
I

TECHNICAL BULLETIN
I

X-6 ASSEMBLY SYSTEM
for TAPE Sysf:ems

Modifications and refinements resulting from new research

are continually making the X-6 Assembly System for the

UN IV AC Sol id-State 90 Magnetic Tape System more usefu I

and economical. In order to keep X-6 System documentation

as current as possible, supplementary technical information

will appear in the UNIVAC Systems Routines Series pub­

lished by Program Library Services.

February, 1961

Contents

1. INTRODUCTION

2. THE X·6 PROGRAM .. 2

General Information .. 2
The X-6 Instruction .. 2
Spaces... 3

Absolute Addresses ;... 4
Register Addressing :.. 5

3. SYMBOLIC AND RELATIVE ADDRESSING .. 6

General Information... 6

Tags ;... 6

Constants .. 9
Working Storage .. 11

Interlaces .. 12
Tables.. 15

Variable Addresses.. 16

4. PROGRAM ORGANIZATION .. 18

The Operation .. 18

Contro Is.. 20

5. X-6 INSTRUCTION CODES ... 23

General Information... 23 ·

Transfer Instructions ... 23

Arithmetic Instructions... 25

Comparison Instructions... 28

Editing Instructions... 29

Control Instructions ... 31
Translate Instructions ... 31

Index Register Instructions... 32

Input Instructions (High-Speed Reader)... 33

Input-Output Instructions (Read-Punch Unit) ... 33

Output Instructions _(High-Speed Printer) _ .. 34
Input-Output Instructions (Tape Synchronizer)... 35

6. HOW X-6 WORKS ... :... 37

Input Processing -... 37

Optimization of Instructions ·-·· 39
Clock Modification ... 41

7. PROGRAMMING PROCEDURE ... 47

Suggestions for Flow-Charting ... 47

Coding ... 47

Preparation for Assembly... 47
Assembly ... 48

8. OPERATING INSTRUCTIONS ... 49

Loading and Assembling .. 49

Error Codes ... 49

Stop Codes ... 50

APPENDIX A. SUMMARY OF INSTRUCTION CODES... 53

B. SUMMARY OF CARD TYPES ... 57

C. X·6 STORAGE LAYOUT ... 63

D. CARD FORMS ... 65

E. CODING FORMS ... 66

F. SAMPLE PROBLEM... 68

I. Introduction

This manual is intended to familiarize the programmer with the basic elements of the X-6
System for use with the UNIVAC Solid-State 90 Magnetic Tape Computer. The system is
an efficient programming aid designed to facilitate the coding of data-processing ap­
plications by reducing both coding time and error frequency.

Coding time is reduced by allowing the optimum placement of instructions to be handled
by X-6, thus freeing the programmer from exacting timing considerations. Further reduc­
tions in coding time result from the performance, by the assembler, of many jobs that
would normally be undertaken by the programmer. v

Low error frequency is achieved because sections of a problem may be coded individually
and later assembled into a larger unified program. Moreover, a large application may be
divided among several programmers to reduce over-all coding time.

Before attempting to employ the X-6 Assembly System, the programmer should be acquainted
with the basic elements of the UNIVAC Solid-State 90 Magnetic Tape System. Such
knowledge is assumed in this manual.

1

2

2. The X-& Program

GENERAL INFORMATION

Regardless of the form of its expression, a computer program is composed of interrelated
sections of coding, each created to perform a definite function leading to the solution of
a problem. These sections are commonly referred to as subroutines or operations.

The X-6 Assembly System is a master or executive routine that receives as input a
series of these operations, created in the X-6 command language, and in one pass through
the computer, produces a new deck in computer code. A side-by-side detailed correlation
of the X-6 coding and the computer-coded object, or final, program is also produced as
output on the High-Speed Printer (Figure 2-1).

HIGH-SPEED

PRINTER
LISTING

-1111111---IEIDJllllll-=-mmml!Im mmmmn---1111111--118mlllllml --mlllilll!!lll -llllDIDIIIDllllllmm --llllBl--DlllDl!DIDD:IIlm
-11111111111111-

UNISERVO UNITS

Figure 2•1. Information Flow from X-6 Program Deck to Computer-Coded Object Program.

After conversion to computer-acceptable language, the various elements of the X-6 pro­
gram are assigned to storage as an integrated unit preparatory to the generation of final
output on card or tape in either computer or XS-3 mode.

THE X-6 INSTRUCTION

In the X-6 instruction, the a, m, and c addresses contain five digit specifications in the
form:

Here; aaaaa

aaaaa Ill mmmmm CC CCC

is the address of the instruction in storage. This address may be
expressed in either computer or X-6 terminology, or it may be left
blank allowing the assembler to assign a storage location.

SPACES

mmmmm is the address of the operand; the location of the next instruction
to be executed; or can be ignored depending upon the instruction.
This address may be expressed in either computer or X-6 terminology
or it may be left blank, allowing the assem bier to assign a storage
location.

cc cc c is either the address of the next instruction to be executed, or can
be ignored depending upon the instruction. This address may be
expressed in either computer or X-6 terminology, or it may be left
blank allowing the assembler to assign a storage location.

I I I is the three-character alphabetic instruction code.

If the generation of absolute addresses in the object program is to be left to the X-6
Assembly System, the a, m, or c portion involved in this assignment will be left blank.
Spaces, indicated by deltas (~) in the c address of an instruction, will indicate to the
assembler that the next, and only the next, consecutive line of coding is being referenced.
The a address of the next instruction will be examined for spaces and assigned the same
absolute ad dress as the previous c address that referenced it. In this way, spaces pro­
vide a means of coding sequentially without the need for designating specific locations
in storage for consecutive lines of coding. For example, there are two consecutive in­
structions in a program:

inst.
line a code m c

1 xxxxx LDA yyyyy ~~~~~

2 ~~~~~ STA zzzzz
The first instruction, located at xxxxx, specifies that register A is to be loaded with the
contents of yyyyy. The second instruction specifies that the contents of register A are
to be stored in zzzzz. By inserting spaces in the c address of the first instruction and
in the a portion of the second instruction, the second will automatically succeed the
first and the assigned storage locations will preserve the intended relationship between
the two lines of coding.

Spaces may be employed in the m portion of an instruction when

a. a transfer of control is to be effected from the m portion of the instruction being
executed to the a portion of the next instruction in sequence.

b. the next line of coding is the operand of the instruction being executed.

For example, load register A with a constant of 00000 00128 and register L with the
contents of storage location yyyyy. Compare the two quantities for equality. If equal,
store the contents of register A in storage location zzzzz; otherwise, go to location
wwwww for further processing. Here xxxxx, ppppp, yyyyy, zzzzz, and wwwww are ad­
dresses defined in the X-6 program.

3

4

inst.
line a code m c

1 xxxxx LDA /':.,./':.,./':.,./':.,./':.,. PP PPP

2 /':.,./':.,./':.,./':.,./':.,. 00000 00128

3 ppppp LDL yyyyy /':.,./':.,./':.,./':.,./':.,.

4 /':.,./':.,./':.,./':.,./':.,. TEQ ./':.,.!3,/':.,./':.,./':.,. WWW WW

5 /':.,./':.,./':.,./':.,./':.,. STA zzzzz
In final conversion to the machine-coded object program, these five lines of coding might
appear in the following manner.

inst.
line a code m c

1 0200 25 0202 0204

2 0202 00 0000 0128

3 0204 30 4206 0208

4 0208 82 0210 0410

5 0210 60 4412

Spaces may not be entered in both the m and c portions of an instruction unless either of
these portions is normally ignored; for example, translate instructions which ignore the m
address, or instructions which load registers with zeros and which ignore the c addresses.
For all instructions in which both m and c are important, only one portion may be spaces.

ABSOLUTE ADDRESSES

Although the normal mode of procedure in an X-6 program is to allow the assembler to
assign absolute addresses, it may be necessary for the programmer to reserve an
address in storage. An absolute location used in the a, m, or c portion of an instruc­
tion, is placed in the least significant digit positions of the portion to which it applies.
The unused positions of the most significant digits of the address are filled with either
spaces (/':.,.) or zeros. For example, an instruction at xxxxx to load register A with the
contents of storage location 956 would appear as:

a

xxxxx

xxxxx

inst.
code

LDA

LDA

m c

/':.,./':.,.956

or

00956

Spaces or zeros are empty-column indicators employed mainly for the convenience of the
key punch operator. As greater familiarity is gained with the system, however, filler
symbols may be omitted, since they never appear in final output.

When exammmg addresses, the assembler will examine both the fifth and the first digit
positions of the address in that order. If neither is an alpha be tic character, the address
will be considered absolute and will be carried over to the object program without modi­
fication. Normal optimization of instructions will occur after a correction factor is em­
ployed to allow for the specification of the absolute location. 1

NOTE: If an absolute address is to be assigned by the programmer, the particular
location must be restricted from use by the assembly system in its normal
address assignment. This will prevent the system from assigning an already
used location. The method of restriction will be discussed in the section
Program Organization, page 18.

REGISTER ADDRESSING

As a result of their addressability in the Solid-State System, registers A, X, and L may
be specified in the m portion of many, and the c portion of all instructions. The only re­
striction is that they cannot be employed in the m portion of instructions that specify a
transfer from register to storage, The three registers are designated and addressed as
~~~RA,~~~RX,~~~RL. 

As an example of register addressability, an instruction at xxxxx to load the contents of 
register A into register X would appear in the following manner. 

a 

xxxxx 

inst. 
code 

LDX 

m c 

It is recommended that when an instruction is being executed in a register, the next line 
of coding be entered on the coding paper with the particular register as the a address. 
Although not punched as output, this line will be shown on the printed listing and will 
allow the ass em bl er to optimize more efficiently. 
For example: 

line 

1 

2 

a 

xxxxx 

in st. 
code 

LDA 

ADD 

m 

04211 

00204 

c 

~~~RL 

00406

1 Optimum placement of instructions will be discussed in the section, How X-6 works, page 37.

5

6

3. Symbolic and Relative Addressing

GENERAL INFORMATION

The use of relative and symbolic addresses eliminates the necessity of referring to ab­
solute storage locations around the drum and, in large measure, frees the programmer
from timing considerations. Unlike spaces which can relate only two successive lines of
coding, a relative or symbolic address can relate one line of coding with another that
either has been specified, or will be specified at some point in the program. Simply stated,
a relative address indicates a relationship between a line being referenced and another
line whose location, in storage, has already been determined. A symbolic address is any
arbitrary combination of characters defined within a system to represent a storage location.

TAGS

Tags are symbolic designations for storage locations that will be assigned absolute ad­
dresses either by the assembly system or the programmer. These symbolic designations
are entered as the a portion of lines of coding that are to be referenced by the m or c
portions of other lines of coding. Like spaces, they free the programmer from having to
decide, as he codes his routine, exactly where in storage a line of coding is to go. The
programmer has the added advantage of specifying whether a tag is to receive an address
in standard or high-speed access storage. The X-6 Assembly System makes provision
for two types of tags, temporary and permanent.

TEMPORARY TAGS

As mentioned previously, an X-6 program is divided into smaller sections of coding
called operations. Temporary tags provide connecting links within, and on.ly within,
operations. That is to say, a temporary tag assigned to a particular line of coding is
meaningful only within the operation in which that line of coding is located and cannot
be referred to by coding in another operation. The format for the temporary tag is;

where

tJ. tJ. xx i

is ignored by the system.

xx is the tag identifier. These two digits may be numeric, alphabetic, or
alpha-numeric. A maximum of fifty temporary tags may be specified
in any operation.

is N if the tag is to be given an address in standard access storage.

is F if the tag is to be given an address in high-speed access storage.

For example, add a constant of 00000 OOxxx to the con ten ts of 4211 and store the result
in 4236.

inst.
line a code m c

1 LDA ~4211 ~~~~~

2 ~~~~~ ADD 1'11'11'11'11'1 1'11'1G2 N

3 ~1'1~~~ 00000 OOxxx

4 ~1'1 G 2N STA ~4236

Tag 1'11'1 G2N, in the c address of line 2, permits communication with line 4 after the arith­
metic computation occurs. Line 4 may be communicated with from any point within this
operation by specifying a transfer of control to 1'1~G2N. The N indicator will instruct the
assembler to assign this line of coding to standard access storage.

Although, in the five digit format of the temporary tag, only the three low order digits are
examined by the assembler, the fourth low order digit may be utilized by the programmer
if he so desires. For example, a temporary tag may be specified as

1'1G39N

If this is done, however, the three low order characters must be unique in the operation
for, as was indicated, only these three digits will be examined by the ass em bl er and
~G39N will be treated as 1'1~39N. Regardless of what the fourth low-order character
specifies (i.e., 1'1S39N ,1'1539N, and so forth) this tag will be recognized as 1'1~ 39N.

PERMANENT TAGS

Permanent tags not only serve as communication links within operations, but also enable
the programmer to communicate with lines of coding in other operations. Unlike temporary
tags, permanent tags may be assigned absolute addresses by the programmer if he so
desires. The format for the permanent tag is;

nnnxi

where nnnx is the tag identifier and may be alphabetic, numeric, or alpha-numeric.
A maximum of 300 permanent tags may be assigned in a program.

is N if the tag is to be given an address in standard access storage.

is F if the tag is to be given an address in high-speed access storage.

Frequently, the nnn specification is entered as the number of the operation in which the
tag is initially specified. For example, the permanent tag

2054F

indicates that tag 4 in operation 205 is to be assigned an address in high-speed access
storage. And similarly, the permanent tag

SINSN

indicates that this is tag 5 in operation SIN and is to be assigned an address in standard
access storage.

7

8

0 AND P TAGS

Two additional tag specifications are provided by the X-6 System to handle overflow
resulting from either an arithmetic computation or from an abnormal condition in an input
or output unit. These two specifications, designated Q and P tags, permit transfer of
control either normally to c or, when necessary, to c + 1 if an overflow condition is
present.

Q and P specifications may either be permanent or temporary and the basic rules ap­
plicable to temporary and permanent tag assignment will also apply here. It will be re­
called that the two basic tag formats are

~~xxi

for temporary tags, and

nnnxi

for permanent. The same basic format exists for the overflow tags with the exception that
the low order digit position (i) on each type of tag will now contain an Q to indicate the
line to be executed if overflow does not occur, or a P to indicate the line to be executed
if overflow does occur (c + 1).

