.
VSPERRY RAND

UNIVAC®
218

MILITARY
COMPUTER

UNIVAC 1218

UNIVAC 1218

LUNIVAC

FEDERAL SYSTEMS DIVISION
St. Paul, Minnesota

November, 1969

CHANGE 2
To: A1l holders of the 1218 Programmers Reference Manual, PX 2910.
From: Advanced Programming Department
Insert the changes as follows: (with 33 enclosures)

1. Title page: Remove and replace with new title page attached.
2. Remove page iii and replace with new page iii attached.

3. Remove Table of Contents pages ix/x thru xxv and replace with new pages
ix/x thru xxvii attached.

4, Remove page I1I-D-23/I1-D-24 and replace with new page I1I-D-23/II-D-24
attached.

S5. Following Section II-F insert new tab, "9200/9300 Subsystem," and
new pages I1-G-1/11-G-2 thru II-G-39,

PROGRAMMERS REFERENCE MANUAL

FOR

UNIVAC 1218 COMPUTER

PX 2910
REVISION C

CHANGE 2

NOVEMBER 1969

LINIVAC

FEDERAL SYSTEMS DIVISION

© 1908 by SPERRY RAND CORPORATION.

CHANGE 2

CHANGE RECORD

Change No. Date Reason for Change
Rev C August 1968 Retyped and extensively revised entire manual.
Rev C July 1969 Updated and revised manual. Deleted section
Change 1 on 1469 High-Speed Printer.
Change 2 | November 1969 Added Section II-G which describes the use of

the 9200/9300 Computer as a peripheral device.
Minor corrections,

ii

CHANGE 2

LIST OF EFFECTIVE PAGES

Page No. Change in Effect Page No. Change in Effect
Title Page Rev C, Change 2 IT1-C-27 Rev C, Change 1]
ii thru iii Rev C, Change 2 ITI-C-28 thru III-C-30 Rev C

v Rev C, Change 1 IIT-C-31 thru III-C-42 Rev C, Change 1
Letter Rev C V=) Rev C, Change |
ix Rev C, Change 2 IV-A-1 thru IV-A-14 Rev C

Xv thru xxvii Rev C, Change 2 IV-B-1 thru IV-D-25 Rev C

I-] Rev C IV-B-26 thru IV-B-28 Rev C, Change 1
I-A-1 thru I-A-35 Rev C 1V-B-29 Rev C

I-B-1 thru I-B-46 Rev C IV-B-30 thru IV-B-34 Rev C, Change 1
I-C-1 thru I-C-17 Rev C IV-B-35 thru IV-B-40 Rev C

IT-] Rev C IV-C-1 thru IV-C-6 Rev C

IT-A-1 thru II-A-12 Rev C IV-D-1 Rev C, Change 1
II-B-1 thru II-B-8 Rev C IV-D-2 thru IV-D-6 Rev C

I11-C-1 thru II-C-7 Rev C IV-D-7 thru IV-D-8 Rev C, Change 1
I1-C-8 Rev C, Change 1 IV-D-9 thru IV-D-10 Rev C

I1-C-9 thru II-C-23 Rev C IV-E-1 Rev C, Change 1
II-D-1 thru II-D-23 Rev C IV-E-2 Rev C

11-D-24 Rev C, Change 2 IV-E-3 thru IV-E-4 Rev C, Change 1
II-D-25 thru II-D-29 lev C IV-F-1 Rev C, Change |
II-E-1 Rev C, Change 1} IV-F-2 thru IV-F-11 Rev C

II-F-1 thru II-F-10 Rev C IV- F-12 thru IV-F-14 Rev C, Change 1
II-F-11 Rev C, Change 1 V-1 Rev C

II-G-1 thru I11-6-39 Rev C, Change 2 V-A-1 thru V-A-16 Rev C

ITI-1 thru III-2 Rev C V-B-1 thru V-B-2 Rev C

IIT-A-1 thru III-A-13 Rev C V-C-1 thru V-C-4 Rev C

I11-B-1 thru III-B-26 Rev C A-1 thru A-4 Rev C

ITII-C-1 thru III-C-26 Rev C

CHANGE 1
PREFACE

The UNIVAC 1218 System includes the UNIVAC<:) 1218 Military Computer, standard
peripheral equipment, and a set of standard computer software. This manual was
written to meet the needs and requirements of the programmer, It gives general
information about the computer, peripheral equipment, and the standard software
available with the computer. The principal software packages consists of:

1) Assemblers.
2) Operator service routines.
3) Programmer service subroutines.

Organizationally, the manual is comprised of five major sections, each of which
has several parts. Section I contains general information concerning the com-
puter hardware and functional capabilities of the computer. It gives the
reader logical and functional characteristics of the instruction repertoire

and describes the Input/Output (I/0) characteristics of the computer in detail.
In addition, hardware features are included such as size, power, and cooling
requirements, as well as compatibility between peripheral equipment and other
computers,

Section II contains functional information concerning peripheral equipments
commonly used in a 1218 System.

Section III describes the family of TRIM assemblers available with the compu-
ter., Since computer memory size and peripheral equipment differ from site to
site, three assemblers have been written and are available to satisfy the
user's needs.

Section IV describes operator service routines. Operator routines are those
routines used by a computer operator, under manual control, to perform compu-
ting-center operations. Typical routines of this category are paper tape
load, magnetic tape handler, program trace, memory dump, and so forth. Such
routines perform a service to the user, but they do not become integrated
into his programs. Most of these routines may also be operated under program
control.

Section V describes programmer service subroutines. The standard package of
programmer service subroutines saves the user time since it contains general
subroutines that are used often. These subroutines are supplied in assembler
source language for easy integration into the user's program. Subroutines

in this category include mathematical, conversion, and assembler support sub-
routines.

The information contained in this manual is generally written from the stand-
point of a UNIVAC 1218 Computer operating in the 1218 mode with exceptions for
other modes specifically noted. Therefore, this manual also serves as the
programming manual for the UNIVAC 1218 Computer.

The following page is a pre-addressed application for future revisions to this
Tanual. To receive future revisions to the manual, the end user need only fill
in the necessary data and return the application by mail.

Section

TABLE OF CONTENTS

Title

I UNIVAC 1218 Military Computer

I-A Description of Computer

]..
2.

General Characteristics
Physical Description
2.1 Approximate Size and Weight
2.2 Environment
2.3 Cooling
2.4 Power Requirements
Functional Description
3.1 Control
3.2 Memory
3.2.1 Bootstrap Memory
3.2.2 Main Memory
Arithmetic
Input/Output (I/0)
Registers and Their Contents
3.5.1 Addressable Registers
3.5.2 Non-addressable Registers
Summary of Technical Characteristics
4.1 Memory
4.2 Input/Output (I/0)
4.2.1 Channels
2 Buffered Transfers
3 Operating Modes
.4 Transfer Times
5
6
7

www
[#) SN IV

Interrupts
Priority

. Program Control
thmetic

I-B Computer Instructions

1.
2.

= Lo

General

Word Formats

2.1 Format I

2.2 Format II
Symbol Conventions
Instructions

ix

CHANGE 2

CHANGE 1

Section

I-B-1

I-B-2

I-B-3

I1-B-4

I-B-5

I-B-6

I-B-7

I1-B-8

TABLE OF CONTENTS (CONT.)

Title
Transfer Instructions

1. General
2. Instructions

Arithmetic Instructions

1. General
2. Instructions

Shift Instructions

1. General
2. Instructions

Logical Instructions

General

Compare Instructions

Complement Instructions

Selective Set Instruction
Selective Clear Instruction
Selective Substitute Instructions
Parity Skip Instructions

«

Modifying Instructions

1. General
2, Instructions

Jump Instructions

1. Introduction

2. Unconditional Jump Instructions
3. Conditional Jump Instructions

Skip and Stop Instructions

1. General
2. Instructions

Input/Output Instructions
1. General

2, Buffer Transfer Instructions
3. Buffer Termination Instructions

Section

II

II-A

TABLE OF CONTENTS (CONT.)

Title

4, OQOverride Instructions
5. Miscellaneous I/0 Instructions

Input/Output (I/0) Characteristics

1. General
2. Input/Output Interface
2.1 Data Transfers
2.1.1 Peripheral Operation
2.1.2 Intercomputer Operation
2.1.3 Forced Transfers (Override)
2.2 Interrupts
2.2.1 Channel Interrupts
2.2.2 Special Interrupts
3. Input/Output Priority
4., Operating Modes
4,1 Single Channel Mode
4.2 Dual Channel Mode
4.3 Externally Specified Indexing (ESI) Mode

Peripheral Equipment
UNIVAC 1232 Input/Output Console

1. Basic Information
1.1 On-Line Operation
1.2 Off-Line Operation
2. Input/Output Control
2.1 Computer Control
2.2 Panel Control
3. Operation of Units
3.1 Perforated Tape Reader
2 Tape Perforator
3 Printer
4 Keyboard
5 Keyboard Interrupt
6 Switches and Indicators
7 External Function Manual Controls

X1

CHANGE 1

I-C-1

IC-1
I1-C-3
I-C-3
I-C-3
I-C-7
I-C-7
I-C-8
I1-C-9
I-C-9
I€-10
I-C-11
I-C-11
I-C-14
I-C-16

II-1
IT1-A-1

II-A-1
II-A-1
IT-A-1
IT-A-1
IT-A-1
ITI-A-5
II-A-5
IT-A-5
IT-A-6
IT-A-7
IT-A-7
IT-A-11
IT-A-11
I1-A-12

CHANGE 1

Section

II-B

II-C

TABLE OF CONTENTS (CONT.)

Title

UNIVAC 1532 Input/Output Console

1'

General Description
1.1 Operational Characteristics
1.1,1 On-line Mode
1.1.2 Off-line Mode
ctional Description
General
Punching Output Data
Printing Output Data
Reading Input Data

un
.1
.2
.3
4
S5 Keyboard Input
6
]
1
2
3

Function Instructions
gramming Considerations
General
Tape Reading Procedures
Keyboard Input Procedures
3.3.1 Keyboard-Printer Entry Via Interrupt
3.3.2 Keyboard-Printer Entry Via Computer
Commands
3.4 Tape Punching Procedures
3.5 Printer Procedures
3.6 Off-line Operations

F
2
2
2
2
2
2
P
3
3
3

Magnetic Tape System (Type 1240A)

Basic Information

Input/Output Sequence for 1240A Magnetic Tape
System

2.1 Address Word

2.2 Instruction Word

Interrupt and Status Word

Magnetic Tape Operations

4.1 Master Clear (Bit 16)

Read (Bit 11-15)

Write (Bit 11-15)

Rewind (Bits 11-15)
Rewind-Read (Bits 11-15)
Space File Forward/Backward (Bits 11-15)
Write Tape Mark (Bits 11-15)
Back Space (Bits 11-15)
Search (Bits 11-15)

at Portion of Instruction Word
Modulus

Character

Parity

Density

e o e o o o

mmm.n;'l.b.b&.b.&-hh&
L] [] .
AQJNHEOCDNO‘CH&CON

xii

Page
II1-B-1

II-B-1
II-B-1
II-B-1
II-B-2
I1-B-2
I11-B-2
I1-B-2
I1-B-3
ITI-B-3
II-B-5
II-B-6
IT-B-6
II-B-6
IT-B-7
II-B-7
ITI-B-7

I11-B-8
II1-B-8
I1-B-8
IT1-B-8

II1-C-1
IT1-C-1

IT1-C-1
IILC-4
IIC-4
I11C-4
IT-C-7
II-C-7
II-C-7
IIC-8
IT-C-9
IIC-9
ITI-C-9
IT-C-9
II-C-10
IIC-10
I1C-10
T1-C-10
IT-C-11
IT-C-11
IT-C-11

Section

ITI-D

6. Tape
6.1
6.2
6.3
6.4

TABLE OF CONTENTS (CONT.)

Title

System Moduli

Modulus 3: (Bits 10 and 09 = 00)
Modulus 4: (Bits 10 and 09 = 01)
Modulus 5: (Bits 10 and 09 = 10)
Modulus 6: (Bits 10 and 09 = 11)

7. Status Word

.

= O DN Ui W~

SO PN N PSS PN IR PN
=)

.

~J
—
—

7.12
8. Tape

Improper Condition (Bits 29 and 14)
Output Timing Error (Bits 25 and 10)
Input Timing Error (Bits 24 and 09)
Incorrect Frame Count (Bits 23 and 09)
lateral Parity Error (Bits 22 and 07)
Last Tape Motion (Bits 20 and 05)
Longitudinal Parity Error (Bits 21 and 06)
Tape Mark (Bits 19 and 04)

No Write Enable (Bits 18 and 03)

End of Tape (Bits 17 and 02)

low Tape (Bits 16 and 01)

Load Point (Bits 15 and 00)

Markers

9. Logical Selection of Tape Transports
10. 1240A High Speed Printer Off-line Compatibility
11. Programming Considerations

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

General

Write Procedures
Read Procedures
Search Procedures
Record Length

End of File
Editing of Tape
Bad Tape

Magnetic Tape System (Type 1540/1541)

bW~

5.1
5.2

62 B J&) &)) |
-~ O O W

General Information

Performance of Function

Duplexing

Tape Markers

Status Word and Interrupt (Status Interrupt)

Improper Condition (Bit 14 = 1)

Duplex Control (Bit 13; 0 = In Control;
1 = Not In Control)

Transport Ready (Bit 12 = 1)

XIRG Detected (Bit 11 = 1)

Output Timing Error (Bit 10 = 1)

Input Timing Error (Bit 09 = 1)
Incorrect Frame Count (Bit 08 = 1)

xiii

CHANGE 1

Page

IT1-C-12
IT-C-12
IT-C-12
I1-C-12
I1-C-12
I1-C-15
I1-C-15
IT1-C-16
IT-C-16
II1-C-16
II-C-16
II-C-16
I1-C-17
II-C-17
IT-C-17
I1-C-17
IT-C-17
IT1-C-17
I1-C-17
I1-C-18
I1-C-18
IT-C-19
I1-C-19
II-C-20
I1-C-22
I11-C-22
11-C-23
I1-C-23
I1-C-23
11-C-23

I1-D-1

IT-D-1
IT-D-1
I1-D-3
I1-D-3
ITI-D-5
IT-D-7

II-D-7
I1-D-8
I1-D-8
I11-D-8
I11-D-8
11-D-9

CHANGE 1

Section

TABLE OF CONTENTS (CONT.)

Title

5.8 Lateral Parity Error (Bit 07 = 1)

5.9 Longitudinal Parity Error (Bit 06 = 1)

5.10 Last Tape Motion (Bit 05; 1 = Backward
0 = Forward

5.11 Tape Mark (Bit 04 = 1)

5.12 No Write Enable (Bit 03 = 1)

5.13 End of Tape (Bit 02 = 1)

5.14 Low Tape (Bit 01 = 1)

5.15 Load Point Bit 00 = 1)

External Function Commands - Function Words

6.1 Format (Bits 10-7)

6.2 Character Designator (Bit 8); 1 Selects
Octal, O Selects Bioctal

6.3 Modulus
6.3.1 Modulus 3 (Designator Bits 10 and

09 = 00)
6.3.2 Modulus 4 (Designator Bits 10 and
09 = 01)
6.3.3 Modulus 5 (Designator Bits 10 and
09 = 10)
6.3.4 Modulus 6 (Designator Bits 10 and
09 = 11)
6.4 Parity Designator (Bit 7), 1 Selects 0dd,
0 Selects Even
6.5 Density Designator (Bits 6 and 5)
6.6 Operation Code

6.6.1 Read Operations
6.6.1.1 Read-Forward

2 Read-Backward

Read-Modified Stop

Selective Read-Forward/Backward

3
4
Operation - General Information
1
2

. e e
O~O\O\v- O\O\C!\
o .

6.6.2

Write

Write -~ Ignore Error Halt

.3 Write - Extended Interrecord
Gap (XIRG)

6.6.2.4 Write Tape Mark

Space File - Forward/Backward

Rewind

Multifunction Operations (General

Information)

6.6.5.1 Search (Type I and Type II -

Forward/Backward)
5.2 Search File Forward/Backward
5.3 Rewind-Read

O\O‘O‘EO\O\CI\

1.
1.
e
2,
2
.2

oo
e e
U W

6.6
6.6.

xiv

I1-D-10
IT1-D-10
I1-D-10
I11-D-10
II1-D-10
I1-D-10
II-D-10
II-D-11

II-D-11
II1-D-15

II-D-15
II-D-15
II-D-15
I1-D-15

IT-D-17
II-D-17
IT-D-17
II-D-17
I1I1-D-19

TTn10

AN Sy ¥ o

IT1-D-19
I1-D-19
I11-D-20
11-D-20
I11-D-20

I1-D-21
I11-D-21
I1-D-21
11-D-21

I1I-D-22
11-D-22

11-D-23
I11-D-23

Section

II-E

II-F

11-G

TABLE OF CONTENTS (CONT.)

Title

6.6.5.4 Rewind-Clear Write Enable
6.6.5.5 Rewind-Read-Clear Write Enable

6.6.6 Request Transport Status
6.6.7

. Transmit Extra (Bits 17, 16 and 6 = 1,

0 and 1, Respectively)

Magnetic Tape Unit - High-Speed Printer Off-line
Capability

Operating Instructions
Sequence of Events

UNIVAC High-Speed Printer (Model 1469)

(This section has been intentionally omitted.)

v
UNIVAC 1004 Card Processor

1
2.
3

Basic Information

Message and Word Formats
Manual Operating Procedures
3.1 Card Reader

3.2 Card Punch

3.3 High-Speed Printer

UNIVAC 9200/9300 Subsystem

General Information

Military Computer/ICCU Interface

2.1 Introduction

2.2 Data Formats
2.2.1 1CCU Data Transfer Formats
2.2.2 Header Formats

2.3 Header Information
2.3.1 Message Header Format
2.3.2 Control Block

XV

CHANGE 2

Page

I1-D-23
I1-D-23
I11-D-23

11-D-24

I11-D-24
I11-D-27
11-D-27

II-E-1

II-F-1

II-F-1
IT-F-6
II-F-10
II-F-11
IT-F-11
IT-F-11

I1-G-1

I1-G-1
IT-G-1
IT1-G-1
I1-G-1
II-G-3
IT-G-3
IT-G-3
IT-G-3
II1-G-11

CHANGE 2

Section

TABLE OF CONTENTS (CONT.)
Title

2.4 Control Word Formats
2.4.1 Master External Function Word
2.4.2 External Interrupt Status Word
2.4.2.1 Error Status
2.4.2.2 Command Byte
Initiation Sequnce
Data Transfer Sequences
2.6.1 Output Data Transfer
2.6.2 1Input Data Transfer
2.6.3 Special Functions
2.6.3.1 Output Data Transfer
2.6.3.2 Input Data Transfer
2.6.4 Maintenance Data Turnaround
2.7 Error Notification
9200/9300/ICCU Interface
3.1 Introduction
3.2 Data Formats
3.2.1 ICCU Data Transfer Formats
3.2.2 Header Formats

[\CH V]
(o]

3.3 Header Information
3.4 Slave Command Words
3.4.1 Slave Command Byte
3.4.2 Slave Status Byte
3.4.3 Sense Byte Formats
3.4.3.1 Sense Byte 1
3.4.3.2 Sense Byte 4
3.5 Initiation Sequence
3.6 Data Transfer Sequences

3.6.1 Input Data Transfer

.6.2 Output Data Transfer

.6.3 Special Functions
3.6.3.1 Input Data Transfer
3.6.3.2 Output Data Transfer
3.6.4 Maintenance Data Turnaround

3.7 Error Notification

9200/9300 Operating Procedures

4.1 Next Instruction/Halt Display

4.2 1Initializing Procedures

4,2.1 Power

4.2.2 Printer

4.2.3 Card Reader

4.2.4 Card Punch

Program Loading

Running and Stopping

4.4.1 Manual Stopping

4.4.2 Automatic Stopping

4.4.3 Power

W W

IS
[NV

xvi

Page

I1-G-12
I1-G-12
II-G-12
I1-G-13
11-G-13
11-G-14
I1-G-14
11-G-14
I1-G-15
11-G-15
I1-G-16
11-G-16
I1-G-17
I1-G-17
I1-G-17
I1-G-17
I1-G-18
I1-G-18
11-G-18
I1-G-18
I1-G-18
I1-G-18
11-G-19
I1-G-20
I1-G-20
I1-G-21
I1-G-22
I1-G-22
I1-G-22
I1-6-23
I1-G-23
I1-G-24
11-6-24
I1-G-24
I1-G-25
11-G-25
11-6-25
I1-G-25
I1-G-27
11-6-27
11-G-27
I1-G-27
11-G-28
11-G-29
11-G-29
11-6-29
I1-G-29

Section

ITI

III-A

I1I-B

LSNIVEN
. .
[&)

Assembly

1. TRIM
2. TRIM
3. TRIM

TABLE OF CONTENTS (CONT.)
Title

Programmed Halting

Abnormal Stopping

4.6.1 Abnormal Stop Indications

4.6.2 Abnormal Conditions
4.6.2.1 Printer

4.6.2.2 Card Reader
4.6.2.3 Card Punch
4.6.2.4 Processor

Systems

I

II

ITI

TRIM I Assembly System

1. Basic Information
2. Symbolic Addressing

2.1
2.2

Labels
Tags

3. Input Language Format

3.1
3.2
3.3

OO~ =

9.1
9.2
9.3

TRIM II

Format A
Format B
Format C

Special Operators

The LOK Tag

Input Tape Format

TRIM I Outputs

Ground Rules

. Loading and Operating Procedures

Loading the Assembler
Using the Assembler
Error Detection and Display

Assembly System

1. Introduction
2. Description

2.1

Source Language

2.1.1 Label

2.1.2 Statement

2.1.2.1 Operator
2.1.2.2 Operand(s)
Notes

Symbols

Do N
o o
—
o .
= o

xvii

CHANGE 2

Page

I1-G-29
I1I-G-30
IT-G-30
I11-G6-31
I1-6-31
11-G-34
I1-G-36
I11-G-39
I1I1-1

I1I-1
III-1
I1I-1

ITI-A-1

ITI-A-1
ITII-A-1
ITI-A-1
ITI-A-1
111-A-2
ITTI-A-3
I1I-A-4
I1I-A-4
ITT-A-5
ITI-A-7
ITI-A-T
ITI-A-7
II1-A-8
III-A-10
ITI-A-10
ITI-A-10
IIT-A-11

I11-B-1

III-B-1
IT1I-B-1
ITI-B-1
I11-B-4
I11-B-4
I11-B-4
ITTI-B-5
ITT-B-5
ITT1-B-5

CHANGE 2

Section

III-C

2.2

2.3

2.4

2.5
2.6

TABLE OF CONTENTS (CONT.)

Title
Header and Declarative Operations
2.2.1 Allocation Header (ALLOC)
2.2.2 Program Header (PROG)
2.2.3 DEBUG Declarative
Mono-Operations
2.3.1 Format A
2.3.2 Format B
2.3.3 Format C
Poly-Operations
2.4.1 Reserve Operation (RESERV)
2.4.2 CLEAR Operation
2.4.3 MOVE Operation
2.4.4 1/0 Operations
2.4.5 REMARK Operation
2.4.6 DATA Operation
2.4.7 Punch Contents Operation (PCHC)
2.4.8 Punch Text Operation (PCHT)
2.4.9 Type Text Operation (TYPT)
2.4.10 Type Contents Operation (TYPC)
2.4.11 Double Set Operation (DBLSET)
2.4.12 SETSR Operation

Debugging Operations
TRIM II Outputs

Programming Procedures

3.1
3.2

Input Tape Format
Ground Rules

Loading and Operating Procedures

4.1
4.2
4.3

Loading the Assembler

Using the TRIM II Assembler

Error Detection and Display

4.,3.1 Set Base Address in AL
Il1legal Output Reselect in AL
UNALLOC TAGS

DUP LBL

03030)
ka[\.')

4.
4,
4.

TRIM III Assembly System

1.
2.

Introduction
Description

2.1

Source Language
2.1.1 Label
2.1.2 Statement
2.1.2.1 Operator
2.1.2.2 Operand(s)
.1.3 Notes
1.4 Symbols

xviii

Page

I11-B-0
II1-B-6

I11-B-7

III-B-T

I11-B-8

I11-B-8

II1-B-9

111-B-9

I1I-B-10
IIT-B-10
I1I-B-11
I11-B-12
111-B-14
I11-B-15
III-B-15
ITII-B-16
II1I-B-17
TI1-B-17
I11-B-18
TI1-B-19
111-B-19
I1I-B-20
I11-B-21
I1I-B-22
II1-B-22
II1I-B-22
I1I-B-24
I11-B-24
I1I-B-24
ITT B—’d
111-B-25
I1I-B-26
III-B-26
I11-B-26

I11-C-1

Section

TABLE OF CONTENTS (CONT.)

Title

2.2 Header and Declarative Operations
2.2.1 Control Header (CONTR)

Allocation Header (ALLOC)

Program Header (PROG)

Correction Header (CORREC)

DEBUG Declarative

OUTPUT Declarative

DECKID Declarative

ENDATA Declarative

o-Operations

.1 Format A

.2 Format B

.3 Format C

y-Operations

.
.

O o
O~NOoO UL LN

B bR B R MDA A~ WWWI DD

2.3

.

2.4 0

PNV ODDDNODNDODDNODNDTODRDDEDDDNDDDNDND

1 Reserve Operation (RESERV)
2 CLEAR Operation
3 MOVE Operation
4 1I/0 Operations
5 Library CALL Operation
6 REMARK Operation
.4.7 DATA Operation
8 Punch Contents Operation (PCHC)
.4.9 Punch Text Operation (PCHT)
10 Type Contents Operation (TYPC)
11 Type Text Operation (TYPT)
12 Doubleset Operation
2.4.13 SETSR Operation

2.5 Debugging Operation

2.6 TRIM III Outputs

Programming Procedures

3.1 Paper Tape Input Format

3.1.1 Keyboard Correction Methods
80-Column Card Input Format
Magnetic Tape Input Format

Source Program Corrections

wWww
SV

3.4.1 Paper Tape Correction Format

3.4.2 Card Correction Format
Ground Rules

= B0

G LN~ HO
=

Basic Information
Loading TRIM III
Initializing TRIM 111
Using TRIM III
Operator Instruction Typeouts
.5.1 Set Key 1
Identify MTUS in A
Identify Tape Job in AL
e to

Save

[G N A =

TS S SN
(1) &) |
NG IL N]

Remove Input Tap

xix

III Loading and Operating Procedures

CHANGE 2

Page

I11-C-6
ITI-C-6
I11-C-8
I11-C-8
II1-C-9
II1-C-9
IT1-C-11
ITI-C-11
I1I-C-11
II1-C-12
I11-C-12
II1-C-13
II1-C-13
II1-C-13
II11-C-14
ITI-C-14
I11-C-16
II11-C-17
IT1-C-18
II1-C-19 -
III-C-19
II1-C-19
II11-C-21
IIT-C-21
II1-C-22
III-C-23
I11-C-23
I1II-C-24
III-C-26
IT1-C-27
ITI-C-27
ITI-C-27
ITI-C-28
III-C-31
ITI-C-31
I1I-C-32
II1-C-32
III-C-34
III-C-35
IT1-C-35
II1-C-36
II1-C-36
ITI-C-37
II1-C-38
I111-C-38
I11-C-39
II1-C-39
T11-C-39

CHANGE 2

TABLE OF CONTENTS (CONT.)

Section Title Page
4.5.5 Select Outputs in A III-C-39
4.5.6 1If Necessary Change Scratch Tapes for
This Output III-C-40
4.5.7 MTU ERROR CTXX Improve Condition I1I1-C-40
4.5.8 Set Base Address in AL I1I-C-40
4.5.9 NNNNN Duplicate Label XXXXXX IT1-C-40
4.5.10 Unallocated Tags nnnnn XXXXXX AAAAA ITI-C-41
4.5.11 TCS Error XX Table XX II1-C-41
4.5.12 Poly-Code Bank OFL I1I-C-41
IV Operator Service Routines Iv-1
IV-A UPAK I Paper Tape Utility Package IV-A-1
1. General Information IV-A-1
2. Program Description IV-A-1
2.1 Paper Tape Load IV-A-2
2.1.1 Load Absolute Typewriter Code IV-A-2
2.1.2 Load Absolute Bioctal Code IV-A-3
2.1.3 Load Relocatable Bioctal Code IV-A-4
2.2 Paper Tape Absolute Typewriter Code Dump IV-A-5
2.3 Paper Tape Absolute Bioctal Code Dump IV-A-5
2.4 Inspect and Change IV-A-6
2.5 Store Constant in Memory TV-A-6
2.6 Search Memory IV-A-6
2.7 Copy Paper Tape IV-A-T7
2.8 Typewriter Dump IV-A-7
3. Loading and Operating Procedures TV-A-8
3.1 Loading UPAK I IV-A-8
3.2 Using UPAK I IV-A-O
3.2.1 Paper Tape Load TV-A-0
3.2.2 Paper Tape Absolute Typewriter Code Dump IV-A-11
3.2.3 Paper Tape Absolute Bioctal Dump IV-A-11
3.2.4 Inspect and Change TV-A-11
3.2.5 Store Constant in Memory IV-A-12
3.2.6 Search Memory TV-A-13
3.2.7 Copy Paper Tape IV-A-13
3.2.8 Typewriter Dump 1V-A-13
III-B UPAK III Utility Package III IV-B-1
1. General Information IV-B-1
2, Control Program 1V-B-1
2.1 Program Description IV-B-1
2.2 Loading UPAK III TV-B-3
2.3 Expanding UPAK III IV-B-5

XX

Section

TABLE OF CONTENTS (CONT.)
Title

Paper Tape Handler Module (PTHAN)
3.1 Program Description
3.2 Operation Procedures
3.2.1 Operation of Inspect and Change

Manual Dump of Typewriter Code

OO*IO\U'IQOJI\D

wuwwwww
. .
r\JNI\Dl\JI\DI\DI\D

Magnetlc lape Handler Module (UMTH)
4.1 Program Description
4,2 Input Parameters
4,3 Operating Procedures
4.3.1 Operation Under Program Control
4.3.2 Manual Operation
4.4 Alarms and Status Indications
Magnetic Tape Duplication Module (MTDUP)
5.1 Program Description
Input Parameters
.3 Operating Procedures
5.3.1 Operation Under Program Control
5.3.2 Manual Operation

.
ro

5.4 Alarms and Status Indications
TRIM III Output 10 Load Module (LOAD10)
6.1 Program Description
6.2 Input Parameters
6.3 Operating Procedures
6.3.1 Operation Under Program Control
6.3.2 Manual Operation
6.4 Alarms and Status Indications
Inspect and Change and Store Constant Module
7.1 Program Description
7.2 Operating Procedure
7.2.1 1Inspect and Change
7.2.2 Store Constant in Memory
Print Memory Contents (PRINTC)
8.1 Program Description
8.2 Operating Procedure
8.2.1 Operation Under Program Control
8.2.2 Manual Operation
Card Handler (DATCD)
9.1 Program Description
0.2 TInput Parameters
0.3 Operating Procedure
9.4 Alarms

xxi

Operation of Store Constant in Memory
Manual Operation of all Paper Tape Loads
Program Operation of All Paper Tape Loads

Program Operation of Dump Typewriter Code
Manual Dump of Absolute Bioctal Code
Manual Operation of Dump Bioctal Code

CHANGE 2

IV-B-11
IV-B-11
IV-B-12
IV-B-12
IV-B-12
IV-B-12
IV-B-16
IV-B-16
IV-B-16
IV-B-17
IV-B-18
IV-B-18
IV-B-19
IV-B-21

IV-B-21

IV-B-21

IV-B-22
Iv-B-22
IV-B-22
IV-B-24
IV-B-24
Iv-B-24
Iv-p-24
IV-B-25
IV-B-20
IV-B-25
IV-B-25
IV-B-25
IV-B-206
IV-B-2u
IV-B-26
IV-B-27
IV-B-27
IV-B-27
IV-B-_8
IV-B-28
IV-B-31

IV-B-31

IV-B-32

CHANGE 2

Section

Iv-C

IV-E

10.

