several machines, you may find it convenient to use the
/usr/lib/aliases on all the machines except one to direct your mail to a single account.
The alternates command is used to inform Mail that each of these other addresses is
really you. Alternates takes a list of user names and remembers that they are all actually
you. When you reply to messages that were sent to one of these alternate names, Mail
will not bother to send a copy of the message to this other address (which would simply
be directed back to you by the alias mechanism). If alternates is given no argument, it
lists the current set of alternate names. Alternates is usually used in the .mailrc file.

chdir The chdir command allows you to change your current directory. Chdir takes a single

argument, which is taken to be the pathname of the directory to change to. If no argu-
ment is given, chdir changes to your home directory.

copy The copy command does the same thing that save does, except that it does not mark the

messages it is used on for deletion when you quit.

delete

dt

edit

else

Deletes a list of messages. Deleted messages can be reclaimed with the undelete com-
mand.

The dt command deletes the current message and prints the next message. It is useful for
quickly reading and disposing of mail.

To edit individual messages using the text editor, the edit command is provided. The edit
command takes a list of messages as described under the type command and processes
each by writing it into the file Messagex where x is the message number being edited and
executing the text editor on it. When you have edited the message to your satisfaction,
write the message out and quit, upon which Mail will read the message back and remove
the file. Edit may be abbreviated to e.

Marks the end of the then-part of an if statement and the beginning of the part to take
effect if the condition of the if statement is false.

endif Marks the end of an if statement.

exit

file

Leave Mail without updating the system mailbox or the file your were reading. Thus, if
you accidentally delete several messages, you can use exit to avoid scrambling your mail-
box.

The same as folder.

Mail Reference Manual 7/27/83 14

folders

List the names of the folders in your folder directory.

folder

The folder command switches to a new mail file or folder. With no arguments, it tells
you which file you are currently reading. If you give it an argument, it will write out
changes (such as deletions) you have made in the current file and read the new file.
Some special conventions are recognized for the name:

Name Meaning
Previous file read
% Your system mailbox
%name Name’s system mailbox
& Your “/mbox file

+folder A file in your folder directory

from The from command takes a list of messages and prints out the header lines for each one;

hence
from joe
is the easy way to display all the message headers from “‘joe.”

headers

help

hold

if

When you start up Mail to read your mail, it lists the message headers that you have.
These headers tell you who each message is from, when they were sent, how many lines
and characters each message is, and the ‘‘Subject:’ header field of each message, if
present. In addition, Mail tags the message header of each message that has been the
object of the preserve command with a “‘P.”” Messages that have been saved or written
are flagged with a ‘*.’ Finally, deleted messages are not printed at all. If you wish to
reprint the current list of message headers, you can do so with the headers command.
The headers command (and thus the initial header listing) only lists the first so many
message headers. The number of headers listed depends on the speed of your terminal.
This can be overridden by specifying the number of headers you want with the window
option. Mail maintains a notion of the current. “window’’ into your messages for the pur-
poses of printing headers. Use the z command to move forward and back a window. You
can move Mail’s notion of the current window directly to a particular message by using,
for example,

headers 40
to move Mail’s attention to the messages around message 40. The headers command can
be abbreviated to h.

Print a brief and usually out of date help message about the commands in Mail. Refer to
this manual instead.

Arrange to hold a list of messages in the system mailbox, instead of moving them to the
file mbox in your home directory. If you set the binary option hold, this will happen by
default.

Commands in your ‘‘.mailrc” file can be executed conditionally depending on whether
you are sending or receiving mail with the if command. For example, you can do:
if receive
commands...

13

endif
An else form is also available:

if send
commands...
else

Mail Reference Manual 7/27/83 15

commands...
endif

Note that the only allowed conditions are receive and send.

ignore
Add the list of header fields named to the ignore list. Header fields in the ignore list are
not printed on your terminal when you print a message. This allows you to suppress
printing of certain machine-generated header fields, such as Via which are not usually of
interest. The Type and Print commands can be used to print a message in its entirety,
including ignored fields. If ignere is executed with no arguments, it lists the current set
of ignored fields.

list List the vaild Mail commands.

mail Send mail to one or more people. If you have the ask option set, Mail will prompt you
for a subject to your message. Then you can type in your message, using tilde escapes as
described in section 4 to edit, print, or modify your message. To signal your satisfaction
with the message and send it, type control-d at the beginning of a line, or a . alone on a
line if you set the option dot. To abort the message, type two interrupt characters
(RUBOUT by default) in a row or use the “q escape.

mbox
Indicate that a list of messages be sent to mbox in your home directory when you quit.
This is the default action for messages if you do not have the hold option set.

next The next command goes to the next message and types it. If given a message list, next
goes to the first such message and types it. Thus,

next root

goes to the next message sent by ‘‘root’” and types it. The next command can be abbre-
viated to simply a newline, which means that one can go to and type a message by simply
giving its message number or one of the magic characters ““{”” *“.”” or ““$””. Thus,

prints the current message and
4
prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be held in your system mailbox when you quit.

quit Leave Mail and update the file, folder, or system mailbox your were reading. Messages
that you have examined are marked as ‘‘read” and messages that existed when you
started are marked as ‘‘old.”” If you were editing your system mailbox and if you have set
the binary option hold, all messages which have not been deleted, saved, or mboxed will
be retained in your system mailbox. If you were editing your system mailbox and you did
not have hold set, all messages which have not been deleted, saved, or preserved will be
moved to the file mbox in your home directory.

reply Frame a reply to a single message. The reply will be sent to the person who sent you the
message to which you are replying, plus all the people who received the original message,
except you. You can add people using the "t and “c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with ‘‘Re:’’ unless it
already began thus. If the original message included a “‘reply-to’’ header field, the reply
will go only to the recipient named by ‘‘reply-to.”” You type in your message using the
same conventions available to you through the mail command.

save It is often useful to be able to save messages on related topics in a file. The save com-
mand gives you ability to do this. The save command takes as argument a lit of message
numbers, followed by the name of the file on which to save the messages. The messages
are appended to the named file, thus allowing one to keep several messages in the file,

Mail Reference Manual 7/27/83 16

stored in the order they were put there. The save command can be abbreviated to s. An
example of the save command relative to our running example is:

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected by
the next command described above, unless explicitly specified.

set Set an option or give an option a value. Used to customize Mail Section 5.3 contains a
list of the options. Options can be binary, in which case they are on or off, or valued. To
set a binary option option on, do

set option
To give the valued option option the value value, do
set option==value
Several options can be specified in a single set command.

shell The shell command allows you to escape to the shell. Shell invokes an interactive shell
and allows you to type commands to it. When you leave the shell, you will return to
Mail. The shell used is a default assumed by Mail, you can override this default by set-
ting the valued option “SHELL,” eg:

set SHELL =/bin/csh

source
The source command reads Mail commands from a file. It is useful when you are trying
to fix your ‘‘.mailrc”’ file and you need to re-read it.

top The top command takes a message list and prints the first five lines of each addressed
message. It may be abbreviated to to. If you wish, you can change the number of lines
that top prints out by setting the valued option ‘‘toplines.”” On a CRT terminal,

set toplines=10
might be preferred.

type Print a list of messages on your terminal. If you have set the option crf to a number and
the total number of lines in the messages you are printing exceed that specified by crt, the
messages will be printed by a terminal paging program such as more.

undelete
The undelete command causes a message that had been deleted previously to regain its
initial status. Only messages that have been deleted may be undeleted. This command
may be abbreviated to u.

unset
Reverse the action of setting a binary or valued option.

visual
It is often useful to be able to invoke one of two editors, based on the type of terminal
one is using. To invoke a display oriented editor, you can use the visual command. The
operation of the visual command is otherwise identical to that of the edit command.
Both the edit and visual commands assume some default text editors. These default edi-

tors can be overridden by the valued options “EDITOR” and ‘“‘VISUAL” for the stan-
dard and screen editors. You might want to do:

set EDITOR =/usr/ucb/ex VISUAL = /usr/ucb/vi

write The save command always writes the entire message, including the headers, into the file.
If you want to write just the message itself, you can use the write command. The write
command has the same syntax as the save command, and can be abbreviated to simply w.
Thus, we could write the second message by doing:

w 2 file.c

Mail Reference Manual 7/27/83 17

As suggested by this example, the write command is useful for such tasks as sending and
receiving source program text over the message system.

z Mail presents message headers in windowfuls as described under the headers command.
You can move Mail’s attention forward to the next window by giving the

z+
command. Analogously, you can move to the previous window with:
z—

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This sec-
tion describes each of the options in alphabetical order, including some that you have not seen
yet. To avoid confusion, please note that the options are either all lower case letters or all
upper case letters. When I start a sentence such as: ““Ask’ causes Mail to prompt you for a
subject header, I am only capitalizing ‘‘ask’ as a courtesy to English.

EDITOR
The valued option ‘“EDITOR” defines the pathname of the text editor to be used in the
edit command and “e. If not defined, a standard editor is used.

SHELL
The valued option “SHELL”’ gives the path name of your shell. This shell is used for the
! command and ! escape. In addition, this shell expands file names with shell metachar-
acters like * and ? in them.

VISUAL
The valued option ‘“VISUAL”’ defines the pathname of your screen editor for use in the
visual command and “v escape. A standard screen editor is used if you do not define
one.

append
The ‘“‘append’’ option is binary and causes messages saved in mbox to be appended to the
end rather than prepended. Normaily, Mailill mbox in the same order that the system
puts messages in your system mailbox. By setting ‘‘append,”” you are requesting that
mbox be appended to regardless. It is in any event quicker to append.

ask ‘‘Ask” is a binary option which causes Mail to prompt you for the subject of each mes-
sage you send. If you respond with simply a newline, no subject field will be sent.

askee
‘“‘Askcc’’ is a binary option which causes you to be prompted for additional carbon copy
recipients at the end of each message. Responding with a newline shows your satisfaction
with the current list.

autoprint
““‘Autoprint’ is a binary option which causes the delete command to behave like dp —
thus, after deleting a message, the next one will be typed automatically. This is useful to
quickly scanning and deleting messages in your mailbox.

debug
The binary option ‘‘debug’’ causes debugging information to be displayed. Use of this
option is the same as useing the

—d command line flag.

dot “‘Dot’ is a binary option which, if set, causes Mail to interpret a period alone on a line as
the terminator of a message you are sending.

escape
To allow you to change the escape character used when sending mail, you can set the
valued option “‘escape.”” Only the first character of the ‘‘escape’ option is used, and it

Mzil Reference Manual 7/21/83 18

must be doubled if it is to appear as the first character of a line of your message. If you
change your escape character, then ~ loses all its special meaning, and need no longer be
doubled at the beginning of a line.

folder
The name of the directory to use for storing folders of messages. If this name begins
with a ‘/* Mail considers it to be an absolute pathname; otherwise, the folder directory is
found relative to your home directory.

hold The binary option ‘‘hold” causes messages that have been read but not manually dealt
with to be held in the system mailbox. This prevents such messages from being automati-
cally swept into your mbox.

ignore
The binary option ‘‘ignore’” causes RUBOUT characters from your terminal to be ignored
and echoed as @’s while you are sending mail. RUBOUT characters retain their original
meaning in Mail command mode. Setting the ‘“‘ignore’ option is equivalent to supplying
the —i flag on the command line as described in section 6.

ignoreeof
An option related to ‘‘dot” is ‘‘ignoreeof”” which makes Mail refuse to accept a
control—d as the end of a message. ‘‘Ignoreeof” also applies to Mail command mode.

keep The ‘‘keep’’ option causes Mail to truncate your system mailbox instead of deleting it
when it is empty. This is useful if you elect to protect your mailbox, which you would do
with the shell command:

chmod 600 /usr/spool/mail/yourname

where yourname is your login name. If you do not do this, anyone can probably read your
mail, although people usually don’t.

keepsave
When you save a message, Mail usually discards it when you quit. To retain all saved
messages, set the ‘‘keepsave’’ option.

metoo
When sending mail to an alias, Mail makes sure that if you are included in the alias, that
mail will not be sent to you. This is useful if a single alias is being used by all members
of the group. If however, vou wish to receive a copy of all the messages you send to the
alias, you can set the binary option ‘‘metoo.”

noheader
The binary option ‘‘noheader’’ suppresses the printing of the version and headers when
Mail is first invoked. Setting this option is the same as using =N on the command line.

nosave
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to
the file ‘‘dead.letter” in your home directory. Seiting the binary option ‘‘nosave’
prevents this.

quiet The binary option ‘‘quiet’ suppresses the printing of the version when Mail is first
invoked, as well as printing the for example ‘‘Message 4:”’ from the type command.

record
If you love to keep records, then the valued option ‘‘record” can be set to the name of a
file to save your outgoing mail. Each new message you send is appended to the end of
the file.

screen
When Mail initially prints the message headers, it determines the number to print by
looking at the speed of your terminal. The faster your terminal, the more it prints. The
valued option ‘‘screen’ overrides this calculation and specifies how many message
headers you want printed. This number is also used for scrolling with the z command.

Mail Reference Manual 7/27/83 19

sendmail
To alternate delivery system, set the ‘‘sendmail’’ option to the full pathname of the pro-
gram to use. Note: this is not for everyone! Most people should use the default delivery
system.

toplines
The valued option ‘‘toplines’ defines the number of lines that the ‘‘top” command will
print out instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke sendmail with the —v flag, which
causes it to go into versbose mode and announce expansion of aliases, etc. Setting the
"verbose" option is equivalent to invoking Mail with the —v flag as described in section 6.

Mail Reference Manual 7/27/83 20

6. Command line options

This section describes command line options for Mail and what they are used for.
—N Suppress the initial printing of headers.
—d Turn on debugging information. Not of general interest.

—f file
Show the messages in file instead of your system mailbox. If file is omitted, Mail reads
mbox in your home directory.

—i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious
RUBOUT or DELETE characters. It’s usually more effective to change your interrupt
character to control—c, for which see the stty shell command.

—n Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since /usr/lib/Mail.rc is usually
empty.

—s string
Used for sending mail. String is used as the subject of the message being composed. If
string contains blanks, you must surround it with quote marks.

—Uu name
Read names’s mail instead of your own. Unwitting others often neglect to protect their
mailboxes, but discretion is advised. Essentially, —u user is a shorthand way of doing —f
/usr/spool/user.

—v Use the —v flag when invoking sendmail. This feature may also be enabled by setting the
the option "verbose".

The following command line flags are also recognized, but are intended for use by pro-
grams invoking Mail and not for people.

—T file
Arrange to print on file the contents of the article-id fields of all messages that were either
read or deleted. —T is for the readnews program and should NOT be used for reading
your mail.

—h number
Pass on hop count information. Mail will take the number, increment it, and pass it with
—h to the mail delivery system. —h only has effect when sending mail and is used for
network mail forwarding.

—r name
Used for network mail forwarding: interpret name as the sender of the message. The
name and —r are simply sent along to the mail delivery system. Also, Mail will wait for
the message to be sent and return the exit status. Also restricts formatting of message.

Note that —h and —r, which are for network mail forwarding, are not used in practice
since mail forwarding is now handled separately. They may disappear soon.

Mail Reference Manual 7/27/83 21

7. Format of messages

This section describes the format of messages. Messages begin with a from line, which
consists of the word ‘“‘From’’ followed by a user name, followed by anything, followed by a
date in the format returned by the ctime library routine described in section 3 of the Unix
Programmer’s Manual. A possible ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indication, which
should be three capital letters, such as PDT.

Following the from line are zero or more header field lines. Each header field line is of the
form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: article-id, bcc, cc, from, reply-to, sender, subject, and to. Other
header fields are also significant to other systems; see, for example, the current Arpanet mes-
sage standard for much more on this topic. A header field can be continued onto following
lines by making the first character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line. The part that follows is
called the body of the message, and must be ASCII text, not containing null characters. Each
line in the message body must be terminated with an ASCII newline character and no line may
be longer than 512 characters. If binary data must be passed through the mail system, it is sug-
gested that this data be encoded in a system which encodes six bits into a printable character.
For example, one could use the upper and lower case letters, the digits, and the characters
comma and period to make up the 64 characters. Then, one can send a 16-bit binary number
as three characters. These characters should be packed into lines, preferably lines about 70
characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This
blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message
each time it is forwarded through a machine.