For example, two quantities are located in storage locations 4211 and 4216. Add them
together, store the result in 4236, and go to GREGN for further processing.

line a

1

2

3

inst.
code

LDA

ADD

STA

m

~4211

~4216

~4236

c

GREGN

If the arithmetic computation ·results in an overflow condition, a constant of 00000 00001
is to be stored in 4246 and control is to be transfered to AAR4N for further processing.

line a

1 ~~ SlN

2 ~~~~~

3 ~~GlQ

4 ~~GlP

5 ~~~~~

6 ~~S2N

inst.
code

LDA

ADD

STA

LDA

STA

m c

~ 4211 ~~~~~

~4216 ~~GlQ

~4236 GREGN

~~~~~ ~~ S2N 

00000 0 0 001 

~ 4246 AAR4N 

Tag ~~ G lQ in line 2 indicates that control is to be transferred to line 3 if overflow does 
not occur. If overflow does occur, however, line 4, tagged ~~GlP, will be executed as 
the c + 1 line. 

It should be noted that neither the Q or P line has to physically follow the instruction 
which may cause an overflow condition as long as the tag is unique within the operation, 
if it is a temporary tag, or unique within the program, if it is permanent. Furthermore, 
these tags, whether actually executed or not, must be subtracted from the total allowable 
number of tags in an X-6 program. 



The Tag-Equals Card (Card Type 3) 

The tag-equals card makes it possible for the programmer to assign absolute storage 
addresses to permanent tags if he wishes. Up to seven entries may be made per card 
with no restrictions on the number of cards used. The last valid entry will be followed by 
a word of nines (9999999999). 

CARD 
TYPE ENTRY I ENTRY 2 ENTRY 3 
---3 1-------------------- t.--ct.--f-"t"A-ri--n-11-n.+f-1:.--t.--t"-t._A_n __ n_n_Ii -ct.--ct.--n~-ii-ri--ii-11 ----------i2 

I I I I I 10 II 12 IJ 1' II II 17 II II 20 21 22 _M 2' 20 _1_6 27 ~11 21 10 II U JI JO II II 17 II H •O .. '2 •I .. '9 

~ 
cf U '1 H i1t to 11 U 1J !H ~ H 11 H It 10 •1 a2 IJ I.& II M 17 U It 70 7J 71 7J 7' 7' 76 77 11 79 10 11 8' U M H 86 

'J 
17111990 

Here t t t t t is the permanent tag. 

~ n n n n is the absolute address in storage. 

CONSTANTS 

There are two basic methods of specifying constants in an X-6 program. The first is to 
include the particular constant as a line within the coding. For example, load register A 
with the contents of storage location 4211 and add a constant of 00000 00001. 

inst. 
line a code m c 

1 lN LDA 4211 

2 ADD 2N 

3 00000 00001 

4 2N [NEXT INSTRUCTION] 

The second is to pool all constants used in a program in an area in storage called the K 
area and reference them with a five-digit symbolic address. The format of this five-digit 
specification is: 

K~xxx 

9 



10 

where K indicates a reference to the constant area. 

xxx is the number assigned to the particular constant in the K area, from 
~~O to 299 thus allowing a maximum of 300 pooled constants in any 
one program. 

For example, 4216 contains a quantity to which a constant of 00000 00002 is to be added. 
With the constant entered into the K area as the first constant (K~~~O) the coding may 
be written in the follQwing manner. 

line 

1 

2 

a 

lN 

inst. 
code 

LDA 

ADD 

m c 

4216 

K 0 

The constant pool may be entered into the program as a separate operation and designated 
as operation KKK. Each constant is then entered with its five-digit K specification as 
the a address. It should be noted, however, that no particular sequence must be preserved 
in referencing constants. Also, a constant designated, for example, K~~~8 or K~299 may 
be specified as the only constant in the program with no preceding constant entries. 

All K area constants are automatically assigned to high-speed access storage unless 
the storage locations in this area have been used, or unless the programmer specifies 
otherwise. That is, the programmer may specify, if he chooses, an absolute location for 
any K area constant by entering the five-digit specification as a permanent tag on the 
Tag-Equals 2 card and assigning an absolute location to it. Normally, the assembler 
would assign an absolute address to the K specification where the constant is first re­
ferenced in the X-6 program. 

Constants may either be data or instructions. A data constant, whether stored in the K 
area or included with the coding, is entered with the a portion containing any legitmate 
X-6 address, the in~truction code positions containing spaces, and the m and c portions 
containing the absolute value of the constant which will be carried over to final output 
without modification. 

For example, a K area constant of 00000 00030 might be entered as; 

inst. 
a code m c 

K 61 00000 00030 

Instruction constants utilize the entire thirteen digit positions of the instruction code 
and the m and c portions. These constants are entered in symbolic form and, therefore, 
must be converted before they are carried over to final output. For example, a constant 
designated as K~~ 21 that is an instruction to load register A with GIN 4F and then go to 
SIN 4F would be entered as: 

2 
See Tag-Equals Card, page 9. 



a 

K 21 

inst. 
code 

LDA 

m c 

GIN4F SIN4F 

The X-6 assembler distinguishes between data and instruction constants by the presence. 
or absence of spaces in the instruction code. It should be noted that if a constant is 
tagged with a symbolic specification other than a K address, it may not be entered in the 
constant pool. 

WORKING STORAGE 

Working storage locations (locations utilized for holding data in anticipation of some 
future computation in the program) are referred to as W areas and can be referenced by a 
five-digit symbolic address. The format for this specification is; 

where 

W .1.xxx 

W indicates a reference to a working storage location. 

xxx is the number assigned to a particular working storage location in 
the W area, from .1..1.0 to 299 thus allowing 300 working storage lo­
cations in any one program. 

For example, a working storage location, designated W.1..1.10, contains a quantity to which 
the contents of K.1..1.31 are to be added. Store the result in SINlN. 

line 

1 

2 

3 

a 

lN 

inst. 
code 

LDA 

ADD 

STA 

m c 

w 10 

K 31 

SINlN 

The working storage areas utilized in a program may be entered, like K area constants, 
as a separate operation and designated as operation WWW. Each working storage location 
used is then specified with its five-digit W designation as the a address, and the initial 
condition of the location specified in the digit positions of the instruction code and the 
m and c portions. As is the case with K area constants, no particular order must be pre­
served in designating working storage locations and W.1..1..1.0 or W.1. 299 could equally be 
the first location with which communication is made. 

All W locations are automatically assigned an address in high-speed access storage un­
less the storage locations in this area have been used, or unless the programmer specifies 
otherwise. The programmer may assign an absolute address to a W location on a Tag­
Equals card. Normally, however, a W specification would be assigned an absolute ad­
dress, by the assembler, where it is first referenced in the program. 

11 



12 

INTERLACES 

Information entering the computer as input or leaving as output, is stored in a fixed pattern 
of storage locations called an interlace pattern. Each unit has a designated pattern of 
locations into which data is read or from which data is written, punched, or printed. A 
five-digit symbolic address may be employed in them portion of an instruction to commu­
nicate with a particular word in an interlace. The format for this symbolic designation is 

Here; u 

unwxx 

is the particular interlace being referenced. 

H for the read interlace of the High-Speed Reader. 

R for the read interlace of the Read-Punch Unit. 

0 for the punch interlace of the Read-Punch Unit. 

P for the print interlace of the High-Speed Printer. 

T or Z for the tape interlace. Either or both may be employed. 

n is the number of the interlace pattern. This may be 0 through 9 thus 
allowing ten separate interlace patterns for each unit. A total of 
twenty interlace patterns are allowed for tapes, ten for T and ten 
for Z. 

w is the word part. 

U for the unprimed part of the card word. 

P for the primed part of the card word. 

N for the numeric part of the translated card word or the numeric portion 
of a tape specification. 

Z for the zone part of the translated card word or the zone portion of a 
tape specification. 

xx is the word being referenced. 

10-19 for card words 0 through 9, respectively, sensed at read station 
1 of the High-Speed Reader and stored in a read interlace. 

20-29 for card words 0 through 9, respectively, sensed at read station 
2 of the High-Speed Reader and stored in a read interlace. 



NOTE: 

10-19 for card words 0 through 9, respectively, sensed at read station 
1 of the Read-Punch Unit and stored in the punch interlace. 

20-29 for card words 0 through 9, respectively, sensed at read station 
2 of the Read-Punch Unit and stored in the punch interlace. 

10-19 for card words O through 9, respectively, stored in the punch 
interlace, to be punched as output. 

01-13 for words to be printed as output and stored in the print inter­
lace. 

00-71 for words 1 through 72, respectively, of a block of data in 
UNIVAC XS-3 mode stored in a tape interlace. 

00-99 for words 1 through 100, respectively, of a block of data in 

USS mode stored in a tape interlace. 

When a complete tape interlace is addressed wxx will always be 000. 

The five-digit symbolic specification in them portion of an instruction that will address 
the primed image in the eighth word location of a card read at the first read station of the 
High-Speed Reader and stored in an input band assigned to contain interlace number 2, 
would be 

H2Pl7 

To address the unprimed portion of the same data after it has been read at read station 2, 
the following five-digit specification would be entered in them portion of the instruction; 

H2Ul7 

Addressing A Print Interlace 

When a word in a print interlace is addressed, only the desired word location is entered 
in the xx digits of the symbolic address since there is no need to refer to a read or punch 
station. Because a print interlace contains thirteen word locations, corresponding to the 
thirteen possible word positions on a printed line, the last two digits of the address· may 
be specified as any word from 01 to 13. For example, for the numeric image in the fourth 
word location of a print interlace assigned as interlace number 2, the address in the m 
portion would be; 

P2N03 

Similarly, to address the zone portion of the same word, one would write the specification 
as; 

P2Z03 

Addressing A Complete Print Interlace 

When addressing a complete print interlace, the five digit specification is in a somewhat 
different format from the usual interlace specification. The format for this address is; 

13 



14 

where 

PnOaa 

p indicates the print interlace. 

n indicates the number of the interlace (0-9). 

aa indicates the number of lines that the paper in the printer is to be 
advanced (00-79). 

For example, using PRN as the mnemonic instruction code to print out, the instruction to 
advance the paper twelve lines and print the contents of print interlace number 2 would 
be; 

NOTE: 

a 
inst. 
code 

PRN 

m c 

P2012 

When using any High-Speed Reader or Read-Punch Unit service routine, the 
program will not deal with the normal interlace positions but rather with 
working storage areas designated as interlace positions within the particular 
routine. Card images are entered and retrieved from these areas by the in­
dividual service routine, and transferred to the normal interlace positions. 
Therefore, when employing any service routine, the programmer cannot use a 
symbolic interlace designation but must refer to the actual working storage 
address utilized in the particular routine. 

Interlace Card (Card Type 4) 

All symbolic interlace specifications in a problem are entered on this card. Up to seven 
entries may be made per card with no restriction on the number of cards. The last valid 
entry is followed by a word of nines (9999999999). 

CARD 
TYPE ENTRY 1 ENTRY 2 ENTRY 3 ---4 1-------------------- t-n--~-~-K_x_b_"h_o __ o+c1i--&A_K_x_f>_1J_o_o t.--ri--~-A-K-~T11-o-cf ----------i; 

I I I ' • • 7 e • 10 II 12 U " II II 17 le It 10 21 U H H U H 27 H 2t 10 II 12 II M II H 17 H It 00 " '2 U °" " 

9 
... '1 ... " IO II II II M It II 17 II ff IO 11 11 11 M 11 11 17 11 ff 70 7J 72 71 7' 71 '71 n 7e 7t IO e1 '1 II M H II 17 II It IO 



Here, 

TABLES 

t is the type of interlace (R, P, 0, H, T or Z) 

n is the number of the interlace (0-9). 

x is 0 for a two part untranslated interlace (unprimed and primed). 3 

is 1 for a two part translated interlace (zone and numeric). 

is 2 if both kinds are specified. 

bb is the absolute address of the band (bb must be an even number). 

A table may be defined as an area in storage in which the various entries (they may be 
either data or instructions) are separated by a given increment or, more precisely, a 
specified number of storage locations. X-6 provides three table areas designated as S, 
U, or V. Each table area may contain a maximum of ten tables with up to 1000 entries per 
table. 

To communicate with a particular entry in a table, a five-digit symbolic address is em­
ployed. The format for this specification is; 

tnxxx 

where t is the name of the table area (S, U, or V). 

n is the number of the particular table (0-9). 

xxx is the number of the particular entry in the table (000-999). 

For example, the instruction to load the fifteenth entry of the second table in table area 
S into register A would be 

a 

Tables Card (Card Type 5) 

inst. 
code m 

LDA S2014 

c 

All table specifications employed in a program must be entered on this card. Up to three 
entries may be made per card with no restriction on the number of cards except the im­
plied physical restriction on the number of table specifications. The last valid entry is 
followed by a word of nines (9999999999). 

3 
