
U N I X
USER'S MANUAL

Supplementary Documents

Printed by the USENIX Association as a service to the UNIX
Community. This material is copyrighted by The Regents of the
University of California and/ or Bell Telephone Laboratories, and
is reprinted by permission. Permission for the publication or
other use of these materials may be granted only by the Licen­
sors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

First Printing
Second Printing

July 1984
December 1984

UNIX USER'S MANUAL
Supplementary Documents

4.2 Berkeley Software Distribution
Virtual VAX-II Version

March,1984

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

Copyright 1979, 1980 Regents of the University of California.
Permission to copy these documents or any portion thereof as
necessary for licensed use of the software is granted to licensees
of this software, provided this copyright notice and statement of
permission are included.

The document "Writing Tools - The STYLE and DICTiON
Programs" is copyrighted 1979 by Bell Telephone Laboratories.
Holders of a UNIX,M/32V software license are permitted to
copy this document, or any portion of it, as necessary for
licensed use of the software, provided this copyright notice and
statement of permission are included.

This manual reflects system enhancements made at Berkeley and
sponsored in part by NSF Grants MCS-7807291, MCS-8005144,
and MCS-74-07644-A04; DOE Contract DE-AT03-76SF00034
and Project Agreement DE-AS03-79ERI0358; and by Defense
Advanced Research Projects Agency (DoD) ARPA Order No.
4031, Monitored by Naval Electronics Systems Command under
Contract No. N00039-80-K-0649.

PREFACE

This manual is part of a five volume set intended for use with the 4.2 Berkeley Software Distribution for
the VAX-II computer. While the five volumes together contain virtually the same material presented in
the four volume UNIX Programmer's Manual distributed with 4.2BSD, the manuals reflect a revised
organization necessitated by the large quantity of information. The documentation is divided into three
logically distinct manuals:

• UNIX User's Manual,

• UNIX Programmer's Manual, and

• UNIX System Manager's Manual.

Each of the User and Programmer manuals are two volumes: a Reference Guide, containing relevant sec­
tions from Volume 1 of the old UNIX Programmer's Manual, and a volume of Supplementary Docu­
ments, containing pertinent material from Volume 2 of the old UNIX Programmer's Manual. The Sys­
tem Manager's manual consists of a single volume containing information from both Volumes 1 and 2.
We acknowledge those who have assisted us in putting together these manuals. In particular, we thank
Tom Ferrin for pursuing the printing particulars.

M. J. Karels
S. J. Leffier

Preface to the 4.2 Berkeley distribution

This update to the 4.1 distribution of June 1981 provides support for the VAX 111730, full networking
and interprocess communication support, an entirely new file system, and many other new features. It is
certainly the most ambitious release of software ever prepared here and represents many man-years of
work. Bill Shannon (both at DEC and at Sun Microsystems) and Robert Elz of the University of Mel­
bourne contributed greatly to this distribution through new device drivers and painful debugging episodes.
Rob Gurwitz of BBN wrote the initial version of the code upon which the current networking support is
based. Eric Allman of Britton-Lee donated countless hours to the mail system. Bill Croft (both at SRI
and Sun Microsystems) aided in the debugging and development of the networking facilities. Dennis
Ritchie of Bei! Laboratories also contributed greatly to this distribution, providing valuable advise and
guidance. Helge Skrivervik worked on the device drivers which enabled the distribution to be delivered
with a TUS8 console cassette and RXOI console flopppy disk, and rewrote major portions of the stan­
dalone i/o system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release, while
many groups of people on campus suffered patiently through the low spots of development. As always,
we are grateful to the UNIX user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully ack­
nowledged.

s. J. Leffier
W. N. Joy
M. K. McKusick

UNIX User's Manual

Supplementary Documents

4.2 Berkeley Software Distribution, Virtual VAx-ll Version

March, 1984

This volume contains documents which supplement the information in The UNIXt User's
Manual Reference Guide for the Virtual vAX-lI version of the system as distributed by U.c.
Berkeley.

Getting Started

1. 7th Edition l!NIX - Summary.
A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System.
The original UNIX paper; reprinted from CACM.

3. UNIX for Beginners - Second Edition.
An introduction to the most basic use of the system.

4. Learn - Computer Aided Instruction on UNIX.
Describes a computer-aided instruction program that walks new users through the
basics of files, the editor, and document preparation software.

Basic Utilities

5. An Introduction to the UNIX Shell.
An introduction to the capabilities of the command interpreter, the shell.

6. An Introduction to the C Shell.
Introducing a popular command interpreter and many of the commonly used com­
mands, assuming little prior knowledge of UNIX.

7. Mail Reference Manual (Revised)
Complete details on the mail processing program.

8. DC - An Interactive Desk Calculator.
A super HP calculator, if you don't need to do floating point.

9. BC - An Arbitrary Precision Desk-Calculator Language.
A front end for DC that provides infix notation, control flow, and built-in functions.

Text Editing

10. A Tutorial Introduction to the UNIX Text Editor.
An easy way to get started with the editor.

11. Advanced Editing on UNIX.
The next step.

t UNIX is a trademark of Bell Laboratories.

- 2 -

12. Edit: A Tutorial (Revised)
For those who prefer line oriented editing, an introduction assuming no previous
knowledge of UNIX or of text editing.

13. An Introduction to Display Editing with Vi.
The document to read to learn to use the vi screen editor.

14. Ex Reference Manual (Version 3. - Oct. 1980).
The final reference for the ex editor, which underlies both edit and vi. Also includes
"Ex Changes - Version 3.1 to 3.5".

15. SED - A Non-interactive Text Editor.
A variant of the editor for processing large inputs.

16. AWK - A Pattern Scanning and Processing Language.
Makes it easy to specify many data transformations and selection operations.

Docllment Preparation

17. Typesetting Documents on the UNIX System.
Describes the basic use of the formatting tools. Also describes "-ms"; a standard­
ized package of formatting requests that can be used to layout most documents
(including this volume).

18. A Revised Version of -ms.
A quick description of the revisions made to the -ms formatting macros for nroJJ
and troff.

19. Writing Papers with NROFF using -me.
A popular macro package for nroff.

20. -me Reference Manual
The final word on - me.

2l. A System for Tyepsetting Mathematics.
Describes EQN an easy-lo-learn language for doing high-quality mathematical typeset­
ting.

22. Tyepsetting Mathematics - User's Guide (Second Edition).
This is the user's guide for EQN.

23. TBL - A Program to Format Tables.
A program to permit easy specification of tabular material for typesetting. Again,
easy to learn and use.

24. Some Applications of Inverted Indexes on the UNIX System.
Describes, among other things, the program refer which fills in bibliographic citations
from a data base automatically.

25. Refer - A Bibliography System.
An introduction to the tools used to maintain bibliographic databases. The major
program, refer, is used to automatically retrieve and format references based on
document citations.

26. Writing Tools - the Style and Diction Programs.
Description of programs which help you understand and improve your writing style.

27. NROFF/TROFF User's Manual.
The basic formatting program.

28. A TROFF Tutorial.
An introduction to troJJfor those who really want to know such things.

29. The Berkeley Font Catalog
Samples of fonts currently available for the raster plotters.

- 3 -

Amusements

30. A Guide to the Dungeons of Doom (Revised)
An introduction to the popular game of rogue.

7th Edition UNIX - Summary

Seprember 6, 19i8

Bell laboratories
Murray Hill. New Jersey 07974

A. What's new: highlights of the 7th edition UNlxt System

Aimed al larger systems. Devices are addressable to 231 bytes. files to 2)0 bytes. 128K
memory (separate instruction and data space) is needed for some utilities.

Portability. CoJe of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT. converts old. ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables. trap handling. structured pro­
gramming. user profiles, seltable search path, multilevel file name generation. etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is
now highly compatible with TROFF. MS macro package provides canned commands for many
common formatting and layout situations. TBl provides an easy to learn language for prepar­
ing complicated tabular material. REFER fills in bibliographic citations from a data base.

UNIX·lo-UNIX tile copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple ec;iting functions in parallel on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith­
metic operations.

Program development. MAKE controls re-creation of complicated software. arranging for
minimal recompilalion.

Debugging. ADB does postmortem and breakpoint debugging. handles separate instruction and
data spaces, floating point. etc.

C language. The language now supports definable data types. generalized initialization. block
structure, long integers. unions. explicit type conversions. The LINT verifier does strong type
checking and detection of probable errors and portability problems even across separately com·
piled functions.

Lexical analyZer generator. LEX converts specification of regular expressions and semantic
actions into a recognizing subroutine. Analogous to Y ACe.

Graphics. Simple graph-drawing utility. graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream 1/0 is integrated with format­
ted input and cutput.

Other. The operating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

t UNIX is. Trodem.rk of Sell laboratOries.

• 2 •

B. Hardware
The ith edition U;\IX operating system runs on a DEC PDP-ll/45 or liIiO' with It le:!st

the following equipment:
128K to 1:-'1 words of managed memory: parity not used.
disk: RP03. RPO-l. RP06. RK05 (more than I RKOS) or equivalent.
console typewriter.
clock: KWII-L or KW11-P.

The following equipment is strongly recommended:

communications controller such as DLll or DHII.
full duplex 96-characler ASCI! terminals.
9-track tape or extra disk for system backup.

The system is normally distributed on 9·!rack tape. The minimum memory and disk space
specified is enough to run and maintain UNIX. More will be needed to keep all source on line.
Of to handle a large number of users, big data bases. diversified complements of devices. or
large programs. The resident code occupies 12-20K words depending on configuration: system
data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on PDP-Il /34. 11/.:.0 and 11/60
hardware.

C. Software
Most of the programs available as UNIX commands are listed. Source code and primed

manuals are distributed rOf all of the listed software except games. Almost all of the code is
written in C. Commands are self-contained and do not require extra setup information. unless
specifically noted as ·'interactive." Interactive programs can be made to run from a prepared
script simply by redirecting input. Most prog~ams intended for interactive use (e.g., the editor)
allow for an escape to command level ([he SheU). Most file processing commands c:ln also go
from standard input to standard OUlput (·'fillers"). The piping facility of :he Shell may be used
to connect such filters directly 10 the input or output of other programs.

1. Basic Software
This includes the time-sharing operating system with utilities, a machine language assem·

bier and a compiler for the programming language C-enough software to write and run new
applications and to maintain or modify UNIX itself.

1.1. Operating System
::; UNIX The basic resident code on which everything else depends. Sypports the system

calls, and maintains the file system. A general description of UNiX design phi­
losophy and system facilities appeared in the Communications of the ACM,
July. 1974. A more extensive survey is in the Bell System Technical Journal
for July-August 1978. Capabilities include:
o Reentrant code for user processes.
o Separate instruction and data spaces.
o "Group" access permissions for cooperatille projects. with overlapping

memberships.
o Alarm-clock timeouts.

'I'DI' is • Trademark of OiJil2l Equipme:u Corporation.

·3 -

a Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

o Multiplexed lIO for machine-to-machine communication.

o DEVICES All lIO is logically synchronous. I/O devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do overlapped
I/O. Unbuffered physical record lIO is available for unusual applications.
Drivers for these devices are available; others can be easily written:
a Asynchronous interfaces: DH 11. DLlI. Support for most common ASCI!

terminals.
o Synchronous interface: DP II.
o Automatic calling unit interface: 01'111.
o Line printer: LPII.
a Magnetic tape: TV I 0 and TU! 6.
o DECtape: TCII.
o Fixed head disk: RS II, RS03 and RS04.
a Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling.
OCartridge-type disk: RKOS, one or more physical devices per logical device.
o Null device.
o Physical memory of PDP-ll. or mapped memory in residen(system.
a Phototypesetter: Graphic Systems Systemll through DRl [C.

o BOOT Procedures to get UNIX started.

o MKCONF Tailor device-dependent system code to hardware configuration. As distributed.
UNIX can be brought up directly on any acceptable CPU with any acceptable
disk, any sufficient amount of core, and either clock. Other changes, such as
optimal assignment of directories to devices, inclusion of noating point simula­
tor. or installation of device names in file system, can then be made at leisure.

1.2. User Access Control

o LOGIN Sign on as a new user.
o Verify password and establish user's individual and group (projectl identity.
o Adapt to characteristics of terminal.
o Establish working directory.
a Announce presence of mail (from MAIL>.
o Publish message of the day.
a Execute user-specified profile.
o Start command interpreter or other initial program.

o P ASSWD Change a password.
o User can change his own password.
o Passwords are kept encrypted for security.

o NEWGRP Change working group (project). Protects against unauthorized changes to pro­
jects.

1.3. Terminal Handling

o TABS

o STIY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In 50 far as they are deducible
from the input. these options are set automatically by LOGIN.

- 4 •

o Half vs. full duplex.
o Carriage return + line feed vs. newline.
o Interpretation of tabs.
o Parity.
o Mapping of upper case to lower.
o Raw vs. edited input.
o Delays for tabs. newlines and carriage returns.

1.4. File Manipulation

Cl CAT

CI CP

Cl PR

Cl LPR

Cl CM?

a TAIL

Cl SPLIT

aDD

CI SUM

Concatenate one or more files onlo standard output Particularly used for una­
dorned printing. for insening data into a pipeline. and for buffering output that
comes in dribs and drabs. Works on any file regardless of contentS.

COpy one file to another. or a set of files to Ii directory. Works on any file
regardless of contentS.

Print files with title. date. and page number on every page.
o Multicolumn output.
o Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report If different.

Prinl last n lines of input
o May print last n characters, or from II lines or characters to end.

Split a large file inlo more manageable pieces. Occasionally necessary for edit­
ing (EDL

Physical file format translator. for exchanging data with foreign systems. espe·
cially IBM 3iO·s.

Sum the words of a file.

1.5. Manipulation of Direetorles and File Names

Cl RM

Cl LN

aMY

Cl CHMOD

CI CHOWN

Cl CHGRP

Cl MKDlR

CI RMDIR

Cl CD

Cl AND

Remove a file. Only the name goes away if any other names are linked to the
file.
o Step through a directory deleting files interactively.
o Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by liles' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meetS specified criteria.

- 5 -

o Criteria indude:
name malches a given pattern.
creation date in given range.
date of last use in given range.
given permissions.
given owner.
given special file characteristics.
boolean combinations of above.

o Any directory may be considered to be Ihe root.
o Perform specified command on each file found.

1.6. Running of Programs

o SH

o TEST

o EXPR

o WAIT

o READ

o ECHO

o SLEEP

o NOHUP

o NICE

The Shell. or command language interpreter.
o Supply arguments to and run any executable program.
o Redirect standard input. standard output. and standard error files.
o Pipes: simultaneous execution with output or one process connected to Ihe

input of another.
o Compose compound commands using:

if ... then ... else.
case switches.
while loops.
for loops over lists.
break. continue and exit.
parentheses for grouping.

o Initiate background processes.
o Perform Shell programs. i.e .• command scripts with substitutable arguments.
OConstrucl argument lists from all file names satisfying specified patterns.
o Take special action on traps and interrupts.
o User-sellable search path for finding commands.
o Executes user-sellable profile upon login.
o Optionally announces presence of mail as it arrives.
o Provides variables and parameters with default setting.

Tests for use in Shell conditionals.
OString comparison.
o File nature and accessibility.
o Boolean combinations of the above.

String computations for calculating command arguments.
o integer arithmetic
o Pattern matching

Wait for termination of asynchronously funning processes.

Read a line from terminal. for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell
programs. or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.

Run a command in low (or high) priority.

:: KILL

:: CRON

:: AT

w TEE

- 6 •

Terminate named processes.

Schedule regular actions at specified times.
C Actions are arbitrary programs.
o Times are conjunctions of month. day of month. day of week. hour and

minute. Ranges :lre specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and diver! a copy into one or more files.

1. 7. Statlls Inquiries

C LS

c FILE

'] DATE

C DF

C DU

c QUOT

C WHO

C PS

o 10STAT

C TTY

CPWD

List the names of one. several. or all files in one or more directories.
o Alphabetic or temporal sorting. up or down.
C Optional inlormation: size. owner, group, date last modified. date last

accessed. permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file sys­
tem index and by reading the file itself.

Prim loday's date and time. Has considerable knowledge of calendric and horo­
logical peculiarities.
o May set uNIX's idea of date and lime.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Priht summary of file space usage by user id.

T ~11 who's on the system.
o List of presenrly logged in users. ports and times on.
o Optional history of all logins and logouts.

Report on active processes.
o Lis! your own or everybody's processes,
o Tell what commands are being executed.
OOptionai status information: state and scheduling info. priority. attached ter-

minal. what it's waiting for. size.

Piint statistics about system I/O activity.

Prim name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

o MOUNT Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

I:: UMOUNT R~move the file system contained on a device from the tree of directories.
Protects against removing a busy device.

C MKFS Make a new file system on a device.

=: MK:'<OD Make an i-node (file system entry) for a special file. Special files are physical
devices. virtual devices. physic~1 memory. etc.

Cl TP

Cl TAR

Cl DUMP

Cl RESTOR

Cl SU

Cl DCHECK

ClICHECK

• 7 •

Manage file archives on magnetic tape or DECtape. TAR is newer. •
o Collect files into an archive.
o Update DEClape archive by date.
o Replace or delete DECtape fiies.
o Print table of contents.
o Retrieve from archive.

Dump Ihe file system stored on II specified device. selectively by dale, or
indiscriminately.

Restore a dumped file system. or selectively retrieve parts thereof.

Temporarily become the super user with all Ihe rights and privileges thereor.
Requires a password.

Cl NCHECK Check consistency of file system.
o Print gross statistics: number of files. number of directories. number of spe-

cial files. space used. space free.
o Report duplicate use of space.
o Retrieve lost space.
o Report inaccessible files.
o Check consistency or directories.
o List names of all liles.

Cl ClRI Peremptorily expunge a file and its space from a IIle system. Used 10 repair
damaged file systems.

Cl SYNC Force all outstanding 1/0 on the system to completion. Used to shut down
Bl'lIcefuJly.

l.'_ A.ccountlng

The liming information on which the reports are based can be manually cleared or shut off
completely.

Cl AC

Cl SA

Publish cumulative connect lime report.
o Connect time by user or by day.
o For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed.
o Number of times used.
o Total system time, user lime and elapsed time.
o Optional averages and percentages.
o Sorting on various fields.

1.111_ Communication

Cl MAll Mail a message to one or more users. Also used 10 read and dispose of incom­
ing mail. The presence of mail is announced by lOGIN and optionally by SH.
o Each message can be disposed of individually.
o Messages can be Saved in files or forwarded.

- 8 -

::J CALENDAR AutOmatic reminder service for events of today and tomorrow.

o WRITE

;: WALL

Ci MESG

Ci CU

Ci UUCP

Establish direct terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.
o Transparent interface to remote machine.
o File transmission.
o Take remote input from local tile or put remote output into local file.
o Remote system need not be UNIX.

UNIX to UNIX copy.
o Automatic queuing until line becomes available and femOte machine is up.
o Copy between two remote machines.
o Differences, mail. etc., between two machines.

1.n. Basic Program Development Tools

Some of these utilities are used as integral partS of the hill her level languages described in sec­
tion 2.

Cl AR

Cl AS

Cl Library

Maintain archives and libraries. Combines several Illes into one for housekeep­
ing efficiency.
o Create new archive.
o Update archive by date.
o Replace or delete files.
o Print table of contents.
:; Retrieve from archive.

Assembler. Similar to PAL-II, but different in detail.
o Creates object program consisting of

code, possibly read-only,
initialized data or read-write code,
uninitialized data.

o Relocatable object code is directly executable without further transformation.
o Object code normally includes a symbol table.
o Multiple source files.
o Local labels.
o Conditional assembly.
o "Conditional jump" instructions become branches or branches plus jumps

depending on distance.

The basic run-time library. These routines are used freely by all software.
o Buffered character-by-character 1I0.
o Formatted input and output conversion (SCANF and PRINTF) for standard

input and output. files. in-memory conversion.
OS corage allocator.
o Time conversions.
o Number conversions.
o Password encryption.
o Quicksofl.
o Random number generator.
o Mathematical function library, including trigonometric. functions and

inverses, elf ·onential. logarithm. square roO!, bessel functions.

iJ ADS

DOD

::J LD

o LORDER

o NM

o SIZE

o STRIP

IJ TIME

o PROF

o MAKE

- 9 -

Interactive debugger.
o Postmortem dumping.
o Examination of arbitrJr}' files. with no limit on size.
o Interactive breakpoint debugging with the debugger as a separate process.
o Symbolic referenr:e to local and global variables.
o Stack trace for C programs.
o Output formats:

1-. 2-, or 4-byte integers in octal, decimal. or hex
single and double floating point
character and string
disassembled machine instructions

o Patching.
o Searching for integer. character, or floating patterns.
o Handles separated instruction and data space.

Dump any file. Output options include any combination of octal or decimal by
words, octal by bytes, ASCII, opcodes. hexadecimal.
o Range of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines from
specified libraries.
o Resulting code may be sharable.
o Resulting code may have separate instruction and data spaces.

Places object file names in proper order for loading, so that files depending on
olhers come after them.

Print the name list (symbol table) of an object program. Provides control over
the style and order of names that are printed.

Report the core requirements of one or more object files.

Remove ·the relocation and symbol table information from an object file to save
space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time­
sampling the execution of a program. Uses floating poin!.
o Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.
o Knows about CC, Y ACC, LEX, etc.

1.12. UNIX Programmer's Manllal

o Manual Machine-readable version of the UNIX Programmer's Manual.
o System overview.
o All commands.
o All system calls.
o All subroutines in C and assembler libraries.
o All devices "nd other special files.
o Formats of file system and kinds of files known to system software.
o Boot and maintenance procedures.

- 10 -

c: MAN Print specified manual section on your terminal.

1.13. Computer·Aided Instruction

i: LEARN

2. Languages

A program for interpreting CAl scripts. plus scripts for learning about C;-.iIX by
using it.
o Scripts for basic files and commands. editor. advanced files and commands,

EQN. MS macros, C programming language.

2.1. The C Language

Ci CC

Cl LINT

Cl C11

2..2. lortrlin

C F77

C RATFOR

Compile and/or link edit programs in the C language. The U~IX operating sys­
tem, most of the subsystems and C itself are written in C. For a full descrip­
tion of C, read The C Programming Language. Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall. 1978.
o General purpose language designed for structured programming.
o Data types include character, integer, float, double, pointers to all types,

functions returning above types, arrays of all types, strucrures and unions of
all types.

o Operations intended 10 gill/! machine-independent comrol of full machine
facility, inc!uding to-memory operations and pointer arithmetic.

o Macro preprocessor for parameterized code and inclusion of standard tiles.
o All procedures recursive, with parameters by value.
o Machine-independent pointer manipulation.
o Object code uses full addressing capability of the PDP-ll.
o Runtime library gives access to all system facilities.
o Definable data types.
o Block structure

VerLi'ler for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
U l1used variables, urueachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

o Full cross-module checking of separately compiled programs.

A beautifier for C prograU".s. Does proper indentation and placement of braces.

A full compiler for ANSI Standard Fortran 77.
o Compatible with C and supporting lools at object level.
o Optional source compatibility with Fortran 66.
o Free format source.
o Optional subscript-range checking, detection of uninilialized variables.
o All widths of arithmetic: 2- and 4-byte imeger; 4- and g-byte real; g. and 16·

byte complex.

Rauor adds ralional control structure a 130 C to Fortran.
o Compound statements.

o STRUCT

• 11 -

o If· else, do, for, while, repeat-until. break, next statements.
o Symbolic constants.
o File insertion.
o Free format source
o Tr:mslation of relationals like>, >
o Produces genuine Fortran to carry away.
o May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratforl, using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

o BAS

o DC

o BC

An interactive interpreter, similar in style to BASIC. Interpret unnumbered
statements immediately, numbered statements upon 'run'.
o Statements include:

comment,
dump,
for ... nexI,
gOIO,

if ... else ... fi,
list,
print,
prompt,
return,
run,
save.

o All calculations double precision.
o Recursive function defining and calling.
o Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, md.
o Escape to ED for complex program editing.

Interactive programmable desk calculator. Has named storage locations as well
as conventional stack for holding integers or programs.
o Unlimited precision decimal arithmetic.
o Appropriate treatment of decimal fractions.
o Arbitrary input and output radices, in particular binary, octal, decimal and

hexadecimal.
o Reverse Polish operators:

+ - • I
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.
o All the capabilities of DC with Ii high-level syntax.
o Arrays and recursive functions.
o Immediate evaluation of expressions and evaluation of functions upon call.
o Arbitrary precision elementary functions: ex!', sin, cos, atan.
OGo-Io-less programming.

2.4. Macroprocessillll

- 12 •

C! M4 A gener3.i purpose macroprocessor.
o Stream-oriented. recognizes macros anywhere in text.
o Syntax fits with functional syntax of most higher-Ieve! languages.
o Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

C YACC

C LEX

An LR (l) -based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
aCtioi1S.
o BNF syn tax specifications.
o Precedence relations.
o Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexica! analyzers. Arbitrary C functions may be called upon isola­
tion of each lexical token.
o Full regular expression, plus left and right context dependence.
o Resulting lexical analysers interface cleanly with Y ACC parsers.

3. Text Processing

3.1. Document Preparation

c ED

C1 PTX

Cl SPELL

Cl LOOK

Cl TYPO

Cl CRYPT

Interactive context editor. Random access to all lines of a file.
o Find lines by number or panern. Patter!'..!! may include: specified characters,

don't care characters, choices among characters, repetitions of these con­
struCts, beginning of line, end of line.

o Add. deleu:, change, copy, move or join lines.
o Permute or split contents of a line.
o Replace one or all instances of a pattern within a line.
o Combine or split files.
o Escape to Shell (command language) during editing.
o Do any of above operations on every pattern-selected line in a given range.
o Optional encrfPtion for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word
list.
o 2S,OOO-word list includes pnJper names.
o Handles common prefixes and suffixes.
o Collects words to help railor local spelling [iSIS.

Search for words in dictionary that begin with specified prefix.

Look for speiling errors by a statistical technique; not limited to English.

Encrypt and decrypt files for security.

3.2. Document Formatting

CROFF A typesetting program for terminals. Easy for nontechnical people to learn, and
good for simple documents. Input consists of data lines intermixed with con­
trol lines, such as

.sp 2 insen two lines of space

. ell center the next line
ROFF is deemed to be obsolete; it is imended only for casual use.

o TROFF

o NROFF

- 13 -

o Justification of either or both margins.
o Automatic hyphenation.
o Generalized funning heads and feet, with even-odd page capability, number­

ing, etc.
o Definable macros for frequently used control sequences (no substitutable

arguments).
o All 4 margins and page size dynamically adjustable.
o Hanging indents and one-line indents.
o Absolute and relative parameter settings.
o Optional legal-style numbering of output lines.
o Multiple file capability.
o Not usable as a filter.

Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF style is similar to ROFF, but they are capable of
much more elaborate feats of formatting, when appropriately programmed.
TROFF and NROFF accept the same input language.
o All ROFF capabilities available or definable.
o Completely definable page format keyed to dynamically planted "interrupts"

at specified lines.
o Maintains severa! separately definable typesetting environments (e.g., one for

body text, one for footnotes, and one for unusually elaborate headings).
o Arbitrary number of output pools can be combined at will.
o Macros with substitutable arguments, and macros invocable in mid-line.
o Computation and printing of numerical quantities.
o Conditional execution of macros.
o Tabular layout facility.
o Positions expressible in inches, centimeters, ems, points, machine units or

arithmetic combinations thereof.
o Access to character-width computation for unusuaHy difficult layout prob­

lems.
o Overstrikes, built-up brackets, horizontal and vertical line drawing.
o Dynamic relative or absolute positioning and size selection, globally or at the

character level.
o Can exploit the characteristics of the terminal being used, for approximating

special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of severa! !02-character fonts (4 simultane­
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF wiH produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially identi­
cal to NROFF and NEQN so it is usually possible to define interchangeable formats to produce
approximate: proof copy on terminals before actual typesetting. The preprocessors MS, TEL,
and REFER are fully compatible with TROFF and NROFF.

o MS A standardized manuscript layout package for use with NROFF/TROFF. This
document was formatted with MS.

IJ EQN

IJ NEQN

IJ TBL

IJ REFER

IJ TC

IJ GREEK

- 14 -

o Page numbers and draft dates.
o Automatically numbered subheads.
o Footnotes.
o Single or double column.
a Paragraphing, display and indentation.
o Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily readable
formulas, either in-line or displayed, into detailed typesetting instructions. For­
mulas are written. in a style like this:

sigma sup 2 --- lover N sum from i-I to N (x sub i-x bar) sup 2

which produces:

o Automatic calculation of size changes for subscripts, sub-subscripts, etc.
o Full vocabulary of Greek letters and special symbols, such as 'gamma',

'GAMMA', 'integral'.
o Automatic calculation of large bracket sizes.
o Vertical "piling" of formulae for matrices, conditional alternatives. etc.
o Integrals, sums, etc., with arbitrarily complex limits.
o Diacriticals: dots. double dots, hats, bars, etc.
o Easily learned by nonprogrammers and mathematical typistS.

A version of EQN for NROFF; accepts the same input language. Prepares for­
mulas for display on any terminal that NROFF knows about. for example,
those based on Diablo pr;:lting mechanism.
o Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFFITROFF that translates simple descriptions of table
layoutS and contents into detailed typesetting instructions.
o Computes column widths.
o Handles left- and right-justified columns, centered columns and decimal-point

alignment.
o Places column titles.
o Table entries can be text, which is adjusted to fit.
o Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
o References may be printed in any style, as they occur or collected at the end.
o May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-JOO and DASI-450,
and on Tektronix 4014.
o Gives half-line forward and reverse motions.
o Approximates Greek letters and other special characters by overstriking.

IJ COL Canonicalize files with reverse line feeds for one-pass printing.

IJ DEROFF Remove all TROFF commands from input.

IJ CHECKEQ Check document for possible errors in EQN usage.

-15·

4. Information Handling

o SORT

o TSORT

CJ UNIQ

OTR

oorFF

OCOMM

o JOIN

CJ GREll

o LOOK

OWC

CJ SED

OAWK

SOrl or merge ASCII files line-by-line. No limit on input size.
o Sort up or down.
o 50ft lexicographically or on numeric key.
o Multiple keys located by delimiters or by character position.
o May sort upper case together with lower into dictionary order.
o Optionally suppress duplicate data.

Topological sort - converts a partial order into Ii total order.

Collapse successive duplicate lines in a file into one line.
o Publish lines that were originally unique, duplicated, or both.
o May give redundancy count for each line.

Do one-Io-one character translation according to an arbitrary code.
o May coalesce selected repeated characters.
o May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.
o May produce an editor script to convert one file in!o another.
o A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up 10 .3 columns shows
lines present in firs! file only, present in both, and/or present in second only.

Combine two files by joining tC1:ords that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.
a May print all lines that fail to match.
a May print count of hits.
o May print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines. "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform Ii sequence of editing operations
on each line of an input stream of unbounded length.
o Lines may be seiC1:ted by address or range of addresses.
o Control flow and conditional testing.
o Multiple OUlput streams.
o Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and per­
forms actions on each line of input that satisfies the pattern.
o Patterns include regular expressions, arithmetic and lexicographic conditions,

boolean combinations and ranges of these.
o Data treated as string or numeric as appropriate.
o Can break input into fields; fields are variables.
o Variables and arrays (with non-numeric subscripts).
o Full set of arithmetic operators and control flow.
o Multiple output streams to liles and pipes.
OOUlpu! can be formatted as desired.
o Multi-line capabilities.

• 16 •

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

c:; GRAPH

CJ SPLINE

o PLOT

Prepares a graph of a set of input numbers.
o Input scaled to fit standard plotting area.
o Abscissae may be supplied automatically.
o Graph may be labeled.
o Control over grid style, line style, graph orientation. etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs on
various terminals. Filters provided for 4014, DASI terminals, Versatec
printer I plotter.

6. Novelties, Games, and Things Tha! Didn't Fit Anywhere Else

o BACKGAMMON
A player of modest accomplishment.

o CHESS Plays good class D chess.

o CHECKERS Ditto, for checkers.

o BCD Converts ascii to card-image form.

o PPT Converts ascii to paper tape form.

o Ell A blackjaCK dealer.

o CUBIC An accomplished player of 4x4:<4 tic-tac-toe.

C MAZE ConstruCts random mazes for you to solve.

o MOO A fascinating number-guessing game.

o CAL Print a calendar of speCified month and year.

C BANNER Print output in huge letters.

CJ CHING The 1 Ching. Place your own interpretation all the output.

o FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

o UNITS

Cl TIT

Convert amounts between different scales of measurement. Knows hundreds
of units. For example, how many kmlsec is a parsec/mepyear?

A tic-tae-toe program that learns. It never makes the same mistake twice.

o ARITHMETIC
Speed and accuracy test for number facts.

o FACTOR Factor large integers.

o QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

D WUMP Hunt the wumpus, thrilling search in a dangerous cave.

o REVERS I A two person board game, isomorphic to Othello$.

o HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

- 17 -

o FISH Children's card-guessing game.

The UNIX Time-Sharing System'

D . . \{. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation pop-ll and the lnterdata 8/32 com­
puters. It offers a number of features seldom found even in larger operating
systems, including

A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process lIO,

iii The ability to ini:ia!e asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969· 70) ran on the Digital Equipment Corporation PDp-7 and -9 computers. The second ver­
sion ran on the unprotected 1'01'·11120 computer. The third incorporated multiprogramming
and ran on the PDP-1l134, /40, /45, /60, and 170 computers; it is the one described in the pre­
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the pop·lll70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi­
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-ll UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro­
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. OUf own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

• Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is. revised ver·
sion of an article that appeared in Communications of tho ACM, 17, No. 7 (July 1974), pp. 365·375. That ani­
cle "'as a revised version of • paper presented at the Fourth ACM Symposium on Operating Systems Pnnci·
pies. ISM Thorn ... J. Watson Research Center. Yorktown Heights, New York, October 15·17,1973.
tUN IX i •• Trademark of Bel! Laboratories.

- 2 -

characteristics of the system are its simplicity, elegance. and ease of use.

Besides the operating system proper. some major programs available under l:NIX are

C compiler
Text editOr based on QEDl

Assembler, iinktng loader. symbolic debugger
Phototypesetting and equation setting programs 2• J

Dozens of languages including Fortran Ii, Basic. Snobol, APL. Algol 68. y16,
T~G, Pascal

There is a host of maintenance. utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro­
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; likewise, this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formattir.g programs.

n. HARDWARE A:'JD SOFTW ARE E:'JVIRONME:'JT

The PDP- I lliO on which the Research U;'<IX system is inslalled is a !6-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. ThiS system. however. includes a very large
number of device drivers and enjoys a generous allotment of space for lIO buffers and system
tables: a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems. 4. 5 for example. There are aiso much smaller, though somewhat restricted,
versions of the system. 6

OUf own PDP-ll has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200·baud data
Sets. and an additional 12 communication lines hard-wired to 9600-baud terminals and satellir~
computers. There are also several 2400· and 4800-baud synchronous communication interfac::s
used for machine-lo-machine file transfer. Finally, there is a vari,:ty of miscellaneous devic.::s
including nine-track magnetic tape, a line printer. a voice synthesizer., a phototypesener. a digI­
tal switching network. and a chess machine.

The preponderance of UNIX software is written in the abovememioned C language. 1 E8Tly
versions of the operating system were written in assembly language, out during the summer of
1973, it was rewritten in C. The size of the new system was abom one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify
btl! also included many functional improvements, including multiprogramming and the ability
to share reentrant code among several user programs, we consider this increase in size qui te
acceptable.

m. THE FILE SYSTEM
The most important role of the system is to provide a file system. From the point of view

of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbOlic or
binary, (objectl programs. ~o particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program S1.arts
ex,!cuLing. A few user programs manipulate flies with more StruClLlre; for example, the assem­
bler generates, and the loader expects, an object file in a particular format. However, the struc­
tUfe of files is controlled by the programs that llse them, not by the system.

- 3 -

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any­
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc­
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, "''', and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name 'alphalbeta'gamma causes the sys­
tem to search the root for directory alpha, then to search alpha for beta, finally to find lIamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name "'" refers to the root itself.

A path name not starting with "'" causes the system to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking; a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The name " . " in each directory refers to
the directory itself. Thus a program may read the current directory under the name " ...
without knowing its complete path name. The .!al!'e " by convention refers to the parent
of the directory in which it appears, that is, to th,~ directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries ... " and ", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a dir'!ctory was severed.

3.3 Special flies

Special files constitute the most unusual feature of the UNIX file system. Each supported
110 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory Idey, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file 'dey/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

- 4 •

There is a threefold advantage in treating I10 devices this way: file and device I/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are sub­
ject to the same protection mechanism as regular files.

3.4 Re!!loVII.b!e file systems

Although the rOOI of the file system is always stored on the same device, it is nOt neces­
sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen­
dem file system containing its own directory hierarchy. The effect of mounl is to cause refer­
ences to the heretofore ordinary file to refer instead to the roO! directory of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy slored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per­
manem file system. In olJr installation, for example, the roo I directory resides on a small parti­
tion of one of our disk drives, while the other drive, which contains the user's files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on itS
corresponding special file. A utility program is available to create an empty file sys:em, Of one
may simply copy an existing file system.

There is only one exception to tbe iule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping thaI would otherwise be required to assure removal at"
the links whenever the removable volum'c is dismounted.

:l.S Proieetlon

Although the access con:ro! scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created. it is
marked with the user lD of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify inde;Jendently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on. the system will temporarily change the user identification (hereafter,
user !O) of the current user to that oi the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execlJ[ion of the program that caBs
for it. The set-user-!D feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user·!D bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program's user. Since the actual user lD of the invoker of any program is always available, set­
user·!D programs may take any measures desired to satisfy themselves as to their invoker's
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entrY invokable only by the
"super-user" (below) that creates an empty directory. As indicated above, directories are
expected to have entries for"." and .. ,. ". The command which creates a directory is owned
by the super-user and has the set-user-lD bit set. After it checks its invoker's authorization to
creal!:: the speCified directory, it creates it and makes the entries for". " and" .• ".

Because anyone may seithe set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the:..100 accounting problem posed by "Aleph-null."g

The system recognizes one particular user ID (that of the "super-user") as exempt from
the usual constraints on file access; thus (for example), programs may be wrilten to dump and
reload the file system without unwanted interference from the protection system.

• 5 •

3.6 I/O calls

The system calls to do 110 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between "random" and "sequential" lIO.
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 110, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly­
ing complexities. Each call to the system may pote!'l!ialiy result in 3n error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the foliowing cal!:

filep ... open"(name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The na~
argument indicates whether the lile is to be read, written, or "updated," that is. read and writ­
ten simultaneously.

The returned value filep is called a file descriplOr. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is <II crellte system call that
creates the given file if it does no! exist, Of truncates it to zero length if it does ex.ist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have iI file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write 011 it simultaneolJsly. in prac­
tice difficulties do no! arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannol prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneous!y in activities such as writing on the same file,
creating files in the same directory, or deleting each other's open liles.

Except as indicated below, reading and writing are sequential. This means Iha! if iii. partic­
ular byte in the file was the las! byte written (or read), the next 110 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte 10 be read or written. If n bytes are read or written, the pointer
advances by n bytes.

Once II fili: is open, the following calls may be used:

11 ... read (lifeI', buffer, count)
n .. write (fileI', buffer, counl)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
o is Ihe same as count except under exceptional conditions, such as 110 errors Of end of physi­
cal medium on special files; in a read, however, n may without error be less than cOllnt. If the
read pointer is so near the end of the nle thaI reading count characters would cause reading
beyond the end. only sufficient bytes are transmitted to reach the end of the file; also,
typewriter-like terminals never return more than one line of input. When a read call returns
with II equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the currellt size of the file. It is possible to generate an end-of·
file from a terminal by use of an escape sequence that depends on the device used.

Bytes written affect only those pans oi a file impiied by the position of the write pointer
and the count; no Other part of the file is changed. If the last byte lies beyond the end of the
file. the file is made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to
the appropriate iocation in the file.

location ... lseek (filep, onset, base)

The pointer associated with filel! is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
i\i1'lored. The actual offset from the beginning of the file to which the pointer was moved is
returned in loeatiolL

There are several additional system entries having to do with lIO and with the file system
that will not be discussed. For example: close a file, get the status of II file, change the protec­
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEME:'iTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ­
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into i!. system
table (the i-list) stored in a known part of the device on which the directory resides. The entry
found thereby (the file's i-node) contains the description of the file:

the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file coments

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a. directory

vii II code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or creale system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor retUrned by the open or create. TIIUS, during a subsequent call to read or write the
fiie, the descriptor may be easily related to the information necessary to access the file.

When a llew file is c:reated, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc­
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-allocated.

The space on all disks that contain a file system is divided into a llumber of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev­
ice address points to an indirect blOCK containing up to 128 addresses of additional blocks in the
file. Still larger files u.se the twelfth device address of the i-node to poim to a double-indirect
block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required, the thir­
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+128+128'+128')'5121 bytes. Once opened, bytes numbered below 5120 can be read
with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the

- 7 -

range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file
0,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 110 request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent­
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/O on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,
the i-number is replaced by the i-number of the root directory and the device naq1e is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
"rite the user's workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 110 operations required to access a
file. Suppose a "rite call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the "rite call may then take
place, although the actual 110 may not be completed until a later time. Conversely. if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system's buffers; if so, the byte can be returned immediately. If
not. the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time. but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of I/O.
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz­
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short. unambiguous name related in a simple way to
the protection. addressing. and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen­
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies. because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general. for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file. but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

• 8 •

V, PROCESSES AND IMAGES

An image is a computer execution environmem. It includes a memory image. general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A procESS is the execution of an image. While the processor is exe::1Jling on behalf of a
process, the image must reside in main memory~ during the execution of other processes .t
remains in main memory unless the appearance of an active, higher·priority process forces it to
be swapped out to the disk.

Th!....~. part of an .l.~.divided into three logical segments. The pr~
t~e.~iin~n.Q in the virtual address space. During execution. this segment
is write-protected and a single copy of it is shared among all processes executing the same pro­
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space......~....!l.O.ll:~g,~_Wa.. segmen.b.. the size of which may be
extended by a system cal!. Starting ill the highest address in the virtual address space is a stack
segmem, which automatically grows downward as the stack pointerliuctuates:- . -
.'-~

S.l Processes

Except while the system is IX)Otslrapping itself into operation, a new process can come
into existence only by use of the fork system call:

processid - fork ()

When fork is executed_ the process splits into (WO independently executing processes. The tWO

processes have independem copies of the original.memory image. and share all open files. The
new pfOI:esses differ oniy in that one is considered the parent process: in the parent. the
returned prm:essid actually identifies the child process and is never 0, while in the child, the
returned value is always O.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system lIO. The cali:

- pipe ()

returns a file descriptor filep and cre:ates an inter· process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A'
re:ul using a pipe file descriptor waits Ilntil another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),
it is not a comph~.(ely generaJ mechanism, because the pipe must be set up by a common ances­
tor of the processes involved.

5.3 Exe.::ution of programs

Another major system primitive is invoked by

execute (file, arg I' arg 2 •...• arg,,)

which requests the system to read in and exeClHe the program named by file. passing it string
arguments otlil' arl;z ..•. ,:ali". All the code and data in the process invoking exe.::Ule is
replaced from the file, but open files, current directory, and inter·process relationships are
unaltered. Only if the call fails. for example because file could not be found or because its
execute-permission bit was not set. does a return lake place from the execllte pnmitive; it

- 9 •

resembles a "jump" machine instruction rather than a subroutine call.

5.4 Process synchronization

Another process control system call:

processid - wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the pro~ssid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available:.

5.S Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shelL The she!! is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The she!! is described fully elsewhere,9
50 this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name foHowed by argument~ to the command, all separated by spaces:

command arg l arg] ... arlin

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be a path name induding the "/" character to
specify any file in the system. !f comll1lll11d is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com­
mand by typing a prompt character.

If file comlIllillii cannot be found, the shell generally prefixes a string such as I bin I to
command and again to find the file. Directory I bin contains commands intended to
be generally used. sequence of directories to be searched may be changed by user

6.1 Standard I/O

The discussion of 110 in Section !II above seems to imply that every file used by a pro­
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As sllch a begiru; execution, file 1 is open for writing, and is best understood
as the standard output Except under circumstances indicated below, this file is the user's
terminal. Thus that wish to write informative ifliormation ordinarily use file descrip-
tor 1. Conversely, 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user's terminal printer and keyboard. If one of the arguments to a command is prefixed by
":>", file descriptor 1 will, for the duration of the command, refer to the file named after the
":>". For example:

• 10 .

Is

ordinarily lists, on the typewriter, the names of the files in the current directOry. The com­
mand:

Is :> there

creates a file called there and places the listing there. Thus the argument :> there me3ns "place
output on there." On the other hanei:

eo
ordinarily enters the editor, which takes requests from the user via his keyboard. The com­
mand

ed <script

interprets script as a file of editor commands; thus < scrip! means "take input from script."

Although the file name following H <" or ":>" appears to be an argument to the com­
mand, in fact it is interpreted completely by the shell and is not passed to the command at all.
Thus no special coding to handle 110 redirection is needed within each command: the com­
mand need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinanly associated with the terminal output stream.
When an Output-diversion request with ":>" is specified, file 2 remains attached to the termi­
nal, so that commands may produce diagnostic messages that do not silently end up in the out­
put file.

6,2 Filters

An extension of the standard lIO notion is used to direct output from one command to
the input of another. A sequence of comm3.nds separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard omput of each com­
mand be delivered to the standard input of the nex'! command in the sequence. Thus in the
command line:

Is! pr -21 opr

Is lists the names of the files in the curren: directory; its output is passed to pr, which paginates
its input with dated headings. (The argument "-2" requests double-column output.) Likewise,
the output from pr is input to opr: this command spools its input onto a file for off-line print­
ing.

This procedure could have been carried out more clumsily by:

Is :>!empl
pr -2 < tempi> temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method would have been to require the Is command to accept user
requests to paginat!.': its output, to print in multi-column forma!, and to arrange that its output
be delivered off-line. AClually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with process­
ing) is called a jilier. Some filters that we have found useful perform character transliteration,
s.election of lines according to a pattern, sorting of the input, and encryption and decryption.

- 11 -

6.3 Commllnd separators; multitasking

Another feature provided by the sheil is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

Is; eo

will firs! list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by "&," the shell will not
wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source >output &.

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately. When the shell does no! wait for the completion
of a command, the identification number of the process funning that command is primed. This
identification may be used to wait for the completion of the command or to terminate it. The
""" may be used several times in 2. line:

as source >output &. Is > files &.

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the variotlS
commands would hay,; been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; Is) > x &.

writes the current date and time followed by a lis! of the current directory onto the file: x. The
shell also returns immediately for another request.

6.4 The shell !AS II. command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains
the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed teslpmi. a.ollt is the (binary) output of
the assembler, ready to be executed. ThtlS if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed lestprog, and teslprog executed.
When the lines are in tryout, the command:

so <tryout

would cause (he shell sh to execute the commands sequentially.

The she!! has further capabilities, including the ability to substitute parameters and to con­
struct argument lists from a specified subset of the file names in a directory. It also provides
general conditional and looping constructions.

6.S I mplementatioll of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
she!! is waiting fot the user to type a command. When the newline character ending the line is
typed, the shell's read call returns. The shell analyzes the command line, putting the argu­
ments in a form appropriate for eXei:ute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an eXei:llte with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given.
Meanwhile, the other process resulting from the fork, which is the parent process, Willits for the

- 12 •

child process to die. When this happens, the shell knows the command is finished, so it types
its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a
command line contains "&:," the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in itS parent. including those with file
descriptors 0, I, and 2. The shell. of course. uses these files to read command lines and to
write its prompts and diagnostics. and in the ordinary case itS children-the command
prQgrams-inherit them automatically. When an argument with "<" or ">" is given. how­
ever. the offspring process, JUSt before it performs execute. makes the standard lIO file descrip­
tor (0 or 1, respectively) refer to the named file. This is easy because. by agreement. the smal­
lest unused file descriptor is assigned when a new file is opened (or created); it is only neces­
sary to close file 0 (or I) and open the named file. Because the process in which the command
program runs simply terminates when it is through, the association berween a file speCified after
"<" or ">" and file descriptor 0 or 1 is ended automatically when the process dies. There­
fore the shell need not know the actual names of the files that are itS own standard input and
output. because it need never reopen them.

Filters are straightforward extensions of standard lIO redirection with pipes used instead
of files.

In ordinary circumstances. the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the branch
that does a wait. then reads another command line.) The one thing that causes the shell to ter­
minate is discovering an end-of-file condition on its input file. Thus. when the shell is exe­
cuted as a command with a given input file. as in:

sh <comfile

the commands in c:omfile will be executed until the end of com file is reached: then the instance
of the shell invoiced by sh will terminate. Because this shell process is the child of another
instance of the shell. the wait executed in the latter will return. and another command may
then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single pro­
cess and the invocation (via execute) of a program called init. The role of init is to create one
process for each terminal cha;<nel. The various subinstances of init open the appropriate termi­
nals for input and output on files O. 1. and 2. waiting. if necessary, for carrier to be established
on dial-up lines. Then a message is typed out requesting that the user log in. When the user
types a name or other identification. the appropriate instance of init wakes uP. receives the
log-in line. and reads a password file. If the user's name is found, and if he is able to supply
the correct password, init changes to the user's default current directory, sets the process's user
ID to that of the person logging in. and performs an execute of the shell. At this point, the
shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile. the mainstream path of init (the parent of all the subinstances of itSelf that
will later become shells) does a wait. If one of the child processes terminates, either because a
shell found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process. which in turn reopens the appropriate input and out­
put files and types another log-in message. Thus a user may log out simply by typing the end­
oC-file sequence to the shell.

- 13 -

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protecrion mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, iDit
ordinarily invokes the shell to interpret command lines. The user's entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro­
gram is free to interpret the user's messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing sys­
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir­
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus­
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX system
as a whole.

VII. TRAPS
The POP-II hardware detects a number of program faults, such as references to non­

existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange­
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the "delete" character. Unless special action has been taken, this signal simply causes the pro­
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log­
ging the user out. The editor catches interrupts and returns to its command level. This is use­
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating· point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VIII. PERSPECTIV~
Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was

not designed to meet any predefined objectives. The first version was written when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP· 7
and set out to create a more hospitable environment. This (essentially persona!) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the POP-I 1120, specifically to support a text editing and formatting
system. When in turn the 11120 was outgrown, the system had proved useful enough to per·
suade management to invest in the PDP-1l/45, and later in the PDP·llnO and Interdata 8/32
machines, upOn which it developed to its present form. Our goals throughout the effort, when

- 14 •

articulated at ail, have always been to build a comfortable relationship with the machine and to
explore ideas ... nd inventions in operating systems and other software. We have not been faced
with the need to satisfy someone else's requirements, and for this freedom we are grateful.

Three considerations [hat influenced the: design of U:'JlX are visible in reuospect.

First: because we are programmers, we naturally designed the: system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original ver­
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than a "balch" system. Moreover. such a system is
rather easily adapulble to nonintera.clive use. while the converse is not true.

Second: there have always been fairly severe size constraintS on the system and its
sOftware. Given the partially antagonistic desires for reasonable efficiency and expressive
p0wer, the size constraint has encouraged not only economy. but also a certain elegance of
design. This may be a thinly disguised version of the "salvation through suffering" philosophy,
but in our case it worked.

Third: nearly from the Sllll't, the system was able to, and did, maintain itself. This fact is
more important than it might seem. If designers of a system are forced to use that system.
they Quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all somce programs were always avail­
able and easily modified on-line. we were willing to revise and rewrite the system and its
software when new ideas were invented. discovered, or suggested by O!hers.

The aspects of UNlX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system. for example. is extremely convenient
frorn a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access. No
large "access method" routines are required to insuiate the programmer from the system calls;
in fact. al! user programs either call the syslem direc:ly or use a smail library program, less than
a page long. that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no "control
blocks" with a complicated structure partially maintained by and depended on by the file system
or olher system calls. Generally speaking. the contents of a program's address space are the
property of the program, and we have tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
or outPUI, it is also desirable to push device·dependent considerations into the operating system
itself. The only alternatives seem to be to load, with a.ll programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
to the routine appropriate to each device when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise. the process-controi scheme and the command interface have proved both con­
venient and effiCient. Because the shell operates as an ordinary, swappable llser program, it
consumes no "wired-down" space in the system proper, and it may be made as powerful as
desired at liltle cost. In panicular, given the framework in which the shell executes as a process
that spawns other processes to perform commands, the notions of 1I0 redirection, background
processes. command files. and user-selectable system interfaces all become essentially trivial to
implement.

InfiuenciI!s

The success of UNIX lies not so much in new inventions but rather in the full exploitation
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

• 15 •

The fork operation, essentially as we implemented it, was present in the GENIE time'
sharing system. lO On a number of points we were influenced by Multics, which suggested the
particular form of the I/O system calls ll and both the name of the shell and its general func·
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.l2

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important "applications" programs.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
512·byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million·digit approximation to the constant e.,
and other semi·infinite problems. Not counting this background work, we average daily:

X. ACKNOWLEDGMENTS

13,500
9.6
230
62

240

commands
CPU hours
connect hours
different users
log·ins

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys­
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcilroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, "An online editor," Comm. Assoc. Compo Mach.
10(12) pp. 793·799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 1S1·157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNIX Time·Sharing System: Docu·
ment Preparation," Bell Sys. Tech. J. 57(6) pp. 2115·2135 (1978).

4. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Workbench,"
Proc. 2nd InL CofJf. all Sofrware Engineering, pp. 164-168 (October 13·15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time·Sharing System: The
Programmer's Workbench," Bell Sys. Tech. J. 57(6) pp. 2177·2200 (1978).

• 16 •

6. H. Lyclclama. "UNIX Time·Sharing System: U!'ilX on a Microprocessor," Bell Sys. Tech. 1.
57(6). pp. 2087·2101 (978).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall. Engle­
wood Cliffs, New Jersey (! 978).

8. Aleph-null, "Computer Recreations," SO/Mare Practice and Experience 1(2) pp. 201·204
(April-June 1971).

9. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys.. Tech. J. 57(6) pp.
1971·1990 (1971\).

10. L. P. Deutsch and B. W. Lampson, "SDS 930 time-sharing system preliminary reference
manual," Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

11. R. 1. Feiertag and E. I. Organiclc, "The Multics input-output system," Proc. Third Sympo­
sium on Opera ring Systems Principles, pp. 35-41 (October 18-20, 1971).

12. D. G. Bobrow, 1. D. BUfchfiel, D. L. Murphy, and R. S. Tomlinson, "TE~E.,\(, a Paged
Time Sharing System for the PDp· 10," COl"I'II1!. Assoc. Compo Mach. 15(3) pp. 135-143
(March 1972).

UNIX For Beginners - Second Edition

Brian IV. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT.

This paper is meant to help new users get started on the UNlxt operating
system. It includes:

• basics needed for daY-lo-day use of the system - typing commands, correct­
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting I/O, pipes, and the shell.

• document preparation - a brief discussion of (he major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software .

.. UNIX programming - using the editor, programming the shell, program­
ming in C, other languages and tools.

e An annotated UNIX bibliography.

September 30, 1978

tU1<HX is .. Trademark of Bell Laboralories.

UNIX For Beginners - Second Edition

Brian W. K-<rlughan

Bell Laboratories
Murray Hill, New Jersey 0797-1

INTRODUCTION

From the Llser's point of view. the U:>IIX
operating system is easy to learn and use. and
presentS iew of the llsual impedimentS LO gemng
the Job done. It is hard. however. for the
beginner to know where to S13n. and how to
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used LO the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu­
menlS with you for easy reference as you read
this one. The most important is Til(' (;NIX
PrOl(rl1mm~r'5 Manual: if s often easier to (ell you
to read about something in the manual than to
repeat its coments here. Tile olher useful docu­
ment is .~ Turoflal IlIrroduCliofl 10 Ihlr UNIX Text
Ediior. which will tell you how to U~ the editor
to gel text - programs. data. documents - into
the computer.

A word of warninlil: the U NIX system has
become quite popular. and there are several
major variants (n widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how to use it is com­
mon to all versions. there will certainly be a few
thinp whii:h are different on your system from
what is described here. We have tried to minim­
ize the problem. but be aware of it In cases of
doubt. this paper describes Velsion 7 UNIX.

This paper has fi ve sections:

1. G~tting Staned: How to log in. how to type.
what to do about mistakes in typing. how to
log OUL Some of this is dependent 011 which
system you log into (phone numbers_ for
example) and what terminal you use, 50 this
section must necessarily be supplemented by
local information.

2. Day-to-day U $e: Things you need every day
to use the system effectively: generally use­
ful commands: the file system.

3. Document Preparation: Preparing manu­
scripts is one of the most common uses for
UNIX systems. This section contains advice.
but no! extensive instructions on any of the.
formalling tools.

4. Writing Programs: UNIX is an excellent sys­
tem for developing programs, This section
talks about some of the tools, but again is
not a tutorial in any of the progr:lmmmg
languages provided by the system.

5..... UNIX Re3ding List. An annotated
bibliography of documentS that new users
should be aware of.

l. GETTING STARTED

logging In

You must have 3 UNIX login name. whicn
you can get from whoever administers your Sys·
tem. You also need to know the phone number.
unless your system uses permanently connected
terminals. The UNIX system is capable of deal·
ing with a wide variety of terminals: Terminet
3OO's: Execuport. TI and similar portables: video
(CRT) terminals like the HP1640. etc.: high­
priced graohics terminals like the Tektronix
.. 0 i *: plotting terminals like those from GSI and
DAS1: and even the venerable Teletype in itS
various forms. But note: UNIX is strongly
oriented towards devices with lower ,·as£'. !f your
terminal produces only upper case (e.g .. model
33 Teletype. some video and portable terminals).
life will be 50 difficull tilat you ~hould look for
another terminal.

Be sure to set the swit,hes appropriately on
your device. Switches that might need to be
adjusted include the speed_ upper/lower ,as I!
mode, full duplex. even parity. and any others
that local wisdom advises. Establish a connec­
tion using whatever magic is needed for your ter­
minal: this may involve dialing a telephone call
or merely flipping J switch. In either case. CNIX
should type "I~in:" at you. If it types garbage.
you may be at the wrong speed: ,heCK the
switChes. If that fails. push the "break" or

"interrupt" key II few times, slowly. If that fails
to produce II login message, consult II guru.

When you gel a 100in: mes.sage, type your
login name in /awe, case. Follow il by a
RETURN; the system will no! do anything until
you type a RETURN. If a password is required,
you will be asked for it, and (if possible) printing
will be turned olf while you type it. Don't forget
RETURN.

The culmination of your login efforts is a
"prompt Character," a single character Ihal indi­
cales that the system is ready \0 accept com­
mands from you. The prompt character is IISU­

ally a dollar sign S or a percent sign 0/0. (You
may also get a message of the day jusl before the
prompt character, or a ootification thaI you have
mail.) .

TYlliq Commallds

Once you've seen Ihe prompt character, you
can type commands, which arc requests that the
system do something. TI)' typing

dale

followed by RETURN. You should gel back
something like

MOil JaB 16 14:17:10 EST 1"11

Don'! forlle! Ihe RETURN atter Ihe command, or
nothing will happen. If you think you're being
ignored, type a RETUR.N; something should hllp­
pen. RETUR.N won'! be mentioned again, but
don't forget it - it hall to be there at Ihe end of
each line.

Another command you might Iry is .,,110,
which tells you everyone who is currently lofted
in:

who

lives something like

IIIb
ski
calli

Jaf.lllii
Jan Hi
Jan Hi

09:11
09:33
13:07

The time is when the user logged in; "lIyxx" is
the system's idea of whal terminal the user is 011.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom

you will be told

whom: DOl found

Of course, if you inadvertently type the name of
some other command, it wi!! fun, with more Of

less mysterious results.

- 2 -

Slrllqe Terminal Behnlor

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a retllm 10 the left mar­
lIin. Y Oil c.an ofll:n fix this by logging out and
10ggil111 back ill. Or you can read the description
of the commalld sity in section I of Ihe manual.
To lei imelligent tfelltment of tab cilaracters
(which are much used in UNIX) if your terminal
doesn't have tabs, type the command

stty -lSIiII

and Ihe system wiil convert eacli tab into the
right !lumber of blanks for you. If your terminal
does have computer·settllble tabs, the command
laM will set the SlOPS correcliy for),011.

Mistakes ill TYlIil1ll

If you make a typing mistake, Ind see it
before RETURN has been typed, there are two
ways to recover. Tile sharp-character :# erases
the 1Sl$\ character typed; ill fact successive uses of
:/I erue characters back 10 the beginning of the
line (bill nOI beyondl. So if you type badly. you
CIIn COITef.:I u you go:

1iiI#lItte##e

is the same u ute.

The ai-sian @ erases all of the characters
typed so far on the CIIITent input line, $0 if the
line ill irretrievably fouled up, type an @ and
start the line over.

What if you mlJS! enter I sharp or II-sign u
part of the text? If YOII precede either # or @

I'll' a backsluh \. it loses its erase meaning. So
to enter a sharp or III-sign in $Omc!hinl, type \#
or \@. The system will always echo a newline at
you after your al-silln, even if preceded by /I

backslllllho Don't worry - the at-sign has been
recorded.

To erue a biiCKSiuh, you have to type two
sharps or two at-signs, as ill \##. The backslash
ill used extensively in UNIX 10 indicate thaI the
followinll character is in some way special.

Re1IlI-ahead

UNIX has full read-ahead, which means that
you can type u fut as you want, whenever you
WIll!, even when some command is typing al

YOII. if)101.1 type during oulput, your input char­
acters will appear intermixed with the output
characters. bu t they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
WlIiling for the first to finish or even begin.

SroppiOIL I Procrll!!!
You can SlOP most programs by typing the

character "DEL" (perhaps called "delete" or
"ruboul" on your terminail. The "interrupt" or
"break" key found on most terminals can also
be used. In a few programs, like the text editor,
DEL SlOpS whatever the program is doins but
leaves you in that program. Hanging up the
phone will stop most programs.

LOUiD& Ollt

The easiest way to 10i out is to hang up the
phone, You can also type

Iocin

and let someone else use the terminal you were
on. It is uSllally not su1licient just to turn off the
terminal. Most UNIX systems do not use a
lime·out mechanism, so you 'U be there forever
unless YOII hanll up.

Mail

When you \010 in, }'Oil may sometimes get
the message

Y 011 have mail.

UNIX provides a postal system so you can com­
municate wilh other users of the system. To
read your mail. type the command

1111111

Your mail will be printed, one message at a time,
most recent messace firsL After each message.
mail waits for you to say what to do wilh iL The
two basic responses are d. which deletes the mes­
sage. and RETURN, which does not (so it wiU
still be there the next time you read your mail­
box). Other responses are described in the
manual. (Earlier versions of lIIali do no! process
one message at a lime. but are otherwise simi­
lar.)

How do you send mail to someone else?
Suppose it is to go to "joe" (assuming "joe" is
someone' 5 login name). The easiest way is this:

mllil joe
110'" l)lpe il'l tile t£"C/ o[rhe felter
Oil as many lilies as you like ...
A[~r rhe laSl line o[tile fener
type rnt character "conlTol-d"',
mar is. hold de"'l! "COIIITOI" and type
a fe/~r "d".

And that's iL The "control-d" sequence. often
called "EOF" for end-of· file. is used throughout
the system to marle the end of input from a ter­
minal. so you might as wei! get used to it.

For practice. send mail to yourself. (This
isn't as str3nge as it might sound - mail to one·

,).

self is a handy reminder mechanism.)

There are other ways to send mail you
can send a previously prepared letter. and you
can mail to a number of people all at once. For
more details see maiHll. (The notation maill!)
means the command'mail in section I of the
UNIX Programmer's JfanuaLl

Writillll 10 other IIsers

AI some point. out of the blue will come a
message like

Message frl)m joe !1107 •••

accompanied by a startling beep. I I means that
Joe wanlS to talk to you. but unless]lOU take
explicit action you WOn'! be able 10 talk back. To
respond. type the command

."rile Joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal wiil
appear on yours and vice versa. The path is
slow, rather like taiking to the moon. (If you are
in the middle of somelhing, you have to !let to a
state where you can type a command. :-.iormally,
whatever program you are running has to ter­
minate or be terminated. If you're editing. you
can escape temporarily from the editor - read
the editor tUlorial.l

A protocol is needed to keep what you type
from setting prbled up with what Joe types.
Typically it's like this:

Joe types ."rite smith and wailS.
Smith types "'Tite joe and wailS.
Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals it by typing (0). which sr.ands
for "over".
Now Smith types a reply. also terminated
by (0).

This cycie repeals until someone gets
tired; he then signals his intent to quit
with (00), fot"over and OU[".
To terminate the conversation. each side
mus! type a "control-d" characler alone
on a line. ("Dele!e" also works'> When
the other person types his "control-d".
you will get the message EOr on your
terminal.

If you write to someone who isn't logged in.
or who doesn't want 10 be disturbed. you'll be
told. If the target is loeged in but doesn't answer
after a decent interval. simply type ··control-ct".

On-line Manual

The UNIX Programmer '5 lll!anual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you C~fl print
on your terminal some manual s,enio!! thnt
might help. Tl1i.> is also useful for geIting the
most up· to-date information 0\1 a command. To
prim a manual section, type "mall command­
Mme". Thus to read lip on til.:: ' .. 11" command,
type

!nan who

and, of course,

tells all about tile llllill'l command.

COfZl,!!l!er Aided hnlructilm

Y OUf UNIX system may have available a 13m­
gram called learn, which pfO\lid~s computer
aided instruction on the file system and ba$ic
commands, the editor, rl! preparation,
amI even C programming. typing the como
!!lllnd

leull

If learn exists 011 your SYS!~!Tl, i! will tell you
whllt to do from there.

IL DAY· TO-DA Y USE

Cru!ln~ Flies ~. The Editor

If YOII have to type a paper or 1I letter or a
program, how do you gel the information stored
in the machine 7 Mosl of these tasks are done
with the UNIX Hlex! edito!" ~rl, Sin(;e ~d. is

documented ill ~d(l) and explained
Jnrfoauclion 10 the UNIX Text Editor,

we won'l spend any lime I',ere dl:S':ribing how to
use it. All we warl! it (O! right now is to malee
$Orne files. (A fi!~ is juS! a co:ler.tioi1 <If informa··
lion siored in the machim:!, a Silf;p!L~til: bUI edc o

quate definition.)

To create a file c:.;!l;:d junk with
ii, do the following:

no .. fJlpe in

<invokes I.he text editod
(command to '"ed". to ~dd tela)

whar€1wr Nt:"1 you wanl ...

(siiln~ls the end of adding text)

The"." that signals the elld of addil1~ text must
be al the beginning of a line by itself. Don '\ fOf­

lIet it, for until it is tyll'~d, other ~ com­
mands will be reoognized - everythinll yO!J type
will be treated as t;:;xl to he add~d ..

At this point YOIl

correcting spelling mistakes, rearranging para­
graphs and the like. Finally, you must write the
information YC"1 have typed into a fik with rhe
ediwr command .. :

'W

ell will respond with the number of characters it
wrote imo the file junk.

Un!il the", command, nothing is stored per­
manently, so if you hang up and go home the
information is 1051.1 But after w the information
is there permanently; you can re-2,ceS5 it any
time by typing

~od Junk

Type a !i command to qllit the editor. (If you try
to quit wilhoUl writing, ed wiIl prim a ? to rem·
ind yOll. A second €I gets you out regardless.)

Now create a second file called temll in the
~,ame manner. Yem should now have two files,
junk and temll.

Wllilll flies !lEe oul Ih~re'

b (fo. '···list") command lists the names
(no! c<l)nten1.S) of :my of the file5 UNIX
l;:'1l0W~ ~bolll. If YOIl type

.11U'llll.
lem!)

wi!.!

which ~fe inde>?'d the two files jllst created, The
names are !;'Orted imo alphabetical order

other variations are lKlssible.
command.

ClIU$~$ the !lIes 10 ~ listed ill the order in which
were las! changed, mOSl rece!!! firs I. The

=0 i option [$lVCS a t~!onf~ H~dng:

'",ill produce somclhinj! Hke

-rn-rn-rn- 1
~r1l'-rw-fw~ 1

41 Jill 22 2:56 jllllk
711 Jill 22 2:57 temp

The dlile ~nd lime are of the IllS! ChllH!',C to the
file. The 41 am:! 7B i!rC th~ num~r of characters
(which si1ol.l1d .!!Jell wilh the numbers you got
from b ... lI; is ti1(l owm:f of the ille. that 1S,
the perSOll who created it. The -f'i?-"fW'-rw­

tells who has permission to read and write the
file, in this case eV~!'Yt1ne.

lHrict!j tF1J~ """ if you h~ni up whil~ editina.
w*re W(1\"kHl~ an is ~"eti in ;\ file c~II~d.

1t;'llitih yz,u can (.cmtir.!J;;; W'lih a{ your !'!'iD;! lIt5:iiOfl.

OptiOll5 can be combined: l~ -II gives the
same thing as Is -I. btl! sorted imo time order.
You can also name the files you're interested in.
and Is will lis! the information aboul them only.
More details can be found in is\! l.

The use of optional arguments that begin
wilh a minus sign. like - t and - II. is a com·
mon convention for CNIX programs. In general.
if a program acceptS such optional arguments,
they precede any filename arguments. It is also
vital that YOIl separate the various arguments
with spaces: 15'-1 is not the same as Is -I.

Pr!llti~ Flies

Now that you've gOl a file of text. how do
you prim It so people can look at it? There are a
host of pr\lirams that do t!'iIH, probably more
than are needed.

One simple thing is to use the editor. since
printing is of len done JUSt hefore making
ch~ngeg anyway. Yot! can say

eli jllnk
1,SIl

eli will reply with the counl of the characters in
jllfiK ~!'ld then print all the lines in the file.
After you learn how to use the editor. YOII an
be selective aoollt the parts YOII prim.

There are times when it's not feasible to use
the eQiwr for printing. For example. there is a
limit Oil how bill a file ed can handle (several
thollsand lines). Secondly. it will only print one
file at ll. time. am:! sometimes you wan! to print
~everii.l, one after another. So here are a couple
of alternatives.

First is elIl. the simplest of all the priminE
programs. I:'IIt simply prints Oil the I~rminal the
C"m~flt5 of all the file., !'lamed in a iist. Thus

at jllnk

prilll$ one !l!~, lnd

~III Junk I~m!l

two. Tnl: files are simply concatenated
the name "cat") onto the terminal

!If produces (ormaned prifHOUtll of files. As
"'ilh <!1I1. IIf prints all the files named in a list
The difference is that it produces headings with
dale, time, page number and tile name at the top
of p.2ch page, and extra lines to skip over the
folli in the paper. Thus..

~r Junk temp

will print junk ne3t!y, thlen skip to the top of a
new and prim tI~m!l oeatl,,"

can ~I$O produce multi-cob.mm output:

Pf -3 junk

prinlS junk in 3-column format. You can use
any reasonable number in place of .•) .• and IIf
wiil do its best. pr has other capabiiitics as well:
sec prO l.

It shouid be noted that pr is nOt a formatting
program in the sense of stluilling lines around
and justifying margins. The true formaners are
nroCf and troff. which we will lie! to in the sec·
tion on document preparation.

ihere are also programs thll.[prim files on a
high-speed primer. Look in your manual under
opr and Ipf. Which [0 use depends on what
equipmem is alti!ched to your machi11e.

SI'IIlffiillll Files Abou!

Now that you have some files in the file sys­
tem and some experience in priming them. you
call trY bigger things. For example. you can
move a file from one place to another (which
amounts to giving it a new name). like [his:

mv jllnk pr~iolls

This means thal whllt used to be "junk" is 110W

"precioU!". If yol.! do an Is command now. you
will sel

preeiolls
temp

BewiiU'e that if YOII move a file to another one
tha! alre!ldy exists, the already existing contents
are lost forever.

If YOIl want to make a copy of a file (that is.
lO have (Wo versions of something). you Qn use
the ell command:

ell pr"iOll5 tempI

makes a duplicate copy of Ilfee!olls in !emll!.

FinallY, when you illt tired of creating and
moving files, there is • command to remove files
from the file system, called rm.

rm temp temlll

will remove both of the files named.

You will gel a warning message if one of the
named files w3.$n't there, but otherwise rm. like
most UNIX commands. does itS/, work silemly.
There is no prompting or chaner. Jnd error mes­
uges are occasionaily curt. This terseness is
sometimes disconcerting to newcomers. but
experienced users find it desirable.

What's in a Filename

So far we have used ti!enl'"nes witho~J{ ever
sarinll what's a legal name. so it's time for a
couple of rilles. First, tilen::mes are limited to
14 characters. which ill enoul,h 10 be descriptive.

Second, although you can use almost any charac­
tef in a filename, common sense says you should
stick to ones that arc visible, and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command, Is -I means
to list in time order. So if you had a file whose
name was -I, you would have a laugh lime list­
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, YOll would do well to lise only
letters, numbers and the period Ilmil you're fam­
iliar with the situation.

On to some more positive suggestions. Sup­
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chaplers and perhaps sections. PhYSically it must
be divided too, for ell will not handle really big
files. Thus you should type the document as a
number of files. YOll might have a separate file
for each chapter, called

chllpl
cnap2
etc ...

Or. if each chapter were broken into several files,
you might have

cllap1.1
chllp1.2
chllp1.:!

chS1l2.1
ehllpl.2

You can now tell at a glance where II particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obviolls to the novice
UNIX lIser. What if you wanted to print the
whole book? YOll could say

IIf chap!.1 chllpl.2 chllp1.3

bu t you would get tired pretty fast, and would
probably even make mistaKes. Fortunately,
there is a shortcut. You can say

pr chap·

The • means "anything at all:' 50 this translates
into "print all files whose names begin with
chap", listed in alphabetical order.

This shorthand notation is not a property of
the Pf command, by the way. It is system-wide,
a service of the program that interprets com­
mands (the "shell,'· shOll. Using that fact.
you can see how to list the names of the files in
the book:

- Ii -

produces

~hlll!l1.1

ebapL:!.
cilmp1.3

The ~ is no! limited 10 the last position ill a
filename - it call' be ulywnere and can occur
several times. Thus

rm °jl.l!lk$ *tellljle

removes all files that contain Junk Of Inllil as
any part of their name. As a special C"..se, • by
itself matches every fill!name, so

&If ..

prints 311 YOllr files (alphabetical order), and

removes all files. (You h~d. betler !x: very sure
thaI's what you wanted to Sliy!)

The * is nOI the only pattern-matching
feature available. Suppose yot! want to prill!
only chapter:; I throllgh 4 and 9. Theil yOIl call
say

pr cllllll!12349!"

The t . .! mcallS to match any of the characters
inside .. he brackets. A ia!'l~e of consecutive
letters or digits an be abbreviated, so you can
also do this with

lIlr cllil!iI1-4!11~

Letters am also be used within brackets: !~.-1I
matches allY charact~r in the range II through I.

The 1 pattern matches any single charact~r,
so

15 ?

lists all files which have single-character names,
and

b -I ella!!?!

lists information about the first file of each
chapler (dI1£1I1.1, chlip2.1, etc.).

Of these niceties, • is certainly the most use­
ful, and you should get used to it. The others
are rriils, but worth knowins.

If YOll should ever have to turn off the spe­
cial meaning of $, ?, etc., enclose the el1!ire
argument ill sil1gle quotes, as in

Is '?'

We'll see some more examples of this shortly.

WllIu's In It Filename, Continued

When you first made that fiie called junk,
how did the system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tUlorial' The answer is that &enerally each user
has a private directory, which (;o!'uains only the
files that belong to him. When you loS il1. you
are .. in" your direl:lory. Unless you take special
action, when you create a ne file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unreiated [0 any other file of the same name
thllt might exist in !SOmeone else's directory.

The set of all files is organized into a (usu·
ally big) tree, i til your files IOCllted several
branches il1to the tree. It is IXlssible for YOIl to
"walk" around this tree, and to find any file in
the system, by startins at the roo! of the tree and
walking along the proper set of branches. Con­
versely, you can Slllrt where YOII are and walll:
toward the reOL

Let's try the latter first. The basic tools is
the command pwei ("print working directory"),
which prin IS the name of Ihe directory you are
ClJrrenljy in.

Aidlough the details will vary according to
the system you are on, if YOII iive the command
pwl!, it willprillt somethins like

lusr/your-lIllme

This says thllt you are currently in the directory
your-llame, which is if! turn ill the direciory
lusr, which is if! tum in the rool directory called
by cOllvemioll just I. (Even if it's not called
hur on your system, you will get something
analogous. Make the corresponding changes ami
relld 011.)

If you now type

Is IUM Iyour- IUIIEDI!

YOII should litel exactly the same lis! of file (lames
as you sel from a plain Is: with no arllumenlS, Is
lists Ihe comentS of the current directory; givell
the name of a direl:tQry, it lists the contents of
that directory.

Next., try

Is Insf

This should prim a long series of names, among
which is your OWl! iogin (lame your-flame. On
many systems, IISf L5 a directory that con!ains
the directOries of all the normal users of the sys­
tem, like you.

The nexl step is to try

Is !

- 7 -

You should get a res'llOnse something like this
(although again the details may be different):

bin
dey
etc
lib
Imll
IISf

This is a collection of the basic directories of files
that the system knows about; we are OIl the root
of the tree.

Now try

eat lusr/yoW'-l1l11IllCl/juu

(if junk is still areuna ill)lour dire<:tory). The
!'lame

IlIsr/your-nllme/junk

is caJled the pathname of the file thllt you nor·
mally think of as "junk". "Path name" has an
obvious meaning: it represents the ful! name oi
the path you have to foilow from the root
through the tfec of directories to get to a particu­
lar file. [t is a universal rule in the UNIX system
that anywhere you can use an ordinary lilename,
you can use a pllthname.

Here is II picture which may make this
clearer:

bin
11\

(root)

/1\
etc urr dev tmp
11\ / \ 11\ 11\

I \
/ \

adam eve mary
/ I \ \

I \ junk
junk temp

Notice that Mary's JUllk is unrelated to Eve's.

This isn't too exCiting if all the lile.$ of
interest are in your own dire<:tory, bUI if you
work with someone else or on several projectS
concurrently, it becomes handy indeed. For
example, your friends can print)lour book by
sa.yinil

pf 11lsr/yoiU-n:une/c!lap·

Similarly, you can find 0\11 whal files your neigh­
bor has by saying

Is Imsr/neiehoor-name

or make your own copy of one of his files by

ell IlIsr/yoUJ'-neignoor/his.me yourfile

If your neighbor doesn't wan! you poking
around in his files, or vice versa.. privacy c:ln be

arranged. Each file and directory has read-write­
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See Is(1) and chmod(l) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try

Is Ibin lusrlbin

Do some of the names look familiar? When you
run 2 program, by typing its Ilame after the
prompt character, the system simply looks for a
file of that Ilame. It normally looks first in your
directory (where it typicaily doesn't find it), then
in Ibin and finally in lusr/bin. There is nothing
magic about commands like calor Is, except that
they have beell collected into a couple of places
to be easy to find and administer.

What if you wo,k regularly with someone
else on common information in his directory?
Y 01.1 could JUS! log in as your friend each time
you want to, but you call also say "I want to
work on his files instead of my own". This is
aone by changing the directory that YOll are
currently ill:

cd IlIsr/y(li!r-fr!~n;i

(On some systems, i:d Ls spelled c!ullr.l Now
when you use a filename ill something like Cl<t or

it refers to the file in ymu friend's directory.
directories doesn'! affect any permis­

SiOlIS associated wilh a file ~ if YOII touldn'l
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if YOII forge! what directory you're in,
type

pw,j

to find Olll,

lt is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate. from other project:!. For
example, when you write your book, you might
wan! to keep all the leX! in a directory called
~ook, So make one with

mlullr book

then go til it with

then star! typing chapters, The book is now
found ill (presumably)

lusr/yollr-nmrne/book

To remove the direclory book, type

rm bookIe
=dir book

• 8 -

The first command removes all files from the
directory; the second removes the empty direc­
tory.

You can go lip one level in the tree of files
by saying

cd ..

",." is the name of the parel1l of whatever direc­
lory you are currently in. for completeness, ","
is an alternale name for the direclOry you are in.

Using files instead of the Terminal

Most of the commands we have seen so far
produc~ output Or! the terminal; some, like the
editor, also take their input from the terminal. It
is universal ill UNIX systems that the terminal
can ~ replaced by a file for either or both of
input and output. As one example,

15

makes a list of files 011 your terminal. But if you
say

Is > mellst

a list of your files will be placed in the file me list
(which will be created if it dlDesn'! already exist,
or Ilverwri!ten if il does). The symbol:> means
"put the output on the following file, rather than
all the terminal." Nothing is produced on the
terminal. As anllther example, you could com­
bine several files into onl: by capturing the out­
put of ea! in a file:

all f1 I'l fJ :> lemp

The symbol :>:> operates very milch like >
does, except that it means "add to the end of."
That is,

cal f1 n f3 >:>Iemll

means to concatenate 11. nand f3 to the end of
whatever is already in temp, instead of overwrit­
ing the existing content.s, As with >, if temp
doesn't exist, it will be created for you,

III a similar way, the symbol <: means to
take the input for a program from the foliowing
file, instead of from the terminal. Thus, you
could make up a SI.-rip! of commonly used editing
commands and Pill them into a file called sulp!.
Theil you call run the script on a file by saying

lid file <: sttip!

As another example, you Oil use ed to prepare a
leller in file lei, then send it to several people
with

mllil mdllm eve IllllO' joe <: leI

Pipes

One of the novel contributions of the CNIX
system is th~ idea of a pipe. A pipe is simply a
.... ay to connect the output of one program to the
input of another program, so the two run as a
sequence oi processes ~ a pipeline.

For example,

!If f ~ I:!

will print the liles f. g, and h. beginning each on
a new page. Suppose you w311t them run
together instead. You could say

OIIt f g Ii :> temll
IIf <temll
rm lew!)

but this is more work than necessary. Clearly
whilt we want is to take the output of '1m1 and
COlmeCI it to the input of pr. So let IJS use a
pipe;

0111 f Z II IlIr

The vertical bar I means to take the OUtput from
~I, which would normally have gone to the ter·
minai, and put it illto IIf to be neatly formancd.

There are many other' exampl~ of pipes.
For eumpie,

Is lin' -)

prints a list of your files in three columns. The
Ilfolfll.m 'rile WllnlS the number of lilles, words
and characters ill. its input, and as we saw earlier,
whll prints a list of cUITeJmly·!ogged on people,
ol~e per line. Th!.i5

who i we:

tells how many peop!e are logged on. And of
course

count'! your tiles,

Any program thilt reads from the terminal
ClIn read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elementS in a pipeline a, yol.! wish.

Many UNIX programs are written so thll!
they will take their input from one or more files
if file arguments are give/"!; if no arguments are
liven they win read f,om the terminal, and thus
ClIn be lIsed in pi'lleline.1. Pf is one example;

\If -3 II. b c

prints files a. II and c in order in three column$.
Bllt in

t:II.! >I. bel pr -3

\If prillt:; the information Goming down the pipe·
line, still ill tru-ee COIUU11U.

- 9 •

We have already memioned once or twice
the mysterious "shell," which is in fac! silO),
The shell is the program thai interprets what you
type as commands and arguments. It also looks
after translating ., etc., into iist.5 of filenames,
and ", :>, and I into changes of inplit and out­
PUI. streams.

The shell has other ClIpabilities too. For
example. you can run two programs with 0111:

command line by separating the commands with
a semicolon; (he sheil recogllize~ the s<::micoioll
and br.eaks the line into two commands. Thus

d:llte; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simullaml!o!JS(v if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier se<:tion, and YOll

don't WlInt to wait around for the results before
starling something else, you Glm s-w

td fill'i <: suip! .II;

The am~rsand lit the end of a command Hile
!IIYS "SIiUl this camm,ind funning. then !2Ike
(urther commands from the u~rminal immedi·
ately," thllt is. don't wail for it to complete.
Thus the script wi!! be!!in. em YOll can 40 some·
thing eise at the same lime. Of course, to keep
the Olltput from interfering with ''''hat you're
doing on the terminal. it would be belt!:: 10 $ay

~"I file <script >smlll.llll!"

which saves the OlJ[put lines in a file called
!laipt.out.

When you initiate a command with &;, thll
syStem replies with a !1umb~r called the process
number, which ideruifies the command in case
YOII later wan! to stop it. !f you do, you can say

Idl1 IIfIlO!Ss-!llImlie:

If yo\.l forge I the process number. the command
liS will tell you about everythinll you ha VI! run­
nins. (If you are desperate, kill (j will kill III
your processes.) Ami if you're ClJriOI~S about
other people, liS Ii wi!! tell you about tlil pro·
grams that are currentlY running,

You car! say

(colllll"llind-l; crloomluld·2; commlllUi·]) &:

'to start three commands in the background, or
YOIl can sw! a background pipeline with

el:Imm,uld-ll comm:,tnll·Z &;

JuS! as YOll can teU the erliror or some simi·

lar program to take its input from a file instead
of from the terminal. you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is JUSt a program, albeit a clever
one.) For instance. suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
(Iails, dale. who) into a file, let's call it startup,
and then run it with

sit slartup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con­
tents of startup on the terminal.

If this is to be a regular thing, you can elim­
inate the need to type sil: simply type, once only,
the command

clmuxl + x startup

and thereafter you need only say

slartup

to run the sequence of commands. The
chmod(l) command marks the file executable;
the shell recognizes this and runs it as II

sequence of commands.

If you wan! startu,l to run automatically
every time you lOll in. create a file in your IOllin
directory called . profile, and place in it the line
startup. When the shell firs! gains comrol when
you 101 in, it iooks for the . profile file and does
whatever commands it finds in it. We'll get back
to the shell in the section on programming.

m. DOCUMENT PREP ARA nON
UNIX systems are used extensively for docu­

menl preparation. There are two major forma!­
ting programs, that is, programs that produce a
text with justified right margins. automatic page
numbering and titling, automatic hyphenation.
and the like. aroff is designed to produce output
on terminals and line-printers. Irou (pro­
nounced "tee-rofl") instead drives a photo·
typesetter, which produces very high quality out­
put on photographic paper. This paper was for­
matted with troff.

Formattilli PacKages

The basic idea of nroff and InCf is that the
text to be formatted contains with[n it "format­
ting commands" that indicate in detail how the
formatted text is 10 look. F,)c example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

- 10 -

Because Ill'off and Iroff are relatively hard to
learn to use effectively, several "packages" of
canned formatting requests are available to let
you specify paragraphs, running titles, foomotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modes! effort to learn, but
the rewards for using them are so ireat that it is
time well spent.

In this section, we will provide a hlls!y look
at the "manuscript" package known as - ms.
Formaning requests typically consist of a period
and two upper-case letters, such as . TL, which is
used [0 introduce a title, or .Pp 10 begin a !leW

paragraph.

A document is typed so it looks something
like this:

.n
tille of document
.AU
lIuthor lIame
.SH
section headlll!!
.1'1'
par·qrllllR .,.
.PP
another parqrapb ...
.SH
!moilier sei:tlQn headlllll
.PP
etc_

The lines that beain with a period are the for­
malting requests. For example, .PP calls for
starting II new paragraph. The precise meaning
of .1'1' depends on what output device is being
used (typesetter or terminal. for instance). and
on what publication the document will appear in.
For example, -illS normally assumes thai a
paragrapn is preceded by a space (one line in
moff, 'h line in troW. and the first word is
indented. These rules can be changed if you
like, bill they are changed by changing loe
interpretation of .1'1', 1101 by re-typing the docu­
ment.

To actually produce II document in standard
format using -ms. use the command

Iroff - ms flies ...

for the typesetter, and

IlroCf - ms files , ••

for a terminal. The -ms argument tells tTorf
and flroff to use the manuscript package of for­
matting requests.

There are sev<lral similar packages; check
with a local expert to determine which ones are
in common use on your machine.

SIlIl~rd!!1 !GOls

In addition to the basic formatters, there is a
host of supporting programs that help with docu­
ment preparation. The list in the next few para­
uaphs is far from complete, so browse through
the manual and check with people around you
for other possibiliti~s.

eq!l and let you intesrate mathematics
into the text a document, in an easy-to-Iearn
lanlluage that c\osely resembles the way you
would speak it alo!.id. For example, tile eqn
input

slim from i .. ij 10 n I sub i - .. - pi over l

proouces the OUtput

The prol\fam IIlI provides an analogous scr­
vic~ for preparing tabular material; it does all the
computations necessary to align complicated
columns with elementS of varying widths.

ref~r prepares bibliographic citations from a
data OIlS!:. in whatever style is defined by the for­
mattinll package. It looks after .11 the details of
tlumberinl references in sequence, filling in page
and volume numbers, g~!ting the author's initials
and the journal flame right. and so on.

slI'!lI and [yfl"l detect po~sible spelling mis·
takes in a document. 5lliill works by comparing
the words in your oocumcm to a dictionary,
printing those that are not in the dictionary. It
knows enough about E!1~jish $~I!ing to detect
plurals and the like,w it docs a very good job.
typo looks for words which are "unusUlII", and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early whell the most
unusual words are primed first.

grep looks through a set of file's for lines
that contllin a particular tell! pattern (rather like
the editor's context s.eaJ'cil does, but on a buncil
of files). For example,

inp 'ing,\\" chlllp'

will find a!l lines that em! with the leiters i](lg if!
the file., chap'. (It is almost .iways a good prac­
tice to pm single quotes around the panern
you're .searching fOf, in C:l..se it contains charac­
ters like • or S that have a special meaning to the
she!!.) Uep is often lIseful for nnding out in
which of a set of I11e5 the misspelled words
detected by spell are actually located.

cliff prints ,. list of the differences between
two files. so you can compare twO versions of
something autOmatic;;Hy (which certainly beaLS
proofreading by hand).

. II·

we counts the words. lines and characters in
a set of files. Ir translates characters into other
characters; for example it will convert upper to
lower case and vice versa. This translates upper
into lower:

tr A-Z II-Z <Input >OUIPU!

sort sorts files in a variety of ways: ere!
makes cross-references; P!x makes a permuted
index (keyword-in-contexl listing). sed provides
many of the editing facilities of ed. bu t can apply
them to arbitrarily lonll inputs. awk provides the
ability to do both pattern matching and numeric
computat,iol'lS, and to conveniemly process fields
within lines. These programs are for more
advanGed u.sers, and they are not limited to
cWcument preparation. FUl tilem on your list of
things to learn aboul

Most of these programs are either indepen­
dently documented {[ike eqn and Ibil. or are
sufficiently simple tilat the description in the
UNIX Programmer's Manual is adequllte explana­
tion.

Hints for Freparinl! Documents

Most documents go through several versions
(a!w<1.y.g more than you expected) ~fore they are
finally finished. Accordingly, you silould do
whatever possible to make the job of changing
them easy.

First, whell you do the purely mechanical
Olliiflltions of typing, 'l'llii so that subsequent
editing will be easy. Star! each sentence on a
new line. Make lilies short, and break lines at
natural places, such as after commas and semi­
colons. rather than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to mooest size, perhaps tell to fifleen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis­
take it's better to have clob~red a small file
than a big one. Split imo files ;It natural boun­
daries in the document, for the same reasons
that you stan each sentence on a new line.

The second aspect of making change easy is
to no! commit yourself to formatting details too
early. One of the advantages of formatting pack­
_lies like - ms is that they permit you to delay
decisiOns to the last possible moment. [ndccd.
until a document is primed, it IS not even
decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own Droff and troCf commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re­
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a prod:lctive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 1/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell
The pipe mechanism lets you fabricate quite

complicated operations out of spare parts that
already exist. For example, the tirst draft of the
spell program wu (roulhly)

cat •••
Itt .. .
Itt .. .
lsort
IIIDlq
lcomm

coll«t the Jiles
put each word on a new line
.le~ punctuation, ell:.
inlO dictionary order
discord duplica ~s
print wortb ill Ittt

but /fOt ill dictiollilry

More pieces have been added subsequently, but
this Ices a Ionl way for such a small effort.

The editor can be made to do thinllS that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ttl
e chapl.l
Ip
$p
e chapl.l
Ip
$p
etc.

But you can do the job much more easily. One
way is to type

Is chap· > temp

to let the list of filenames into a file. Then edit
this file to make the necessary series of editing

- 12 -

commands (using the global commands of eel),
and write it into script. Now the command

eel <script

will produce the same output as the laborious
hand typing. Alternately (and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for I ID chap·
do

eel $I <sC!I'lpt
done

This sets the sheU v.ariable I to each file name in
turn, then dGes the cemmand. You can type this
command at the terminal, er put it in a file for
later execution.

Procrammhi, the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (If-else, While, for,
case), subroutines, and interrupt handlinl. Since
there are many buildinl-block programs, you can
sometimes avoid writinl a new program merely
by piecing IOlCther some of the building blocks
with shell command files.

We will not Ie into any details here; exam­
ples and rules GIIn be found in All Illvoduc/ioll 10

the UNIX Shell, by S. R. Beurne.

Proanmmlaa ID e
If you are undertaking anything substantial,

e is the only reasonable choice of prolramminl
languale: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the prolrams that run on it. It is also a
easy lanluale to use once you get swted. C is
introduced and fully described in The C Program­
ming Languagt by B. W. Kernighan and D. M.
Ritchie (Prentice·Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do 110 and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 1/0 library, which provides a
set of 110 functions that exist in compatible
form on most machines that have C compilers.
In lenenl, it's wisest to confine the system
interactions in a proaram to the facilities pro­
vided by this library.

C prOlflms that don't depend too much on
SJec:ial features of UNIX (such as pipes) can be
moved to other computers that have C com­
pilers. The list of such machines grows daily; in
addition to the original PDP·II, it currently

includes at least Honeywell 6000. IBM 370.
Interdata 8/32. Data General Nova and Eclipse.
HP 2100, Harris 17, VAX 111780. SEL 86. and
Zilog Z80. Calls to the standard 110 library will
work on all of these machines.

There are a number of supporting prosrams
that 10 with C. lint checks C prosrams for
potential portability problems. and detectS errors
such as mismatched arlument types and unini­
tialized variables.

For larger procrams (anything whose source
is on mere than one lile) make allows you to
speltify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver­
sion.

The debulger adb is useful for dialing
throuah the dead bodies of C prosrams. but is
rather hard to learn to use effectively. The most
effective debullging tool is still careful thoUllht,
coupled with judiciously placed print statemenll.

The C compiler provides a limited instru­
mentation serv~. so you can find out where
prell'ams spend their time and what partS are
worth optimizing. Compile the routines with the
-, option; after the test run. use prof to print
In e-xecution profile. The command dme will
live yeu the 1I'0ss run-time statistics of a pro­
lAm. but they are not super accurate or repro­
dumble.

Other Languaaes

If you ItGwt to use Fortran. there are two
possibilities. You miaht consider Ratfor. which
lives you the decent control structures and free­
form input that characterize C. yet letS you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce
Iarp and relatively slow-running proaram5.
Furthermore. supportina software like ad\), prof.
etc.. are all virtually useless with Fortran pro­
lI'ams. There may. also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Rauor. and has the non-trivial advantage that
it is compatible with C and related prosrarns.
<The Rauor processor and C tools can be used
with Fortran 77 too.)

If your application requires you to translate a
IanaUiae into a set of actions or another
language. you are in effect building a compiler.
though probably a small one. In that case, you
should be USing the ra« compiler·compiler.
which helps you develop a compiler quickly. The
lex lexical analyZer Ilenerator does the same job
for the simpler languages that can be expressed

• 13 -

as regular expressions. It can be used by ilself.
or u a front end to recognize inputS for a
racc-based program. Both ra« and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages. such as Aiiol 68. APL. Basic.
Lisp, Pascal. and Snobol. Whether these are
useful depends largely on the local environment:
if someone ares about the language and hu
worked on it. it may be in good shape. If not,
Ihe eefls are strong that it will be mere trouble
Ihan it's worth.

V. tIN IX R.EADING LIST

GeDeral:

K. L, Thompson and D. M. Ritc:hie. TJ. UNIX
Pro"ammer's ManuaL Bell Laboratories, 1978.
Lists commands. system routines and interfaces,
file formall, and some of the maintenance pro­
cedures. You can't live without this, althouah
you will probably only need to read section 1.

D«umtlnu fo, Us. with 1M UNIX Timtl·sltGring
S~,.m. Volume 2 of Ihe PrQlI'ammer's Manual.
This contains more extensive dewiptions of
major commands. and tutorials and reference
manuals, All Qf the papers listed below are in it.
u are descriptions of most of the proll'ams men­
tioned above.

D. M, Ritchie and K. L. Thompson. "The UNIX
TIme·sharinll System." CACM, July 1974. An
overview of the system, (or people intereSted in
operating systems. Worth reading by anyone
who proarams. Contains a remarkable number
of one·sentence observations on how to do
thints riahl.

The Bell System Technical Journal (BSTJ) Spe·
ciaI Issue on UNIX, Julyl August, 1978. contains
many papers describinl recent developments.
and some retrospective material

The 2nd International Conference on Software
Enlineerinl (OCtober, 1976) contains several
papers describin& the use of the Prosrammer's
Workbench (PWB) version of UNIX.

Document PreparadoD:

B. W, Kernighan, "A Tutorial Introduction to
the UNIX Text Editor" and "Advanced Editing
on UNIX." BeU Laboratories, 1978. Bellinners
need the introduction; the advanced material will
help you set the most out of the editor.

M. E. Lesk. "Typinl Documenll on UNIX," Bell
Laboratories, 1978. Describes the -ms macro
package. which isolates the novice from the
villries of nro(f and IroCC. and takes care of

most formallin, situations. If this specific pack­
age isn't available on your system, somethinl
similar probably is. The most likely alternative is
the PWB/UNIX macro packaae -mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, "A System
for Typesellinl Mathematics," Bell Laboratories
Computinl Science Tech. Rep. 17.

M. E. Lesk, "Tbl - A Program to Format
Tables," Bell Laboratories CSTR 49, 1976.

1. F. Ossanna, Jr., "NROFF/TROFF User's
Manual," Bell Laboratories CSTR 54, 1976.
trolf is the basic formaller used by - ms, tqD

and tbL The reference manual is indispensable
if you are loin a to write or maintain these or
similar programs. But start with:

B. W. Kernighan, "A TROFF Tutorial," Bell
Laboratories, 1976. An attempt to unravel the
in tricacies of Iroff.

PrOIrammlDI:

B. W. Kernighan and D. M. Ritchie, Th~ C Pr0-
gramming Langlla~. Prentice-Hall, 1978. Con­
tains a tutorial introduction. complete discussions
of all lanluale features, and the reference
manual.

B. W. Kemigh'an and D. M. Ritchie, "UNIX Pro­
gramminl," Bell Laboratories, 1978. oescribes
how to interface with the system from C pro­
grams: 110 calls, sianals, processes.

S. R. Bourne, .. An Introduction to the UNIX
Shell," Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
ell'ective use of the program min a power of this
shell.

S. C. Johnson, "Yacc - Yet Another Compiler­
Compiler," Bell Laboratories CSTR 32, 1978.

M. E. Lesk, "Lex - A Lexical Analyzer Gen­
erator," Bell Laboratories CSTR 39, 1975.

S. C. Johnson, "Lint, a C Program Checker,"
Bell Laboratories CSTR '65, 1977.

S. I. Feldman, "MAKE - A Program for Main­
tainingComputer Programs," Bell Laboratories
CSTR 57,1977.

J. F. Maranzano and S. R. Bourne, "A Tutorial
Introduction to ADB," Bell Laboratories CSTR
62, 1977. An introduction to a powerful but
complex debugging tool.

S. 1. Feldman and P. J. Weinberger, "A Portable
Fortran 77 Compiler," Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems.

- 14 -

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Bnan W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hi!!, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret­
ing CAl scripts on the U:-I!xt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor.
additional file handling commands, the eqn program for mathematical typing,
the" -'ms" package of formatting macros, and an introduction to the C pro­
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Mos! usage involves the first two scripts, an introduc­
tion to files and commands, and the text editor.

The second version of learn is about fOUf times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of Ihe lessons have been revised; new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX i •• Trod.mark of 11011 Looo"lo'i

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introductio!l.

Leam is a driver for CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach peopie computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UN!xt facilities to create a controlled UNIX
environment. The system includes two main parts: (I) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands

the UNIX text editor ed

advanced file handling

theeqn language for typing mathematics

the "-ms" macro package for document formatting

the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow-

(a) students are forced to perform the exercises that :..re in fael the iJasis of training in
IIny case;

(b) students receive immediate feedback and confirmation of progress;

(c) students may progress at their own rate;

(d) no schedule requirements are imposed; students may study at any time convenient
for them;

(e) the lessons may be improved individually and the improvements are immediately
available to new users;

(f) since the student has access to a computer for the CAl script there is a place to do
exercises;

(g) tile use of high technology will improve student motivation and the interest of their
management.

Opposed to this. of course, is the absence of anyone to whom the studen! may direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas.!. 2. 3 The use of a computer to teach itself, how­
ever, offers unique advantages. The skills develop,ed to gel through the script are exactly those
needed to use the computer; there is no waste effort.

The scripts written so far are based on some familiar assumptions about education; these

tUNIX is • Trademark of Bell laboratories.

- 2 -

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer. but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical lim.itations.

2. Educational Assumptions and Dfsign.

First. the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation; they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most-questions right, rein­
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the current directory? Type "answer N", where N ;s the number
offiles.

The student is expected to respond (perhaps after experimenting) with

answer 17
or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these, using two lessons about the cat (con­
catenate, i.e .. print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les­
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a chance to repeat the lesson. The
"speed" rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully; it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "under­
stands" what he or she is doing; accordingly, the current learn scripts only measure perfor­
mance, not comprehension. If the student can perform a given task, that is deemed to be
"learning. "4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure; the universal solution to student error is to provide a new, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumplion that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi­
vided.

To avoid boring the faster students, however. an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

• 3 -

Figure 1: Sample dialog rrom basic files script

(Student responses in italics; 'S' is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
'cat file" where "file" is the tile name.
For example. there is a file named
"food" in this directory. List it
by saying ·cat fooo"; then type "ready·.
S cat/ood

this is the file
named food.

S ready

Good. Lesson 3.3a (I)

Of course. you can print any file with ·cat".
In particular. il is common to first use
"Is" to find the name of a file and then 'cat"
to print it. Note the difference between
"Is". which tells you the name of the file.
and "cat", which tells you the contents.
One file In the current directory is named for
a President. Print the file, then type "ready·,
S cat President
cat: can't open President
S ready

Sorry. that's not right. Do you want to try aaain? yes
Try the problem again,
Sis
,ocopy
Xl
roosevelt
S cal roosevelt

this file is named roosevelt
and contains three lines of
text.

S ready

Gooo. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for ·concatenate·

long. Typically. for example. the fast track might present an idea and ask for a variation on the
example shown; the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track. which is often It-ree or four
times the length of the fast track. is intended to be adequate for anyone. (The lessons of Fig­
ure I are from the third track.) The mUltiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons; this makes it profitable for a shaky user to back up

- 4-

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis­
cussed.in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure I will pass to the next lesson. It is still true that learn will not tell the stu­
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu­
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writin& CAl scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives. to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. -Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itselO. In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis­
tance, however, need not be highly skilled.

- 5 •

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is, cal. mv. rm, cp and diff commands. It also deals with
the abbreviation characters', ?, and [l in file names. It does nO! cover pipes or 110 redirec·
tion, nor does it present the many options on the Is command.

This script cont:Jins 31 lessons in the fast track; two are intended as prerequisite checks.
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc­
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
USing regular expressions for searching. S All editor features except encryption, mark names and
';' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of inU~rest. Tbe ed description in the reference manual is
2,572 words long. The td tutorial6 is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words; the largest is 171 words and the sma!lest 10.
The original I'd script represents about three man-weeks of elfort.

The advanced file handling script deals with Is options. I/O diversion, pipes, and sUPP0r!­
ing programs like pr, we, fail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is rel1ected at least partly in the fact that it pro­
vides much less of a full three-track sequence than they do. On the other hand, since it is per·
ceived as "advanced," it is hoped that the student will have somewhat more sophistication and
be better able to cope with it al a reasonably high l~vel of performance.

A fourth script covers the eqn language for typing mathematics. This script must be fun
on a terminal capable of printing mathematics. for instance the DASI 300 and similar Di~blo­
based terminals, or the nearly extinct Mode! 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first trade

The -ms script for formatting macros is a short one-track only script. The macro pad:·
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore. the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences deaiing with
the features independently.

The scrip! on C is in a state of transition. It was originally designed to follow a tutorial on
C, bul that document has since become obsolete. The current script has been partially con·
verted to follow the order of presentation in The C Programming Language. 7 but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user wi!! need to know
10 make effective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a r.elatively complete introduction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc­
tional materials, it should provide a useful supplement to existing tutorials and reference manu­
als.

- 6 -

4. Experience with Students.
Learn has been installed on many different UNIX systems. Most of the usage is on the

firs! two scripts. so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les­
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
everyone failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year, Users have ranged in age from six up.

I! is difficult to characterize typical sessions with the scripts; many instances exist of some·
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ­
ical for nOll-programmers; a UNIX expel1 can do the scripts at approximately 30 seconds per les­
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx­
imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

5. Tile Scrip! Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the scrip! writer
to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only imeres!ed
in the existing scripts may skip this section.

The file structure used by /eQm is shown in Figure 2. There is one parent directory
(named lib) containing the scripl data. Within this directory are subdirectories, one for each
subject in which a course is available. one for logging (named log), and one in which user sub·
directories are created (named play). The subject directory contains master copies of all les­
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson f! is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learl! portion of the file system. A fresh copy of all the files llsed in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(l) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effol1
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

lib

- 7 -

Figure 2: Directory structure for learn

play

files

editor

(other courses)

log

student I

student2

LO.la
LO.lb

files for student 1...

files for student2 ...

lessons for files course

The basic sequence of events is as follows. First. learn creates the working directory.
Then, for each lesson. learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (t) commands to the script interpreter to print something, to create
a files, to test something. etc.; (2) text to be printed or put in a file; (3) other lines. which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes, 110,

ready, or allswer. At this point, the user's work is tested; if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,

#priltl

causes printing of any text that follows, up to the next line that begins with :I sharp.

#prillf jill.'

prints the contents of jill.'; it is the same as cal jill.' but has less overhead. Both forms of #prilll
have the added property that if a lesson is failed. the #prillf will not be executed the second
time through; this avoids annoying the student by repeating the preamble to a lesson.

#create jilename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
#ullcopyin

Anything the student types between these commands is copied onto a file called . copy. This lets
the script writer interrogate the student's responses upon regaining conlrol.

#COf7)'OUl
#uncopyoUl

• 8 .

l
"figure 3: Sample Lesson

#print
Of course, you call print any file with "cat",
In particular, it is common to first use
"Is" to find the name of a file and then 'cat"
to print it, Note the difference between
"Is". which tells you the name of the fJes,
and "cat", which tells you the contents,
One file in the current directory is named for
a President. Print the file, then type "ready",
#create rO{lseveil

this file is named roosevel!
and contains three lines of
text

#copyOU!
#user
#uncopyout
tail -3 ,ocopy >Xl
#emp Xl roosevelt
#io!!
t'llnext
3.202

Between these commands, any material typed at the student by any program is copied to the file
,ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance lheory of learning usually prefer to the student '5 actual input.

.ffpipe
#unpipe

Normally the s!udenl input and the script commands are fed to the UNIX command interpreter
(the "shell") one line at a time, This won't do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, !lot to the shell.
Accordingly, the material between #PIPe and #unplpe commands is fed continuously through a
pipe so that such sequences work, If copyoUl is also desired the COPYOUI brackets must include
the PIPe brackets.

There are several commands for setting status after the student has attempted the lesson.

#emp Ii/I! i lile2

is all in-line implementation of cmp, which compares two files for identity,

#malch Sluff

The last line of the studem's input is compared to Sill/f', and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made, There may be several #malch lines; this provides a convenient mechanism rOT handling
multi pie "rigi"''' answers, Any text up to a # on subsequent lines after a successful #malch is
printed; this is illustrated in Figure 4, another sample lesson.

#bad sllIff

Tnis is similar to #malCh. except t!1~! it corresponds to specific failure answers; this can be
used to produce hints for particular wrong answers that have been anticipated by the script

writer.

#succeed
#/ail

- 9 -

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#Uncopyin
#match mS
#match .mS
OmS" is easier.
#Iog
#next
6J.ld 10

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #malch and #cmp, or by status returned
by normal UNIX commands, typically grep and lest. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:

#Iog file

writes the date, lesson, user narne and speed rating, and a success/failure indication on file.
The command

#Iog

by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.la 10
25.2a 5
2S.Ja 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.Ja for speed near 2. Speed ratings are main­
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim­
ited to 10 and the minimum to O. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu­
dent fails, a false status is returned and the program reverts to the previous lesson and tries

- 10 -

anO!her alternative. If it can not find another alternative, it skips forward a lesson. The stu­
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice '5 way ou!.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu­
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, .or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however. that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are flot available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to IJse the command interpreter as juS! another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to.
other systems. some generality will probably be los!.

A bit of history: The firs! version of learn had fewer built-in commands in the driver pro­
gram, and made more use of the facilities of the UNIX system itself. For example, fiie com­
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not siored as text files, but as archives. There was 110 concept of the in-line
document; even #prifll had to be followed by a file name. Thus the initialization for each les­
son was to extract the archive into the working directory (typically 4-8 files), then #pmll the
lesson text.

The combination of Stich things made leam rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in Oil typical lesson, the printing
of the message comes firs!, and file SeilJp with #creCile can be overlapped with printing. so that
when the program finishes printing, it is really ready for the llser to type at it.

It is also a great advantage to the script maintainer lhat lessons are now JUSI ordinary lex!
files, ralher than archives. They can be edited without any difficulty, and UNIX lext manipula­
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substalldard lessons.

6, Conclusiolls

The following observations can be made about secretaries, typists, and other non­
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
10 gel through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in Ihe first few lessons is obscure to those inexperienced with com­
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of "subs1itutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the scripl on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate oid ones seems to be a few days, with perhaps half of
each day spent on the machine.