11.

TABLE OF CONTENTS (CONT.)
Title

Printer Line Image on Tape and Tape-to-Printer
Module (POTPOP)
10.1 Program Description
10.2 Input Parameters
10.3 POT Operating Procedures
10.3.1 Under Program Control
10.3.2 Manual Operation
10.4 POT Operating Procedures
10.4.1 Under Program Control
10.4.2 Manual Operation
10.5 Alarms and Status Indicators
Magnetic Tape Handler Module (JOSH)
11.1 Program Description
11.2 Input Parameters
11.3 Operating Procedures
11.3.1 Operation Under Program Control
11.3.2 Manual Operation
11.3.3 Special Considerations

TRIM Corrector

1.
2.

3.
4

General Information

Input Formats

2.1 Delete Correction

2.2 Replace Correction

2.3 1Insert Correction
Preparation of Correction Tapes
Operating Procedures

TRIM Library Builder (LIBBLD)

S.

General Information

Inputs

2.1 Building or Updating

2.2 Listing

Outputs

3.1 Building or Updating

3.2 Listing

Operating Procedures

4.1 Library and Updating Procedures
4.2 Library Listing Procedures
Typeouts

TRACE Debugging Program (TRACK)

I.
2.
3'

General Information
Input
Output

xxii

Page

IV-B-32
IV-B-32
IV-B-32
IV-B-33
IV-B-33
IV-B-33
IV-B-34
IV-B-34
IV-B-34
IV-B-34
IV-B-34
IV-B-34
IV-B-35
IV-B-39
IV-B-29
IV-B-40
TV-B-40

IV-C-1
IV-C-1
IV-C-]
v-C-2
vL-2
Iv-C-5
IV-C-4
vLC-5

IV-1i-1

IV-D-1
TV-b-1
IV-D-1
IV-0D-3
1V-D-O
IV-D-5
IV-D-0
IV-D-7
IV-D-7
IV-D-7
IV-D-v

IV-E-1

-

[-F-
E-
k-

[‘\,_4_4

V
V-

TABLE OF CONTENTS (CONT.)

Section Title

4, User Ground Rules
5. Operating Procedures

IV-F Card-to-Tape Processor (CART)

1, General
2, Input
3. Operations
3.1 Card-to-Taping a Single Job
Card-to-Taping Consecutive Job
Replacing Jobs
Inserting Jobs
Deleting Jobs
Punching Jobs
Listing Jobs
Withdrawing Jobs
Correcting Jobs
4, Operating Procedures
5. Informative and Error Typeouts
v Programmer Service Subroutines

« o o .
NoleolEN Nea) BN JUN S

WWWwWwwWwwwWww

V-A Mathematical Subroutine

Fixed Point Square Root (SQR)

Fixed Point Sine and Cosine (SINCOS)
Fixed Point Arctangent (RTAN)

Fixed Point Arcsine (ARCSIN)

Fixed Point Natural Logarithm (NATLOG)
Fixed Point Exponential (EXPON)

Floating Point Arithmetic Package
Floating Point to Fixed Point Conversion
Fixed Point to Floating Point Conversion
10. Floating Point Compare

11. Floating Point Square Root

12, Floating Point Tangent

13. Floating Point Sine and Cosine

14. Floating Point Arc-Sine and Arc-Tangent
15. Floating Point Natural Logarithm

16. Floating Point Arithmetic

.

. . .

NolRaoREN N N&) B - NN JUR (R

V-B Conversion Subroutine

1. Convert Octal to Typewriter - Coded Decimal
2. Decimal to Octal Routine (DOCTL)

xxiii

CHANGE 2

IV-F-5
IV-F-0
IV-F-~-7
IV-F-7
IV-F-6
IV-F-8
IV-F-0
IV-F-10
IV-F-12
IV-F-13%
V-A-1

l<
=
|

[

! U L]
J>J>>J>>>3>>l>'3>3>3>2>3>3>>

CHANGE 2

Section

v-C

TABLE OF CONTENTS (CONT.)

Title

Assembler Support Subroutines

TRIM Debugging Package (DEBUG)
Type Text Subroutine (TYPT)

Type Contents Subroutine (TYPC)
Punch Text Subroutine (PCHT)
Punch Contents Subroutine (PCHC)

[B SSJUR N

xxiv

Page

VL-1

V-C-1
v-C-2
V-C-2
V-C-3
vV-C-3

ITI-B-1
III-C-1
I1I-C-2
I11-C-3
IV-A-1
IV-B-1

A-1
A-2

A-3

LIST OF TABLES

Title
Memory Address Allocation

Repertoire of Instructions
Summary of Conditional Jump Instructions

Data Transfer Rates
1/0 Function Priority

Manual-Automatic Controls
Field Data Code

ASCII Code for the UNIVAC 1532 Keyboard Printer

Operation Codes
Octal Recording

Word Assembly Time (Microseconds)

Chart Showing the Effects of Various UNIVAC
Computers Operating with the UNIVAC 1540 or
1541 Magnetic Tape Subsystem

Operation Codes

Type Symbols and Codes

(This table has been deleted.)

80-Column Code

Buffer Sizes for Computer 1004 Communications
Summary of Command Codes

TRIM I Coding Symbols

TRIM II Coding Symbols

TRIM III Coding Symbols

Coding Symbols for Card Input

TCS Errors

UPAK I Entrance Addresses

Entrance Addresses and Assigned Bases

Equivalent Input Format Codes

Field Data Code (6 Bits), UNIVAC 1232 Keyboard and

Typewriter

ASCII Code (7 Bits), UNIVAC 1532 Keyboard and
Typewriter

TRIM Internal Character Code Chart (6 Bits)

XXV

CHANGE 2

I-C-2
I-C-10

II-A-5
II-A-8

II-B-4

II-C-6
II-C-11

I1-D-9

II1-D-16
II-D-18
II1-D-28

I-F-
I-F-
I-F-

=
Nelaol U}

III-A-2
III-B-5
III-C-5
ITII-C-28
I11-C-42
IV-A-1

1V-B-2

CHANGE 2

[LIST OF ILLUSTRATIONS

Title

UNIVAC 1218 Computer (4 Drawer)

UNIVAC 1218 Computer (6 Drawer)
Computer General Block Diagram

Input/Output Interface
Intercomputer Communication

UNIVMZGDIZ32A I/0 Console

Block Diagram of Console

1232 1/0 Console, External Function Word
Keyboard Layout

Block Diagram of I/0 Console

Keyboard Layout

Function Instruction Encoding

Sequence of Program Operations for Tape Read

Block Diagram of Magnetic Tape System

1240A Interface

Address Word

Instruction Word

Status Word Format

Bioctal Tape Format

Octal Tape Format

Magnetic Tape - High-Speed Printer Interface

Sequence of Events in Tape - Printer Operation
Sequence of Programming References - Magnetic Tape

System

Magnetic Tape Unit - Computer Interface

Type 1540 Magnetic Tape System (Maximum Configuration)
Type 1541 Magnetic Tape System (Maximum Configuration)

Tape Format

Magnetic Tape Unit Status Word Format
External Function Word Format

Bioctal Tape Format

Octal Tape Format

Magnetic Tape Unit - Tape File
Transmit-Extra Computer Word Format
Magnetic Tape - Printer Interface

(This illustration has been deleted.)

XXvi

I1-A-2
I1-A-3
I1-A-4
II1-A-10

IT-B-3
II-B-5
I1-B-6
IT-B-7

I1-C-2
I1-C-3
IT-C-5
IT-C-5
II-C-7
IT-C-13
IT-C-14
I1-C-18
11-C-20

I1-C-21

I1-D-13
II-D-14
I11-D-24
I1-D-25
IT1-D-26

i
[

1
UJ?JUJUJ

O ~NOC U R WD

[
i] mwm?c

— b
S S <<

]
1

—

i

CHANGE 2

LIST OF ILLUSTRATIONS (CONT.)

Title Page
Computer/1004 Card Processor Interface II-F-3
Command Code Format (First Word Only) II-F-7
Data Words II-F-8
ICCU Communication and Interface I1-G-2
Data Formats, 18-bit Interface 11-G-4
Data Formats, 30-bit Interface II-G-5
Data Formats, 36-bit Interface I1I-G-6
Message Header Format, 18-bits I11-G6-7
Message Header Format, 30-bits I1-G-8
Message Header Format, 36-bits 11-G-9
9200/9300 Control Console 11-G-26
Block Chart for TRIM II - Pass 1 IT1I-B-2
Block Chart for TRIM II - Pass 2 ITI-B-3
TRIM III Solution of a Problem I1I-C-1
TRIM III Segments 1 and 2 I11-C-2
TRIM III Segments 3 and 4 I11-C-3
Sample CONTR Header and Declarative Operations ITII-C-7
Sample Correction Coding ITI-C-10
Typical Coded Programmer Card Input I111-C-29
Typical Punched Card Input Operation I111-C-30
TRIM III Output 12 from Card Input IT11-C-33
Tape Address Parameter IV-B-3
UMTH Input Parameters IV-B-13
MTDUP Input Parameters IV-B-19
LOAD1O Input Parameters Iv-B-24
DATCD Address Card Format IV-B-28
DATCD Instruction Card Format IV-B-29
POTPOP Input Parameters IV-B-32
JOSH Input Parameters IV-B-36
Library Directory IV-D-5
Library Routines Format IV-D-6

xxvii

cuT

— — — e . d—— —— e —— —— . —— . —— . A —. . — —— S — —— ——— — —— — — — — — — —— — — —— — — —— — — —— —— —— — — — — — — — — —
.

I l N |VA‘ I FEDERAL SYSTEMS DIVISION

APPLICATION FOR MANUAL REVISIONS

Upon receipt of this manual, please fill in the necessary data. It is impor-
tant that the addressee be the end user so that the operating personnel will
receive all revisions to the manual.

Comments concerning this manual may be set to Univac using the same address
which appears on the reverse side of this page.

EQUIPMENT NAME

SERIAL NO. MODEL OR PART NO.

MANUAL TITLE

MANUAL NUMBER

PURCHASING‘AGENCY

NAME OF USER

ADDRESS OF USER

ATTN:

yTAPLE STAPLE

No

Poctlw Stamp

If Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1145 SAINT PAUL, MINNESOTA

LINIVAC

FEDERAL SYSTEMS DIVISION

UNIVAC PARK
P.0.BOX 3523
ST. PAUL, MINN. 55]0I

ATTN: ENGINEERING AND PROGRAMMING SUPPORT SERVICES DEPT., M.S. 863l

SECTION I. UNIVAC 1218 MILITARY COMPUTER

This section provides an introduction to the UNIVAC 1218 Computer. It is not
intended to serve as a detailed technical description of the UNIVAC 1218
Computer, but rather as a presentation of information that is essential to
programming the UNIVAC 1218 Computer.

The section consists of three subsections which describe the following aspects
of the UNIVAC 1218 Computer:

1) The general physical and functional characteristics of the computer.
2) The format and execution characteristics of all instructions.
3) The functional input/output characteristics.

I-1

SECTION I-A, DESCRIPTION OF COMPUTER

1. GENERAL CHARACTERISTICS

The UNIVACC:)1218 Military Computer is a medium-scale, stored-program, general-
purpose computer designed to provide high reliability under adverse operating
environments., The UNIVAC 1218, hereinafter called simply the computer, utilizes
modular design concepts in both the memory section and the input/output (I/0)
section.

The computer is equipped with a 4-microsecond internal random access core memory
in sizes of 4,096, 8,192, 16,384, and 32,768 18-bit words with a read access
time of 1.8 microseconds. In addition to this, other random-access storage de-
vices connected to I/0 channels provide unlimited memory capacities. A portion
(32 word locations) of core memory has a characteristic non-destructive feature
which stores constants and instructions for automatic recovery from fault situ-
ations and for an initial load of routines.

The computer is designed with a modular I/0 section which provides the option of
either 4 or 8 I/0 channels for communication with peripheral equipment or other
computers. Each 4-channel module is available in either of two types of inter-
face design. I/0 communication is normally accomplished in an 18-bit parallel
mode; however, single channels from two modules can be combined by switch setting
into one 36-bit I/0 channel.

Arithmetic operations can be performed on the basis of a single-length 18-bit
word, or a double length 36-bit word if greater precision is required for com-
patibility with other computers. The repertoire of 98 instructions allows
complete programming freedom in mathematical and logical computations, as well
as full control of I/O buffer transfers and of real-time, on-line operations.
The computer features buffered parallel transfers, one's complement binary
arithmetic, direct addressing, and program-controlled automatic address or
operand modification via eight control-memory-contained index registers.

The ability of the computer to process various applications concurrently is
implemented by a program intervention system called interrupts. These interrupts
may originate at some remote external device (external interrupts) or they may
originate within the computer (internal interrupts). Since more than one may
occur at the same time, the computer possesses a priority scheme with decision-
making qualities so that it can select the branch of operation for solving the
problem requiring the most urgent attention. Under program control the other
interrupts may be honored, in turn, according to the next highest priority or
they may be ignored. With this interrupt feature, real-time problem solution
and maximum processing potential of the system is realized since less important
routines can occupy the computer's surplus time.

2. PHYSICAL DESCRIPTION
The physical characteristics of the computer depend upon the size of memory and

the number of I/0 channels. The computer is housed in a single cabinet that
contains the power supply, logic circuits, core memory, maintenance and control

I-A-1

panel, and a cooling system. Logic modules are encapsulated printed circuit
cards which plug into the wired chassis of easily accessible vertical pull-out
drawers. The cabinet contains either four or six of these drawers, as shown in
Figures I-A-1 and I-A-2, depending upon the memory and I/0O channel options. The
front of each drawer is the associated portion of the computer control panel.
The power supply is mounted in a horizontal drawer at the bottom of the cabinet.
A list of the other physical characteristics follows.

2.1 APPROXIMATE SIZE AND WEIGHT

Height - 72 inches

Width - 25 inches (4-drawer)
- 38 inches (6-drawer)

Depth - 30 inches

Weight - 834 pounds (4-drawer)

1180 pounds (6-drawer)

2.2 ENVIRONMENT

Operating femperatures - 0°C to gOOC o
Non-operating temperatures - -62°C to +75 C
Humidity - relative humidity to 95 per cent

2.3 COOLING

Blower forced ambient air (water cooling optional).

2.4 POWER REQUIREMENTS

115-volt, *+ 5 per cent, 3-phase, 400 cps, 1250 watts maximum and 115-volt, * 10
per cent, single-phase, 60-cps, 208 watts.

3. FUNCTIONAL DESCRIPTION

Figure I-A-3 is a general block diagram of the computer. As indicated, the
computer has four major functional sections: control, memory, arithmetic, and
1/0.

3.1 CONTROL

The control section contains circuitry necessary to procure, modify, and execute
the single address instructions of a program stored in the core memory of the
computer. It controls parallel transfers of instructions and data. Direct or
indirect addressing capabilities and automatic address and operand modification
are directed by the control section translators and the timing of the synchron-
ous electronic master clock. This section controls all arithmetic, logical,

and sequential operations of the computer except those assigned to the I/0 sec-
tion, It has facilities to permit an interruption of the running program when
certain real-time events require such interventions.

I-A-2

€-vV-1I

a.

Doors Open

Figure I-A-1.

b.

UNIVAC 1218 Computer (4 Drawer)

Doors Closed

V-v-I

a)

Doors Open

Figure I-A-2.

b.

UNIVAC 1218 Computer (6 Drawers)

Doors Closed

Control
Section

Timing Function

Operation Code
Control Translation

Arithmetic
Section

Mathematical and
Logical Operations

f

- —
Computers -

wn

! — o

or -2

| — ok

A ®

Peripheral — é”
Devices _

< ~-

Figure I-A-3.

Input/Output
Section

Single Channel
Dual Channel
Externally Specified
Index-Intercomputer

Memory
Section

Permanent Storage of
4k, 8k, 16k, 32k
18-Bit Words

I-A-5

Computer General Block Diagram

3.2 MEMORY

The computer memory consists of up to 32,768 18-bit words of addressable storage
locations divided into two distinct sections in a continuous addressing struc-
ture. The two sections are bootstrap memory and main memory. The master clock
in the computer controls and synchronizes all operations performed by the var-
ious sections through the electronic timing chains allotted to them, The read/
restore cycle time of main memory is 4 microseconds. All control and timing
sequences for the various functions the computer performs are based on this 4-
microsecond cycle. An instruction from main memory storage can be transferred
to the control section for execution in approximately 1.8 microseconds.

3.2.1 BOOTSTRAP MEMORY

The computer is provided with 3210 nondestructive readout memory locations
(00200g through 00237g) which contain computer instructions and constants for

an initial load program (bootstrap). This provides the ability to enter an
initial package of utility routines that may be used to load and/or debug more
sophisticated programs. These memory locations have unique characteristics
since they are transformer cores which operate in a special type of non-destruc-
tive readout mode. They are not accessible to the programmer for store-type
instructions.

3.2.2 MAIN MEMORY

Main memory consists of 18-bit addressable core storage locations with a read-
restore cycle time of 2 microseconds. All locations are accessible to the
programmer at random and to all sections of the computer on a time shared basis.
Some locations are allocated for specific purposes, as defined in Table I-A-1.
The number of main memory locations is equal to the total memory size minus the
locations used for bootstrap memory.

3.3 ARITHMETIC

The arithmetic section, which contains a subtractive type adder, performs all the
arithmetic and logical operations for the computer under direction of the func-
tion code translator and I/0 control. The arithmetic section and memory are
shared by the control section and the I/O section. After an instruction is
executed, the I/0 section may gain control of memory for an input or output
transfer on an active channel, It is also supplied to the S register of memory
control for the reference required to transfer the word. The arithmetic section
is used by control for any address or operand modification requested by an in-
struction and for overflow detection if overflow exists at the completion of any
arithmetic instruction except multiply.

3.4 INPUT/OUTPUT (I/0)

The I/0 section of the computer controls the communications between the computer
and the peripheral devices connected in a system., There may be up to 8 peri-
pheral equipments connected directly to the computer. Communication, the passing
of one computer word from or to the computer, can be carried on with only one
peripheral device at a time; however, communications on several channels may be
interlaced.

I-A-6

The computer may also communicate with other computers. To do so, the connecting
I/0 channel must be manually switched into intercomputer operation. Communica-
tion with computers or peripheral devices that have word lengths greater than

18 bits (36-bit maximum) is possible by using two adjacent I/0 channels in com-
bination.

Besides handling all information transfer between the computer and other devices,
the I/0 section of the computer handles all interrupts. Interrupts provide the
means to intervene in program operation, thus giving the computer real-time and
fault detection and correction capabilities.

Because a complete understanding of the I/0 operations is essential to program-
ming the computer, a separate section entitled Input/Output (I/0) Characteris-
tics is included in this document.

3.5 REGISTERS AND THEIR CONTENTS

All registers in the computer may be classified as addressable or non-addressable.
Only the registers separate from the normal core storage registers are discussed
here. Addressable registers are directly available to the programmer through
computer instructions. The other functional registers are non-addressable.

3.5.1 ADDRESSABLE REGISTERS
A A 36-bit arithmetic accumulator which:

1) Contains the product of two 18-bit quantities.

2) Contains the 36-bit dividend for a divide instruction.

3) Is used as an accumulator for double length arithmetic and logical
functions.

4) Has shifting capabilities and complementing capabilities.

AU The upper accumulator (most significant 18 bits) of A which:

1) Contains a mask for logical instructions.

2) Captures the remainder for the divide process.
3) Has shifting capabilities.

4) Has complementing capabilities.

AL The lower accumulator (least significant 18 bits) of A which:

1) Is used as the main accumulator for the arithmetic section for all
functions.

2) Contains quotient for the divide process; contains sum for add.

3) Has shifting capabilities.

4) Has complementing capabilities.

B The contents of the active index register in control memory which are
used to modify y to form an address or an operand in every odd-numbered
instruction less than 50g. B is an 18-bit one's complement number that
may be used to increment or decrement. When the quantity, y + B, is
used as an address, only the number of lower order bits sufficient to
fill the S register is transmitted.

I-A-7

ICR

(P)

An index control register (3 bits) contains the index register identifiege
currently active in address or operand modification requested by instruc‘r
tions. Any one of eight index registers may be selected by the numerical
value entered into this register by the program.

The contents of the program address register, P, that is, the address

of the instruction currently being entered for execution, is incremented
by one in the arithmetic section as soon as the instruction is trans-
ferred from memory. If the computer is stopped, the P register exhibits
the address of the next instruction, (P) + 1. This is incremented by
one again if the condition stated by a SKIP instruction is satisfied.
When the current instruction is a return jump, (P) + 1 is stored in the
core location specified by the instruction, and the entrance address of
the new routine is entered into the program address register.

When the return jump is the result of an interrupt, (P) is stored in the
core location specified by the instruction since the interrupt condition
does not initiate the (P) + 1 sequence.

A 4-bit special register, SR, through which the program has control of
the 4,096-word modules in core memory (in all instructions numbered
under 50g except jump and enter constant or add constant instructions).
When the 23 bit contains one, the remaining bits of SR are _used to extend
u for an address instead of the upper bits of P, If the 23 bit of SR is
zero, the most significant bits of P extend u for the address. There-
fore, y (the address) equal to up or ugg is determined by the 23 bit of
SR (active if = 1), refer to Section I-B.

3.5.2 NON-ADDRESSABLE REGISTERS

Cco
and
CE

Two 18-bit output buffer registers for transferring data or instruction
words (external function) to external devices which may include other
computers. The CO register is the buffer register for the odd-numbered
channels (1, 3, 5, and 7) and the CE register is for the even-numbered
channels (0, 2, 4, and 6). These two output registers may be linked in
consecutive even-odd pairs to permit 36-bit parallel output transfers
when words larger than 18 bits are desired.

An 18-bit arithmetic exchange register holds an operand for the adder
during arithmetic operations.

A 7-bit function register holds the function code of the instruction
being executed. The low order six bits hold the function code (f for
Format I instructions and m for Format II instructions). The most
significant bit is set for Format II instructions only. Computer con-
trol is directed from this register.

An address register receives the address of a memory location at the

beginning of a memory cycle and holds it to control the translators and
circuitry throughout the read/write cycle. The S register may receive
its address from the I/O section (which generates certain assigned ad-
dresses), the control section, the arithmetic section, or from an input

channel connected to a device capable of specifying an address.

I-A-8

X An 18-bit exchange or communication register in the arithmetic section
which receives operands for arithmetic and logical instructions.

Z An 18-bit main memory buffer register for all transfers to and from
core memory. The Z register communicates with all other sections of
the computer since core memory may contain instructions, control words,
and data.

4. SUMMARY OF TECHNICAL CHARACTERISTICS

4.1 MEMORY

Cycle Time: 4 microseconds (1.8 microsecond access)
Capacity: 4,096; 8,192; 16,384; or 32,768 18-bit words
Type: Coincident current, magnetic core
Organization: Addresses 00000 through 00177 allocated to

index registers, I/0 control registers, and
interrupt registers

Addresses 00200 through 00237 allocated to
bootstrap memory; a 32-word transformer core,
nondestructive readout memory used for boot-
strap (initial load) program storage. Addresses
00240 to end of memory are used for program and
data storage

4,2 INPUT/OUTPUT (I1/0)

4.2.1 CHANNELS

Four input and four output or eight input and eight output channels are avail-
able. Each channel provides 18 parallel data lines plus necessary control
lines. Channels can be paired to form 36-bit dual channels.

4.2.2 BUFFERED TRANSFERS

All input/output transfers are fully buffered, do not require program attention,
and operate asynchronously at the rate required by the external device. Control
words guide the active buffers by defining the memory location, buffer direction
and monitor.

4.2.3 OPERATING MODES

Normal Single Channel: 18-bit parallel data transfers.

Normal Dual Channel: 36-bit parallel data transfers.

Externally Specified Index

(Dual Channel): 18-bit parallel data transfers with data
storage index address specified by external
device; can be used to automatically multiplex
data to or from unique buffer locations.

Intercomputer Single Channel: 18-bit parallel data transfers allow
communication with other UNIVAC 18-bit
computers (direct cable connection).

Intercomputer Dual Channel: 30/36 bit parallel data transfers allow
communication with the other computers such
as the UNIVAC®) 1230, 1107, and 490 Computers.

4.2.4 TRANSFER TIMES

Maximum Input/Output
Transfer Rate: 100 ke, 18-bit words
: 16 usec per 18-bit word (input or output)
20 usec per 30/36-bit word (input or output)

4.2.5 INTERRUPTS
33 unique interrupts are provided as follows:

synchronizing interrupt (not channel associated)
external interrupts (one per channel)

external function monitor interrupts (one per channel)
output monitor interrupts (one per channel)

"input monitor interrupts (one per channel)

DL DD

4.2.6 PRIORITY

Priority of interrupts is according to function as listed above. Sub-priority
is established according to channel numbers 7 through O.

4.2.7 PROGRAM CONTROL

Eighteen program instructions are devoted to the control of input/output,
providing positive control and a high degree of sophistication in programming.

4,3 ARITHMETIC

Organization: 18-bit, parallel, one's complement, integer,
binary.

Registers: Two 18-bit, addressable.

Functions: Arithmetic operations including double length

add and subtract. Logical and bit manipulation.

I-A-10

Instruction Execution Times:

4.4 CONTROL
Instruction Repertoire:

Address Modification:

Add, subtract, logical: 8 usec

Multiply: 38 usec (average); 48 usec (maximum)
Divide: 48 usec (maximum)

Add, double length: 12 usec

Compare/mask compare and branch: 12 usec
Register shifts: right, left, single, double:
(4 + 0.67n) usec

Where n = number of places shifted. Instruction
times represent total execution including instruc-
tion and operand acquisition. Whenever address
modification is desired, add four microseconds.

98 single-address instructions.

Via eight memory contained index registers.

Synchronizing: Either internal or external sync selectable
by control panel switch setting.
Internal sync provides an interrupt every
1/1024 second.
External sync provides capability for variable-
granularity clock or high priority alarm
recognition.
TABLE I-A-1. MEMORY ADDRESS ALLOCATION

Address Storage Function

000000 Fault Interrupt, Entrance Address

000001 Bl, Index Register

000002 B2, Index Register

000003 B3, Index Register

000004 B4, Index Register

000005 B5, Index Register

000006 B6, Index Register

000007 B7, Index Register

000010 BO, Index Register

000011 Memory Word

000012 Memory Word

000013 Memory Word

000014 Memory Word

000015 Memory Word .

000016 Synchronizing Interrupt and Real-Time Clock Entrance

Address

000017 Scale Factor Shift Count Word

(000020- External Function Buffer Control (EFCB) Registers

000037)

I-A-11

TABLE I-A-1, MEMORY ADDRESS ALLOCATION (CONT.)

Address Storage Function

000020 EFBC for Channel 0, Terminal Address Word
000021 EFBC for Channel 0, Current Address Word
000022 EFBC for Channel 1, Terminal Address Word
000023 EFBC for Channel 1, Current Address Word
000024 EFBC for Channel 2, Terminal Address Word
000025 EFBC for Channel 2, Current Address Word
000026 EFBC for Channel 3, Terminal Address Word
000027 EFBC for Channel 3, Current Address Word
000030 EFBC for Channel 4, Terminal Address Word
000031 EFBC for Channel 4, Current Address Word
000032 EFBC for Channel 5, Terminal Address Word
000033 EFBC for Channel 5, Current Address Word
000034 EFBC for Channel 6, Terminal Address Word
000035 EFBC for Channel 6, Current Address Word
000036 EFBC for Channel 7, Terminal Address Word
000037 EFBC for Channel 7, Current Address Word
(000040- Output Buffer Control (OBC) Registers
000057)

000040 OBC for Channel O, Terminal Address Word
000041 OBC for Channel 0, Current Address Word
000042 OBC for Channel 1, Terminal Address Word
000043 OBC for Channel 1, Current Address Word
000044 OBC for Channel 2, Terminal Address Word
000045 OBC for Channel 2, Current Address Word
000046 OBC for Channel 3, Terminal Address Word
000047 OBC for Channel 3, Current Address Word
000050 0BC for Channel 4, Terminal Address Word
000051 OBC for Channel 4, Current Address Word
000052 OBC for Channel 5, Terminal Address Word
000053 OBC for Channel 5, Current Address Word
000054 OBC for Channel 6, Terminal Address Word
000055 OBC for Channel 6, Current Address Word
000056 OBC for Channel 7, Terminal Address Word
000057 OBC for Channel 7, Current Address Word
(000060~ Input Buffer Control (IBC) Registers
000077) '

000060 IBC for Channel 0O, Terminal Address Word
000061 IBC for Channel 0, Current Address Word
000062 IBC for Channel 1, Terminal Address Word
000063 IBC for Channel 1, Current Address Word
000064 IBC for Channel 2, Terminal Address Word
000065 IBC for Channel 2, Current Address Word

I-A-12

TABLE I-A-1. MEMORY ADDRESS ALLOCATION (CONT.)
Address Storage Function
000066 IBC for Channel 3, Terminal Address Word
000067 IBC for Channel 3, Current Address Word
000070 IBC for Channel 4, Terminal Address Word
000071 IBC for Channel 4, Current Address Word
000072 IBC for Channel 5, Terminal Address Word
000073 IBC for Channel 5, Current Address Word
000074 IBC for Channel 6, Terminal Address Word
000075 IBC for Channel 6, Current Address Word
000076 IBC for Channel 7, Terminal Address Word
000077 IBC for Channel 7, Current Address Word
(000100~ External Interrupt (EI) Registers
000117)
000100 EI for Channel O, Entrance Address
000101 EI for Channel O, Interrupt Word
000102 EI for Channel 1, Entrance Address
000103 EI for Channel 1, Interrupt Word
000104 EI for Channel 2, Entrance Address
000105 EI for Channel 2, Interrupt Word
000106 EI for Channel 3, Entrance Address
000107 EI for Channel 3, Interrupt Word
000110 EI for Channel 4, Entrance Address
000111 EI for Channel 4, Interrupt Word
000112 EI for Channel 5, Entrance Address
000113 EI for Channel 5, Interrupt Word
000114 EI for Channel 6, Entrance Address
000115 EI for Channel 6, Interrupt Word
000116 EI for Channel 7, Entrance Address
000117 EI for Channel 7, Interrupt Word
(000120- External Function Monitor Interrupt (EFMI) Registers
000137)
000120 EFMI for Channel O, Entrance Address
000121 Memory Word
000122 EFMI for Channel 1, Entrance Address
000123 Memory Word
000124 EFMI for Channel 2, Entrance Address
000125 Memory Word
000126 EFMI for Channel 3, Entrance Address
000127 Memory Word
000130 EFMI for Channel 4, Entrance Address
000131 Memory Word
000132 EFMI for Channel 5, Entrance Address
000133 Memory Word

TABLE 1-A-1. MEMORY ADDRESS ALLOCATION (CONT.)