The notations here tor x are not applicable to the print or tape interlace and x will always equal O. 

15 



16 

CARD 
TYPE ENTRY I ENTRY 2 
---5 -------------------- t--ii-SA-s~-5--5--5-5 1--cTK-i!rA-;--~-~--~ _t_n_ii_A_ii_A_s--;-5--; ----------ii 

I Z I 4 I I 7 I t 10 II 12 U 1t 11 11 17 II 11 20 21 22 2J 24 H 26 27 21 29 30 JI 32 JJ 34 H H :17 JI J9 40 41 42 4J U 4r 

j 

if 41 U H 41 10 91 !52 U 54 !H H 97 51 59 60 11 62 63 64 65 61 17 61 69 70 71 72 73 7' 75 76 77 71 79 ao 11 12 13 84 85 H 17 11 
9 

19 90 

Here, t is the name of the table area (S, U, or V). 

n is the number of the particular table (0-9). 

ssss is the absolute address of the first entry. 

i i i is the increment between entries. 

xxxx is the total number of entries in the table. 

VARIABLE ADDRESSES 

Variable addresses are employed in operations that are to be coded as library routines. 
Basically, a library routine is a routine, of some commonly-used function, coded so that 
it may be employed in many varying applications thus avoiding the necessity of repeatedly 
coding the function each time it is needed. Any operation may be specified as a library 
routine; however, all references to tables, interlaces, constants, working storages, and 
so forth, are generalized by the substitution of variable addresses for specific locations. 
These variable addresses can be particularized, when the library routine is employed in 
a particular application, by cross-referencing them to specific X-6 addresses. The var­
iable address is a five-digit symbolic specification entered in the a, m, or c portion of 
an instruction. The format for this specification is; 

where 

x~~nn 

x is an indication that this is a variable address. 

nn is the number _of the variable address within the operation. This may 
range from ~ 1 to 20 for any single operation. 



The individual programmer can increase the usefulness of the X-6 system by initially 
coding commonly used functions as library routines, thereby making them available for 
use by others. It is recommended that if a subroutine is coded for in"clusion in a library of 
routines, it be· assigned a three character alphabetic operation name which is unique 
within the library. 

Specifications Card (Card Type 6) 

Specifications cards precede library routines and are used to modify coding within the 
routine, before it is assembled, by substituting specific addresses for variables. These 
cards will use the operation number of the library routine. That last valid entry on the 
card will be followed by a word of nines (9999999999). 

CARD OPER. CARD 
TYPE NO. NO. ENTRY I ENTRY 2 ENTRY 3 
---6 11--ii-1-i"1 Y_Y_Y., ---- x __ .1_K_n_n __ ;;--e---e--e-e x_K_.1_n--ii--e---e--e--e-;; x-K~-1-i--n--e--;;;--e-e--e ----------i; 

l 2 I 4 !l 6 1 I 9 10 11 12 U 14 15 ti 17 II 19 20 21 22 2J 24 25 2& 27 21 29 301 U 32 3J 34 3S 36 37 31 39 40 41 42 

~ ENTRY 4 ENTRY 5 ENTRY 6 ENTRY 7 
ii!!-------------------------- ------------------------ ------------------------- ------------------------- ------------
~ X .1 .1 n n e e e e e X .1 .1 n n e e e e e X .1 .1 n n e e e e e X .1 .1 n n e e e e e 12 

I 4 

ll 
if .. 47 •• " ao SI 92 ,, !J4 !H !6 97 SI 59 60 II u I! 64 I! 66 17 II 69 70 71 72 73 74 75 16 77 71 79 10 11 12 I] 14 IS 86 17 .. I'll .~ 

Here, hhh 

yyy 

Xi:'.\i:'.\nn 

eeeee 

is the operation number. 

is the card number. 

is the nth variable address in the operation. This may range from 
Xi:'.\~i:'.\1 to Xi:'.\~20. 

is the specific address in the program in which the library routine is 
employed. 

17 



18 

4. Program Organization 

THE OPERATION 

As ascertained in previous chapters, an operation is a subdivision of the larger program. 
Each operation may contain a combined total of 999 lines of coding and included con­
stants. These lines of coding and constants are entered on cards called Detail cards. 
The detail cards that make up an operation are preceded by a Header card (one for each 
operation) and immediately followed by an End-Operation Sentinel card which alerts the 
computer that the last Detail card has been specified in a particular operation. 

Header Card (Card Type 7) 

A header card begins each operation (unless a specification card precedes it) and may 
contain, for listing purposes, a description of the function performed by the operation. 

§! 

CARO OPER. CARD 
TYPE NO. • NO. ---7 h-h--h y.--y-y ---------------- --------------------------- --------- ----------------------------------------12 

7g 

l 2 J ' 5 I 7 I t 10 11 U U 14 11 II 17 11 ti 20 21 22 23 24 25 26 27 21 29 JO JI 32 H .3' 35 H 37 31 39 40 41 42 

~ ------------------------------------------------------------------------------------------------------ ----------12 

~ 
i 
~ 

~ 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 

cf " 47 ... ' ' 90 11 52 SJ 54 H H '1 !51 st eo et 62 H M !5 ~! 457 &!! ~' 7'J 71 72 7! 74 '' 715 11 78 79 10 11 12 ., u 1!5 

Here, hhh is the operation number. 

y y y is the card number. This would normally be 001. 

9 
H 17 81 19 90 



Detail Card (Card Type 8) 

The Detail Cards contain lines of coding or constants. The card numbers are in ascending 
sequence starting one higher than the Header card number. An operation may contain a 
maximum of 999 Detail cards. 

0 

CARD OPER. CARD 
TYPE NO. NO. 
---- ---··--- ------ t----· 

8 h h h y y y 

INST. 

a CODE m c a--a-a--a-a - 1--1--1 - 1-m-m--m-m-m -c-c--c-c--c ------------------------------------ii 

.J 
0 
a: 
.... 
z 
0 
u 

34 

7g 

I 2 I ' I I 7 I 9 10 11 12 IJ 1' II 11 17 II It 20 21 22 2J 24 2' 26 27 21 21 JO Jl J2 1J l4 H H J7 31 H 40 41 0 4J 44 45 

~ J----------- --- ---------- ------------------- ----- -- .. -- --- --- ---------- --- -- --- --- -- ------ --- ------ -- .. --- ------------lz 
~ 
lf 34 
! 
Iii: 

< 
(/) 

;:) 

-
~ 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 
79 

c 9 
ci:, 41 47 U '9 IO 11 52 5J 54 !55 H 57 H H ao 11 62 IJ 64 15 6' 67 61 H 70 7J 72 7J 7' 75 71 77 71 79 80 11 8! ll 14 85 86 17 II 89 90 

Here, hhh is the ope ration num her. 

yyy is the card num her. 

aaaaa is the X-6 a address 

I 11 is the mnemonic instruction code. 

mmmmm is the X-6 m address. 

ccccc is the X-6 c address. 

Column 16 on the Detail card is designated as a control column and may contain the fol­
lowing entries; 

1, 2, or 3 for the appropriate index register if index register modification is 
indicated. 

U or P for the unprimed or primed word of an alphabetic constant. 

N or Z for the numeric or zone portion of an alphabetic constant. 

2 for a negative numeric constant. 

~ for a positive numeric constant. 

19 



20 

NOTE: Whether pooled or included with the coding, data constants are recognized 
by the absence of any entry in the columns reserved for a mnemonic in­
struction code. The ten-digit constant is listed in the m and c address 
columns on the Detail card. Positive numeric constants are indicated by a 
space (~) in the control column and negative ones by a two (2). 

Sometimes, alphabetic constants are needed in either a two-part translated 
or untranslated form for printed or punched output. As a convenience, X-6 
allows the programmer to write the alphabetic constant twice with N and Z, 
or with U and P in the control column. This makes it unnecessary for the 
coder to break up the alphabetic characters into the bit configurations 
which will recreate the desired alphabetics when the data is to be printed 
or. punched. 

End-Operation Sentinel Card (Card Type 9) 

One End-Operation Sentinel card must follow the last Detail card in an operation. 

CARO OPER. CARO 
TYPE NO. NO, ---9 h-ii--h y--.y-y ------·-------------------------------------------------------------------------------------ii 

I 2 I 4 I I 7 I I 10 II 1l U 14 II II 17 II II 20 ...J..1 22 2J 24 2S H 27 11 29 JO JI J2 JJ 34 JS JI J7 JI J9 40 41 42 U 44 '5 

! ~ ---- --- --- ------- --- -------------- -- ------ ---- ---- -- ------ --- ---- ------ -- --- --- ----------- --------- --- ------ ----r£ 

I ~ 
a: 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 

~ 
i. 

41 t1 •I oH IO 91 U 111 94 55 H 97 H !I IO II 11 IJ M 19 H 17 U 19 70 7J 72 71 74 79 71 77 11 71 10 11 12 1J M 15 81 17 11 19 90 

Here, 

CONTROLS 

hhh is the operation number. 

y y y is the card number. This will be one higher than the number on the 
last Detail card of the operation. 

Certain cards are used as controls for the program organization and assembly. The Label 
card and the End-Input card, like the Header, Detail, and End-Operation Sentinel cards, 
must be specified in a program. Restrict cards, like the summary cards specified in the 
previous chapter (Tag-Equals, Tables, and so forth), are optional and dependent upon 
the particular application. 



Label Card (Card Type 1) 

A Label card contains the output program identification and any title information desired 
on the p rin te r listing. 

CARO 
TYPE PROGRAM l.D. DAT!!: --T ---------------- ---· ;c--,c-x--;c-;tir £C1-~ ~+m-m-A<l-<l ~--i--Y_K_t:,. ------------------------------------12 

34 

! ------------------------------------------------------------------------------------------------------ ----------ii 

j 
< 

"' ;:J 

~ 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 
7s 

cf 4t'1 .... IOllHlllMHHl7 HHIOl1HllMllMl1Mll7071 72'717'717f77717tl01112 llMll 111711HIO 

Here, xxxxx is the five-digit program identification number assigned by the 
programmer. 

mm is month. 

d d is day. 

y y is year. 

NOTE: The date specification may be in any desired format. 

Restrict Card (Card Type 2) 

Restrict cards mark off certain locations in storage as unavailable for use by the assem­
bler. This means that no relative or symbolic address will be assigned, by the system, to 
a location designated on this card as restricted. The programmer, however, may assign an 
absolute address, an interlace, or a table to a restricted area. Up to seven entries may be 
made per card with no limit on the number of cards used. The last valid entry is followed 
by a word of nines (9999999999). 

21 



22 

< 
VI 

CARD 
TYPE ENTRY 1 ENTRY 2 ENTRY 3 
---2 ~------ ------------- ·T-i-~--~-~--~--;-~--~-~ 1--i--~-~--~--;;-~--;-~--~ -cT-;-ii--;-ii--;--;-~--; ----------i2 

3 • 

...1. ...I_ I • I I 7 I t 10 II 12 II I• II II 17 II II 20 21 22 2J 2• 21 28 27 21 21 SO U 12 IJ U JI H 37 H st •o •1 •2 •S .. '5 

~ ~ 

~ 
jf 41 '7 .. .. IO II 12 U U 15!1 H 17 H !59 IO 11 12 IJ 64 15 68 17 61 69 70 71 72 ·73 7• 75 71 77 71 79 10 11 12 13 M 15 IS 17 18 19 90 

Here, is the increment between restricted storage locations. 

nnnn is the total number of restricted locations. 

sssss is the absolute address of the first location in a restricted area. 

End-Input Card (Card Type 10) 

This card alerts the computer that all X-6 input has been received. It contains the first 
instruction of the as/sembled program which will be executed after the program is fully 
loaded. There is only one such card per program. 

Q 
z 

CARD 
TYPE 

INST. 

CODE m C - Tri - t-n;-~--~-~-~ -c--~--~-~--~ ------------------------------------12 

..I 
0 
a: 
1-
z 
0 
u 

I 2 I • I I 7 I t 10. II 12 II I• II II 17 II It 20 21 22 23 24 25 28 27 21 21 30 31 312 U H H 36 37 31 39 •o 41 U U .... 45 

~ ._ _______ ---- -------------------------------'-------------------------- -------- --- -------------------- --- ----------12 
~ z 3. 
! 
a: 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 

•t U .. 41 IO 51 52 U 54 55 H 57 H 99 IO 11 12 H 14 15 61 17 61 61 70 71 72 7J 74 75 76 77 71 79 10 11 12 IJ U 15 11 17 19 19 90 



5. X-& Instruction Codes 

GENERAL INFORMATION 

In addition to the use of relative and symbolic addressing, the X-6 System further facil­
itates the coding of data-processing runs by allowing the use of mnemonic instruction 

codes which are easily recognizable by the functions they cause to be performed in the 
computer. For example, applying the term load to transfers from storage to registers and 
using LD as the mnemonic contraction for load, the instruction code that would cause 

the transfer of data from some storage location to register A would be LDA. Similarly, 
applying the term store to transfers from registers to storage and using ST as the mnemonic 
contraction for store, the instruction code that would cause the transfer qf data from reg­
ister X to some storage location would be STX. 

The following pages contain a repertory of X-6 mnemonic instruction codes, descriptions 
of each, and the timing, in word times, for the execution of each instruction. A hyphen 
in the m or c portion of an instruction indicates that the computer !gnores that portion 
when the instruction is executed. 

TRANSFER INSTRUCTIONS 

LOAD REGISTER A 

LOA m c 

LOAD REGISTER X 

LOX m c 

LOAD REGISTER L 

LDL m c 

STORE REGISTER A 

STA m c 

Transfer the contents of storage location 
m to register A. 

Transfer the contents of storage location 
m to register X . 

Transfer the contents of storage location 
m to register L. 

Transfer the contents of register A to 
storage location m. 

4 

4 

4 

4 

23 



24 

STORE REGISTER X 

STX m c 

STORE REGISTER L 

STL m c 

TRANSFER REGISTER A TO L 

ATL - c 

TRANSFER REGISTER C TO A 

CTA m -

CLEAR REGISTER A 

CLA m -

CLEAR REGISTER X 

CLX m -

CLEAR REGISTER L 

CLL m -

CLEAR REGISTERS A AND X 

CAX m -

CLEAR REGISTER A 

CAA m -

Sample Problems 

Transfer the con ten ts of register X to 
storage location m. 

Transfer the contents of register L to 
storage location m. 

Transfer the contents of register A to 
register L. 

Transfer the contents of register C to 
register A. The location of the next 
instruction is at m. 

Clear register A to zeros and set sign 
to plus. The location of the next 
instruction is at m. 

Clear register X to zeros and set sign 
to plus. The location of the next 
instruction is at m. 

Clear register L to zeros and set sign 
to plus. The location of the next 
instruction is at m. 

Clear register A and register X to zero 
(register A and register X assume sign 
of register L). The location of the next 
instruction is at m. 

Clear register A to zero and retain 
original sign. The location of the 
next instruction is at m. 