It should be noted that some network transport protocols enforce limits to the lengths of
messages.

Mail Reference Manual 7/27/83 22

8. Glossary
This section contains the definitions of a few phrases peculiar to Mail.
alias An alternative name for a person or list of people.

flag An option, given on the command line of Mail, prefaced with a —. For example, —fis a
flag.

header field
At the beginning of a message, a line which contains information that is part of the struc-
ture of the message. Popular header fields include to, cc, and subject.

mail A collection of messages. Often used in the phrase, ‘“‘Have you read your mail?”’

mailbox
The place where your mail is stored, typically in the directory /usr/spool/mail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option
A piece of special purpose information used to tailor Mail to your taste. Options are
specified with the set command.

Mail Reference Manual 7/27/83 23

9. Summary of commands, options, and escapes

This section gives a quick summary of the Mail commands, binary and valued options,
and tilde escapes.

The following table describes the commands:

Command Description
! . Single command escape to shell
Back up to previous message

Print Type message with ignored fields

Reply Reply to author of message only

Type Type message with ignored fields

alias Define an alias as a set of user names

alternates List other names you are known by

chdir Change working directory, home by default
copy Copy a message to a file or folder

delete Delete a list of messages

dt Delete current message, type next message
endif End of conditional statement; see if

edit Edit a list of messages

else Start of else part of conditional; see if

exit Leave mail without changing anything

file Interrogate/change current mail file

folder Same as file

folders List the folders in your folder directory

from List headers of a list of messages

headers List current window of messages

help Print brief summary of Mail commands

hold Same as preserve

if Conditional execution of Mail commands

ignore Set/examine list of ignored header fields

list List valid Mail commands

local List other names for the local host

mail Send mail to specified names

mbox Arrange to save a list of messages in mbox

next Go to next message and type it

preserve Arrange to leave list of messages in system mailbox
quit Leave Mail, update system mailbox, mbox as appropriate
reply Compose a reply to a message

save Append messages, headers included, on a file
set Set binary or valued options

shell Invoke an interactive shell

top Print first so many (5 by default) lines of list of messages
type Print messages

undelete Undelete list of messages

unset Undo the operation of a set

visual Invoke visual editor on a list of messages

write Append messages to a file, don’t include headers

z Scroll to next/previous screenful of headers

Mail Reference Manual 7/27/83

The following table describes the options. Each option is shown as being either a
binary or valued option.
Option Type Description
EDITOR valued Pathname of editor for “e and edit
SHELL valued Pathname of shell for shell, ! and !
VISUAL valued Pathname of screen editor for “v, visual

append binary Always append messages to end of mbox

ask binary Prompt user for Subject: field when sending
askcc binary Prompt user for additional Cc’s at end of message
autoprint binary Print next message after delete

crt valued Minimum number of lines before using more
debug binary Print out debugging information

dot binary Accept . alone on line to terminate message input
escape valued Escape character to be used instead of ~

folder valued Directory to store folders in

hold binary Hold messages in system mailbox by default
ignore binary Ignore RUBOUT while sending mail

ignoreeof binary Don’t terminate letters/command input with {D
keep binary Don’t unlink system mailbox when empty
keepsave binary Don’t delete saved messages by default

metoo binary Include sending user in aliases

noheader binary Suppress initial printing of version and headers
nosave binary Don’t save partial letter in dead.letter

quiet binary Suppress printing of Mail version and message numbers
record valued File to save all outgoing mail in

screen valued Size of window of message headers for z, etc.
sendmail valued Choose alternate mail delivery system

toplines valued Number of lines to print in top

verbose binary Invoke sendmail with the —v flag

The following table summarizes the tilde escapes available while sending mail.

Escape Arguments Description

1 command Execute shell command

“c name ... Add names to Cc: field

-d Read dead. letter into message

“e Invoke text editor on partial message
°f messages Read named messages

“h Edit the header fields

“m messages Read named messages, right shift by tab
“p Print message entered so far

“q Abort entry of letter; like RUBOUT

T filename Read file into message

s string Set Subject: field to string

"t name ... Add names to To: field

v Invoke screen editor on message

“w Sfilename Write message on file

command Pipe message through command
string Quote a ~ in front of string

1
1

Mail Reference Manual

7/27/83

The following table shows the command line flags that Mail accepts:

Flag

Description

—N

—T file
—d

—f file
—h number
—i

-n

—T name
—S string
—u name
—-v

Suppress the initial printing of headers
Article-id’s of read/deleted messages to file
Turn on debugging

Show messages in file or ~/mbox

Pass on hop count for mail forwarding
Ignore tty interrupt signals

Inhibit reading of /usr/lib/Mail.rc
Pass on name for mail forwarding

Use string as subject in outgoing mail
Read name’s mail instead of your own
Invoke sendmail with the —v flag

Notes: =T, —d, —h, and —r are not for human use.

25

Mail Reference Manual 7/27/83 26

10. Conclusion

Mail is an attempt to provide a simple user interface to a variety of underlying message
systems. Thanks are due to the many users who contributed ideas and testing to Mail.

DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi-
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 15, 1978

tUNIX is a Trademark of Bell Laboratories.

DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIX?t time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami-
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A—F which are treated as digits with values 10—15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ - * 9 -
The top two values on the stack are added (+), subtracted (=), multiplied (*), divided
(/), remaindered (%), or exponentiated (*). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun-
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.

SXx

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the 1is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command | and is treated
as an error by the command L.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

vl

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x =x !<x !>x !=x

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

0
The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

k
The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.
DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0—99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100’s complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always —1 and all other digits are in the range 0—99. The digit preceding the high order —1
digit is never a 99. The representation of —157 is 43,98,—1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The resuit
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large. addi-
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored.with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.

.4

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
‘buddy system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou-
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,—1 by the digit —1. In any case, digits which are not in the range
0—99 must be brought into that range, propagating any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi-
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni-
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root
The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive approximations
by the rule

Xyaq = A (x, +-2)
Xn
The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A—F correspond to the
numbers 10—15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remgve the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command O pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis-
ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register x. x can be any character. lx puts the contents of register x on the top of the
stack. The 1 command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c¢ clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [l pushes the ascii string on the stack. The g command quits or in
executing a string, pops the recursion levels by two.

Internal Registers — Programming DC

The load and store commands together with [l to store strings, x to execute and the test-
ing commands *<’, ‘>", ‘= ‘1<’ 1>’ ‘1=’ cap be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elernents on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

{lipl + si lil0>alsa
0Osi lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
I also work on registers but not as push-down stacks. 1 doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com-
mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro-
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [...] commands) where it cannot be known
in advance how long a string will be. The result was that at 2 modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan-
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi-
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com-
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more

digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

.8

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References
[1] L.L.Cherry, R. Morris, BC — An Arbitrary Precision Desk-Calculator Language.
[2] K. C. Knowlton, 4 Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the UNIXT time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input,. output,
and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
— to do computation with large integers,
— to do computation accurate to many decimal places,
— conversion of numbers from one base to another base.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXT
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is-
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers .
The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:
142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and " can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the ‘unary’ minus sign). The expression

7+-3
is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally + and
—. Contents of parentheses are evaluated before material outside the parentheses. Exponen-
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

a’b’c and a"(b’c)
are equivalent, as are the two expressions

a*b*c and (a*b)*c
BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value

of an expression can be assigned to a register in the usual way. The statement

X =x + 3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(191)
X

produce the printed result
13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’,
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
i1

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A—F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10—15 respectively. The
statement

ibase = A
will change you back to decimal input base no matter what the current input base is. Negative

and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit-
‘ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting ‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con-
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max-
imum of the two scales of the operands, never more than the sum of the scales of the operands
and. subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity ‘scale’. The scale of a quotient is the contents of the internal quantity ‘scale’.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu-
ment and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like
other variables. The line
scale = scale + 1
increases the value of ‘scale’ by one, and the line
scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in
internal computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col-
lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace]. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form
auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a(x,y){
auto z
z = Xy
return(z)

}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b().

If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed and the line
x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

f@al])
define f(a[])
auto af]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The ‘if’, the ‘while’, and the ‘for’ statements may be used to alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

if (relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

or

if (relation) {statements}
while (relation) {statements)}
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form
x>y
where two expressions are related by one of the six relational operators <, >, <= > =
==_or !=_ The relation == stands for ‘equal to’ and != stands for ‘not equal to’. The
meaning of the remaining relational operators is clear.

BEWARE of using = instead of == in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The ‘if” statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is-false, con-
trol passes to the next statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if
true, the statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed.
The relation is tested, and so on. The typical use of the ‘for’ statement is for a controlled itera-
tion, as in the statement

for(i=1;i<=10; i=i+1) i
which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n){

auto i, X

x=1

for(i=1; i< =n; i=i+1) x=x*i
return (x)

The line
f(a)

-6-

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){

auto x, j

x=1]

for=1; j<=m; j=j+1) x=x*(n—j+1)/j
return (x)

The following function computes values of the exponential function by summing the appropri-
ate series without regard for possible truncation errors:

scale = 20
define e(x){
auto a, b,c,d, n
a =]
b =1
c=1
d=20
n =1
while (1==1){
a = a*x
b = b*n
c=c+ a/b
n=n+1
if (c==d) return(c)
d=c

Some Details

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state-
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any-
where that an expression can. For example, the line
(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.
Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.
x = ali=i+1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

-7.

x=y=z isthe same as x=(y=z)

X =4y X = x+y

X ==y X = X—y

X ="y X = Xy

x =/y X = x/y

X =%y X = x%y

x ="y X = X"y
x++ (x=x+1)—1
X—— (x=x—1)+1
++x X = x+1
-—X X = x—1]

Even if you don’t intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x = —y and x= —y. The first replaces x by x—y and the second by —y.

Three Important Things
1. To exit a BC program, type ‘quit’.
2. There is a comment convention identical to that of C and of PL/I. Comments begin
with */*' and end with **/°.
3. There is a library of math functions which may be obtained by typing at command level
be —I

This command will load a set of library functions which, at the time of writing. consists of sine
(named ‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘I'), exponential (‘e’) and Bessel
functions of integer order (‘j(n,x)’). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type
be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement
The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References
{11 K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories, 1978.
[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[31 R. Morris, 4 Library of Reference Standard Mathematical Subroutines, Bell Laboratories
internal memorandum, 1975.

[4] S. C. Johnson, YACC — Yet Another Compiler-Compiler. Bell Laboratories Computing Sci-
ence Technical Report #32, 1978.

[S] R. Morris and L. L. Cherry, DC — An Interactive Desk Calculator.

. 8-
Appendix

1. Notation

In the following pages syntactic categories are in iralics; literals are in beld: material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state-
ments.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. lIdentifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define

sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an aptional decimal point. The hexade-
cimal digits A— F are also recognized as digits with values 10—135, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre-
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

3.1. Primitive expressions

3.1.1. Named‘expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression |
Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name (lexpression {,expression...]11)

A function call consists of a function name followed by parentheses containing a comma-
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu-
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

-10 -

3.2. Unary operators
The unary operators bind right to left.

3.2.1. = expression
The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. — — named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5. named-expression — —

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator
The exponentiation operator binds right to left.

3.3.1. expression " expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso-
lute value of the right expression, then the scale of the result is:

min (axb, max (scale,a))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression
P 4

The result is the product of the two expressions. If @ and b are the scales of the two
expressions, then the scale of the result is:

min (a +b, max (scale, a, b))

3.4.2. expression [expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the-two expressions. More pre-
cisely, a%b is a—a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

- 11 -
3.5. Additive operators
The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression — expression

The result is the difference of the two expressions. The scale of the result is the max-
imum of the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression
3.6.3. named-expression = — expression
3.6.4. named-expression =* expression
3.6.5. named-expression =/ expression
3.6.6. named-expression =% expression

3.6.7. named-expression =" expression

The result of the above expressions is equivalent to ‘““named expression = named expres-
sion OP expression’, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression < = expression
4.4. expression > = expression
4.5. expression = = expression

4.6. expression != expression

S12-

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/IL
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur-
rounding them with { }.
6.3. Quoted string statements

"any string”

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement
The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu-
tion of the statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
Sfirst-expression
while (refation) {

statement

last-expression

All three expressions must be present.

213 -

6.7. Break statements

break
break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [,identifier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol-
lowing the array name by empty square brackets. The auto statement must be the first state-
ment in a function definition.

6.9. Define statements
define([parameter [,parameter...]1) {
statements)

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements
return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return{(0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXT operating system is done with the text-
editor ed This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users’ day-to-day needs. This includes printing, appending, changing, deleting,
moving and inserting entire lines of text; reading and writing files; conlext
searching and line addressing: the substitute command. the global commands;
and the use of special characters for advanced editing.

September 21, 1978

tUNIX is a Trademark of Bell Laboratories.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernghan

Bell Laboratories
Murray Hill. New Jersey 07974

Introduction

Ed is a ““text editor’”, that is, an interactive
program for creating and modifying ““text’.
using directions provided by a user at a terminal.
The text is often a document like this one, or a
program or perhaps data for a program.

This introduction is meant to simplify learn-
ing ed. The recommended way (o learn ed is 10
read this document, simultaneously using ed (o
follow the examples, then to read the description
in section | of the UNIX Programmer’s Manual, all
the while experimenting with ed. (Solicitation of
advice from experienced users is also useful.)

Do the exercises! They cover material not
completely discussed in the actual text. An
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this resson, no attlempt is made (0 cover more
than a part of the [facilities that ed offers
(although this fraction includes the most useful
and frequenty used parts). When you have
mastered the Tutorial, try Advanced Editing on
UNIX. Also, there is not enough space 1o explain
basic UNIX procedures. We will assume that you
know how to log on to UNIX, and that you have
at least a vague understanding of what a file is.
For more on that, read UNI/X for Beginners.

You must aiso know what character (0 type
as the end-of-line on your particular terminal.
This character is the RETURN key on most ter-
minals. Throughout, we will refer 10 this charac-
ter, whatever it is, as RETURN.

Getting Started
We'll assume that you have logged in 0 your
system and it has just printed the prompt charac-
ter, usually either 2 $ or a %. The easiest way t0
get edis o type
ed (followed by a return)

You are now ready (0 g0 — ed is waiting for you
to tell it what to do.

Creating Text = the Append command **a”

As your first problem, suppose you want to
create some text starting from scrawch. Perhaps
you are lyping the very first draft of a paper:
clearly it will have to suart somewhere. and
undergo modifications later. This section will
show how 1o get some text in. just to get started.
Later we'll talk about how o change it.

When edis first started. it is rather like work-
ing with a blank piece of paper — there is no
text or information present. This must be sup-
plied by the person using ed: it is usually done by
typing in the text. or by reading it into ed from a
file. We will sart by typing in some text, and
return shortly 10 how (o read fles.

First a bit of terminology. In ed jargon, the
lext being worked on is said to be “‘kept in a
buffer.”” Think of the buffer as a work space, if
you like. or simply as the information that you
are going o be editing. In effect the buffer is
like the piece of paper. on which we will write
things. then change some of them. and fnally
file the whole thing away for another day.

The user tells ed what to do to his text by
lyping instructions called ‘“‘commands.”” Most
commands consist of a single letter. which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is.
preceded by information about what line or lines
of wext are 10 be affecied — we will discuss these
shortly.) £4 makes no response 10 most com-
mands = there is no prompting or typing of
messages like “ready”. (This silence is preferred
by experienced users, but sometimes a hangup
for beginners.)

The first command is append. written as the

letier
a

all by uselff. [t meuns “append (or add) text
lines (o the buffer, as | type them in.”" Append-
ing is rather like writing resh material on a piece
of paper.

So o enter lines of tex. into the buffer. just
type an a followed by a RETURN. followed by

the lines of wxi yuu waui, like this:

a

Now is the time

for all good men

to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The *‘."" is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
*.” sometimes. If ed seems to be ignoring you,
type an extra line with just **.”" on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The *‘a™ and *‘."" aren’t there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ-
ing.