• 11 •

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought 10 a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Idealiy, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini­
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the bener the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.'

One disadvantage of training with leam is tha! students come 10 depend completely 011 the
CAl system, and do not try 10 read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNiX system. New users should have manuals
(appropriate for their leveD and read them; the scripts ought to be altered to recommend suit­
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can '(be passed. Some­
times this is due to poor explanations, but just as often il is some error in the lesson itself - a
botched setup. a missing file" an invalid test for correctness, or some system facility thaI
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize Ihat the fault is
not his or hers, but the script writer's. Permitting the student to gel on with the next lesson
reg·ardless does alleviate this somewhat, and the logging facilities make it easy to watch for les­
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often
excruciatingly slow and a significant drain on the system, 'The current version so far does no!
seem to have that difficulty, although some seripts, notably eqrr, are intrinsically slow. eqn. for
example, must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time 10 time,

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical liles, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental - some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at alL The most obvious is cd, which
changes to another directory. The prospect of a student who is learning about directories inad­
vertemly moving to some random directory and removing files has deterred us from even writ·
ing lessons on cd, bu! ultimately lessons or. such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bimich, 1. L Blue, S. L Feldman, P. A. Fox,
and M. 1. McAlpin have provided substantial feedback. Conversations with Eo Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

• We have even known an e~pert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have grel(difficulties with such problems.

• 12 •

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

I. D. L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educa·
tion System: Plato IV," pp. 17·29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

2. D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
"COALA • A Minicomputer CAl System," IEEE Trans. Educlltion I·200), pp. 73· 77
(Feb. 1977).

3. P. Suppes, "On USing Computers to Individualize Instruction," pp. 11·24 in The Com·
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(1967).

4. B. F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review 31, pp.377·398,
Reprinted in Educational Technology, ed. J. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (961).

5. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories (1978).
See section ed (I).

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (1974).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice·Hall, Engle­
wood Cliffs, New Jersey (1978).

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNlxt operating system. Its features include control-now primitives, parameter
passing, variables and string substitution. Constructs such as while. if thell else.
case and for are available. Two-way communication is possible between the
shell and commands. String-valued parameters. typically file names or nags,
may be passed to a command. A return code is set by commands that may be
used to determine control-now, and the standard output from a command may
be used as shell input.

The shell can modify the environment in which commands run. Input and out­
put can be redirected to files, and processes that communicate through 'pipes'
can be invoked. Commands are found by searching directories in the file sys­
tem in a sequence that can be defined by the user. Commands can be read
eithel from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12. 1978

tUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

1.0 Introduction

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

The shell is both a command language and a programming language that provides an interface
10 the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section: see, for example, ·UNIX for beginners".1
Section 2 describes those features of the shell primarily intended for use within shell pro­
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The lasl section describes the more advanced features of the shell. References of the form "see
pipe (2)" are to a section of the UNIX manuaL"

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The firs! word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The command

Is -I

prims II list of files in the current directory. The argument -/ tells Is to print status informa­
tion, size and the creation date for each file.

1.2 Background commands

To execute iii command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &.

calls the C compiler to compile the file pgm.c. The trailing 8. is an operator that instructs the
shell not to wait for the command 10 finish. To help keep track of such a process the shell
reports its process number following its crealion. A lis! of currently active processes may be
obtained using the ps command.

1.3 Input olltput redirectioll

Most commands produce output on the standard output that is initially connected to the termi­
lIal. This output may be sent to a file by writing, for example,

Is -I >file

The notation >/ill! is interpreted by the shell and is no! passed as an argument to Is. If tile does
not exist then the shell creates it; otherwise the original contents of tile are replaced with the
output from Is. Output may be appended to a file using the notation

Is -I »lile

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command we reads its standard input (in this case redirected from .file) and prints the
number of characters, words aild lines found. If only the number of lines is required then

we -I <file

could be used.

1.4 Pipelines lind fillers

The standard output of one command may be connected to the standard input of another by
writing the 'pipe' operator, indicated by I, as in,

Is -I I we

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is -I > file; we < file

except that no .file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting we when
there is nothing to read and halting Is when the pipe is full.

A .filler is a command that" reads its standard input, transforms it in 'some way, and prints the
result as OlltpU!. One such filter. grep. selects from its input those lines Iha! contain some
specified string. For example,

Is I grep old

prints those lines. if any, of the outPlit from Is that contain the string old. Another Ilseful filter
is SOrl. For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

is I grep old I we-I

prints the number of file names in the current directory containing the string old.

1.5 File I1l1me generation

Many commands accept arguments which are file names. For example,

Is -I maill.c

prints information relating to the file main. I: .

The shell provides a mechanism for generaling a list of file names that match a pattern. For
example,

Is -I".c

generates, as arguments to Is. all file names in the current directory that end in .C. The charac­
ter * is a pattern lha! will match any string including the null string. In general paTTerns are
specified as follows.

. ,
! ... J

For example,

- 3 •

Matches any string of characters including the null string .

Matches any single character.

Matches anyone of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

[a-zl·

matches all names in the current directory beginning with one of the letters a through :.

lusT/fred/test/ ?

matches all names in the directory lusrlfredltest that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed. unchanged. as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo lusr/fred/·/core

finds and prints the names of all core files in sub-directories of lusr/fred, (echo is II standard
UNIX command that prints its arguments, separated by blanks.> This last feature can be expen­
sive, requiring a scan of all sub-directories of /Ilsr/fred.

There is one exception to the general rules given for patterns. The character'.' at the start of a
file name must be explicitly matched.

echo •

will therefore echo all file names in the current directory no! beginning with': .

echo ,-

will echo all those file names that begin with '.'. This avoids inadvertent matching of the
names • .' and '.: which mean 'the current directory' and 'the parent directory' respectively.
(Notice Ihat Is suppresses information for the files'.' and'.: .l

1.6 Quoting

Chal'llcters that have a special meaning to the shell, such as < > '" ? I "'. are called metachar­
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is qUOIed and loses its special meaning. if any. The \ is elided so that

echo \?

will echo a single ? and

echo \\

will echo a single \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos­
ing the string between single quotes. For example,

echo xx·" ,,'xx

wi!! echo

The quoted string may not contain a .single quote but may contain newlines. which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

- 4 •

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but no! all metacharacters. Disc\,Ission of the details is deferred to section 3.4.

1. 7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is . $ '. It may be changed by saying, for example,

PS I - yesdear

that sets the prompt to be the string y~sdl!ar. If a newline is typed and further input is needed
then the shell will issue the prompt' > '. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the shell to read another com­
mand. This prompt may be changed by saying, for example,

PS2-more

1.8 The sheil and login

Following logm (!) the shell is called to read, and execute commands typed at the terminal. if
the user's login directory contains the file .profile then il is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

lID Is
Print the names of files in the current directory.

lID Is >lIle
Put the output from Is into /ile.

lID Is I wf:-I
Print the number of files in the curren! directory.

It Is I Ilrell old
Print those file names containing the sIring old.

• Is I grl'1I old I we -!
Print the number of files whose name contains the string old.

• cc IIgm.c &
Run cc in the background.

• 5 •

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. for example.

sh file [args ••. I
calls the shell to read commands from .ti/£'. Such II file is called II comma lid procedure or shell
procedure. Arguments may be supplied wilh the call and are referred 10 in tile using the posi·
lional parame:ers S1. 52 •..•. For c:tampie, if the file wg contains

who I grep 51

then

sh WI fred

is equivalent to

who I IIrep fred

UNIX lUes have three independent attributes. read. Wrill' and execllfe. The UNIX command
chmod (I) may be Wled to make a file executable. For example,

chmod +X WI

will ensure thaI the file wg has execute status. Following this, the command

WI fred

is equivalent to

sh WI fred

This allows shell procedures lind programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters. the number of positional parameters
in the call is available as S#. The name of the tile being executed is available as SO.

A special shell parameter $.. is used to substitute for all positional parameters except SO. A
typical use of this is 10 provide some default arguments. as in,

nrolf -T4S0 -ms $.

wnich simply prepends some arguments to those already given.

2.1 Control fiow • for

A frequent use of shell procedures is to loop through the arguments (SI. $2 ••••) executing
commands once for each argument. An example of such a procedure is lei that searches the file
lusr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of lei is

for i
do grep Si IWlr/lib/telnos; done

The command

tel fred

prints those lines in lusr/llb/teinos that contain the string fred.

- 6 •

lei fred bert

prints those lines containing Ired followed by those for berl.

The for loop notation is recognized by the shell and has the general form

for name in wi w': ...
do command·lisl
done

A command-iisl is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol­
lowing a newline or semicolon. name is a shell variable that is set to the words wI w2 ... in
tum each time the command-IISI following do is executed. If in wI w2 .•• is omitted then the
loop is executed once for each positional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the creOle command whose text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and bera exist and are empty. The notation > file may be
used on its own to create Of dear the contents of a file. Notice also that a semicolon (or newo
line) is required before done.

2.2 Control flow - case

A multiple way branch is provided for by the ellise notation. For example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
,.) echo 'usage: append [from 1 to' ;;

esac

is an append command. When called with one argumerH as

append file

S# is the string I and the standard input is copied onto the end offill' using the COl command.

append file I I11e2

appends the contents of file! antoftle2. If the number of arguments supplied 10 append is other
than 1 or 2 then a message is printed indicating proper Ilsage.

The general form of the case command is

case word in
palll!rn) command-lisl;;

esac

The shell attempts to match word with each pariI'm, in the order in which the patterns appear.
If a match is found the associated command-lisl is executed and execution of the case is com­
plete. Since * is the pattern that matches any string it can be used for rhe default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu­
ment. The first match found defines the sel of commands to be executed. In the example
below the commands following the second $ will never be executed.

- 7 -

case 5# in
*} .•. ;;
.)

esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc comm:md.

for i
do case Si in

-[oes])
-*) echo 'unknown flag $i' ;;
*.d !lib/cO Si ••• ;;
.. } echo 'unexpected argument Sf ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a ,. For example,

is equivalent to

case Si in
-xl-y)

esac

case Si in
-lxyJ)

The usual quoting conventions apply so that

ease Si in
\ 1)

will match the character ?

2.3 Here documents

The shell procedure I~I in section 2.1 uses the file lusrllib/telnos to supply the data for lire".
An alternative is 10 include this data within the shell procedure as a here document, as in,

for i
do IIrep Si «!

fred mh0l23
bert mh0789

done

In this example the shell takes the lines between «! and ! as the standard input for !?rep.
The string! is arbitrary, the document being terminated by a line that consists of the string fol­
lowing «.
Parameters are substituted in the document before it is made available to !?'l!fJ as illustrated by
the following procedure called edg. .

The call

cd 53 «%
&/511sl/52/g
w

%

cdg stringl string2 file

is then equivalent to the command

cd file «'Yo
g/stringl/sllslring2/g
w
%

• 8 -

and changes all occurrences of siring j in/ile to slring2. Substitution can be prevented using \ to
quote the special character S as in

cd 53 «+
1,\5s/51/52/g
w
+

(This version of edg is equivalent 10 the first except that ed will print a ? if there are no
occurrences of the siring 5}.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep Si «\#

The document is presented without modification to f(rep. If parameter substitution is not
required in a here document this laller form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters. digits and underscores. Variables may be given values by writing, for example,

user-fred box-mOOO acct-mhOOOO

which assigns values 10 the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null-

The value of a variable is substituted by preceding its name with S; for example,

echo Suser

will echo Ired.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b-/usr/fred/bin
mv pgm $b

will move the file pgm rrom the current directory to the directory /usr/fred/bin. A more gen­
eral notation is available for parameter (or variable) substitution, as in.

echo ${userl

which is equivalent to

- 9-

echo Suser

and is used when the parameter name is followed by a letter or digit. For eumple.

tmp-/tmp/ps
ps a >S(tmp!a

will direct the output of !,S to the file Itmp/psa, whereas.

ps a >Stmpa

would cause the value of the variable tmpa to be substituted.

Except ror S? the following are set initially by the shell. 51 is set after executing each com­
mand.

• S? The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully. otherwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under U and while commands.

S# The number of positional parameters (in decimal). Used, ror example. in the
append command to check .the number of parameters.

SS The process number of this shell (in decimal). Since process numbers are
unique among all existing processes. this string is frequently used to generate
unique temporary file names. For example.

ps a >/tmp/psS5

rm Itmp/ps55

S! The process number of the last process run in the background (in decimal).

S- The current shell DaIS. such as -x and -Y.

Some variables have a special meaning to the shell and should be avoided for general use.

SMAIL When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you havr mail before prompting for the
next command. This variable is typically set in the file .proftle. in the user's
login directory. For example.

MAIL-/usr/mail/fred

SHOME The default argument for the (d command. The current directory is used to
resolve ftle name references that do not begin with a I, and is changed using the
cd command. For example,

cd lusr/fred/bin

makes the current directory lusr/fred/bln .

cat wn

will print on the terminal the file WI/ in this directory. The command eel with no
argument is equivaient to

cd SHOME

This variable is also typically set in the the user's login profile.

SPATH A list of directories that contain commands (the~eare/r /lQl/r). Each lime a com­
mand is executed by the shell a list of directories is searched for an executable

- 10-

file. If SPATH is not set then the current directory, Ibin, and lusr/bin are
searched by default. Otherwise SPATH consists of directory names separated by
.. For example,

PATH - :/usr/fred/bin :/bin :/usr/bin

specifies that the current directory (the null string before the first :),
lusr/fred/bin, Ibin and lusr/bin are to be searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a I then
this directory search is not used; a single attempt is made to execute the com­
mand.

SPSI The primary shell prompt string, by default, 'S '.

SPSZ The shell prompt when further input is needed, by default, '> '.
SIFS The set of characters used by blank imerprelalion (see section 3.4).

2.5 The test command

The le51 command, although not part of the shell, is intended for use by shell programs. For
example,

test -f file

returns zero exit status if file exists and non-zero exit status otherwise. In general I£'SI evaluates
a predicate and returns the result as its exit status. Some of the more frequently used 1£'51 argu­
ments are given here, see lesl (J) for a complete specification.

test s
test -f file
test -r file
test -w file
test -d file

true if the argument S is not the null string
true iffi/£' exists
true if/i/£' is readable
true if/i/£' is writable
true if ./i/£' is a directory

2,6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an If then else branch are also provided whose actions are deter­
mined by the exit status returned by commands. A while loop has the general form

while command-lisl,
do command-lisl!
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-lisl, is executed; if a zero exit status is returned
then command-lisl! is executed; otherwise, the loop terminates. For example,

is equivalent to

while test S I
do •••

shift
done

for i
do .•.
done

shili is a shell command that renames the positional parameters S2. 53, ..• as 51. 52. ..• and
loses 51.

- 11 -

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam­
ple.

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control fiow - if

Also available is a general conditional bra.nch of the form,

if command·list
then command·list
else command-iisl
II

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the leSI command to test for the existence of
a file as in

if test -f file
then process .file
else do something else
Ii

An example of the use of if. case and for constructions is given in section :UO.

A multiple test if command of the form

if ••.
then
else if ...

then
else if ...

Ii

fi

may be written using an extension of the if notation as,

if ...
then
elif
then
elif

fi

The following example is the IOllch command which changes the 'last modified' time for a list
of files. The command may be used in conjunction with make (J) to force recompilation of a
list of files.

flag­
tor i
do case Si in

-c) flag-N;;
*) if test -f Si

• 12 -

then In $i junkSS; rm junkSS
elif test Silag
then echo file \'Si\' does not exist
else >Si
fi

esac
done

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does nol exisi, an error message is printed. The shell van·
abletfal? is set to some non·null string if the -c argument is encountered. The commands

In , .. ; rm , ..

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if commandl
then command2
fi

may be written

command! && command2

Conversely.

command I I I command2

executes command2 only if command! fails. In each case the value returned is that of the las!
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

(command·lisl ; I
and

(command-lisl)

In the first commalld-iisl is simply executed. The second form executes command-iisl as a
separate process. For example,

(cd x; rm junk)

executes rm iI/11k in the directory" without changing the current directory of the invoking shell.

The commands

cd x; rm junk.

have the same effect bUI leave the invoking shell in the directory x.

- 13 •

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where JJroc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying S~I -1/ at a ter­
minal will render the terminal useless until an end-of-file is typed.)

The command

set -l(

will produce an execution trace. Following parameter substitution each command is printed as
it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned olf by saying

set -

and the curren! setting of the shell flags is available as S- .

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is
called, for example. as

man sh
man -t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified. section! is used.
The second example will typeset (-I option) the manual section for ed. The last prints the fork
manual page from section 2.

• 14 •

cd /usr/man

: 'colon is the comment command'
: 'default is nroff (SNl, section 1 (Ss)'
N-n s-1

for i
do case Si in

s-Si ;;

-t) N-t;;

-n) N-n;;

-*) echo unknown flag ,'Si" ;;

*) if test -f manSs/Si.Ss

eSac
done

then S(N}roff manO/S(N}aa manSs/Si.Ss
else : 'look through all manual sections'

found-no

Ii

for j in 1 2 3 4 S 6 7 8 9
do if test -f manSj/SLSj

then man Sj Si
found-yes

Ii
done
case Sfound in

no) echo 'Si: manual page not found'
esac

Ficure 1. A version of the man command

- IS -

J.O Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name-value that precedes the command name
causes value to be assigned to /lame before execution of the procedure begins. The value of
name in the invoking shell is not aff,;:cled. For example,

user -fred command

will execute command with user set to fred The -k flag causes arguments of the form
name - value to be interpreted in this way anywhere in the argument lis!. Such names are some­
times called keyword parameters. !f any arguments remain they are available as positional
parameters S1, $2, •.••

The set command may also be used to set positional parameters from within a procedure. For
example,

set - $

will set $1 to the first file name in the current directory, S2 to the next, and so on. NOle that
the first argument, -, ensures correcl treatment when the first file name begins with a -.

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for el(port. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.>

Names whose value is intended to remain constant may be declared readonty. The form of this
command is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Panmeter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari­
able Ii is not set

echo Sd

or

echo S{d)

will el:ho nothing. A default string may be given as in

echo Sld-.j

which will echo the value of the variable II if it is set and'.' otherwise. The default string is
evaluated using the usual quoting conventions so that

echo S{d-'··}

wi!! echo II< if t.le variable d is not set. Similarly

- 16 -

echo S(d-51)

will echo the value of cI if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo S(d-.j

which substitutes the same string as

echo S(d-.J

and if II were not previously set then it will be set to the string'.'. (The notation S{ •• , - •.. J is
no! available for positional parameters.)

If there is no sensible default then the notation

echo S{d?message)

will echo the value of the variable cI if it has onc, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might star! as follows.

: S(user?j S(acct?j S{bin?l

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, ace! or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command subsdtution

The standard output from il. command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is lusr/fred/bin then the command

d-'pwd'

is equivalent to

d-/usr/fredlbin

The entire string between grave accents C •• :) is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a • must be escaped using a \. For example,

Is 'echo "$1"

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An example
of such a command is basename which removes a specified suffix from a string. For example,

base name main.c .c

will print the string main. Its use is illustrated by the following fragment from a cccommand.

case SA in

*.cl B-'basename SA .c·

esac

• 17 -

that sets B to the part of SA with the suffix .c stripped.

Here are some composite examples.

• (or! in 'Is -I'; do •..
The variable I is set to the names of files in time order, most recent first.

II set 'dale'; echo 56 S2 $3, $.I
will print, e.g., J977 Nov 1. 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the: arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com­
mand is executed the following substitutions occur.

II parameter substitution, e.g. !iuser

• command substitution, e.g. 'pwd'

Only one evaluation occurs so that if. for example, the value of the variable X is the
string $y then

echo SX

will echo Sy.

<II blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose 'blanks' are the characters of the
string $Irs. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

echo ..

will pass on the null string as the firs! argument to echo, whereas

echo Snul!

wil! call echo with no arguments if the variable null is no! set or set to the null
string.

• file name generation

Each word is then scanned for the file pattern characters *, ? and 1. .. 1 ilnd an alpha­
betical list of file names is generated [0 replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' .. .' a third quoting mechan­
ism is provided using double quotes. Within double quotes parameter and command substitu­
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \ .

For example,

S parameter substitution
command substitution
ends the quoted string
quotes the special characters S ' " \

echo "S1('

- 18 -

will pass the value of the variable % as a single argument to echo. Similarly.

echo "S*"

will pass the positional parameters as a single argument and is equivalent to

echo "Sl $2 .. :

The notation S@ is the same as $* except when it is quoted.

echo ·S@"

will pass the positional parameters, unevalualed, to echo and is equivalent to

echo oSlo 'S2" .• _

The following table gives. for each quoting mechanism, the shell metacharacters thaI are
evaluated.

melocharacrer
\ S
n
y
y

n
n
y

n
n
n

t terminator
y interpreted
n not interpreted

n
t

Y

n
n
t

Figure 2. Quoting mechanisms

n
n

In cases where more than one evaluation of a sIring is required the built-in command eva! may
be used. For example, if the variable X has the value Sy, and if y has the value pqr then

eval echo SX

will echo the strillll pqr.

In general the eva! command evaluates its arguments (as do all commands) and treats the result
as input to the she!1. The input is read and the resulting command(s) executed. For example,

is equivalent to

wg-'eval who I grep'
$wg fred

who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I •
followlllil substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con­
nected 10 a terminal (as determined by guy (2». A shell invoked with the -i flag is also
in teracti ve.

Execution of a command (see also 3.7) may fail for any of the following reasons.

\I Input output redirection may fail. For example, if a file does not exist or cannot be
created.

- 19 -

til The command itself does not exist or cannot be executed.

.. The command terminates abnormally, for example, with a "bus error" or "memory fault".
See Figure 2 below for a complet~ list of UNIX signals.

til The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter­
minal. Such errors include the following.

til Syntax errors. e.g., if •.. then ..• done

ill A Signal such as interrupt. The shell waits for the current command, if any, to finish exe­
cution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is detected.

I hang up
2 interrupt
3" quit
4" illegal instruction
S' trace trap
6" lOT inmuclion
7" EMT instruction
S' floating point exception
9 kill (cannol be caught or ignored)
10' bus error
! 1° segmentation violation
12" bad argument to system ca!!
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (l»

Figure 3. UNIX $illnais

Those: signals marked with an asterisk produce a core dump if not caught. However, the sheil
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are I, 2, J, 14 and 15.

3.6 FIlIll! handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam­
ple,

lrap 'rm Itmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received wi!! execute the com­
mands

em Itmp/psSS; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required; otherwise, afler the trap has been taken. the shell will resume executing the pro­
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig­
nal is never sent to the process. They can be .:aught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

- 20-

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.i) then rrap com­
mands (and the signall are ignored.

The use of rrap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junkSS.

flag-
trap 'rm -f junkSS; exit' 1 2 3 1'5
for i
do case Si in

-cl flag-N ;;
.) if test -f Si

esac
done

then In Si junkSS; rm junkSS
eHf test Snag
then echo file \'Si\' does not exist
else >Si
fi

Fleure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removine the file. I

Since there is no sienal 0 in UNIX it is used by the shell to indicate the commands to be exe­
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null strine as the argument to
trap. The following fragment is taken from the nohup command.

trap •• 1 2 3 IS

which causes hangup. interrupt. quit and kill to be ignored both by the procedure and by invoked
commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure S) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

d .. 'pwd'
for i in •
do if test -d Sd/Si

then cd Sd/Si
while echo "Si:"

trap exit ::1
read x

• 21 •

do trap: 2; eva! Sx; done
Ii

done

Figure S. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-flle is read or an interrupt is
received.

3. i Command execution

To run a command (other. than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input. output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with II new command. For example, II simple version of the nohup command looks like

trap" 1 2 3 15
exec $.

The trap turns off the signals specified so that they are ignored by subsequently created com­
mands and exec replaces the shetl by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo ••. >".C
will write its output into a file whose name is ".c. Input output specifications are evaluated left
to right as they appear in the command.

> word The standard outPUt (file descriptor II is sent to the file word which is created if it
does not already exist.

» word

< word

« word

>& digit

<& digit

The standard output is sent to file word. If the file exists then output is appended
(by seeking \0 the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub­
stitution occur and \ is used to quote the characters \ S ' and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

The standard input is duplicated from file descriptor d,gll.

- 22 •

<&- The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in
specified by the digit instead of the default 0 or l.

, .. 2>file

case the file descriptor creaH:d i:.; that
For examp!f.;.,

runs a command with message output (tile descriptor 2) directed to jile .

. " 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriplor I but "he effect is usually to merge the two
streams.)

The environment for a command run in the background such as

list *.C I Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file Idevlrmll. This prevems two processes (!h~ shell and the command), which are running
in parallel. from trying to read the same input. Chaos would ensue if this were nO! the case.
For example,

ed file &

would allow both the editor and the shell to read from the SlIme input the ,a me time.

The other modification !O thee environment of Ii background command tum off the QUIT
and INTERRUPT signals so that they are ignored by the command. This a!lows these signals
10 be used at the terminal without causing background command, terminate. For this reason
Ihe UNIX convention for a signal is :hllt if it is set to it never changed even
for a short time. Note tna! the shell command IraI' has no efrect for an ignored signal.

3.l.Ilnvokillll the shell

The following /lags are interpreted by ,he shell when it is invoked. If the first character of
argument zero is a minlJs, then commands are read from the file .profile.

-e STrinK
If the -e flag is present then commands are read from $/ril1l1.

-5 If the -$!lag is present or if no arguments remain then commands are read from the
standard input. Shell OUtput is wriuen to file descriptor 2.

-I If the -i flag is present or if the shell input and output are attached to a terminal (as told
by /(IIY) then Ihis shell is interaclive. III this case TERMINATE is ignored (so that kill ()
does not kill an interactive she!1l and INTERRUPT is caught and ignored (so that wali is
interruptable). In all cases QUIT is ignored by the shell.

AclulOW ledgemenls

The design of the shell is based in part on the original UNIX shellJ and the PWBiUNIX shell. 4

some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access and of CTSS .•

I would like 10 thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

·23 -

References

1. B. W. Kernighan, UNIX for Beginners, Bell Laboratories internal memorandum (978).

2. K. Thompson and D. ~. Ritchie. UNIX Programmer's .'vfanl/al. Bell Laboratories (I 978).
Seventh Edition.

3. K. Thompson. "The UNIX Command Language," pp. 375-384 in Strllcrured
Programmmg-Infolech Slale of the Art Report, Infotech International Ltd.. Nicholson
House. Maidenhead, Berkshire. England (March 1975),

4. J. R. Mashey. PWBIUNIX Shell Turorial. Bell Laboratories internal memorandum (Sep­
tember 30. 1977).

S. D. F. Hartley (Ed.). The Cambridge Multiple Access System - Users Reference ,'ylanl/aI.
University Mathematical Laboratory. Cambridge. England (1968).

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System. M.I.T. Press. Cambridge. Mass.
o 96S}'

- 24 -

Appendix A - Grammar

item: word
input-output
name - ~'alue

simple-command: item
simple·command item

commalfli: simple-command
(comma nd-lisl)
(command-list I
for name do command-list done
for name In word, •• do command-list done
while command-iisl do command· fist done
uotil command-/isl do command·/ist done
case word In case-pari ••• eSllc
If command-list then command-list else-parr Ii

pipeline: command
pipeline I command

andor: pipeline

andor "" pipeline
andor I I pipeline

command-list: andor

input-Output:

file:

case-part:

paffern:

else-parr:

emplJI:

word:

name:

digit:

command· liST ;
command-lisl"
command-list; andor
command-list" ando,

> file
< file
» word
« word

word

" digit ,,-
pattern) command-lis!;;

word
pa /fern I word

em command-list then command-list else-pan
else command-list
tmplJI

II sequence of non-blank characters

a seq\lence of letters, digits or underscores statling with a letter

0123456789

• 25 •

Appendix B - Meta-characters and Reserved Words

a) syntactic

I pipe symbol

&& 'andf symbol

II 'orf symbol

command separator

.. case delimiter

& background commands

0 command grouping

< input redirection

« input from II here document

> output creation

» output append

b) patterns

... match any character (5) including none

? match any single character

1 ••• 1 match any of the enclosed characters

c) substitution

5(•••) substitute shell variable

substitute command output

dl quoting

\ quote the next character

quote the enclosed characters except for'

quote the enclosed characters except for S • \ •

e) reserved words

if then else ellf fi
case in esac
for while until do done
1 I

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley. California 94720

ABSTRACT

Csh is a new command language interpreter for Ul'iIXt systems. It incor­
porates good features of other shells and a hislory mechanism similar to the redo
of INTER LISP. While incorporating many features of other shells which make
writing shell programs (shell scripts) easier. most of the features unique to csh
are designed more for the interactive UNIX user.

UNIX use~ who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes the shells capabilities which you can explore after you have
begun 10 become acquainted with the shell. Laler sections introduce features
which are useful. but not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell and
a glossary of terms and commands introduced in this manual.

November 8. 1980

tUNIX is a Trademark of B.II Laboralorics.

J ntraductlon

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley. California 94720

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a termi­
nal into system actions. such as invocation of other programs. Csh is a user program just like
any you miaht write. Hopefully. csh will be a very useful program for you in interacting with
the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX programmer's
manual. The csh documentation in the manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in ilolics. These are important words; names of
commands, and words which have special meaning in discussing the shell and Ul'IX. Many of
the words are defined in a glossary at the end of this document. If you don't know what is
meant by a word. you should look for it in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in
its debugging and in the debugging of its documentation. I would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text. and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful comments
on the shell. helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O'Brien suggested the pathname hashing mechan­
ism which speeds command execution. Jim Kulp added the job control and directory stacK
primitives and added their documentation to this introduction.

• 2 -

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other prOifral11S are invuked.
While it has a set of builrin functions which it performs directly. most commands cause execu·
tion of programs that are. in fact. external to the sheiL The shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program. and b)
the facl lhat it is used almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or ords interpreted as a ('011/­

mand name followed by argumel1ls. Thus the command

mail bill

consists of two words. The firs! word mail names the command to be executed. in this case the
mail program which sends messages to olher users. The shell uses the name of the com mand
in attempting to execute it for you. It will look ill a number of direCfOrres for a file with the
name mail which is expected to contain the mail program.

The rest of the words of' the command are given as argumel1ls to the command itself when
it is executed. In this case we specified also the argument bill which is interpreted by the mad
program to be the name of a user to whom mail is to be sent. In normal terminal usage we
might use the mail command as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

EOT
%

Bill

Here we typed a message to send to bill and ended this message with a 1 D which sent an
end-of-file to the mail program. (Here and throughout this document, [he notation "I x" is to
be read "co:Hrol-x" and represents the striking of the x key while the control key is held
down'> The r;lail program then echoed the characters 'EOI' and transmitted our message. The
characters 'oro ' were printed before and after the mail command by the shell to indicate that
input was needed.

After typing the '% ' prompt the shell was reading command input from our terminal.
We typed a complete command 'mail bill'. The shell then executed the mOil program with
argument bill and went dormant waiting for it to complete. The mail program then read input
from our terminal until we signalled an end-of-file via typing a T D after which the shell noticed
that mail had completed and signaled us that it was ready to read from the terminal again by
printing another '% ' prompt.

This is the essential patlern of all interaction with UNIX through the shell. A complete
command is typed al the terminal. the shell executes the command and when this execution
completes,i!. prompts for a new comn;and. If you run the editor for an hour. the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the lUI command. which sets·
the default erase and kill characters on your terminal - the erase character erases the last char·
acter you typed and the kill character erases the emire line you have entered so far. By default,
the erase character is '#' and the kill character is '@'. Most people who use CRT displays
prefer to use the backspace (f l-I) character as their ~rase character since it is then easier to see
what you have typed so far. You can make this be true by typing

·3·

tse! -e

which tells the program ISiN to set the erase character. and its default setting for this character is
a backspace.

1.2. Flag arguments

A useful notion in UNIX is that of a jfa;; argument. While many arguments to commands
specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention, such arguments begin with the character
'-' (hyphen). Thus the command

is

will produce a list of the files in the current ""Orkin/< dirr!Clory. The option --sis the size option.
and

Is -5

causes Is 10 also give. for each file the size of the file in blocks of 5! 2 characters. The m3nllal
section for each command in the UNIX reference manual gives the available options for each
command. The Is command has a large number of useful and interesting options. Most other
commands have either fiO options or only one or two options. It is hard to remember options
of commands which ilre not used very frequemly. so most UNIX utilities perform only one or
two functions rather than having iii large number of hard to remember options.

1.3. OIlIPIlI to flies

Commands that normally read input or wrile output 011 the terminal can also be executed
with this input and/or output done to a file.

Thus suppose we wish to save the curren! date in a file called 'now'. The command

dale

will print the current date on our terminal. This is because our terminal is the default slal/dard
OUlpm for the date command and the date command prints the date on its standard output. The
shell lets us redir!!CI the sWl1d/Jl'd oU/pm of a command through a notation using the l1I!!facharac·
itf':>' ami tbe name of the file where output is to be placed. Thus the command

date;> now

runs the date command such that its standard output is the file 'now' rather than the terminal.
Thus this command places the current date and time imo the file 'now'. It is important to
know that the dalf! command was unaware that its output was going to a file rather than to the
terminal. The shell performed this redirection before the command began executing.

One other thing to note here is that the file 'now' need not have existed before the dal(,
command was executed; the shell would have created the file if it did no! exist. And if the file
did exist? If it had existed previously these previous contents would have been discarded' A
shell option lIodaMe/' exists to prevent this from happening accidentally; it is discussed in sec·
(ioll 2.2 ..

The nonnally keeps files which you create with ':>' and all other files. Thus the
default is files to be permanent. If you wish to create a file which will be removed automat-
ically, you call begin its name with a 'f:!:' character, this 'scratch' character denotes the fact that
the file will be a scratch file.· The system will remove such fileS after a couple of days. or

"Note that If your erase character is a 'tt', you will ha.ve to precede the '#' Wilt':! a '\', The fact that the '!t'
character is the old (pre~cRT) 5t3J'ldard erase character means thai it seldom appeJfS in a file name. arid allows
this convention to be used for 5~.:ratch files. If you '!fe ~!:l;ing a on, your er<ise character should be a I H. as
we demOl1str;H~-d in ser:tion L 1 how this cDuld be set up.

·4·

sooner if file space becomes very tight. Thus, in running the dalf! command above. we don'[
really want \0 save the output forever. so we would more likely do

date> #n01>l

].4. Metacharacters ill the shell

The shell has a large number of special characters (like '> ') which indicate special func­
lions. We say thai these notations have syl1laclic and semalTlic meaning to the shell. In general.
most characters which are neither letters nor digits have special meaning to the shell. We shall
shortly learn a means of quolalion which allows us to use meraciraraclers without the shell treat­
ing them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need
not worry about placing shell metacharacters in a leller we are sending via mail. or when we are
typing in text or data to some other program. NOle thaI the shell is only reading input when it
has prompted with '% '.

1.5. Input from files; pipelines

We learned above how to redirf!CI the standard ourpur of a command to a file. l! is also
possible to redirect the STandard inpu/ of a command from a file. This is not often necessary
since most commands will read from a file whose name is given as an argument. We can give
the command

sort < data

to run the sorl command with standard input. where the command normally reads its input.
from the file 'data'. We would more likely say

sorl data

lelling the SOri command open the file 'data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its srandard il1pl.Jl. Since we did not redireCl the
standard input. it would sort lines as we typed them on the terminal until we typed aID to
indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of another, i.e. to run the commands in a sequence known as a plpelille.
For instance the command

Is -5

normally produces a list of the files in our directory with the size of each in blocks of 512 char­
acters. If we are interested in learning which of our files is largest we may wish to have this
sorted by size rather than by name. which is the default way in which Is sorts. We could look at
the many options of Is to see if there was an option to do this but would eventually discover
that there is not. Instead we can use a couple of simple options of the sorr command. combin­
ing it with Is to get what we want.

The -n option of sort specifies a numeric son rather than an alphabetic sort. Thus

Is -s I sort -1'1

specifies that the output of the Is command run with the option -sis to be pIped to the com­
mand sorr run with the numeric sort option. This would give us a sorted lisl 'Jf our files by
size. but with the smaliest first. We could then use the -r reverse sort option and the head
command in combination with the previous command doing

- 5 -

Is -5 I sort -n -ri head -5

Here we have taken a list of our files sorted alphabetically. each with the size in blocks. We
have run this to the standard input of the sort command asking it to sort numerically in reverse
order (largest first). This output has thf::n been run into the command head which gives us the
first few lines. In this case we have asked head for the first 5 lines. Thus this com'mand gives
us the names and sizes of our 5 larsest files.

The notation introduced above is called the pipe mechanism. Commands separated by .!.
characters are connected together by the shell and the standard output of each is run into the
standard input of the next. The leftmost command in a pipeline will normally take its standard
input from the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism: one important
use of pipes which is illustrated there is in the routing of information to the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX pall,.
names consist of a number of componelllS separated by 'f'. Each component except the last
names a directory in which the next component resides. in effect specifying the palh of direc·
tories to follow to reach the file. Thus the path name

letc/motd

specifies a file in the directory 'etc' which is a subdirectory of the rOOI directory' f'. Within this
directory the file named is 'motd' which stands for 'message of the day'. A pat/lllam!! that
begins with a slash is said to be an absolute pathname since it is specified from the absolute top
of the entire directory hierarchy of the system (the rooil. Palhl/ames which do not begin with
'f' are interpreted as starting in the current orkillg direclory, which is. by default, your hOll/!!
directory and can be changed dynamically by the cd change directory command. Such path.
names are said to be relative to the working directory since they are found by starting in the
workins directory and descending to lower levels of directories for each compol/en(of the path­
name. If the path name contains no slashes at all then the file is contained in the working direc·
tory itself and the pathname is merely the name of the file in this directory. Absolute path·
names have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and '.·s (periods). In fact.
all printing characters except 'f' (slash) may appear in filenames. It is inconvenient to have
most non-alphabetic characters in filenames because many of these have special meaning to the
shell. The character '.' (period) is not a shell·metacharacter and is often used to separate the
extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of the
name that is left when a trailing '.' and following characters which are not '.' are stripped off).
The file 'prog.c' might be the source for a C program. the file 'prog.o· the corresponding object
file, the file 'prog.errs' the errors resulting from a compilation of the program and the file
·prog.output' the output of a run of the program.

If we wished to refer to all four of these files in a command. we could use the notation

prog ••

This word is expanded by the shell. before the command to which it is an argument is exe·
cuted, into a list of names which begin with 'prog.'. The character ,., here matches any
sequence (including the empty sequence) of characters in a file name. The names which match
are alphabetically sorted and placed in the argullle/ll /iSI of the command. Thus the command

echo prog.·

will echo the names

·6-

prog.c prog.errs prog.O prog.output

Note that the names are in sorted order here, and a different order than we listed them above.
The echo command receives four words as arguments, even though we only typed one word as
as argument directly. The four words were generated by filename expanSIOn of the one input
word.

Other notations for filename expansion are also available. The character ", matches any
single character in a filename. Thus

echo? ?? ???

will echo a line of filenames; first those with one character names. then those with two charac­
ter names, and finally those with three character name5. The names of each length will be
independently sorted.

Another mechanism consists of a sequence of characters between '[' and 'J'. This
melasequence matches any single character from the enclosed set. Thus

prog. [col

will match

prog.c prog.o

in the example above. We can also place two characters around a '-' in this notation to denote
a range. Thus

chap. [1- 5]

might match files

chap.1 chap.2 chap.3 chapA chap.S

if they existed. This is shorthand for

chap. [12345J

and otherwise equivalent.

An important point to note is that if a lis! of argument words to a command (an ar!(lIml!l7I

list) contains filename expansion syrllax. and if this filename expansion syntax fails to match
any existing file names, then the shell considers this to be an error and prints a diagnostic

No match.

and does no! execute the command.

Another very important point is that files with the character ': at the beginning are
treated specially. Neither .. , or '?' or the '[' 'J' mechanism will match it. This prevents
accidental matching of the filenames '.' and ' . .' in the working directory which have special
meaning to the system. as well as other files such as .cshrc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc­
tory of other users. This notation consists of the character ,-, (tilde) followed by another users'
login name. For instance the word '-bill' would map to the patnname '/usT/bill' if the home
directory fOf 'bill' was 'lusT/bill'. Since, on large systems, users may have login directories
scattered over many different disk volumes with different prefix directory names. this nolation
provides a reliable way of accessing the files of other users.

A special case of this notation consists of a ,-. alone, e.g. '-/mbox'. This notation is
expanded by the shell into the file 'mbox' in your home directory, i.e. into '/usr/billfmbox' for
me on Ernie Co-vax. the UCB Computer Science Department V AX machine. where this docu­
ment was prepared. This can be very useful if you have used cd to change to another directory
and have found a file you wish 10 copy using cpo If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile lusr Ibill

since my home directory is lusr/bill.

- 7 -

There also exists a mechanism using the cbaracters 'f' and 'j' for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files. are the names of files which do not yet exist. are not thus conveniently
described. This mechanism will be described much later. in section 4.2. as it is used less fre­
quently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharac­
ters pose a problem in that we cannot use them directly as parts of words. Thus the command

echo'

will not echo the character •• '. II will either echo an sorted list of filenames in the current
It'orkill/(dir~crory. or print the message 'No match' if there are no files in the working directory.

The recommended mechanism for placing characters which are neither numbers. digits •
• /' .• .' or • -' in an argument word to a command is to enclose it with single quotation charac­
ters •.•• i.e.

echo ••.

There is one special character '!' which is used by the hisrory mechanism o{ the shell and which
cannot be ~scapt!d by placing it within ." characters. It and the character ." itself can be pre­
ceded by a single '\' to prevent their special meaning. Thus

echo \"\!
prints

'!

These two mechanisms suffice to place any printing character into a word which is an argument
to a shell command. They can be combined. as in

echo \ •.•.

which prints ..
since the first '\' escaped the first ." and the •• ' was enclosed between ... characters.

1.8. Tl'rminating commands

When you are executing a command and the shell is waiting for it to complete there are
several ways to (orce it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely
to continue for several minutes unless you stop it. You can send an tNTERRUPT Signal to the car
command by typing the DEL or RUBOUT key on your terminal.' Since car does not take any pre­
cautions to avoid or otherwise handle this signal the INTERRUPT will cause it 10 terminate. The
shell notices that car has terminated and prompts you again with '% '. If you hit tNTERRUPT

"Many users usc S/(dl) to chanae the interrupt charac:ter to re.

- 8 •

again. the shell will just repeat its prompt since it handles INTERR l!PT signals and chooses to
continue to execute commands rather than terminating like COl did. which would have the effect
of logging you out.

Another way in which many programs terminate is when they get an end-of-file from their
standard input. Thus the mail program in the first example above was terminated when we
typed aID which generales an end-of-file from the standard input. The shell also terminates
when it gets an end·of·file printing 'logout'; UNIX then logs you off the system. Since this
means that typing too many TD's can accidentally log us off. the shell has a mechanism for
preventing this. This iglloree%ption will be discussed in section 2.2.

If a command has its standard input redirected from a file. then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared. text

the mail commandwillterminatewithou!ourtypingaTD.This is because it read to the end­
of·file of our file 'prepared. text' in which we placed a message for 'bill' wilh an editor program.
We could also have done .

cal prepared. text I mail bill

since the COl command would then have written the text through the pipe 10 the standard input
of the mail command. When the cal command completed it would have terminated~ closing
down the pipeline and the mall command would have received an end-of-file from it and ter­
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been slopped by sending an !l\TERRL'PT.

Another possibility for stopping a command is 10 suspend its execution temporarily. with
the possibility of continuing execution later. This is done by sending a STOP signal via typing a
1Z. This signal causes all commands funning on the terminal (usually one but more if a pipe­
line is executing) to become suspended. The shell notices that the command (5) have been
suspended. types 'Slopped' and then prompts ·for a new command. The previously executing
command has been suspended. but otherwise unaffected by the STOP signal. Any other com­
mands can be executed while the original command remains suspended. The suspended com­
mand can be continued using the fg command with no arguments. The shell will then relype
the command to remind you which command is being continued, and cause the command to
resume execution. Unless any input files in use by the suspended command have been
changed in the meantime. the suspension has no effect whatsoever on the execution of the
command. This feature can be very useful during editing. when you need to look at another
tile before cominuing. An example of command suspension follows.

% mail harold
Someone just copied a big file into my directory and its name is
lZ
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[J 1 + Stopped mail harold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example someone was sending a message to Harold and forgot the name of the file he
wanted to mention. The mail command was suspended by typing fZ. When the shell noticed

- 9-

that the mail program was suspended, it typed 'Stopped' and prompted for a new command.
Then the Is command was typed to find out the name of the file. The jobs command was run to
find out which command was suspended. At this time the fg command was typed to continue
execution of the mail program. Input to the mail program was then continued and ended with
a ID which indicated the end of the message at which time the mail program typed EOT. The
jobs command will show which commands are suspended. The IZ should only be typed at the
beginning of a line since everything typed on the current line is discarded when a signal is sent
from the keyboard. This also happens on INTERRUPT, and QUIT signals. More information on
suspending jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by
typing a 1\. This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the program 'a.out·s
state when it terminated due to the QUIT signal. You can examine this file yourself, or forward
information to the maintainer of ihe program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill com­
mand. See section 2.6 for an example.

If you want to examine the output of a command without having it move off the screen as
the output of the

cat /etc/passwd

command will, you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types '- - More - -' at which
point you can hit a space to get another screenful. a return to get another line. or a 'q' to end
the more program. You can also use more as a filter. i.e.

cat letc/passwd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the IS key to stop the
typeout. The typeout will resume when you hit IQ or any other key, but IQ is normally used
because it only restarts the output and does not become input to the program which is running.
This works well on low-speed terminals. but at 9600 baud it is hard to type IS and IQ fast
enough to paginate the output nicely. and a program like more is usually used.

An additional possibility is to use the 10 flush output character; when this character is
typed, all output from the current command is thrown away (quickly) until the next input read
occurs or until the next shell prompt. This can be used to allow a command to complete
without having to suffer through the output on a slow terminal; 10 is a toggle. so flushing can
be turned off by typing 10 again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way
in which it operates. The remaining sections will go yet further into the internals of the shell.
but you will surely want to try using the shell before you go any further. To try it you can log
in to UNIX and type the following command to the system:

chsh myname /bin/csh

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to
let onto the system. Thus I would use 'chsh bill /bin/csh'. You onl!' have to do this once: it

• 10 •

lakes effect at next login. You are now ready to try using 1:517.

Before you do the 'chsh' command. the shell you are using when you log into the system
is '/oin/sh'. in fact. much of the above discussion is applicable to '/bin/sh'. The next section
will introduce many features particular to csh so you should change your shell \0 csh before you
begin reading it.

• 11 •

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login. the shell is started by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells which you may start during
your terminal session will read from this file. We will laler see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A 10[(111 shell. executed after YOLI login to the system. will, after it reads commands from
.cshrc. read commands from a file .Iogill also in your home directory. This file contains com­
mands which you wish to do each time you login to the UNIX system. My .Iogin file looks
something like:

set ignoreeof
set mail- (/usr/spool/maillbill)
echo "S/promptlusers' ; users
alias 15 \

"set noglob; eval 'tset -5 -m diaiup:clOOrv4pna -m plugboard:?hp2621nl .":
15: stty intr 1 C kill r U crt
set lime-IS history-lO
msgs -f
if (-e Smail) then

endif

echo "S!prompt!mail"
mail

This file contains several commands to be executed by U:"IX each time I login. The first is
a sel command which is interpreted directly by the shell. It sets the shell variable Iglloreeo/"
which causes the shell to not log me off if I hit TO. Rather. 1 use the iOKOUl command to log
off of the system. By setting the mail variable, I ask the shell to walch for incoming mail to
me. Every 5 minutes the shell looks for this file and teJIs me if more mail has arrived there.
An alternative to this is to put the command

biff y

in place of this seT; this will cause me to be notified immediately when mail arrives. and to be
shown the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out
statistics lines for commands which execute for at least 15 seconds of CPU time. The variable
'history' is set to 10 indicating that I want the shell to remember the last 10 commands I type
in its his/ory list, (described later).

I create an alias "IS" which executes a Iset (!) command setting up the modes of the ter­
minal. The parameters to tset indicate the kinds of terminal which I usually use when not on a
hardwired port. I then execute "15" and also use the SffY command to change the interrupt
character to 1 C and the line kill character to 1 U.

I then run the 'msgs' program, which provides me with any system messages which I
have not seen before; the' -f option here prevents it from telling me anything if there are no
new messages. Finally, if my maiibox file exists. then I run the 'mail' program to process my
mail.

When the 'mail' and 'msgs' programs finish, the shell will finish processing my ./OKII1 file
and begin reading commands from the terminal, prompting for each with '% '. When I log off
(by giving the logout command) the shell will print 'logout' and execute commands from the
file' .logout' if it exists in my home directory. After that the shell will terminate and UNIX will
log me off the system. If the system is not going down, I will receive a new login message. In

• 12 •

any case, after the: 'logout' message the shell is committed to terminating and will take no
further input from my terminal.

2,2, Shell variables

The shell maintains a set of variables, We saw above the variables his/ory and lime which
had values ']0' and 'IS'. In fact, each shell variable has as value an array of zero or more
sirings. Shell variables may be assigned values by the set command. It has several forms, the
most useful of which was given above and is

set name-value

Shell variables may be used to store values which are to be used in commands later
through a substitution mechanism. The shell variables most commonly referenced are, how­
ever, those which the shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The sef command with
no arguments shows the value of all variables currently defined (we usually say set) in the shell.
The default value for path will be shown by seT to be

% set
argv
cwd
home
path
prompt
shell
Slams
term
user
%

()

lusr/bill
lusr/bill
(. lusducb Ibin lUST/bin)
%
Ibin/csh
o
clOOrv4pna
bill

This output indicates that the variable path points to the current directory '.' and then
'/usr/ucb', '/bin' and '/usT/bin', Commands which you may write might be in '.' (usually one
of your directories). Commands developed at Berkeley, live in '/usr/ucb' while commands
developed at Bell Laboratories live in 'fbin' and '/usr/bin'.

A number of locally developed programs on the system live in the directory '/usr/local'.
if we wish that all shells which we invoke to have access to these new programs we can place
the command

set path- (. lusr/ucb /bin lusTlbin lUST/local)

in our file .cshrc in our home directory. Try doing this and then logging Oul and back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you
insert into your path and determines which commands are contained there. Except for the
current directory '.', which the shell treats specially, this means that if commands are added to
a directory in your search path after you have slarted the shell, they will not necessarily be
found by the shell. If you wish to use a command which has been added in this way. you
should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it
will find the newly added command, Since the shell has to look in the current directory'.' on

- 13 -

each command, placing it at the end of the path specification usually works equivalently and
reduces overhead.

Other useful built in variables are the variable home which shows your home directory.
cwd which contains your currenl working directory, the variable 1?l1oreeqfwhich can be set in
your .login file 10 tell the shell not to exit when it receives an end-of-file from a rermina! (as
described above). The variable 'ignoreeof is one of several variables which the shell does no!
care about the value of. only whether they are set or unset. Thus to sel this variable you simply
do

sel ignoreeof

and 10 unset it do

unset ignoreeof

These give the variable 'ignoreeof no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables !loclabber and ilia/I.
The m~tasyntax

> filename

which redirects the standard output of a command will overwrite and destroy the previous con­
tents of the named file. In this way you may accidentally overwrite a file which is valuable. If
you would prefer that the shell not overwrite files in this way you can

set nodobber

in your .login file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date >! now

if you really wanted to overwrite the contents of 'now'. The' >!' is a special metasyntax indi­
cating that clobbering the file is ok. t

2.3. The shell's history lis!

The shell can maintain a hIS/Dry lisl imo which it places the words of previous commands.
II is possible to use a notation to reuse commands or words from commands in forming new
commands. This mechanism can be used to repeat previous commands or to correct minor typ­
ing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechan­
ism of the shelL In this example we have a very simple C program which has a bug (or two) in
it in the file 'bug.c', which we 'cat' ou! on our terminal. We then try to run the C compiler on
it, referring to the file again as '!S'. meaning the last argument to the previous command. Here
the '!' is the history mechanism invocation me(acharacter, and the'S' stands for the last argu­
ment, by analogy to'S' in Ihe editor which stands for the end of the line. The shell echoed the
command, as it would have been typed without use of the history mechanism. and then exe­
cuted it. The compilation yielded error diagnostics so we now run the editor on the file we
were trying to compile, fix the bug. and run the C compiler again, this time referring to this
command simply as '!c', which repeats the last command which started with the letter 'c'. If
there were other commands starting with 'c' done recently we could have said '!cc' or even
'!cc:p' which would have primed the last command starting with 'cc' without executing it.

tThe space between the "!' and the word 'now' is critical here:. as '~now' would be an invocation of the '."sum
mechanism. and have a totally different effect.

% cat bug.c
mainO

printf("hello);
I
% cc!S
cc bug.c

- 14 -

"bug. c·, line 4: newline in string or char constant
"bug.c", line 5: syntax error
% ed!S
ed bug.c
29
4s/);I"&/p

w
30
q
% !c

printf("hello");

cc bug.c
% a.out
hello% !e
ed bug.c
30
45/10/10\ \n/p

printf("hello\n");
w
32
q
%!c -0 bug
cc bug.c -0 bug
% size a.out bug
a.out: 2784+364+1028 - 4176b - Oxl0S0b
bug: 2784+364+1028 - 4176b - Oxl0S0b
% Is -I!·
Is -I a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
0/0 num bug.c I spp

3932 Dec 1909:41 a.out
3932 Dec 1909:42 bug

spp: Command not found.
% TsppTssp
num bug.c I ssp

1 mainO
3 I
4
5)

% !! Ilpr

printf("hello\n");

num bug.c I ssp Ilpr
%

- 15 •

After this recompilalion, ·we ran the resulting 'a.out' file. and then noting that there still
was a bug. ran the editor again. After fixing the program we ran the C compiler again. but
tacked onto the command an extra '-0 bug' telling the compiler to place the resultant binary
in the file 'bug' rather than 'a.out'. In general. the history mechanisms may be used anywhere
in the formation of new commands and other characters may be placed before and after the
substituted commands.

We then ran the 'size' command to see how large the binary program images we have
created were. and then an 'Is -I' command with the same argument list. denoting the argue
ment lisl •• '. Finally we ran the program 'bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file
'bug.c'. In order to compress OUI blank lines in the output of 'num' we ran the output through
the filter 'ssp', but misspelled it as spp. To correct this we used a shell substitute. placing the
old text and new text between T characters. This is similar to the substitute command in the
editor. Finally, we repeated the same command with '!!', but sent its output to the line printer.

There are other mechanisms available for repeating commands. The hIStory command
prints out a number of previous commands with numbers by which they can be referenced.
There is a way to refer to a previous command by searching for a string which appeared in it.
and there are other. less useful. ways to select arguments to include in a new command. A
complete description of all these mechanisms is given in the C shell manual pages in the L''iIX
Programmers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input
commands. This mechanism can be used to simplify the commands you type. to supply default
arguments to commands. or to perform transformations on commands and their arguments.
The alias facility is similar to a macro facility. Some of the features obtained by aliasing can be
obtained also using shell command files, but these take place in another instance of the shell
and cannot directly affect the current shells environment or involve commands such as cd
which must be done in the current shell.

As an example. suppose that there is a new version of the mail program on the system
called 'newmail' you wish to use, rather than the standard mail program which is called 'mail".
!f you place the shell command

alias mail newmail

in your .csllre file, the shell will transform an input line of the form

mail bill

into a call on 'newmail'. More generally, suppose we wish the command 'Is' to always show
sizes of files. that is to always do '-5'. We can do

alias Is Is -s

or even

alias dir Is - s

creating a new command syntax 'dir' which does an 'Is -5'. If we say

dir -bill

then the shell will translate this to

Is -s Imnt/bill

Thus the alias mechanism can be used to provide short names for commands. to provide
default arguments, and to define new shor! commands in terms of other commands. It is also
possible to define aliases which contain multiple commands or pipelines. showing where the

- 16 •

arguments to the original command are to be substituted using the facilities of the hislOf)
mechanism. Thus the definition

alias cd 'cd \!. ; Is '

would do an Is command after each change directory cd command. We enclosed the entire alias
definition in ", characters 10 prevent most substitutions from occurring and the character ':'
from being recognized as a metacharacter. The '!' here is escaped with a '\' to prevent it from
being interpreted when the alias command is typed in. The '\! •• here substitutes the emire
argument list 10 the pre-aliasing cd command. without giving an error if there were no argu­
ments. The ';' separating commands is used here to indicate that one command is to be done
and then the next. Similarly the definition

alias whois 'grep \!T le!c/passwd'

defines a command which looks up its firs! argument in the password file.

Warning: The shell currently reads the .,·sJm: file each time it starts up. If you place a
large number of commands there, shells will tend to start slowly. A mechanism for saving the
shell environment after reading the .cshn: file and quickly restoring it is under development. bUI
for now you should try to limit the number of aliases you have to a reasonable number ... 10 or
15 is reasonable, 50 or 60 will cause a noticeable delay in starting up shells. and make the sys­
tem seem sluggish when you execute commands from within the editor and other programs.

2.5. More re<iiredion; > > and >&
There are II few more notations useful to the terminal user which have not been intro­

duced yet.

In addition to the standard output. commands also have a diagnostic output which is nor·
mally directed to the terminal even when the standard output is redirected to a file or a pipe. II
is occasionally desirable to direct the diagnostic output along with the standard output. For
instance if you want to redirect the output of a long running command into a file and wish to
have a record of any error diagnostic it produces you can do

command > &: file

The' > &. here tells the shell to roWe both the diagnostic output and the standard output into
'file'. Similarly you can give the command

command 1& lpr

to route both standard and diagnostic output through the pipe to the line printer daemon Ipr.#:

Finally. it is possible to use the form

command > > file

to place OUlput at the end of an existing file. t

#A comm.nd form

command > &! tile

exists. and is used when IUx/vbber i:s set and file already exists.
tlf J1ociobiMr is set. then an error will result ifji/e does not exist. otherwise the shel: will create .tile if it
doesn'l exist. A rorm

command > >, file

makes it nOI be an error for file to no! exis~ when noclob~r is set.

- 17 -

2.6. Jobs; Background. Foreground, or Suspended
When one or more commands are typed together as a pipeline or as a sequence of com­

mands separated by semicolons. a single job is created by the shell consisting of these com­
mands together as a unit. Single commands without pipes or semicolons create the simplest
jobs. Usually, every line typed to the shell creates a job. Some lines that create jobs (one per
line:> are

sort < data
Is -slsort -n I head -5
mail harold

If the metacharacter '&' is typed at the end of the commands. then the job is started as a
backgroulld job. This means that the shell does not wait for it to complete but immediately
prompts and is ready for another command. The job runs i/1 fhl! backRroul1d at the same time
that normal jobs. called foreground jobs, continue to be read and executed by the shell one at a
time. Thus

du > usage &

would run the du program. which reports on the disk usage of your working directory (as well
as any directories below it), put the output into the file 'usage' and return immediately with a
prompt for the next command without out waiting for du to finish, The du program would con­
tinue executing in the background until it finished, even though you can type and execute more
commands in the mean time. When a background job terminates, a message is typed by the
shell just before the next prompl telling you that the job has completed, In the following
example the du job finishes sometime during the execution of the mail command and its com­
pletion is reported just before the prompt after the mail job is finished.

% du > usage &
[lJ 503
% mail bill
How do you know when a background job is finished?
EOT
[1 J - Done du > usage
o/n

If the job did not terminate normally the 'Done' message might say something else like
'Killed', If you want the terminations of background jobs to be reported at the time they occur
(possibly interrupting the output of other foreground jobs), you can set the IIOflfy variable. In
the previous example this would mean that the 'Done' message might have come right in the
middle of the message to Bill. Background jobs are unaffected by any signals from the key­
board like the STOP, INTERRUPT. or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the job
as well as the working directory where the job was started. Each job in the table is either run­
ning in the foreground with the shell waiting for it to terminate, running ill fhe backj!rollnd. or
suspended. Only one job can be running in the foreground at one time. but several jobs can be
suspended or running in the background at once. As each job is started. it is assigned a small
identifying number called the job number which can be used later to refer to the job in the com­
mands described below. Job numbers remain the same until the job terminates and ihen are
re·used,

When a job is started in the backgound using '&', its number, as well as the process
numbers of all its (top level) commands. is typed by the shell before prompting you for another
command. For example,

0/0 Is -s I sort -n > usage &
[2] 2034 2035
%

• 18 •

runs the 'Is' program with the '-5' options, pipes this output into the 'son' "rogram with the
'-n' option which puts its output into the file 'usage'. Since the '&' was at the end of the line.
these two programs were started together as a background job. After starting the job. the shell
prints the job number in brackets (2 in this case) followed by the process number of each pro­
gram slarted in the job. Then the shell immediales prompts for a new command. leaving the
job funning simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing 1 Z which sends
a STOP signal to the currently running foreground job. A background job can become
suspended by using the SlOp command described below. When jobs are suspended they merely
SlOP any further progress until started again. either in the foreground or the backgound. The
shell notices when a job becomes stopped and reports this fact. much like it reports the termi­
nation of background jobs. For foreground jobs this looks like

0/0 du > usage
IZ
Stopped
'Yo

'Stopped' message is typed by the shell when it notices that the du program slopped. For back­
ground jobs. using the SlOP command. it is

% sort usage &
[I] 2345
% stop %1
[!] + Slopped (signal)
0/0

sort usage

Suspending foreground jobs can be very useful when you need to temporarily change what you
are doing (execute other commands) and then return to the suspended job. Also. foreground
jobs can be suspended and then continued as background jobs using the bg command. allowing
you to continue other work and stop waiting for the foreground job to finish. Thus

% du > usage
IZ
Slopped
0/0 bg
[lJ du > usage &
%

starts 'du' in the foreground, stops it before it finishes. then continues It In the background
allowing more foreground commands to be executed. This is especially helpful when a fore­
ground job ends up taking longer than you expected and you wish you had started it in the
backgound in the beginning.

All job camrol commands can take an argument thaI identifies a particular job. All job
name arguments begin with the character '%'. since some of the job control commands also
accept process numbers (printed by the ps command,) The default job (when no argument is
given) is called the currem job and is identified by a '+' in the outpul of the jobs command.
which shows you which jobs you have. When only one job is stopped or running in the back­
ground (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the currel1l job and the existing current job
becomes the previous job - identified by a '-' in the output of jobs. When the current job ter­
minates, the previous job becomes the current job. When given. the argument is either '%-'
(indicating the previous job); '%#:', where #: is the job number; '%pref where pref is some

• 19·

unique prefix of the command name and arguments of one of the jobs; or ,%,. followed by
some string found in only one of the jobs.

The jobs command types the table of jobs. giving the job number. commands and status
('Stopped' or 'Running') of each backgound or suspended job. With the '-I' option the pro­
cess numbers are also typed.

% du ::> usage &
[JJ 3398
% Is -s I sort -n ::> myfile &
121 3405
% mail bill
TZ
Stopped
% jobs
11 J - Running
(2] Running
(3) + Stopped
% fg %ls
Is -5 I sort -n ::> myfile
% more myfile

du ::> usage
Is -5 I sorl -n ::> myfile
mail bill

The fg command runs a suspended or background job in the foreground. It is used to res­
tart a previously suspended job or change a background job to run in the foreground (allowing
signals or input from the terminal). In the above example we used Ig to change the 'Is' job
from the background to the foreground since we wanted to wait for it to finish before looking at
its output file. The bg command runs a suspended job in the background. II is usually used
after Slopping the currently running foreground job with the STOP signal. The combination of
the STOP signal and the bg command changes a foreground job into a background job. The SlOp

command suspends a background job.

The kill command terminates a background or suspended job immediately. In a<kiilion to
jobs, it may be given process numbers as arguments. as printed by ps. Thus. in the example
above, the running du command could have been terminated by the command

%k.ill%!
[JJ Terminated
%

du ::> usage

The notify command (no! the variable mentioned earlier) indicates that the termination of
a specific job should be reported at the time it finishes instead of wailing for the next prompt.

If a job running in the background tries to read input from the terminal it is automatically
stopped. When such a job is thell run in the foreground, input can be given to the job. If
desired. the job can be run in the background again until it requests input again. This is illus­
trated in the following sequence where the '5' command in the text editor might take a long
time.

% ed bigfile
120000
1,$s/thisword/thatwordl
lZ
Stopped
%bg
[lJ ed bigfile &
%
... some foreground commands
UJ Stopped (tty input) ed bigfile
% fg

ed bigfile
w
120000
q
0/0

- 20 •

So after the '5' command was issued, the 'ed' job was stopped with IZ and then put in the
background using bg. Some time later when the's' command was finished. ed tried to read
another command and was stopped because jobs in the backgound cannot read from the termi­
nal. The.lk command returned the 'ed' job to the foreground where it could once again accept
commands from the tenninal.

The command

SHy (ostop

causes all background jobs run on your terminal to Slop when they are about to write output to
the terminal. This prevents messages from background jobs from interrupting foreground job
output and allows you to run a job in the background without losing terminal output. It also
can be used for interactive programs that sometimes have long periods without interaction.
Thus each time it outputs a prompt for more input it will stop before the prompt. It can then
be run in the foreground using fF<, more input can be given and, if necessary Slopped and
returned to the background. This Slfy command might be a good thing to put in your .lo~1II file
if you do not like output from background jobs interrupting your work. It also can reduce the
need for redirecting the output of background jobs if the output is not very big:

% sHy tOSIOP
0/0 wc hugenle &.
[J] 10387
0/0 ed text
... some: time later
q
[I] Stopped (tty output) we hugefile
% fg we
we hugefile:

13371 30123 302577
0/0 sHy -tosIOP

Thus after some time the 'we' command, which counts the lines. words and characters in a file.
had one line of output. When it tried to write this to the terminal it stopped. By restarting it in
the foreground we allowed it to write on the tenninal exactly when we were ready to look at its
output. Programs which attempt to change the mode of the terminal will also block. whether or
not IOSrop is sel, when they are not in the foreground, as it would be very unpleasant to have a
background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows
nothing about background jobs started in other login sessions or within shell files. The ps can
be used in this case to find oul about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6. the shell is always in a particular workinR directory. The
'change directory' command eMir (jts short form cd may also be used) changes the working
directory of the shell. that is. changes the directory you are located in.

lt is useful to make a directory for each project you wish to work on and to place all files
related to that project in that directory. The 'make directory' command. mkdir. cre3tes a new
directory. The p ... d ('print working directory') command reports the absolute path name of the
working directory of the shell, that is, the directory you are located in. Thus in the example
below:

%pwd
lusrlbill
% mkdir new paper
% chdir newpaper
%pwd
lusrlbill/newpaper
%

- 21 -

the user has created and moved to the directory ne\l'{XI~r. where. for example. he might place
a group of related files ..

No matter where you have moved to in a directory hierarchy. you can return to your
'home' login directory by doing just

cd

with no arguments. The name'.: always means the directory above the current one in the
hierarchy. thus

cd ..

changes the shell's working directory to the one directly above the current one. The name ' ..•
can be used in any pathname. thus.

cd . .Iprograms

means change to the directory 'programs' contained in the directory above the current one. If
you have several directories for different projects under. say. your home directory. this short­
hand notation permits you to switch easily between them.

The shell always remembers the path name of its current working directory in the variable
cwd. The shell can also be requested to remember the previous directory when you change to a
new working directory. If the 'push directory' command pushd is used in place of the cd com­
mand. the shell saves the name of the current working directory on a directory stack before
changing to the new one. You can see this list at any time by typing the 'directories' command
dirs.

% pushd newpaper/references
-/newpaper/references -
% pushd lusr/lib/tmac
lusr/lib/tmac -Inewpaper/references -
% dirs
lusr/lib/tmac -/newpaper/references -
% popd
-/newpaper/references -
%. popd

%

The list is printed in a horizontal line, reading left to right. with a tilde n as shorthand for
your home directory-in this case '/usr/bill'. The directory stack is printed whenever there is
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usually
faster and more informative than pwd since it shows the current working directory as well as
any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first direc·
tory in the list. The 'pop directory' popd command without an argument returns you to the
directory you were in prior to the current one. discarding the previous current directory from
the stack (forgetting it). Typing popd several times in a series takes you backward through the
directories you had been in (changed to) by pushd command. There are other options to pushd
and popd to manipulate the contents of the directory stack and to change to directories not at
the top of the stack; see the csh manual page for details.

-22-

Since the shell remembers the working directory in which each job was started. it warns
you when you might be confused by restarting a job in the foreground which has a different
working directory than the current working directory of the shell. Thus if you start a back·
ground job. then change the shell's working directory and then cause the background job to run
in the foreground. the shell warns you that the working directory of the currently rtinning fore­
ground job is different from that of the shell.

% dirs -I
Imnt/bill
% cd myproject
% dirs
-/myproject
% ed prog.c
1143
1Z
Stopped
% cd.,
% Is
myproject
textfile
% fg
ed prog,c (wd: -/myproject)

This way the shell warns you when there is an implied change of working directory. even
though no cd command was issued. In the above example the 'ed' job was still in
'!mlll/bill/project' even though the shell had changed to '/mnt/bill'. A similar warning is
given when such a foreground job terminates or is suspended (using the STOP signal) since the
return to the shell again implies a change of working directory.

0/0 fg
ed prog.c (wd: -/myproject)
... after some editing

q
(wd now: -)
%

These messages are sometimes confusing if you use programs that change their own working
directories. since the shell only remembers which directory a job is started in. and assumes i l
Slays there. The' -I' option of jobs will type the working directory of suspended or background
jobs when it is different from the current working directory of the shell.

2.8. Useflll buill.in commands

We now give a few of the useful built·in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the existing
aliases. With no arguments it prints the current aliases. It may also be given only one argu·
ment such as

alias Is

to show the current alias for, e.g .. 'Is',

The echo command prints its arguments. It is often used in shell Scripts or as an interac·
tive command to see what filename expansions will produce.

The h,s/ory command will show the contents of the history list, The numbers given with
the history events can be used to reference previous events which are difficult to reference
using the contextual mechanisms introduced above. There is also a shell variable called prol//pt.

·23·

By placing a '!' character in its value the shell will there substitute the number of the current
command in the history list. You can use this number to refer to this command in a history
substitution. Thus you could

set prompt- '\! % .

Note that the '!' character had to be escaped here even within ," characters.
The limit command is used to restrict use of resources. With no arguments it prints the

current limitations:

cputime
tilesize
datasize
stacksize
coredumpsize

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

Limits can be set, e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.

The logout command can be used to terminate a login shell which has igl1oref!Q/"set.

The nhash command causes the shell to recompute a table of where commands are
located. This is necessary if you add a command to a directory in the current sheWs search
path and wish the shell to find it, since otherwise the hashing algorithm may tell the shell thut
the command wasn't in that directory when the hash table was computed.

The repeal command can be used to repeal a command several limes. Thus to make 5
copies of the file one in the file five you could do

repealS cat one > > five

The selenv command can be used to set variables in the environment. Thus

selenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program prill/elll' exisls
which will print Oul the environment. It might then show:

Thus

% printenv
HOME-/usr/bill
SHELL-/bin/csh
PATH - :lusr/ucb:/bin:/usr/bin:lusr/local
TERM-adm3a
USER-bill
%

The source command can be used to force the current shell to read commands from a file.

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login.

The lime command can be used to cause a command to be timed no matter how much
CPU lime it takes. Thus

- 24 •

% time cp letc/rc lusr/bill/rc
O.Ou 0.15 0:018% 2+11: 3+2io Ipf+Ow
% time we letc!rc lusr/bill/rc

52 178 1347 letc/rc
52 178 1347 lusr/bill/rc

104 356 2694 tOlal
O.lu O.ls 0:0013% 3+31: 5+3io 7pf+Ow
%

indicates that the cp command used a negligible amount of user time (u) and about 1ll0lh of a
system time (5); the elapsed time was ! second (0:01). there was an average memory usage of
21: bytes of program space and ! I: bytes of data space over the cpu time involved (2 + I k); the
program did three disk reads and two disk writes (3 + 2io). and took one page fault and was not
swapped (lpf+Ow). The word count command we on the other hand used O.! seconds of user
lime and 0.1 seconds of system time in less than a second of elapsed lime. The percemage
'13%' indicates Ihal over the period when it was active the command 'we' used an average of
13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used 10 remove aliases and variable definitions
from the shell, and unsellmv removes variables from the environment.

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are more
features of the shel! to be discussed here, and all features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the ./oreaci1 buill-in command
which can be used to run the same command sequence with a number of different arguments.

if you intend to use UNIX a lot you you should look through the rest of this document and
the shell manuai pages to become familiar with the other facilities which are available to you.

·25 •

3. Shell tontrol struttures and tommand scripts

3.1. Introduttion
It is possible to place commands in files and to cause shells to be invoked to read and exe­

cute commands from these files. which are called shell scripls. We here detail those features of
the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are 1101 useful for. There is a program called
make which is very useful for maintaining a group of related files or performing sets of opera­
tions on related files. For instance a large program consisting of one or more files can have its
dependencies described in a makejile which contains definitions of the commands used to create
these different files when changes occur. Definitions of the means for printing listings. cleaning
up the directory in which the files reside. and installing the resultant programs are easily. and
most appropriately placed in this makejile. This format is superior and preferable to maintain·
ing a group of shell procedures to maintain these files.

Similarly when working on a document a makejile may be created which defines how
different versions of the document are to be created and which options of IIroff or Irojf' are
appropriate.

3.3. Invocation and the argv variable
A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and' .. .' is replaced by a
sequence of arguments. The shell places these arguments in the variable arl1l' and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a
character> then a '/bin/csh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it.
This allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution
After each input line is broken into words and history substitutions are done on it. the

input line is parsed into distinct commands. Before each command is executed a mechanism
know as variable substitution is done on these words. Keyed by the character'S' this substitu·
tion replaces the names of variables by their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable argl' to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notatiol's are provided for accessing components and attributes of variables.
The notation

S?name

expands to 'I' if name is sel or to '0' if name is not sel. It is the fundamental mechanism used

- 26 •

for checking whether particular variables have been assigned values. All other forms of refer­
ence to undefined variables cause errors.

The notalion

S#name

expands to the number of elementS in the variable name. Thus

% sel argv- (a b cl
% echo S?argv
I
% echo S#argv
3
% unset argv
% echo S?argv
o
% echo Sargv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

Sargv[J 1
gives the first component of arg" or in the example above 'a'. Similarly

Sargv [S#argv J

would give 'c', and

Sargv[l- 21

would give 'a b'. Other notations useful in shell scripts are

Sn

where 1/ is an integer as a shorthand for

Sargv [1/ 1
the 1/ lh parameter and

S·

which is a shorthand for

Sargv

The form

5S

expands to the process number of the current shell. Since this process number is unique in the
system it can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input rearl from the shell's standard input
(not the script it is reading). This is useful for writing shell scripts that are interactive. reading
commands from the terminal. or even writing a shell script that acts as a filter. reading lines
from its input file. Thus the sequence

echo 'yes or no '\c'
set a-(5<)

would write out the prompt 'yes or no" without a newline and then read the answer into the

- 27 -

variable 'a'. In this case 'S#a' would be '0' if either a blank line or end-of-file (I OJ was typed.

One minor difference between 'SII' and 'Sargv[1I r should be noted here. The form
'Sargv[II)' will yield an error if n is not in the range 'I-S#argv' while 'Sn' will never yield an
out of range subscript error. This is for compatibility with the way older shells handled parame·
ters.

Another important point is that it is never an error to give a subrange of the form 'n -';
if there are less than n componentS of the given variable then no words are substituted. A
range of the form 'm-n' likewise returns an empty vector without giving an error when 11/

exceeds the number of elements of the given variable, provided the subscript 1/ is in range.

3.S. Expressions

In order for interesting shell scripts to be constructed it must be possible to evaluate
expressions in the shell based on the values of variables. In fact, all the arithmetic operations
of the language C are available in the shell with the same precedence that they have in C. In
particular, the operations '--' and '!-' compare strings and the operators '&&' and 11" imple·
ment the boolean andlor operations. The special operators' --' and '!-' are similar to '- -'
and '! -' except that the string on the right side can have pattern matching characters (like·. ?
or (]) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where '?' is replace by a number of single characters. For instance the expression primitive

-e filename

tell whether the file 'filename' existS. Other primitives test for read, write and execute access
to the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normall)". by a primitive of the form
'I command)' which returns true, i.e. '1' if the command succeeds exiting normally with exit
status 0, or '0' if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required, it can be executed
and the variable 'Sstatus' examined in the next command. Since 'Sstatus' is set by every com·
mand. it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and
some of its control structure follows:

% cat copyc

- 28 -

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i (Sargv)

end

if (Si !- ".!:) continue # not a .c file so do nothing

if (! -r -lbackup/Si:t) then

endif

echo Si:t not in backup ... not cp\'ed
continue

cmp -s Si -lbackup/Si:t # to set $status

if ($status !- 0) then
echo new backup of Si
cp Si -/backup/$i:t

endif

This script makes use of the jareac" command, which causes the shell to execute the com­
mands between the jareach and the matching end for each of the values given between '(' and
')' with the named variable, in this case 'i' set to successive values in the list. Within this loop
we may use the command break to stop executing the loop and cOl1linue to prematurely ter­
minate one iteration and begin the next. After the joreQch loop the iteration variable (; in this
case) has the value at the last iteration.

We set the variable nog/ab here to prevent filename expansion of the members of arg\"o
This is a good idea, in general, if the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters. It
is also possible to quote each use of a'S' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementation of the
shell.t

tThe following two formats are not currently acceptable to the shell:

and

If (expression)
then

command

endif

Won't work!

if (expression) tben command .ndlC # Won't work

- 29 -

The shell does have another form of the if statement of the form

If (expression) command

which can be wri tlen

If (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not involve
'I', '&' or ';' and must not be another control command. The second form requires the final
'\' to immediately precede the end-of-line.

The more general i!statements above also admit a sequence of eise-Ifpairs followed by a
single else and an endif, e.g.:

If (expression) then
commands

else if (expression) Ihen
commands

else
commands

endii

Another important mechanism used in shell scripts is the ':' modifier. We can use the
modifier ':r' here to extract a root of a filename or ';e' (0 extract the ex/eIlSIOII. Thus if the
variable i has the value '/mnt/foo.bar' then

% echo $i $i;r Si;e
Imnt/foo.bar Imnt/foo bar
%

shows how the ':r' modifier strips off the trailing '.bar' and the the ';e' modifier leaves only [he
'bar'. Other modifiers will take off the last component of a pathname leaving the head ':h' or
all bllt the last component of a pathname leaving the tail ';('. These modifiers are fully
described in the csh manual pages in the programmers manual. It is also possible to use the
command SUbslifUlion mechanism described in the next major section to perform modifications
on strings to then reenter the shells environment. Since each usage of this mechanism involves
the creation of a new process, it is much more expensive to use than the ':' modification
mechanism.# Finally. we note that the character '#'Iexica!ly introduces a shell comment in
shell scripts (but no! from the terminal). All subsequent characters on the input line after a
'#' are discarded by the shell. This character can be quoted using ." or '\' to place it in an
argument word.

#11 is a1so important [0 note thoU the current implemetHation of the shell limits the number of ':' modifiers
on 2 'S' substitution to 1. Thus

% echo Si S;:h:l
la!b/e /a/b:t
%

does Mot do ",!tat one would expect.

- 30 •

3.7. Other control structures

The shell also has control structures "'hile and s"'ilch similar to those of C. These take the
forms

and

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case slm:
commands
breaksw

default:

endsw

commands
breaksw

For details see the manual section for c:rh. C programmers should nole that we use breaksu' to
exit from a s"'ifCh while break exits a "'hile or fareach loop. A common mistake to make in csh
scripts is to use break rather than breaks,," in switches.

Finally. csh allows a gala statement. with labels looking like they do in C. i.e.:

loop:
commands
golo loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which
is running the script. This is dilferenl from previous shells running under UNIX. It allows shell
scripts to fully participate in pipelines. but mandates extra notalion for commands which are to
take in line data.

Thus we need a melanolalion for supplying inline data to commands in shell scripts, As
an example, consider this script which runs the editor to delete leading blanks from the lines in
each argument file

- 31 -

% cat deblank
deblank - - remove leading blanks
foreach i ($argv)
ed - $i < < 'EOF'
I.Ss/f! 1°//
w
q
'EOF'
end
%

The notation '< < 'EOF" means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly "EOF". The fact that
the 'EOF is enclosed in ,,, characters, i.e. quoted, causes the shell to not perform variable sub­
stitution on the intervening lines. In general, if any part of the word following the' < <' which
the shell uses to terminate the text to be given to the command is quoted then these substitu­
tions will not be performed, In this case since we used the form '1.5' in our editor script we
needed to insure that this 'S' was not variable substituted. We couid also have insured this b,
preceding the'S' here with a '\', i.e.:

l,\$sl!! J"'I
but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

3.9. Calching interrupts

If our shell script creates temporary files, we may wish 10 catch interruptions of the shell
scrip! so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label'
and we can remove the temporary files and then do an eXII command (which is buiit in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit{J)

e.g. to exit with status'!'.

3.10, What else?

There are other features of the shell useful to writers of shell procedures. The ,'('rbos£'

and echo options and the related -I' and -x command line options can be used to help trace
the actions of the she!1. The -11 option causes the shell only to read commands and not to
execute them and may sometimes be of use.

One other thing to note is that csir wil! not execute shell scripts which do not begin with
the character '#', that is shell scripts that do not begin with a comment. Similarly. the
'/bin/sh' on your system may well defer to 'csh' to interpret shell scripts which begin with '#'.
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using ,R' which allows only some of (he
expansion mechanisms we have so far discussed to occur on the quoted string and serves to
make this string into a single word as ,,, does.

·32·

4. Other, less commonly used. shell features

4.1. Loops al the terminal; variables 2S v~lors

It is occasionally useful to use the joreach control structure at the terminal lo.aid in per­
forming a number of similar commands. For instance. there were at one point three shells in
use on the Cory UNiX system at Cory Hall. '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the
number of persons using each shell ol1e could have issued the commands

% grep ~c cshS letcipasswd
27
% grep -c nshS lelc/passwd
128
% grep -c -v shS letc/passwd
430
%

Since these commands are very similar we can use jorf!och to do this more easily.

% foreach i ('5h5' 'cshS' '-v 5h$')
? grep -c $i letc/paS5wd
? end
27
128
430
%

Note here that the shell prompts for input wilh '? • when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can, for example, do

% set a- ('15')
% echo Sa
csh.n csh.rm
% Is
csh.n
csh.rm
0/0 echo $#3
2
%

The set command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within ." characters is converted by the shell to a list of words.
You can also place the ,,, quoted string within 'w, characters to take each (non-empty) line as a
component of the variable; preventing the lines from being split into words at blanks and tabs.
A modifier ':x' exists which can be used later to expand each component of the variable into
another variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces I ...) in argument expansion

Another form of filename expansion. alluded to before involves the characters 'I' and 'J '.
These characters specify that the contained strings, separated by ',' are to be consecutively sub­
stituted into the containing characters and the results expanded left to right. Thus

A [slrl ,str2, ... stm IB
expands \0

- 33 •

AstrlB Astr2B ... ASlrnB

This expansion occurs before the other filename expansions. and may be applied recursivell
(i.e. nested). The results of each expanded string are sorted separately. left [0 right order being
preserved. The resulting filenames are not required to exist if no other expansion mechanisms
are used. This means thai this mechanism can be used to generate arguments which are not
filenames, but which have common pans.

A typical use of this would be

mkdir -/lhdrs,retrofit,cshl

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is
most useful when the common prefix is longer than in this example, i.e.

chown root lusr/lucb/lex,editl,!ib/lex'. 7* ,how _exll

4.3. Command substllution
A command enclosed in ,,, characters is replaced. just before filenames are expanded. by

the output from that command. Thus it is possible to do

set pwd pwd·

to save the current directory in the variable p,,·d or to do

ex 'grep -I TRACE ".c·

to run the editor ex supplying as arguments those files whose names end in '.c' which have the
SIring 'TRACE' in them.'

4.4. Olher details nol covered here
In particular circumstances it may be necessary to know the exact nature and order of

different substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX pro­
grams. and debugging shell scripts. See the shells manual section for a list of these options.

"Command expansion also occurs in inpu! redirected with' < <. and within quotations. Refer to the shell
manual section for full details.

- 34 -

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system. giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the e51! manual section for a complete list.

Syntactic metacharacters

i
()

&

2.4
1.5
2.2.3.6
2.5

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

Filename metacharacters

/
?

[1

[J

1.6
1.6
1.6
1.6
1.6
4.2

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Quotation metacharacters

\ 1.7
1.7
4.3

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like'. but allows variable and command expansion

Input/output metacharacters

<
>

1.5
1.3

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

s 3.4
2.3
3.6
2.3
4.3

Other metacharacters

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

1.3.3.6 begins scratch file names; indicates shell comments
1.2 prefixes option (flag) arguments to commands

% 2.6 prefixes job name specifications

- 35 -

Glossary

This glossary lists the most important terms introduced in the introduction to the shell
and jives references to sections of the shell document for further information about them
References of the form 'pr (I)' indIcate that the command pr is in the UNIX programmer's
manual in section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

a.out

Your current directory has the name '.' as well as the name printed by the
command pH'd: see also dirs. The current directory'.' is usually the first COIII­
po"ent of the search path contained in the variable polh. thus commands which
are in '.' are found first (2.2). The character'.' is also used in separating COlli·

po"e"ts of filenames (1.6). The character '.' at the beginning of a compnll(,lI/of
a pothllallle is treated speciall}' and not matched by the jilellall/e expansion meta­
characters '?'. ,." and '(' ')' pairs (1.6).

Each directory has a file ' . .' in it which is a reference to its parent directory.
After changing into the directory with eMir. i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by p"'d (2.7).

Compilers which create executable images create them. by default. in the file
a.out. for historical reasons (2.3).

absolute pathname

alias

argument

argv

background

base

A pothname which begins with a '/' is absolul(' since it specifies the polh of
directories from the beginning of the entire directory system - called the mol
directory. Pathlla/lle5 which are not absolule are called r('lalll,(, (see definition of
f('latill(! pathnallle) (1.61.

An alias specifies a shorter or different name for a U:'IiIX command, or a
transformation on a command to be performed in the shell. The shell has a
command alias which establishes aliases and can print their current values.
The command unalias is used to remove aliases (2.41.

Commands in UNIX receive a list of argllmel1l words. Thus the command

echo abc

consists of the eommalld lIall/£' 'echo' and three argum('111 words 'a', 'b' and 'c'.
The set of argum£,nts after the command name is said to be the argumelll lisl of
the command (1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called argl' within the shell.
This name is taken from the conventional name in the C programming
language (3.4).

Commands started without waiting for them to complete are called backgroulld
commands (2,6).

A filename is sometimes thought of as consisting of a bas(' part. before any'.'
character, and an ex/ellSIOIl - the part after the '.'. See filename and eXlellSIOIl
(J .6)

bIO

bin

break

breaksw

builtin

case

cat

cd

chdir

chsh

emp

command

command name

The bg command causes a suspended job to continue execution in the back­
ground (2.6).

A directory containing binaries of programs and shell scripts to be execmed is
typically called a bin directory. The standard system bill directories are '/bin'
containing the mOSl heavily Ilsed commands and 'lusT/bin' which contains
most other user programs. Programs developed at UC Berkeley live in
'/usr!ucb', while iocally wrinen programs live in 'lUST/local'. Games are kept
in the directory '/usr/games'. You can place binaries in any directory. If you
wish to execute them often, the name of the directories should be a componelll
of the variable pel1h.

Break is a builtin command used to exit from loops within the control struc­
ture of the shell D.7).

The breaksw builtin command is used to exit from a s"'//eh control structure,
like a break exits from loops (3.7).

A command executed directly by the shell is called z bl.llllll1 command. Most
commands in UNIX are not built into the sheli, but rather exist as files in bill
directories. These commands are accessible because the directories in which
they reside are named in the path variable.

A case command is used as a label in a switch statement in the shell's control
structure, similar to that of the language C. Details are given in the shell
documentation 'csh(J)' (3.7).

The Cal program catenates a list of specified files on the slal1dard OurpUl. It is
usually used to look at the contents of Ii single file on the terminal. to 'cat a
lile' 0.8,2.3).
The cd command is lIsed to change the work in/? direclO(I'. With no arguments.
cd changes your working directo/)' to be your home directory (2.4. 2.7).

The chdir command is a synonym for cd. Cd is usually used because it is easier
to type.

The chsh command is used to change the shell which you use on U~'IX. By
default, you lJSe an different version of the shell which resides in '/bin/sh '.
You can change your shell to '/bin/csh' by doing

chsh your-login-name Ibin/csh

Thus 1 would do

chsh bill Ibin/csh

It is only necessary to do this once. The next time you log in to UNIX after
doing this command, you will be using csh rather than the shell in '/bin/sh'
(1.9) .

Cmp is a program which compares files. It is usually used on binary flies, or to

see if two files are identical (3.6). For comparing text files the program diff;
described in 'diff (I)' is used.

A function performed by the system, either by the shell (a builtin command)
or by a program residing in a file in a directory within the UNIX system. is
called a command (1. J).

When a command is issued, it consists of a command name, which is the first
word of the command, followed by arguments. The conveillion on UNIX is
that the first word of a command names the function to be performed (].1).

• 37 •

command substitution

component

continue

control-

core dump

ep

csh

.cshrc

cwd

dale

debugging

defaul!:

DELETE

detached

diagnostic

The replacement of a command enclosed in ,-, characters by the text output by
lhal command is called command subsfltulion (4.3),

A part or a palhnaml' between 'I' characters is called a COmpOlll'1II of that palil­
flame. A variable which has multiple strings as \lalue is said to have several
componentS; each string is a compol1eJl! of the \lariable.

A builtin command which causes execution of the enclosing foreach or "'hile
\001' to cycle prematurely. Similar to the COllfinue command in the program­
ming language C (3.6l.

Certain special characters. called cOnlrol characters. are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character, much like the SHIFT key is used to produce upper case characters.
Thlls conlro/< is produced by holding down the CONTROL key while pressing
the 'c' key. Usually UNIX prints an up-arrow q) followed by the corresponding
leiter when you type a comra/character (e.g. 'Ie' for COnirol-c (1.8l.

When a program terminates abnormally, the system places an image or its
curren! slale in a file named 'core'. This core dump can be examined with the
system debugger 'adb(l j' or 'sdb(J)' in order to determine what went wrong
with the program (J.8l. If !he shell produces a message of the form

lllegal instruction (core dumped)

(where 'mega! instruction' is only one of several possible messages). you
should report this to the author of the program or a system administrator, sav­
ing the 'core' file.

The cp (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands (1.6J.
The name of the shell program that this document describes.

The file .cshrc ill your home directory is read by each shell as it begins execu­
!ion. It is usually used (0 change the setting of the variable path and to set
alias parameters which are to take effect globally (2.1 l.
The cwd variable in the shell holds the absolUlI! palitllame of the current "·or/.:·
illg directory, It is changed by the shell whene\ler your current "'orkill!? dm'cron'
changes and should not be changed otherwise (2.2),

The dale command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label de/aull: is used within shell switch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal nomlally causes an interrupt to be
sent to the current job. Many users change the interrupt character to be rc.
A command that continues running in the background after you logout is said
to be detached.

An error message produced by a program is often referred to as a diagnoslJc.
Most error messages are not written to the standard oU/pm, since that is often
directed away from the terminal 0,3, 1.5), Error messsages are instead writ­
ten 10 the diagnostic oU/put which may be directed away from the terminal. but
usually is nOI. Thus diagnostics wi!! usually appear on the terrninal (2.5).

- 38 -

directory A structure which contains files. At any time you are in one particular dlfl.'crnfl"
whose names can be printed by the command p,,·d. The chdlr command will
change you to another direcTory, and make the files in that dir(,CTO~I' visible. The
direcTory in which you are when you first login is your hOllle directory (1.1.
2.7).

directory stack The shell saves the names of previous orkil111 direCTories in the direcTo~I' sTark
when you change your current orkilll1 direCTOry via the pushd command. The
directory slack can be printed by using the dirs command, which includes your
current "'orking direcTOry as the first directory name on the left (2.7).

dirs The dirs command prints the shell's direcTory sTack (2.7).

du The du command is a program (described in 'duO)') which prints the number
of disk blocks is all directories below and including your current "'orkll7g direl"
lOry (2.6).

echo The echo command prints its arguments (1.6, 3.6),

else The else command is part of the 'if-then-else-endir control command con­
struct (3.6).

endif If an ifstatement is ended with the word Ihell, all lines following the il"up to a
line starting with the word endifor else are executed if the condition between
parentheses after the ifis true (3.6).

EOF An end-offile is generated by the terminal by a control-d, and whenever a
command reads to the end of a file which it has been given as input. Com­
mands receiving input from a pipe receive an elld-ofjile when the command
sending them input completes. Most commands terminate when they receive
an end-offile. The shell has an option to ignore elld-offile from a terminal
input which may help you keep from logging out accidentally by typing too
many control-d's (J.I, 1.8, 3.8),

escape A character '\' used to prevent the special meaning of a metacharacter is said
to escape the character from its special meaning. Thus

/etc/passwd

exit

exit status

echo \.

will echo the character •• ' while just

echo'

will echo the names of the file in the current directory. In this example. \
escapes ,., (1.7). There is also a non-printing character called escape, usually
labelled ESC or ALTMODE on terminal keyboards. Some older UNIX systems use
this character to indicate that output is to be suspellded. Most systems use
control-s to stop the output and control-q to start it.

This file contains information about the accounts currently on the system. It
consists of a line for each account with fields separated by':' characters (1.8).
You can look at this file by saying

cat /etc/passwd

The commands finger and grep'are often used to search for information in this
file. See 'finger(l)', 'passwd(S)', and 'grep(l)' for more details.

The !!XiI command is used to force termination of a shell script, and is built
into the shell (3.9).

A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exil STalUs, a status of zero being considered 'normal
termination'. The exil command can be used to force a shell command script

expansion

expressions

extension

fg

filename

-39-

to give a non· zero exit status (3.6J.
The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expansion. Thus the replacement
of the word ••• by a sorted list of files in the current directory is a 'filename
expansion'. Similarly the replacement of the characters '!!' by the' text of the
last command is a 'history expansion'. Expansions are also referred to as substi·
tutions 0.6. 3.4.4.2).
Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C 0.5).

Filenames often consist of a base name and an extellsion separated by the char·
acter '... By convention. groups of related files often share the same roOl
name. Thus if ·prog.c' were a C program. then the object file for this program
would be stored in 'prog.o·. Similarly a paper written with the '-me' nroff
macro package might be stored in ·paper.me' while a formatted version of this
paper might be kept in ·paper.out' and a list of spelling errors in ·paper.errs·
(1.6).

The job control command fg is used to run a background or suspended job in the
foreground (1.8. 2.6).

Each file in UNIX ~as a name consisting of up to 14 characters and not includ­
ing the character 'f' which is used in palhname building. Most filenames do not
begin with the character • .'. and contain only letters and digits with perhaps a
• .' separating the base portion of the filename from an extension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

Filename expallsion uses the metacharacters •••.• ? and '[' and ']' to provide a
convenient mechanism for naming files. Using filename expanSIOn it is easy to
name all the files in the current directory. or all files which have a common
root name. Other filename expansion mechanisms use the metacharacter ,-. and
allow files in other users' directories to be named easily (J .6. 4.2J.
Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred to as !fag options. and by convention consist of one or more letters
preceded by the character • -' (I.2)' Thus the Is (list files) command has an
option' - s' to list the sizes of files. This is specified

Is -s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell vari·
able ranges through a specified list (3.6. 4.1>'

When commands are executing in the normal way such that the shell is waiting
for them to finish before prompting for another command they are said to be
foreground jobs or running in the foreground. This is as opposed to background.
Foreground jobs can be stopped by signals from the terminal caused by typing
different control characters at the keyboard (1.8. 2.6J.
The shell has a command goto used in shell scripts to transfer control to a
siven label (3.7).

The grep command searches through a list of argument files for a specified
string. Thus

grep bill letclpasswd

will print each line in the file letc/passwd which contains the string 'bill'.

head

history

home directory

if

ignoreeof

input

interrupt

job

·40·

Actually. grep scans for regular expressiollS in the sense of the editors 'edl! r
and 'ex(1)'. Grepstands for 'globally lind regular expression and print' (2.4).

The head command prinls Ihe first few lines of one or more liles. If you have
a bunch of files containing text which you are wondering about it is sometimes
useful to run head with these files as arguments. This will usually show
enough of what is in these files to let you decide which you are interested in
0.5).
Head is also used to describe the part of a parilname before and including lhe
last 'I' character. The rail of II pal Imam .. is the part after the last 'I'. The ':h'
and ':1' modifiers allow the head or fail of a palill!ame stored in a shell variable
10 be used (3.6).

The hiSTory mechanism of the shell allows previous commands to be repeated.
possibly after modification to correct typing mistakes or to change the meaning
of the command, The shell has a hiSTory li51 where these commands are kept.
and a history variable which controls how large this list is (2.3),

Each user has a home directory. which is given in your entry in the password
file. lercJpasswd. This is the directory which you are placed in when you first
login. The cd or chdir command with no arguments takes you back to this
directory. whose name is recorded in the shell variable hOIl/If. You can also
access the home direCTories of other users in forming filenames using a/ileI701ll(,

expansion notation and the character ,., (1.6).

A conditional command within the shell. the ifcommand is used in shell com­
mand scripts to make decisions about what course of action to take nexl (3.6).

Normally. your shell will exit. printing 'logout' if you type a control·d at a
prompt of '% '. This is the way you usually log off the system. You can set
the ignoieE'qfvariable if you wish in your .Iogin fije and then use the command
/ogOlJf to logout. This is useful if you sometimes accidentally type lOa many
cOnlroj·d characters, logging yourself off (2.2),

Many commands on UNIX take information from the terminal or from files
which they then acl on. This information is called mpllf. Commands normally
read for inpul from their standard input which is, by default. the terminal. This
STandard inpur can be redirected from a file using a shell melanolation Wilh the
character' <'. Many commands will also read from a file specified as argu­
ment. Commands placed in pipelines will read from the output of the previous
command in the pipeline. The leftmost command in a pipelinl! reads from the
terminal if you neither redirect its input nor give it a filename to use as SIOIl­

dard input. Special mechanisms exist for supplying input to commands in shell
scripts (j .5, 3.8).

An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DELETE key (although users can and often do change the interrupt character,
usually to Ie). It causes most programs to SLOP execution. Certain programs,
such as the shell and the editors, handle an ilJlerrupt in special ways, usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command and waiting for it to finish. the shell does
not listen to interrupts. The shell. often wakes up when you hit /I1terrUf1t
because many commands die when they receive an inrerrupf (1.8, 3.9).

One or more commands typed on the same input line separated by 'I' or ';'
characters are run together and are called a job. Simple commands run by
themselves without any 'r or ';' characters are the simpiest jobs. lobs are
classified as foreground, background, or suspended (2.6).

job control

job number

jobs

kill

.login

login shell

logout

.logout

Ipr

Is

mail

make

make file

manual

metacharacter

·41 •

The builtin functions that control the execution of jobs are called job cOlllrol
commands. These are bg. fg. stop. kill (2.6),

When each job is started it is assigned a small number called a job 1l11111ber

which is printed next to the job in the output of the jobs command. This
number, preceded by a '%' character, can be used as an argument to job COlllrol
commands to indicate a specific job (2.6).

The jobs command prints a table showing jobs that are either running in the
bt2ckgroulld or are suspelld£'d (2.6),

A command which sends a signal to a job causing it to terminate (2.6).

The file ./ogin in your hom£' directory is read by the shell each time you login to
UNIX and the commands there are executed. There are a number of com·
mands which are usefully placed here, especially s£'t commands to the shell
itself (2.1).

The shell that is started on your terminal when you login is called your loglll
shell. It is different from other shells which you may run (e.g. on shell scripts)
in that it reads the ./ogill file before reading commands from the terminal and it
reads the .Iogout file after you logout (2.1),

The logout command causes a login shell to exit. Normally. a login shell will
exit when you hit control·d generating an £'lId·qi-file. but if you have sel
ignoruofin you .Iogill file then this will not work and you must use logolll to
log off the UNIX system (2.8).

When you log off of UNIX the shell will execute commands from the file .lo~ol/1
in your hom£' directory after it prints 'logout'.

The command Ipr is the line printer daemon. The standard input of Ipr spooled
and printed on the UNIX line printer. You can also give Ipr a list of filenames
as arguments to be printed. It is most common to use Ipr as the last com·
ponent of a pipeline (2.3).

The Is (Jist files) command is one of the most commonly used UNIX com·
mands. With no argument filenames it prints the names of the files in the
current directory. It has a number of useful flag arguments, and can also be
given the names of directories as arguments, in which case it lists the names of
the files in these directories (I .2).

The mail program is used to send and receive messages from other U;-.iIX users
(1.1,2.1).

The mak£' command is used to maintain one or more related files and to organ·
ize functions to be performed on these files. In many ways makl! is easier to
use, and more helpful than shell command scripts (3.2).

The file containing commands for makl! is called makefil£' (3.2>'

The manual often referred to is the 'UNIX programmer's manual'. It contains a
number of sections and a description of each UNIX program. An online version
of the manual is accessible through the man command. Its documentation can
be obtained online via

man man

Many characters which are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called metacharacters. If it
is necessary to place these characters in arguments to commands without them
having their special meaning then they must be quoted. An example of a meta·
character is the character' >' which is used to indicate. placement of output

mkdir

modifier

more

noclobber

noglob

notify

onintr

output

pushd

path

·42 -

into a file. For the purposes of the histo~1' mechanism. most unquoted 1II('la­
characlers form separate words (1.4>. The appendix to this user's manual lists
the metacharaclers in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the histo~v mechanism. keyed by the character 'I; or of vari­
ables using the metacharacter 'S·. are often subjected to modifications. indi­
cated by placing the character ':' after the substitution and following this with
the modifier itself. The cOlllmand substitution mechanism can also be used to
perform modification in a similar way. but this notation is less clear (3.6),

The program lIIore writes a file on your terminal allowing you to control how
much text is displayed at a time. More can move through the file screenful by
screenful, line by line, search forward for a string, or start again at the begin­
ning of the file. It is generally the easiest way of viewing a file (1.8>.

The shell has a variable noc/obber which may be set in the file ./o~in to prevent
accidental destruction of files by the' >' output redirection metasyntax of the
shell (2.2, 2.5).

The shell variable nog/ob is set to suppress the fi/ename expansion of arguments
containing the metacharacters "'. ,." '?', '!' and 'J' (3.6>'
The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just
before the next prompt to report the termination. The notif. .. variable, if set.
causes the shell to always report the termination of background jobs exactly
when they occur (2.6>'

The onilllr command is built into the shell and is used to control the action of
a shell command script when an il7lerrupt signal is received (3.9>'

Many commands in UNIX result in some lines of text which are called their our­
put. This output is usually placed on what is known as the standard ourpur
which is normally connected to the user's terminal. The shell has a syntax
using the metacharacter '>' for redirecting the standard output of a command
to a file (! .3>' Using the pipe mechanism and the metacharacter t it is also
possible for the standard output of one command to become the standard fIIpUI
of another command (! .5>' Certain commands such as the line printer dae·
mon p do not place their results on the standard output but rather in more use­
ful places such as on the line printer (2.3). Similarly the ... ·rill! command places
its output on another user's terminal rather than its standard outpllf (2.3)'
Commands also have a diagnoslic output where they write their error messages.
Normally these go to the terminal even if the standard output has been sent to
a file or another command. but it is possible to direct error diagnostics along
with standard Output using a special metanotation (2.5).

The pushd command. which means 'push directory'. changes the shell's "·ork·
ing directory and also remembers the current working directory before the change
is made. allowing you to return to the same directory via the popd command
later without retyping its name (2.7).

The shell has a variable path which gives the names of the directories in which
it searches for the commands which it is given. It always checks first to see if
the command it is given is built into the shell. If it is. then it need not search
for the command as it can do it internally. If the command is not builtin. then
the shell searches for a file with the name given in each of the directories in
the path variable. left to right. Since the normal definition of the path variable
is

pathnllme

pipeline

popd

port

pr

printenv

process

program

·43 .

path <. lusT/lieb Ibin !usrlbin)

the shell normally looks in the current directory. and then in the standard sys­
tem directories '/usr/ucb', 'Ibin' and '/usT/bin' for the named command
(2.2). If the command cannot be found the shell will print an error diagnostic.
Scripts of shell commands will be executed using another shell ·to interpret
them if t!ley have 'execute' permission set. This is normally true because a
command of the form

chmod 755 script

was executed to tum this execute permission on (3.3). If you add flew com·
mands to a directory in the palh. you should issue the command rehash (2.2l.

A lis! of names. separated by • /' characters, forms a pathl/aille. Each ("OIlT­

panelll, between successive '/' characters. names a directory in which the next
compalll?i1I file resides. Pathnames which begin with the character 'f' are inter­
preted relative to the rOOI directory in the file system. Other pathllallles are
interpreted relative to the curren! directory as reported by P"'d. The last com­
ponent of a palhllame may name a directory. but usually names a file.

A group of commands which are connected together, the stalldard 01/1(1111 of
each connected to the 51andard illpUI of the next, is called a p'pe/llle. The P'I'('
mechanism used to connect these commands is indicated by the shell meta·
character'r 0.5,2.3).
The popd command changes the shell's It'orking directory to the directory you
most recently left using the pushd command. It returns to the directory
without having to type its name, forgelling the name of the current ~'OfJ.;llIg

directory before doing so (2.7).

The part of a computer system to which each terminal is conne,[ed is cJlled <l

pari. Usually the system has a fixed number of porrs, some of which are con­
nected to telephone lines for dial-up access, and some of which are per·
manently wired directly to specific terminals.

The pr command is used to prepare listings of the coments of files with
headers giving the name of the file and the date and time at which the file was
last modified (2.3),

The prinrellv command is used to print the current setting of variables in the
environment (2.8),

An instance of a running program is called a proCess (2.6). UNIX assigns each
process a unique number when it is started - called the process number. Pro-
cess numbers can be used to stop individual processes using the kill or SlOP com·
mands when the processes are part of a detached backgroulld job.

Usually synonymous with command; a binary file or shell command script
which performs a useful function is often called a program.

programmer's manual

prompt

Also referred to as the manual. See the glossary entry for 'manual'.

Many programs will print a prompl on the terminal when they expect input.
Thus the editor 'ex(j)' will print a ':' when it expects input. The shell prall/pis
for input with '% ' and occasionally with "? ' when reading commands from
the terminal (J.!). The shell has a variable prompl which may be set to a
different value to change the shell's main prompt. This is mostly used when
debugging the shell (2.8).

ps

pwd

quit

quotation

redirection

rehash

·44·

The ps command is used to show the processes you are currently running.
Each process is shown with its unique process number. an indication of the
terminal name it is attached to. an indication of the state of the process
(whether it is running, stopped. awaiting some event (sleeping). and whether
it is swapped outl. and the amount of CPU time it has used so far. The com­
mand is identified by printing some of the words used when it was invoked
(2.6). Shells, such as the csh you use to run the ps command. are not nor­
mally shown in the output.

The pwd command prints the full pathllanl/! of the current ... ·orkin[(dirl!ctory.
The dirs builtin command is usually a better and faster choice.

The quit signal. generated by a control-\, is used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning. usu­
ally by using the character ,- in pairs. or by using the character '\', is referred
to as quotation (1.7).
The routing of input or output from or to a file is known as redirection of input
or output (1.3).

The rehash command tells the shell to rebuild its internal table of which com­
mands are found in which directories in your path. This is necessary when a
new program is installed in one of these directories (2.8).

relative pathname

repeat

root

RUBOI.;T

scratch file

script

set

A patilnanle which does not begin with a '/' is called a relatil'/! pathnal11e since it
is interpreted relative to the current orkill[(directory. The first componelll of
such a pathname refers to some file or directory in the ... ·orkin[(directory. and
subsequent componems between '/' characters refer to directories below the
.... orking directory. PatJlllal11eS that are not relative are called absolute pathl/allles
(l.6).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the
root directory since it is the 'root' of the entire tree structure of directories.
The name used in pathllames to indicate the rOOf is '/'. Pathl/ames starting with
'/' are said to be absolute since they start at the root directory. Root is also
used as the part of a pathname that is left after removing the extension. See
filename for a further explanation (1.6l.

The RUBOL'T or DElETE key sends an interrupt to the current job .. Most
interactive commands return to their command level upon receipt of an inter­
rupt. while non-interactive commands usually terminate. returning control to
the shell. Users often change interrupt to be generated by I C rather than
DELETE by using the slly command.

Files whose names begin with a '#' are referred to as scratch jiles. since they
are automatically removed by the system after a couple of days of non-use, or
more frequently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command SCflprs.
It is often possible to perform simple tasks using these ScriPTS without writing a
program in a language such as C, by using the shell to selectively run other
programs (3.3. 3.1 0).

The builtin set command is used to assign new values to shell variables and to
show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of
the shell can be affected (2. J).

setenv

shell

shell script

signal

sort

source

special character

standard

status

stop

string

stty

substitution

suspended

switch

termination

then

• 4S •

Variables in the environment 'environ(S), can be changed by using the S(.'I(,lIr

builtin command (2.8), The prinll!llV command can be used to print the value
of the variables in the environment.

A sheli is a command language interpreter. It is possible to write and run your
own shell. as shells are no different than any other programs as far as the sys­
tem is concerned. This manual deals with the details of one particular shd!.
called csh.

See scripl (,3.3. 3.10l.

A signal in UNIX is a short message that is sen! to a running program which
ClIUSes something to happen 10 that process. Signals are sent either by typing
special control characters en the keyboard or by using the kill or SlOp commands
(Ul,2.6)'

The rort program SorlS a sequence of lines in ways that can be controlled b)
argumentj1ags (1.5).

The source command ClIuses the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.8),

See metacharaclers and the appendix to this manual.

We refer often to the siandard rnpUi and srandard OUlpUl of commands. See
input wd OUIPW (1 . .1, 3.8).