1. Place the contents of storage location 4211 into working storage. 

line 

1 

2 

a 

lN 

inst. 
code 

LOA 

STA 

m c 

4211 

w 1 

4 

4 

3 

3 

3 

3 

3 

14 

3 



2. Transfer the contents of table element S3043 to register A and the contents of W~~~l 
to register L and clear W~~~l to zeros. The first instruction should be a temporary 
tag line in standard access storage. 

line a 

1 lN 

2 

3 

4 

inst. 
code 

LDA 

LDL 

CLX 

STX 

m c 

S3043 

w 1 

w 1 

3. Transfer the contents of storage location 4331 to register L and a constant 0000000128 
to register A. Also, store the constant in the K area and zero fill location 4331. Tag 
the first instruction with a permanent tag to be assigned to high-speed access stor­
age. It will be the first permanent tag in operation AAR. 

line 

1 

2 

3 

4 

5 

6 

a 

AARlF 

lN 

ARITHMETJC INSTRUCTIONS 

ADD 

ADD m c 

SUBTRACT 

SUB m c 

MULTIPLY 

MUL m c 

inst. 
code 

LDL 

LDA 

STA 

CLX 

STX 

m 

4331 

00000 

K 1 

4331 

c 

1N 

00128 

Add algebraically the contents of storage 
location m to the con tents of register A 
and place the sum in register A. 

Subtract algebraically the contents of 
storage location m from the con tents of 
register A and store the difference in 
register A. 

Multiply the contents of register L by the 
contents of location m and store the ten 
most significant digits of the product in 
register A and the ten least significant 
digits in register X. Both register A and 

5 

5 

105 

25 



DIVIDE 

DIV m c 

26 

register X will have the sign of the product. 
Multiplication can be controlled by placing 
a sentinel in multipliers having less than 
ten digits. The sentinel, placed just to the 
left of the most significant digit of the 
multiplier, stops the multiplication after the 
last significant multiplier digit is used. The 
sentinels 0101 or 1101 may be indicated by 
a nonnumeric A or F. If a program sentinel 
is used, the number of significant digits of 
the product that will appear in register X is 
equal to the number of significant digits in 
the multiplier. For example, if a program 
sentinel is used, in a multiplication that 
results in a five-digit product (xxxxx) and 
the multiplier is a three-digit number, the 
entire product would appear in registers A 
and X in the following manner. 

Register A 

0 0 0 0 0 0 0 0 x x 

Register X 

x x x 0 0 0 0 0 0 0 

Divide the contents of storage location m 
by the contents of register L. The quotient 
with its sign is place in register A un­
rounded and the remainder is placed reg­
ister X. If the di visor is zero, or it is less 
than or equal to the dividend, overflow 
occurs. Division may be controlled by 
placing a sentinel of 0101 (a nonnumeric A) 
in register X. The sentinel will control the 
number of digits developed in the quotient. 
This number must always be even. There­
fore, to develop a two-digit quotient, the 
sentinel would be placed in digit position 
three of register X; a four-digit quotient, 
digit position five; a six-digit quotient, 
digit position seven, and so forth. To devel­
op ten digits of the quotient, no sentinel is 
needed and the contents of register X need 
not be changed. It must be ascertained, 

115 



NOTE: 

however, that no bit configuration of 0101 
exists in register X at the time of the 
arithmetic computation. If there is a 
possibility that such a configuration does 
exist in register X, the register should be 
filled with zeros. 

If an overflow occurs as the result of an add, subtract, or divide instruction, 
the location of the next instruction is at c+ 1. If the c address is at word 
level 199, overflow will cause control to revert to the instruction at word 
level 000 of the same band. If an arithmetic register is used as the c ad­
dress of an instruction in which overflow occurs, the next instruction is 
still taken from that register after a delay of one word time. 

Sample Problems 

1. Add the contents of storage location 4211 and K~ 146. Place the sum in 4103. 

line 

1 

2 

3 

a 

lN 

inst. 
code 

LDA 

ADD 

STA 

m 

4211 

K 146 

4103 

c 

2. Reduce the contents of W~l02 and W~205 by 7. Place the result in two consecutive 
en tries in table U 4. 

inst. 
line a code m c 

1 lN LDL 2N 

2 00000 00007 

3 2N LDA w 102 

4 SUB RL 

5 STA U4001 

6 LDA w 205 

7 SUB RL 

8 STA U4002 

27 



28 

3. Multiply the contents of storage location 4331 by the contents of K~~49. Store the 
product in two consecutive working storage areas and clear registers A and X to zeros. 

line a 

1 lN 

2 

3 

4 

5 

COMPARISON INSTRUCTIONS 

TEST EQUALITY 

TEQ m c 

TEST GREATER 

TGR m c 

Sample Problems 

inst. 
code m c 

LDL 4331 

MUL K 49 

STA w 1 

STX w 2 

CAX 

Compare the contents of register A and 
the contents of register L. If the contents 
of both registers are equal, the location 
of the next instruction is specified in m; 
if they are unequal, the location of the 
next instruction is specified in c. 

Compare the contents of register A and 
the contents of register L. If the contents 
of register A are greater than the con­
tents of register L, the location of the 
next instruction is specified in m; if not, 
the location of the next instruction is 
specified at c. 

3 

3 

1. Quantity Y is in storage location 4251 and quantity Z in 4371. If Y equals Z, add the 
two quantities and store the sum in W~~29. If Y is greater than Z,subtract Z from Y 
and store the difference in w~~30. If y is less than z, store y in w~~31 and z in 

W~~32 and clear 4351 and 4371 to zeros. Jump to ASINF after all housekeeping 
functions are performed. 

inst 
line a code m c 

1 lN LDA 4251 

2 LDL 4271 

3 TEQ 2N 

4 ADD RL 

5 STA w 29 ASINF 



line a 

6 2N 

7 

8 

9 

10 

11 

12 

13 

3N 

EDITING INSTRUCTIONS 

BUFF 

BU Fm c 

ERASE 

ERS m c 

SHrFT RIGHT 

SHR m c 
,_,._.._ 
1111!1nn 

SHIFT LEFT 

SHL m c 

inst. 
code m c (continued) 

TGR 3N 

SUB RL 

STA w 30 AS INF 

STA w 31 

STL w 32 

CLX 

STX 4351 

STX 4371 ASINF 

Superimpose or buff the 1 bits of the word 
whose location is specified in m, onto the 
contents of register A and leave the result 
in register A. The sign of register A re­
mains unchanged. 

Change the bits in each digit position of 
register A to binary zero wherever the word, 
in storage location m has a zero in the 
corresponding bit position. The sign of 
register A remains unchanged. 

Shift the contents of register A nn digit 
positions to the right into register X which 
is also shifted nn digit positions to the 
right into register A. Here, nn = 00 through 
10. The signs of both registers remain un­
changed. 

Shift the contents of register A nn digit 
positions to the left losing the most signif­
icant digits and bringing in zeros to the 
least significant digit positions. The sign 
of register A remains unchanged. Here, 
nn = 00 through 10. 

4 

4 

3 + nn 

3 + nn 

29 



30 

ZERO SUPPRESS 

ZUP - c 

Sample Problems 

Suppress zeros and commas preceding 
the first significant digit of a field by 
inserting spaces. Before execution, 
register A will contain the numeric 
portion and Register X the zone. Results 
will be in register A and register X. 

1. Store a field in WL\L\L\1 in the form; 

0000123456 

The field is initially stored as 

xxl23456xx 

in storage location 4211. Here, xis an unknown quantity to be edited out. 

line 

1 

2 

3 

4 

5 

a 

lN 

2N 

inst. 
code 

LDA 

SHR 

ERS 

STA 

m 

4211 

00002 

OOOOH 

w 1 

2. Store a field in WL\L\L\1 in the form; 

0000123456 

The field is initially stored in two locations; 

xl23xxxxxx 

in location 4013 and; 

xxxxxxx456 

c 

2N 

HHHHH 

in location 4033. Again, x is an unknown quantity to be edited out. 

4 



line a 

1 lN 

2 

3 

4 

5 2N 

6 

7 

8 

9 3N 

10 

CONTROL INSTRUCTIONS 

STOP 

STP m c 

JUMP 

JMP m -

TRANSLATE INSTRUCTIONS 

CARD-TO-MACHINE CODE 

CTM - c 

inst. 
code m c 

LDA 4013 

SHR 00003 

ERS 2N 

OOOOH HHOOO 

ATL 

LDA 4033 

ERS 3N 

00000 OOHHH 

BUF RL 

STA w 1 

Stop the computer. The computer stops 
with the stop instruction in register C. 
This occurs before the next instruction 
is started. Normally, when the computer 
is restarted, the first step will be to 
search for the next instruction specified 
by the c address. In this case, them 
digits are ignored, and may be used as 
a code to indicate the reason for stop­
ping. However, if desired, the m address 
may be used as an alternate restart lo­
cation by depressing the m button on the 
control panel. 

Jump to the instruction whose address 
is specified in m. 

Translate from card code to machine 
(computer) code. Before the command is 
given, register A must contain the un­
primed word and register X the primed 
word of the field to be translated. After 
the command is executed, register A 
will contain the numeric and register X 
the zone in computer code. The signs 
remain unchanged. 

Ind. 

2 

3 

31 



32 

MACHINE·TO·CARD CODE 

MTC - c Translate from machine (computer) code 
to card code. Before the command is 
given, register A must contain the num­
eric and register X the zone in computer 
code. After the command has been exe­
cuted, the unprimed word is in register A, 
and the primed word in register X. The 
signs of registers A and X are positive. 

TRANSLATE XS-3 TO MACHINE CODE 

TXM - c Translate UNIVAC XS-3 to machine 
(computer) code. Before this command is 
given, register A must contain the numeric 
portion of the word to be translated. The 
zone is the same for both XS-3 and 
computer code. The sign remains unchanged. 

TRANSLATE MACHINE TO XS-3 CODE 

TMX - c Translate machine (computer) code to XS-3 
code. Before this command is given, register 
A must contain the numeric portion of the 
word to be translated. The zone is the same 
for both computer and XS-3 code. The sign 
remains unchanged. 

INDEX REGISTER INSTRUCTIONS 

LOAD INDEX REGISTER 

LIR m c 

INCREMENT INDEX REGISTER 

llR m c 

Load m portion into the appropriate index 
register. 

Add m to the contents of the specified 
index register. The sum is entered in the 
specified index register and in register A 
in digit positions 3 through 6. The re­
mainder of register A is cleared to zeros, 
and the sign of register A set to plus. 

3 

3 

3 

3 

4 

NOTE: The m addresses of the LIR and the IIR instructions do not refer to actual 
storage locations. If this address happens to be ·the same as that of an 
actual location, the contents of that location will be unaffected. 



INPUT INSTRUCTIONS (High-Speed Reader) 

HIGH-SPEED READER CARD CYCLE 

HCC m c Initate card movement in the High­
Speed Reader. The card fed to the 
Reader is sensed and its image stored 
in the buffer band. The next instruction 
is normally at c except when a HCC is 
given before the preceding HCC in­
struction has had a chance to feed a 
card. In this case, the second HCC in­
struction is not executed; the contents 
of register C go to register A, and the 
next instruction is specified at m. 

HIGH-SPEED READER BUFFER TEST 

HBT m c Test the buffer of the High-Speed Reader. 
If it is loaded, the contents of register C 

are transferred to register A and the lo­
cation of the next instruction is specified 
by m. If the buffer is not loaded, the lo­
cation of the next instruction is specified 
by c and the contents of register A are not 
altered. 

HIGH-SPEED READER BUFFER UNLOAD 

HBU m c 

~ 

HnOOd 

Transfer the contents of the High-Speed 
Reader buffer to storage according to the 
predetermined interlace pattern. 
Here: n = interlace number (0-9) 

d = 0 for normal translation 
d = 1 for automatic translation 

HIGH-SPEED READER STACKER SELECTION 

HSS m c 

~ 

~~nOO 

Select the output stacker of the High-Speed 
Reader. 
Here: n = Stacker 0, 1, or 2. 

INPUT-OUTPUT INSTRUCTIONS (Read-Punch Unit) 

READ-PUNCH UNIT CARD CYCLE 

RCC m c 

~ 

OnOOd 

Initiate card movement in the Read-Punch 
Unit. 
Here: n = interlace number (0-9). 

d = 0 for normal translation. 
d = 1 for automatic translation. 

4 word-time applicable only when d = O; when d = 1 word tlme ls 208 for RPU and 201 for HSR. 

3 
(4 if m) 

3 
(4 if m) 

203 4 

3 

103 
4 

33 



34 

READ-PUNCH UNIT BUFFER TEST 

RBT m c Test the input buffer of the Read-Punch 
Unit. If it is loaded, transfer the contents 
of register C to register A. The location 
of the next instruction is specified by m. 
If the buffer is not loaded, the location of 
the next instruction is specified by c and 
the contents of register A are unaltered. 

READ-PUNCH UNIT BUFFER UNLOAD 

RBU m c 

~ 

RnOOd 

Transfer the contents of the Read-Punch 
Unit buffer to storage according to the 
predetermined interlace pattern. 
Here: n = interlace number (0-9). 

d = 0 for normal translation. 
d = 1 for automatic translation. 

READ-PUNCH UNIT STACKER SELECTION 

RSS - c Select output stacker 1 of the Read-Punch 
Unit. Stacker 0 is automatically selected 
if no specification is made. 

OUTPUT INSTRUCTIONS (High-Speed Printer) 

PRINT-BUFFER TEST 

PBT m c 

PAPER FEED 

PFD m c 

~ 

/). /). /). y y 

PRINT 

PRN m c 

~ 

PnOyy 

Test to see if the High-Speed Printer is 
free for use. If it is free, the contents of 
register C go to register A and the lo­
cation of the next instruction is specified 
by m. If the printer is not free for use, 
control is transferred to• c and the contents 
of register A remain unaltered. 

Advance the paper in the printer yy lines. 
Here yy may vary from 00 to 79. 

Advance the paper yy lines and print one 
line. Registers A and X are used for the 
transfer and, therefore, their contents are 
destroyed. 
Here: yy = number of lines to advance 

(00-79). 
n = interlace number (0-9). 

5
word-time applicable only when d = O; when d = 1 word-time ls 208. 

3 
(4 if m) 

203 l5 

3 

3 
( 4 if m) 

4 

592 



INPUT-OUTPUT INSTRUCTl'ONS (Tape Synchronizer) 

TAPE READ 

TRD m c 

~ 

l:l.l:l.xyz 

TAPE WRITE 

TWR m c 

~ 

l:l.l:l.xyO 

TAPE BUFFER TEST 

TBT m c 

TAPE SERVO TEST 

TST m c 

TAPE BUFFER UNLOAD 

TBU m c 

~ 

TnOOO 
ZnOOO 

6 ; 
Characters-per-inch 

Read one block of information from tape 
onto the tape buffer. 