Error Messages — *?°°

If at any time you make an error in the com-
mands you type 10 ed, it will tell you by typing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file — the Write command

oy P

w

It’s likely that you'll want to save your text
for later use. To write out the contents of the
buffer onto a file, use the write command

w

followed by the filename you want 1o write on.
This will copy the buffer’s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named junk, for example, type

w junk

Leave a space between w and the file name. £d
will respond by printing the number of characters
it wrote out. In this case, ed would respond with

68

(Remember that blanks and the return character
at the end of each line are inciuded in the char-
acter count.) Writing a file just makes a copy of

the text — the buffer’s contents are not dis-
turbed, so you can go on adding lines to it. This
is an importwant point. Edat all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed — the Quit command “q"*

To terminate a session with ed, save the text
you're working on by writing it onto a file using
the w command, and then type the command

Q

which stands for qui The system will respond
with the prompt character (§ or %). At this
point your buffer vanishes, with all its text,
which is why you want to write it out before
quitting.t

Exercise 1:
Enter edand create some text using

a
.otext. ..

.

Write it out using w. Then leave ed with the q
command, and print the file, to see that every-
thing worked. (To print a file, say

pr filename
or
cat filename

in response to the prompt character. Try both.)

Reading text from a file — the Edit command
e

A common way lo get text into the buffer is
to read it from a file in the file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edir com-
mand e feiches the entire contents of a file into
the buffer. So if you had saved the three lines
“*Now is the time™, etc., with a w command in
an earlier session, the edcommand

e junk

would fetch the entire contents of the file junk
into the buffer, and respond

1 Actually, ed will print ? if you try 10 quit without writ-
ing. At that point, write if you want, if not, another q
will get you out regardiess.

68

which is the number of characters in junk. If
anything was already in the buffer, it is delered first.

If you use the e command to read a fle into
the buffer, then you need not use a file name
after a subsequent w command:. ed remembers
the last file name used in an ¢ command, and w
will write on this file. Thus a good way to
operate is

ed

e file

[editing session]
w

q

This way, you can simply say w from tme to
lime, and be secure in the knowledge that if you
got the file name right at the beginning. you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the file command f.
In this example, if you typed

f
ed would reply
junk

Reading text from a file = the Read command
pr

Sometimes you want o read a file into the
buffer without destroying anything that is aiready
there. This is done by the readcommand r. The
command

r junk

will read the file junk into the buffer; it adds it
10 the end of whatever is already in the buffer.
So if you do a read after an edit:

e junk
r junk

the buffer will contain awo copies of the text (six
lines).

Now is the time

for ail good men

to come to the aid of their party.
Now is the time '

for all good men

to come to the aid of their party.

Like the w and e commands. r prints the number
of characters read in, after the reading operation
is complete.

Generally speaking, r is much less used than
e

Exercise 2:

Experiment with the e command = try read-
ing and printing various fles. You may get an
error ?name. wnere name is the name of a fle:
this means that the file doesn't exisi, typically
because you spelled the flle name wrong, or
perhaps that you are not allowed to read or write
it.. Try alternately reading and appending to see
that they work similarly. Verify that

ed flename
is exactly equivalent to

ed
e filename

What does
f filename
do?
Printing the contents of the buffer — the Print

command “'p”’

To print or list the contents of the buffer (or
parts of it) on the terminal. use the print com-
mand

P

The way this is done is as foilows. Specify the
lines where you want printing 0 begin and where
you want it 10 end, separated by a comma, and
followed by the letter p. Thus to print.the first
two lines of the buffer, for example. (that is,
lines | through 2) say

1,2p
Ed will respond with

(starting line=1, ending line=2 p)

Now is the time
for all good men

Suppose you want to print a/f the lines in the
buffer. You could use 1.3p as above if you knew
there were exactly 3 lines in the buffer. But in
general, you don’t know how many there are. so
what do you use for the ending line number® £d
provides a shorthand symbol for “‘line number
of last line in buffer”™ — the dollar sign $. Use it
this way:

1,5p

This will print a/ the lines in the buffer (line | to
last line.) If you want to stop the printing before
‘it is finished, push the DEL or Delete key; eq will
type

?

and wait for the next command.

To print the /asz line of the buffer, you could
use

S.$p
but ed lets you abbreviate this to
Sp
You can print any single line by typing the line
number followed by a p. Thus
Ip
produces the response
Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing juss the
line number — no need to type the letter p. So
if you say

$

ed will print the last line of the buffer.
You can also use § in combinations like
$—-1,5p
which prints the last two lines of the buffer.

This helps when you want to see how far you got
in typing.

Exercise 3:

As before, create some text using the s com-
mand and experiment with the p command. You
will find, for example, that you can't print line 0
or a line beyond the end of the buffer, and that
attempts to print a buffer in reverse order by say-
ing

3,1p
don’t work.

se 99

The current line = *‘Dot’’ or
Suppose your buffer still contains the six

lines as above, that you have just typed

1,3p
and ed has printed the three lines for you. Try
typing just

P (no line numbers)
This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of

the last line that you did anything to (in this
case, line 3, which you just printed) so that it

can be used instead of an explicit line number.
This most recent line is referred to by the short-
hand symbol

. (pronounced ‘‘dot’").

Dot is a line number in the same way that $ is; it
means exactly ‘‘the current line'’. or loosely,
*‘the line you most recently did something t0.”
You can use it in several ways — one possibility
is to say

.Sp

This will print all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com-
mand will set both . and § 10 6.

Dot is most useful when used in combina-
tions like this one:

L+l (or equivalently, . +1p)

This means *‘print the next line™ and is a handy
way to step slowly through a buffer. You can
also say

~1 (or .=1p)

which means *‘print the line before the current
line.”” This enables you to go backwards if you
wish. Another useful one is something like

.=3,.—1p
which prints the previous three lines.

Don't forget that all of these change the
value of dot. You can find out what dot is at any
time by typing

Ed will respond by printing the value of dot.

Let’s summarize some things about the p
command and dot. Essentially p can be preceded
by 0, 1, or 2 line numbers. If there is no line
number given, it prints the ‘“‘current line™, the
line that dot refers to. If there is one line
number given (with or without the letter p). it
prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line
printed.) If two line numbers are specified the
first can’t be bigger than the second (see Exer-
cise 2.)

Typing a single return will cause printing of
the next line — it's equivalent to .+1p. Try it
Try typing a = you will find that it’s equivalent
to .=1p.

Deleting lines: the **d’’ command

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
defere command

d

Except that d deietes lines instead of printing
them, its action is similar to that of p. The lines
10 be deleted are specified for d exactly as they
are for p:

swarting line, ending line d
Thus the command
4,3d

deletes lines 4 through the end. There are now
three lines left, as you can check by using

1,.8p

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted. unless the
last line deieted is the last line in the buffer. In
that case, dot is set to $.

Exercise 4:

Experiment with a, e, r, w, p and d until you
are sure that you know what they do, and until
you understand how dot, $, and line numbers
are used.

If you are adventurous. try using line
numbers with a, r and w as well. You will find
that a will append lines after the line number that
you specify (rather than after dot); that r reads a
file in afrer the line number you specify (not
necessarily at the end of the buffer); and that w
will write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For insiance you can
insert a file at the beginning of a buffer by saying

Or fAlename

and you can enter lines at the beginning of the
buffer by saying

Oa
.rext. ..

Notice that .w is very different from-

Modifying text: the Substitute command “s"

We are now ready to try one of the most
important of all commands = the substitute
command

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what you use, for example. for
correcting spelling mistakes and typing errors.

Suppose that by a typing 2rror, line | says
Now is th time

— the e has been left off rhe. You can use s (0

fix this up as follows:
1s/th/the/

This says: “'in line 1, substitute for the characters
th the characters the."" To verify that it works (ed
will not print the result automaticaily) say

p
and get
Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com-
mand.

The general way to use the subsiitute com-
mand is

starting-line, ending-line 8/ change this! o this/

Whatever string of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in al/l the lines between swruag-
line and ending-fine. Only the first occurrence on
each line is changed. however. If you want to
change every occurrence, see Exercise 5. The
rules for line numbers are the same as those for
p. except that dot is set to the last line changed.
(But there 1s a trap for the unwary: if no substi-
tution took place. dot is nor changed. This
causes an error 7 as a warning.)

Thus you can say
1,8s/speling/spelling/

and correct the first spelling mistake on each line
in the text (This is useful for people who are
consistent misspeilers!)

If no line numbers are given, the s command
assumes we mean ‘‘make the substitution on line
dot”, so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current
line. and then prints it, to make sure it worked
out right. [f it didn't. you can try again. (Notce
that there is a p on the same line as the s com-
mand. With few exceptions, p can follow any
command:; no other multi-command lines are
legal.)

Its also legal to say
YA

which means ‘"change the first string of charac-
ters o “‘nothng’’, ie., remove them. This is
useful for deleting extra words in a line or
removing exira letters from words. For instance.
if you had

Nowxx is the time
you can say
s/xx//p
10 get
Now is the time
Notice that // (two adjacent slashes) means ‘‘no

characters™, not a blank. There is a difference!
(See below for another meaning of //.)

Exercise §:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a g (for “‘global™) to the s
command, like this:

s/ .../ ... /gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command —
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

L8 Lo\ &
read the section on ‘‘Special Characters™.)

9

Context searching = **/ .../

With the substitute command mastered, you
can move on to another highly important idea of
ed = conlext searching.

Suppose you have the original three line text
in the buffer:
Now is the time

for all good men
to come to the aid of their party.

Suppose you want to find the line that contains
their 50 you can change it to the. Now with only
three lines in the buffer, it’s pretty easy to keep
track of what line the word rher is on. But if the
buffer contained several hundred lines, and
you'd been making changes. deleting and rear-
ranging lines, and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way to say ‘‘search for a line that con-
tains this particular string of characters™ is to
type

I siring of characiers we want to find/
For example, the edcommand
/their/

is a context search which is sufficient to find the
desired line — it will locate the next occurrence
of the characters between slashes (‘‘their’”). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

“‘Next occurrence’ means that ed starts looking
for the siring at line .41, searches 10 the end of
the buffer, then continues at line 1 and searches
to line dot. (That is, the search ‘‘wraps around"”
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
10 dot again. If the given string of characters
can't be found in any line, ed types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired
line anda substitution all at once, like this:

/their/s/their/the/p
which will yield
to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression /thelr/ is a context search
expression. In their simplest form, all context
search expressions are like this — a string of
characters surrounded by siashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the examples above.

Suppose ihe builer coniains the three familiar
lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line aumbers
/Now/+1
/good/
/party/ =1
are all context search expressions. and they all

refer 10 the same line (line 2). To make a
change in line 2, you could say

/Now/ +1s/good/bad/
or
/good/s/good/bad/
or
/party/ = 1s/good. bad/
The choice is- dictated only by convenience. You
could print all three lines by, for instance
/Now/,/party/p
or
/Now/,/Now/ +2p
or by any number of similar combinations. The
first one of these might be better if you don't
know how many lines are invoived. (Of course,

if there were only (hree lines in the buffer, you'd
use

1,%p
but not if there were several hundred.)

The basic rule is: a context search expression
iS the same as a line number, so it can be used
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w, and a.)

Try context searching using “text? instead
of /text/. This scans lines in the buffer in
reverse order rather than normal. This is some-
times useful if you go too far while looking for
some string of characters — it's an easy way to
back up.

(If you get funny results with any of the
characters

. s [e\ &
read the section on ‘"Speciai-Characters'.)

Ed provides a shorthand for repeating a con-
text search for the same string. For exampie.
the ed line number

/string/

will find the next occurrence of string. [t often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typing merely

1/

This shorthand stands for ‘‘the most recently
used context search expression.”” [t can also be
used as the first siring of the substitute com-
mand, as in

/stringl/s//string2/

which will find the next occurrence of stringl
and replace it by string2. This can save a lot of
typing. Similarly

7?7

means ‘‘scan backwards for the same expres-
sion."”

e

Change and Insert — **¢" and
This section discusses the change command

<

which is used to change or replace a group of
one or more lines, and the inserr command

i
which is used for inserting a group of one or
more lines.

“*Change’", written as
c

is used o replace a number of lines with
different lines, which are typed in at the termi-
nal. For example, (o change lines.+1 through §
to something else, type

.+1,8¢
. .. pe the lines of rext you want here . . .

The lines you type between the ¢ command and
the . will take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
Ahave errors in them.

If only one line is specified in the ¢ com-
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of . o end the input = this
works just like the . in the append command

and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

“Insert™ is similar 10 append — for instance

/string/i
... ppe the lines 10 be inserted here . . .

will insert the given text before the next line that
conwains ‘‘string’’. The text between i and . is
inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:

**Change’ is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d
i
Ltext. ..

is almost the same as

swrt, end ¢
. lext. ..

These are not precisefy the same if line § gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
.ext. ..

appends afrer the given line, while

line-mu mber i
Llext. ..

inserts before it. Observe that if no line number
is given, i inserts before line dot, while a
appends after line dot.

Moving text around: the ‘‘m’’ command

The move command m is used for cutting
and pasting — it lets you move a group of lines
from one place to another in the buffer. Sup-
pose you want to put the first three lines of the
buffer at the end instead. You could do it by
saying:

1,3w temp
$r temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

1,3m$
The general case is
swarr line, end line m after this line

Notice that there is a third line to be specified —
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.
you could reverse the two paragraphs like this:
/Second/,/end of second/m/First/—1

Notice the —1: the moved text goes a/fer the line
mentioned. Dot gets set 1o the last line moved.

The global commands *‘g”’ and **v"

The global command g is used 10 execute one
or more ed commands on all those lines in the
buffer that match some specified string. For
example

g/peling/p
prints all lines that contain peling. More use-
fully,
g/peling/s//pelling/gp
makes the substitution everywhere on the line,
then prints each corrected line. Compare this to
1,8s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
s, ¢, I,/r, w, but not g); in that case, every line
except the last must end with a backslash \:

g8/xxx/.—1s/abc/def/B

.+2s/ghi/jkl/B

.=2,.p
makes changes in the lines before and after each
line that contains xxx, then prints all three lines.

The v command is the same as g, except that
the commands are executed on every line that
does not match the string following v:

v/ /d

deletes every line that does not contain a blank.

Special Charscters

You may have noticed that things just don't
work right when you used some characters like .,
e, §, and others in context searches and the sub-
stitute command. The reason is rather complex,
although the cure is simple. Basically, ed treats
these characters as special. with special mean-
ings. For inswance, in a conrext search or the first
swring of the subsntute command only, . means
*“‘any character,” not a period. so

I/x.y/
means “‘a line with an x, any characer, and a y,”
not just ‘‘a line with an x, a period, and a y."" A
complete list of the special characters that can
cause trouble is the following:

.8 [e\

Warning: The backslash character \ is special to
ed. For safety's sake, avoid it where possible. If
you have (0 use one of the special characters in a
substitute command, you can turn off ils magic
meaning temporarily by preceding it with the
backslash. Thus

8/\\\.*/backslash dot star/

will change \.« into **backslash dot star™.

Here is a hurried synopsis of the other special
characters. First, the circumflex ° signifies the
beginning of a line. Thus

/°string/
finds string only if it is at the beginning of a
line: it will find

string
but not

the string...

The dollar-sign $ is just the opposite of the
circumflex; it means the end of a line:

/string$/

will only find an occurrence of string that is at
the end of some line. This implies, of course,
that

/”string$/

will find only a line that contains just string, and
/°.8¢

finds a line containing exactly one character.

The character
matches anything:

/x.y/

matches any of

., as we mentioned above,

x+y
x=y
Xy
X.y

This is useful in conjunction with ¢, which is a
repetition character ae¢ is a shorthand for ““any
number of a's.”” so .e matches any number of
anythings. This is used like this:

s/.o/stuff/
which changes an entire line, or
s/.e//

which deletes all characters in the line up to and
including the last comma. (Since .« finds the
longest possible match, this goes up to the last
comma.)

| is used with | to form ‘character classes™,;
for example,

710123456789/
matches any single digit ~— any one of the char-

acters inside the braces will cause a mawch. This
can be abbreviated to [0—-91.

Finally, the & is another shorthand character
— it is used only on the right-hand part of a sub-
stitute command where it means ‘"whatever was
matched on the left-hand side™. It is used to
save typing. Suppose the current line conuined

Now is the time

and you wanted to put parentheses around it.
You could just retype the line, but this is tedi-
ous. Or you could say

s/°/(/
s/8/)/

using your knowledge of ~ and $. But the easiest
way uses the &:

8/.o/(&)/

This says ‘‘match the whole line, and repiace it
by itself surrounded by parentheses.”” The & can
be used several times in a line; consider using

s/.o/&? &!V
to produce

Now is the time? Now is the time!!