Address Storage Function

000134 EFMI for Channel 6, Entrance Address
000135 Memory Word

000136 EFMI for Channel 7, Entrance Address
000137 Memory Word

(000140~ Output Monitor Interrupt (OMI) Registers
000157)

000140 OMI for Channel O, Entrance Address
000141 Memory Word

000142 OMI for Channel 1, Entrance Address
000143 Memory Word

000144. OMI for Channel 2, Entrance Address
000145 Memory Word

000146 OMI for Channel 3, Entrance Address
000147 Memory Word

000150 OMI for Channel 4, Entrance Address
000151 Memory Word

000152 OMI for Channel 5, Entrance Address
000153 Memory Word

000154 OMI for Channel 6, Entrance Address
000155 Memory Word

000156 OMI for Channel 7, Entrance Address
000157 Memory Word

(000160~ Input Monitor Interrupt (IMI) Registers
000177)

000160 IMI for Channel 0, Entrance Address
000161 Memory Word

000162 IMI for Channel 1, Entrance Address
000163 Memory Word

000164 IMI for Channel 2, Entrance Address
000165 Memory Word

000166 IMI for Channel 3, Entrance Address
000167 Memory Word

000170 IMI for Channel 4, Entrance Address
000171 Memory Word

000172 IMI for Channel 5, Entrance Address
000173 ' Memory Word

000174 IMI for Channel 6, Entrance Address
000175 Memory Word

000176 IMI for Channel 7, Entrance Address
000177 Memory Word

(00200~ Nondestructive Readout Memory Allocations
00237)

I-A-14

TABLE I-A-1, MEMORY ADDRESS ALLOCATION (CONT.)

Address Storage Function
00200 Bootstrap Word 1
00201 Bootstrap Word 2
00202 Bootstrap Word 3
00203 Bootstrap Word 4
00204 Bootstrap Word 5
00205 Bootstrap Word 6
00206 Bootstrap Word 7
00207 Bootstrap Word 8
00210 Bootstrap Word 9
00211 Bootstrap Word 10
00212 Bootstrap Word 11
00213 Bootstrap Word 12
00214 Bootstrap Word 13
00215 Bootstrap Word 14
00216 Bootstrap Word 15
00217 ' Bootstrap Word 16
00220 Bootstrap Word 17
00221 Bootstrap Word 18
00222 Bootstrap Word 19
00223 Bootstrap Word 20
00224 Bootstrap Word 21
00225 Bootstrap Word 22
00226 Bootstrap Word 23
00227 Bootstrap Word 24
00230 Bootstrap Word 25
00231 Bootstrap Word 26
00232 Bootstrap Word 27
00233 Bootstrap Word 29
00234 Bootstrap Word 29
00235 Bootstrap Word 30
00236 Bootstrap Word 31
00237 Bootstrap Word 32
(00240- Instruction word and data storage organized in
T7777) 10000g-word banks with the upper octal character

of address specifying the bank address (00240 -
07777 = remainder of bank 0; 10000 - 17777 = bank 1;
20000 - 27777 = bank 2).

SECTION I-B. COMPUTER INSTRUCTIONS

1. GENERAL

The computer has a repertoire of 98 instructions which generally fall into
eight categories: transfer, arithmetic, shift, logical, modifying, jump, skip
and stop, and I/0. Each of these categories is covered under a separate sub-
section of this section I-B. Certain instructions perform functions applicable
to more than one category; therefore, they are listed under both categories.
For example, an instruction which skips on a specific I/0 condition is listed
under skip and stop instructions and also under I/0 instructions.

The word formats applicable to all instructions and the symbol conventions used
to describe the instructions are defined in the following paragraphs.

2. WORD FORMATS

All instructions conform to one of the two basic word formats.

2.1 FORMAT I

17 12 11 0

V —_———‘-——-v-____—l
T u

f: function code, six high order bits.
u: twelve low order bits,

Legal function codes for Format I instructions are 02 through 47g and 5Slg
through 76g. The definition and usage of u are determined by the function code
utilizing u in two distinct manners:

1) u Used as a Constant.
In this case, u itself is the operand and requires no further memory
reference; however, u is extended to 18 bits. (Refer to paragraph 4,
entitled "Instructions™”.)

2) u Used as an Address.
In this case, u is used as the lower order 12 bits of an address refer-
ring to a memory cell within a 10000g-word bank, The entire address is
15 bits, designated as up or ugg, and is described below.

u, is defined as a 15-bit address whose three high order bits consist of the
three higher order bits of P and whose twelve low order bits are u.

up = 14 {1312 | 11 0
v

P y4-12

=

The bits supplied by P specify the bank address.

I-B-1

uggp is defined as a 15-bit address whose three high order bits consists of the
three lower order bits and the high order bit of SR and whose twelve low order
bits are u. The bits supplied by SR specify the bank address.

ugR = 14 | 13| 12 | u 0
u

\ 4
SR2 _0

Certain Format I instructions allow the use of either up or ugg as the operand
address; for these instructions ugg is used if SR is ACTIVE and up is used when-
ever SR is INACTIVE. These instructions are identified specifically in the de-
tailed description of the instructions. ‘

2.2 FORMAT II

17 12 | 11 65 0

—~
f

3 S
=<

f: function code, six high order bits,
m: minor function code, six bits,
k: operand designator, six bits,

The function code for Format II instructions is always 50g. The minor function
code determines the type of operation to be performed. Format II instructions

perform a variety of operations and can be classified in two instruction cate-
gories:

1) No Memory Address Needed.

In this case, the information existing in the computer's arithmetic or
control registers and the operand designator, k, are sufficient to per-
form the specified operation,

2) Initiate I/0 Buffer.

In this case, the two memory cells immediately following the instruction
are used to contain the buffer control words. The complete instruction

must therefore occupy three sequential memory cells (refer to I/O instruc-
tions).

3. SYMBOL CONVENTIONS

The following symbols are used to aid in describing the instructions in the
succeeding subsections,

AU Upper accumulator, 18-bit arithmetic register.

AL Lower accumulator, 18-bit arithmetic register.

A AU and AL linked together to form one 36-bit arithmetic register.
B Contents of the active index register, 18-bit one's complement.

f Function code, high order six bits of all instruction words.

1-B-2

=3 x ™7

NI
P
SR
u

up
uSR

y
Y
()
()
()f
(In
(

Y+ 1,Y)

LO O
or
O 0

O v O

()

()'or O
OO0
Y)

xY

Function register, seven bits.

Designator contained in Format II instructions, six bits.

Minor function code contained in Format II instructions, six bits.
Memory word specified by (y), (y + B), L(y)(AU) or L (y + B)(AU)
of compare instruction.

Next instruction,.

The program address register,

Special register, 4-bit core memory bank designator.

The low order 12 bits contained in Format I instruction words,

u prefaced with core memory bank designator bits of P.

u prefaced with core memory bank designator bits of SR.

u extended or up or ugg-.

The address or constant formed by y or y + B with or without sign
extension,

Contents of the address or register.

Initial contents of the address or register.

Final contents of the address or register.

Designates any single nth bit of the contents of a register.
Designates the contents of two consecutive memory locations linked
together to form a 36-bit word. Address Y + 1 contains the most
significant half of the word while address Y contains the least
significant half.

The colon in a logical expression indicates comparison.

The bit-by-bit or logical product (logical AND) defined by:

ol

000

1|01

Logical sum, or inclusive OR defined by:

_101

0101

1111 _

Half add, half subtract, or exclusive OR defined by:

01

o[or

1110

The one's complement of the contents of the address or register
Algebraic product of the contents of two locations

When the contents of Y are used as an address, only that lower por-
tion of the word that can be contained in S is transferred
Transfer the quantity stated at the left of the symbol to the
address or register stated at the right of the symbol.

Console and control panel are used to designate I/0 console or the
computer control panel.

X preceding some symbol indicates that the sign of the 12-bit
constant has been extended to produce an 18-bit word, that is:

xY = [u11 - — ——— upp | 11 0]
6 bits 12 bits

I-B-3

4. INSTRUCTIONS

Table I-B-1 summarizes the complete repertoire of 102 computer instructions in
the order of their function codes. The table lists the mnemonic symbol, a
brief description of the operation performed, the execution time, and the
instruction type. Each instruction is described in detail in subsections I-B-1
through I-B-8 which are organized according to instruction type. Function

codes which are not listed in Table I-B-1 are classified as either illegal or
not used.

Illegal function codes are: 00, 01, 77, 5000, 5001, and 5077.

If an illegal function code is encountered in a program, program control is
transferred to either the fault interrupt entrance address, 000000, or to the
first address of the bootstrap program, 00200, depending upon the position of
the AUTO RECOVERY switch on the control panel. When the switch is in the up
position, program control is transferred to address 00200 and the bootstrap
program automatically loads any program previously mounted in the appropriate
I1/0 device. When the switch is in the down position, program control is trans-
ferred to address 000000, which may contain a jump to a sequence of instructions
designed to identify the fault instruction.

Function codes which are not used are: 5002 through 5010, 5014, 5040, 5064
through 5071, and 5074 through 5076.

If a not-used function code is encountered in a program, a 4-microsecond instruc-
tion sequence occurs but no operation is performed. The program then proceeds
to the next instruction.

TABLE I-B-1, REPERTOIRE OF INSTRUCTIONS

Function Mnemonic Time Instruction
Code Symbol Description (usec) Type
02 CMAL Compare Y 8 Logical
03 CMALB Compare Y + B 12
04 SLSU Selective Substitute 8
05 SLSUB Selective Substitute
Y+ B 12
06 CMSK . Masked Compare Y 8
07 CMSKB Masked Compare Y + B 12
10 ENTAU Enter AU, Y 8 Transfer
11 ENTAUB Enter AU, Y+ B 12
12 ENTAL Enter AL, Y 8
13 ENTALB Enter AL, Y + B 12
14 ADDAL Add Y, 18 bit 8 Arithmetic
15 ADDALB Add Y + B, 18 bit 12
16 SUBAL Subtract Y, 18 bit 8
17 SUBALB Subtract Y + B,
18 bit 12
20 ADDA Add Y, 36 bit 12 ‘

I-B-4

TABLE I-B-1. REPERTOIRE OF INSTRUCTIONS (CONT.)

Function Mnemonic Time Instruction
Code Symbol Description (usec) Type
21 ADDAB Add Y + B, 36 bit 16 Arithmetic
22 SUBA Subtract Y, 36 bit 12
23 SUBAB Subtract Y + B,
36 bit 16
24 MULAL Multiply Y 26-49
25 MULALB Multiply Y+ B 30-53
26 DIVA Divide, Y 48
27 DIVAB Divide, Y + B 52 v
30 IRJP Indirect RJP, Y 12 Jump
31 IRJPB Indirect RJP, Y + B 16 Jump
32 ENTB Enter B, Y 12 Transfer
33 ENTBB Enter B, Y+ B 16 Transfer
34 JP Jump, Y 4 . Jump
35 JPB Jump, Y + B 8 Jump
36 ENTBK Enter, B, U 8 Transfer
37 . ENTBKB Modify, B, U 12 Modifying
40 CL Store Zero, Y 8 Transfer
41 CLB Store Zero, Y + B 12
42 STRB Store, B, Y 12
43 STRBB Store B, Y+ B 12
44 STRAL . Store AL, Y 8
45 STRALB Store AL, Y+ B . 12
46 STRAU Store AU, Y 8
47 STRAUB Store AU, Y+ B 12 J
51 SLSET Selective Set (IOR), Y 8 Logical
52 SLCL Selective Clear
. (AND), Y 8 Logical
53 SLCP Selective Complement
‘ (XO0R), Y 8 Logical
54 IJPEI Indirect Jump (RIL), Y 8 Jump
55 1JP Indirect Jump, Y 8 Jump
56 BSK Increment B, Skip, Y 16 Modifying
57 ISK Decrement Index, Skip,
Y v 12 Modifying
60 JPAUZ Jp if (AU) =0, Y 4 Jump
61 JPALZ or JPEQ JP if (AL) = O or
(AL) = M, Y 4
62 JPAUNZ JP if (AU) #0, Y 4
63 JPALNZ or JPNOT JP if (AL) # O or
(AL) # M, Y 4
64 JPAUP JP if A7 =0, Y 4
65 JPALP or JPMLEQ JP if AL17 = O or
MS(AL), Y 4
66 JPAUNG JP if AU37 =1, Y 4
67 JPLNG or JPMGR JP if AL1j7 = 1 or
M2 (AL), Y 4 V

I-B-5

TABLE I-B-1, REPERTOIRE OF INSTRUCTIONS (CONT.)

Function Mnemonic Time Instruction
Code Symbol Description (usec) Type
70 ENTALK Enter AL, Y 4.67 Transfer
71 ADDALK Add U, 12 bits 4,67 Arithmetic
72 STRICR Store ICR, Y 8 Transfer
73 BJP Decrement B, Jump, Y 12 Modifying
74 STRADR Store Address, Y 8 Transfer
75 STRSR Store SR, Deactivate 8 Transfer
76 RJP Return Jump, Y 8 Jump
5011 IN Initiate Input Buff, k 20 1/0
5012 ouT Initiate Output Buff, k 20
5013 EXF External Function 20
5015 INSTP Terminate Input, Kk 4
5016 ‘OUTSTP Terminate Output, k 4
5017 EXFSTP Terminate External

Function, k 4
5020 SRSM Set Resume ff

(Intercomp) 4
5021 SKPIIN Skip Input Inact, k 6
5022 SKPOIN Skip Output, Inact, k ©
5023 SKPFIN Skip Ext Fnct Inact 6 v
5024 WIFI Wait for Interrupt 4 1/0
5026 0oUTOV Force Output One

Word, k 4,67
5027 EXFOV Force External Func-

tion One Word, k 4.67
5030 RIL Remove Interrupt

‘ Lockout 4

5032 RXL _ Remove External Inter-

rupt Lockout 4
5034 : SIL : Set Interrupt

Lockout 4
5036 SXL Set External Inter-

rupt Lockout 4 v
5041 RSHAU Right Shift AU, k 18 Shift
5042 RSHAL Right Shift AL, k 18
5043 RSHA Right Shift A, k- 24
5044 SF Scale A Left, k, SF 24
5045 LSHAU Left Shift AU, k 18
5046 LSHAL Left Shift AL, k 18
5047 LSHA Left Shift A, k 24 v
5050 SKP Skip Console Key, k 6 Skip
5051 SKPNBO Skip No Borrow 6
5052 SKPOV Skip Overflow 6
5053 SKPNOV Skip No Overflow 6
5054 SKPODD Skip L(AU, AL) 0dd

Parity . 6 Skip
5055 SKPEVN Skip L(AU, AL) Even

Parity 6 Skip

I-B-6

TABLE I-B-1, REPERTOIRE OF INSTRUCTIONS (CONT.)"

Function Mnemonic Time Instruction
Code Symbol. Description (usec) Type
5056 STOP Stop Console Key, k 4.67 Stop
5057 SKPNR Skip No Resume ff

(Intercomp) 6 Skip
5060 RND Round AU 5.33 Arithmetic
5061 CPAL Complement AL 5.33 Logical
5062 CPAU Complement AU 5.33
5063 CPA Complement A 5.33
5072 ENTICR Enter ICR, k 4 Transfer
5073 ENTSR Enter, SR, k 4 Transfer

1-B-7

SECTION I-B-1, TRANSFER INSTRUCTIONS

1. GENERAL

Transfer instructions either transfer data from a memory storage location to a
register or store the contents of a register in a memory location.

2., INSTRUCTIONS

10 ENTER AU (ENTAD) (Y) —= AU
Execution time: 8 microseconds
y = up Or ugp
Clear AU, Then transmit (y) to AU.
11 ENTER AU (ENTAUB) (Y) —= AU
Execution time: 12 microseconds
y = up or ugp
Clear AU. Then transmit (y + B)
to AU,
12 ENTER AL (ENTAL) (Y) —> AL
Execution time: 8 microseconds
y = up or u
Clear AL. %ﬁen transmit (y) to AL,
13 ENTER AL (ENTALB) (Y) —= AL
Execution time: 12 microseconds
y =Vup or u
Clear AL. %ﬁen transmit (y + B) to AL,
32 ENTER B (ENTB) (Y) —=B
Execution time: 12 microseconds
y = up or uggp
Transmit (y) to B
The full 18 bits of (y) are transmitted
to the B register (a normally addressable
core cell),
33 ENTER B (ENTBB) (Y) —B
Execution time: 16 microseconds
y = up OTr ugp
Transmit (y + B) to Bycr
The full 18 bits (y + B) are transmitted

to the B register (a normally addressable
core cell).

1-B-8

ENTER B WITH CONSTANT (ENTBK) . XY — B
Execution time: 8 microseconds

y = u (sign extended to 18 bits)

Clear B. Then transmit y to B.

NOTE: u is a 12-bit one's complement
number contained within the in-
struction; it does not refer
to an address. Example of
enter B with constant when

u = 7701:
B; = any value
Bf = 777701
CLEAR Y (STORE ZEROQ) (CL) 0 —s Y

Execution time: 8 microseconds

y = up Or ugp
Store an 18-bit word of zeros at
storage address y.

CLEAR Y (STORE ZERO) (CLB) ‘ 0 —» Y
Execution time: 12 microseconds

y = up Or ugg
Store an 18-bit word of zeros at
storage address y + B.

STORE B (STRB) B — Y
Execution time: 12 microseconds

Yy = up or ugp
Store B at storage address y.

STORE B (STRBB) B —» Y
Execution time: 16 microseconds

Yy = up or ugp

Store B at storage address y + B,

STORE AL (STRAL) (AL) —> Y
Execution time: 8 microseconds

y = up or usp
Store (AL) at storage address y.
(AL)¢ = (AL)4

STORE AL (STRALB) (AL)—» Y
Execution time: 12 microseconds
y = up or ugg

Store (AL) at storage address y + B.
(AL)¢ = (AL);

1-B-9

19

£/

50 72

50 73

70

STORE AU (STRAU)
Execution time: 8 microseconds

y=up or u
Store (AU) at storage address y.
(AD) ¢ = (AD)§

STORE AU (SIRAUB)
Execution time: 12 microseconds

Y = up or ugp
Store (AU) at storage address y + B,

ENTER INDEX CONTROL REGISTER (ENTICR)
Execution time: 4 microseconds

Clear the index control register. Then
transmit the three low order bits of k
to the ICR.

ENTER SPECIAL REGISTER (ENTSR)
Execution time: 4 microseconds

Clear the special register, Then
transmit the four low order bits of k
to the SR. (SR =1 activates the SR.)
ENTER AL WITH CONSTANT (ENTALK)
Execution time: 4,67 microseconds

y = u (with sign extended to 18 bits).
Clear AL, Then transmit y to AL.

Example of enter AL with constant when
u = 0001

(AL); = any value
(AL) £ = 000001 (+1)

Example of enter AL with constant when

(AL){ = any value
= 777776 (-1

(AU) —» Y

(AU) —» Y

0o ICR

*3-0

xY —» AL

NOTE: u is a 12-bit one's complement number
contained within the instruction; it

does not refer to an address.

I-B-10

STORE INDEX CONTROL REGISTER (STRICR) (ICR) ——» Y5 0
Execution time: 8 microseconds

y = up

Replace the least significant 6 bits of the
(y) with a 6-bit value equal to the memory
address of the index register defined by ICR.
As this instruction effects a 6-bit partial
transfer, the upper 12 bits of (y) remain
unchanged.

NOTE: 1ICR = O produces memory address 10,
ICR = 1 through 7, memory addresses
01 through 07 respectively.

STORE ADDRESS (STRADR)

Execution time: 8 microseconds

(A[‘)ll—O‘ . Yll-O

Yy = up

Replace the low order 12 bits of (y) with
the low order 12 bits of (AL). As this
instruction effects a partial transfer,
the higher order 6 bits of (y) remain un-
disturbed.

(AL) ¢ = (AL)

Example of a store address instruction:

(AL); = 732504
(y)y = 567777
(y)r = 562504
STORE SPECIAL REGISTER (STRSR) " (SR) —— Y

5-0
Execution time: 8 microseconds

y = up

Replace the low order 6-bits of (y) with

a 6-bit value of which the low order 4 bits

are equal to the contents of the special
register with the remaining bits equal to zero;
store the result at y, then clear the special
register. As this instruction effects a 6-bit
partial transfer, the upper 12 bits of (y)
remain undisturbed.

NOTE: This instruction deactivates the special
register.

I-B-11

SECTION I-B-2., ARITHMETIC INSTRUCTIONS

1. GENERAL

Arithmetic instructions combine the contents of a specified memory location
with the contents of the accumulator. Single length addition and subtraction
are performed in an 18-bit parallel mode using one memory location and the
lower half of the A register (AL). Double length addition and subtraction are
performed in a 36-bit parallel mode using two consecutive memory locations and
both halves of the A register. Multiply and divide instructions utilize one
memory location and both halves of the A register. After all arithmetic
instructions, the result is left in the appropriate portion of the A register.

2. INSTRUCTIONS

14 ADD AL (ADDAL) (AL) + (Y) —sAL

Execution time: 8 microseconds

y = up Or ugp

Add (y) to ?AL) and leave the result in
AL, Set overflow designator if overflow

occurs,* (AL)f are all ones if (AL); and
(y) are all ones.

15 ADD AL (ADDALB) (AL) + (Y)—AL
Execution time: 12 microseconds

Yy = up Or ugp

Add (y + B) to (AL) and leave the result

in AL. Set overflow designator if overflow
occurs.* (AL)¢ are all ones if (AL); and
(y + B) are all ones.

16 SUBTRACT AL (SUBAL) (AL) - (Y)—=AL
Execution time: 8 microseconds

y = up or uggp

Subtract (y) from (AL) and leave the
difference in AL. Set overflow desig-
nator if overflow occurs.* (AL)f are
all ones if (AL); are all ones, and (y)
are all zeros.

*The overflow designator is cleared only by the execution of instruction
skip on overflow (f, m = 50 52) or instruction skip on no overflow
(f, m = 50 53).

I-B-12

17 SUBTRACT AL (SUBALB) (AL) - (Y)——=AL

Execution time: 12 microseconds

y = up Or ugp

Subtract (y + B) from (AL) and leave the
difference in AL, Set overflow designator
if overflow occurs.* (AL)y are all ones if
(AL); are all ones and (y + B) are all zeros,

20 ADD A (ADDA) (A) + (Y +1,Y)—=A
Execution time: 12 microseconds

y = up Or ugp

Add to (A) the double-length (36-bit) number
contained in storage cells y + 1; y, and
leave the result in A, Set overflow designator
if overflow occurs.* The least significant
~half is in cell y, and the most significant
half is in y + 1, The sign of the double
length number is indicated by the most sig-
nificant bit of (y + 1), Address y must

be even; that is, the rightmost octal digit
must be 0, 2, 4, or 6,

NOTE: The instruction is executed in the
following manner: Clear the borrow
designator. The AU and AL registers
are linked to form a continuous 36-bit
A register. Therefore, any borrow for
AL comes from AU; and any end around
borrow for AU is blocked and recorded
in the borrow designator leaving A
uncorrected. The skip on no borrow
instruction (Code 50, 51) is used to
test for required correction. Only
add A or subtract A instructions set
the designator.

Example of a double add with y = 07506

(A)i = 201007430145
address 07506 = 351123 (least significant half)
address 07307 = 077430 (most significant half)
(A) ; = 300440001271 (unadjusted sum)

* The overflow designator is cleared only by the execution of instruction skip
on overflow (f,m = 50 52) or instruction skip on no overflow (f, m = 50 53).

I-B-13

21 ADD A (ADDAB) (A) +(Y+1, Y)—= A
Execution time: 16 microseconds

Yy = up Or ugp

Add to (A) the double-length (36-bit) number
contained in storage cells y + B+ 1, y + B
leaving the result in A, Set overflow designator
if overflow occurs.* The least significant

half is in cell y + B, and the most significant
half is in cell y + B + 1, The sign of the
double-length number is the sign of (y + B + 1).
Address y + B must be even., (See note of
instruction 20.)

22 SUBTRACT A (SUBA) (A) - (Y+1, Y)—= A
Execution time: 12 microseconds

y = up or ugg

Subtract from (A) the double- length (36-bit)
number contained in storage cells y + 1, y, and
leave the difference in A, Set overflow desig-
nator if overflow occurs.®* The least significant
half is in cell y and the most significant

half is in cell y + 1, The sign of the double-
length number is the sign of (y + 1), Address y
must be even., (See note of instruction 20.)

23 SUBTRACT A (SUBAB) : A-(Y+1, Y)—=A
Execution time: 16 microseconds

y = up Or ugp

Subtract from (A) the double-length number
contained in storage cells y + B+ 1, y *+ B,
and leave the difference in A, Set overflow
designator if overflow occurs*, The least
significant half is in cell y + B, and the most
significant half is in cell y + B + 1, The
sign of the double length number is the sign
of (y + B+ 1), Address y + B must be even.
The computer executes subtract A in a manner
analogous to the add A instruction. (See
note of instruction 20.)

* The overflow designator is cleared only by the execution of instruction skip
on overflow (f, m = 50 52) or instruction skip on no overflow (f, m = 50 33).

I-B-14

24 MULTIPLY AL (MULALB) (AL) (Y)—=A

Execution time: 26-49 microseconds

y = up Or ug

Multiply (AL? by (y) leaving the double
length product in A, If the factors are
considered integers, the product is an
integer in A, The multiplication process
is executed on the absolute value of the
factors, then corrected for algebraic sign,

25 MULTIPLY AL (MULALB) (AL) (Y)——=A

Execution time: 30-53 microseconds
y'—'uporus

Multiply (AL§ by (y + B) leaving the double
length product in A, If the factors are
considered integers, the product is an integer
in A, The multiplication process is executed
on the absolute value of the factors, then
corrected for algebraic sign.

26 DIVIDE A (DIVA) (A) = (Y)—>AL;REMAINDER— AU

Execution time: 48 microseconds

y = up Or ugp

Divide (A) by (y) leaving the quotient in AL
and the remainder in AU. The remainder always
bears the sign of the dividend, Aj, with the
results satisfying the relationship: dividend

= quotient x divisor + remainder. Set overflow
designator if overflow occurs*, If overflow
occurs, (AL) becomes O.

Examples of the four possible sign combinations
of the dividend/divisor and the results:

Dividend Divisor Quotient . Remainder
+5 +4 +1 +1
+5 -4 -1 +1
-5 +4 -1 -1

-5 -4 +1 -1

* The overflow designator is cleared only by the execution of instruction skip
on overflow (f, m = 50 52) or instruction skip on no overflow (f, m = 50 53).

I-B-15

27 DIVIDE A (DIVAB) (A)=+ (Y)—AL;REMAINDER —*=AU
Execution time: 52 microseconds

y = up Or ugp

Divide (A) by (y + B) leaving the quotient

in AL and the remainder in AU, The remainder
bears the sign of the dividend, Aj. (See
instruction 26,)

50 51 SKIP ON NO BORROW (SKPNBO)
Execution time: 6 microseconds skip; 4.67 no skip

If the last previous add A or subtract A required
a borrow, take next instruction; otherwise, skip
the next instruction. 1Ignore k. The skip occurs
if no correction to (A) is needed. This allows

a correcting instruction to be inserted to save
program steps. The correcting instruction will
be subtract A where (Y + 1, Y) = 000000000001,

50 52 SKIP ON OVERFLOW (SKPOV) *
Execution time: 6 microseconds; 4.67 no skip

If an overflow condition occurred on a previous
arithmetic instruction, skip the next instruction;
otherwise, take the next instruction. Ignore k
and clear the overflow designator.

50 33 SKIP ON NO OVERFLOW (SKPNOV)*
Execution time: 6 microseconds skip; 4.67 no skip

If an overflow condition did not occur on a pre-
. vious arithmetic instruction, skip the next in-

struction; otherwise, take the next instruction.

Ignore k and clear the overflow designator.

50 60 ROUND AU (RND) If (AU) pos., (AU) + ALj7—s AL
If (AU) neg., (AU) - ALj7—s AL

Execution time: 5,33 microseconds

If (AU) are positive, add bit position 17 of AL

to (AU); if (AU) are negative subtract the com-
plement of bit position 17 of AL from AU and leave
the resultant rounded (AU) in AL. Ignore k. (AU)j

= (AU)f. An application of this instruction would be:
a double length value in A is normalized as far as
possible to the left; however, only a rounded single
length number is required for the accuracy desired.

* The overflow designator is cleared only by the execution of instruction skip
on overflow (f, m = 50 52) or instruction skip on no overflow (f, m = 50 53).

I-B-16

71

ADD CONSTANT TO AL (ADDALK) (AL) + xY— AL

Execution time: 4.67 microseconds

y = u (sign extended to 18 bits)

Add y to (AL) and leave the result in

AL, The effect of this instruction is

to increment/decrement (AL) with a
constant contained within the instruction,

Example of add constant to AL when u = 0002 (+ 2)

(AL)
(AL) ¢

O57777
060001 (incremented)

i

Example of add constant to AL when u = 7775 (- 2)

(AL); = 067055
= 067053 (decremented)

I-B-17

SECTION I-B-3. SHIFT INSTRUCTIONS
1. GENERAL

Shift instructions shift the contents of a selected register to the right or

left a specified number of bit positions. All shift instructions are Format II
instructions. The type of shift is specified by the f and m fields and, with

one exception, the number of bit position shifts to be executed is specified

by the k field. The exception is the scale factor shift instruction (50 44)
which uses both the k field and the upper two bits of the A register to determine
when the correct number of bit position shifts has been executed.

2. INSTRUCTIONS

50 41 RIGHT SHIFT AU (RSHAU)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k # 0)

Shift (AU) to the right k-bit positions. The higher
order bits are replaced with the original sign bit,
AUy7, as the value is shifted. This is an end-off
shift (that is, the low order bits are lost upon
completion of the shift).

Example of right shift AU with k = 2:

(AU); (positive) = 370000
after first shift 174000
after second shift 076000
(AUD)§ (negative) = 400000
after first shift 600000
after second shift 700000

50 42 RIGHT SHIFT AL (RSHAL)
Execution time: 4 microseconds (k = 0). 5.33 + 2k/3 microseconds (k 7 0)

Shift (AL) to the right k-bit positions. The
higher order bits are replaced with the original
sign bit, ALy7, as the value is shifted. This is
an end-off shift (that is, the low order bits are
lost upon completion of the shift).

50 43 RIGHT SHIFT A (RSHA)
Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k # 0)

Shift (A) to the right k-bit positions. The higher
order bits are replaced with the original sign bit,
A35, as the value is shifted. This is an end-off
shift (that is, the low order bits are lost upon
completion of the shift),

I-B-18

50 44

Example of right shift A with k = 2:

1l

(A); (positive) 370000 000000

after first shift 174000 000000
after second shift 076000 000000
(A)i (negative) = 400000 000000
after first shift 600000 000000

after second shift 700000 000000

SCALE FACTOR (SF)
Execution time: 8 microseconds (k = 0); 9.33 + 2k/3 (k # 0)

Shift (A) circularly to the left until either A3s # A34
or k minus shift count = 0; then store the

positive quantity k minus shift count at memory

address 00017, The effect of the instruction is to
normalize (A) to the left subject to k. Scale factor
is extremely useful when working with numerical

values in floating point notation,

Example of scale factor with k = 7:

(A)j = 170000 000000 (positive, not normalized)

after first shift 360000 000000 (positive, normalized).
The computer, sensing (A) now normalized, stores

k minus the shift count (7-1) at address 00017, The
18-bit quantity is 000006.

Example of scale factor with k = 3:

(A)§{ = 600000 000000 (negative, not normalized)
after first shift 400000 000001 (negative, normalized).
The computer then stores the quantity 000002 at address 00017.

Example of scale factor with k = 1:
(A)j = 070000 000000 (positive, not normalized)
after first shift 160000 0000000 (positive, not normalized).

The computer, having exhausted k, stores the quantity
000000 at 00017 leaving (A) only partially normalized.