A command normally returns a sralus when it finishes. By convention a 5/01/15
of zero indicates that the command succeeded. Commands may return non­
zero SIalliS to indicate that some abnormal event has occurred. The shell vari­
able SlaWS is set to the STaIUS returned by the last command. It is most usefUl
in shell commmand scripts (3.6).

The SlOp command causes a backgrolmdjob to become suspended (2.6).

A sequential group of characters taken together is ca!Jed a Siring. SrrTIlRs can
contain any printable characters (2.11.

The 511y program changes certain parameters inside lJ~jX which determine how
your terminal is handled. See 'Stly(J)' for a complete description (;2.6),

The shell implements a nun1ber of subslilwions where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history SUbSlill.l/lon keyed by the metacharacter "!' and variable subsrlfUIiOIl indi­
cated by'S'. We also refer to SUbSIJIUliolls as "-,,pans/ons (3.4).

A job becomes suspended after a STOP signal is sent to it, either by typing a
cOl11roi-z at the terminal (for foreground jobs) or by using the SlOP command
(for background jobs). When suspended, a job temporarily stops running until it
is restarted by either the fg or bg command (2.6).

The S\t'irch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument SIring. It is similar to the
switch statement in the language C (3.7).

When a command which is being executed finishes we say it undergoes lemll­
nOlion or terminates. Commands normally terminate when they read an end­
of-file from their standard il1pUl. It is also possible to terminate commands by
sending them an interrupt or qurt signal (1.8), The kill program terminates
specified jobs (2.6),

Tn.: rhell command is part of the sheWs 'if-then-else·endif control construct
used in command scripts (3.6),

time

tset

tty

unalias

UNIX

unset

·46·

The lime command can be used to measure the amount of CPL' and real time
consumed by a specified command as well as the amount of disk i/o. memory
utilized. and number of page faults and swaps taken by the command (2.1.
2.8l.

The 1St'1 program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a .Ioglllfile
(2.1).

The word 1(1' is a historical abbreviation for 'teletype' which is frequently used
in UNIX to indicate the porI to which a given terminal is connected. The 1(1'

command will print the name of the 11)' or pori to which your terminal is
presently connected.

The unalias command removes aliases (2.8).

UNIX is an operating system on which esh runs. UNIX provides facilities which
allow csh to invoke other programs such as editors and text formallers which
you may wish to use.

The unsel command removes the definitions of shell variables (2.2. 2.8),

variable expansion

variables

verbose

we

while

word

See variables and expansion (2.2, 3.4).

Variables in esh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See palh. l1odobb('r. and
ignoreeof for examples. Variables such as argl' are also used in writing shell
programs (shell command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts. The
verboSt' variable is set by the shell's -v command line option (3.10).

The "'e program calculates the number of characters, words, and lines in the
files whose names are given as arguments (2.6l.

The hile builtin control construct is used in shell command scripts (3.7).

A sequence of characters which forms an argument to a command is called a
,,·ord. Many characters which are neither letters, digits. '-'. ',' nor'/, form
"'ords all by themselves even if they are not surrounded by blanks. Any
sequence of characters may be made into a "'ord by surrounding it with ."
characters except for the characters '" and '!' which require special treatment
(I.]). This process of placing special characters in H'ords without their special
meaning is called quoling. .

. working directory

write

At any given time you are in one particular directory. called your Hwkil1!(dir('c­
lor),. This directory's name is printed by the pH'd command and the files listed
by Is are the ones in this directory. You can change "'orkil1/(direclories using
eMir.

The ... ·rill! command is used to communicate with other users who are logged in
to UNIX.

MAIL REFERENCE MANUAL

1. Introduction

KurtShoens

Revised by

Craig Leres

Version 2.18

July 27, 1983

Mail provides a simple and friendly environment for sending and receiving mail. It
divides incoming mail into its constituent messages and allows the user to deal with them in
any order. In addition, it provides a set of ed-like commands for manipulating messages and
sending mail. Mail offers the user simple editing capabilities to ease the composition of outgo­
ing messages, as well as providing the ability to define and send to names which address groups
of users. Finally, Mail is able to send and receive messages across such networks as the
ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mail program to send and receive messages. The
reader is not assumed to be familiar with other message handling systems, but should be fami­
liar with the UNIX I shell, the text editor, and some of the common UNIX commands. "The
UNIX Programmer's Manual," "An Introduction to Csh," and "Text Editing with Ex and Vi"
can be consulted for more information on these topics.

Here is how messages are handled: the mail system accepts incoming messages for you
from other people and collects them in a file, called your system mailbox. When you login, the
system notifies you if there are any messages waiting in your system mailbox. If you are a csh
user, you will be notified when new mail arrives if you inform the shell of the location of your
mailbox. On version 7 systems, your system mailbox is located in the directory /usr/spool/mail
in a file with your login name. If your login name is "sam," then you can make csh notify you
of new mail by including the following line in your .cshrc file:

set mail-/usr/spool/mail/sam
When you read your mail using Mail, it reads your system mailbox and separates that file into
the individual messages that have been sent to you. You can then read, reply to, delete, or
save these messages. Each message is marked with its author and the date they sent it.

I UNIX is • trademark of Bell Laboratories.

Mail Reference Manusl 7/27/83 2.

2. Common usage

The Mail command has two distinct usages, according to whether one wants to send or
receive mail. Sending mail is simple: to send a message to a user whose login name is, say,
"root," use the shell command:

% Mail root

then type your message. When you reach the end of the message, type an EOT (control-d) at
the beginning of a linc, which will cause Mail to echo "EOT" and return you to the Shell.
When the user you sent mail to next logs in, he will receive the message:

You have mail.

to alert him to the existence of your message.

If, while you are composing the message you decide that you do not wish to send it after
aI!, you can abort the letter with II RUBOUT. Typing a single RUIlOUT causes !vIail to print

(Interrupt -- one more to kill letter)

Typing a second RUBOUT causes Mail to save your partial letter on the file "dead.1etter" in yom
home directory and abort the letter. Once you have sent mail to someone, there is no way to
undo the act, so be careful.

The message your recipient reads will consist of the message you typed, preceded by a
line telling who sent the message (your login name) and the date and time it was sent.

If you want to send the same message to several other people, you can list their login
names on the command line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
<Control-d>
EOT
%

will send the reminder to sam, bob, and john.

If, when you log in, you see the message,

You have mail.

you can read the mail by typing simply:

% Mail

Mail will respond by typing its version number and date and then listing the messages you have
waiting. Then it will type a prompt and await your command. The messages are assigned
numbers starting with 1 - you refer to the messsges with these numbers. Mail keeps tack of
which messages are new (have been sent since you last read yOUl' mail) and read (have been
read by you). New messages have an N next to them in the header listing and old, but unread
messages have II U next to them. Mail keeps track of new/old and read/unread messages by
putting II header field called "Status" into your messages.

To look at a specific message, use the type command, which may be abbreviated to simply
t. For example, if you had the following messages:

N 1 root Wed Sep 21 09:21 "Tuition fees'
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:

type 1

which might cause Mail to respond with, for example:

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees

Mail Reference MllOual 7/27/83 3

Status: R

Tuition fees are due next Wednesday. Don't forget!!

Many Mail commands that operate on messages take a message number as an argument like the
type command. For these commands, there is a notion of a current message. When you enter
the Mail program, the current message is initially the first one. Thus, you can often omit the
message number and use, for example,

t
to type the current message. As a further shorthand, you can type a message by simply giving
its message number. Hence,

1
would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another.
You can read the next message in Mail by simply typing a newline. As a special case, you can
type a newline as your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the
reply command. Reply, like type, takes a message number as an argument. Mail then begins a
message addressed to the user who sent you the message. You may then type in your letter in
reply, followed by a <control·d> at the beginning of a line, as before. Mail will type EDT,
then type the ampersand prompt to indicate its readiness to accept another command. In our
example, if, after typing the first message, you wished to reply to it, you might give the com·
mand:

reply

Mail responds by typing:
To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode described
at the beginning of this section and Mail will gather up your message up to a control-d. Note
that it copies the subject header from the original message. This is useful in that correspon·
dence about a particular matter will tend to retain the same subject heading, making it easy to
recognize. If there are other header fields in the message, the information found will also be
used. For example, if the letter had a "To:" header listing several recipients, Mail would
arrange to send your replay to the same people as well. Similarly, if the original message con·
tained a "Cc:" (carbon copies to) field, Mail would send your reply to those users, too. Mail is
careful, though, not too send the message to you, even if you appear in the "To:" or "Cc:"
field, unless you ask to be included explicitly. See section 4 for more details.

After typing in your letter, the dialog with Mail might look like the following:
reply
To: root
Subject: Tuition fees

Thanks for the reminder
EDT
&

The reply command is especially useful for sustaining extended conversations over the
message system, with other "listening" users receiving copies of the conversation. The reply
command can be abbreviated to r.

Sometimes you will receive a message that has been sent to several people and wish to
reply only to the person who sent it. Reply with a capital R replies to a message, but sends a

Man Reference Manual 7127/83 4

copy to the sender only.

If you wish, while reading your mail, to send a message to someone, but not as a reply to
one of your messages, you can send the message directly with the man command, which takes
as arguments the names of the recipients you wish to send to. For example, to send a message
to "frank," you would do:

mail frank
This is to confirm our meeting next Friday at 4.
EOT
&

The man command can be abbreviated to m.
Normally, each message you receive is saved in the file mbox in your login directory at the

time you leave }Jail. Often, however, you will not want to save a particular message you have
received because it is only of passing interest. To avoid saving a message in mbox you can
delete it using the delete command. In our example,

delete 1
will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving deleted
messages, Mail will not let you type them, either. The effect is to make the message disappear
altogether, along with its number. The delete command can be abbreviated to simply d.

Many features of Mail can be tailored to your liking with the set command. The set com­
mand has two forms, depending on whether you are setting a binary option or a valued option.
Binary options are either on or off. For example, the "ask" option informs Mail that each time
you send a message, you want it to prompt you for a subject header, to be included in the mes­
sage. To set the "ask" option, you would type

set ask

Another useful Mail option is "hold." Unless told otherwise, Mail moves the messages
from your system mailbox to the file mbox in your home directory when you leave Mail. If you
want Mail to keep your letters in the system mailbox instead, you can set the "hold" option.

Valued options are values which Mail uses to adapt to your tastes. For example, the
"SHELL" option tells Mail which shell you like to use, and is specified by

set SHELL -/binl csh
for example. Note that no spaces are allowed in "SHELL-/bin/csh." A complete list of the
Mail options appears in section 5.

Another important valued option is "crt." If you use a fast video terminal, you will find
that when you print long messages, they fly by too quickly for you to read them. With the
"crt" option, you can make Mail print any message larger than a given number of lines by
sending it through the paging program more. For example, most CRT users should do:

set crt-24
to paginate messages that will not fit on their screens. More prints a screenful of information,
then types --MORE--. Type a space to see the next screenful.

Another adaptation to user needs that Mail provides is that of aliases. An alias is simply a
name which stands for one or more real user names. Mail sent to an alias is really sent to the
list of real users associated with it. For example, an alias can be defined for the members of a
project, so that you can send mail to the whole project by sending mail to just a single name.
The alias command in Mail defines an alias. Suppose that the users in a project are named
Sam, Sally, Steve, and Susan. To define an alias called "project" for them, you would use the
Mail command:

alias project sam sally steve susan
The ~lIas command can also be used to provide a convenient name for someone whose user
name is inconvenient. For example, if a user named "Bob Anderson" had the login name

Mall Reference Manual

"anderson,"" you might want to use:
alias bob anderson

7/27/83

so that you could send mail to the shorter name, "bob."

5

While the alias and set commands allow you to customize Mail, they have the drawback
that they must be retyped each time you enter Mail. To make them more convenient to use,
Mail always looks for two files when it is invoked. It first reads a system wide file
"/usr/lib/Mail.rc," then a user specific file, ".mailrc," which is found in the user's home
directory. The system wide file is maintained by the system administrator and contains set
commands that are applicable to all users of the system. The" .mailrc" file is usually used by
each user to set options the way he likes and define individual aliases. For example, my .mailrc
file looks like this:

set ask nosave SHELL-/bin/csh
As you can see, it is possible to set many options in the same set command. The "nosave"
option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery system send­
mail. These aliases are stored in the file lusr llibl aliases and are accessible to all users of the
system. The lines in lusr/lib/aliases are of the form:

alias: namel' name2, nameJ

where alias is the mailing list name and the name; are the members of the list. Long lists can
be continued onto the next line by starting the next line with a space or tab. Remember that
you must execute the shell command newaliases after editing lusr/lib/aliases since the delivery
system uses an iridexed file created by newaliases.

We have seen that Mail can be invoked with command line arguments which are people
to send the message to, or with no arguments to read mail. Specifying the -f flag on the com­
mand line causes Mail to read messages from a file other than your system mailbox. For exam­
ple, if you have a collection of messages in the file "letters" you can use Mail to read them
with:

% Mail -f letters
You can use all the Mail commands described in this document to examine, modify, or delete
messages from your "letters" file, which will be rewritten when you leave Mail with the quit
command described below.

Since mail that you read is saved in the file mbox in your home directory by default, you
can read mbox in your home directory by using simply

% Mail -f

Normally, messages that you examine using the type command are saved in the file
"mbox" in your home directory if you leave Mail with the quit command described below. If
you wish to retain a message in your system mailbox you can use the preserve command to tell
Mail to leave it there. The preserve command accepts a list of message numbers, just like type
and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your
system mailbox automatically. If you wish to have such a message saved in mbox without read­
ing it, you may use the mboJ: command to have them so saved. For example,

mbox 2
in our example would cause the second message (from sam) to be saved in mbox when the quit
command is executed. MboJ: is also the way to direct messages to your mbox file if you have
set the "hold" option described above. Mbox can be abbreviated to mb.

When you have perused all the messages of interest, you can leave Mail with the quit
command, which saves the messages you have typed but not deleted in the file mbox in your

Mall Reference Manual 7/27183 6

login directory. Deleted messages are discarded irretrievably, and messages left untouched are
preserved in your system mailbox so that you will see them the next time you type:

% Mail
The quit command can be abbreviated to simply q.

If you wish for some reason to leave Mail quickly without altering either your system
mailbox or mbox, you can type the x command (short for exit), which will immediately return
you to the Shell without changing anything.

If, instead, you want to execute a Shell command without leaving Mail, you can type the
command preceded by an exclamation point, just as in the text editor. Thus, for instance:

!date
will print the current date without leaving Mail.

Finally, the help command is available to print out a brief summary of the Mail com­
mands, using only the single character command abbreviations.

Man Reference Manual 7/27/83 7

3. Maintaining folders
Mail includes a simple facility for maintaining groups of messages together in folders.

This section describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your folders. Each
folder of messages will be a single file. For convenience, all of your folders are kept in a single
directory of your choosing. To tell Mail where your folder directory is, put a line of the form

set folder-letters

in your .mailrc file. If, as in the example above, your folder directory does not begin with a 'I,'
Mail will assume that your folder directory is to be found starting from your home directory.
Thus, if your home directory is lusrlperson the above example told Mail to find your folder
directory in lusr/person/letters.

Anywhere a file name is expected, you can use a folder name, preceded with '+.' For
example, to put a message into a folder with the save command, you can use:

save +classwork

to save the current message in the closswork folder. If the closswork folder does not yet exist, it
will be created. Note that messages which are saved with the save command are automatically
removed from your system mailbox.

In order to make a copy of a message in a folder without causing that message to be
removed from your system mailbox, use the copy command, which is identical in all other
respects to the save command. For example,

copy + classwork
copies the current message into the closswork folder and leaves a copy in your system mailbox.

The folder command can be used to direct Mail to the contents of a different folder. For
example,

folder +classwork

directs Mail to read the contents of the closswork folder. All of the commands that you can use
on your system mailbox are also applicable to folders, including type, delete, and reply. To
inquire which folder you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -f option described in section
2. For example:

% Mail -f +c1asswork

will cause Mail to read your classwork folder without looking at your system mailbox.

Mall R.eference Manual 7127183 8

4. More about sending mall

4.1. Tilde escapes
While typing in a message to be sent to others, it is often useful to be able to invoke the

text editor on the partial message, print the message, execute a shell command, or do some
other auxiliary function. Mail provides these capabilities through tilde escapes, which consist of a
tilde n at the beginning of a line, followed by a single character which indicates the function
to be performed. For example, to print the text of the message so far, use:

-p

which will print a line of dashes, the recipients of your message, and the text of the message so
far. Since Mail requires two consecutive RUBOUT'S to abort a letter, you can use a single
RUBOUT to abort the output of -p or any other - escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it
using the escape

-e

which causes the message to be copied into a temporary file and an instance of the editor to be
spawned. After modifying the message to your satisfaction, write it out and quit the editor.
Mail will respond by typing

(continue)
after which you may continue typing text which will be appended to your message, or type
<control-d> to end the message. A standard text editor is provided by Mail. You can over­
ride this default by setting the valued option "EDITOR" to something else. For example, you
might prefer:

set EDITOR-/usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text editor, such as
the vi editor from UC Berkeley. To use the screen, or visual editor, on your current message,
you can use the escape,

-v

-v works like -e, except that the screen editor is invoked instead. A default screen editor is
defined by Mail. If it does not suit you, you can set the valued option "VISUAL" to the path
name of a different editor.

It is often useful to be able to include the contents of some file in your message; the
escape

-r filename

is provided for this purpose, and causes the named file to be appended to your current message.
Mail complains if the file doesn't exist or can't be read. If the read is successful, the number
of lines and characters appended to your message is printed, after which you may continue
appending text. The filename may contain shell metacharacters like • and ? which are
expanded according to the conventions of your shell.

As a special case of -r, the escape
-d

reads in the file "dead.letter" in your home directory. This is often useful since Mail copies
the text of your message there when you abort a message with RUBOUT.

To save the current text of your message on a file you may use the
-w filename

escape. Mail will print out the number of lines and characters written to the file, after which
you may continue appending text to your message. Shell metacharacters may be used in the
filename, as in -r and are expanded with the conventions of your shell.

Mail Reference MSIli.lIlI 7127183 9

If you are sending mail from within Mail's command mode you can read a message sent
to you into the message you are constructing with the escape:

-m 4

which will read message 4 into the current message, shifted right by one tab stop. You can
name any non-deleted message, or list of messages. Messages can also be forwarded without
shifting by a tab stop with -r. This is the uSlial way to forward II message.

If, in the process of composing II message, you decide to add additional people to the list
of message recipients, YOli can do so with the escape

-(namel name2 ...

YOli may name as few or many additional recipients as YOli wish. Note that the users originally
on the recipient list will still receive the message; you cannot remove someone from the reci­
pient list with -to

If you wish, you can associate a subject with your message by using the escape
-8 Arbitrary string of text

which replaces any previous subject with "Arbitrary string of text." The subject, if given, is
sent near the top of the message prefixed with "Subject:" You can see what the message will
look like by using -I'.

For political reasons, one occasionally prefers to list certain people as recipients of carbon
copies of a message rather than direct recipients. The escape

-c namel name2 ...
adds the named peopie to the "Cc:" list, similar to -1. Again, you can execute -I' to see what
the message will look like.

The recipients of the message together constitute the "To:" field, the subject the "Sub­
ject" field, and the carbon copies the "Cc:" field. If you wish to edit these in ways impossible
with the -t, -5, and ··c escapes, you can use the escape

-h

which prints "To:" followed by the current list of recipients and leaves the cursor (or print­
head) at the end of the line. If you type in ordinary characters, they are appended to the end
of the current list of recipients. You can also use your erase character to erase back into the
list of recipients, or your kill character to erase them altogether. Thus, for example, if your
erase and kill characters are the standard # and @ symbols,

-h
To: root kurt####bil!

would change the initial recipients "root kurt" to "root bill." When you type a newline, Mail
advances to the "Subject:" field, where the same rules apply. Another newline brings you to
the "Ce:" field, which may be edited in the same fashion. Another newline leaves you append­
ing text to the end of your message. You can use -p to print the current text of the header
fields and the body of the message.

To effect a temporary escape to the shell, the escape
-!command

is used, which executes command lind returns you to mailing mode without altering the text of
your message. If you wish, instead, to filter the body of your message through II shell com­
mand, then you can use

icommand
which pipes your message through the command and uses the output as the new text of your
message. If the command produces no output, Mail assumes that something is amiss and
retains the old version of your message. A frequently-used filter is the command Imt, designed
to format outgoing mail.

Mall Reference Mall!:::l 7127183

To effect a temporary escape to Mail command mode instead, you can use the
-:Mail command

HI

escape. This is especially useful for retyping the message you are replying to, using, for exam­
ple:

-:t

It is also useful for setting options and modifying aliases.
If you wish (for some reason) to send a message that contains a line beginning with a

tilde, you must double it. ThIlS, for example,

-""This line begins with II tilde.

sends the line

!his line begins with a tilde.

Finally, the escape
-?

prints out a brief summary of the available tilde escapes.
On some terminals (particularly ones with no lower case) tilde's are difficult to type. Mail

allows you to change the escape character with the "escape" option. For example, I set

set escape - J
and use a right bracket instead of II tilde. If I ever need to send a line beginning with right
braCKet, I double it, jus! as for -. Changing the escape character removes the special meaning
of -.

11.2. Network access
This section describes how to send mail to people on other machines. Recall that sending

to a plain login name sends mail to that person on your machine. If your machine is directly
(or sometimes, even, indirectly) connected to the Arpanet, you can send messages to people on
the Arpanet using II name of the form

name@host
where name is the login name of the person you're trying to reach and host is the name of the
machine where he logs in on the Arpanet.

If your recipient logs in on II machine connected to yours by UUCP (the Bell Laboratories
supplied network that communicates over telephone lines), sending mail to him is a bit more
complicated. You must know the list of machines through which your message must travel to
arrive at his site. So, if his machine is directly connected to yours, you can send mail to him
using the syntax:

host!name
where, again, hosl is the name of his machine and name is his login name. If your message
must go through an intermediate machine first, you must use the syntax:

intermediate!host!name

and so on. It is actually a feature of UUCP that the map of all the systems in the network is
not known anywhere (except where people decide to write it down for convenience). Talk to
your system administrator about the machines connected to your site.

If you want to send II message to II recipient on the Berkeley network (Berknet), you use
the syntax:

host:name

where host is his machine name and name is his login name. Unlike UUCP, you need not
know the names of the intermediate machines.

Mail Reference Mlllllllil 7127183

When you use the reply command to respond to a letter, there is II problem of figuring
out the names of the users in the "To:" and "Cc:" lists relative to the current machine. If the
original letter was sent to you by someone on the local machine, then this problem does not
exist, but if the message came from a remote machine, the problem must be deal! with. Mail
uses a heuristic to build the correct name for each user relative to the local machine. So, when
you reply to remote mail, the names in the "To:" and "Cc:" lists may change somewhat.

4.3. Special recipients
As described previously, you can send mail to either user names or alias names. It is also

possible to send messages directly to files Of to programs, using special conventions. If a reci­
pient name has a'/' in it or begins with a '+', it is assumed to be the path name of a file into
which to send the message. If the file already exists, the message is appended to the end of the
file. If you want to name 11 file in your current directory (ie, one for which a 'I' would not usu­
ally be needed) you can precede the name with './' So, to send mail to the file "memo" in the
current directory, you can give the command:

% Mail ./memo

If the !lame begins with a '+,' it is expanded into the full path name of the folder name in
your folder directory. This ability to send mail to files can be used for a variety of purposes,
such as maintaining II JOIl!"nal and keeping a record of mail sent to a certain group of users.
The second example can be done automatically by including the full pathname of the record file
in the alias command for the group. Using ollr previous alillS example, YOIl might give the
command:

alias project sam sally steve susan Illsr/project/maitrecord

Then, all mail sent to "project" would be saved on the file" !usrlproject/mail_record" as well as
being sent to the members of the project. This file can be examined using Mail -f

It is sometimes useful to send mail directly to a program, for example one might write a
project billboard program and want to access it using Mail. To send messages to the billboard
program, one can send mail (0 the special name 'lbillboard' for example. Mail treats recipient
names that begin with Ii 'f as a program to send the mail to. An alias can be set up to refer­
ence a 't' prefaced name if desired. Caveats: the shell treats 'f specially, so it must be quoted on
the command line. Also, the 'I program' must be presented as a single argument to mail. The
safest course is to surround the entire name with double quotes. This also applies to usage in
the &lIl1s command. For example, if we wanted to alias 'rmsgs' to 'rmsgs -$' we would need
to say:

alias rmsgs 'I rmsgs os"

Mall Reference Manual 7117183 12

S. Additional features
This section describes some additional commands of use for reading your mail, setting

options, and handling lists of messages.

S.l. Message lists
Several Mail commands accept a list of messages as an argument. Along with type and

delete, described in section 2, there is the from command, which prints the message headers
associated with the message list passed to it. The from command is particularly useful in con­
junction with some of the message list features described below.

A message list consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers, which directly specify mes­
sages, or one of the special characters "T" "." or "$" to specify the first relevant, current, or
last relevant message, respectively. Relevant here means, for most commands "not deleted"
and "deleted" for the undelete command.

A range of messages consists of two message numbers (of the form described in the pre­
vious paragraph) separated by a dash. Thus, to print the first four messages, use

type 1-4
and to print all the messages from the current message to the last message, use

type .-$

A name is a user name. The user names given in the message list are collected together
and each message selected by other means is checked to make sure it was sent by one of the
named users. If the message consists entirely of user names, then every message sent by one
those users that is relevant (in the sense described earlier) is selected. Thus, to print every
message sent to you by "root," do

type root

As a shorthand notation, you can specify simply"·" to get every relevant (same sense)
message. Thus,

type •
prints all undeleted messages,

delete •
deletes all undeleted messages, and

undelete •
undeletes all deleted messages.

You can search for the presence of a word in subject lines with I. For example, to print
the headers of all messages that contain the word "PASCAL," do:

from lpascal
Note that subject searching ignores upper II ower case differences.

S.2. List of commands
This section describes all the Mail commands available when receiving mail.
Used to preface a command to be executed by the shell.
The - command goes to the previous message and prints it. The - command may be
given a decimal number n as an argument, in which case the nth previous message is gone
to and printed.

PrlntLike print, but also print out ignored header fields. See also print and ignore.

Mall Reference MaDllal 7/27/83

Reply
Note the capital R in the name. Frame a reply to a one or more messages. The reply (or
replies if you are using this on multiple messages) will be sent ONLY to the person who
sent you the message (respectively, the set of people who sent the messages you are
replying to). You can add people using the -t and -c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with "Re:" unless it
already began thus. If the original message included a "reply-to" header field, the reply
will go only to the recipient named by "reply-to." You type in your message using the
same conventions available to you through the mall command. The Reply command is
especially useful for replying to messages that were sent to enormous distribution groups
when you really just want to send a message to the originator. Use it often.

Type Identical to the Print command.

IlIiIllS Define a name to stand for a set of other names. This is used when you want to send
messages to a certain group of people and want to avoid retyping their names. For exam­
ple

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.

alternates
If you have accounts on several machines, you may find it convenient to use the
lusr/lib/aliases on all the machines except one to direct your mail to a single account.
The alternates command is used to inform Mail that each of these other addresses is
really you. Alternales takes a list of user names and remembers that they are all actually
you. When you reply to messages that were sen! to one of these alternate names, Mail
will not bother to send a copy of the message to this other address (which would simply
be directed back to you by the alias mechanism). If altemales is given no argument, it
lists the current set of alternate names. Alternates is usually used in the .mailre file.

chdlrThe chdlr command allows you to change your current directory. Cbdir takes a single
argument, which is taken to be the path name of the directory to change to. If no argu­
ment is given, chllir changes to your home directory.

copy The COllY command does the same thing that save does, except that it does not mark the
messages it is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the undelete com­
mand.

lit The ilt command deletes the current message and prints the next message. It is useful for
quickly reading and disposing of mail.

edit To edit individual messages using the text editor, the edit command is provided. The edit
command takes a list of messages as described under the type command and processes
each by writing it into the file Messagex where x is the message number being edited and
executing the text editor on it. When you have edited the message to your satisfaction,
write the message out and quit, upon which Mail will read the message back and remove
the file. Edit may be abbreviated to e.

else Marks the end of the then-part of an If statement and the beginning of the part to take
effect if the condition of the If statement is false.

endif Marks the end of an If statement.

exit Leave Mail without updating the system mailbox or the file your were reading. Thus, if
you accidentally delete several messages, you can use exit to avoid scrambling your mail­
box.

ftle The same as folder.

Man Reference Manllal 7127/83 14

folders
List the names of the folders in your folder directory.

folder
The folder command switches to a new mail file or folder. With no arguments, it tells
you which file you are currently reading. If you give it an argument, it will write out
changes (such as deletions) you have made in the current file and read the new file.
Some special conventions are recognized for the name:

Name
it
%
%name
&
+ folder

Meaning
Previous tile read
Your system ma.ilbox
Name's system mailbox
Your -/mbox file
A file in your folder directory

from The from command takes a list of messages and prints out the header lines for each one;
hence

from joe

is the easy way to dispiay all the message headers from "joe."

headers
When you start up Mail to read your mail, it lists the message headers that you have.
These headers tell you who each message is from, when they were sent, how many lines
and characters each message is, and the "Subject:" header field of each message, if
present. In addition, Mail tags the message header of each message that has been the
object of the preserve command with a "P." Messages that have been saved or written
are flagged with II "'." Finally, deleted messages are not printed at all. If you wish to
reprint the current list of message headers, you can do so with the headers command.
The beaders command (and thus the initial header listing) only lists the first so many
message headers. The number of headers listed depends on the speed of your terminal.
This can be overridden by specifying the number of headers you want with the window
option. Mail maintains a notion of the curren! "window" into your messages for the pur­
poses of printing headers. Use the z command to move forward and back a window. You
can move Mail's notion of the current window directly (0 a particular message by using,
for example,

headers 40

to move Mail's attention to the messages around message 40. The headers command can
be abbreviated to 1:1.

belp Print a brief and usually out of date help message about the commands in Mail. Refer to
this manual instead.

bold Arrange to hold a list of messages in the system mailbox, instead of moving them to the
file mbox in your home directory. If you set the binary option hold, this will happen by
default.

if Commands in your ".mailrc" file can be executed conditionally depending on whether
you are sending or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else

Mall Referellce MIIIlI.!lIi 7/27/83 15

commands ...
endif

Note that the only ali owed conditions are receive and send.

ignore
Add the !ist of header fields named to the lisi. Header fields in the ignore list are
not printed on your terminal when This allows you to suppress
printing of certain malcllme:-g~;m;raltea fields, as Via which are not usually of
interest. The Type and commands can be used to p,int a message in its entirety,
including ignored fields. If ignore is executed with no arguments, it lists the curren! set
of ignored fields.

list List the vaild Mail commands.

mall Send mail to one or more people. If you have the ask option set, Mail will prompt you

mbox

for a subject to your Then you can type in your message, using tilde escapes as
described in section 4 to print, or modify To signal your satisfaction
with the message and send it, type control-d at of a line, or a . alone on a
line if you set the option dol. To abort the message, type two interrupt characters
(RUBOUT by defauli) in II row or use the -q escape.

Indicate that a list of messages be sent to mbox in your home directory when you quit.
This is the default action for messages if you do not have the hold option set.

next The next command goes to the next and types it. If given a message list, lIext
goes to the first such message and types it.

next root

goes to the next sen! by "root" and types it. The nex! command can be abbre-
viated to simply a which means that one can go to and type a message by simply
giving its message number or one of the magic characters"!" "." or "$". Thus,

prints the current message and

4

prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be he,id in yom system mailbox when you quit.

quit Leave Mail and update the file, folder, or mailbox your were reading. Messages
that you have examined are marked as and messages that existed when you
started are marked as "old." If you were editing your mailbox and if you have set
the binary option hold, all messages which have not deleted, or mboxed will
be retained in your system maiibox. If you were system and you did
1101 have hold set, a11 messages which have no! been saved, or preserved will be
moved to the file mbox in your home directory.

reply Frame a reply to II single The wil! be sent to the person who sent you the
message to which you are all people who received the original message,
except you. You can add the -t ami -;: tilde escapes. The subject in your
reply is formed by the with "Re:" unless it
already began thus. the header field, the reply
will go only to the recipient named by in your message using the
same conventions llvailable to you through

SIIYe It is often useful to be able to save messages on related topics in file. The fine com­
mand gives you ability to do this. The sl\ve command takes as argument II lit of message
numbers, followed by the name of the tile on which to save the messages. The messages
are appended to the named file, t.hus allowing one to keep several messages in the file,

Mail Reference Manual 7127/83 Hi

stored in the order they were put there. The slIve command can be abbreviated to s. An
example of the slIVe command relative to our running example is:

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected by
the lIext command described above, unless explicitly specified.

set Sel an option or give an option a value. Used to customize Mail. Section 5.3 contains a
list of the options. Options can be binary, in which case they are on or off, or valued. To
set a binary option option Oil, do

set option

To give the valued option option the value value, do

set option-value

Several options can be specified in a single set command.

slJell The shell command allows you to escape to the shell. Shell invokes an interactive shell
and allows you to type commands to it. When you leave the shell, you will return to
Mail. The shell used is II default assumed by Mait, you can override this default by set­
ting the valued option "SHELL," eg:

set SHELL-/bin!csh

SOUlce

The source command reads Mail commands from II file. It is useful when you are trying
to fix your" .mailrc" file and you need to ie-read it.

top The top command takes a message list and prints the first five lines of each addressed
message. It may be abbreviated to to. If you wish, you can change the number of lines
that top prints out by setting the valued option "toplines." On a CRT terminal,

set top lines = 1 0

might be preferred.

type Print a list of messages on your terminal. If you have set the option crt to a number and
the (otal number of lines in the messages you are printing exceed that specified by crt, the
messages will be printed by a terminal paging program such as more.

undelete

!.IIIS!)t

The undelete command causes a message that had been deleted previously to regain its
initial status. Only messages that have been deleted may be undeleted. This command
may be abbreviated to II.

Reverse the action of setting a binary or valued option.

visual
It is often useful to be able to invoke one of two editors, based on the type of terminal
one is using. To invoke a display oriented editor, you can use the visual command. The
operation of the visual command is otherwise identical to that of the edit command.

Both the edit and visuml commands assume. some default text editors. These default edi­
tors can be overridden by the valued options "EDITOR" and "VISUAL" for the stan­
dard and screen editors. You might want to do:

set EDITOR-/usr/ucb/ex VISUAL-/usr/ucb/vi

write The save command always writes the entire message, including the headers, into the file.
If you want to write just the message itself, you can use the write command. The write
command has the same syntax as the save command, and can be abbreviated to simply w.
Thus, we could write the second message by doing:

w 2 file.c

Mail Reference Mlllll.utl 7/27/83 17

As suggested by this example, the write command is useful for such tasks as sending and
receiving source program text over the message system.

z lvlail presents message headers in windowfuls as described under the headers command.
You can move Mail's attention forward to the next window by giving the

z+
command. Analogously, you can move to the previous window with:

z-

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This sec­
tion describes each of the options in alphabetical order, including some that you have not seen
yet. To avoid confusion, please note that the options are either all lower case letters or all
upper case letters. When I start a sentence such as: "Ask" causes Mail to prompt you for a
subject header, I am only capitalizing "ask" as a courtesy to English.

EDITOR
The valued option "EDITOR" defines the pathname of the text editor to be used in the
edit command and -e. If not defined, a standard editor is used.

SHELL
The valued option "SHELL" gives the path name of your shell. This shell is used for the
! command and -! escape. In addition, this shell expands file names with shell metachar­
acters like • and ? in them.

VISUAL
The valued option "VISUAL" defines the patimame of your screen editor for use in the
visual command and ·v escape. A standard screen editor is used if you do no! define
one.

append
The "append" option is binary and causes messages saved in mbox to be appended to the
end rather than prepended. Normally, Maii\vill mbox in the same order that the system
puts messages in your system mailbox. By setting "append," you are requesting that
mbox be appended to regardless. It is in any event quicker to append.

Iilsk "Ask" is a binary option which causes ,'viail to prompt you for the subject of each mes­
sage you send. If you respond with simply a newline, no subject field will be sent.

IISlm:
"Askce" is a binary option which causes you to be prompted for additional carbon copy
recipients at the end of each message. Responding with a newline shows your satisfaction
with the current list.

Iilutoprillt
"Autoprint" is a binary option which causes the delete command to behave like dp -
thus, after deleting a message, the next one will be typed automatically. This is useful to
quickly scanning and deleting messages in your mailbox.

debug
The binary option "debug" causes debugging information to be displayed. Use of this
option is the same as useing the

-d command line flag.

dllt "Do!" is a binary option which, if set, causes lvlail to interpret a period alone on a line as
the terminator of!l message you are sending.

escllpe
To allow you to change the escape character used when sending mail, you can set the
valued option "escape." Only the first character of the "escape" option is used, and it

lI>hil Reference MMIl,ud 7/27/fH 111

must be doubled if it is to appear as the first character of a line of your message. If you
change your escape character, then - loses all its special meaning, and need no longer be
doubled at the beginning of a line.

folder
The name of the to use for storing folders of messages. If this name begins
with a '/' Mail considers to be an absolute pathname; otherwise, the folder directory is
found relative to your home directory.

hold The binary option "hold" causes m,~ss;ag,~s that have been read but not manually dealt
with to be held in the mailbox. prevents such messages from being automati-
cally swept into your

ignore
The binary option "ignore" causes RUBOUT characters from your terminal to be ignored
and echoed as @'§ while lire sending mail. RUBOUT characters retain their original
meaning in Mail mode. Setting the "ignore" option is equivalent to supplying
the -I flag 011 the command line as described in section 6.

iglloreeof
An option related to "dot" is "ignoreeof" which makes Mail refuse to accept a
control-d as the end of a message. "Ignoreeof' also applies to Mail command mode.

keep The "keep" option causes Mail to truncate your system mailbox instead of deleting it
when it is empty. This is useful if you elect to protect your mailbox, which you would do
with the shell command:

chmod 600 /usr/spoolimail/yourname

where is your login name. If you do not do this, anyone can probably read your
mail, people usually don't.

keepsiilYe
When you sllIVe a message, Mail usually discards it when you quit. To retain all saved
messages, set the "keepsave" option.

melco
When sending mail to an alias, Mail makes sure that if you are included in the alias, that
mail. will not be sent to you. This is useful if a single alias is being used by all members
of the group. If however, you wish to receive a copy of all the messages you send to the
alias, you can set the binary option "me too. "

noheader
The binary option "noheader" ~F.F"""'vo the printing of the version and headers when
Mail is first invoked. Setting this is the same as using - N on the command line.

nOSIl"Ve
Normally, when you abort a message with two llUBOUTs, flJail copies the partial letter to
the file "dead.letter" in your home directory. Setting the binary option "nosave"
prevents this.

qlliet The binary option
invoked, as well as

record

suppresses the printing of the version when Mail is first
the for example "Message 4:" from the type command.

If you love to keep records, then the valued option "record" can be set to the name of a
file to save your outgoing mail. Each new message you send is appended to the end of
the file.

screen
When Mail initially prints the message headers, it determines the number to print by
looking at the speed of your terminal. The faster your terminal, the more it prints. The
valued option "screen" overrides this calculation and specifies how many message
headers you wan! printed. This number is also used for scrolling with the z command,

Mall Reference Manual 7127/83 19

sendmall
To alternate delivery system, set the "sendmail" option to the full pathname of the PI'O­
gram to use. Note: this is not for everyone! Most people should use the default delivery
system.

tOlllines
The valued option "toplines" defines the number of lines that the "top" command will
print out instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke sendmail with the -v flag, which
causes it to go into versbose mode and announce expansion of aliases, etc. Setting the
"verbose" option is equivalent to invoking Mail with the -v flag as described in section 6.

Mail Reference Manual 712MB

6. Command line options

This section describes command line options for Mail and what they are used for.

- N Suppress the initial printing of headers.

-d Turn on debugging information. Not of general interest.

-f file

20

Show the messages in file instead of your system mailbox. If file is omitted, Mail reads
mbox in your home directory.

- i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious
RUBOUT or DELETE characters. It's usually more effective to change your interrupt
character to control- c, for which see the stty shell command.

-n Inhibit reading of lusr/lib/Mail.rc. Not generally useful, since lusr/lib/MaiLrc is usually
empty.

-s string
Used for sending mail. String is used as the subject of the message being composed. If
string contains blanks, you must surround it with quote marks.

-u name
Read names's mail instead of your own. Unwitting others often neglect to protect their
mailboxes, but discretion is advised. Essentially, -II user is a shorthand way of doing -f
IUSf I spool/user.

-v Use the -v flag when invoking send mail. This feature may also be enabled by setting the
the option "verbose".

The following command line flags are also recognized, but are intended for use by pro­
grams invoking Mail and not for people.

-Tfile
Arrange to print on file the contents of the article-id fields of all messages that were either
read or deleted. -T is for the readnews program and should NOT be used for reading
your mail.

-h number
Pass on hop count information. Mail will take the number, increment it, and pass it with
-b to the mail delivery system. -h only has effect when sending mail and is used for
network mail forwarding.

-r name
Used for network mail forwarding: interpret name as the sender of the message. The
name and -r are simply sent along to the mail delivery system. Also,Mail will wait for
the message to be sent and return the exit status. Also restricts formatting of message.

Note that -h and -r, which are for network mail forwarding, are not used in practice
since mail forwarding is now handled separately. They may disappear soon.

Milil Reference Manllal 7127/83 21

.,. Formlit of messlIges

This section describes the formal of messages. Messages begin with a from line, which
consists of the word "From" followed by a user name, followed by anything, followed by a
date in the format returned by the clime library routine described in section 3 of the Unix
Programmer's Manual. A possible ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indication, which
should be three capital letters, such as PDT.

Following the from line are zero or more header field lines. Each header field line is of the
form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: article-id, bee, ce, from, reply-to, sender, subject, and to. Other
header fields are also significant to other systems; see, for example, the current Arpanet mes­
sage standard for much more on this topic. A header field can be continued onto following
lines by making the first character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line, The part that follows is
called the body of the message, and must be ASCII text, not containing null characters. Each
line in the message body must be terminated with an ASCII newline character and no line may
be longer than 512 characters. If binary data mllst be passed through the mail system, it is sug­
gested that this data be encoded in a system which encodes six bits into a printable character,
For example, one could use the upper and lower case letters, the digits, and the characters
comma and period to make up the 64 characters. Then, one can send a 16-bit binary number
as three characters. These characters should be packed into lines, preferably lines about 70
characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This
blank line mus! not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message
each lime it is forwarded through II machine.

It should be noted that some network transport protocols enforce limits to the lengths of
messages.

Mill Reference Manllal 7127/83

II. Glossary
This section contains the definitions of II few phrases peculiar to Mail

alias An alternative name for a per&on or list of people.

22

flag An option, given on the command line of Mail, prefaced with a -. For example, -f is II

flag.
header field

At the beginning of 11 message, II line which contains information that is part of the struc­
ture of the message. Popular header fields include 10, ce, and subject.

mail A collection of messages. Often used in the phrase, "Have you read your mail?"

mailbox
The place where your mail is stored, typically in the directory lUST/spool/mail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option
A piece of special purpose information used to tailor Mail to your taste. Options are
specified with the set command.

Mall Reference Manual 7127183 23

9. Summary of commands, options, and escapes

This section gives a quick summary of the Mail commands, binary and valued options,
and tilde escapes.

The following table describes the commands:

Command

Print
Reply
Type
alias
alternates
chdlr
copy
delete
cit
endl!
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
Ust
local
mall
mbox
next
preserve
quit
reply
slIve
set
shell
top
type
undelete
unset
visual
write
z

Description
Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as llIe
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Setl examine list of ignored header fields
Lis! valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail, update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don't include headers
Scroll to next/previous screenful of headers

Man Reference MaDual 712MB

The following table describes the
binary or valued option.

options. Each option is shown as being either a

Option Type
EDITOR valued
SHELL valued
VISUAL valued
append binary
ask binary
askcc binary
autoprint binary
crt valued
debug binary
dot binary
escape valued
folder valued
hold binary
ignore binary
ignoreeof binary
keep binary
keepsave binary
metoo binary
noheader biliary
nosave biliary
quiet binary
record valued
screen valued
sendmail valued
toplines valued
verbose binary

Description
Pathname of editor for -e and edit
Pathname of shell for shell, -! and!
Pathname of screen editor for -v, visllal
Always append messages to end of mbox
Prompt user for Subject: field when sending
Prompt user for additional Cc's at end of message
Print next message after delete
Minimum number of lines before using more
Print out debugging information
Accept. alone on line to terminate message input
Escape character to be used instead of -
Directory to store folders in
Hold messages in system mailbox by default
Ignore RUBOUT while sending mail
Don't terminate letters/command input with tD
Don't unlink system mailbox when empty
Don't delete saved messages by default
Include sending user in aliases
Suppress initial printing of version and headers
Don'l save partial letter in dead. letter
Suppress printing of Mail version and message numbers
File to save all outgoing mail in
Size of window of message headers for z, etc.
Choose alternate mail delivery system
Number of lines to print in tOil
Invoke sendmail with the -v flag

The following table summarizes the tilde escapes available whiie sending mail.

Escape Arguments Description
-! command Execute shell command -c name ... Add names to Cc: field
-d Read dead. letter into message -e Invoke text editor on partial message
-r messages Read named messages
-h Edit the header fields -m messages Read named messages, right shift by tab -P Print message entered so far -q Abort entry of letter; like RUBOUT -r filename Read file into message -S string Set Subject: field to string
-t name ... Add names to To: field -v Invoke screen editor on message -w filename Write message on file
1 command Pipe message through command

Siring Quote a - in front of string

24

Mall Reference Manual 7127183 25

The following table shows the command line flags that Mail accepts:
Flag Description

N Suppress the initial printing of headers
- T file Article-id's of read/deleted messages to file
-d Tum on debugging
- f file Show messages in file or -/mbox
-h number Pass on hop count for mail forwarding
-i Ignore tty interrupt signals
-n Inhibit reading of /usr/Jib/Mail.rc
-r name Pass on name for mail forwarding
-s string Use string as subject in outgoing mail
-u name Read name's mail instead of your own
-v Invoke sendmail with the -v flag

Notes: -T, -d, -h, and -r are not for human use.

Mail Reference Manual 71'1.7/83 26

10. Conclusion
Mail is an attempt to provide a simple user interface 10 a variety of underlying message

systems. Thanks are due to the many users who contributed ideas and testing to Mail.

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNlxt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi­
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 15, 1978

tUNIX is • Trademark or Bell Laboratories.

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill. New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIXt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers. but one may specify an
input base. output base. and a number of fractional digits to be maintained.

A language called BC (1) has been developed which accepts programs written in the fami­
liar style of higher-level prograrr.ming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two olf the stack. performing the desired operation. and pushing the
result on the stack. If an argument is given. input is taken from that file until its end. then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A-F which are treated as digits with values 10-15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ - * 'It -

The top two values on the stack are added (+). subtracted (-). multiplied (*). divided
(/). remaindered ('It), or exponentiated C>. The two entries are popped olf the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun­
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell laboratories.

sx

Ix

- 2 •

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

II

1 ••• 1

The top v.alue on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If II is capi­
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x "'x !<x !>x l-x

v

c

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated 10 an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX

command terminates.

All values on the stack are popped; the Slack becomes empty.

\)

- 3 -

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stacie No mechanism has
been provided for the input of arbitrary !lumbers ill bases less than I or greater than 16.

The top value Or! the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value i~ used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
if k is capitalized. the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DET AILED DESCRIPTION

Internal Representation of Numbers

Numbers afe stored internally using 11 dynamic storage allocator. Numbers are kept in the
form of a Siring of digits to Ihe base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,!. After any arithmetic operation 011 a number, care is taken that all
digits are in the range 0~99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the loo's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98, -I. We shall call this the canonica!
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large. addi­
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize t.he fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write. and the next place to read. Communication between the alloca­
tor and DC is done via pointers to these headers.

- 4 •

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since ail strings are
the result of spiitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
fOf more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca­
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and baCKspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-or-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

hltemal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary 10 get a properly scaled result from the internal arithmetic rou­
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stacie scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition IIlld Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99, -1 by the digit -1. In any case, digits which are not in the range
0-99 must be brought into that range, propagating any carries or borrows that result.

- 5 -

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of -these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of :he lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next tria! quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi­
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni­
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is I. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits ill the binary representation of the ex.ponent. Enough digits of the result are
removed to make the scale of the resuit the same as if the indicated multiplication had been
performed.

- Ii -

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A - F correspond to the
numbers 10-15 regardless of input base. The i command can be used 10 change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base 011 the stack.

Output Commands

The command II causes the top of the stack to be printed. It does not remgve the top of
the stacie All of the stack and internal registers can be output by typing the command f. The 0

command can be used to change the output base. This command uses the lop of the stacK.
truncated to an integer as the base for all further outpu!. The output base ill initialized to 10.
II will work correctly for any base. The command 0 pushes the value of the output base on the
stacK.

Outllut Format alld Bllse

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; II \ indicates .:I continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has Ihe effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal­
hexadecimal conversions.

I utema! Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis­
ters with the commands s and I. The command sx pops the top of the stack and stores the
result in register x. x can be any character. ix puts the contents of register J[on the top of the
stacie The I command has no effect on the contents of register x. The § command, however,
is destructive.

Stack Commands

The command c clears the stack. The command Ii pushes a duplicate of the number on
the top of the slack on the stade The command z pushes the stack size on the stacie The
command X replaces the number on the top of the stack with its scaie factor. The command Z
replaces the lOP of the stack with its length.

Subroutine Definitions lIud Calls

Enclosing 3_ string in II pushes the ascii string on the stack. The II command quits or in
executing a string. pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with B to store strings, :I to execute and the test­
ing commands '<', '>', '-', '!<', '!>', '!-' can be used to program DC. The x command
assumes the top of the stack is an string of DC comma.nds and ex!;cutes it. The testing com­
mallds con1p~,re the top two elements on the stack and if the relation holds, execute the register
that follows the relatIon. For exarnple, to print the numbers 0-9,

!lipl + si HlO>als"
Osi lax

- 7 -

Push-Down Registers and Arrays

These commands were designed for used by a compiler. not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on. DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands Sand L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands sand
I also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com­

mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket L..J commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in e."ecution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes appro"imately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan­
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost or 5% in
space, debugging was made a·great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi­
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com­
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is' not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and e"ponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

- 8 -

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References

(1) L. L. Cherry, R. Morris. BC - An Arbitrary Precision Desk-Calculator Language.

(2) K. C. Knowlton, A FastStorageAllacator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

BC - An Arbitrary Precision Desk-Calculator Language

LOflnda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Be is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-! 1 under the UNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input,. output,
and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

November 12, 1978

tUNIX i •• Trademark of Bell Laboratories.

Be - An Arbitrary Precision Desk-Calculator Language

Introduction

LOrinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Be is a language and a compiler for doing arbitrary preCISion arithmetic on the UNlxt
time-sharing system [lJ. The compiler was written to make conveniently available a collection
of routines (called DC !5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is·
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of Be has been deliberately selected to agree substantially with the C language
121. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285i14

the program responds immediately with the line

428571

The operators -, ., I, oro, and' can also be used; they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression 'may be prefixed by a minus sign to indicate that it is 10 be
negated (the 'unary' minus sign). The expression

7+-3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted juS!
as in Fortran, with - having the greatest binding power, then· and % and I, and finally + and
-. Contents of parentheses are evaluated before material outside the parentheses. Exponen­
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is • Trademark of Ilell Laboratories,

are equivalent, as are the two expressions

a'b'c and (a'b)'c

- 2 -

BC shares with Fortran and C the undesirable convention that

a/b'c is equivalent to (a/b)'c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x - x + 3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an -, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(J91J
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and 'obase'. 1be contents of 'ibase',
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the in put base back to decimal by typing

ibase - 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A - F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-15 respectively. The
statement

ibase ~ A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line

- 3 -

3E8

which is to be interpreted as a 3·digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting 'obase' to 100000. Strange (j.e. 1, O. or negative) output bases are han­
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con­
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal p·oint. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale deter·mined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications. the scale of the result is never less than the max­
imum of the two scales of the operands, never more than the sum of the scales of the operands
and. subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity ·scale'. The scale of a quotient is the contents of the internal quantity ·scale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of ·scale'.

All of the internal operations are actually carried out in terms of integers. with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to
O. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like
other variables. The line

scale - scale + 1

increases the value of 'scale' by one. and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are no! equal to 10. The internal computa­
tions (which are still conducted in decimal. regardless of the bases) are performed to the
specified number of decimal digits. never hexadecimal or octal or any other kind of digits.

functions

The name of a function is a single lower-case letter. Function names are permitted to col­
lide with simple variable names. Twenty-six different defined functions are permitted in addi­
tion to the twenty-six variable names. The line

- 4 -

define a (x) I
begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace I, Return
of control from a functiOil occurs when a return statement is executed or when the end of the
fUilction is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto X,y,l

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a (x,y) I
auto z
z - x'y
return (z)

The value of this function, when called, will be the product of its two arguments.

A [unction is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wiOng
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: bOo

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21. 98 to be printed and the line

x - a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case leiter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permilted [0 collide with the names of simple variables and function names.
Any fractional par! of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array flame may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

[(a[])
define f(a [])
auto a[J

- 5 -

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The 'if', the 'while', and the 'for' statements may be used to alter the flow within pro­
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

or

if(relation) statement
while (retation) statement
for (expression 1; relation; expression2) statement

if(retation) {statements}
while (relation) (statements I
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, < -, >-,
--, or !-. The relation -- stands for 'equal to' and !- stands for 'not equal to'. The
meaning of the remaining relational operators is clear.

BEW ARE of using - instead of - - in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but - really will not do a comparison.

The 'ir statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' state men t causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is· false, con­
trol passes to the next statement beyond the range of the: while.

The 'for' statement begins by executing 'expression 1'. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled itera­
tion, as in the statement

forO-I; i<-IO; i-i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define [(n)(
auto i, x
x-I
forG-l; i<-n; i-i+!) x-x*i
return (x)
}

The line

[(a)

- 6-

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m)(
auto x, j
x-I
for(j-I; j< -m; j-j+ I) x-xO(n -j + J)/j
return (x)
I

The following function computes values of the exponential function by summing the appropri­
ate series without regard for possible truncation errors:

scale - 20
define e (x){

auto a, b, c, d, n
a - I
b - I
c - I
d - 0
n - I
while(J--I)!

Some Details

a - a·x
b - bOn
c - c + alb
n - n + I
if(c- -d) return(c)
d-c

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state­
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any­
where that an expression can. For example, the line

(x-y+17)

not only mak.es the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x - a[i-i+l)

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work. in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals (2) for their exact workings.

x-y-z is the same as
x-+y
x--y
x -" y
x -I y
x -%y

x -' y
x++
x--
++x
--x

- 7 -

x-(y-z)
x - x+y
x - x-y
x - x"y
x - x/y
x - x%y
x - x'y
(x-x+l) -I
(x-x-l) +1
x - x+l
x - x-I

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x - -y and x - -yo The first replaces x by x -y and the second by -yo

Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with ""' and end with ,./'.

3. There is a library of math functions which may be obtained by typing at command level

be -I

This command will load a set of library functions which, at the time of writing. consists of sine
(named's'), cosine ('c'), arctangent ('a'), natural logarithm ('I'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3).

If you type

be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4); its original version was written by S. C: Johnson.

References
[I) K. Thompson and D. M. Ritchie, UNIX Pro/ifTammer's Manllal, Bell Laboratories, 1978.

[2) B. W. Kernighan and D. M. Ritchie, nle C Programming Langllage, Prentice,Hall, 1978.

(3) R. Morris, A Library Qf Reference Standard Mathematical Slibromilles, Bell Laboratories
internal memorandum, 1975.

[4) S. C. Johnson, YACC - Yet Allorher Compiler-Compiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978.

[5) R. Morris and L. L. Cherry, DC - All Inreracrive Desk Calclilaror.

- 8 -

Appendix

1. Notation

In the following pages syntactic categories are in i/a/ics; literals are in bold; material in
brackets [1 is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate slate­
ments.

2.1. Comments

Comments are introduced by the characters 1* and terminated by • t.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conllict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
iilase if
obase break
scale dellne
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade­
cimal digits A-.F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre­
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity. where applicable, is discussed with each operator.

- 9 •

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3. L 1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name I expression I
Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale. ibase and abase

The internal registers scale, loase and abase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. June/ion-name ([expression!. expression . ..] l)
A function cal! consists of II function name followed by parentheses containing a comma­

separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqr! (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.L2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

- 10 -

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named

expression before incrementing.

3.2.5. named-expression - -

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right 10 left.

3.3.1. expression' expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso­
lute value of the right expression, then the scale of the result is:

min (axb, max (scale, a))

3.4. Multiplicative operators

The operators·, I. % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a +b, max (scale, a, b))

3.4.2. expression I expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, a%b is a-alb-b.

The scale of the result is the sum of the scale of the divisor and the value of scale

- II -

3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max­
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression" expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression - + exprl'ssioll

3.6.3. named-exprl'ssion .. - expressioll

3.6.4. named-expression ... * expression

3.6.5. named-expression "" I expression

3.6.ti. named-expression .. % expression

3.ti.7. named-expression .. " expression

The result of the above expressions is equivalent to "named expression - named expres­
sion OP expression", where OP is the operator after the - sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expressioll > expression

4.3. expression < "'" expression

4.4. expression > - expression

4.5. expression - - expression

4.6. expression ! .. expressioll

- 12 -

5. Storage classes

There are only two storage classes in BC, global and automatic Oocal). Only identifiers
that are to be local to a function need be declared with the aulo command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and locaL have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in Be do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stacie Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. CompOImd statements

Statements may be grouped together and used when one statement is expected by sur­
rounding them with { l.

6.3. Quoted string slatements

"any string"

This statement prints the string inside the quotes.

1i.4. If statements

if (fe/alion) statement

The subslatement is executed if the relation is true.

6.5. While statements

while (fe/alion) statement

The statement is executed while the relation is true. The lest occurs before each execu­
tion of the statement.

6.6. For statements

for (expression; fe/alion; expression) statement

The for statement is the same as
.!irs/-expression
while (relation) {

slatement
laSI-expression

All three expressions must be present.

6.7. Break statements

break

- 13 -

break causes termination of a for or while statement.

6.8. Auto statements

auto ident(/ier [,idelllJ/ier J

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol­
lowing the array name by empty square brackets. The auto statement must be the first state­
ment in a function definition.

6.9. Define statements

define([paramerer[,parameter ... J 1) (
statements)

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return (0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a Be program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIXt operating system is done with the texl­
editor ea. This memorandum is a tutorial guide to help beginners get started
with text editing.

Although it does not cover everything, it does discuss enough for most
users' day-to-day needs. This includes printing, appending, changing, deleting.
moving and inserting entire lines of text; reading and writing files; context
searching and line addressing; the substitute command; the global commands;
and the use of special characters for advanced editing.

September 21, 1973

tUNIX ill a Trademark of Bell laboratories.

A Tutorial I ntroductiofl to the (;:"11 X Text Editor

Srroll W. Kenllghall

Bell Laboratories
Murray Hill. New Jersey 079i4

Introduction

Ed is a "texi editor", that is, an interactive
prOllram for creating and modifying "text".
using directions provided by a user at a terminal.
The le~! is often a document like this one. or •
prOlfam or perhaps data for a prOliram.

This introduction is meanl to simplify learn·
inll rd. The recommended way to learn ~rJ is to
read this document. simultaneously using eel to
follow lhe examples, then to read the description
in section I of the UNIX Progra"'IFlI!r's MaJ/lIQL all
the while e~perimenting wilh ed. (Solicitation or
advice (rom experienced users is also useruu

Do the exercises! They cover muerilll not
completely di5Cussed ill the ac!W!1 text. An
appendix 3umm~rius Ihe commands.

DI:seIa lmer

This is an introduction and a u.IIorilil. For
this reason. flO <llteml)! is made to cover morc
than a par! of the facilities that ~d offers
(allnoulIh lhis fraction includeS the most useful
and rrequently used parts). When you have
mas Ie red the Tutorial. try AdV(Jm:~d Calling 011

UNIX. Also. there is not enoush space to explain
bilSie UNIX procedures. We ... ilI assume that you
know how 10 log on to UNIX. and that you have
at least a vague understanding of what a tile is.
For more on thill, read UNIX fa' 8qmrwf$.

YOu must also know what character to type
as tile end-of-line on YOUT particular terminal.
This character is tile R.ETURN key on mosl tet­
minals. Throughout. we will refer to this dnr.II:­
tet, whatever it is_ as RETURN.

G~lIill1 Started

We'lI assume thaI you havo: logsed in to your
system and it has jU.'l! printed the prompt charac­
ter. usually either a S or a 0/>. The easiest way to
aet ~d is to type

et:! (followed by a return)

You are now ready to go - erJ is waiting for you
to tell il what to do.

Cre:alinc Tn! - Ihe Ap~fld command "2"

As your r.rst problem. suppose you Wan! to
crcale some text starting from scratch. Perhaps
you are typing the very r.rst drai! of J paper:
clearly il will have to .start somewhere. and
underso modiftcations later. This section wiU
show how to get some text in. just to gel started.
wiler we'lI !alk about how to change it.

When ed is f!rSI sUlned. it is rather like work­
ing with J blank piece of p"per - there is 110

text or information present. This must be sup­
plied by the person using ed: it is usually done by
typing in the text. or by reading it ir1l0 ed from a
file. We will stUt by typin, in some text. and
return shortly to how to read cles.

Firs! a bil of terminalOllY. In eel jarson. the
text being worked on is said (0 be "kepI in a
bulfer." Think of the buffer as a wl.lrk space. if
you like. or simply as (he information thaI you
are lIoin& to be editing. In effect the buffer is
like (he piece of paper. on which we will wrile
things. then change some of them. and finally
fil<! the whole thing away for :lno(her day.

The user tells t!ci what to do to his text by
typmg instructions .:ailed "commands." YiOSt

commands consisl of a single letter. which must
be typed in lower case. Each command is typed
on a sepante line. (Somelimes the command is
precedetl by information aboll! what line or lines
or text are to be alleelcd - we will discuss these
shortly.) Ed makes no response to most com·
mllnds - there ;s no prompting or typing of
messages lik.e ··ready". (This silence is preferred
by experienced users. but rome times d hancup
for begin nen.J

The rors! command is I1ppt!",I. wrillen as the
Iener

a

all by itself. It means "append (or add) text
lines to the buffer. as I type them 1M." Append­
ing is ralher like writing fresh rnaterial on a piece
of paper.

So to enter lines or lex. irHo .he buffer. JUSt
type an a followed by a RETUI'.1'I. I"ollowed by

the lines of "'AI yU,", W4Ut, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
line that conrains only a period. The"." is used
to tell rd that you have finished appending.
(Even experienced users forllet that terminating
"." sometimes. If ed seems to be ignoring you,
type an extra line with just "." on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their Plrty.

The "I" and"," aren't there, because they are
not text.

To add more text to what you already have,
just issue another I command, and continue typ­
ing.

Error Messlges - "?"

If It any time you make an error in the com­
mands you type to eli. it will tell you by typing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

WrItlnl text out .5 I Ble - the WrIte commlnd
u w"

It's likely that you'll want to save your text
for later use. To write out the contents of the
buffer onlo a file, use the writr command

w

followed by the filename you wanl to write on.
This will copy the buffer's contents onlO Ihe
specified file (destroyin. any previous informa­
tion on the file). To save the tut on I file
named junk, for example, type

w junk

Leave a space between wand the file name. Ed
will respond by printing the number of characters
il wrote out. In this case, ed would respond with

61

(Remember thaI blanks and the return character
1\ the end of each line are included in Ihe char­
acter coum.> Writ ins a file jusl makes a copy of

- 2-

the text - the buffer's contents are not dis­
turbed, 50 you can 110 on addina lines to it. This
is an important point. Edat aU times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you live a
w command. (Writina out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose aU the text
in the buffer but any text Ihat was written onto a
file is relatively safe.>

Lenlns ed - the Quit command "q"

To terminate a session with ttl, save the lext
you're workina on by writing it onto a file usin.
the w command, and then type the command

q

whil:h stands for quit The system will respond
with the prompt character ($ or ~). At Ihis
point your buffer vanishes, with aU its texl,
which is why you want 10 write it out before
quillin •. t

Exercise 1:

Enler td and create some text usin.

•
.. , text.,.

Write it OUI usinS w. Then leave td with the q
command, and print the file, 10 see that every­
thins worked. (To print a 1lIe, sly

pr Blen.me

or

Cit Blename

in response 10 Ihe prompl character. Try both.)

Readlna tnt from I Ble - the EdIt command
"e"

A common WIY 10 gel text into the buffer is
to read it from a IIle in the file system. This is
what you do to edit text that you saved with the
w command in a previous session. The edit com­
mand e fetches the entire contents of a IIle into
the buffer. So if you had saved the three lines
"Now is the time", etc., with a w command in
an earlier session, the rdcommand

e junk

would fetch the ent.ire contents of the llie jUDk
into the buffer, and respond

f Actuall)'. ttl will print? if you try to quu. withOYI writ ..
ina. AI tha. POUlt, write if you want:. if not. another q
will ICI you OUI rea-nUcss.

61

which is the number of characters in junk. 1/
anyrhrng ""'s already in rhr b<i!Trr. II is drirred./irsl.

If you use Ihe e command to read a file inlo
Ihe buffer. then you need nOl use a file name
afler a subsequenl '" command; td remembers
the IaSI file name used in an e command. and If

will wrile on Ihis file. Thus a lood way 10

operale is

ed
e Ille
leditiDl session)
'II

q

This way. you can simply say If from lime 10

lime. and be secure in Ihe knowledae lhal if you
101 the lile name righl al the belinninl. you are
wrilinl inlo Ihe proper file each time.

You can find OUI II any lIme whal file name
td is rememberin, by Iypinl lhe jilr command r.
In Ihis example. if you Iyped

(

td would reply

junk

Rudlnl tlllt from I IUe - the Rtad command
'·rn

Somelimes you wanl 10 read a file into Ihe
buifer wilhoul deslroyinl anYlhinl Ihal is already
there. This is done by the 'tat/command r. The
command

rjunk

will read the file Junk in 10' the buifer. il adds it
10 Ihe end of whatever is already in the buifer.
So if you do a read after an edil:

a junk
rjunk

the butrer will contain two copies of the lUI (six
lines).

Now is Ihe tima
for aU lood mea
to come to the aid o{ Iheir party.
Now is the time .
(or all lood men
to come to the aid o{ their party.

Like Ihe If and e commands. r prints lhe number
of characters read in. after Ihe rea.dinl operalion
is complete.

Generally speakinll. r is much less used than ..

- J -

Exercise Z:

Experiment with Ihe e command - try read­
in, and prinlinl various flies. You may aet 1n
error? name. wnere name is Ihe name of • nle;
Ihis means Ihal Ihe file doesn', exist. ,ypica.lIy
because you speUed the flle name wronl. or
perhaps thaI you lee not allowed to read or write
il. Try alternalely readinl and appendinl to see
that they work similarly. Verify that

ed filename

is exactly equivalent to

ed
a filename

What does

{ filename

do?

Printinl the contenlS of the bulrer - the Print
command "p"

To ",lnlor lisl the contents of the buifer (or
parts of it> on the terminal. use the print com­
mand

p

The way this is done is as follows. Specify the
lines where you want printinl to belin and where
you want it to end. separated by a comma. and
followed by the letter p. Thus to print. the flrst
twO lines of the buifer. for example. (that is.
lines I throullh 2) say

1.2p (startinlline-l. endinlline-2 p)

Ed will respond with

Now is the time
for 111 lood man

Suppose you want to prin t all the lines in the
buifer. You could use l.Jp as above if you knew
there were exactly 3 lines in the buifer. BUI in
leneral. you don't know how many there are. so
what do you use for the endinl line number' Ed
provides a shorthand symbol for "line number
of last line in buifer" - the dollar siln S. Use it
this way:

I.$p

This will print ai/the lines in the buifer (line I to
last line.) If you want to Stop the printin, before

'it is finished. push the DEL or Delete key'. td will
[)Ipe

?

and wait for the nUl command .

To print the /QSI line of the buifer. you could
use

S,Sp

but td leIS you abbrevia te this to

Sp

You can print any single line by typin& the line
number followed by a p. Thus

Ip

produ,es the response

Now is the time

whi,h is the first line of the buffer.

In Cact, td leIS you abbreviate even further:
you ,an print any sin&le line by typinl just the
line number - no need to type the Ieller p. So
if you say

S

tdwill print the last line of the buffer.

You can also use $ in combinations like

S-I,Sp

which prinlS the last two lines of the buffer.
This helps when you want to see how far you lot
in typinl.

Eurcise 3:

As before, aeate some text usinl the I com­
mand and experiment with the p command. You
will find, for example, that you ,an't print line 0
or a line beyond the end of the buffer, and that
IltemplS to print a buffer in reverse order by say­
inl

3,lp

don't work.

The current line - "Dot" or "."

Suppose your buffer still contains the six
lines as above, that you have just typed

1,3p

and ed has printed the three lines for you. Try
typing just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fa't it is
the last (most re,ent) line that you have done
any thins with. <You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a re,ord of
the last line that you did anything to (in this
case, line 3, which you just printed) 50 that it

- 4 -

can be used instead of an explicit line number.
This most recent line is referred to by the shoC!·
hand symbol

(pronounced "dot").

Dot is a line number in the same way that $ is; it
means exactly "the current line", or loosely,
"the line you most recently did somethin& to."
You can use it in several ways - one possibility
is to say

.,Sp

This will print all the lines from (includinl) the
,urrent line to the end of the buffer. In our
example these are lines 3 throullh 6.

Some commands chanlle the value of dot,
while others do nol. The p ,ommand sets dot to
the number of the last line printed; the laSt com·
mand will sct both. and $ to 6.

Dot is most useful when used in combina·
tions like this one:

.+1 (or equivalently, • + I p)

This means "print the next line" and is a handy
way to SICp slowly through a buffer. You can
also say

.-1 (or ,-Ip)

which means "print the line befo" the current
line." This enables you to 10 backwards if you
wish. Another useful one is something like

,-3,.-lp

which prinlS the previous three lines.

Don't fOCllet that all of these change the
value of dot. You can find out what dot is at any
time by typinl

Edwill respond by printinl the value of dot.

Let's summarize some thinls about the p
command and dot. Essentially p ,an be preceded
by 0, I, or 2 line numbers. If there is no line
number given, it prints the "current line", the
line that dot refers to. If there is one line
number given (with or without the leller pl. it
prinlS that line (and dot is set there); and if
there are two line numbers, it prin ts all the lines
in that ranle (and selS dot to the laSt line
printed'> If two line numbers are speCified the
first can't be bigger than the second (see Exer·
,ise 2'>

Typing a single return will cause printing of
the next line - it's equivalent to .+lp. Try it.
Try typing a -; you will lind that it's equivalent
to .-lp.

Deletin& lines: the "d" eommand

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
d'l~re command

Ii

Except that d deietes lines instead oi priming
them, its action is similar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

slllffing lillt". ending liM d

Thu3 the command

4,SQ

deletes lines 4 tllrouih the end. There are now
three lines left, as you can check by using

1,Sp

And notice that S now is line 3' Dot is set to the
next line after the last line deleted. unless the
last line deleted is the last line in the buffer. In
that case, dot is set to S.

Exercise 4:

Experiment with s, e, r, "', II and d until you
are sure that you know what they do. and until
you understand 110w den. $, and line numbers
are used.

If you are advelltllfOus. try using line
numc.:rs with ;, r and VI as well. You will find
that a will append lines after the line number that
yOy specify (rather than after dot): that r reads a
file in after the line number you specify (not
necessarily at the end of tMe buffer!: and that VI

will write out exactly the lines you specify, not
necessarily the whole buffer. These variations
are sometimes handy. For instance you can
insert a !!!e 31 the beginning of a Duffer by saying

Or filename

and you can enter lines at the beginning of the
buffer by saying

o.
rrxl . ..

Notice that.,.. is vttry different from·

:'.10<11(yln3 text: the Substitute command "s"

We are now ready to try one of the most
important of all commands - the 5ubstiwte
command

This is the command that is used to change incjj­
vidual words or letters within a line or group of
lines. II is what you use. for example. for
correcting spe!ling mistakes and typing errors.

Suppose that by a typmg error. line I says

Now is th time

the t has been Ie ft 0 If (he. You can use s to
fix Ihis up as foilows:

Islthlthe!

This says: "in iine I. substitUle for the characters
rh the characters the." To verify that it works (ed
wul not print the result automatically) say

p

and get

Now is the time

which is what you wanted. ;.Iotic: that dot must
have been set to the line where the substitution
took place. since the p command primed that
line. Dot is always set this way with the s com­
mand.

The general way to use the substitute com­
mand is

starring-lint. ending-line 51 change (Insf '" (nul

Whatever strirlg of characters is between the first
pair of slashes is replaced by whatever is between
the second pair, in all the lines between stQrtltrg­
liflt and ending-line. Only the tirst occurrence on
esch line is changed. however. If you want to
change every occurrence. see Exercise 5. The
rules for line numbers are the same as those for
p, except that dOl is set to the last line changed.
(Bu! there IS a trap for the unwary: if no substi­
tution took piace, dOl is /fOI changed. This
causes an error? as a warning.J

Thus you can say

I ,S5/ spelinsl spellingl

and correct the first spelling mistake on each line
in the ten (This is useful for people who are
consistent misspeiJers')

!f no line numbers are given. the s command
assumes we mean "make the substitution on line
dot", so it changes things only on the current
line. This leads to the very common sequence

s!somethinllhornething else/p

which makes some correction on the current
line, and then prin tS it, to make sure it orked
oul right. If it didn·t. you can try allain. (:'\otlCe
that there is a II on the same line 15 the 5 com­
mand. With few exceptions, II can follow any
command; no other multi-command lines are
IcgaI.)

It·s also legal to say

sl ... II

which means "change the ftrst string of charac­
ters to "no{hW;". i.e., remove them. This is
useful for deleting extfa words in a line or
removing eAtra leuers from words. For instance,
if you had

Nowu is the time

you can say

s/u/lp

to get

Now is the time

Notice that II (two adjacen! slashes) means "no
characters", not. blank. There is a difference'
(See below for another meaning of If.)

Exercise 5:

Expenment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

lR

the other side of the coin

s/the/on Ihe/p

You will get

Oil the other side of the coin

A substitute command changes only the firs!
occurrence of the firs! string. You can change all
occurrencesoy addio2 0 g (for "glo 001") to the 5

command. like this:

sl ... ! ... ISp

Try olher characters instead of slashes to delimit
the two selS of characters in the s command -
anything should work except blanks Of tabs.

(If YOll get funny results using any of the
characters

read the section on "Special Characters".)

Conll1xl se chillii - '" .•. '"

With the 5ubslill.lte command mastered. you
cal'! move on to another highly imponall! idea of
ed - context searching.

Suppose you have the original three iioe text
in the buffer:

Now is the time
for aililood men
\0 come to the aid of their party.

Suppose you want to nod the line that contains
fhelr so you can change it to {he. Now with only
three lines in the buffer, it's pretty easy to keep
track of what line the word {heIr is on. But if the
buffer contained several hundred lines, and
you'd been making changes. delellng and rear­
ranging iines, and so on, you would no longer
really know what this line number would be.
Context searching is simply a method of specify­
ing the desired line. regardless of what its
number is, by specifying some context on it.

The way to say "search for a line that co n­
tains this particular Siring of characters" is to
type

Isfrm~' of citafaClErS we wan! to find!

For example, the edcommand

!their!

is a context search which is sufficient to find the
desired line - it will locate the next occurrence
of the characters between slashes ("their"). it
also sets 00: 10 that line and prints the line for
verification:

\0 come 10 the aid of theil' party.

"Next occurrence" me~ns that ed starts looking
for the string at line .+1. searches to the end of
the buffer, then continues at line 1 and searches
to line do!. (Th.t is. the search "wraps around"
rrom $ to 1,) Ii scans all the lines in the buffer
until il either finds the desired line or gets back
to dot again. if the given string of characters
can 'I be found ill any line, ed types the error
message

Otherwise il prints the line it found.

YOll can do both the search for the desired
line and a substitution aU at once, like this:

I the ir /81 their !thel II

which will yield

10 come 10 the aid of the party,

There were three parts to that last command:
context search for the desired line, make the
substitution, prim the line.

The expression Iinelyl is a context search
expression. In their simplest form. all context
search expressions are like [hill - a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so Ihey can be used by themselves to find and
prim 2 ·desired line, or as line numbers for some
other command, like s. They were used both
ways in Ihe examples above.

Suppose the buff~r .:ontain! the three familiar
lines

Now is the time
for .11 load mea
to come to the aid of their party.

Then the ld line numbers

INow/+l
lloodi
Iparty/-l

are aU context search expressions. and they aU
refer to the same line (line 2). To make a
chanlc in line 2. you could say

INowl + I S/loodibadl

or

laood/slaoodibadi

or

Iparty/-ls/Sood.'badi

Tile choice is dictated only by convenience. You
could print all three lines by, for instance

INow/,/party/p

or

1N0wl,lNowi + 2p

or by any number of similar combinations. The
first one of these milht be bener if you don't
know how many lines are involved. (Of course.
if there were only three lines in the buffer, you'd
use

I.Sp

but not if there were several hundredJ

The basic rule is: a context search expression
is 1M SIl"'~ as a line number. so it can be used
wherever a line number is needed.

Eurclse 6:

Experiment with context searchinl. Try a
body of text with several occurrences of the
same strinl of characters. and scan throulh it
usinl the same context search.

Try usinl context searches as line numbers
for the substitute. print and delete commands.
(They can also be used with r. ". and L)

Try context searchina usina ?text? instead
of Itext/. This scans lines in the buffer in
reverse order rather than normal. This is some·
times useful if you go tOO far while lookina for
some strina of characters - it's an easy way to
back up.

(If you let funny results with any of the
characters

- 7-

s \ .t

read the section on ·'Speciai·Characters".)

Ed provides a shorthand for repeating 1 con­
text search for the same string. For exampie.
the ed line number

Isuinll

will find the next occurrence of strine. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typ ina mere Iy

/I

This shorthand stands for ":he most recently
used contut search expression." It can also be
used as the first string of the substitute com­
mand, as in

Isuinell sll strial21

which will find the ne.,t occurrence of urine!
and replace it by urine!. This can save a lot of
typina. Similarly

??
means "scan backwardS for the same expres­
sion."

Chanae and Insert - "e" and "."
This section discusses Ihe Chal,,' command

c

which is used to chanlle or replace a group of
one or more lines. and the insert command

which is used for inserting a ,roup oi one or
more lines.

"Chanlle". written as

c

is used to replace a number of lines with
different lines, which are typed in at the termi­
nal. For example, to chanle lines. + 1 through S
to something else. type

.+l.Sc
•.. type Ihe lines 0/ text you ",ani herr . ..

The lines you type between the c command and
the . will take the place of the orieinal lines
between start line and end line. This is most
useful in rep lacina a line or several lines hich
.'a ve errors in the m.

If only one line is speCified in the c com­
mand. then just that line is replaced. (You can
type in as many replacement lines as you like.>
Notice the use of, to end the input - this
works just like the, in the append command

and must appear by itself on a new line. If no
line number is given, line dOl is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append - for instance

Istringli
... IYpe rhe lines ro be mserred here • ..

will insert the given leX! be/ore the next line that
contains "string". The text between i and. is
ins£fled be/ore the specified line. If no line
number is specified dot is used. 001 is set to the
last line inserted.

Exercise 7:

"Change" is ral.her like a comtlinalio!1 of
delete followed by insen. Experiment to verify
lha!

starr, end II

... II!xl ...

is almost the same as

start. ende
... /ext ...

These are not precisely the same if line S gelS
deleted. CheCK this out. What is dot?

Experimerll with a and i, to sce that they are
similar, bill not the same. You wili observe that

line-number iii

..• texl . ..

appends a/rer the given line, while

1i1l<?-number i
•.. lex/ ...

inserts be/ore it. Observe that if no line number
is given, i inserts before line dot, while ill

appends afler line dot.

Moving lext .roum!: the "m" command

The move command m is used for cutting
and pasting - it lets you move a group of lines
from one place to another in the buffer. Sup·
pose you want to put the .first three lines of the
buffer at the end instead. You could do it by
saying:

1,3w temp
Sr temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

·8·

1,3mS

The general case is

starr Ime. end line m a/ref thiS Ime

Notice that there is a third line to be specified
the place where the moved SlUff gets put. Of
COUfse the lines to be moved can be specified by
context S<!arches; if you had

First paragraph

elld of finl paragraph.
Second paragraph

em! of second paragraph.

you could reverse the two paragraphs like this:

ISecond/,Iend of second/m/First/-1

Notice the -1: the moved text goes afll!r the line
mentioned. Dot gets set to the last line moved .

The BlohMl commands u g" and "v"

The g/oool command E is used to execute one
or more ed commands Oil all those lines in the
buffer that match some speCified string. For
example

,/peliDI/ll

prints aU lines thaI COtl!:lin pellns. More use­
fully,

Vpelilll.l/s! Ipelling/gp

makes the substitulkln everywhere on the line,
then prints each corrected line. Compare this to

I,Ss/pelil'tg/pellil'tg/gp

which only prints the last line substituted.
Another subtle difference is that the g command
does flot give a ? if pelinl is not found where
the s command will.

There may be several commands (including
a, C, I, f, Of, but oot g); in that case, every line
except the last must end with a bacKslash \:

'f,/xxx/. -1s/abc/def/E
. + 2s/ghiIjkllB
.-2,.p

makes changes in the lines before and after each
line that conl.1ins xxx, then prints all three lines.

The y command is the same as g, except that
the commands are executed on every line tha t
does nor match the string following v:

vlld

deletes every line that does not contain a blank.

Special CI'l8f:1lclers

You may have noticed thaI things juS! don't
work right when you used some characters like "
", $, and others in context searches and the sub·
stitute command. The reason is rather complex,
although the cure is simple. Basically, rtf treats
these characters as spec:al, with special mean·
inas. For instance, "' a Conlf!XI search or Ihe firSI
smng 0/ rhl! SUbs/llUfe command onlY, . means
"any character." 001 II period. so

Ix.yl

means "a line with an x. any cnaracler, and II 'J,"
lIOl JUSt "z line with an x, a period. and II ,/." A
complete list of the special characters that can
cause trouble is the foliowin&:

\
Waming: The backslash character \ is special to
ed. For safety's sake, avoid il where possible. !f
you have to use one of the special characters in a
substitute command. you can turn olf its magic
meaning temporarily by preceding it with the
blickslash. Thus

sA \ \. \·/bacll;slash dot starl

wiil change \.' into "bacKslash do! star",

Here is iI hurried synopsis of the other special
characters. First. the circumflex • Signifies the
be;innina of iI line. Thus

rsum&!

finds strine only if it is at the beginning of a
line: it ilt find

string

but oot

tile strine ...

The dollar·silln S is just the opposite of the
circumflex; it means the end of a line:

IstriallS;

.... ill only find an occurrence of strillil that is at
the end of some line. This implies, of course,
that

/"stringSI

will find only a line that contains just strloll, and

1".$1

finds a line containing exactly one character.

The character " as we mentioned above.
matches anyth,ng;

/x.y/

matches any of

x+y
x-y
x 'f
It.y

This is useful in conjunction with ". which is a
repetition character' ao is a shorthand for "lny
number at' a's," so ," matches any number of
any things. This is used !ike this:

sl:./slutf/

which changes an entire line. or

5/,·,/1

which deletes all characters in the line UP to and
including the last comma. (Since ," finds the
longest possible match, this goes up to the last
comma.>

I is used with I to form "characler classes";
for example.

1[012.3456189]1

matches any single digit - anyone of the char·
acters inside the braces will calJse a match. This
can be abbreviated to 10-91.

Finally. the II is another shorthand character
- il is used only on the right-hand part of a sub­
stitute command where it means "whatever was
matched on the left·hand side". It is used to
save typing. Suppose the current line contained

Now is the time

and you wanted to put parentheses around it.
You could JUSt retype the line. but this is tedi­
ous. Or you could say

5rl(/
s/S/)I

using your knowledge of • and S. But the easiest
way uses the":

,1.·/(&)/

This says "match the whole line, and replace it
by itself surrounded by parentheses,'· The" can
be used several limes in a line; consider using

s/.·I&? &!!I

to produce

Now is the time? Now is the time!!

You don't have to match the whole line. of
course: if the buffer contains

the end of the world

you could type

Iworld/sll &. is at hanell

to produce

the end of the world is at hand

Observe this expression carefully. for it iIlus·
trates how to take advantage of ed to save typing.
The string Iworld/ found the desired line; the
shorthand / / found the same word in the line;
and the &. saves you from typing it again.

The" is a special character only within the
replacement text of a substitute command. and
has no special meaning elsewhere. You can turn
off the special meaning of &. by preceding it with
a \:

s/ampersand/\&!

will convert the word "ampersand" into the
literal symool " in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name. pe'haps preceded by one or two
line numbers. and, in the case of e. r. and .. ,
followed by a r.le name. Only one command is
allowed per line. but a II command may fOllow
any other command (except for e, r. wand q).

a: Append. that is, add lines to the buffer <at line
dot. unless a different line is specified). Append­
ing continues until. is typed on a new line. 001
is set to the last line appended.

c: Change the specified lines to the new text
which follows. The new lines are termina led by
a " as with II. If no lines arc speCified, replace
line dol. Dot is set to last line changed.

d: Delete the lines specified. If none arc
speCified, delete line dol. Dot is set to the first
undeleted line. unless $ is deleted, in which case
dot is set to S.

e: Edit new file. Any previous contents of the
buffer are thrown away, so issue a .. beforehand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

g: The command

S/---/commands

will execute the commands on those lines that
contain --, which can be any conlext search
expression.

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set 10 last line
inserted.

m: Move lines specified to after the line named
after Ill. Do t is se 1 to the last line moved.

p: Prinl speCified lines. If none specified, print
line dol A single line number is equivalent to
!i"e-"umMr p. A sinsle return prin ts . + 1. the

·10.

nexl line.

q: Quit ed. Wipes out aU text in buffer if you.
give il twice in a row without nrst giving a ..
command.

r: Read a tile in to buffer (at end unless speCified
elsewhere.l Dot set to last line read.

5: The command

51 stringll s!rinIl2!

substitutes the characters stringl into strins2 in
the specified lines. If no lines are specified.
make "the subSlitution in line dol. Dot Is sel 10

last line in which a substitution lOok place, which
means that if no substitution took place, dot is
not changed. 5 changes only the first occurrence
of slringl on a line; to change all of them. type
a S after the final slash.

v: The command

v/:.-/commands

executes commands on those lines that do nOI

contain -".

.. : Write out buffer onto a file. Dot is not
changed.

.": Print value of dot (- by itself prints thc
value of 5,)

!: The line

!command-Iine

causes command-line to be executed as a UNIX
command.

1---/: Context search. Search for next line
which contains this string of characters. Print it.
DOl is set to the line where string was found.
Search starts at . +1, wraps around from $ to 1,
and continues 10 dot, if necessary.

?-.-?: Context search in reverse direction.
Start search at .-1, scan to 1, wrap around to S.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to male,
effective use of the UNlxt facilities for preparing and editing text. It provides
explanations and examples of

It special characters, line addressing and global commands in the editor ed;

• commands for "cut and paste" operations on files and parts of files,
including the mY, ep, ea! and rm commands, and the r, W, m and I com­
mands of the editor;

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

August 4, ! 978

tUNlX i •• Trademark of !!<oil Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, ~ew Jersey 07974

1. INTRODUCTION

Althoug,h UNlxt provides remarkably
effective tools for texl editing, that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who lre not computer specialists - typo
iSIS, secretaries, casual users - of len use the
system less effectively than they might.

This document is intended as a sequel to A
TutoFloi bllroduClJofl to Ihe UN r X Text Edilo, [Il,
providing explanations and examples of how to
edit with less effort. (You should also be fami­
liar with the material in UNIX for 8l!glftrlt!TS [21.l
Further infonnation on all commands discussed
here can be found in The UNIX Programme?s
Manual (31.

Examples are based 011 observi/tions of
users and the difficulties they encounter. TopiCS
covered include special characters ill searches
and substitute commands, line addressing, the
global commands, and line moving and copying.
Tnere are also brief discussions of effective use
of related tools, like those for file manipulation,
and those based on e<i., like IIrep and sed.

A word of caution. There is only one way
to learn to use something, and that is to use it.
Reading iI description is no substitute for trying
something. A paper like this one should give
you ideas about what to try. but until you actu­
ally try something, you will not learn it.

2. SPECIAL CHARACTERS
The editor ed is the primary interface to

the system for many people, so it is worthwhile
to know how to get the most (Jut of ed for the
least effort.

The next few sections will disc:.lSS
shortcutS and Ia.bor-saving devices. Not al! of
these will be instantly useful to anyone person,
of course, but a few will be, and the olhers
should give you ide3S to store away for future
use. And as always, tlntil you try these things,

'UNIX i, • Trademark of Bell uboralori~.

they will remain theoretical knowledge, not
something you have confidence in.

The List command '\'

ed provides two commands for printing the
contentS of the lines you're editing_ Most people
are familiar with p, in c:ombinations like

LSp

to print all the lines you 'Fe editing, or

s/abc/def/p

to change 'abc' to 'def on the rurFent line. Less
familiar is the list command I (the lener ','),
which gives slightly more information than II- In
particular, I makes visible character:!! that are
normally invisible, such as tabs and bJickspaces.
If you list a line that contains some of these, I
will print each tab as ~ and each backspace as
-(. This makes it much easier to corree! the sort
of typing mistake that insertS extra spaces adja­
cent to tabs, or insertS a backspace followed by a
space.

The I command al~o 'folds' long lines for
printing - any line that exceeds i2 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslastl \, so
you can tell it was folded. This is useful for
priming long lines on short terminals.

Oca.sionally the I command will print in a
line a string of numbers preceded by a backs lash,
such as \07 or \16. These combinations an: used
to make visible characters that !'IOrmally don't
print, like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be warf - they may
have 51.!rprising meanings when printed on some
tennina15. Often their presence means that your
finger slipped while you were typing; you almost
never want them.

The Substitute Command '5'

Mosl of the next f~w sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin. recall the
meaning of a trailing g after a substitute com­
mand. With

s/this/thatl

and

s!this/that/g

the fil'St one replaces the ./im 'this' on the line
with 'that'. If there is more than one 'this' on
the line, the second form with the trailing g
changes all of them.

Either form of the 5 command can be fol­
lowed by /I or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/thatll
s/this/that/gp
s/this/that/lll

are all legal, and mean slightly different things.
Make sure you KIIOW what th~ differences are.

Of course, any s command can be pre­
ceded by one or two 'line numbers' to specify
lha! the substitution is to take place on a group
of lines. Thus

l,$s/mispeil/misspelil

changes the .firsl occurrence of 'mispell' to
'misspell' on every line of the file. But

1,$51 mispell/misspeill II

changes every occurrence in every line (and this
is more likely to be what you wanted in this par­
ticular case).

You should also notice that if you add a p
or i to the end of any of these substitute com­
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command '\I'

Occasionally you will make a substitution
in a line, only to realize too late that it was a
ghastly mistake. The 'undo' command " lets
you 'undo' the last substitution: the las! line that
was substituted can be restored to its previous
state by typing the command

u

- 2 -

The '\felacharacter '.'

As you have undoubtedly noticed when
you use ed. certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu­
lar line. In the next several sections, we will talk
about these special characters, which are often
called 'metacharacters'.

The first one is the period'.'. On the left
side of a substitute command, or in a search with
'1.,,/', ',' stands for any single character. Thus
the search

Ix.yl

finds any line where 'x' and 'y' occur separated
by a single character, as in

x+y
x-y
)toY
x.y

and so on. (We will use = to stand for a space
whenever we need to make it visible.)

Since '.' matches a single character, that
gives you a way to deal with funny characters
printed by l. Suppose you have a line that, when
printed with the I command, appears as

.... th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution is to try

5/\071 I

bill this will fail. (Try it.) The brute force solu­
tion, which most people would now take, is to
fe-type the entire line. This is guaranteed, and is
actually quite a reasonable tactic if the line in
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar­
actey '.' comes in handy. Since '\01' really
represents a single character, if we say

s/th.is/thisl

the job is done. The',' matches the mysterious
character between the 'h' and the 'i', whalever II

is.

Bear in mind that since '.' matches any
single character, the command

51.1 ,/

converts the first character on a line into a ',',
which very often is not what you intended.

As is true of many characters in eo, tne ','
has several meanings, depending on its context.
This line shows all three:

.51 J.J

The fin! '.' is a tine number, the number of the
line we are editing, which is called 'line dot'.
(We wil! discuss line dot more in S~ction 3.) The
second ',' is a metacharacter that matches any
single character on that line. The third'.' is the
only 0ne that really is 3n honest literal period.
On the rrght side oi a sUOstitution, '.' is no! spe­
cial. If you apply this command to the line

Now is the time.

the result wili be

.ow is the time.

which is probably not what YOll intended.

The Backslash '\'

Since a period means 'any character', the
question naturaliy arises of what to do when YOll
really wam a period. For example, how do you
con vert the line

Now is the time.

into

Now i~ the ttme?

The backs!ash '\' doa the job. A backslash
IUrns off any special mellnin, that the next char·
acter might have; in particular. '\: converts the
',' from ~ 'm~!ch anything' i!'l[o a peno..-.!. you
can lISe it to replace the period in

Now is the time.

like this:

5/\.1' ;

The pair of characters '\,' ;5 considered by t<:! to
be a single rea! period.

The backslash call also be Ilsed when
searching for lin~ that cOtH3.in a spet'ial chuac­
tel'. SUPPo3e you are looking for ~ line that COil­

tains

.PI'

The search

I.P!'!

isn't adequ.\!e, for it will find a line like

THE APPllCA 1101'1 OF ...

because the' " malcne:s the leIter' A'. But if you
S<iy

/\,Pf'!

yOll will find only lines that contain' .P?'.

The bac:k.zlash can also be used to tum off
speC'lal meanin!!!i for characters other than ','.
For example, c:onsider finding a line thai CO!!-

• 3 -

tains a backs!ash. The seard'l

1\1
won '(work, bec31.!se [he '\' isn '[a literal ,\" but
instead means that th= second ./' no longer
delimitS the search. But by preceding a backs lash
with another one, YOll can search for a literal
bacKslash. Thus

1\\1

does work. Similarly, you can search for a for­
ward slash' I' with

1\11

The backslash turns off the meaning of the
immediately following '/' $0 that it doesn't ter·
minale the 1 .. .1 construction prematurely.

As an eltercise, before reading further,
find two substitute commands each of which will
convert tne line

\x\ ,\y

into the line

Here are several solutions: verify that each
works as advertised.

3/\\\.11
s/~ .. hrJ
~! o.y/yl

couple of miscellaneolls notes about
b~Ci:51ashe5 and speeia! characters. Fim. you
em llse any character to delimit the pieces of an
s command: there i~ nothing sacred about
slll!lhe~. (But you mt.1.S1 L!S~ 5lashes for comext
searching.) For in3tal1ce, in < line that contains a
lo! of slashes alr~3dy, like

Ilex©c II,ysJorr..go II etc ...

yOll could u.se a colon il! the delimiter - to
d~!e!c all the sla.sh~, type

5:/::1

Secorld. if # alld @ are your character
erase and line kill characters, YOll have r.o type
\# and \@; this is true whether you're talkini to
f<II or any other program,

When you are adding text with a or i or c.
backslash is' no! special, and you should only put
in one oacicsill!lh for each one you really wan!,

The DoUar Sign'S'

The next metacnarac!er. the'S'. stands for
'the elld of the line'. As its most obvious use,
suppose you have the line

Now is the

and you wish to add the word 'time' to the end.
Use the S like this:

slSI ~timel

to let

Now is the time

Notice that a space is needed before 'time' in the
substitute command, or you will let

Now is thetime

As another example, replace the second
comma in the following line with a period
without alterina the first:

Now is the time, for all good men,

The command needed is

5/,5/,1

The S sign here provides context to make specific
which comma we mean. Without it, of course,
the 5 command would operate on the first
comma to produce

into

Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time?

IS we did earlier, we can use

s/.SI?1

Like ''', the'S' has multiple meanings
depending on context. In the line

Ss/S/SI

the first'S' refers to the last line of the file, the
second refers to the end of that line, and the
third is • literal dollar sign, to be added to that
line.

The Circumflex ,-,

The circumflex (or hat or caret) ,-, stands
for the beginning of the line. For example, sup­
pose you are lookin& for a line that belin! with
'the'. If you simply say

Itbel

you will in all likelihood find several lines that
contain 'the' in the middle before arriving at the
one you want. But with

!"thel

you narrow the context, and thus arrive at the
desired one more easily.

- 4·

The other use of ,-, is of course to enable
you to insert something at the beginning of a
line:

51"101

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains only the characters

.PP

you can use the command

n.PPSI

The Star '.'

Suppose you have a line that looks like
this:

I~XI X 'I I~XI

where I~XI stands for lots of text, and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too lonl to retype, and there are too
many spaces to count. What now?

This is where the metacharacter '.' comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To refer to all the spaces
at once, say

s/xn'y/xoyl

The construction '".' means 'as many spaces as
possible'. Thus 'xo·y' means 'an x, as many
spaces as possible, then a y'.

The star can be used with any character,
not just space. If the oriainal example was
instead

/eXI x- - - - - - - -'I IIXI

then all '-' silns can be replaced by a single
space with the command

s/x-'y/xcyl

Finally, suppose that the line was

IlXI x_ '1 IIXt

Can you see what trap lies in wait for the
unwary? If you blindly type

s/x.·y/xoyl

what will happen? The answer, naturally, is that
it depends. If there are no other x's or y's on
the line, then everythina works, but it's blind
luck, not sood management. Remember that '.'
matches any sinsle character? Then' •• ' matches
as many single characters as possible. and unless

you're areful, it an eat UP • 101 more of the
line than you expet:led. If the line was, for
example, like this:

'*.'1:' " '*.'1:1 It ••••••••• ••••••• y 1*.'1:1 Y It.'l:1

then saying

5/".·y/,,;:.yl

will take everrthina: from the .firsr 'x' to the lasl
'y', which, in this e"ample, is undoubtedly more
than you wanted.

The solution. of course. is to turn olf the
special meanina of'.' wilh '\.':

s/x\.·y/x;:.yl

Now everythina: works, for '\ •• ' means 'as many
~riods as possible'.

There are times when the pattern ' •• ' is
euctly what you WInt. For example, to chanle

Now is the time for all good men

into

Now is the time.

use ' •• ' to eat up everYthinl after the 'for':

sI"for.·I.I

There are I couple of additional pitfalls
associated with '.' thlt you should be aware of.
Most notable is the flct that 'as many as possi­
ble' means r*ro or more. The fact that zero is a
lelitimate possibility is sometimes rather surpris­
ina. For example. if our line contained

1*X1 xy "JeT x

and we said

s/xo·ylxeyl

y 1*-'I:1

the .firsr 'xy' matches this pattern, for it consislS
of an 'x', zero spaces. and a 'y'. The result is
that the substitute aclS on the first 'xy', and does
not touch the later one that actually contains
some intervenina spaces.

The way around this. if it matters, is to
specify a pattern like

Ixoc·yl

which says 'an x, a space, then as many more
spaces as possible, then a y', in other words, one
or mOrll spaces.

The other startlinl behavior of '.' is again
related to the fact that zero is a lelitimate
number of occurrences of somethinl followed by
a star. The command

s/x·ly/l

when applied to the line

- 5 •

abedef

produces

yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the belinnina of the line (so that gets converted
into a 'y'), nor between the 'a' and the 'b' (so
that acts converted into a 'y'), nor ... and so on.
Make sure you really want zero matches; if not,
in this case write

sluolr/a

'Xx o ' is one or more x's.

The Brackets " I'
Suppose that you want to delete any

numbers that appear at the belinninl of all lines
of a file. You miaht first think of tryinl a series
of commands like

1,Ss/'lolI
I,SsI'NI
I,Ss1'3 0 "

and so on, but this is clearly 10ini to take for­
ever if the n um betS are II all Ion I. Unless you
_nt to repeat the commands over and over until
finally all numbers are aone, you must let all the
dilits on one pass. This is the purpose of the
brackets (and I.

The construction

(01234567891

matches any sinlle dilit - the whole thinl is
called a 'character class'. With a character class,
the job is easy. The pattern '(01234567891 0 '

matches zero or more diaits (an entire number>,
50

l.SsI-(OI234567891 0 /l

deletes all dilits from the belinninl of all lines.

Any characters can appear within a charac­
ter class, and just to confuse the issue there are
essentially no special characters inside the brack­
ets; even the backslash doesn '(have a special
mean in I. To search for special characters, for
example, you can say

I(.\S-Ol

Within (... 1, the '(' is :lot special. To eet a 'I'
into a character class, make it the first character.

It's a nuisance to have to spell out the
dicjts, so you can abbreviate them as [0-91;
similarly, [a-z1 stands for the lower case letters.
and [A-ZI for upper case.

As a final frill on character classea, you can

specify a class that means 'none of the following
characters', This is done by beginning the class
with a'·':

["0-9)

stands for 'any character tXt,!" a digit', Thus
you might find the first line that doesn't begin
with a tab or space by a search like

IT (space)(tab»)1

Within a character class, the circumne:t has
a special meaninl only if it occurs at the begin­
nina, Just to convince yourself, verify that

IT)I

finds a line that doesn't begin with a circumne:t,

The Ampersand '''''
The ampersand '&' is used primarily to

save typing, Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the bestl

but it seems silly to have to repeat the 'the',
The '&' is used to eliminate the repetition, On
the right side of a substitute, the ampersand
means 'whatever was just matched', so you can
say

slthel & bestl

and the '&' will stand for 'the', Of course this
isn't much of a saving if the thing matched is
just 'the', but if it is something truly long or
awful, or if it is something like ',-' which
matches a lot of te:tt, you can save some tedious
typing, There is also much less chance of mak­
inl a typing error in the replacement te:tl. For
eumple, to parenthesize a line, regardless of its
length,

5/.-/(&)1

The ampersand can occur more than once
on the right side:

s/thel & best and & worst I

makes

Now is the best and the worst time

and

s/.-I&? &!!I

converts the original line into

·6-

Now is the time? Now is the time!!

To get I literal ampersand, naturally the
backslash is used to tum off the special meaninll:

s/ampersand/\&1

converts the word into the symbol. Notice that
'&' is not special on the left side of a substitute,
only on the ri"hl side,

Substituting Newlines

ed provides a facility for splilling a sinlle
line into two or more shorter lines by 'substitut­
ing in a newline', As the simplest example, sup­
pose a line has gOllen unmanageably lonl
because of editing (or merely because it was
unwisely typed), If it looks like

text xy lur

you can break it between the 'x' and the 'y' like
this:

slxy/x\
yl

This is actually a single command, although it is
typed on two lines, Bearin, in mind that '\'
turns off special meanings, it seems relatively
intuiti ve that a '\' at the end of a line would
make the newline there no longer special,

You can in fact make a sinlle line into
several lines with this same mechanism, As a
large example, consider underlining the word
'very' in a long line by splillinl 'very' onto a
separate line, and precedinl it by the rolr or nrolr
form ailing command ',ul',

lext a very bi, Ie.~t

The command

51 cveryc/\
,ul\
very\
I

converts the line into four shorter lines, preced­
ing the word 'very' by the line ',ul', and elim­
inating the spaces around the 'very', all at the
same time,

When a newline is substituted in, dot is
left pointing at the last line created,

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of 5, Given
the lines

Now is
cthe time

and supposing that dot is set to the first of them,

then the command

joins them together. ~o blanks are added. which
is why we careiully snowed a blank at the begin­
ning of the second line.

Al! by itself. a j command joins line dot to
line dot .,.1. but any contiguous set of lines can
be joined. JUSt specify the starting and ending
line numbers. For example.

LSjp

joins all the lines into one big one and printS it.
(More on line numbers in Section 3,)

Rearranginll a Line with \ (.. , \)

(This section should be skipped on first
readin!!.) Recall that '&' is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched;
the only difference is that you have to specify on
the lei! side just what pieces you're interested in.

Suppose, for instance. that you have a file
of lines that consist of names in the form

Smith. A. B.
Jones. C.

ind so on, and you want the initials to precede
the name, as in

A. B. Smith
C. Jones

[t is possible to do this with a series of editing
commands, but it is tedious and error·prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to 'tag' the pieces of the
pattern (in this case, the last name, and the ini­
tials), and then rearrange the pieces. On the left
side of a substitution. if part of the pa!!em is
enclosed between \ (and \), whatever matched
that part is remembered. and available for use on
the right side. On the right side. the symbol '\ I'
refers to whatever matched the first \(. .. \) pair,
'\2' to tile second \ C .. \), and so on.

The command

I.Ssr\W.J -\),0 .\(,o\)/\2(l \ II

allhough hard to read, does the job. The first
\L.\) matches the last name, which is any slnnll
up to the comma; thIS is referred to on the nzht
side willi '\1'. The second \(. .. \) is whatever
follows the comma and any spaces. and is
referred to as '\:2'

Of course. with any editing sequence this
complicated. it's foolhardy to SImply rUrI it and

. 7·

hope. The global commands I and v discussed
in section ~ provide a way for you to print
exactly those lines which were affected by the
substitute command. and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSI:"iG l:"i THE EDITOR

The next general area we will discuss is
that of line addressing in ed. tna! is. how you
specify wha! lines are to be affected by ediling
cotllmands. We have already used constructions
like

1,Ss/-x.lyl

to specify a change on all lines. And most users .
are long since familiar with using a single new·
line (or return) to print the next line. and with

IthinllJ

to find a line that contains 'thing'. Less familiar.
surprisinsly enough, is the use of

'thing?

to scan backwards for the previous occurrence of
'thing'. This is especially handy when you real­
ize that the thing you wanl to operate on is bacle
up the page from where you are currently edit­
inll.

The slash and Question mark are the only
characters you can use to delimit a context
search, thouzh you can use essentially any char­
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like'.', 'S', '1 .. .1' and ' •... " with' ... '
and '-'. Thus

$-1

is a command to print the next to last line of the
current Iile (that is, one line before line '$').
For example, to recall how far you sot in a previ·
ous editing session,

S-S,$p

print! the last six lines. (Be sure you understand
why it's six, not five.) If til ere aren't six. of
course, you'\I Ie! an error message.

As another example,

.-3,.+3p

prints from three lines before where you are now
(at line dOl) to three lines after. thus giving you
a bit of context. By the way, the '+' can be
omitted:

.-3, . .3p

is absolutely identical in meaning.

Anoth'er area in which you can save typing
elfort in specifying lines is to use' -' and' +. as
line numbers by themselves.

by itself is a command to move back up one line
in the file, In fact. you can string several minus
signs together to move back up that many lines:

moyes up three lines, as does' - 3'. Thus

-3,+3p

is also identical to the examples above,

Since '-' is shorter than '. -I', construc­
tions like

-, .51 badl goodl

tre useful. This changes 'bad' to 'good' on the
previous line and on the current line.

'+' and '-' can be used in combination
with searches using '1.,,/' and '?.?', and with
'S'. The search

Ithinll/--

linds the line con taininll 'thing', and positions
you two lines before it.

Repeated Searches

Suppose you ask for the search

Ihorrible thinaJ

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

/I

is • shorthand for 'the previous thing that was
searched for', whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

??

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use '/I' as the left side of a substitute
command, to mean 'the most recent pattern'.

Ihorrible thinaJ
.... ed prints line with 'horrible thing' ...

sl/Iood/p

To 110 backwards and change a line, say

??s//lloodl

Of course, you can still use the '&' on the right
hand side of a substitute to stand for whatever

- 8 -

got matched: .
IIsll&=&/p

finds the next occurrence of whatever you
searched for last. replaces it by twO copies of
itself. then prints the line just to verify that it
worked.

Derault Line Numbers and the Value or Dot

One of the most elfective ways to speed up
your editin, is always to know what lines will be
alfected by a command if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e .• the value of dotl when a com­
mand finishes. If you can edit without specifying
unnecessary line numbers. you can save a lot of
typing.

As the most obvious example. if you issue
a search command like

IthinaJ

you are left pointing at the next line that con­
tains 'thing'. Then no address is required with
commands like 5 to make a substitution on that
line, or p to print it. or I to list it. or d to delete
it, or a to append text after it, or c to change it.
or Ito insert text before it.

What happens if there was no 'thin,'?
Then you are left riaht where you were - dot is
unchanged. This is also true if you were sitting
on the only 'thina' when you issued the com­
mand. The same rules hold for searches that use
'? ... ?'; the only dilference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line'S' gets deleted. however. dot points
at the nrw line'S'.

The line-changing commands I. c and 1 by
default all affect the current line - if you give
no line number with 'them. I appends text after
the current line, c changes the current line. and i
insens text before the current line.

a. c. and I behave identically in one
respect - when you stop appending, changing or
inserting. dot points at the last line entered.
This is exactly what you want for typing and edit­
i'ng on the fly. For example, you can say

a
... text ...
... botch ...

s/botch/ correctl
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the sub-

stitute command or for the second append com·
o mand. Or you can say

... text ...

... horrible botch ... (major error)

(replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add no lines with a. c or L

The r command will read a file into the
text being edited, either at the' end if you give no
address, or after the specified line if you do. In
either case, dOl points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say Oil or Ii to stan adding text at the begin­
ning.)

The w command writes out the entire file.
[f you precede the command by one line
number, that line is written, while if you precede
it by two line numbers, that range of lines is
wfinen. The w command does IIOf change dOl:
the current line remains the same, regardless of
what lines are written. This is Irue even if you
say something like

r\.ABI,I-\.AE./wabstract

which involves a context search.

Since the ,.. cqmmand is so easy to use.
you should save wnat you are editing regularly as
you go along juS! in case the system crashes. or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
thaI of the 5 command. The rule is simple -
you are left silting on the IllS! line that got
changed, If there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer. and you are silting on the
middle one:

~l

~2
:,;3

Then the command

-. -+-s/x/y/p

prints the third line, whICh is the last one
changed. But if the tr.ree iines had been

xl
y2
y3

and the same command had been Issued while

·9·

do! pointed at the second line, then the result
would be to ,hallge and print only the first line,
and that is where dOl would be set .