You don't have to match the whole line, of
course: if the buffer contains
the end of the world
you could type
/world/s//& is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, for it illus-
trates how 1o take advantage of ed to save typing.
The string /world/ found the desired line: the
shorthand // found the same word in the line;
and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with

a\:
s/ampersand/\&/

will convert the word ‘“‘ampersand’ into the
literal symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for e, r, w and q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Append-
ing continues until . is typed on a new line. Dot
is set to the last line appended.

¢: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to §.

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a w beforehand.

f: Print remembered filename. If 2 name follows
f the remembered name will be set to it.

g: The command
g/---/commands

will execute the commands on those lines that
conain ---, which can be any context search
expression.

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot A single line number is equivalent to
line-number p. A single return prints .+1, the

210 -

next line.

q: Quit ed Wipes out all text in buffer if youw
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command
s/stringl/string2/

substitutes the characters stringl into string2 in
the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place, which
means that if no substitution took place, dot is
not changed. s changes only the first occurrence
of stringl on a line; to change all of them, type
a g after the final slash.

v: The command
v/---/commands

executes commands on those lines that do nor
cONtain ---.

w: Write out buffer onto a file. Dot is not

changed.

.= Print value of dot. (= by itself prints the
value of $.)

!: The line
!command-line

causes command-line to be executed as a UNIX
command.

/—~--=/: Context search. Search for next line
which contains this string of characters. Print it.
Dot is set 1o the line where string was found.
Search starts at .+1, wraps around from $ 10 1,
and continues to dot, if necessary.

?ee==?: Context search in reverse direction.
Start search at .=1, scan to 1, wrap around to $.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to maku
effective use of the UNixt facilities for preparing and editing text. It provides
explanations and examples of

® special characters, line addressing and global commands in the editor ed;

e commands for ‘“‘cut and paste’ operations on files and parts of files,
including the mv, c¢p, cat and rm commands, and the r, w, m and t com-
mands of the editor;

® editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

August 4, 1978

tUNIX is a Trademark of Beil Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although uNIXT provides remarkably
eifective tools for text editing, that by itseif is no
guarantes that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists — typ-
ists, secretaries, casual users - often use the
systemn less effectively than they might.

This document is intended as a sequel to 4
Tutorial [ntroduction to the UNIX Text Editor (1],
providing explanations and examples of how to
edit with less effort. (You should also be fami-
liar with the material in UNLY For Beginners [2].)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual (3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading a description is no substitute for trying
something. A paper like this qne should give
you ideas about what to try, but until you actu-
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people, so it is worthwhile
to know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,

*UNIX is a Trademnark of Beil Laboratories.

they will remain theoretical knowledge, not
something you have confidence in.

The List command ‘I’

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

1,8p
to print all the lines you're editing, or
s/abc/def/p

to change ‘abc’ to ‘def” on the current line. Less
familiar is the /isr command | (the letter */°),
which gives slightly more information than p. In
particular, | makes visible characters that are
normally invisible, such as tabs and backspaces.
If you list a line that contains some of these, |
will print each tab as > and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja-
cent to tabs, or inserts a backspace followed by a
space.

The | command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \, so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the | command will print in a
line a string of numbers preceded by a backslash,
such as \07 or \16. These combinations are used
to make visible characters that normally don’t
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary = they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com-
mand. With

s/this/that/
and
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this’ on
the line, the second form with the trailing g
changes al/l of them.

Either form of the s command can be fol-
lowed by p or I to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/1
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre-
ceded by one or two ‘line numbers’ to specify
that the substitution is to take place on a group
of lines. Thus

1,8s/mispell/misspell/

changes the firss occurrence of ‘mispell’
‘misspell’ on every line of the file. But

to

1,8s/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You should also notice that if you add a p
or 1to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘u’

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

The Metacharacter *."

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-
lar line. In the next several sections, we will talk
about these special characters, which are often
called ‘metacharacters’.

The first one is the period ‘.. On the left
side of a substitute command, or in a search with
‘/..0°, ‘. stands for any single character. Thus
the search

/x.y/

finds any line where ‘x’ and ‘y’ occur separated
by a single character, as in

x+y
x=y
Xcy
Xy

and so on. (We will use = to stand for a space
whenever we need to make it visible.)

.

Since *." matches a single character, that
gives you a way to deal with funny characters
printed by . Suppose you have a line that, when
printed with the 1 command, appears as

th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try
s/\07//

but this will fail. (Try it.) The brute force solu-
tion, which most people would now take, is to
re-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar-
acter ‘.’ comes in handy. Since ‘\07" really
represents a single character, if we say

s/th.is/this/

the job is done. The ‘.’ matches the mysterious
character between the ‘h’ and the ‘i', wharever it
is.

)

Bear in mind that since ‘.
single character, the command

s/

matches any

s

converts the first character on a line into a *,’,
which very often is not what you intended.

As is true of many characters in ed, tae ‘.’
has several meanings, depending on its context.
This line shows all three:

KN/

The first *." is a line number, the number of the
line we are editing, which is called ‘line dot'.
(We will discuss line dot more in Section 3.) The
second ‘." is a metacharacter that matches any
single character on that line. The third ‘. is the
only vne that really is an honest literal period.
On the righr side of a substitution, *." is not spe-
cial. If you apply this command to the line

Now is the time.
the result will be
.0w is the time.

which is probably not what you intended.

The Backslash *\’

Since a period means ‘any character’, the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.
into
Now is the time?

The backslash ‘\" does the job. A backslash
turns off any special meaning that the next char-
acter might have; in particular, ‘\.' converts the
.’ from a ‘match anything’ into a period, so you
can use it to replace the period in

Now is the time.
like this:

AWAY)
The pair of characters *\.’ is considered by ed to
be a single real peried.

The backsiash can also be used when
searching for lines that contain a special charac-
ter. Suppose you are looking for a line that con-
tains

PP

The search
/.PP/

isn’t adequate, for it will find a line like
THE APPLICATION OF ...

because the *.’ maiches the letter *A’. But if you
say

/\.PP/

you will find only lines that contain *.PP’.

The backslash can also be used to turn off
special meanings for characters other than °.’
For example. consider finding a line that con-

tains a backslash. The search
v

won’t work, because the ‘\" isn't a literal "\", but
instead means that the second ‘/° no longer
delimits the search. But by precsding a backslash
with another one, vou can search for a literal
backslash. Thus

A\,

does work. Similarly, you can search for a for-
ward slash */° with

N

The backslash turns off the meaning of the
immediately lollowing ‘/' so that it doesn't ter-
minate the /.../ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\.\y
into the line
\x\y

Here are several solutions. verify that each
works as advertised.

s/\\\.//
s/x./x/
s/ ylyl

A couple of miscellaneous notes about
backslashes and special characters. First, you
can use any character (0 delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance, in a line that contains a
lot of slashes aiready, like

//exec //sys.fort.go // etc...

you could use a colon as the delimiter = to
delete all the slashes, type
s:/:g
Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@: this is true whether vou're talking to
ed or any other program.
When you are adding text with aorior ¢
backslash is not special, and you should only put
in one backslash for each one you really want.

The Dollar Sign 'S’

The next metacharacter, the ‘S’, stands for
‘the end of the line’. As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word ‘time’ to the end.
Use the S8 like this:

s/$8/ =time/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command, or you will get

Now is thetime
As another example, replace the second

comma in the following line with a period
without aitering the first:

Now is the time, for all good men,
The command needed is
s/.8/.

The $ sign here provides context to make specific
which comma wes mean. Without it, of course,
the s command would operate on the first
comma to produce

Now is the time. for all good men,

As another example, to convert
Now is the time.
into
Now is the time?
as we did earlier, we can use
s/.8/?/

Il
ey

Like the ‘$’ has multiple meanings
depending on context. In the line

$s/8/8/

the first ‘S’ refers to the last line of the file, the
second refers to the end of that line, and the
third is a literal dollar sign, to be added to that
line.

The Circumflex ***

The circumflex (or hat or caret) ‘** stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

you will in all likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/"the/

you narrow the context, and thus arrive at the
desired one more easily.

The other use of ‘™" is of course to enable
you to insert something at the beginning of a
line:

e

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters
.PP
you can use the command
/°\.PPS/

The Star ‘<’

Suppose you have a line that looks like
this:

texr x y text

where rext stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are 100
many spaces to count. What now?

This is where the metacharacter ‘+’ comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xaey/xay/

The construction ‘5+' means ‘as many spaces as
possible’. Thus ‘xcey’ means ‘an x, as many
spaces as possible, then a y’.

The star can be used with any character,
not just space. If the original example was
instead

16Xl X = = = = = = ==y fex]

then all ‘=" signs can be replaced by a single
space with the command

s/x=sy/xcy/

Finally, suppose that the line was
1€XI Xosoessesossoscssossy [EX

Can you see what trap lies in wait for the
unwary? If you blindly type

s/X.oy/Xay/

what will happen? The answer, naturally, is that
it depends. If there are no other x's or y's on
the line, then everything works, but it’s blind
luck, not good management. Remember that ‘.’
matches any single character? Then ‘.*" matches
as many single characters as possible, and unless

you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

text X rexr rexr y text

then saying
s/x.y/x=yl
will take everything from the first ‘x’ to the last

‘y’, which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of *.” with *\.":
s/x\.oy/x2y/
Now everything works, for ‘\.s' means ‘as many
periods as possible’.
There are times when the pattern ‘.s' is
exactly what you want. For example, to change
Now is the time for all good men
into
Now is the time.
use ‘.¢’ to eat up everything after the ‘for':
s/cfor.e/ J

There are a couple of additional pitfalls
associated with ‘s’ that you should be aware of.
Most notable is the fact that ‘as many as possi-
ble’ means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris-
ing. For example, if our line contained

fext Xy rexr X y rext

and we said
s/xgey/xzy/

the firs *xy' matches this pauern, for it consists
of an ‘x’, zero spaces, and a ‘'y’. The result is
that the substitute acts on the first ‘xy’, and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it marters, is to
specify a pattern like

Ixccey/
which says ‘an x, a space, then as many more

spaces as possible, then a y’, in other words, one
or more spaces.

The other startling behavior of ‘< is again
refated to the fact that zero is a legitimate
aumber of occurrences of something followed by
a star. The command

s/xe/y/g

when applied to the line

abedef
produces
yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a ‘y’), nor between the ‘a’ and the ‘b’ (so
that gets converted into a 'y’), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

s/xxe/y/g

‘xx=" is one or more x's.

The Brackets *{ |’

Suppose that you want to delete any
numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1,8s/°1//
1.8s/72¢//
1,8s/°3«//

and so on. but this is clearly going to take for-
ever if the numbers are at all long. Uniess vou
want to repeat the commands over and over until
finally all numbers are gone. you must get all the
digits on one pass. This is the purpose of the
brackets [and).

The construction
[0123456789]

matches any single digit - the whole thing is
called a ‘character class’. With a character class,
the job is easy. The pattern ‘[0123456789]'
matches zero or more digits (an entire number),
S0

1.8s/°(0123456789]<//

deletes all digits from the beginning of all lines.

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack-
ets; even the backslash doesn't have a special
meaning. To search for speciali characters, for
example, you can say

/LA\S 1/
Within [...], the ‘" is not special. To get a ‘I
into a character class, make it the first character.

[t's a nuisance to have to spell out the
digits, so you can abbreviate them as (0—9];
similarly. [a—z] stands for the lower case letters.
and (A ~=2Z] for upper case.

As a final frill on character classes, you can

specify a class that means ‘none of the following
characters’. This is done by beginning the class
with a ‘™

["0-9]
stands for ‘any character excepr a digit'. Thus

you might find the first line that doesn’t begin
with a tab or space by a search like

/°[" (space) (tab)}/
Within a character class, the circumflex has

a special meaning only if it occurs at the begin-
ning. Just to convince yourself, verify that

/A
finds a line that doesn't begin with a circumnflex.

The Ampersand ‘&’

The ampersand ‘&' is used primarily to
save typing. Suppose you have the line

Now is the time
and you want to make it
Now is the best time
Of course you can always say
s/the/the best/

but it seems silly to have to repeat the ‘the’.
The '&’ is used to eliminate the repetition. On
the righr side of a substitute, the ampersand
means ‘whatever was just matched’, so you can
say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this
isn’t much of a saving if the thing matched is
just ‘the’, but if it is something truly long or
awful, or if it is something like ‘.»* which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, to parenthesize a line, regardless of its
length,

s/ .ol (&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/
makes

Now is the best and the worst time
and

s/ .o/ &? &'/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the left side of a substitute,
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by ‘substitut-
ing in a newline’. As the simplest example, sup-
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

lext Xy text g

you can break it between the ‘x’ and the ‘y’ like
this:

s/xy/x\
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that ‘\’
turns off special meanings, it seems relatively
intuitive that a *\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
‘very’ in a long line by splitting ‘very’ onto a
separate line, and preceding it by the roff or nroff
formatting command ‘.ul’.

texr a very big rexr
The command

s/ averya/\

.ul\

very\

/

converts the line into four shorter lines, preced-
ing the word ‘very’ by the line ‘.ul’, and elim-
inating the spaces around the ‘very’, all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
athe time

and supposing that dot is set to the first of them,

then the command
J
joins them together. No blanks are added. which

is why we carefully showed a blank at the begin-
ning of the second line.

All by itself, a j command joins line dot to
line dot+1. but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

1.§jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \(...\)

(This section should be skipped on first
reading.) Recall that ‘&' is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith. A. B.
Jones, C.

and so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands. but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name, and the ini-
tials), and then rearrange the pieces. On the left
side of a substitution, if part of the pattern is
enclosed betwesn \(and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol ‘\1°
refers to whatever matched the first \(...\) pair,
*\2’ to the second \(...\), and so on.

The command
1,8s/\ (" J=\).a\ (."\)\22\ 1/

although hard to read, does the job. The first
\(...\) matches the last name. which is any string
up to the comma. this is referred to on the right
side with *\1". The second \(..\) is whatever
follows the comma and any spaces. and is
referred to as "\2".

Of course, with any editing sequence this
complicated. it's foothardy to simply run it and

hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command. and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed. that is. how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

1,8s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new-
line (or return) to print the next line, and with

/thing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

7thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you real-
ize that the thing you want to operate on is back
up the page from where you are currently edit-
ing.

The stash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like *.’, *$", */.../" and ‘?...7" with '+’
and ‘='. Thus

$—-1

is a command to print the next to last line of the
current file (that is, one line before line 'S').
For example, to recall how far you got in a previ-
ous editing session,

§-5,8
prints the last six lines. (Be sure you understand

why it's six, not five.) If there aren't six, of
course, you'll get an error message.

As another example,

o=3,.+3p
prints from three lines before where you are now
(at line dot) to three lines after, thus giving you

a bit of context. By the way, the ‘+’ can be
omitted:

~3..3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use "= and ‘+" as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together to move back up that many lines:

moves up three lines, as does ‘—3". Thus
-3,+3p

is also identical to the examples above.

Since ‘=" is shorter than ‘.—1’, construc-
tions like
-, .s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the
previous line and on the current line.

‘+" and ‘=" can be used in combination
with searches using ‘/.../" and ‘?...7", and with
‘$’. The search

/thing/ — =

finds the line containing ‘thing’, and positions
you two lines before it.

Repested Searches
Suppose you ask for the search
/horrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

1

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

27
searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use ‘//° as the left side of a substitute
command, to mean ‘the most recent pattern’.

/horrible thing/
.... ed prints line with ‘horrible thing’ ...
s//good/p

To go backwards and change a line, say
77s//good/

Of course, you can still use the ‘&’ on the right
hand side of a substitute to stand for whatever

got matched:
/1sl/&=-&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con-
tains ‘thing’. Then no address is required with
commands like s to make a substitution on that
line, or p to print it, or 1 to list it, or d to delete
it, or a to append text after it, or ¢ to change it,
or | to insert text before it.