Here: x = Servo number (0-9). 

y = 0 if USS mode. 
y =- 5 if UNIVAC XS-3 mode. 
z = Direction and gain-

0-forward normal. 
1-forward low. 
2-forward high. 
5-backward normal. 
6-backward low. 
7-backward high. 

Write one block from the tape buffer band 
onto tape. 
Here: x = Servo number (0-9). 

y = Mode and density-
0-USS 250 cpi .6 

5-UNIVAC 250 cpi. 
6-UNIV AC 125 cpi. 

Test the Tape Buffer to determine whether 
it is available, or in use. If the buffer is 
available the location of the next instruction 
is specified by m. If the buffer is currently 
being used, the location of the next in­
struction is specified by c. 

Test for servo availability. If the test in­
dicates that a tape-handling instruction is 
in progress, control is transferred to c for 
the next instruction. If the servo is ready 
for a new instruction, transfer the contents 
of register C to register A and go to m for 
the location of the next instruction. 

Transfer the contents of the tape-buffer 
band to storage. 
Here: n = interlace number (0-9). 

17 

3 
(5 if m) 

3 
( 4 if m) 

205 

35 



36 

TAPE BUFFER ~OAD 

TBL m c 

TnOOO 
ZnOOO 

TAPE REWIND 

TRW m c 
~ 

~~xyO 

Transfer the contents of the specified 
tape interlace to the tape-buffer. 
Here: n = interlace number (0-9). 

Rewind the tape to the first block condi­
tion. 
Here: x = servo number 

Y = 0 to rewind without interlock. 

y = 2 to rewind with interlock. 

205 

600 ms 



&. How X-& WVorks 

INPUT PROCESSING 

Programmers will be able to make more effective use of X-6 if they understand how it 
performs its function. 

Each input card type follows a different path. A brief statement of the steps performed 
on each card type follows: 

1. The fields in the Label card (type 1) are carried over to the output without 
modification. 

2. The entries in Restrict cards (type 2) are used to mark off locations in a storage 
availability table. X-6 will not allocate any restricted addresses. 

3. The entries in Tag-Equals cards (type 3) are filed in internal tables equated to 
the given absolute addresses. The absolute addresses are marked off in the 
storage availability table. 

4. The entries in Interlace cards (type 4) are used to mark off interlace positions 
in the storage availability table, and the origins are filed for future use. 

5. The entries in Table cards (type 5) are handled in a similar fashion. The 
only change is that increments as well as origins are saved for future use. 

Card types 1-5 must have been received in order, and after the first type 6 or 7 card, no 
additional 1-5 cards will be accepted. At this point the initial phase of X-6 is complete, 
and from this point on the routine expects card types 6-9 or 7-9 on a per-operation basis. 

6. The entries in Specifications cards (type 6) are filed in tables for direct sub­
stitution later. 

7. The Header card (type 7) is used to initialize for the detail cards which follow. 

8. Detail cards (type 8) encompass all of the lines bf coding and constants which 
make up a routine. Only detail cards cause output punching. Processing these 
cards is the primary function of X-6. 

9. The End-Operation Sentinel card (type 9) signifies that the last card in a group 
of detail cards has been received. 

10. The End-Input card (type 10) indicates the end of a run. It contains the instruc­
tion which will be used by the loading routine to start the execution of the 
assembled program. 

37 



38 

GET FIRST 
CARD I EDIT 

GllC - UIE 

I 
I 
L---------"~ 

GET llEXT 
CARD &EDIT 

Giit - UIE 

GrT NEXT 
CARO & EDIT 

GllC - UIE 

GET NEXT 
CARO & EDIT 

GNC - Ulf 

GET NEXT 
CARD & ED IT 

GNC - Ulf 

END OF "ON£ 
TIME" WORK 
INITIALIZ[ 

FOR OUTER LOOP 

GrT NEXT 
CARD &EDIT 

GNC - UIE 

IS IT A 
HEADER CARD? 

(TYPE 7) 

GET NEXT 
CARD & EDIT 
GllC- UIE 

X-6 ASSEMBLY SYSTEM BLOCK CHART 

IS IT LABEL mTIALIZE FILL ALL TABLES 
CARD? HAllDL£ LABEL WITH PROPER 

CARO - PRIMT FILL SYMBOLS 
(TYPE I) PRW IFT 

110 

ERROR 
STOP 
0003 

IS IT RESTRICT FURTHER ED IT 
CARD? PRlllT 

(TYPE 2) FIE- PRN 

IS IT TAG 
EQUALS CARO? 

(TYPE 3) 

FURTHER ED IT 

IS IT A 
SPECS CARD? 

(TYPE 6) 

EDIT & PRINT 
INITIALIZE 

FOR INNER LOOP 

IS IT A 
DETAIL CARD? 

(TYPE B) 

ERROR 
STOP 
0007 

PRIMT 
FIE - PRN 

FURTHER EDIT 
PR INl 

FIE - PRN 

FURTHER £0 IT 
PRINT 

Fl£ - PRN 

FURTHER ED IT 
PRINT 

FIE- PRN 

HANDLE A 
DHAIL CARD 

POC 

DO ALL END 
OF OPERATION 

WORK 

THIS IS 
INNER LOOP 

THIS IS 
OUTER LOOP 

GET llEXT 
ENTRY FROM 

RESTRICT CARD 

GET NEXT 
ENTRY FROM 
SPECS CARD 

DO ALL END 
OF RUN 

WORK 

IS IT A 
SENTINEL? 

YES 

IS IT A 
SENTINEL? 

FINAL STOP 
CODE 
888B _____ _... 

HANDLE A 
RESTRICT ENTRY 

PRE 

HANDLE A 
TAG EQUALS 
ENTRY PTE 

HANDLE AN 
INTERLACE ENTRY 

PIE 

HANDLE A 
TABLE ENTRY 

TAB 

HANDLE A 
SPECS ENTRY 

PSE 

"~-_(ii\ 
\..V 

HIT START 
TO DO A 
SECOND 
ASSEMBLY 



OPTIMIZATION OF INSTRUCTIONS 

Optimization, if the X-6 assembler is free to optimize, is achieved with the use of a 
working storage location designated as the Clock. The format of this location is: 

00 0000 Oxxx 

where xxx designates the current band-relative address and may vary from 000 to 199. 
The Clock location is initially set to 

00 0000 0000 

and its value increases as each instruction is assigned to storage. By adding the current 
Clock reading and the word time lapse for execution to a particular band origin the tenta­
tive best address (TBA) is established for each new address encountered. 7 If the address 
is available, it is marked off in a storage availability table and, after assignment is 
made, the band-relative position of the TBA becomes the new Clock reading. If the 
address is not available, the assembler keeps searching until an available address is 
located. 

The following is a general outline of the manner in which the Clock is employed when 
optimizing. 

A. The a address is moved to working storage W~~~O and analyzed in the following manner. 

1. If the a address contains spaces, it will be assigned the same absolute ad­
dress as the previous m or c address which referenced it. 

2. If the a address contains a legitimate symbolic address (tag, K or W spec­
ification) the appropriate table is searched to determine whether or not the 
symbolic specification has been previously assigned an absolute address 
either by the assembler· or the programmer. If it has, the band-relative posi­
tion of the previously assigned absolute address becomes the new Clock 
reading. If the symbolic address has not been previously assigned an absolute 
address, X-6 will assign one based on the current reading of the Clock. 

B. The mnemonic instruction code is translated to its machine co.de equivalent. 

C. The word-time lapse that will occur between the execution of the a and the execu­
tion of the m address is added to the Clock to form the TBA. 

D. The m address is moved to working storage W~~~O and analyzed in the following 
manner. 

1. If the m address contains spaces, an absolute address is assigned based on 
the current band-relative position indicated by the Clock. A switch is set so 
that the succeeding a address will be examined and assigned the same absolute 
location in storage. 

2. If the m address contains a legitimate symbolic address, the analysis is the 
same as for A-2. 

E. The word-time lapse that will occur between the execution of the m and the execution 
of the c address is added to the Clock of form the TBA. 

7 
Table 1. Instruction Code Information Words contains the execution time for X-6 instruction codes. 

39 



TABLE 1. INSTRUCTION CODE INFORMATION WORDS 

X-6 EXECUTION EXECUTION 
INST. ACTION TIME TIME 
CODE CODE BEFORE m BEFORE c 

ADD 0 002 003 
BUF 0 002 002 
DIV 0 002 113 
ERS 0 002 002 
LOA 0 002 002 
LDL 0 002 002 
LOX 0 002 002 
MUL 0 002 103 
STA 0 002 002 
STL 0 002 002 
STX 0 002 002 
SUB 0 002 003 
LIR 0 000 002 
11 R 0 000 003 

TRD 000 017 
TWR 000 017 
TRW 000 150 
TMX 000 003 
TXM 000 003 
ATL 000 003 
CTM 000 003 
MTC 000 003 
ZUP 000 ooq. 
HSS 000 003 
RSS 000 003 

CLA 2 003 000 
CLL 2 003 000 
CLX 2 003 000 
JMP 2 002 000 
CAA 2 003 000 
CAX 2 0 I q. 000 
CTA 2 002 000 

PFD 3 222* 003 
SHL 3 11 it 003 
SHR 3 11 it 003 

HBU q. 198 203 
PRN q. 197 592 
RBU q. 098 203 
RCC q. 098 203 
TBU q. Oq.8 103 
TBL q. 198 205 

HBT 5 ooq. 003 
HCC 5 ooq. 003 
PBT 5 ooq. 003 
RBT 5 ooq. 003 
STP 5 003 003 
TEQ 5 003 003 
TGR 5 003 003 
TBT 5 005 003 
TST 5 ooq. 003 

If control column indicates index register modification, add one more word 

time before m. 

* is a cocle· not affecting timing. 
t use amount ol shilt. 

40 



F. The symbolic c address is moved to working storage W/),,/),,/),,Q and analyzed in the 
following manner. 

1. If the c address contains spaces, an absolute address is assigned based on 
the current band-relative position indicated by the Clock. A switch is set so 
that the next a address is examined and assigned the same absolute location 
in storage. 

2. If the c address contains a legitimate symbolic address, the analysis is the 
same as for A - 2. 

G. Exit. 

CLOCK MODIFICATION 

The Clock-modification option is provided to allow the programmer to interrupt the normal 
sequence of address assignment by altering the reading of the Clock. The modification 
option affords the following capabilities: 

1. The programmer can direct the routine to add or subtract a specific number of 
word times from the band-relative address that would normally be assigned to the 
a, m, and c portion of an instruction. The programmer may also specify a new 
reference point from which the adjustment is to be made. This point may have 
been previously identified or it may still remain to be assembled by the routine. 

2. The programmer can direct the X-6 System to reset the Clock to one of the 
following conditions after assignment has been made. 

a. The reading before the adjustment was made. 

b. A reading based on the adjusted address. 

c. A reading based on the adjusted address and further modified by the addition 
of a specified number of word times. 

CLOCK MOD IF ICA T ION INSTRUCT 10 NS 

All clock-modifying instructions will contain the word CLOCK in the a address. This 
will indicate to the assembler that a modification to an address is to be made. The 
modification instruction will immediately precede the instruction containing the address 
to be adjusted. The following are internal instructions to the X-6 system. These instruc­
are to be key-punched in the same way as any X-6 instruction. The card containing the 
modification instruction is filed immediately before the card containing the instruction to 
be modified. No card number will be entered on the modification card thereby allowing 
their insertion into an operation without disturbing the Detail card sequence. 

/),,!),,/),, m 
~ 
SS SSS 

c ..---.... 
OOiii 

Modify the succeeding a address. 

Here: sssss is any legitimate X-6 symbolic address. 

iii is a numeric increment that is to be added 
to the absolute equivalent of this symbolic 
designation. 

The a address of the instruction to be modified will be assign·ed 
an absolute address that is iii word times from the absolute 
location of sssss. 

41 



42 

ADA m .._,._,,_ 
xxxOn 

ADM m .._,._,,_ 
xxxOn 

ADC m .._,._,,_ 
xxxOn 

c .._,._,,_ 
00 iii 

c .._,._,,_ 
00 iii 

c _...__ 
OOiii 

Modify the succeeding a and m addresses. 

Here: l l l is a numeric increment added to the Clock 
reading which will be assigned to the next 
a address. 

xxx is a numeric increment that is to be added 
to the new Clock reading to derive the m 
address of the next instruction. 

n is 0 if the adjusted Clock reading is to be 
used to derive the m address of the next 
instruction. 

n is 1 if the Clock reading prior to adjust­
ment is to be used to derive the m address 
of the next instruction. 

If xxx is zeros (000), the next m address will be derived normally, 
either from the adjusted or the preadjusted Clock reading. This 
will depend upon whether n equals 0 or 1. 

Assign the next a normally and modify the succeeding m and c 
addresses. 

Here: iii is a numeric increment added to the Clock 
reading which will be assigned to the next 
m address. 

xxx is a numeric increment that is to be added 
to the new Clock reading to derive the c 
address of the next instruction. 

n is 0 if the adjusted Clock reading "is to be 
used to derive the c address of the next 
instruction. 

n is 1 if the Clock reading prior to adjust­
ment is to be used to derive the c address 
of the next instruction. 

If xxx is zeros (000), the c address of the next instruction will 
be derived normally, either from the adjusted or the preadjusted 
Clock reading. This will depend upon whether n equals 0 or 1. 

Assign the next a and m normally and modify the succeeding 
c address. 

Here: iii is a numeric increment added to the Clock 
reading which will be assigned to the next 
c address. 

xxx is a numeric increment that is to be added 
to the new Clock reading to derive the 
a, m, or c portion of the instruction directly 
succeeding the next c address. 

n is 0 if the adjusted Clock reading is to 
be used to derive the address to which 
the next c will transfer control. 



SEA m _.....__ 
xxxOn 

SEM m ,,,_.__ 
xxxOn 

c 
~ 
sssss 

c _.....__ 
SS SSS 

n is 1 if the Clock reading prior to adjust­
ment is to be used to derive the address 
to which the next c will transfer control. 

If xxx equals zeros (000), the address to which the next c ad­
dress will transfer control will be derived either from the ad­
justed or the preadjusted Clock reading. This will depend upon 
whether n equals 0 or 1. 

It should be noted that if the next c is spaces, the a address 
following it will be assigned the same absolute location in 
storage. 

Modify the succeeding a address. 

Here: sssss is any legitimate X-6 symbolic address. 

xxx is a numeric increment that is to be added 
to the band-relative position of the sym­
bolic address to derive the next a address. 

n is 0 if the next m address will be derived 
normally from the adjusted Clock reading. 

n is 1 if the next m address will be derived 
normally from the Clock reading prior to 