Semicolon ';'

Searches with ·I .. ./' and " ... ?' star! at the
current line and move rorward or backward
respectively until they either tind the pattern or
get back to the current line. Sometimes this is
no! what is wanted. Suppose, for example, that
the buffer contains lines like this:

lib

Starting at line !. one would expect that the
command

falJb/p

prints all the lines from the 'ab' to the 'be'
inclusive. Actually this is nOI wnat happens,
BOlh searches (ror '3' and for 'b') star! from the
same poim, and thus they both find the line that
contains 'ab'. The result is to print a single line.
Worse, if there had been a line with a '15' in it
before the 'ab' line, then the prim command
would be in error, since the second line numb.er
would be less than the fir-a, and it is illegal to try
[0 print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dOl as each ad.dress is
process~; each search starts from the same
place. In ed, the semicolon ';' can be us~ JUS!
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line Ilumbers are being evaluated. In
effect, the semicolon 'moves' dot, Thus in our
example above, the command

/a/;/b/p

prints the range of lines from 'ab' to 'be',
because after the 'a' is found., dot is set to that
line, and then '0' is searched for, staning beyond
that line.

This propeny is most often useful in l

very simple situation. Suppose you want 10 nnd
the second occurrence of 'thing'. You could say

IthingJ
I I.

but this printS the first occurrenc: as weii as the

second. and is a nuisance)'then you know very
well that it is only the second one you 're
interested in. The solution is to say

/thingl;! /

This says to find the first occurrence of ·thing".
set dot to that line. then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something, as in

~samethini?; ?'

Printing the third or fourth or ... in either direc­
tion is left as an exerdse.

Finally, bear in mind that if you want to
find the first otcurrence of something in a file,
starting at an arbitrary place within the file. it is
not sufficient to say

I;!thingl

because this fails if 'thing' occurs on line I. But
it is possible to say

O;/thingl

(one of the few places where 0 is a legal line
number), for this starts the search at line I.

Inlnruptinl the Editor

As a final note on what dot aets set to, you
should be aware that if you hit the interrupt or
delete or rubout or break key while til is doinl a
command, things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read­
ina or writing a file or making substitutions or
deleting lines, these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot mayor may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line, then hit
delete, you are 1101 sitting on that line or even
near it. Dot is left where it was when the p com­
mand was started.

4. GLOBAL COMMA:-;OS

The global commands C and • are used to
perform one or more editing commands on all
lines that either .contain (&) or don't contain (.)
a specified pattern.

As the simplest eumple, the command

glUNIX/p

prints all lines that contain the word 'UNIX',
The pattern that goes between the slashes can be

- 10-

anything that could be used in a line search or in
a substitute command: ~xactly th~ same rules
and limitations apply.

As another example. then,

gI-\,/p

prints all the formaning commands in a file
mnes that begin with','>.

The • command is identical to I, except
that it operates on those line that do 1101 contain
an occurrence of the pattern. (Dan't look .too
hard for mnemonic significance to the letter 'v'.)
So

vr\./p

prints all the lines that don't begin with',' - the
actual text lines.

The command that follows C or • can be
anything:

g!,\./d

deletes all lines that begin with',', and

gI'S/d

deletes all empty lines.

Probably the most useful command that
can follow a Ilobal is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example,
we could change the word 'Unix' to 'UNIX'
everywhere, and verify that it really worked, with

glUnix/s! /UNIX/gp

Notice that we used '//' in the substitute com­
mand to mean 'the previous pattern', in this
case, 'Unix'. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam­
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a I or • to use addresses,
set dot, and so on, Quite freely,

gI"\.PP/ +
prints the line that follows each '.PP' command
(the signal for a new paragraph in some format­
ting packages>' Remember that' +. means 'one
line past dot'. And

g!topic/?-\ .SH? I

searches for each line that contains 'topic'. scans
backwards until it finds a line that begins '.SH'
(a section heading) and prints the line that fol­
lows tha.t, thus showinll the section headings

under which 'topic' is mentioned. Finally.

gJ"\.EQI +.n.E"'I-p

pnnts all the lines that lie between lines begin­
nIng with ·.EQ· and '.EN' formatting commands.

The g and v commands can also be pre·
ceded by line numbers, in which case the lines
searched are only those in the range specified.

:\Tulti-line Global Commands

It is possible to do more than one com­
mand under the control of a global command.
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example, suppose the task is to change 'x' to 'y'
and 'a' to 'b' on all lines that contain 'thing'.
Then

g/thingls/ xl y/\
slalbl

is suffkienL The '\' signals the g command that
the set of commands continues on the next line:
it terminates on the firs! line that does not end
with y. (As a minor blemish, you C:ln't use a
substitute command to insert a newline within a
I command,)

You should watch out for this problem:
the command

g/x/sllyl\
5/ albl

does nOI work a.s you expect. The remembered
pattern is the last pattern that was actually exe­
cuted, so sometimes it will be 'x' (as expected),
and sometimes it will be 'a' (not expected). You
must spell it ou!. like this:

g/x/s/xly/\
sia/bl

II is also possible to execute a. c and i
commands under a global command: as with
other multi-line constructions. all that is needed
is to add a ,\' at the end of each line ucept the
last. Thus to add a '.r.r and '.sp' command
before each'. EQ' line, type

gn.EQ/i\
.nf\
.sp

There is no necd for a linal line containing a '.­
to terminate the i command, unless there are
further commands beIng done under the global.
On the other hand, it does no harm to put it in
either.

. ! I .

5, Cl'T A:-.ID P.\STE WITH l':-.'IX CO"I­
:\IAND5

One editing area in which non·
programmers seem not very confident is in what
might be called 'CLlt and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines (rom
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces,
and splicing two or more files tOllether.

Yet most of these operations are actually
quite easy, if you keep your wilS about you and
go clIutiouslr. The next several sections talk
about cut and paste. We will begin with the UNtX
commands for movin!! entire files around, then
discuss ed commands for operating on pieces of
tiles.

Changing the ~ame of a File

You have a file named 'memo' and you
want it to be called 'paper' instead. How is it
done?

The liNIX program that renames tiles is
called my (for 'move'); it 'moves' the file from
one name to another. like this:

mv memo paper

That's all there is to it: mv from the old name to
the new name,

mv oldname tlCWTlame

Warnins: if there is already a file around with the
new name, its present contenlS will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself -

mv ~ x

is illegal.

Making a COllY of a file

Sometimes what you wartt is a copy of a
file - an entirely fresh version. This might be
because you want to work on a file. and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any QSe, the way to do it is with the ell
command. (ep stands for 'COpy'; the system is
big on short command names, which are appreei·
aled by heavy users, but sometimes a strain for
novices.) Suppose you have a file cailed 'good'
and you want to save a copy before you make
some dramatic editing changes. Choose a name
- 'sav/!sood' might be acceptable - then type

cp good sa vellood

This copies 'good' onto 'savellood', and you now

have two identical copies of the file 'good'. Of
'savegood' previously contained something, it
gets overwritten,}

Now if you decide at some time that you
want to get back to the original state of 'good',
you can say

mv savel&ood good

(if you're no! interested in 'gavegood' any
more). or

cp. savegood good

if you still want to retain a safe copy.

In summary. mv just renames a file; ell
makes a duplicate copy. Both of them clobber
the 'target' file if it already exists. so you had
beller be sure that's what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com­
mand:

em savegood

throws away (irrevocably) the file called
'savegood'.

PUllinll Two or More Files Together

The next step is the familiar one of collect­
ing two or more files into one big onc. This will
be needed, for example, when the author of a
paper decides that several sections need 10 be
combined into one. There are several ways 10 do
ii, of which the cleanest, once you gel used to it,
is a program called cal. (Not all programs have
two-letter names.) cat is short for 'concatenate',
which is exactly what we want to do.

Suppose the job is to combine the files
'file l' and 'file2' into a single file called 'big/He'.
If you say

cat file

the contents of 'file' will get printed on your ter­
minal. If you say

cal file I file2

the contents of 'file l' and then the contents of
'file2' will both be prjnted on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter­
minal - we want them in 'bigfile'.

Fortunately, there is a way. You can tell
the system that instead of printing on your ter­
minal, you want the "Same information put in a
file. The way to do it is to add to the command
line the character > and the name of the tile

- 12 •

where you want the output to go. Then you can
say

cat file I file2 > bigfile

and the job is done. (As with cp and my. you're
putting something into 'bigfile', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a
program is one of the most useful aspects of the
system. Fortunately iI'S not limited to the cat
program - you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally. you can combine several files.
nol just two:

cat file 1 file2 file3 ... > bigfile

collects a Whole bunch.

and

Question: is there any difference between

cp good save good

cat good >savegood

Answer: for most purposes, no. You might rea­
sonably ask why there are two programs in that
case, since cal is obviously all you need. The
answer is Ihat ell will do some other things as
well, which you can investigate for yourself by
reading the manua(For now we'll stick to sim­
ple usages.

Adding Something 10 the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it; in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, m"
and/or cat to add the file 'good l' to the end of
the file 'good'?

You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good 1 > good

doesn't work. (Don't practice with a good
'good'!)

The easy way is to use a variant of >,
called> >. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

cat good 1 > > good

and 'goodl' is added to the end of 'good'. C.>,nd

if 'good' didn '[exist, this makes a copy of
'good!' called 'good'.)

6, CUT .-\.:"D PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files - individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first Step is to ensure that you know
the eli commands for reading and writing files.
Of course you can't go very far without knowing
rand..... Equally useful. but less welt known, is
the 'edit' command e. Within 1liI. the command

e nl!wfile

says 'I want to edit a new file called ffewjiie.
without leaving the editor.' The e command dis­
cards whatever you' ro: currently working on and
starts over on lft!wfiie. It's exactly the same as if
you had quit with the q command. then re­
entered eli with a new file name. except that if
you have a pattern remembered. then a com­
malld like /1 will still work.

If you enter ell with the command

ed We

ed remembers the name of the file. and any sub·
sequent t. r or w commands that clon't contain a
filename will refer to this remembered file. Thlls

ed file I
... (editing) ...

w (writes back in file 1)
e file2 (edit new file. without leaving editor)
... (editing on file2) ...

Vi (writes back on file2l

(and so on) does a series of editS on various files
without ever leaving ea and without typing the
name of any file more than once. (As an aside,
if Yl.1u examine the sequence of commands here.
yl.1U can see why many UNIX systems use e as II

synonym for ed..)

You can find out the remembered file
name at any time with the r command; just type
f without a file name. You can also change the
name of the remembered file name with r; a use­
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file. then \lSe3 f
to guaranI/!: that i careless .. command won't
clobber the original.

- l.3 -

Insenilll Olle File into AnolDel

Suppose you have :it tile ClUed 'memo',
and you Wllnl the file called 'lable' to be inserted
just after the reference to Table 1. That is, in
'memo' somewhere is· a line that say,

Table 1 shows that ...

and the data contained in 'uble' has to go there,
probably 50 it will be formatted properly by arott'
or Irolf. Now what?

This one is easy. Edit 'memo', lind 'Table
I', and add the file 'uble' rig,llt there:

cd memo
ITabic 1/
Table J sirows firar ... [response fro"., ed/
or table

The critical line is the last one. As we said ear·
lier. the r command reads :it tile; here you asked
for it to be read in rigll! after line dot. An r
command without any address adds lines at the
end, so it is the same as Sr.

Wrilinc out i"art of a File

The other side of the coin is "'fllmll Olll

part of the c!o;:umem you're editing. For exam­
ple, maybe you Wllll! to split OUI into a separate
file that table from the previous example, so it
can be (ormlned and tested separately. Suppose
that in the file being edited we have

.'IS
... !lolS of SlUm

·.n:
which is the way a table is set up for the till pro·
aram. To isolate the taole in a separate file
called 'table', firs! find the start of the table (the
'.TS' linel, then write out the interesting part:

n,TS!
. rs [ed prints rhe line if found!
.,J"\.TElw table

and the job is done. If you are confident, you
can do it all at once with

1,,\,TS/;I,,\.TElw table

The point is that the command can write
out a grOIlP of lines. inSI<::!d of the whole file. In
Cact. you can write out a single line if YOIi like;
jusl give one line number instead of two. For
example. if you have JUS! typed a horribly com­
plicated line and you know tbat it (or something
like il) is floing to be needed later. then save it
- clon'l re·type it. In tile editor, say

a
.. .Iots of stulL.
... horrible line.",

.w temp

••. more stuff .••

.r temp
a
••• more stuff •••

This last example is worth studying, to be sure
you appreciate what's going on.

MOlving Lines Aroulld

Suppose you want to move a paragraph
from its present position ill a paper to the end.
How would you do it? As a concrete example,
suppose each paragraph in the paper begins with
the formatting command '.PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file.
delete it from its current position, then read in
the temporary file at the end. Assuming thaI
you are slning on the '.PP' command thai begins
the paragraph, Ihis is the sequence of commands:

. ,r\.PP/-w temp

.,/!-d
Sf temp

ThaI is, from where you are now ('.') until one
line before the next •• PP· ('r\.PP/- ') write
onto 'temp'. Then delete the same lines.
Finally. read 'temp' at the end.

As we said, that's the brute force way.
The easier way (often) is to use the ",owe com­
mand m that ell provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

The III command is like many other ed
commands in thaI it lakes up 10 two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

line l. line2 m line3

says 10 move all the lines between 'line l' and
'line2' after 'lind'. Naturally, any of 'line I'
etc., can be patterns between slashes, S signs, or
other ways to specify lines.

Suppose again that you're sitting at the
first line of the paragraph. Then you can say

o,f"\.PP/-m$

ThaI's ali.

• 14·

As another example of a frequent opera·
lion, you can reverse the order of two adjacent
lines by moving the first one to afler the second .
Suppose that you are positioned at the first.
Then

m+

does it. II says to move line dot to after one line
after line dol. If YOll are positioned on the
second line~

m--

does the interchange.

As you can see, the m command is more
succinct and direct than writing, deleting and re­
reQding. When is brute force better anyway?
This is a matter of personal taste - do what you
have mosl confidence ill. The main difficulty
with the m command is that if you use patterns
to specify both the lines you arc moving and the
target, you have to take care that you specify
them properly, or you may weli not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted 10. II's also a good idea to
iuue a '" command before doing anything com­
pliGated; then if you goof, it's easy to back up 10

where you were .

Marin

ell provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its aClual line number.
This can be handy for moving lines, and for
i:eepillg track of them as they move. The mark
command is k; the command

kx

marks the curren! line with the name ')('. if a
line number precedes the k, that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

'x

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with '0. Then find the last
line and mark it with 'b. Now position yourself
at the place where the stuff is to go and say

'a,'bm.

Bear in mind thai only one line can have a
particular mark name associated with it at any
given lime.

Copyine Lines

We mentIoned earlier Ihe idea of saving a
line that was hard 10 type or used of len. so as to
CUt do ... n on tYPing time. or course thIs could
be more than one line; then the saving is
presumably even gre3ter.

ed provides another command. called t

(fer 'transfe() ior making a copy of a group of
one or more lines at any poim. This is often
easier than writing and reading.

The I command is idemical to the m com­
mand. except that instead of moving lines it sim­
ply duplicates them It the place you named.
Thus

1.StS

duplicates the entire contentS that. you are edit­
inll more common use for t is for creating a·
series of lines that differ only slightly. For
example. you can say

a

t.
sl ~I yl
I.

s/ylzl

and so on.

(long line)

(make a copy)
(change it a bit>
(make third copy)
(chan Ill: it a bit)

The Temp<lrary Esape '~.

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other U:-'IX command. perhaps one of the file
copy or move commands discussed in section 5.
without leaving the editor. The 'escape' com­
mand ! provides a way 10 do this.

If you say

'any t:NIX command

your current editing state is suspended. and the
UNIX command you asked for is executed. When
the command finishes. ed will signal you by
printing another !; at that point you can resume
editing.

You can really do ali!' UNtX command.
induding another!<l. (This is qui Ie common. in
fae!.) In Ihis case. you can even do another !.

7. SIJPPORTING TOOLS

There are several lools and lechniques that
go alons wilh the editor. ali of which are rela­
tively easy once you know how K works.
because they are ail based on the editor. In this
section we wlil give some fairly cursory examples
of these tools. more 10 indicate Ihe;r existence
than to provide a complete IUlorial. ~ore infor-

- 15 -

mati on on ~ach can be found in (3).

Grell

Sometimes you want (0 nnd all
occurrences of some word or pattern in a set of
files. to edit them or perhaps just to verifv their
presence or absence. It may be possible ~o edit
each file separately lnd look for the pattern of
interest, but if there are many files Ihis can get
very tedious, and if the files are really big. it may
be impossible because of limits in ell.

The program srep was invented (0 !lei
around these limitalions. The search pa[terns
that we have described in the paper are often
called 'regular expressions'. and 'gn~p' stands for

i/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particu­
lar paltern. Thus

grep 'thing' file 1 file2 file3 ...

tinds 'thing' wherever it occurs in any of the liles
'file:!'. '1iIe2'. etc. ~rep also indicates the file in
which the line was found. so you can later edit it
if you like.

The paHem represented by 'thing' can be
any PII!tem you can use in tile editor. since IIfep
and " use exactly' the same mechanism for pal­
lem searching. It is wises! always to enclose the
pattern in the sin!Jle quotes ' .. .' if it ",mains any
non-alphabellc characters. since many such char­
aClers also mean something special to the UNIX

command interpreter (the ·shell'). If you don'!
quole them, the command interpreter will :ry to
interpret them before Itfep gets .. chance.

There is also a way to lind lines that do,,',
contain a pattern:

srep - v 'thing' file I fUe2 ...

finds all lines that don't contains ·thinS·. The
-. must occur in the position shown. Given
arell and Itrell - y. it is possible to do things like
selecting all lines that contain some combination
of pauerns. For example. to get JII lines that
contain 'x' but not 'y':

grep ~ tile ... 1 gre? -v Y

(The notation I is a 'pipe'. which C:luses the out­
put or the first command to be used .5 Input to
the second command: see [21.l

EdWn!: Ser;lll~

If ~ fairly complicated set of editing opera­
tions is to be done on a whole set of fiies. the
eaSiest thing to do is to make up d ·script'. ie .. a
file that contains the operations you want to ~er­
form. then apply Ihis scrip! to each file in turn.

For example, suppose you wan! to change
every 'Unix' to 'UNIX' and every 'Ocos' to
'GCOS' in a large number of files. Then put
into the file 'script' the lines

g/Unix/51/UNIX/g
glOcos/s/ /GCOS/g
w

Q

Now you can sal'

ed filel <script
ed file2 <script

This causes ell to take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

§ed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands 10 each
line of input.

As all example, suppose that lIIe want to
do Ihe 'Unix' 10 'UNIX' part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g' file! file2 ...

applies the command 's/UniJl/UNIX/g' to all
lines from 'file I', 'file2', etc .. and copies all lines
\0 the output. The advantage of using sed in
such a case is thaI it can be used with input too
large for ed 10 handle. AI! the outpul can be col·
lected in one place, either in a file Of perhaps
piped into another program.

If the editing transformation is so compli­
ClIted that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slightly more
complex syntax. To take commands from a file,
for example,

sed -f andtile input-files ...

se<l has further capabilities, including con­
ditional testing and branching, which we cannot
go inlo here.

Acknowledgement·

I am grateful to Ted Dolorla for his careful
reading and valuable suggestions.

. 16·

References

!II Brian W. Kernighan, A TlllonallnlroduCllon
10 Ihl! UNIX Texl [dllor. Bell Laboratories
internal memorandum.

!2! Brian W. Kernighan, UNIX For BeRtn""s.
Bell Laboratories internal memorandum.

!31 Ken L. Thompson and Dennis M. Ritchie,
The UNIX Prof(ramme,s Manual. Bell
LabonHories.

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no prior
familiarity with computers or with text editing. Its aim is to lead the beginning
UNIXt user through the fundamental steps of writing and revising a file of text.
Edit, a version of the text editor ex, was designed to provide an informative
environment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX

documentation in general.

September 1981

tUNiX is a trademark of Sell Laboratories.

- 2 -

Contents
Introduction 3

Session 1 4
Making contact with UNIX ~
Logging in 4
Asking for edit 4
The "Command not found" message 5
A summary 5
Entering text 5
Messages from edit 5
Text input mode 6
Making corrections 6
Writing text to disk 7
Signing off 7

Session 2 8
Adding more text to the file 8
Interrupt 8
Making corrections 8
Listing what's in the buffer (p) 9
Finding things in the buffer 9
The current line 10
Numbering lines (nu) 10
Substitute command (s) 10
Another way to list what's in the buffer (z) 11
Saving the modified text 12

Session 3 13
Bringing text into the buffer (e) 13
Moving text in the buffer (m) 13
Copying lines (copy) 14
Deleting lines (d) 14
A word or two of caution 15
Undo (u) to the rescue 15
More about the dot (.) and buffer end ($) 16
Moving around in the buffer (+ and -) 16
Changing lines (c) 17

Session 4 18
Making commands global (g) 18
More about searching and substituting 19
Special characters 19
Issuing UNIX commands from the editor 20
Filenames and file manipulation 20
The file (0 command 20
Reading additional files (r) 21
Writing parts of the buffer 21
Recovering files 21
Other recovery techniques 21
Further reading and other information 22
Using ex 22

Index 23

- 3 -

Introduction
Text editing using a terminal connected to a computer allows you to create, modify, and

print text easily. A text editor is a program that assists you as you create and modify text. The
text editor you will learn here is named edit. Creating text using edit is as easy as typing it on
an electric typewriter. Modifying text involves telling the text editor what you want to add,
change, or delete. You can review your text by typing a command to print the file contents as
they were entered by you. Another program, a text formatter, rearranges your text for you into
"finished form." This document does not discuss the use of a text formatter.

These lessons assume no prior familiarity with computers or with text editing. They con­
sist of a series of text editing sessions which lead you through the fundamental steps of creating
and revising text. After scanning each lesson and before beginning the next, you should prac­
tice the examples at a terminal to get a feeling for the actual process of text editing. If you set
aside some time for experimentation, you will soon become familiar with using the computer to
write and modify text. In addition to the actual use of the text editor, other features of UNIX
will be very important to your work. You can begin to learn about these other features by
reading "Communicating with UNIX" or one of the other tutorials that provide a general intro­
duction to the system. You will be ready to proceed with this lesson as soon as you are familiar
with (1) your terminal and its special keys, (2) the login procedure, (3) and the ways of
correcting typing errors. Let's first define some terms:

program

UNIX

edit

file

filename

disk

buffer

A set of instructions, given to the computer, describing the sequence of steps the
computer performs in order to accomplish a specific task. The tasks must be
specific, such as balancing your checkbook or editing your text. A general task,
such as working for world peace, is something we can do, but not something we
can write programs to do.

UNIX is a special type of program, called an operating system, that supervises the
machinery and all oIher programs comprising the total computer system.

edit is the name of the UNIX text editor you will be learning to use, and is a pro­
gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer system.
Once you create a file, it is kept until you instruct the system to remove it. You
may create a file during one UNIX session, end the session, and return to use it at
a later time. Files contain anything you choose to write and store in them. The
sizes of files vary to suit your needs; one file might hold only a single number, yet
another might contain a very long document or program. The only way to save
information from one session to the next is to store it in a file, which you will
learn in Session 1.

Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor­
mation in a file, you use the name of that file in a UNIX command, and the system
will automatically locate the file.

Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material similar
to the coating on magnetic recording tape, and information is recorded on it.

A temporary work space, made available to the user for the duration of a session
of text editing and used for creating and modifying the text file. We can think of
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

- 4 -

Session 1

Making contact with UNIX

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure for the two ways you can make contact:
on a terminal that is directly linked to the computer, or over a telephone line where the com­
puter answers your call.

Directly-linked terminals

Turn on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals

If your terminal connects with the computer over a telephone line, turn on the terminal,
dial the system access number, and, when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login.

Logging in

The message inviting you to login is:

:Iogin:

Type your login name, which identifies you to UNIX, on the same line as the login message, and
press RETURN. If the terminal you are using has both upper and lower case, be sure you enter
your login name in lower case; otherwise UNIX assumes your terminal has only upper case and
will not recognize lower case letters you may type. UNIX types ":Iogin:" and you reply with
your login name, for example "susan":

:Iogin: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it, to prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
will respond with

Login incorrect.
:Iogin:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a % at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con­
venient time to choose a name for the file of text you are about to create. To begin your edit­
ing session, type edit followed by a space and then the filename you have selected; for exam­
ple, "text". When you have completed the command, press the RETURN key and wait for
edit's response:

% edit text (followed by a RETURN)
"text" No such file or directory

If you typed the command correctly, you will now be in comrrlUnication with edit. Edit has set
aside a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, "text", already existed. It was unable to find such a file,
since "text" is a new file we are about to create. Edit confirms this with the line:

"text" No such file or directory

On the next line appears edit's prompt ":", announcing that you are in command mode and edit
expects a command from you. You may now begin to create the new file.

The "Command not found" message

If you misspelled edit by typing, say, "editor", your request would be handled as follows:

% editor
editor: Command not found
%

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named
"editor". Since there is no program named "editor", UNIX reported that the program was "not
found". A new % indicates that UNIX is ready for another command, and you may then enter
the correc! command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some­
thing like this:

Entering text

:\ogin: susan
Password:
". A Message of General Interest ."
% eliit text
"text" No such file or directory

You may now begin entering text into the buffer. This is done by appending (or adding)
text to whatever is currently in the buffer. Since there is nothing in the buffer at the moment,
you are appending text to nothing; in effect, since you are adding text to nothing you are creat­
ing text. Most edit commands have two forms: a word that suggests what the command does,
and a shorter abbreviation of that word. Either form may be used. Many beginners find the
full command names easier to remember at first, but once you are familiar with editing you
may prefer to type the shorter abbreviations. The command to input text is "append", and it
may be abbreviated "a". Type append and press the RETURN key.

0/0 edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, "add" instead of
"append" or "a", you wi!! receive this message:

- 6 -

: add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new":" appeared to let
you know that edit is again ready to execute a command.

Text input mode

By giving the command "append" (or using the abbreviation "a"), you entered text input
mode, also known as append mode. When you enter text input mode, edit stops sending you a
prompt. You will not receive any prompts or error messages while in text input mode. You
can enter pretty much anything you want on the lines. The lines are transmitted one by one to
the buffer and held there during the editing session. You may append as much text as you
want, and when you wish to stop entering lext lines you should type a period as the only character on
the line and press the RETURN key. When you type the period and press RETURN, you signal that
you want to stop appending text, and edit responds by allowing you to exit text input mode and
reenter command mode. Edit will again prompt you for a command by printing ":".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit will
believe you want to remain in append mode and will not let you out. As this can be very frus­
trating, be sure to type only the period and the RETURN key.

This is a good place to learn an important lesson about computers and text: a blank space
is a character as far as a computer is concerned. If you so much as type a period followed by a
blank (that is, type a period and then the space bar on the keyboard), you will remain in
append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see, including
"thiss"):

This Is some sample text.
And thiss is some more text.
Text editing is strange, bllt nice.

The last line is the period followed by a RETURN that gets you out of append mode.

Making corrections

If you have read a general introduction to UNIX, such as "Communicating with UNIX",

you will recall that it is possible to erase individual letters that you have typed. This is done by
typing the designated erase character as many times as there are characters you want to erase.

The usual erase character is the backspace (control-H), and you can correct typing errors
in the line you are typing by holding down the CTRL key and typing the "H" key. If you try
typing control-H you will notice that the terminal backspaces in the line you are on. You can
backspace over your error, and then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace
to the beginning of the line or you can use the at-sign "@" to erase everything on the line:

Text edtiing is strange, bllt@
Text editing is strange, bllt nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh line

- 1 -

to type on. You may immediately begin to retype the line. This, unfortunately, does not help
after you type the line and press RETURN. To make corrections in lines that have been com­
pleted, it is necessary to use the editing commands covered in the next session and those that
follow.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor's buffer is temporary and will last only until the end of the
editing session. Learning how to write a file to disk is second in importance only to entering
the text. To write the contents of the buffer to a disk file, use the command "write" (or its
abbreviation "w"):

: write

Edit will copy the contents of the buffer to a disk file. If the file does not yet exist, a new file
will be created automatically and the presence of a "[New filel" will be noted. The newly­
created file will be given the name specified when you entered the editor, in this case "text".
To confirm that the disk file has been successfully written, edit will repeat the filename and give
the number of lines and the total number of characters in the file. The buffer remains
unchanged by the "write" command. All of the lines that were written to disk will still be in
the buffer, should you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

in response to your write command. If this happens, you can specify the filename in a new
write command:

: write text

After the "write" (or "w"), type a space and then the name of the file.

Signing off

We have done enough for this first lesson on using the UNIX text editor, and are ready to
quit the session with edit. To do this we type "quit" (or "q") and press RETURN:

: write
"text" [New file] 3 lines, 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may command UNIX

further. Since we want to end the entire session at the terminal, we also need to exit from
UNIX. In response to the UNIX prompt of " % " type the command

% logout

This will end your session with UNIX, and will ready the terminal for the next user. It is always
important to type logout at the end of a session to make absolutely sure no one could acciden­
tally stumble into your abandoned session and thus gain access to your files, tempting even the
most honest of souls.

This is the end of the first session on UNIX text editing.

- 8 -

Session 2

Login with UNIX as in the first session:

:Iogin: susan (carriage return)
Password: (give password and carriage return)

... A Message of General Interest ...
%

When you indicate you want to edit, you can specify the name of the file you worked on last
time. This will start edit working, and it will fetch the contents of the file into the buffer, so
that you can resume editing the same file. When edit has copied the file into the buffer, it will
repeat its name and tell you the number of lines and characters it contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 char­
acters of text into the buffer. Edit awaits your further instructions, and indicates this by its
prompt character, the colon (:). In this session, we will append more text to our file, print the
contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append com­
mand to enter text input mode. When "append" is the first command of your editing session,
the lines you enter are placed at the end of the buffer. Here we'll use the abbreviation for the
append command, "a":

:11
This is text added ill Session 2.
It doesn't mesn much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the "a" (or "append") command, you
need to type a line containing only a period (.) to exit append mode.

Inlermpt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will
send this message to you:

Interrupt

Any command that edit, might be executing is terminated by rub or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect
character or cancel the entire line of input by erasing in the usual way. Refer either to the last
few pages of Session 1 or to "Communicating with UNIX" if you need to review the procedures
for making a correction. The most important idea to remember is that erasing a character or
cancelling a line mus! be done before you press the RETURN key.

- 9-

Listing what's in the buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines
in the buffer. To print the contents of the buffer, type the command:

:1,$p

The" l"t stands for line 1 of the buffer, the "$" is a special symbol designating the last line of
the buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer.
The command "1,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can't be printed, which can be done by
striking a key while the CTRL key is pressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character "control-A" into the word "illustrate" by accidently pressing the CTRL key while typ­
ing "a". This can happen on many terminals because the CTRL key and the "A" key are
beside each other. If your finger presses between the two keys, control-A results. When asked
to print the contents of the buffer, edit would display

it does iIIustr' Ate the editor.

To represent the control-A, edit shows ". A". The sequence "'" followed by a capital letter
stands for the one character entered by holding down the CTRL key and typing the letter which
appears after the "'''. We'll soon discuss the commands that can be used to correct this typing
error.

In looking over the text we see that "this" is typed as "thiss" in the second line, a deli­
berate error so we can learn to make corrections. Let's correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find "thiss"
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for "thiss" and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

: !thiss!

By typing !thiss! and pressing RETURN, you instruct edit to search for "thiss". If you ask edit
to look for a pattern of characters which it cannot find in the buffer, it will respond "Pattern
not found". When edit finds the characters "thiss", it will print the line of text for your
inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the
line.

tThe numeral "one" is the top left-most key, and should not be confused with the letter "el".

- 10 -

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing
session. In general, the line that has been most recently printed, entered, or changed is the
current location in the buffer. The editor is prepared to make changes at the current location in
the buffer, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in
the file, where the editor left off copying the lines from the file to the buffer. If your first edit­
ing command is "append", the lines you enter are added to the end of the file, after the
current line - the last line in the file.

You can refer to your current location in the buffer by the symbol period (.) usually
known by the name "dot". If you type "." and carriage return you will be instructing edit to
print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type. = and press RETURN,

and edit will respond with the line number:

: .==
2

If you type the number of any line and press RETURN, edit will position you at that line and
print its contents:

:2
And thiss is some more text.

You should experiment with these commands to gain experience in using them to make
changes.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Note that the shortest abbreviation for the number command is "nu" (and not "n", which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example, 1,$nu lists all lines in
the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from "thiss" to "this".
As far as edit is concerned, changing things is a matter of substituting one thing for another.
As a stood for append, so s stands for substitute. We will use the abbreviation "s" to reduce
the chance of mistyping the substitute command. This command will instruct edit to make the
change:

2s/thiss/thisl

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want edit
to make a substitution. Inside the first set of slashes are the characters that we want to change,
followed by the character's to replace them, and then a closing slash mark. To summarize:

2s1 what is to be changed 1 what to change it to 1

If edit finds an exact match of the characters to be changed it will make the change only in the

- 11 -

first occurrence of the characters. If it does not find the characters to be changed, it will
respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters
that you want to change, it will make the substitution and automatically print the changed line,
so that you can check that the correct substitution was made. In the example,

: 2s/thiss/thisl
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact
match is found, "thiss" will be changed to "this". Strictly speaking, it was not necessary
above to specify the number of the line to be changed. In

: s/thiss/thisl

edit will assume that we mean to change the line where we are currently located ("."). In this
case, the command without a line number would have produced the same result because we
were already located at the line we wished to change.

For another illustration of the substitute command, let us choose the line:

Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters "strange, but" so the
line reads:

Text editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

: Istrange/s/strange, but I I

What we have done here is combine our search with our substitution. Such combinations are
perfectly legal, and speed up editing quite a bit once you get used to them. That is, you do not
necessarily have to use line numbers to identify a line to edit. Instead, you may identify the
line you want to change by asking edit to search for a specified pattern of letters that occurs in
that line. The parts of the above command are:

Istrangel
s
Istrange, but /I

tells edit to find the characters "strange" in the text
tells edit to make a substitution
substitutes nothing at all for the characters "strange, but"

You should note the space after "but" in "/strange, but I". If you do not indicate that
the space is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we real­
ize from this that a blank space is a real character to a computer, and in editing text we need to
be aware of spaces within a line just as we would be aware of an "a" or a "4".

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other
commands may be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

:lz

edit will start with line 1 and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the

- 12 -

next segment of text, type the command

:z

If no starting line number is given for the z command, printing will start at the "current" line,
in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second ses­
sion. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (:quit! overrides)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you did during the editing session since you typed the latest
write command. Because in this lesson we have not written to disk at all, everything we have
done would have been lost if edit had obeyed the q command. If you did not want to save the
work done during this editing session, you would have to type "q!" or ("quit!") to confirm
that you indeed wanted to end the session immediately, leaving the file as it was after the most'
recent "write" command. However, since you want to save what you have edited, you need to
type:

:w
"text" 6 lines, 171 characters

and then follow with the commands to quit and logout:

:q
% logout

and hang up the phone or turn off the terminal when UNIX asks for a name. Terminals con­
nected to the port selector will stop after the logout command, and pressing keys on the key­
board will do nothing.

This is the end of the second session on UNIX text editing.

- 13 -

Session 3

Bringing text into the buffer (e)

Login to UNIX and make contact with edit. Iyou should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
"text" into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buffer by typing:

:e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything that
might already be in the buffer and bring a copy of the file "text" into the buffer for editing.
You may also use the edit (e) command to change files in the middle of an editing session, or
to give edit the name of a new file that you want to create. Because the edit command clears
the buffer, you will receive a warning if you try to edit a new file without having saved a copy
of the old file. This gives you a chance to write the contents of the buffer to disk before edit­
ing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command. The first two examples are for illustration only, though after you
have read this Session you are welcome to return to them for practice. The command

:2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move
command is that you specify the first line to be moved, the last line to be moved, the move
command "m", and the line after which the moved text is to be placed. So,

:1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer.
To move only one line, say, line 4, to a location in the buffer after line 5, the command would
be "4m5".

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many
lines were affected by the move and prints the last moved line for your inspection. If you want
to see more than just the last line, you can then use the print (p), Z, or number (nu) command
to view more text. The buffer should now contain:

- 14 -

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

You can restore the original order by typing:

:4,Sml

or, combining conlext searching and the move command:

: I And this is some/,!Thls Is textlmlTbis is some sample!

(Do not type both examples here!) The problem with combining context searching with the
move command is that your chance of making a typing error in such a long command is greater
than if you type line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

: 2,5co1lY is

makes a copy of lines 2 through 5, placing the added lines after the buffer's end ($). Experi­
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is co (and not the letter "c", which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
foHowed by delete or d. This example deletes line 4, which is "This is text added in Session
2." if you typed the commands suggested so far.

'4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted, and "delete" or "d" is the command to
delete the line. After executing the delete command, edit prints the line that has become the
current line (".").

If you do not happen to know the line number you can search for the line and then delete
it using this sequence of commands:

: I added in Session 2./
This is text added in Session 2.
:d
It doesn't mean much here, but

The "/added in Session 2,/" asks edit to locate and print the line containing the indicated text,
starting its search at the current line and moving line by line until it finds the text. Once you
are sure that you have correctly specified the line you want to delete, you can enter the delete
(d) command. In this case it is not necessary to specify a line number before the "d". If no
line number is given, edit deletes the current line ("."), that is, the line found by our search.
After the deletion, your buffer should contain:

This is some sample text.
And this is some more text.
Text editing is nice.

- 15 -

It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn't mean much here, but

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:2,3d
2 lines deleted

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for
delete. If you delete more than one line you wi!! receive a message teHing you the number of
lines deleted, as indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be
deleted. If you do not you might combine the search command with the delete command:

: I And this is some/,lText editing is nke.!d

A word or two of caution

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit will search for the first occurrence of the characters starting from where you last edited -
that is, from the line you see printed if you type dot O.

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing RETURN to send the command on its
way.

Undo (u) 10 the rescue

The undo (1.1) command has the ability to reverse the effects of the last command that
changed the buffer. To undo the previous command, type "u" or "undo". Undo can rescue
the contents of the buffer from many an unfortunate mistake. However, its powers are not
unlimited, so it is still wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer - for
example, delete, append, move, copy, substitute, and even undo itself. The commands write
(w) and edit (e), which interact with disk files, cannot be undone, nor can commands that do
not change the buffer, such as print. Most importantly, the only command that can be reversed
by undo is the last "undo-able" command you typed. You can use control-H and @ to change
commands while you are typing them, and undo to reverse the effect of the commands after
you have typed them and pressed RETURN.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will
reverse the effects of the deletion, causing those two lines to be replaced in the buffer.

- 16 -

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now "dot" (the current line).

More about tbe dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

If we type". =" we are asking for the number of the line, and if we type"." we are asking for
the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit
will print the line number corresponding to the last line in the buffer.

"." and "$", then, represent line numbers" Whenever appropriate, these symbols can be
used in place of line numbers in commands. For example

:.,Sd

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the bllffer (+ liml -)

When you are editing you often want to go back and re-read a previous line. You could
specify a context search for a line you want to read if you remember some of its text, but if you
simply want to see what was written a few, say 3, lines ago, you can type

-3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
You can move forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of your current position.

You may use "+" and "-" in any command where edit accepts line numbers. Line
numbers specified with" +" or "-" can be combined to print a range of lines. The command

: -l,+Zcopy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer ($), and the original lines referred to by
"-1" and" + 2" remain where they are.

Try typing only" - "; you will move back one line just as if you had typed" -lp". Typ­
ing the command" +" works silr,iiarIy. You might also try typing a few plus or minus signs in
a row (such as "+ + + ") to see edit's response. Typing RETURN alone on a line is the
equivalent of typing" + Ip"; it wili move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a
"+" or a carriage return alone on the line, edit will remind you that you are at the end of the
buffer:

- 17 -

At end-or-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these mes­
sages:

Nonzero address required on this command
or

Negative address - first buffer line is 1

The number associated with a buffer line is the line's "address", in that it can be used to locate
the line.

Changing lines (c)

You can also delete certain lines and insert new text in their place. This can be accom­
plished easily with the change (c) command. The change command instructs edit to delete
specified lines and then switch to text input mode to accept the text that will replace them.
Let's say you want to change the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you lype:

: 1,2c
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2c we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After you type RETURN to end the change command, edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the change command. Y 011 will remain
in text input mode 1l11ti1 YOII exit ill the usual WilY, by typing a period alone 011 !I line. Note
that the number of lines added to the buffer need not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

- 18 -

Session"

This lesson covers several topics, starting with commands that apply throughout the
buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com­
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer - the global (g) command.

To print all lines containing a certain sequence of characters (say, "text") the command
is:

: g/text/p

The "g" instructs edit to make a global search for all lines in the buffer containing the charac­
ters "text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed for the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word "text" to the word "material" the command would be a combination of
the global search and the substitute command:

: g/text/s/textlmateriallg

Note the "g" at the end of the global command, which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command only
the first instance of "text" in each line will be changed (the normal result of the substitute
command). The "g" at the end of the command is independent of the "g" at the beginning.
You may give a command such as:

: 5s/text/material/g

to change every instance of "text" in ii:1e 5 alone. Further, neither command will change
"text" to "material" if "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a "p" at the end of the global command:

: g/text/sltext/materiallgp

You should be careful about using the global command in combination with any other in
essence, be sure of what you are telling edit to do to the entire buffer. For example,

: gIld
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your docu­
ment, since most lines have spaces between words and thus would be deleted. After executing
the global command, edit will print a warning if the command added or deleted more than one
line. Fortunately, the undo command can reverse the effects of a global command. You
should experiment with the global command on a small file of text to see what it can do for
you.

- 19 -

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a Jess tedious way to repeat the same string
of characters. To change "tex!" to "texts" we may type either

: Itext/s/int/texts!

as we have done in the past, or a somewhat abbreviated command:

: !text/sf/texts I

In this example, the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks that indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

: Idoesl
It doesn't mean much here, but
:1/
it does illustrate the editor.

(You should note that the search command found the characters "does" in the word "doesn't"
in the first search request.) Because no characters are specified for the second search, the editor
scans the buffer for the next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the characters you
are searching for.

It is also possible to repeat the last substitution without having to retype the entire com­
mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and replacement patterns. After altering the current line by typing

: s/text/textsl

you type

: Itext/&

or simply

:/1&

to make the same change on the next line in the buffer containing the characters "tex!".

Special characters

Two characters have special meanings when used in specifying searches: "$" and "'''.
"$" is taken by the editor to mean "end of the line" and is used to identify strings that occur
at the end of a line.

: g/text-S/s! Imllteriai.lp

tells the editor to search for all lines ending in "text." (and nothing else, not even a blank
space), to change each final "text." to "material.", and print the changed lines.

The symbol "-,, indicates the beginning of a line. Thus,

:51'11, I

instructs the editor to insert" 1." and a space at the beginning of the current line.

- 20 -

The characters "$" and "-,, have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to lose temporarily its special
significance by typing another special character, the backslash (\), before it.

: s/\$/dollarl

looks for the character "$" in the current line and replaces it by the word "dollar". Were it
not for the backs lash, the "$" would have represented "the end of the line" in your search
rather than the character "$". The backslash retains its special significance unless it is pre­
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as "shell" commands,
as "shell" is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named "junk" type:

: !rm junk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell com­
mand. If the buffer contents have not been written since the last change, a warning will be
printed before the command is executed:

[No write since last change]

The editor prints a "!" when the command is completed. The tutorial "Communicating with
UNIX" describes useful features of the system, of which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. If you are editing a file named "draft3" having 283
lines in it, you can have the editor write onto a different file by including its name in the write
command:

: w chapter3
"chapter3" [new file] 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write com­
mand. Thus, if the next write command does not specify a name, edit will write onto the
current file ("draft3") and not onto the file "chapter3".

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position, the number of lines
in the buffer, and the percent of the distance through the file your current location is.

:1
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor

- 21 -

will tell you that the file has been "[Modified]". After you save the changes by writing onto a
disk file, the buffer will no longer be considered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer at a specified
location, essentially copying new lines between two existing lines. To use it, specify the line
after which the new text will be placed, the read (r) command, and then the name of the file.
If you have a file named "example", the command

: Sr example
"example" 18 lines, 473 characters

reads the file "example" and adds it to the buffer after the last line. The current filename is
not changed by the read command.

Writing parts of the buffer
The write (w) command can write all or part of the buffer to a file you specify. We are

already familiar with writing the entire contents of the buffer to a disk file. To write only part
of the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

: 45,S" ending

Here all lines from 45 through the end of the buffer are written onto the file named ending.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer. Your original file is unaffected by your command to write part of the
buffer to another file. Edit still remembers whether you have saved changes to the buffer in
your original file or not.

Recovering files

Although it does not happen very often, there are times UNIX stops working because of
some malfunction. This situation is known as a crash. Under most circumstances, edit's crash
recovery feature is able to save work to within a few lines of changes before a crash (or an
accidental phone hang up). If you lose the contents of an editing buffer in a system crash, you
will normally receive mail when you login that gives the name of the recovered file. To recover
the file, enter the editor and type the command recover (rec), followed by the name of the lost
file. For example, to recover the buffer for an edit session involving the file "chap6", the
command is:

: recover chap6

Recover is sometimes unable to. save the entire buffer successfully, so always check the con­
tents of the saved buffer carefully before writing it back onto the original file. For best results,
write the buffer to a new file temporarily so you can examine it without risk to the original file.
Unfortunately, you cannot use the recover command to retrieve a file you removed using the
shell command rm.

Other recovery techniques
If something goes wrong when you are using the editor, it may be possible to save your

work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message "Quota exceeded", you have tried to

- 22 -

use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor's buffer is now present in the file you tried to write. In this case
you should Llse the shell escape from the editor (!) (0 remove some files you don'! need and try
(0 write the file again. If this is not possible and you cannot find someone to help you, enter
the command

: preserve

and wait for the reply,

File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you
do, the buffer will be lost, and you may not be able to save your file. If the reply is "File
preserved." you can leave the editor (or logout) to remedy the situation. After a preserve, you
can use the recover command once the problem has been corrected, or the -r option of the
edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before discov­
ering your mistake, the modified version will replace any previous version of the file. Should
you ever lose a good version of a document in this way, do not panic and leave the editor. As
long as you stay in the editor, the contents of the buffer remain accessible. Depending on the
nature of the problem, it may be possible to restore the buffer to a more complete state with
the undo command. After fixing the damaged buffer, you can again write the file to disk.

Further reading and olher information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands, but a
selection of commands that should be sufficient to accomplish most of your editing tasks. You
can find out more about the editor in the Ex Reference Manual, which is applicable to both ex
and edit. The manual is available from the Computing Services Library, 218 Evans Hall. One
way to become familiar with the manual is to begin by reading the description of commands
that you already know.

Using ex

As you become more experienced with using the editor, you may still find that edit con­
tinues to meet your needso However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters "''', "$", and "\" have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional char­
acters have special meanings in ex, as described in the Ex Reference A1anual. Another feature
of the edit environment prevents users from accidently entering two alternative modes of edit­
ing, open and visual, in which the editor behaves quite differently from normal command
mode. If you are using ex and the editor behaves strangely, you may have accidently entered
open mode by typing "0"0 Type the ESC key and then a "Q" to get out of open or visual mode
and back into the regular editor command mode. The document An Introduction to Display Edit­
ing with Vi provides a fuB discussion of visual mode.

addressing, see line numbers
ampersand, 20
append mode, 6-7
append (a) command, 6, 7, 9
"At end of file" (message), 18
backslash (\), 21
buffer, 3
caret n, 10, 20
change (c) command, 18
command mode, 5-6
"Command not found" (message), 6
context search, 10-12, 19-21
control characters ("'" notation), 10
control-H, 7
copy (co) command, 15
corrections, 7, 16
current filename, 21
current line (.), 11, 17
delete (d) command, 15-16
dial-up, 5
disk,3
documentation, 3, 23
dollar ($), 10, 11, 17, 20-21
dot (.) 11, 17
edit (text editor), 3, 5, 23
edit (e) command,S, 9, 14
editing commands:

append (a), 6, 7, 9
change (c), 18
copy (co), 15
delete (d), 15-16
edit (text editor), 3, 5, 23
edit (e), 5, 9, 14
file (0, 21-22
global (g), 19
move (m), 14-15
number (nu), 11
preserve (pre), 22-23
print (p), 10
quit (q), 8, 13
read (r), 22
recover (rec), 22, 23
substitute (s), 11-12, 19,20
undo (u), 16-17, 23
write (w), 8, 13, 21, 22
z, 12-13
! (shell escape), 21
$-,17
+,17
-,17
11,12,20

- 23 -

Index

??,20
., 11, 17
.-,11,17

entering text, 3, 6-7
erasing

characters ("H), 7
lines (@), 7

error corrections, 7, 16
ex (text edi tor), 23
Ex Reference Manua~ 23
exclamation (!), 21
file, 3
file (0 command, 21-22
file recovery, 22-23
filename, 3, 21
global (g) command, 19
input mode, 6-7
Interrupt (message), 9
line numbers, see also current line

dollar sign ($), 10, 11, 17
dot (.), 11, 17
relative (+ and -), 17

list, 10
logging in, 4-6
logging out, 8
"Login incorrect" (message), 5
minus (-),17
move (m) command, 14-15
"Negative address-first buffer line is 1" (message), 11
"No current filename" (message), 8
"No such file or directory" (message), 5, 6
"No write since last change" (message), 21
non-printing characters, 10
"Nonzero address required" (message), 18
"Not an editor command" (message), 6
"Not that many lines in buffer" (message), 18
number (nu) command, 11
password,5
period (.), 11, 17
plus (+),17
preserve (pre) command, 22-23
print (p) command, 10
program, 3
prompts

% (UNIX), 5
: (edit), 5, 6, 7

(append),7
question (?), 20
quit (q) command, 8, 13
read (r) command, 22
recover (rec) command, 22, 23

recovery, see file recovery
references, 3, 23
remove (rm) command, 21, 22
reverse command effects (undo), 16-17, 23
searching, 10-12, 19-21
shell, 21
shell escape (!), 21
slash (I), 11-12, 20
special characters C, $, \),10,11,17,20-21
substitute (s) command, 11-12, 19,20
terminals, 4-5
text input mode, 7
undo (u) command, 16-17, 23
UNIX, 3
write (w) command, 8, 13,21,22
z command, 12-13

- 24-

An Introduction to Display Editing with Vi

William Joy

R tvistd fa' version. J.S/l. J J by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California. Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the
screen of your terminal acts as a window into the tile which you are editing.
Changes which you make to the tile are reflected in what you see.

Using vi you can insert new text any place in the tile quite easily. Most of
the commands to vi move the cursor around in the tile. There are commands
to move the cursor forward and backward in units of characters, words, sen­
tences and paragraphs. A small set of operators, like d for delete and c: for
change, are combined with the motion commands to form operations such as
delete word or change paragraph, in a simple and natural way. This regularity
and the mnemonic assignment of commands to keys makes the editor com­
mand set easy to remember and to use ..

Vi will work on a large number of display terminals, and new terminals
are easily driven after editing a terminal description tile. While it is advanta­
geous to have an intelligent terminal which can locally insert and delete lines
and characters from the display, the editor will function quite well on dumb ter­
minals over slow phone lines. The editor makes allowance for the low
bandwidth in these situations and uses smaller window sizes and different
display updating algorithms to make best use of the lin:Iited speed available.

It is also possible to use the command set of vi on hardcopy terminals.
storage tubes and "glass tty's" using a one line editing window; thus vi's com­
mand set is available on all terminals. The full command set of the more tradi­
tional, line oriented editor ex is available within vi; it is quite simple to switch
between the two modes of editing.

September 16, 1980

An Introduction to Display Editing with Vi

William Joy

ReVIsed for verSIOns 1.512.1 J by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

1. Getting slarled

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be
running vi on a tile you are familiar with while you are reading this. The first part of this docu­
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card summarizes [he commands of vi in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start vi you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here. you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Fill! name Type
2621 Hewlett-Packard 2621 AlP Intelligent
2645 Hewlett-Packard 264)(Intelligent
act4 Microterm ACT-IV Dumb
actS Micro term ACT -V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
hl9 Heathkit h 19 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart act4 InteUigent

The financial support of an IBM Graduate Fellowship and (he ~ationat Science Foundation under grants
MCS74-076..t4-A03 and MCS78-0i:91 is grateiul1y acknowledg::d.

tl061
vt52

Teleray 106]
Dec VT-52

- 2 •

Intelligent
Dumb

Suppose for example that you have a Hewlett·Packard HP262! A terminal. The code used
by the system for this terminal is '2621 '. In this case you can use one of the following com·
mands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are using the
standard version 7 shell '.hen you should give the commands

:5 TERM"'2621
$ export TERM

If you wan! to arrange to have your terminal type set up automatically when you log in,
you can use the [set program. If you dial in on a mime, but often use hardwired ports, a typical
line for your .Iogin file (if you use csh) would be

seiellv TERM 'Ise! - -d mime'

or for your .profile file (if you use sh)

TERM='lset - -d mime'

Tset knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tser is usually used to change the erase and kill characters,
too.

1.2, Editing a file

After telling the system which kind of terminal you have, you should make a copy of a
file you are familiar with, and run vi on this file, giving the command

0/0 vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.;

1.3. The editor's copy: the buffer

The editor does not directly modify the file which you are editing. Rather. the editor
makes a copy of this file, in a place called the buffer, and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes YOll make back into the
original file.

:t If you gave the system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when it sends comrol codes for one kind of terminal to some other kind of termi­
nal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you back
to the command level interpreter. Figure out what you did wrong (ask. someone else jf necessary) and try
again.

Another thins which can go wrong is that YOll typed the wrong f.le name and the editor just pnnied an
error diagnostic. In this case you should follow the above procedure for getting out of the editor, and try
again this time spelling the file name correctly.

If the editor doesn't seem to respond to the commands which you type here. try sending an interrupt to it
by hitting the DEL or RUB key on your terminal. and then hitting the :q command again fo!lowed by a carriage
return.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in italics. We wi!! represent spe­
cial characters in SMALL CAPITALS.

1.5. Arrow keys
The editor command set is independent of the terminal you are using. On most terminals

with cursor positioning keys, these keys will also work within the editor. If you don't have CUi­

sor positioning keys, or even if you do, you can use the h j It and I keys as cursor positioning
keys (these are labelled with arrows on an admJa) .•

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectlyJ

1.6. Spedal characters: ESC, ell. and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the ben to indicate that it
is in a quiescent state.; Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so
you can just hit it if you don't know what is going on until the editor rings the bell.

The Cll. or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop wha.t it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don't know or don't like wha.t is going on. Try hitting the
'/' key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a 'I' printed as a
prompt. You can get the cursor back [0 the curren! position by hitting the DEL or RUB key; try
this now.' From now on we will simply refer to hitting the DEL Oi RUB key as "sending an
interrupt. "os

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing 3. computation, such as com­
puting a new position in the file after a search or running a command to reformat part of the
buffer. V/hen this is happening you can stop the editor by sending an interrupt.

1. 7. Getting Oil! of the editor

After you have worked with this introduction for a while, and you wish to do something
else, yo!.! can give the command ZZ to the editor. This will write the contents of the editor's
buffer back into the file you are editing. if you made any changes, and then quit from the edi­
tor. You ca.'! also end an editor session by giving the command ;q!CR;t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor's copy of a file you wish

'" As we wiII see later. h moves back to the left Oike: comrol-tl which is a backspace), j moves down (in the
same column). k moves up (in the same column), and Imov:es to the right.
t On smart tef1il.ina!s where it is possible. the editor will quietly nash tile screen rather than ringing the belL
Ol Backspacing over the 'r will also cancel the search.
#<0 On some systems. this interruptibility comes at a price: you caTInot type ahead whl~n the editor is compUl~
ing with the cursor on the bottom line.
t AU commands which r;:.ad fram the last display line can also be r.ermmatet::i wah a ESC a:":i well as an CR.

- 4 -

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving arollnd in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hilting the control and D keys at the same time, a contro!-D or "D'. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled ,., on your terminal. This key will be represented as T in this document;
,-, is exclusively used as par! of the "x' notation for control characters.;

As you know now if you tried hitting -D, this command scrolls down in the file. The 0
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is ·U. Many dumb terminals can't scroll
up at all. ill which case hilling -U clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hi! "E to expose one
more line at the bottom of the screen, leaving the cursor where it is. ;t The command -Y
(which is hopelessly non-mnemonic, but next to 'U on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file; the keys -F and 'B * move forward and
backward a page. keeping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than -D and -U if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting 'F to move forward a page will leave you only a little comext to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con­
tinue to read the text as scrolling is taking place.

2.2. Searching, gola, and previolls context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character I followed by a string of characters terminated by CR. The editor will posi­
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are. and is
otherwise like I. t

If the search string you give the editor is not present in the file the editor will print a diag­
nostic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line. begin the search string
with an 1. To match only at the end of a line, end the search string with a S. Thus IT se!lrchCR
will search for the word 'search' at the beginning of a line. and /!astScR searches for the word
'last' at the end of a line."

: If you don't have a .Q~ key on your tenninaJ then there is probably a key labelled 'T': in any case these
characters are one and the same.
+:!: Version J only.
t Not available in all v2 editors due to memory constraints.
t These searches will nOI"mally wrap around the end of the file. and thus find the SIring even if it is n.ot on a
line in the direction you search provided it is anywhere ~!se in the file. You can disable this wraparound in
scans by giVIng the command :se nOWrapSc:.1flcR. or more briefly :se nowseR.
"A.ctually, the string you give to search for here can be a regular expresSIOn in the sense of the editors ext I)
and ed(I), If you don't wish to learn about this yet. you car'! disable this more general facility by doing
:se rwmagjccR~ by putting this command in EXINIT in your environment, you c:m have this always be in
etrec! Imore abo", EXINITlater.J

- 5 •

The command G, when preceded by a number will position the cursor at that line in the
file. Thus IG will move the cursor to the first line of the file. If you give G no count, then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the
editor will place only the character .-, on each remaining line. This indicates thaI the last line
in the file is on the screen; that is, the ,-, lines are past the end of the file.

You can find out the state of the file you are editing by typing a "G. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can a.lso get back to a previous position by using the command .• (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with I or ? and then a .. to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ".

2.3. Moving arollnd on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or 5 keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don't have working arrow keys, you
can always use Ii, j, k, and I. Experienced users of vi prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very cornmon keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possible) to
bring a. line at a time into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will
take you to the lop (horne) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen. and
t, which takes you to the last line on the screen.. L also takes counts, thus 5L will take you to
the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar} which moves right one
character and the as (backspace or 'H) key which moves left one character. The key h works
as ·H does and is useful if you don't have a as key. (Also, as noted just above, ! will move to
the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using W and II rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they differ from the lower case w
and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

- 6 •

2.5. Sllmmary

SPACE advance the cursor one position
"R backwards to previous page
"D scrolls down in the file
"E exposes another line at the bottom (v3)
'F forward to next page
'G tell what is going on
"H backspace the cursor
"N next line, same column
'p previous line, same column
'U scrolls up in the file
'y exposes another line at the top (v3)
+ next line, at the beginning

previous line, at the beginning
I scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
W forward a word, ignoring punctuation
Ii back a word
e end of current word
II scan for next instance of I or ? pattern
w word after this word

2.6. View:j:

If you want to use the editor to look at a file, rather than to make changes, invoke it as
view instead of VI. This will set the readonly option which will prevent you from accidently
overwri ting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i. every­
thing you type until you hit ESC is inserted into the file. Try this now; position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem. for a minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'SESC' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you m:derstand how this works; i
placing text to the left of the cursor, a to the right.

It is often the case that you waIl! to add new lines to the file you are editing. before or
after some specific line in the file. Find a line where this makes sense and then give the com­
mand 0 to create a new line after the line you are on, or the command 0 to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

; Not available in all v2 editors due to m:mory constraints.

- 7 -

is inserted on the new line.
Many related editor commands are invoked by the same letter key and differ only in that

one is given by a lower case key and the other is given by an upper case key. In these cases.
the upper case key often differs from the lower case key in its sense of direction, with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac­
ters. To type in more than one line of text, hit a RETURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a slow and dumb ter­
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen Jines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

Whiie you are inserting new text, you can use the characters you normally use at the sys­
tem command level (usually AH or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, -X, or AU) to erase the input
you have typed on the current line. t The character -W will erase a whole word and leave you
after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap­
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can't erase characters which you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction, just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in eXlstmg text quite easily. Find a single character
which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the as key or -H or
even just 11) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed thell hit the x key; this deletes the character from the file. It is
analogous to the way you x out characters when you make mistakes on a typewriter (except it's
nO[as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command I"C, where c is replaced by the correct character. Finally if the character which is
incorrect ShOllld be replaced by more than one character, give the command s which substitutes
a string of characters, ending with ESC, for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to
know now is that the d key acts as a delete operator. Try the command dw to delete a word.
Try hilling. a few times. Notice that this repeats the effect of the dw. The command. repeats
the last command which made a change. You can remember it by analogy with an ellipsis' ... '.

t In fact. the character ·H (backspace) always works to erase the last input character here. regardless of wha[
your erase charac:ter is.

• 8 •

Now try db. This deletes a word backwards, namely the preceding word. Try dSP CE.
This deletes a single character, and is equivalent to the x command.

Another very usefuL operator is c or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character '$' so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to
delete, and type dd, the II operator twice. This will delete the line. If you are on a dumb ter­
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous con­
tents and replacing them with text you type up to an ESC.t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
Sdd deletes 5 lines. You can also give a command like d1 to delete all the lines up to and
including the last line on the screen, or d31 to delete through the third from the bottom line.
Try some commands like this now" Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.5. Undoing

Now suppose that the last cha..flge which you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides a II (undo) com­
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an II also undoes a lI.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you wouid rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text which you delete, even jf undo will not bring it back; see the section
on recovering lost text below.

3.6. Summary

SPACE
'H
'W
erase
kill

o
U
a
c

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually "H Of #), erases a character during an insen
your kill (usually @, -X, or "U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends lext after the cursor
changes the object you specify to the following text ,

t The command S is a convenient synonym for fQ~ c:c. by analogy with s. Think of S as a substitute on
lines, while s is a substitute on characters.
Ii One subtle point here involves using the I search after a d. This will normally delete characters from the
current position to the point of the match. If what is deSIred is to delete whole lines including the two points.
give the pattern as /pol/ +0 •• line addr.ss.

d
I
o
\I

- 9 -

deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating lext

4.1. Low level character motions

Now move the cursor to a line where there is a punctuation or a bracketing character such
as a parenthesis or a comma or period. Try the command fx where x is this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit­
ting a ;, which finds the next instance of the same character. By using the f command and then
a sequence of ;'5 you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACES. There is also a F command, which is like r, but searches
backward. The; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac­
ters up to, but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dtx; the! here stands for
to, Le. delete up to the next x, but not the x. The command T is the reverse of I.

When working with the text of a single line, an T moves the cursor to the first non-white
position on the line, and a S moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab ("Il characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.· When the cursor is at
a tab, it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is "'. On the screen non'printing characters resemble a'"'
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set·
ting of the beautifY option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a 'V before the control character.
The 'V quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level lex! objects

In working with a document it is often advantageous to work in terms of sentences. para­
graphs. and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command dl will delete the rest of the current sentence; like­
wise d(will delete the previous sentence if you are at the beginning of the current sent~nce. or
the current sentence up to where you are if you are not at the beginning of the current sen·
tence.

A sentence is defined to end at a'.'. '!' or '?' which is followed by either the end of a
line, or by two spaces. Any number of dosing 'j', 'J" .. , and , .. characters may appeJr after
the '.'. '!' or '?' before the spaces or end of line.

The operations (and) move over paragraphs and the operations 14 and II move over sec·
tions.t

• This is settable by a command of [he form :se ts -.~it~ where x is 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.
t The II and Ii operations require the operation character to be doubled because they can move the cursor far

·10·

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the -ms and -mm macro pack·
ages, i.e. the '.IF', '.LP', '.FP' and '.QP', '.F' and '.LI' macros.; Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the secrlons option, normally' .NH'. '.SH'.
'.H' and '.HU', and each line with a formfeed "L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding cOUn! as a different window size in which to
redraw the screen at the new location, a.!1d this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a singie unnamed buffer where the last deleted or changed away text is
saved, and a set of named buffers a-I which you can use to save copies of text and to move
text around in your file and between files.

The: operator y yanks a copy of the object which follows into the unnamed buffer. If pre­
ceded by a buffer name, • xy, where x here is replaced by a letter a -z. it places the text in the
named buffer. The text can then be put back in the tile with the commands !l and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line, then when you put the text back, it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case. the put acts much like a 0 or 0
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will alSQ make a copy of the current line, and plac:: it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in "a5dd deleting 5 lines into the named buffer a. You can then move the cursor to
the eventual resting place of the these lines and do a 'ap or "aP to put them back. In fact. you
can switch and edit another file before you put the lines back. by giving a command of the form
:e nameCR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However. the
unnamed buffer is los! when you change files, so to move text from one tile to another you
should use an unnamed buffer.

from where It currentiy is. While it is easy to gel back with the command ", these commands would sti!i be
frustrating if they were easy to hit accidentally.
~ You can easily change or extend this set of macros by assigning a different stnng to the para~raphs oplion
in your EXlI".iJr. S~e section 6.1 for details. The ',bp' directive is also conSIdered to start a paragraph.

- 11 -

4.4. Summary.

r first non-white on line
$ end of line
) forward sentence
I forward paragraph
II forward section
(backward sentence
(backward paragraph
" backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
F x f backward in line
P put text back, before cursor or above current line
Tx t backward in line

5. High level commands

5.1. Writing, quitting, editing new files
So far we have seen how to enter vi and to write out our file using either ZZ or :wCR.

The first exits from the editor, (writing if changes were made), the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes.
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can aiso reedi! the same file (starting over) by giving the command :e!CR. These
commands should be used only rarely, and with caution, as it is not possible to recover the
changes you have made after you discard. them in this manner.

You can edit a different file without leaving the editor by giving the command :e name<:R.
If you have not written out your file before you try to do this. then the editor will tell you this.
and delay editing the other file. You can then give the command :wCR to save your work and
then the :e name<:R command again, or carefully give the command :e! name<:R. which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include set auto write in your EXINIT. and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:!cm«:R. The system will run the single command cmd and when the command finishes. the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can also give another: command when it asks you for a
RETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell. then you can give the com­
mand :ShCR. This will give you a new shell. and when yOll finish with the shell. ending it by
typing a -D, the editor will clear the screen and continue.

On systems which support it, ·Z will suspend the editor and return to the (top levell
shell. When the editor is resumed, the screen will be redrawn.

- 12 •

5.3. Marking and relurning

The command .. returned to the previous place after a motion of the cursor by a com­
mand such as /, ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mx.
where you should pick some letter for x, say 'a'. Then move the cursor to a different line (any
way you like) and hit 'a. The cursor will return to the place which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form Ox rather than 'x: Used without an operator, Ox will move to the firs!
non·white character of the marked line; similarly 00 moves to the first non-white character of
the line containing the previous context mark ".

5.4. Adjusting the screen

If the screen image is messed up because of a transmiSSion error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hil a ·t.
the ASCII form-feed character. to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may' get rid of these lines by typing -R to cause the edi tor to retype the screen,
dosing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a I command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
. if you want it at the center, or a - if you want it at the bottom. (z., Z-, and z+ are not avail­
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
SloWCR. If your system is sluggish this helps lessen the amount of output coming to your ter­
minal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command
:se lIoredrawcR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly wei! on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

:/?1I11"

Thus if you are searching for a particular instance of a common string in a file you can precede

• 13 •

the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by
giving a number on a z command, after the z and before the following RETURN, • or -. Thus
the command zS. redraws the screen with the current line in the center of a five line window.t

If the editor is redrawing or otherwise updating large portions of the display, you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may par~ally con·
fuse the editor about what is displayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a "L; or move or search again, ignoring the
current state of the display.

See section 7.S on open mode for another way to use the vi command set on slow termi·
nals.

6.2. Options, sel, and editor startup Illes

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name Default Description
autoindent noai Supply indentation automatically
autowritenoaw Automatic write before :n, :Ia, "i, !
ignoreca.se noic Ignore case in searching
lisp nolisp (() I commands deal with S·expressions
list nolist Tabs print as "I; end of lines marked with S
magic nomagic The characters . [and • are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para-IPLPPPQPbpP LI Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect-NHSHH HU Macro names which start new sections
shiftwidth sw-S Shift distance for <, > and input "D and "T
showmatch nosm Show matching (or (as) or J is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set Opt
set no opt

These statemen~ can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the
value of a single option by the command :set opt?CR. A list of all possible options and their
values is generated by :set aIlCR. Set can be abbreviated se. Multiple optio'ns can be placed on
one line, e.~ :se ai aw nuCR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A

t !'Iote thaI the command Sz. has an entirely different effeet. placini line 5 in the cenler of a new window.
t All oomm~n<h whid! start with : are ex commands.

• 14-

typical list includes a set command. and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line, they can be separated with the I character. for
example:

set ai aw terseimap @ dd1map # x

which sets the options aUloindent, aUlowrite, terse, (the set command), makes @ delete a line.
(the first map). and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file .Iogin in
your home directory:

setenv EXINIT 'set ai aw terseimap @ dd1map # x'

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT-'sel ai aw terseimap @ dd1map # x'
export EXINIT

On a version 6 system, the concept of environments is not present. In this case, put the line in
the file .exrc in your home directory.

set ai aw terseimap @ dd1map # x

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines
You might have a serious problem if you delete a number of lines and then regret that

they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers I -9. You can get the n'th previous deleted text back in your file by the
command" np. The" here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number I for now), and p is the pUI command. which puts text in the
buffer after the cursor. If this doesn't bring back the text you wanted, hit u to undo this and
then. (period) to repeat the put command. In general the. command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buffer,
the • command increments the number of the buffer before repeating the command. Thus a
sequence of the form

"lpn.u.u.

will, if repeated long enough. show you all the deleted text which has been saved for you. You
can omit the n commands here to gather up all this text in the buffer, or stop after any. com·
mand to keep just the then recovered text. The command P can also be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes.
You will normally receive mail when you next login giving you the name of the file which has
been saved-for you. You should then change to the directory where you were when the system
crashed and give a command of the form:

% vi -r name

replacing name with the name of the ole which you were editing. This will recover your work
to a point near where you left off. t
• In rare cases. some of the line. of the lile may be lost. The editor will give you the numbers of these lines
and the text of the lines will be replaced by the ming ·LOST'. These lines will almost always be among the
laS! rew which you changed. You can either choose to discard the changes which you made (if they are .asy
to remake) or to replace the few lost lines by hand.

- 15·

You can get a listing of the files which are saved for you by giving the command:

% '1i-r

If there is more than one instance of a particular file saved. the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover·
ing the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system.
and the mail program must exist to receive mail. The invocation" vi -r" will not always list all
saved fites, but they ca..l'! be recovered even if they are not listed.

6.5. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near
the right margin automatically. You can cause this to happen by giving the command :se
wm==10cR. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.'

If the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate. at the juncture of the joined lines,
and leaves the cursor at this white space. You can kill the white space with" if you don't want
it.

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distin­
guishes editing of programs from editing of text is the desirability of maintaining an indented
strJcture to the body of the program. The editor has a aUloindent facility for helping you gen­
erate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening a new line
with 0 and type some characters on the line after a few tabs. If you now start another line.
notice that the editor supplies white space at the beginning of the line to line it up with the pre·
vious line. You cannot backspace over this indentation. but you can use "D key to backtab
over the supplied indentation.

Each time you type "D you back up one position, normally to an 8 column boundary.
This amount is sellable; the editor has an option called shljiwldlh which you can set to change
this value. Try giving the command :se 5w=4CR and then experimenting with autoindent
again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you specify right or left by one shiftwidth. Try < < and> > which shift one line left
or right, and < L and > L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match. put the
cursor at a left or right parenthesis and hit %. This wit! show you the matching parenthesis.
This works also for braces (and l. and brackets [and l.

If you are editing C programs, you can use the II and II keys to advance or retreat to a
line starting with a r. i.e. a function declaration at a time. When Ii is used with an operator it
stops after a line which starts with); this is sometimes useful with yll.

" This feature is not available on some 2 editors. In \/2 editors where it is available. the break can only DC·

cur to the right of {he specified boundary instead of to the left.

• 16 •

6.7. Fillering portions of the buffer

YOll can nm system commands over portions of the buffer using the operator!. You can
use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words, one per line and ending them with a blank line. Back up
!O the beginning of the list, and then give the command !jsortCR. This says to son the next
paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing Llspt
If you are editing a LISP program you should set the option lisp by doing :se lispCR. This

changes the (and) commands to move backward aIld forward over s-expressions. The (and j
commands are like (and) but don't SlOP at atoms. These can be used to skip to the next list.
or through a comment quickly.

The Gutoindenl option works differently for LISP, supplying indent to align at the first argu­
ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try set­
ting it with :se smCR and then try typing a '(' some words and then a T. Notice that the cur­
sor shows the position of the' (' which matches the ')' briefly. This happens only if the match­
ing '(' is on the screen, and the cursor stays there for at most one second.

Tne editor also has a.11 operator to realign existing lines as though they had been typed in
with lisp and aUlOincienl set. This is the = operator. Try the command =% at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP" the II and II advance and retreat to lines beginning with a (,
and are useful for dealing with entire function definitions.

6.9. Macros;
Vi has a parameterleS5 macro facility. which lets you set it up so that when you hit a single

keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINITJ with a command of the
form:

:map ihs rhSCR

mapping Ihs into rhs. There are restrictions: Ihs should be one keystroke (either I charac­
ter or one function key) since it must be entered within one second (unless nOlimeour is
set, in which case you can type it as slowly as you wish, and VI will wait for you to finish it
before it echoes anything). The Ihs can be no longer lhan 10 characters, the rhs no longer
than 100. To get a space, tab or newline into Ihs Of rhs you should escape them with a "V.
(It may be necessary to double the 'V if the map command is given inside VI, rather than
in ex.J Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq-Y'YCR CR

which means that whenever you type 'I, it will be as though you had typed the four characters
:wqCR. A 'V's is needed because without it the CR would end the: command, rather than

The LISP features are not <il.vailable on some vl edilors due !O memory con:'Hraints.
;: The macro feature is available orlly in version 3 editors.

- 17 •

becoming part of the map definition. There are two ·V's because from within VI, two 'V's must
be typed to get one. The firs! CR is part of the rhs, the second terminates the: command.

Macros can bE deleted with

unmap Ihs

If the Ihs of a macro is "#0" through "#9". this maps the particular function key instead
of the 2 character "#" sequence. So that terminals without function keys can access such
definitions, therorm ":#x" will mean function key x on all terminals (and need not be typed
within one second.) The character" #" can be changed by using a macro in the usual way:

:map 'V'V'! :#

to use tab. for example. (This Wall'! affect the map command. which still uses #, but just the
invocation from visual mode.

The undo command reverses an entire macro cal! as a unit, if it made any changes.

Placing a 'I' after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for 'T to be the same as 4 spaces in input mode, you can
type:

:map 'r ·VI!IHlIl

where K is a blank. The 'V is necessary to prevent the blanks from being taken as white space
between the Ihs and rhs.

7. Word Abbreviations **
A feature similar to macros in input mode is word abbreviation. This allows you to type a

short word and have it expanded into a longer word or words. The commands are :abbreviate
and :ullabbreviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com­
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eecs' were typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke. as
it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we
have introduced here. You can find these commands easily on the quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nilty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands
which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command I moves the cursor to a specific column. and may be useful for getting
near the middle of a long line to split it in half. Try 801 on a line which is more than 80
columns long. t

The editor only puts full lines on the display; if there is not enough room on the display
to fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as a

II Version 3 only.
t You can make long lines very easily by using J to join together short lines.

• 18 -

place holder. Wnen you delete lines on a dumb terminal. the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen ~y giving the -R command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se nllCR to enable this. and the command :se nomlCR to turn it off. You
can have tabs represented as -X and the ends of lines indicated with'S' by giving the command
:se listeR; ;se nolistCR turns this off.

Finally, lines consisting of only the character ,., are displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past l.he logical end of
file.

8.2. Counts
Most vi commands will use a preceding count to affect their behavior in some way. The

following table gives the common ways in which the coums are used:

new window size
scroll amount
line/column number
repeat eff eel

: I ? H II
"D "U
z G I
most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the
default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen to be redrawn. If you anticipate this, but
do not need as large a window as you are currently using, you may wish to change the screen
size by specifying the new size before these commands. In any case, the number of lines used
on the screen will expand if YOli move off the top with a - or similar command or off the bot­
tom with a command such as RETURN or "D. The window will revert to the last specified size
the next time it is cieared and refilled. t

The scroll commands 'D and AU likewise remember the amount of scroll last specified.
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus lOa + - - -. - ESC will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as -R), the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus 5w advances five
words on the current line, while 5RETUR~ advances five lines. A very useful instance of a
count as a repetition is a coum given to the. command, which repeats the last changing com­
mand. If you do dw and then 3., you will delete first one and then three words. You can then
delete two more words with 2 ..

8.3. More file manipulation commands

The following table lists the file manipulation commands which you can use when you are
in vi. All of these commands are followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end wil.h a ZZ command. If you are edit"
ing for a long period of time you can give :w commands o(;casionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file, you can finish with one

t But no! by • 'L which just redraw. the screen as it is.

:'1'1'
:wq
:x
:e name
:e!
:e -I- name
:e +n
:e :#
:w name
:w! name
:x,YW name
:r name
:1' !cmd
:n
:n!
:n args
:ta tag

write back changes
write and quit

• 19 -

write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwri Ie file flame
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag lag, at tag

with a :w and start editing a new file by giving a :e command, or set aU/owrile and lise :n
<file>.

If YOIl make cha.'1ges to the editor's copy of a file, but do not wish to write them back.
then you must give an ; after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a +11 argu­
ment to start at line n. In actuality, f1 may be any editor command not containing a space, use­
fully a scan like +1 pat Of +? pal. In forming new names 10 the e command, YOll can lise the
character % which is replaced by the current file name, or the character # which is replaced by
the alternate file name. The alternate file name is generally the last name you typed other than
the current file. Thus if you try to do a :e and get a diagnostic that YOll haven't written the file,
you can give a :'11' command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding Ollt the lines that bound the range to

be written using "G, and giving these numbers after the: and before the w, s.eparated by ,'s.
You can also mark these lines with III and then use an address of the form 'x,'yon the w com­
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in turn using the command :11. It is also possible to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the ::a command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as
'lags, to quickly find a function whose name you give. If the :ta command will require the edi­
tor to switch files, then you must :w or abandon any changes before switching. You can repeat
the :!a command without any arguments to look for the sarne tag again. (The tag feature is not
available in some '12 editors.)

!l.4. More ~.bolJl searching for strings

When you are searching for strings in the file with I and. ,the edilOr normally places you
at the next or previous OCC1J:iT~nce of the string. If you are using an operator such a..~ c or y,
then you mal' weB wish to 3.tree! lines up the befor,~ line containing thl; pattern.

"20 "

You can give a search of the form I pall - n to refer to the n'th line before the next line con"
taining pal, or you can use + instead of - to refer to the lines after the one containing pal. If
you don '(give a line offset, then the editor will affect characters up to the match place, rather
than whole lines; thus use" +0" to afrect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se jcCR. The command :se nnicCR turns this off.

Strings given to searches may actually be regular expressions. If you do not '.'1ant or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters 1 and S are special in patterns. The character
\ is also then special (as it is most everywhere in the system), and may be used to get at the an
extended pattern matching facility. II is also necessary to use a \ before a I in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magic is set.

1
$

\<
\>
[SIr]
[T SII1
[x-y]

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in Sir

matches any single character not in Sir

matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode, then the. ! and $ primitives are given with a preceding \.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input
mode. These are summarized in the following table.

"H deletes the last input character
'W deletes the last input word, defined as by b
erase your erase character, same as "H
kill your kill character, deletes the input on this line
\ escapes a following "H and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnonnally
CR starts a new line
"D backtabs over aUloindem
O'D kills all the aUlOindem
rD same as O"D, but restores indent next line
"V quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to correct a single
character, or by typing one Of more 'W's to back over incorrect words. If you Ilse # as your
erase character in the nonnal system, it will work like "H.

Your system kill character, normally @, "X or "U, will erase all the input you have given
on the current line. In general, you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to end the
insertion, move over and make the correction, and then return to where you were to continue.

" 21 "

The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it
with a \, just as you would do at the normal system command level. A more general way of
typing non"printing characters into the file is to precede them with a "V. The'V echoes as a 1
character on which the cursor rests. This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that point.·

If you are using aUloindefU you can back tab over the indent which it supplies by typing a
"D. This backs up to a shiftwidth boundary. This only works immediately after the supplied
autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type I and then "D. The editor will move the cursor to the left
margin for one line, and restore the previous indent on the next. You can also type a 0 fol"
lowed immediately by a ·'D if you wish to kill all the indent and not have it come back on the
next line.

lUi. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the norma! system con­
vention for typing on such a terminal. Characters which you normally type are converted to
lower case, and you can type upper case letters by preceding them with a \. The characters ! -)
I . are not available on such terminals, but you can escape: them as \ (\ T \) \! \". These charac­
ters are represented on the display in the same way they are typed.* *
11.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced above are available in ex. Likewise, most ex commands can be invoked
from vi using:. Just give them without the: and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish by
giving a command x after the: which ex prompts you with. or you can reenter vi by giving ex a
vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic
changes in line oriented material are particularly easy. Y QU can read the advanced editing docu­
ments for the editor ed to find out a lot more about this style of editing. Experienced users
often mix their use of ex command mode and vi command mode to speed the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and "glass tty's" t

If you are on a hardcopy terminal or a terminal which does not have a cursor which can
move off the bottom line, you can still I.lse the command set of vi, but in a different mode.
When you give a vi command, the editor will tell you that it is using open mode. This name
comes from the open command in ex. which is used to get into the same mode.

The only difference between Visual mode and open mode is the way in which the text is

'This is not quite true. The implementation of the editor does not allow the :"lULL (A@) character to appear
in files. Also the LF Oinefeed or ~J) character is used by the editor to separate lines in the file. so it cannot
appear in the middle of a line. You can insert any other character. however. if vou wait for the editor to
echo the i before you type the ch3racte~~. In fact. the editor will treat a following'letter as a request for the
corresponding control character. This is the only way to type 'S Of ~Q. since the system normally uses them
to suspend and resume ompul and never gives them to the editor to process.
* The \ character you glve wi!! not echo until you type another key.
* Not available in all v2 edilOfS due to memory constrzints.

displayed.

In open mode the editor uses a single line window into tile file. a.nd moving backward and
forward in the file causes new lines to be displayed, always b"low the currem !.int!. Two com­
mands of vi work differently in open: z and "R. The l command does [lot take parameters. but
rather draws a window of context around the current line 8.nO then returns you 1.0 the current
line.

If you are on a hardcopy terminal, the oR command will retype the curren! line. On such
terminals, the editor r1Qrm~lly uses two lines to represent the current line. The first line is a
copy of the Ene as yol..! to edit it. and work on the line below this I;ne. When you
delete characters, the editor types a number of to show you the characters which are deleted.
The editor also reprints the current line SOOiI after such changes so that you call see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals whi<:h car! support VI in the
full screen mode. You can do this by entering ex and using an open command.

Adlllowledgemellts

Bruce Englar encouraged the early development of thi, display editor. Peter Kessler
helped bring sanity to 2'5 comm8_nd layout. Bill Joy \Ufote versions 1 and 2.0 through
2.7, and Cleated the framework that Ilsers see in the present edilor. Mark Horton added macros
and other features and made the editor work on large number of terminals and Unix systems.

• 23 •

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are
presented in their order in the ASCI! character set: Control characters come first, then most
special characters, then the digits, upper and then lower case characters.

For each character we tel! a meaning it has as a command and any meaning it has during
an insert. If it has only meaning as a command, then only this is discussed. Section numbers
in parentheses indicate where the character is discussed; a 'f' after the section number means
that the character is mentioned in a footnote.
-@

-G

-H (8S)

Not a command character. If typed as the first character of an insertion it is
replaced with the last text inserted, and the insert terminates. Only 128 char­
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A"@ cannot be par! of the file due to the editor
implementation (7.5f).

Unused.

Backward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7.2).

Unused.

As a command, scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future -D and -U commands
(2.1, 7.2l. During an insert, backtabs over aUloindent white space at the begin­
ning of a line (6.6, 7.5); this white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only.)

Forward window. A coun! specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7.2).

Equivalent to :fCR, printing the current file, whether it has been modified. the
current line number and the number of lines in the file, and the percentage of
the way through the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input char­
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different 0.1, 7.5).

Not a command charact.er. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is controlled by the labs/op option
(4.1, 6.6).

Same as down arr!)w (see j).

Unused.

The ASClI formfeed character, this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen, or after output is stopped by an interrupt
(5.4, Uf).

A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines (2.3). During an insert, a
CR causes the insert to continue onto another line (3.1).

Same as down arrow (see j).

Unused.

"U

"W

"\
-I

SPACE

• 24 •

Same as uparrow (see I{.).
Not a command character. In input mode, -Q quotes the next character. the
same as 'V, except that some teletype drivers will eat the -Q so that the editor
never sees it.

Redraws the current screen, eliminating logical lines not corresponding 10 phy­
sical lines (Jines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line (5.4, 7.2. 7.8).

Unused. Some teletype drivers use 'S to suspend output until "Qis

Not a command character. During an insert, with au/oindenr set and at the
beginning of the line, inserts shifIWidth white space.

Scrolls the screen up, inverting "D which scrolls down. Counts work as they
do for "D, and the previous scroll amount is common 10 both. On a dumb ter­
minal, 'U will often necessitate dearing and redrawing the screen further back
in the file (2.1,7.2).

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 7.5).

Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see -H) (7.5).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is
if possible. (No mnemonic value ior this key; however, it is next to -U which
scrolls up a bunch'! (Version 3 only.)

If supported by the Unix system, stops the editor, exiting to the top level shell.
Same as :stOpCR. Otherwise, unused.

Cancels a partially formed command, such as a I when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : I and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus hit ESC if you don'(know what is happening till the edi­
tor rings the bell. If you don't know if you are in insert mode you can type
ESCa, and then material to be input; the material will be inserted correctly
whether or not you were in insert mode when you started (l.S, 3.1, 7.5).

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:!a, this word, and then a CR. Mnemonically, this command is "go right to"
(7.3).

Equivalent to :e #CR. returning to the previous position in the last edited file,
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the file name again 0.3). (You
have to do a :w befo~e 'r will work in this case. If you do not wish to write
the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

Same as right arrow (see!).

An operator, which processes lines from the buffer with reformatting com­
mands. Follow! with the object to be processed, and then the command name
terminated by CR. Doubling! and preceding it by a count causes count lines to
be filtered; otherwise the count is passed on to the object after the !. Thus
2!ljmlCR reformats the next two paragraphs by running them through the pro­
gram jml. If you are working on IISP, the command !%grinGtR: given at the

-Both Imr and grind are Berkeley programs and may not be present at all installations.

s

•
+

- 2S -

beginning of a function, will run the text of the function through the LISP
grinder (6.7, 7.3). To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).

Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-z into which you can place text (4.3,
6.3)

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys (6.9). In input mode, if this
is your erase character, it will delete the last character you typed in input
mode. and must be preceded with a \ to insert it, since it normally backs over
the last input character you gave.

Moves to the end of the current line. If you :se IistCR. then the end of each
line will be shown by printing a S after the end of the displayed text in the
line. Given a count. advances to the count'th following end of line; thus 25
advances to the end of the following line.

Moves to the parenthesis or brace !) which balances the parenthesis or brace
at the current cursor position.

A synonym for :&CR. by analogy with the ex & command.

When followed by a • returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter a-z, returns to the line which
was marked with this letter with a m command, at the first non-white character
in the line. (2.2. 5.3). When used with an operator such as d, the operation
takes place over complete lines; if you use " the operation takes place from the
exact marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s­
expression if the lisp option is set. A sentence ends at a . ! or ? which is fol­
lowed by either the end of a line or by two spaces. Any number of closing) I
• and • characters may appear after the. ! or ?, and before the spaces or end of
line. Sentences also begin at paragraph and section boundaries (see ! and I(
below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.8) .

Unused.

Same as CR when used as a command.

Reverse of the last f F t or T command. looking the other way in the current
line. Especially useful after hitting too many; characters. A count repeats the
search.

Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the
screen is scrolled, or cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also cleared and redrawn,
with the current line at the center (2.3).

Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines anel the:! hit . to
delete more and more words/lines. Given a count, it passes it on to the com­
mand being repeated. Thus after a 2dw, 3. deletes three words 0.3, 6.3, 7.2.
7.4).

I

o

1-9

<

>

@

A

S

C

D

• 26 -

Reads a sIring from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line; an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern; the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB, or by back·
spacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere
in the buffer.

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole
lines to be affected. To do this give a pattern with a closing a closing 1 and
then an offset + n or - n.

To include the character I in the search string. you must escape it with a
preceding \. A r at the beginning of the pattern forces the match to occur at
the beginning of a line only; this speeds the search. A S at the end of the pat­
tern forces the match to occur at the end of a line only. More extended pat­
tern matching is available, see section 7.4; unless you set nomagic in your
.exrc file you will have to preceed the characters. [* and - in the search pat­
tern with a \ to get them to work as you would naively expect (J .5, 2,2. 6.1.
7.2, 7.4). .

Moves to the firsl character on the current line. Also used, in forming
numbers. after an initial 1-9.

Used to form numeric arguments to commands (2.3,7.2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR, and
the command then executed. You can return to where you were by hitting
DEL or RUB if you hit: accidentally (see primarily 6.2 and 7.3).

Repeats the last single character find which used i F I or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one shiftwidlh, normally 8 spaces. Like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object, thus 3< < shifts three lines (6.6, 7.2).

Reindents line for LISP, as though they were typed in with lisp and aUloindenf
set (6.8).

An operator which shifts lines rig..ht one shiftwidrh, normally 8 spaces. Affects
lines when repealed as in> >. Counts repeat the basic object (6.6. 7.2).

Scans backwards, the opposite of I. See the 1 description above for details on
scanning (2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character, you must escape it with
a \ to type it in during input mode. as it normally backs over the input you
have given on the current line (3.1, 3.4, 7.5).

Appends at the end of line, a synonym for Sa (7.2).

Backs up a word, where words are composed of non-blank sequences. placing
the cursor at :he beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for cS.

Deletes the res! of the text on the cunent line; a synonym for dS.

E

F

G

H

J

K
L

M

N

o

p

Q

R

5

T

u
v

- 27 -

Moves forward to the end of a word, defined as blanks and non-blanks. like B
and W. A count repeats the effect.

Finds a single following character, backwards in the current line. A count
repeats this search that many times (4. I).

Goes to the line number given as preceding argument, or the end of the file if
no preceding count is given. The screen is redrawn with the new current line
in the center if necessary (7.2).

Home arrow. Homes the cursor to the top line on the screen. If a count is
given. then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator. full lines are affected (2.3. 3.2).

Inserts at the beginning of a line; a synonym for r i.
Joins together lines. supplying appropriate white space: one space between
words. two spaces after a " and no spaces at all if the first character of the
joined on line is). A count causes that many lines to be joined rather than the
default two (6.5. 7.10.

Unused.

Moves the cursor to the first non-white character of the last line on the screen.
With a count. to the first non-white of the count'th line from the bottom.
Operators affect whole lines when used with L (2.3).

Moves the cursor to the middle line on the screen. at the first non-white posi­
tion on the line (2.3).

Scans for the next match of the last pattern given to / or ? but in the reverse
direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete. as the slowopen option works better (3.Il.

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre­
ceded by a named buffer specification' x to retrieve the contents of the buffer:
buffers 1-9 contain deleted material. buffers a-I are available for general use
(6.3).

Quits from vi to ex command mode. In this mode. whole lines form com­
mands. ending with a RETURN. You can give all the: commands; the editor
supplies the: as a prompt (7.7).

Replaces characters on the screen with characters you type (overlay fashion l.
Terminates with an ESC.

Changes whole lines, a synonym for ce. A count substitutes for that many
lines. The lines are saved in the numeric buffers. and erased on the screen
before the substitution begins.

Takes a single following character. locates the character before the cursor in
the current line. and places the cursor just after thaI character. A count
repeats the effect. Most useful with operators such as d (4.1),

Restores the current line to its state before you started changing it (3.5),

Unused.

W

x

y

zz

II

\
II
T

b

Ii

g

·18·

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect
(2.4) .

Deletes the character before the cursor. A count repeats the effect, but only
characters on the currem line are deleted.

Yanks a copy of the CUfrent line into the unnamed buffer, to be put back by a
later II or P; a very useful synonym for 'fY. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer (7.4l.

Exits the editor. (Same as :XCR.l If any changes have been made. the buffer IS

written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the seClions option, normally a '.NH' or '.SH' and also at lines which which
slarl with a formfeed·L. Lines beginning with (also stop 1[; this makes it
useful for looking backwards, a function at a time, in C programs. If the
option lisp is set, stops at each (at the beginning of a line, and is thus useful
for moving backwards at the top level LISP objects. (4.2,6.1,6.6, 7.2).

Unused.

Forward to a section boundary, see!! for a definition (4.2,6.1,6.6, 7.2l.

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a . returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-I, returns to the position which was marked with this letter with
a m command. When used with an operator such as Ii, the operation takes
place from the exact marked place to the current position within the line; if
you use " the operation takes place over complete lines (2.2. 5.3).

Appends arbitrary text after the current cursor position·, the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line.
The insertion terminates with an ESC (3.1, 7.2).

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect (2.4).

An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected. the text
which is changed away is saved in the numeric named buffers. If only part of
the current line is affected, then the last character to be changed away is
marked with a S. A count causes that many objects to be affected. thus both
3d and c.3) change the following three sentences (7.4).

An operator which dele!es the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3,3.4,4.1. 7.4).

Advances to the end of the next word, defined as for b and w. A count
repeats the effect (2.4, 3.lJ.

Finds the firs! instance of the next character following the cursor on the
current line. A count repeats the find (4.1).

Unused.

Arrow keys b, j, k. I, and H.

h

k

m

Ii

o

I'

II

s

II

v

y

• 29 •

Left IITOW. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms ("H) has the same
effect. On v2 editors, arrow keys on certain kinds of terminals (those which
send escape sequences, such as vt52, clOO, or hpj cannot be used. A count
repeats the effect (3.1, 7.5).

Inserts text before the cursor, otherwise like a (7.2),

Down alTow. Moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to the same column.
Synonyms include oJ (linefeed) and "N.

Up arrow. Moves the cursor one line up. 'P is a synonym.

Right alTow. Moves the cursor one character to the right. SPACE is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a -z. Return to this position or use with an operator
using' or . (5.3).

Repeats the last I or ? scanning commands (2.2).

Opens new lines below the current line; otherwise like 0 (3.1).

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r (3.2).

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with S as in c. (3.2).

Advances the cursor upto the character before the next character typed. Most
useful with operators such as II and c to delete the characters up to a following
character. You can use. to delete more if this doesn't delete enough the firs!
time (4.J).

Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an insert
which inserted text on more than one line, the lines are saved in the numeric
named buffers (3.5).

Unused.

Advances to the beginning of the next word, as defined by II (2.4).

Deletes the single character under the cursor. With a count deletes deletes
that many characters forward from the C' • .ITsor .position, but only on the current
line (6.5).

An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, • x, the text is placed in that buffer
also. Text can be recovered by a later II or P (7.4).

Redraws the ~reen with the current line placed as specified by the following
character: RETURN specifies the top of the screen .. the center of the screen.
and - at the bottom of the screen. A count may be given after the z and
before the following character to specify the new screen size for the redraw. A
count before the z gives the number of the line to place in the center of the
~reen instead of the default current line. (5.4)

-? (DEL>

- 30-

Retreats to the beginning of the beginning of the preceding paragraph. A para­
graph begins at each macro in the paragraphs option, normally '.IP', '.LP',
'.PP', '.QP' and '.bp'. A paragraph also begins after a completely empty line.
and at each section boundary (see" above) (4.2, 6.8, 7.6).

Places the cursor on the character in the column specified by the count (7.1.
7.2).

Advances to the beginning of the next paragraph. See I for the definition of
paragraph (4.2, 6.8, 7.6).

Unused.

Interrupts the editor, returning it to command accepting state (1.5, 7.5)

Ex Reference Manual
Version 3.512.13 - September, 1980

William Joy

ReVlsed!or versions J. 5/2.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and display
oriented editing. This reference manual describes the command oriented part
of ex; the display editing features of ex are described in An Introduction to
Display Editing with Vi. Other documents about the editor include the introduc­
tion Edit: A tutorial, the Ex/edit Command Summary, and a Vi Quick R~ference
card.

September 16, 1980

1. Starting ex

Ex Reference Manual
Version 3.512.13 - September, 1980

William Joy

Revised for versions 3.512.13 by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the description which fol­
lows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ­
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP
variable contains a pathname (beginning with a /) then the editor will seek the description of
the terminal in that file (rather than the default /etc/termcap.) If there is a variable EXINfT in
the environment, then the editor will execute the commands in that variable, otherwise if there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source com­
mand. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype:t

ex [- J ! - v I [- t lag I [- r J [-\ J [- If(n I [- x J [- R J [+ command I name ...

The most common case edits a single file with no options, i.e.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The -v option is equivalent to using vi rather than
ex. The -t option is equivalent to an initial tag command, editing the file containing the lag
and positioning the editor at its definition. The -r option is used in recovering after an editor
or system crash, retrieving the last saved version of the named file or, if no file is specified,
typing a list of saved files. The -I option sets up for editing LISP, setting the showmatch and
liSp options. The -w option sets the default window size to n, and is useful on diaiups to start
in small windows. The -x option causes ex to prompt for a key, which is used to encrypt and
decrypt the contents of the file, which should already be encrypted using the same key, see
crypt(1). The - R option sets the readonly option at the start. t Name arguments indicate files
to be edited. An argument of the form +command indicates that the editor should begin by

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644- A03 and MCS78-07291 is gratefully acknowledged.
t Brackets' [' .], surround optional parameters here.
* Not available in all v2 editors due to memory constraints.

- 2 -

executing the specified command. If command is omitted, then it defaults to "$", positioning
the editor at the last line of the first file initially. Other useful commands here are scanning
patterns of the form "/pat" or line numbers, e.g. "+ 100" starting at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the current
file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.
After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the current file is not edited
then ex will not normally write on it if it already exists!

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven­
tions. In addition, the character '%' in filenames is replaced by the current file name and the
character' #' by the alternate file name. t

VI. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as
described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the argu­
ment list may be edited with the next command. The argument list may also be respecified by
specifying a list of names to the next command. These names are expanded, the resulting list
of names becomes the new argument list, and ex edits the first file on the list.

For saving blocks of text while editing, and especially when editing more than one file, ex
has a group of named buffers. These are similar to the normal buffer, except that only a lim­
ited number of operations are available on them. The buffers have names a through zA

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of
modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readonly option is set. It can be turned on with the - R command line option, by the
view command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really

'The file command will say "[Not editedl" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a No' write since last change diagnostic is received.
t It is also possible to refer to A through Z; the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

- 3 -

know what you are doing. You can write to a different file, or can use the! form of write, even
while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error
diagnostic. If the primary input is from a file, editor processing will terminate. If an interrupt
signal is received, ex prints "Interrupt" and retums to its command level. If the primary input
is a file, then ex will exit when this occurs.

3.2. Recovering rrom hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
to recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the -r option. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, giving the command

ex -r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex -r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ':' prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. This mode is left by typing a '.' alone at the beginning of a line, and command mode
resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction 10 Display tailing with Vi.

5. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.·

• As an example. the command subslitule can be abbreviated's' while the shortest available abbreviation for
the set command is ·sc l •

- 4 -

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com­
mands also may take a trailing count specifying the number of lines to be involved in the com­
mand.t Thus the command "lOp" will print the tenth line in the buffer while "delete 5" will
delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.*

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an '!' immediately after the command name. Some of the default variants
may be controlled by options; in this case, the'!' serves to toggle the default.

5.3. Flags after commands

The characters '#', 'p' and 'I' may be placed after many commands'" In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'p' is rarely necessary. Any number of
'+' or '-' characters may also be given with these flags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with" is ignored. Comments beginning with" may also
be placed at the ends of commands, except in cases where they could be confused as part of
text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by
a 'I' character. However the global commands, comments, and the shell escape '!' must be the
last command on a line, as they are not terminated by a 'I'.

5.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope
of the change exceeds a threshold given by the report option. This feedback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such as global or visual. you will be informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command addressing

6.1. Addressing primitives

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the current
line, thus'.' is rarely used alone as an address.

t Counts are rounded down if necessary.
1: Examples would be option names in a set command i.e. "set number". a file name in an edit command, a
regular expression in a substitute command, or a target address for a copy command, i.e. "1,5 copy 25" .
.. A 'p' or 'I' must be preceded by a blank or tab except in the single special case 'dp'.

n

%

- 5 -

The nth line in the editor's buffer, lines being numbered sequentially
from I.

The last line in the buffer.

+n -n

An abbreviation for" 1 ,$", the entire buffer.

An offset relative to the current buffer line. t
I patl ? pat? Scan forward and backward respectively for a line containing pal, a regu­

lar expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
pat, then the trailing I or ? may be omitted. If pal is omitted or expli­
citly empty, then the last regular expression specified is located.*

"'x Before each ilon-relative motion of the curren I line '.', the previous
current line is marked with a tag, subsequently referred to as ''''. This
makes it easy to refer or retllrn to this previous context. Marks may
also be established by the mark command, using single lower case
letters x and the marked lines referred to as "x'.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by',' or ';'.
Such address lists are evaluated left-to-right. When addresses are separated by';' the current
line'.' is set to the value of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then aH but the last one or
two are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command! parameters count ./lags

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com­
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: all

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as a complete word, it will be changed to rhs.

(.) append
text

abbr: II

Reads the input text and places it after the specified line. After the command, '.'
addresses the last line input or the specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

i' The forms'. + 3' '+ 3' and' + + +' are all equivalent; if the current line is line 100 they ali address line
103.
:f: The forms \1 and \? scan using the last regular expression used in a scan; after a substitute II and ??
would scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in. this case is the current line', ';
thus ',100' is equivalent to ',,100', It is an error to give a prefix address to a command which expects none.

a!
text

args

- 6 -

The variant flag to append toggles the setting for the aliloindeni option
text.

the input of

The members of the argument list are printed, with the current argument delimited by 'I'
and T.

(. , .) change counl
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the challge.

(• , •) copy addr fiags abbr:

A copy of the specified lines is placed after addr. which may be '0'. The current line
addresses the last line of the copy. The command t is a synonym for copy.

(. , .) delete buffN count fiags abbr: II

Removes the specified lines from the buffer. The line after las! line deleted become~
the current line; if the lines deleted were originally at end, the new Jasl line becomes
the current line. If a named buffer i., specified by giving a letter, then the specified line§
are saved in that buffer, or appended to it if an upper case is u~n!.

edit file
ex file

abb;: II"

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write was issued. it has been, a warning is
issued and the command is aborted. The c,)!l'lmand otherwise deletes the entire contents
of the editor buffer, makes the named current me and prints ttIe new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non .. i\scn characters the they are stripped of their non-
ASCII high bits, and any null characters in the file are If none of these errors
occurred, the file is considered edited. If the last file is missing the trail-
ing newline character, it will be supplied and a COmpl81IL This command
leaves the current line '.' at the last line read.t

t I.e., that it is not a binary file such a~ a directory, ,~ blo(Y' or Chaf8.cter special. file other than Mn/Uy, tei'~

minai, or a binary or executable rUe (as indicated by word).
t If executed from within open or visual, the current line i5 iniii:li!.'J lirle of the Elf

- 7 -

e! file

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

e +l1file

file

Causes the editor to begin at line 11 rather than at the last line; 11 may also be an editor
command containing no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been '[Modified]' since the last write com­
mand, whether it is read only, the current line, the number of lines in the buffer, and the
percentage of the way through the buffer of the current line.·

file file

The current file name is changed to file which is considered' [Not edited]'.

(1 , $) global /patl cmds abbr: II

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with ',' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a '\'. If cmds (and pos­
sibly the trailing I delimited is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the'.' terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options aUloprint and autoindent are inhibited during a global. (and possibly the trailing I
delimiter) and the value of the report option is temporarily infinite. in deference to a
report for the entire global. Finally, the context mark '''. is set to the value of '.' before
the global command begins and is not changed during a global command, except perhaps
by an open or visual within the global.

g! I pall cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.) insert
lext

abbe I

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com­
mand differs from append only in the placement of text.

" In the rare case that the current file is '[Not edited] I this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a wrUe will not destroy a file unrelated to the
current contents of the buffer.

i!
text

- 8 -

The variant toggles autoindent during the insert.

(, , ,+ 1) join count ./fags abbr:j

" J,

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at 1east one blank character, two if there was a '.' at
the end of the line, or none if the first following character is a ')'. If there is already
white space at the end of the line, then the white space at the start of the next line will be
discarded.

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(,) k x

The k command is a synonym for mark. It does not require a blank or tab before the fol­
lowing letter.

(, , ') list count ./fags

Prints the specified lines in a more unambiguous way: tabs are printed as '"1' and the end
of each line is marked with a trailing'S'. The current line is left at the last line printed.

map Ihs rhs

The map command is used to define macros for use in visual mode. Lhs should be a sin­
gle character, or the sequence "#n", for n a digit, referring to function key n. When this
character or function key is typed in visual mode, it will be as though the corresponding
rhs had been typed. On terminals without function keys, you can type "#n". See section
6.9 of the "Introduction to Display Editing with Vi" for more details.

(,) mark x

Gives the specified line mark x. a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form "x' then addresses this line. The current line is not
affected by this command.

(, , ') move addr abbr: m

next

n!

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

abbr: n

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes which may have been made.

n filelist
n + command filelist

- 9 -

The specified filelis/ is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(. , .) number count ./lags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open ./lags abbr: 0

(.) open / pat / ./lags

Enters intraline editing open mode at each addressed line. If pal is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An Introduction 10 Display Editing with Vi for more details.

*
preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don't know how to save your work. After a preserve you should seek help.

(. , .) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters "x';
delete (octal 177) is represented as "?'. The current line is left at the last line printed.

(.) put buffer abbr: pu

qui!

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
ment of lines, or with yank to effect duplication of lines. If no buffer is specified, then the
last deleted or yanked text is restored.' By using a named buffer, text may be restored that
was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write command
was issued, and does not quit. t Normally, you will wish to save your changes, and you
should give a write command; if you wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

* Not available in all v2 editors due to memory constraints .
• But no modifying commands may intervene between the delete or yank and the put, nor may lines be
moved between files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list.

- 10 -

Address '0' is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter­
minates. After a read the current line is the last line read.*

(.) read !command

Reads the output of the command command into the buffer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone··
or a system crash·· or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

shell

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a '?' causes the current value of that option to be
printed. The '?' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on or 'set no option' to turn them
off; string and numeric options are assigned via the form 'set option-value'.

More than one parameter may be given to set; they are interpreted left-to-right.

abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , .) substitute /pat/repl/ options countjiags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with T characters. By typing
an 'y' one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl
must be escaped by preceding it with a '\'. Other metacharacters available in pat and repl
are described below.

* Within open and visual the current line is set to the first line read rather than the last.
.. The system saves a copy of the file you were editing only if you have made changes to the file.

SIOIi

- 11 -

Suspends the editor, returning control to the top level shell. If aulowrite is set and there
are unsaved changes, a write is done firs! unless the form stoll! is used. This commands
is only available where supported by the teletype driver and operating system.

(. , .) substitute options count fiags abbr: s

If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(• , •) t addr fiags

The I command is a synonym for copy.

la lag

The focus of editing switches to the location of lag, switching to a different line in the
current file where it is defined, or if necessary to another file.;

The tags file is normally created by a program such as clags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address­
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using 'I pal!' to be immune to minor changes in the file. Such scans are always per­
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. j:

IIllabbreviate word abbr: IHI3

IIndo

De!ete word from the list of abbreviations.

abbe: II

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system cannot
be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as ''''. After an undo the
current line is the first line restored or the line before the first iine deleted if no lines
were restored. For commands with more global effect such as global and visual the
C1Jrrent line regains it's pre-command value after an undo.

lIf1map Ihs

The macro expansion associated by map for Ihs is removed.

(1 , $) v I pat I cmds

A synonym for the global command variant gl, running the specified cmds on each line
which does not match pal.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

::/: If you have modified the current file before giving a tag command, you must write it out~ giving another
tal? command, specifying no rag will reuse the previous tag.
t Not available in all v2 editors due to memory constraints.

- 12 -

(.) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be '-' , '1' or '.' as in
the z command to specify the placement of the specified line on the screen. By default, if
type is omitted, the specified line is placed as the first on the s..:reen. A count specifies an
initial window size; the default is the value of the option window. See the document An
Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual + n file

From visual mode, this command is the same as edit.

(1 , $) write./ile abbr: 'II'

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file" If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been "No write since last change" even if the buffer had not previously been
modified.

(I , $) write> > file abbr: w»
Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any case,
quits.

(. , .) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place; see the put command description .

• The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is
actually a teletype, Idevltry, !dev/null. Otherwise, you must give the variant form ,,! to force the write.

- 13 -

(. + 1) z count

Print the next count lines, default window.

(•) z type count

Prints a window of text with the specified line at the top. If type is '-' the line is placed
at the bottom; a '.' causes the line to be placed in the center.- A count gives the number
of lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the char­
acter '!' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been "[No write)" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single '!' is printed when the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the result­
ing output then replaces the input lines.

($) =

Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count jiags
(. , .) < countjiags

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white char­
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+1)
(.+1, .+1) I

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file .

• Forms 'z=' and 'zT' also exist; ·z,.,,' places the current line in the center, surrounds it with lines of '-'
characters and leaves the eurre"nt line at this line. The form 'zl' prints the window before 'z-' would. The
characters '+', 'r and '-' may be repeated for cumulative effect. On some v2 editors, no type may be
given.