What happens if there was no ‘thing'?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitting
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
*2...7" the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line ‘8" gets deleted, however, dot points
at the new line °S'.

The line-changing commands a. ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the current line, ¢ changes the current line, and i
inserts text before the current line.

a, ¢ and i behave identically in one
respect — when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

a

..text ..

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-

stitute command or for the second append com-
mand. Or you can say

a
... text ... _
... horrible botch ... (major error)

c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with a, cor i

The r command will read a file into the
text being edited, either at the end if you give no
address. or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say 0r to read a
file in at the beginning of the text. (You can
also say 0Oa or 1i to start adding text at the begin-
ning.)

The w command writes out the entire file.
If vou precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
written. The w command does nor change dot:
the current line remains the same. regardless of
what lines are written. This is true even if you
say something like

/"\.AB/,/"\.AE/w abstract
which involves a context search.

Since the w command is so easy to use.
you should save what you are editing regularly as
you go along just in case the system crashes. or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple —
you are left sitting on the last line that got
changed. [f there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are sitting on the
middle one:

x1
x2
x3

Then the command
-, +=s/x/y/p

prints the third line, which is the
changed. But if the thres iines had been

last one

x1
y2
y3

and the same command had been issued while

dot pointed at the second line, then the result
would be to change and print only the first line,
and that is where dot would be set.

Semicolon *;’

Searches with ‘/.../" and *?...7" start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example, that
the buffer contains lines like this:

ab

Starting at line 1. one would expect that the
command

/al Jblp

prints all the lines from the ‘ab’ to the ‘be’
inclusive. Actually this is not what happens.
Both searches (for ‘a’ and for *b’) start {rom the
same point, and thus they both find the line that
contains ‘ab’. The result is to print a single line.
Worse. if there had been a line with a ‘b’ in it
before the ‘ab’ line, then the print command
would be in error, since the second line number
would be less than the first, and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed: each search starts from the same
place. In ed, the semicolon *;" can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon ‘moves’ dot. Thus in our
example above, the command

/a/./blp
prints the range of lines from ‘ab’ to ‘be’,
because after the ‘a’ is found, dot is set to that
line, and then ‘b’ is searched for, starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of ‘thing’. You could say

/thing/
/.

but this prints the first occurrencs as well as the

second. and is a nuisance when you know very
well that it is only the second one vyou're
interested in. The solution is to say

/thing/.//

This says to find the first occurrence of ‘thing’,
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

7something?;??

Printing the third or fourth or ... in either direc-

tion is left as an exercise.

Finally, bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file, it is
not sufficient to say

1./thing/

because this fails it ‘thing’ occurs on line 1. But
it is possible to say

0:/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable — if you are read-
ing or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are nor sitting on that line or even
near it. Dot is left where it was when the p com-
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don't contain (v)
a specified patiern.

As the simplest example, the command
g/ UNIX/p

prints all lines that contain the word ‘UNIX".
The pattern that goes between the slashes can be

210 -

anything that could be used in a line search or in
4 substitute command: exactly the same rules
and limitations apply.

As another example, then,
8/"\/p

prints all the formatting commands in a file
(lines that begin with *.").

The v command is identical to g, except
that it operates on those line that do nor contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter ‘v'.)
So

vi'\Jp

prints all the lines that don't begin with *." — the
actual text lines.

The command that follows g or v can be
anything:

g/ \./d

deletes all lines that begin with *.", and
g/"S/d

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word ‘Unix’ to ‘UNIX’
everywhere, and verify that it really worked, with

g/ Unix/s//UNIX/gp

Notice that we used ‘//" in the substitute com-
mand to mean ‘the previous pattern’, in this
case, ‘Unix’. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam-
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

g/"\.PP/ +

prints the line that follows each ‘.PP’ command
(the signal for a new paragraph in some format-
ting packages). Remember that ‘+' means ‘one
line past dot’. And

g/topic/?"\.SH?1

searches for each line that contains ‘topic’. scans
backwards until it finds a line that begins ‘.SH’
(a section heading) and prints the line that fol-
lows that, thus showing the section headings

under which “topic' is mentioned. Finally,
8/ \.EQ/+ /"\.EN/=p

prnts all the lines that lie between lines begin-
ning with . EQ" and ".EN" formatting commands.

The g and v commands can also be pre-
eded by line numbers. in which case the lines
searched are only those in the range specified.

Muiti-line Global Commands

It is possible to do more than one com-
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change ‘X' 10 'y’
and "a' to ‘b’ on all lines that contain ‘thing’.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The ‘\' signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with '\". (As a minor blemish, vou can't use a
substitute command to insert a newline within a
¢ command.)

You should watch out for this problem:
the command '

g/x/s//y/\
s/alb/

does nor work as you expect. The remembered
patiern is the last pauern that was actually exe-
cuted, so sometimes it will be 'x’' (as expected),
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

8/ x/s/x/y/\
s/a/b/

It is also possible to execute a. ¢ and i
commands under a global command: as with
other multi-line constructions. all that is needed
is to add a ‘\" at the end of each line except the

last. Thus to add a ".nl” and ".sp’ command
before each ".EQ’ line, type

¢/ "\.EQ/i\

.af\

Sp

There is no need for a final line containing a *.’
to terminate the i command. unless there are
further commands being done under the global.
On the other hand. it does no harm to put it in
either.

o1l -

5. CUT AND PASTE WITH UNIX COM-
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be called ‘cut and paste’ operations —
changing the name of a file, making a copy of 2
file somewhere else. moving a few lines from
one place to another in a file, inserting one file in
the middle of another. splitting a file into pieces.
and splicing two or more files together.

Yet most of these operations are actuaily
quite easy, if you keep vour wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX
commands for moving entire files around, then
discuss ed commands for operating on pieces of
files.

Changing the Name of a File

You have a file named ‘memo’ and you
want it to be called ‘paper’ instead. How is it
done?

The UNiX program that renames files is
called mv (for ‘move’); it ‘moves’ the file from
one name to another, like this:

my memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself —

mv X X

is illegal.

Making 2 Copy of a File

Sometimes what you want is a copy of a
file — an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the cp
command. (cp stands for ‘copy’. the system is
big on short command names. which are appreci-
ated by heavy users, but sometimes a strain for
novices.) Suppose you have a file cailed ‘good’
and you want to save a copy before you make
some dramatic editing changes. Choose a name
— ‘savegood’ might be acceptable — then type

c¢p good savegood
This copies ‘good’ onto ‘savegood’, and you now

have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it
gets overwritten.)

Now if you decide at some time that you
want to get back to the original state of ‘good’,
you can say

mv savegood good

(if you’re not interested in
more), or

‘savegood’ any

cp savegood good
if you still want to retain a safe copy.

In summary, mv just renames a file; cp
makes a duplicate copy. Both of them clobber
the ‘target’ file if it already exists, so you had
better be sure that’s what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com-
mand:

rm savegood

throws away (irrevocably) the file called

‘savegood’.

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not a/l programs have
two-letter names.) cat is short for ‘concatenate’,
which is exactly what we want to do.

Suppose the job is to combine the files
‘filel’ and ‘file2’ into a single file called ‘bigfile’.
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If you say

cat filel file2

the contents of ‘filel’ and then the contents of
‘file2’ will borh be printed on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter-
minal — we want them in ‘bigfile’.

Fortunately, there is a way. You can tell
the system that instead of printing on your ter-
minal, you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

-12-

where you want the output to go. Then you can
say

cat filel file2 >bigfile

and the job is done. (As with cp and mv, you're
putting something into ‘bigfile’, and anything
that was already there is destroved.)

This ability to ‘capture’ the output of a
program is one of the most useful aspects of the
system. Fortunately it's not limited to the cat
program = you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several files.
not just two:

cat filel file2 file3 ...

collects a whole bunch.

>bigfile

Question: is there any difference between
cp good savegood

and
cat good >savegood

Answer: for most purposes, no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourself by
reading the manual. For now we'll stick to sim-
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and/or cat to add the file ‘good]’ to the end of
the file ‘good’?

You could try

cat good goodl >temp
myv temp good

which is probably most direct. You should also
understand why

cat good goodl >good

doesn’t work. (Don't practice with a good
‘good'!)

. The easy way is to use a variant of >,
called >>. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

cat goodl > >good
and ‘good!’ is added to the end of ‘good’. (And

if "good’ didn't exist, this makes a copy of
‘good1’ called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
rand w. Equally useful. but less well known, is
the ‘edit’ command e. Within ed, the command

e newfile

says ‘I want to edit a new file called newfile.
without leaving the editor.” The e command dis-
cards whatever you're currently working on and
starts over on newfile. [t's exactly the same as if
you had quit with the q command, then re-
entered ed with a new file name, except that if
you have a pattern remembered, then a com-
mand like // will sull work.

If you enter ed with the command
ed file

ed remembers the name of the file, and any sub-
sequent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

ed filel

... (editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use eas a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can aiso change the
name of the remembered file name with £ a use-
ful sequence is

ed precious
f junk
... (editing) ...
which gets a copy of a precious file, then uses f

to guarantee that a careless w command won’t
clobber the original.

213 -

Inserting One File into Another

Suppose you have a file czlled ‘memo’,
and you want the file called ‘table’ to be inserted
just after the reference to Table 1. That is, in
‘memo’ somewhere is'a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properly by nroff
or troft. Now what?

This one is easy. Edit ‘memo’, find ‘Table
1', and add the file ‘table’ right there:

ed memo

/Table 1/

Table | shows that ... [response from ed]
T table

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end, so it is the same as Sr.

Writing out Part of a File

The other side of the coin is writing out
part of the document you're editing. For exam-
ple, maybe you want to split out into a separate
file that table from the previous example, so it
can be formatted and tested separately. Suppose
that in the file being edited we have

TS
...[lots of stuff]
-.TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separate file
called ‘table’, first find the start of the table (the
*.TS® line), then write out the interesting part:

I\.TS/
TS [ed prinis the line it found|
o/ "\.TE/w table

and the job is done. If you are confident, you
can do it all at once with

/*\.TS/;/"\.TE/w table

The point is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like;
just give one line number instead of two. For
example, if you have just typed a horribly com-
plicated line and you know that it (or something
like it) is going to be nesded later, then save it
— don’t re-type it. In the editor, say

a
..lots of stuff...
...horrible line...
W temp

a

«..more stuff...
. temp

a

«..more stuff...

This last example is worth studying, to be sure
you appreciate what’s going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command ‘.PP’. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad).

is to write the paragraph onto a temporary file,
- delete it from its current position, then read in
the temporary file at the end. Assuming that
you are sitting on the ‘.PP’ command that begins
the paragraph, this is the sequence of commands:

o/ “\ PP/ =w temp
oW/l =d
$r temp

That is, from where you are now (‘.") until one
line before the next ‘PP’ (‘/°\.PP/=") write
onto ‘temp’. Then delete the same lines.
Finally, read ‘temp’ at the end.

As we said, that’s the brute force way.
The easier way (often) is to use the move com-
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between ‘linel’ and
‘line2’ after ‘line3’. Naturally, any of ‘linel’
etc., can be patterns between slashes, § signs, or
other ways to specify lines.
Suppose again that you're sitting at the
first line of the paragraph. Then you can say
«/"\.PP/=m$

That’s all.

<14 -

As another example of a frequent opera-
tion, you can reverse the order of two adjacent
lines by moving the first one to after the second.
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line,

m=——
does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re-
reading. When is brute force better anyway?
This is a matter of personal taste — do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It’s also a good idea to
issue a w command before doing anything com-
plicated; then if you goof, it’s easy to back up to
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name ‘x’. If a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

.

X

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with ‘@. Then find the last
line and mark it with 5. Now position yourself
at the place where the stuff is to go and say

‘a,’bm.
Bear in mind that only one line can have a

particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to tvpe or used often. so as to
cut down on typing time. Of course this could
be more than one line: then the saving is
presumably even greater.

ed provides another command. called t
(for “transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com-
mand, except that instead of moving lines it sim-
ply duplicates them at the place you named.
Thus

1.5t8
duplicates the entire contents that. you are edit-
ing. A more common use for t is for creating a-

series of lines that differ only slightly. For
exampie, you can say

a
.......... X (long line)
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/yl/z/ (change it a bit)
and so on.

The Temporary Escape ''’

Sometimes it is convenient to be able to
temporarily sscape from the editor 10 do some
other UNIX command. perhaps one of the file
copy or move commands discussed in section §,
without leaving the editor. The ‘escape’ com-
mand ! provides a way to do this.

If you say
lany UNIX command

your current editing state is suspended. and the
UNIX command vou asked for is executed. When
the command finishes, ed will signal you by
printing another !, at that point you can resurme
editing.

You can really do anv UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another .

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor. all of which are rela-
tively easy once you know how ed works.
because they are ail based on the editor. In this
section we will give some fairly cursory exampies
of these tools. more to indicate their exisience
than to provide a complete tutorial. More infor-

mation on 2ach can be found in (3].

Grep

Sometimes vou want to find all
occurrences of some word or pattern in a set of
files, to edit them or perhaps just to verifyv their
presence or absence. [t may be possible to edit
each file separately and look for the pattern of
interest, but if there are many files this can get
very tedious, and if the files are really big, it may
be impossible because of limits in ed.

The program grep was invented (o get
around these limitations. The search patterns
that we have described in the paper are often
called ‘regular axpressions’, and "grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particu-
lar pattern. Thus

grep ‘thing’ filel file2 file3

finds ‘thing’ wherever it occurs in any of the files
‘filel’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it
if you like.

The pattern represented by ‘thing’' can be
any pattern you can use in the editor, since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always to enclose the
pattern in the single quotes "..." if it contains any
non-alphabetic characters, since many such char-
acters also mean something special (0 the UNIX
command interpreter (the ‘shell’). If vou don’t
quote them, the command interpreter will ry to
interpret them before grep gets a chance.

There is also a way to find lines that don’t
contain a pattern:

grep =—v ‘thing’ filel file2

finds all lines that don't contains ‘thing’. The
-v must occur in the position shown. Given
grep and grep —v, it is possible to do things like
selecting all lines that contain some combination
of patterns. For example, to get all lines that
contain ‘x’ but not 'y

grep x file... | grep =v y

(The notation | is a ‘pipe’. which causes the out-
put of the first command to be used as input to
the second command: see (2].)

Editing Scripts

If a fairly complicated set of editing opera-
tions is to be done on a whole set of files. the
easiest thing to do is to make up a 'script’. i.e.. a
file that contains the operations you want to per-
form, then apply this script to each fle in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX’ and every ‘Gceos’ to
‘GCOS’ in a large number of files. Then put
into the file ‘script’ the lines

g/Unix/s//UNIX/g
8/Gcos/s//GCOS/g

w
q

Now you can say

ed filel <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the ‘Unix’ to ‘UNIX’ part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g' filel file2 ...

applies the command ‘s/Unix/UNIX/g" to all
lines from ‘filel’, ‘file2’, etc., and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col-
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed —f cmdfile input—files...
sed has further capabilities, including con-

ditional testing and branching, which we cannot
go into here.

Acknowledgement -

1 am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

- 16 -

References

(1l

(2]

131

Brian W. Kernighan, A Twrorial Introduction
to the UNIX Text Editor. Bell Laboratories
internal memorandum.

Brian W. Kernighan, UNIX For Beginners,
Bell Laboratories internal memorandum.
Ken L. Thompson and Dennis M. Ritchie,
The UNIX Programmer’s Manual. Bell
Laboratories.

Edit: A Tutorial
Ricki Blau
James Joyce

Computing Services
University of California
Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no prior
familiarity with computers or with text editing. Its aim is to lead the beginning
UNIXt user through the fundamental steps of writing and revising a file of text.
Edit, a version of the text editor ex, was designed to provide an informative
environment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX
documentation in general.

September 1981

FUNIX is a trademark of Bell Laboratories.