I-B-19

50 45 LEFT SHIFT AU (LSHAU)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k # 0)

Shift (AU) circularly to the left k-bit positions. The lower
order bits are replaced with the higher order bits as the
word is shifted.

Example of left shift AU with k = 2:

(AU)i = 300000
after first shift 600000
after second shift 400001

No bits are lost with the execution of left shift instructions.

50 46 LEFT SHIFT AL (LSHAL)
Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k # 0)

Shift (AL) circularly to the left k-bit positions. The lower
order bits are replaced with the higher order bits as the
word is shifted. No bits are lost with the execution of left
shift instructions. (See examples of instruction 50 45).

50 47 LEFT SHIFT A (LSHA)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k # 0)

Shift (A) circularly to the left k-bit positions. The lower
order bits are replaced with the higher order bits as the
word is shifted. No bits are lost with the execution of left
shift instructions.

Example of left shift A with k = 2:

(A)i = 300000 000000
after first shift 600000 000000
after second shift 400000 000001

1-B-20

SECTION I-B-4. LOGICAL INSTRUCTIONS

1. GENERAL

Logical instructions perform five basic operations: compare, complement,
selective set, selective clear, and selective substitute, The parity skip
instructions are also included here since they provide the means for conditional
skips based on the results of a logical operation.

2. COMPARE INSTRUCTIONS

Four compare instructions are used to test and record certain conditions in
preparation for the execution of an arithmetic conditional jump instruction,
The compare instructions set the comparison designator, a 3-stage register, and
the conditional jump instruction samples the comparison designator to determine
if the jump condition has been satisfied. The comparison designator records
the results of compare instructions as follows:

1) The compare stage is set upon the computer's execution of any one of the
compare instructions,

2) The less than stage is set if a compare instruction finds (AL) less than
the contents of an addressed memory location, or L(AL) (AU) less than the
logical product of (AU) and the contents of the addressed memory location
(whichever applies).

3) The equals stage is set if a compare instruction finds (AL) equal to the
contents of an addressed memory location or finds the logical product of
(AL) and (AU) equal to the logical product of (AU) and the contents of
the addressed memory location (whichever applies).

The comparison designator is cleared by the execution of any instruction other
than the arithmetic conditional jump instructions (function codes 60-67). There-
fore, in order to set the compare stages desired, a compare instruction must
immediately precede the jump instruction, or immediately precede the first of a
consecutive string of jump instructions. Otherwise, these jump instructions are
executed without reference to the comparison designator. While the comparison
designator is set, all interrupts are locked out. For an explanation of the
manner in which the comparison designator is interpreted, refer to the descrip-
tion of the jump instructions.

I-B-21

02

03

06

COMPARE AL(CMAL) (AL) : (Y)
Execution time: 8 microseconds (AL)¢ = (AL)j

Yy = up or uggp
Compare algebraically (AL) with (y) and set the
comparison designator as follows:

Set the compare stage
Set the less than stage if (AL)< (y)
Set the equals stage if (AL) = (y)

COMPARE AL (CMALB) (AL) : (V)
Execution time: 12 microseconds (AL) ¢ = (AL)4

y T up or ugp
Compare algebraically (AL) with (y + B) and set
the comparison designator as follows:

Set the compare stage
Set the less than stage if (AL) < (y + B)
Set the equals stage if (AL) = (y + B)

COMPARE WITH MASK (CMSK) L(AU) (AL) : L(AD) (Y)

Execution time: 8 microseconds (A)f = (A)i

y = up or ugsp

Compare algebraically the masked bits of (AL)
with corresponding bits of (y) and set compar-
ison designator as follows:

Set the compare stage
Set the less than stage if L(AL) (AU)<L(y) (AU)
Set the equals stage if L(AL) (AU) = L(y) (AD)

The masked bits of (AL) are those bits which corres-
pond to bits set in (AU).

Example of compare with mask:

(AU)§ = 007777 Mask

(y) = 123451

(AL); = 222351

Compare 2351 with 3451

(AD) ¢ = 007777, (AL)¢ = 222351

1-B-22

07 COMPARE WITH MASK (CMSKB) L(AD) (AL): L(AD) (Y)

Execution time: 12 microseconds (A g = (A)4

y = up Or ugp

Compare algebraically the masked bits of (AL)
with corresponding bits of (y + B) and set the
comparison designator as follows:

Set the compare stage
Set the less than stage if L(AL) (AU)< L(y + B) (AD)
Set the equals stage if L(AL) (AU) = L(y + B) (AU)

The masked bits of (AL) are those bits which correspond
to bits set in (AU).

Example:

(AU); = 000377

(y + B) = 674201

(AL); = 377601

Compare 201 with 201

(AU) ¢ = 000377, (AL)¢ = 377601

3. COMPLEMENT INSTRUCTIONS

Four complement instructions are provided. Three of these instructions are used
to effect a bit-by-bit complement of the entire contents of the AL, AU, or A
register, The fourth is used to complement selected bits of AL, The bits
complemented are determined by the presence of 1's in corresponding bit positions
of a designated storage location Y. '

1
50 61 COMPLEMENT AL (CPAL) (AL) —AL
Execution time: 5,33 microseconds
Complement (AL), leaving the result in AL,

Ignore k.

NOTE: This instruction effects a bit-by-bit
complement with the following exception:
all zeros (positive zero) will remain
all zeros,
I
50 62 COMPLEMENT AU (CPAU) (AU) —AU
Execution time: 5.33 microseconds

Complement (AU), leaving the result in AU,
Ignore k. (See note for instruction 50 61).

1-B-23

50 63 COMPLEMENT A (CPA) (A) — A
Execution time: 5,33 microseconds

Complement (A) leaving the result in A,
Ignore k., (See note for instruction 50 61).

53 SELECTIVE COMPLEMENT (SLCP) LALY (Y) @ L(AL) (V) —AL

or
COMPLEMENT (AL)n for (Y)n =1
Execution time: 8 microseconds

y = u

Complgment the individual bits of (AL)
corresponding to ones in (y), leaving the
remaining bits of (AL) unaltered; that is,
complement (AL), for (y), = 1. This is a
bit-by-bit exclusive OR.

Example of selective complement instruction:

(AL){ = 123456
(Y) = 070007
(AL)¢ = 153451

4. SELECTIVE SET INSTRUCTION

The selective set instruction is used to force ones into selected bit positions
of the AL register. The bit positions into which ones are forced are determined

by the presence of ones in corresponding bit positions of a designated storage
location Y, ~

51 SELECTIVE SET (SLSET) or (AL) v (Y) — AL

Execution time: 8 microseconds SET (AL)n for (Y)n =1
y = up
Set the individual bits of (AL) to ones corresponding

to ones in (y), leaving the remaining bits of (AL)
unaltered. This is a bit-by-bit inclusive OR.

Example of selective set:

(AL)j = 123456
(Y) = 000077
(AL)f = 123477

5. SELECTIVE CLEAR INSTRUCTION

The selective clear instruction is used to force zeros into selected bit posi-
tions of the AL register. The bit positions into which zeros are forced are
determined by the presence of zeros in corresponding bit positions of a desig-
nated storage location Y,

1-B-24

52

6.

SELECTIVE CLEAR (SLCL) L(AL) (Y) —=AL
Execution time: 8 microseconds or CLEAR (AL)n for (Y)n =0
y = up

Clear the individual bits of (AL) corresponding

to zeros in (y), leaving the remaining bits of (AL)
unaltered., The effect of this instruction is to
compute the bit-by-bit (or logical) product of (AL)
and (y), leaving the result in AL, This is a bit-by-
bit AND.

Example of selective clear:

(AL); = 123456
(Y) ~ = 707070
(AL)§ = 103050

SELECTIVE SUBSTITUTE INSTRUCTIONS

The selective substitute instructions are used to replace bits in selected bit
positions of the AL register with bits from corresponding bit positions of a
designated storage location Y. The bit positions affected by the selective
substitute instructions are determined by the presence of 1's in the correspond-
ing bit positions of the AU register.

04

05

SELECTIVE SUBSTITUTE (SLSU) L(AD)' (AL) + L(AU) (Y)—sAL

Execution time: 8 microseconds or (Y)n — ALn for (AU)n =1
y = up or ugg
Replace the individual bits of (AL) with bits

of (y) corresponding to ones in (AU), leaving
the remaining bits of (AL) unaltered.

Example of selective substitute:

(AD)§ = 007777 Mask

(Y) = 123451

(AL); = 666666

(AL)§ = 663451

SELECTIVE SUBSTITUTE (SLSUB) L(AU)' (AL) + L(AU) (Y) —= AL

Execution time: 12 microseconds

y = up or u

Replace the individual bits of (AL) with bits

of (y + B) corresponding to ones in (AU), leaving
the remaining bits of (AL) unaltered.

I1-B-25

7. PARITY SKIP INSTRUCTIONS

The following two instructions permit programmed conditional skips based on

the parity of the bit-by-bit product of the contents of AL and AU. Parity is
odd if the number of ones in the resulting product is odd; parity is even if the
number of ones in the resulting product is even,

50 54 SKIP ON ODD PARITY (SKPODD)

Execution time: 6 microseconds skip: 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is odd, skip the next instruc-
tion; otherwise, take the next instruction. Ignore k.
(AU) ¢ = (AD);; (AL)¢ = (AL)j

Example of skip on odd parity:

(AD) 000077 mask
(AL) 127723
bit-by-bit product = 000023

bit sum =3

Since the bit sum is odd, the next instruction is skipped.

50 55 SKIP ON EVEN PARITY (SKPEVN)
Execution time: 6 microseconds skip; 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is even, skip the next
instruction; otherwise, take the next instruction.
Ignore k.

(AL); = (AL)j: (AU g = (AU)

I1-B-26

SECTION I-B-5., MODIFYING INSTRUCTIONS

1. GENERAL

Modifying instructions provide a simple method of incrementing or decrementing
the current value of a B register or a storage location used as an index.

2. INSTRUCTIONS

37 MODIFY B WITH CONSTANT (ENTBKB) Bi + xY——=B
Execution time: 12 microseconds

y = u (sign extended to 18 bits)

Add y to B (add a constant to B).

The effect of this instruction is to add a con-
stant u to B; however, since u is a 12-bit one's
complement number, the instruction can be used to
increment or decrement B,

56 B SKIP (BSK) = (Y), Skip NI
% (Y), Increment B by 1 and
Execute NI

Execution time: 16 microseconds

y = up

Test B and (y) for equality. Skip the next
instruction if equal; otherwise, increment
B by 1 and execute the next instruction.

57 INDEX SKIP (ISK) If (Y) = 0, Skip NI
If (Y) # O, Decrement (Y) by 1 and

. ,) Execute NI
Execution time: 12 microseconds

If (yg # 0, subtract one from (y) leaving

the result in y, and take the next instruction;
otherwise skip the next instruction leaving

(y) unaltered.

If (y); = 777777, then
(y)¢ = 777776 and there is no skip.

1-B-27

73

BJUMP (BJP) If B
If B

I s

0, B-

0, Execute NI
Execution time:
y = up

If B # 0, subtract 1 from B then jump

to y; otherwise execute the next instruction
leaving B unaltered. (Negative zero # 0.)

12 microseconds

NOTE: As B is a one's complement number and can take

values less than zero, the B jump will be

effective only for program loops where B is
initially positive.

1-B-28

1—=B and Y—»P

1.

SECTION I-B-6, JUMP INSTRUCTIONS

INTRODUCTION

Jump instructions are used to transfer program control to other portions of a
program or to other programs, Jump instructions fall into two general categories:
conditional and unconditional. Conditional jumps transfer program control only

if certain specified conditions exist. Unconditional jumps always transfer
program control,

2.

UNCONDITIONAL JUMP INSTRUCTIONS

Seven unconditional jump instructions are provided. The use of each instruction
is dependent upon the purpose for transferring program control. The names and
mnemonics of these instructions convey the suitability of each instruction

for a particular application. The three key words used are defined below.

30

1

2)

3)

Direct.

The word direct signifies that control is to be transferred directly to
the address specified by the lower 12 bits of the instruction and the
upper 3 bits of the P register. Since the P register must obviously be
set to the bank in which the jump instruction is stored, direct jumps
are normally used to transfer control within a memory bank., However, a
direct jump with B modification can be used to transfer control between
banks.

Indirect.

The word indirect signifies that control is to be transferred to an
address contained in the lower 15 bits of the storage location specified
by the lower 12 bits of the instruction and the upper 3 bits of the P
register, Indirect jumps require an additional memory location and an
extra memory access; however, they permit transfer of program control to
any address in memory, regardless of bank designation.

Return,

The word return implies that program control is being transferred tem-
porarily and that control may be returned to this point in the program
after a specific task has been performed. Therefore, return jumps store
the address of the next sequential instruction in the program before
transferring program control.

INDIRECT RETURN JUMP (IRJP) P)+1—= () ; Y)+1—>P

Execution time: 12 microseconds

Instruction executed from running program:

y = up

Store (P) + 1 at the address given in the low

order 15 bits of (y), then increment that address

by one and enter it into the program address register.

I-B-29

31

Instruction executed from entrance register on interrupt:
y=u

Store (P) at the address which is the low order

15 bits of (y), then increment that address by one

(1) and enter it into the program address register.

Example of an indirect return jump executed from
address 22000:

Initial Final

Address Contents Contents Explanation

22000 30 6500 Same Execute subroutine from
main program.

26500 01 7420 Same Constant defining
location of desired

. subroutine.
17420 37 2164 02 2001 Subroutine exit address.
17421 e sess Same Subroutine entrance

address (control is
transferred here from
indirect return jump).

The effect of the above sequence upon execution

of the indirect return jump at address 22000 is

to transfer control to the subroutine starting at
17421, but at the same time, letting the subroutine
know where to return control,

INDIRECT RETURN JUMP (IRJPB) P)+1—() ;) +1—>P

Execution time: 16 microseconds

"

nstruction executed from running program:

:uP

Store (P) + 1 at the address given in the low order
15 bits of (y + B), then increment that address by
one and enter it into the program address register.

<

Instruction executed from entrance register on interrupt:
y=u

Store (P) at the address which is the low order 15

bits of (y + B), then increment that address by one

and enter it into the program address register,

I-B-30

34

35

54

35

76

DIRECT JUMP (JP) Y—=P ; NI
Execution time: 4 microseconds

y = up
Unconditionally jump to y. (Reset P = y)

(Y)

DIRECT JUMP (JPB) Y—=P : NI = (V)
Execution time: 8 microseconds

y=up
Unconditionally jump to y + B.

NOTE: Because B is an 18-bit one's complement
number, care must be taken when using this
instruction; in addition, it is possible
that address, y + B, may not be relative to
the same core bank from which the (35) direct
jump was executed. Consider a direct jump
with y = 03560 and B = 010000; in this case
y + B = 03560 + 010000 = 13560.

INDIRECT JUMP AND REMOVE INTERRUPT LOCKOUT (IJPEI)

(Y) —= P and RIL

Execution time: 4 microseconds

y = up Address = (y)j4_¢

Remove interrupt lockout (enable interrupts).

Then jump to the address which is the low order

15 bits of (y). An application of this instruction
is the termination of a subroutine activated by

an interrupt.

INDIRECT JUMP (IJP) (Y)—>=P

Execution time: 8 microseconds

v

Jump to the address which is the low
order 15 bits of (y).

y = up Address = (y)14_¢

DIRECT RETURN JUMP (RJP) P)+1—sY ; Y+ 1—>P

Execution time: 8 microseconds

y = up

Store (P) + 1 at y, then jump to y + 1. This
instruction transfers to y a full 18-bit word,

the lower 15 bits being the address (P) + 1 with

the upper three bits set to zero, When this instruction
is executed from an interrupt entrance register by an
interrupt, store P, Do not initiate the (P) + 1
sequence.

I-B-31

3. CONDITIONAL JUMP INSTRUCTIONS

Eight conditional jump instructions are provided. Since these instructions
transfer program control only if the AL and AU registers satisfy certain
arithmetic conditions, they are often called arithmetic conditional jump in-
structions. These instructions (function codes 60-67) may be used with or with-
out an associated compare instruction, When a compare instruction is used, it
must immediately precede the conditional jump instruction (or the first of a
sequence of conditional jump instructions). If a compare instruction is not
used, the jump is executed upon satisfying the condition directly stated by

the instruction. If a compare instruction is used with one or more jump in-
structions, the satisfaction of the jump condition is dependent upon the status
of the 3-stage comparison designator. Table I-B-2 provides a summary

of the conditional jump instructions when used separately and with a compare
instruction, The letter M in the table represents the value that (AL) or L(AL)
(AU) are compared to during execution of the compare instruction., This value
is actually (y) for an 02 instruction, (y + B) for an 03, (y) masked by (AU)
for 06, and (y +-.B) masked by (AU) for 07. Note that (AU) can be-used as a
mask, but never as one of the values compared by a compare instruction. There-
fore, when the comparison designator is set (refer to logical instructions),

the jump condition is dependent only upon the relative values of (AL) or L(AL)
(AU) and M,

I1-B-32

ge-g-1

TABLE I1-B-2., SUMMARY OF CONDITIONAL JUMP INSTRUCTIONS

Jump Compare Compare Designator Set » Results

Instr Designator Equals Stage Less Than Stage If a

Code Not Set Set Not Set Not Set Set Jump Occurs

60 JP if (AU) = O JP; (AL) = M No JP * * (AU) =0 or (AL) = M
61 JP if (AL) =0 JP; (AL) =M No JP b * (AL) = 0O or M

62 JP if (AU) # 0 No JP JP; (AL) # M * » (AU) # 0 or (AL) # M
63 JP if (AL) £ 0 No JP JP; (AL) # M * * (AL) # 0 or M

64 JP if (AU) 2 0O * * JP; (AL) 2M No JP (AU) POS. or (AL)2M
65 JP if (AL) 2 0 * * JP; (AL) 2M No JP (AL) POS. or (AL)2M
66 JP if (AU) <0 * * No JP JP; (AL)<M (AU) NEG. or (AL) <M
67 JP if (AL) <O * * No JP JP; (AL)<M (AL) NEG. or (AL)<M

* Does not apply

61

62

JUMP AU ZERO (JPAUZ) Compare stage not set, (AU) =0, Y—=P
Compare and equals stages set, Y——sP

Execution time: 4 microseconds

y = up
Jump to y; that is, Reset P = y, if:

Compare stage of the comparison designator is not
set and (AU) = O, (negative zero acts as not zero);
or

Compare stage of the comparison designator is set
and the equals stage of the comparison designator is
set,

Otherwise, execute next instruction.
JUMP. AL ZERO (JPALZ) Compare stage not set, (AL) =0, Y—=P
JUMP IF EQUAL (JPEQ) Compare and equals stages set, Y—+P

Execution time: 4 microseconds

y=up
Jump to y; that is, reset P =y if:

Compare stage of the comparison designator is not
set and (AL) = 0, (Negative zero acts as not zero); or

Compare stage of comparison designator is set,
and the equals stage of the comparison designator
is set,.

Otherwise, execute next instruction,

JUMP AU NOT ZERO (JPAUNZ)

Compare stage not set, (AU) # 0, Y—=»P
Compare stage set, equals stage
stage not set, Y—P

Execution time: 4 microseconds

y = up . .
Jump to y; that is, reset P =y, if:

Compare stage of comparison designator is not
set and (AU) # 0; or

Compare stage of comparison designator is set,
and the equals stage of the comparison designator
is not set.

Otherwise, execute next instruction.

I1-B-34

JUMP AL NOT ZERO (JPALNZ) Compare stage not set, (AL) # 0, Y—P
JUMP NOT EQUAL (JPNOT) Compare stage set, equals stage
not set, Y—eP

Execution time: 4 microseconds

y = up
Jump to y; that is, reset P = y, if:

Compare stage of comparison designator is
not set and (AL) # 0O; or

Compare stage of comparison designator is
set, and the equals stage of comparison
is not set.

Otherwise, execute next instruction,

JUMP AU POSITIVE (JPAUP) Compare stage not set, (AU) 20, Y—=P
Compare stage set, less than
stage not set, Y—P

Execution time: 4 microseconds

y = up
Jump to y; that is, reset P =y, if:

Compare stage of comparison designator is not
set and (AU) 2 0; or

Compare stage of comparison designator is set,
and the less than stage of comparison is not.

Otherwise, execute next instruction.

JUMP AL POSITIVE (JPALP) Compare stage not set, (AL) 2 0, Y-—»P
JUMP M LESS OR EQUAL (JPMLEQ) :

Compare stage set, less

than stage not set, Y —P

Execution time: 4 microseconds

Yy =1
Jump to y; that is, reset P =y, if:

Compare stage of comparison designator is
not set and (AL) 2 0; or

Compare stage of comparison designator is
set, and the less than stage of comparison
designator is not set.

Otherwise, execute next instruction,

I-B-35

66

67

73

JUMP AU NEGATIVE (JPAUNG) Compare stage not set, (AU) <0, Y —sP
Compare and less than
stages set, Y —+P

Execution time: 4 microseconds

y = up
Jump to yg that is, reset P =y, if:

Compare stage of comparison designator is not
set and (AU) < O; or

Compare stage of comparison designator is set,
and the less than stage of comparison designator
is set,

Otherwise, execute next instruction,

JUMP AL NEGATIVE (JPALNG) Compare stage not set, (AL) < 0, Y —»P
JUMP M GREATER (JPMGR) Compare and less than
stages set, Y —P

Execution time: 4 microseconds

y = up
Jump to y; that is, reset P =y, if:

Compare stage of comparison designator is
not set and (AL)<O0; or

Compare stage of comparison designator is
set and the less than stage of the comparison
designator is set.

Otherwise, execute next instruction.

B JUMP (BJP) if B# 0, B-1—>B and Y —P
If B = 0, execute NI

Execution time: 12 microseconds

If B ¥ 0, subtract one from B then jump to y;
otherwise, execute the next instruction leaving
B unaltered. (Negative zero # 0.)

NOTE: The B jump instruction is listed here
because it does provide the means to
jump conditionally. Since the jump
condition is based on the contents of
the B register and since the contents of
B are modified each time the condition
is satisfied, the instruction is more
accurately defined as a modifying
instruction.

I-B-36

SECTION I-B-7., SKIP AND STOP INSTRUCTIONS

1. GENERAL

Skip instructions are used to skip one instruction and then continue in sequence.
The stop instruction permits programmed stops in a running program., The in-
structions which follow provide the means for programming both conditional

and unconditional skips and stops.

2. INSTRUCTIONS

50 21 SKIP ON INPUT INACTIVE (SKPIIN)
Execution time: 6 microseconds skip; 4.67 no skip
Test for output activity on channel k. If inactive,
skip the next insturction; otherwise, take the next
instruction.

50 22 SKIP ON OUTPUT INACTIVE (SKPOIN)
Execution time: 6 microseconds skip; 4.67 no skip
Test for output activity on channel k. If inactive,
skip the next instruction; otherwise, take the next
instruction,

50 23 SKIP ON EXTERNAL FUNCTION INACTIVE (SKPFIN)
Execution time: 6 microseconds skip; 4.67 no skip

Test for external function activity or channel k., If
inactive, skip the next instruction; otherwise, take
the next instruction,

50 50 SKIP ON KEY SETTING (SKP)
Execution time: 6 microseconds skip; 4.67 no skip

If bit 4, 3, 2, 1, or O of k is one and the corresponding
skip key 4, 3, 2, 1, or O is set, or if bit 5 of k is

a one (unconditional skip), skip the next instruction,
Otherwise, take the next instruction.

Examples of skip with:

k = 01 (bit 0) skip if skip key 0 is set

k = 02 (bit 1) skip if skip key 1 is set

k = 04 (bit 2) skip if skip key 2 is set

k = 10 (bit 3) skip if skip key 3 is set

k = 20 (bit 5) skip if skip key 4 is set

k = 40 (bit 5) skip unconditionally

k = 03 (bits 1, 0) skip if either key 1 or O is set

I-B-37

50 51 SKIP ON NO BORROW (SKPNBO)
Execution time: 6 microseconds skip; 4.67 no skip

If the last previous add A or subtract A required
a borrow, take next instruction; otherwise, skip
the next instruction. Ignore k. The skip occurs
if no correction to (A) is needed. This allows a
correcting instruction to be inserted to save pro-
gram steps. The correcting instruction will be
subtract A where (Y + 1, Y) = 000000000001.

30 52 SKIP ON OVERFLOW (SKPOV)

Execution time: 6 microseconds skip; 4.67 no skip

If an overflow condition occurred on a previous
arithmetic instruction, skip the next instruction;
otherwise, take the next instruction, Ignore k and
clear the overflow designator.

50 53 SKIP ON NO OVERFLOW (SKPNOV)

Execution time: 6 microseconds skip; 4.67 no skip

If an overflow condition did not occur on a previous
arithmetic instruction, skip the next instruction;
otherwise, take the next instruction. Ignore k and
clear the overflow designator.

50 54 SKIP ON ODD PARITY (SKPODD)
' Execution time: 6 microseconds skip; 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is odd, skip the next instruc-
tion; otherwise, take the next instruction. Ignore k.

(AD); = (AD)4; (A

Ulf -
Example of skip odd parity:

(AU) 000077 mask
(AL) 127723
bit-by-bit product = 000023

bit sum =3

Since the bit sum is odd, the next instruction is skipped.

50 55 SKIP ON EVEN PARITY (SKPEVN)
Execution time: 6 microseconds skip; 4.67 no skip
If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is even, skip the next
instruction; otherwise, take the next instruction., Ignore k.

(AL) ¢ = (AL);: (AD)¢ = (ADD;

1-B-38

50 56 STOP ON KEY SETTING (STOP)

Execution time: 4,67 microseconds

If bit 4, 3, 2, 1, or O of k is one and the corresponding
console stop key 4, 3, 2, 1, or O is set, or if bit

S of k is a one (unconditional stop), stop the computer;
otherwise, take the next instruction,

Examples of stop with:

k = 01 (bit 0) stop if stop key O is set

k = 02 (bit 1) stop if stop key 1 is set

k = 04 (bit 2) stop if stop key 2 is set

k = 10 (bit 3) stop if stop key 3 is set

k = 20 (bit 4) stop if stop key 4 is set

k = 40 (bit 5) stop unconditionally

k = 03 (bits 1, 0) stop if either stop key 1 or O is set

50 57 SKIP ON NO RESUME (SKPNR)

Execution time: 6 microseconds skip; 4.67 no skip

If the resume designator on channel k is not set
(indicating unsuccessful transfer of a word to an
output device), skip the next sequential instruction;
otherwise, take the next instruction,

56 B SKIP (BSK) If B = (Y), SKIP NI
If B # (Y), advance B by 1 and execute NI
Execution time: 16 microseconds
y =up
Test B and (y) for equality. Skip next instruction if

equal; otherwise, increment B by 1 and read the next
instruction,

57 INDEX SKIP (ISK) If (Y) = 0, SKIP NI
If (Y) # 0, decrement (Y) by 1 and execute NI

Execution time: 12 microseconds

y=u

If (yg # 0, subtract one from (y) leaving the result in y,

and take the next instruction; otherwise,skip the next instruc-
tion leaving (y) unaltered,

If (y); = 777777, then
(y)g = 777776 and there is no skip.

I1-B-39

SECTION I-B-8, INPUT/OUTPUT INSTRUCTIONS

1. GENERAL

I/0 instructions are used to program the transfer of data between the computer
and various peripheral devices. All I/O instructions are Format II instruc-
tions. The function code, f, is always 50g; the minor function code, m, defines
the operation to be performed; and when applicable, the operand designator, k,
specifies the number of the I/0 channel on which the operation is to be per-
formed.

2. BUFFER TRANSFER INSTRUCTIONS

Data is transferred between the computer and peripheral devices in a buffer
mode. An input buffer is a block of consecutive storage locations into which
a peripheral device, connected to an input channel, places data. An output
buffer is a block of consecutive storage locations from which a peripheral
device, connected to an output channel, receives data. Buffer transfers are
normally controlled by assigned memory locations designated as control words.
Two control words are assigned to each type of transfer (input, output, and
external function) on each I/O channel.

Prior to the beginning of a buffer transfer on a specific channel, the control
words for that channel and transfer type must be set to the initial and terminal
addresses of the buffer. The channel must then be activated to begin the data
transfer. Once the buffer transfer has been started, it is carried out by the
I/0 section of the computer without further program control. The I/0 section
transfers one 18-bit buffer word at a time in single channel mode and two 18-
bit words at a time in dual channel ESI modes. Before each 18-bit or 36-bit
transfer, the buffer control words are checked for equality. If the two con-
trol words are not equal, the second control word is incremented (or decremented)
and a transfer is made. When the equality check indicates that the two control
words are equal, the buffer is automatically terminated.

The input, output, and external function transfer instructions (50 11, 50 12,
and 50 13) are used to establish the buffer limits and activate the channel.
When coding these instructions, the programmer supplies the buffer terminal
address and the buffer initial address in the lower 15 bits of the two instruc-
tion locations following the buffer transfer instruction. The format illus-
trated on the following page defines the contents of the 3-word sequence be-
ginning at address n.

The transfer instruction at address n specifies the type of transfer (input,
output, or external function) and the channel on which the transfer is to occur.
When the instruction is executed, the contents of addresses n +1 and n + 2

are stored in the two assigned buffer control registers for the particular
channel and type of transfer.

Buffer Transfer

Address n 17 12 11 65 0 Instruction
L 1 (50 11, 50 12,
7 n K or 50 13)
n+ 2 17 16 15 14 0 Terminal
Address Word
Buffer Direction— Buffer Terminal Address
Designator
Buffer Monitor

Interrupt Designator

Unassigned
17 16 15 14 0 Initial Address
Word
Buffer Direction—— Buffer Initial Address
Designator

Buffer Monitor
Interrupt Designator

Unassigned

The word at address n + 1 is stored in the first of the two assigned buffer
control registers. This word contains the buffer terminal address in the lower
15 bits, the buffer direction designator, the continuous data in the upper-most
bit, and buffer monitor interrupt designator in bit 16. For input transfers,
the buffer terminal address is the address of the last word to be transferred
during this buffer operation. For output or external function transfers, the
buffer terminal address must be one greater than the address of the last word
to be transferred from an incrementing buffer or one less than the address of
the last word to be transferred from a decrementing buffer.

The word at address n + 2 is stored in the second of the two assigned buffer
control registers. This word contains the initial buffer address in the lower
15 bits and the monitor interrupt designator and buffer direction designator in
bits 16 and 17, respectively. If set to 1, the monitor interrupt designator
causes a monitor interrupt to occur when the buffer is terminated. The buffer
direction designator is used to specify either a forward buffer or a backward
buffer. If this bit is zero, the buffer initial address must be less than the
buffer terminal address and the initial address control word is incremented
after each equality check and word transfer. If this bit is set to 1, the buffer
initial address must be greater than the buffer terminal address and the initial
address control word is decremented after each equality check and word transfer.
Bits 16 and 17 must be set to the same configuration in both words, n + i and

n + 2,

It should be noted that, in the input mode, the I/0 section performs one last
transfer after the equality check indicates that the buffer is to be terminated:
therefore, when a one word buffer is to be transferred, both the initial and
terminal addresses must be set to the address of the one word to be transferred.
In output or external function modes of operation, the terminal address for a
one word output or external function buffer must be one greater or one less

than the initial address, which is the address of the word to be transferred.
The reason for this is that the computer waits for one additional output request
or external function request from the peripheral equipment to ensure that the
last word of the buffer was received. No transfer results from this additional
request,

50 11 INPUT TRANSFER (IN) (P +1)—»60 + 2k

Execution time: 20 microseconds (P +2)—61 + 2k
SET INPUT ACTIVE ON CHAN. k
Initiate input transfer on channel k.