- 14 -

(. , .) & cplions count flags

Repeats the previous substitute command.

(. , .) - options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Reglliar expressions ami substitllte replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previolls regular expression used in a substitute command and the previous reg­
ular expression used elsewhere (referred to as the previous scanning regular expression.) The
previous regular expression can always be referred to by a null re, e.g. 'II' or '??'.

8.2. Magic and nomllgic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character '\' to
use them as "ordinary" characters. With l1omagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharacters is
still available by preceding the (now) ordinary character with a '\'. Note that '\' is thus always
a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic. t

8.3. Basic regular expression summary

char

\<

\>

The following basic constructs are used to construct magic mode regular expressions.

An ordinary character matches itself. The characters T at the beginning of a
line, '$' at the end of line, '.' as any character other than the first, '.', '\', '[',
and ,~, are not ordinary characters and must be escaped (preceded) by '\' to be
treated as such.

At the beginning of a pattern forces the match to succeed only at the begin­
ning of a line.

At the end of a regular expression forces the match to succeed only at the end
of the line.

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under­
line and after a character not one of these.

Similar to '\<', but matching the end of a "variable" or "word", i.e. either
the end of the line or before character which is neither a letter, nor a digit, nor
the underline character.

t To discern what is true with nomagic it suffices to remember that the only speciai characters in this case will
be '1' at the beginning of a regular expression, '$' at the end of a regular expression, and '\'. With nomagic
the characters ,-, and '&' also lose their special meanings related to the replacement pattern of a substitute.

[stringJ

- IS -

Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by '-' in string
defines the set of characters collating between the specified lower and upper
bound" thus '[a-zJ' as a regular expression matches any (single) lower-case
letter. If the first character of string is an 'f' then the construct matches those
characters which it otherwise would not; thus '[fa-zl' matches anything but a
lower-case letter (and of course a newline). To place any of the characters 'f',
'[', or '-' in string you must escape them with a preceding "'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men­
tioned above may be followed by the character '.' to form a regular expression which matches
any number of adjacent occurrences (including 0) of characters matched by the regular expres­
sion it follows.

The character ,-, may be used in a regular expression, and matches the text which defined
the replacement part of the last substitute command. A regular expression may be enclosed
between the sequences "(' and ")' with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are '&' and '-'; these are given as
'\&' and ',-' when nomagic is set. Each instance of '&' is replaced by the characters which the
regular expression matched. The metacharacter ,-, stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character "'. The sequence "n' is replaced by the text matched by the n-th regular
subexpression enclosed between "(' and ',)'.t The sequences "u' and "I' cause the immedi­
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences "u' and "L' tum such conversion on, either until
"E' or "e' is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line being
appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the previous line. To back the cur­
sor up to the preceding tab stop one can hit "D. The tab stops going backwards are
defined at multiples of the shiftwidth option. You cannot backspace over the indent,
except by sending an end-of-file with a "D.

t When nested, parenthesized subexpressions are present, n is determined by counting occurrences of "('
starting from the left.

- 16 -

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided fOf the autoindent is discarded.) Also spe­
cially processed in this mode are lines beginning with an T and immediately followed by
a -D. This causes the input to be repositioned at the beginning of the line, but retaining
the previous indent for the next line. Similarly, a '0' followed by a -D repositions at the
beginning but without retaining the previous indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

auloprint, ap default: ap

Causes the current line to be printed after each delete, copy, join, move, substitute, t, undo
or shift command. This has the same effect as supplying a trailing 'p' to each such com­
mand. Autoprint is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rewind, stop, tag, or ! command, or a "T (switch files) or -I (tag golo)
command in visual. Note, that the edit and ex commands do not autowrite. In each case,
there is an equivalent way of switching when autowrite is set to avoid the aUlowr;/e (edit
for next, rewind! for .I rewind, stop! for stop, tag! for tag, shell for !, and :e # and a :ta!
command from within visuat).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beautify
does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remem­
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution be
as in the - command, instead of like &. H

errorbells, eb default: noeb

Error messages are preceded by a bell.' If possible the editor always places the error mes­
sage in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, hI default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

II Version 3 only.
>I< Bell ringing in open and visual on errors is not suppressed by setting noeb.

- 17 -

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the () ! I II and 1I commands in open
and visual are modified to have meaning for lisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic default: magic for ex and viI"

mesg

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only T and '$' having special effects. In addition the metacharacters ,-, and '&' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a '\'.

default: mesg

Causes write pt:rmission to be turned off to the terminal while you are in visual mode, if
nomesg is set. **

number, nu default: nonumber

open

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP LIbp

Specifies the paragraphs for the I and I operations in open and visual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

t Nomagil' for edit.
II Version 3 only,

- 18 -

remap default: remap

If on, macros are repeatedly tried until they are unchanged. H For example, if 0 is
mapped to 0, and 0 is mapped to I, then if remap is set, 0 will map to I, but if noremap is
set, it will map to O.

report default: report=5t

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

scroll default: scroll = ,/, window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode, and the number of lines printed by a command mode z
command (double the value of scroi!).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and II operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh = Ibin/sh

Gives the path name of the shell forked for the shell escape command 'I', and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidlh, sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with AD when using auloin­
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a } or I is typed, move the cursor to the matching (or I
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopell, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin­
telligent. See An Introduction to Display Editing with VI for more details.

tabstoll, Is default: ts=8

The editor expands tabs in the input file to be on labstop boundaries for the purposes of
display.

taglellgth, II default: t\=O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

II Version 3 only.
t 2 for edll.

lags

term

terse

warn

- 19 -

default: tags=tags lusr/lib/tags

A path of files to be used as tag files for the tag command. H A requested tag is searched
for in the specified files, sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

from environment TERM

The terminal lype of the output device.

default: noterse

Shorter error diagnostics are produced for the experienced user.

default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud Of less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (00), medium
(J 200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 81l6/fuil screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing wil! wrap around past the end of the
file.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction 10 Text Editing with Vi for details.

wrileallY, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as foHows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the pre­
vious inserted and deleted text in open or visual, 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bi!! Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals and
Unix systems.

H Version 3 only.

Ex changes - Version 3.1 to 3.5
This update describes the new features and changes which have been made in converting

from version 3.1 to 3.5 of ex. Each change is marked with the first version where it appeared.

Update to Ex Reference Manual

Command line options

3.4 A new command called view has been created. View is just like vi but it sets readonly.

3.4 The encryption code from the v7 editor is now part of ex. You can invoke ex with the
-x option and it will ask for a key, as ed. The ed x command (to enter encryption mode
from within the editor) is not available. This feature may not be available in all instances
of ex due to memory limitations.

Commands

3.4 Provisions to handle the new process stopping features of the Berkeley TTY driver have
been added. A new command, stop, takes you out of the editor cleanly and efficiently,
returning you to the shell. Resuming the editor puts you back in command or visual
mode, as appropriate. If auto write is set and there are outstanding changes, a write is done
first unless you say "stop!".

3.4 A

:vi <file>

command from visual mode is now treated the same as a

:edit <file> or :ex <file>

command. The meaning of the vi command from ex command mode is not affected.

3.3 A new command mode command xii (abbreviated x) has been added. This is the same as
wq but will not bother to write if there have been no changes to the file.

Options

3.4 A read only mode now lets you guarantee you won't clobber your file by accident. You
can set the on/off option readonly (ro), and writes will fail unless you use an ! after the
write. Commands such as x, ZZ, the autowrite option, and in general anything that writes
is affected. This option is turned on if you invoke ex with the - R flag.

3.4 The wrapmargin option is now usable. The way it works has been completely revamped.
Now if you go past the margin (even in the middle of a word) the entire word is erased
and rewritten on the next line. This changes the semantics of the number given to wrap­
margin. 0 still means off. Any other number is still a distance from the right edge of the
screen, but this location is now the right edge of the area where wraps can take place,
instead of the left edge. Wrapmargin now behaves much like fill/nojustify mode in nroff.

3.3 The options w300, wI200, and w9600 can be set. They are synonyms for window, but only
apply at 300, 1200, or 9600 baud, respectively. Thus you can specify you want a 12 line
window at 300 baud and a 23 line window at 1200 baud in your EXINIT with

:set w300=12 w1200=23

3.3 The new option timeout (default on) causes macros to time out after one second. Turn it
off and they will wait forever. This is useful if you want multi character macros, but if
your terminal sends escape sequences for arrow keys, it will be necessary to hit escape
twice to get a beep.

- 2 -

3.3 The new option remap (default on) causes the editor to attempt to map the result of a
macro mapping again until the mapping fails. This makes it possible, say, to map q to #
and #1 to something else and get ql mapped to something else. Turning it off makes it
possible to map -L to I and map -R to -L without having -R map to l.

3.3 The new (string) valued option tags allows you to specify a list of tag files, similar to the
"path" variable of csh. The files are separated by spaces (which are entered preceded by
a backslash) and are searched left to right. The default value is "tags lusr/lib/tags",
which has the same effect as before. It is recommended that "tags" always be the first
entry. On Ernie CoVax, !usr/libltags contains entries for the system defined library pro­
cedures from section 3 of the manual.

Environment enquiries

3.4 The editor now adopts the convention that a null string in the environment is the same as
not being set. This applies to TERM, TERMCAP, and EXINIT.

Vi Tutorial Update

Deleted features

3.3 The "q" command from visual no longer works at all. You must use "Q" to get to ex
command mode. The "q" command was deleted because of user complaints about hitting
it by accident too often.

3.5 The provisions for changing the window size with a numeric prefix argument to certain
visual commands have been deleted. The correct way to change the window size is to use
the z command, for example z5 < cr> to change the window to 5 lines.

3.3 The option "mapinput" is dead. It has been replaced by a much more powerful mechan­
ism: ~':map!".

Change in default olltion settings

3.3 The default window sizes have been changed. At 300 baud the window is now 8 lines (it
was 112 the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen
size, which was usually also 16 for a typical 24 line CRT). At 9600 baud the window is
still the full screen size. Any baud rate less than 1200 behaves like 300, any over 1200
like 9600. This change makes vi more usable on a large screen at slow speeds.

Vi commands

3.3 The command "ZZ" from vi is the same as ":x<cr>". This is the recommended way to
leave the editor. Z must be typed twice to avoid hitting it accidently.

3.4 The command -Z is the same as ":stop< cr> ". Note that if you have an arrow key that
sends -Z the stop function will take priority over the arrow function. If you have your
"susp" character set to something besides -Z, that key will be honored as well.

3.3 It is now possible from visual to string several search expressions together separated by
semicolons the same as command mode. For example, you can say

Ifool;lbar

from visual and it will move to the first "bar" after the next "foo". This also works
within one line.

3.3 -R is now the same as -L on terminals where the right arrow key sends -L (This includes
the Televideo 912/920 and the ADM 31 terminals')

- 3 -

3.4 The visual page motion commands AF and AB now treat any preceding counts as number
of pages to move, instead of changes to the window size. That is, rF moves forward 2
pages.

Macros

3.3 The "mapinput" mechanism of version 3.1 has been replaced by a more powerful
mechanism. An "!" can follow the word "map" in the map command. Map!'ed macros
only apply during input mode, while map'ed macros only apply during command mode.
Using "map" or "map!" by itself produces a listing of macros in the corresponding
mode.

3.4 A word abbreviation mode is now available. You can define abbreviations with the abbre­
viate command

:abbr foo find outer otter

which maps "foo" to "find outer otter". Abbreviations can be turned off with the unab­
breviate command. The syntax of these commands is identical to the map and unmap
commands, except that the ! forms do not exist. Abbreviations are considered when in
visual input mode only, and only affect whole words typed in, using the conservative
definition. (Thus "foobar" will not be mapped as it would using "map!") Abbreviate
and unabbreviate can be abbreviated to "ab" and "una", respectively.

SED - A Non-inreradive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hm, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNlxt operating
system. Sed is designed to be especially useful in three cases:

!) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efflciently in one pass

through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

tUNIX is. Trademark of Bell Laboratories.

Introduction

SED - A Non-interactive Text Editor

Lee £. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac­
tive and non-interactive operation, considerable changes have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem­
blance between the two editors is in the class of patterns ('regular expressions') they recognize;
the code for matching patterns is copied almost verbatim from the code for ed. and the descrip­
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's Manual!lJ. (Both code and description were written by Dennis M. Ritchie.>

1. Overall Operation
Sed by default copies the standard input' to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:

[addressl,address2) [function) [arguments)

One or both addresses may be omitted; -the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according '.0 which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

- 2 -

1.1. Command-line Flags

Three flags are recognized on the command line:
on: tells sed not lO copy all lines, but only those specified by p functions or p flags after

5 functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com­
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com­
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of­
control commands, I and b (see Section 3). Even when the order of appiication is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input lext, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-paid by
grouping the commands with curly braces ('(I')(Sec. 3.6,).

- 3 -

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through mUltiple
input files; it is not reset when a new input file is opened.

As a special case, the characl.er $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ,-, at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A doBar-sign 'S' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

S) A period '.' matches any character except the terminal newline of the pattern space.
6) A regular expression fo!lowed by an asterisk .. ' matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets' [j' matches any character in the string,

and no others. If, however, the first character of the string is circumflex "'.
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

ll) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\C and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are descr:bed lInder
the s command below and specification 10) immediately below.

10) The expression '\d'means the same string of characters matched by an expression
enclosed in '\(' and '\)' earlier in the same pattern. Here dis a single digit; the
string specified is that beginning with the din occurrence of '\ (' counting from
the Iet"t. tor example, the expression '-\ C*\)\ l' matches a line beginning with
two repeated occurrences of the same string.

ll) The nul! regular expression standing alone 'II') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters r $.• i J \ j) as a literal (to match an occurrence of itself
in the input), precede the special character by a backs lash '\ '.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the paHern space.

2.3. Number of Addresses

The commands in the next section can have 0, I, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command (0 have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an aHempt is made on subsequent lines to again mal.ch the first address,

- 4 -

and the process is repeated.

Two addresses are separated by a comma.

Examples:

lanl
Ian. "ani
rani
/.I

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines
matches all lines

1\.1
Ir"anl

matches line 5

1\ (an\)."\11
matches lines 1,3, 4 (number - zero!)
matches line 1

3. FUNCTIONS

All functions are named bY'a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func­
tion name, possible arguments enclosed in angles « », an expanded English translation of
the single·character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2) n -- next line

{I)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

Wi\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and < text> may contain any number of
lines. To preserve the one-command-to-a-Iine fiction, the interior newlines
must be hidden by a backslash character (,\ ') immediately preceding the new­
line. The < text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out­
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; < text> will still be written to the out­
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

(2)c\

- 5 -

The i function behaves identically to the a function, except that < text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

< text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and i. c must be followed by a newline hid­
den by a backslash; and interior new lines in < text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, al\ the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and i. < text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4,)

Note: Within the text put in the output by these functions, leading blanks and tabs wi11 disap­
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s < pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by < pattern» with < replace­
ment>. It can best be read:

Substitute for < pattern>, < replacement>

- 6 •

The < pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con­
text address is that the context address must be delimited by slash ('/') charac­
ters; < pattern> may be delimited by any character other than space or new­
line.

By default, only the first string matched by < pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of < pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in < replacement>. Instead, other char-
acters are special: .

& is replaced by the string matched by < pattern>

\d (where d is a single digit) is replaced by the alh substring matched
by parts of <pattern> enclosed in '\(' and '\)'. If nested sub­
strings occur in < pattern>, the alh is determined by counting
opening delimiters ('\ (').

As in patterns, special characters may be made literal by
preceding them with backslash ('\ ').

The <flags> argument may contain the following flags:

g -- substitute < replacement> for all (non-overlapping) instances of
< pattern> in the line. After a successful substitution, the
scan for the next instance of < pattern> begins just after the
end of the inserted characters; characters put into the line from
< replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w < filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the 5 function to be written 10 a file named by < filename>. If
< filename> exists before sed is run, it is overwritten; if no!, it
is created.

A single space must separate wand < filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

- 7 -

Examples:

The following command, applied to our standard input,

s/to/bylw changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/L,; ?:Jrp&'/gp

produces:

A stately pleasure dome decree'P:"
Where Alph"P: the sacred river"P: ran
Down to a sunless sea"P.·

Finally, to illustrate the effect of the g flag, the command:

IX/s/anl AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IX/s/an/ AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-outpul Functions

(2) p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand < filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

(I) r <filename> -- read the contents of a file

The read function reads the contents of < filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a

- 8 -

functions and the r functions is written to the output in the order that the func­
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Exmmples

Assume that the file' note l' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

IKubla/r note!

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N _0 Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2) D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the .list of edit­
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

• 9 -

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2) h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des­
troying the previous contents of the hold area).

(2) H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2h -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

Ih
lsI did."/1
Ix
G
s/\nl :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :'n Xanadu
Where Alph, the sacred river, ran :111 Xanadu
Through caverns measureless to man :11'1 Xal1adu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but con.trol the application of functions to the
lines selected by the address part.

(2)! -- Don't

The DOli 'I command causes the next command (written on the same line), to
be applied to all and onlY those input lines nOI selected by the adress part.

(2) { -- Grouping

The grouping command .{, causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group­
ing command. The first of the commands under control of the grouping may
appear on the same line as the .(, or on the next line.

- 10 -

The group of commands is terminated by a matching')' standing on a line by
itself.

Groups can be nested.

(0): < label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and I functions. The < label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2) b< label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no < label> is taken 10 be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2lt < label> .- test substitutions

The I function tests whether any successful substitutions have been made on
the current input line; if so, it branches to < label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

j) reading a new input line, or
2) executing a I function.

3.7. Miscellaneilus Functions

(j) - -- equals

The - function writes to the standard output the line number of the line
matched by its address.

(!)q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text (0 be written, and execution to be terminated.

[lJ Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora­
tories, 1978.

Awk - A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peler J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for pallerns, and to perform specified actions upon lines or fields of
lines which contain instances of those pallerns. Awk makes certain data selec­
tion and transformation operations easy to express; for example, the awk pro­
gram

length> 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 -- 0

prints all lines with an even number of fields; and the program

($1 - 10g($1); print I

replaces the first field of each line by its logarithm.

Awk pallerns may include arbitrary boolean combinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pallern-matching construc­
tions as in pallerns, as well as arithmelic and string expressions and assign­
ments, if-else, while, for statements, and mulliple output streams.

This report contains a user's guide, a discussion of the design and imple­
mentation of awk , and some timing statistics.

September 1, 1978

Awk - A Pattern Scanning and Proce sing Language
(Second Edition)

AIFed V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. introduction
Awk is a programming language designed

to make many common information relrieval and
text manipulation tasks easy to state and to per­
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the UNlxt program
grept will recognize the approach, although in
o"lk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

Iprint $3. $21

prints Ihe Ihird and second columns of a table in
Ihat order. The program

$2 - IA ISICI

prints all input lines with an A, S, or C in the
second field. The program

$1 ! - prev I print; prev - $1 I
prints all lines in which the first field is different
from the previous firs/ field.

1.1. Usage

The command

awk program [files]

executes the a k commands in the string pro­
gram on the set of named files, or on the stan­
dard input if there are no files. The slatements
can also be placed in a file pfile, and executed by
the command

tUNIX is 01 Trademark of Bell Laboratories.

awk -I pfile [files]

1.2. Program Structure

An awk program is a sequence of state­
ments of the form:

pattern
pattern

action
ocrion

Each line of input is matched against each of the
patterns in turn. For each pat/ern that matches,
the associated action is executed. When all the
patlerns have been tested, the next line is
fetched and the matching .starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat­
terns can be printed several times.) If there is no
pattern for an action, then the action is per·
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" ter­
minated by a record separator. The default
record separalor is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into "fields." Fields are normally
separated by while space -' blanks or tabs - but
the inpul field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

be assigned 10. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators; they may be changed
at any lime to any single character. The optional
command-line argument - Fe may also be used
to set FS to the character e.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and new lines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

(print I

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance.

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields togelher.

The predefined variables NF and NR can
be used; for example

(prinl NR, NF, $0 I
prints each record preceded by Ihe record
number and the number of fields.

Output may be diverted to multiple files;
the program

I print $1 >"1001"; print $2 >"1002" I
writes the first field, $1, on the file 1001, and
the second field on file 1002. The> > notation
can also be used:

print $1 > > "foo"

appends the output to the file 100. (In each
case, the output tiles are created if necessary.)
The tile name can be a variable or a field as well
as a constant; for example,

print $1 >$2

- 1-

uses the contents of field 2 as a file name.

Nalurally Ihere is a limit on the number of
output files; currently it is 10.

Similarly, OUlput can be piped into another
process (on UNIX only); for instance,

prin! I "mllil bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change Ihe current output field separator and
oulpUl record separalor. The output record
separator is appended to the output of the print
stal.emen!.

Awk also provides the print! statement for
output formatting:

print! formal expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.21 % 1 Old\n", $1, $2

prints !Ii' as a /loating point number 8 digits
wide, with IWO after the decimal point, and $2 as
a lO-digit long decimal number, followed by a
newline. No output separalors are produced
automatically; you must add them yourself, as in
this example. The version of printl is identical
to that used with c.1

2. Patterns

A pattern in front of an action acts as a
selector thai determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. 6EGI~~ and END

The special pallern BEGIN matches the
beginning of the inpul, before the first record is
read. The pattern END matches the end of the
input, afler the last record has been processed.
BEGIN and END thus provide a way to gain con­
trol before and afler processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN I FS - ":" I
... rest of program ...

0, the input lines may be counled by

END (print NR I
If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplesl regular expression is a iileral
string of characters enclosed in slashes, like

Ismithl

This is actually a complete awl< program which
will print all lines which contain any occurrence
of the name "smith". If a line contains "smith"
as part of a larger word, it will also be printed, as
in

blacksmithing

Awl< regular expressions include the regu­
lar expression forms fount! in the UNIX text edi­
tor edt and grep (without back-referencing). In
additIOn, awl< allows parentheses for grouping, I
for alternatives, + for "one or more", and? for
"zero or one", all as in lex. Character classes
may be abbreviated: [a-zA-ZO-9] is the sel
of all lellers and digits. As an example, the awk
program

I[Aa]ho I[Ww]einberger I[Kk]ernighanl

will print all lines which contain any of the
names" Aho," "Weinberger" or "Kernighan,"
whether capitalized Of not.

Regular expressions (with the extensions
listed abovel must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

1\1.-\11

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari­
able matches a regular expression (or does not
match it) with the operators - and !--. The
program

$1 - I[jJ]ohnl

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "SI. Johnsbury", and so on.
To restrict it to exactly [jJlohn, use

$1 - r[jJ]ohn$1

The caret - refers to the beginning of a line or
field: the dollar sign $ refers to the end.

2.3. Relational Expressions

An a k pattern can be a relational expres­
sion involving the usual relational operators <,
<-, --, !-, >-, and >. An example is

- 3 -

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 - - 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made: otherwise
it is numeric. Thus,

$1 >- "5·

selects lines that begin with an S, I, U, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations 01 Patterns

A pallern can be any boolean combination
of patterns, using the operators II (or), &&
(and), and! (not). For example,

$1 > - ·s" && $1 < "t" && $1 1- ·smith"

selects lines where !he first field begins with "s",
but is not "smith". &oil. and II guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an aClion may
also consist of two patterns separated by a
comma, as in

pat I, pat2 I ... I
In this case, the action is performed for each line
between an occurrence of pall and the next
occurrence of pat2 (inclusivel. For example,

Istart/, Islopl

prints all lines between start and stop, while

NR - - 100, NR - - 200 I ... I
does the action for lines tOO through 200 of the
input.

3. Actions

An awk action is • sequence of action
statements terminated by new lines or semi­
colors. These action statements can be used to
do a variety of bookkeeping and strihg manipu­
lating tasks.

3.1. Built-in Functions

Awk provides a "length" function to com­
pute the length of a string of characters. This
program prints each record, preceded by its
length:

(print length, $01

length by itself is a "pseudo-variable" which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

(print length($O), $01

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func­
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 /I length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
I) and is at most n characters long. If n is omit­
ted, the substring goes to the end of s. The
function index (5 1, 52) returns the position
where the string s2 occurs in s 1, or zero if it
does not.

The function sprintf(f, el, e2, .. .) produces
the value of the expressions el, e2, etc., in the
printf format specified by f. Thus, for example,

x - sprintf("%8.2f %1 Old", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign­
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x - 1

x is clearly a number, while in

x - "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

x - "3" + "4"

assigns 7 to x. Strings which cannot be inter-

- 4-

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

t sl +- $1; 12 +- $2 I
END t print 11, 82 I

Arithmetic is done internally in floating
point. The arithmetic operators are +. - ••• I.
and % (mod). The C increment + + and decre­
ment - - operators are also available. and so
are the assignment operators + - t - - , • -.

1-. and % -. These opera tors may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations. and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

($1 - NR; print I
or accumulate two fields into a third. like this:

($1 - $2 + $3; print $0 I
or assign a string to a field:

(If ($3 > 1000)
$3 - "too big'

print

which replaces the third field by "too big" when
it is. and in any case prints the record.

Field references may be numerical expres­
sions, as in

t print $i. $(i+l). $(I+n) I
Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 -- $2) ...

fields are treated as strings.

Each input line is split into fields automati­
cally as necessary. It is also possible to split any
variable or string into fields:

n - split (s. array. sep)

splits the the string S into array[ll array[nl.
The number of elements found is returned. If
the sep argument is provided. it is used as the
field separator; otherwise FS is used as the
separator.

3.4. String Concatenation

Strings may be concatenated. For example

length(51 52 53)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prints the two fields separated by " is ". Vari­
abtes and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub­
scripts may have any non-null value, including
non-numeric strings. As an example of a con­
ventional numeric subscript, the statement

xlNRI - $0

assigns the current input record to the NR-th ele­
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awle pro­
gram

I xlNRI - 50 I
END I ... program ... I

The first action merely records each input line in
Ihe array x.

Array elements may be named by non­
numeric values, which gives awl< a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like ·apple. orange. etc. Then the pro­
gram

lapplel
lorangel
END

(xl"apple"I++ I
(xl"orange"l+ + I
(print xl"apple"l. xl"orange")

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Fiow-ol-Control Statements

A .. 1e provides .the basic now-of-control
statements if-else, while. for. and statement
grouping wilh braces. as in C. We showed the if
statement in section 3.3 without describing it.
The condilion in parentheses is evaluated: if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like thaI of
C. For example, to print all input fields one per
line.

- s -

i - 1
while (i <- NF) I

print 5i
++i

The for statement is also exactly Ihat of C:

for (J - 1; i <- NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for Slate­
ment which is suited for accessing the elements
of an associative array:

for (j in array)
statement

does slatenlt'nt with I set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos wiii ensue if i is
altered. or if any new elements arc accessed dur­
ing the loop.

The expression in the condition part of an
if. while or for can include relational operators
like <. <-, >, >-. -- ("isequalto"),and
1- ("not equal to"); regular expression matches
with the match operators - and !-; the logical
operators II, &&. and I; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con­
tinue statement causes the next iteration to
begin.

The statement next causes aM/ie to skip
immediately to the next record and begin scan­
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro­
grams: they begin with the character # and end
with the end of the line. as in

print x. y # this is a comment

4. Design

The UNtX system already provides several
programs that operate by passing input through a
selection mechanism. Grep. the first and sim­
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns. i.e .. regular expressions 'n full general­
ity; jgrep searches for a set of keywords with a
particularly fast algorithm. Sed I provides most
of the editing facilities of the editor ed. applied
to a stream of input. None of these programs
provides numeric capabilities. logical relations, or
variables.

Lex3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, IS essentially open-ended in
its capabilities. The use of lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli­
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con­
venient numeric processing, variables, more gen­
eral selection, and control flow in the actions. II
does 110t require compilalion or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn't do string substilUtiofl)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ­
ing or debugging the code. We have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa­
tions, while probably a bad idea for a general­
purpose programming language, is desirable in a
language that is meanl 10 be used for tiny proo
grams thaI may even be composed on the com­
mand line.

In practice, awk usage seems to rail into
two broad calegories. One is what might be
called "report generation" - processing an input
to extract counts, sums, sub-totals, etc. This
also includes the wriling of trivial data validation
programs, such as verifying that a field cOnlains
only numeric informalion or that certain delim­
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro­
duced by one program into thai expected by
anal her. The simplest examples merely select
fields, perhaps with rearrangements.

5. implementation

The actual implementalion of awk uses the
language develop men I tools avaiiable on the
UNIX operating system. The grammar is
specified wilh yaee;4 Ihe lexical analysis is done
by lex; lhe regular expression recognizers are
deterministic finite automata constructed directly
from the -expressions. An awk program is
translated into a parse lree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-IlnO of the UNIX
programs we, grep, egrep, jgrep, sed, lex, and
awl< on the following simple tasks:

1. CUlm! the number of !ines.

2. print all lines containing "doug".

J. print all lines containing "doug", '''ken''
or "dmr"

4. print the third field of each line.

5. print the third and second fields of each
line, in thai order.

6. append all lines containing "doug",
"ken", and "'timr" to files "jdoug",
"jken", and "jdmr", respectively.

7. print each line prefixed by "Iine­
number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input: we have already men~

tioned the others. In.1I cases the input was a
file comair.ing 10,000 lines as created by the
command Is -·1; each line has the form

-rw-rw-r-N- 1 ave 123 Ocl 15 17:05 xxx

The tolal length of this input is 452,960 charac-
ters. Times for lex do not include compile or
load.

As might be expected, (]wk is not as fast
as the specialized 100is we, sed, or the programs
in the grep family, but is faster than lhe more
general tool lex. In all cases, the tasks were
about as easy to express as awk programs as pro­
grams in these other languages; tasks involving
fields were considerabiy easier to express as awk
programs. Some of Ihe lest programs are shown
in awk, sed and lex.

References

\. K. Thompson and O. M. Ritchie. UNIX

Programme,s Manual, Bell Laboratories
(May 1975), Sixth Edition

2. B. W. Kernighan and D. M. Ritchie. The C
Programming Language, Prentice-Hall.
Englewood Cliffs. New Jersey (978).

3. M. E. Lesk. "Lex - A Lexical Analyzer
Generator." Compo Sci. Tech. Rep. No.
39. Bell Laboratories. Murray Hill. New
Jersey (October 1975).

4. S. C. Johnson. "Yace - Yet Another
Compiler-Compiler." Camp. Sci. Tech.
Rep. No. 32. Bell Laboratories. Murray
Hill. New Jersey (July 1975).

- 7 -

Program

we 8.6
grep 11.7 13.1
egrep 6.2 11.5
/grep 7.7 13.8

sed 10.2 11.6
lex 65.1 150.1

awk 15.0 25.6 -

11.6
16.1
15.8

144.2
29.9

- 8 -

Task
4

29.0
67.7
33.3

6

30.5 16.1
70.3 104.0 81.7 92.8
38.9 46.4 71.4 31.1

Table l. Execution Times of Programs. (Times are in sec.)

The programs for some of Ihese jobs are
shown below. The lex programs are generally
too long 10 show.

AWK:

1. END Iprint NRI

2. Idougl

3. Ikenldougldmrl

4. Iprint $31

5. Iprint $3, $21

6. Ikenl
Idougl
Idmrl

Iprint >"jken"l
Iprint > "jdoug"l
[print >"jdmr"l

7. Iprint NR ": " $01

8. Isum .. sum + $41
END Iprint suml

SED:

1. $-

2. Idoug/p

3. Idoug/p
Idoug/d
Iken/p
Iken/d
Idmr/p
Idmr/d

4. 11"]' [H]. [J.\ ([" J.\) .• /sll\ 1 Ip

5. II" J. [H([" j.\) [j.\([" J.\) .·/s/1\2 \l/p

6. Iken/w jken
Idoug/w jdoug
Idmr/w jdmr

LEX:

1. %1
int i;
%i
%%
\n i+ +;

%%
yywrapO

printt("%d\n", 0;

2. %%
-.·doug.·S;

\n

printl("%s\n", yytext);

Typing Documents on the UNIX System:
Using the - ms Macros with Trolf and :'II rolf

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing docu­
ments on the UNIX system. Documents may be produced on either the photo­
typesetter or a on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column
format, and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing
Documents with -ms" which contains additional examples of features of
-ms.

This manual is a revision of, and replaces, "Typing Documents on
UNIX," dated November 22, 1974.

November \3, 1978

Typing Documents on the t:NIX System:
L'sing the - ms Macros with Troff and Nroff

M. E. Lesk

Bell LaboratOries
Murray Hill, New Jersey 07974

introduction. This memorandum describes a package of comrr.1nds to produce papers
using the {roff anu nroffformatting programs on the UNIX system. As with other roff-derived
programs, text is prepared interspersed with formatting commands. However, this package,
which itself is written in troffcommands, provides higher-level commands than those provided
with the basic Iroffprogram. The commands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
... PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para­
graph. The paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as fol­
lows:

loptional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be severa! lines)
.AI
Author's institution (5)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .Il here to change .
. AE (abstract end)
text ... (begins with .PP. which see)

To omil some of the standard headings (e.g. no abstract, or no author'S institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
".AS no" for ".AB". Several interspersed .AU and .AI lines can be used for multiple authors.
The headings are not compulsory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can't just begin a document with a line of
text. Some -ms command must precede any text input. When in doubt, use .LP to ge:
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure I shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general -ms is arranged so that only one form of a document need be slored, contain­
ing all information; the first command gives the format, and unnecessary items for that format
are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Processing
of the titling items is special. and other data placed in them may not behave as you expect.
Don't forget that some -ms command must precede any input text.

Page headings. The -ms macros. by default. will print a page heading containing a page
number lif greater than 1). A default page footer is provided only in nroff, where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
strings LH. CH. and RH which are the left. center and right portions of the page headings.
respectively: and the strings LF. CF. and Rf. which are the left. center and right portions of
the page footer. For more complex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful nOI to change parameters such as point size or font without resetting them to default
values.

Multi-column formalS. If you place
the command" .2C" in your document, the
document will be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out­
put. but is often desirable on the typesetter.
The command ".IC" will go back to one­
column formal and also skip to a new page.
The ".2C" command is actually a special
case of the command

.MC [column width [gutter widthll

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple, quadruple column pages can
be printed. Whenever the number of
columns is changed (except going from full
width 10 some larger number of columns) a
new page is started.

Headings. To produce a special head­
ing. there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (!, 2, 3. ...l. in boldface. For
example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads

Alternatively,

.SH
Care and Feedingof Directors

will print the heading with no number
added:

Care ami Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph beginning
with .FF or .LP. indicating the end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more
complex numbering schemes. If a numeri­
cal argument is given, it is taken to be a
"level" number -and -an' appropriate sub·
section number is generated. Larger level
numbers indicate deeper sub-sections, as in
this example:

.NH
Erie- Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex OJ vision

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ".NH 0" will reset the
numbering of level! to one. as here:

.NH 0
Penn Central

1. Penn Central

Indented paragraphs. (Paragraphs
with hanging numbers. e.g. references.) The
sequence

. IP [lJ
Text for first paragraph. typed
normally for as long as you would
like on as many lines as needed.
.lP [2J
Text for second paragraph, ...

produces

OJ Text for first paragraph, typed nor­
mally for as long as you would like on
as many lines as needed.

121 Text for second paragraph, ...

A series of indented paragraphs may be fol­
lowed by an ordinary paragraph beginning
with .P? or .LP, depending on whether you
wish indenting or not. The command .LP
was used here.

More sophisticated uses of .lP are also
possible. If the label is omitted, for exam­
ple, a plain block indent is produced.

.lP
This material will
just be turned into a

. :; .

block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .P? or .L? Thus. the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

.IP first: 9
Notice the longer label. requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label. requlflng
larger indenting for these para­
graphs.

second: And so forth .

It is also possible to produce multiple nested
indents; the command .RS indicates that the
next .If> starts from the current indentation
level. Each .RE will eat up one level of
indenting so you should balance .RS and
.RE commands. The .RS command should
be thought of as "move right" and the .RE
command as "move left". As an example

.II' l.
Bel! Laboratories
.RS
.II' l.l
Murray Hill
.II' U
Holmdel
.II' 1.3
Whippany
.RS
.IF'U.!
Madison
.RE
.II' 1.4
Chester
.RE
.LI'

will result in

I. Bell Laboratories

l.l Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur­
poses such as setting off a quotation, a para­
graph indented on both right and left is
required.

A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

.I.
as much text as you want
can be typed here
.R

as was done for rhese rhree words. The .R
command restores the normal (usually
Roman) font. If only one word is to be ital­
icized, it may be just given on the line with
the .I command,

.I word

and in this case no .R is needed to restore
the previous font. Boldface can be pro­
duced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal
or line printer. As with .I, a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LO (make
larier), .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased .11" ... (here one .NL canceled two
.SM commands).

If actual underlining as opposed to ital­
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finally placed at the bot­
tom of the current page'. By default, foot­
notes are 111l2th the length of normal text,
but this can be changed using the FL regis­
ter (see below).

Displays and Tables. To prepare
displays of lines, such as tabfes, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

'like this.

- 4 -

.DS
table lines, like the
exam pies here. are placed
between .DS and .DE
.DE

By default. lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack­
eted by .DS Land .. DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS I, which indents and
left-adjusts. Thus,

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD. or .10 in place of
the commands .DS C, .DS L, or .DS I
respectively. An extra argument to the .DS
I or .DS command is taken as an amount to
indent. Note: it is tempting to assume that
.DS R will right adjust lines, but it doesn't
work.

Boxing words or lines. To draw rec­
tangular boxes around words the command

.BX word

will print Iwordl as shown. The boxes will
not be neat on a terminal, and this should
not be used as a substitute for italics.
Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text...
.B2

as has been done here.

Keeping blocks together. If you wish
to keep a table or other block of lines
together on a page, there are "keep -

release" commands. If a block of lines pre­
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
wiil begin on a new page. Lines bracketed
by .DS dnd .DE commands are automatically
kept together this way. There is also a
"keep floating·' command: if the block to be
kept together is preceded by .KF instead of
. KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be, introduced in the docu­
ment.

Nro.ff/TrojJ commands. Among the
useful commands from the basic formatting
programs are the following. They all work
with bOlh typesetter and com pUler terminal
output:

.bp • begin new page.

.or • "break", stop running text
from line to line.

.Sp fl .• insert rI blank lines.

. n<.l • don '(adjust right margins.

Dale. By default, documents produced
on computer terminals have the date at the
bottom or each page; documents produced
on the typesetter don't. To force the date,
say ".OA". To force no date, say ".NO".
To lie about the date, say ".OA .July 4,
1776" which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945

in ".R?'· format places the specified date on
cover sheet and nowhere else. Place

this Ene before the title.

Signawre line. You can obtain a sig­
nature line by placing the command .SG in
the documl:nt. The authors' names will be
output in place of the .SG line. An argu­
ment to .SG· is u$ed as a typing identification
line, and placed after the signatures. The
.SG command ignored in released paper
format.

Certain of the registers
used by ~ms can b~ altered to change
default settings. They should be changed
with .m cGmmands, as with

. m PS 9

to rnake the default point 51ze point. If
the effect , the normal

- 5 -

rroffcommand should be used in addition to
changing the number register.

Register Defines Takes Default
effect

PS point size next para. 10
VS line spacing next para. 12 ptS
LL line length next para. 6"
LT title length next para. 6"
PD para. spacing next para . 0.3 VS
PI para. indent next para. S ens
FL footnote length next FS 11/12 LL
CW column width next 2C 7115 LL
GW intercolumn Iil.P. next 2C 1/15 LL
PO page offset next page 26/27"
HM lOp margin next page I"
FM bottom margin next page I"

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
rne page number on aUlpUl is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier .

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are: defined. They precede the
letter over which the mark is to appear.
Here are Ihe strings:

Input Output Input Output
\"e e \ '-a a
\ .' . e e \'Ce e
\':u u \",c c
\ .. e e

Use:. After your document is prepared
and stored on a file, you can print it on a
terminal with the command'

nroff -msfile

and you can print it on the typesetter with
the command

(foff -, ms file

(mar:y options are possible). In each case,
if your document is s!Ored in several files,
just lis! all the filenames where we have
used "file". If equations or tables are used,
eqn and! or fbi must be invoked as prepro­
cessors .

.. if .2(; was used, pipe the m'off output through
col; make the first tine (If the input ".pi
/usr/bin./coL"

References and further study. If you
have to do Greek or mathematics, see eqn
[J J for equation setting. To aid eqn users,
-ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be 3n equation number and placed in the
right margin near the equation. In addition,
there are three special arguments to EQ: the·
letters C, I, and L indicate centered
(default), indented, and left adjusted equa­
tions, respectively. If there is both a format
argument and an equation number, give the
formal argument firs!, as in

.EQ L (1.33)

for a left-adjusted equation numbered
O.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a lillie space. A very long table with a
heading may be broken across pages by
beginning it with .TS H instead of .TS, and
placing the line .TH in the table data after
the heading. If the table has no heading
repeated from page 10 page, just use the
ordinary .TS and .TE macros.

To learn more about !ro{fsee [31 for a
general introduction, and [4J for the full
details (experts only). Information on
related UNIX commands is in [5!. For jobs
thai do not seem well-adapted to - ms, con­
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks as imitating particular journals
lhan to try to adapt - ms.

A ckllowll!dgmefll. Many thanks are
due to Brian Kernighan for his heip in the
design and implementation of this package,
and for his assistance: in preparing this
manual.

References

[11 B. W. Kernighan and L. L. Cherry,
Typeserting Mathematics - Users Guide
(2nd edition). Bell Laboratories Com­
puting Science Report no. 17.

!2] M. E. Lesk, Tbl - A Program 10 For­
mat Tables. Bell Laboratories Comput­
ing Science Report no. 45,

- 6 -

[3J B. W. Kernighan. A TrofJ Turorial, Bell
Laboratories, 1976.

[4] 1. F. Ossanna, NrofJlTrofJ Reference
Manual. Bell Laboratories Computing
Science Report no. 51.

[5] K. Thompson and D. M. Ritchie.
UNIX Programmer's Manual. Bell
Laboratories, 1978.

·7·

Appendix A
List of Commands

IC Return to single column format. LO Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
A[Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, 10).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SO Insert signature line.
Begin italics. SH Specify section heading.

SM Change to smaller type size.
[P Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Names

The following register names are used by -ms internally. Independent use of these
names in one's own macros may produce incorrect output. Note that no lower case letters are
used in any - ms internal name. .

Number registers used in -ms
DW OW HM IQ LL NA OJ PO T. TV

#T EF H1 HT IR LT NC PD PQ TB VS
1T FL H3 IK KI MM NF PF PX TD YE
AV FM H4 1M Ll MN NS PI RO TN YY
CW FP HS IP LE MO 01 PN ST TQ ZN

String registers used in -ms
AS CB DW EZ I KF MR RI RT TL
AB CC DY FA 11 KQ ND R2 SO TM
AE CD E1 FE 12 KS NH R3 SI TQ
AI CF E2 FJ 13 LB NL R4 S2 TS
AU CH E3 FK [4 LD NP RS SO TT

, B CM E4 FN IS LO OD RC SH UL
1C BG CS ES FO 10 LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
Al C D EL FS 1M MF PT RH SY WT
A2 C1 DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

Order of Commands in Input

• 8 •

P

T
AU

1
AI

AE

PP,LP

1
text ...

Fiaure 1

A Guide to Preparing
Documents with - ms

M. E. Lesk

Bell Laboratories AUlust 1978

This luide lives some simple examples of do­
cument preparation on Bell Labs computers,
emphasizinl the use of the -ms macro pack­
ale. It enormously abbreviates information in
1. Typing Documents on UNIX and GCOS. by

M. E. Lesk;
2. Typesetting Mathematics - User's GUide.

by B. W. Kernilhan and L. L. Cherry; and
3. Tbl - A Program to Format Tables. by M.

E. Lesk.
These memos are all included in the UNIX
Programmer's Manual, Volume 2. The new
user should also have A Tutorial Introduction to
Ihe UNIX Text Editor. by B. W. Kernilhan.

For more detailed information, read AdWlnced
Editing on UNIX and A Troff Tutorial, by B. W.
Kernilhan. and (for experts) NrofflTroff Refer­
ence Manual by I. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kernighan and
the UNIX Programmer's Manual by K. Thomp­
son and D. M. Ritchie.

Contents
ATM 2
A released paper 3
An internal memo, and headings ... 4
Lists, displays, and footnotes 5
Indents, keeps, and double column . 6
Equations and registers 7
Tables and usage 8

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

2

Commands for a TM

.TM 1978-Sb3 99999 99999-11

.NO April 1. 1976

.TL
The Role of the Allen Wrench In Modern
Electronics
.AU "MH 2G-111" 2345
J. Q. Penciipusher
.AU "MH 1 K-222" 5432
X. Y. Hardwired
.AI
.MH
.OK
Tools
Oesign
.AB
This abstract should be. short enough to
fit on a single page cover sheet
It must attract the reader into sending for
the complete memorandum.
.AE
.CS 10 2 I 2 5 6 7
.NH
Introduction.
.PP
Now the first paragraph of actual text _

Last line of text.
.SG MH-1234-JQP/XYH-unlx
.NH
References _.

Commands nOI nceded in a particular format are il­
nored.

@BeU~ Cover Sheet ror TM

n"s I"(o""a"o,, IS ffH' rmplo . ..ns of &/1 LllbolYl/onn. (GEl 1J.9-1J

Tid.· The Role or the Allen Wrench Dale' April I, 1976
in Modern Electronics

TM· 1971·5b3
Other Keywords· Tools

Oeslln

AUlhar Localion Ext. CM,..i •• Cue· 99999
1. Q. Pencilpusher MH 2G·I11 2345 Fili •• Cue· 99999a
X. Y. Hardwired MH IK·222 5432

ABSTRACT

This abstract should be short enoulh to
Ht on a sinale pale cover sheet. It must
attract the reader into sendinl ror the com·
plete memorandum.

Pales Text 10 Other 2 Total 12

No. Filures S No. Tlbles 6 No. Rer •. 7

E.t911.U , .. m SEE REVERSE StDE FOR DtSTRtaUTtON LIST

3

A Released Paper with Mathematics

.eo
delim SS
.EN
.AP

... (as for a TM)

.CS 10 :2 ':2 5 6 7

.NH
Introduction
.PP
The solution to the torQue handle equation
.EO (1)
sum trom 0 to int F (x sub I) - G (x)
. EN
Is found with the trans/ormation $ x - rho over
theta S where S rho - G prime (x) S and Stheta$
is derived_

The Role of tile Allen Wrench
in Modern ElectroniC3

J. Q. Pffldlpusirer

X. Y. HlJI'dwimi

Bell !'abontories
M UITlIIY Hill. 1'1 ew Jersey 079? 4

ABSTIViCT

This abstract .hould be sliort enough 10 tl! on a
sinlle pal. <:over sheet. It mus! attract the
reader into sendins for the complete memoran­
dum.

April I. 1976

The Role of tbe Allen Wrencb
in Modern Electronics

J. Q. i'rm:JlpuYm

)(. Y. HtlJ'tIw,mi

Bell Labora,ori ..
Murray Hill. New Jersey 07974

L 11ll1'odllc:tion

The schlllon to th. t':,'que handle equallon

!.F(x,J-Gix) (l)
o

is founcl with the transform.uon .r -t where II-G' (x) and

9 is denved from II·known pnnClples.

4

An Internal Memorandum

.IM

.ND January 24, 1956

.T!.
The 1956 Consent Decree
.AU
Able, Baker &.
Charley, Allys .
. 1'1'
Plaintiff, United States 01 America, having filed
Its complaint herein on January 14, 1949; the
defendants havi"9 appeared and tiled their
answer to such complaint denying the
substantive allegations thereof; and the parties.
by their attorneys, _ .

@
Bell Lallon'c,i ..

Subjec1: The 1956 Consent Deer •• 0. .. : January 24, 1956

from: A ble. Saker d:
Cbuley. AllY'.

I'lain'iJ'f, Uni,ed Stale. of America. having filed ilS com·
plain! horein on January 14. 1949: Ihe derendants hav'ns
appeared and filed their .n!Wer 10 such complaint denYln1
til. substan,;ve allegal;ons thereof; and the panies. by th.i,
anorneys. havins severally consen<ed to the entry of this
Final Judgment . .,i,houl trial or adjudicolion of any issues
or r&C1 or law herein and Wilhou([h15 Final Judgmera con­
Stilutinll any e idence or admiSSion by any party in respect
of any such issues;

1'1"'". Ih.r.for. before any ''''Iimony has been taken
herein. and wilhout truli or adjudication of any issue of fact
or law herein. and upon [he consent of aU parties hereto. Il
is hereby

Ordered. ac!jucls.d and decreed as follow"

1. {Sberman Act!
This Court has jurisdiction of Ihe ,ubjocl mailer herein

and of all the partl.s herelo. The compl.,nt ".I.S a claJm
upon which relief may lie granted against each of the
derendan,. under Section. I. 2 and J of the Act of
Consress of July 2. 1890. en",led "An aOI to pro'ec! trade
and commerce against unlawful restraintS and monopOa
lies." commonly known .. the Sherman ,1.<1. as amended.

11. !Definitionsi
For 'he purposes of 'his Final Judgmem:
(a) "Western" shall mean the defendan, Western Elec·

tric Company. lncorporaled.

Other formats possible (speCIfy before .TU are: .MR
("memo for record")' .MF ("memo for file") .. EG
("engineer's notes") and .TR (Computing Science
Tech. Report).

.NH
Introduction.
.1'1"
text text text

I. Introduc!ion

text text text

Headings

.SH
Appendix I
.PP
text text text

Appendilt I

:e~t ,ext text

5

A Simple List

.IP 1.
J. Paneilpusher and X. Hardwired,
.I
A New Kind of Set Screw,
.R
Proc. IEEE
.S 75
(197S), 23-255.
.IP 2.
H. Nails and A. Irons,
.I
Fasleners for Printed Circuit Boards,
.R
Proe. ASME
. 923
(HI74). 23-24.
.LP (terminates list)

I. J. Pendlpusher and X. Hardwired, A New Kind
Qf Set Screw, Proc. IEEE 7S (J 976), 23-255.

2. H. Nails and R. Irons, Fasreners for Printed Cir­
CUlI Boards. Proc. ASME 23 (1974), 23-24.

Displays

lext lexl lex! taxi text text
.DS
lind now

lex! text lex\ text text texi

hoboken harrison newark roseville avenue grove
street east orange brick church orange highland ave­
nue mountain station south orange maplewood
millburn shon hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling milling­
ton lyons basking ridge bernardsville far hills
peapacl(gladstone

Options: .OS L: left-adjust; .DS C: line-by-l;ne
cellter; .DS B: make block, then center.

Footnotes

Among the most important occupants
01 the workbllnch are the long-nosed pliers.
Without thase basic tools'
.F'S
• I',s first shown by Tiger 8. Leopard
(1975)"'-
.FE
few assemblies CQuid be completed. They may
lack the popular appeal of the sledgehammer

Among the most import:lnt occupants of the work­
bench are the long-nosed pliers. Without these basic
tools' rew assemblies could be completed. They
may lack the popular appeal of the sledgehammer

• A. 5,.., shown by Tiger &. Loopard (975),

Multiple Indents

This is ordinary text to point out
the margins 01 the page.
.1F'1 .
First level item
.RS
.11" a)
Second level.
.11' b)
Continued here with another second
level item, but somewhat longer.
.RE
.11' 2.
Return to previous value of the
indenting at this point.
.II' 3 .
Another
line.

This is ordinary text to point out the mafl!ins of the
page.
1. First level item

aJ Second level.
b) Continued here with another second level

item, but somewhat longer.
2. Return to previous value of the indeming at this

point.
3. Another line.

Keeps

Lines bracketed by the following commands are kept
and will appear entirely on one page:

nO! moved .KF may float
.KE through text .KE in text

Double Column

.n
The Declaration of Independence
.2C
.PP
When in Ihe course of human events, il becomes
necessary lor one people to dissolve the
political bonds which have connected them with
another, and to iissume among the powers 01 the
earth the separate and station to which
the laws of Nature and God entitle
them, a decent respect to the opinklfis of

The Declaration of Independence

When in the course of
human events, it be·
comes necessary for one
people to dissolve the
political bonds which
have connected them
with another, and to as­
sume among the powers
of the earth the separate
and equal station to
which the laws of Nature
and of Nature'~ God en­
title them, a decent
respect to the opinions
of mankind requires that

they should declale the
causes which impel them
to the separation .

We hold these truths
to be self-evident, that
all men are created
equal, that they are en­
dowed by their creator
with certain unalienable
rights. that among these
are life, liberty. and the
pursuit of happiness.
That to secure these
rights, governments are
instituted among men.

7

Equations

II displayed equation is marked
with an equation number at the right margin
by adding an argument to the EO line:
.EO (1.3)
x sup:2 over a sup 2 --- sQrt III Z sup 2 +Qz+rl
.EN

A displ.yed equation is marked wilh an equalion
number al Ihe right margin by adding an ,,,gumenl
to the EO line:

(1.3)

.EO I (2.2a)
bold V bar sub nu-- -left [pile ia above b above
c I right 1 + left! matrix (col I A(11) above.
above. 1 col { . above. above .1 col (. above.
above A(33) II right J cdo! leit [pile I alpha
above beta above gamma I right J
.EN

_[aJ [AOI) .. l.[a] v. b + . . . f3
c . . A (33) l'

(2.2a)

.EO L
F hat (chi) - mark - -I del V I sup :2
.EN
.EO L
lineup" - (left ((partial vi over Ipartial xl right)
I sup :2 + (left ({partial V lover (partial y 1 right
) I sup 2 -.---- lambda - > in!
.EN

F(x) - Iv vi:

-[~: r+1 ~.~ r A-CO

S a dot S, $ b dotdotS, S xi tilde times y vecS:

0, ii. ~xV. (with delim SS on. see panel 3).

See .150 the equations in the se,ond table. panel 8.

Some Registers You Can Change

Line length
.nr LL 7i

Tille length
.nr LT 7i

Point size
.nr PS 9

Vertical spacing
.nr VS 11

Column width
.nr CW 3i

Intercolumn spacing
.nr GW .5;

Margins - head and fOOl
.nr HM .75i
.nr FM .75i

Paragraph indent
.nr PI 2n

Paragraph spacir,s
.nr PD 0

Page offset
.nr PO O.Si

Page heading
.ds CH Appendix

(center)
.ds RH 7-25-76

(righl)
.ds LH Private

(left)

Page footer
.ds CF Draft
. ds LF ..
.ds RF SImilar

Page numbers
.m % J

Tables

.T5 (ttl indi~'lles it lab)
allbox;
C 5 S
C C c
n n n.
AT&T Common Stock
Year ® Price 'l') Dividend
1971 '!l41-54z!)S2.60
21I>41-541I>2.70
31I>46-55\'D2.87
4 <l)40-S3 <l'J3.24
5 <l'J45-52 <l'J3.40
6 t!!51-S9t!!.9S"
.rE
• (tirst Quarter only)

The meanings of the key-leiters describing the align­
ment of each entry are:

C center n numerical
righi-adjust a subcolumn
lefl-adjust s spanned

The global table options are center, expand, box,
doublebox, allbox, tab (x) and linesize (n).

.TS (with delim 55 on. see panel 3)
double box, center;
c c
II.
Name (!l Definition

.. sp
Gamma<l)SGAMMA (z) - in! sub 0 sup int \

I sup (1-11 e sup -I diS
Sine (!lSsin (xl - , over 2i (e sup ix - e sup -ix)S
Error ill 5 roman ert (z) - :2 over sQrt pi \

int sub 0 SUP z e sup I-t sup 21 diS
Bessel (1)$ J sub 0 (zl - lover pi \

int sub 0 sup pi cos (z sin theta) d theta S
Zela (!l $ zeta (s) - \

sum from k-1 to int k sup -s ._(Re-s > 1)5
.TE

Name

Gamma

Sine

Error

Bessel

Definition

Zeta {Cs)-!:k-' (Res>!)
~- ... 1

Usage

DocumentS with just text:
troff oms liles

With equations only:
eqn files Itroff oms

Wilh tables aniI':
tbl files Ilroff oms .

With both tobles ~nd equations:
tbl tilesieqnl [roff ·ms

The above generales ST.\RE OUlput on Geos: repl;lce
- 51 with - ph for typesener outPUL

A Revised Version of -ms

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

The -ms macros have been slightly revised and rearranged. Because of the rearrangement, the
new macros can be read by the computer in about half the time required by the previous version of
-ms. This means that output will begin to appear between ten seconds and several minutes more
quickly, depending on the system load. On long files, however, the savings in total time are not sub­
stantial. The old version of -ms is still available as -mos.

Several bugs in -ms have been fixed, including a bad problem with the .IC macro, minor
difficulties with boxed text, a break induced by .EQ before initialization, the failure to set tab stops in
displays, and several bothersome errors in the refer macros. Macros used only at Bell Laboratories
have been removed. There are a few extensions to previous -ms macros, and a number of new mac­
ros, but all the documented -ms macros still work exactly as they did before, and have the same names
as before. Output produced with -ms should look like output produced with -mos.

One important new feature is automatically numbered footnotes. Footnote numbers are printed
by means of a pre-defined string (\"), which you invoke separately from .FS and .FE. Each time it is
used, this string increases the footnote number by one, whether or not you use .FS and .FE in your
text. Footnote numbers will be superscripted on the phototypesetter and on daisy-wheel terminals, but
on low-resolution devices (such as the lpr and a crt), they will be bracketed. If you use \ .. to indicate
numbered footnotes, then the .FS macro will automatically include the footnote number at the bottom
of the page. This footnote, for example, was produced as follows: 1

This footnote, for example, was produced as follows:\ ..
. FS

.FE

If you are using \ .. to number footnotes, but want a particular fOOl note to be marked with an asterisk
or a dagger, then give that mark as the first argument to .FS: t

then give that mark as the first argument to .FS: \ (dg
.FS \(dg

.FE

Footnote numbering will be temporarily suspended, because the \ .. string is not used. Instead of a
dagger, you could use an asterisk • or double dagger t, represented as \ (dd.

Another new feature is a macro for printing theses according to Berkeley standards. This macro is
called .TM, which stands for thesis mode. (It is much like the .th macro in -me.) It will put page
numbers in the upper right-hand corner; number the first page; suppress the date; and doublespace
everything except quotes, displays, and keeps. Use it at the top of each file making up your thesis.

1 If you never use the .. , string, no footnote numbers will appear anywhere in the text, including down here.
The oulpul foolnoles will look exactly like foolnoles produced with -mos.

t In the foolnote, the dagger will appear where the footnote number would otherwise appear, as on the left.

Page 2 The New -ms Macros

Calling .TM defines the .CT macro for chapter titles, which skips to a new page and moves the
pagenumber to the center footer. The .PI (P one) macro can be used even without thesis mode to
print the header on page 1, which is suppressed except in thesis mode. If you want roman numeral
page numbering, use an ".af PN i" request.

There is a new macro especially for bibliography entries, called .XP, which stands for exdented
paragraph. It will exdent the first line of the paragraph by \n (PI units, usually 5n (the same as the
indent for the first line of a .PP). Most bibliographies are printed this way. Here are some examples of
exdented paragraphs:

Lumley, Lyle S., Sex in Crustaceans: Shell Fish Habits, Harbinger Press, Tampa Bay and San Diego,
October 1979. 243 pages. The pioneering work in this field.

Leffadinger, Harry A, "Mollusk Mating Season: 52 Weeks, or All Year?" in Acta Biu/ugica, voL 42,
no. 11, November 1980. A provocative thesis, but the conclusions are wrong.

Of course, you will have to take care of italicizing the book title and journal, and quoting the title of the
journal article. Indentation or exdentation can be changed by setting the value of number register PI.

If you need to produce endnotes rather than footnotes, put the references in a file of their own.
This is similar to what you would do if you were typing the paper on a conventional typewriter. Note
that you can use automatic footnote numbering without actually having .FS and .FE pairs in your text.
If you place footnotes in a separate file, you can use .IP macros with \ .. as a hanging tag; this will give
you numbers at the left-hand margin. With some styles of endnotes, you would want to use .PP rather
then .IP macros, and specify \ .. before the reference begins.

There are four new macros to help produce a table of contents. Table of contents entries must be
enclosed in .XS and .XE pairs, with optional .xA macros for additional entries; arguments to .XS and
.XA specify the page number, to be printed at the right. A final .PX macro prints out the table of con­
tents. Here is a sample of typical input and output text:

.XS ii
Introduction
.XA !
Chapter 1: Review of the Literature
.XA 23
Chapter 2: Experimental Evidence
.XE
.PX

Table of Contents

Introduction ... ii
Chapter 1: Review of the Literature 1
Chapter 2: Experimental Evidence 23

The .XS and .xE pairs may also be used in the text, after a section header for instance, in which case
page numbers are supplied automatically. However, most documents that require a table of contents
are too long to produce in one run, which is necessary if this method is to work. It is recommended
that you do a table of contents after finishing your document. To print out the table of contents, use
the .PX macro; if you forget it, nothing will happen.

As an aid in producing text that will format correctly with both mot!' and (rolf, there are some
new string definitions that define quotation marks and dashes for each of these two formatting pro­
grams. The \.- string will yield two hyphens in mofl', but in trofl' it will produce an em dash- like this
one. The \'Q and *U strings will produce" and" in irofl', but" in flfOff. (In typesetting, the double
quote is traditionally considered bad form,)

The New oms Macros Page 3

There are now a large number of optional foreign accent marks defined by the -ms macros. All
the accent marks available in -mos are present, and they all work just as they always did. However,
there are better definitions available by placing .AM at the beginning of your document. Unlike the
-mos accent marks, the accent strings should come after the letter being accented. Here is a list of the
diacritical marks, with examples of what they look like.

name of accent input output

acute accent e\·· e
grave accent e\. e
circumflex 0\-. 0
cedilla c\-, If
tilde n\-- fi
question \-? ~
exclamation \.!
umlaut u\.: i.i
digraph s \-8 {3
hacek c\.v c
macron a\._ ii
underdot s\-. s
o-slash 0\·/ ~
angstrom a\-o a
yogh kni\.3t kni3t
Thorn \-(Th I>
thorn \-(th p
Eth \.(D- 0
eth \-(d- a
hooked 0 \-q \l
ae ligature \.(ae !e

AE ligature \.(Ae ~
oe ligature \·(oe re
OE ligature \·(Oe <E

If you want to use these new diacritical marks, don't forget the .AM at the top of your file. Without it,
some will not print at all, and others will be placed on the wrong letter.

It is also possible to produce custom headers and footers that are different on even and odd pages.
The .OH and .EH macros define odd and even headers, while .OF and .EF define odd and even footers.
Arguments to these four macros are specified as with .tl. This document was produced with:

.OH '\fIThe -mx Macros"Page %\fP'

.EH '\fIPage %ihe -mx Macros\fP'

Note that it would be a error to have an apostrophe in the header text; if you need one, you will have
to use a different delimiter around the left, center, and right portions of the title. You can use any
character as a delimiter, provided it doesn't appear elsewhere in the argument to .OH, .EH, .OF, or EF.

The -ms macros work in conjunction with the fbI, eqn, and refer preprocessors. Macros to deal
with these items are read in only as needed, as are the thesis macros (.TM) , the special accent mark
definitions CAM), table of contents macros (.XS and .xE), and macros to format the optional cover
page. The code for the -ms package lives in /usr/lib/tmac/tmac.s, and sourced files reside in the direc­
tory /usr/ucb/lib/ms.

August 5, 1983

WRITING PAPERS WITH NROFF USING -ME

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

This document describes the text processing facilities available on the UNIXt operating
system via NROFFt and the -me macro package. It is assumed that the reader already is gen­
erally familiar with the UNIX operating system and a text editor such as ex. This is intended to
be a casual introduction, and as such not all material is covered. In particular, many variations
and additional features of the -me macro package are not explained. For a complete discus­
sion of this and other issues, see The -me Reference Manual and The NROFFITROFF Reference
Manual.

NROFF, a computer program that runs on the UNIX operating system, reads an input file
prepared by the user and outputs a formatted paper suitable for publication or framing. The
input consists of text, or words to be printed, and requests, which give instructions to the
NROFF program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 describes the basic requests.
Section 3 introduces displays. Annotations, such as footnotes, are handled in section 4. The
more complex requests which are not discussed in section 2 are covered in section 5. Finally,
section 6 discusses things you will need to know if you want to typeset documents. If you are a
novice, you probably won't want to read beyond section 4 until you have tried some of the
basic features out.

When you have your raw text ready, call the NROFF formatter by typing as a request to
the UNIX shell:

nrolf -me -Ttype./iles

where type describes the type of terminal you are outputting to. Common values are ate for a
DTC 300s (daisy-wheel type) printer and lllr for the line printer. If the -T flag is omitted, a
"lowest common denominator" terminal is assumed; this is good for previewing output on
most terminals. A complete description of options to the NROFF command can be found in
The NROFFITROFF Reference Manual.

The word argument is used in this manual to mean a word or number which appears on
the same line as a request which modifies the meaning of that request. For example, the
request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request which says to space four
lines instead of one. Arguments are separated from the request and from each other by spaces.

tUNIX, NROFF, and TROFF are Trademarks of Sen Laboratories

USING NROFF AND -ME 1

USING NROFF AND -ME 2

1. Basics of Text Processing

The primary function of NROFF is to collect words from input lines, Jill output lines
with those words, justifY the right hand margin by inserting extra spaces in the line, and out­
put the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, ...

will be read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party. Four score and
seven years ago, ...

Sometimes you may want to start a new output line even though the line you are on is not
yet full; for example, at the end of a paragraph. To do this you can cause a break, which
starts a new output line. Some requests cause a break automatically, as do blank input lines
and input lines beginning with a space.

Not all input lines are text to be formatted. Some of the input lines are requests which
describe how to format the text. Requests always have a period or an apostrophe ("''') as
the first character of the input line.

The text formatter also does more complex things, such as automatically numbering
pages, skipping over page folds, putting footnotes in the correct place, and so forth.

I can offer you a few hints for preparing text for input to NROFF. First, keep the
input lines short. Short input lines are easier to edit, and NROFF will pack words onto
longer lines for you anyhow. In keeping with this, it is helpful to begin a new line after
every period, comma, or phrase, since common corrections are to add or delete sentences or
phrases. Second, do not put spaces at the end of lines, since this can sometimes confuse
the NROFF processor. Third, do not hyphenate words at the end of lines (except words that
should have hyphens in them, such as "mother-in-law"); NROFF is smart enough to
hyphenate words for you as needed, but is not smart enough to take hyphens out and join a
word back together. Also, words such as "mother-in-law" should not be broken over a
line, since then you will get a space where not wanted, such as "mother- in-law".

2. Basic Requests

2.1. Paragraphs

Paragraphs are begun by using the .pp request. For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces a blank line followed by an indented first line. The result is:

Now is the time for all good men to come to the aid of their party. Four
score and seven years ago, ...

Notice that the sentences of the paragraphs must not begin with a space, since blank
lines and lines begining with spaces cause a break. For example, if I had typed:

USING NROFF AND -ME 3

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...

A new line begins after the word "men" because the second line began with a space
character.

There are many fancier types of paragraphs, which will be described later.

2.2. Headers Ilnd Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Two
requests of the form .he title and .ro title define the titles to put at the head and the foot
of every page, respectively. The titles are called three-part titles, that is, there is a left­
justified part, a centered part, and a right-justified part. To separate these three parts the
first character of title (whatever it may be) is used as a delimiter. Any character may be
used, but backslash and double quote marks should be avoided. The percent sign is
replaced by the current page number whenever found in the title. For example, the
input:

.he "%"

.fo 'Jane Jones"My Book'

results in the page number centered at the top of each page, "Jane Jones" in the lower
left corner, and "My Book" in the lower right corner.

2.3. Double Spacing

NROFF will double space output text automatically if you use the request .Is 2, as

is done in this section. You can revert to single spaced mode by typing .is 1.

2.4. Page Layout

A number of requests allow you to change the way the printed copy looks, some­
times called the layout of the output page. Most of these requests adjust the placing of
"white space" (blank lines or spaces). In these explanations, characters in italics should
be replaced with values you wish to use; bold characters represent characters which
should actually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a
single line) or can be of the form Ni (for N inches) or Nc (for N centimeters). For
example, the input:

.sp LSi
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line "My thoughts on the sub­
ject", followed by a single blank line.

The .In + N request changes the amount of white space on the left of the page (the
indent). The argument N can be of the form + N (meaning leave N spaces more than
you are already leaving), - N (meaning leave less than you do now), or just N (meaning
leave exactly N spaces). N can be of the form Ni or Nc also. For example, the input:

USING NROFF AND -ME

initial text
.in 5
some text
.in +li
more text
.in -2c
final text

"

produces "some text" indented exactly five spaces from the left margin, "more text"
indented five spaces plus one .inch from the left margin (fifteen spaces on a pica type­
writer), and "final text" indented five spaces plus one inch minus two centimeters from
the margin. That is, the output is:

initial text
some text

more text
final text

The .f! +N (temporary indent) request is used like .in +N when the indent
should apply to one line only, after which it should rever! to the previous indent. For
example, the input:

.in Ii

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book con­

taining translations of most of Confucius' most delightful sayings. A
definite must for anyone interested in the early foundations of Chinese
philosophy.

Text iines can be centered by using the .ee request. The line after the .ce is cen­
tered (horizontally) on the page. To center more than one iine, use .ce N (where N is
the number of lines to center), followed by the N lines. If you want to center many
lines but don't want to count them, type:

.ce 1000
lines to center
.ce 0

The .ce 0 request tells NROFF to center zero more lines, in other words, stop centering.

All of these requests cause a break; that is, they always star! a new line. If you
want to start a new line without performing any other action, use .Ill.

2.5. Underlining

Text can be underlined using the . ul request. The. ul request causes the next
input line to be underlined when output. You can underline multiple lines by stating a
count of input lines to underline, followed by those lines (as with the ,ce request). For
example, the input:

.u12
Notice that these two input lines
are underlined.

will underline those eight words in NROFF. (In TROFP they will be set in italicsJ

USING NROFF' AND ~ME 5

3. Displays

Displays are sections of text to be set off from the body of the paper. Major quotes,
tables, and figures are types of displays, as are all the examples used in this document. All
displays except centered blocks are output single spaced.

3.1. Major Quotes

Major quotes are quotes which are several lines long, and hence are set in from the
rest of the text without quote marks around them. These can be generated using the
comm111.ands .(q and Jq to surround the quote. For example, the input:

As Weizenbm.lm points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in
the areas of computer programming, ..

3.2. Lists

A list is an indented, single spaced, unfilled display. Lists should be used when the
material to be printed should not be filled and justified like normal text, such as columns
of figures or the examples used in this paper. Lists are surrounded by the requests. (I
and .)1. For example, type:

Alternatives to avoid deadlock are:
.(1
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)1

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An example
of where you would use a keep might be a diagram. Keeps differ from lists in that lists
may be broken over 11 page boundary whereas keeps will not.

Blocks are (he basic kind of keep. They begin with the request . (Ii and end with
the request .lb. If there is not room on the current page for everything in the block, a
new page is begun. This has the unpleasant effect of leaving blank space at the bottom
of the page. When this is not appropriate, you can use the alternative, called floating
keeps.

Floating keeps move relative to the text. Hence, they are good for things which will
be referred to by name, such as "See figure 3". A floating keep will appear at the bot­
tom of the current page if it will fit; otherwise, it will appear at the top of the next page.
Floating keeps begin with the line. (z and end with the line .)z. For an example of a

USING NROFF AND -ME 6

floating keep, see figure 1. The .bI request is used to draw a horizontal line so that the
figure stands out from the text.

3.4. Fancier Displays

Keeps and lists are normally collected in no fill mode, so that they are good for
tables and such. If you want a display in fill mode (for text), type. (1 F (Throughout this
section, comments applied to . {J also apply to . (ll and. (z). This kind of display will be
indented from both margins. For example, the input:

.0 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you lao can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)1

will be oulput as:

And now boys and girls, a newer, bigger, better toy than ever before! Be the
first on your block to have your own computer! Yes kids, you too can have one
of these modern data processing devices. You too can produce beautifully for­
matted papers without even batting an eye!

Lists and blocks are also normally indented (floating keeps are normally left
justified). To get a left-justified list, type. (! 1. To get a list centered line-for-line, type
• (J C. For example, to get a filled, left justified list, enter:

.0 LF
text of block
.)1

The input:

.0
first line of unfilled display
more lines
.)1

produces the indented text:

.(z

.hl
Text of keep to be floated .
. sp
.ce
Figure 1. Example of a Floating Keep .
. hl
.)z

Figure 1. Example of a Floating Keep.

USING NROFF AND -ME

first line of unfilled display
more lines

Typing the character L after the. (! request produces the left justified result:

first line of unfilled display
more lines

Using C instead of L produces the line-al-a-time centered output:

first line of unfilled display
more lines

7

Sometimes it may be that you want to center several lines as a group, rather than
centering them one line at a time. To do this use centered blocks, which are surrounded
by the requests. (c and.k All the lines are centered as a unit, such that the longest
line is centered and the rest are lined up around that line. Notice that lines do not move
relative to each other using centered blocks, whereas they do using the C argument to
keeps.

Centered blocks are not keeps, and may be used in conjunction with keeps. For
example, to center a group of lines as a unit and keep them on one page, use:

.(bL

. (c
first line of unfilled display
more lines
.)C
.)b

to produce:

first line of unfilled display
more lines

If the block requests (.(b and .) b) had been omitted the result would have been the
same, but with no guarantee that the lines of the centered block would have all been on
one page. Note the use of the L argument to . (b; this causes the centered block to
center within the entire line rather than within the line minus the indent. Also, the
center requests must be nested inside the keep requests.

4. Annotations

There are a number of requests to save text for later printing. Footnotes are printed at
the bottom of the current page. Delayed text is intended to be a variant form of footnote;
the text is printed only when explicitly called for, such as at the end of each chapter.
Indexes are a type of delayed text having a tag (usually the page number) attached to each
entry after a row of dots. Indexes are also saved until called for explicitly.

4.1. Footnotes

Footnotes begin with the request . (f and end with the request.n The current
footnote number is maintained automatically, and can be used by typing \ • ., to produce
a footnote number l . The number is automatically incremented after every footnote. For
example, the input:

ILike this.

USING NROFF AND - ME

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.\··
. (f
\"James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)q

generates the result:
A man who is not upright and at the same time is presumptuous; one who is not dili­
gent and at the same time is ignorant; one who is untruthful and at the same time is in­
competent; such men I do not count among acquaintances.'

8

It is important that the footnote appears inside the quote, so that you can be sure that the
footnote will appear on the same page as the quote.

4.2. Delayed Text

Delayed text is very similar to a footnote except that it is printed when called for
explicitly. This allows a list of references to appear (for example) at the end of each
chapter, as is the convention in some disciplines. l'se \"'# on delayed text instead of \ ...
as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still
use footnotes, except that you may want to reference them with special characters'
rather than numbers.

4.3. Indexes

An "index" (actually more like a table of contents, since the entries are not sorted
alphabetically) resembles delayed text, in that it is saved until called for. However, each
entry has the page number (or some other tag) appended to the lasl line of the index
entry after a row of dots.

Index entries begin with the request . (x and end with .)x. The.)x request may
have a argument, which is the value to print as the "page number". It defaults to the
current page number. If the page number given is an underscore ("_") no page number
or line of dots is printed at all. To get the line of dots without a page number, type .hi:
'., which specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

'James R. Ware, The Best of Confucius, Halcyon House, 1950. Page 77.
OSuch as an asterisk.

USING NROFF AND - ME

.(x
Sealing wax
.)X
.(x
Cabbages and kings
.)X
.(X
Why the sea is boiling hot
.h 2.5a
.(x
Whether pigs have wings
.)X ""
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
.)X
.xp

generates:

9

Sealing wax ... 9
Cabbages and kings
Why the sea is boiling hot .. 2.5a
Whether pigs have wings
This is a terribly long index entry, such as might be used for a list of illustra-
tions, tables, or figures; I expect it to take at least two lines. 9

The .(x request may have a single character argument, specifying the "name" of
the index; the normal index is x. Thus, several "indicies" may be maintained simul­
taneously (such as a list of tables, table of contents, etc.).

Notice that the index must be printed at the end of the paper, rather than at the
beginning where it will probably appear (as a table of contents); the pages may have to
be physically rearranged after printing.

5. Fancier Features

A large number of fancier requests exist, notably requests to provide other sorts of
.paragraphs, numbered sections of the form 1.2.3 (such as used in this document), and mul­
ticolumn output.

5.1. More Paragraphs

Paragraphs generally start with a blank line and with the first line indented. It is
possible to get left-justified block-style paragraphs by using .Ip instead of .pp, as demon­
strated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented, and the first line
exdented (opposite of indented) with a label. This can be done with the .Ip request. A
word specified on the same line as .Ip is printed in the margin, and the body is lined up
at a pre specified position (normally five spaces). For example, the input:

USING NROFF AND -ME

.ip one
This is the first paragraph.
Notice how the first line
of the reSUlting paragraph lines up
with the other lines in the paragraph .
.ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin .
.Ip
We can continue text...

produces as output:

10

one This is the first paragraph. Notice how the first line of the resulting paragraph lines
up with the other lines in the paragraph.

two And here we are at the second paragraph already. You may notice that the argu­
ment to .ip appears in the margin.

We can continue text without starting a new indented paragraph by using the .Ip request.

If you have spaces in the label of a .ip request, you must use an "unpaddable
space" instead of a regular space. This is typed as a backs lash character ("\") followed
by a space. For example, to print the label "Part 1", enter:

.ip "Part\ 1"

If a label of an indented paragraph (that is, the argument to Jp) is longer than the
space allocated for the label, .ip will begin a new line after the label. For example, the
input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

longlabel
This paragraph had a long label. The first character of text on the first line will not
line up with the text on second and subsequent lines, although they will line up
with each other.

It is possible to change the size of the label by using a second argument which is
the size of the label. For example, the above example could be done correctly by saying:

.ip long label 10

which will make the paragraph indent 10 spaces for this paragraph only. If you have
many paragraphs to indent all the same amount, use the number register ii. For example,
to leave one inch of space for the label, type:

.m ii Ii

somewhere before the first call to .ip. Refer to the reference manual for more informa­
tion.

If .ill is used with no argument at all no hanging tag will be printed. For example,
the input:

USING NROFF AND -ME

.ip raj
This is the first paragraph of the example.
We have seen this sort of example before .
.ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:

11

raj This is the first paragraph of the example. We have seen this sort of example
before.

This paragraph is lined up with the previous paragraph, but it has no tag in the
margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially
from J. The numbering is reset at the next .PI', .Ip, or .sh (to be described in the next
section) request. For example, the input:

.np
This is the first point.
.np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request.
.pp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

(l) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are given
sequence numbers automatically by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering from one now.

5.2. Section Headings

Section numbers (such as the ones used in this document) can be automatically
generated using the .sll request. You must tell .sll the depth of the section number and
a section title. The depth specifies how many numbers are to appear (separated by
decimal points) in the section number. For example, the section number 4.2.5 has a
depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you add a number
(increase the depth), the new number starts out at one. If you subtract section numbers
(or keep the same number) the final number is incremented. For example, the input:

. gh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.gh 2 "Control Inputs"

.sh 3

.gh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

USING NROFF AND -ME

1. Tbe Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

12

You can specify the section number to begin by placing the section number after
the section title, using spaces instead of dots. For example, the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent .sb requests will number relative
to this number.

There are more complex features which will cause each section to be indented pro­
portionally to the depth of the section. For example, if you enter:

.nr si N

each section will be indented by an amount N. N must have a scaling factor attached,
that is, it must be of the form Nx, where x is a character telling what units N is in.
Common values for x are i for inches, c for centimeters, and n for ens (the width of a
single character). For example, to indent each section one-half inch, type:

.nr si O.Si

After this, sections will be indented by one-half inch per level of depth in the section
number. For example, this document was produced using the request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section depth.

Section headers without automatically generated numbers can be done using:

.uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of tbe Basic Paper

There are some requests which assist in setting up papers. The .tp request initial­
izes for a title page. There are no headers or footers on a title page, and unlike other
pages you can space down and leave blank space at the top. For example, a typical title
page might appear as:

.tp

.sp 2i

.(le
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
.)1
.bp

The request .tb sets up the environment of the NROFF processor to do a thesis,
using the rules established at Berkeley. It defines the correct headers and footers (a page
number in the upper right hand corner only), sets the margins correctly, and double
spaces.

USING NROFF AND -ME 13

The . +c T request can be used to start chapters. Each chapter is automatically
numbered from one, and a heading is printed at the top of each chapter with the chapter
number and the chapter name T. For example, to begin a chapter called "Conclusions",
use the request:

. +c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page
on the first page of a chapter. Although the. +c request was not designed to work only
with the .th request, it is tuned for the format acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the. +c request, the result is a chapter with
no heading. This can also be used at the beginning of a paper; for example, .+c was
used to generate page one of this document.

Although papers traditionally have the abstract, table of contents, and so forth at
the front of the paper, it is more convenient to format and print them last when using
NROFF. This is so that index entries can be collected and then printed for the table of
contents (or whatever). At the end of the paper, issue the .+ + P request, which begins
the preliminary part of the paper. After issuing this request, the. +c request will begin a
preliminary section of the paper. Most notably, this prints the page number restarted
from one in lower case Roman numbers. . +c may be used repeatedly to begin different
parts of the front material for example, the abstract, the table of contents, acknowledg­
ments, list of illustrations, etc. The request . + + B may also be used to begin the
bibliographic section at the end of the paper. For example, the paper might appear as
outlined in figure 2. (In this figure, comments begin with the sequence ,oJ

5.4. Equations and Tables

Two special UNIX programs exist to format special types of material. Eqn and
neqn set equations for the phototypesetter and NROFF respectively. Tbl arranges to
print extremely pretty tables in a variety of formats. This document will only describe
the embellishments to the standard features; consult the reference manuals for those
processors for a description of their use.

The eqn and neqn programs are described fully in the document Typesetting
Mathematics - Users' Guide by Brian W. Kernighan and Lorinda L. Cherry. Equations
are centered, and are kept on one page. They are introduced by the .EQ request and ter­
minated by the .EN request.

The .EQ request may take an equation number as an optional argument, which is
printed vertically centered on the right hand side of the equation. If the equation
becomes too long it should be split between two lines. To do this, type:

.EQ (eq 34)
text of equation 34
.ENC
.EQ
continuation of equation 34
.EN

The C on the .EN request specifies that the equation will be continued.

The tbl program produces tables. It is fully described (including numerous exam­
ples) in the document Tbl - A Program to Format Tables by M. E. Lesk. Tables begin
with the .TS request and end with the .TE request. Tables are normally kept on a single
page. If you have a table which is too big to fit on a single page, so that you know it will
extend to several pages, begin the table with the request .TS H and put the request .TH

USING NROFF AND -ME

· th \. set for thesis mode
.fo "DRAFT" \" define footer for each page
.tp \" begin title page
· (J C \" center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank Furter
.)1
.+c INTRODUCTION
.(x t
Introduction
.)X
text of chapter one
· + c "NEXT CHAPTER"
.(x t
Next Chapter
.)X
text of chapter two
· +c CONCLUSIONS
.(x t
Conclusions
.)X
text of chapter three
.++ B
· +c BIBLIOGRAPHY
.(x t
Bibliography
.)X
text of bibliography

\" end centered part
\" begin chapter named "INTRODUCTION"
\" make an entry into index 't'

\" end of index entry

\" begin another chapter
\" enter into index 'I' again

\" begin bibliographic information
\" begin another 'chapter'

· + + P \" begin preliminary material
.+c "TABLE OF CONTENTS"
.xp t
.+c PREFACE
text of preface

\" print index 't' collected above
\" begin another preliminary section

Figure 2. Outline of a Sample Paper

14

after the part of the table which you want duplicated at the top of every page that the
table is printed on. For example, a table definition for a long table might look like:

USING NROFF AND - ME

.TS H
css
nn n.
THE TABLE TITLE
.TH
text of the table
.TE

5.5. Two Column Output

15

You can get two column output automatically by using the request .Ie. This causes
everything after it to be output in two-column form. The request .be will start a new
column; it differs from .bp in that .bp may leave a totally blank column when it starts a
new page. To revert to single column output, use .le.

5.6. Defining Macros

A macro is 8 collection of requests and text which may be used by stating a simple
request. Macros begin with the line .de xx (where xx is the name of the macro to be
defined) and end with the line consisting of two dots. After defining the macro, stating
the line .xx is the same as stating all the other lines. For example, to define a macro that
spaces 3 lines and then centers the next input line, enter:

.de SS

.sp 3

.ce

and use it by typing:

.SS
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with names
in -me, always use upper case letters as names. The only names to avoid are TS, TH,
TE, EQ, and EN.

5.7. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For
example, if you want to maintain a "list of figures" you will want to do something like:

.(z

.(c
text of figure
.)C
.ce
Figure 5 .
. (x f
Figure 5
.)X
.)z

which you may hope will give you a figure with a label and an entry in the index f
(presumably a list of figures index). Unfortunately, the index entry is read and inter­
preted when the keep is read, not when it is printed, so the page number in the index is
likely to be wrong. The solution is to use the magic string \! at the beginning of all the
lines dealing with the index. In other words, you should use:

USING NROFF AND -ME

. (z

.(c
Text of figure
.)c
.ce
Figure 5.
\!.(x f
\!Figure 5
\!.)x
.)Z

16

which will defer the processing of the index until the figure is output. This will guaran­
tee that the page number in the index is correct. The same comments apply to blocks
(with .(b and .)b) as well.

6. TROFF ami the Photo seHer

With a little care, you can prepare documents that will print nicely on either a regular
terminal or when photo typeset using the TROFF formatting program.

6.1. Fonts

A jont is a style of type. There are three fonts that are available simultaneously,
Times Roman, Times Italic, and Times Bold, plus the special math font. The normal
font is Roman. Text which would be underlined in NROFF with the .111 request is set in
italics in TROFF.

There are ways of switching between fonts. The requests .r, .i, and .b switch to
Roman, italic, and bold fonts respectively. You can set a single word in some font by
typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In NROFF, italic
and bold text is underlined.

Notice that if you are setting more than one word in whatever font, you must sur­
round that word with double quote marks ('''') so that it will appear to the NROFF pro­
cessor as a single word. The quote marks will not appear in the formatted text. If you
do want a quote mark to appear, you should quote the entire string (even if a single
word), and use two quote marks where you want one to appear. For example, if you
want to produce the text:

"Master Con/rol"

in italics, you must type:

.i """Master ControN"'"

The \J produces a very narrow space so that the "I" does not overlap the quote sign in
TROFF, like this:

"Master Control'

There are also several "pseudo-fonts" available. The input:

.(b

.u underlined

. bi "bold italics"

.bx "words in a box"

.)b

generates

USING NROFF AND -ME

underlined
bold it111ics
Iwords in a boxl

17

In NROFF these all just underline the text. Notice that pseudo font requests set only the
single parameter in the pseudo font; ordinary font requests will begin setting all text in
the special font if you do not provide a parameter. No more than one word should
appear with these three font requests in the middle of lines. This is because of the way
TROFF justifies text. For example, if you were to issue the requests:

.bi "some bold italics"
and
.bx "words in a box"

in the middle of a line TROFF would produce s_liMffiliMblis and Iwords in Ii boxl,
which I think you will agree does not look good.

The second parameter of all font requests is set in the original font. For example,
the font request:

.b bold face

generates "bold" in bold font, but sets "face" in the font of the surrounding text,
resulting in:

boldface.

To set the two words bold and face both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line
to indicate "continue text processing"; this allows input lines to be joined together
without a space inbetween them. For example, the input:

.u under \c

.i italics

generates under italics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words.

6.2. Point Sizes

The phototypesetter supports different sizes of type, measured in points. The
default point size is 10 points for most text, 8 points for footnotes. To change the
pointsize, type:

.sz +N

where N is the size wanted in points. The vertical spacing (distance between the bottom
of most letters (the baseline) between adjacent lines) is set to be proportional to the type
size.

Warning: changing point sizes on the phototypesetter is a slow mechanical opera­
tion. Size changes should be considered carefully.

6.3. Quotes

It is conventional when using the typesetter to use pairs of grave and acute accents
to generate double quotes, rather than the double quote character (''''). This is because
it looks better to use grave and acute accents; for example, compare "quote" to "quote".

In order to make quotes compatible between the typesetter and terminals, you may
use the sequences '$(Jq and *(rq to stand for the left and right quote respectively.

USING NROFF AND -ME 18

These both appear as • on most terminals, but are typeset as " and" respectively. For
example, use:

\. (IqSome things aren't true
even if they did happen.\· (rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

will generate "quoted text". Notice that you must surround the material to be quoted
with double quote marks if it is more than one word.

Acknowledgments

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use
the -me macros to produce non-trivial papers during the development stages; Ricki Blau,
Pamela Humphrey, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given support for the project.

This document was TROFF'ed on December 18, 1979 and applies to version 1.1 of the -me
macros.

- ME REFERENCE MANUAL

Release 1.1125

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

This document describes in extremely terse form the features of the -me macro package
for version seven NROFF/TROFF. Some familiarity is assumed with those programs,
specifically, the reader should understand breaks, fonts, pointsizes, the use and definition of
number registers and strings, how to define macros, and scaling factors for ens, points, v's
(vertical line spaces), etc.

For a more casual introduction to text processing using NROFF, refer to the document
Writing Papers with NROFF using -me.

There are a number of macro parameters that may be adjusted. Fonts may be set to a
font number only. In NROFF font 8 is underlined, and is set in bold font in TROFF (although
font 3, bold in TROFF, is not underlined in NROFF). Font 0 is no font change; the font of the
surrounding text is used instead. Notice that fonts 0 and 8 are "pseudo-fonts"; that is, they
are simulated by the macros. This means that although it is legal to set a font register to zero
or eight, it is not legal to use the escape character form, such as:

\f8

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For
example, the request to set the paragraph indent to eight one-en spaces is:

.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parame­
ter values are given in brackets in the remainder of this document.

Registers and strings of the form Sx may be used in expressions but should not be
changed. Macros of the form $x perform some function (as described) and may be redefined to
change this function. This may be a sensitive operation; look at the body of the original macro
before changing it.

All names in -me follow a rigid naming convention. The user may define number regis­
ters, strings, and macros, provided that s/he uses single character upper case names Of double
character names consisting of letters and digits, with at least one upper case letter. In no case
should special characters be used in user-defined names.

On daisy wheel type printers in twelve pitch, the -rxt flag can be stated to make lines
default to one eighth inch (the normal spacing for a newline in twelve-pitch). This is normally

tNROFF and TROFF are Trademarks of Bell Laboratories.

-ME REFERENCE MANUAL 1

-ME REFERENCE MANUAL 2

too small for easy readability, so the default is to space one sixth inch.

This documentation was TROFF'ed on December 14, 1979 and applies to version 1.1125
of the - me macros.

1. Paragraphing

These macros are used to begin paragraphs. The standard paragraph macro is .pp; the
others are all variants to be used for special purposes.

The first call to one of the paragraphing macros defined in this section or the . sh macro
(defined in the next session) initializes the macro processor. After initialization it is not possible
to use any of the following requests: .sc, .10, .Ih, or .!le. Also, the effects of changing parame­
ters which will have a global effect on the format of the page (notably page length and header
and footer margins) are not well defined and should be avoided .

.Ill Begin left-justified paragraph. Centering and underlining are turned off
if they were on, the font is set to \n (pf OJ the type size is set to \n (liP
[lOp], and a \n(ps space is inserted before the paragraph [O.35v in
TROFF, 1 v or O.5v in NROFF depending on device resolution]. The
indent is reset to \n ($i [0] plus \n (po [0] unless the paragraph is inside
a display. (see .bal. At least the first two lines of the paragraph are
kept together on a page.

.pp

.ip T I

.nll

2. Section Headings

Like .lp, except that it puts \II (pi 1.5nl units of indent. This is the stan­
dard paragraph macro .

Indented paragraph with hanging tag. The body of the following para­
graph is indented I spaces (or \n Oi [5nl spaces if I is not specified)
more than a non-indented paragraph (such as with .pp) is. The title T
is exdented (opposite of indented). The result is a paragraph with an
even left edge and T printed in the margin. Any spaces in T must be
unpaddabJe. If T will not fit in the space provided, .ill will start a new
line.

A variant of .ip which numbers paragraphs. Numbering is reset after a
.Ill, .pp, or .sh. The current paragraph number is in \n($p.

Numbered sections are simi liar to paragraphs except that a section number is automati­
cally generated for each one. The section numbers are of the form 1.2.3. The depth of the sec­
tion is the count of numbers (separated by decimal points) in the section number.

Unnumbered section headings are similar, except that no number is attached to the head-
ing .

. sh + N Tab c de f Begin numbered section of depth N. If N is missing the current depth
(maintained in the number register \11 000) is used. The values of the
individual parts of the section number are maintained in \11 ($1 through
\n($6. There is a \n(ss [Iv] space before the section. Tis printed as a
section title in font \1l(S! [8] and size \n(sp [lOpi. The "name" of the
section may be accessed via \ * ($ll. If \0 (51 is non-zero, the base
indent is set to \11 (si times the section depth, and the section title is
exdented. (See .!:Ia.) Also, an additional ilildent of \n (so [0] is added to
the section title (but not to the body of the section). The font is then
set to the paragraph font, so that more information may occur on the
line with the section number and title. .sh insures that there is enough
room to print the section head plus the beginning of a paragraph (about
3 lines total). If a through f are specified, the section number is set to
that number rather than incremented automatically. If any of a
through f are a hyphen that number is not reset. If T is a single

--ME REFERENCE MANUAL 3

.n +N

.!l1! T

• $p T B N

. $0 T B N

. $1 - .$6

underscore ("_") then the section depth and numbering is reset, but
the base indent is not reset and nothing is printed out. This is useful to
automatically coordinate section numbers with chapter numbers.

Go to section depth N [-1], but do not print the number and title, and
do not increment the section number at level N. This has the effect of
slarting a new paragraph at level N.

Unnumbered section heading. The title T is printed with the same
rules for spacing, font, etc., as for .sl:! .

Print section heading. May be redefined to get fancier headings. Tis
the title passed on the .51:! or .!lb line; B is the section number for this
section, and N is the depth of this section. These parameters are not
always present; in particular, .sh passes all three, .lIh passes only the
first, and .s" passes three, but the first two are null strings. Care
should be taken if this macro is redefined; it is quite complex and sub­
tie .

This macro is called automatically after every call to .$11. It is normally
undefined, but may be used to automatically put every section title into
the table of contents or for some similiar function. T is the section title
for the section title which was just printed, B is the section number,
and N is the section depth .

Traps called just before printing that depth section. May be defined to
(for exrunple) give variable spacing before sections. These macros are
called from .Sp, so if you redefine that macro you may lose this feature.

3. HeRders !lml Footers

Headers and footers are put al the top and bottom of every page automatically. They are
set in font \n(lf [3] and size \n{!ll [lOpl. Each of the definitions apply as of the next page.
Three-part titles must be quoted if there are two bJanks adjacent anywhere in the title or more
than eight blanks total.

The spacing of headers and footers are controlled by three number registers. \n (hm t4vl
is the distance from the top of the page to the top of the header, \nUm [3v] is the distance
from the bottom of the page to the bottom of the footer, \n(tm [7v] is the distance from the
top of the page to the top of the text, and \n{bm [6v] is the distance from the bottom of the
page to the bottom of the text (nominal). The macros .ml, .m2, .m3, and .m4 are also sup­
plied for compatibility with ROFF documents .

. he'l'm'(

JII'l'm',

. ell'l'm·r'

. ol:! '!' m' r'

.ef' f' tn' r'

f 'I' " • 0 • m r

.Ilx

.ml +N

.m2 +N

.m3 +N
,m4 +N
,ell

Define three-part header, to be printed on the top of every page.

Define footer, to be printed at the bottom of every page .

Define header, to be printed at the top of every even-numbered page .

Define header, to be printed at the top of every odd-numbered page.

Define footer, to be printed at the bottom of every even-numbered
page.

Define footer, to be printed at the bottom of every odd-numbered page .

Suppress headers and footers on the next page.

Set the space between the top of the page and the header [4v].

Set the space between the header and the first line of text [2v],

Set the space between the bottom of the text and the footer [2vl.

Set the space between the footer and the bottom of the page [4vl.

End this page, but do not begin the next page. Useful for forcing out
footnotes, but other than that hardly every used. Must be followed by

-ME REFERENCE MANUAL

.$h

. Sf

. $H

4. Displays

a .bp or the end of input.

Called at every page to print the header. May be redefined to provide
fancy (e.g., multi-line) headers, but doing so loses the function of the
.he, .fo, .eh, .oh, .d, and .of requests, as well as the chapter-style title
feature of. +c .
Print footer; same comments apply as in .$h .

A normally undefined macro which is called at the top of each page
(after outputing the header, initial saved floating keeps, etc.); in other
words, this macro is called immediately before printing text on a page.
l! can be used for column headings and the like.

All displays except centered blocks and block quotes are preceeded and followed by an
extra \n (bs [same as \n (ps] space. Quote spacing is stored in a separate register; centered
blocks have no default initial or trailing space. The vertical spacing of all displays except quotes
and centered blocks is stored in register \0 ($R instead of \0 ($r .

. (I m f Begin list. Lists are single spaced, unfilled text. If f is F, the list will
be filled. If m [II is I the list is indented by \nOli [4nJ; if M the list is
indented to the left margin; if L the list is left justified with respect to
the text (different from M only if the base indent (stored in \n ($i and
set with .lIa) is not zero); and if C the list is centered on a line-by-line
basis. The list is set in font \n (dr [OJ. Must be matched by a .)1. This
macro is almost like . (ll except that no attempt is made to keep the
display on one page .

•)1 End list.

.(q

.)q

• (b mf

.)b

.(z mf

.)Z

. (c

Begin major quote. These are single spaced, filled, moved in from the
text on both sides by \n (qj [4nJ, preceeded and followed by \n (qs
[same as \Il (bs] space, and are set in point size \0 (lIP [one point
smaller than surrounding text].

End major quote .

Begin block. Blocks are a form of keep, where the text of a keep is
kept together on one page if possible (keeps are useful for tables and
figures which should not be broken over a page). If the block will not
fit on the current page a new page is begun, unless that would leave
more than \nCb! [0] white space at the bottom of the text. If \n(bt is
zero, the threshold feature is turned off. Blocks are not filled unless f
is F, when they are filled. The block will be left-justified if m is L,
indented by \n (hi [4nl if m is I or absent, centered (line-far-line) if m
is C, and left justified to the margin (not to the base indent) if m is M.
The block is set in font \0 (dC [OJ.

End block.

Begin floating keep. Like. (b except that the keep is floated to the bot­
tom of the page or the top of the next page. Therefore, its position
relative to the text changes. The floating keep is preceeded and fol­
lowed by \n(zs [Iv] space. Also, it defaults to mode M .

End floating keep .

Begin centered block. The next keep is centered as a block, rather than
on a line-by-line basis as with. (Il C. This call may be nested inside
keeps.

-ME REFERENCE MANUAL 5

ole

5. Annotations

.M

Jd n

• peI

• (f

. H n

. Ss

. <x x

. >x PA

.XII x

6. Columned Output

.le +S N

.le

. be

7. Fonts and Sizes

.sz +P

End centered block.

Begin delayed text. Everything in the next keep is saved for output
later with .peI, in a manner similar to footnotes.

End delayed text. The delayed text number register \n(Sd and the
associated string *# are incremented if*# has been referenced.

Print delayed text. Everything diverted via. (d is printed and truncated .
This might be used at the end of each chapter .

Begin footnote. The text of the footnote is floated to the bottom of the
page and set in font \n{ff Dl and size \rdfp [8p]. Each entry is pre­
ceeded by \0 (fs [0.2v J space, is indented \0 (fi [3n] on the first line,
and is indented \nHu [0] from the right margin. Footnotes line up
underneath two columned output. If the text of the footnote will not
all fit on one page it will be carried over to the next page .

End footnote. The number register \n(Sf and the associated string \ ...
are incremented if they have been referenced .

The macro to output the footnote seperator. This macro may be
redefined to give other size lines or other types of separators.
Currently it draws a l.5i line .

Begin index entry. Index entries are saved in the index x [xl until
called up with .xp. Each entry is preceeded by a \n(xs [0.2vJ space.
Each entry is "undented" by \nexu [O.5il; this register tells how far the
page number extends into the right margin .

End index entry. The index entry is finished with a row of dots with A
[null] right justified on the last line (such as for an author's name), fol­
lowed by P !\n%l. If A is specified, P must be specified; \n% can be
used to print the current page number. If P is an underscore, no page
number and no row of dots are printed.

Print index x [x]. The index is formated in the font, size, and so forth
in effect at the time it is printed, rather than at the time it is collected.

Enter two-column mode. The column separation is set to +S [4n, O.Si
in ACM model (saved in \n(Ss). The column width, calculated to fill
the single column line length with both columns, is stored in \n($1.
The current column is in \0 ($c. You can test register \0 (Sm [ll to see
if you are in single column or double column mode. Actually, the
request enters N 12J columned output.

Revert to single-column mode .

Begin column. This is like .lIp except that it begins a new column on a
new page only if necessary, rather than forcing a whole new page if
there is another column left on the current page.

The pointsize is set to P [lOp], and the line spacing is set proportion­
ally. The ratio of line spacing to pointsize is stored in \0 ($r. The ratio
used internally by displays and annotations is stored in \n OSR (although
this is not used by . sz) .

-ME REFERENCE MANUAL 6

.r WX

.I W X

. b WX

. rb W X

• Il WX

• q WX

.bi W X

.OX WX

8. Rolf Support

.ix +N

.bl N

• IlS +N

.ro

. ar

. 01

. 02 N

.sk

Set W in roman font, appending X in the previous font. To append
different font requests, use X = \c. If no parameters, change to roman
font.

Set W in italics, appending X in the previous font. If no parameters,
change to italic font. Underlines in NROFF .

Set W in bold font and append X in the previous font. If no parame­
ters, switch to bold font. In NROFF, underlines .

Set W in bold font and append X in the previous font. If no parame­
ters, switch to bold font. .rb differs from .Il in that .rb does not under­
line in NROFF .

Underline Wand append X This is a true underlining, as opposed to
the .nl request, which changes to "underline font" (usually italics in
TROFF). It won't work right if W is spread or broken (including
hyphenated). In other words, it is safe in nofill mode only .

Quote Wand append X In NROFF this just surrounds W with double
quote marks ('.'), but in TROFF uses directed quotes.

Set W in bold italics and append X Actually, sets W in italic and over­
strikes once. Underlines in NROFF. It won't work right if W is spread
or broken (including hyphenated). In other words, it is safe in nofil!
mode only.

Sets W in a box, with X appended. Underlines in NROFF. It won't
work right if W is spread or broken (including hyphenated). In other
words, it is safe in nofil! mode only.

Indent, no break. Equivalent to 'in N.

Leave N contiguous white space, on the next page if not enough room
on this page. Equivalent to a .511 N inside a block.

Equivalent to .ilp .

Set page number in roman numerals. Equivalent to .af % i.

Set page number in arabic. Equivalent to .af % 1 .

Number lines in margin from one on each page .

Number lines from N, stop if N = O .

Leave the next output page blank, except for headers and footers. This
is used to leave space for a full-page diagram which is produced exter­
nally and pasted in later. To get a partial-page paste-in display, say
.sv N, where N is the amount of space to leave; this space will be out­
put immediately if there is room, and will otherwise be output at the
top of the next page. However, be warned: if N is greater than the
amount of available space on an empty page, no space will ever be out­
put.

9. Preprocessor Support

.EQ m T Begin equation. The equation is centered if m is C or omitted,
indented \o(bi [4nJ if m is J, and left justified if m is L. T is a title
printed on the right margin next to the equation. See Typesetting
Mathematics - User's Guide by Brian W. Kernighan and Lorinda L.
Cherry.

-ME REFERENCE MANUAL 7

.EN c

.TS h

. TH

. IE

10. Miscellaneolls

.re

.ba +N

.xI +N

.Ii +N

.hl

.10

H. Standard Papers

.tll

.tli

. ++ mH

End equation. If cis C the equation must be continued by immediately
following with another .EQ, the text of which can be centered along
with this one. Otherwise, the equation is printed, always on one page,
with \n{es [O.Sv in TROPP, Iv in NROPP] space above and below it.

Table start. Tables are single spaced and kept on one page if possible.
If you have a large table which will not fit on one page, use h = Hand
follow the header part (to be printed on every page of the table) with a
.TH. See Tb! - A Program to Formal Tables by M. E. Lesk .

With. TS H, ends the header portion of the table .

Table end. Note that this table does not float, in fact, it is not even
guaranteed to stay on one page if you use requests such as .sp inter­
mixed with the text of the table. If you want it to float (or if you use
requests inside the table), surround the entire table (including the. IS
and. TE requests) with the requests. (z and .)z.

Reset tabs. Set to every O.Si in TROPF and every O.8i in NROFF.

Set the base indent to +N [0] (saved in \ontil. All paragraphs, sec­
tions, and displays come out indented by this amount. Titles and foot­
notes are unaffected. The .sh request performs a .ba request if \n (si
[0] is not zero, and sets the base indent to \Il (si*\1l (SO.
Set the line length to N [6.0i]. This differs from .II because it only
affects the current environment.

Set line length in all environments to N [6.0i]. This should not be used
after output has begun, and particularly not in two-columned output.
The current line length is stored in \0 ($1.

Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate between the text and the figure.

This macro loads another set of macros (in lusrllib/me/locaLme)
which is intended to be a set of locally defined macros. These macros
should all be of the form ." X, where X is any letter (upper or lower
case) or digit.

Begin title page. Spacing at the top of the page can occur, and headers
and footers are supressed. Also, the page number is not incremented
for this page.

Set thesis mode. This defines the modes acceptable for a doctoral
dissertation at Berkeley. It double spaces, defines the header to be a
single page number, and changes the margins to be 1.5 inch on the left
and one inch on the top. . + + and. +c should be used with it. This
macro must be stated before initialization, thaI is, before the first call of
a paragraphing macro or .sh .

This request defines the section of the paper which we are entering.
The section type is defined by m. C means that we are entering the
chapter portion of the paper, A means that we are entering the appen­
dix portion of the paper, P means that the material following should be
the preliminary portion (abstract, table of contents, etc,) portion of the
paper, AB means that we are entering the abstract (nu.mbered indepen­
dently from 1 in Arabic numerals), and B means that we are entering
the bibliographic portion at the end of the paper. Also, the variants RC

-ME REFERENCE MANUAL

. +c T

.$c T

. $C K NT

.acA N

12. Predefined Strings

**

*#
'*[

*1

'*<

*>

and RA are allowed, which specify renumbering of pages from one at
the beginning of each chapter or appendix, respectively. The Hparam­
eter defines the new header. If there are any spaces in it, the entire
header must be quoted. If you want the header to have the chapter
number in it, Use the string \\ \\n (ch. For example, to number appen­
dixes A.I etc., type .++ RA "·\\\\n(ch.%'. Each section (chapter,
appendix, etc.) should be preceeded by the. +c request. It should be
mentioned that it is easier when using TROFF to put the front material
at the end of the paper, so that the table of contents can be collected
and output; this material can then be physically moved to the beginning
of the paper.

Begin chapter with title T. The chapter number is maintained in \n(ch .
This register is incremented every time. +c is called with a parameter.
The title and chapter number are printed by .$c. The header is moved
to the footer on the first page of each chapter. If T is omitted, .$c is
not called; this is useful for doing your own "title page" at the begin­
ning of papers without a title page proper. . $c calls . $C as a hook so
that chapter titles can be inserted into a table of contents automatically.
The footnote numbering is reset to one.

Print chapter number (from \n (ell) and T. This macro can be
redefined to your liking. It is defined by default to be acceptable for a
PhD thesis at Berkeley. This macro calls $C, which can be defined to
make index entries, or whatever .

This macro is called by .$c. It is normally undefined, but can be used
to automatically insert index entries, or whatever. K is a keyword,
either "Chapter" or "Appendix" (depending on the. + + mode); N is
the chapter or appendix number, and T is the chapter or appendix title.

This macro (short for .acm) sets up the NROFF environment for
photo-ready papers as used by the ACM. This format is 25% larger,
and has no headers or footers. The author's name A is printed at the
bottom of the page (but off the part which will be printed in the confer­
ence proceedings), together with the current page number and the total
number of pages N Additionally, this macro loads the file
lusrllib/me/acm.me, which may later be augmented with other macros
useful for printing papers for ACM conferences. It should be noted
that this macro will not work correctly in TROFF, since it sets the page
length wider than the physical width of the phototypesetter roll.

Footnote number, actually *I\n($f*l. This macro is incremented
after each call to .)t.

Delayed text number. Actually I\n (Scll.
Superscript. This string gives upward movement and a change to a
smaller point size if possible, otherwise it gives the left bracket charac­
ter (' ['). Extra space is left above the line to allow room for the super­
script.

Unsuperscript. Inverse to *1. For example, to produce a superscript
you might type x*12*I, which will produce x2•

Subscript. Defaults to '<' if half-carriage motion not possible. Extra
space is left below the line to allow for the subscript.

Inverse to \ * < .

-ME REFERENCE MANUAL

\~(dw

\"'(mo

*(ad

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form December 14,
1979. Other forms of the date can be used by using \0 Cdy (the day of
the month; for example, 14), \"'(mo (as noted above) or \n(mo (the
same, but as an ordinal number; for example, December is 12), and
\n(yr (the last two digits of the current year).

Left quote marks. Double quote in NROFF.

Right quote.

% em dash in TROFF; two hyphens in NROFF.

13. Special Characters lind Marks

There are a number of special characters and diacritical marks (such as accents) available
through -me. To reference these characters, you must call the macro .sc to define the charac­
ters before using them.

.sc Define special characters and diacritical marks, as described in the
remainder of this section. This macro must be stated before initializa­
tion.

The special characters available are listed below.
Name Usage Example
Acute accent \.' a\" a
Grave accent \.' e\" e
UmIat *: u*: ii
Tilde \.- n\'- n
Caret \.- e\'- e
Cedilla *, c*, ,:
Czech \'v e\'v e
Circle \'0 A*o A
There exists \ * (qe :3
fuill ~~ V

Acknowledgments

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use
the ·-me macros to produce non-trivial papers during the development stages; Ricki Blau,
Pamela Humphrey, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given support for the project.