_2-

Contents
Introduction 3

Session 1 4
Making contact with UNIX 4
Logging in 4
Asking for edit 4
The “‘Command not found’” message 5
A summary 5
Entering text 5
Messages from edit 5
Text input mode 6
Making corrections 6
Writing text to disk 7
Signing off 7

Session 2 8
Adding more text to the file 8
Interrupt 8
Making corrections 8
Listing what’s in the buffer (p) 9
Finding things in the buffer 9
The current line 10
Numbering lines (nu) 10
Substitute command (s) 10
Another way to list what’s in the buffer (z) 11
Saving the modified text 12

Session 3 13
Bringing text into the buffer (e) 13
Moving text in the buffer (m) 13
Copying lines (copy) 14
Deleting lines (d) 14
A word or two of caution 15
Undo (u) to the rescue 15
More about the dot (.) and buffer end ($) 16
Moving around in the buffer (+ and —) 16
Changing lines (¢c) 17

Session 4 18
Making commands global (g) 18
More about searching and substituting 19
Special characters 19
Issuing UNIX commands from the editor 20
Filenames and file manipulation 20
The file (f) command 20
Reading additional files (r) 21
Writing parts of the buffer 21
Recovering files 21
Other recovery techniques 21
Further reading and other information 22
Using ex 22

Index 23

_3-

Introduction

Text editing using a terminal connected to a computer allows you to create, modify, and
print text easily. A fext editor is a program that assists you as you create and modify text. The
text editor you will learn here is named edit. Creating text using edit is as easy as typing it on
an electric typewriter. Modifying text involves telling the text editor what you want to add,
change, or delete. You can review your text by typing a command to print the file contents as
they were entered by you. Another program, a text formatter, rearranges your text for you into
““finished form.”” This document does not discuss the use of a text formatter.

These lessons assume no prior familiarity with computers or with text editing. They con-
sist of a series of text editing sessions which lead you through the fundamental steps of creating
and revising text. After scanning each lesson and before beginning the next, you should prac-
tice the examples at a terminal to get a feeling for the actual process of text editing. If you set
aside some time for experimentation, you will soon become familiar with using the computer to
write and modify text. In addition to the actual use of the text editor, other features of UNIX
will be very important to your work. You can begin to learn about these other features by
reading ‘‘Communicating with UNIX’’ or one of the other tutorials that provide a general intro-
duction to the system. You will be ready to proceed with this lesson as soon as you are familiar
with (1) your terminal and its special keys, (2) the login procedure, (3) and the ways of
correcting typing errors. Let’s first define some terms:

program A set of instructions, given to the computer, describing the sequence of steps the
computer performs in order to accomplish a specific task. The tasks must be
specific, such as balancing your checkbook or editing your text. A general task,
such as working for world peace, is something we can do, but not something we
can write programs to do.

UNIX UNIX is a special type of program, called an operating system, that supervises the
machinery and all other programs comprising the total computer system.
edit edit is the name of the UNIX text editor you will be learning to use, and is a pro-

gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

file Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file, it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, end the session, and return to use it at
a later time. Files contain anything you choose to write and store in them. The
sizes of files vary to suit your needs; one file might hold only a single number, yet
another might contain a very long document or program. The only way to save
information from one session to the next is to store it in a file, which you will
learn in Session 1.

filename Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor-
mation in a file, you use the name of that file in a UNIX command, and the system
will automatically locate the file.

disk Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, and information is recorded on it.

buffer A temporary work space, made available to the user for the duration of a session
of text editing and used for creating and modifying the text file. We can think of
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

_4-

Session 1

Making contact with UNIX

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure for the two ways you can make contact:
on a terminal that is directly linked to the computer, or over a telephone line where the com-
puter answers your call.

Directly-linked terminals
Turn on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals
If your terminal connects with the computer over a telephone line, turn on the terminal,

dial the system access number, and, when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login.

Logging in
The message inviting you to login is:
:login:

Type your login name, which identifies you to UNIX, on the same line as the login message, and
press RETURN. If the terminal you are using has both upper and lower case, be sure you enter
your login name in lower case; otherwise UNIX assumes your terminal has only upper case and
will not recognize lower case letters you may type. UNIX types ‘“:login:”’ and you reply with
your login name, for example ‘‘susan’’:

:login: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to

prevent unauthorized people from using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
will respond with

Login incorrect.
:login:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a % at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con-
venient time to choose a name for the file of text you are about to create. To begin your edit-
ing session, type edit followed by a space and then the filename you have selected; for exam-
ple, “‘text’”. When you have completed the command, press the RETURN key and wait for
edit’s response:

_5-

% edit text (followed by a RETURN)
"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set
aside a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, ‘‘text’, already existed. It was unable to find such a file,
since ‘‘text’’ is a new file we are about to create. Edit confirms this with the line:

"text" No such file or directory

[T 3]

On the next line appears edit’s prompt , announcing that you are in command mode and edit
expects a command from you. You may now begin to create the new file.

The “Command not found’’ message
If you misspelled edit by typing, say, ‘‘editor”’, your request would be handled as follows:

% editor
editor: Command not found
%

Your mistake in calling edit ‘‘editor’ was treated by UNIX as a request for a program named
“editor”’. Since there is no program named “‘editor’’, UNIX reported that the program was ‘‘not
found”. A new % indicates that UNIX is ready for another command, and you may then enter
the correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some-
thing like this:

:login: susan

Password:

... A Message of General Interest ...
% edit text

"text" No such file or directory

Entering text

You may now begin entering text into the buffer. This is done by appending (or adding)
text to whatever is currently in the buffer. Since there is nothing in the buffer at the moment,
you are appending text to nothing; in effect, since you are adding text to nothing you are creat-
ing text. Most edit commands have two forms: a word that suggests what the command does,
and a shorter abbreviation of that word. Either form may be used. Many beginners find the
full command names easier to remember at first, but once you are familiar with editing you
may prefer to type the shorter abbreviations. The command to input text is “‘append”’, and it
may be abbreviated ‘“‘a’’. Type append and press the RETURN key.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, ‘‘add” instead of
“‘append” or “‘a”, you will receive this message:

radd
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
fRY

your mistyped command and, therefore, did not execute it. Instead, a new ‘‘:’’ appeared to let
you know that edit is again ready to execute a command.

Text input mode

By giving the command ‘‘append’’ (or using the abbreviation “‘a’’), you entered text input
mode, also known as append mode. When you enter text input mode, edit stops sending you a
prompt. You will not receive any prompts or error messages while in text input mode. You
can enter pretty much anything you want on the lines. The lines are transmitted one by one to
the buffer and held there during the editing session. You may append as much text as you
want, and when you wish to stop entering text lines you should type a period as the only character on
the line and press the RETURN key. When you type the period and press RETURN, you signal that
you want to stop appending text, and edit responds by allowing you to exit text input mode and
reenter command mode. Edit will again prompt you for a command by printing “:”’.

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus-
trating, be sure to type only the period and the RETURN key.

This is a good place to learn an important lesson about computers and text: a blank space
is a character as far as a computer is concerned. If you so much as type a period followed by a
blank (that is, type a period and then the space bar on the keyboard), you will remain in
append mode with the last line of text being:

Let’s say that the lines of text you enter are (try to type exactly what you see, including
““thiss’’):
This is some sample text.

And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a RETURN that gets you out of append mode.

Making corrections

If you have read a general introduction to UNIX, such as ‘‘Communicating with UNIX”’,
you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.

The usual erase character is the backspace (control-H), and you can correct typing errors
in the line you are typing by holding down the CTRL key and typing the ‘“H’’ key. If you try
typing control-H you will notice that the terminal backspaces in the line you are on. You can
backspace over your error, and then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace
to the beginning of the line or you can use the at-sign ‘@’ to erase everything on the line:

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line

_7.

to type on. You may immediately begin to retype the line. This, unfortunately, does not help
after you type the line and press RETURN. To make corrections in lines that have been com-
pleted, it is necessary to use the editing commands covered in the next session and those that
follow.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor’s buffer is temporary and will last only until the end of the
editing session. Learning how to write a file to disk is second in importance only to entering
the text. To write the contents of the buffer to a disk file, use the command ‘‘write’’ (or its
abbreviation “‘w’):

:write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist, a new file
will be created automatically and the presence of a ‘‘[New file]”” will be noted. The newly-
created file will be given the name specified when you entered the editor, in this case ‘‘text”.
To confirm that the disk file has been successfully written, edit will repeat the filename and give
the number of lines and the total number of characters in the file. The buffer remains
unchanged by the ‘‘write’”” command. All of the lines that were written to disk will still be in
the buffer, should you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename
in response to your write command. If this happens, you can specify the filename in a new
write command:

: write text

After the “‘write” {or ““w’”), type a space and then the name of the file.

Signing off
We have done enough for this first lesson on using the UNIX text editor, and are ready to

quit the session with edit. To do this we type “‘quit’” (or *‘q’’) and press RETURN:

:write

"text" [New file] 3 lines, 90 characters

:quit

%
The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal, we alsc need to exit from
UNIX. In response to the UNIX prompt of ‘%’ type the command

% logout

This will end your session with UNIX, and will ready the terminal for the next user. It is always
important to type logout at the end of a session to make absolutely sure no one could acciden-
tally stumble into your abandoned session and thus gain access to your files, tempting even the
most honest of souls.

This is the end of the first session on UNIX text editing.

-8-

Session 2

Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give password and carriage return)

... A Message of General Interest ...
%

When you indicate you want to edit, you can specify the name of the file you worked on last
time. This will start edit working, and it will fetch the contents of the file into the buffer, so
that you can resume editing the same file. When edit has copied the file into the buffer, it will
repeat its name and tell you the number of lines and characters it contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named “‘text’ for editing, causing it to copy the 90 char-
acters of text into the buffer. Edit awaits your further instructions, and indicates this by its
prompt character, the colon (:). In this session, we will append more text to our file, print the
contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com-
mand to enter text input mode. When ‘‘append’’ is the first command of your editing session,
the lines you enter are placed at the end of the buffer. Here we’ll use the abbreviation for the
append command, ‘‘a’’:

a
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the ‘‘a” (or “‘append’’) command, you
need to type a line containing only a period (.) to exit append mode.

Interrupt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will
send this message to you:

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect
character or cancel the entire line of input by erasing in the usual way. Refer either to the last
few pages of Session 1 or to “‘Communicating with UNIX”’ if you need to review the procedures
for making a correction. The most important idea to remember is that erasing a character or
cancelling a line must be done before you press the RETURN key.

Listing what’s in the buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines
in the buffer. To print the contents of the buffer, type the command:

:1,%p

The ““1”’t stands for line 1 of the buffer, the “‘$>’ is a special symbol designating the last line of
the buffer, and *“‘p”’ (or print) is the command to print from line 1 to the end of the buffer.
The command ““1,$p” gives you:

This is some sample text.

And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can’t be printed, which can be done by
striking a key while the CTRL key is pressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character ‘‘control-A”’ into the word “‘illustrate’ by accidently pressing the CTRL key while typ-
ing “a”. This can happen on many terminals because the CTRL key and the ‘“A’’ key are
beside each other. If your finger presses between the two keys, control-A results. When asked
to print the contents of the buffer, edit would display

it does illustr”Ate the editor.

To represent the control-A, edit shows “"A”. The sequence ““*”’ followed by a capital letter
stands for the one character entered by holding down the CTRL key and typing the letter which
appears after the ““*”’. We’ll soon discuss the commands that can be used to correct this typing
error.

In looking over the text we see that ‘‘this’’ is typed as ‘‘thiss’’ in the second line, a deli-
berate error so we can learn to make corrections. Let’s correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find “‘thiss”
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for ‘“‘thiss’’ and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

: /thiss/

By typing /thiss/ and pressing RETURN, you instruct edit to search for “‘thiss”. If you ask edit
to look for a pattern of characters which it cannot find in the buffer, it will respond ‘‘Pattern
not found”. When edit finds the characters ‘‘thiss’’, it will print the line of text for your
inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the
line.

tThe numeral “‘one’ is the top left-most key, and should not be confused with the letter ‘‘el”.

210 -

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing
session. In general, the line that has been most recently printed, entered, or changed is the
current location in the buffer. The editor is prepared to make changes at the current location in
the buffer, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in
the file, where the editor left off copying the lines from the file to the buffer. If your first edit-
ing command is ‘‘append’, the lines you enter are added to the end of the file, after the
current line — the last line in the file.

You can refer to your current location in the buffer by the symbol period (.) usually
known by the name ‘“‘dot’. If you type ‘‘.”” and carriage return you will be instructing edit to
print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type .= and press RETURN,
and edit will respond with the line number:

2
If you type the number of any line and press RETURN, edit will position you at that line and
print its contents:

12

And thiss is some more text.

You should experiment with these commands to gain experience in using them to make
changes.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

‘nu

2 And thiss is some more text.
Note that the shortest abbreviation for the number command is “nu” (and not ‘‘n”’, which is
used for a different command). You may specify a range of lines to be listed by the number

command in the same way that lines are specified for print. For example, 1,$nu lists all lines in
the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from ‘‘thiss” to ‘‘this”’.
As far as edit is concerned, changing things is a matter of substituting one thing for another.
As a stood for append, so s stands for substitute. We will use the abbreviation ‘s’ to reduce
the chance of mistyping the substitute command. This command will instruct edit to make the
change:

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an ‘‘s” to indicate we want edit
to make a substitution. Inside the first set of slashes are the characters that we want to change,
followed by the characters to replace them, and then a closing slash mark. To summarize:

2s/ what is to be changed | what to change it to /

If edit finds an exact match of the characters to be changed it will make the change only in the

S 11 -

first occurrence of the characters. If it does not find the characters to be changed, it will
respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters
that you want to change, it will make the substitution and automatically print the changed line,
so that you can check that the correct substitution was made. In the example,

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters ‘‘thiss’’, and when the first exact
match is found, ““thiss’® will be changed to ‘‘this’’. Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

:s/thiss/this/

edit will assume that we mean to change the line where we are currently located (‘‘.”’). In this
case, the command without a line number would have produced the same result because we
were already located at the line we wished to change.

For another illustration of the substitute command, let us choose the line:
Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters ‘‘strange, but *’ so the
line reads:

Text editing is nice.
A command that will first position edit at the desired line and then make the substitution is:

: /strange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations are
perfectly legal, and speed up editing quite a bit once you get used to them. That is, you do not
necessarily have to use line numbers to identify a line to edit. Instead, you may identify the
line you want to change by asking edit to search for a specified pattern of letters that occurs in
that line. The parts of the above command are:

/strange/ tells edit to find the characters ‘‘strange’ in the text
s tells edit to make a substitution
/strange, but // substitutes nothing at all for the characters ‘‘strange, but >’

You should note the space after “‘but’ in ‘“/strange, but /’. If you do not indicate that
the space is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between “‘is”” and ‘‘nice’’. Again, we real-
ize from this that a blank space is a real character to a computer, and in editing text we need to

[IPEL) g

be aware of spaces within a line just as we would be aware of an ‘‘a’” or a

Another way to list what’s in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other
commands may be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

11z

edit will start with line 1 and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the

-12-

next segment of text, type the command
1z
If no starting line number is given for the z command, printing will start at the ‘‘current’’ line,

in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text
This seems to be a good place to pause in our work, and so we should end the second ses-

[TPR L)

sion. If you (in haste) type ‘q”’ to quit the session your dialogue with edit will be:

-q
No write since last change (:quit! overrides)

This is edit’s warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you did during the editing session since you typed the latest .
write command. Because in this lesson we have not written to disk at all, everything we have
done would have been lost if edit had obeyed the q command. If you did not want to save the
work done during this editing session, you would have to type ““‘q!’’ or (‘‘quit!”’) to confirm
that you indeed wanted to end the session immediately, leaving the file as it was after the most
recent “‘write”” command. However, since you want to save what you have edited, you need to
type:

W

"text" 6 lines, 171 characters

and then follow with the commands to quit and logout:

q
% logout

and hang up the phone or turn off the terminal when UNIX asks for a name. Terminals con-
nected to the port selector will stop after the logout command, and pressing keys on the key-
board will do nothing.

This is the end of the second session on UNIX text editing.