adjustment. 

If xxx equals zeros (000), the band-relative position of symbolic 
designation sssss will be assigned to the next c address. 

Assign the next a address normally and modify the succeeding 
m address. 

Here: sssss is any legitimate X-6 symbolic address. 

xxx is a numeric increment that is to be added 
to the band-relative position of the sym­
bolic address to derive the next m address. 

n is 0 if the next c address will be derived 
normally from the adjusted Clock reading. 

n is 1 if the next c address will be derived 
normally from the Clock reading prior to 
adjustment. 

If xxx equals zeros (000), the band-relative position of symbolic 
designation sssss will be assigned to the next m address. 

43 



44 

SEC m __...__ 
xxxOn 

c 
~ 
sssss 

Assign the next a and m normally and modify the succeeding 
c address. 

Here: sssss is any legitimate X-6 symbolic address. 

xxx is a numeric increment that is to be added 
to the band-relative position of the sym­
bolic address to derive the next c address. 

n is 0 if the adjusted Clock reading is to be 
used to derive the address to which the 
next c will transfer control. 

n is 1 if the Clock reading prior to adjust­
ment is to be used to derive the address 
to which the next c will transfer control. 

If xxx equals zeros (000), the band-relative position of symbolic 
designation sssss will be assigned as the next c address. 

NOTE: The number of word times used to modify an address is always added to the Clock 
reading. Therefore, to decrement the Clock reading, the number of word times is 
subtracted from 200, and the result is used as the modifying information. 

Examples Employing Clock Modification 

The following examples illustrate some of the possible uses of the Clock modification. 

1. Two quantities, in K~~29 and W~~lO, are to be compared. Control will be transferred 
on the basis of this comparison. If K~~29 is either greater than or equal to W~~lO 
control will be transferred to 4N for further processing. If neither of these conditions 
is met, control will be transferred to 7N. 

inst. 
line a code m c 

1 lN LDA K 29 

2 LDL w 10 

3 TEQ 4N 

4 TGR 4N 7N 

The X-6 assembler might produce the following computer coding. 

inst. 
line a code m c W/T 

1 0200 25 4002 0204 4 

2 0204 30 4406 0208 4 

3 0208 82 0411 0211 3/3 

4 0211 87 0411 0214 200/3 



It can be seen that it could take a possible 211 word times to execute these four lines of 
coding if both m addresses, in each comparison, have a common transfer point. However, 
by inserting a Clock modification instruction in the X-6 coding, the execution time for 
these four lines can be reduced. 

inst. 
iine a code m c 

1 lN LDA K 29 

2 LDL w 10 

CLOCK ADM 00001 00003 

3 TEQ 4N 

4 TGR 4N 7N 

Three word times are added to the reading that the Clock would normally assign to tag 
4N and then the Clock is restored to its initial value to derive the c address. The max­
imum number of word times it would now take to execute these four instructions would 
be 17 or a saving of 194 word times. 

inst. 
line a code m c W/T 

1 0200 25 4002 0204 4 

2 0204 30 4406 0208 4 

3 0208 82 0414 0211 6/3 

4 0211 87 0414 0214 3/3 

2. Two quantities, located in W~~99 and W~183, are to be multiplied together. Optimum 
execution time, based on the sentinel placement in the multiplier, should be 40 word 
times between a and c of the multiplication line. Modify the multiplication line so that 
this optimization will be achieved in the final absolute address assignment. 

line 

1 

2 

a 

lN 

CLOCK 

inst. 
code 

LDL 

ADC 

MUL 

m c 

w 99 

00001 00135 

w 183 

45 



46 

Since normal assignment of c would be based on a reading that is 105 word times greater 
than a, and since it is desired that execution time between a and c be only 40 word 
times, the Clock would have to be decremented by 65 word times before c is assigned. 8 

This is accomplished by subtracting the desired decrement from 200, adding the result to 
the Clock, and deriving c from that reading. The coding that would be produced by the 
assembler might appear in the following manner. 

line 

1 

2 

a 

0200 

0204 

inst. 
code 

30 

85 

m 

4002 

4006 

8 
X-6 always assi~ns 105 word times in a multiplication. 

c 

0204 

0444 

W/T 

4 

40 



7. Programming Procedure 

SUGGESTIONS FOR FLOW-CHARTING 

1. DeH-ne your operations as you flow-chart; keep them short. 

2. Use large circles for communication links between operations; assign permanent tags 
to these circles. 

3. Use smaller circles for communication I inks within operations; assign temporary tags 
to these circles. 

4. Use X-6 symbology in the flow chart. Assign table and interlace symbols, and working 
storage addresses at this time. 

CODING 

1. Start each operation with a header, card type 7, on a new piece of coding paper. 

2. Code the main chain first and then the lesser used branch paths. Since each address is 
allocated the first time it is encountered, this technique will produce better minimization. 

3. Use the comments columns liberally. The X-6 edited listing will be more valuable if 
full comments are appended. Limit your comments to numerics and alphabetics. 

4. Use the card number as a cross reference to the box on the flow chart. 

5. End each operation with an end-operation sentinel, card type 9. 

6. Be sure all working storages are fi lied properly initially. Main storage is often filled 
with stop orders rather than zeros. 

7. Buffer tests must be inserted by the programmer when required. Accurate estimates 
can be made by consulting the table Instruction Coe/es Information Words. 

PREPARATION FOR ASSEMBLY 

1. Have all operations keypunched and verified. 

2. Obtain any needed library routines and prepare specification cards. 

3. Prepare card types 1, 2, 3, 4, 5, and 10 if this has not already been done. Be sure to 
restrict the area used by the standard loading routine. 

4. Arrange the input deck in the des ired order. If the program is very large, place the 
most important operations first; they will get better minimization. 

5. Sight check the separate operations to make certain that card types 7, 8, and 9 within 
each operation are identically punched in columns 3-5 (operation number). 

6. Either manually or by machine, check that card numbers are ascending within operations 
with no omissions. 

47 



48 

ASSEMBLY 

1. Follow the X-6 operating instructions. 

2. Check the edited I is ting carefully. Al I detected input data errors are coded and tab­
ulated in print word 01 on the listing. These errors must be corrected before debugging 
can commence. 

3. The output program deck is complete in stacker zero of the Read-Punch Unit. Any 
cards in stacker l should be destroyed. 



a. Operating Instructions 

LOADING AND ASSEMBLING 

1. Load X-6 Program. If the deck is in the three instruction per card format use PL DO 1. 
If it is in the one instruction per card format use PT AO 1. 

2. After X-6 is loaded, or earlier: 

a. Feed blank cards through to a II stations of the R PU. 

b. Advance paper in HSP so six free holes show above the paper holding, clamps. 

c. Put X-6 input program deck in the HSR. 

3. To assemble a program: 

a. Go on continuous, general clear, and run. 

b. Successful stop is 67888cccc. 

c. Error stops are listed on the following pages along with error codes which do not 
stop the computer. 

4. Get a memory dump to preserve the information accumulated during the assembly which 
will be useful for debugging. 

5. The following routines might also be used, after an X-6 assembly, if desired. 

a •. X-6LNU - Produces a list of all storage locations not used by the assembled pro­
gram. This routine should follow the memory dump. 

b. MAC02 - Produces a listing of all storage locations with page and line number of 
the program contents. 

6. To reassemble, load the last 110 cards of the X-6 deck. 

ERROR CODES 

These error codes appear on the printer listing as shown on page 51. 

CODE 

A 

B 

c 

D 

ORIGINATES IN OP. 

PTS 

TTS 

KWS 

MAR 

MEANS 

More than 300 perm. tags. 
Address 9999 has been assigned. 

More than 50 temp. tags. 
Address 9999 has been assigned. 

Address higher than K 299 or 
W 299 has been requested. 9999 
has been assigned. 

No more storage - have assigned 
9999. 

49 



50 

CODE 

F 

G 

H 

I 

J 

STOP CODES 

ORIGINATES IN OP. 

STS 

AAR 

PDC 
(AC 2) 

ICA 

IAP 

MEANS 

Nothing in specs table matches 
this "X" symbolic address. 
Absolute 9999 has been assigned. 

An incorrect a address. Previous 
instruction had blanks in m or c 

part. This a should have been 
blank. This a has been processed 
properly - the previous line must 
be fixed. 

Spaces in m and c. Spaces in m 
will be assumed to be in error. 

Invalid instruction code. 

Reference has been made to a 
word part in an interlace which 
was not properly restricted in 
summary card type 4. Address of 
9999 has been assigned. 

These stop codes appear in the m portion of a STP order on the printer listing. 

CODE 

0001 

0002 

0003 

0004 

0005 

0006 

0007 

ORIGINATES IN OP. 

GN2 

GNC 

MCl 

PSE 

PRN 

PUN 

MC9 

MEANS 

The card being diverted to HSR 
Stacker #2 has failed to pass 
read check. Reposition cards 
and hit start to try again. 

Malfunction in HSR has caused 
overflow. Fix trouble. Hit start 
to try again. 

No Label card (type 1). Prepare 
Label card. Reposition input 
deck. Hit start to begin again. 

Too many specs for current 
library routine. Hit start to pro­
ceed. Error code F will appear 
later. 

Malfunction in printer has caused 
overflow. Fix trouble. Hit start 
to print current line. (IT WAS PRN 
ORDER THAT CA USED IT.) 

Malfunction in RPU. Fix trouble. 
Hit start to execute punch order. 

Card type sequence error. Check 
last card read. If it is a type 7 
card, hit start to get to next stop 
order. Go to c to process card. If 
it is type 8, go to m of next stop 
order. 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TSTPR OP CD LOCA OP MMMM CCCC K 

ERR 1 

ERR 2 0601 25 403 205 

@:RR 3 0405 30 207 209 

4 0209 82 612 412 GERR 

CAP 5 0412 25 405 407 

ERR 7 0407 30 205 405 

ERR 8 0605 OBE03 1 lMJ I 3 

ERR 9 0805 EM1D53J10- 4 

ERR 10 1005 36 408 

ERR 11 0408 86 222 

ERR 12 0422 23 224-

ERR 13 0224 82 227 222 

ERR 14 0227 87 422 230 

ERR 15 0230 42 234- 433 

ERR 16 0434 22 238 422 

~RR 17 

ERR 18 0505 30 307 309 

ERR 19 0309 70 511 K 

ERR 20 0511 25 313 307 

ERR 21 

ERR 22 0507 60 509 711 

ERR 23 0711 70 513 K 

ERR 24 

ERR 25 0520 50 313 307 

ERR 26 CLOCK 0008 

A TAG C OP M TAG C TAG 

ERRlN LDA lN 

2N LDA 

TEQ 

LDA 2N 

LDL lN 2N 

8 17AY4 D26J9 

9 A62K5 4JD1T 

CAA 

CAX ERR2N 

ERR3N CTA 

TEQ ERR2N 

TGR ERR3N 

HBT ERR4N ERR5N 

RBT ERR3N 

RA LDA TS22N TS23N 

LDL 

ADD RA 

LDA 3N 4-N 

RA LDA 3N 4N 

STA SN 

ADD SN RA 

RA STL 6N 7N 

STL 3N 4-N 

CLOCK STL TS22N 00015 

0 

0 

TP CD COMMENTS 54059 PAGE 6 0 

0 
7 

8 0060 TEST ERROR PATH G AND H IN ACO 0 
8 0061 

8 0062 TEST ERROR PATH H IN AC5 0 

8 0063 TEST WRG op· AND CARD NO 0 
8 0064 

8 0065 TEST CON FOR CONSTANTS 0 

8 0066 WITH UNDIGITS 1 3 5 0 
8 0067 

8 0068 TEST NEW ORDERS 0 

8 0069 
0 

8 0070 TEST LATENCY PATCH 

8 0071 FOR ACTION CODE FIVE 0 

8 0072 
0 

8 0073 

8 0 

8 0 07 4- 105 A 
0 

8 0075 109 A 

8 0076 113 A 0 

8 
0 

8 0077 107 A 

8 0078 109 A 0 
8 113 A 

0 
8 0079 117 A 

8 15 WORDS TIMES AFTER 0 

0 

0 

51 



52 

CODE 

0008 

0009 

8888 

0010 

ORIGINATES IN OP. 

PDC 

PDC 

MCK 

MCK 

MEANS 

Operation number on detail card 
is incorrect. Hit start and machine 
will stop on 67 order. Go to m to 
process card. Go to c to get next 
card. 

Card number on detail card in­
correct. Same action as 0008 
STOP. 

Final successful stop. Follow 
normal operating instruction 
before hitting start if new as­
sembly is wanted. 

Card being processed is not a 
type 7 or 10 card. 9 Depress 
run button. If card last read is 
to be processed as type 10 card, 
go to the c address of this order. 
If it is to be processed as a type 
7 or 8 card, go to the m address. 
This will transfer control to an­
other stop order. Now if the card 
to be processed is a type 7, go to 
the c address of this stop order. 
If it is to be processed as a type 
8 card, to m address. 

9
ThiB stop was inserted to remedy the error of not having a type 9 card followed by a type 7 or 10 card. 



Appendix A. 

Summary ol lnslruclion Codes 

A summary of instruction codes on the following pages lists X-6 mnemonic codes, their 
computer equivalents, and descriptions of each instruction. 

A hyphen in an m or c protion of instruction indicates that the computer ignores that 
portion when the instruction is executed. 

COMPUTER 
CODE 

ARITHMETIC 

70 

75 

85 

55 

TRANSFER 

25 

05 

30 

60 

65 

50 

77 

23 

26 

06 

31 

86 

36 

X-6 CODE 

ADD m c 

SUB m c 

MUL m c 

DIV me 

LOA m c 

LOX m c 

LDL m c 

STA m c 

STX m c 

S TL m c 

ATL - c 

CTA m -

CLA m -

CLX m -

CLL m -

CAX m -

CAA m -

FUNCTION 

Add (m) to (rA). 

Subtract (m) from (rA). 

Multiply (rL) by (m). 

Divide (m) by (rL). 

Load rA. 

Load rX. 

Load rL. 

Store rA. 

Store rX. 

Store rL. 

(rA)~rL. 

(rC)~rA. 

Clear rA to zeros. 

Clear rX to zeros. 

Clear rL to zeros. 

Clear rA and rX to zeros. 
(sign of rL goes to rA 
and rX). 

Clear rA to zeros (original 
sign remains). 

MINIMUM 
WORD TIMES 

5 

5 

105 

115 

4 

4 

4 

4 

4 

4 

3 

3 

3 

3 

3 

14 

3 

53 



TRANSLATE 

12 CTM - c Translate card-to-machine 3 
(computer) code. 

17 MTC - c Translate machine (computer)- 3 
to-card code. 

3/4 3 TXM - c Translate UNIVAC XS-3 code to 3 
machine (computer) code. 

3/4 1 TMX - c Translate machine (computer) 3 
code to UNIV AC XS-3 code. 

COMPARISON 

82 TEQ m c Test (rA) and (rL) for equality. 3 
Next_ instruction is at m if 
(rA) = (rL). 

87 TGR m c Test (rA) and (rL) for magnitude. 3 
Next instruction is at m if 
(rA) > (rL). 

EDIT 

20 BUF m c Buff (m) onto (rA). 4 

35 ERS m c Erase: (rA) controlled by (m). 4 

32 SHR m c Shift right (rA) and (rX) 3 + n 
~ Here nn = number of places 
~~~nn to shift (0 to 10). 