A for Typesetting :Ylathematics

Bnan Hi Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hiil, New Jersey 07974

ABSTRACT

TIli, paper describes the design and impiementation of a system for typesetting
mathematics. Tbe language has been designed to be easy to iearn and to use by people
(ror example. secretaries and mathematical typists) who know neither mathematics nor
typesetting. Experience indicates that the language can be learned in an hour or so. for
it has rew rules and fewer exceptIOns. For typical expressions. the size and font
changes, positioning, line drawing, and (he like necessary to print according to
mathematical conventions are all done automatically. For example, the input

sum from i-O to infinity x sub i-pi over 2

produces

The syntax of the languege is specified by a smail context-free grammar; a
compiler-compiler is used to make a compiler that translates this language into typeset­
ting commands. Output may be produced on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs. so mix.tures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM. March. 1975.

I. jntroduction

"Mathematics is known in the trade as
difficult, or penallY. copy because it. is slower.
more diffi.uit. and more expensive to set in type
than any other kind of copy flormally occuning
in books and journals." [II

One difficulty with mathematical text is the
multiplicity of characters, sizes. and rants. An
expression such as

lim (tan x)';" h - I
'f-.,,/2

requires an intimate mixture of roman, italic and
greek letters. in three sizes. and a special charae­
ter or two. ("Requires" is perhaps the wrong
word. but mathematics has its own typographical
conventions which are quite diff~rent from those
of ordinary text.) Typesetting such an expression
by traditional methods is still an essentially
manual operation.

A second difficulty is the two dimensional

character of mathematics. which the superscript
and limits in the preceding example showed in its
simplest form. This is carried further by

b,
ao+------~-----­

b 2
a ,+---'---­

b J Gl+---­
oJ+" .

and still further by

I dx
afl1l"'-be-«'i~

These examples also show line-drawing, built,up
characters like braces and radicals. and a spec­
trum or positioning problems. (Section 6 shows

what J user h,s to type to produce these on our
system.)

Z. Photocomposition

Photocomposition techniques can be used
to solve some of the problems of typesetting
mathematics. A pnototypeseller is a devtce
which exposes a piece of photographic paper or
film, placing characters wherever they are
wanted. The Graphic Systems phototypeseller[2]
on the UNIX operating system [3J works by shin­
ing light through a character stencil. The charae­
ter is made the right size by lenses. and the light
beam directed by fiber optics to the desired place
on a piece of photographic paper. The exposed
paper is developed and typically used in some
form of photo-offset reproduction.

On U~IX. the phototypesetter is driven by
a rormalling program cal!ed TROFF [4]. TROFF
was deSigned for setting running text. It also
provides all of the facilities that one needs for
doing mathematics, such as arbitrary horizontal
and vertical motions. line-drawing, size changing,
but the syntax for describing these special opera­
tions is difficult to learn. and difficult even for
experienced users to type correctly.

For this re_son we decided to use TROFF
as an "assembly language," by designing a
language for describing mathematical expres­
sions, and compiling it into TROFF.

3. language Design

The rundamental principle UpOIl which we
based our language design is that Ihe language
should be easy 10 use by people (for example.
secretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First.
"normal" mathematical conventions about
operator precedence, parentheses, and the like
cannot be used, for to give special meaning to
such characters means that the user has to
understand what he or she is typing. Thus the
language should not assume, for instance, that
parentheses are always balanced. for they are not
in the half-open interval (a ,b J. Nor should it
assume that thai Fa+b can be replaced by
(a+b)\ or that I/(I-x) is better written as

1 (or vice versa).
I-x

Second, there should be relatively few
rules. keywords, speci.1 symbols and operators,
and the like. This keeps the language easy to
learn and remember. Furthermore. there should
be few exceptions [0 the rules that do exlS!: if
something works in one situation. it ,hould work
everywhere. If a variable can have a subscript,
then a subscript can have a subscript. and so on

- 2 -

without limit.

Third. "standard" things should happen
autOmatically. Someone who types
"x-y.J.z+I" should get "x~\'+:..,.I". Sub­
scripts and superscripts should automatically be
pnnted in an appropnatelysmaller Size, wlih no
speCial intervention. Fraction bars have to be
made the right length and positioned at the right
heigh!. And so on. Indeed a mechanism for
overriding default actions has to exist. but Its
application is the exception, not the rule.

Vie assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form. as might be handwritten by
the author of a paper. We also assume that the
input is typed on a computer terminal much like
an ordinary typewriter. This implies all input
alphabet of perhaps 100 characters, none of them
special.

A secondary, but stiil important, goal in
our design was that the system should be easy to
implement, since neither of the authors had any
desire to make a long-term project of it. Since
our design was not firm, it was also necessary
that the program be easy 10 change at any time.

To make the program easy to build and to
change. and to guarantee regularity ("it should
work everywhere"), the language is defined by a
context·free grammar. described in Section 5.
The compiler for the language was bUilt using a
compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to do. Our sub­
sequent experience leads us to believe that any
other course would have been folly. The original
language was designed in a rew days. Construc­
tion of a working system sufficient to try
significant e"amples required perhaps a person­
month. Since then, we have spent a modest
amount of additional time over several ye3rs
tuning, adding facilities, and occasionally chang­
ing the language as users make criticisms and
suggestions.

We also decided quite early that we would
let TROFF do our work for us whenever possible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, Mumerical
comput~tion and testing, and conditional branch­
ing. Thus we have been able to avoid writing a
lot of mundane but tricky software. For exam­
ple, we store no text strings. but simply pass
them on to TROFF. Thus we avoid having to
write a storage management package. Further­
more, we have been able to isolate ourselves
from most details of the particular deVice and
character s~t currently in use. For example, we
let TROFF compute the widths of all strings or

charactcrs; we need know nothing about them.

A third design goal is special to our
environment. Since our program is only useful
for typesetting mathematics, it is necessary that it
interface cleanly with the underlying typesetting
language for the benefit of users who want to set
intermingled mathem.tics and text (the usual
case). The standard mode of operation is that
when a document is typed, mathematical expres­
sions are input as part of the text, but marked by
user settable delimiters. The program re.ds this
input and treats .s comments those things which
are not mathematics, simply passing them
through untouched. At the same time it con­
verts the mathematical input into the necessary
TROFF commands. The resulting ioutput is
passed directly to TROf'F where the comments
and the mathematical parts both become text
and/or TROFF commands.

4. The Languoge

We will no! try to describe the language
precisely here; interested readers may refer to
the appendix for more details. Throughout this
section, we wi!! write expressions exactly as they
are handed to the typesetting program
(hereinafter called "EQN"), except that we won't
show the delimiters that the user types to mark
the beginning and end of the expression. The
interface between EQN and TROFF is described at
the end of this section.

As we said, typing x-y+z+l should pro­
duce x-y+:+l, and indeed it does. Variables
are made italic, operators and digits become
roman, and normal spacings between letters and
operators are altered slightly to give a more
pleasing appearance.

Input is frec,form. Spaces and new lines
in the input are used by EQN to separate pieces
of the input; they are not Ilsed to create space in
the output. Tnl.ls

" Y
-I- z + I

also gives x-y+:+l. Free-form input is easier
to type initially; subsequent editing is also easier,
for an expression may be typed as many short
lines.

Extra white space can be forced into the
output by severai characters of various sizes. A
tilde" - .. gives a space equal to the normal word
spacing in text; a circumflex gives half this
much, and a tab chareter spaces to the next tab
stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

I (t)-21f JSin(wtldl

- 3 -

we write

(I) - 2 pi in! sin (omega t ldt

Here spaces are necessary in the input to indicate
lhal Stn, pi, into and omfl?G are special. and poten­
tially worth special treatment. EQN looks up
each such string of characters in a table, and if
appropriate gives it a translation. In this case, pi
and omel?l1 become their greek equivalents, in!
becomes the integral sign (which must be moved
down and enlarged so it looks "right"), and sin
is made reman, following conventional
mathematical practice. Parentheses, digits and
operators are automatically made roman wher,
ever found.

Fractions are specified with the keyword
OW'I":

a+b over c+d+e - I

produces

Similarly, subscripts and superscripts are
in1coduced by the keywords sltb and Sill':

x l +y2...: l

is produced by

x sup 2 -I- Y sup 2 - z sup 2

The spaces after the 2's are necessary to mark
the end of the superscripts; similarly the keyword
SUI' has to be marked off by spaces or some
equivalent delimiter. The return to the proper
baseline is automatic. Multiple levels of sub,
scripts or superscripts are of course allowed:

"x sup y sup z .. is x< The construct "some­
thing slIb something Slip something" is recog­
nized as a special case, so ", sub i sup 2" is x,l
instead of x, '.

More complicated expressions can now be
formed with these primitives:

fi_3..:~.x!..
ox' aI' b1

is produced by

{partial sup 2 r) over ipartial x sup 21
X ~up 2 over a sup 2 -I- Y sup 2 over b sup 2

Braces (J are used to group objects together; il1
this case they indicate unambiguously what goes
over what on the left-hand side of the expres­
sion. The language defines the precedence of Slip

to be higher than that of over. so no braces are
needed to get the correct association on the right
side. Braces can always be used when in doubt
about precedence.

The braces COflvel1tion is an example of

the power of using a recursive grammar to define
the language. It is part of the language that if a
construct can appear in some context. then allY
expression in braces can also occur in that con­
text.

There is a sqrr operator for making square
roots of the appropriate size: "sQrt a+b" pro­
duces ..fii+b. and

;It - I-b +- sqrt(b sup 2 -4acll over 2.

is

x- -b:l:~
213

Since large radicals look poor on our typesetter,
sqrr is not useful for tall expressions.

Limits on summations, integrals and simi­
lar constructions are specified with the keywords
from and 10. To get

we need only type

sum from i-O to inf x sub; -> 0

Centering and making the 1: big enough and the
limits smaller are all automatic. The from and 10

parts are both optional, and the central part (e.g.,
the 1:) can in fact be anything:

lim from (x -> pi 121 (tan "x) - inf

lim (tan x)-""
$_12

Again, the braces indicate just what goes into the
from parI.

There is a facility for making braces,
brackets. parentheses, and vertical bars of the
right height, using the keywords left and righl:

left [x+y over 2a right J-~-l

makes

[~l-l
A left need not have a corresponding righl. as we
shall see in the next example. Any characlers
may follow le(i and righl. but generally only vari­
ous parentheses and bars are meaningful.

Big brackets, etc., are often used with
another facility. called piles. which make vertical
piles of objects. For example, to gel

if x >0
sign Cd _ 0 if x-a

-1 if x <0

- 4 •

we can type

sign (x) -- -- left (
rpile (I above 0 above -II
--I pile (if above if above if!
--I pile Ix>O above x-O above x<ol

The construction "left (" makes a left brace big
enough to enclose the "rpile (... 1", which is a
right-justified pile of "above ... above ... ".
"lpilc" makes a left-justified pile. There are also
centered piles. Because of the recursive language
definition, a pile c.!Ill contain any number of ele­
ments; any element of a pile can of course con­
tain piles.

Although EQN makes a valiant attempt to
use the right sizes and fonts. there are times
when the default assumptions are simply not
what is wanted. For instance the italic Sign in the
previous example would conventionally be in
roman. Slides and transparencies often require
larger characters than normal tex!.· Thus we also
provide size and font changing commands: "size
12 bold (A-x---yl" will produce A x",. y.
Size is followed by a number representing a char­
acter size in points. (One point is 1172 inch; this
paper ;s set in 9 point type.)

If necessary, an input string can be quoted
in " .. :, which turns 011' srammatical significance,
and any font Of spacing changes that might oth­
erwise be done on it. Thus we can say

Iim- roman "sup" -x sub n - 0

to ensure that the supremum doesn '(become a
superscript:

lim sup x,-O

Diacritical marks, long a problem in tradi­
tional typesetting. are straightforward:

!+.i+ji+X+Y-!~

is made by typing

x dot under + x hal + y tilde
+ X hat + Y dotdot - z+Z bar

There are also facilities for globally chang­
ing default sizes and fonlS, for example for mak·
ing viewgraphs or for setting chemical equations.
The language allows for malrices, and for lining
up equations at the same horizontal position.

Finally, there is a definition facility, so a
user can say

define name

al any time in the document; henceforth. any
occurrence of the token "name" in an expres­
sion will be expanded into whatever was inside
the double quotes in its definition. This lets
users tailor the language to their own

specifications. for it is quite possible to redefine
keywords like sup or Ol'er. Section 6 shows an
example of definitions.

The EQN preprocessor reads intermixed
text and equations. and passes its output to
TROFF. Since TROFF uses lines bellinning with a
period as control words (e.g.. ".ce" means
"center the next output line"). EQN uses the
sequence ".EQ" to mark the beginning of an
equation and ".EN" to mark the end. The
".EQ" and ".EN" are passed through to TROFF
untouched, so they can also be used by a
knowledaeable user to center equations, number
them automatically. etc. By default. however.
".EQ" and" .EN" are simply ignored by TROFF.
so by default equations are printed in-line.

".EQ" and ".EN" can be supplemented
by TROFF commands as desired; for example, a
centered display equation can be produced with
the input:

.ce

.EQ
x sub i - y sub i ...
.EN

Since it is tedious to type ".EQ" and
".EN" around very short expressions (single
letters, for instance), the user can also define
two characters to serve as the left and right del­
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and riaht delimiters have both
been set to "#", the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let x,. y and a be positive

Runnina a preprocessor is strikingly easy
on UNIX. To typeset text stored in file "f", one
issues the command:

eqn f, trolf

The venical bar connects the output of one pro­
cess (EQN) to the input of another (TROFF)'

5. Lan&uage Theory

The basic structure of the languale is not a
panicularly oricinal one. Equations are pictured
as a set of "boxes," pieced together in various
ways. For example, somethins with a subscript
is just a box followed by another box moved
downward and shrunk by an appropriate amount.
A frac:tion is just a box centered above another
box. at the riaht altitude, with a line of correc:t
lenlth drawn between them.

The &rammar for the languale is shown

- 5-

below. For purposes of exposition. we have col­
lapsed some productions. In the original gram­
mar. there are about 70 productions. but many
of these are simple ones used only to guarantee
that some keyword is reco&nized early enough in
the parsing process. Symbols in capital leners
are terminal symbols; lower case symbols are
non-terminals. i.e., syntac:tic categories. The
vertical bar' indicates an alternative; the brack­
ets [) indicate optional material. A TEXT is a
slrina of non-blank characters or any strina
inside double quotes; the other terminal symbols
represent literal occurrences of the corresponding
keyword.

eqn : box , eqn box

box : text
I (eqn I
, box OVER box
I SQRT box
, box SUB box I box SUP box
, [L, C, R]PILE (list I
, LEFT text eqn [RIGHT text]
, box [FROM box) [TO box]
I SIZE text box
, [ROMAN I BOLD ,ITALIC) box
, box IHA T I BAR, DOT, DOTDOT, TILDEl
, DEFINE text text

list : eqn ,list ABOVE eqn

text: TEXT

The srammar makes it obvious why there
are few exceptions. For example. the observa­
tion that something can be replaced by a more
complicated somethina in braces is implicit in the
productions:

eqn : box I eqn box
box : text' (eqn I

Anywhere a sin lie character could be used, any
lelll construction can be used.

Clearly, our &ram mar is highly ambiauous.
What, for instance, do we do with the input

a over b over c

Is it

{a over b lover c

or is it

a over (b over cl

To answer questions like this, the srammar
is supplemented with a small set of rules that
describe the precedence and associativity of
operators. In panicular. we specify (more or less
arbitrarily) that ollflr associates to the left, so the
first altemati ve above is the one chosen. On the
other hand, sub and sup bind to the right,

because this is closer to standard mathematical
practice. That is, we assume x.J b is X (<1'''), not
(x')' .

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define SLIp to have a higher precedence than
1

over. so this construction is paned as ao instead

1
of a'.

Naturally, a user can always force a partic­
ula'r parsing by placing braces around expres­
sions.

The ambiguous grammar approach seems
to be quite useful. The grammar we use is small
enough to be easily understood. for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup­
plemental information about precedence and
associativity (also small enough to be under­
stood) provides the compiler-compiler with the
information it needs to make a fast. deterministic
parser fOf the specific language we want. When
the language is supplemented by the disar.1bi­
gualing fules. it is in fact LR(J) and thus easy to
parse(S].

The output code is generated as the input
is scanned. Any time a production of the gram­
mar is recognized. (potentially) some TROFF
commands are output. For example. when the
lexical analyzer reports that it has found a TEXT
(i.e., a string of contiguous characters), we have
recognized the production:

lext : TEXT

The translation of this is simple. We generate a
local name for the string, then hand the name
and the string to TROFF, and let TROFF perform
the storage management. All we save is the
name of the string, its height. and its baseline.

As another example, the translation associ­
ated with the production

box : box OVER box

is:

- 6 -

Width of output box -
slightly more than largest input width

Height of output box -
slightly more than sum of input heights

Base of output box -
slightly more than height of bottom input box

String describing output box -
move down;
move right enough to center bOllom box;
draw bottom box (j.e .• copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e .. copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally sim­
ple semantic actions. Picturing the output as a
set of properly placed boxes makes the right
sequence of positioning commands quite obvi­
ous. The main difficulty is in finding the right
numbers to use for esthetically pleasing position'
ing.

With a grammar, it is usually dear how to
extend the language. For instance, one of our
users suggested a TENSOR operator. to make
constructions like

Grammatically. this is easy: it is sufficient to add
a production like

box : TENSOR (lisl I
Semantically, we need only juggle the boxes to
the right places.

6. Experience

There are really three aspects of
interest-how well EQN set5 mathematics, how
well it satisfies its goal of belllg "easy to use,"
and how easy it was to build.

The first question is easily addressed. This
entire paper has been set by the program.
Readers can judge for themselves whether it is
good enough for their purposes. One of our
users commented that although the output is not
as good as the best hand-set material. it is still
better than average. and much better than the
worst. In any case. who cares? Printed books
cannot compete with the birds and nowers of
illuminated manuscripts on esthetic grounds.
either, but they have some clear economic
advantages.

Some of the deficiencies in the output
could be cleaned up with more work on our part.
For example, we sometimes le~ve too much
space between a roman letter and an italic one.
If we were willing to keep track of the fonts
involved, we could do this better more of the

time.

Some other weaknesses are inherent in our
output device. It is hard, for instance, to draw a
line of an arbitrary lensth without getting a per­
ceptible overstrike at one end.

As to ease of use, at the time of writing,
the system has been used by two distinct groups.
One user population consists of mathematicians,
chemists, physicists, and computer scientists.
Their typical reaction has been something like:

(1) It's easy to write, althou&!t I make the fol­
lowing mistakes ...

(2) How do I do ... ?

(3) It botches the following thinp Why
don't you fix them?

(4) You really need the following features ...

The learn ins time is short. A few minutes
gives the general flavor, and typing a page or two
of a paper generally uncovers most of the
misconceptions about how it works.

The second user group is much larler, the
secretaries and mathematical typists who were
the original target of the system. They tend to
be enthusiastic convertS. They find the lanluale
easy to learn (most are larsely self-tau&!tt), and
have little trouble producina the output they
want. They are of course less critical of the
esthetics of their output than users trained in
mathematics. After a transition period, most
find USinl a computer more interesting than a
regular typewriter.

The main difficulty that users have seems
to be rememberina that a blank is a delimiter;
even experienced users use blanks where they
shouldn't and omit them when they are needed.
A common instance is typina

fb sub j)

which produces

instead of

.f (:xi)

Since the EQN language knows no mathematics,
it cannot deduce that the right parenthesis is not
pan of the subscript,

The languaae is somewhat prolix, but this
doesn't seem excessive considering how much is
being done, and it is certainly more compact than
the correspondinl TROFF commands. For exam­
ple, here is the source for the continued fraction
expression in Section 1 of this paper:

- 7 -

a sub 0 + b sub lover
la sub 1 + b sub 2 over

la sub 2 + b sub 3 over
la sub 3 + ... III

This is the input for the large integral of Section
1; notice the use of definitions:

define emx "Ie sup mxl"
define mab "1m sqn abl"
define sa "{sqn al"
define sb "Isqn bl"
int dx over la emx - be sup -mxl --­
left Ilpile I

lover 12 mabl10g-
{sa emx - sbl over lsa emx + sbl

above
lover mab - tanh sup -1 (sa over sb emx)

above
-lover mab - coth sup -1 (sa over sb emx)

As to ease of construction, we have
already mentioned that there are really only a
few person-months invested. Much of this time
has gone into two things-fine-tuninll (what is
the most esthetically pleasinl space to use
between the numerator and denominator of a
fraction 1), Ind changinl thinp found deficient
by our Users (shouldn't a tilde be a delimiter?).

The program consists of I number of
small, essentially unconnected modules for code
leneration, I simple lexical analyzer, I canned
parser which we did not have to write, and some
miscellany associated with input ftIes and the
micro facility. The program is now about 1600
lines of C [61, a high-level lanauI,e reminiscent
of BCPL. About 20 percent of these lines are
"print" statements, generating the output code.

The semantic routines that generate the
actual TROFF commands can be chan,ed to
accommodate other formattinll languaaes and
devices. For example, in less than 24 hours, one
of us changed the entire semantic package to
drive NROFF, a variant of TROFF, for typesetting
mathematics on teletypewriter devices capable of
reverse line motions. Since many potential users
do not have access to a typesetter, but still have
to type mathematics, this provides a way to get a
typed version of the final output which is close
enou&!t for debullling purposes, and sometimes
even for ultimate use.

7, Conclusions

We think we have shown that it is possible
to do acceptably good typesettinl of mathematics
on a phototypesetter, with an input lanluale that
is easy to learn and use and that satisfies many
users' demands. Such a packale can be imple­
mented in shon order, liven a compiler-compiler

and a decent typesetting program underneath.

Defining a language. and building a com­
piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had wrinen everything into code directly.
we would have been locked into OUT original
design. Furthermore. we would have never been
sure where the exceptions and special cases were.
BUI because we have a grammar. we can change
ou. minds readily and. still be reasonably sure
that if a construction works in one place it will
work everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna.
the author of TROFF, for his willingness [0

modify TROFF to make our task easier and for
his continuous assistance during the develop­
ment of our program. We are also grateful to A.
V. Aha far help witn language theory, to S. C.
Johnson for aid with the compiler-compiler. and
to our e!fly users A. V. Aha. S. l. Feldman, S.
C. 10hnson, R. W. Hamming, and M. D. Mcilroy
for their constructive criticisms.

References

III A Manual of Sly/e. 12th Edition Univer­
sity of Chicago Press. 1969. p 295.

[21 Model CIA IT PholOlypesellef. Graphic Sys­
tems. Inc .• Hudson, N. H.

[3] Ritchie. D. M., and ThDmpson. K. L..
"The' UNIX time-sharing system." Comm.
ACM /7,7 (July 1974).365-375.

[41 Ossanna, J. F., TRO!'F User's Manual.
Bell Laboratories Computing Science
Technical Report 54, ! 977.

[51 Aha. A. V .• and Johnson, S. C.. "LR
Parsing." Compo Surv. 6. 2 (June 1974).
99-124.

[6J B. W. Kernighan and D. M. Ritchie, The C
Programmmll Langualle. Prentice-Hall.
inc., 1978.

• g -

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user's guide for a system for typesetting mathematics, using the photo­
typesetters on the UNIxt and Geos operating systems.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to set in-line expres­
sions like lim (tan xl lin lx - 1 or display equations like

x-",/2

(l I G(\ [~ Skz'l S ·'Ik G z - en,. - exp .L. -- - IT e ,-
k~1 k ,>1

-[1+S1Z+ S~;2 + .. '][1+ S~Z2 + :!.;; + ...) ...

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathemati­
cal expressions can be embedded in the running text of a manuscript, and the entire document
produced in one process. This user's guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical
expressions on OASI and GS(terminals and Model 37 teletypes.

August IS, 1918

tUNIX is a Trademark of Bell Laboratories.

Typesetting Mathematics - User's Guide (Second Edition)

Bnall W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

10 Il'IIroduclion

EQN is a program for typesetting
mathematics on the Graphics Systems pho­
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular,
mathematical symbols like +, x,
parentheses, and so on have no special
meanings. EQN is quite happy to set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[ll, so the 110r­
mal mode of operation is to prepare a docu­
ment with both mathematics and ordinary
text interspersed, and let EQN set the
mathematics while TROFF does the body of
the text.

On UNIX, EON will also produce
mathematics on DASI and GS! terminals and
on Model 37 teletypes. The input is identi­
cal, but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
course, some things won't look as good
because terminals don't provide the variety
of characters, sizes and fonts that a
typesetter does, but the output is usually
adequate for proofreading.

To use EQN on UNIX,

eqn tiles I trolf

GCOS use is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical
expression begins and ends, we mark it with
lines beginningEQ and .EN. Thus if you
type the lines

.EQ
x-y+z
.EN

your output will look like

x-y+=

The .EQ and .EN are copied through
untouched; they are not otherwise processed
by EQN. This means that you have to take
care of things like centering, numbering,
and so on yourself. The most common way
is to use the. TROFF and NROFF macro pack­
age package '-ms' developed by M. E.
Leskl3], which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equations are
centered by default. To left-justify an equa­
tion, use .EQ L instead ofEQ. To indent it,
use .EQ I. Any of these can be followed by
an arbitrary 'equation number' which will be
placed at the right margin. For example,
the input

.EQ I O.la)
x - f(y/2) + y/2
.EN

produces the output

x-f(y/2l+y/2 O.la)

There is also a shorthand notation so
in-line expressions like 1T ,1 can be entered
withoulEQ and .EN. We will talk about it in
section 19.

3, Input spaces

Spaces and new lines within an expres­
sion are thrown away by EQN. {Normal text
is left absolutely alone.} Thus betweenEQ
and .EN,

x-y+z

and

and

x - y
+z

and so on all produce the same output

x-y+z

You should use spaces and new lines freely
to make your input equ'uions readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often hard to
fix if you mak.e II mistake.

4. Output spaces

To force extra spaces into the output,
use a tilde" -" for each space you want:

x-"-y-+-z

gives

x-y+z

You can also use II circumflex "-", which
gives II space half the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres­
sion, but the tab stops must be set by nOFF
commands.

5. Symbols, Specllli Nllmes, Greek

EQN knows some mathematical sym­
bols, some mathematical names, and the
Greek alphabet. For example,

x-2 pi int sin (omega t)dt

produces

x-211Jsin(wt)dt

Here the spaces in the input are n~sslU'Y
to tell EQN that int, pi, sin and omega are
separate entities that should get special
treatment. The sin, digit 2, and parentheses
are set in roman type instead of italic; pi and
omega are made Greek; and int becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type" '(pi) without leaving spaces
on both sides of the pi. As a result, EQN
does not recognize pi as a special word, and
it appears as j(pi) instead of j(1T).

- 2 -

A complete list of EQN names appears
in section 23. Knowledgeable users can also
use TROFF four-character names for any­
thing EQN doesn't know about, like \ (bs for
the Bell System sign @.

6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
sUff0unding a special word by ordinary
spaces (or tabs or newlines), as we did in
the previous section.

You can also mak.e special words stand
out by surrounding them with tildes or
circumflexes:

x- - -2"pi-int-sin - (-omega -1-) -dt

is much the same as the last example,
except that the tildes no! only separate the
magic words lik.e sin, omega, and so on, bUI
also add ex Ira spaces, one space per tilde:

x - 2 11 J sin (iii I) dl

Special words can also be separated by
braces (J and double quotes •.. :, which
have special meanings that we will see soon.

7. Subscripts alld Superscripts

Subscripts and superscripts are
obtained with the words sub and sup.

x sup 2 + y sub Ie

gives

x2.ry.

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces; x sub2 will give you
xsub2 instead of -"2. Furthermore, don't
forget to leave a space (or a tilde, etc.) to
mark the end of a subscript or superscript.
A common error is to say something like

y - (x sup 2) + 1

which causes
y_(x")+!

instead of the intended

y-(x")+l

Subscripted subscripts and super­
scripted superscripts also work:

x sub i sub!

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

)(sub j sup 2

is

Other than this special case, sub and
sup group to the right, so x sup y sub z
means xYz, not xY r

8. Brllces for Grol.lpi!lll

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde, etc.) What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces I and) to mark the beginning and
end of the subscript or superscript:

e sup Ii omega tl
is

Rule: Braces can always be used to force
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub [i sub !l sup 2

is

with braces, but

x sub i sub! sup 2

is

X'r
which is rather different.

Braces can occur wi thin braces if
necessary:

e sup {i pi sup (rho +1))

- 3 •

The general rule is that anywhere you could
use some single thing like x. you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the details
of positioning it and making it the right size.

In all cases, make sure you have the
right number of braces. Leaving one out or
adding an extra wi!! cause EQN to complain
bitterly.

Occasionally you. will have to print
braces. To do this, enclose them in double
quotes, like "(H. Quoting is discussed in
more detail in section \4.

9. Fractions
To make a fraction, use the word over:

1\ + b over 2c -I

gives

a+"_l
2c

The line is made the right length and posi­
tioned automatically. Braces can be used to
make clear what goes over what:

{alpha + beta) over (sin (xl}

is

~
sin (x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over, so

-b sup 2 over pi

_b2 1.
is -- instead of - b'" The rules which

11"

decide which operation is done firS! in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

HI. Square Rools

To draw a square root, use sqrt:

sqrt a + b + lover sqrt (ax sup 2 + bx +c)

is

Warning - square roots of tall quantities
look lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqn (a sup 2 over b sub 21
is

-Jf
Big SQuare roots are generally better written
as something to the power '12:

(a 2/ b1) 'h

which is

(a sup 2 Ib sub 2) sup half

n. Summation, Integral, Etc.

·4-

12. Size and Font Changes
By default, equations are set in 10-

point type (the same size as this guide),
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali­
ant attempt 10 use esthetically pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, ilalic. bold
and ja~ Like sub and sup, size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

bold x y

is

xy

Summations, integrals, and similar and
constructions are easy:

sum from i -0 to (i - infl x sup i

produces

Notice that we used braces to indicate where
the upper part i-co begins and ends. No
braces were necessary for the lower part
i-O, because it contained no blanks. The
braces will never hurt, and if the /rom and 10
parts contain any blanks, you must use
braces around them.

The /rom and to parts are both
optional. but if both are used, they have to
occur in that order. .

Other useful characters can replace the
rum in our example:

int prod union inter

become, respectively,

J n u n
Since the thing before the /rom can be any­
thing, even something in braces, /rom-Io can
often be used in unexpected ways:

lim from (n -> infl x sub n -0

is

gives

size 14 bold)(- Y +
size 14 (alpha + betal

x-y+a+j3
As always, you can use: braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 12 (...)

Legal sizes which may follow size are
6, 7, 8, 9, 10, 11, 12, 14, 16, 18,20, 22, 24,
28, 36. You can also change the size by Ii

given amount; for example, you can say
size +2 to make the size two points bigger,
or size -3 to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman, italic and bold, you can say jOnt X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, italic and bold, other fonts may not
give quite as good an appearance.

The jat operation takes the current
font and widens it by overstriking: jal grad is
V' and jal Ix sub Il is XI'

If an entire document is to be in a
non-standard size or font, it is a severe nui­
sance to have to write out a size and font
change for each equation. Accordingly, you
can set a "global" size or font which

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In piace of R, you can use any
of the TROFF font names. The size after
gS1:1:1! can be a relative change with + or -.

Generally, gsizl! and gfOnl will appear at
the beginning of a document but they can
also appear thoughout a document: the glo­
bal font and size can be changed as often as
needed. For example, in a footnote; you
will typically want the size of equations to

match the size of the footnote text, which is
two points smaller than the main text.
Don't forget to reset the global size at the
end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters,
there are severa! words:

x dot .i:
x dotdot x
x hal x
x tilde x
x vee x
x dyad x
x bar x
x under :!

The diacritical mark is placed at the right
height. The bar and under are made the
right length for the entire construct, as in
x:fYTz; other marks are centered.

14. Quoted Text
Any input entirely within quotes

(•.. .") is not subject to any of the font
changes and spacing adjustments normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

;like this one. in which we have a few random
expressions like x, and ~. The sizes for these "'.f. set by tho command gs". -1.

- 5 -

italic "sin(x)" + sin (x)

is

sin (x) +sin(;cl

Quotes are also used to get braces and
other EQN keywords primed:

"\ size al;Jha 1"
is

(size alpha)

and

roman "{ size alpha 1"
is

! size alpha 1

The construction •• is often used as a
place-hOlder when grammatically EQN needs
something, but you don't actually want any­
tiling in your output. For ~xample, to make
2He, you can't just type sup 2 romal! He
because a sup has to be a superscript on
something. Thus you must say

~ sup 2 roITlan He

To get a litera! quote use "\ .". TROFF

characters like \ (bs can appear unquoted,
but more complicated things like horizontal
and vertical motions with \h and \ v should
always be quoted. (If you've never heard of
\h and \ v. ignore this section.)

IS. Lining Up Equations

Sometimes it's necessary to line up a
series of equations at some horizontal posi­
tion, often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Suc­
cessive equations can contain one
occurrence of the word lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
ail possible. Thus, for example, you can say

.EQ I
x+y mark - z
.EN
. EQ I
x lineup -
.EN

to produce

For reasoos too complicated to taik about,
when you use EQN and '-ms', use either
.EQ I orEQ L. mark and lineup don't work
with centered equations. Also bear in mind
that mark doesn't look ahead;

x mark -1

x+y lineup -z

isn't going to work, because there isn't
room for the x+y part after the marK.
remembers where the x is.

16. Big Brackets, Etc.

To get big brackets [1, braces (},
parentheses (), and bars II around things,
use the Ie!! and right commands:

left (a over b + 1 right I
--" left (cover d right)
+ left [e right 1

is

The resulting brackets are made big enough
to cover whatever they enclose. Other char­
acters can be used besides these, but the are
not likely to look very good. One exception
is the floor and ceiling characters:

left floor x over y right floor
< - left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are
made up of three, five, seven, etc., pieces,
while brackets can be made up of two,

- 6·

three, etc. Second, big left and right
parentheses often look poor, because the
character sel is poorly designed .

The right part may be omitted: a "left
something" need not have a corresponding
"right something". If the right part is omit­
ted, I'll! braces around the thing you want
the left bracket to encompass. Otherwise,
the resulting brackets may be 100 large.

If you want (0 omit the left part, things
are more complicated, because technically
you can't have a right without a correspond­
ing le!t. Instead you have to say

left right)

for example. The ie!r"' means Ii "left noth­
ing". This satisfies the rules without hurt­
ing your output.

17. Plies

There is a general facility for making
vertical piles of things; it comes in several
flavors. For example:

A --- left !
pile! 1I above b above c I
- pile! x above y above z I

right I
will make

The elements of the pile (there can be as
many as you wand are centered one above
another, at the right heigh! for most pur­
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed, even contain­
ing more piles.

Three other forms of pile exist: Ipile
makes a pile with the elements left-justified;
,pile makes a right-justified pile; and cpile
makes a centered pile, just like pile. The
vertical spacing between the pieces is some­
what larger for 1-. ,- and cpiles than it is for
ordinary piles.

roman sign (x)--­
left \

Ipile \1 above 0 above -1 J
-- ipile
(iix>O above iix-O above iix<ol

makes

1 if :c>0
sign(x) - 0 if :c-O

-I if x<O

Notice the left brace without a matching
right one.

18. Matrices

It is also possible to make matrices.
For example. to make a neat array like

you have to type

matrix (

x, x 2

Yi yl

ccol (x sub i above y sub i I
c:c:ol (x sup 2 above y sup 2 I

I
This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use Icol or rcol to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles, by the way, is that if
the elements of the piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
what spacing to use.

A word of warning. about matrices -
each column must have the same /lumber 0/
elements in it. The world will end if you get
this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is
necessary to follow mathematical conven­
tions not just in display equations, but also
in the body of the text, for example by mak­
ing variable names like :c italic. Although
this could be done by surrounding the
appropriate parts with .EQ and .EN, the con­
tinual repetition of .EQ and .EN is a nuisance.
Furthermore, with '-ms', .EQ and .EN imply
a displayed equation.

- 7 -

EQN provides a shorthand for short in­
line expressions. You can define two char·
acters to mark the left and right ends of an
in-line equation, and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs. for example. add to the beginning of
your document the three lines

.EQ
delim SS
.EN

Having done this, you can then say things
like

Let Salpha sub is be the primary
variable, and let SbetaS be zero.
Then we can show that $x sub 1 S is
S> -OS.

This works as you might expect - spaces,
newlines, and so on are significant in the
text, but not in the equation part itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that

something like t.x, does not interfere ~ith
,-I

the lines surrounding it.

To turn olf the delimiters,

.EQ
delim olf
.EN

Warning: don't use braces, tildes,
circumflexes, or double quotes as delimiters
- chaos will resulL

20. Definitions

EQN provides a facility so you can give
a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example, if
the sequence

x sub i sub 1 + Y sub i sub 1

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define xy 'x sub i sub 1 + Y sub i sub l'

This makes ~ a shorthand for whatever
characters occur between the single quotes
in the definition. You can use any character

instead of quote to mark the ends of the
definition, so long as it doesn't appear inside
the definition.

Now you can use .X}' like this:

.EQ
fIx) - xy ...
.EN

and so on. Each occurrence of xy will
expand into what it was defined as. Be care­
ful to leave spaces or their equivalent
around the name when you actually use it,
so EQN will be able tD identify it as special.

There are several things to watch out
for. First, although definitions can use pre­
vious definitions, as in

. EQ
define xi 'x sub i '
define xii 'xi sub I '
.EN

don't define someching in terms of itse/r A
favorite error is 10 say

define X 'roman X '

This is a guaranteed disaster. since X is now
defined in terms of itself. If you say

define X 'roman "X' ,

however, the quotes protect the second X.
and everything works fine.

EQN keywords can be redefined. You
can make / mean over by saying

define I 'over'

or redefine over as I with

define over 'I'

If you need different things to print on
a terminal and on the typesetter, it is some­
times worth defining a symbol differently in
NEQN and EQN. This can be done with
nde./ine and {de./ine. A definition made with
nde./ine only takes effect if you are funning
NEQN; if you use (define, the definition only
applies for EON. Names defined with plain
define apply to both EQN and NEON.

21. Local Motions

Although EQN tries to get most things
at the right place on the paper, it isn't per­
fect, and occasionally you will need to tune
the output to make it juS! right. Small extra

- 8 -

horizontal spaces can be obtained with tilde
and circumflex. You can also say back /I and
fivd n to move small amounts horizontally.
n is how far to move in 1I100's of an em
(an em is about the width of the letter 'm'J
Thus back 50 moves back about half the
width of all m. Similarly you can move
things up or down with up n and down n. As
with sub or sup, the local motions affect the
next thing in the input, and this can be
something arbitrarily complicated if it is
enclosed in braces.

22. A Large Example

Here is the complete source for the
three display equations in the abstract of this
guide .

.EO I
G(z)-mark -- e sup II~ - G(Z) I
--- exp left (
sum from k> -I Is sub k z sup kl over k right)
--- prod from k> -I • sup Is sub k z sup k Ikl
.EN
.EOl
lineup - left (I + S sub I z +
I S sub I sup 2 z sup 2 lover 2! .;. ... right)
lef! (1 + I S sub 2 z ,up 2 lover 2
+ I S sub 2 sup 2 z sup 4 lover I 2 sup 2 cdol 2! I
+ ... right) ...
.EN
.EQl
lineup - sum from m> -0 left (
sum from
pile I k sub I ,k sub 2 k sub m >-0
aoove
k sub I +2k sub 2 + ... +mk sub m -mJ
I 5 sub 1 ,up Ik sub 11 lover 11 sup k sub I k sub 1 ! 1 -
IS .ub 2 sup Ik sub 21 lover 12 sup k sub 2 k sub 2 ! 1 -

I S sub m sup Ik sub m} lover 1m sup k sub m k sub m ! 1
'ilMI) Z sup m
.EN

23. Keywords, Precedences, Etc.

If you don't use braces, EON will do
operations in the order shown in this list.

dyad vee under bar lilde hat dot dotdol
fivd back down up
jar roman italic bald sIze
sub sup Sljrt over
./rom (0

These operations group to the left:

over Sljrl left right

All others group to the right.

Digits. parentheses. brackets. punctua­
lion marks. and these mathematical words
are converted to Roman font when encoun­
tered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re 1m and if for det

These character sequences are recognized
and translated as shown.

>- ~
<- " -- ;;;;

!- ;at

+- :I::
->
<-
« «
» »
inf 00

partial a
half 'Il
prime
approx ==
nothing
cdol
times)(

del "'i/
grad "'i/

sum 1:
inl f
prod n
union U
inter ()

To obtain Greek letters. simply spell
them out in whatever case you want:

DELTA tJ. iota
GAMMA r kappa K

LAMBDA II. lambda A.
OMEGA n mu ,.,.
PHI 41 nu " PI n omega Cal

PSI 'V omicron 0

SIGMA I phi q,
THETA e pi ,,-
UPSILON Y psi ojJ
XI - rho p
alpha a sigma 0"

- 9 -

beta 13 tau 1"

chi)(theta ()

delta Ii upsilon v
epsilon • xi f
eta " zeta ,
gamma 'Y

These are all the words known to EQN
(except for characters with names). together
with the section where they are discussed.

above 17.18 Ipile 17
back 21 mark IS
bar 13 matrix 18
bald 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
fonl 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
Ifont 12 under 13
pize 12 up 21
hat 13 vee 13
italic 12

(I
4.6

leol 18 8
left 16 8, 14
lineup IS

24. Troubleshootlnl
If you make a mistake in an equation,

like leaving out a brace (very common) or
having one too many (very common) or
having a sup with nothing before it <Com­
mon), EQN will tell you with the message

$)Inrax error between lines x and y, file z

where x and yare approximately the lines
between which the trouble occurred, and r is
the name of the file in question. The line
numbers are approximate - look nearby as
well. There are also self-explanatory meso
sages that arise if you leave out a quote or
try to run EQN on a non·existent file.

If you want to check a document
before actually printing it (on UNIX only),

eqn files> Idev/null

will throwaway the output but print the
messages.

If you use something like dollar signs
as delimiters. it is easy to leave one out.
This causes very strange troubles. The pro­
gram chl!ckl!q (on Gces. use .Ichl!ckl!q
instead) ch~ks for misplaced or missing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message "word overflow". you
have exceeded this limit. If you print the
equation as a displayed equation this mes­
sage will usually go away. The message
"line overflow" indicates you have
exceeded an even bigger buffer. The only
cure for. this is to break the equation into
two separate ones.

On a related topic, EQN does not break
equations by itself - you must split long
equations up across multiple lines by your­
self. marking each by a separate .EQ EN
sequence. EON does warn about equations
that are too long 10 fil on one line.

25. Use Oil UNIX
To print a document that contains

mathematics on the UNIX typesetter.

eqn files I trolf

If there are any TROFF options. they go after
the TROFF part of the command. For exam­
ple.

eQn files I troff -ms

To run the same document on the Gees
typesetter. use

- 10·

eqn files I trolf -g (other options) I geal

A compatible version of EON can be
used on devices like teletypes and DASI and
GSI terminals which have half-line forward
and reverse capabilities. To print equations
on a Model 37 teletype, for example, use

neqn files I nrolf

The language for equations recognized by
NEQN is identical to that of EQN. although of
course the output is more restricted.

To use a GSI or DASI terminal as the
output device.

neqn files I nrolf - Tx

where x is the terminal type you are using.
such as 300 or 300S.

EON and NEQN can be used with the
TilL program [2] for setting tables that con­
tain mathematics. Use TIll before [NiEQN.

like this:

tb! files I eqn I ,rolf
lbl files I neqn I nroff

26. Admol'l'l~gmen!s

We are deeply indebted to J. F.
Ossanna, the author of !ROFF, for his wil­
lingness 10 extend TROFF to make our (asK
easier. and for his continuous assistance
during the development and evolution of
EQN. We are also grateful to A. V. Aho for
advice on language design. to S. C. Johnson
for assistance with the Y Ace compiler­
compiler. and to all the EQN users who have
made helpful suggestions and criticisms.

References

III 1. F. Ossanna, "NROFFfTROFF User's
Manual". Bell Laboratories Computing
Science Technical Report #54, 1976.

(2) M. E. Lesk. "Typing Documents on
UNIX", Bell Laboratories. 1976.

[3) M. E. Lesk, "TBL - A Program for
Setting Tables" • Bell Laboratories
Computing Science Technical Report
#49. 1976.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Tbl is a document formatting preprocessor for froff or mo.ff which makes
even fairly complex tables easy to specify and enter. It is available on the PDP·

Ii UNIX' system and on Honeywell 6000 Geos. Tables are made up of columns
which may be independently centered, right-adjusted. left-~djusted. or aligned
by decimal points. Headings may be placed over single columns or groups of
columns. A table entry may contain equations. or may consist of several rows
of text. Horizontal or vertical lines may be drawn as desired in the table. and
any table or element may be enclosed in a box. For example:

1970 Federal Budget Transfers
(in billions or doliars)

State
Taxes Money

Net
collected spent

New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +!.! 7
Texas 9.33 11.13 + 1.80

January 16, 1979

• UNIX is a Trademark/Service Mark of the nell System

Introduction.

Till - A Program to Format Tables

,'vi. E. Lesk

Bell Laboratories
Murray Hill, New Jersey Oi974

Tbl turns a simple description of a table into a (rot! or nrot! [1] program (list of com­
mands) that prints the table. Tbl muy be used 011 the PDP·ll UNIX [2] system and on the
Honeywell 6000 GCOS system. It attempts to isolate a portion of a job that it call successfully
handle and leave the remainder for other programs. Thus Ibl may be used with the equation
formatting program eqn [J] or various layout macro packages [4,5,6]' but does not duplicate
their functions.

This memorandum is divided into two parts. First we give the rules for preparing Ibl
input; then some examples are shown. The description of rules is precise but technical, and the
beginning user may prefer to read the examples first, as they show some common table
arrangements. A section explaining how to invoke rbl precedes the examples. To avoid repeti­
tion, henceforth re:Jd ryoffas "Irolfor nrolf"

The input to rbl is text for a document, with tables preceded by a ". TS" (table start)
command and followed by a ". TE" (table end) command. fbi processes the tables, generating
trot! form.ming commands. and leaves the remainder of the text unchanged. "n1e". TS" and
". TE" lines are copied, too, so that Irq!! page layout macros (such as the memo formatting
macros [4]) can use these lines to delimit and place tables as they see fit. In particular, any
arguments on the". TS" or ". TE" lines are copied but otherwise ignored, and may be used by
document layout macro commands.

The format of the input is as follows:

text
.TS
table
.TE
text

.TS
rable
.TE
text

where the format of each table is as follows:

.IS
ojJoons ;
formal.
dalo
.TE

Each table is independent, and must contain formatting information followed by the data to be
entered in the table. The formatting information, which describes the individual columns and
rows of the table, may be preceded by a few options that affect the entire table. A detailed
description of tables is given in the next section.

Input commands.

As indicated above, a table contains, first, global options, then a format section describing
the layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The various parts of the table are entered as follows:

!) OnIONS. There may be a single line of options affecting the whole lable. if present, this
line must follow the . TS line immediately and must contain a list of option names
separated by spaces, tabs, or commas, and must be terminated by a semicolon. The
allowable options are:

center - center the table (default is left-adjust);

expand

oox
allbax

- make the table a.~ wide as the curren! line length;

- enclose the table in a box;

- enclose each item in the tabie in a box;

doublebox - enclose the table in two boxes;

!ab C'd - use x instead of tao to separate data items.

linl!size (n) - set lines or rules (e.g. from bllx) in 11 point type;

delim (xy) - recognize x and y as the eq1l delimiters.

The fbi program tries to keep boxed tables on one page by issuing appropriate "need"
(. ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu·
rate; use normal Iroffprocedures, such as keep-release maciOS, in that case. The user who
must have a multi·page boxed table should use macros designed for this purpose, as
explained below under 'Usage.'

2) FORMAT. The format section of the table specifies the layout of the columns. Each line
in this section corresponds to one line of the table (except that the last line corresponds to
all following lines up to the next .T&, if allY - see below), and each line contains a key·
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key·letter is one of the following:

L or I to indicate a lefH!djusted column entry;

R or r to indicate a right-adjusted column entry;

Cor c to indicate a centered column entry;

N or II to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits of numbers line up;

A or Ii to indicate an alphabetic subcolumn; all corresponding entries are aligned on
the left, and positioned so that the widest is centered within the column (see
example 011 page 12);

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the firs! column, obvi·
ously); or

to indicate a vertically spanned heading, i.e. to indicate that the entry from the
previous row continues down through this row. (Not allowed for the first row
of the table, obviously).

When numerical alignment is specified, 11 location for the decimal point is sought. The
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining
a digit, the rightmost digit is used as a units digit; if no alignment is indicated, the item is
centered in the column. However, the special non-printing character string \& may be
used to override unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dO! normally would, and then disappears from the final output. In the
example below, the items shown at the left wi!! be aligned (in a numerical column) as

shown on the right:

13
4.2
26.4.12
abc

- 3 -

abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749.12

Nole: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider Lor r items (L is used instead of I for
readability; they have the same meaning as key-letters). Alignment within the numerical
items is preserved. This is similar to the behavior of a type data. as explained above.
However, alphabetic subcolumns (requested by the iii key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this.
This is not true for i1 type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-Ie.tters describing each column should be separated by spaces.
The end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Thus a simple fOT­

mal might appear as:
c s s
I n I'l.

which specifies a table of three columns. The first line of the table contains a heading cen­
tered across all three tolumns; each remaining line contains a left-adjusted item in the
firs! column followed by two columns of numerical data. A sample table in this format
might be:

Overall title
Item-a 34.22 9.1
Hem-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key·letter system:

Horizontal lines - A key-letter may be repiacedby , , (underscore) to indicate a hor­
izontal line in place of the corresponding column ~!ltry, or by '-' to indicate a dou­
ble horizontal line. If an adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is extended to meet the
nearby lines. If any data entry is provided for this column, it is ignored and a warn­
ing message is printed.

Vertical lines - A vertical bar may be placed between column key-letters. This will
cause a vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line at the
edge of the table. If two vertical bars appear between key-letters, a double vertical
line is drawn.

Space bel ween columns - A number may follow the key-letter. 11lis indicates the
amount of separation between this column and the next column. The number nor­
mally specifies the separation in ens (one en is about the width of the lener '0 ').' If
the "expand" option is used, then these numbers are multiplied by il constant such
Ihal the table is as wide as the: current line length. The defauit column separation

• More Drec~ly, an en is a number of point5 (l poiilt - i/72 Inch) eql,Jal t.o half (he current type size.

- 4 -

number is 3. If the separation is changed the worst case (largest space requested)
governs.

Verlical spanning - Normally, vertically spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is followed by ! or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be followed by a string containing a font name or
number preceded by the leiter f or F. TIlis indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters; a one-Ie!!er font name should be separated from whatever
follows by a space or tab. The single leiters B, b, I, and i are shorter synonyms for
fB and n. Fon! change commands given with the table entries override these
specifications.

Poim size changes - A key-letter may be followed by the leiter II Of P and a number to
indicate the poin! size of the corresponding table entries. The number may be a
signed digit, in which case it is taken ilS an increment or decrement from the current
poin! size. If both a poin! size and a column separation value are given, one or
more blanks must separate them.

Verrical spacing changes - A key-leiter may be followed by the letter v or V and a
number 10 indicate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit. in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value mlJst be separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below).

Column widll! indication - A key-leiter may be followed by the letter w or Wand a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is 110t as wide as ,he width value given after the lV, the larg­
eSl element is assumed Ie be thaI wide. If the largest element in Ihe column is
wider than the specified value, its width is used. The width is also used as a default
line length for included text blocks. Normal {rolf lJni!5 can be used to scale the
width value~ if none are used, the default is ens. If the width specification is a unit­
less integer the parentheses may be omitted. If Ihe width value is changed in a
column, the last one given controls.

Equal width columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. Ai! columns whose key·letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Nole: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

np12w(;Ui)fi 6

Alternative lIolariof! - Instead of listing the forma.! of successive lines of a table on con­
secutive lines of the format section, successiw; line formats may b~ given on the
same line, separated by commas, so that the format for the example above might
ha ve been wri Hen:

C S 5, 1 n n .
De/aI-iii - Column descriptors missing from the of a format line are assumed to be

L. The longest line: in format section, howe'itt, dd]!·es the number of columns
in the tilble~ extra columns in the data are ignored

• 5 -

3) DATA. The data for the table are typed after the formaL Normally. each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac­
ter is \ is combined with the following line (and the \ vanishes). The data for different
columns (the table entries) are separated by tabs, or by whatever character has been
specified in the option robs option. There are a few special cases:

Troff commands wirhln robles - An input line beginning with a '.' followed by anything
but a number is assumed to be a command to rroff and is passed through unchanged,
retaining its position in the table. So, for example, space within a table may be pro­
duced by ".sp" commands in the data.

Full Width horizonlal lines - An input line containing only the character (underscore)
or - (equal sign) is taken to be a single or double line, respectively:-extending the
full width of the lable.

Single column horizontollines - An input table entry containing only the character _ or ...
is taken to be a single or double line extending the full width of the column. Such
lines are extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by \& or follow
them by a space before the usual tab or newline.

Shorr hori:onral lines - An input table entry containing only the string \ is taken to be a
single line as wide as the contents of the column. It is not extended to meet adjoin­
ing iines.

Repeated characters - An input table enrry containing only a string of the form \Rx
where x is any character is replaced by repetitions of the character x as wide as the
data in the column. The sequence of x's is not extended to meet adjoining
columns.

Vertically spanned items - An input table entry containing only the character string \.
indicates that the table entry immediately above spans downward over this row. It is
equivalent to a table format key-letter of '-'.

Text block:; - In order to include a block of text as a table entry, precede it by TI and
follow it by TJ. Thus the sequence

... T(
block of
rexl
TI., .

is the way to enter. as a single entry in the table, something that cannot con­
veniently be typed as a simple string between tabs. Note that the Tl end delimiter
must begin a line; additional columns of data may follow after a lab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. If more than twenty or thirty text blocks are used in a table, various limits in
the Iroff program are likely to be exceeded. producing diagnostics such as 'too many
string/macro names' or 'too many number registers.'

Text blOCKS are pulled out from the table, processed separately by rroff, and replaced
in the table as a solid block. If no line length is specified in the block of rexl itself,
or in the table format, the default is to use Lx C / (N + 1) where L is the current line
length, C is the number of table columns spanned by the text. and N is the total
number of columns in the table. The other parameters (point size, font, etc.) used
in setting the block of leXI are those in effect at the beginning of the table (including
the effect of the ", TS" macro) and any table format specifications of size, spacing
and font, using the p, v and f modifiers to the column key-letters. Commands
within the text block itself are also recognized, of course. However, troff commands
within the table data but not within the text block do not affect that block.

- 6 -

Warnings: - Although any number of lines may be present in a table, only the firSl 200
lines are used in calculating the widths of the various columns. A mUlti-page table,
of course, may be arranged as several single-page tables if this proves to be a prob­
lem. Other difficulties with formatting may arise because, in the calculation of
column widths all table entries are assumed to be in the font and size being used
when the". TS" command was encountered, except for font and size changes indi­
cated (a) in the table format section and (b) within the table data (as in the entry
\5 + 3\f1data\fP\sO). Therefore, although arbitrary troffrequests may be sprinkled in
a table, care must be taken to avoid confusing the width calculations; use requests
such as '. ps' with care.

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi­
lar lines, as with sub-headings or summarizations, the" .T&" (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
opl/ons ;
formal.
dala

.T&
format.
dora
.T&
formal.
data
.TE

as in the examples on pages 10 and 12. Using this procedure, each table line can be close
10 its corresponding formal line.

Warning: it is not possible to change the number of columns, the space between columns,
the global options such as box, or the selection of columns to be made equal width.

Usage.

On UNIX, rbl can be run on a simple table with the command

(bl input-file I trolf

but for more complicated use, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables, the normal command would be

thl file-l file-2 , .. I eqn I trolf -ms

and, of course, the usual options may be used on the rroffand eqn commands. The usage for
nroffis similar to that for rroff, but only TELETYPE~ Model 37 and Diablo-mechanism (DASI or
G51) terminals can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or
post-filters, there is a special - TX command line option to Ibl which produces output that does
nol have fractional line motions in it. The only other command line options recognized by Ibl
are -ms and -mm which are turned into commands to fetch the corresponding macro files;
usually it is more convenient to place these arguments on the rroff part of the command line,
but they are accepted by Ibl as well.

Note thai when eqn and Ibl are used together on the same file tbl should be used first. If
there are no equations within tables, either order works, but it is usually faster to run Ibl first,
since eqn normally produces a larger expansion of the input than rbl. However, if there are
equations within tables (using the delim mechanism in eqn) , tbl must be first or the output will
be scrambled. Users must also beware of using equations in "-style columns; this is nearly

- 7 -

always wrong, since fbi attempts to split numerical forma! items into two parts and this is not
possible with equations. The user can defend against this by giving the dellm(o:) table option;
this prevents splitting of numerical columns within tile delimiters. For example, if the eqn del­
imiters are 55, giving delindSS) a numerical column such as "1245 $+. 165" will be divided
after 1245, no! after 16.

Tb/limits tables to twenty columns; however, use of more than 16 numerical columns
may fail because of limits in Iroff. producing the 'too many number registers' message. Tro/l
number registers used by (bl must be avoided by the user within tables; these include two-digit
names from 31 10 99, and names of the forms #x, x+, x l -x, and x-, where x is any lower
case letter. The names ##, #-, and #" are also used in certain circumstances. To conserve
number register names, the II and a formats share a register; hence the restriction above that
they may not be used in T.he same column.

For aid in writing layout macros, fbi defines a numbet register TW which is the table
width; it is defined by the time that the". TE" macro is invoked and may be used in the
expansion of that macro. More importantly, to assist in laying out mUlti-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a boxed table, and then
invoked at its end. By use of this macro in the page footer a mUlti-page table can be boxed. In
particular, the inS macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the". TS" macro. if the table stan macro is written

.TS H
a line of the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the
".TH" is placed at the top of each page of table; the remaining lines in the table are placed on
severa! pages as required. Note that this is nor a feature of fbi, but of the ms layout macros.

Examples.

Here are some examples illustrating features of rhl. The symbol <Il in the input
represents a tab character.

Input:

.TS
box;
c c c
i I I-
Language G) Authors <Il Runs on

Fortran <V Many <Il Almost anything
PLII <IlIBM<Il360/370
CG)BTL <Il11/45,H6000,370
BLISS tl) Carnegie-Mellon <Il PDP-IO,II
IDS <Il Honeywell <Il H6000
Pascal <Il Stanford <Il370
.TE

Oulput:

Language

Fortran
PLIl
C
BLISS
IDS
Pascal

Authors

Many
IBM
BTL
Carnegie-Mellon
Honeywell
Stanford

Runs on

Almost anything
3601370
11/45,H6000,370
PDP-IO,ll
H6000
370

• 8 •

Input:

.TS
allbox;
c s s
c c c
n n n.
AT&T Common Stock
Year Gl Price Gl Dividend
1971 Gl41·54GlS2.60
2(i)41·S4Gl2.70
3 Gl46·55 Gl 2.87
4Gl40-53 Gl3.24
SGl45·52Gl3.40
6Gl51·59Gl.9S·
.TE
• (first Quarter only)

Input:

.TS
box;
c s s
clclc
1111n.
Major New York Bridges

Bridge Gl Designer Gl Length

BrooklynGl]' A. RoebiingGll595
ManhattanGlG. LindenlhalGl1470
Williamsburg Gl L. L. Buck Gl 1600

Queensborough Gl Palmer & Gl 1182
Gl Hornbostel

~ Gl1380
TriboroughGlO. H. AmmannGl
Gl Gl383

Bronx WhitestoneGlO. H. Ammann Gl2300
Throgs NeckGlO. H. AmmannGll800

Output:

AT&T Common Stock
Year Price Dividend
1971 4]·54 52.60

2 41·54 2.70
3 46·55 2.87
4 40·53 3.24
S 45·52 3.40
6 51-59 .95"

• (firs! Quarter only)

Output:

Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queensborough Palmer &

Hornbostel

Triborough O. H. Ammann

Bronx Whitestone O. H. Ammann
Throgs Neck O. H. Ammann
George Washington O. H. Ammann

George WashingtonGlO. H. Ammann Gl3500
.TE

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

Input:

.TS
c c
np-ZI n I •
G:lSlack
G:l_
I G:l46
G:l_
2 G:l 23
G:l_
:I G:lIS
G:l_
4G:l6.S
G)

5.£2.1
G)_

.IE

Inllut:

.TS
box;
LLL
Ll
L LILE
LL
LlL
january G) february (f) march
april G:lmay
june G:l july G:l Months
august G:lseptemoor
october Cb november G:ldecember
.TE

• 9 -

Output:

Stack
46
23
15

4 6.5

2.1

Output:

january
april
june
august
october

february march
may
july I Months
september
november december

- 10 -

Output: Input:

.TS
box;

Composition of Foods

ern s s s.
Composition of Foods

.T&
e Ie s s
c Ie s s
c I c I c I c.
Food ell Percent by Weight
\-~

\ - ell Protein ell Fat ell Carbo­
\ - ~\ - ~\ - ~hydrate

.T&
I I n I n In.
Apples~ .4~ .5el1I3.0
Halibut~ 18.4~5.2~.
Lima beans~7.S~.8~22.0
Milk~3.3~4.0~S.0

Mushrooms~3.5~ .4~6.0

Rye bread ~9.0~.6 elI52. 7
.TE

Input:

.TS
all box;
cn s s
c cw(li) cw(lD
Ip9 Ip9 Ip9.
New York Area Rocks
Era ~ Formation ~ Age (years)
Precambrian ell Reading Prong ell> 1 billion
Paleozoic~Manhatt.an Prong~400 million
MesozoicellT{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T)~200 million
Cenozoic~Coastal PlainellT{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
. ad
T)
.TE

Food

Apples
Halibut
Lima beans
Milk
Mushrooms
Rye bread

Output:

Era
Precam brian

Paleozoic
Mesozoic

Cenozoic

Percent by Weight

Protein
Carbo-

Fat
hydrate

.4 .5 13.0
18.4 5.2 ...
7.5 .8 22.0
3.3 4.0 5.0
3.5 .4 6.0
9.0 .6 52.7

New York Area Rocks
Formation Age (years)

Reading Prong >1 billion
Manhaltan Prong 400 million
Newark Basin, 200 million
incl. Stockton,
LOCkatong, and
Brunswick for-
mations; also
Watchungs and
Palisades.

Coastal Plain On Long Island
30,000 years;
Cretaceous sedi-
ments redepo-
sited by recent
glaciation.

Input:

.EQ
delim SS
.EN

.TS
doubiebox;
c c
II.
Name <:il Definition
.$1'
.vs +21'

- 11 -

Output:

I Name

Gamma

Sine

Error

Bessel

Zeta

Definition

~

,(s)-l:k-' (Reo s>J)
;-

Gamma<:ilSGAMMA (z) ... inl sub 0 sup inf t sup {z-I} e sup -t diS
Sine <:il$sin (x) ... ! over 2i (e sup ix • e sup -ix)$
Error <:il $ roman err (z) - 2 over sqrt pi in! sub 0 sup z e sup (-t sup 21 diS
Bessel G'> $ J sub 0 (z) - lover pi in! sub 0 sup pi cos (z sin theta) d theta $
Zeta<:ilS zeta (5) - sum from k-l to inf k sup -s --(Re"s > OS
.vs ·2p
.TE

Inpu!:

.TS
Output:

Readability of Text
bOllt. tab{ :);
cb s s s s
1:1'-2 s s s s
cllclclclc
cllclclclc

line Width and Leading rOf H) .. !'oint Type

r211 n21 n21 n21 n.
Readability of Tex!
Line Width and Leading for 10-Point Type

Line: Set: I-Point: 2·Point: 4-Point
Width: Solid: Leading: Leading: Leading

9 Pica: \-9.3: \·6.0: \-5.3: \-7.1
14 Pica:\-4.5:\·O.6:\-O.3:\-!.7
19 Pica :\-5.0:\-5.1: 0.0:\-2.0
31 Pica:\-3.7:\-3.!I:\-2.4:\-3.6
43 Pica:\-9.1 :\-9.0:\-5.9:\-8.8
.TE

Line
Width

9 Pica
14 Pica
19 Pica
3! Pica
43 Pica

Set
Solid
-9.3
-4.5
-5.0
-3.7
-9.1

I-Point 2-Point 4-Point
Leading Leading LeJding

-6.0 -5.3 -7.1
-0.6 -0.3 -\.7
-s.! 0.0 -2.0
-3.8 -2.4 -3.6
-9.0 -5.9 -8.8

Illput:

.TS
c s
cip-2 s
In
an.
Some London Transport Statistics
(Year 1964)
Railway route miles (i) 244
Tube (i) 66
Sub-surface (i) 22
Surface (i) 156
.sp .5
.T&'
I r
a r.
Passenger traffic \- railway
JourneysG)674 million
Average lengthG)4.55 miles
Passenger miles G) 3,066 million
.T&'
I r
a r.
Passenger traffic \- road
Journeys (i) 2,252 million
Average length 1!12.26 miles
Passenger miles G) 5,094 million
.T&'
In
an.
.S!, .5
Vehicles(i) 12,521
Railway motor carsG)2.905
Railway trailer cars I!Il.269
Total railway (f)4, 174
Omnibuses Ij) 8,347
.T&'
In
an •
. sp .5
StaffG) 73. 739
Administrative, etc. G) 5,582
Civil engineering G) 5.134
Electrical eng.1j) I. 714
Mech. eng. \- railway(f)4.310
Mech. eng. \- road1j)9,152
Railway operations Ij) 8.930
Road operations Ij) 35. 946
Other G) 2.971
.TE

- 12 -

Output:

Some London Transport Statistics
(Year 19M)

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
A verage length
Passenger miles

Passenger traffic - road
Journeys
A verage length
Passenger miles

Vehicles
Railway mOlor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.55 miles

3,066 million

2.252 million
2.26 miles

5.094 million

12,521
2.905
1.269
4.174
8,347

73,739
5.582
5.134
l.714
4.310
9.152
8.930

35.946
2.971

Input:

ops 8
ovs lOp
.TS
center box;
c s s
ci s s
c c c
!B I n.
New Jersey Representatives
(Democrats)
.sp .5
Name (EI Office address (EI Phone
osp .5

• 13 •

James 1. Florio (ElZ3 S. White Horse Pike, Somerdale 08083 Cil 609·627·8222
William 1. Hughes Cil 2920 Atlantic Ave" Atlantic City 08401 Cil 609·345·4844
James J. Howard Cfl801 Bangs Ave" Asbury Park 07712Cil201·774-1600
Frank Thompson, Jr. Cfl 10 Rutgers PI., Trenton 08618 (El609-599-1619
Andrew Maguire (ElliS W, Passaic St., Rochelle Park 07662 (El201-843-0240
Robert A. Roe(ElU.SoP.O., 194 Ward St., Paterson 07510(El201·523·5152
Henry Helstoski Cfl 666 Paterson Ave., East Rutherford 07073 Cil 201-939·9090
Peter W. Rodino, Jr. CilSuite 1435A, 970 Broad St., Newark 07102Cfl201-645-3213
Joseph G. Minish Cfl 308 Main St., Orange 07050 Cfl 20! -645-6363
Helen S. Meyner (El32 Bridge SI., Lambertville 08530 (El609·397·1830
Dominick V. Danie!sCfl895 Bergen Ave., Jersey City 07306 (El201·659·7700
Edward 1. Patten (EI NatL Bank Bldg., Perth Amboy 08861 (D 201·826·4610
.sp .5
.T&
ci s s
IS I n.
(Republicans)
.sp .'v
Millicent Fenwick (D 41 N. Bridge St., Somerville 08876 Cil 201-722·8200
Edwin B. Forsythe (D 301 Mill St., Moorestown 08057 (D 609-235·6622
Matthew 1. Rinaldo(D 1961 Morris Ave., Union 07083 Cil201·687-4235
.TE
.ps 10
• vs 12p

Output:

!-lam.

James J. Florio
William J. H.lbes
James J. Howanl
Frank Thompson. Jr.
Andnw Mal.in
Robe" A. Roe
Henry Heistoski
Peler W. Rodino. Jr.
Joseph G. Minish
Helen S. Merner
Dominick V. Oanieis
Ed"ard J. Pallen

- 14 -

N J.rsey Repres.ntatives
(Democrars)

Office addr.ss

23 S. Whit. Hors. Pike. Som.rdal. 08083
2920 AUantic Ave .• AUantic City 08401
801 BanIS Av •.• Asbury Park 07712
10 Rutl.n PI.. Trenton 08618
115 W. Passaic St .. Roch.lle Pork 07662
U.S.P.O .• 194 Ward St .. Pltenon 07510
666 Pat.non Ave .• East Ruth.rford 07073
Suite 1435A. 970 Broad St .• Newark 07102
J08 Main St .. Oranl. 07050
32 Brid,. St .. Lambertvill. 08530
895 Ber •• n Ave .• Jersey City 07306
Natl. Bank Bid, .• P.rth Amboy 08861

(R.publicalfsJ

MlI11cent Fu"kk 41 N. Brid,e St .. Somerville 08876
Edwin B. Fonythe 301 Mill St.. Moor.stown 08057
Manhew J. Rinaldo 1961 Morris Ave .. Union 07083

Phon.

609·627 ·8222
609·34$·4844
201·774-1600
609·599-1619
201·843·0240
201·513·5152
201·939·9090
201·645·3213
201·645·6363
609-397·1830
201·659· 7700
201·826·4610

201·722·8200
609·235·6622
201·687·4235

This is a paragraph of normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables. and
observe how such tables are formatted.

Input:

.TS
expand;
c s s 5
cccc
II n n.
Bell Labs Locations
Name G) Address G) Area Code G) Phone
Holmdel G)Holmdel, N. J. 07733 G)201 G)949-3000
Murray HiIIG)Murray Hill, N. J. 07974G)201 G)582-6377
WhippanyG)Whippany, N. J. 07981 G)201 G)386-3000
Indian HillG)Naperville, Illinois 60540G)312G)690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

Inpul:

.TS
box:
cb 5 s s
c 1 c 1 c s
Itiw(lj) Iltw(2D Ilp81Iw(l.6i)p8.
Some Interestins Places

Name <i> Description Gl Practical Information

1"1
American Museum of Natural History
TI<i>TI

- IS -

The collections fill 11.5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world's lar,est star sapphire (stolen in 1964).
TIGil HoursGl 10-5. ex. Sun 11-5. Wed. to 9
\. Gl \ -Gl Location <i> TI
Central Park West'" 79th St.
TI
\'Gl\ -C!l AdmissionC!l Donation: SI.OO asked
\-Gl\-C!lSubwayC!lAA to 8lsl St.
\ 'Gl\ -C!lTelephoneC!l 212-873-4225

Bronx ZooGlTI
About. mile lon& and .6 mile wide. this is lhe I", .. t zoo in America.
A lion e.ts 18 pounds
of moot. day while a se. lion e.ts IS pounds of fish.
TIC!lHoursC!lTI
10-4:30 winter. to 5:00 summer
TI
\-C!l\ -C!l Location C!lTI
IISth St • .t Southern Blvd. the Bronx.
TI
\-C!l\·~AdmissionC!lSI.OO. bUI Tu.We.Th (ree
\'C!l\·~Subw.y<i>2_ 5 ta East Tremant Ave.
\ .~\ -~TelephaneC!l 212,933-17"

Brooklyn MuseumGlTI
Five noors af plleries conlain American and ancienl orl.
There are American period rooms and archilectU,..1 orn.menu saved
fram wreckers. such as • classical ft,ure fram Pennsylvlnia Slalion.
TI<i>HoursC!lWed-Sat. 10-5. Sun 12,5
\ '(f)\' C!l Locatian C!lTI
Easlern Parkway.t Washin,lan Ave,. Brooklyn,
TI
\'C!l\ '(f) AdmissianC!l Free
\'(f)\'(f)SubwIyC!l2.3to Easlern Parkway.
\ '(f)\ '(f)TelephoneC!l 212,631,5000

'1"1
New,Yark Historical Sociely
TI~TI
All Ihe arilinal paintinp (ar Audubon's
.1
Birds a(America
,R
are here. u are exhibits or American decoralive arlS. New York hislary.
Hudson River school painlinp. carria,es. and &lus paperweia/llS.
TI(f) HoursC!lTI
Tues,Fri .t Sun, 1,5; Sat 10-5
TI
\ 'C!l\ '(f) LocalianC!lTI
Central Park Wesl .t 77th 51.
TI
\'C!l\'C!lAdmissianGl Free
\ 'Gl\ 'GlSubwlY('j) AA ta 8\sl 51,
\' Gl\' GlTelephoneGl212-873-3400
.TE

.. 16 -

Output:

Some Interesting Places

Name Description Practical Information
Ameflcan Muse- The collections fill 11.5 acres Hours !O-S. ex. Sun 11·5. Wed. to 9

um of NallJral (Michelin) or 25 acres (MTA) Location Central Park Wesl '" 71l1h 51.
His/{)ry of exhibition halls on four Admission DO".IIon: SLOO asked

floors. There is a full-sized re- Subw.yA to Slst 51.

plica of a blue whale and the Telephone 212·873-4225
world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hou~ 10-4:JO ",in.er. 10 5:00 summer
wide, this is the largest zoo in Loa.tjon ISSt" 51. '" Southern Blvd. Ihe

America. A lion eats 18 Bronx.

pounds of meat a day while a Admission SI.OO. but Tu.We.Th f, ••

sea lion eats 15 pounds of fish. Subway 2. 5 to East Tremont Ave.
Telephone 212·933-1759

Brooklyn Museum Five floors of galleries contain Hours Wed·S.I.]O-S. Sun 12·5
American and ancienl ar!. Location EaSlern Parkway'" Washington
There are American period A vc .. Brooklyn.

rooms and architectural orna- Admission Free

men IS s;lved from wreckers, Subway 2.J 10 Eastern Parkway.

such as a classical figure from Telephone 212·638·5000

Pennsylvania Station.
New- York His/or- Al! the original paintings for Hoyrs Tues·Fri &. Sun. 1-5; Sal IO-S

feal SocfelY Audubon's Birds of America are Location Central Park West &. 71th 5t.
here, as are exhibits of Ameli- Admission Fr ••
can decorative arts, New York Subway !lA to 8 lst $"

history, Hudson River school Telephone 212-873·3400
paintings, carriages. and glass
paperweights.

Acknowledgments.

Many thanks are due to 1. C. Blinn, who has done a large amount of testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. AI! phototypesetting programs on UNIX are dependent
on the work of the late 1. F. Ossanna, whose assistance with this program in particular had been
most helpful. This program is p<wterned on a table formatter originally written by 1. F. Gimpel.
The assistance of T. A. Doiolta, B. W. Kernighan, and J. N. Sturman is gratefully ack­
nowledged.

References.

{l] 1. F. Ossanna, NROFFITROFF Use,s Manual. Computing Science Technical Report No. 54,
Bell Laboratories. 1976.

[2J K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. ACM. 17,
Pl'. 365-75 (J 974).

[3J B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
ACM. 18, pp. 151-57 (1975).

[4] M. E. Lesk. TYPing Documenrs on UNIX. UNIX Programmer's Manual, Volume 2.

- 17 -

(5) M. E. Lesk and B. W. Kernighan. Com/1Ilfer TypesettillK of Techllical Journals 011 UNIX. PrO(".
AFIPS NCC. vol. 46. pp. 879-888 0977>-

(6) I. R. Mashey and D. W. Smith. "Documentation Tools and Techniques." Proc. 2nd Int.
Conf, on Software Engineering. pp. 177-181 (October. 1976).

List of Tbl Command Characters and Words

Command Mealling SecTion
aA Alphabetic subcolumn 2
allbox Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cC Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table full line width .I
rF Font change 2
I I Italic item 2
I L Left adjusted column 2
nN Numerical column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
55 Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T(T} Text block 3
vV Vertical spacing change 2
"W Minimum width value 2
.xx Included troffcommand 3

I Vertical line 2

II Double vertical line 2
~ Vertical span 2
\~ Vertical span 3

Double horizontal line 2,3
Horizontal line 2,3

"- Short horizontal line 3
\Rx Repeat character 3

Some Applications of Inverted Indexes on the UNIX System

1. Introduction.

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

The UNlxt system has many utilities (e.g. grep, awk, lex, egrep, jerep, .. ,) to search through
files of text. but most of them are based on a linear scan through the entire file, using some
deterministic automaton. This memorandum discusses a program which uses inverted indexes l

lind can thus be used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is
made, the files that have been indexed can not be changed without remaicing the index. Thus
applications are restricted to those making many searches of relatively stable data. Further­
more, these programs depend on hashing, and can only search for exact matches of whole key­
words. It is nol possible to look for arithmetic or logical expressions (e.g. "date greater than
1970") or for regular expression searching such as that in lex)

Currently there are two uses of this softwa.re, the refer preprocessor to format references,
and the lookall command to search through al! text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs IUld their
uses. Section:2 explains the operation of the searching algorithm lind describes the data col­
lected for use with the lookall command. The more importlUll application, refer has II user's
description in section 3. Section 4 goes into more: detail on reference files for the benefit of
those who wish to add references to data bases or write Ilew (roff macros for use with fejer. The
options to make refer collect identical citations, or otherwise relocate Ilnd adjust references, Ire
described in section S. The UNIX manual sections for refer, lookali. lind associated commands
are attached as appendices.

2. Searching.

The indexing and searching process is divided into two phases, each made of two parts.
These are shown below.

A. Construct the index.

(l) Find keys - turn the input files into a sequence of tags and keys, where each tag
identifies a distinct item in the input and the keys for each such item are the strings
under which it is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys,
the appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

tUNDI: is a Trademark of Bell Laboratories.

I. D. Knuth, The A,., 0/ Comp.lI.r I'>'oirramminr: Vol. 1. Sartin, and SHn:hinr. Addison-Wesley, Readina, Mag.
(977). See section 6.S.

2. M. E. L.sk. "L •• - A Lexical Analyzer Generator," Compo Sci. Tech. Re". No. 39, BeU LAboratories. Mur­
ray HiU. Ne", Jersey (Ol.

- 2 -

(3) Search - Given some keys, look through the files prepared by the hashing and sort­
ing facility and derive the appropriate tags.

(4) Deliver - Given the tags, find the original items. This completes the searching pro-
cess.

The firsl phase, making the index, is presumably done relatively infrequently. It should, of
course, be done whenever the data being indexed change. In coniras(, the second phase,
retrieving items, is presumably done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code
which depends on the searching procedure. The search algorithm is involved only in steps (2)
and (3), while knowledge of the actllal data files is needed only by steps (1) and (4). Thus it is
easy to adapt to different data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input
files. For dealing with files that are basically English, we have a key-making program which
automatically selects words and passes them to the hashing and sorting program (step 2), The
forma! used has one line for each input item, arranged as follows:

name:start,length (tab) keyl key2 key3 ...

where name is the file name, start is the starting byte number, and lengrh is the number of
bytes in the entry.

These lines are the only input used to make the index. The first field (the file name, byte
position, lind byte count) is the tag of the item and can be used to retrieve it quickly. Nor­
mally, an item is either a whole file or a section of a file delimited by blank lines. After the
tab, the second field contains the keys. The keys, if selected by the automatic program, are any
alphanumeric strings which are no! among the 100 most frequent words in English and which
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as
dates). Keys are truncated 10 six characters and converted to lower case. Some selection is

needed if the original items are ver irge. We normally just take the first II keys, with II less
than 100 or so; this replaces any attempt lit intelligent selection. One file in our system is a
complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and
sorted to produce an index. What is wanted, ideally, is 1I series of lists showing the tags associ­
ated with each key. To condense this, what is actually produced is a list showing the lags asso­
ciated with each hash code, and thus with some set of keys. To speed up access and further
save space, a set of three or possibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under
each hash code. To speed up searching, the entry file is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file, which gives the com­
plete tags. The key file is optional and contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain
all items which were indexed under these keys. The query keys are hashed, and the pointers in
the entry file used to access the lists in the posting file. These lists are addresses in the tag file
of documents posted under the hash codes derived from the query. The common items from

- 3 -

all lists are determined; this must include the items indexed by every key, but may also contain
some items which are false drops, since items referenced by the correct hash codes need not
actually have contained the correct keys. Normally, if there are severa! keys in the query, there
are not likely to be many false drops in the final combined list even though each hash code is
somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against
the possibility that an item has false-dropped on some hash code in the query, the original
items are normally obtained from the delivery program (4) and the query keys checked against
them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if
the key derivation procedure is complex, it may be preferable to check against the keys fed to
program (2). In this case the optional key file which contains the keys associated with each
item is generated, and the item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for
each item. This file is not usually necessary wilh the present key-selection program, since the
keys always appear in the original document.

There is aiso an option (·Cn) for coordination level searching. This retrieves items which
match all but fI of the query keys. The items are retrieved in the order of the number of keys
that they match. Of course, fI must be less than the number of query keys (nothing is
retrieved unless it matches at leas! olle key).

As an example, consider one set of 4377 references, comprising 660,000 bytes. This
included 51,000 keys, of which 5,900 were distinct keys. The ha&h table is kept full to §ave
space (at the expense of time); 995 of 997 possible hash codes were used. The tota.! set of
index files (no key file) included 111,000 bytes, about 26% O! the original file size. It look !!
minutes of processor time to hash, sort, and write the index. To search f<Dr II single query with
the resulting index took 1.9 seconds of processor lime, while to find the same paper with a
sequential linear search using grep (reading all of the tags and keys) took 12.3 seconds of pro­
cessor time.

We have also used this software to index all of the English stored on our UNIX system.
This is the index searched by the lookall command. On a typical day there were 29,000 files in
our user file system, containing about 152,000,000 bytes. Of these 5,300 files, containing
32,000,000 bytes (about 21%) were English text. The total number of 'words' (determined
mechanically) was 5,100.000. Of these 227,000 were selected as keys; 19,000 were distinct,
hashing to 4,900 (of 5,000 possible) different hash codes. The resul!ing inverted file inde)(es
used 845,000 bytes, or about 2.6% of the size of the original files. The particularly smat!
indexes are caused by the fact that keys are taken from only the first 50 non-common words of
some very long input files.

Even this large lookall index can be searched quickly. For example. 10 find this document
by looking for the keys "!esk inverted indexes" required 1.7 seconds of processor time and sys­
tem time. By comparison, just to search the 800,000 byte dictionary (smaller than even the
inverted indexes, let alone the 32,000,000 bytes of text files) with grep takes 29 seconds of pro­
cessor time. The lookall program is thlls useful when lOOKing for a document which you
believe is stored on-line, but do not know where. For example, many memos from the Com­
puting Science Research Center are in its UNIX file system, but it is often difficult to guess
where a particular memo might be (it might have several authors, each with many directories,
and have been worked on by a secretary with yet more directories). Instr.uctions for the use of
the lookall command are given in the manual section, shown in the appendix to this memoran­
dum.

The only indexes maintained routinely are those of publication lists and a!! English files.
To make other indexes, the programs for making keys, sorting them, searching the indexes,
and delivering answers must be used. Since they are usually invoked as parts of higher-level
commands, they are not in the default command directory, but are available to any user in the

- 4 -

directory /usrllib/rejer. Three programs are of interest: mkey, which isolates keys from input
files; inv, which makes an index from a set of keys; and hum, which searches the index and
delivers the items. Note that the two parts of the retrieval phase are combined into one pro­
gram, to avoid the excessive system work and delay which would result from running these as
separate processes.

These three commands have a large number of options to adapt to different kinds of
input. The user not interested in the detailed description that now follows may skip to section
3, which describes the rejer program, a packaged-up version of these tools specifically oriented
towards formatting references.

Make Keys. The program ,"key is the key-making program corresponding to step (l) in
phase A. Normally, it fll'ads its input from the file names given as arguments, and if there are
no arguments it reads from the standard input. It assumes that blank lines in the input delimit
separate items, for each of which a different line of keys should be generated. The lines of
keys are written on the standard output. Keys are any alphanumeric string in the input not
among the most frequent words in English and not entirely numeric (except that all-numeric
strings are acceptable if they are between 1900 and 1999). In the output, keys are translated to
lower case, and truncated to six characters in length; any associated punctuation is removed.
The following flag arguments are recognized by mkey:

-c name
-f name

-i chars

-kn
-In
-om

-w

Name of file of common words; default is /usr!libleign.
Read a list of files from name and lake each as an input argu­
ment.
Ignore all lines which begin with '%' followed by any character
in chars.
Use at most n keys per input item.
Ignore items shorter than n letters long.
Ignore as a key any word in the first !II words of the list of
common English words. The default is 100.
Remove the labels (file:start,lengrh) from the output; just give
the keys. Used when searching rather than indexing.
Each whole file isa separate item; blank lines in files are
irrelevant.

The normal arguments for indexing references are the defaults, which are ~c /usrllibleign,
-nlOO, and -13. For searching, the -s option is also needed. When the big lookall index of
all English files is run, the options are - w, -k50, and - j (filelist). When running on textual
input, the mkey program processes .about 1000 English words per processor second. Unless the
-k option is used (and the input files are long enough for it \0 take effect) the output of mkey
is comparable in size to its input.

Hash and Invert. The inv program computes the hash codes and writes the inverted files.
It reads the output of mkey and writes the set of files described earlier in this section. It
expects one argument, which is used as the base name for the three (or foud files to be writ·
ten. Assuming an argument of Index (the default) the entry file is named Index.ia, the posting
file lndex.ib, the tag file Index.ie, and the key file (if present) lndex.id. The inv program recog­
nizes the following options:

-a Append the new keys to a previous set of inverted files, making
new files if there is no old sel using the same base name.

-Ii Write the optional key file. This is needed when you can nOI
check for false drops by looking for the keys in the original
inputs, i.e. when the key derivation procedure is complicated
and the output keys are not words from the input files.

-hn The hash table size is n (default 997); n should be prime.
Making n bigger saves search time and spends disk space.

• 5 •

-llul name Take input from file name, instead of the standard input; if u is
present name is unlinked when the sort is started. Using this
option permits the sort scratch space to overlap the disk space
used for input keys.

- D Make a completely new set of inverted files, ignoring previous
files.

-p Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.

-1' Verbose mode; print a summary of the number of keys which
finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly
linear, however, a guess at the total timing for jnv is 250 keys per second. The space used is
usually of more importance: the entry file uses four bytes per possible hash (note the - h
option), and the tag file around 15·20 bytes per item indexed. Roughly, the posting file con·
tains one item for each key instance and one item for each possible hash code; the items are
two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes wide if
the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should be
over·full; for most of the files indexed in this way, there is no other real choice, since the entry
file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It com·
bines, as mentioned above, the two parts of phase (B): search and delivery. The reason why it
is efficient to combine delivery and search is partly to avoid starting unnecessary processes, and
partly because the delivery operation must be a part of the search operation in any case.
Because of the hashing, the search part takes place in two stages: first items are retrieved which
have the right hash codes. associated with them, and then the actual items are inspected to
determine false drops, i.e. to determine if anything with the right hash codes doesn't really
have the right keys. Since the original item is retrieved to check on false drOP3, it is efficient to
present it immediately, rather than only giving the tag as output and later retrieving the item
again. If there were a separate key file, this argument would not apply, but separate key files
are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be
in mk~ -$ output format; all lower case, no punctuation. The hunt program takes one argu·
ment which specifies the base name of the index files to be searched. Only one set of index
files can be searched at a time, although many text files may be indexed as a group, of course.
If one of the text files has been changed since the index, that file is searched with /grep; this
may occasionally slow down the searching, and care should be taken to avoid having many out
of date files. The following option arguments are recognized by hunt:

-,
-Cn

-Fbndl

-I

-I string
-I n

-0 string

Give all output; ignore checking for false drops.
Coordination level n; retrieve items with not more than n
terms of the input missing; default CO, implying that each
search term must be in the output items.
"-Fy" gives the text of all the items found; "-Fn"
suppresses them. "-Fd" where d is an integer gives the text
of the first ditems. The default is -Fy.
Do not use /grf!p to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is II;
default 1000.
Put text output ("-Fy") in string; of use only when invoked
from another program.

- (; -

-p Print hash code frequencies; mostly for use in optimizing hash
table sizes.

-Tlyndl "-Ty" gives the tags of the items found; "-Tn" suppresses
them. .. - T d" where d is an integer gives the firs! d tags. The
default is - Tn.

-I string Put tag output ("-Ty") in SIring; of use only when invoked
from another program.

The timing of hun! is complex. Normally the hash table is overfull, so that there will be
many false drops on any single term; but a multi-term query will have few false drops on all
terms. Thus if a query is underspecified (one search term) many potential items will be exam­
ined Ilnd discarded as false drops., wasting time. If the query is overspecified (a dozen search
terms) many keys will be examined only 10 verify that the single item under consideration has
that key posted. The variation of search time with number of keys is shown in the table below.
Queries of varying length were constructed to retrieve a particular document from the file of
references. In the sequence to the left, search terms were chosen so as to select the desired
paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so
that the query did no! uniquely select the desired document until four keys had been used.
The same document was the target in each case, and the final set of eight keys are also identi­
cal; the differences at five, six and seven keys are produced by measurement error, not by the
slightly different key lislS.

Efficient Keys Inefficient Keys
No. keys Totlli drops Retrieved Search time No. keys ToLoJ dro!" Retrieved Search time

(illcl. f.13"l Documents (seconds) (incl. false) Documents (seconds)

1 IS 3 1.27 1 68 55 5.96
:2 I 1 0.11 :2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 I 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 I I 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 I 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer;
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi­
mated as 30 milliseconds per search key plus 7S milliseconds per dropped document (whether it
is II false drop or II real answer). In general, overspecification can be rel;ommended; it protects
the user against additions to the data base which tum previously uniquely-answered queries into
ambiguous queries.

The careful reader will have noted an enormous discrepancy between these limes and the
earlier Quoted time of around 1.9 seconds for a search. The times here are purely for the
search lind retrieval: they are measured by running many searches through II single invocation
of the hunt program alone. Usually, the UNIX command processor (the shell) must start both
the mkey lind hunt processes for each query, and arrange for the output of mkey to be fed to
the hul!! program. This adds a fixed overhead of about 1.7 seconds of processor time: to any
single search. Furthermore, remember that all these times are processor times: on a typical
morning on our PDP 11170 system, with about one dozen people logged on, 10 obtain 1 second
of processor time for the search program took between 2 and 12 seconds of real time, with II

median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a sin­
gle search may be only 200 milliseconds, after you add the 1. 7 seconds of startup processor
time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any
response is printed.

- 7 -

3. Selectlnl and Formattlnl References for Tllon
The major application of the retrieval software is nfer. which is a troff preprocessor like

eqn.3 It scans its input looking for items of the form

. [
imprecise citation
.1

where an imprecise citation is merely a strinl of words found in the relevant bibliographic cita­
tion. This is translated into a properly formatted reference. If the imprecise citation does not
correctly identify a single paper (either selecting no papers or too many) a message is given.
The data base of citations searched may be tailored to each system, and individual users may
specify their own citation files. On our system, the default data base is accumulated from the
publication lists of the members of our organization, plus about half a dozen personal bibliolra­
phies that were collected. The present total is about 4300 citations, but this increases steadily.
Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn .
. [
kernighan cherry acm 1975
'.]
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by nfer as well as
tbl and troff by the command

refer memo-jile I tbll troff - ms

and the reference was automatically translated into a correct citation to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use
the lookbib command to check that the paper is in the data base and to find out what keys are
necessary to retrieve it. This is done by typing lookbib and then typing some potential queries
until a suitable query is found. For example, had one started to find the eqn paper shown
above by presenting the query

S lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the
query given above is adequate. Overspecifying the query is of course harmless; it is even desir­
able, since it decreases the risk that a document added to the publication data base in the future
will be retrieved in addition to the intended document. The extra time taken by even a grossly
overspecified query is quite small. A particularly careful reader may have noticed that "acm"
does not appear in the printed citation; we have supplemented some of the data base items with
extra keywords, such as common abbreviations for journals or other sources, to aid in search­
ing.

If the reference is in the data base, the query that retrieved it can be inserted in the text,
between .1 and •) brackets. If it is not in the data base, it can be typed into a private file of

J. B. w. Kerniahan and L. L. Cherry. "A System (or Typesettinl Mamematics," C_ . .4Js«. 0nItp. MtIdt. II,
pp.!51-IS7 (March 1975).

- 8 -

references. using the formlt disc.ed in the next section. and then the -p option used to
search this private file. Such a command might read (if the private references are called myfile)

rtftr - p myfile document! tbl! eqn ! tro§" - mJ • • •

where Ibl and/or eqn could be omitted if not needed. The use of the -ms micros' or some
other macro pickage. however. is essential. ReftT only generates the data for the references;
exact formatting is done by some macro package. and if none is supplied the references will not
be printed.

By default, the references are numbered sequentially. and the -ms macros format refer­
ences IS footnotes It the bottom of the page. This memorandum is an example of that style.
Other possibilities are discussed in section S below.

4. Reference nIH.

A reference ftIe is a set of bibliographic references usable with r~er. It can be indexed
using the softwlre described in section 2 for fast searching. What r~er does is to read the
input document stream, looking for imprecise citation references. It then searches through
reference files to find the full citations, Ind inserts them into the document. The format of the
full citation is arranged to make it convenient for a macro package, such IS the -ms macros. to
formlt the reference for printing. Since the format of the final reference is detemiined by the
desired style of output, which is determined by the macros used, rtfer avoids forcing any kind
of reference appearance. All it does is define a set of string registers which contain the basic
information about the reference; and provide a macro call which is expanded by the macro
pickage to format the reference. It is the responsibility of the final macro package to see that
the reference is actually printed; if no macros are used, and the output of rtftr fed untranslated
to lro/l. notbinl at all will be printed.

The strings defined by rtftT are taken directly from the fiJes of references, which are in
the following formaL The references should be separated by blank lines. Each reference is a
sequence of lines beginning with" and followed by a key-letter. The remainder of that line,
and successive lines until the next line beginning with ", contain the information specified by
the key-letter. In general, rtftr does not interpret the information. but merely presents it to
the macro package for final formatting. A user with a separate macro pac:kale, for example. can
add new key-letters or use the existing ones for other purposes without bothering rtftr.

The meaning of the key-letters given below, in particular, is that assigned by the -mJ

macros. Not all information. obviously, is used with each citation. For example, if a document
is both an internal memorandum Ind a journal article, the macros ignore the memorandum ver­
sion and cite only the journal article. Some kinds of information are not used at all in printing
the reference; if a user does not like finding references by specifying title or author keywords.
and prefers to add specific keywords to the citation, a field is available which is searched but not
printed (X).

The key letters currently recognized by rtftr and -ms, with the kind of information
implied, are:

,. M. E. Lesk. Typillr DoaurtetU Oil UNIX IUtd GCOS: T7r,..... MGCI'OJ for Troff, aen Laboratories internal
memorandum (1977).

- 9 -

Key Information specified
A Author's name
B Title of book containing item
C City of publication
D Date
E Editor of book containing item
G Government (NTIS) ordering number
I Issuer (published
J Journal name
K Keys (for searching)
L Label
M Memorandum label

For example, II sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%2 ctr127
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%1 J. ACM
%\1 23
%N 1
%P '··12
%M abed·7S
%D Jan. 1976

Key Information specified
N Issue number
a Other information
P Pagc(s) of article
R Technical report reference
T Title
V Volume number

X or
Y or
Z Information not used by ref!!r

Order is irrelevant, except that authors are shown in the order given. The output of refer is a
stream of string definitions, one for each of the fields of each reference, /Ill shown below .

. J-

.ds [A lIuthors' names ...

. ds IT title ...

. ds !J journal ...

. JI ty~-number
The refer program, in general, does not concern itself with the significance of the strings. The
different fields are treated identically by refer, except that the X, Y Ind Z fields are ignored
(see the -I option of mkey) in indexing and searching. All refer does is select the appropriate
citation, based on the keys. The macro package must arrange the strings so as to produce an
appropriately formatted citation. In this process, il uses the convention that the 'T' field is the
title, Ihe • J' field the journal, and so forth.

The refer program does arrange the citation to simplify the macro packase's job, however.
The special macro .1- precedes the string definitions and the special macro .11 follows. These
are changed from the input .1 lind .1 so that running the same file through refe,. lllain is harm­
less. The .1- macro can be used by the macro package to initialize. The .11 macro, which
should be used to print the reference, is given an argument type-number to indicate the kind of
reference, as follows:

Value
1
2
3
<I
5
o

• 10 •

Kind of reference
J oumal article
Book
Article within book
Technical report
Bell Labs technical memorandum
Other

The type is determined by the presence or absence of particular fields in the citation (a journal
article must have a '1' field, a book must have all 'I' field, and so forth). To a small extent,
this violates the above rule that refer does no! concern itself wilh the contents of the citation;
however, the classification of the citation in (rolf macros would require I relatively expensive
and obscure program. Any macro writer may, of course, preserve consistency by ignQring the
argument to the .11 macro.

The reference is flagged in the text with the sequence

\" (['number\" tl
where !'lumber is the footnote number. The strings I. and. 1 should be used by the macro
package to format the reference flag in the tex\. These strings can be replaced for II particular
footnote. as described in section 5. The footnote number (or olher signal) is available to the
reference macro .11 as the string register IF. To simpiify dealing with a leX! reference thai
occurs at Ihe end of a sentence, fefer treats a reference which follows a period in a special way.
The period is removed, and the reference is preceded by a call for the string <:. and followed
by II call for the string>. For example, if a referenc!: follows "end." it will appear as

end\· (<:. \. ([.!lumber\· (,J\" (>.

where !'lumber is the footnote number. The macro package should turn either the siring>. or
<. into a period and delete the other one. This permits the output 10 have either the form
"end!311." or "end.ll " lIS the macro package wishes. Note that in one case the period pre­
cedes the number Md in the other it follows the number.

In rome cases users wish to suspend the searching. lind merely use the reference macro
formatting. Thllt is, the user doesn't wan! to provide a search key between .1 and .1 brackets,
bUI merely the reference line3 for the appropriate document. Alternatively, the user can wish
to add I! few fields to those in the reference as ill. the standard file, or override some fields.
Altering or replacing fields, or supplying whole references, is easily done by inserting lines
beginning with %; any such line is laken as direct input to Ihe reference processor rather than
keys to be searched. Thus

• C

keyl key:! key3 ...
%Q New format item
%R Override report name
• J

makes the indicates changes [0 the result of searching for the keys. All of the search keys must
be given before the first % line.

If no search keys are provided, an entire citation can be provided in-line in the text. For
example, if the eqn paper citation were to be inserted in this way, rather than by searching for
it in the dala base, the input would read

preprocessor like
.I eqn .
. [
%A B. W. Kernighan
%A L. L. Cherry

• 11 •

%T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N 3
%P lSl·IS7
%0 March 1975
.J
It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes users would rather
have them defined as macros, so that other troff commands can be placed into the data. When
this is necessary, simply double the control character ~ in the data. Thus the input

.[
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.1

is processed by nler into

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after ~~M is defined as a macro to be invoked by .IM while the information
after %-V is turned into a string to be invoked by'.(IV. At present -ms expects all informa·
tion as strings.

5. Collectlnl References and otber Refer Options

Normally, the combination of nler and -ms formats output as troff footnotes which are
consecutively numbered and placed at the bottom of the page. However, options exist to place
the references at the end; to arrange references alphabetically by senior author; and to indicate
references by strings in the text of the form [Name1975al rather than by number. Whenever
references are not placed at the bottom of a page identical references are coalesced.

For example, the -e option to reler specifies that references are to be collected; in this
case they are output whenever the sequence

.[
SLISTS
.J

is encountered. Thus, to place references at the end of a paper, the user would run reler with
the -e option and place the above SLISTS commands after the last line of the text. Reier will
then move all the references to that point. To aid in formatting the collected references, refer
writes the references preceded by the line

.1<
and followed by the line

.1>

- 12 -

to invoke special macros before and after the references.

Another possible option to refer is the -5 option to specify sorting of references. The
default, of course, is to list references in the order presented. The -s option implies the -e
option, and thus requires a

.[
SLISTS
.J

entry to call out the reference list. The -5 option may be followed by a string of letters,
numbers, and • +' signs indicating how the references are to be sorted. The sort is done using
the fields whose key-letters are in the string as sorting keys; the numbers indicate how many of
the fields are to be considered, with' +' taken as a large number. Thus the default is - sAD
meaning "Sort on senior author, then date." To sort on all authors and then title, specify
-sA+T. And to sort on two authors and then the journal, write -sAlJ.

Other options to nftr change the signal or label inserted in the text for each reference.
Normally these are just sequential numbers, and their exact placement (within brackets, as
superscripts, etc.) is determined by the macro package. The -I option replaces reference
numbers by strings composed of the senior author's last name, the date, and a disambiguating
letter. If a number follows the I as in -13 only that many letters of the last name are used in
the label string. To abbreviate the date as well the form -Im,n shortens the last name to the
first m letters and the date to the last n digits. For example, the option -13,2 would refer to
the eqn paper (reference 3) by the signal Xer7Ja, since it is the first c:ited reference by Ker­
nighan in 1975.

A user wishing to specify particular labels for a private bibliography may use the - k
option. Specifying -kx causes the field x to be used as a label. The default is L. If this field
ends in -, that character is replaced by a sequence letter; otherwise the field is used exactly as
given.

If none of the refer-produced signals are desired, the - b option entirely suppresses
automatic text signals.

If the user wishes to override the -ms treatment of the reference signal (which is nor­
mally to enclose the number in brackets in nroff and make it a superscript in troff) this can be
done easily. If the lines .1 or .1 contain anything following these characters, the remainders of
these lines are used to surround. the reference signal, instead of the default. Thus, for exam­
ple, to say "See reference (2)." and avoid "See reference. l " the input might appear

See reference
. [(
imprecise citation ...
. D.

Note that blanks are significant in this construction. If a permanent change is desired in the
style of reference signals, however, it is probably easier to redefine the strings I. and.1 (which
are used to bracket each signal) than to change each citation.

Although normally nfer limits itself to retrieving the data for the reference, and leaves to
a macro package the job of arranging that data as required by the local format, there are two
special options for rearrangements that can not be done by macro packages. The -c option
puts fields into all upper case (CAPS-SMALL CAPS in troff outputl. The key-letters indicated
what information is to be translated to upper case follow the c, so that -cAJ means that
authors' names and journals are to be in caps. The -a option writes the names of authors last

- 13 -

name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal
of the ACM, for e:tample, would require both -I:A and -a options. This produces authors'
names in the style KERNIGHAN. B. W. AND CHERR Y, L. L. for the previous example. The - a
option may be followed by a number to indicate how many author names should be reversed;
-11 (without any -I: option) would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned -p option to let the user specify a private
file of references to be searched before the public files. Note that refer does not insist on a pre­
viously made index for these files. If a file is named which contains reference data but is not
indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for users to
keep small files of new references, which can later be added to the public data bases.

Refer - A Bibliography System

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

ABSTRACT

Refer is a bibliography system that supports data entry, indexing, retrieval, sort­
ing, runoff, convenient citations, and footnote or endnote numbering. This document
assumes you know how to use some Unix editor, and that you are familiar with the
nrolf/troff text formatters.

The refer program is a preprocessor for nroff/troff, like eqn and tbl, except that
it is used for literature citations, rather than for equations and tables. Given incom­
plete but sufficiently precise citations, refer finds references in a bibliographic data­
base. The complete references are formatted as footnotes, numbered, and placed
either at the bottom of the page, or at the end of a chapter.

A number of ancillary programs make refer easier to use. The addbib program
is for creating and extending the bibliographic database; sortbib sorts the bibliography
by author and date, or other selected criteria; and roffbib runs off the entire database,
formatting it not as footnotes, but as a bibliography or annotated bibliography.

Once a full bibliography has been created, access time can be improved by mak­
ing an index to the references with indxbib. Then, the lookbib program can be used
to quickly retrieve individual citations or groups of citations. Creating this inverted
index will speed up refer, and lookblb will allow you to verify that a citation is
sufficiently precise to deliver just one reference.

July 27, 1983

Table of Contents

)duction

I Entry with Addbib 2

ting the Bibliography................. 3

19 Papers with Refer 3

lr's Command-line Options ... 4

:ing an Index ... 5

If Bugs and Some Solutions .. "'...... 6

mal Details of Refer 7

nging the Refer Macros "'.. 8

nowledgements ... 9

~mented Refer Macros .. 10

Refer - A Bibliography System

Introduction

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

Taken together. the refer programs constitute a database system for use with variable· length infor·
mation. To distinguish various types of bibliographic material, the system uses labels composed of
upper case letters. preceded by a percent sign and followed by a space. For example, one document
might be given this entry:

%A Joel Kies
%T Document Formatting on Unix Using the ·ms Macros
%1 Computing Services
%C Berkeley
%D 1980

Each line is called a field, and lines grouped together are called a record; records are separated from
each other by a blank line. Bibliographic information follows the labels, containing data to be used by
the refer system. The order of fields is not important, except that authors should be entered in the
same order as they are listed on the document. Fields can be as long as necessary. and may even be
continued on the following !ine(s).

The labels are meaningful to nroff/troff macros, and, with a few exceptions, the refer program
itself does not pay attention to them. This implies that you can change the label codes, if you also
change the macros used by nroff/troff. The macro package takes care of details like proper ordering,
underlining the book title or journal name, and quoting the article's title. Here are the labels used by
refer, with an indication of what they represent:

%H Header commentary, printed before reference
%A Author's name
%Q Corporate or foreign author (unreversed)
%T Title of article or book
%S Series title
%1 Journal containing article
%B Book containing article
%R Report, paper, or thesis (for unpublished material)
%V Volume
%N Number within volume
%E Editor of book containing article
%P Page number(s)
%1 Issuer (pUblisher)
%C City where published
%D Date of publication
%0 Other commentary, printed at end of reference
%K Keywords used to locate reference
%L Label used by -k option of refer
%X Abstract (used by roHbib, not by refer)

Only relevant fields should be supplied. Except for OfoA, each field should be given only once; in the

- 2 -

case of multiple authors, the senior author should come first. The %Q is for organizational authors, or
authors with Japanese or Arabic names, in which cases the order of names should be preserved. Books
should be labeled with the %T, not with the %B, which is reserved for books containing articles. The
%J and %B fields should never appear together, although if they do, the %J will override the %B. If
there is no author, just an editor, it is best to type the editor in the %A field, as in this example:

%A Bertrand Bronson, ed.

The %E field is used for the editor of a book (%B) containing an article, which has its own author. For
unpublished material such as theses, use the %R field; the title in the %T field will be quoted, but the
contents of the %R field will not be underlined. Unlike other fields, %H, %0, and %X should contain
their own punctuation. Here is a modest example:

%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%B Unix Programmer's Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%K refer mkey inv hunt
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefer\fP.

Note that the author's name is given in normal order, without inverting the surname; inversion is done
automatically, except when %Q is used instead of %A. We use %X rather than %0 for the commentary
because we do not want the comment printed all the time. The %0 and %H fields are printed by both
refer and rolfblb; the %X field is printed only by rolfbib, as a detached annotation paragraph.

Data Entry with Addbib

The addbib program is for creating and extending bibliographic databases. You must give it the
filename of your bibliography:

% addbib database

Every time you enter addbib, it asks if you want instructions. To get them, type y; to skip them, type
RETURN. Add!!!" prompts for various fields, reads from the keyboard, and writes records containing the
refer codes to the database. After finishing a field entry, you should end it by typing RETURN. If a field
is too long to fit on a line, type a backslash (\) at the end of the line, and you will be able to continue
on the following line. Note: the backslash works in this capacity only inside addbib.

A field will not be written to the database if nothing is entered into it. Typing a minus sign as the
first character of any field will cause addbib to back up one field at a time. Backing up is the best way
to add multiple authors, and it really helps if you forget to add something important. Fields not con­
tained in the prompting skeleton may be entered by typing a backslash as the last character before
RETURN. The following line will be sent verbatim to the database and Ilddbib will resume with the next
field. This is identical to the procedure for dealing with long fields, but with new fields, don't forget
the % key-letter.

Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X field.
Type in as many lines as you need, and end with a control-D (hold down the CTRL button, then press
the "d" key). This prompting for an abstract can be suppressed with the -a command line option.

After one bibliographic record has been completed, addbib will ask if you want to continue. If
you do, type RETURN; to quit, type q or n (quit or no). It is also possible to use one of the system edi­
(ors to correct mistakes made while entering data. After the "Continue?" prompt, type any of the fol­
lowing: edit, ex, vi, or ed - you will be placed inside the corresponding editor, and returned to addbib
afterwards, from where you can either quit or add more data.

- 3 -

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too
numerous, you can redefine the skeleton by constructing a promptfile. Create some file, to be named
after the -p command line option. Place the prompts you want on the left side, followed by a single
TAB (control-I), then the refer code that is to appear in the bibliographic database. Addblb will send
the left side to the screen, and the right side, along with data entered, to the database.

Printing the Bibliography

Sortblb is for sorting the bibliography by author (%A) and date (O/OD), or by data in other fields.
It is quite useful for producing bibliographies and annotated bibliographies, which are seldom entered in
strict alphabetical order. It takes as arguments the names of up to 16 bibliography files, and sends the
sorted records to standard output (the terminal screen), which may be redirected through a pipe or into
a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the KEYS string, rather
than merely by author and date. Key-letters in KEYS may be followed by a • +' to indicate that all
such fields are to be used. The default is to sort by senior author and date (printing the senior author
last name first), but -sA+D will sort by all authors and then date, and -sATD will sort on senior
author, then title, and then date.

Roffblb is for running off the (probably sorted) bibliography. It can handle annotated bibliogra­
phies - annotations are entered in the O/OX (abstract) field. Roffblb is a shell script that calls refer - B
and nroff -mbib.. It uses the macro definitions that reside in lusrllib/tmac/tmac.bib, which you can
redefine if you know nroff and troff. Note that refer will print the %H and %0 commentaries, but will
ignore abstracts in the O/OX field; roffbib will print both fields, unless annotations are suppressed with
the -x option.