-13 -

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. 'You should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type
% edit text
or simply
% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
“text’” into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buffer by typing:

e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything that
might already be in the buffer and bring a copy of the file ‘‘text’’ into the buffer for editing.
You may also use the edit (e) command to change files in the middle of an editing session, or
to give edit the name of a new file that you want to create. Because the edit command clears
the buffer, you will receive a warning if you try to edit a new file without having saved a copy
of the old file. This gives you a chance to write the contents of the buffer to disk before edit-
ing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command. The first two examples are for illustration only, though after you
have read this Session you are welcome to return to them for practice. The command

:2,4m$
directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move

command is that you specify the first line to be moved, the last line to be moved, the move
command ‘“‘m’’, and the line after which the moved text is to be placed. So,

:1,3mé
would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer.
To move only one line, say, line 4, to a location in the buffer after line S, the command would
be “4m5”.
Let’s move some text using the command:

:5,$m1
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many
lines were affected by the move and prints the last moved line for your inspection. If you want
to see more than just the last line, you can then use the print (p), z, or number (nu) command
to view more text. The buffer should now contain:

- 14 -

This is some sample text.

It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.

This is text added in Session 2.

You can restore the original order by typing:
:4,%m1
or, combining context searching and the move command:
:/And this is some/,/This is text/m/This is some sample/

(Do not type both examples here!) The problem with combining context searching with the
move command is that your chance of making a typing error in such a long command is greater
than if you type line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

:2,5copy $

makes a copy of lines 2 through 5, placing the added lines after the buffer’s end (8). Experi-
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is co (and not the letter ‘‘c’’, which has another meaning).

Deleting lines (d)
Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by delete or d. This example deletes line 4, which is ‘“This is text added in Session
2.” if you typed the commands suggested so far.

14d

It doesn’t mean much here, but
Here ‘4™ is the number of the line to be deleted, and ‘‘delete’” or ‘‘d”’ is the command to
delete the line. After executing the delete command, edit prints the line that has become the
current line (**.”).

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

:/added in Session 2./

This is text added in Session 2.

:d

It doesn’t mean much here, but
The “‘/added in Session 2./’ asks edit to locate and print the line containing the indicated text,
starting its search at the current line and moving line by line until it finds the text. Once you
are sure that you have correctly specified the line you want to delete, you can enter the delete
(d) command. In this case it is not necessary to specify a line number before the “d”’. If no
line number is given, edit deletes the current line (‘‘.”’), that is, the line found by our search.
After the deletion, your buffer should contain:

-15-

This is some sample text.

And this is some more text.
Text editing is nice.

It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.

This is text added in Session 2.
It doesn’t mean much here, but

To delete both lines 2 and 3:

And this is some more text.
Text editing is nice.

you type
:2,3d
2 lines deleted
which specifies the range of lines from 2 to 3, and the operation on those lines — ‘‘d”’ for

delete. If you delete more than one line you will receive a message telling you the number of
lines deleted, as indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be
deleted. If you do not you might combine the search command with the delete command:

:/And this is some/,/Text editing is nice./d

A word or two of caution

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited —
that is, from the line you see printed if you type dot ().

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing RETURN to send the command on its
way.

Undo (u) to the rescue
The undo (u) command has the ability to reverse the effects of the last command that

changed the buffer. To undo the previous command, type ‘‘u’’ or ‘‘undo’’. Undo can rescue
the contents of the buffer from many an unfortunate mistake. However, its powers are not

unlimited, so it is still wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer — for
example, delete, append, move, copy, substitute, and even undo itself. The commands write
(w) and edit (e), which interact with disk files, cannot be undone, nor can commands that do
not change the buffer, such as print. Most importantly, the only command that can be reversed
by undo is the last ‘‘undo-able’’ command you typed. You can use control-H and @ to change
commands while you are typing them, and undo to reverse the effect of the commands after
you have typed them and pressed RETURN.

To illustrate, let’s issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will
reverse the effects of the deletion, causing those two lines to be replaced in the buffer.

- 16 -

‘u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now ‘‘dot’’ (the current line).

More about the dot (.) and buffer end ($)
The function assumed by the symbol dot depends on its context. It can be used:
1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;
2. to refer to the line we are at in the buffer.
Dot can also be combined with the equal sign to get the number of the line currently being
edited:

(T3]

If we type ‘‘.="" we are asking for the number of the line, and if we type ‘‘.”” we are asking for
the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit
will print the line number corresponding to the last line in the buffer.

“.” and “‘$”, then, represent line numbers. Whenever appropriate, these symbols can be
used in place of line numbers in commands. For example

., 8d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and —)

When you are editing you often want to go back and re-read a previous line. You could
specify a context search for a line you want to read if you remember some of its text, but if you
simply want to see what was written a few, say 3, lines ago, you can type

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
You can move forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.

iR

You may use ““+’’ and ‘““—"’ in any command where edit accepts line numbers. Line
numbers specified with ‘4’ or ““—"’ can be combined to print a range of lines. The command

:~1,4+2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer ($), and the original lines referred to by
“~1"" and *“+2” remain where they are.

Try typing only “‘—""; you will move back one line just as if you had typed ““—1p”’. Typ-
ing the command ‘4" works similarly. You might also try typing a few plus or minus signs in
a row (such as “-+++") to see edit’s response. Typing RETURN alone on a line is the
equivalent of typing “‘+Ip”’; it will move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a

““+ or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer:

-17 -

At end-of-file
or

Not that many lines in buffer
Similarly, if you try to move to a position before the first line, edit will print one of these mes-
sages:

Nonzero address required on this command
or

Negative address — first buffer line is 1
The number associated with a buffer line is the line’s ‘‘address’’, in that it can be used to locate
the line.

Changing lines (c)

You can also delete certain lines and insert new text in their place. This can be accom-
plished easily with the change (c) command. The change command instructs edit to delete
specified lines and then switch to text input mode to accept the text that will replace them.
Let’s say you want to change the first two lines in the buffer:

This is some sample text.
And this is some more text.

to read)
This text was created with the UNIX text editor.
To do so, you type:

:1,2¢
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2¢ we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After you type RETURN to end the change command, edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. You will remain
in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

-18 -

Session 4

This lesson covers several topics, starting with commands that apply throughout the
buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com-
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer — the global (g) command.

To print all lines containing a certain sequence of characters (say, ‘‘text’’) the command
is:

g/text/p

The “‘g” instructs edit to make a global search for all lines in the buffer containing the charac-
ters “‘text’’. The “‘p’’ prints the lines found.

To issue a global command, start by typing a ‘‘g’’ and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed for the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word “‘text’’ to the word ‘‘material’’ the command would be a combination of
the global search and the substitute command:

:g/text/s/text/material/g

Note the “‘g’”” at the end of the global command, which instructs edit to change each and every
instance of “‘text” to ‘‘material”’. If you do not type the “‘g’’ at the end of the command only
the first instance of “‘text’” in each line will be changed (the normal result of the substitute
command). The “g” at the end of the command is independent of the ‘‘g” at the beginning.
You may give a command such as:

: 5s/text/material/g

to change every instance of ‘‘text’ in line 5 alone. Further, neither command will change
“text” to ‘‘material’’ if ““Text’’ begins with a capital rather than a lower-case ¢.
Edit does not automatically print the lines modified by a global command. If you want

(XS]

the lines to be printed, type a ‘‘p’’ at the end of the global command:
:g/text/s/text/material/gp

You should be careful about using the global command in combination with any other — in
essence, be sure of what you are telling edit to do to the entire buffer. For example,

g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu-
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small file of text to see what it can do for
you.

-19 -

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same string
of characters. To change ‘‘text’ to ‘‘texts’’ we may type either

: /text/s/text/texts/
as we have done in the past, or a somewhat abbreviated command:
: /text/s//texts/

In this example, the characters to be changed are not specified — there are no characters, not
even a space, between the two slash marks that indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean ‘‘use the characters we last
searched for as the characters to be changed.”

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

: /does/

It doesn’t mean much here, but

i

it does illustrate the editor.
(You should note that the search command found the characters ‘‘does’ in the word ‘‘doesn’t”
in the first search request.) Because no characters are specified for the second search, the editor
scans the buffer for the next occurrence of the characters ‘‘does’’.

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the characters you
are searching for.

It is also possible to repeat the last substitution without having to retype the entire com-
mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and replacement patterns. After altering the current line by typing

:s/text/texts/
you type

:/text/&
or simply

&

to make the same change on the next line in the buffer containing the characters “‘text’’.

Special characters

Two characters have special meanings when used in specifying searches: ‘%’ and ““*”’.
“$” is taken by the editor to mean “‘end of the line”” and is used to identify strings that occur
at the end of a line.

:g/text.$/s//material./p

tells the editor to search for all lines ending in ‘“‘text.”” (and nothing else, not even a blank
space), to change each final “‘text.”’ to ‘“‘material.”’, and print the changed lines.

The symbol ““*” indicates the beginning of a line. Thus,
:s/°/1./

instructs the editor to insert “‘1.”” and a space at the beginning of the current line.

-20 -

The characters ““$”” and ‘“"”” have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to lose temporarily its special
significance by typing another special character, the backslash (\), before it.

:s/\$/dollar/

looks for the character ““$*’ in the current line and replaces it by the word ‘‘dollar”’. Were it
not for the backslash, the “‘$> would have represented ‘‘the end of the line’’ in your search
rather than the character “‘$”’. The backslash retains its special significance unless it is pre-
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as “‘shell’” commands,
as ‘‘shell” is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named ‘‘junk’’ type:

:!rm junk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell com-
mand. If the buffer contents have not been written since the last change, a warning will be
printed before the command is executed:

[No write since last change]

The editor prints a “‘!”” when the command is completed. The tutorial ‘‘Communicating with
UNIX’’ describes useful features of the system, of which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (¢) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. If you are editing a file named ‘‘draft3”’ having 283
lines in it, you can have the editor write onto a different file by including its name in the write
command:

:w chapter3
"chapter3" [new file] 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write com-
mand. Thus, if the next write command does not specify a name, edit will write onto the
current file (‘“‘draft3”) and not onto the file “‘chapter3”’.

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position, the number of lines
in the buffer, and the percent of the distance through the file your current location is.

f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor

221 -

will tell you that the file has been ‘‘[Modified]”’. After you save the changes by writing onto a
disk file, the buffer will no longer be considered modified:

‘W

"text" 4 lines, 88 characters

f
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer at a specified
location, essentially copying new lines between two existing lines. To use it, specify the line
after which the new text will be placed, the read (r) command, and then the name of the file.
If you have a file named ‘‘example’’, the command

: $r example
"example" 18 lines, 473 characters

reads the file ‘“‘example’” and adds it to the buffer after the last line. The current filename is
not changed by the read command.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

:45,8w ending

Here all lines from 45 through the end of the buffer are written onto the file named ending.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer. Your original file is unaffected by your command to write part of the
buffer to another file. Edit still remembers whether you have saved changes to the buffer in
your original file or not.

Recovering files

Although it does not happen very often, there are times UNIX stops working because of
some malfunction. This situation is known as a crash. Under most circumstances, edit’s crash
recovery feature is able to save work to within a few lines of changes before a crash (or an
accidental phone hang up). If you lose the contents of an editing buffer in a system crash, you
will normally receive mail when you login that gives the name of the recovered file. To recover
the file, enter the editor and type the command recover (rec), followed by the name of the lost
file. For example, to recover the buffer for an edit session involving the file ‘‘chap6”’, the
command is:

:recover chap6é

Recover is sometimes unable to save the entire buffer successfully, so always check the con-
tents of the saved buffer carefully before writing it back onto the original file. For best results,
write the buffer to a new file temporarily so you can examine it without risk to the original file.
Unfortunately, you cannot use the recover command to retrieve a file you removed using the
shell command rm.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message ‘‘Quota exceeded’’, you have tried to

-22-

use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor’s buffer is now present in the file you tried to write. In this case
you should use the shell escape from the editor (!) to remove some files you don’t need and try
to write the file again. If this is not possible and you cannot find someone to help you, enter
the command

: preserve
and wait for the reply,
File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you
do, the buffer will be lost, and you may not be able to save your file. If the reply is ‘‘File
preserved.”” you can leave the editor (or logout) to remedy the situation. After a preserve, you
can use the recover command once the problem has been corrected, or the —r option of the
edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before discov-
ering your mistake, the modified version will replace any previous version of the file. Should
you ever lose a good version of a document in this way, do not panic and leave the editor. As
long as you stay in the editor, the contents of the buffer remain accessible. Depending on the
nature of the problem, it may be possible to restore the buffer to a more complete state with
the undo command. After fixing the damaged buffer, you can again write the file to disk.

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered ali of the editor’s commands, but a
selection of commands that should be sufficient to accomplish most of your editing tasks. You
can find out more about the editor in the Ex Reference Manual, which is applicable to both ex
and edit. The manual is available from the Computing Services Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know.

Using ex
As you become more experienced with using the editor, you may still find that edit con-

tinues to meet your needs. However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters ““*”’, ““$”’, and ‘‘\”’ have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char-
acters have special meanings in ex, as described in the Ex Reference Manual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit-
ing, open and visual, in which the editor behaves quite differently from normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing “‘0”’. Type the ESC key and then a *‘Q’’ to get out of open or visual mode
and back into the regular editor command mode. The document An Introduction to Display Edit-
ing with Vi provides a full discussion of visual mode.

addressing, see line numbers
ampersand, 20
append mode, 6-7
append (a) command, 6, 7, 9
“At end of file” (message), 18
backslash (\), 21
buffer, 3
caret (%), 10, 20
change (c) command, 18
command mode, 5-6
“Command not found’’ (message), 6
context search, 10-12, 19-21
control characters (““*>’ notation), 10
control-H, 7
copy (co) command, 15
corrections, 7, 16
current filename, 21
current line (.), 11, 17
delete (d) command, 15-16
dial-up, 5§
disk, 3
documentation, 3, 23
dollar ($), 10, 11, 17, 20-21
dot (.) 11, 17
edit (text editor), 3, 5, 23
edit (¢) command, §, 9, 14
editing commands:
append (a), 6,7, 9
change (c), 18
copy (co), 15
delete (d), 15-16
edit (text editor), 3, 5, 23
edit (e), 5, 9, 14
file (f), 21-22
global (g), 19
move (m), 14-15
number (nu), 11
preserve (pre), 22-23
print {p), 10
quit (q), 8, 13
read (r), 22
recover (rec), 22, 23
substitute (s), 11-12, 19, 20
undo (u), 16-17, 23
write (w), 8, 13, 21, 22
z, 12-13
! (shell escape), 21
$=,17
+, 17
-, 17
//,12,20

-23-

Index

27,20
L 11,17
=, 11,17
entering text, 3, 6-7
erasing
characters ("H), 7
lines (@), 7
error corrections, 7, 16
ex (text editor), 23
Ex Reference Manual, 23
exclamation (1), 21
file, 3
file (f) command, 21-22
file recovery, 22-23
filename, 3, 21
global (g) command, 19
input mode, 6-7
Interrupt (message), 9
line numbers, see also current line
dollar sign ($), 10, 11, 17
dot (.), 11, 17
relative (+ and —), 17
list, 10
logging in, 4-6
logging out, 8
““Login incorrect” (message), 5
minus (=), 17
move (m) command, 14-15
““Negative address—first buffer line is 1>’ (message), 1!
“No current filename”’ (message), 8
““No such file or directory’’ (message), 5, 6
“No write since last change” (message), 21
non-printing characters, 10
““Nonzero address required”” (message), 18
“Not an editor command’’ (message), 6
‘“Not that many lines in buffer’’ (message), 18
number (nu) command, 11
password, 5
period (.), 11, 17
plus (+), 17
preserve (pre) command, 22-23
print (p) command, 10
program, 3
prompts
% (UNIX), 5
: (edit), 5, 6,7
(append), 7
question (?), 20
quit (q) command, 8, 13
read (r) command, 22
recover (rec) command, 22, 23

recovery, see file recovery

references, 3, 23

remove (rm) command, 21, 22

reverse command effects (undo), 16-17, 23
searching, 10-12, 19-21

shell, 21

shell escape (1), 21

slash (/), 11-12, 20

special characters (, $, \), 10, 11, 17, 20-21
substitute (s) command, 11-12, 19, 20
terminals, 4-5

text input mode, 7

undo (u) command, 16-17, 23

UNIX, 3

write (w) command, 8, 13, 21, 22

z command, 12-13

- 24 -

An Introduction to Display Editing with Vi
William Joy

Revised for versions 3.5/12.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the
screen of your terminal acts as a window into the file which you are editing.
Changes which you make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of
the commands to vi move the cursor around in the file. There are commands
to move the cursor forward and backward in units of characters, words, sen-
tences and paragraphs. A small set of operators, like d for delete and ¢ for
change, are combined with the motion commands to form operations such as
delete word or change paragraph, in a simple and natural way. This regularity
and the mnemonic assignment of commands to keys makes the editor com-
mand set easy to remember and to use..