Transfer buffer limit address words (for input buffer)

from the following two instruction locations to the input
buffer control registers for the designated channel. Other
I/0 channel and processor activity proceeds normally.

50 12 OUTPUT TRANSFER (OUT) (P +1)—40 + 2k

Execution time: 20 microseconds (P + 2)—41 + 2k
SET OUTPUT ACTIVE ON CHAN. k
Initiate output transfer on channel k.

Transfer buffer limit address words (for output buffer)
from the following two instruction locations to the out-
put buffer control registers for the designated channel.
Other I/0 channel and processor activity proceeds normally.

50 13 EXTERNAL FUNCTION (EXF) (P +1)—20 + 2k

Execution time: 20 microseconds (P +2)—2]1 + 2k
SET EXTERNAL FUNCTION ON CHAN k
Initiate external function mode on channel k.

Transfer buffer limit addresses (for the function buffer)
from the following two instruction locations to the EXF
buffer control registers for the designated channel.

3. BUFFER TERMINATION INSTRUCTIONS

Normally buffer transfers are terminated automatically by the I/0 section after
the last word of the buffer has been transferred. However, under certain con-
ditions the programmer may wish to terminate a buffer under program control.
Three instructions are provided for this purpose. These instructions (50 15,
50 16, and 50 17) immediately terminate the buffer transfer on the specified
channel and deactivate the channel.

I1-B-42

30 15 TERMINATE INPUT (INSTP)
CLEAR INPUT ACTIVE CHAN, k
Execution time: 4 microseconds
Terminate input on channel k.
No monitor interrupt will occur as a result of
the execution of this instruction.
30 16 TERMINATE OUTPUT (OUTSTP)
CLEAR OUTPUT ACTIVE CHAN, k
Execution time: 4 microseconds
Terminate output on channel k.
No monitor interrupt will occur as a result of
the execution of this instruction.
50 17 TERMINATE EXTERNAL FUNCTION (EXFSTP)
CLEAR EXTERNAL FUNCTION ACTIVE CHAN. k
Execution time: 4 microseconds
Terminate external function mode on channel k.
No monitor interrupt will occur as a result of
the execution of this instruction.

4, OVERRIDE INSTRUCTIONS

Certain peripheral equipments accept external functions and output data from
the computer only if the transfer is forced by the computer. The two override
instructions (50 26 and 50 27) force a transfer by simulating a request signal
(output data request or external function request), placing the information on
the data lines, and setting the acknowledge signal. Upon detecting the acknow-
ledge signal, the peripheral device accepts the data just as if the peripheral
device had requested it. It should be noted that the execution of an override
instruction forces only one transmission; it does not initiate an automatic
buffer.

For example, to send a 3-word external function buffer to a magnetic tape unit,
the external function override instruction (50 27) must be executed three times,
and the programmer must provide a delay between executions to allow time for
the tape unit to accept the information,

50 26 OUTPUT OVERRIDE (OUTOV)

Execution time: 4.67 microseconds

Wait for the output device to accept the word in the
C register(s). Then simulate an output request on
channel k and transfer the word designated by the
address in the output buffer control register for
that channel. Ignore the ESI mode if active. This

T-B-43

instruction will transfer a word whether the buffer
is active or not. The transfer takes place under
control of the output buffer control registers.

50 27 EXTERNAL FUNCTION OVERRIDE (EXFOV)

Execution time: 4.67 microseconds

Wait for the output device to accept the word in the

C register(s). Then simulate an external function
request on channel k and transfer the word designated

by the address in the external function buffer control
register for that channel. Ignore the ESI mode if active.
This instruction will transfer a word whether the buffer
is active or not. The transfer takes place under control
of the external function buffer control registers.

5. MISCELLANEOUS I1/0 INSTRUCTIONS

The instruction repertoire includes the following instructions which are useful
in programming the transfer of information between the computer and peripheral
devices.

50 20 SET RESUME (SRSM)

Execution time: 4 microseconds

Set the resume designator for channel k group to
permit honoring the next requesting output function
on that group. Loss of any information currently
held by that output register(s) for a peripheral
device is allowed by this instruction.

50 21 SKIP ON INPUT INACTIVE (SKPIIN)

Execution time: 6 microseconds skip; 4.67 no skip
Test for input activity on channel k. If inactive, skip
the next instruction; otherwise, take the next instruction.

50 22 SKIP ON OUTPUT INACTIVE (SKPOIN)

Execution time: 6 microseconds; 4.67 no skip
Test for output activity on channel k. If inactive, skip
the next instruction; otherwise, take the next instruction.

50 23 SKIP ON EXTERNAL FUNCTION INACTIVE (SKPFIN)

Execution time: 6 microseconds skip; 4.67 no skip

Test for external function activity on channel k. If
inactive, skip the next instruction; otherwise, take the
next instruction.

1-B-44

50

50

50

50

50

50

50

50

50

50

24
or
25

30
or
31

32
or
33

34
or
35

36
or
37

WAIT FOR INTERRUPT (WTFI)

Execution time: 4 microseconds

Stop the computer until any interrupt occurs and
allow I/0 to continue; ignore k, then execute the
instruction located in the interrupt entrance
register designated by the interrupt.

REMOVE INTERRUPT LOCKOUT (RIL)

Execution time: 4 microseconds

Remove the interrupt lockout; enable all external and
monitor interrupts, all channels. Ignore k. This
instruction should be used only if interrupt lock-
out was set with a 50 34 or 50 35 instruction

(SIL). It will not remove interrupt lockout set

with a 50 36 or 50 37 instruction (SXL).

REMOVE EXTERNAL INTERRUPT LOCKOUT (RXL)

Execution time: 4 microseconds

Enable external interrupts, all channels. Ignore k.
This instruction should be used only if interrupt
lockout was set with a 50 36 or 50 37 instruction
(SXL). It will not remove interrupt lockout set
with a 50 34 or 50 35 instruction (SIL).

SET INTERRUPT LOCKOUT (SIL)

Execution time: 4 microseconds

Set the interrupt lockout; disable all external and
monitor interrupts, all channels. Ignore k.

SET EXTERNAL INTERRUPT LOCKOUT (SXL)

Execution time: 4 microseconds

Disable external interrupts, all channels. Ignore k.

I-B-45

54

50 57

INDIRECT JUMP AND REMOVE INTERRUPT LOCKOUT (IJPEI)
(Y) —> P and RIL

Execution time: 8 microseconds

y = up Address = (y)14_g

Remove interrupt lockout (enable interrupts). Then jump
to the address which is the low order 15 bits of (y).

An application of this instruction is the termination of
a subroutine activated by an interrupt.

SKIP ON NO RESUME (SKPNR)

Execution time: 6 microseconds skip; 4.67 no skip

If the resume designator on channel k is not set (indicat-
ing unsuccessful transfer of a word to an output device),

skip the next sequential instruction; otherwise, take the

next instruction.

I-B-46

SECTION I-C. INPUT/OUTPUT (I/0) CHARACTERISTICS

1. GENERAL

Communication between the computer and external equipment is accomplished by a
computer program and the I/0 section of the computer via the I/0 channels and
their associated control circuits. The modular design of the I/0 section
provides for two customer selected options:

1) Number of I/0 channels.
2) Type of interface.

The I/0 section may consist of one or two modules, each of which contains four
I/0 channels and their associated control circuits. Channel numbering depends
upon the I/0 configuration selected. The list below gives the channel numbers
for the two possible selections.

Number of Channel Channel Numbers
4 0, 2, 4, and 6
8 0 through 7

Each I/0 channel has two cables: one for input and one for output. On the
output cable the computer sends command codes (external functions) and output
data to external equipment. On the input cable the computer receives status
information (external interrupts) and input data from the external equipment.
Each cable contains 18 data lines and the control lines necessary to effect
data transfer. Data transfer is carried on in a parallel mode; that is, all
information bits are transferred at once. In single-channel mode 18 bits are
transferred. In dual-channel mode two channels act as one and 36 bits are
transferred.

Except for external interrupts, all data is transferred to or from buffers in
the computer's main memory. The program need only initiate the transfer and
specify the buffer limits (first and last addresses of the buffer area). The
I/0 section then carries out the buffer transfer without further program con-
trol. The transfer is directed by request and acknowledge control signals. The
external equipment must request the transfer of each word and the computer must
acknowledge the transfer of each word. The rate at which data is transferred

is normally determined by the request rate of the external equipment since this
is usually slower than the computer's maximum transfer rate.

The maximum data transfer rate of the computer is dependent upon two factors:
I/0 channel interface design and main memory cycle time. The design of the
computer/external equipment interface (I/O channels and associated circuits)
limits the maximum data transfer rate on each I/0 module (four channel group).
Two types of interface are available. One type of interface is designed to
transfer data at O and -3 volt signal levels and is often called fast interface.

I-C-1

The second type is designed to transfer data at O and -15 volt signal levels

and is often called slow interface.

The two interface types are optional in

four channel groups, and both types may be used on one computer. For example,
an eight-channel computer may have four -3 volt channels and four -15 volt
channels, Table I-C-1 gives the maximum data transfer rates for both inter-
face types. The single channel rate applies to one channel or a combination

of channels in the same four-channel group.

The dual-channel rate applies to

dual-channel mode which combines two channels from different four channel
groups, All rates specified are for one-way communication; the total through-
put rate (simultaneous input and output) is limited to 50,000 36-bit words or
62,500 18-bit words by the maximum main memory rate.

TABLE I-C-1, DATA TRANSFER RATES

Interface Type

Channel
Configuration

Maximum Data
Transfer Rate
(Words per Second)

-3 volt

-3 volt

-3 volt

-15 volt

-15 volt

-15 volt

Single-Channel

Dual-Channel
1 odd channel
and 1 even
channel

Multi-Channel
1 or more odd
channel(s) and
1 or more even
channel(s)

Single-Channel

Dual-Channel
1 odd channel
and 1 even
channel

Multi-Channel
1 or more odd
channels and
1 or more even
channels

41,667 18-bit words

100,000 18-bit words
(50,000 36-bit words)

62,500 18-bit words
(max main memory rate)

31,667 18-bit words

83,334 18-bit words

(41,667 36-bit words
max -15 volt inter-
face rate)

41,667 18-bit words

I-C-

[§%]

2. INPUT/OUTPUT INTERFACE

2.1 DATA TRANSFERS

A1l I/0 channels are capable of communicating with either a peripheral equip-
ment, which is subordinate to the computer, or with another computer. The option
of peripheral operation or intercomputer operation is selectable by a switch
associated with each channel on the front panel of the computer.

2.1.1 PERIPHERAL OPERATION

When communicating with the computer, a peripheral equipment is subordinate to
the computer. The computer program initiates communication by activating a
channel and defining an input or output buffer. An input buffer is a storage
area in main memory into which data received from an external equipment is
stored. An output buffer is a storage area in main memory from which data is
read and sent to an external equipment. All data transfers, except external
interrupt transfers, are accomplished in a buffer mode. After program initia-
tion, communication is directed by control signals transmitted between the
computer and peripheral equipment over the input and output cables.

Figure I-C-1 shows the interface between the computer and a peripheral equipment.
On the output cable the computer can send either output data to be handled by
the peripheral equipment or external functions, which direct the peripheral
equipment to perform some operation. On the input cable the computer can

receive either input data to be processed by the computer or external interrupts
which provide the computer with status information concerning the peripheral
equipment. The types of transfers are differentiated from one another by the
request/acknowledge signals which control the transfer. All requests are honored
by the computer according to a fixed priority scheme.

The general sequence of events which occurs for each type of transfer is given
below.

1) Sequence for data transfer to the computer from peripheral equipment:
a) Program control initiates input buffer for given channel,
b) Peripheral equipment places data word on information lines.

c) Peripheral equipment sets the input request line to indicate that
it has data ready for transmission,

d) Computer detects the input request.
e) Computer samples the information lines at its own convenience.

f) Computer sets the input acknowledge line, indicating that it has
sampled the data.

I-C-3

Computer

External Function Request (EFR) Line

=
External Function Acknowledge (EFA) Line
< Output Data Request (ODR) Line "
Output Data Acknowledge (ODA) Line -
Output Data Lines (18) .
Output Cable
» External Interrupt Request (EIR) Line
» Input Data Request (IDR) Line
Input Data Acknowledge (IDA) Line >
- Input Data Lines (18)

Input Cable

Figure I-C-1. Input/Output Interface

I-C-4

Peripheral
Equipment

2)

3)

g) Peripheral equipment senses the input acknowledge line.
h) Peripheral equipment drops the input request line.

Steps b) through h) of this sequence are repeated for every data word
until the number of words specified in the input buffer have been
transferred.

Sequence for interrupt code transfer to the computer:

a) Peripheral equipment places the interrupt code on the information
lines.

b) Peripheral equipment sets the interrupt line.
c) Computer detects the interrupt.

d) Computer samples the input lines and stores interrupt code in memory
location 101 plus twice the channel number.

e) Computer sets the input acknowledge line, indicating that it has
sampled the information and when no data requests or interrupt lockout
exist it reads its next instruction from memory location 100 plus
twice the channel number.

f) Peripheral equipment senses the input acknowledge line.
g) Peripheral equipment drops the interrupt signal.

h) Peripheral equipment may change the data lines anytime after dropping
the interrupt signal.

The input acknowledge is the computer response to either an input request
or to an interrupt. To eliminate misinterpretation of the input acknow-
ledge signal, peripheral equipment must not interrupt until its last
input request has been acknowledged by the computer. Under emergency
conditions, when data loss is of secondary importance, a request may be
dropped but data lines must remain stable for not less than four micro-
seconds. If, during these four microseconds, an acknowledge is received,
the peripheral equipment may assume successful transfer of the last data
word. At any time, after the four-microsecond interval, the peripheral
equipment may change the data lines and send an interrupt. When these
conditions prevail, an input acknowledge signal that occurs after the
interrupt is raised will be in answer to the interrupt.

Sequence for data transfer from computer to peripheral equipment:
a) Program control initiates output buffer for given channel.

b) Peripheral equipment sets the output request line when it is in a
condition to accept data.

I-C-5

4)

c)

d)

e)

f)

g)

h)
i)

Computer detects output request.

Computer (at its convenience) places data on the output information
lines.

Computer sets the output acknowledge line, indicating that data is
ready for sampling.

Peripheral equipment detects the output acknowledge.

Peripheral equipment may drop output request any time after
detecting output acknowledge.

Peripheral equipment samples the data on the output lines.

Computer drops output acknowledge.

All steps of this sequence except the first are repeated for every data
word until the number of words specified in the output buffer have been
transferred. The computer also has the option of forcing any word of an
output buffer; that is, it can, under program control, send an output
data word regardless of the state of the output request line.

Sequence for external function transfer from the computer to peripheral
equipment:

a)

b)

c)

d)

e)

f)

g)

h)

Program control initiates external function buffer for a given
channel,

Peripheral equipment sets the external function request line when
it is in a condition to accept external functions.

Computer detects external function request.

Computer (at its convenience) places external function code on the
output lines.

Computer sets the external function acknowledge line indicating that
an external function is ready for sampling.

Peripheral equipment detects the external function.

Peripheral equipment may drop the external function request any time
after detecting the external function.

Peripheral equipment samples the external function code on the output
lines.

Computer drops the external function acknowledge and clears the output
lines.

All steps of this sequence except the first are repeated for every
external function message until the number of words specified in the
external function buffer have been transferred.

The computer also has the option of forcing any word of an external
function buffer; that is, it can, under program control, send an external
function code regardless of the state of the external function request
line for that channel. This option is necessary so that the computer
can override whatever function the peripheral equipment is performing in
order to re-establish positive control.

2.1.2 INTERCOMPUTER OPERATION

Any I/0 channel can be selected as an intercomputer channel by a channel-
associated switch on the control panel., The selection of a given channel as

an intercomputer channel affects only the logic concerned with the output and
external function buffers. A channel which is sending data or external func-
tions to a given peripheral device holds the data in the output registers

for a fixed minimum time period, after which any output or external function
request on any other channel which is part of the same 4-channel group can cause
the data to be changed. However, a channel sending data or external functions
to another computer must hold the information in the output register(s) until
the receiving computer acknowledges receipt of those words. This acknowledge
signal is received on what is known as the output data request line (when not in
intercomputer mode). This line, in the intercomputer mode, is known as the
resume line.,

This resume line is connected to the input acknowledge line of the receiving
computer (see Figure I-C-2). Activation of the resume signal on the trans-
mitting computer channel causes the setting of the resume flip-flop for the
even or odd group of four channels. It is this flip-flop which, when set, .
allows the transmitting computer to proceed to the next highest priority out-
put function (the next output data word or external function message). If an
output channel is holding data for another computer and no resume is received
from that computer, the output registers are tied up indefinitely and no output
buffers or external function buffers to other equipment can proceed. To limit
the possibility of this hang-up occurring, two instructions are provided by
which the computer program can monitor the status of the resume flip-flop.
These instructions are: skip on no resume (50 57k) and set resume (50 20k).
The former allows examination of the resume flip-flop, and the latter allows
the program to correct the situation in which the hang-up exists.

2.1.3 FORCED TRANSFERS (OVERRIDE)

The computer has the ability, under program control, to force the transfer of
a word from an external function buffer or output buffer regardless of the
state of the request line on that channel. Peripheral devices should have the
ability to accept such forced transmissions, realizing that loss of data or
even loss of a previous external function word is unimportant under conditions
when this option is used. Instructions 50 26 and 50 27 are the override
instructions used to accomplish forced transfers.

I-C-7

|—Ready (opa) l—Input Data
Request

+——Resume (ODR)l___InputData

Acknowledge
Computer External l External Computer
Output Mg, nction ; Interrupt Input
Channel Acknowledge ! Channel
External |
¢—Function —
Request |

|
——18 or 36 Information Lines —»
|

Figure I-C-2. Intercomputer Communication

An override instruction on an intercomputer channel will not be executed until

a resume (acknowledge) is received from the receiving computer (until a resume
flip-flop is set) unless a set resume instruction precedes the override instruc-
tion in the program. Any delay, therefore, in an acknowledge from the receiving
computer will hold up the program since the program will not proceed until the
override instruction has been executed, which will not occur until the resume
flip-flop has been set.

2.2 INTERRUPTS

The computer design incorporates a means of interrupting program operation when
certain events occur. Events which cause program interruption are called inter-
rupt conditions and the signals generated to cause the interruptions are called
interrupts. When an interrupt condition occurs in the computer, the resulting

interrupt is called an internal interrupt. When an interrupt condition occurs

in an external equipment and is transmitted over an I/O channel, the resulting

interrupt is called an external interrupt.

When an interrupt occurs, a flip-flop associated with that particular interrupt
is set. The flip-flop is checked during the I/0 priority scan and the

interrupt is honored according to a fixed priority sequence. .When the interrupt
is honored, program control is transferred to a memory location assigned to that
interrupt. Memory locations used for this purpose are called interrupt entrance
addresses and are identified in Table I-A-1. Programmers must anticipate the
occurrence of interrupts and preset the interrupt entrance addresses with in-
structions which will either provide for interrupt processing or return control
to the interrupted program. The instruction normally set in the interrupt en-
trance address is the Indirect Return Jump instruction. This instruction stores
the address of the next instruction in the interrupted program at some memory
location (CAT) and transfers program control to that location plus one (CAT+1).

I1-C-8

The location (CAT) is specified by the contents of the address in the lower 12
bits of the instruction. By using this method the programmer may load an
interrupt processing routine at CAT+l and terminate this routine with an in-
direct jump on CAT to return program control to the interrupted program. Most
interrupts are optional in the sense that they can be disabled or locked out.
This is accomplished when a set interrupt lockout (SIL) instruction is executed.
The SIL instruction locks out all interrupts except fault interrupts. A set
external interrupt lockout (SXL) instruction is also provided. This instruction
locks out only external interrupts. Two corresponding instructions (RIL and RXL)
are provided to remove these interrupt lockout conditions. A lockout condition
prevents the transfer of program control; however, it does not inhibit the
occurrence of the interrupt or the setting of the interrupt flip-flop. There-
fore, after a lockout condition is removed, interrupts which occurred but were
not honored during the lockout are honored according to the priority sequence.
If two interrupts of the same type occur during a lockout, the second is ignored.
Interrupts can be classified as channel interrupts and special interrupts.
Channel interrupts are associated with a particular I/0 channel. They are
either external interrupts received on the input cable of an I/0 channel or
buffer monitor interrupts generated internally by the I/0 section of the com-
puter. Special interrupts are not associated with any particular channel.

They provide special-purpose interrupt capability.

2.2.1 CHANNEL INTERRUPTS

1) External Interrupts.

External interrupts originate in equipment outside of the computer and

are transmitted to the computer through an I/O channel. Normally an
interrupt code is associated with an external interrupt. This code can
be used by the computer program to interpret the meaning of the interrupt.
The external equipment places the interrupt code on the input data lines
and sets the external interrupt request line. During the I/O priority
scan, the computer senses the external interrupt request, stores the
interrupt code at the external interrupt entrance address plus one, and
transfers program control to the external interrupt entrance address.

2) Buffer Monitor Interrupts.

Input data, output data, and external function buffers can be originated
with or without monitor. When a buffer is initiated with monitor, an
interrupt is generated when the buffer terminates. The interrupt, which
is generated internally by the I/O section of the computer, transfers
program control to the interrupt entrance address for that channel and
buffer type.

2.2.2 SPECIAL INTERRUPTS
1) Fault Interrupts.
Fault interrupts indicate program faults. A fault interrupt is generated

when an instruction with an illegal function code is encountered in the
program. Illegal function codes are 00, 01, 77, 5000, 5001, and 3077.

'

2) Synchronizing Interrupt.

The computer is provided with one synchronizing interrupt line. This

line may be connected to any external equipment. The external equipment
places an interrupt signal on the line when a specific interrupt condition
exists. No interrupt code is received at the time of the interrupt. If
amplifying data is required, the interrupt processing routine must initiate
an input buffer to accept the data. The synchronizing interrupt has higher
priority than an external interrupt or any buffer monitor interrupt. The
synchronizing interrupt is not locked out by a Set External Interrupt
Lockout (SXL) instruction,

3. INPUT/OUTPUT PRIORITY

The computer normally performs an I/0 priority scan during each of the major
control sequences (I,B,R,W) required in the execution of an instruction. In
addition, those instructions which employ a shift sequence (except scale factor
shift) also initiate a scan during the last shift. The I/0 scan examines all
pending I/0 operations and establishes priority in two steps.

1) The I/0 scan first sets function priority for each pending I/0 request
and determines which has highest priority according to the function
priority list (refer to Table I-C-2), Lower numbered functions have
higher priority.

2) 1/0 scan then examines all channels on which the highest priority func-
tion is requested and sets the channel translator for the highest numbered
channel requesting the function,

Priority is therefore first established according to function and then according
to channel number. Since the synchronizing interrupt is not channel dependent,
no channel priority determination is required for that function. Function
priority for all interrupts except the synchronizing interrupt is disregarded

if the interrupts are currently locked out.

TABLE I-C-2. 1I/0 FUNCTION PRIORITY

Priority Function

Synchronizing Interrupt

Override Instruction

External Function Request

Output Data Request

Input Data Request

External Interrupt

External Function Monitor Interrupt
Output Monitor Interrupt

Input Monitor Interrupt

OO~ ULk W

I-C-10

Priority of output type functions (external function and output data requests)
alternates with priority of input type functions (input data and external
interrupt) such that after an output type request has been honored, higher
priority is granted to input type requests and vice versa.

The priority for fault interrupts is not shown in Table I-C-2 because the
fault interrupt is not an I/0 function. Priority for a fault interrupt is
higher than any I/O function.

4. OPERATING MODES

The computer is capable of operating in a number of I/0 modes which provide
versatility in communications with external equipment. Three communication modes
may be selected by switch setting on the computer control panel. These modes

are single-channel, dual-channel, and externally specified indexing (ESI).

4.1 SINGLE CHANNEL MODE

In single channel mode the computer communicates with external equipment over
one input/output channel. Normally both the input cable and the output cable
are used to form a closed loop transmission path; however, in some cases the
external equipment is not capable of two way communications. Except for ex-
ternal interrupt transfers all communications are accomplished in a buffer mode.
Buffers are initiated by the computer program and carried to completion by the
I/0 section of the computer. External interrupt transfers are initiated by the
external equipment. In single-channel mode the external equipment may be another
computer or a peripheral equipment. Single-channel communication with a peri-
pheral equipment is described in the following paragraphs. Intercomputer commu-
nication is carried out in the same manner except for the differences described
under paragraph 2.1.2, Intercomputer Operation.

To accomplish communication between the computer and a peripheral equipment, the
specific command and data transfers must be programmed in logical order. Prior
to initiating an input or output data transfer the computer program must first
initiate an external function buffer to prepare the peripheral equipment for
the operation to be performed. The program then initiates the data transfer.
After the data has been transferred the peripheral equipment may send an ex-
ternal interrupt to inform the computer of the status of the operation. The
occurrence of the external interrupt transfer is dependent entirely upon the
peripheral equipment. Some peripheral equipment always sends an external
interrupt after completing (or attempting) an operation; others never send an
external interrupt. In coding a program to direct an input/output operation
the programmer must know whether or not an external interrupt will be received
and code the program accordingly. For example, if a program is to direct the
transfer of data from computer memory to magnetic tape, the program must first
send the necessary external functions to command the tape unit to write data on
tape in some desired format. The program must then initiate an output data
transfer to move the data from memory to the magnetic tape unit, When the data
has been transferred, or when an error is encountered, the magnetic tape unit
sends an external interrupt indicating the status of the operation. The pro-
gram may then interpret the status information and proceed based on the status
of the last operation.

I-C-11

The following example illustrates the roles of the program and the I/0 section
in transferring a 3-word external function buffer to a peripheral equipment.
Assume that the equipment is connected to channel 02 and that the external
function words are stored in memory at addresses 10000, 10001, and 10002,

The program must first activate channel 02 and define the buffer limits. The
coding required is as follows:

Address n-1
Address n

Address n+l
Address n+2
Address n+3

previous instruction,

501302 (I/0 instruction).

010003 (buffer terminal address).
010000 (buffer initial address).
Next instruction,

When the computer executes the I/0 instruction 501302, channel 02 is activated
and the buffer limits are transferred from addresses n+l and n+2 to the external
function buffer control words for channel 02 (addresses 000024 and 000025).
(Note that the buffer terminal address is specified as one greater than the
address of the last buffer word.) The I/0 section then assumes control of the
operation and the program proceeds to the instruction located at address n+3.
From this point on, the transfer is accomplished by request and acknowledge
signals under control of the I/0O section. The peripheral equipment sends exter-
nal function requests and the computer sends external function acknowledges after
placing the external function words on the data lines. The number of words
transferred is controlled by the buffer control words. The sequence of actions
for the 3-word buffer is shown below:

1/0 Action State of Buffer Control Words
Honor EF request (000024) = 010003
Read and compare control words (000025) = 010000
Increment (000025) by one 010001 —» 000025

Set first word, (010000), on data lines
Set EF acknowledge line

Honor EF request (000024) = 010003
Read and compare control words (000025) = 010001
Increment (000025) by one 010002 — 000025
Set second word, (010001), on data lines

Set EF acknowledge line

Honor EF request (000024) = 010003
Read and compare control words (000025) = 010002
Increment (000025) by one 010003 — 000025
Set third word, (010002), on data lines

Set EF acknowledge line

Honor EF request (000024) = 010003
Read and compare control words (000025) = 010003

Clear active flip-flop for channel 02
Terminate buffer

Note that the active flip-flop is cleared and the buffer is terminated immed-
iately after the buffer control words are found to be equal. After termination,
the current address control word (000025) is equal to the terminal address con-
trol word (000024). This I/O sequence is used for external function transfers
and for output data transfers. Input data transfers are executed in a slightly

I-C-12

different manner. The differences are illustrated by the example shown below
for a 3-word input transfer on channel 02, Assume that the same memory area
(addresses 10000, 10001, and 10002) is to be used for buffer storage. The
input buffer control word locations for channel 02 are 00064 and 00065. The
coding required to initiate the input buffer is as follows:

Address n-1 - previous instruction.

Address n 501102 (I/0 instruction).

Address n+l - 010002 (buffer terminal address).
Address n+l - 010000 (buffer initial address).
Address n+3 - Next instruction.

When the computer executes the I/0 instruction 501102, channel 02 is activated
and the buffer limits are transferred from addresses n+l and n+2 to the input
buffer control word locations for channel 02 (addresses 00064 and 00065). (Note
that in this case the buffer terminal address is specified as the address of

the last buffer word.) The I/O section then assumes control of the input oper-
ation and the program proceeds to the instruction located at address n+3. The
manner in which the I/0 section executes the input buffer is illustrated by the
sequence of actions shown below.

1/0 Action State of Buffer Control Words
Honor ID request (000064) = 010002
Read and compare control words (000065) = 010000
Increment (000065) by one 010001 — 000065

Set first word, (010000), on data lines
Set ID acknowledge line

Honor ID request (000064) = 010002
Read and compare control words (000065) = 010001
Increment (000065) by one 010002 — 000065
Set second word, (010001), on data lines

Set ID acknowledge line

Honor ID request (000064) = 010002
Read and compare control words (000065) = 010002
Clear active flip-flop for channel 02

Increment (000065) by one 010003 — 000065
Set third word, (010002), on data lines

Set ID acknowledge line (000064) = 010002
Terminate buffer (000065) = 010003

Note that the differences are as follows:

1) The terminal address control word must initially be equal to the address of
the last buffer word rather than one greater than the address of the last
buffer word (one less for decrementing buffer).

2) The active flip-flop is cleared immediately after equality of buffer con-
trol words but the sequence continues in order to complete the transfer
of the last buffer word.

3) After termination the current address control word is one greater than the
terminal address control word (one less for decrementing buffer).

I-C-13

In the examples given above the words at addresses n+l and n+2 must always
contain the buffer limits in the lower 15 bits. However, the uppermost two
bits of these words may also contain information used to define two program-
selectable options. The bits used and the options designated by them are given
below:

1) Bit 17,

This bit is used to designate buffer direction. When this bit is not
set, a forward buffer is executed; that is, the first word transferred

is taken from (or stored in) the lower of the two buffer limits, and this
lower limit is incremented each time a word is transferred. When this
bit is set to 1, a backward buffer is executed; that is, the first word
transferred is taken from (or stored in) the higher of two buffer limits,
and this higher limit is decremented each time a word is transferred.
Note that the address in the initial address buffer control word (n+2)
must always be the address of the first word to be transferred regardless
of buffer direction. Buffer direction is optional for all three types of
buffers.

2) Bit 16.

When this bit is set to 1, a buffer monitor interrupt is generated when
the buffer terminates. All three types of buffers can be initiated either
with or without monitor.

Since the compare circuits compare all 18 bits of the control words, the upper
two bits must be set to the same state in both control words.

4.2 DUAL CHANNEL MODE

Dual channel mode combines two adjacent I/0 channels (00 and Ol or 02 and 03,

and so forth) into one 36-bit I/0 channel. Dual channel mode is available only
on computers with eight channels. Selection of channels for dual channel mode
does not affect the mode of operation on other channels. The channels selected
for dual-channel operation must be of the same type; that is, both -3 volt inter-
face and both -15 volt interface.