The following command sequence will lineprint the entire bibliography, organized alphabetically
by author and date:

0/0 sortbib database I roffblb I Ipr

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the end of
a paper. Incidentally, roffbib accepts all flags used with nroff. For example:

% sortblb database I roffbib -Tdte -sl

will make accent marks work on a DTC daisy-wheel printer, and stop at the bottom of every page for
changing paper. The -n and -0 flags may also be quite useful, to start page numbering at a selected
point, or to produce only specific pages.

Roffbib understands four command-line number registers, which are something like the two-letter
number registers in -ms. The -rNl argument will number references beginning at one 0); use
another number to start somewhere besides one. The - rV2 flag will double-space the entire bibliogra­
phy, while -rVI will double-space the references, but single-space the annotation paragraphs. Finally,
specifying -rL6i changes the line length from 6.5 inches to 6 inches, and saying -rOli sets the page
offset to one inch, instead of zero. (That's a capital 0 after -r, not a zero.)

Citing Papers with Refer

The refer program normally copies input to output, except when it encounters an item of the
form:

.[
partial citation
.J

The partial citation may be just an author's name and a date, or perhaps a title and a keyword, or
maybe just a document number. Refer looks up the citation in the bibliographic database, and
transforms it into a full, properly formatted reference. If the partial citation does not correctly identify

- 4 -

a single work (either finding nothing, or more than one reference), a diagnostic message is given. If
nothing is found, it will say "No such paper." If more than one reference is found, it will say "Too
many hits." Other diagnostic messages can be quite cryptic; if you are in doubt, use checknr to verify
that all your. ['s have matching .l's.

When everything goes well, the reference will be brought in from the database, numbered, and
placed at the bottom of the page. This citation, 1 for example, was produced by:

This citation,
.1
lesk inverted indexes
.J
for example, was produced by

The .[and .J markers, in essence, replace the .FS and .FE of the -ms macros, and also provide a
numbering mechanism. Footnote numbers will be bracketed on the the lineprinter, but superscripted
on daisy-wheel terminals and in troff. In the reference itself, articles will be quoted, and books and
journals will be underlined in nroif, and italicized in trolf.

Sometimes you need to cite a specific page number along with more genera] bibliographic
material. You may have, for instance, a single document that you refer to several times, each time giv­
ing a different page citation. This is how you could get "p. 10" in the reference:

.[
kies document formatting
%P 10
.J

The first line, a partial citation, will find the reference in your bibliography. The second line will insert
the page number into the final citation. Ranges of pages may be specified as "%P 56-78".

When the time comes to run off a paper, you will need to have two files: the bibliographic data-
base, and the paper to format. Use a command line something like one of these:

% refer -p database paper! nrolf -ms
% refer - p database paper! (bl! nroff - ms
% refer - p database paper! tbl! neqn ! nroff - ms

If other preprocessors are used, refer should precede tbl, which must in turn precede eqn or neqn.
The -p option specifies a "private" database, which most bibliographies are.

Refer's Command-line Options

Many people like to place references at the end of a chapter, rather than at the bottom of the
page. The -e option will accumulate references until a macro sequence of the form

.[
$L1ST$
.J

is encountered (or until the end of file). Refer will then write out all references collected up to that
point, collapsing identical references. Warning: there is a limit (currently 200) on the number of refer­
ences that can be accumulated at one time.

It is also possible to sort references that appear at the end of text. The -sKEYS flag will sort
references by fields whose key-letters are in the KEYS string, and permute reference numbers in the
text accordingly. It is unnecessary to use -e with it, since -s implies -e. Key-letters in KEYS may

! Mike E. Lesk, "Some Applications of Inverted Indexes on the Unix System," Unix Programmer's Manual, voL 2a,
Bell Laboratories, Murray Hill, NJ, 1978.

- 5 -

be followed by a '+' to indicate that all such fields are to be used. The default is to sort by senior
author and date, but -sA+D will sort on all authors and then date, and -sA+T will sort by authors
and then title.

Refer can also make citations in what is known as the Social or Natural Sciences format. Instead
of numbering references, the -I (letter ell) flag makes labels from the senior author's last name and
the year of publication. For example, a reference to the paper on Inverted Indexes cited above might
appear as [Leskl978al. It is possible to control the number of characters in the last name, and the
number of digits in the date. For instance, the command line argument -16,2 might produce a refer­
ence such as [Kernig78cl.

Some bibliography standards shun both footnote numbers and labels composed of author and
date, requiring some keyword to identify the reference. The - k flag indicates that, instead of number­
ing references, key labels specified on the %L line should be used to mark references.

The -n flag means to not search the default reference file, located in lusr/dict/papers/Rv7man.
Using this flag may make refer marginally faster. The -an flag will reverse the first n author names,
printing Jones, J. A. instead of J. A. Jones. Often -aI is enough; this will reverse the names of only
the senior author. In some versions of refer there is also the -f flag to set the footnote number to
some predetermined value; for example, -f23 would start numbering with footnote 23.

Making an Index

Once your database is large and relatively stable, it is a good idea to make an index to it, so that
references can be found quickly and efficiently. The indxbib program makes an inverted index to the
bibliographic database (this program is called pub index in the Bell Labs manual). An inverted index
could be compared to the thumb cuts of a dictionary - instead of going all the way through your
bibliography, programs can move to the exact location where a citation is found.

Indxbib itself takes a while to run, and you will need sufficient disk space to store the indexes.
But once it has been run, access time will improve dramatically. Furthermore, large databases of
several million characters can be indexed with no problem. The program is exceedingly simple to use:

% indxbib database

Be aware that changing your database will require that you run indxbib over again. If you don't, you
may fail to find a reference that really is in the database.

Once you have built an inverted index, you can use lookbib to find references in the database.
Lookbib cannot be used until you have run indxbib. When editing a paper, lookbib is very useful to
make sure that a citation can be found as specified. It takes one argument, the name of the bibliogra­
phy, and then reads partial citations from the terminal, returning references that match, or nothing if
none match. Its prompt is the greater-than sign.

% look bib database
> lesk inverted indexes
%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer's Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefer\fP.
>

If more than one reference comes back, you will have to give a more precise citation for refer. Experi­
ment until you find something that works; remember that it is harmless to overspecify. To get out of

- 6-

the lookbib program, type a control-D alone on a line; lookbib then exits with an "EOT" message.

Lookbib can also be used to extract groups of related citations. For example, to find all the
papers by Brian Kernighan found in the system database, and send the output to a file, type:

% lookbib !usr/dict/paperslInd > kern.refs
> kernighan
> EOT
% cat kern.refs

Your file, "kern.refs", will be full of references. A similar procedure can be used to pull out all papers
of some date, all papers from a given journal, all papers containing a certain group of keywords, etc.

Refer Bugs and Some Solutions

The refer program will mess up if there are blanks at the end of lines, especially the %A author
line. Addbib carefully removes trailing blanks, but they may creep in again during editing. Use an edi­
tor command - gl -$/5111 - to remove trailing blanks from your bibliography.

Having bibliographic fields passed through as string definitions implies that interpolated strings
(such as accent marks) must have two backslashes, so they can pass through copy mode intact. For
instance, the word "telephone" would have to be represented:

te\ VIe\ "phone

in order to come out correctly. In the %X field, by contrast, you will have to use single backslashes
instead. This is because the %X field is not passed through as a string, but as the body of a paragraph
macro.

Another problem arises from authors with foreign names. When a name like "Valery Giscard
d'Estaing" is turned around by the -a option of refer, it will appear as "d'Estaing, Valery Giscard,"
rather than as "Giscard d'Estaing, Valery." To prevent this, enter names as follows:

%A Vale\ *ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo\ \o:ro\ *:5

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an nrolf/troff request
meaning to insert a digit-width space. It will protect against faulty name reversal, and also against mis­
sorting.

Footnote numbers are placed at the end of the line before the. [macro. This line should be a line
of text, not a macro. As an example, if the line before the. [is a .R macro, then the .R will eat the
footnote number. (The.R is an - ms request meaning change to Roman fonU In cases where the font
needs changing, it is necessary to do the following:

\l1et al.\fR
.[
awk aho kernighan weinberger
.J

Now the reference will be (0 Aho el al. 2 The \11 changes to italics, and the \fR changes back to Roman
font. Both these requests are nrolf/trolf requests, not part of - ms. If and when a footnote number is
added after this sequence, it will indeed appear in the output.

2 Alfred V. Aha, Brian W. Kernighan, and Peter J. Weinberger, HAwk - A Pattern Scanning and Processing
Language," Untx Programmer's Manual, vol. 2a, Bel! Laboratories, Murray Hill, Nj, 1978.

- 7 -

Internal Details of Refer

You have already read everything you need to know in order to use the refer bibliography system.
The remaining sections are provided only for extra information, and in case you need to change the
way refer works.

The output of refer is a stream of string definitions, one for each field in a reference. To create
string names, percent signs are simply changed to an open bracket, and an [F string is added, contain­
ing the footnote number. The %X, %Y and %Z fields are ignored; however, the armobib program
changes the %X to an .AF (annotation paragraph) macro. The citation used above yields this inter­
mediate output:

.ds [F 1

.J-

.ds [A Mike E. Lesk

.ds [T Some Applications of Inverted Indexes on the Unix System

.ds [J Unix Programmer's Manual

.ds [I Bell Laboratories

.ds [C Murray Hill, NJ

.ds [D 1978

.ds [V 2a

.m IT 0

.m [A 0

.m [0 0

.J [1 journal-article

These string definitions are sent to nrolf, which can use the -- ms macros defined in
lusr/lib/mx/tmac.xref to take care of formatting things properly. The initializing macro .1- precedes
the string definitions, and the labeled macro .11 foHows. These are changed from the input.! and .1 so
that running a file twice through refer is harmless.

The .J! macro, used to print the reference, is given a type-number argument, which is a numeric
label indicating the type of reference involved. Here is a list of the various kinds of references:

Field Value Kind of Reference

%J 1 Journal Article
%B 3 Article in Book
%R%G 4 Report, Government Report
%1 2 Book
%M 5 Bell Labs Memorandum (undefined)
none 0 Other

The order listed above is indicative of the precedence of the various fields. In other words, a reference
that has both the %J and %B fields will be classified as a journal article. If none of the fields listed is
present, then the reference will be classified as "other."

The footnote number is flagged in the text with the following sequence, where number is the foot­
note number:

*([.numbeN(.]

The \.(!. and V('] stand for bracketing or superscripting. In nrolf with low-resolution devices such as
the Ipr and a crt, footnote numbers will be bracketed. In troff, or on daisy-wheel printers, footnote
numbers will be superscripted. Punctuation normally comes before the reference number; this can be
changed by using the - P (postpunctuation) option of refer.

In some cases, it is necessary to override certain fields in a reference. For instance, each time a
work is cited, you may want to specify different page numbers, and you may want to change certain
fields. This citation will find the Lesk reference, but will add specific page numbers to the output, even

though no page numbers appeared in the original reference .

. [
lesk inverted indexes
%P 7-13
%1 Computing Services
%0 UNX 12.2.2 .
.J

The %1 line will also override any previous publisher information, and the %0 line will append some
commentary. The refer program simply adds the new %P, %1, and %0 strings to the output, and later
strings definitions cancel earlier ones.

It is also possible to insert an entire citation that does not appear in the bibliographic database.
This reference, for example, could be added as follows:

.[
%A Brian Kernighan
%T A Troff Tutorial
%1 Bell Laboratories
%D 1978
.J

This will cause refer to interpret the fields exactly as given, without searching the bibliographic data­
base. This practice is not feccmmended, however, because it's better to add new references to the
database, so they can be used again later.

If you want to change the way footnote numbers are printed, signals can be given on the .1 and .I
lines. For example, to say "See reference (2)," the citation should appear as:

See reference
. [(
partial citation
.J) ,

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is
desired, it's best to redefine the I. and .1 strings.

Changing tlie Refer Macros

This section is provided for those who wish to rewrite or modify the refer macros. This is neces­
sary in order to make output correspond to specific journal requirements, or departmental standards.
First there is an explanation of how new macros can be substituted for the old ones. Then several
alterations are given as examples. Finally, there is an annotated copy of the refer macros used by
roflbib.

The refer macros for nroff/troff supplied by the - ms macro package reside in
lusr/lib/mx/tmac.xref; they are reference macros, for producing footnotes or endnotes. The refer mac­
ros used by roffbib, on the other hand, reside in lusr/lib/tmacltmac.bib; they are for producing a
stand-alone bibliography.

To change the macros used by roffbib, you will need to get your own version of this shell script
into the directory where you are working. These two commands will get you a copy of roffbib and the
macros it uses: t

% cp Illsr/lib/tmac/!mac.bib bibmac

You can proceed t.o change bibmac as much as you like. Then when you use roffbib, you should
specify your own version of the macros, which will be substituted for the normal ones

% roffbib -m bibmac filename

- 9-

where filename is the name of your bibliography file. Make sure there's a space between - m and bib­
mac.

If you want to modify the refer macros for use with iUoff and the -ms macros, you will ner,d to
get a copy of "tmac.xref':

% ell Illsr/lib/ms/s.ref refmac

These macros are much like "bibmac", except they have .FS and .FE requests, to be used in conjunc­
tion with the -ms macros, rather than independently defined .XP and .AP requests. Now you can put
this line at the top of the paper to be formatted:

.50 refmac

Your new refer macros will override the definitions previously read in by the -ms package. This
method works only if "refmac" is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with no
comma before. There are five identical lines you will have to change. The first line below is the old
way, while the second is the new way:

.if !"*([D"" , *([D\c

.if !"*([D"" \& C*([D)\c

In the first line, there is a comma and a space, but no parentheses. The "\e" at the end of each line
indicates to lHoff that it should continue, leaving no extra space in the output. The "\&" in the second
line is the do-nothing character; when followed by a space, a space is sent to the output.

If you need to format a reference in the style favored by the Modern Language Association or
Chicago University Press, in the form (city: publisher, date), then you will have to change the middle
of the book macro [2 as follows:

\& C\C
.if !"*([C'''' \\'([e:
*([I\c
.if !"*([D"" , \\'([D\c
l\c

This would print (Berkeley: Computing Services, 1982) if all three strings were present. The first line
prints a space and a parenthesis; the second prints the city (and a colon) if present; the third always
prints the publisher (books must have a publisher, or else they're classified as other); the fourth line
prints a comma and the date if present; and the fifth line closes the parentheses. You would need to
make similar changes to the other macros as well.

Acknowledgements

Mike Lesk of Bell Laboratories wrote the original refer software, including the indexing programs.
Al Stangenberger of the Forestry Department wrote the first version of addbib, then caiied bibill. Greg
Shenaut of the Linguistics Department wrote the original versions of sortbib and roffblb. All these
contributions are greatly appreciated.

Writing Tools - The STYLE and DICTION Programs

L. L. Cheny

Bell Laboratories
Murray Hill, New Jersey 07974

W. Veslerman

Livingston College
Rutgers University

ABSTRACT

Text processing systems are now in heavy use in many companies to for­
mat documents. With many documents stored on line, it has become possible
to use computers to study writing style itself and to help writers produce better
written and more readable prose. The system of programs described here is an
initial step toward such help. It includes programs and a data base designed to
produce a stylistic profile of writing at the word and sentence level. The system
measures readability, sentence and word length, sentence type, word usage, and
sentence openers. It also locates common examples of wordy phrasing and bad
diction. The system is useful for evaluating a document's style, locating sen­
tences that may be difficult to read or excessively wordy, and determining a par­
ticular writer's style over several documents.

November 22, 1980

Writing Tools - The STYLE and DICTION Programs

1. Introdllction

L. L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

W. Veslerman

Livingston College
Rutgers University

Computers have become important in the document preparation process, with programs to
check for spelling errors and to format documents. As the amount of text stored on line
increases, it becomes feasible and attractive to study writing style and to attempt to help the
writer in producing readable documents. The system of writing tools described here is a first
step toward such help. The system includes programs and a data base to analyze writing style at
the word and sentence level. We use the term "style" in this paper to describe the results of a
writer's particular choices among individual words and sentence forms. Although many judge­
ments of style are subjective, particularly those of word choice, there are some objective meas­
ures that experts agree lead (0 good style. Three programs have been written to measure some
of the objectively definable characteristics of writing style and to identify some commonly
misused or unnecessary phrases. Although a document that conforms to the stylistic rules is
not guaranteed to be coherent and readable, one that violates all of the rules is likely to be
difficult or tedious to read. The program STYLE calculates readability, sentence length variabil­
ity, sentence type, word usage and sentence openers at a rate of about 400 words per second on
a PDPll170 running the UNlxt Operating System. It assumes that the sentences are well­
formed, i. e. that each sentence has a verb and that the subject and verb agree in number.
DICTION identifies phrases that are either bad usage or unnecessarily wordy. EXPLAIN acts
as a thesaurus for the phrases found by DICTION. Sections 2, 3, and 4 describe the programs;
Section 5 gives the results on a cross-section of technical documents; Section 6 discusses accu­
racy and problems; Section 7 gives implementation details.

2. STYLE

The program STYLE reads a document and prints a summary of readability indices, sen­
tence length and type, word usage, and sentence openers. It may also be used to locate all sen­
tences in a document longer than a given length, of readability index higher than a given
number, those containing a passive verb, or those beginning with an expletive. STYLE is
based on the system for finding English word classes or parts of speech, PARTS [l]. PARTS is
a set of programs that uses a small dictionary (about 350 words) and suffix rules to partially
assign word classes to English text. It then uses experimentally derived rules of word order to
assign word classes to all words in the text with an accuracy of about 95%. Because PARTS
uses only a small dictionary and general rules, it works on text about any subject, from physics
to psychology. Style measures have been built into the output phase of the programs that make
up PARTS. Some of the measures are simple counters of the word classes found by PARTS;
many are more complicated. For example, the verb count is the total number of verb phrases.
This includes phrases like:

tUNIX is a Trademark of Bell Laboratories.

has been going
was only going
to go

- 2 -

each of which each counts as one verb. Figure 1 shows the output of STYLE run on a paper by
Kernighan and Mashey about the UNIX programming environment [2].

programming environment
readability grades:

sentence info:

sentence types:

word usage:

sentence beginnings:

(Kincaid) 12.3 (auto) 12.8 (Co!eman-Liau) 11.8 (Flesch) 13.5 (46.3)

no. sent 335 no. wds 7419
av sent leng 22.1 av word leng 4.91
no. questions 0 no. imperatives 0
no. nonfunc wds 4362 58.8% av leng 6.38
short sent « 17) 35% (j 18) long sent (>32) 16% (55)
longest sent 82 wds at sent 174; shortest sent 1 wds at sent 117

simple 34% (J 14) complex 32% (J08)
compound 12% (41) compound-complex 21% (72)

verb types as % of total verbs
to be 45% (373) aux 16% (33) inf 14% (114)
passives as % of non-inf verbs 20% (144)
types as % of total
prep 10.8% (804) conj 3.5% (262) adv 4.8% (354)
noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393)
nominalizations 2 % (J 55)

subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67%
prep 12% (39) adv 9% (31)
verb 0% (J) sub conj 6% (20) conj 1% (5)
expletives 4% (J 3)

Figure 1

As the example shows, STYLE output is in five parts. After a brief discussion of sentences, we
will describe the parts in order.

2.1. What is a sentence?

Readers of documents have little trouble deciding where the sentences end. People don't
even have to stop and think about uses of the character "." in constructions like 1.25, A. 1.
Jones, Ph.D., i. e., or etc .. When a computer reads a document, finding the end of sentences
is not as easy. First we must throwaway the printer's marks and formatting commands that
litter the text in computer form. Then STYLE defines a sentence as a string of words ending in
one of:

. I ? I.

The end marker "/." may be used to indicate an imperative sentence. Imperative sentences
that are not so marked are not identified as imperative. STYLE properly handles numbers with
embedded decimal points and commas, strings of letters and numbers with embedded decimal
points used for naming computer file names, and the common abbreviations listed in Appendix

- 3 -

1. Numbers that end sentences, like the preceding sentence, cause a sentence break if the next
word begins with a capital letter. Initials only cause a sentence break if the next word begins
with a capital and is found in the dictionary of function words used by PARTS. So the string

1. D. JONES

does not cause a break, but the string

... system H. The ...

does. With these rules most sentences are broken at the proper place, although occasionally
either two sentences are called one or a fragment is called a sentence. More on this later.

2.2. Readability Grades

The first section of STYLE output consists of four readability indices. As Klare points
out in [3J readability indices may be used to estimate the reading skills needed by the reader to
understand a document. The readability indices reported by STYLE are based on measures of
sentence and word lengths. Although the indices may not measure whether the document is
coherent and well organized, experience has shown that high indices seem to be indicators of
stylistic difficulty. Documents with short sentences and short words have low scores; those with
long sentences and many polysyllabic words have high scores. The 4 formulae reported are
Kincaid Formula [4], Automated Readability Index [5], Coleman-Liau Formula [6J and a nor­
malized version of Flesch Reading Ease Score [7]. The formulae differ because they were
experimentally derived using different texts and subject groups. We will discuss each of the
formulae briefly; for a more detailed discussion the reader should see [3].

The Kincaid Formula, given by:

Reading_Grade = 1 1.8 *sylyer_ wd+.39 ·wdsyer_senl-15.59

was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in reading grade
level. The score reported by this formula tends to be in the mid-range of the 4 scores.
Because it is based on adult training manuals rather than school book text, this formula is prob­
ably the best one to apply to technical documents.

The Automated Readability Index (ARIl, based on text from grades 0 to 7, was derived
to be easy to automate. The formula is:

Reading_Grade=4.71 *lelyer_wd+.5 ·wdsyer_senl-21.43

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually
slightly lower than Flesch.

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is:

Reading_ Grade=5.89 *lelyer_.wd-.3 *scnlJJer_100_wds-] 5.8

Of the four formulae this one usually gives the lowest grade when applied to technical docu­
ments.

The last formula, the Flesch Reading Ease Score, is based on grade school text covering
grades 3 to 12. The formula, given by:

Reading_Score=206.835-84.6 ·sylyer_wd-l.OlS 'wdsyer_senl

is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by
STYLE is scaled to be comparable to the other formulas, except that the maximum grade level
reported is set to 17. The Flesch score is usually the highest of the 4 scores on technical docu­
ments.

Coke [8J found that the Kincaid Formula is probably the best predictor for technical docu­
ments; both ARI and Flesch tend to overestimate the difficulty; Coleman-Liau tend to underes­
timate. On text in the range of grades 7 to 9 the four formulas tend to be about the same. On
easy text the Coleman-Liau formula is probably preferred since it is reasonably accurate at the

- 4 -

lower grades and it is safer to present text that is a little too easy than a little too hard.

If a document has particularly difficult technical content, especially if it includes a lot of
mathematics, it is probably best to make the text very easy to read, i.e. a lower readability index
by shortening the sentences and words. This will allow the reader to concentrate on the techni­
cal content and not the long sentences. The user should remember that these indices are esti­
mators; they should not be taken as absolute numbers. STYLE called with" -r number" will
print all sentences with an Automated Readability Index equal to or greater than "number".

2.3. Sentence length ami structure

The next two sections of STYLE output deal with sentence length and structure. Almost
all books on writing style or effective writing emphasize the importance of variety in sentence
length and structure for good writing. Ewing's first rule in discussing style in the book Wriling
for Resulls [9] is:

"Vary the sentence structure and length of your sentences."

Leggett, Mead and Charvat break this rule into 3 in Prentice-Hall Handbook for Writers [J 0] as
follows:

"34a. Avoid the overuse of short simple sentences."
"34b. Avoid the overuse of long compound sentences."
"34c. Use various sentence structures to avoid monotony and increase effectiveness."

Although experts agree that these rules are important, not all writers follow them. Sample
technical documents have been found with almost no sentence length or type variability. One
document had 90% of its sentences about the same length as the average; another was made up
almost entirely of simple sentences (80%).

The output sections labeled "sentence info" and "sentence types" give both length and
structure measures. STYLE reports on the number and average length of both sentences and
words, and number of questions and imperative sentences (those ending in "I. "). The meas­
ures of non-function words are an attempt to look at the content words in the document. In
English non-function words are nouns, adjectives, adverbs, and non-auxiliary verbs; function
words are prepositions, conjunctions, articles, and auxiliary verbs. Since most function words
are short, they tend to lower the average word length. The average length of non-function
words may be a more useful measure for comparing word choice of different writers than the
total average word length. The percentages of short and long sentences measure sentence
length variability. Short sentences are those at least 5 words less than the average; long sen­
tences are those at least 10 words longer than the average. Last in the sentence information
section is the length and location of the longest and shortest sentences. If the flag "-I
number" is used, STYLE will print all sentences longer than "number".

Because of the difficulties in dealing with the many uses of commas and conjunctions in
English, sentence type definitions vary slightly from those of standard textbooks, but still meas­
ure the same constructional activity.

I. A simple sentence has one verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent clause, each with one
verb. Complex sentences are found by identifying sentences that contain either a subordi­
nate conjunction or a clause beginning with words like "that" or "who". The preceding
sentence has such a clause.

3. A compound sentence has more than one verb and no dependent clause. Sentences
joined by";" are also counted as compound.

4. A compound-complex sentence has either several dependent clauses or one dependent
clause and a compound verb in either the dependent or independent clause.

Even using these broader definitions, simple sentences dominate many of the technical
documents that have been tested, but the example in Figure 1 shows variety in both sentence

- 5 -

structure and sentence length.

2.4. Word Usage

The word usage measures are an attempt to identify some other constructional features of
writing style. There are many different ways in English to say the same thing. The construc­
tions differ from one another in the form of the words used. The following sentences all con­
vey approximately the same meaning but differ in word usage:

The cxio program is used to perform all communication between the systems.
The cxio program performs all communications between the systems.
The cxio program is used to communicate between the systems.
The cxio program communicates between the systems.
All communication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions helps identify overuse of partic­
ular constructions. Although the measures used by STYLE are crude, they do point out prob­
lem areas. For each category, STYLE reports a percentage and a raw count. In addition to
looking at the percentage, the user may find it useful to compare the raw count with the
number of sentences. If, for example, the number of infinitives is almost equal to the number
of sentences, then many of the sentences in the document are constructed like the first and
third in the preceding example. The user may want to transform some of these sentences into
another form. Some of the implications of the word usage measures are discussed below.

Verbs are measured in several different ways to try to determine what types of verb construc"
tions are most frequent in the document. Technical writing tends to contain many passive
verb constructions and other usage of the verb "to be". The category of verbs labeled
"tobe" measures both passives and sentences of the form:

subject lobe predicate

In counting verbs, whole verb phrases are counted as one verb. Verb phrases containing
auxiliary verbs are counted in the category "aux". The verb phrases counted here are
those whose tense is not simple present or simple past. It might eventually be useful to
do more detailed measures of verb tense or mood. Infinitives are listed as "inf". The
percentages reported for these three categories are based on the total number of verb
phrases found. These categories are not mutually exclusive; they cannot be added, since,
for example, "to be going" counts as both "tobe" and "inf'. Use of these three types of
verb constructions varies significantly among authors.

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most
style books warn against the overuse of passive verbs. Coleman [J 1] has shown that sen­
tences with active verbs are easier to learn than those with passive verbs. Although the
inverted object-subject order of the passive voice seems to emphasize the object,
Coleman's experiments showed that there is little difference in retention by word position.
He also showed that the direct object of an active verb is retained better than the subject
of a passive verb. These experiments support the advice of the style books suggesting
that writers should try to use active verbs wherever possible. The flag "- p" causes
STYLE to print all sentences containing passive verbs.

Pronouns add cohesiveness and connectivity to a document by providing back-reference. They
are often a short-hand notation for something previously mentioned, and therefore con­
nect the sentence containing the pronoun with the word to which the pronoun refers.
Although there are other mechanisms for such connections, documents with no pronouns
tend to be wordy and to have little connectivity.

- 6 -

Adverbs can provide transition between sentences and order in time and space. In performing
these functions, adverbs, like pronouns, provide connectivity and cohesiveness.

Conjunctions provide parallelism in a document by connecting two or more equal units. These
units may be whole sentences, verb phrases, nouns, adjectives, or prepositional phrases.
The compound and compound-complex sentences reported under sentence type are paral­
lel structures. Other uses of parallel structures are indicated by the degree that the
number of conjunctions reported under word usage exceeds the compound sentence
measures.

Nouns and Adjectives. A ratio of nouns to adjectives near unity may indicate the over-use of
modifiers. Some technical writers qualify every noun with one or more adjectives.
Qualifiers in phrases like "simple linear single-link network model" often lend more
obscurity than precision to a text.

Nominalizaliolls are verbs that are changed to nouns by adding one of the suffixes "ment",
"ance", "enee", or "ion". Examples are accomplishment, admittance, adherence, and
abbreviation. When a writer transforms a nominalized sentence to a non-nominalized
sentence, she/he increases the effectiveness of the sentence in several ways. The noun
becomes an active verb and frequently one complicated clause becomes two shorter
clauses. For example,

Their inclusion of this provision is admission of the importance of the system.
When they included this provision, they admitted the importance of the system.

Coleman found that the transformed sentences were easier to learn, even when the
transformation produced sentences that were slightly longer, provided the transformation
broke one clause into two. Writers who find their document contains many nominaliza­
tions may want to transform some of the sentences to use active verbs.

2.5. Sentence openers

Another agreed upon principle of style is variety in sentence openers. Because STYLE
determines the type of sentence opener by looking at the part of speech of the first word in the
sentence, the sentences counted under the heading "subject opener" may not all really begin
with the subject. However, a large percentage of sentences in this category still indicates lack
of variety in sentence openers. Other sentence opener measures help the user determine if
there are transitions between sentences and where the subordination occurs. Adverbs and con­
junctions at the beginning of sentences are mechanisms for transition between sentences. A
pronoun at the beginning shows a link to something previously mentioned and indicates con­
nectivity.

The location of subordination can be determineD by comparing the number of sentences
that begin with a subordinator with the number of sentences with complex clauses. If few sen­
tences start with subordinate conjunctions then the subordination is embedded or at the end of
the complex sentences. For variety the writer may want to transform some sentences to have
leading subordination.

The last category of openers, expletives, is commonly overworked in technical writing.
Expletives are the words "it" and "there", usually with the verb "to be", in constructions
where the subject follows the verb. For example,

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of the sentence. The
flag" -e" will cause STYLE to print all sentences that begin with an expletive.

_ - 7 -

3. DICTION

The program DICTION prints all sentences in a document containing phrases that are
either frequently misused or indicate wordiness. The program, an extension of Aho's FGREP
[I21 string matching program, takes as input a file of phrases or patterns to be matched and a
file of text to be searched. A data base of about 450 phrases has been compiled as a default
pattern file for DICTION. Before attempting to locate phrases, the program maps upper case
letters to lower case and substitutes blanks for punctuation. Sentence boundaries were deemed
less critical in DICTION than in STYLE, so abbreviations and other uses of the character "."
are not treated specially. DICTION brackets all pattern matches in a sentence with the charac­
ters "[" "I". Although many of the phrases in the default data base are correct in some con­
texts, in others they indicate wordiness. Some examples of the phrases and suggested alterna­
tives are:

Phrase
a large number of
arrive at a decision
collect together
for this reason
pertaining to
through the use of
utilize
with the exception of

Alternative
many
decide
collect
so
about
by or with
use
except

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of
problem phrases. For example, the phrase "the fact" is found in all of the following and is
sufficient to point out the wordiness to the user:

Phrase
accounted for by the fact that
an example of this is the fact that
based on the fact that
despite the fact that
due to the fact that
in light of the fact that
in view of the fact that
notwithstanding the fact that

Alternative
caused by
thus
because
although
because
because
since
although

Entries in Appendix 2 preceded by "-,, are not matched. See Section 7 for details on the use
of U-".

The user may supply her/his own pattern file with the flag "-f patfile". In this case the
default file will be loaded first, followed by the user file. This mechanism allows users to
suppress patterns contained in the default file or to include their own pet peeves that are not in
the default file. The flag "-n" will exclude the default file altogether. In constructing a pat­
tern file, blanks should be used before and after each phrase to avoid matching substrings in
words. For example, to find all occurrences of the word "the", the pattern " the " should be
used. The blanks cause only the word "the" to be matched and not the string "the" in words
like there, other, and therefore. One side effect of surrounding the words with blanks is that
when two phrases occur without intervening words, only the first will be matched.

4. EXPLAIN

The last program, EXPLAIN, is an interactive thesaurus for phrases found by DICTION.
The user types one of the phrases bracketed by DICTION and EXPLAIN responds with sug­
gested substitutions for the phrase that will improve the diction of the document.

- 8 -

Table 1
Text Statistics on 20 Technical Documents

variable minimum maximum mean standard deviation

Readability Kincaid 9.5 16.9 13.3 2.2
automated 9.0] 7.4 13.3 2.5
Cole-Liau 10.0 16.0 12.7 1.8
Flesch 8.9]7.0 14.4 2.2

sentence info. av sent length 15.5 30.3 21.6 4.0
av word length 4.61 5.63 5.08 .29
av nonfunction length 5.72 7.30 6.52 .45
short sent 23% 46% 33% 5.9
long sef't 7% 20% 14% 2.9

sentence types simple 31% 71% 49% 11.4
complex 19% 50% 33% 8.3
compound 2% 14% 7% 3.3
compound-complex 2% 19% 10% 4.8

verb types to be 26% 64% 44.7%]0.3
auxiliary 10% 40% 21% 8.7
infinitives 8% 24% 15.1% 4.8
passives 12% 50% 29% 9.3

word usage prepositions 10.1% 15.0% 12.3% 1.6
conjunction 1.8% 4.8% 3.4% .9
adverbs 1.2% 5.0% 3.4% 1.0
nouns 23.6% 31.6% 27.8% 1.7
adjectives 15.4% 27.1% 21.1% 3.4
pronouns 1.2% 8.4% 2.5% 1.1
nominalizations 2% 5% 3.3% .8

sentence openers prepositions 6% 19% 12% 3.4
adverbs 0% 20% 9% 4.6
subject 56% 85% 70% 8.0
verbs 0% 4% 1% 1.0
subordinating conj 1% 12% 5% 2.7
conjunctions 0% 4% 0% 1.5
expletives 0% 6% 2% 1.7

5. Results

5.1. STYLE

To get baseline statistics and check the program's accuracy. we ran STYLE on 20 technical
documents. There were a total of 3287 sentences in the sample. The shortest document was
67 sentences long; the longest 339 sentences. The documents covered a wide range of subject
matter, including theoretical computing, physics, psychology, engineering, and affirmative
action. Table 1 gives the range, median, and standard deviation of the various style measures.
As you will note most of the measurements have a fairly wide range of values across the sam­
ple documents.

As a comparison, Table 2 gives the median results for two different technical authors, a
sample of instructional material, and a sample of the Federalist Papers. The two authors show
similar styles, although author 2 uses somewhat shorter sentences and longer words than author
1. Author 1 uses all types of sentences, while author 2 prefers simple and complex sentences,
using few compound or compound-complex sentences. The other major difference in the styles
of these authors is the location of subordination. Author 1 seems to prefer embedded or trail­
ing subordination, while author 2 begins many sentences with the subordinate clause. The

- 9 -

documents tested for both authors 1 and 2 were technical documents, written for a technical
audience. The instructional documents, which are written for craftspeople, vary surprisingly lit-
tle from the two technical samples. The sentences and words are a little longer, and they con-
tain many passive and auxiliary verbs, few adverbs, and almost no pronouns. The instructional
documents contain many imperative sentences, so there are many sentence with verb openers.
The sample of Federalist Papers contrasts with the other samples in almost every way.

Table 2
Text Statistics on Single Authors

variable author 1 author 2 inst FED
readability Kincaid 11.0 10.3 10.8 16.3

automated 11.0 10.3 11.9 17.8
Coleman-Liau 9.3 10.1 10.2 12.3
Flesch 10.3 10.7 10.1 15.0

sentence info av sent length 22.64 19.61 22.78 31.85
av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.87
short sent 35% 43% 35% 40%
long sent 18% 15% 16% 21%

sentence types simple 36% 43% 40% 31%
complex 34% 41% 37% 34%)
compound 13°/" 7% 4% 10%
compound-complex 16% 8% 14% 25%

verb type tobe 42% 43% 45% 37%
auxiliary 17% 19% 32% 32%
infinitives 17% 15% 12% 21%
passives 20% 19% 36% 20%

word usage prepositions 10.0% 10.8% 12.3% 15.9%
conjunctions 3.2% 2.4% 3.9% 3.4%
adverbs 5.05% 4.6% 3.5% 3.7%
nouns 27.7% 26.5% 29.1% 24.9%
adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 5.3% 4.3% 2.1% 6.5%
nominalilations 1% 2% 2% 3%

sentence openers prepositions 11% 14% 6% 5%
adverbs 9% 9% 6% 4%
subject 65% 59% 54% 66%
verb 3% 2% 14% 2%
subordinating conj 8% 14% 11% 3%
conjunction 1% 0% 0% J%
expletives 3% 3% 0% 3%

5.2. DICTION

In the few weeks that DICTION has been available to users about 35,000 sentences have
been run with about 5,000 string matches. The authors using the program seem to make the
suggested changes about 50-75% of the time. To date, almost 200 of the 450 strings in the
default file have been matched. Although most of these phrases are valid and correct in some
contexts, the 50-75% change rate seems to show that the phrases are used much more often
than concise diction warrants.

- 10 -

6. Accuracy

6.1. Sentence Identification

The correctness of the STYLE output on the 20 document sample was checked in detail.
STYLE misidentified 129 sentence fragments as sentences and incorrectly joined two or more
sentences 75 times in the 3287 sentence sample. The problems were usually because of non­
standard formatting commands, unknown abbreviations, or lists of non-sentences. An impossi­
bly long sentence found as the longest sentence in the document usually is the result of a long
list of non-sentences.

6.2. Sentence Types

Style correctly identified sentence type on 86.5% of the sentences in the sample. The type
distribution of the sentences was 52.5% simple, 29.9% complex, 8.5% compound and 9%
compound-complex. The program reported 49.5% simple, 31.9% complex, 8% compound and
10.4% compound-complex. Looking at the errors on the individual documents, the number of
simple sentences was under-reported by about 4% and the complex and compound-complex
were over-reported by 3% and 2%, respectively. The following matrix shows the programs out­
put VS. the actual sentence type.

Actual
Sentence

Type

simple
complex
compound
comp-complex

Program Results
simple complex

1566 132
47 892
40 6
o 52

compound
49

6
207

5

comp-complex
17
65
23

249

The system's inability to find imperative sentences seems to have little effect on most of
the style statistics. A document with half of its sentences imperative was run, with and without
the imperative end marker. The results were identical except for the expected errors of not
finding verbs as sentence openers, not counting the imperative sentences, and a slighl
difference (l %) in the number of nouns and adjectives reported.

6.3. Word Usage

The accuracy of identifying word types reflects that of PARTS, which is about 95%
correct. The largest source of confusion is between nouns and adjectives. The verb counts
were checked on about 20 sentences from each document and found to be about 98% correct.

7. Technical Details

7.1. Finding Sentences

The formatting commands embedded in the text increase the difficulty of finding sen­
tences. Not all text in a document is in sentence form; there are headings, tables, equations
and lists, for example. Headings like "Finding Sentences" above should be discarded, not
attached to the next sentence. However, since many of the documents are formatted to be
phototypeset, and contain font changes, which usually operate on the most important words in
the document, discarding all formatting commands is not correct. To improve the programs'
ability to find sentence boundaries, the deformatting program, DEROFF [13], has been given
some knowledge of the formatting packages used on the UNIX operating system. DEROFF will
now do the following:

1. Suppress all formatting macros that are used for titles, headings, author's name, etc.

- 11 -

2. Suppress the arguments to the macros for titles, headings, author's name, etc.

3. Suppress displays, tables, footnotes and text that is centered or in no-fill mode.

4. Substitute a place holder for equations and check for hidden en.d markers. The place
holder is necessary because many typists and authors use the equation setter to change
fonts on important words. For this reason, header files containing the definition of the
EQN delimiters must also be included as input to STYLE. End markers are often hidden
when an equation ends a sentence and the period is typed inside the EQN delimiters.

5. Add a "." after lists. If the flag -ml is also used, all lists are suppressed. This is a
separate flag because of the variety of ways the list macros are used. Often, lists are sen­
tences that should be included in the analysis. The user must determine how lists are
used in the document to be analyzed.

Both STYLE and DICTION call DEROFF before they look at the text. The user should
supply the -ml flag if the document contains many lists of non-sentences that should be
skipped.

7.2. Details of DICTION

The program DICTION is based on the string matching program FGREP. FGREP takes
as input a file of patterns to be matched and a file to be searched and outputs each line that
contains any of the patterns with no indication of which pattern was matched. The following
changes have been added to FGREP:

1. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence
that contains one of the patterns is output.

2. Upper case letters are mapped to lower case.

3. Punctuation is replaced by blanks.

4 All pattern matches in the sentence are found and surrounded with "[" "J" .
5. A method for suppressing a string match has been added. Any pattern that begins with

..-" will not be matched. Because the matching algorithm finds the longest substring, the
suppression of a match allows words in some correct contexts not to be matched while
allowing the word in another context to be found. For example, the word "which" is
often incorrectly used instead of "that" in restrictive clauses. However, "which" is usu­
ally correct when preceded by a preposition or ",". The default pattern file suppresses
the match of the common prepositions or a double blank followed by "which" and there­
fore matches only the suspect uses. The double blank accounts for the replaced comma.

8. Conclusions

A system of writing tools that measure some of the objective characteristics of writing
style has been developed. The tools are sufficiently general that they may be applied to docu­
ments on any subject with equal accuracy. Although the measurements are only of the surface
structure of the text, they do point out problem areas. In addition to helping writers produce
better documents, these programs may be useful for studying the writing process and finding
other formulae for measuring readability.

- 12 -

Referenc~s

1. L. L. Cherry, "PARTS - A System for Assigning Word Classes to English Text," submit­
ted Communications afthe ACM.

2. B. W. Kernighan and J. R. Mashey, "The UNIX Programming Environment," Software
- Practice & Experience, 9, 1-15 (!979).

3. G. R. Klare, "Assessing Readability," Readll1g Research Quarterly, 1974-1975, 10 , 62-
102.

4. E. A. Smith and P. Kincaid, "Derivation and validation of the automated readability index
for use with technical materials," Human Factors, 1970, 12,457-464.

5. J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, "Derivation of new rea­
dability formulas (Automated Readability Index, Fog count, and Flesch Reading Ease
Formula) for Navy enlisted personnel," Navy Training Command Research Branch
Report 8-75, Feb., 1975.

6. M. Coleman and T. L. Liau, "A Computer Readability Formula Designed for Machine
Scoring," Journal qf Applied Psychology, 1975, 60, 283-284.

7. R. Flesch, "A New Readability Yardstick," Journal of Applied Psychology, 1948, 32, 221-
233.

8. E. U. Coke, private communication.

9. D. W. Ewing, Writing for Results, John Wiley & Sons, Inc., New York, N. Y. (1974).

]0. G. Leggett, C. D. Mead and W. Charvat, Prentice-Hail Handbook for Writers, Seventh Edi­
tion, Prentice-Hall Inc., Englewood Cliffs, N. J. (1978).

] I. E. B. Coleman, "Learning of Prose Written in Four Grammatical Transformations," Jour­
nal of Applied Psychology, 1965, vol. 49, no. 5, pp. 332-341.

12 A. V. Aho and M. 1. Corasick, "Efficient String Matching: an aid to Bibliographic
Search," Commullicatl0l15 a/the ACM, 18, (6),333-340, June 1975.

13. Bell Laboratories, "UNIX TIME-SHARING SYSTEM: UNIX PROGRAM/vIER'S
MANUAL. "Seventh Edition, Vol. I (January 1979),

a. d.
A.M.
a. m.
b. c.
Ch.
ch.
ckts.
dB.
Dept.
dept.
Depts.
depts.
Dr.
Drs.
e. g.

Eq.
eq.
et al.
etc.
Fig.
fig.
Figs.
figs.
ft.
i. e.
in.
Inc.
Jr.
jf.
mi.
Mr.
Mrs.
Ms.
No.
no.
Nos.
nos.
P. M.
p. m.
Ph. D.
Ph. d.
Ref.
ref.
Refs.
refs.
St.
vs.
yr.

-]3 -

Appendix 1

STYLE Abbreviations

a great dee. I of

a large number of

a lot of

a majorily of

a need for
a number of

a p»rticular preference for

a preference for

a small number of

a tendency !O

abovemenl!Oned

ab~()lu1Cl}' complete

absolutely essential

acco,.lpli:,hed

accordIngly

actual

added increments

adequate enough

advent

afford an opportunity

aggregate

all of

allthir,~ghi.;,jt

along the line

an indication of

analyzation

and CIC

and or

another additional

any i:lnd all
arrive at a

as a matter of fact

as a method of

as sood ~)r beller than

as of now

as per

as regards

as related to

aS~I~tance to

as.~uming that

at a I"ler dale

at ahoUl

at above

at ~Iltimes

at an early date

at belo"
at the present

at lhe time when

at thl~ point in time

3tlhistime

at which time

at :-our earliest convenience

aUlhOflzation

awful

baSic' fundamentals

baSically

be cngnizant of

being as

being that

brief in duration

bring \0 a conclusion

bu; Lh~t

bu: what

b~ means of

by the use of

carrl out expenments

center about

eel]!..:1 iHuund

- 14 -

Appendix 2

Default DICTION Patterns

center portion

check into

check on

check up on

circle around

close proximlt}

collaborate together

collect IOgether

combine together

come to an end

common accord

compensallon

completcly eliminated

comprise

concerning

conduct an investigation of

conjecture

connect up

consensus of opinion

consequent result

con!>Olidate together

conlempl;.~e

continue to remain

could of

count up

couple together

debate aboLlt

decide on

deleterious effect

demean

demonstrate

depreciate in value

deserving of

desirable benefits

desirous of

different than

discontinue

disutilit;

divide up

doubt but

due to

dul~ noted

during the lime that

each and every

early beginnings

effectuate

emotional feelings

empty out

enclosed heJein

enclosed h<!r.c I',\\

end resuit

end up

endeavor

enter in

enter mto

enthused

enllrel} complele

equally good as

essentially

eventuate

every no'¥\- and then

exactl) Identical

experiencing difficulty

fabricate

face up to

facilitate
facts f nd figures
fast in action

fe,Hfulof

fearful that

few in number

file awa}

final completion

final ending

finaloulcome

final result
finalize
find it interesting to know

fir5t and (memo,l
first beginnings

first inlliated

firstly

follow after

following after

for the purpose of

for the reason that
for the simple reason that

for this reason

for your information

from the point of view of

full and complete

generally agreed

good and

got 10

gratuitous

greatly minimize

head up

help but

helps in the production of

hopeful

if and when

if at all possible

Impact

implement

important essenllals

importantly

in a large mea~ure

in a position to

in accordance

in advance of

in agreement with

in all cases
in bad., of

in behalf of

in behind

in between

lncase

in close proximity

in connict with

In conjunction Wllh

in connection with

mfact

in large measure

m many.c.ases

mmost calR.'>

in my opinion I think

in order 10

In rare cases

in reference to

in reg~rd to

in regards 10

in relation with
in short supply

in size

in term'; of

in the amount of

in the case of

in the course of

ID the event

in the field of

in the form of

ID the instance of

in the interim

in the last ~nal) sis

in the matter of

in the near future

in the neighborhood of

in the nO! too distant fUlure

in the proximily of

in the range of

in the same wa)' as described

in the shape of

in the vlcinit:- of

in this case

in view of the

in Violation of

inasmuch as
indicate

indicative of

initialile

imtiate

inJuflOus 10

inqUire
inside of

in!>tllUle a

intents and purposes

intermingle

irregardless

is defined as
is used to control

is when

is where

it is incumbent

it stands to reason

it was noted that if

JOint cooperallon

joint partnership

just exacth

kind of

kno\'. about

last but not least

later on

leaVing out of consider<ltion

liable
link up

literall;
little doubt that

lose out on

lots of

main essentials

make a

make adjustments to

make an

make appllc<ltion to

make contact with

make men lion of

make out a list of

make the acquaintance of

make the adjustment

maximum possible

meaningful

meet up with

melt down

mell up

methodolog)

might of

minimize as far as possible

minor Importance

miSS out on

modification

more preferable
most unique
must of
mUlual cooperation
necessary requIsite
necessitate
need for
nice
not be Ull

not In a position to
not of d high order of accuracy
not un
not ithstanding
of considerable magnitude
of that
of the opinion that
off or
on a fe occasions
on account of
on behalf of
on thc grnund~ thai
on the occa!>lOr:
on the pari of
one of the
open up
operates to correct
outside of
over with
overall
paSt history
perrf";Jti\e of
perform a measurement
perform the measurement
permits Ihc reduction of
personalize
pertaining to
ph~!oi.:a! size
plan ahe~d
plan for Ihe futuro:
plan in advance
plan on
present a conclusion
present a report
presently
prior to
prioritize
proceed to
procure
producti\'e of
prolonl! the duration
protrude out from
pro\·ided thaI
pursuilntlo
put 10 usc in
range aJi the \Ioay from
reason is because
rCiison why

recur 4i!iJ11'

redu.:-e ·.10 0

h~f,~i ".,.d;

reft{~!"e Itl r1tT.~

refiecli\·e of
rcgardin@.
regretful
reinillale
relallve to
repeat again
representative of
resultant effect
resume again
retreat back
relUrnal!illn
return bllck
reven back
seal off

seems apparent
send a communication
short space of lime
should of
single unit
situation

son of
speiloul
still continue
still remain
subsequent

- 15 -

subslantiall~ in agreement
succeed in
suggestive of
superior than
surrounding circumstances
take appropriate
take cogniZance of
take into consideration
termed as

termination
the author
the authors
the case that
the fact
the foregoing
the foreseeable future
the fullest possible extent
the majorit~ of
the nalure
the necessil~ of
the onl~ difference being that
the order of
the point that
the truth is
there are nOI many
tl'lrougft tho:: 1"':"!i.:,~i'H·;; of
through Ihe use of
throughoutlhe entire
timelOten·aJ
to summarize Ihe abo\e
tot<ll effect of all this
lotalit}
Ir,lnspire
true facts
try and
ultimate end
under a separilte cover
under dale of
under separate cover
under the necessity (0

underl) ine purpose
undertake a stud}
uniforml~ mnsistent
unique
uw.! -;.uch lime.as
up 10 thl;.!lTTh!.
upshol
utilize

~~",:{"I~

'I.-t"'I~. uOlque
vital
which
.... lIh a vie 10

with reference to
with regard to
with Ihe exception of
wllh the object of
",ith the result that
with thi.~ in mind. it is clear Ihat
within the rCalm of possibilit~
without further delil~·

worlh while
would of

ing behilvlor
wise
- which

- about which
- dftcr which
- at which
- bet~ecn ~hich

- by which
- for whu:h
- from hictl
- in which
- intowhieh
- of which
- on y,.hkh
- on ",hlch
- over y,.hlch
- through which
- to which
- under which
• upon which
'with which
• Without which
-clockwise
-likewise
-other~ise

Introduction

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bel! Laboratories
Murray Hill, New Jersey 07974

NROFF and TROPF are text processors under the PDP- 11 UNIX Time-Sharing System I that format text
for typewriter-like termin31s and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFP offer unusual freedom in docu­
ment styling, including: arbitrary style headers and foolers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik­
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROfF can prepare output di.rectly for a variety of terminal types and is
capable of utilizing the full resolution of each termina1.

Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is

i!foff options files (or irllff optiol!s files)

where opriofls repr~sents any of a number of option arguments and files represents the list of files con­
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. if no file names are given input is taken from the stan­
dard input. The options, which may appear in any order so long as they appear before the files, are:

Opl/em

-olist

-oN
-stV

Eifeet

Print only pages whose page numbers appear in list, which consists of comma­
separated numbers and number ranges. A number range has the form N-Mand
means pages N thro~lgh M; a initial -N means from the beginning to page N; and
a final N - means from N to the endo

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages (default tV-I) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

-mname Prepends the macro file /Ilsr/libilmac.name to the input files.

-raN

-\

-q

Register a (one-character) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous inpu(ooutput mode of the rd request.

- 1 •

NROFF/TROFF User's Manual
October 11, 1976

NROFF Only

-Tname Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Model 37 Teletypea , tD300 for the GE TermiNet 300 (or any ter­
minal without half-line capabilities), 300S for the DASI-300S, 300 for the DASI-
300, and 450 for the DASI-4S0 (Diablo Hyterm).

-e Produce equally· spaced words in adjusted lines, using full terminal resolution.

-t

-f

-w

-b

-a
-pN

-I

TROFF Only

Direct output to the standard output instead of the phototypesetter.

Refrain from feeding out paper and stopping phototypesetter at the end of the run.

Wait until phototypesetter is available, if currently busy.

TROFF will report whether the phototypesetter is busy or available. No text pro­
cessing is done.

Send a printable (ASCII) approximation of the results to the standard output.

Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument; for example,

Drolf -04,8-10 -T lOOS -mabc jilel jile]

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named fileJ and file],
specifies the output terminal as a DASI-300S, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table­
construction preprocessor TBll. A reverse-line postprocessor COL· is available for multiple-column
NROFF output on terminals without reverse-line ability; COL expects the Model 37 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbl files I eqD I trolf - t options I tcat

the first I indicates the piping ofTBl's output to EQN's input; the second the piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCA T. GCAT4 can be used to
send TROFF (-I) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

[II K. Thompson, D. M. Ritchie, UNIX Programmers Manual, Sixth Edition (May 1975).

[2) B. W. Kernighan, l. l. Cherry, TYPl!Sttting Mathematics - User's Guide (Second Edition), Bell laboratories
internal memorandum.

[3) M. E. lesk, 101 - A Program co Format Tables, Bell Laboratories internal memorandum.

[4) Internal on-line documentation, on UNIX.

[51 B. W. Kernighan, A TROFF TutOrial, Bell laboratories internal memorandum.

- 2 -

NROFF/TROFF User's Manual
October 11, 1976

SUMMARY AND INDEX

Requt!st In ilia! if No
Form Value" Argumt!!It Notes# Explanation

1. General Exphmallon

2. Font and Chllff.cter Size Control

.IIS ± N 10 point previous E

.55 N 12/36 em ignored E

.CS FNM olf P

.M F N off P

.bel SF N olf P

.ft F Roman previous E
• !p N F !t,I,B,S ignored

3. Pale Conlrol

.pl ±N 11 in

.bp ±N N-l

.pn ±N N-l

.116 ± N 0; 26/27 in

.ne N

.mll R none

. r! ±N none

11 in

ignored
previous
N-IV
internal
internal

v
D,v
D
D,v

4. Text Filling. Adjusting, !!I'll! Centering

.or B

. n. fill R,E
• nf fili R,E
.lId c
.nli
.ce N

adj,ooth
adjust
olf

5. Verllcal Sllllcinll

.VS N 1/6in;!2pts

.Is N N-I

. §p IV

.sv N
• IlS

.IrIS

.1'5

space

adjust

lVmMl

previous
previous
N-IV
N-IV

Ii. Line Length filld Iml.e!ltil1g

E
B,E

E,II
E
B;v
v

D
D

Point size; also \s±N.t
Space-character size set to N/36 em. t
Constant character space (width) mode (font Fl.t
Embolden font Fby N-I units.t
Embolden Special Font when curren! font is F.t
Change to font F - x, xx, or 1·4. Also \fx, \f(xx, \IN.
Font named F mounted on physical position I ~ N~ 4 .

Page length.
Eject current page; next page number N.
Next page number N.
Page offset.
Need N vertical space (V - vertical spacing).
Mark curren! vertical place in register R.
Return (upward only) to marked vertical place .

Break .
Fill output lines.
No filling or adjusting of output lines .
Adjust output lines with mode c.
No output line adjusting.
Center following N input text lines.

Vertical base line spacing (V).
Output N-j Vs after each text output line.
Space vertical distance N in either direction .
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; tum no-space mode off.

.II ± N 6.5 in previous E,m Line length .

. ill ±N N-O previolls Fl,E,m Indent.

.tt ± N ignored R,E,m Temporary indent.

i. Macros, Strings, Diversion, lind Positiol! Traps

• de xx yy
• lIm xxyy
.ds xx string·
. as xx string •

.yy-..

.yy-..
ignored
ignored

Define or redefine macro xx; end at call of yy .
Append to a macro .
Define a string xx containing Siring.
Append string to string xx.

#Values separated by n:~ are for NROfF and TROFF respectively.

#Noles are explained a~ the end of this Summary and Index

tNo effecl in NROFf.

tThe use of ~'" as control character (instead of "'."') suppresses the break function.

- 3 •

NROFF/TROFF User's Manual
October 11, 1976

Request
Form

.rm :ex

.rn xx yy

.di :0:

.tlil xx
• wl! Nxx
• eli xx N
. at N xx
.it Nxx
.em xx

Initial
Valu/!

none

8. Number Registers

.or R ±NM

.af R c arabic

. rr R

lIND
A rg'.lment

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, lind Fields

.tll Nt ... 0.8; O.Sin none

.Ie c
• Ie c
.fe a b

none

off

none
none
off

NOles Explanation

Remove request, macro, or string.
Rename request, macro. or string xx to yy.

D Divert output to macro =
D Divert and append to .0:

v Set location trap; negative is W.r.t. page bOllom .
v Change trap location .
D, v Set a diversion trap .
E Set an input-line count trap.

1.1

f,m
E
E

End macro is =.

Define and set number register R; auto-increment by M.
Assign format to register R (e-l, i, I, s, A).
Remove register R .

Tab settings; left type, unless I-R (right), C (centered).
Tab repetition character.
Leader repetition character .
Set field delimiter a and pad character b.

HI. Illput lind OulP1l1 Conventions and ChlllulI:ter Translations

• f(C \ \ Set escape character .
.eo on Turn off escape character mechanism.
Jg N -;011 011 Ligature mode on if N>O.
.IiIN off N-l E Underline (italicize in TROFF) N input lines.
.eu N off N-l E ContiflliOIl.5 underline in NROFF; like ill in TROFF.
.i1f F Italic Italic Underline font set to F (to be switched to by ull.
.cc c E Sct control character to c.
.1:2 c E Sct nobreak control character to c.
.Ir abed none 0 Translate II to b, elc. on output.

U. Local Horizonta! and Vertical MO!iOIl5, llind the Widlh Function

12. Overstrike, Bracket, Line-drawing, lind Zero-width FUllcllons

13. Hyphemllilol!.

.11 I! hyphenate

.hy N hyphenate

.be c \%

. 11" word1 ...

14. Three Part Tilles .

• 11 • kft' centl'!" right"

hyphenate
\%
ignored

• pc c % off
. It ± N 6.S in previous

15. Oulput Line Numberinll .

• l1m ±N 114 S I off
.nn N IV-1

16. Conditional Accephmce of Input

.If c anything

E
E
E

E,m

E
E

No hyphenation.
Hyphenate; N - mode.
Hyphenation indicator character Co

Exception words .

Three part title.
Page number character .
Length of title .

Number mode on or off, set parameters.
Do not number next N lines.

If condition c true, accept cmYlhing as input,
for mult.i-line use \ (anYlhing\).

• 4 "

NROFF/TROFF User's Manual
October 11, 1976

/fNo Request
Form

Initial
Value Argument Noles Explanation

. If ! c anything
• If ,IV anything
• If !N anything
.if 'stringi' string]' anything
.If !' stringI' sIring]' anything
.Ie c anything
. e! anything

17. Environment Switching.

. ev N N-O previous

II

II

II

18. Inserlions from the Standard Input

. rd prompt

. ex
prompt-BEl-

19. Input/Outpill File Swltchinll

.50 filename

. nx filename

.pl program

20. Miscellaneous

end-of-file

E,m

If condition c false, accept anything .
If expression ,IV > 0, accept anything .
If expression N ~ 0, accept anything .
If string1 identical to Siring], accept anything .
If Siring] not identical to string2, accept anything.
If portion of if-else; all above forms (!ike if) .
Else portion of if-else .

Environment switched (push down) .

Read insertio n .
Exit from NROFF/TROFF .

Switch source file (push down).
Next file .
Pipe output to program (NROFF only).

Set margin character c and separation N. .mc eN
.Im SIring
.III YY
.pm t

off
newline
.yy-..

Print SIring on terminai (UNIX standard message output).
Ignore till call of Y.Y .

all Print macro names and sizes;

.n B
if I present, print only total of sizes.
Flush output buffer.

11. Outpul and Error Messages

Noles-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
o Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alpbal>eU",,1 Req" ... t aDd Section Number C.oss R.r n ...

ad 4 a: 10 cI. 1 fc 9 ie 16 U nh 13 pi 19 m 7
of 8 cc 4 ell 7 fi 4 if 16 Is nm IS pi 3 rr 8
am 7 oh 7 e<: 10 n 20 il 20 It 14 nn 15 pm 20 13 5
IS C$ 2 <:\ 16 fp 2 in 6 me 20 nr 8 PII) rt J
lld cu 10 em 7 ft 2 it 7 mk 3 as S po 3 so 19
bp da 7 eo 10 he 13 Ie 9 na nx 19 P3 2 sp 5
b. 4 d. 7 ev 17 hw 13 II 10 n. os S rd 18 .. 2
c2 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc 14 .m 7 sv S

• 5 •

La 9 vs
te 9 wh
Ii 6
II 14
1m 20
If 10
uf 10
ul 10

NROFF/TROFF User's Manual
October 11. 1976

Escape Sequences for Characters, Indicators. and Functions

Section Escape
Reference Sequence

10.1 \ \
10.1 \e
2.1 "
2.1 \'
2.1 \-
7 \.

11.1 \ (space)
Il.l \0
ILl \1
II.! \A
4.1 \&

10.6 \!
10.7 \.
7.3 \SN

13 \%
2.1 \(=
7.1 \'x, \-(=
9.1 \Ii

12.3 \b' abc ..• '
4.2 \c

11.1 \d
2.2 \ eX, \{(xx, \fN

11.1 \h' N'
11.3 \kx
12.4 \1' Nc'
1204 \L' Nc'
B \nx,\o(=

12.1 \0' abc .. .'
4.1 \p

11.1 \1'
2.3 \sN, \5 ± N
9.1 \t

11.1 \u
11.1 \v'N'
11.2 \.,,. string'
5.2 \x'N'

12.2 \zc
16 \1
16 \)
10.7 \(newline)

\X

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
, (acute accent); equivalent to \ (as
. (grave accent); equivalent to \(1111
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument I "" N,," 9
Default optional hyphenation character
Character named =
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion 0/2 line in NROFF)
Change to font named x or xx, or position N
Local horizontal motion; move righl N (negative left)
Mark horizontal input place in register x
HorizomaHine drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or =
Overstrike characters a, b, C, •••

Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non·interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (I/2 line in NROFF)
Local vertical motion; move down N (negative lip)
Interpolate width of Siring
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \\. \., \", \$, \', \2. \n. \t. and \(newline) are interpreted in copy mode (§7.2).

- 6 -

NROFF/TROFF User's Manual
October 11, 1976

Predefined General Number Registers

Section Regi3ter
Reference Name

3 %
11.2 ct

7.4 til
7.4 dn

dll'
lil'

11.3 np
15 In

mo
4.1 III

11.2 sb
11.2 st

1r

Description

Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1-i).
Current day of the month (l-31).
Current horizontal place on input line.
Output line number.
Curren! month (1-12).
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Las! two digits of current year.

Predefined Read-Only Number Registers

Section Rl!!gisler
Reference Name lkscriptiof!

7.3

11.1

II.!
5.2

7.4
2.2
4
Ii
6
4
3
3
2.3
7.5
4.1
S.l

11.2

7.4

.S

. A

. H

. T

. V
• Ii!

• f

. Ii

.f

.11

.!

.I

.n

.0

• 1'
• 5

• 1
.l.I

• V

. W

• X

• y
• Z

Number of arguments available at the current macro leveL
Set to I ill TROFF, if -111 oplion used; always 1 in NROFF .
Available horizontal resolution in basic units .
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
Available vertical resolution in basic units .
Post-line extra line-space most recently utilized using \x' N'.
Number of lilies read from current input file .
Current vertical place ill curren! tliversion; equal to Ill, if no diversion .
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion.
Current indent.
Current line length .
Length of text portion on previous output line.
Curren! page offset.
Current page length .
Current pain! size .
Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

·7·

NROFF/TROFF User's Manual
October 11, 1976

1. General Explanation

REFERENCE MANUAL

1.1. Form oj input. Input consists of text lines, which are destined to be printed, interspersed with control
lines. which set parameters or otherwise control subsequent processing. Control lines begin with a con­
trol character-normally. (period) or • (acute accent) -followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character' suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces andlor tabs) for esthetic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of (he contents of the number regis­
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis­
introduced, two-character name as in \0 (.xx.

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypeselter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev­
ice indi~ated by the - T option (defauit Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and nOFF accept numerical input with the appended scale
indicatOrs shown in the following table, where S is the current type size in points, Vis the current verti­
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

I Inch 432 240
c Centimeter 432x50/l27 240x50/127
P Pica - 1/6 inch 72 240/6
m Em - Spoints 6xS C
D En - Em/2 3xS C, same as Em
p Point - 1/72 inch 6 240/72
II Basic unit 1 I ,. Vertical line space V V

none Defa·ult, see below

In NROFF, both the em and the en are taken to be equal to (he C, which is output-device dependent;
common values are 1/10 and 1/12 inch. Actual character widths in NROFF need not be all the same
and constructed characters such as -> (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions II, in, Ii, ta, It, po, me, \11, and \1; Vs for the vertically­
oriented requests and functions pi, ,.,h, eh, dl, sp, 5Y, ne, n, \ v, \x, and \L; p for the V5 request; and
u for the requests nr, if, and Ie. All other requests ignore any scale indicators. When a number regis­
ter containing an already appropriately scaled number is interpolated to provide numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling .

• 8 •

NROFF/TROFF User's M1n~!~1
October II, 1976

The number, N, may be specified in decimalofraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, I N becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.511 13.1c

wi!! space in the required direction to 3.2 centimeters from the lOP of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses.
the arithmetic operators +, -, /, " 'I. (mod), and the logical operators <, >. <-, >-, - (or --).
" (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.151+\II:d'+3l/211

",m set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. NOlation. Numerical parameters are indicated in this manual in two ways. ± N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, (0 increment it by N, or to decrement it by N respectively. Plain N means that an ini o

tial algebraic sign is not an Increment indicator, but merely the sign of N. Generally. unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are SII, wh, ell, nr, and If. The requests
liS, fl, PO. 1'5, Is, II, in, lind It restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2, Font and Chullcter Sile Conlrol

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set pius Ii Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table l. All ASCii characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCll characters are input
in the form \(xx where xx is a twoocnaTacteT name given in the attached Table II. The three ASCII
exceptions are mapped as foHows:

ASCII Input Primed by TROFF
Character Name Character Name .

acute accent
,

close quote
grave accent open quote

- minus - hyphen

The characters " ., and - may be input by \', \'. and \- respectively or by their names (Table m.
The ASCII characters @, #, " ", " <. >, \, I. l. -, " and _ exist only on the Special Font and are
printed as a I-em space if that Font is not mounted'.

NROFF understands the entire TROFF character set, but can in general print only ASCll characters,
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

- 9 -

NROFF/TROFF User's Manual
October II, 1976

characters ", " and _ print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic OJ, Times Bold (B), and
the Special Mathematical Font (S) on physical typesetter positions I, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may' be changed (among the
mounted fonts) by use of the ft request, or by imbedding at any desired point either \Ix, \{(xx, or \fN
where x and xx are the name of a mounted font and N is a numerical font position. It is nOI necessary
to change to the Special font; characters on that font are automatically handled. A request for a named
but not-mounted fonl is ignored. TROFF can be informed that any particular foni is mounted by use of
the fp request. The lis! of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current fonl is available (as numerical position) in the read·only number register .f.

NROFF understands font control and normally underlines ltalic characters (see §iO.S).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch 10 1/2 inch. The ps request is
used 10 change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \5 ± N (j ~ N~ 9) to
increment/decrement the size by N, \50 restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Request Initial II No
Form Value Argument Notes" Explanation

.ps ±N 10 point previous

.!IS N 12/36 em ignored

.cs FNM off

• bd F N off

E

E

p

p

Point size set to ± N. Alternatively imbed \sN or \5 ± N.
Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence +N, -N will work because the previ­
ous requested value is also remembered. 19nored in
NRO!'!'.

Space-character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF.

Constant character space (width) mode is set on for font
F (if mounted); the width of every character will be
taken to be N/36 ems. if M is absent, the em is that of
the character's point size; if M is given, the em is M­
points. All affected characters are centered in this space,
including those with an actual width larger than this
space. Special Fonl characters occurring while the
curren! font is F are also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROF!' .

The characters in font F will be artificially emboldened by
printing each one twice, separated by N-J basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF.

":;mes are explained at the end of the Summary and Index above.

- 10 •

NII.OFF/TROFF User's Manual
()ctober 11, 1976

.bd SF N off

.ft FRoman

.fp N F R,I,B,S

3. Pille (Ootr!)i

previous

ignored

E

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd S B 3. The mode must be still or again in effect
when the characters are physically primed.

Fon! changed to F. Alternatively, imbed \fF. The foOl
name P is reserved to mean the previous font.

Font position. This is a statement that II font named F is
mounted on position N (1-4). It is a fatal error if F is
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROF!' is R. 1. B,
and S on positions I, 2, 3 and 4.

Top and bottom margins are flot automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (N from the bottom)' See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the firs! page occurs either when the first break occurs Of

when the first non·diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the lop diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial 11 No
Form Valul!! Argumellt Notes up/ano/lem

.pl ±N

.lIp ±N

.IID ±N

.po ±N

.ne N

11 in 11 in v Page length set to ± N. The internal limitation is abom
75 inches in TROFF Ilnd about 136 inches in NROFF.
The current page length is available in the .p register.

B" ,v Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request os.

ignored Page number. The next palle (when it occurs) will have
the page number ± N. A pn must occur before the ini­
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the %
register.

0; 26/27 int previous Page offset. The current left margin is set to ± N. The
TROFF initial value provides about 1 inch of paper mar­
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum (line-length) + (page-offset) is
about 7.54 inches. See §6. The current page offset is
available in the .0 register.

N-I V D,v Need N vertical space. If the distance, .0, to the next
trap position (see §7.S) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page, D is the

!Yfhe us.e of" " " as control character (instead of".~) suppresses the brel!lk function.

tVaJ"e. separatod by";" ar. for NROl'F and TROFF r.spectively.

- 11 -

NROfF/TROFF User's Ylanual
October 11, 1976

.mk R none internal

,rl ±N none internal

D

D,v

4. Text filling, Adjusting, and Centering

distance to the bottom of the page. If D < V, another
line couid still be output and spring the trap. In a diver­
sion, D is the distance to the diversion trap, if any, or is
very large.

"Iark the currem vertical place in an internal register
tboth associated with the current diversion levell, or in
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ± N (w.r.!. current place) is given,
the place is ± N from the top of the page or diversion or,
;f .V is absent, to a place marked by a previous wk. Note
that the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence ,mk R ...
. sp !\nRu.

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out­
put text line until some word doesn'(fit. An 3nempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces betweell the words on the output line are then
increased to spread out the line to the current lim! length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
proGess) can be tied together by separating them with the unpaddable space character"\ " (backslash­
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the S5 request (§2). In NROFF. they are normally nonuniform because of quantization
to character-size spaces; however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, al1d hyphenation (§13) can all be prevented or controlled. The
text length 011 the last line omput is available in the ,n register, and text base·line position on the page
for this line is in the III register. The text base-line high-water mark (lowesl place) on the current page
is in the .il register.

An input text line ending with ., ?, or ! is tak~n to be the end of a sentenCI!, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect. a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread OUi to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the cOlltrol character using Ir (§lO.5).

4,2. Interrupted lexl. The copying of a input line in nofill (non-fill) mode can be interrupted by terminat­
ing the partial line with a \c. The next encountered input text line will be considered to be Ii continua­
tion of the same line of input tex!. Similarly, a word within filJed text may be interrupted by terminat­
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter­
rupted word. If the intervening control lines CJuse a break, any partial line will be forced out along
with any partial word.

Request
Form

.br

Initial
Value

II No
Argumem Notes Expla.natlon

Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break .

• 12 -

NROFF/TROFF User's Manual
October I!, 1976

.11 fill on

.111 fill on

.ad c adj,both adjust

.iIl1I adjust

.C1! N off Nom!

5. Vertical Splicing

B,E

R,E

E

E

!i,E

Fill subsequent output lines. The register .u is I in fill
mode and 0 in noftl! mode.

Nofil!. Subsequent output lines are neither filled nOr
adjusted. Input text lines are copied directly to outpUI
lines wirhout regard for the current line length.

Line adjustment is begun. If fil! mode is not on, adjust­
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type

I adjust left margin only
r adjust right margin only
c center

II or n adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N-O, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

S.l. Base-lin!! spacing. The vertical spacing (V) between the base-lines of successive output lines can be
sel using the vs request with a resolution of 1/144 inch -1/2 point in TROFF, and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out­
put lines. For the common type sizes (9·12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF default is 10-point type on a 12-point spacing (as in this document}.
The current V is available in the .v register. Mu!tiple- V line separation (e. g. double spacing) may be
requested with Is.

S.2. Extra lille-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-lille-space function \x' N' can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame­
ter (here'), the delimiter choice is arbitrary. except that it can '(look like the continuation of a number
expression for N. U N is negative, the output line containing the word will be preceded by N extra
vertiCllI space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same tine, the maximum values are used.
The most recently utilized post-line extra line-space is available in the .11 register.

S.l. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space pasl a trap. A contiguous block of vertical space may be
reserved using 5'1'.

Requl/!st Initial l/No
Form Value Argumel'it

.'I'sN 1/6in; 12p!S previous

.Is N Noml previous

NOles

E,II

E

Explanation

Set vertical base-line spacing size V. Transient extra
vertical space available with \x'N' (see above).

Line spacing set to ± N. N-l Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

- 13 -

NROFF/TROff User's Manual
October II, 19i6

.sp N N-J V

.n N N-IV

.05

.DS space

.IS space

Blank text line.

II. Line Length lind Indentinll

B,v

D

D

B

reached a trap position.

Space vertically in either direction. If N is negative, the
motion is backward (u pward) and is limi ted to the dis­
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see CIS, and
rs below)'

Save a contiguous vertical block of size N. If the dis­
tance to the next trap is greater than N, N vertical space
is output. No-space mode has no eff'ect. If this distance
is less than N, no vertical space is immediately output,
but N is remembered for later output (see os). Subse­
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has 110

effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and lip requests witholJt a next page
number. The no-space mode is turned off' when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned off'.

Causes II break and output of a blank line exactly like
51\ 1.

The maximum line length for fill mode may be set with ll. The indent may be set with In; an indent
applicable 10 only the lIext output line may be set with II. The line length indudes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ceo The effect of II,
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .I and .1 respectively. The length of three-part titles pro-
duced by tJ (SCi: § 14) is illdependelll/y set by It. .

Requen Initial If No
Form Vallie A.rgument Noles Explanation

.11 ±N 6.5 in

.in ±N

.ti ±N

previous

previous

ignored

E,ro Line length is set to ±N. In TROFF the maximum
(line-length) + (page-off'sel) is about 7.54 inches.

II,E,m Indent is set to ± N. The indent is prepended to each
output line.

B,E,m Temporary indent. The lIexl output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The curren! indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and slrings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A slrillg is a named string of characters, no/ including a newline character, that may be interpo­
lated by name at any point. Request, macro, and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with Tn or removed with rm. Macros are created
by de and dl, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

- 14 -

NROFF/TROFF User's M!!.!'!lJ"1
October 11, 1976

control line beginning .= will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and = are interpolated at any desired point with \ox and
\0 (Xl(respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

" The contents of number registers indicated by \n are interpolated.
o Strings indicated by \. are interpolated.
o Arguments indicated by \$ are interpolated.
o Concealed new lines indicated by \(newline) are eliminated.
o Comments indicated by \" are eliminated.
" \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
" \\ is interpreted as \.
" \. is interpreted as • .".

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.J. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked tbe input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro witb \$N, which interpolates
tbe Ntb argument (1"; N";9). If an invoked argument doesn't exist, a null string results. For exam­
ple, the macro = may be defined by

.de xx \ "beeln definition
Today Is \\$1 the \\$2.

\ "end definition

and called by

.xx Monday 14th

to produce the text

Today Is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan­
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
rellisters dn and dl respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in nofill mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

- 15 -

NROFF/TROFF User's Manual
October 11,1976

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in § 1 0.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the Oth diversion levell. These are the diver­
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the curre nl
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input­
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top.
This trap position may be changed using eh. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS). If the firs! one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps pasl the trap position. Reaching the bottom of a page springs the
top-of-page trap, if any, provided there is a next page. The distance to the next trap position is avail­
able in the .1 register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap efi'eclive in the current diversion may be planted using dr. The.! register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of
input-line-count traps, see it below.

Reqllest initial If No
Form Value Argument Notes Explanation

.de xx yy

• lIm ;cr yy .yy-..

.ds xx string - ignored

.as xx string - ignored

.rm xx ignored

.m ;ex y.y ignored

.!l1 xx end D

Define or redefine the macro = The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .}Y, whereupon the macro }Y is
called. In the absence of yy, the definition is terminated
by a line beginning with "" '. A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. ".: can be
concealed as \ _. which will copy as \ .. and be reread as

Append to macro (append version of de) .

Define a string xx containing string. Any initial double­
quote in string is stripped off to permit initial blanlr.s.

Append sIring 10 string xx (append version of dsl.

Remove request, macro, or string. The name XX" is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

Rename request, macro, or string xx to yy. If yyexists, it
is firs! removed.

Divert output to macro = Normal text processing
occurs during diversion except that page offsetting is no!
done. The diversion ends when the request !II or da is
encountered without an argument; extraneous requests
of this type should not appear when nested diversions are
being used.

- 16 -

NROFF/TROFF User's ~,:.:.;-,;.;.:.:

October I!, 1976

.!l1iI)c(

.wll Nxx

. ell)C(N

. at N xx

. It Nxx

• em xx none

8. Number Registers

end

off

olf

none

D

v

"If

D,v

E

Divert, appending to xx (append version of dil.

Install a trap to invoke xx at page position N; a negarive N
will be interpreted with respect to the page bortom. Any
macro previously planted at N is replaced by xx. A zero
N refers to the lOp of a page. In the absence of xx, the
first found trap at N, if any, is removed .

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed .

Install a diversion trap at position N in the current diver­
sion to invoke macro xx. Another al will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed .

Set an input-line-count trap to invoke the macro xx after
N lines of texl input have been read (control or request
lines don '(count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended .
The effect is the same as if the contents of xx had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long arid do not conflict with request, macro, or string names. Except for certain
predefined read-only registers, II number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. Onl! common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.41.

Number registers are crealed and modified using IU, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an aUlo-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

EIfec! on Value
Sequence Register Interpolated

\ox none N
\0 b:x none N
\o+x x incremented by M N+M
\o-x x decremented by M N-M
\0+(= xx incremented by M N+M
\n-{xx ;0: decremented by M N-M

When interpolated, a number register is converted to decima! (default), decimal with leading zeros,
lower-<:ase Roman, upper-case Roman, lower-case sequential alphabetic, or upper·case sequential alpha­
betic according 10. the format specified by lRf.

Request Initial II No
Form Jllllu/! Argument Noles Exp/aflati(}lf

.nr R ±N M The number register R is assigned the value ±N wilh
respect to the previous value, if any. The increment for
auto-incrementing is set to M

- 17 -

NROFF/TROfF User's Manual
October 11, 1976

,af R c arabic

.rr R ignored

9. Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Numbering
Format, Sequence

1 0,1 ,2,3 ,4,5, ...
001 000,001,002,003.004,005, ...

i O,i,jj,iii~iv,V1'"
I O,1,H,m,lV,V, ...
1\ o ,a, b~C1'" ,l,a.a.~a b, ... ,lZ, aaa, ...
A O,A,B,C, ...• Z,AA,AB, ...• ZZ,AAA, ...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
IIHlder character) can both be used to generate either horizontal motion or a string of repeated charac­
ters. The length of the generated entity is governed by internal lab SlOpS specifiable with la, The
default difference is that tabs generate motion and leaders generate a string of periods; Ie and Ie offer
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting,
right adjusting, and cemering. In the following table: D is the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop; next-sIring consists of the input charac­
ters following the tab (or leaded up- to the next tab (or leader) or end of line; and W is the width of
next-string.

I Tab Length of motion or Location of
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of Ii repealed character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs Of leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \1 and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of ,field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub-strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example, if the field
delimiter is # and the padding indicator is ", #"="right# specifies a right-adjusted string with the
string xxx centered in the remaining space.

- 18 -

NROFFITROI'F User's Manual
October! I, 1976

Rl!qll/!:ft

Form

• 111 Nt ...

.Ie c

.II'! C

.fe t3 b

Initial If No
Valili/! Arg7Jment Notes Explanation

0.8; O . .5in none E.m Set tab stops and types. I-R, right adjusting; I-C .
centering; I absent, left adjusting. TROFF tab stops are
preset every O.Sin.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

none none E The tab repetition character becomes c, or is removed
specifying motion.

off

none E The leader repetition character becomes c, or is removed
specifying motion.

off The field delimiter is set to IT, the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input lind Output C@nventlons and Character Tnmslmtlons

lO.l.Input character translations. Ways of inputting the graphic character set were discussed in §2.!'
The ASCII control characters horizontal tab (§9.J), SOH (§9.l). and baCKspace (§!0.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphk with Ir (§10.5). Ail olhers are ignored.

The esct3pt! character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some fUllction. A complete list of sllch sequences is given in the Summary
and Index on page 6. \ should no! be confused with the ASCli control characler ESC oi the same name.
The escape character \ can be input with the sequence \\. The escape character can be changed with
ec, and aU that has been said about the default \ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan­
ism may be turned off with 00, and restored with ec.

Request Illitial if No
FOI7II Valuft Argument NOit!S Explanation

.ec c \ \ Set escape character to \, or to c, if given .

• eo on Turn escape mechanism otr.

10.2. Ligatllres. Five ligatures are available in the current TROFF character set - ft, fI, fl, m. and 1fI.
They may be input (even in NROFF) by \(fl, \(f1. \(ff, \(Fi, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Reqwm Initial if No
Form Valllit Argumellt Note!! ExplanlJtion

.11 N off; on on Ligature mode is turned on if N is absent or non-zero,
and turned off if 1'1-0. If 1'1-2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.3. lJackspacing. underlining, overstriking. etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with ur, normally that on
font position 2 (normally Times Italic. see §2.2). In addition to rt and \1 F, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependen(subset of reasonable
characters.

• 19 •

NROFF/TROFF User's Manual
October 11,1976

Request
Form

.ul N

.cu IV

.uC F

Initial
Value

off

off

Italic

lfNo
Argument Noles Explanation

N-J E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font, saving
the current font for later restoration; other font changes
within the span of a III will take effect, but the restora­
tion will undo the last change. Output generated by II
(§14) is affected by the font change, but does not decre­
ment N. If N> 1, there is the risk that a trap interpo­
lated macro may provide text lines within the span;
environment switching can prevent this.

N-I E

Italic

A variant of ul that causes every character to be under­
lined in NROFF. Identical to ul in TROFF.

Underline font set to F. In NROFF, F may not be on
position 1 (initially Times Roman).

IDA. Control characters. Both the control character. and the no-break control character' may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Request
Form

initial
Value

lfNo
Argumelll NOles Exp/a[uJtiofl

.cc c E The basic control character is set to C, or reset to

• c2 c E The nobreak control character is set to c, or reset to •••.

10.5. Output translalion. One character can be made a stand-in for another character using IT. All text
processing (e. g. character comparisons] takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of oulput (includ­
ing diversion).

Request Initial lfNo
Form Val:.!! A.rgument Notes Explamuioll

.tf abed.... none 0 Translate a into D, c into d, etc. If an odd number of
characters is given, the las! one will be mapped into the
space character. To be consistent, a particular translation
must slay in effect from input to outpul time.

10.6. Transparent throughput. An input line beginning with 1I \! is read in copy mode and transparently
output (without the initial \0; the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information 10 a post-processor or to imbed control lines in a
macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the las! one
with the escape \. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \'. The newline at the end of a comment
cannot be concealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a com­
ment can be on a line by itself by beginning the line wilh .\".

11. Local Horizontal Illld Vertical MOlions,lIl11i the Width Function

11.1. Local Molions. The functions \v' N' and \h' N" can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the posilive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the nel verticailoca! mOlion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion arc summarized in the following
table.

- 20 •

NROFF/TIWFF User', M"jju,,!
October 11,1976

Vertical Effect in
Local Motion TROPF NROFF

\v'W Move distance N

\Ii Ih em up III line up
\Ii III em down III line down
\r 1 em up 1 line up

I Horizontal Effect in J I
I Local Motion TROPF NROFF .

I \h'W Move distance N
\(space) Unpaddable space-size space
\0 Digit-size space

\1 l/6 em space I ignored
\" 1/12 em space ignored

As an example, El could be generated by the sequence E\s-2\v'-O,4m'2\v'0.4m'\s+2; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \'If'string' generates the numerical width of sIring (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ­
ment. For example, .Ii -\w'l, 'l.I could be used to temporarily indent leftward a distance equal to the
size of the sIring "1. '.

The width function also sets three number registers. The registers st and sll are set respectively to the
highest and lowest extent of Siring relative to the baseline; then, for example, the total height of the
string is \Il(stu-\r!(slm. 111 TROFF the l1umber register cI is set to a value between 0 and 3: 0 means
that all of the characters in SIring were shaft lower case characters without descenders (like e); 1 means
that at lessl one character has a descender (like y); 2 means that at least one character is tall (like H);
and 3 means that both tall characters and characters with descenders are present.

11.3, Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kx word\h'I\llxu +2l.1' word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, IIrlicket, LIlle-drawil'lO:. lind Zerll-'1I'idlh FUIlCtiOIlS

12.1.0verstrikillg. AUiomaticaily centered overstriking of up to nine characters is provided by the over­
strike function \c/ string'. The characters in Siring overprinted with centers aligned; the tOla! width is
that of the widest character. Siring should flot contain local vertical motion. As examples, \0' e\" pro­
duces e, and \o'\(ml.l\(sr produces ~.

12.2. Zero-width characters. The function \ze will output c without spacing over it, and can be used to
produce left,aligned overstruck combinations. As examples, \z\ (c!\ (pI will produce Ql, and
\(br\z\(rn\lul\(br will produce the smallest possible constructed box O.
12.1. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
((11 J 1 ! I !J f I) that can be combined into various bracket styles. The function \t!' Siring" may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the tOlal pile is centered 1/2 em above the current base-

line (!h line in NROFF). For example, \b'\Oc\(lf'E\I\b'\(rc\(r!"\x' -O.Sm'\x'O,5m' produces [Ej.

12.4. Line drawing. The function \1' Nc' will draw a sIring of repeated c's towards the right for a dis­
tance N. (\1 is \ (lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a \&. If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made be/ore drawing the string. Any space
resulting from N / (size of c) having a remainder is put at the beginning (left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule _. underru!e _. and root­
en -, the remainder space is covered by over-lapping. If N is less than the width of c, a single c is cen­
tered on a distance N. As an example, a macro to underscore a string can be written

,lie lIS

\\$1\ l'IO\(ul'

- 21 -

NROFF/TROFF User's Manual
October 11, 1976

or one to draw a box around a string

.de bx
\ (br\I\\SI\I\ (br\ 1'10\ (rn\ 1'10\ (ui'

such that

.ul ·underlined words·

and

.bx ·words In a box·

yield underlined words and Iwords in a box ~

The function \L' Nc' will draw a vertical line consisting of the (optional) character c stacked vertically
apart I em (! line in NROFF), with the first two characters overlapped, if necessary, to form a continuo
ous line. The default character is the box rule I (\(br); the other suitable character is the bold vertical I
(\(by). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero· width box· rule and the 'h·em wide underrule were designed to form corners when using I·em
vertical spacings. For example the macro

.de eb

.sp -1 \·compensate for next automatic base·lIne spicing

.nf \ "avoid possibly overflowing word buffer
\h' -.Sn\L'I\\nau-l\l\ \n (.lu+ In\(ul\L' -1\ \nau +1\1'IOu -.Sn\(ul' \ "draw box
.n

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
usiDlI. .mk a) as done for this DarallraDh.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with hy, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphena·
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually nun) non· alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em·dashes (\(em), or hyphenation indicator characters-such as mother·in·law-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial Q No
Form Value A.rgument Notes Explanation

.nb

.hyN

.he c

hyphenate

on,N-1

\%

.hw word1 .•.

on,N-1

\'10

ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N~ I, or off for
N-O. If N-2, last lines (ones that will cause a trap)
are not hyphenated. For N- 4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive; i. e. N-14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default \ %. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

·22·

NROFF/TROFF User'~ "",,"''''';
October 11, 1976

14. Three Part Tilles.

implied; i. e. dig-it implies dig-its. This list is exam­
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function tI provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. tI may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Ref,!IIIW Initial UNo
Form Valut! A.rgument NOles ExpilJlUJtloll

. tl 'Ieft' center' right'

off

.It ±N 6.5 in previotis

IS. Olilpilt Line Numbering_

E,m

The strings left. center, and right are respectively left­
adjusted, centered, and right-adjusted in the current
title-length. Any of the strings may be empty, and over­
lapping is permitted. If the page-number character (ini­
tially %) is found within any of the fields it is replaced by
the current page number having the format assigned to

register ~t,. Any character may be used as the string del­
imiter.

The page number character is sel to c, or removed. The
page-number register remains %.

Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles;
page-offsets do.

Automatic sequence numbering .of output lines may be requested with nm. When in effect, a
three-digit, arabic number pius a digit-space is prepended to output text lines. The texl lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by tI are not numbered. Numbering can be temporarily suspended with

6 1I1l. or with an .nm followed by a later .l1m +0. In addition, a line number indent I, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed (the others will appear

9 lIS blank number fields).

Request Init/al
Form Vallie

.Dm ±NMSI

. DnN

UNo
Argument

off

Notes Explanation

E Line number mode. If ± N is given, line numbering is
turned on, and the next output line numbered is num­
bered ±N. Default values are M-l, S-I, and /-0.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss­
ing. In the absence of ail arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In .

E The next N text output lines are no! numbered.

As an example, the paragraph portions of this section are numbered with M- 3: .!lm 1 3 was
placed at the beginning; .!lm was placed at the end of the first paragraph; and .nm +0 was placed

12 in front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .nm +5 S x 3 which turns on
numbering with the line number of the next line to be 5 greater than the last numbered line. with

IS M- 5, with spacing S untouched, and with the indent I set to 3.

- 23 -

NROFF/TROFF User's Manual
October 11, 1976

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condilion name, ! signifies nOl, N is a numerical expres­
sion, sIring] and siring2 are strings delimited by any non-blank, non-numeric character not in the
strings. and anyrhing represents what is conditionally accepted.

lfNo Request
Form

illitial
Value Argument NOles Explanation

.if c anylhing

. if ! c anylhing

,If N anything

.if !N anyrhing

.if . SIringi' slring2' anYlhing

.If ! . Siring]' string2' anything

.Ie c anything

. el anything

II

II

II

The built-in condition names are:

Condition
Name

II

e
t
!1

If condition c true, accept anything as input; in multi-line
case use \(anything\).

If condition c false, accept allY thing .

if expression N > 0, accept anything.

If expression N ~ 0, accept anything .

If stringi identical to Slring2, accept anYlhing .

If Siring} not identical to slring2, accept anYlhing.

If portion of if-else; all above forms (like ill .

Else portion of if-else .

True If
Current page number is odd
Current page number is even
formatter is TROFF
Formatter is NROFF

If the condition cis troe, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and fontl, anything is accepted as input. If a ! precedes the condi­
tion. number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \1 and the last line must end with a right delimiter \J.
The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the revelse sense of that state. Ie· el pairs may be nested.

Some examples are:

.if e .!I . Even Page %'"

which outputs a title if the page number is even; and

.ie \11%>1 \(\
'sp (1.51
.t!·PlIge%"·
'SII lUi \1
.el.51112.5i

which treats page I differently from other pages.

17. Environment Switching_

A number of the parameters that control the text processing are gathered together into an environment,
which can be switched by the user. The environment parameters are those associated with requests
noting E in their NOles column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters,

• 24 -

NROFF/TROFF User's M~'1ual
October 11, 1976

number registers,
parameter values.

R~qu~st [nillal
Form Value

.n N N-O

and macro and string definitions. All environments are initialized with default

UNo
Argumenl Notes Explanation

previous Environment switched to environment 0 ~ N~ 2. Switch­
ing is done in push-down fashion so that restoring a pre·
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two new lines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter· like documentation. On UNIX, the standard input can be the user's key­
board, a pipe, or a file.

Reque!t
Form

.rd prompt

.ex

[ni/lal
Value

UNo
Argument Notes Explanation

prompt-BEL- Read insertion from the standard input until two new­
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input 'cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

U. Input/Output FlIe Switchlnl

Reqllat ["/llal UNo
FOml Yalue Argument Note! Explanation

.so filename

• nJ: filename

.pl program

10. Miscellaneous

Reqllal
FOml

.mc eN

[,,11ttJ1
Yalue

Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested .

end-of-file - Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

UNo
Argument

off

Pipe output to program (NROFF only). This request
must occur be/ore any printing occurs. No arguments are
transmitted to program.

Note! Explanation

E,m Specifies that a margin character c appear a distance IV to
the right of the right margin after each non-empty text
line (except those produced by t1). If the output line is
too-long (as can happen in nofill mode) the character will

- 2S -

NROFF/TROFF User's Manual
October 11, 1976

.tm string newline

.11 YY .YY-..

.pm I all

.n

n. Output and Error Messages.

B

be appended to the line. If N is not given, the previous
N is uset1; the initial N is 0.2 inches in NROFF and 1 em
in TROFF. The margin character used with this para­
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. I, behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the defined
macros and strings are printed on the user's terminal; if I
is given, only the total of the sizes is printed. The sizes
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debuuing to
force output.

The output from 1m, pm, and the prompt from rd, as well as various error messages are written onto
UNIX's standard message output. The latter is different from the standard outpur, where NROFF format­
ted output goes. By default, both are written onto the user's terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious
errors havins only local impact do not cause processing to terminate. Two examples are word overflow,
caused by a word that is too large to fit into the word buffer (in fill mode), and line overflaw, caused by
an output line that grew too large to fit in the line buffer; in both cases, a message is printed, the
offending excess is discarded, and the·affected word or line is marked at the point of truncation with a •
in NROFFand a" in TROFF. The philosophy is to continue processing, if possible, on the Ifounds
that output useful for debugging may be produced. If a serious error occurs, processing terminates, and
an appropriate message is printed. Examples are the inability to create, read, or write files, and the
exceeding of certain internal limits that make future output unlikely to be useful.

- 26 -

NROFF/TROFF User's Manual
October 11, 1976

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and nOFF have by design a
syntax reminiscent of earlier text processors·
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept; and to con­
centrate ·conditional parameter initialization like
that which depends on whether nOFF or NROFF
is being used.

n. Pale Maralns

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at pale position 0 for the header, and at -N (N
from the page bottom) for the footer. The sim­
plest such definitions might be

.de hd \ "dellne header
's,lI

.de fo
'hp

.wb 0 bd

.wb -11 fo

\ "end definition
\ "define footer

\ "eod definition

which provide blank 1 inch top and bottom mar­
&ins. The header will occur on the first page,
only it the definition and trap exist prior to the

"For example: P. A. Crisman, Ec1., Th~ COIfIfHU/bk TIm.­
ShtutItr S,..",.., MIT Press, 1965, Section AH9.01 (Descrip­
tioll of RUNOFF prOCtIJD 011 MIT'. ens system).

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and. sp that normally
cause breaks are invoked using the no-break con­
trol character • to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd '"header

.If t .U "(m"\{m' '"trolf cut mark

.If \\n%>1 '{'
'sp 10.51-1 '"U base at 0.51
.tl "- % -" '"centered pale number
.ps '"restore size
.ft '"restore font
.TS ') '"restore TS

'sp 11.01 '"space to 1.01
.ns '"tum on no-space mode

.de fo , "footer

.ps 10 '"set footer/header size

.ft R '"set font

.V5 12p '"set base-line spacinl

.If \\n%-1 '{'
'sp l\\n(.pu-O.51-1 '"U base 0.51 up
.U "- % -" \1 '"lint pale number
'bp

.wb 0 bd

.wh -11 fo

which sets the size, font, and base-line spacing
for the header/footer material. and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pales. If TROFF is used, a
cut mark is drawn in the form of root-en's al each
margin. The sp's refer to absolute positions to
avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap pOSition by possibly as

- 27 -

NROFF/TROFF User's Manual
October 1], 1976

much as the base-line spacing. The no-space
mode is turned on at the end of hI! to render
ineffective accidental occurrences of 5p at the top
of the running text.

The above method of restoring size, font, etc.
presupposes that such requests (that set previous
value) are flor used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow­
ing:

.de fo

.n! sl \\I1(.S \"currenl size

. !IS

.nr 52 \ \n (.3

.de hd

.IlS \\11 (52

.ps \ \rdsl

\ "previous size
\ "rest of footer

\ "beader stuff
\ "restore previous size
\ "restore current size

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during. the
footer's page eje~tion:

.de 1111 \ "bottom number

.11 •• - % -" \ ·centered page number

. wn -O.51-lv 1m \"I!bmse O.Si lip

T3. Puagraphs lind Headlllgs

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro thai, for example, does the desired
pre paragraph spacing, forces the correct font,
size, base-line spacing, and indent, checks that
enough space remains for more than Ol'll! line, and
requests a temporary indent.

. de pg \ °llllngraph

.lIf \"break

.iI R \ "force fllllt,

.IIS HI \ 'size,
• V5 nil \ 'spacing,
. in 0 \ "mnd indent
.sp 0.4 \ "prespace
.ne 1 + \\111 (. Vll \ ·wall! more than 1 line
.11 0.21 \ "temp indent

The first break in pg will force au! any previous
partial lines, and must occur before the Vl. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec­
tion heading macros to set parameters only once .

The prespacing parameter is suitable for TROFF;
a larger space. at least as big as the output device
vertical resolution. would be more sui table in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the .Y is the available vertical resolu­
tion).

A macro to automatically number section head­
ings might look like:

.de SI: \ ·section
\ "force iOllt, etc,

.sp 0.4 \ 'pl'espace

.me 2.4+\\n(.Vu \'want 2..1+ lines
of!
\ \!I +5.

.Ill S {) 1 \ "init S

The usage is .sc, followed by theseclion heading
text. followed by opil. The ne test value includes
one line of heading, 0.4 line in the following pg,
and one line of the paragraph text. A word COrl­

sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by filf (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space .

.de Ip

·1111
.In lUI
.11i lUi O.S!
.il (J

\1\\$1 \t\c

\"!ilIl:leled paragraph

\ 'jlllfagrRph indent
\ "label. 1l1iTagaph

\"!low In!o paragraph

The intended usage is ".III label"; label will begin
at 0.2 inch, and canna! exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .Ill O.4iR 0.5L
The last line of Ip ends with \c so that it will
become a part of the first line of the text that fol­
lows .

T4. Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other Ih?n the last column, so
(hat it will begin a new column rather than pro­
duce the bottom margin. The header can initial­
ize a column register that the footer will incre·
ment and test. The following is arranged for two
columns, but is easily modified for more.

• 28 -

NROFF/TROFF User·s i,ianuai
October II, 1976

.de hd

.nr cI 0 1

.mk

'"header

'" init column count
'" mark top of text

.de fo '" footer

.ie\\n+(cl<2,('

.po +3.4i '"next column; 3.1+0.3

.rt '"back to mark

.ns ') '"no-space mode

.el '('

.po \\nMu '"restore leCt margin

'bp ')

.11 3.1i

.nr M \\n(.o
'"column width
'"save leCt margin

Typically a portion of the top of the first page
contains full width text; the request for the nar­
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated. by an initial
.fn and a terminal .ef:

.fn
Foolnole lexl and cOn/ro//ines ...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com­
pletely fit in the available space.

.de hd '"header

.nr x 0 I

.nr y O-\\nb

.ch fo -\\nbu

.if \\n (dn .fz

.de fo

.nr do 0

.If \\nx 'I'

'"ioit footnote count
'" current footer place
'" reset footer trap
'"leftover footnote

,"footer
'"zero last diversion size

.ev 1 '"expand footnotes In evl

. Df '" retain vertical size

.FN ,"footnotes

.rm FN '"delete it

.if "\\n(.z"Cr- .dl \ "end overflow diversion

.Dr x 0 '"disable ex

.ev ') '"pop environment

'bp

.de fx '"process footnote overflow

.if \\ nx .di fy '" di vert overflow

.de fn \" start footnote

.da FN \" divert (append) footnote

.ev 1 \ "in environment 1

.if \\0 + x -1 .Cs '"if first. include separator

.n '"fill mode

.de ef '"end footnote

.br '"finish output

.nr z \\n(.v '"save spacing

.ev ,"pop ev

.di '"end diversion

.nr y -\\n (dn '"new footer position.

.iC\\nx-l .nr y - <\'n(.v-\\nz)'
,"uncertainty correction

.ch Co \\nyu '"y is negative

.if (\\n(nl+lv» (\\n(.p+\\ny)'

.ch fo \\n(nlu+lv '"It didn't fit

.de Cs
'1'1i'
.br

'"separator
\"1 inch rule

.de Cz '"get leCtover footnote

.fn

.nf '"retain vertical size

.fy ,"where Cx put it

.ef

.nr b 1.01 '"bottom margin size

. wh 0 hd '" header trap

. wh 12i fo ,. fooler trap, temp position

.wh -\\nbu fx, "fx at footer position

.ch fo -\\nbu '"conceal ex with fo

The header hd initializes a footnote count regis­
ter x, and sets both the current footer trap posi­
tion register y and the footer trap itself to a nom­
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ­
ment I. and increments the count x; if the count
's one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per­
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z. y is then decremented by the size of the

- 29 -

NROFF/TROFF User's Manual
October II, 1976

footnote, available in dn; then on the first foot­
note, y is further decremented by tile difference
in vertical base-line spacings of the two environ­
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower (on the page) of y or the current
page position (nI) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment I, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes Ix to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-tao-late triggering of the
footer can result in the footnote rereading finish­
ing before reaching the fx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

TIS. The Last Pale

After the last input file has ended, NROFF and
TROFF invoke the end macro (§71, if any, and
when it .finishes, eject the remainder of the page.
During the eject, any traps encountered are pro­
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en
\c:
DP

.em en

\ ·end-macro

will deposit a null partial word, and effect
another last page.

- 30 -

NROFF/TROFF User's Manual
October II. 1976

Table I

Font Style Examples

The following fonts are printed in 12'point, with a vertical spacing of 14-point, and with non·
alphanumeric characters separated by 1/.0 em space. The Special Mathematical Fonl was specially
prepared for Bell Laboratories by Graphic Systems, Inc. of Hudson. New Hampshire. The Times
Roman. Italic. and Bold are among the many standard fonts available from that company.

Times Roman

abcdefghijklrnnopqrstuvwxyz
ABeD EFG HIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"'+ -.,/:;-?[JI
• 0 - . _ 1,4 In J,4 fi fl if ffi ill 0 t / ¢ <!l ©

Times Italic

abcdefghijklmnopqrsfUllwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () , , • + - .. I: ? { 11
• 0 - - _ ~ 0 1f4.1i fl ff ffi.ff! 0 t . t <!l <!:l

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&O""'+-"/:;-?II!
.. 0 - • _ !f4 1/2 lid! fI. If ffi ffl 0 t / e ~ e

Special Mathematical Font

.'\"_'-/< > I}#@+--,.
a~y8€,~eLKA~v~orrp~~Tv¢X~W
fJl9A::ITLyq,'I'n
.,J- ~ ~ == - :::::: ;:C - - T 1 x of- ± U n C :J ~ :2 00 a
§ 'V.., J 0: 0 E t @ I or II H IIlJrll

• 31 •

NROFF/TROFF User's Manual
October 11, 1976

Table II

Input Naming Conventions for " ',and
and for Non-ASCII Special Characters

Non-ASCII characters lind minus on the standard fonts.

In{1lJt Character Input Character
Char Name Name Char Name Name

close quote Ii \(fi fi
open quote t1 \(fl t1

\(em 3/4 Em dash If \(if if
hyphen or ffi \(Fi ffi

\(hy hyphen ffl \(Fl ffl
\- current font minus \(de degree

It \(bu bullet t \(dg dagger
CJ \(sq square \(fm foot mark

\(ru rule ¢ \(el cent sign

'I. \(14 1/4 " \(rg registered
'Il \02 1/2 co \(co copyright
l;' \(34 3/4

Non-ASCII characters and " " _, +, -, -, lind ° on the special font.

The ASCII characters @. #, ., " " <, >. \. (, J. -. -, and _ exist only on the special font and are
printed as a I·em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman), The special
math plus, minus, and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pi math plus I< Wk kappa
\(mi math minus A- Wl lambda
\(eq math equals Jl. \(Om mu
WO math star " Wn nu
\(sc section < We xi ,
Vaa acute accent 0 \("0 omicron
\(ga grave accent 11" \(Op pi
\(ui underrule p WI rho

/ \(sl slash (matching backslashl <Y \("5 sigma
ex Wa alpha ~ \(IS terminal sigma
fj \("b beta 1" \ (Ot tau
y Wg gamma 1) \("u upsilon
Ii \(Od delta ¢ \ (Of phi

\("e epsilon X \("x chi
{ Wz zeta 1/1 \("q psi

7J \ (Oy eta w \(Ow omega
e \("h theta A V"A Alphat

Wi iota B \(*B BClat

• 32 •

NROFF/TROfF User's Manual
October ll, \976

Input Character Input Character
Char Name Name Char Name Name

r \(oG Gamma \(br box vertical rule
.l \("D Delta \(dd double dagger
E \('E Epsilont - \(rh right hand
Z \("Z Zetat "IIIiI \Oh left hand
H \coy Etat @ \(bs Bell System logo
9 \("H Theta I \(or or
I \("1 lotat 0 \(ei circle
K \(OK Kappat I \ (It left top of big curly bracket
i\ \(OL Lambda I \(Ib left bottom
M \("M Mut 1 \ (rt right lop
N \("N Nut J \(rb right bot

- we Xi I \(lk left center of big curly bracket
0 \("0 Omicront I \(rle right center of big curly bracket
fI WI" Pi I \(bv bold vertical
p \(*R Rhot l \ (If left floor Cleft bottom of big
I WS Sigma square bracket)
T \("T Taut \(rf right floor (right bottom)
y \("U Upsilon \ (Ie left ceiling (left top)
<!> WF Phi \(rc right ceiling (right top)
X WX Chit
'if WQ Psi
n \("W Omega

-l \ (Sf square root
\(m root en extender

~ \(>- >-
~ \«-<-
- \ (- - identically equal
:::z \(-- approx -

\(ap appro)(imates
;:,; \0- not equal

\{-> right arrow
\«- left arrow
\(ua up arrow
\(da down arrow

x \(mu multiply
+ \(di divide
± \(+- plus-minus
U \(eu cup (union)
n \(ea cap (intersection)
C \(sb subset of
::> \(sp superset of
!: \{ib improper subset
:l \(ip improper superset
00 \(if infinity
a \(pd partial derivative
"V \(Sf gradient

\{no not

J \ (is integral sign
0: \(pt proportional to

'" \(es empty set
E \(mo member of

- 33 -

May 15, 1977

Options

-h

-z

Old Requests

.ad c

. 50 name

New Request

.ab text

.fz F N

Summary of Changes to N/TROFF Since October 1976 Manual

(Nrol1 only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from "tm"s
and diagnostics).

The adjustment type indicator 'c' may now also be a number previously obtained from
the·.j" register (see below).

The contents of file "name" will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text" on the message output and terminates without further processing. If "text"
is missing, ·User Abort." is printed. Does no! cause a break. The oulput buffer is
flushed.

forces tont "F' to be. in si~e N. N may have the form 1'1, + N, or -N. For example,
.fz 3 ·2

will cause an implicit \5-2 every time fOn! 3 is entered, and a corresponding \5 + 2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently,

.fz SF N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.f;;: S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any ".fp" request specifying a fonl on some position must precede
".fz" requests relating to that position.

New Predefined Number Registers.

.k

.j

. P

. L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line, if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode .

Read-only. 1 if the current page is being printed, and zero otherwise .

Read-only. Contains the current line-spacing parameter ("Is").

General register access to the input line-number in the current input file. Contains the
same value as the read-only ".c· register.

A TROFF Tutorial

Snan W. Kernighan

Bell Laboratories
Murray Hi!!, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving Ihe Graphic Systems photo­
typesetter on the UNlxt and Geos operating systems. This device is capable of
producing high quality text; this paper is an example of IfOff output.

The phototypesetter itself normally runs with four fonts, containing
roman, italic and bold letters (as on this page), a full greek alphabet, and a sub­
stantial number of special characters and mathematical symbols. Characters can
be printed in a range of sizes, and placed anywhere on the page.

trolf allows the user full control over fonts. sizes, and character positions,
as well as the usual features of a formatter - right-margin justification.
automatic hyphenation. page titling and numbering, and so on. It also provides
macros, arithmetic variables and operations. and conditional testing. for compli­
cated formatting tasks.

This document is an introduction to the most basic use of troff. It
presents just enough information to enable the user to do simple formatting
tasks like making viewgraphs, and to make incremental changes to existing
packages of troff commands. In most respects. the UNIX formatter nrGif is
identical to troif, so this document also serves as a tutorial on nroff.·

August 4, 1978

tUN IX is a Tractemark of Sell Laboratories.

A TROFF Tutorial

Brian W. KermgiIall

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

trolf [I J is a text-formatting program, writ­
ten by J. F. Ossanna, for producing high-quality
printed output from the phototypeseller on the
UNIX and GCOS operating systems. This docu­
ment is an example of trolf outpUl.

The single most important rule of using
trolf is not to use it directly, but through some
intermediary. In many ways, trolf resembles an
assembly language - a remarkably powerful and
flexible one - but nonetheless such that many
operations must be specified at a level of detail
and in a form that is too hard for most people to
use effectively.