37 SHL m c Shift (rA) left. Here nn = 3 + n
~ number of places to shift
~~~nn (0 to 10). 

62 ZUP - c Zero-suppress in rA and rX. 4 

CONTROLS 

00 JMP m - Jump tom. 2 

67 S TP m c Stop. m is alternatlve Ind. 
next instruction (requires 
rn anual intervention). 

INDEX REGISTERS 

02 LI Rm c Load index register, 3 

07 11 Rm c Increment index register. 4 

H I G H -SP E E D R E AD E R (IN P U T) 

42 HBT m c HSR buffer test. Next in- 3 (4 if m) 
struction is at m if buffer is 
loaded. 

54 



96 HBU m c HSR buffer unload. 203 1 0 

~ Here: n = HSR interlace 
HnOOd (0 through 9). 

d 0 for normal 
translation. 

d 1 for translation 
"on the fly." 

72 HCC m c HSR card cycle. Next 3(4ifm) 
instruction is at m if 
HSR is busy. 

47 HS S m c HSR stacker selection. 3 
~ Here: n = stacker 0, 1, or 
!:l!:lnOO 2. 

READ-PUNCH UNIT (INPUT·OUTPUT) 

22 RBT m c RPU buffer test. Next 3 (4 if m) 
instruction is at m if the 
buffer is loaded. 

46 RBU m c RPU buffer unload. 203 10 

~ Here: n RPU input inter-
RnOOd lace (0 through 9). 

d 0 for normal trans-
la ti on 

d = 1 for translation 
"on the fly." 

81 RCC m c RPU card cycle. 103 10 

~ Here: n RPU output inter-
OnOOd lace (0 through 9). 

d 0 for normal translation. 
d 1 for translation "on 

the fly." 

57 RS S - c RPU select stacker 1. 3 

HIGH-SPEED PRINTER (OUTPUT) 

27 PBT m c Printer test. Next instruc- 3 (4 if m) 
tion is at m if Printer is 
free for use. 

16 PFD m c Printer advance. 4 
~ Here: yy = number of lines to 
/),. /),. /),. y y advance (00 to 79). 

11 PRN m c Advance and print. 592 
~ Here: n Print interlace 
PnOyy (0 through 9). 

yy number of lines to 
advance (00 to 79). 

10 word-time applicable only when d = O. Word time is 207 when d = 1 for HBU: is 208 when d = 1 for RCC and RBU. 

55 



56 

TAPE SYNCHRONIZER (INPUT-OUTPUT) 

7/4 2 

8/4 2 

3/4 7 

3/4 2 

6/4 6 

3/4 6 

6/4 2 

TRD m c 

~ 

tl.tl.xyz 

TWR m c 

~ 

tl.tl.xyO 

TBT m c 

TS Tm c 

TBU m c 

~ 

TnOOO 
ZnOOO 

TBL m c 

~ 

TnOOO 
ZnOOO 

TRW m c 

~ 

tl.tl.xyO 

Read 1 block from tape buffer 
band. 
Here: x = Servo number (0 

through 9). 
y = Mode - 0 if USS. 

5 if UNIVAC. 
z Direction and gain-

0 forward normal. 
1 forward low. 
2 forward high. 
5 backward normal. 
6 backward low. 
7 backward high. 

Write 1 block from the tape buffer 
band onto the tape. 
Here: x Servo number (0 

through 9). 
y Mode and density-

0 = USS 250 cpi. 
5 = UNIVAC 250 cpi. 
6 = UNIV AC 125 cpi. 

Test tape buffer. If it is loaded, 
the next instruction is at m. 

Test for servo availability, If 
available, the next instruction 
is at m. 

Tape buffer unload. 
Here: n = the tape interlace 

(0 through 9). 

Tape buffer load. 
Here: n = the tape interlace 

(0 through 9). 

Rewind tape to first block 
condition. 
Here: x Servo number. 

y = Type of rewind-
0 without interlock. 
2 with interlock. 

17 

17 

3 (5 if m) 

3 (4 if m) 

205 

205 

600 ms 



Appendix B. 

Summary of Card Types 

CARD TYPE 1 - LABEL 

CARD 
TYPE t----- ---------------- ---· 

1 

..1. ..l. I • I I 7 I t 10 _11 .11_ _ll_ _H_ _lL ii_ __ ff 11 _ll__ ---22_ 21 22 >I >• _ll_ __u_ _21_ _2L _n _ _lQ 11 _1> JJ _M_ _1_1 H 17 31 It •O '1 •> •I .. •5 

Q s 1----------- - ------ -- - - - - ---------- - -- ------ - --------------- - ---- -- - --- - - ------- - ----------------- --- -- - ----------12 

COMMENTS • ANY DESCRIPTIVE ENGLISH 

Here, xxxxx is the five-digit program identification. 

mm is month.11 

dd is day. 

yy is year. 

11 Month, day, and year can be in any format. 

57 



58 

CARD TYPE 2 - RESTRICTS 

Here, 

CARD 

TYPE ENTRY I ENTRY 2 ENTRY 3 
---2 1-------------------- T-c~-;;-i"i--n-5--~--~-~ i--c~-i"i--n-;.--~--;-~--~ -.cTll_i; __ il_ii--;-5--5--s- ----------ii 

34 

l I I 4 I I 7 I t 10 II 12 II 14 II II 17 II It 20 21 22 2J 24 21 H 27 21 2t 10 II 12 U 14 H H 17 H H 40 0 42 41 14 '5 

i ENTRY4 
a! -------------------------
~ii n n n n s s s s 

ENTRY 5 ENTRY 6 ENTRY 7 

i 
~ 

J 
41 47 .. 41 IO II II II 14 II II 17 H It IO II II II 14 15 II 17 II It 70 71 72 ·71 74 75 71 77 71 79 10 11 12 U 14 15 U 17 11 19 

i i 

nnnn 

s s s s 

is the increment. 

is the total number of restricted addresses. 

is the absolute starting address. 

34 

CARD TYPE 3 - TAG EQUALS 

Here, 

CARD 
TYPE ENTRY 1 ENTRY 2 ENTRY 3 
--3 !-------------------- t.--ct.--f-t._"A_n __ ii_n_n ct.--t--f-i_a_ii--n-ri--ii t.--'t--f-'t--t:-A_ii_n __ ii_n ----------ii 

I I I 4 I I 7 I t 10 II 12 II 14 II II 17 II II 10 11 U .4_1 24 21 ~ 17 ~ 2t 10 II 12 U 14 H H 17 II JI 40 41 42 41 14 45 

.. t7 U .. 10 e1 12 IJ H 11 19' 17 II It 10 •1 12 IJ M II . M 17 II It 70 1J 71 7J 7t 79 71 77 71 71 IO II 11 IJ M 19 II 17 II 19 to 

t t t t t 

nnnnn 

is the permanent tag or K or W address. 

is the absolute address. 



CARD TYPE 4 - INTERLACES 

Here, 

CARO 
TYPE ENTRY 1 ENTRY 2 ENTRY 3 
---4 1-------------------- t-ll-K"A_K_x_il __ h"_o __ o+i-1i--a-A_K_x_I>_1l_<ro "t--ii--6-"A-K-xT-i;--o-cf ----------ii 

7g 

I I I • I I 7 I t 10 11 12 II I• II II 17 11 It IO 21 U II H H H 27 H 21 IO II 12 U N II H 17 II It .0 0 0 U U •• 

7g 

9 
.. '7 .. ... IO II 12 II N II H 17 U H 1G &1 al U M 11 u 17 &a H 7tt 7t H 71 1' 71 17& 11 71 71 IO 11 12 IJ N II U 17 II It t0 

t 

n 

is the type of interlace; R, P, 0, H, T, or z. 
is interlace number (0-9). 

x is 0 for a two part untranslated interlace (unprimed, primed). 13 

1 for a two part translated interlace (zone, numeric). 

2 if both kinds are specified. 

b bOO is the absolute address of the band. (bb must be an even number). 

CARD TYPE 5 - TABLES 

Here, 

13 

CARD 
TYPE ENTRY I ENTRY 2 
---5 -------------------- i--il-s"A-s"A-5--5--5-5 r-ci_A"_A_K_;--~-;-~ _f_n_6_"A_A"'2S-s--;-5--; ----------ii 

I 2 I 4 I I 1 I I 10 11 U U l• U 11 17 11 11 20 21 22 2J 24 25 H 27 21 2t SO Jl J2 JJ H H H 37 JI 39 40 41 42 U 4' 0 1 

9 
41 47 &I '9 SO !U SJ 51 54 55 H !7 SI 99 IO II 62 63 M 15 64 17 61 61 70 7J 72 7J n 75 76 77 71 7t 10 11 8' IJ M H 16 17 II 19- 90 

t 

n 

ssss 

iii 

xxx 

is the type of table; S, U, or V. 

is table number (0-9). 

is the absolute starting address. 

is the increment. 

is the total number of entries in the table. 

Notations here are not applicable to print or tape Interlaces an x will always equal O. 59 



60 

CARD TYPE 6 - SPECIFICATIONS 

Here, 

CARD OPER, CARO 
TYPE NO. NO, ENTRY 1 ENTRY 2 ENTRY 3 1----6 h-Th+y-y--y. ---- x--,(rK_r1_1i--e--e-e--e--e1 x_A_A_n_ii--e--e--e--e--e x--K:(rn--ii--e--e--e--e--e ----------i; 

I 2 J 4 5 6 7 I 9 10 11 12 13 U U ti 17 11 19 20 21 22 23 24 25 26 27 21 2t 30 JI 32 JJ 34 35 36 37 JI 39 40 41 0 U .U 45 

----------12 
§;1 ENTRY 4 ENTRY 5 ENTRY 6 ENTRY 7 
~ ------------------------- ------------------------ ------------------------- -------------------------
~ x A Anne e e e ex A Anne e e e ex A~nneeeeeXAAnneeeee 

~ 

:!! 
if 46 47 41 4t !O 51 92 ~1 94 99 96 97 91 99 60 11 62 U 64 69 66 67 H 69 70 71 72 73 74 79 76 77 71 79 10 11 12 U 84 19 86 17 II 89 90 

hhh 

yyy 

x~~nn 

eeeee 

is the operation num her. 

is the card number. 

is the nth variable, as x~~ 01. 

is the X-6 equivalent address. 

CARD TYPE 7 - HEADER 

Here, 

CARD OPER. CARD 
TYPE NO. • NO. ---7 1--h--h y.--y-y ---------------- --------------------------- --------- ----------------------------------------1; 

I 2 J 4 5 I 7 I I 10 1l U U 1' U 11 17 11 H 20 21 22 23 24 25 215 27 21 29 JO Jl 32 JJ 34 35 H 37 31 J9 •O 41 42 43 4' 45 

i 
~ ------------------------------------------------------------------------------------------------------ ----------12 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 

9 
.. ., .. •• IO 91 !2 u 94 !9 H 97 58 99 60 II .. el !4 e• ee 67 6! •• 70 71 72 7! 74 75 76 11 78 79 IO 81 12 u .. 89 H 17 II •• 90 

hhh 

yyy 

is the operation number. 

is the card number. 



CARD TYPE 8 - DETAIL 

0 
z 

CARD OPER. CARD 
TYPE NO. NO. 

---8 h-TI y--Y-Y 
INST. 

a CODE m c a.--a-a.--a:-a - rr-r -1-n1-ffi--ril-1n-.n -c-c--c-e:--c ------------------------------------ii 

.J 
0 
a: 
1-
z 
0 
u 

l 2 I 4 I I 1 I t 10 11 12 U 14 U 11 17 11 It 20 21 22 2J 24 25 26 27 21 29 30 J1 32 U S4 H H J7 31 39 40 41 42 4J iU 4S 

~ ----- ------ ------------ ---------- --- ---------- - -- .. --- -- -- - - - - -- - - - -- -- - - - - -- --- - - ------ --- ---- -- -- .. -- - ----------Ii 

~ a a: 

Here, 

Control 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 
7g 

9 
4' 47 .. " !50 !U 52 53 !ot 55 56 57 51 !9 60 61 62 13 M 15 66 67 68 69 70 71 72 73 74 75 75 71 78 79 80 11 U 113 M 85 86 17 18 89 90 

is 

hhh 

yyy 

aaaaa 

I I I 

mmmmm 

CCC CC 

1, 2, or 3 

u or P 

is the operation number. 

. is the card number. 

is the X-6 a address. 

is the mnemonic instruction code. 

is the X-6 m address. 

is the X-6 c address. 

for the appropriate index register if index modification is indicated. 

for the unprimed or primed word of an alphabetic constant. 

N or Z for the numeric or zone portion of an alphabetic constant. 

2 for a negative, numeric constant. 

fl. for a positive, numeric constant. 

61 



62 

CARD TYPE 9 - END-OPERATION SENTINEL 

Here, 

CARD OPER. CARD 
TYPE NO. NO. 1----9 h-fi--h y-y-y""' --------------------------------------------------------------------------------------------Ii 

3~ 

I 2 J • !5 I 7 I I 10 11 ll IJ U 1!5 II 17 II It 20 21 22 2J 24 2!5 26 27 21 21 30 J1 32 .U .U J! 36 l7 11 39 40 41 42 43 " 4' 

~ 
~ ---------- - --------- - - ------------------------------ - - ---- - -- - - ------ - - -- - -------------------- -- - ----- ----------12 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 

41 47 .. ti ao !51 52 n !54 !5!5 H !57 !51 " IO •• 12 ., M 1!5 68 67 18 69 70 71 72 ,, 74 " 76 77 71 79 10 II 12 u u 15 86 17 H 19 90 

hhh 

yyy 

is the operation number. 

is the card number. 

CARD TYPE 10 - END INPUT 

~ 

CARD INST. 