Dual channel operation combines both the input and output cables of the two
channels. Data is transferred in 36-bit parallel mode; however, the I/0 section
of the computer handles the data as two 18-bit words. The request and acknow-
ledge signals which control the transfer of data are transmitted over the odd
numbered channel. Therefore, the odd numbered channel must be used by the
programmer to activate the channels and initiate buffer operations. If a pair
of channels are in dual channel mode and a request is detected on a request
line of an even numbered channel, the computer interprets the request as a
desire to communicate in single channel mode. The computer then replies on the
even numbered channel. In this case the computer accepts input as one 18-bit
word on the even channel and sends output as two identical 18-bit words on

the even and odd channels.

I-C-14

In dual channel mode the current buffer control word, used to count the number
of words transferred, is incremented or decremented twice for each 36-bit
transmission; however, the control words are compared only once for each 36-bit
transmission., Since buffer termination occurs only after the addresses in the
two control words are found to be equal, the buffer limits must be both

odd or both even when the buffer is initiated. During dual channel buffer
operations, two buffer locations are filled or emptied as a result of each
36-bit word transfer., Therefore, a buffer of six memory words is sent or
received during three 36-bit word transfers.

The example below illustrates the required programmed instructions and the I/0
actions which occur when the computer receives a 6-word input buffer in dual
channel mode. Assume that the equipment is connected to channels 02 and 03 and
that the words are to be stored at locations 003000 through 003005. The coding
required to initiate the buffer is as follows:

Address n-1
Address n

Address n+l1
Address n+2
Address n+3

previous instruction.
501103 (I/0 instruction).
003004 (terminal address).
003000 (initial address).
next instruction.

When the computer executes the I/0 instruction (501103), channels 02 and 03 are
activated and the buffer limits are transferred from addresses n+l and n+2 to
the input buffer control words for channel 03 (addresses 00066 and 00067). The
program then proceeds to the instruction at n+3 and the I/0 section assumes
control of the I/0 operation on channel 3.

The sequence of the I/0 actions is shown below:

1/0 Action " State of Buffer Control Words
Honor ID request (00066) = 003004

Read and compare control words (00067) = 003000
Increment (00067) by 1 003001 —» 00067

Accept and store data from channel 02

(18 bits) at 003000

Increment (00067) by 1 003002 —» 00067
Accept and store data from channel 03

(18 bits) at 003001

Set ID acknowledge

Honor ID request (00066) = 003004
Read and compare control words (00067) = 003002
Increment (00067) by 1 003003 —» 00067

Accept and store data from channel 02

(18 bits) at 003002

Increment (00067) by 1 003004 —» 00067
Accept and store data from channel 03

(18 bits) at 003003

Set ID acknowledge

Honor ID request (00066)
Read and compare control words (00067)
Clear active flip-flop for channel 03

I-C-15

003004
003004

I1/0 Action State of Buffer Control Words

Increment (00067) by 1 003005 —* 00067
Accept and store data from channel 02

(18 bits) at 003004

Increment (00067) by 1 003006 — 00067
Accept and store data from channel 03

(18 bits) at 003005

Set ID acknowledge (00066)
Terminate buffer (00067)

003004
003006

The same two program-selectable options of buffer direction and monitor inter-
rupt used in single-channel mode may also be used in dual-channel mode,

In the example above, note that the buffer terminal address as specified in
word nt+l is the address of the second to the last word of the buffer. This is
required because the last two words of the buffer are transferred after the
check indicates that the buffer is to be terminated. If this buffer was to

be initiated as a backward buffer, the initial address would be specified as
003005 and the terminal address would be specified as 003001, and addresses
003005 through 003000 would be filled in descending order.

The buffer limits required to initiate an external function or output data
buffer in dual-channel mode are the same as those required for single-channel
mode; that is, the initial address must specify the address of the first

buffer word and the buffer terminal address must be one greater than the
address of the last buffer word (one less for decrementing buffer). As in
single-channel mode, output type buffers are terminated immediately after
equality of buffer control words causes clearing of the active flip-flop. After
termination, the buffer control words are equal. For example, to transfer six
words, stored in addresses 03000 through 03005, as a forward output data buffer
without monitor, words n+l and n+2 must initially be set to 003006 and 003000
and after termination the control words are both set to 003006. If the same
buffer is to be transferred as a backward output data buffer with monitor,
words n+1 and n+2 must initially be set to 603005 and 602777 and after termin-
ation the control words are both set to 602777.

1.3 EXTERNALLY SPECIFIED INDEXING (ESI) MODE

ESI mode combines adjacent I/0 channels into one 36-bit channel. Selection of
two channels for ESI mode does not affect the mode of operation on the other
channels. The channels selected for ESI mode must be of the same type; that
is, both -3 volt interface or both -135 volt interface. ESI mode is available
only on computers with eight I/0 channels.

The ESI mode allows the external equipment to specify the first address of any
pair of control memory locations which are used, instead of the normal buffer
control words, to control the I/O operation. The program must establish buffer
limits in these control memory locations before initiating an ESI operation.

To initiate the operation the program need only activate the odd channel with an
I/0 buffer instruction (5011XX for input, 5012XX for output.) However, because
of the manner in which these instructions are executed, the buffer initiating
instruction must be followed by dummy buffer limits., These limits may be zero
or any constant value required by other portions of the program. They are

I-C-16

required only because the computer always stores the words from n+l and n+2

and proceeds to n+3 after executing a buffer initiating instruction at address
n. The sequence of events which occurs during an output buffer transfer in ESI
mode is as follows:

1) Computer program activates the output on the odd numbered channel and
stores the dummy buffer limits from program addresses n+l and n+2 in the
normal output buffer control word locations for the odd numbered channel.

2) External equipment sets a 15-bit even-numbered, index address, I, on odd
channel input cable (the address may be anywhere in main memory).

3) External equipment sets the output data request line on the odd channel.

4) When the computer honors the request, the words at addresses I and I+l
are used as buffer control words.

5) After checking control words and incrementing (I+l), the computer sets
the output word on both output channels.

6) Computer sets the output acknowledge line on the odd channel.

7) Steps 2) through 6) are repeated for each word of the buffer; when the
contents of I and I+l are equal during the equality check the buffer is
terminated in the same manner as a single-channel buffer.

The sequence of events for input is similar. All input control signals are set
on the odd channel as is the index address, I. However, the peripheral equip-
ment places the input word (18 bits) on the data lines of the even channel
before setting the input request on the odd channel. When it is accepted by
the computer, the input word is stored at the address designated by the lower
15 bits of I+l1,

After the index address, I, is specified by the external equipment, the two
words stored in memory at I and I+l are treated as normal buffer control words.
The three program-selectable options of buffer direction and monitor interrupt,
used in single-channel mode, are available in ESI mode. When an ESI buffer with
monitor interrupt is terminated, the index address, I, is automatically stored
in the appropriate monitor interrupt status word (monitor interrupt entrance
address +1 for the odd channel).

If the external equipment raises a request on the even-numbered channel, the
computer interprets the request as a desire to communicate in single-channel
mode. The computer ignores the index address which may appear on the odd-
numbered channel and communicates with the external equipment in single-
channel mode over the even-numbered channel. Output data is set on both chan-
nels; however, this does not interfere with single-channel communication.

Except for the fact that the index address is stored when a buffer with monitor

is terminated, ESI buffers terminate in the same manner as single-channel buffers.
Therefore, the same differences between input type buffers and output type buf-
fers described for single-channel mode apply to ESI buffers.

SECTION II. PERIPHERAL EQUIPMENT

The computer may be connected to a variety of military or commercial peripheral
equipments, These include:

1) Paper tape reader-punch units.

2) Magnetic tape systems.

3) High speed printer units.

4) Card reader-punch units.

5) Teletype printer units.

6) Display and display interface units.
7) Radars and radar adapter units.

8) Manual entry devices.

To program the communications between the computer and any of these peripheral
equipments, the programmer must be familiar with the functional characteristics
of the peripheral equipment as well as those of the computer. It is impracti-
cal to describe in this document, the functional characteristics of all

possible peripheral equipments which could be connected to the computer. There-
fore, the following subsections describe only those equipments which are most
commonly used with the computer.

I1I-1

I1-A-2

1232A I/0 Console

UNIVAC

II-A-1,

igure

F

SECTION II-A. UNIVAC 1232 INPUT/OUTPUT CONSOLE
1. BASIC INFORMATION

The UNIVAC(:)1232 I/0 Console (Figure II-A-1) has a paper tape punch and
reader as standard equipment, with a keyboard and printer as an option. Input

and output devices communicate with the computer through a single I/0 channel.
See Figure II-A-2.

1.1 ON-LINE OPERATION

In the on-line operation the I/0 console provides means for entering data into
the computer by punched tape or an alphanumeric keyboard. It provides means
for recording output data from the computer by either punching tape or print-
ing on paper media or both simultaneously.

1.2 OFF-LINE OPERATION
In theoff-line operation the I/0 console provides means to:

1) Print on paper media by keyboard entry.

2) Perforate tape by keyboard entry.

3) Perforate tape and print on paper media simultaneously by keyboard entry.

4) Print on paper media from a perforated tape.

5) Perforate tape from a perforated tape.

6) Perforate tape and print on paper media simultaneously from a perforated
tape.

2. INPUT/OUTPUT CONTROL

The 1/0 sequeﬁces are manually enabled from the control panel or automatically
enabled by the computer program.

2.1 COMPUTER CONTROL

The computer controls the I/0 console through the external-function word, as
specified in Figure II-A-3, as follows:

1) Bits 0, 1, and 2 control the output devices. A one in bit O allows the
status of the printer (bit 1) and perforator (bit 2) to be controlled
by the information in bits 1 and 2. A zero in bit O causes bits 1 and 2
to be ignored and the status of the output devices to remain unchanged.
With a one in bit O, a one in bit 1 enables the printer and a zero in bit
1 disables the printer, and a one in bit 2 enables the perforator and
a zero in bit 2 disables the perforator.

2) Bits 3, 4, 5, and 6 control the input devices. A one in bit 3 allows
the status of the keyboard (bit 4) and reader (bits 5 and 6) to be
controlled by the information in bits 14, 5, and 6.

3) A zero in bit 3 causes bits 4, 5, and 6 to be ignored and the status of
the input devices remain unchanged. With a one in bit 3; a one in bit 4

I1-aA-1

Input Cable

Output Cable

r— = —————— 1 r—————
| | | I
| | | “ |
| " o | |) |

S [] ..I-'.II_-ll QLT
_ I - G ©
- - t > |e a oy Re]
x91ndwo) o] eileq o o> | |
| a) |
| —» b= |- - |
o | I P i
| I3 ‘l—"-l.—l O ©
| 153! |
_ g2t [
| Rl I |
_ e
-+ 1dnaiolu]] "
< abpoTmMouyoy eleq induy " - |
= 1sanboy ej1BQq Induy | —~ = |
_ 1y o = !
abpaimouyoy eieq inding | 53 B |
- Y
1sonbay eieq indinQ T 8a |
abpaTmouxoy uOTIOoUNY [eUISIXY M;v "
-
1sonbay uorjoung TeUIdIXF) I
_ _ « O
—_ s o
2! Y I8z _
S e Y Sk
(=}
S [e .II_I|_I'
oW +
_ | Ta - _ _ _
R 2% g1
| © = Wj o= | _ _

ﬁ I o= T =z, 2

o w0 s ! ! ~ |

191ndwo) woxy ele(| g o (| 3 '
| o. = S FPr—* =

£ © a -]

I - _ _ & i

_ _ [_

L o i, L e J

Block Diagram of Console

Figure II-A-2.

I11-A-3

29

Not used

Figure II-A-3.

0= Disable output

1=Enable output

0= Disable printer

1= Enable printer

——

0=Disable punch
1= Enable punch

O=Disable input

1=Enable input

0= Disable keyboard
1 =Enable keyboard

0= Disable reader

1= Enable reader

0=Stop reading operation if ig = 0

1= Start reading operation if i = 1

1232 1/0 Console, External Function Word

II-A-4

enables the keyboard and ' zero in bit 4 disables the keyboard, a one in
bit 5 enables the reader and a zero in bit 5 disables the reader, and a
one in bits 5 and 6 starts the reading operation and a zero in bits 5
or 6 stops the reading operation.

The status of the I/O console is determined by the latest external-function word.

2.2 PANEL CONTROL

The computer external-function words are manually duplicated by the operation
of the control panel switches specified in Table II-A-1,

TABLE II-A-1, MANUAL-AUTOMATIC CONTROLS

Unit(s) External-Function Control Panel Switches
Controlled Word Bit Set Clear

Output Devices O None None

Printer 1 Print Print Clear
Perforator 2 Punch Punch Clear
Input Devices 3 None None

Keyboard 4 Keyboard Keyboard Clear
Reader 5 Read Read Clear
Reader 6 Start-Read Start-Read Clear

3. OPERATION OF UNITS
3.1 PERFORATED TAPE READER

The perforated tape reader is adjustable to read chad-type tape with 5, 6, 7,
or 8 channels and widths of 11/16 inch, 7/8 inch, or 1 inch. The reader reads
tape at a rate of 300 frames per second. The tape is transported through the
reader by an electric motor drive with a pinch roller and a brake. The
following sequence is typical:

1) The reader is enabled and the motor attains operating speed.

2) Tape is placed in the reader and the start read indicator-switch is
operated.

3) If a sprocket hole of the tape is positioned over the sensor, no advance-
ment of the tape shall occur; if the tape is positioned so that the
sensor is between sprocket holes, the clutch shall be engaged and the
tape will be advanced.

4) The next sprocket hole that reaches the sensor actuates the brake and
the tape stops.

5) The signal caused by the data holes in each frame sets the corresponding
input lines through the action of the input register.

II-A-5

6)

7)

The signal caused by the sprocket hole causes the control circuitry to
set the input-data-request line.

The computer responds with an input-data acknowledge signal, which indi-
cates that the input-data lines have been sampled. The control circuitry
clears the input-data-request line, clears the input-data lines, and
engages the clutch to advance the tape.

Steps 4 through 7 are repeated until operation of the reader is stopped.

3.2 TAPE PERFORATOR

The tape perforator perforates chad-type fape. The tape perforator is adjust-
able to perforate 5, 6, 7, or 8 channels on 11/16 inch, 7/8 inch or 1 inch

tape.

It perforates 10 frames per inch at:a tape speed of 11 inches per

second. The tape is transported through the perforator by an electric motor

drive.

1)
2)
3)

4)
5)
6)

~
-

8)

The following sequence is typical.
The perforator is enabled.
The contral circuitry sets the output-data-request line.

The computer, in synchronism with internal priorities, detects the out-
put-data-request signal.

The computer places data on the output line.
The computer sets the output-acknowledge line.
The control circuitry detects the output-acknowledge signal, gates the

data on the output-data lines to the output register, and clears the
output-data-request line.

A magnetic head associated with the perforator drive mechanism generates
a pulse at the appropriate time to gate the output register content to

the tape perforator. This energizes the perforating mechanism while the
tape is stopped.

The control circuitry generates a pulse that de-energizes the perforating
mechanism, clears the output register, and sets the output-data-request
line.

Steps 3 through 8 are repeated until perforator operation is stopped.

II-A-6

3.3 PRINTER

The printer prints data, one character at a time, on paper media. The printer
prints a character corresponding to the field-data code as specified in Table
II-A-2, The printer can print 10 characters per second. The printout has 10
characters per inch horizontally, 72 characters per line, and 6 lines per inch
vertically. The following sequence is typical:

1) The printer is enabled.

2) The control circuitry sets the output-data-request line.

3) The computer, in synchronism with internal priorities, detects the output-
data-request signal.

4) The computer places data on the output data lines.

5) The computer sets the output-acknowledge line.

6) The control circuitry detects the output-acknowledge signal, gates the
data on the output-data lines to the output register, and clears the

output-data-request line.

7) The control circuitry causes the printer to perform the print or control
function indicated by the data bits in the register, '

8) Upon completion of the print function the control circuitry clears the
output register and sets the output-data-request line.

Steps 3 through 8 are repeated until operation of the printer is stopped.

3.4 KEYBOARD

The keyboard, Figure II-A-4, generates the data codes in Table II when corres-
ponding labeled keys are operated. Data entered into the keyboard is simul-
taneously printed by the printer if the printer and the copy mode are enabled.
The following sequence is typical:

1) The keyboard is enabled.

2) When a key is operated, the corresponding input-data lines are set through
the action of the input register.

3) The control circuitry sets the input-data-request line.

4) When the computer responds with an input-data-acknowledge signal, the
control circuitry clears the input-data-request line and the data lines.

Steps 2 through 4 are repeated each time a key is depressed until operation of
the keyboard is stopped.

II-A-7

Octal
Code
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21

93 92 ol L0

Signals on Data Lines
24

FIELD DATA CODE

25

Symbol
™)
%o

TABLE 1I-A-2,
Printed

uc

Keyboard
Symbo1

Carriage Return RETURN

Master Space*
Space

Symbol or
Function

Upper Case
Lower Case
Line Feed

22

(&)

L]

(@]

(o]

(o]

23
24
25
26
27
30
31
32
33
35
36

*Master space indicates absence of information.

FIELD DATA CODE (CONT.)

TABLE II-A-2,

Octal

Signals on Data Lines

Printed

Symbol or

Keyboard

Code

92 ol 0

23

24

5

Symbol Symbol 2

Function

37
40

41

42
43
44

45
46
47
50
51

52

"

"

"

53
54

55
56
57

Stop

60

61

62

63
64

65

66

67

70
71

72
73
74
75
76
7

SPEC

Special
Idle

II-A-9

slojlololelolololololelGle
OOOOOOOOOOO® -

TURN

mlojololojolololulolele
\ (((((@@@@0@@@@@#V

3.5 KEYBOARD INTERRUPT

The computer may be interrupted from the keyboard by the following sequence:

1)

2)

3)

4)

5)

Keyboard is enabled.

Printer and copy mode are enabled if printout of the interrupt code is
desired.

The interrupt indicator switch on the control panel has been operated.

A keyboard key is operated which sets the corresponding field-data code
on the input-data lines and generates an interrupt to the computer.

When the computer responds with an input acknowledge, the interrupt and the
input-data lines will be cleared.

Steps 3 through 5 are repeated for each interrupt code to be sent.

3.6 SWITCHES AND INDICATORS

The switches and indicators of the I/0 console operate as follows:

1)

2)

3)

4)

3)

Power switch and indicator

The power switch switches the input power on and off. The power indi-
cator lights whenever the power switch is in the on position.

On-line off-line switch
In the on-line position the I/O console operates as an I/0 device for the
computer as specified herein. In the off-line position the I/0O console

operates independently of the computer and performs the off-line func-
tions specified herein, :

Tape-feed indicator switch

The tape perforator generates blank tape with only the sprocket holes per-
forated whenever the tape-feed indicator switch is operated.

Tape-levels switch

The tape-levels switch disables the perforated-tape-reader levels which
are not selected.

Input-data indicator switches

The eight input-data indicator switches display the data stored in the
input register and enable data to be manually entered into the input reg-
ister,

I1-A-11

6)

7

8)

9)

10)

11)

12)

Output-data indicator switches

The eight output-data indicator switches display the data stored in the
output register and enables data to be manually entered into the output
register.

Master clear switch

The master clear switch stops operation of all units of the I/0 console
and sets all the logic to an initial state.

Interrupt indicator switch

The interrupt indicator switch enables the generation of an interrupt to
the computer as specified in Keyboard Interrupt.

Read, read-one switch

In the read position the perforated-tape reader will read continuously.
In the read-one position the perforated tape reader will read one frame,
advance to the next frame, and stop. This switch is for off-line opera-
tion only.

Start-read indicator switch

The start-read indicator-switch starts the perforated-tape reading opera-
tion.

Copy indicator switch

The copy switch enables the I/0 console to reproduce the data being sent
to the computer by any one of the following methods:

Print the data on paper media.
b) Perforate the data on tape.

c) Print the data on paper media and perforate the data on tape simul-
taneously.

Copy-clear switch

The copy-clear switch disables the copy mode of operation.

3.7 EXTERNAL FUNCTION MANUAL CONTROLS

The print, punch, keyboard, and read indicator-switches, and the print-clear,
punch-clear, keyboard-clear, and read-clear switches enable and disable their
respective units as specified in the I/0 panel control.

I1T1-A-12

SECTION II-B. UNIVAC 1532 INPUT/OUTPUT CONSOLE
1. GENERAL DESCRIPTION

The UNIVAC 1532 I/0 console is a ruggedized computer I/0 and monitoring device
designed to perform reliably in applications where extreme environmental con-
ditions exist. The cabinet and packaging of components for the console follow
the same design plans found in ruggedized UNIVAC computers and peripherals built
for military applications,

The UNIVAC 1532 I/0 console consists of a paper tape punch, paper tape reader,
page printer®*, alphanumeric keyboard*, control and computer interface logic,

and power supplies assembled into a compact unit which operates on a single in-
put/output channel. Programs or program modifications on punched paper tape

(5 to 8 level) prepared off-line manually or on-line under computer program con-
trol by the punch may be loaded by the reader. Alphanumeric entries to the com-
puter may be made at the keyboard with automatic printout. The page printer is
also useful as a program monitoring device; it provides a running record of
real-time and normal program activities. The 1532 I/0 console may be used with
all UNIVAC general-purpose military computers,

1.1 OPERATIONAL CHARACTERISTICS

1.1.1 ON-LINE MODE

In the on-line mode of operation, the console with printer option provides the
following operations:

1) Read paper tape input to the computer (any code).
2) Punch papér tape (any code) from computer output.
3) Print on paper (7-bit ASCII) from computer output.
4) Keyboard input to the computer (7-bit ASCII) with print on paper.

5) Keyboard input to the computer with print on paper and (under program con-
trol) punch paper tape in any code.

6) Read paper tape input to the computer and (under program control) print on
paper.

7) Read paper tape input to the computer and (under program control) punch
paper tape (any code).

8) Read paper tape input to the computer and (under program control) print
on paper and punch paper tape (7-bit ASCII).

9) Computer output to punch paper tape (7-bit ASCII) with print on paper.

*The keyboard and printer are optional items.

II-B-1

1.1.2 OFF-LINE MODE

In the off-line mode of operation, the console with printer option provides the
following operations:

1) Print on paper by keyboard entry.

2) Punch paper tape (7-bit ASCII) and print on paper by keyboard entry.

3) Print on paper from paper tape entry (7-bit ASCII).

4) Punch paper tape from paper tape entry (any code).

5) Punch paper tape and print on paper from paper tape entry (7-bit ASCII).

2. FUNCTIONAL DESCRIPTION

2,1 GENERAL

The I/0 console consists of the mechanical assemblies, control and computer in-
terface logic and power supplies. The control unit provides the required timing
and control signals for the reader, punch, keyboard, and printer, and a com-
patible interface for communication between the computer and the ancillary de-
vices. Figure II-B-1 shows the information flow between the ancillary units,
control unit, and computer.

The I/0 console may be used as an on-line computer peripheral unit or as an off-
line independent unit. As on on-line device, the output units may function as

operational status monitors, operational data output units, or monitors of con-
sole input information.

In on-line operation, the computer controls the operation of the ancillary units
by use of a computer control function instruction. The control unit, upon sen-
sing the function instruction, activates the necessary control logic to switch
the console into the proper operating mode. The status of the I/0 console is
determined by the latest function instruction.

2.2 PUNCHING OUTPUT DATA

When the computer has established the perforator enable function instruction,
the output request signal is sent to the computer. The computer detects the
output request and in synchronism with internal priorities places data on out-
put lines 20 through 27. The output acknowledge line is set by the computer.
The control circuits in the console detect the output acknowledge signal and
gate the data on lines 20 through 27 to a data storage register. The output
request signal is cleared. A magnetic head associated with the reperforator
drive mechanism generates a pulse which gates the data in the storage register
to the tape perforator. This energizes the perforating mechanism which punches
the code on the tape while it is stopped. The control circuits then move the
tape one character ahead, de-energize the perforating mechanism, clear the data
storage register, and reset the output request signal. The computer continues
the output buffer process until all data has been punched on tape, and then de-
energizes the perforator by establishing a perforator disable function instruc-
tion. This function disables the perforator and clears the output request sig-
nal.

I11-B-2

Output Cable Input Cable
A A

/ \ [~ N
S S
3])
(=3 o 8
= >] =
3) 3]
O | 3] | e~
al » |l Bl ol 2] o
V] O]] 9]]| O] A
3l sl 3| =] 3] =1
HEHBEHHEE
Q] M
@ =] El|lz|=| o @
2 &bQQQQ: ©
= ol &S c>;rq) 3
y Y
LR 3 l |
Amplifiers and Gate§ Control Circuitry Drivers

l

Function Register

I |)

Gutput Data Register Input Data Register

| L1

Printer Punch Keyboard Reader

L]

Figure II-B-1, Block Diagram of I/0 Console

2.3 PRINTING OUTPUT DATA

When the computer has established the printer enable function instruction, the
output request signal is sent to the computer. The computer detects the output
request and in synchronism with internal priorities places data on output lines
20 through 26, The output acknowledge line 1s set by the computer. The control
circuits of the console detect the output acknowledge signal and gate the data
on lines 20 through 26 to a data storage register. The output request signal is
cleared. The control circuits cause the printer to perform the print function
indicated by the data bits in the storage register. The print function associ-
ated with each data code is shown in Table II-B-1. Upon completion of the print
function, the control circuits clear the output register and set the output re-
quest signal. The computer continues the output buffer process until all data
has been printed, and then de-energizes the printer by establishing a printer
disable function instruction. This function disables the printer and clears the

output request signal.

2.4 READING INPUT DATA

The operator places the tape in the reader and initiates computer operation.

II-B-3

TABLE II-B-1.

ASCII CODE FOR THE UNIVAC 1532 KEYBOARD-PRINTER

Character Caode Charact%r Code
(Bits 2°=2"7) Printed Functioning (Bits 2 -20) Printed Functioning
Non-Print Codes Character Keys Printed Codes Character Keys
NOTE: CTRL is a key that deletes the 26 bit of seven bit code.
000 0000 CTRL & @ 010 1110 . .
000 0001 CTRL & A 010 1111 / /
000 0010 “CTIRL & B 011 0000 0 0
000 0011 CTRL & C 011 0001 1 1
000 0100 CTRL & EOT 011 0010 2 2
000 0101 CTRL & WRU 011 0011 3 3
000 0110 CTRL & RU 011 0100 4 4
000 0111 CTRL & BELL 011 0101 5 5
000 1000 CTRL & H 011 0110 6 6
000 1001 CTRL & I 011 0111 7 7
000 1010 Line Feed 011 1000 8 8
000 1011 CTIRL & K 011 1001 9 9
000 1100 CTRL & L 011 1010 : :
000 1101 Return 011 1011 ; ;
000 1110 CTRL & N 011 1100 < Shift &«
000 1111 CTRL & O 011 1101 = Shift & =
001 0000 CIRL & P 011 1110 > Shift & >
001 0001 CTRL & Q 011 1111 ? Shift & ?
001 0010 CTRL & Tape On 100 0000 e Shift & @
001 0011 CTRL & X Off 100 0001 A A
001 0100 CTRL & Tape Off 100 0010 B B
001 0101 CTRL & U 100 0011 C C
001 0110 CTRL & V 100 0100 D D
001 0111 CTRL & W 100 0101 E E
001 1000 CTRL & X 100 0110 F F
001 1001 CTRL & Y 100 0111 G G
001 1010 CIRL & Z 100 1000 H H
001 1011 CTRL, Shift & K 100 1001 I I
001 1100 CTRL, Shift & L. 100 1010 J J
001 1101 CTRL, Shift &M 100 1011 K K
001 1110 CIRL, Shift & ' 100 1100 L L
001 1111 CTRL, Shift &« 100 1101 M M
111 1101 Alt. Mode 100 1110 N N
111 1111 Rub Out 100 1111 0 0
101 0000 P P
Printed Codes 101 0001 Q Q
101 0010 R R
010 0000 (space) Space Bar 101 0011 S S
010 0001 1 Shift & | 101 0100 T T
010 0010 " Shift & " 101 o101 U U
010 0011 % Shift & # 101 0110 v v
010 0100 $ Shift & $ 101 0111 W W
010 0101 % Shift & % 101 1000 X X
010 0110 & Shift & & 101 1001 Y Y
010 0111 ' (apos.) Shift & ' 101 1010 Z Z
010 1000 (Shift & (101 1011 C Shift & K
010 1001) Shift &) 101 1100 / Shift & L
010 1010 * Shift & * 101 1101 1 Shift & M
010 1011 + Shift & + 101 1110 } Shift & !
010 1100 ' . 101 1111 -— Shift & -
010 1101 - -

II-B-4

The computer starts the reader motor by establishing the start read function
instruction. The tape control positions the tape in the next sprocket hole and
activates the brake which stops the tape. The sensor senses the data on the
tape and sets the corresponding bits 2% through 27 on the input data lines. The
control circuits set the input request signal. The computer senses the input
request and in synchronism with internal priorities stores the data on the in-
put lines in a memory location. The computer sets the input acknowledge signal.
The console clears the input lines and input request signal upon sensing the in-
put acknowledge signal from the computer. The control circuits engage the
‘clutch on the reader, advance the tape to the next frame, sense the data bits

20 through 27, and set the input request signal. The computer continues the
input buffer process until all data has been read and de-energizes the reader

by establishing a reader disable function instruction. This function disables
the reader and clears the input request signal,

2.5 KEYBOARD INPUT

When the computer has established the keyboard enable function instruction, the
keyboard-printer is prepared for operation. The operator has the choice of
either interrupt or request character transmission.

The operator selects request transmission by depressing the key on the keyboard
for the character required for transmission. The layout of the keyboard is shown
in Figure II-B-2. When a key is depressed, the code corresponding to that key
is set on input lines 20 through 20 and the corresponding character is printed.
The codes corresponding to the various keys on the keyboard are shown in Table
II-B-1. The control circuits set the input request signal. The computer detects
the input request and in synchronism with internal priorities stores the data on
the input lines in a memory location. The computer sets the input acknowledge
signal. The console control circuits clear the data lines and input request sig-
nal. The operator repeats the processes by setting consecutive keys until the
entire message is transmitted.

The operator selects interrupt transmission by depressing the interrupt indica-
tor-switch on the control console and then depresses the key on the keyboard

Figure II-B-2. Keyboard Layout

IT-B-5

for the character required for transmission. When the key is operated, the code
corresponding to the key depressed is set on the input lines 20 through 26 and
the corresponding character is printed. The control circuits set the internal
signal. The computer senses the interrupt and in synchronism with internal
priorities stores the data on the input lines in a memory location assigned to
that interrupt channel. The computer sets the input acknowledge signal. The
console control circuits clear the interrupt signal and input data lines. The
operator repeats the process by setting the interrupt indicator-switch and a
keyboard key until the entire message is transmitted.

2.6 FUNCTION INSTRUCTIONS

The function instructions provide the computer, through the computer program,
with a means for maintaining control of the I/0 console. The function instruc-
tion words are seven-bit, position-encoded words. An illustration of the en-
coding is shown in Figure II-B-3.

29 : 7,6 ,5,4,3 .2

2 2l 20 99 94 93 52 51 5,0

——Output Control Enable

Printer Enable

L Perforator Enable
Input Control Enable
Keyboard Enable
Reader Enable

Start Read
A Not Used
Figure II-B-3. Function Instruction Encoding

3.1 GENERAL

The I/0 console is manually placed in the on-line condition when the operator
sets the on-line/off-line toggle switch on the console. When it is in the on-
line condition, programmed references may begin.

For any operation requested of an output device of the UNIVAC 1532, the output
control enable (bit 20) must be set along with the device selection bit/bits if
it is to perform. To disable operation of an output device, the output control
enable bit must be set and the device selection bit cleared. Similarly, for
operations requesting functions of an input device, the input control enable
(bit 23) must be set along with the device selection bit/bits if the device is
to perform. To start reading by the paper tape photoelectric reader the start
read (bit 26) must be set. To disable operation of an input device, the input
control enable must be set and the device selection bit cleared.