For two special applications, there are pro­
grams that provide an interface to trolf for the
majority of users. eqn [2J provides an easy to
learn language for typeselling mathematics; the
eqn user need know no trolf whatsoever to
typeset mathematics. tbl [3J provides'lhe same
convenience for producing tables of arbitrary
complexity.

For producing straight text (which may
well contain mathematics or tables), there are a
number of 'macro packages' that define format­
ting rules and operations for speCific styles of
documents. and reduce the amount of direct
contact with trolf. In particular. the '-ms' [4]
and PWB/MM [5J packages for Bell Labs inter­
nal memoranda and external papers provide most
of the facilities needed for a wide range of docu­
ment preparation. (This memo was prepared
with '-ms'.) There are also packages for view­
graphs, for simulating the older rolf formallers
on UNIX and GCOS. and for other special applica­
tions. Typically you will find these packages
easier to use than trolf once you get beyond the
most trivial operations; you should always con­
sider them first.

In the few cases where existing packages
don't do the whole job, the solution is 110/ to
write an entirely new set of trolf instructions
from scratch, but to make small changes to adapt
packages that already exist.

In accordance with this philosophy of let­
ting someone else do the work. the part of troff
described here is only a small part of the whole.
although it tries to concentrate on the more use­
ful parts. In any case. there is no allempt to be
complete. Rather, the emphasis is on showing
how to do simple things, and how to make incre­
mental changes to what already exists. The con­
tents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
II. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix: Typeseller character set

The trolf described here is the C·language ver­
sion running on UNIX at Murray Hill. as docu­
mented in [I].

To use trolf you have to prepare not only
the actual text you want printed, but some infor­
mation that tells how you want it printed.
(Readers who use rolf will find the approach
familiar.) For trolf th" text and the rormatting
information are often intertwined quite inti­
mately. Most commands to troff are placed on a
line separate from the text itself. beginning with
a period (one command per line). For example.

Some text.
.ps 14
Some more text.

will change the 'point size'. that is. the size of
the letters being printed. to '14 point' (one point
is 1172 inch) like this:

Some text. Some more text.
Occasionally, though, something special

occurs ;n the middle of a line - to produce

Area .-- r.r2

you have to type

Area - \(op\tlr\ffi\l\s8\u2\d\sO

(which we will explain shortly). The backs lash
character \ is used to introduce Irol!' commands
and special characters within a line of text.

Z. Point Sizes; Line Spacing

As mentioned above, the command .ps
sets the point size. One point is 1172 inch, so
6-point characters are at most I/!2 inch high,
and 36-point characters are '/' inch. There are 15
point sizes, listed below.

6 peJlrU: Padt my 1)0.'(Will'! five dozen liquor jUp.

7 POlnl: Pack my box with five dozr:n liquor jugs.
8 point: Pack my box w;lh five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor

. 11 point: Pack my box with five dozen

• 2 -

12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .])3 is not one of these

legal sizes, it is rounded up to the next valid
value, with a maximum of 36. If no number fol­
lows .ps, Irolf reverts to the previous size, what­
ever it was. Irol'l' begins with point size 10,
which is usually fine. This document is in 9
point.

The point size can also be c:hanged in the
middle of a line or even a word with the in-line
command \5. To produce

UNIX runs on a pDI'·11/45

type

\s8UNIX\sIO runs on a \s8PDP-\sI011/45

As above, \5 should be followed by a legal point
size, except that IsO causes the size to revert to
its previous value. Notice that \51011 can be
understood correctly as 'size 10, followed by an
\\', if the size is legal, but not otherwise. Be
cautious with similar constructions.

Relative size changes are also legal and
useful:

\s-2UNIX\s+2

temporarily decreases the size, whatever it is, by
two points, then restores it. Relative size
changes have the advantage that the size
difference is independent of the starting size of
the document. The amount of the relative
change is restricted to a single digit.

The other parameter that determines what
the type looks like is the spacing between lines,
which is sel independently of the pain! size.
Vertical spacing is measured from the bOllom of
one line to the bonom of the next. The com·
mand to control vertical spacing is .vs. For run­
ning text, it is usually best to set the vertical
spacing about 20% bigger than the character size.
For example, so rar in this document, we have
used "9 on 11", that is,

.ps 9

.vs II p

If we changed to

.ps 9

.vs 9p

the running text would look like this. After a
few lines, you will agree it looks a little cramped.
The right vertical spacing is partly a matter of
taste, depending on how much text you want to
squeeze into a given space, and partly a matter
of traditional printing style. By default, trolf
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

POint Slze lAd vwial s_in, make a suMIQntw difference in
Il'Ie "mount of lUI l)ef squ,are inch. For eumr»e. 10 on 12 well aboul
Iowa u much t.p.a(c u 7 on 8. ThI3 i1 6 01"1 7. which is even W'I.II~. II
1tItC&3 it 101 more wordJ ~r line. but)'OY can 10 blind try-milO read il.

When used without arguments, .ps and .vs
revert to the previous size and vertical spacing
respective Iy.

The command .sp is used to get extra vert­
ical space. Unadorned, it gives you one extra
blank line (one .VS, whatever that has been set
to). Typically, that's more or less than you
want, so .sp can be followed by information
about how much space you want -

.sp 2i

means 'two inches of vertical space'.

.sp 2p

means 'two points of vertical space'; and

.SI' 2

means 'two vertical spaces' - tWO of whatever

.vs is set to (this can 3150 be made explicit with

.sp 2v); !roff also understands decImal fractions
in most places, so

.Sf) l.Si

is a space of 1.5 inches. These same scale fac­
tors can be used after. vs to define line spacing,
and in fact after most commands that deal With
physical dimensions.

It should be noted that ail size numbers
are converted imernally to 'machine units',
which are 11432 inch (1/6 poind. For most pur­
poses, this is enough resolution that YOll don't
have to worry about the accuracy of the
representation. The situation is not quite 50

good vertically, where resoiUlion is 1/14 .. inch
(I/2 point).

3 .. F~n!s ud Sped~! Chu~cters

!roft' and the typesetter allow four different
fonts at anyone lime. Normally three fonts
(Times rOITI2,O, italic and bold) and one collec­
lion of speCial characters are permanently
mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKL:'vlNOPQRSTUVWXYZ

o I1J456 789

Th~ greek, mathematical syrnbois and miscellany
of the special fom are listed il1 Appendix A.

tr.©ff prints il1 roman unless told otherwise.
To switch into bold, th~ .ft command

.ft B

and for italics,

.fl I

To return to roman, use ,[1 R; to return to the
previous font .. whatever il was. use either .ft P or
jlJ5t .ft. The 'underline' command

.,.1

causes the next input line to pnnt il1 italics. .ul
can be followed by • count to indicate that mere
than one line is to De italicized.

Fonts can also be changed within a line or
word with the in-line command \f:

boldface text

;s produced by

\fBbotd\flface\ffi text

If you want to do this 50 the previous font,
whatever it was, is left Clrtdislllrbed, insert extra
\[1> commands, like this:

.. 3 -

\fBbold\fP\f1face\fP\fR text\fP

Because only the immediately previous fon' is
remembered, you have to restore the prevIous
font after each change or you can lose it. The
same is true of .DS and .vs when used \lfithou l an
argume:1t.

There are other fonts available besides the
standard set, although you can still use only four
at any given time. The command .fp tells trolf
what fonts are physically mounted on the
typesetter:

Jp 3 H

says that the Helvetica font is mounted on posi­
tion 3. (Fa.- a complete list of fonts and what
they look like, see the trolf manual.) Appropriate
.rr commands should appear at the beginmng of
your document if you do not use the standard
fonts.

It is possible to make a document re!a­
tively independem of the actual fonts used to
print it by using font numbers instead of names;
for example, \f3 "nd '[t-3 mean 'whatever font
is mounted at position 3', and thus work for any
setting. Normal sef.!ings are roman font on I,
ilalic on 2, bold 3, and special on 4.

Th~re is also a way to gel 'syllthetic' bold
fonts by overstriking letters With a slight offset.
Look at [he .00 command in [l J.

Special characters h8ve four-character
names beginning with \(, and I.hey may be
inserted lnywhef>!. For example.

is produced by

\(14 4- \02 - \(34

In particular, greek leiters are all of the form
\(@<=», where ~ is an upper or !OVilef case roman
lelt~r reminiscent of the greek. Tlms to get

!.(a X {3) - ""

in bare !rolf have to type

That line is Ilnscrambled as follows:

\(-s r:
((
\ (oa a
\(mu " \(ob {J
})

\(->
\ (if

A complete list of these special nomes occurs in
Appendix A.

In fr!n [21 the same effect can be achieved
with the input

SIGMA (alpha times beta) - > inf

whIch is less concise, but clearer to the unini­
tiated.

Notice that each four-character name is a
single characler as far as !rofl' is concerned - the
'translate' command

. If \ (mi\(em

is perfectly clear, meaning

. rr --

that is, to translate - into -.

Some characters are automatically
translated into others: grave and acute •
accents (apostrophes) become open and close
single quotes '-'; the combination of " ... " is gen­
erally preferable 10 the double quotes " .. .". Simi·
larly a typed minus sign becomes a hyphen·. To
print an explicit - sign, use \" To get a
backslash printed, use \e.

4. hule!i!! uld Lille Lenlllhs

trot! starts with a line length of 6.S inches,
100 wide for 8'M<ll paper. To reset the line
length, use the ,II command, as in

.I16i

As with .S!" the actu~1 length can be spetified in
several ways; inches are probably the most intui·
tive.

The maximum line length provided by the
typesetter is 7.S inches, by the way. To llse the
full width, you will have to reset the default phy­
sical left marllin ("page offset"), which is nOf­

mally slightly less than one inch from the left
edge of the paper. This is done by the .po com­
mand.

.po 0

sets the offset as far to the ieft as it will go.

The ind~nt command .in causes the left
margin to be indemed by some speCified amOlln!
from the page offset. If we use .in to move the
left margin in, and .Il to move the right margin
to the left, we can make offset biocks of text:

.in 0.3i

.!i-OoJi
text to be set into a block
.ll +0.3i
.in -o.3i

will create a block that looks like this:

-" .
Pater nosIer qui est i\1 caelis
sanctificetur nomen tuum; advcniat
regnurn tuum; fiat voluntas tua, sicut
in caelo, et in terra. Amen.

NOlice the use of '+' and '-' to specify the
amount of change. These change the preVIIJUS

setting by the speCified amount, rather than just
overriding it. The distinction is quite important:
.Il + Ii makes lines one inch longer; .Il Ii makes
them one inch long .

With .in, .II and opo, the previo!.!s value is
used if no argume1lt is specified .

To indent a single line, lJse the 'temporary
indent' command .li. For example, all paragraphs
in this memo effectively begin wilh Ihe com­
mand

.Ii 3

Three of what'? The default unit for .1i, as for
most horizontally oriented commands UI, .in,
.po), is ems; an em is roughly the width of the
letter 'm' in the current point size. (Precisely, a
em in size p is p points.) AlthQugh inches are
usually dearer than ems to people who don't set
type for a living, ems have a place: lh~y are a
measure of size that is proportional to the
current poin! size. If you waflt to make text that
keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be
specified as scale factors directly, a~ in .Ii 205m.

Lines can aiso be indented negatively ii the
indent is already positive:

Ji -OJi

causes the next line to b<: moved back three
tenths of an inch. Thus to make a decorative
initial capital, we indent the whole paragraph,
then move the lener 'P' back with a .ti com­
mand:

Pater noster Qui c,st i11 caelis
sanctificetur nomen tuum; ad­
venia1 regnum tuum~ fiat voiun~

tas tua, sicut in caelo, et in terra.
Amell.

Of course, there is also some trickery to make
the 't>' bigger Uust a '\536P\sO'), and to move it
down from its normal position (see the section
on local motions).

5. Tabs

T~bs (the ASCll 'horizontal tab' character)
can be used to produce OUtput in columns o or to
set the horizolltal position of outPllL Typically
tabs are used only in unfilled text. Tab stops are
set by default every half inch from the current
indent, but can be changed by the .w command.
To set stops eVllry inch, for example.

·ta Ii 2i 3; 4; 5i 6i

UnfortunatelY the stops are left·justified
only (as on a typewriter), so lining up columns
of right·justified numbers can be painful. If YOlt

have many numbers, or if you need more com·
plicated table layout, don'l use troft" directly; use
the tb! program described in [3 J.

For a handful of numeric columns, you
can do it this way: Precede every number by
enough blanks to make it line up when typed.

.11f

.tlI Ii 2i 3,
1 tab lab 3

40 IlIO 50 rab 60
700 faD 800 1£10 900
.5

Then change each leading blanK into the string
\0. This is a character that does flOt print, but
that has the same width as a digit. When
primed, this wi!! produce

1
40

100

2
50

800

3
60

900

II is also possible to fill up tabbed-over
space with some character other than blanks by
selling the 'tab replacement character' with the
.11: command:

.ta !.5i 2.Si

.le \ (ru (\ (ru is' _")
Name lab Age lab

produces

Name ___ _ Age ___ _

To reset the tab replacement character to a
blank, use .Ie Wilh no argument. (Lines can also
be drawn with the \1 command, described in Sec­
tion 6,)

!rolf also provides Ii very general mechan­
ism called 'fields' for setting up complicated
coiumns. (This is used by 11I1l. We will not go
into it in this paper,

6, LGCa! Motions: Drawing lines lind charac·
len

Remember 'Area - ".r2,. and the big 'I"
in the Paternoster. How are they done? !roif
provides a host of commands for placing charac­
ters of any size at any place. You can use them
to draw special characters or to tune your output
for a particular appearance. Most of these com­
mands are straightforward, but messy to read
and tough to type correctly.

If you woo't lise eqn, subscripts and super­
scripts are most easily done with the half· line

• 5 .

local motions \u and \d. To go back up the page
half a point·siz.e, insert a \u at the desired place:
to go down, insert a \d. (\u and \d should always
be used in pairs. as explained below.) Thus

Area - \ (·pr\1l2\d

produces .,
Area - ".r-

To make the '2' smaller, bracket it with
\5-2 ... \50. Since \11 ami \d refer to the current
point size, be sure to put them either both inside
or both outside the size changes, or you wlil get
an unbalanced vertical motion.

Sometimes the space given by \u and \d
isn't the right amount. The \v command can be
used to request an arbitrary amount of vertical
motion. The in· line command

\ v' (amount)"

causes motion up or down the page by the
amount specified in '(amount)'. For example, to
move the 'I" down, we used

.in +0.6i (move paragraph in)

.Ii -0.3; (shorten lines)

.ti -OJi (move P back)
\yT\s36P\sO\ v' - 2' aler noster qui est
in caelis ...

A minus sign causes upward motion, while no
sign or a plus sign means down the page. Thus
\ \/' - 2' causes an upward vertical motion of two
line spaces.

There are many other ways to specify the
amount of motion -

\v'O.li·
\v'3p·
\y'-O.Sm·

and so on are all legal. Notice that the scale
speCifier i or p or m goes inside the quotes. Any
character can be used in place of the quotes; this
is also true of all other troff commands described
in this section.

Since troft" does nGt take within· the-line
vertical motions into account when figuring out
where it is on the page, output lines can have
unexpected positions if the left and rish tends
aren't at the same vertical position. Thus \v,
like \u and \d, should always balance upward
vertical motion in a line with the same amount
in the downward direction. .

Arbitrary horizontal motions are also avail­
able - \h is quite analogous to \v, except that
the default scale factor is ems instead of line
spaces. As an example,

\h'-O.li'

causes a backwards motion of a tenth of an inch.
As a practical matter, consider printing the
mathematical symbol '> > '. The default spacing
is too wide, so eqn replaces this by

>\h'-O.3m'>

to produce ».
Frequently \h is used with the 'width func­

tion' \w to generate motions equal to the width
of some character string. The construction

\w'thing'

is a number equal to the width of 'thing' in
machine units (1/432 inch). All trolf computa­
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
say

\hlw'x'u'

As we mentioned above, the default scale factor
for all horizontal dimensions is m, ems, so here
we must have the u for machine units, or the
motion produced will be far too large. trolf is
quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construc­
tion, all of the' command names in the text, like
.sp, were done by overstriking with a slight
offset. The commands for .sp are

.sp\h' -\w' .sp'ulh'! u·.sp

That is, put out '.sp', move left by the width of
'.sp', move right 1 unit, and print '.sp' again.
(Of course there is a way to avoid typing that
much input for each command name, which we
will discuss in Section 1 1.)

There are also several special-purpose trolf
commands for local motion. We have already
seen \0, which is an unpaddable white space of
the same width as a digit. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\ (blank), which is an unpaddable character the
Width of a space, \I. which is half that width, \",
which is one quarter of the width of a space, and
\.t, which has zero width. (This last one is use­
ful, for example, in entering a text line which
would otherwise begin with a '.'.)

The command \0, used like

\0' set of characters'

causes (up to 9) characters to be overstruck, cen­
tered on the widest. This is nice for accents, as
in

syst\o"e\ (ga"me t\o"e\ (aa"l\o"e\ (aa"phonique

which makes

- 6-

systeme telephonique

The accents are \(ga and \ (aa, or \' and \';
remember that each is just one character to trolf.

You can make your own overstrikes with
another special convention, \Z, the zero-motion
command. \zx suppresses the normal horizontal
motion after printing the single character x, so
another character can be laid on top of it.
Although sizes can be changed within \0, it
centers the characters on the widest, and there
can be no horizontal or vertical motions, so \z
may be the only way to get what you want:

is produced by

.sp 2
\s8\z\ (sq\sI 4\z\ (sq\s22\z\ (sq\s36\ (sq

The .sp is needed to leave room for the reSUlt.

As another example, an extra-heavy semi­
colon that looks like

; instead of ; or ;

can be constructed with a biS comma and a big
period above it:

\s +6\z. \ v' -0.25m'.\ v'O.25mlsO

·O.25m' is an empirical constant.

A more ornate overstrike is given by the
bracketing function \b. which piles up characters
vertically, centered on the current baseline.
Thus we can get big brackets, constructins them
with piled-up smaller pieces:

by typins in only this:

.sp
\b\Ot\Ok\{lb' \b\Oc\Of x \b\{rc\(rf \b\{rt\ (rk\ (rb'

trolf also provides a convenient facility for
drawins horizontal and vertical lines of arbitrary
length with arbitrary characters. \I'Ii' draws a
line one inch long. like this: _____ _
The length can be followed by the character to
use if the _ isn't appropriate; \I'O.5i: draws a
half-inch line of dots: The construc-
tion \L is .,entirely analogous, except that it draws
a vertical line instead of horizontal.

7, StriDls

Obviously if a paper contains a large
number of occurrences of an acute accent over a
leller 'e', typins \o"e\,· for each e would be a

great nuisance.

Fortunatel,., troff provides a way in which
you can store an arbitrary collection of text in a
'smng', and thereafter use the string name as a
shonhand for its contents. Strings are one of
several troff mechanisms whose judicious use
lets you type a document with less effort and
organize it so that extensive forma! changes can
be made wlth few editing changes.

A reference to a string is replaced by what­
ever text the string was defined as. Strings arc
defined with the command .ds. The line

.ds e \o"e\··

defines the string e to have the value \o"e\'"

String names may be either one or two
characters long, and are referred to by \ox for
one character names Of \.(xy for two characler
names, Thus to gel telephone, given the
definition of the string e as above, we can say
1\ oel\ oephone.

If a string must begin with blanks, define it
as

. ds xx • text

The double quote signals the beginning of the
definition. There is no trailing quole; the end of
the line terminates the string.

A string may actually be several lines long;
if troff encounters a \ at the end of any line, it is
thrown away and the next line added to the
current one. So you can make a long string sim­
ply by ending each line but the last with 'a
backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will
discuss some of these possibilities later.

8, I nlroduction to Macros

Before we can go much funner in troff, we
need to learn a bit about the macro facility. In
its simplest form, a macro is just a shorthand
notation quite similar to a string. Suppose we
want every paragraph to start in exactly the same
way - with a space and a temporary indent of
two ems:

.SI'

.Ii +2m

Then to save typing, we would like to collapse
these into one shorthand line, a troff 'command'
like

- 7 -

.PP

that would be treated by troff exactly as

.sp

.Ii +2m

.PP is called a macro. The way we tell troff what

.PP means IS to define it with the .de command:

.de PP

.sp

.ti +2m

The first line names the macro (we used '.PP'
for 'paragraph', and upper case so it wouldn't
conflict with any name that troff might already
know aboud. The last line .. marks the end of
the definition. In between is the text, which is
simply inserted whenever 'roff sees the 'com,
mand' or macro call

.PP

A macro can contain any mixture of text and
formatting commands.

The definition of .PP has to precede its
first use; undefined macros are simply ignored .
Names are restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important.
Not only does it save typing, but it makes later
changes much easier. Suppose we decide that
the paragraph indent is LOO small, the vertical
space is much too big, and roman font should be
forced. Instead of changing the whole docu­
ment, we need only change the definition of .PP
to something like

.de P?

.sp 2p

.ti +3m

.ftR

\" paragraph macro

and the change takes effect everywhere we used
.P?

'" is a trolf command that causes the rest
of the line to be ignored. We use it here to add
comments to the macro definition (a wise idea
once definitions get complicated).

As another example of macros, consider
these two which start and end a block of offset,
unfilled text, like most of the examples in this
paper:

.de as

.sp

.nf

.in +0.3i

. de BE

.sp

.11

.in -o.3i

\. start indented block

\. end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .IlS and .BE, and it will come
au! as it did above. Notice that we indented by
.in +O.3i instead of .in O.3i. This way we can
nest our uses of .:as and BE to get blocks within
blocks.

If later on we decide that the indent should
be O.5i, then it is only necessary to change the
definitions of .:as and .BE, nOI the whole paper.

9. Titles. Pages and NUlllberinll

This is an area where things get tougher,
because nothing is done for you automatically.
Of necessity, some of this section is II .cookbook,
to be copied literally until you get some experi­
ence.

Suppose you want a title at the top of each
page, saying JUS!

center top

In rolf, one can say

.he 'left top'center top'right top'

.fo 'left bottom'center bOHom'right bottom'

to get headers and footers automatically on every
page. Alas, this doesn't work in Irolf, a serious
hardship fQr the novice. Instead you have to do
11 lot of specification.

You have to say what the actual title is
(easy); when to print it (easy enough); and what
to do al and around the title line (harder). Tak­
ing these in reverse order, first we define a
macro .NP (for 'new page ') to process titles and
the like at the end of one page and the beginning
of the next:

.de NP
'bp
'Sil O.Si
.11 'left top'center top'right top'
'Sil O.3i

To make sure we' fe al the top of a page, we

- 8 -

issue a 'begin page' command 'bp, which causes
a skip to top-or-page (we'll explain the' shortly).
Then we space down half an inch, print the title
(the use of .11 should be self explanatory; later
we will discuss parameterizing the titles), space
another 0.3 inches, and we're done .

To ask for .NP at the bottom of each page,
we have to say something like 'when the text is
within an inch of the bottom of the page, start
the processing for a new page.' This is done with
a 'when' command .wh:

.wh -Ii NP

(No ': is used before NP; this is simply the
name of a macro, not a macro call.) The minus
sign means 'measure up from the bottom of the
page', so '-Ii' means 'one inch from the Cot­
tom'.

The .wh command appears in the input
outside the definition of .NP; typically the input
would be

.de NP

.wn _. Ii NP

Now what happens? As text is actually
being output, troff keeps track of its vertical
position on the page, and after a line is printed
within one inch from the bottom, the .NP macro
is activated. (In the jargon, the .wh command
selS a wop at the specified place, which is
'sprung' when that point is passed.) .NP causes a
skip to· the top of the next page (that's what the
'bll was for), then prints the title with the
appropriate margins.

Why 'bp and 'gp instead of .bp and .sp?
The answer is that .sp and .bp, like several other
commands, cause a break to take place. That is,
all the input text collected but not yet printed is
flushed out as soon' as possible, and the next
input line is guaranteed to start a new line of
OlltpUt. If we had used .SIl Of .bp in the .NP
macro, this would cause a break in the middle of
the current output line when a new page is
started. The effect would be to print the left­
over part of that line at the top of the page, fol­
lowed by the next input line on a new output
line. This is flOI what we want. Using' instead
of . for a command tells trolf that no break is to
take place - the output line currently being
filled should nor be forced out before the space
or new page.

The list of commands that cause a break is
short and na lural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether

you use a . or a '. If you really need a break, add
a .br command at the appropriate place.

One other thing to beware of - if you're
changing fonts or point sizes a lot, you may find
that if you cross a page boundary in an unex·
pected font or size, your ~itles come out in that
size and font instead of what you intended.
furthermore, the length of a title is independent
of the current line length, so titles will come OUI

at the default length of 6.5 inches unless you
change it, which is done with the .It command.

There are several ways to fix the problems
of poim sizes and fonts in titles. for the sim­
ples! applications, we can change .NP to set the
proper size and font for the title. then restore
the previous values. like this:

.de NP
'bp
'SOl O.Si
.ft R \" set title font to roman
.1'5 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.11 'left' center' right'
.ps \. revert to previous size
.ft P \. and to previous font
'sp 0.3i

This version of .NP does not work if the
fields in the .tt command contain size or font
changes. To cope with that requires Iroff's
'environment' mechanism, which we will discuss
in Section 13.

To get a footer at the bottom of a page.
you can modify .NP so it does some processing
before the op command. Of split the job into a
footer macro invoked at the bottom margin and
a header macro invoked at the top of the page.
These variations are left as exercises.

Output page numbers are computed
automatically as each page is produced (starting
at I), but no numbers are printed unless you ask
for them explicitly. To get page numbers
printed, include the character % in the .11 line at
the position where you want the number to
appear, For example

. 11"· % ."

centers the page number inside hyphens. as on
this page. You can set the page number at any
time with either .bp n. which immediately starts
a new page numbered n, or with .po n, wMich
sets the page number for the next page but
doesn't cause a skip to the new page. Again.
.bl' +n sets the page number to n more than its
current value; .Ilp means .bp + 1.

·9-

10. Number Registers and Arithmetic

(foR" has a facility for doing arithmetic. and
for defining and using variables with numeric
values, called number reglSlers. Number regis­
ters, like strings and macros. can be useful in
setting up a document so it is easy to change
later. And of course they serve for any sort of
arithmetiC computation.

Like strings. number registers have one or
two character names. They are set by the .nr
command. and are referenced anywhere by \rue
(one character name) or \n(X}' (two character
name).

There are quite a few pre-defined number
registers maintained by Iroff, among them % for
the current page number; nl for the current Vert­
ical position on the page; dy, mo and yr for the
current day, month and year; and .s and .f for
the current size and font. (The font is a number
from I to 4.) Any of these can be !Jsed in com­
puutions like any other register, but some. like
.s and .f. cannot be changed with .n! .

As an example of the use of number regis·
ters, in the -ms macro package [4], most
significant parameters are defined in terms of the
values of a handful of number registers. These
include the point size for text, the vertical spac­
ing. and the line and title lengths. To set the
point size and vertical spacing for the following
paragraphs. for example. a user may say

.nr PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as
follows:

.de PI'

.ps \ \n (PS

.vs \\n(VSp

.ftR

.sp O.5v

.Ii +3m

\. reset size
\" spacing
\. font
\. half a line

This sets the fonl to Roman and the point size
and line spacing to whatever values are stored in
the number registers PS and VS.

Why are there two backslashes' This is
the eternal problem of how to quote a quote .
When (rolf originally reads the macro definition.
it peels off one backslash to see what's coming
next. To ensure that another is left in the
definition when the macro is used. we have to
PUt in two backslashes in the definition. If only
one backslash is used. point size and vertical
spacing will be frozen at the time the macro is
defined, not when it is used.

Protecting by an extra layer of backslashes

is only needed for \D, \., \$ (which we haven't
come to yet), and \ itself. Things like \s, \f, \h,
\v, and so on do not need an extra backslash,
since they are converted by trofl' to an internal
code immediately upon being seen.

Arithmetic expressions can appear any­
where that a number is expected. As a trivial
example,

.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the
arithmetic operators +, -, ., I, % (mod), the
relational operators >, > -, <, < -, -, and
! - (not equail, and parentheses.

Although the arithmetic we have done so
far has been straightforward, more complicated
things are somewhat tricky. First, number regis­
ters hold only integers. Irofl' arithmetic uses
truncating integer division, JUSt like Fortran.
Second, in the absence of parentheses, evalua­
tion is done left-ta-right without any operator
precedence !including relational operators).
Thus

7·-'4+3/13

becomes' -\'. Number registers can occur any­
where in an expression, and so can scale indica­
tors like p, i, m, and so on (but no spaces).
Although integer division causes truncation, each
number and its. scale indicator is converted to
machine units (1/432 inch) before any arithmetic
is done, so 1iI2u evaluates to O.Si correctly.

The scale indicator u often has to appear
when you wouldn't expect it - in particular,
when arithmetic is being done in a context that
implies horizontal or vertical dimensions. For
example,

.11 7/2i

would seem obvious enough - 3'h inches.
Sorry. Remember that the default units for hor­
izontal parameters like .11 are ems. That's really
'7 ems I 2 inches" and when translated into
machine units, it becomes zero. How about

.11 7i/2

Sorry, still no good - the '2' is '2 ems', so
'7i/2' is small, although not zero. You must use

. 11 7i12u

So again, a safe rule is to attach a scale indicator
to every number, even constants.

For arithmetic done within a .m command,
there is no implication of horizontal or vertical
dimension, so the default units are 'units', and
7i/2 and 7i!2u mean the same thing. Thus

- 10-

.nr II 7i12

.11 \\n(ilu

does JUSt what you want, so long as you don't
forget the u on the .11 command.

11. Macros with argumenls

The next step is to define macros that can
change from one use to the next according to
parameters supplied as arguments. To make this
work, we need two things: first, when we define
the macro, we have to indicate that some parts
of it will be provided as arguments when the
macro is called. Then when the macro is called
we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a macro .SM
that will print its argument two points smaller
than the surrounding text. That is, the macro
call

.SM TROFF

will produce TROFF.

The definition of .SM is

.deSM
\5-2\\$\\5+2

Within a macro definition, the symbol \\SD
refers to the nth arlument that the macro was
called with. Thus \\$\ is the string to be placed
in a smaller point size when .SM is called.

As a sli&htly more complicated version, the
following definition of .SM permits optional
second and third arguments that will be printed
in the normal size:

.deSM
\\$3\5 - 2\\5\ \s+2\\$2

Arguments not provided when the macro is
called are treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctua­
tion is much more common than leading .

By the way, the number of arguments that
a macro was called with is available in number
register .$.

The following macro .BD is the one used
to make the 'bold roman' we have been usin&
for Iroll' command names in text. It combines
horizontal motions, width computations, and
argument rearrangement.

.de SO
\&\ \SJ\f1\ \SI\h' -\WI \S\'u + I u~\\SI\fP\\S2

The \h and \ W commands need no extra
backslash. as we discussed above. The \& is
there in case the argument begins with a period.

Two backslashes are needed with the \ \SI'!
commands. though. to protect one of them when
the macro is being defined. Perhaps a second
example will make this dearer. Consider a
macro called .SH which produces section head­
ings rather like those in this paper. with the sec­
tions numbered automatically, and the title in
bold in a smaller size. The use is

.SH 'Section title .. :

(If the argument to a macro is to contain blanks,
then it must be surrounded by double quotes,
unlike a Siring. where only one leading Quote is
permitted.)

Here is the definition of the .SH macro:

.nr SH 0

. de SH

.$P OJi

\. initialize section number

JIB
.nr SH \\n(SH+1
.ps \ \n(PS-\
\\n(SH. \\$1
. ps \\n(PS
.sp O.3i
.(1 R

\" increment number
\. decrease PS
\" number. title
\. restore PS

The section number is kept in number register
SH, which is incremented each time jusl before it
is used. (A number register may have the same
name as a macro without conflict but a string
may nod

We used \\n(SH instead of \n(SH and
\ \n (PS instead of \n (PS. If we had used \n (SH,
we would gct the value of the register at the time
the macro was defined, not at the time it was
used. If that's what you want, fine, but not here.
Similarly. by using \\n 0:'5 , we gel the point size
at the time the macro is called.

As an example that does not involve
numbers, recall our .N? macro which had a

.tI 'Ieft' center' right'

We could make these into parameters by using
instead

.tt I\o(LT\\·(C1\\.(Rr

so the title comes from three strings called LT,
CT and RT. If these are empty, then the title
will be a blank line. Normally CT would be set

- II -

with something like

.ds CT - %-

to give JUS! the page number between hyphens
(as on the top of this page). but a user could
supply private definitions for any of the strings.

12. Conditionals

Suppose we want the .SH macro to leave
two extra inches of space just before section 1,
but nowhere else. The cleanest way to do that is
to test inside the .SH macro whether the section
number is I, and add some space if it is. The.if
command provides the conditional test that we
can add just before the heading line is output:

.if\\n(SH-1 .sp 2i \. first section only

The condition after Ihc .if can be any
arithmetic or logical expression. If the condition
is logically true. or arithmetically greater than
zero. the rest of the line is treated as if it were
text - here a command. If the condition is
false, or zero or negative, the rest of the line is
skipped .

It is possible to do more than one com­
mand if a condition is true. Suppose several
operations are to be done before section I. One
possibility is to define a macro .SI and invoke it
if we are about to do section 1 (as determined by
an .if) .

.de SI
-- processing for section I ---

.de SH

.if\\n(SH-I.SI

An alternate way is to use the extended
form of the .if. like this:

.if \\n(SH -I \(--- processing
for section I ---\)

The braces \1 and \1 must occur in the positions
shown or you will get unexpected extra lines in
your output. trolf also provides an 'if-else' con­
struction. which we will not go into here.

A condition can be negated by preceding it
with !; we get the same effect as above (but less
clearly) by using

.if !\\n(SH> 1 .S!

There are a handful of other conditions
that can be tested with . if. For example, is the
current page even or odd?

.if e .tl "even page title"

.if 0 .tl "odd page title"

aives facing pages different titles when used
inside an appropriate new page macro.

Two other conditions are I and n, which
tell you whether the formatter is Irolf or nrolf.

.if I trolf stuff .. .

.if n nroff stulf .. .

Finally. strina comparisons may be made
in an .if:

.if 'strina r string2' stulf

does 'Sluff" if string] is the same as s"ingl. The
character separatina the strings can be anythina
reasonable that is not contained in eilher strina.
The strinas themselves can reference strinas with
\., arauments with \S, and so on.

13. [n"lronments

As we mentioned. there is a potential
problem when loina across a pale boundary:
parameters like size and font for a pale title may
well be different from those in effect in the text
when the paae boundary occurs. trolf provides a
very aeneral way to deal with this and similar
situatiorts. There are three 'environments'. each
of which has independently settable versions of
many of the parameters associated·-with process­
ina. includinl size. font. line and title lenaths.
filllnofill mode. tab stops, and even partially col­
lected lines. Thus the titlinl problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its
own suitable parameters.

The command .ev n shifts to environment
n; n must be O. I or 2. The command ,ev with
no arlument returns to the previous environ­
ment. Environment names are maintained in a
stack. so calls for different environments may be
nested and unwound cortsistently.

Suppose we say that the main text is pro­
cessed in environment 0, which is where trolf
belirts by default. Then we can modify the new
paae macro .NP to process titles in environment
I like this:

.de NP
,ev I
.It 6i
.ftR
.ps 10

\" shift to new environment
\" set parameters here

... any other processing ...

.ev \" return to previous environment

It is also possible to initialize the parameters for
an environment outside the .NP macro, but the

- 12 -

version shown keeps all the processina in one
place and is thus easier to understand and
change.

14, Diversions

There are numerous occasions in page lay­
out when it is necessary to store some text for a
period of time without actually prinlina it. Foot­
notes are the most obvious example: the text of
the footnote usually appears in the input well
before the place on the paae where it is to be
printed is reached. In fact. the place where it is
output normally depends on how bill it is. which
implies that there must be a way to process the
footnote at least enouah to decide its size
without printinl it.

trolf provides a mechanism called a diver­
sion for doing this processina. Any part of the
output may be diverted into a macro instead of
being printed, and then at some convenient time
the macro may be put back into the input.

The command .di xy begins a diversion -
all subsequent output is collected into the macro
xy until the command .di with no arluments is
encountered. This terminates the diversion.
The processed text is available at any time
thereafter. simply by aivina the command

.xy

The vertical size of the last finished diversion is
contained in the built-in number rellister dn.

As a simple example, suppose we want to
implement a 'keep-release' operation, 50 that
text between the commands .KS and .KE will not
be split across a page boundary (as for a filure or
table). Clearly, when a .KS is encountered, we
have to begin diverting the output so we can find
out how bia it is. Then when a .KE is seen, we
decide whether the diverted text will fit on the
current page, and print it either there if it fits, or
at the top of the next page if it doesn't. So:

.de KS \" start keep

.br '" start fresh line

.ev 1 \" collect in new environment

.fi '" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br '" get last partial line

.eIi '" end diversion

.if\\n(dn> -\\nCt .bp '" bp if doesn't fit

.nf '" bring it back in no-fill

.XX '" text

.ev '" return to normal environment

Recall that number register nl is the current

position on the OUlPUI page. Since output was
being diverted. this remains at its value when the
diversion started. dn is the amount of text in
the diversion; .1 (another built-in registerl is the
distance to the next trap. which we assume is at
the bottom margin of the page. [f the di version
is large enough to go past the trap. the .if is
satisfied. and a .bp is issued. In either case. the
diverted output is then brought back wHh .XX. It
is essential to bring it back in no-fill mode so
[roff will do no further processing on it.

This is not the most general keep-release.
nor is it robust in the face of all conceivable
inputs. but it would require more space than we
have here to write it in full generality. This sec­
tion is not intended to teach everything about
diversions. but to sketch out enough that you
can read existing macro packages with some
comprehension.

Acknowledgements

[am deeply indebted to J. F. Ossanna. the
author of trolf. for his repeated patient explana­
tions of fine points, and for his continuing wil­
lingness to adapt Irolf to make other uses easier.
I am also grateful to Jim Blinn. Ted Dolotta.
Doug Mcilroy. Mike Lesk and Joel Sturman for
helpful comments on this paper.

Referenas

[II J. F. Ossanna, .VROffITROfF User's
Manual. Bell Laboratories Computing Sci·
ence T~hnical Report 54. 1976.

[21 B. W Kernighan. A System Jor Typeserrmg
MathematiCs - User's GUide (Second Edi­
tion). Bell Laboratories Computing Science
Technical Report 17, 1977.

[3} M. E. Lesk, TBL - A Program to Format
Tables. Bell Laboratories Computing Sci·
ence Technical Report 49. 1976.

[4[M. E. Lesk. Typing Documents on UNIX.
Bell Laboratories, 1978.

[5J J. R. Mashey and D. W. Smith. PWBIMM
- Programmer's Workbe1lcil femorandum
Macros. Bell Laboratories internal
memorandum.

- 13 •

Berkelev font eatalog

October 1980

Introduction
This catalog gives samples of the various fonts available at Berkeley using

vtrotf on our Versatec and Varian. We have them working 4 pages across in a 36
inch Versatec, and rotated 90 degrees on a Benson-Varian 11 inch plotter. The
same software should be adaptable to an 11 inch Versatec, and in fact is running
at several other sites, however, not having one here, it isn't part of this distribu­
tion. Such a driver is available from Tom Ferrin at UCSF.

To use these fonts:
(1) Hershey. This is the default font. The Hershey font is currently the only

complete font, with all 16 point sizes and all the special characters trotf
knows about. To get it, use vtrotf directly. To illustrate this with the -ms
macro package:

vtro1f -DIS paper.nr

(2) Fonts with roman, italic, and bold, such as nonie. You can load all three
fonts with, for example:

vtro1f -1' nonie -DIS paper.nr

To get just one of these fonts, use (3) below, appending .r, .i. or .b to the
font name to specify which font you want mounted, e.g., to get italics in
delegate,

vtro1f -2 delegate.i -DIS paper.nr

(3) To get a font without a complete set, choose which font (1, 2, or 3) you want
replaced by the chosen font. For example, to use bocklin as though it were
bold, since font 3 is bold, use:

vtro1f -3 bocklin -DIS paper.nr

To switch between fonts in trotf, use

.ft 3

to switch to font 3, for example, or use

\f3word\f1

to switch within a line. For more information see the Nrotf/Trotf Users Manual.

Special note: troll thinks it is talking to a CAT phototypesetter. Thus, it
does all sorts of strange things, such as enforcing restrictions like 7.54 inches
maximum width, 4 fonts, a certain 16 point sizes, proportional spacing by point
size, etc.

In particular, the following glyphs will alwa.ys be taken from the special
font, no matter what font you are USing at the time:

@. #' ", " " <, >, \. !. j, -, -, and_

This may explain what are otherwise surprising results in some of the subse­
quent pages.

In addition, the following Greek letters have been decreed by troll as look­
ing so much like their Roman counterparts that the Roman version (font 1) is
always printed, no matter what font is mounted on font 1 at the time:

A, B. E, Z, H, I, K. M, N, 0, p, T, X.

(See table II in the back of the Nrotf/Trotf Users's Manual for details about what
glyphs are in each font and how to generate the special glyphs.)

Font Layout Positions

Code Normal Special Code Normal Special

000 100 @

00] fi \Cfi 00 'Cif 101 A A \COA
002 fi WI :l \Cip]02 B B 'CoB
003 :fl' 'Cff oc \Cpt 103 C r \("G
004 - \- ...- '(rh J04 D /:; '('D
005 .- \(m u \(eu 105 E E \COE
006 - \(em

.-

\Crn 106 F Z \C·Z
007 · \(bu ('I) \(bs 107 G H \Coy
010 · \(sq ± \(+-- 110 H @ \C'H
all \(fI :< \«~ I III I I \COI
012 \CiL 2: \(>~ , 112 ,j K \C'K
013 · \(de .J \Csr 113 K A \COL
014 t \(dg " ,(ts 114 L M \('M
015 \(fm J 'Cis 115 M N \(oN
015 " \(eo I \(s1 116 N :;:: \(>C
OJ? <II \Crg I \Cbv 117 0 0 \('0
020 ¢ \(et I \(If 120 P IJ \COP
021 ~ \(14 J \(n 121 Q P \('R
022 * \(12 I \CJc 122 R :E 'CoS
023 ~ \(34 1 \Crc 123 S T \(OT
024 I \CJt 124 T T \C·U
025 l \(lb 125 U !J! \(oF
025 1 'Crt 126 V X \(ox
027 l \(rb 127 W '¥ \('Q
(h,'«) l \(Ik]30 X 0 \(ow
031 ! \(rk 131 Y f ,(dd
002 c \(sb 132 Z \(br
033 :> \(sp 133 [C \(ib
O".A n \(ea 134 \ \e
035 .- \(no 135 1 0 \(ei
036 \(Th 138 - -
037 E \(mo 137 - - -
040 space 140 \'
041 I 141 a " \C'a
042 " 142 b " \(ob
043 II 143 e 7 \«g

I
044 $ 144 d <'J \(od
045 % 145 e ~ \COe
046 & 146 f <" \(Oz
047 147 g 1/ \(oy
050 (V \(gr 150 h ." 'C'h
051) 151 i L \Co;
052 · l(\(mu 152 j JC \(Ok
053 + + \(PJ 153 k A \C'J

I 064 154 1 jJ. \('m
055 - -- \(mi 155 ill 11 \COU
055 158 n ~ \«e
057 I \(eli 157 0 0 \(·0
000 0 a; \(~~ 160 P 7T \(Op
001 1 '" \C~~ I 161 q P \COy
002 2 ~ \(ap 162 r a \(Os
003 3 .. \(!~ 163 s T \(ot
064 4 ~ \«- 164 t v \COu
065 5 4 \(->

1\

165 u

'"
\C"f

006 6 t \(ua 166 v X \(Ox
007 7 J, \(da 167 .W 1); \('q
070 B § \(sc 170 x G) \COw
071 9 • \C" I 171 Y a \(Pd
072 172 z if> \(es
073 173 ! !
074 < 174 I I \(or
075 = 175 l 1
076 > 176 ~ -
077 0 177

'PL FONT, 10 POINT ONLY

"# $ ~. 2 v A ~ ~ {} ! l ~ ~ _\::;[@..;. <: +! \. >, <

... (% ... ~&:-•• ' ..• '(... V)-+":"'S #- = ... ··[... {] ... JI ... 3'-• ..;.

-><+-++7 ... \

Baskerville font, roman, IOOId, italic, 12 point ooly (Called "bulterwon line.)

ABCDE FGHIJ KLMNO PQ.RST UVWXYZ abede fghlj k.lmno pqrst uvwxyz 01234 56789

!"#I'tlk'(): .. -~[] I! ~~_\I@';+/?>.<

If time be of all things the most precious, wuting time must be, fa Poor Rich2.l'd ,my" the greatest

prodigality; since, as he elsewhere tells us, iat time Is never found again; and what we cal! time

mough, always proves little enough: Let us then up :and be and to the purpose; so by

diligence shall we do more with less perplexity.

ABC DE FOR IJ K LMNO PQRST UVWXY Z @c,iefg!ti.j hlmno pqrst 1W'IliX';/Z 01234 56'789

!"#$1.fJf'():>t- M { I! l ~""-\I@';+I'.>, <

if time be oj all tAtngs tM most preciOUS, wasting time rtJ;IJ.st be, as Prxn Rtclaard $!J.'js, tAe greatest

prodigalit,; Jimt, as A, tlswA#rt t,lls us, lost time is TW'VIIT fotmd again; and what Wt call time

t1UIUgh, alwa'Js proves Uttle IInougk Lilt us then up and be and dGing to tAt purpose; so try

diligence shall we do more wit,~ [;flU Implexit".

ABeDE FGHIj KLMNO PQ.RST UVWXYZ abc&! fghij klmno pql'5t livwxy~ 01~ 56'189

I" ;; $1. Ik '(): $ • ~ [] I j ~ '" __ \ I @'; + I? >. <

If time be of all things the most precioos, wllSting time must be, liS Poor Richard fl'lys, the

greatest prodigality; since. llS he elsewhere tells liS, lost time is newer foond again; II.nd what we

call time enough, always proves little enough: Let 11$ then lip lind be doing. and doing to the

purpose; 50 by diligence shall we do more with less perplexity.

'Boct-din font. 14 zmd ~8 pomt only.

14 point

rmeD!: feillll KLMRe P~R3T tiVWXY~ zzbcde !ghij klmno pqrst uwwxyz
0123456189

.. ():~=[1':/?_,

n time be ot all thing:i the mO:iit pril:cious. WD:.iting time mut\t be. DOS Poor
Richard :says. the Jlreatest prodiQDlity: since. 1:11:) fie: elsewhere tli:ll5 U:i.
Io:st time i:s newer found aQain; nnd wha2t we can time enough. alway:s
prowe:s little enough: Let us thEm up lind be doing. and dOing to the
purpose; :so by diligence :.»hZlIl Wi.: do mOre with 1~:S1:) pll:rplextl'y.

28 po int (Ro punctuZltion except period.)

li13eDE fG1111 K1rHRe P~R~T
tiVWXYK abcde Ighij klrnno pqrst
uvwxyz 01234 56189 s

II time be of ull things the most
precious wasting time must be as
Poor Richard says the greatest
prodigality since as he elsewhere
tells us lost time is never found
again and what we can time enough
always proves little enough Let us
then up and be doing Dnd doing to
the purpose so by diligence shall we
do more with less perplexitV-

Bodoni font, roman, IIoId, italic, 10 point only.

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fa'hij klmno pqrlt UT1n:ys OUM 56'189

! " II'" &: • (): '" -. [] ! ! A - _\1 c· ; + I? . >. <

H time be of all things the most precioul, waiting time mUlt be, u Poor Richard AYI, the ereatest

prodigality; linCe, as he elaewhere tella Ul, 10lt time il never found again; and what we call time enough,

.IwaYI prOVM little enough: Let UI then up and be dOing, and doing to the purpose; .0 by diligence shall we

do more with Ie .. perplexity.

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcle hAij 1clmno pqr. ''''lIIsy. OU"4 56789

I" #'1. &. ()::1: - - [] ! I - - _\ I @·:+/P. >. <

If rime be of 011 tAin" tAe molt precio "Hutin .. time m ... be. 01 Poor Riclaorl lOy .. tAe veatelt

proli,ality: .ince. o. Ae elulIIMre telZ, loa time iln_r fo .. "l a .. oin; onl ",Iaot II1II call rime

eno A. oI_y. protJe. little eno",A: Let ... tMn .. p onl be loin ... and loin .. to tlte purpou: 10 by

lili .. ene" Moll II1II 110 more lIIitA Ie" perplesity.

ABCDE FGHIJ KLMNO PQRST UVWXYZ a1M:de fpij kbmo wst UVWIYS 01234 56789

! " /I 11 &: • (): '" _. [] ! ! - - -\1 @'; + I? >, <

H time be 01 all 1ftin,. the IIIOIIt precious, wallin« time mut be, .. Poor Richard Ays, the ereatellt

prodigality; 1liAce, .. he elsewhere ten. us, 1O&t time is never found again; and what we call ti_ enough,

always prove. little enough: Let us then up and be doing, and doing to the purpose;.o by diligence mall we

do more with IeK perplexity.

Chess, 18 point only

Note: Our attempt at compatibility with Stanford was only 99% successful. If you use
Ii blank space to indicate an empty white squllIe it will come out narrow due to the
stupidity of tJroff. Either include the line

.cs eh 38
to put yourself in constant spacing mode or else use zero instead of space. You
should also set the vertical spacing to 18 points.

.nf p J. P .E-.n eh

. eli! ch 36 0
Z"{~ 0 ::f/-'%
~J1: ~~ .ps 18

.vs 18 b .t B ii HTTTITTTTX
VOZOZOAOZF a ~'"'l.

A ~ ~ /' '/ ~('~
VZOZOZOOOF ' /

V!JoOZOZOZF n ~ N fj
vzOZOZOZOF
VOMOZOZOZF m. %A//~

M ~ .~;
~ ... ; VjPZOZOZOF ~"

VOZlClOZOZF r .I R B vzOZOZOZOF
lruUUIJiJUUUG

"/"'///

S
",1""1'

S '.I' ~B~ / , , '
.8p ~ ... /

~. . /

.ft P q \W Q lMI .ps 8

.ell P I '/////

L ;1'///-: ;\1;11;
il:1M3 ~ ... ;

k m K rJ.iJ
~.,~

J ~ J {tt
/ ... /

~~ ~ ~
U T

% % ?'~ ~ /~ /~.'~~ F V ~w~~~~··/~ G W ~~ .. ;~~~~~~
~~~~~~~~ X H 
~,/;;",,~~~ ~~~ 0 Z ~ ,t!LR ~ ~ ~ 
.~ % /~ ~ 
~I~~~~~ ~ ~ ~ ~ 

lfttite n:mtes in three mIYW'eH. 



Clarendon, 14 and 18 point roman only. From SAIL (Paul Martin & Andy 
Moorer) 

ABCDE FGHIJ KLMNO PQRST UVWXY abode fghiJ klmno pqrst 
uvwxyz 01234 58789 

rr#$~><'(): -=[]fl ..... "'-\I@.;+/?>,< 

If time be of all things the most precious, wasting time must be, 
as Poor Richard says. the greatest prodigality; since. as he 
elsewhere tens us, lost time is never found again; and what we 
call time enough, always proves little enough: Let us then up 
and be doing, and doing to the purpose; so by diligence shaH we 
do more with less perplexity. 

ABCDE FGHIJ KLMNO PQRST UVWXY abcde 
fghij klmno pqrst uvwxyz 01234 58789 

U#$ 'Ix' (): -=[] I ~ -"-"'-\I@~;+I? >, < 

If time be of aU things the most precious, wasting 
time must be, as Poor Richard says, the greatest 
prodigality; since, as he elsewhere tells us, lost 
time is never found again; and what we can time 
enough, always proves little enough: Let us then 
up and be doing, and doing to the purpose; so by 
diligence sh.all we do more with. less perplexity_ 



c_ ..... Med.,,, fo_,r=-,it"rie,.."d bllll.d..(by DOll !ullIll>b) 8, 7,8,11, W,U,13 1'01"" (A",";IOIbIe .. ~ 

N .... tbat the em fom ..... ! .... nded for TRX """ d",,'t f ... 00 .... 11 ... th 'faR. The • ""ciOIL10 ..... I'f"l"'"--
'bi0911li by po-jut Ifht!JuQ hence only on~ point wile CIIW 'be tuned to be aicely NPate~ We have tUba Use 10 palm 
,ho,b ....... 8 poin, look •• """, .. bat «_<I. 

So"", of the l'uodu..tioo " mi .. li1j!; I" same of th. foo ... Knutb 0100 Ill •• ' "DG" ...... d.d "01;1",, of ASCn, 
""" h."" •• ""'" "'yph ....... "oil"I>!. only with .""dol oymbol •• """ ... \(1:1. o.he,. <""1101; be ""co ... d .. Ill!. 

Knuth', font. ,o""""hat l ... $l" tho .... "como!, ,iDCO be letoDd. ,be ""'put to be reduud bof",. printl".. 
SInce t,oIf I ... & !Imitation of 71.14 ;nebe ... idth em output, $W. I, Dot pudic&!. HoDCo, tho ""lWDOI! fom. b ..... 
been relab.n.d ..,;th tho poin, .i •• they .... clooo.' to without ,.dueti.,," S""", fonto (8 paint llold,T palut roman, 
S poIot ihllc and bold,Q poi". bald,_d 11 poim holic) whicb would haft oth .. ..,;.. be,,, mi,oiq "",. !l'lIerated 
by .ml"ki"ll till ... ext 1",&1" poiut .i •• of the ...... "yie. (Till. 5«' ..... tbe lei .. of motlll'ont,but w ..... the 
.001 .... 11 .... 1 

10 Poin t ROIDl.I.ll 

ABCDE F'GHIJ KLMNO PQRST UVWXYZ abed!! fghlj timno pqrut uvwxy. 01234 
56789 ! " II' f2l ' () $O. ! j - ~ _ \ @ • > ,< '"E,;;8, T ,~,II",,~,e,A. 9' ,Il,l,J"" 

If time be of all things the most preciollS,wl!.sting time must be,&s Poor Richud says,the 
greatest prodigality since,&s he elsewhere tells UG,lost time is never foulld again and 
wlld we Cl!.!! time enollgh,always proves little enough Let us then up lind be doillg,lIlld 
doing to the purpose BO by diligence shall we do more with less perplexity. 

10 PlJint Ita.lic 

ABCDE FGHI J KLMNO PQRST UVWXY.Z abcde JfJh.ij klmno pqr,t UIIW!l:IIZ 01!S4 
56189 ! " # JI {j e '( ) : '" -= { J f l ~ ~ _ \ w @ , ; + / 1'. > , < " " E, -, -j El, 1; ., II, 
17, Ii, ~, od, 6, A, If, n, GI, ,8, ,,(, 'f Ii 
If time be oJ Gil things the most precious, wasting time must be, as Poor Richard SGIIS, 

the gr~atest prodigalitlj; B'ince, as he elsewh.ere tells us, IOBt time is n(!1Jer found. aga,,,,; 
(mit what we call time enough, IllwGys proves lime mough: Let 'Us then up Ill'ld be 
doing, and d.oing to the purpose; BO bll d.iligmce shall we d.o more with leSE! perplez''/y. 

ABCDE FGmJ KUdNO PQRST UVWXYZ abede I'ihij kl.mno pqrli UVWX71 01234 
HrS9!" 1\ % .t: '( ) 1* • = II ! l ~ ~ _ \ I @ • I + IT. > • < " " E,·, ., iii, T, ., II, 
, • , A, II, n, 1, J, " ;-; .• 

If time be of All things the mogt pnlclou~. wattn" time must be, III Poor Rlciumi B&YI, 

the greliltest prodlgllllt"Yl Binee, illS he elsewhere tells us, lost time is never found I!pln; 
and what WI! call time enough, IIlwllYs proves little enoughl Let U8 then up Gd be doing. 
Gd doin, to the purpose; so by drn.gence shall we do more with less perpleJdty. 

ti _ Ronmi, lIrMd, .. ,d_ 

'f Pwni R~,Bcld}ud &lso, 
8 Point Roman,Sold,and it"li .. 
Q Point RomllJ:l., Bold, ",,-d Ital;c. 
10 Point Roman,Bold,and Italic. 
11 Point Roman,Bold,and Italic. 
12 Point Roman,Bold,and Italic. 



Countdown (22 point, upper case letters From SAIL (Paul Martin) 

[](]lJrJI[J(]UJrI ~flS rtlJ IrlTllJlFilr'i IIJ [JIJIJrII 
[JIJUJrJ UJITI1 (JUT IT [JIJrnlJlflSflllS 11~ 
I]llrltl Ufll ~ Flfl[] IllE[Jll1ll 

, 'l"llMe 6e 04> 81.Jl 'l'X1I1!rt: ue MOC'!' 1Ip€1l0YC aCTlliil' TlWe lilY" 6e ac 001' RX31l,!l; calle Txe !'JlE:!!'!'eCT 

npom!raJn!Tl\ !:lU1e ae xe eJlcexepe TeJIJIC lfC noC'l' TlIMe >lC ileneI' I!l0YIlA aI'alll! !lIlA lea'l' e IlJ!J1 TKMe emryrl< 

!lJmlic nposec miTT Jle ef!oyrx e'l' yc TXell yll all)!. 6e 1I001ilf BH.ll. )!;O!mf TO ne nypnoce co eli'! )'.(llJu!relle CXaJlJl e 

110 MOlle lITX Jlecc nepn.1!ellTil 

W->il\ X->Ll, Y->1> Z->3 a->a b->6 d->;I\ e->e f->$ g->r h->x i->ll k->K 1->;; m->M n~1! 0->(1 

p->Dr->ps~ct->TU->YV->BY->·Z->3 

Delegate, roman, italic, and bold, 12 point only 

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fghij klmno pqrst uvwxyz 01234 56789 

! "# $ % &' (): 11 - '" [J f l ~ "'_\ I @'; + I? >, < 

If time be of all thinps the most precious, wasting time must be, as Poor Richard 
says, the greatest pro~igll.lity; Since, as he elsewhere tells us, lost time is 
never found again; and wha t we call time enough, 8.1 ways proves 1. ittl e enough: Let 
us then up and be dOing, and doing to the purpose; so by dll igence shall we do more 
with less perplexity. 

AlJCDE FGlllJ KUfJiO PQRsr lflMXYZ abcde fghij !lmno p([rst UIlWXIIZ 0123456789 

!"#.$%&·()g·-:c[}!l~"'_\/@ :+/7.>.< 

If til!le be of all Uings the IIIOst precious. !llClsting time /IIl1st be, as Poor Richard says, 
the greatest prodigality: since, as lie elsewhere tells us, lost time is nel1er found 
again: and what we cali til!le enough, alii/alioS prol1es little enough, Let !lS then up !lnd be 
dOing, !lnd doing to tile purpose: so by diligence shaH !!Ie do lIIore llIiUi less perplexity. 



ABCDE PGlUJ [UINO PQRST UVWlO'Z abcde fghij klmo pqrst uvwzyz 01234 56789 

! .. # s ~ it • 0 : 'It - = [] ! l ~ ~ _\ ! @ t; .. I? >. < 

If tIue be of all things the lIost precious, wasting tie lIUst be, as Poor Richard 
says, the greatest prodiga.lity; since. as he elsewhere tells us, lost tillle 1s 
never found again; and what we call tillle enough, always proves little enough: Let 
us then up Ilnd be dOing, and doing to the purpose; so by diligence shall we do BOre 
w11::hle_ss perplexity. 

Fi»( fixed width font, S, 9, 113, 12, 14 point 

!"18 ,,' () I II - .. r I _1'1 ... /1. >. < 

If t .i __ ;f al11.hinpp: thlllllQiit Pf"~iOlJiI' _tinl tim.ltlIulit bII. _ POOl" ~Ich...-d S»>yll, thiJ: srutut fil'l'"odlsslit71 illrtOll, liS tw .l~. 
tvll.- UI, leri tllfla i. nllV't!r ;ound splnl and what WIt csll tiu vnOlJgtr. shays provo IIHhI tI'lousn' Ltrt uz th;m UIO lind bit dains. Md doirlJll 

to th<ta purpo5111; 50 br diligl1!f1cg eNll ~Ilt ~ IlODre with Iltlis perpli!!xity. 

9 P "'Int 

ABCDI' fGHIJ HMNO PQRST UVUXY .bcdo IgMlj tol,,"o pqr.t UVNXYZ 81234 56789 

! .. HI % & ' ( ) : * - • [l ! l - - _ \ I @' , + I? • >, < 

If til' bl Df ail ti'lingz ths Most precious, wasting tillft MI..Ult be, as Poor" Rlchllrei SlY., tt'lw 

gr •• tnt prodigal/fisH IIlnell, Mill hill allluHolherlii tells UII, IOllt tim. III "iIIYflf'" found 11IIJilll"I; lind 

wha't WI 1211111 tiM. ,,,oldgh J illways pro v •• little .f'n~H.lgh! let Uil thaI"! "'P end ba doings lind doing 

to t~op"rpo •• 1 o. b~ dlligonco ohall wo do Bor. with I ... psrpl .. lly. 

Ie ~oint 

I" ""'- (J 1111- .. []! j--_\I.',+11.>.< 

If 'ti.eD. of all thingll the IIIOl5t prBCiOYlI, ~liIllting tiMII must be, 1111 Peor Rich6lr'd 
lIa\J_, the 9I"lIlItnt prodigllli itlll; lIinclI, h he eleewher&l hlill UIB, IOllt tiM illl nev6lr' 
fOUl'"'ldl<;flinl IIind whet we call tilMlllflOugh, alwlII\,IlI prOWlIL littlll el"lO\olgh: Lilt 1.1l1li then 
14' aIIII'1d lie aoing. IIind aoing to the pUf"!:lOIllIllI eo by eli I igencs llhall we do MOre wi th letllll 
".rp II!i t y. 



12 point 

ABCI:E FGHIJ KLMNO PaRST UVI.JXV abcde flilhi 1 kllllno pqrst UVWX\,IZ 81234 

SS789 

I " ,. X,' () 1*- - [] ( l ~ .... _\ I @. I + I? • >, < 

If time be of al I things the most precious, wasting time must be, as 
Poor Richard saus, the greatest prodigal Itu; since. as he elsewhere 
tel I. us, lost time is never found again; and ~hat we cal I time 
enough. alwaus proves little enough: Let us then up and be doing. and 
doing to the purpose; so bU di ligence shal I we do more with less 

perp I ex i tW' 

14 point 

AIDE FGiIJ KL/'NJ t={RiT UVWXY abcde fghi j klnno pqrst 
tM.O<yz 01234 56789 

"#8%&' () :*-=[] f ~"""'_\I@' +I?> 
, < 

If time be of al I things the most precious, ~asting time 
must be, as Poor Richard says, the greatest prodigality; 
since, as he elsewhere tells us, lost time is never found 
again; and ~at ~ cal I time enough, al~ys proves little 
enough: Let us then up and be doing, and doing to the 
purpose; so by di ligence shal I ~ do more ~ith less 
perp I ax i ty. 



Gacham, roman, bold, ltal1c, 18 point only 
The gacham font is almost indistinguishable from the fix font. 
pointed out that our gacham roman and bold fonts really lire fix. 
eluded anyway for convenience. 

In fact, it has been 
Sigh. They are in-

ABCDE FGHIJ KlMNO PQRST UVWXYZ abcde fghij klmno pqrst uvwxyz 81234 56789 

! "#I%&'!l :lI<-=[]! !~~_\I@';+I?>,< 

If time be of al I things the most precious, wasting time must be, as Poor Richard 

says, the greatest prodigal ity; since, as he elsewhere tells us, lost time is never 

found again; and what we call time enough, ail~ays proves little enough: let us then 

up and be doing, and doing to the purpose; so by diligence shall we do more with less 

perplexity. 

ABCDf FGHIJ KLMNO PQRST UVWXYl abcde fgh1j k7mno pqrst u~z 01234 56789 

I" # $ % 8.' ( ) : '" -.:: [ 1 ! l - ~ -\ I@' ; + /? . >, < 

If time be of 1177 things the most precious, wasting time must be, as Poor Richard 

says, the greatest prodlga7ity; since, liS he e7sewhere te77s us, lost time 1s never 

found again; and wnat we ca71 time enough, a7ways proves Tittle enough: Let us then 

up and be doing, and doing to the purpose; so by di7igence sha7l we do more with less 

perplexity. 

ABa:E FGHIJ IQJ'NJ PQRST lMlXYZ abede fghij kllllflO pqrst UYHl<YZ 81234 56789 

! "IF I % 6:' ( J : ,. - - [] ! ! ~ ~ _\ I @' ; + I? >, < 

If time be of all things the most precious, uasting time must be, as Poor Richard 

says, the greatest prodigal ity; since, as he elsewhere tells us, lost time is never 

found ega i n; ala what we ca II time enough, a I ways proves lit tI e enough: let us then 

up and be do i ng, and do i ng to the purpose; so by d iii gence sha I! J.lI!!J do more I.j i th less 

perplexity. 

Greell:, 10 point o~ 

Thill font provideD an alternatire to the Greek chuactern on the lltandard IIpecial 

font. 

ABCDI': FGHIJ nJtNO PQRST UVWXYZ Ilbede Jdmno Pllnt 

I", "'jH ,. ~ .u ~g ,.. JIM,. Ir/HX'IIW -'-W"f "'11111"''' ,.. ,. IlCNtp PIX~ ~,., f1'I 'V1H1W1iff 

ff""".w.~ ~ • ., .. IM6W4IIH ~ ., ~ f"1.I6I w .. "-" ..... ..,_ ........ ...,. ... :teA). ",,.. • ....", 

~, ff,et., ),J""M • ....,. AI" W .... 1m at ,. 'euoy ..... ", ,.. ... fnnfWl ,. H "N.,."". ,~ 
... I. ~ ..., a.t" lr.jlVa...~ 



The h19 font includes a subset of the h19's graphic charactor set, plus a 
few logical e~tensions to al low forms and diagrams to be drawn. The charactors 
are the same as the h19's graphic interpratation set. 

abcdefstuvmnh k 

The charactors are designed to overlap. 

E~ample of usage for diagrams: 

Z82 
microcomputer 

system 

I SBK bytes RAM !I--<E--l"""'; 

MC68000 DES! GN MCruLE: 
* lS-bit CPU 
* 32K bytes RAM ROM ~I Terminall 
* 8K bytes monitor . . 
* Paral lei Ports 
* lS-bi t timers 

f---;H~: S4K bytes RAM J 



Hebrew. 16, 24, and 38 point only 

16 point 

!"# ~~.(l: - []Il""'" 

t);'il) t'i;'i~''U'1 rJ'ljt) ::'Zt ~~ ~mQY"V~!::) "o;'~~1:lV fl'r1 tli~~~Ji CiVi::l:!I!l,::'cID. ::tl m~t' tlil}l 

~i'll-\jl:llll~)) ~ ~V::'~~ ~'t:I'lt>tJ ~J'lJ~i~~')) o. t'~J:i ~1 ;1:1 ~1 "1 ; I'j !:I'I1 ::S;';1t'. ; ~ ~"~1~ 
'1 ~;1 tl,C:l1:/ l'!1$~'. 

24 point. 

~Ii rl'liN' rt j~ ~ N~ no" ~eo Oli 0 

~, , O~ ,~. ~ n~~ ~i'l N"K~~N~ :l 

", N'K:' . 

38 point (rather ragged) 



10 point Hershey 

ABCDE FGHlJ KLMNO PQRST UVWXYZ abcde fghij klmno pqrst uvwxyz 0123458789 !, I, 
;;g, &,', (.),:, ~,-, [,],',;, I,?,. 

\(em --> -, - ... -, \- -> -, \(bu -4 ., \(sq ... ", \(m -> _ \(14 --> j(, \(12 ... *, \(34 "'1(, \(fi ... 
fl, \(tl -> ft, \(ff --> ff, \(Fi --> tri, \(Fl --> tn, \(de --> ., \(dg -> t, \(fin ... ',\(et ... ~\(rg -->!D 
\(eo -<> Ii 

When you flex your fingers in a comn, it can baffle a giraffe. 

ABCDE FGHIJ KLMNO PQRST UVWXYZ abe de Ighij klmno pqrst 'l./.vw:r:yz 0123458789!, 
S, %, &t, " (, ), :, ", -, [, ], " ;, /, ?, . 

\(em -<> -, - --> ", \- ... -, \(bu --> ., \(sq .... , \(ru ... _ \(14 -I> J,{\(12 ... *\(34 ... ;¥\(fi ... fi, 
\(tl -I> fl, \(ff ... fJ, \(Fi ... /fi, \(Fl ... ffi, \(de .... , \(dg -> t, \(fm ... " \(et ... ~\(rg ... !'\(eo 

When youfiex your fingers in [!, coffin, it can baffie a gi:raffe. 

AllCDE ffiHIJ KI...MNO PQRST UVWXYZ abc de fghlj klmno pqrst ll.VWJlYZ 1)1234 56789 !, I, 
:t, It, " (, ). :, .. , -, [. ]. " :, 1,1, . 

\(em'" --; - -> -. \- ... -. \(bu ... " \(sq ... ", \(m ... _, \(14 -, X\(12 ... ]f.\(34 "'I\(fi ... fi. 
\(fl ... 1'1. \(ff ... fr. \(Fi ... m, \(FI ... m. \(de ... ", \(dg ... t. \(fm ... " \(et ... '\(rg ... !5\(eo 

lfhen you tiel( yOW' fingers in Ii caron. it can Dame (I. giratre. 
From special font: " /I = ! l ~ ~ _ \ I @ , , + > <: 

Special characters: \(pl -> +, \(mi ... -, \(eq ... =, \(n ... -, \(se ... §, \(aa ... " \(ga ... " 
\(ul ... _, \(sl ... /, \(·a ... ex, \("b ... p, \(.g ... -y, \($d ... 0, \(*e ... £, \(*z ... (, \(*y'" 7'}, 

\(*h ... 19-, \(·i ... L, \(ok ... Ie, \(01 ... A, \(om ... p.., \(on -> 1I, \("'c ... ~, \("0 ... 0, \(op ... ?T, 

\(or ... p, \("8 ... Cl, \(ts ... <;, \( .. t ... T, \(Ou'" v, \(Of ... rp, \(ox'" X, \(Oq ... 'lji, \("w ... CJ, 

\(oA ... A, \(oB ... B, \(oG ... r, \(oD ... 1:1. \("E ... E, \(oz ... Z, \(oy .... H, \(oH ... 9, \(OJ ... I, 
\(oK ... K, \(*L ... A, \(oM ... M, \(oN ... N, \( .. C ... Z, \(·0 ... 0, \(op ... n, \(oR ... p, \( .. S ... l:, 
\("1' ... T, \(ou ... T, \(oF ... ~, \(oX ... X, \(oQ ... 'f, \(oW ... 0, \(sr ... ...;, \(rn ... - , \(>= ... ~, 
\(<:= ... ~, \(== ... =, \(~::: ... ""', \(ap ... ~, \(,= ... '11', \(-> ...... , \«- ....... , \(ua ... 't, \(da ... 
J., \(mu ... x, \(di ... -:-. \(+_ ... ±, \(cu'" U, \(ca'" n. \(sb ... c, \(ap .... J, \(ib ... C, \(ip ... 
::2. \(if ... eo, \(pd ... 8, \(gr ... i/, \(no -> ~. \(is ... j, \(pt ... "', \(eq ... =, \(no ... ~, \(br ... 1, 

\(dd .... *' \(rh -to 'I"'\(lh ... -, \(bs "'0 \(or ... I. \(ci ... 0, \(It -+ 1, \(Ib ... L \(rt ... r, \(rb ... j, 
\(Ik "'1, \(rk ... }, \(bv ... J, \(if ... [, \(rr ... j, \(lc ... r. \(rc "'1 

If time be of all things the most precious, wasting time must be, as Poor Richard says, 
the greatest prodigality; since, as he elsewhere tells us, lost time is never round again; 
and what we call time enough, always proves little enough: Let us then up and be doing, 
and doing to the purpose; so by diligence shall we do more with less perplexity. 

This is an example of a sample in various fonts. 



Hershey font. This is the default font for vtrofi'. Roman, Italic and Bold In e, 7, S, 9, 10, 
11, 12, 14, 16, 1B, 20, 22, 24, 28, and 36 point. The following examples are 10 point. 

If time be of all things the most precious, WIlSting time must be, as Poor Richard says, 
the greatest prodigality; since, as he elsewhere tells us, lost time 1s never found again; 
and what we call time enough, always proves little enough: Let Ull then up Ilnd be doing, 
and doing to the purpose; so by diligence shall we do more with less perplexity. 

as Poor Richard. says, the grea.test prodigality; since, as he Ilis!!where tells us, lost time 
is neVfH' found again; and what WI! call time enough, always proves tittle enough: Let 
u.s thun up and be doing, and doing to the purpose; so by d.iligence shall we d.o morl! 
with less perplexity . 

.If time be of all things the most precious. 1Jnmting time must be, lUI Poor Richard IIlI.yll, 

the greatest prodigality; since. lUi he elsenere tells us, lOl:lt time is never found 
again; and what we call time enough. alWIlYS proves little enough: Let us then up and 
be doing. and doing to the purpose; 110 by diligence shall we do more with leas 
perplexity. 

Ii po1.nt Romlm, BmW.. and lta.Mc. 
7 point Roman. DoMl. I!Ild Italic 
11 point Roman, Bold. and Italic. 
9 point Roman, Bold, find Italic. 
10 point Roman, Bold and Italic. 
11 point Roman, Bold, and Italic. 
12 point Roman, Bold, and Italic. 
14 point Roman, Bold, and Italic. 
16 point Roman, Bold, and Italic. 
18 point Roman, Bold, and Italic. 
20 point Roman, Bold, and Italic. 
22 point Roman, Bold, and Italic. 
24 point Rornan, Bold, and Italic. 
28 point Roman, Bold, and 
Italic> 
36 point Roman, Bold, 
an.d Italic. 



Meteor, roman, bold, italic, 8, 10, 12 point, no :12 point italic. 

ABCDE FGHIJ KLMNO FQRST UVWXYZ abcde fghij klmno pqrst uVl/>J"xyz 0123456789 

i" # $ % &:' ():" - '" []! l ~ ~ -\ I @';+/?)-, < 

If time be of all things the most precious, wasting time must be, as Poor Richard says, the 

greatest prodigality; since, as he elsewhere tells us, lost tim.e is never found again; and 

wllat we call tim.e enough, always proves little enough: Let us then up and be dOing, and 

doing to the purpose; so by diligence shall we do more "It'Ti.th less perplexIty. 

ABCDE FGHU KLMNO PQRST UVWXYZ abede t·g/iij klmno J)qrst mn;vxyz 0123456789 

!" #:£ % &:' ( ), '" -::: [ J ! l ~ ~ -\! @'; 4- I? )-, < 

If time be of an things the most precious, wasting time must be, I!lS Poor Richard says, 

the greatest prodigality; since, liS he e1.~e.vhe:re tells us, lost time is never found 

again; IUld w"hat we call time enough, always proves liule enough: Let us tllen up an.d 

be dOing, lind dOing to the purpose, 30 by diligence $.118.11 we do more with less 

perplexity. 

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fghij klmno pqrst llvwxy;l: 01234 

56789 

!" /I' '" fie' () : O! - .. [] ! ! - ~ _\ I @'; + I". >, « 

If time be of aU things the most precious, w!!.stl.ng time must be, I!S Poor Richard 

says, the greatest prodigality; since, liS he elsewhere tells us, lost time is never 

found again; ilInd what we call time enough, always proves little enough: Let us 

then up and be doing, and doing to the purpose; so by diligence shall we do more 

with less perplexity. 



Microgram.ma font, 10 point only 

ABCOE FGHI.J KLMND PQRST UVI/IIXY abcdt!i fghij klrnno pql"l!lt uvwxyz 01234 56789 

!"#$'1.Ei.'[)::::_"[]!lA~_\I@';+I?>,< 

If time be of all things the most precious, wasting time must be, illS Poor Richard says, the 

greatest prodigality; since, 913 he elsewhere tells us, lost time is never found again; and what 

we call time enough, always proves little enough: Lst us then up and be doing, Bnd doing to 

the purpose; BO by diligence shell we do more with ISBB perplaxity. 

mona font. 2i polnt only 

ABcn~ f~lj3J l\lmN~ PG}ItS[ UUIDXYZ 
abcae fghlJ hlmno pqrst oowryz 0123i 56789 

l"#f¢&?(): 

>~< 

@ + .. ? . 

Phlla~dphLa Ls the most pecRsnlffian of Amertcan 
citLes, an~ thos probably leaas the moria . 

• 1). L. 1fIenchen 



Nonie, roman, bold, italic, 8, 10, 12 point 

8 point 
ABCDE FGHIJ KLMNO PQRST UVWXVZ abcde fghlj klmno pqrst uvwxyz 0 1234 56789 

!" 1$" 110 ' (): • -. [] I ! ~ - _, 10' : + I? . > , < 

If time be of all things the most precious, wasting time must be, as Poor Richard says, the greatest prodigality: 
.Ince, as he elsewhere tells uI,lost time Ia never found again: and what we call time enough, always provea little 
enough: Let us then up and be doing, and doing to the purpose: so by dnlgence shall we do more with Ie .. 
perp lex Ity. 

A8COE FGHIJ KLMNO PQRST UVWXYZ tlbcde fghlj i<Jmno pqrst uvwxyz 07234 515789 

!'" $ %&' () I· - = [ ] I ! ~ -_, 10' ,., ~. >, < 

If time be of all things the most preciOUS, "'lISting time must be,.s Poor Richard SlYS, the greatest prodigality; since, 
lIS he e/sewhare tells u., lo.t time I. never found again; and what "'10 call time enough, always prove. little enough, 
Let us then up and be doing, and doing to the purpose;.o by diligence shall we do more with I" .. perplexity. 

ABCDE FGHIJ KLIVNO PQRST UWlXYZ abcde fghij klmno pqrst uvwxyz 01234 56789 

'" fI $".' ():. -= [] I ! ~ - _, 10' ; + I? >, < 

If time be of all things the most precious, wlStlng time must be, IS Poor Richard uys, the greatest prodigality: 
.Ince, I' he elsewhere tells us, lost time is never found again; and whit we call time enough, always proves 
little enough: Lat us then up and be dOing, and doing to the purpose: so by diligence shall we do more with Ie .. 
perplexity. 

10 point 
ABCDE FGHIJ KLMNO PQRST WWXYZ abcde fghlj klmno pqrst uvwxyz 01234 56789 

! .. # $ ~ & I () : ~ _::: [] ! ! _ ~ _\ I @ '; + I? >, < 

If time be of all things the most precious, wasting time must be, as Poor Richard says, the 
greatest prodigality; since, as he elsewhere tells us, lost time is never found again; and 
what we call time enough, always proves little enough: Let us then up and be doing, and 
doing to the purpose; so by diligence shall we do more with less perplexity. 

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fghlj I<lmno pqrst uvwxyz 0723456789 

I "/I $ % &' ( ) : .. -::: [ J! ! - ~ -\ I @';+/?, >, < 

If time be of all things the most precious, wasting time must be, as Poor Richard says, the 
greatest prodigality; since, as he elsewhere tells us, lost time Is never found again; and what 
we call time enough, always proves little enough: Let us then up and be doing, and doing to 
the purpose; so by diligence shall we do more with less perplexity, 

ABCDE FGHIJ KLMNO PGlRST UVWXYZ abede fghlj klmno pqrst uvwxyz 0123456789 

'''II $ ~ &. () : * - .: []! ! - ~ -\ I @'; + I? >, < 

If time be of aI' things the most precious, wasting time must be, as Poor Richard says, 
the greatest prodigality; since, as he elsewhere tells us, lost time Is never found again; 
and what we call time enough, always proves little enough: Let us then up and be doing. 
and doing to the purpose; so by diligence shall we do more with less perplexity, 



12 point 
ABCDE FGHIJ KlMNO PQRST UVWXYZ abcde 19l11j klmrlo pqrst uvwxyz 01234 
56789 

I " # $ % 8. • ( ) : ,. - ,. [ ] i l ~ ~ -\1 @ , ; -+ I " . > , < 

If time be of all things the most precious, wasting time must be, U Poor 
Richard says, the greatest prodigality; since, as he elselNhere tells us, lost 
time Is never found again; and what we call time enough, always proves little 
enough: let us then up and be doing, and doing to the purpose; so by 
diligence shall we do more with less perplexity. 

ABCDE FGHIJ KLMNO PQRST UIIWXYZ abcde fghij klmno pqrst W!wxyz 01234-
515789 

I " # $ % & ' ( ): lI: - '" [ 1 ! l ~ ~~-\ I @ • ; -/> I? . > • < 

If time be of all things the most precious, wutlng time must be, as Poor 
Richard says, the greatest prodigality; sInce, illS he elsewhere tells us, lost 
time is never fOlJnd again; and what we call time enough, always prolles little 
enough: Let IJS then up and be doing, and doing to the purpose; so 
diligence shall we do more with less perplexity. 

ABC DE FGHIJ KlIVWO PQRST UVWXYZ abcde fghij klmno pI':I1"81 IJvwxyz 
0123456789 

!" # $ % Be • (): '* - '" [] ! l ~ "" -\ I @' ; ... I? >, < 

If time be of all things the most prsciolJs, wasting tim!) must billi, I!UI Poor 
Richard says, the greatest prodigality; since, lUi he eilH!whlllre 1:ells us, 
lost time 15 l'Iev~r found again; and what Will call tlma enough, EIJlwaYil 
proves little enough: let U8 then liP and be doing, and doing to the 
purpose; so by diligence i.lhall we do mgn~ with Ius perplexity. 



SJ.J4l(l1~~ lfOi11.tu ~'tl\lSY(!l) J!"«).~"l' ~"'xV rlbl'allt: fahal Jdmno;. 
~ell U"'."X~7. 0'.234 56789 

"# . . • > • < 

'If tim~ ~ ;lor I!lU llhlnl)C th~ med pr~i"f.ul', ....... sting tim~ luusl! he. IitS 'ForOii' 

ltUchl!lt'ir "R~. thi!: gli'lt-.~lI<t prr.:ulia-n~:lI<inl\!~. ~ hlt: >t:h;lhVhilh'i!: btu.. uc, lost 
time me ne\'IIt<l* founir agmn;1tI!n1l wltRt 1.">1!: ~Rn tim", I!!-oh •• iwa~ p ...... "._ 

SttLl: ~ncugh!~~t uc ~n up ama hi!: a .... ing. mtiJ acoma till thlt: purpO'Ce;'Coli ~ 

aUigehlCiI!: lI<han •. It: 110 tUlIlIre: u.mth h:cc pit:t·ph:xi~. 

18 point 

$.JfICll:~Jt; f{Ci¥J3 ({~l\t~~ Jf0,*~~ l1r"wxv~ 
abcile- fJlhii idnuto pqrlld U·I"~'I.·XM7. 01234 56189 

" # , ( } 

1£ time- be- of aU thinRlIf;I; the- mO!!\l"t pre-d(n_II!!\1"~ 'I.\,·3:udinn time­

mlud be-. a!!\l" 'froor ,*icharo lIf;I;a!.!!!\I". th~ ,Are-ate-!!\I"t proiHs:l_littt 
$'inw:te:. a$' he- e-l'&'e:whe:re: t¢lJ$' U!!\I". iost time- is n'l:e-r louna 
aA_iu ana wind we- can time e-nll.'\lunh. aJwa!t!S" prcn:e-!!\I" littl¢ 
e-nou,Ah ana 'I think I'm 1,,,'astinn time- tMpann all tbis !S"tulf 



PIP FaNT, 1Ii PDlHT OHL Y, HO LOWER CIISE 

,.CDE FGHIJ KLMHO PaRST UUWHYZ 012345&2B9 

!"# '():- f~""''''-\ @'; ?>,< 

IT COULD PROBIIBLY BE SHDlJH BY FACTS liND FIGURES THIIT THERE IS HO 
DlSTIHCTLY HIITIIIE IIMERICAN CRIMIHIIL CLIISS EHCEPT CaNGRESS. 

-- MARK TWILIH 

... ,UII f.I. \I pllil ftl, 

AlCII PSBIJ KLIIRD PWT umn .h .. 'Ilil klall nrsl ."1,1 1111 

I"IIII&·():·-·[]!l-~-\ @ ;.",>.< 

If lIa ... If .U llills lu alSI ,nel.s. 11$1111 lIa. aul ... IS Par lI.u" SI,S. I" ,ruhsl ,l'1li11.111,; slm. IS .. 
1IS1lun I.11s IS. 1Is1 lIa. Is I.ar hu' .,.11; III I'" .. uU lIaa mll,l. a1lars ,I'ftIS 11"11 1I.,k wI IS 1"1 .,11' .. 
'Illf. III .1111" lu ,ur,lSa; SI I, .11111111 sullil .. a .. a 1111 IIss parplllil" 

Script, 18 point only. This font appears to be almost identical to the 
"Coronet" font from SAIL, except that the period and one other glyph 
of Coronet are missing a row, and Coronet is supposed to be 16 point. 

(They are both really the same size.) 

.ABC:JJl :;gJJ.JJ.J( ..fmnO PQRS:J UVWX1jZ .l,:J, 
/,Lii ll,.. .. " l',r~1 .,,"' ... ,z 01234 56789 

"# .>.< 

.J Iii"., l, .1 .11 11i .. " /1, "'.~I I'rui ... ,. ",a,Ii .. , Ii"" ,.. • .,1 l, . • Id p_r 
R icLarJ 'a,~. /1, ,r,alul I'roJi,alu,; ,i .. c, • • 11 1, ,1"",l,r, I,!!~ "'. 1",1 Ii,... i, 
.. ,,,,. I ..... J a,ai .. ; a .. J ",lal .," call Ii"., "t""'L. alllla,. I'r"."~ /;ul, , .. " .. ,1: ..f,1 
.. ~ 11, .. "I' a .. J l, J"i .. ,. ..,.J J"i,., I" IL, I' .. rl'''''; ,. l, J;/i" .. ", ,L .. !! III' J" 
,.."., IIIIIL I,~~ " ""/uil,. 



VillI] 0IllGllIDl!1C:!l Vl!)mt? U0 rum 15~@i15!1(l.EUlV ~GElUI]~ ITl!lfll 
lPGJ!!lU'(IDl!Jml!J IJlfll(!;[OOI]VU(ffi)@~ ut? GJfiJ@ t?GJ(!; fiJl]~ruVGJl!J!3 !!lIT 
Ill!3URlrn Glb00iID01f l!Jrnooruf.!)GJI](1£~ 

SIGN 9 22 POINT ONLY 

ABCDE FGHIJ KLMNO PORST 
UVWXYZ >< ~A 234 56789 

'11# ' :*-111: ~ ~ __ f'.J_@; / .. >,,< 

THIS FONT 'W AS INVENTED BY A 
DRAFTSMAN W"HO HAD LOST HIS 
FRENCH CURVE. )= SO IT GOES « 

LO\'\TER CASE L IS >~ LOVVER CASE 
R IS C. 



Stare hershey font This font is identical to the hershey font except that the point sizes are one point 
smaller, and the width tables are those used for the real typesetter. Hence, this font is useful when 
previewing documents that are to be sent to a typesetter to make sure the spacing, paging, and so on is 
right There are Roman, lizll:ic and Bold in 8, 9, 10, 11, 12, 14, and 16 point The following examples 
are 10 point. 

ABCDE FGHIJ KLMNO PQRST UVWXYZ abode fghij klmno pqrst uvwxyz 01234 56789 

!"#S7.&'():·'= []Il---'I@';+ I?>,< 

If time be of all things the most precious, wasting time must be, as Poor Richard says. the greatest 
prodigality; since, as he elsewhere tells us, lost time is never found again; and what we call time 
enough, always proves little enough: Let us then up and be dOing, and doing to the purpose; !Ie by 
diligence shall we do more with less perplexity. 

A BCDE FGHIJ KLM NO PQRST UVIf XYZ abcdB IJhV klmno pqrst ~ 01234 56789 

!"#SXct'():-·= (]II---'I@';+ /1.>,< 

lJ timI be oJ all Nngs thIl most pt"IICious, ua.mng timlnut be, as }bar RYiI.ard S!¥, fw grva/Bst~; 
Iinar, as he ~ tJaIJ.s us, lost timI v nrtAIr jJvvJ. agw:m,' and \IIIat uti call timI ~ ~ prows 
IiItIe 8'I'ID'IJIlh.: Lfi us ftwn '" and be doirw, and doirw tb the p.rpo.; 50 by ~ shall tu/ do more "Uith las 
~. 

ABCD!: YCHIJ KLII NO PQRST UVWXYZ abode fgbij Jdmno pqrst lNWIJZ 01234 58'l89 

,"H.xa:'C): ._= []Il---'I@';+ I?>,< 

If time be m all thinp the malt pnrious, wastin& time must be. .. Poor RiCbanl_JlI, the pattest 
JIftIdiplity; llince. .. he eIlIewhere tabI WI, lall time ill nerer found apin.; and what we call time 
tmCJU&h. alwa,. ....-.. liWe eDauP.= Let UII then up and be dcin&. and cIain« to the ~ _ by 
d.liFnoe lIhaJ.l we do mare with 1_ .-Piellit}'. 

BpointRoman, Balol ""dllIIIic. 
9 point R oman, Bald. and /tulit;. 
10 point Roman, Bald. and lfl:1J:ic. 

11 point R oman, Bold, and Itnlfu. 
12 point Roman, Bold, and JfnJiJ:J. 
14 point Roman, B old, and Jtu.li£. 

16 point Roman, Bold, and Itall£, 



Times fonts, roman, italic, and hold. 10 point only. 
These fonta showed up in a directory labelled "timesroman" along with three other fonta which turned out 
to be nonie, meteor, and news gothic. They are probably not really times fonts, but seem to be pretty close. 
Notice the top of the "2." for a dear difference from a real Times Roman font. 

It i. our desire to have a real, digitized version of the times fonta from the phototypesetter. We eventually 
plan to do this. At that point, the times font will probably replace the hershey font 81 the defaulL Such a 
Times font ia already available from lohns Hopkins University for a fee, but we couldn't redistribute it, 10 

we plan do digitize them ourselves. 

10 PoiDt 
ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fghij klmno pqrst uvw:r.ys 012.34 56789 
! " /II" & ' ( ) ::1: _. [ ] I ! - ~ -\1 @' ; + I? . >, < 
'. c, _, ., '", _, ., 0, , 1-4, li, J-.. n. fI, ff, fB, fIl, 0, t, I, , fK> 

ABCDE FCHIJ KLMNO PQRST UVWXYZ ahctle !,Ioij Iclmno pqr6t "t>tnyr: 01234 56789 
! " /I' 7. & ' ( ): :I: - - [ ] I ! - ~ -\1 @' ; + / P. > , < 
" " -, -, -, -, ., D, • Y.., ~, %, Ii. fI, If, AI!I. 0, t, " t pc> 

ABCDE FCHIJ li.MNO PQRST UVWXYZ ahede Ighij kl_ pqrlt uvw:r.ys (112M S6'l89 

! " 11'1: &' (): * -- [] ! ! - ~ -\1 @'; + I? >, < 
" ',-, -, -'--'~1 ~, \:I,~, ~ .. fi, 0, fI, fIi, m, 0, t, I, ~F 





A Guide to the Dungeons of Doom 

Michael C. Toy 
Kenneth C. R. C. Arnold 

Computer Systems Research Group 
Department of Electrical Engineering and Computer Science 

University of California 
Berkeley, California 94720 

ABSTRACT 

Rogue is a visual CRT based fantasy game which runs under the UNixt timesharing 
system. This paper describes how to play rogue, and gives a few hints for those who 
might otherwise get lost in the Dungeons of Doom. 

tUNIX is a trademark of Bell Laboratories 





A Guide to tbe Dungeons of Doom 

1. Introduction 

You have just finished your years as a student at the local fighter's guild. After much 
practice and sweat you have finally completed your training and are ready to embark upon a 
perilous adventure. As a test of your skills, the local guildmasters have sent you into the 
Dungeons of Doom. Your task is to return with the Amulet of Yendor. Your reward for the 
completion of this task will be a full membership in the local guild. In addition, you are 
allowed to keep all the loot you bring back from the dungeons. 

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver of 
arrows taken from a dragon's hoard in the far off Dark Mountains. You are also outfitted with 
elf-crafted armor and given enough food to reach the dungeons. You say goodbye to family 
and friends for what may be the last time and head up the road. 

You set out on your way to the dungeons and after several days of uneventful travel, you 
see the ancient ruins that mark the entrance to the Dungeons of Doom. It is late at night, so 
you make camp at the entrance and spend the night sleeping under the open skies. In the 
morning you gather your weapons, put on your armor, eat what is almost your last food, and 
enter the dungeons. 

2. What is going on here? 

You have just begun a game of rogue. Your goal is to grab as much treasure as you can, 
find the Amulet of Yendor, and get out of the Dungeons of Doom alive. On the screen, a map 
of where you have been and what you have seen on the current dungeon level is kept. As you 
explore more of the level, it appears on the screen in front of you. 

Rogue differs from most computer fantasy games in that it is screen oriented. Commands 
are all one or two keystrokes 1 and the results of your commands are displayed graphically on 
the screen rather than being explained in words. 2 

Another major difference between rogue and other computer fantasy games is that once 
you have solved all the puzzles in a standard fantasy game, it has lost most of its excitement 
and it ceases to be fun. Rogue, on the other hand, generates a new dungeon every time you 
play it and even the author finds it an entertaining and exciting game. 

3. What do all tbose things on the screen mean? 

In order to understand what is going on in rogue you have to first get some grasp of what 
rogue is doing with the screen. The rogue screen is intended to replace the "You can see ... " 
descriptions of standard fantasy games. Figure 1 is a sample of what a rogue screen might look 
like. 

3.1. The bottom line 

At the bottom line of the screen are a few pieces of cryptic information describing your 
current status. Here is an explanation of what these things mean: 

Level This number indicates how deep you have gone in the dungeon. It starts at one and 
goes up as you go deeper into the dungeon. 

Gold The number of gold pieces you have managed to find and keep with you so far. 

Hp Your current and maximum hit points. Hit points indicate how much damage you can 
take before you die. The more you get hit in a fight, the lower they get. You can regain 
hit points by resting. The number in parentheses is the maximum number your hit 
points can reach. 

1 As opposed to pseudo English sentences. 

2 A minimum screen size of 24 lines by 80 columns is required. If the screen is larger, only the 24x80 section 
will be used for the map. 

- 1 -



A Guide to the Dungeons of Doom 

+ 
B I 

.@. 

---+--

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Ac: 6 Exp: 1/0 

Figure 1 

Str Your current strength and maximum ever strength. This can be any integer less than or 
equal to 31, or greater than or equal to three. The higher the number, the stronger you 
are. The number in the parentheses is the maximum strength you have attained so far 
this game. 

Ac Your current armor class. This number indicates how effective your armor is in stop­
ping blows from unfriendly creatures. The lower this number is, the more effective the 
armor. 

Exp These two numbers give your current experience level and experience points. As you 
do things, you gain experience points .. At certain experience point totals, you gain an 
experience level. The more experienced you are, the better you are able to fight and to 
withstand magical attacks. ' 

3.2. The top line 

The top line of the screen is reserved for printing messages that describe things that are 
impossible to represent visually. If you see a "--More--" on the top line, this means that rogue 
wants to print another message on the screen, but it wants to make certain that you have read 
the one that is there first. To read the next message, just type a space. 

3.3. The rest of the screen 

The rest of the screen is the map of the level as you have explored it so far. Each symbol 
on the screen represents something. Here is a list of what the various symbols mean: 

@ This symbol represents you, the adventurer. 

-I These symbols represent the walls of rooms. 

+ A door to/from a room. 

The floor of a room. 

# The floor of a passage between rooms. 

A pile or pot of gold. 

A weapon of some sort. 

A piece of armor. 

A flask containing a magic potion. 

? A piece of paper, usually a magic scroll. 

- 2 -



A ring with magic properties 

I A magical staff or wand 

A trap, watch out for these. 

% A staircase to other levels 

A piece of food. 

A Guide to the Dungeons of Doom 

A-Z The uppercase letters represent the various inhabitants of the Dungeons of Doom. Watch 
out, they can be nasty and vicious. 

4. Commands 

Commands are given to rogue by typing one or two characters. Most commands can be 
preceded by a count to repeat them (e.g. typing "lOs" will do ten searches). Commands for 
which counts make no sense have the count ignored. To cancel a count or a prefix, type 
<ESCAPE>. The list of commands is rather long, but it can be read at any time during the 
game with the "?" command. Here it is for reference, with a short explanation of each com­
mand. 

? The help command. Asks for a character to give help on. If you type a"·", it will list all 
the commands, otherwise it will explain what the character you typed does. 

I This is the "What is that on the screen?" command. A "I" followed by any character 
that you see on the level, will tell you what that character is. For instance, typing "/@" 
will tell you that the "@" symbol represents you, the player. 

h, H, AH 
Move left. You move one space to the left. If you use upper case "h", you will continue 
to move left until you run into something. This works for all movement commands (e.g. 
"L" means run in direction "I") If you use the "control" "h", you will continue moving 
in the specified direction until you pass something interesting or run into a wall. You 
should experiment with this, since it is a very useful command, but very difficult to 
describe. This also works for all movement commands. 

j Move down. 

k Move up. 

Move right. 

y Move diagonally up and left. 

u Move diagonally up and right. 

b Move diagonally down and left. 

n Move diagonally down and right. 

Throw an object. This is a prefix command. When followed with a direction it throws an 
object in the specified direction. (e.g. type "th" to throw something to the left.) 

f Fight until someone dies. When followed with a direction this will force you to fight the 
creature in that direction until either you or it bites the big one. 

m Move onto something without picking it up. This will move you one space in the direc­
tion you specify and, if there is an object there you can pick up, it won't do it. 

z Zap prefix. Point a staff or wand in a given direction and fire it. Even non-directional 
staves must be pointed in some direction to be used. 
Identify trap command. If a trap is on your map and you can't remember what type it is, 
you can get rogue to remind you by getting next to it and typing "A" followed by the 
direction that would move you on top of it. 

s Search for traps and secret doors. Examine each space immediately adjacent to you for 
the existence of a trap or secret door. There is a large chance that even if there is some­
thing there, you won't find it, so you might have to search a while before you find 

- 3 -



A Gllide to the Dungeons of Doom 

something. 

> Climb down a staircase to the next level. Not surprisingly, this can only be done if you 
are standing on staircase. 

< Climb up a staircase to the level above. This can't be done without the Amulet of Yen­
dor in your possession. 

Rest. This is the "do nothing" command. This is good for waiting and healing. 

Inventory. List what you are carrying in your pack. 

Selective inventory. Tells you what a single item in your pack is. 

q Quaff one of the potions you are carrying. 

Read one of the scrolls in your pack. 

e Eat food from your pack. 

w Wield a weapon. Take a weapon out of your pack and carry it for use in combat, replac-
ing the one you are currently using (if any). 

W Wear armor. You can only wear one suit of armor at a time. This takes extra time. 

T Take armor off. You can't remove armor that is cursed. This takes extra time. 

P Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't 
wearing any rings, this comlnand will ask you which hand you want to wear it on, other­
wise, it will place it on the unused hand. The program assumes that you wield your sword 
in your right hand. 

R Remove a ring. If you are only wearing one ring, this command takes it off. If you are 
wearing two, it will ask you which one you wish to remove, 

d Drop an object. Take something out of your pack and leave it lying on the floor. Only 
one object can occupy each space. You cannot drop a cursed object at all if you are wield­
ing or wearing it. 

c Call an object something. If you have a type of object in your pack which you wish to 
remember something about, you can use the call command to give a name to that type of 
object. This is usually used when you figure out what a potion, scroll, ring, or staff is 
after you pick it up, or when you want to remember which of those swords in your pack 
you were wielding. 

D Print out which things you've discovered something about. This command will ask you 
what type of thing you are interested in. If you type the character for a given type of 
object (e.g. "!" for potion) it will tell you which kinds of that type of object you've 
discovered (i.e., figured out what they are). This command works for potions, scrolls, 
rings, and staves and wands. 

o Examine and set options. This command is further expiained in the seciion on options. 

"R Redraws the screen. Useful if spurious messages or transmission errors have messed up 
the display. 

"P Print last message. Useful when a message disappears before you can read it. This only 
repeats the last message that was not a mistyped command so that you don '( loose any­
thing by accidentally typing the wrong character instead of 'P. 

<ESCAPE> 
Cancel a command, prefix, or count. 

Escape to a shell for some commands. 

Q Quit. Leave the game. 

S Save the current game in a file. It will ask you whether you wish to use the default save 
file. Caveat. Rogue won't let you start up a copy of a saved game, and it removes the 
save file as soon as you start up a restored game. This is to prevent people from saving a 

- 4 -



A Guide to the Dungeons of Doom 

game just before a dangerous position and then restarting it if they die. To restore a 
saved game, give the file name as an argument to rogue. As in 

% rogue save.Jile 

To restart from the default save file (see below), run 
% rogue -r 

v Prints the program version number. 

Print the weapon you are currently wielding 

Print the armor you are currently wearing 

Print the rings you are currently wearing 

@ Reprint the status line on the message line 

5. Rooms 

Rooms in the dungeons are either lit or dark. If you walk into a lit room, the entire room 
will be drawn on the screen as soon as you enter. If you walk into a dark room, it will only be 
displayed as you explore it. Upon leaving a room, all monsters inside the room are erased from 
the screen. In the darkness you can only see one space in all directions around you. A corridor 
is always dark. 

6. Fighting 

If you see a monster and you wish to fight it, just attempt to run into it. Many times a 
monster you find will mind its own business unless you attack it. It is often the case that dis­
cretion is the better part of valor. 

7. Objects you can find 

When you find something in the dungeon, it is common to want to pick the object up. 
This is accomplished in rogue by walking over the object (unless you use the "m" prefix, see 
above). If you are carrying too many things, the program will tell you and it won't pick up the 
object, otherwise it will add it to your pack and tell you what you just picked up. 

Many of the commands that operate on objects must prompt you to find out which object 
you want to use. If you change your mind and don't want to do that command after all, just 
type an <ESCAPE> and the command will be aborted. 

Some objects, like armor and weapons, are easily differentiated. Others, like scrolls and 
potions, are given labels which vary according to type. During a game, any two of the same 
kind of object with the same label are the same type. However, the labels will vary from game 
to game. 

When you use one of these labeled objects, if its effect is obvious, rogue will remember 
what it is for you. If it's effect isn't extremely obvious you will be asked what you want to 
scribble on it so you will recognize it later, or you can use the "call" command (see above). 

7.1. Weapons 

Some weapons, like arrows, come in bunches, but most come one at a time. In order to 
use a weapon, you must wield it. To fire an arrow out of a bow, you must first wield the bow, 
then throw the arrow. You can only wield one weapon at a time, but you can't change weapons 
if the one you are currently wielding is cursed. The commands to use weapons are "w" 
(wield) and "t" (throw). 

7.2. Armor 

There are various sorts of armor lying around in the dungeon. Some of it is enchanted, 
some is cursed, and some is just normal. Different armor types have different armor classes. 
The lower the armor class, the more protection the armor affords against the blows of 

• 5 • 



A Guide to the Dungeons of Doom 

monsters. Here is a list of the various armor types and their normal armor class: 

Type Class 
None 10 
Leather armor 8 
Studded leather I Ring mail 7 
Scale mail 6 
Chain mail 5 
Banded mail I Splint mail 4 
Plate mail 3 

If a piece of armor is enchanted, its armor class will be lower than normal. If a suit of armor is 
cursed, its armor class will be higher, and you will not be able to remove it. However, not all 
armor with a class that is higher than normal is cursed. 

The commands to use weapons are "W" (wear) and "T" (take off). 

7 .3. Scrolls 

Scrolls come with titles in an unknown tongue] After you read a scroll, it disappears 
from your pack. The command to use a scroll is "r" (read). 

7.4. Potions 

Potions are labeled by the color of the liquid inside the flask. They disappear after being 
quaffed. The command to use a scroll is "q" (quaff). 

7.5. Staves and Wands 

Staves and wands do the same kinds of things. Staves are identified by a type of wood; 
wands by a type of metal or bone. They are generally things you want to do to something over 
a long distance, so you must point them at what you wish to affect to use them. Some staves 
are not affected by the direction they are pointed, though. Staves come with multiple magic 
charges, the number being random, and when they are used up, the staff is just a piece of wood 
or metal. 

The command to use a wand or staff is "z" (zap) 

7.6. Rings 

Rings are very useful items, since they are relatively permanent magic, unlike the usually 
fleeting effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful. 
Most rings also cause you to use up food more rapidly, the rate varying with the type of ring. 
Rings are differentiated by their stone settings. The commands to use rings are "P" (put on) 
and "R" (remove). 

7.7. Food 

Food is necessary to keep you going. If you go too long without eating you will faint, and 
eventually die of starvation. The command to use food is "e" (eat). 

8. Options 

Due to variations in personal tastes and conceptions of the way rogue should do things, 
there are a set of options you can set that cause rogue to behave in various different ways. 

) Actually, it's a dialect spoken only by the twenty-seven members of a tribe in Outer Mongolia, but you're not 
supposed to know that. 

- 6 -



A Guide to the Dungeons of Doom 

8.1. Setting the options 

There are two ways to set the options. The first is with the "0" command of rogue; the 
second is with the "ROGUEOPTS" environment variable4• 

8.1.1. Using the '0' command 

When you type "0" in rogue, it clears the screen and displays the current settings for all 
the options. It then places the cursor by the value of the first option and waits for you to type. 
You can type a < RETURN> which means to go to the next option, a "-" which means to go to 
the previous option, an <ESCAPE> which means to return to the game, or you can give the 
option a value. For boolean options this merely involves typing "t" for true or "r' for false. 
For string options, type the new value followed by a <RETURN>. 

8.1.2. Using the ROGUEOPTS variable 

The ROGUEOPTS variable is a string containing a comma separated list of initial values 
for the various options. Boolean variables can be turned on by listing their name or turned off 
by putting a "no" in front of the name. Thus to set up an environment variable so that jump 
is on, terse is off, and the name is set to "Blue Meanie", use the command 

% setenv ROGUEOPTS "jump,noterse,name=Biue Meanie"s 

8.2. Option list 

Here is a list of the options and an explanation of what each one is for. The default value 
for each is enclosed in square brackets. For character string options, input over fifty characters 
will be ignored. 
terse [noterse] 

Useful for those who are tired of the sometimes lengthy messages of rogue. This is a 
useful option for playing on slow terminals, so this option defaults to terse if you are on a 
slow (1200 baud or under) terminal. 

jump [nojump] 
If this option is set, running moves will not be displayed until you reach the end of the 
move. This saves considerable cpu and display time. This option defaults to jump if you 
are using a slow terminal. 

flush [nofiush] 
All typeahead is thrown away after each round of battle. This is useful for those who type 
far ahead and then watch in dismay as a Bat kills them. 

seefloor [seefioor] 
Display the floor around you on the screen as you move through dark rooms. Due to the 
amount of characters generated, this option defaults to noseefioor if you are using a slow 
terminal. 

passgo [nopassgo] 
Follow turnings in passageways. If you run in a passage and you run into stone or a wall, 
rogue will see if it can turn to the right or left. If it can only turn one way, it will turn 
that way. If it can turn either or neither, it will stop. This is followed strictly, which can 
sometimes lead to slightly confusing occurrences (which is why it defaults to nopassgo). 

tombstone [tombstone] 
Print out the tombstone at the end if you get killed. This is nice but slow, so you can 
turn it off if you like. 

4 On Version 6 systems, there is no equivalent of the ROGUEOPTS feature. 

5 For those of you who use the bourne shell, the commands would be 
$ ROGUEOPTS -"jump,noterse,name= Blue Meanie" 
$ export ROGUEOPTS 

- 7 -



A Guide to the Dungeons of Doom 

inven [overwrite] 
Inventory type. This can have one of three values: overwrite, slow, or clear. With 
overwrite the top lines of the map are overwritten with the list when inventory is requested 
or when "Which item do you wish to ... ? " questions are answered with a"·". How­
ever, if the list is longer than a screenful, the screen is cleared. With slow, lists are 
displayed one item at a time on the top of the screen, and with clear, the screen is 
cleared, the list is displayed, and then the dungeon level is re-displayed. Due to speed 
considerations, clear is the default for terminals without clear-to-end-of-line capabilities. 

name [account name] 
This is the name of your character. It is used if you get on the top ten scorer's list. 

fruit [slime-mold] 
This should hold the name of a fruit that you enjoy eating. It is basically a whimsey that 
rogue uses in a couple of places. 

file [-/rogue. save] 
The default file name for saving the game. If your phone is hung up by accident, rogue 
will automatically save the game in this file. The file name may start with the special 
character "-,, which expands to be your horne directory. 

9. Scoring 

Rogue usually maintains a list of the top scoring people or scores on your machine. 
Depending on how it is set up, it can post either the top scores or the top players. In the latter 
case, each account on the machine can post only one non-winning score on this list. If you 
score higher than someone else on this list, or better your previous score on the list, you will 
be inserted in the proper place under your current name. How many scores are kept can also 
be set up by whoever installs it on your machine. 

If you quit the game, you get out with all of your gold intact. If, however, you get killed 
in the Dungeons of Doorn, your body is forwarded to your next-of-kin, along with 90% of your 
gold; ten percent of your gold is kept by the Dungeons' wizard as a fee6• This should make 
you consider whether you want to take one last hit at that monster and possibly live, or quit 
and thus stop with whatever you have. If you quit, you do get all your gold, but if you swing 
and live, you might find more. 

If you just want to see what the current top players/games list is, you can type 
% rogue -s 

10. 
Acknowledgements 

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken Arnold and 
Michael Toy then smoothed out the user interface, and added jillions of new features. We 
would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, Mark Horton, 
Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott Nel­
son for their ideas and assistance; and also the teeming multitudes who graciously ignored 
work, school, and social life to play rogue and send us bugs, complaints, suggestions, and just 
plain flames. And also Mom. 

6 The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a sizable 
donative. 

- 8 -