Vi will work on a large number of display terminals, and new terminals
are easily driven after editing a terminal description file. While it is advanta-
geous to have an intelligent terminal which can locally insert and delete lines
and characters from the display, the editor will function quite well on dumb ter-
minals over slow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different
display updating algorithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals.
storage tubes and ‘‘glass tty’s’ using a one line editing window; thus vi's com-
mand set is available on all terminals. The full command set of the more tradi-
tional, line oriented editor ex is available within v/ it is quite simple to switch
between the two modes of editing.

September 16, 1980

An Introduction to Display Editing with Vi
William Joy

Revised for versions 3.5/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, Ca. 94720

1. Getting started

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be
running vi on a file you are familiar with while you are reading this. The first part of this docu-
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card summarizes the commands of v/ in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start v you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. [f your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621 A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
actd Microterm ACT-IV Dumb
acts Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Inteiligent
dml1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
i100 Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent

The financial support of an 18M Graduate Fellowship and the National Science Foundation under grants
MCS574-07644-A03 and MCS78-07291 is gratefully acknowledged.

.2.

t1061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used
by the system for this terminal is ‘2621°. In this case you can use one of the following com-
mands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell ¢sh on both version 6 and 7 systems. If you are using the
standard version 7 shell then you should give the commands

$§ TERM =2621
3 export TERM

If you want to arrange to have your terminal type set up automatically when you log in,
you can use the rser program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .login file (if you use csh) would be

setenv TERM “tset — —d mime’
or for your .profile file (if you use sh)
TERM="tset — —d mime’

Tset knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tset is usually used to change the erase and kill characters,
t00.

1.2. Editing a file

After telling the systern which kind of terminal you have, you should make a copy of a
file you are familiar with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.#

1.3. The editor’s copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor
makes a copy of this file, in a place called the buffer, and remembers the file’s name. You do
not affect the contents of the file unless and until you write the changes you make back into the
original file.

+ If you gave the system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when it sends control codes for one kind of terminal to some other kind of termi-
nal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you back
to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and try
again.

Another thing which can go wrong is that you typed the wrong fle name and the sditor just printed an
error diagnostic. In this case you should follow the above procedure for getting out of the editor, and try
again this time spelling the file name correctly.

If the editor doesn’t seem to respond to the commands which you type here. try sending an interrupt (o it
by hitting the DEL or RUB key on your terminal, and then hitting the :q command again followed by a carriage
return.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in italics. We will represent spe-
cial characters in SMALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys will also work within the editor. If you don’t have cur-
sor positioning keys, or even if you do, you can use the h j k and 1 keys as cursor positioning
keys (these are labelled with arrows on an adm3a).*

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it
is in a quiescent state. Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so
you can just hit it if you don’t know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don’t know or don’t like what is going on. Try hitting the
‘/” key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a */* printed as a
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key; try
this now.* From now on we will simply refer to hitting the DEL or RUB key as ‘‘sending an
interrupt.””**

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as com-
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can stop the editor by sending an interrupt.

1.7. Getting out of the editor

After you have worked with this introduction for a while, and you wish to do something
else, you can give the command ZZ to the editor. This will write the contents of the editor’s
buffer back into the file you are editing, if you made any changes, and then quit from the edi-
tor. You can also end an editor session by giving the command :q!CR:} this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor’s copy of a file you wish

° As we will see later, # moves back to the left (like control-h which is a backspace), j moves down (in the
same column), k& moves up (in the same column), and / moves to the right.

On smart terminals where it is possible. the editor will quietly flash the screen rather than ringing the beil.
 Backspacing over the */° will also cancel the search.

*® On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is comput-
ing with the cursor on the bottom line.

t All commands which read from the last display line can also be terminated with a £sc as well as an CR.

4.

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hitting the control and D keys at the same time, a control-D or *"D’. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled ‘™ on your terminal. This key will be represented as ‘]’ in this document;
*** is exclusively used as part of the ‘"X’ notation for control characters.¥

As you know now if you tried hitting "D, this command scrolls down in the file. The D
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is “U. Many dumb terminals can’t scroll
up at all, in which case hitting "U clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hit "E to expose one
more line at the bottom of the screen, leaving the cursor where it is. #t The command Y
(which is hopelessly non-mnemonic, but next to “U on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file; the keys “F and "B * move forward and
backward a page. keeping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than "D and “U if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting "F to move forward a page will leave you only a little context to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con-
tinue to read the text as scrolling is taking place.

2.2. Searching, gote, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character / followed by a string of characters terminated by CR. The editor will posi-
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are, and is
otherwise like /.t

If the search string you give the editor is not present in the file the editor will print a diag-
nostic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an |. To match only at the end of a line, end the search string with a §. Thus /{searchCr
will search for the word ‘search’ at the beginning of a line, and /lastSCR searches for the word
‘last’ at the end of a line.*

3 If you don't have a *™" key on your terminal then there is probably a key labelled '{"; in any case these
characters are one and the same.

% Version 3 only.

+ Not available in ail v2 editors due to memory constraints.

t These searches will normally wrap around the end of the file, and thus find the string even if it is not on a
line in the direction you search provided it is anywhere 2lse in the file. You can disable this wraparound in
scans by giving the command :se nowrapscancr. or more briefly :se nowscr.

*Actually. the string you give to search for here can be a regular expression in the sense of the editors ex(])
and ed(1). If yvou don’t wish to learn about this yet, you can disable this more general facility by doing
:se nomagicCR; by putting this command in EXINIT in your environment, you can have this always be in
effect (more about EX/N/T later.)

.5.

The command G, when preceded by a number will position the cursor at that line in the
file. Thus 1G will move the cursor to the first line of the file. If you give G no count, then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the
editor will place only the character ‘= on each remaining line. This indicates that the last line
in the file is on the screen; that is, the ‘™ lines are past the end of the file.

You can find out the state of the file you are editing by typing a “G. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can also get back to a previous position by using the command " (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with / or ? and then a ™ to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ™,

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don’t have working arrow keys, you
can always use h, j, k, and . Experienced users of vi prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the <+ key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The = key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possibie) to
bring a line at a time into view. The RETURN key has the same effect as the 4+ key.

Vi also has commands to take you to the top, middle and bottom of the scresn. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen, and
L, which takes you to the last line on the screen. L also takes counts, thus SL will take you to
the fifth line from the bottom.

2.4, Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and = to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar) which moves right one
character and the BS (backspace or “H) key which moves left one character. The key h works
as “H does and is useful if you don’t have a BS key. (Also, as noted just above, 1 will move to
the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using W and B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

2.5. Summary

SPACE advance the cursor one position

‘B backwards to previous page

‘D scrolls down in the file

‘E exposes another line at the bottom (v3)
°F forward to next page

G tell what is going on

“H backspace the cursor

°N next line, same column

P previous line, same column

‘U scrolls up in the file

‘Y exposes another line at the top (v3)
+ next line, at the beginning

- previous line, at the beginning

/ scan for a following string forwards

? scan backwards

B back a word, ignoring punctuation

G go to specified line, last default

H home screen line

M middle screen line

L last screen line

w forward a word, ignoring punctuation
b back a word

e end of current word

n scan for next instance of / or ? pattern
w word after this word

2.6. View t

If you want to use the editor to look at a file, rather than to make changes, invoke it as
view instead of vi. This will set the readonly option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, every-
thing you type until you hit ESC is inserted into the file. Try this now; position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem, for a minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an ‘s’. Position yourself at this
word and type e (move to end of word), then a for append and then ‘sesC’ to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you undersiand how this works; i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and then give the com-
mand o to create a new line after the line you are on, or the command O to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

Not available in all v2 editors due to memory constraints.

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. In these cases.
the upper case key often differs from the lower case key in its sense of direction, with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac-
ters. To type in more than cone line of text, hit a RETURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a slow and dumb ter-
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the sys-
tem command level (usually “H or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, "X, or “U) to erase the input
you have typed on the current line.t The character "W will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap-
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can’t erase characters which you didn’t insert, and that you can’t
backspace around the end of a line. If you need to back up to the previous line to make a
correction, just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character
which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the Bs key or “H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x Key; this deletes the character from the file. It s
analogous to the way you x out characters when you make mistakes on a typewriter (except it’s
not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command rc, where ¢ is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character, give the command s which substitutes
a string of characters, ending with ESC, for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to
know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hitting . a few times. Notice that this repeats the effect of the dw. The command . repeats
the last command which made a change. You can remember it by analogy with an ellipsis *...".

t In fact, the character "H (backspace) always works to erase the last input character here, regardiess of what
your erase character is.

.8-

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE.
This deletes a single character, and is equivalent to the x command.

Another very useful operator is ¢ or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character ‘S’ so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to
delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter-
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the ¢ operator twice; this will change a whole line, erasing its previous con-
tents and replacing them with text you type up to an ESC.t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
5dd deletes 5 lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to delete through the third from the bottom line.
Try some commands like this now.* Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides a u (undo) com-
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you wouid rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

SPACE advance the cursor one position

‘H backspace the cursor

W erase a word during an insert

erase your erase (usually “H or #), erases a character during an insert
kill your kill (usually @, "X, or “U), kills the insert on this line

. repeats the changing command

(o] opens and inputs new lines, above the current

U undoes the changes you made to the current line

a appends text after the cursor

c changes the object you specify to the following text |

t The command S is a convenient synonym for for cc, by anaiogy with s. Think of S as a substitute on
lines, while s is a substitute on characters.

° Ons subtle point here involves using the / search after a d. This will normally delete characters from the
current position to the point of the match. If what is desired is to delete whole lines including the two points,
give the pattern as /pat/ +0, a line address.

-9.

deletes the object you specify

inserts text before the cursor

opens and inputs new lines, below the current
undoes the last change

s S ™ a

4. Moving about; rearranging and duplicating text

4.1. Low level character motions

Now move the cursor to a line where there is a punctuation or a bracketing character such
as a parenthesis or a comma or period. Try the command fx where x is this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit-
ting a ;, which finds the next instance of the same character. By using the f command and then
a sequence of ;’s you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACEs. There is also a F command, which is like f, but searches
backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac-
ters up to, but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dtx; the t here stands for
to, i.e. delete up to the next x, but not the x. The command T is the reverse of t.

When working with the text of a single line, an | moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab (") characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.® When the cursor is at
a tab, it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is ***. On the scresn non-printing characters resemble a
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set-
ting of the beautify option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a "V before the control character.
The "V quotes the following character, causing it to be inserted directly into the file.

A

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences. para-
graphs, and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will delete the rest of the current sentence; like-
wise d(will delete the previous sentence if you are at the beginning of the current sentence. or
the current sentence up to where you are if you are not at the beginning of the current sen-
tence.

A sentence is defined to end at a *.”, ‘" or *?’ which is followed by either the end of a
line, or by two spaces. Any number of closing *)’, *I', *"’ and "’ characters may appear after
the *.", *!" or *?” before the spaces or end of line.

The operations { and } move over paragraphs and the operations [{ and || move over sec-
tions.t

“ This is settable by a command of the form :se ts=xcr, where x is 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.
t The [l and 11 operations require the operation character to be doubled because they can move the cursor far

.10 -

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the —msand —mm macro pack-
ages, i.e. the “.IP’, *.LP’, “PP’ and *.QP’, “.P’ and ‘.LI’ macros.¥ Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally *. NH’, *.SH’,
*H’ and “.HU’, and each line with a formfeed "L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is
saved, and a set of named buffers a—z which you can use to save copies of text and to move
text around in your file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If pre-
ceded by a buffer name, "xy, where x here is replaced by a letter a—z, it places the text in the
named buffer. The text can then be put back in the file with the commands p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line, then when you put the text back, it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like a 0 or O
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will alsq make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in "a3dd deleting § lines into the named buffer . You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you
can switch and edit another file before you put the lines back. by giving a command of the form
:e nameCR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change files, so to move text from one file to another you
should use an unnamed buffer.

from where it currently is. While it is easy to get back with the command ™, these commands would still be
frustrating if they were easy to hit accidentally.

$ You can easily change or extend this set of macros by assigning a different string to the paragraphs option
in your EXINIT. See section 6.2 for details. The ".bp’ directive is also considered to start a paragraph.

-11-

4.4. Summary.

1 first non-white on line

M end of line

) forward sentence

} forward paragraph

1l forward section

(backward sentence

{ backward paragraph

Il backward section

fx find x forward in line

p put text back, after cursor or below current line
y yank operator, for copies and moves

tx up to x forward, for operators

Fx f backward in line

P put text back, before cursor or above current line
Tx t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter v/ and to write out our file using either ZZ or :wCR.
The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor’s copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command :e!CR. These
commands should be used only rarely, and with caution, as it is not possible to recover the
changes you have made after you discard.them in this manner.

You can edit a different file without leaving the editor by giving the command :e nameCRr.
If you have not written out your file before you try to do this, then the editor will tell vou this,
and delay editing the other file. You can then give the command :wCR to save your work and
then the :e nameCR command again, or carefully give the command :e! namecRr, which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include ser autowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:lemdcR. The system will run the single command c¢md and when the command finishes. the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can also give another : command when it asks you for a
RETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the com-
mand :shCR. This will give you a new shell. and when you finish with the shell, ending it by
typing a "D, the editor will clear the screen and continue.

On systems which support it, “Z will suspend the editor and return to the (top level)
shell. When the editor is resumed, the screen will be redrawn.

-12-

5.3. Marking and returning

The command " returned to the previous place after a motion of the cursor by a com-
mand such as /, ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mux,
where you should pick some letter for x, say ‘a’. Then move the cursor to a different line (any
way you like) and hit 'a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form ’x rather than "x. Used without an operator, ‘x will move to the first
non-white character of the marked line; similarly ” moves to the first non-white character of
the line containing the previous context mark .

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a "L,
the ascil form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing "R to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
. if you want it at the center, or a — if you want it at the bottom. (z., z-, and z+ are not avail-
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the scresn to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
slowCR. If your system is sluggish this helps lessen the amount of output coming to your ter-
minal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command

:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

/2 0mn

Thus if you are searching for a particular instance of a common string in a file you can precede

-13 -

the first search command by a small number, say 3. and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by
giving a number on a z command, after the z and before the following RETURN, . or —. Thus
the command z5. redraws the screen with the current line in the center of a five line window.T

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially con-
fuse the editor about what is displayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a "L; or move or search again, ignoring the
current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow termi-
nals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name Default Description

autoindent noai Supply indentation automatically

autowrite noaw Automatic write before :n, :ta, °{, !
ignorecase noic Ignore case in searching

lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as °I; end of lines marked with S
magic nomagic The characters . [and * are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs

redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names which start new sections
shiftwidth sw=3§ Shift distance for <, > and input "D and “T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts

term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opr=val
and toggle options can be set or unset by statements of one of the forms

set opr
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running v by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the
value of a single option by the command :set opr?CR. A list of all possible options and their
values is generated by :set allCR. Set can be abbreviated se. Multiple options can be placed on
one line, e.g. :se ai aw nucR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A

———
t Note that the command 5z. has an entirely different effect. placing line 5 in the center of a new window.
t All commands which start with : are ex commands.

.14 -

typical list includes a set command, and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line, they can be separated with the | character, for
example:

set ai aw terseimap @ ddmap # x

which sets the options auroindent, autowrite, terse, (the set command), makes @ delete a line,
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file ./ogin in
your home directory:

setenv EXINIT “set ai aw tersemap @ ddmap # x’
If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT ="set ai aw terseimap @ ddimap # x°
export EXINIT

On a version 6 system, the concept of environments is not present. [n this case, put the line in
the file .exrc in your home directory.

set ai aw terseimap @ ddmap # x

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1=9. You can get the #'th previous deleted text back in your file by the
command "np. The " here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number 1 for now), and p is the put command, which puts text in the
buffer after the cursor. If this doesn’t bring back the text you wanted, hit u to undo this and
then . (period) to repeat the put command. In general the . command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer,
the . command increments the number of the buffer before repeating the command.