II-B-6

The console does not respond when it is in the off-line condition., Since no
status interrupts are generated by the console when a control function is
attempted in the off-line condition, careful consideration should be given to
the physical operator functions as well as programming restrictions,

3.2 TAPE READING PROCEDURES

To read a data tape, the operator must position the tape on the redder. The
program procedure for reading a data tape is illustrated in Figure II-B-4. The
computer activates the reader by transmitting the start read mode external
function code to the I/0 console. This function word may be transmitted with
force or without force, depending on the type of computer used in the system.

1 Establish a One Word?2
Issue Start Read Mode Input Buffer with

Code by External Monitor and Wait for
Function Command Internal Interrupt

3
Process Character
Read and Establish
One Word Buffer¥

Repeat Step 3
Until All
Characters are Read

Issue Reader 4

Deactivate Code *No timing problems as
by External tape reader cycles
Function Command with input acknowledge

Figure IT-B-4. Sequence of Program Operations for Tape Read

After the command has been received by the console, the computer can establish
the input buffer mode at its convenience. The reader reads the first frame,
sets the input request, and waits for the input acknowledge. The program may
transfer one word into the computer, process this word, and re-establish a
second buffer without considering time since the console holds each character
until the input acknowledge pulse appears.

After the data transmission is complete, the program deactivates the reader by
sending a one in bit position 23 and zeros in bit positions 25 and 26 in an
external function word.

3.3 KEYBOARD INPUT PROCEDURES

Data or control information may be entered from the keyboard-printer in two
different modes.

3.3.1 KEYBOARD-PRINTER ENTRY VIA INTERRUPT

The interrupt mode is enabled by an indicator-switch on the console. When

I1I-B-7

activated, the next keyed character code is transmitted to the computer with
interrupt.

The internal interrupt routine can store the character code, make the proper
interpretation and transfer to a desired program that performs the required
function or stores the appropriate data word.

3.3.2 KEYBOARD-PRINTER ENTRY VIA COMPUTER COMMANDS

To enter data or control information from the keyboard-printer, the program
must previously have activated the keyboard by the keyboard-printer enable mode
external function code. The program should establish a one-word input buffer
with monitor on the console input channel. As a key is depressed, the buffer
completes and the internal interrupt alerts the computer. _The keyboard can be
disabled bX the program by sending a one in bit position 2 and a zero in bit
position 2% in an external function word.

3.4 TAPE PUNCHING PROCEDURES*

To punch a tape, the program must activate the punch by sending the perforator
enable mode external function code to the punch. The program then transmits the
data to be punched to a buffer storage area and establishes the appropriate
length output buffer. The console accepts the data at the convenience of the
punch. When the punching operation is cgmplete, the program can deactivate the
punch by sending a one in bit position and a zero in bit position 2 in an
external function word.

3.5 PRINTER PROCEDURES*

To operate the printer, the program must activate the printer by sending an in-
put disable code and then the printer enable mode external function code to the
printer. The program then transmits the ASCII code data that is to be printed
to a buffer storage area and establishes the appropriate length output buffer.
The console accepts the data at the printer's convenience. When the printing
operation is complete, the program can deactivate the printer by sending a one
in bit position and a zero in bit position 2l in an external function word.

3.6 OFF-LINE OPERATIONS
In off-line operation the console unit has the following capabilities:

1) It prints hard copy, or prints hard copy and punches paper tape from the
keyboard.

2) It prints hard copy, punches paper tape, or prints hard copy and punches
paper tape from the paper tape reader.

3) It reproduces and permits correcting paper tape, if tape is punched in
ASCII code.

*No timing considerations need be made in the program since the peripheral unit
cycles with the output acknowledge.

I11-B-8

SECTION II-C. MAGNETIC TAPE SYSTEM (TYPE 1240A)

1. BASIC INFORMATION

The type 1240A Magnetic Tape System provides a large capacity, medium-speed
auxiliary storage area.

The system employs various format selections. They include recording and read-
ing in four moduli, two character types, odd and even parity, and low and high
density. In order to provide compatibility with the high-speed printer, the
mod 5 format is used with a programmed fixed block length of 128 lines or tape
frames to each block of information. One block contains 24 computer words.

Mod 6 format is used for compatibility with some non UNIVAC systems. The den-
sity selection allows the 1240A tape unit to read or write at 200 frames per
inch for low density and at 556 frames per inch for high density. The reading
and writing operation is performed at a tape speed of 112.5 inches per second,
and the rewind operation is done at a tape speed of 225 inches per second. The
block length may vary between 24 computer words and total computer memory. The
recording of 1240 tape system is the non-return to zero (change-on-one) tech-
nique,

The basic 1240A Magnetic Tape System cabinet (Figure II-C-1) consists of three
sections:

1) Magnetic tape control.
2) One tape transport control,
3) Four tape transports.

Auxiliary tape transport controls and tape transports may be added to the system
(up to sixteen transports and four tape transport controls, Figure II-C-2).

The magnetic tape control enables the magnetic tape system to communicate with
the computer by performing the interface digital-to-digital conversion and per-
forming the logical operations of selecting tape function and tape transport.
The tape transport control receives signals from magnetic tape control and per-
forms the logic necessary to control either two or four tape transports. Only
one magnetic tape control is necessary in a system and one tape transport con-
trol is necessary for each cabinet of transports. Figure II-C-2 shows the
1240A interface of system with sixteen transports, four tape transport controls,
and one magnetic tape control.

2. INPUT/OUTPUT SEQUENCE FOR 1240A MAGNETIC TAPE SYSTEM

The I/0 sequence for the 1240A tape system and computer begins with the tape
system in an idle state and the following events occur:

1) The computer places an address word on the output data lines. (See Fig-
ures II-C-3 for configuration of address word.)

2) The computer sets the external function line active.

I1-C-1

Magnetic Tape Control

Tape
Transport
Control

il

. l ; i

Tape Tape Tape Tape
Transport Transport Transport Transport
1 2 3 4

Figure II-C-1. Block Diagram of Magnetic Tape System

1I-C-2

Computer

? I a
-
- [«5] w2
8} v 7] le; 8] =
7] (=] QO <8} o = (=]
3] el = =] () [o
=] T oy - Q -
il ozl = ol - R -
(=) [3+] = [3+] =
[3+} = 3] - - - =,
= ~ = - [1°] (> T
2] < 9 o (=] < jamn} —
2 < = E - - - g
+ - - ~ = = = 4
= = = 3] [=5 o (=} Qo
Q. (o} =3 - - P + +
= = = = = = = >
el - i [o (=) o 3
— v e | cm— — L— — — — — o — ——l— — e —— o — — e — —
.|
r Y y
l I
: Magnetic Tape Control :
' I
! |
: Tape Tape Tape Tape |
Transport Transport Transport Transport, !
: Control Control Control Control [
I !
' |
I {TT T T T |
I B 5 9 13 |
I
| |
| TT TT IT T :
| 2 6 10 14 i
' I
| TT TT TT TT |
| 3 7 11 15 [
! |
I . |
| TT TT TT TT |
| 4 8 12 16 |
L e o o e e e e e o e e e e e m - - -

1240A Magnetic Tape System

Figure II-C-2,

1240A Interface

I1-C-3

3) The magnetic tape control takes the address word and selects the correct
cabinet and transport.

4) The computer places an instruction word on the output data lines. (See
Figure II-C-4 for configuration of instruction word.)

5) The computer sets the external function line active,.

6) The magnetic tape control samples the instruction word, becomes active and
performs the operation specified by the instruction word.

7) The magnetic tape control receives a status word from the tape transport
control, and places it on the input data lines.

8) The magnetic tape control sets the interrupt line active.
9) The computer accepts the interrupt according to priority.

10) The computer program handles the interrupt and determines the action to be
taken using the status word.

11) The magnetic tape system becomes idle.

2.1 ADDRESS WORD

The address word is received by the magnetic tape system via the external com-
mand from the computer. Bit 17 is set, and will be as specified in Figure II-
C-3. The magnetic tape system operates with the selected cabinet and tape
transport for all operations until another address word is received from the
computer.

2.2 INSTRUCTION WORD

The instruction word is received by the magnetic tape control via the function
command and bit 17 is set to a zero. The instruction word will be as specified

in Figure II-C-4. R S
3. INTERRUPT AND STATUS WORD

A status interrupt is sent to the computer by the magnetic tape control, 222
microseconds following the completion of all functions except the master clear
and transport address word operation., Along with the interrupt the magnetic
tape control puts a status word on the data lines. This status word is a sig-
nal from tape transport control as to the success of an operation performed on
a tape transport. The computer acknowledges the interrupt signal and jumps to
the interrupt entrance address for that channel. (Address 20+Cj). The com-
puter entrance address should contain a RJP (65000 xxxxx) instruction to com-
puter interrupt program. This program determines if the tape operation was
successful, (Figure JI-C-5 gives status bits that will be set for any errors
that may occur.)

II-C-4

Designator = 0

Figure II-C-4.

LEEFity:

E)_(_a_nsity; High=1/Low=0

0dd = 1/Even = 0

30 1817116115 06|05 03 | 02 00
No Meaning | Not Used Cabinet Transport
Address Address
_@§ster Clear
Function Word .
Designator =1 0 = Cabinet 4 | O = None
— 1 = Cabinet 1 1 =TT No. 1
2 = Cabinet 2 2 = TT No. 2
3 = Cabinet 3| 3 =TT No. 3
4 = Cabinet 4 | 4 = TT No. 4
5 = Cabinet 1 5 =TT No., 1
6 = Cabinet 2 | 6 = TT No. 2
7 = Cabinet 3| 7 =TT No. 3
Figure II-C-3. Address Word
1
30 181 17| 16|15 11} 10 O?J708|707 !06 05 00
T 1 LI
No Meaning Operation Code | | | |Identification Code
— Refer to Table
II-C-1 I ’ I Selective Read =
- I l | ID Code
Master ; =
Write, Ta Mark =
| Clear o 001111 b
|
Function wOrd I ' Write, Tape Mark,
| | | | -1xR6 = 001111

ICharacter; Octal=1/Bioctal= 0

Modulus

Mod 3

Mod 5

nu

00 Mod 4
10 Mod 6

Instruction Word

01
11

TABLE II-C-1. OPERATION CODES

Operation Code Operation
00000 READ
00001 READ, Selective
00010 READ, Ignore Error Halt
00011 Space File
00100 SEARCH Type I
00101 SEARCH Type II
00110 SEARCH-File Type I
00111 SEARCH-File Type II
01000 WRITE
01001 WRITE, XIRG
01010 WRITE, Ignore Error Halt
01011 WRITE XIRG, Ignore Error Halt
01100 ~ WRITE Tape Mark
01101 WRITE Tape, XIRG
10000x* Backspace
10010 Backspace-Read
10011 Backspace-File
10100 Backsearch Type I
10101 Backsearch Type II
10110 Backsearch File Type I
10111 Backsearch File Type II
110x0* Rewind
110x1* Rewind, Clear Write Enable
111x0* Rewind-Read
111x1* Rewind-Read, Clear Write Enable

* x may be either "0" or "1"

II-C-6

20128 27 26(25(|24(23(22|21({20(19| 18|17 (16| 15

14113 12 1110|0908 07| 06|05{04]|03|02|01]O00

-Load Point

Low Tape
LEnd of Tape
~No Write Enable

LTape Mark (End of File)
1 = Backward
0 = Forward

~Longitudinal Parity Error

“Last Direction

LLateral Parity Error

LIncorrect Frame Count

~Input Timing Error

“Qutput Timing Error

~Not Used

— Improper Condition

Figure II-C-5., Status Word Format
4. MAGNETIC TAPE OPERATIONS
4.1 MASTER CLEAR (BIT 16)
The magnetic tape control performs a master clear whenever power is applied,
when the master clear switch is operated, and whenever the master clear com-
mand is received via the external function command from the computer. The

master clear performs the following:

1) The master clear is accepted by the magnetic tape control system at any
time.

2) The master clear shall not be followed by a status-word interrupt.

3) The master clear stops all tape motion (except a rewind of tape) and
places the system in the idle state.

4) The magnetic tape control accepts an external function command anytime
after a master clear,.

4.2 READ (BITS 11-15)
The read function is supplemented by format, density, and identification code

selections. Two types of read operations are performed: normal and selective
read.

1I-C-7

CHANGE 1

The read function performs the following:

1)

2)

3)

4)

5)

6)

7)

The magnetic tape control, having received the read function, begins

passing tape forward over the read head at a speed of 112.5 inches per
second.

The tape transport control checks the parity of each frame, or seven bits,
and passes the information onto magnetic tape control.

The magnetic tape control assembles the information into a computer
word for transfer to the computer. The number of frames required to
make up a computer word will depend on the modulus in which it is
written.

If the selective read function was selected, the lower six bits of the
computer word are compared with the identification code. If a compari-
son is not correct, the assembled word is disregarded and the next com-
puter word is assembled. Therefore, only words in the record which have
the lower six bits equal to the identification code are transferred to
the computer. In a normal read all words are transferred to the com-
puter through the input data lines.

This process continues until the record has been completely read, assem-
bled, and transferred to the computer.

A status word is sent to the computer by magnetic tape control at the com-
pletion of the read function, informing the computer of the success of
operation.

If an error (parity or input timing) is detected during transmission of
data, the magnetic tape control ceases to transfer data to the computer
for the remainder of that record. At the end of the record a status word
is sent to the computer informing it of the nature of failure.

4.3 WRITE (BITS 11-15)

The write function is supplemented by format and density selections. The tape

speed for a write function is 112,5 inches per second. The following events
will occur:

9]

2)

3)

4)

The magnetic tape control takes a word from the computer on the output
data lines.

The magnetic tape control disassembles the computer word according to
modulus selection, generates a parity bit, and transfers the seven-bit
frame to the tape transport control for recording on tape.

The read-head is activated, causing the tape transport to read back the
information recorded, for parity check purposes.

If a parity error is detected, the write operation is halted and a status
word telling the computer of failure is sent over interrupt lines. The

I11-C-8

computer program must then correct the procedure as necessary to per-
form the write function., (Write with extended inter-record gap function
is the suggested correction measure,)

5) If no parity error is detected, the process of disassembling and recording
data continues until the computer no longer acknowledges the output data
request from the magnetic tape control. This means that the complete
buffer has been recorded on tape.

6) When magnetic tape control detects the end of write, tape motion
is stopped after 3/4 inch of tape has passed the write head. This

3/4 inch of tape is for inter-record gap (IRG). Extended inter-record
gap is 3 1/2 inches,

7) A status word is sent to the computer and the tape system becomes idle.

8) In the write ignore halt function, the magnetic tape control does not
stop the write operation if lateral parity error is detected.

4.4 REWIND (BITS 11-15)

The rewind function causes the tape transport selected to rewind tape at a rate
of 225 inches per second. If rewind clear write enable function is selected,
the tape stops at load point and a write function is not accomplished on this
unit., If the tape is located at load point when a rewind function is given, no
improper conditions occur.

4.5 REWIND-READ (BITS 11-15)

The rewind-read function causes the same effect as normal rewind, except when
the tape reaches load point. The first record is read into the computer by nor-
mal read function. The status word is sent after the first record is trans-
ferred to the computer. The rewind-read clear write enable disables the write
enable making further writing on this unit impossible. This function is supple-
mented by format and density selection. '

4.6 SPACE FILE FORWARD/BACKWARD (BITS 11-15)

When the magnetic tape control is instructed to space file forward/backward, it
causes the addressed tape transport to move in the specified direction, beyond
the next tape mark. The magnetic tape control notifies the computer via the
status word with a tape mark indication.

4,7 WRITE TAPE MARK (BITS 11-15)
This function causes the magnetic tape control to instruct the tape transport

to write a tape mark, a special record having 178 in the first frame, 3 frames
of zeros, and one frame of longitudinal parity.

I1-C-9

4.8 BACK SPACE (BITS 11-15)

The back space operation causes the selected tape transport to move one record
in the backward direction. The tape is properly positioned in the inter-record
gap ready for a read or write function, The parity is checked while the back-
space operation is performed and a status word is sent to the computer. The
back space function is supplemented by format and density selections,

4.9 SEARCH (BITS 11-15)

The search function combines the normal read with the ability to conduct on the
first word of a record (in either the forward or backward direction) and trans-
fer only the find record to the computer. The search comparison is performed

on the first word of a record with the identifier (search key) word. The search
word is transmitted to the magnetic tape control by the computer in a one-word
buffer following the instruction word. The search forward/backward file func-
tion performs the same function except the search is limited to a file mark.
There are two types of searches which the magnetic tape control can perform in
comparing the key word with the first word of the record. Type I is defined

as a per bit greater-than-or-equal compare. The following example demonstrates
this definition:

search key: 001101
find: 011101
find: 001101
no find: 010101
no find: 001100

An identical compare (Type II) is defined as a search comparison with the search
key and the first word of the record exactly identical.

5. FORMAT PORTION OF INSTRUCTION WORD

The format portion of the instruction word consists of modulus, character, and
parity. A complete format selection must be included in all instruction words
which require a record or read operation. The three sections of the format are
discussed in the following paragraphs:

5.1 MODULUS

The magnetic tape system is capable of recording and reading in four different
moduli. These moduli and the appropriate designator bits (bit 10-09) are:

1) 00 = Modulus 3.
2) 01 = Modulus 4.
3) 10 = Modulus 5.
4) 11 = Modulus 6.

These are discussed in the section titled Tape System Moduli

1I1-C-10

5.2 CHARACTER

There are two types of character recording; octal and bioctal., A one in bit
08 of the instruction word specifies octal. In this type, channels 3, 4, and
5 contain the same information as channels 0, 1, and 2 respectively for each
frame, except that when channels O, 1, and 2 are all zeros, channels 3, 4, and
S contain all ones. Odd lateral parity is always generated when recording in
octal character (see Table IT-C-2.,). A zero in bit 08 specifies bioctal re-
cording. The octal character allows for redundant recording for added re-
liability.

TABLE II-C-2., OCTAL RECORDING

Character Tape Channels
Octal Binary 6 543 210
0 000 0 111 000

1 001 1 001 001

2 010 1 010 010

3 011 1 011 011

4 100 1 100 100

5 101 1 101 101

6 110 1110 110

7 111 1111 111

5.3 PARITY

Two parity modes can be utilized, odd or even, bit 07 is used for parity mode
selection. A one in bit O7 specifies odd parity, and in bit 07, a zero speci-
fies even parity.

Data ordinarily is recorded in two formats: binary and binary-coded-decimal.
The parity bit is chosen to make the total number of ones (1's) bits in a frame
odd in the binary format and even in the binary-coded-decimal format.

5.4 DENSITY
The magnetic tape system is capable of recording data on tape in two different

programmable densities. The two densities are low density, at 200 frames per
inch, and high density, at 556 frames per inch.

I1-C-11

Bit 06 of the instruction word is used for density selection. When bit 06 is
a one, high density is selected; when it is a zero, low density is selected.

6. TAPE SYSTEM MODULI
6.1 MODULUS 3: (BITS 10 AND 09 = 00)

Mod 3 is obtained by reducing 18 bits of a computer word to three (bioctal
character) frames of data. In reading mod 3, a word is sent to the computer
for every three (bioctal character) tape frames. These frames are assembled
in the lower 18 bits (17-00) of the data word. The upper bits, if any, of the
data word contain zeros.

Recording mod 3, the 18 bits (17-00) of a computer word are recorded in three
(biootal characters) 7-bit frames, consisting of a 6-bit character, plus
parity. For octal recording the number of tape frames is doubled. See
Figure II-C-6 for bioctal recording and Figure II-C-7 for octal recording

of bit arrangements on tape.

6.2 MODULUS 4: (BITS 10 AND 09 = 01)

Mod 4 is obtained by reducing 24 bits of a computer word to four (bioctal
characters) frames of data. In reading mod 4, a word is sent to the computer
for every four (bioctal character) tape frames. These frames are assembled
in the lower 24 bits (23-00) of the data word. The upper bits, if any, of
the data word contain zeros.

Recording mod 4, the 24 bits (23-00) of a computer word are recorded in
four (bioctal character) 7-bit frames, consisting of a 6-bit character, plus
parity. For octal recording the number of tape frames is doubled.

6.3 MODULUS 55 (BITS 10 AND 09 = 10)

Mod 5 is obtained by reducing 30 bits of a computer word to five (bioctal
character) frames of data. In reading mod 5, a word is sent to the computer
for every five (bioctal character) tape frames. These frames are assembled
in the lower 30 bits (29-00) of the data word. The upper bits, if any, of

the data word contain zeros.

Recording mod 5, the 30 bits (29-00) of a computer word are recorded in five
(bioctal character) 7-bit frames, consisting of a 6-bit character, plus
parity. For octal recording the number of tape frames is doubled.

6.4 MODULUS 6: (BITS 10 AND 09 = 11)

Mod 6 is obtained by reducing 36 bits of a computer word to six (bioctal
character) frames of data. In reading mod 6, a word is sent to the computer
for every six (bioctal character) tape frames. These frames are assembled
in the 36 bits (35-00) of the data word,

Recording mod 6, the 36 bits (35-00) of a computer word are recorded in six

I1-C-12

——_'—-.
Forward Tape Oxide 04 03 02 01 00 3rd Frame
Direction Side 10 09 08 07 06 2nd Frame
16 15 14 13 12 1st Frame

6 5 4 3 2 1 O Tape Channel

Modulus 3

04 03 02 01 00

Oxide 4th Frame
Side P 11 10 09 08 07 06 3rd Frame
P 17 16 15 14 13 12 2nd Frame
22 21 20 19 18 1st Frame
This Edge
0f Tape 6 5 4 3 2 1 o0 Tape Channel
Next To
Transport Modulus 4
———
Oxide 04 03 02 01 00 5th Frame
Side 10 09 08 07 06 4th Frame
- 16 15 14 13 12 3rd Frame

22 21 20 19 18 2nd Frame
28 27 26 25 24 1st Frame

6 5 4 3 2 1 O Tape Channel

Modulus 5

\MM
——| P 05 04 03 02 01 00 6th Frame

P 11 10 09 08 07 06 S5th Frame
Oxide P 17 16 15 14 13 12 4th Frame
Side P 23 22 21 20 19 18 3rd Frame
P 29 28 27 26 25 24 2nd Frame
P 35 34 33 32 31 30 1st Frame

6 5 4 3 2 1 o0 Tape Channel

IT-C-13

Pﬁ/\ﬂwﬁ/\
Forward Tape P 02 01 00 02 01 00 6th Frame

Direction P 05 04 03 05 04 03 Sth Frame
P 08 07 06 08 07 06 4th Frame
Oxide P 11 10 09 11 10 09 3rd Frame

Side P 14 13 12 14 13 12 2nd Frame
"IP 17 16 15 17 16 15 1st Frame
WW
6 5 4 3 2 1 0 Tape Channel
Modulus 3

P 02 01 00 02 01 OO0 8th Frame
{P 05 04 03 05 04 03| Tth Frame
P 08 07 06 08 07 06 6th Frame
P 11 10 09 11 10 09 5th Frame
Oxide P 14 13 12 14 13 12 4th Frame
Side P 17 16 15 17 16 15 3rd Frame
“IP 20 19 18 20 19 18 2nd Frame
P 23 22 21 23 22 21 1st Frame

This Edge

S e I e
0f Tape 6 5 4 3 2 1 0 Tape Channel
Next To Modulus 4
Transport
| P 02 01 00 02 21 00 10th Frame
P 05 04 03 05 04 03 9th Frame
P 08 07 06 08 07 06 8th Frame
P 11 10 09 11 10 09 7th Frame
P 14 13 12 14 13 12 6th Frame
P 17 16 15 17 16 15 5th Frame
Oxide P 20 19 18 20 19 18 4th Frame
Side P 23 22 21 23 22 21 3rd Frame
P 26 25 24 26 25 24 2nd Frame
P 29 28 27 29 28 27 1st Frame
6 5 4 3 2 1 0 Tape Channel

Modulus 5
P 02 01 00 02 01 00} 12th Frame

A

26 25 24 26 25 24 4th Frame
29 28 27 29 28 27 3rd Frame
32 31 30 32 31 30 .2nd Frame
35 34 33 35 34 33 1st Frame

M
5 4 3 2 1 0

Modulus 6

P 05 04 03 05 04 03] 11th Frame

P 08 07 06 08 07 06{ 10th Frame

P 11 10 09 11 10 09 9th Frame

P 14 13 12 14 13 12 8th Frame

P 17 16 15 17 16 15 7th Frame
Oxide P 20 19 18 20 19 18 6th Frame
Side P 23 22 21 23 22 21 5th Frame

P

P

P

P

o~

Tape Channel

Figure II-C-7. Octal Tape Format

I1-C-14

(bioctal character) 7-bit frames, consisting of a 6-bit character, plus parity.
For octal recording the number of tape frames is doubled.

7. STATUS WORD

A status interrupt is sent to the computer 222 microseconds following the
completion of every function except master clear and transport address selection.
A status word is placed on the data lines of the input cable. The bit

structure of the status word enables the computer to determine whether or

not the previous function was successfully completed.

The computer program must recognize that after issuing an external function
instruction to the magnetic tape system, no subsequent external function
command (except addressing and master clear) will be recognized until receipt
of the acknowledge to the status interrupt, signifying the end of the first
instruction.

Figure II-C-5 shows bit assignments in the status word. These conditions
are described below.

7.1 IMPROPER CONDITION (BITS 29 AND 14)

A one in bits 29 and 14 may imply that operator intervention is necessary to
overcome the difficulty. An improper condition will occur whenever:

1) Reference tape transport is not in automatic condition,
2) No tape transport is selected when one is required.

3) A forward command is sent to a tape transport whose tape is positioned
at end of tape,

4) A reverse command is sent to a tape transport whose tape is positioned
at load point (except a rewind operation).

5) A write instruction is issued to a tape transport that has no write
enable.

When the computer has been notified of an improper condition, the computer
program may then refrain from issuing further external function commands to

the tape system to allow visual inspection of the trouble, or it may issue
another external function command, An incoming external function command to the
tape system causes the improper condition indicator to extinguish.

A tape transport not in automatic condition implies one of the following
situations:

1) Tape transport was manually removed from automatic.
2) Tape transport not in ready condition for one of the following reasons:

a) Power off.

I1-C-15

b) Tape broken,
c) Lamp burnout,

d) Tape load was not accomplished when tape was mounted,

7.2 OUTPUT TIMING ERROR (BITS 25 AND 10)

A one in bits 25 and 10 indicates that the computer did n>t acknowledge the
first output data request, or the computer acknowledged the output data
request too late (however, it did acknowledge the output data request for the

data word to be written in its proper place). The acknowledge time is related
to format and density.

Also an output timing error can occur during search operations if the magnetic
tape system does not receive the search key before the start of reading the
record. This time requirement may be as short as two milliseconds.

7.3 INPUT TIMING ERROR (BITS 24 AND 09)

A one in bits 24 and 09 indicates that magnetic tape control information on
the input cable was not accepted by the computer before the subsequent word
was to be placed on the input cable. This condition indicates that the
computer lost one or more words of the last record. If an input timing
error occurs, data transmission to the computer ceases for the remainder of
the record.

7.4 INCORRECT FRAME COUNT (BITS 23 AND 08)

A one in bits 23 and 08 indicates either some frames were lost, or improper
modulus specified (that is; there were not enough frames in the record to
complete an integral number of computer words). This situation may result from
one or more of the following:

1) One or more characters were not properly read or recorded.

2) Bad spots on the tape caused characters to be lost.

3) Reading a record with the wrong format (for example, reading mod 4
with a tape record in mod 5).

A longitudinal parity error usually occurs in conjunction with an incorrect
frame count if frames were lost.

7.5 LATERAL PARITY ERROR (BITS 22 AND 07)

A one in bits 22 and O7 informs the computer that the lateral parity of one or
more frames read did not agree with that specified in the format.

7.6 LAST TAPE MOTION (BITS 20 AND 05)

A one in bits 20 and 05 indicates that the last tape motion was backward.

A zero indicates that the last tape motion was forward.

I1-2-16

7.7 LONGITUDINAL PARITY ERROR (BITS 21 AND 06)

When recording, longitudinal parity is generated by magnetic tape control for
each channel and recorded after the last frame of the record. When reading
(read, back space, post-write check) the longitudinal parity of a record is

checked by magnetic tape control, and if in error, noted in the status word
(bits 21 and 06).

7.8 TAPE MARK (BITS 19 AND 04)

A one in bits 19 and 04 indicates that the magnetic tape control has sensed

a tape mark during a read, write, (before a search comparison is made during
a search file instruction) or back space function.

7.9 NO WRITE ENABLE (BITS 18 AND 03)

A one in bits 18 and 03 informs the computer that the referenced tape transport
has no write enable when a write operation is attempted or that the write
enable ring is not inserted in the tape reel.

7.10 END OF TAPE (BITS 17 AND 02)

To prevent reading or writing off the end of the tape, an end of tape reflective
marker is placed a minimum of 14 feet from the physical end of the tape.

When the end of tape mark is sensed, a 1/2 second time-out begins. When this
time period is completed, no further forward movement of the tape will be
possible. However, the tape may be moved in the reverse direction past the
reflective marker and then moved forward. When the marker is again sensed,
the time-out is initiated again, and the forward tape motion will halt

after 1/2 second.

7.11 LOW TAPE (BITS 16 AND 01)

A one in bits 16 and Ol informs the computer that the tape is positioned less
than 100 feet from the end of tape.

7.12 LOAD POINT (BITS 15 AND 00)

Since the first several feet of tape undergo excessive wear and are required
to load the transport, no recording is done on this protion of the tape.
Recording begins at load point and this point is recognized by the magnetic
tape system by means of a reflective marker placed at least ten feet from
the physical beginning of tape. The write, load point, delay allows infor-
mation to be written on the tape approximately 3/4 inch beyond the load
point marker with the tape moving in the forward direction.

8. TAPE MARKERS
The load point and end of tape markers are pressure-sensitive, adhesive-coated

strips of aluminum 1 by 3/16 inch. The markers are detected by reflective
photo-sensing means, Both markers are placed on the base (uncoated) side

I1-C-17

of the tape with the l-inch dimension parallel to the tape. The load point
marker is placed 1/32 inch from track 0, or the front edge of the tape.

The end of tape marker is placed 1/32 inch from track 6 or inside edge of
the tape.

9. LOGICAL SELECTION OF TAPE TRANSPORTS

Selector switches to change the logical address of each tape transport are
provided. Any physical tape transport may be switched to any logical address.
If logical address selections are duplicated, the lowest order physical tape
transport has priority; however, no two cabinets may have the same logical
address. This will be the responsibility of the operator.

10. 1240A HIGH-SPEED PRINTER OFF-LINE COMPATIBILITY

The magnetic tape subsystem is capable of communicating directly with the
high-speed printer subsystem for off-line operation. The interface between
the magnetic tape unit and printer is shown in Figure II-C-8,

-

30 Data ' Lines
High Output Data Request Input Acknowledge J Magnetic
Speed Tape
Printer Output Acknowledge Input Data Request System

External Function Interrupt

-] - =] - - - -

Figure II-C-8., Magnetic Tape - High-Speed Printer Interface

1) The printer output is connected to the magnetic tape system's input
(input and output as used here are in reference to the computer).

2) The data to be printed off-line must be recorded in records on tape in
the following format: Record length of 120 Field data characters.

3) The magnetic tape system reads each record of data from tape in the
following format: Modulus 5.

4) At the magnetic tape unit function register, the operator manually
selects the character, parity, and density.