TYPE CODE m C -------------------------------- ... _ -rr-1 -t-in-~--~-~-~ ~--~--;-~--~ ------------------------------------12 

.J 
0 
a: 
1-
z 
0 
u 

I 2 I • a I 7 I I 10_ 11 ll u u l5 11 17 11 II 20 21 22 n 24 2!5 26 27 21 29 30 JI 32 JJ u H 36 !7 JI 39 •o 41 42 ., " 4' 

~ ------- ------ -------- - - ----------------------- --- -------------- ----- ------ -- --- -- ------------------ --- ----------12 

COMMENTS ·ANY DESCRIPTIVE ENGLISH 

s 
D: U 0 '8 '9 90 !II H U IJ4 H H !17 H 91 IO II 12 H IA 15 M 17 61 61 70 7J 72 7:J 7' 75 7' 77 71 79 IO 11 12 IJ M IS H 17 II 119 

Here, fields III, mmmmm, and ccccc indicate the first instruction to be executed after the 
program is fully loaded. 



Appendix c. 
X-& Storage Layout 

A memory dump at the end of a successful assembly is desirable for debugging and patch­
ing of the object program. 

LOCATION 

0800 

0816 

2100-2109 

2110-2119 

2120-2132 

2200-2399 

2450-2465 

2470-2479 

2480-2509 

2520-2539 

2540-2559 

2800-3099 

3100-3249 

NAME 

Table S8 

Table S9 

Table SS 

Table V3 

Table V4 

02 Interlace 

Table V2 

Table S6 

Table S7 

Table Vl 

Table VO 

Table S4 

Table S2 

USE 
Valid mnemonic codes stored 20 words 
apart. 

Information words for each mnemonic 
code stored 20 words apart. 

Interlace origins (from card type 4). 

Two part translated or untranslated 
interlace word positions for O. 

Two part interlace word positions for P. 

Repunching of output cards which fail 
read check. 

Translated and untranslated word posi­
tions for the H and R interlaces. 

Interlace origins (from card type 4). 

Table origins and increments (from card 
type 5). 

X-6 equivalents for last set of spec­
ifications. 

Specifications. Cleared after every op­
eration. No value after complete 
assembly. 

K and W addresses and absolute ad­
dresses stored as follows: 

2800 - KO and WO as OKKKKOWWWW 
2801-Kl and Wl as OKKKKOWWWW 

Addresses of permanent tags in same 
order as table Sl. Stores as OaaaaOaaaa. 
Left half-words used for first 150 tag 
addresses, then right half-words are 
filled. 

63 



64 

LOCATION 

3250-3299 

3300-3599 

3600-3799 

3800-3999 

4000-4199 

4200-4399 

4200-4399 

4400-4599 

0000-0199 

NAME 

Table S3 

Table Sl 

Table SO 

PO Interlace 

HO Interlace 

01 Interlace 

RO Interlace 

P 1 Interlace 

Restricted 

USE 
Temporary tags with absolute addresses. 
Cleared after every operation. No value 
after complete assembly. 

Permanent tags. The five-character al­
phanumeric tag is stored as zzzzznnnnn. 
One tag per word. 

Storage availability. Each word of table 
represents a band-relative address, 
000-199. The twenty bits in the left 
half-word are zero (0) for unused or one 
(1) for used, representing the twenty 
standard access bands. The twenty bits 
in the right half of words 3600-3649 
represent high-speed access storage. 
Addresses 4000, 4050, 4100, and 4150 
are included in first digit of right half­
words. Right half of words 3650-3799 
are unused. 

Header for X-6 listing. 

High-Speed Reader read-in area. 

Output punching area. 

Read-Punch Unit read-in area. 

Detail lines for X-6 listing. 

Used to load X-6 and later filled with 
memory dump routine. 



0 
) 
) 
\J 
I') 

L 

::i 

SUMMARY AND SPECIFICATIONS CARD 

Appendix D. 
Card Forms 

... ~!~t ~~J~·_, ~N~·~->---+-----=!T!'!...'._ ____ +----=~'!__! ____ t---~.:..·.::_> ____ ~- --- ~~ ~ 
.,, 
rn 

1 2 3 4 5 6 7 8 

X - - 6 ASSEMBLY SY STEM 56 ° ..,, 

7g ~ 
-i 

9 10 11 ll 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 0 

z 
(/) 

~ ENTRY 4 ENTRY 5 ENTRY 6 ENTRY 7 ~ : t------------- +------------+-------------1------------- ~ ------12 ~ 
0 
t; 
z 
i 
"" ::i:: 

........ 
0 
0 
N 
(Y') 

a.. 

Q 

~ 
z 

~ z 
i 
"" c::: 

< 
ui 
::i 

7g 

9 
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 

P-32006 

DETAIL CARD 

CARD OPER. CARD INST, 
TYPE NO, NO. a CODE m c 

1--·-1-- -- -1--- ~ ~-- 1-- -----1-- t---- -- ------ ------1------------ ------12 
...I 

34 0 
0::: 
I- X- -6 ASSEMBLY SYSTEM z 56 
0 
(.) 

7g 

1 2 3 4 5 6 7 8 9 10 11 ll 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

1--------------------------------------------------~----,2 

34 

COMMENTS· ANY DESCRIPTIVE ENGLISH 56 

7g 

9 
46 47 '8 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 

P-32007 

0 
rn 
-i 
> 
r 

0 
> 
::u 
0 

c: 
(/) 

(/) 

........ 
(J:) 

0 

65 



UNIVAC® Solid-State Computer 

CARD OPER. CARD 
TYPE NO. NO. 

1 2 3 4 5 6 7 

1 

2 

4 

5 

6 

7 

8 

9 

0 

2 

4 

5 

6 

7 

8 

9 

0 

···:."•• ...... UT2290 REV. I 

c 
0 a N 
T 

8 11 12 13 14 15 16 

X-6 ASSEMBLY SYSTEM - CODING CHART 

INST. m c: 
CODE 

80 COL. 31 
17 18 19 21 22 23 24 25 26 27 28 29 30 90 COL. 46 

CONTROL (Column 16) 

A-POSITIVE CONSTANT U - UNPRIMED 

2-NEGATIVE CONSTANT P - PRIMED 

D - DUO-PRIMED 

COMMENTS 

THROUGH 
THROUGH 

N - NUMERIC 

Z - ZONE 

80 
85 

1 - rBt 

2 - rBz 
3 - r83 

R 
E 
G 

PAGE_OF PROGRAM NO. _____ _ 

APPL/CATION __________ _ 

REGISTER R REGISTER 
CONTENT E CONTENT 

IHST m c G INST m c 



UNIVAC® Solid-State Computer PAGE_OF PROGRAM NQ. _______ _ 

APPL IC ATI 0 N -------------
X-6 ASSEMBLY SYSTEM SUMMARY CARD LAYOUT SHEET 

CARD TYPE CARD TYPE CARD TYPE CARD TYPE 

I 2 3 . s 6 7 8 9 10 I 2 3 • s 6 7 8 9 10 I 2 3 . 5 6 7 8 9 10 I 2 3 • 5 6 7 8 9 10 

II 12 13 I• IS 16 17 18 19 20 II 12 13 '" IS 16 17 18 19 20 II 12 13 1• 15 16 17 18 19 20 II 12 13 '" 15 16 17 18 19 20 

21 22 23 2• 2S 26 27 28 29 30 21 22 23 n 2S 26 27 28 2!I 30 21 22 23 2• 2S 26 27 28 29 30 21 22 23 2• 2S 26 27 28 29 30 

31 32 33 3• 3S 36 37 38 39 qo 31 32 33 3' 3S 36 37 38 39 •O 31 32 33 3• 3S 36 37 38 39 •O 31 32 33 3• 35 36 37 38 39 •O 

" •2 '13 .. •S •6 •1 •8 •9 so " •2 •3 .. •S " '7 '8 0 50 "' •2 •3 .. •s •6 •7 •8 •9 so " •2 •3 " •5 " •7 '8 " so 

SI S2 S3 S• SS S6 S7 S8 59 60 SI 52 53 5• 55 56 57 58 59 60 SI S2 S3 s• SS S6 S7 S8 S9 60 SI S2 S3 S• SS SI S7 S8 59 60 

61 62 63 6• 6S 66 67 68 69 70 61 62 13 6• 65 88 67 68 69 70 61 62 63 6• 65 66 67 68 69 70 II 62 13 ,, 6S u 67 .. 19 70 

71 72 73 7• 7S 76 77 78 79 80 71 72 73 7• 75 76 77 78 79 .ao 71 72 73 7• 7S 76 77 78 79 80 71 72 73 7• 7S 76 77 78 79 80 

81 82 83 8'I 8S 86 87 88 89 90 81 12 13 811 as 86 87 88 89 90 81 82 83 8• as 86 87 88 89 90 81 82 83 811 IS 86 87 88 19 to 

CARD TYPE CARD TYPE CARD TYPE CARD TYPE 

I 2 3 . s 6 7 8 9 10 I 2 3 . s ' 7 8 9 10 I 2 3 . 5 6 7 8 9 10 10 

II 12 13 '" IS 16 17 18 19 20 II 12 13 " IS " 17 18 19 20 II 12 13 '" IS 16 17 18 19 20 II 12 13 '" 15 16 17 18 19 20 

21 22 23 2• 2S 26 27 28 29 30 21 22 23 n 2S 26 27 28 29 30 21 22 23 2• 25 26 27 28 29 30 21 22 23 2• 25 26 27 28 29 30 

31 32 33 Jq 3S 36 37 38 39 •O SI S2 13 n 3S 36 37 38 39 •O 31 32 33 3• 35 36 37 38 39 •O 31 32 33 3• 35 36 37 38 39 •O 

•I •2 •3 .. •S •6 •1 •8 •9 so " !l '3 " •s " '7 '8 " so " •2 •3 .. •5 •6 •1 •8 •9 50 " •2 "3 •5 •6 •7 .a •9 50 

SI S2 S3 s• SS S6 S7 S8 S9 60 51 52 53 5' SS SI S7 58 59 60 51 52 53 5• 55 56 57 58 59 60 SI S2 S3 5• 55 56 57 S8 S9 60 

61 62 63 6• 6S 66 67 68 69 70 II 62 u 811 15 " 17 .. 69 70 61 62 63 6• 65 66 67 68 69 70 61 62 63 6" 6S 66 67 68 69 70 

71 72 73 7• 7S 76 77 78 79 80 71 72 71 7' 75 71 77 78 71 80 71 72 73 7• 75 76 77 78 79 80 71 72 73 7• 7S 75 77 78 79 80 

II 82 83 8'I 8S 86 87 88 89 90 II 12 u "' 15 86 17 18 19 to 81 82 83 8• 8S 86 87 88 89 90 81 82 83 .. as 86 87 88 89 90 



68 

Appendix F. 
Sample Problem 

The following is a FICA routine that may be employed in a larger payroll application. 
The routine is coded to achieve the following results: 

1. Compute FICA deduction. 

2. Compute amount of FICA paid to date. 

3. Test to see if the legal FICA limit has been reached. 

SET EXIT 
(rL)-.PRL 7F 

GROSS FICA FICA 
EARNINGS x RATE...,.DEDUC 

(W-30) (K-26} 

LEGAL FICA-TO· 
LIMIT...,. DATE 

TEST ...,.. FICA·TO-
ACCUM DATE 

FLOW CHART 

FICA 
ZEROS-.DEDUCT 

(W-6) 

TEST : 
AC CUM 

EXIT TO 
MAIN 

CHAIN 

LEGAL FICA-TO.:_.. FICA 
LIMIT - DATE DEDUCT 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

PAYRL OP CD LOCA OP MMMM CCCC K A TAG C 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

FIC 

1 

2 0600 50 4-202 0604-

3 0604- 30 4-206 0608 

4- 0608 25 4-010 0612 

5 0612 82 0615 0815 

6 0615 06 0618 

7 0618 65 4-020 4-202 

8 0815 30 4017 0819 

9 0819 85 4021 0924-

10 0924- 65 

11 0972 25 

12 0814- 70 

13 0619 60 

14- 0623 30 

15 0658 82 

4-02 0 

4-010 

oooc 

4-221 

4-206 

0660 

0972 

0814-

0619 

0623 

0658 

0860 

FIC 16 0660 50 4-010 4-202 

FIC 17 0860 87 0862 0662 

FIC 18 0862 25 0008 0866 

. FIC 19 

FIC 20 

FIC 21 

FIC 22 

FIC 23 

0866 75 4010 0913 

0913 60 4-020 0660 

0662 25 4221 0673 

0673 60 4010 4-202 

FIClN 

FIC2N 

lN 

2N 

3N 

4-N 

OP M TAG C TAG TP 

7 

CD 

STL PRL7F FIC2N 

LDL K 25 

LDA W 31 

TEQ lN 

CLX 

STX W O PRL7F 

LDL W 30 

MUL K 26 

STX W 0 

LDA W 31 

ADD RX 

STA W 1 

LDL K 25 

TEQ 2N 3N 

STL W 31 PRL7F 

TGR 

LDA RL 

SUB W 31 

4N 

STA W O 2N 

LDA W 1 

STA W 31 PRL7F 

8 0001 

8 0002 

8 0003 

8 0004 

8 0005 

8 0006 

8 0007 

8 0008 

8 0009 

8 0010 

8 0011 

8 0012 

8 0013 

8 0014 

8 0015 

8 0016 

8 0017 

8 0018 

8 0019 

8 0020 

8 0021 

9 

COMMENTS 

FICA ROUTINE 

SET EXIT 

LEGAL LIMIT TO RL 

FICA-TO-DATE TO RA 

04-3982 PAGE 6 

TEST EQUALITY.FICA-TO-DATE: LEGAL LIMIT 

ZEROS TO FICA DEDUCTION 

GROSS EARNINGS TO RL 

MU LT. FI CA RA TE 

DEDUCTION TO W 0 

FICA-TO-DATE TO RA 

ADD DEDUCTION 

TEST ACCUMULATION TO W 1 

LEGAL LIMIT TO RL 

TEST EQUALITY.TEST ACCUM: 

LEGAL LIMIT TO FICA-TO-DATE 

LEGAL LIMIT 

TEST MAGNITUDE, TEST ACCUM: LEGAL LIMIT 

LEGAL LIMIT TO RA 

SUBTRACT FICA-TO-DATE 

RESULT TO FICA DEDUCT 

TEST ACCUM. TO RA 

TEST ACCUM. TO FICA-TO-DATE, EXIT 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

o· 

0 

0 

0 

0 

0 

0 69 



DIVISION OF SPERRY RAND CORPORATION 

UT2447 


	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70