5) Each record of 120 characters forms 24 30-bit data words which is
printed as one line by the high-speed printer.

6) A tape mark is recognized by the high-speed printer as a top of form
command. This positions the paper to the top of the next page.

7) A record of less than 24 words (preferably one computer word, five

characters) causes the high-speed printer to stop the printing operation.
This record is not printed if the characters are space codes (05).

I1-C-18

8) With the magnetic tape system switched to the printer mode, the desired
tape transport selected and the tape positioned at load point, the high-

speed printer initiates operation when it is placed in the on-line
position. .

The normal sequence of events for transfer of data from the magnetic tape
system to the printer is as follows: (See Figure II-C-9), '

1) The printer sets its output data request (e).

2) The magnetic tape system, in the idle state (a) recognizes this first
output data request from the printer as an external function and starts
the read operation,

3) The magnetic tape system places the information on the data lines and
sets its input data request (c).

4) The printer recognizes the magnetic tape system input data request as
an output acknowledge (f).

5) The printer samples the data lines and clears its output data request.

6) The mégnetic tape system recognizes the clearing of the printer output
data request as an input acknowledge (b).

Steps 3, 4, 5, and 6 are repeated for each word of the record.

The normal sequence for sending an external function command top of form from
the magnetic tape system to the printer is the same as reading a record except
that when the magnetic tape system detects the tape mark, it will set bit 4

in the status word, and when the interrupt (d) is set, the printer will
recognize this as an external function command top of form (g) (Figure II-C-9).

11. PROGRAMMING CONSIDERATIONS
11.1 GENERAL

The magnetic tape system is manually placed in an operational condition. The
operator functions include mounting tapes on transports, turning power on, and
initially positioning tapes. With the magnetic tape system operational,
programmed references may begin, Generally, all programming of the tape system
must be done with force and must conform to a standard sequence ot reterence.
(Figure II-C-10 illustrates this sequence.)

Once the tape system receives and starts to execute the operations in an
instruction word, further external function commands, other than master clear,
are ignored. The programmer must remember when an external function command
may be logically issued. After issuing an external function command other
than address word and master clear, the computer may not logically issue
another function command until the computer acknowledges the receipt of an
interrupt from the tape system,

II-C-19

Step 1 of Figure II-C-10 is required only on the initial reference of a tape
transport or when a reference to another transport is desired.

~ a.

T\ S
_/

b.

Magnetic Tape System
A

/
o
B
)

Printer
U
‘T

Lg. {C f_1

Figure II-C-9. Sequence of Events in Tape-Printer Operation
11.2 WRITE PROCEDURES

To write, the instruction word must include complete format selection

(modulus, character, and parity), and density. Use of the procedure out-
lined in Figure II-C-10 will result in a record of words boing written on
tape. Length of record is determined when the output buffer is initiated.

After the status interrupt is received, signifying end of a write operation,
the program must check the following four conditions to determine successful
completion of the write operation:

1) No improper condition in the status word.
2) No output timing error in the status word.
3) No lateral parity error in the status word.
4) Output buffer is terminated.

I1-C-20

Step 1

Step 2

Step 3

Step 4

Step 5

Issue Address Word
By The External
Function Command

Form Instruction

Word, Include Operation
Code, Format, And
Density As Applicable

Initiate Required
Output And/Or Input
Buffers

Issue Instruction
Word By The External
Function Command.
Indicate Tape
System Busy

When Tape System
Interrupt Occurs,
Execute Interrupt
Subroutine, Which
Takes The Status
Word Off Input
Cable. Indicate
Tape System Is
Not Busy

Sequence of Programming References - Magnetic Tape System

I1I-C-21

If the status word indicates an output timing error, the computer did not
acknowledge the first output data request, or the computer acknowledged the
output data request too late (however, it did acknowledge the request) for
the data word to be written in its proper place. The acknowledge time is
related to format and density.

It is possible for an output timing error to occur that will not be shown

in the status word. Such a condition results if the computer did not
acknowledge the output data request (other than the first output data request
from the tape system). The system recognizes this situation as end of

record and, consequently, indicates no error. However, if words are left
unwritten in the output buffer, this constitutes an output timing error
condition,

If a lateral parity error is indicated in the status word, the write operation
was terminated when the post write check detected an incorrect frame. It

is the responsibility of the program to decide and provide the recovery
procedures.

11.3 READ PROCEDURES

To read, the instruction word must include complete format selection, identi-
fication code (if read selective) and density. Use of the procedure outlined
in Figure II-C-10 will result in a record being read from tape. The length
of the input buffer must be long enough to cover the record to be read.

An input timing or parity error will terminate the data input to the computer
unless the read operation is with the ignore error halt option, The status
interrupt will still be sent by the magnetic tape system at the end of

that record.

11.4 SEARCH PROCEDURES

0

To search, the instruction word must include complete format selection and
density. The identifier word will be rec ived by the magnetic tape system
via a one-word output buffer, Tape motion is started upon the receipt of the
instruction word and an output timing error will occur if the magnetic tape
system does not receive the identifier within the time from start of tape
motion and when the compare is made. This time requirement may be as short
as two milliseconds. One record will then have been passed. The search is

terminated by an output timing error and a parity error.

[21]

When searching backwards, the 30-bit identifier word sent by the computer
must be reversed; characterwise, its configuration is dependent upon format.
Examples are given below:

Bioctal ~ Octal
Original Computer Word 3456745321 3456745321
Mod 5 Identifier 2153745634 1235476543
Mod 4 Identifier 0053745634 0035476543
Mod 3 Identifier 0000745634 0000476543
Mod 6 Identifier 5374563400 3547654300

I1-Cc-22

11.5 RECORD LENGTH

There are no limits on record length within physical tape capacity. When
reading tapes of unknown record length, the input buffers must be made
sufficiently large to insure reading the entire record. Another method is

to initiate an input buffer with monitor and make provision for the initiation
of additional buffers to read the complete record.

11.6 END OF FILE

The normal end-of-file inter-record gap is approximately 3/4 inch long followed
by a tape mark (001 111) and its associate check character. The end of file
is always recorded with even parity.

11.7 EDITING OF TAPE

By suitable programming, an inter-record gap of any length may be written to
precede any record. Records may be rewritten for tape updating, and they may
be lengthened, provided suitable inter-record gap was used on a previous
recording. A record may be inserted for a previously used extended inter-
record gap.

11.8 BAD TAPE

When writing a record, if a tape bad spot is encountered where recording is
marginal or impossible, the tape may be back spaced to the beginning of the
record and rewritten with an extended inter-record gap. The long inter-
record gap will probably be sufficient to move the bad spot past the recording
head. Successive extended inter-record gaps may be written if the bad spot
still appears.

I11-C-23

SECTION II-D., MAGNETIC TAPE SYSTEM (TYPE 1540/1541)

1. GENERAL INFORMATION

The militarized UNIVAC(:)1540/1541 Magnetic Tape Units provide large capacity

auxiliary storage devices for computing systems operating under severe environ-
mental conditions.

The UNIVAC 1540 Magnetic Tape Unit employs a pinch-roller type of tape trans-
port and the 1541 Unit is equipped with a single capstan vacuum loop transport.
The units are functionally identical; however, the 1541 has a higher data trans-
fer rate. The UNIVAC 1540/1541 Magnetic Tape Units may be operated on-line
under complete computer program control as an I/0 storage device or with a high-
speed printer for off-line printing of tape recorded information. A flexible
format allows recording and reading of four moduli (18-, 24-, 30-, or 36-bit
computer words) and three densities, and provides recording of magnetic tapes
which is compatible in all respects with industry-accepted tape systems.

Either even or odd frame parity may be utilized and for added reliability, the
redundant octal format is provided. A read-after-write feature checks each
frame for parity immediately after recording. Longitudinal parity recording

and checking are automatic. A duplexing capability is provided so that two
computers communicating with the same magnetic tape unit may share its facili-
ties under program control. In this way, data or programs stored on one tape
are available to both computers, Further savings in the facilities are enhanced
by the ability of the 1540/1541 Magnetic Tape Units to read information in
either the forward or backward motion of the tape.

Records of data may be of variable lengths and are separated by 3/4-inch inter-
record gaps (IRG) unless otherwise extended by suitable programming. Records
may be lengthened if suitable interrecord gaps were provided in previous re-
cordings.

Either the UNIVAC 1540 or the 1541 Magnetic Tape Unit is compatible with all
UNIVAC military computgers. Compatibility both in tape format and computer pro-
grams with the UNIVAC\®) 1240 Magnetic Tape Unit is provided through a manual
switch selection on the 1540 or 1541 basic unit. This feature gives the func-
tional characteristics that are identical with those of the 1240 subsystem and
permits the use of software packages designed for earlier systems.

2. PERFORMANCE OF FUNCTION

Either the 1540 or the 1541 Magnetic Tape Unit communicates with the computer

1n the request-acknowledge mode (see Figure II-D-1). The computer issues
commands to the magnetic tape unit by means of the external function signal and
function words. When the magnetic tape control inspects the function word, it
selects the specified tape transport and performs the specified operation. Each
tape transport cabinet contains a 16-position address switch for each tape trans-
port so that each can be assigned a logical number (1 through 16). UNIVAC
1540/1541 programs use positions 1 through 8 only. The additional positions

(9 through 16) are used to provide compatibility with UNIVAC 1240 programs,

The address selection bits of the instruction word are interpreted by the

I1-D-1

magnetic tape control according to the physical position of these switches. No
two transports may be assigned the same logical number (that is; to allow iden-
tical function on both units). If duplication does exist, priority is allocated
to the transport at the most remote position to the left of the basic unit (the
top transport having priority over the bottom unit in the 1540) regressing
toward the basic unit, then those connected to the right side beginning at the
remote position., The operator must determine the logical addresses required by
each program and set the switches accordingly. (See Figures II-D-2 and II-D-3
for order of priority scheme.)

The instruction word contains the code for one of six basic operations -

duplex selection, read, search, write, space file, and rewind - or a combination
of two basic operations. To accept an external function command, the magnetic
tape unit must be in the ready state (that is; operable but not performing

a specific operation). The completion of an operation or a master clear

places the magnetic tape unit in the ready state.

The general sequence of events for on-line operation with a computer (the
magnetic tape control in automatic mode and in the ready state) is as follows:

1) Computer issues an instruction word via the external function command.
2) Magnetic tape control samples the instruction word and becomes busy.
3) Magnetic tape control selects the addressed tape transport.

4) Operations stated in the instruction word are initiated and carried
to completion,

5) Magnetic tape control sets a status word on the input lines as described
in subsequent paragraphs.

6) Magnetic tape control interrupts the computer with external interrupt
signal after completion of the operation,

7) Magnetic tape control issues stop command to transport.

8) Computer samples status word and acknowledges interrupt whereby the
magnetic tape unit becomes idle.

Steps 7 and 8 may be interchanged, or may occur simultaneously.

Status words and input data are transferred on the input lines with identifying
signals on the external interrupt line and the input request line, respectively.

The computer acknowledges receipt of these transfers via the input acknowledge
line.

Function words and output data are transferred on the output lines with iden-
tifying signals on the external function line and the output acknowledge lines,

respectively. The output request line notifies the computer of the ability
of the magnetic tape unit to accept output data.

II-D-2

r
Output Request l Tl
Output Output Acknowledge | TT2
Cable j >
; I TT3
L 18 to 36 Qutput Lines l
UNIVAC | - TT4
Computer ' L
External Interrupt | TTS
- te
Input Data Request | Te
Input
Cable Input Acknowledge | —
. 18 to 36 Input Lines ' TT8

Figure II-D-1. Magnetic Tape Unit - Computer Interface
3. DUPLEXING

Either of two computers with compatible interface can exercise control over
the magnetic. tape unit when the duplexing capability is utilized. The fol-
lowing duplex control functions are provided via the instruction word:

1) Demand duplex control (master clear).
2) Request duplex control.
3) Release duplex control,

To complete the communication, the status word with interrupt provides duplex
control status to the computers as follows:

1) Not in duplex control,
2) In duplex control.

Through these messages, each computer has control of the switching functions of
the duplexer and each is informed of the operational status of the magnetic
tape units it shares with the other.

4, TAPE MARKERS
The load point and end of tape markers are adhesive-coated strips of aluminum

one inch by 3/16 inch, placed on the base (uncoated) side of the tape with
the one-inch dimension parallel to the tape edge; see Figure II-D-4 for

II-D-3

External Function [- -1

Basic Magnetic Add-On Unit
Tape Unit
3 1
Add-On Add-On |Add-On
Unit |[Basic Magnetic Unit Unit
Tape Unit
Order of
Priority ___ g 3 7
2 4
' Magnetic
2 Tape | 2 Tape Tape 2 Tape | 2 Tape
HandlersHandlersControl Handlers Handlerﬂ

Figure II-D-2, Type'1540 Magnetic Tape System
(Maximum Configuration)

Basic Magnetic Add-On Unit
Tape Unit
y b v)
Add-On [Add-On | Add-On I Add-On | Add-On | Add-On |Add-On
Unit Unit Unit |Basic Magnetic Unit Unit Unit Unit
Tape Unit
Magnetic
1 Tape | 1 Tape | 1 Tape | 1 Tape Tape 1 Tape| 1 Tape | 1 Tape| 1 Tape
Handler |Handler Handler |Handler Control |Handler [Handler | Handler|Handler
Orde
1 2 3 4 :f T » 8 6 5

Figure II-D-3.

v
J

Type 1541 Magnetic Tape System
(Maximum Configuration)

11-D-4

tape format, The load point marker is placed 1/32 inch from track O or out-
side edge of the tape and at least ten feet from the beginning of the tape.
The end of tape marker is placed 1/32 inch from track 6 or inside of the tape
and at least 15 feet from the end of the tape. The markers are detected by
reflective photoelectric sensors.

5. STATUS WORD AND INTERRUPT (STATUS INTERRUPT)

The computer program is interrupted after completion of every operation per-
formed by the magnetic tape control, except master clear and transport address
selection. The magnetic tape control places a status word on the channel

input lines and a signal on the channel external interrupt line. The bit
structure of the status word (see Figure II-D-5) enables the computer program
to determine the status of the magnetic tape unit and whether or not the
requested operation was completed successfully. Errors encountered during a
requested operation, as well as the physical status of the magnetic tape unit,
are indicated in the status word. The term, status interrupt, is used to express
this philosophy since the computer program is interrupted and the status of the
magnetic tape unit and the encountered errors are designated in the status word.
Any such interrupt sent to the computer must be acknowledged by the computer
before another external function with an instruction word is recognized by the
magnetic tape control. Successful completion of an operation contains no

error indications, but other indications of tape status may be present.

The status word requires a word of at least 15 bits, If the computer accepts
words larger than 15 bits, the information in the next higher order bits
beginning at bit 15 is not interpreted. A detailed explanation of each til
of the status word follows.

End of tape marker

3/16™ x 1" on non- ‘lnter;_.___ Recorded —a rite |g—
oxide side of tape/ | oo n g data load
gap 3/4 oint
normal
(3 1/2n Rear lié?'y 10' min
1/32 lextended J/r-edge in
T 00000 7000 PPPP 00000 | | |liemd.
00000 Z000X X X X 00000 | | ITipg
00000 Z000X X X 00000 | | |.end
10001 Z000X X X 10001 ‘
10001 Z000X X x x IR 10001 ,
Trailing :10001 Z000X X X X 10001 |
end l10001 Z000X X X X 10001 i
—— —— T
—»14" min \M—Tape mark \\—Tape mark 1/32"
- . . . Load point marker
Z = Longitudinal parity ' "
P = Lateral parity 3/16" x 1 0; non-
X = Data bit oxide side of tape
Forward direction oxide down >

-« Computer Input Word

35 «—— Not Interpreted —»15}14] 13}12}11}| 10}9]18| 7] 6|5

1 = Improper Condition

1 = No

- Duplex Control
0 = Yes

1 = Transport Ready

1 = XIRG Detected

1 = Output Timing Error

1 = Input Timing Error

1 = Incorrect Frame Count

1 = Lateral Parity Error

1 = Longitudinal Parity Error

1 = Backward

} - Last motion of tape
0 = Forward

1 = Tape Mark (End of File)

1 = No Write Enable

1 = End of Tape

1 = Low Tape

1 = Load Point

Figure 11-D-5. Magnetic Tape Unit - Status Word Format

11-D-6

5.1 IMPROPER CONDITION (BIT 14 = 1)

An improper condition occurs whenever:

1)

2)
3)

4)

5)

Selected tape transport is not in automatic condition. A tape transport
not in automatic condition implies one of the following situations:

a) Tape transport was manually removed from automatic.
b) Tape transport not in ready condition for one of the following reasons:

. Power off,

Tape broken.

Lamp burnout.

Tape load was not accomplished when tape was mounted.

W -

(This situation also causes the transport ready bit in the status
word to be cleared.)

No tape transport is selected when one is required.

A forward command is sent to a tape transport whose tape is positioned
at end of tape.

A reverse command other than a rewind operation is sent to a tape
transport whose tape is positioned at load point.

A write instruction is issued to a tape transport that has no write
enable. (This situation also causes the no write enable bit in the
status word to be set.) After the computer is notified of an improper
condition, the computer program may then refrain from issuing further
external function commands to the tape system to allow visual inspection
of the trouble and operator intervention to overcome the difficulty,

or it may issue another external function command. An incoming external
function command to the tape system clears the improper condition
indication, .

5,2 DUPLEX CONTROL (BIT 13; O = IN CONTROL;1 = NOT IN CONTROL)

1)

2)

3)

4)

The status of the duplexer is indicated by bit 13 of the status word
and is sent to one of the two computers, depending on the action
initiated.

The condition not in control (bit 13 = 1) is sent to the issuing computer
when a word is transmitted by that computer while the duplexer is not
in the proper position.

The condition not in control (bit 13 = 1) is sent to the nonissuing
computer when that computer loses control as a result of a demand
duplex control issued by the other computer.

The condition in control (bit 13 =1) is sent to the issuing computer

when a request duplex control is issued and the duplexer is transferred
to the control of that computer.

II-D-7

5.3 TRANSPORT READY (BIT 12 = 1)

The transport ready bit indicates that the last-addressed tape transport is in
a ready condition as follows:

1) Power is on.

2) Magnetic tape reel is mounted and tape is properly loaded.
3) Tape marker detector lamp is operating.

5.4 XIRG DETECTED (BIT 11 = 1)

The XIRG detected bit indicates that an extended interrecord gap (3 1/2 inches
between records) was sensed during tape read. Tape movement continues until
the next record is read.

5.5 OUTPUT TIMING ERROR (BIT 10 = 1)

If the computer issues a write instruction to the magnetic tape control and
does not transfer the first output data word, or transfers a requested data
word too late to be written in its proper place and before the interrupt is
sent to the computer following end of record, an output timing error occurs.
This word transfer time is related to format and density as shown in

Table II-D-1. An output timing error can occur during search or selective
read operations if the magnetic tape control does not receive a search key
or selective read code before assembling.the first word. The time require-
ment may be as short as 2 1/2 milliseconds from the time the instruction
word is received by the magnetic tape control until the search key, selective
read code, or the first data word must be received.

5.6 INPUT TIMING ERROR (BIT 09 = 1)

If the computer issues a read instruction and fails to accept a word placed
on the input cable by the magnetic tape control before the next word is to
be placed on the input cable, an input timing error occurs. This error
indicates that the computer lost one or more words of the last record since
data transmission to the computer ceases for the remainder of the record.
The tape continues to move to the end of record, at which time the magnetic
tape control sends the status word indicating the error with an interrupt
to the computer.

5.7 INCORRECT FRAME COUNT (BIT 08 = 1)

An improper modulus specified or some frames lost causes an incorrect frame
count error. This may be caused by one or more of the following:

1) There were not enough frames in the record to complete an integral
number of computer words.

2) One or more characters were not properly read or recorded.

II1-D-8

TABLE II-D-1, WORD ASSEMBLY TIME (MICROSECONDS)

Format UNIVAC 1540 UNIVAC 1541
Modulus Character | 200 fpi 556 fpi 800 fpi* | 200 fpi 556 fpi 800 fpi*
3 Bioctal 125 45 31.2 100 36 25
4 Bioctal 167 60 41,6 133.3 48 33.3
5 Bioctal 208 [52.0 166.6 59.9 41.6
6 Bioctal 250 90 62.4 200 72 50
3 Octal 250 90 62.4 200 72 50
4 Octal 334 120 83.2 266.6 96 66.6
5 Octal 416 150 104.0 333.2 119.8 83.2
6 Octal 500 180 124.8 400 144 100

*Refer to individual computer technical description brochures for interface
compatibility definition,

3) Bad spots on the tape caused characters to be lost,

4) Reading the record with the wrong format (for example, reading mod 4
with a tape record in mod 5).

Longitudinal parity error can be expected with incorrect frame count error
except during reading with the wrong modulus.

5.8 LATERAL PARITY ERROR (BIT 07 = 1)

During a writing process, a parity bit is added to each six-bit character
according to a format specified and the seven bits are recorded as one frame.

If the magnetic tape control detects a frame whose lateral parity does not agree
with that specified by the format, during any read type operation or during

the post-write check of the recording operation, a lateral parity error occurs.

5.9 LONGITUDINAL PARITY ERROR (BIT 06 = 1)

During a writing process, a longitudinal even parity bit is generated by the
magnetic tape control for each tape channel and recorded after the last frame
of the record. If the magnetic tape control detects an error in this parity
during any read type operation or during the post-write check of the recording
operation, a longitudinal parity error occurs, If a frame count error ever
occurs, the longitudinal parity error usually occurs. Both would be indicated
in the status word.

I11-D-9

5.10 LAST TAPE MOTION (BIT 05; 1 = BACKWARD, O = FORWARD)

Any status word with interrupt sent to the computer at the completion of an
operation indicates the direction of the last tape motion. The program can

determine whether the tape is positioned at the beginning or the end of
the record.

5.11 TAPE MARK (BIT 04 = 1)

A recorded tape mark (refer to write tape mark) separates files of information
on the tape. Any read, space file, search file or back read operation that is
limited to a file and the post-write check of the write tape mark operation
indicates a tape mark in the status word.

5.12 NO WRITE ENABLE (BIT 03 = 1)

When a write operation is attempted on a selected transport that has its
write enable cleared or the write enable ring is not inserted in the tape
reel, the no write enable is indicated in the status word.

5.13 END OF TAPE (BIT 02 = 1)

When the end of tape reflective marker is sensed by the magnetic tape unit,

a 1/2 second time-out begins, after which no forward movement of tape is
possible. Reverse direction tape motion past the tape marker is possible.

The end of tape indication appears in the status word. If forward tape motion
is reinitiated, the marker is sensed again and after the 1/2 second time-out,
the forward tape motion is stopped.

5.14 LOW TAPE (BIT 01 = 1)

A tape supply detector senses less than 100 feet of tape remaining on the
selected transport reel. The magnetic tape control indicates a low tape any
time a status word is sent to the computer with the tape positioned within
100 feet of end of tape. ’

5.15 LOAD POINT (BIT 00 = 1)

Recording on a tape begins at load point (a reflective tape marker placed at
least ten feet from the physical beginning of the tape). The write-load

point delay allows for a gap of at least 1/2 inch beyond the load point marker
(in the forward direction) before the first record may be written. The mag-
netic tape control indicates load point in the status word whenever an opera-
tion requesting backward motion of tape is attempted with the selected

tape positioned at load point.

6. EXTERNAL FUNCTION COMMANDS - FUNCTION WORDS
Operations and tape selections are requested by function words being sent to

the magnetic tape unit with an external function from the computer. A master
clear of the magnetic tape unit is performed when a demand duplex control

I11-D-10

command is sensed by the magnetic tape control., It differs from the other
operations in these three respects:

1) It may be performed at any time, even when magnetic tape unit is busy.

2) It has priority over all other operations in the instruction word (see
Figure II-D-6).

3) It does not result in a status interrupt to the issuing computer.

The master clear stops all tape motion (except a rewinding tape) and sets the
magnetic tape unit in the ready state. At any time after a master clear, the
magnetic tape control accepts another external function., Since this function
is not considered a normal operation, its use should be restricted to times
when the magnetic tape unit is believed to he in an illogical state or when its
state cannot be determined. The master clear does not clear the write enable
which is set manually. To clear the write enable, a form of clear write

enable instruction must be used,

Individual operations are performed by the magnetic tape unit under direction
of an instruction word. When the computer output word is transmitted with an
external function signal, it is sensed at the magnetic tape control as a
command, The operation to be performed, format and density, if required, and
the transport selection address or reading bits are defined in the instruction
word, The format for the instruction word is shown in Figure II-D-6. The
individual tape transport is selected by bits 05 through 00 of the instruction
word, The magnetic tape unit consists of a maximum of eight tape transports,
each of which must be assigned a logical number by the operator on the transport
selection switch provided for each tape handler.

6.1 FORMAT (BITS 10 - 7)

The format portion of the instruction word contains modulus, character, and
parity designators. A complete format selection must be included in all
instruction words which request a reading or recording operation with the
exception that modulus may be ignored in the write tape mark instruction. The
modulus designator and the character designator direct the magnetic tape

control in the assembly and disassembly of computer words from or to tape frames.

6.2 CHARACTER DESIGNATOR (BIT 8); 1 SELECTS OCTAL, O SELECTS BIOCTAL

Bioctal or octal (redundant) format is specified in operations requiring
reading or writing. The bioctal format disassembles 18-, 24-, 30-, or 36-bit
computer words into 3, 4, 5, or 6 six-bit-plus-parity tape frames, respectively
during recording (vice versa for reading). (See Figure II-D-7,) The octal
format disassembles 18-, 24-, 30-, or 36-bit computer words into 6, 8, 10, or
12 tape frames, respectively, during recording (vice versa for reading).

Tape channels 3, 4, and 5 contain the same information as channels O, 1, and
2, respectively, in each frame, except when channels O, 1, and 2 contain
zeros, channels 3, 4, and 5 contain ones. O0dd parity is selected by the
magnetic tape control when writing or reading octal characters. The redundant
recording in octal format adds to the reliability (see Figure II-D-8).

For compatible tapes, data must be recorded in bioctal format.

II-D-11

Transmit Extra
1 0
35— — ——m—e=-18 17 1615 14 13 12 11{10 9l8l 7|6 5|4 3 2 1 0
. a | |
Not Used lOperat1on Code 3 IZ' Addressing Switch*
. e ¥ Position
bit = |° Wk
Duplex Control Code 6 Mod 3 0 0 §|>, 01 8 0 1 1
Nonduplex 000 1212 018 10 2
Mod 4 0 1,© 7% 018 11 3
Release Control 010 | |m
Mod 5 1 O l a. 01 1 0 O 4
Release Request 100 Mod 6 1 1 | i g g ? é 2
Demand Control 110 p— — — — - | 10 0 1 1 =
(Master Clear) Bioctal OI 1 010 0 8
1 1 €6 0 1 9
| __ Octal 1] 1 18 10 10
Even O 1 16 1 1 11
. - - = — — — = T 0dd 1 1 11 0 0 12
i 0O 0 & 0 1 13
Transmit Extra Code 1 0 1 200 Frames per Inch 00 008 10 11
556 Frames per Inch 10 [0 O 8 1 1 15
0O 01 0 O 16
800 Frames per Inch 0 1
Same as Last L
Instruction 11
—— — —— — — — o—
Bias
0O 0 0 O O Normal
Bias
0O 1 0 0 O Force
Bias
1 0 0 O O Force High
Bias
1 1 0 0 O ForcelLow
Bias

* Indicates position of address switch on each tape transport. Allowance is
made for 16 tape transports to retain program conpatibility with UNIVAC
1240 Magnetic Tape Subsystems, Programs written for use on the UNIVAC
1540/1541 Magnetic Tape Subsystems address only tape transport positions
1 through 8.

** @ = zero Or one.

Figure 1I-D-6. External Function Word Format

1I-D-12

Forward Tape

Direction

|

This edge
of tape
next to
transport

Oxide
Side

P 05 04 03 02 01 00

P _11

Oxide
Side

oo U U

P 17 16

6 5 4

15

3

10 09 08 07 06

14 13 12

2 1 O

Modulus 3

Oxide ___

Side

Oxide
Side

03
09
15
21

02 01 00
08 07 06
14 13 12
20 19 18

3

2 1 o0

Modulus 4

P 11 10
P 17 16
P _23 22

6 5 4

P 05 04
P 11 10
P 17 16
P 23 22
P 29 28
P 35 34

Figure II-D-7,

6 5 4

09
15
21

3

03
09
15
21
27
33

3

02 01 00
08 07 06
14 13 12
20 19 18
26 25 24

2 1 0
Modulus 5

N‘_———_——f-—-————~——~—f"\

02 01 00
08 07 06
14 13 12
20 19 18
26 25 24
32 31 30

2 1 0

Modulus'é

Bioctal Tape Format

I11-D-13

3rd Frame
2nd Frame
1st Frame

Tape Channel

4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

6th Frame
Sth Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

— gy Ny
Forward Tape P 02 01 00 02 01 00 6th Frame
Direction Oxide P 05 04 03 05 04 03 5th Frame
Side P 08 07 06 08 07 06 4th Frame
l P 11 10 09 11 10 09 3rd Frame
P 14 13 12 14 13 12 2nd Frame
P 17 16 15 17 16 15 1st Frame
S
6 5 4 3 2 1 O Tape Channel
Modulus 3
P e —— ~—
P 02 01 00 02 01 OO0 8th Frame
P 05 04 03 05 04 03 Tth Frame
P 08 07 06 08 07 06 6th Frame
P 11 10 09 11 10 09 5th Frame
P 14 13 12 14 13 12 4th Frame
Oxide P 17 16 15 17 16 15 3rd Frame
Side P 20 19 18 20 19 18 2nd Frame
of P 23 22 21 23 22 21 1st Frame
6 5 4 3 2 1 0 Tape Channel
Modulus 4
. ’_’———V_’__N-\
This edge P 02 01 00 02 01 OO0 10th Frame
of tape P 05 04 03 05 04 03 9th Frame
next to P 08 07 06 08 07. 06 8th Frame
transport P 11 10 09 11 10 09 7th Frame
1P 14 13 12 14 13 12 6th Frame
P 17 16 15 17 16 15 5th Frame
P 20 19 18 20 19 18 4th Frame
Oxide P 23 22 21 23 22 21 3rd Frame
Side P _26 25 24 26 25 24 2nd Frame
P 29 28 27 29 28 27 1st Frame
VNM‘-M“-\ ‘
6 5 4 3 2 1 o0 Tape Channel
Modulus 5
m—-———v‘_/\
Forward Tape P 02 01 OO 02 01 00 12th Frame
Direction P 05 04 03 05 04 03 11th Frame
P 08 07 06 08 07 06 10th Frame
l P 11 10 09 11 10 09 9th Frame
P 14 13 12 14 13 12 8th Frame
P 17 16 15 17 16 15 7th Frame
Oxide P 20 19 18 20 19 18 6th Frame
Side P 23 22 21 23 22 21 5th Frame
P 26 25 24 26 25 24 4th Frame
P 29 28 27 29 28 27 3rd Frame
P 32 31 30 32 31 30 2nd Frame
P 35 34 33 35 34 33 1st Frame
6 5 4 3 2 1 0 Tape Channel
Modulus 6

Figure II-D-8, Octal Tape Format

I1-D-14

6.3 MODULUS

The modulus specifies the length of the computer word to be recorded on tape
or read from the tape (Refer to Table II-D-2).

6.3.1 MODULUS 3 (DESIGNATOR BITS 10 AND 09 = 00)

An 18-bit computer word is disassembled and recorded as three tape frames

of bioctal character format or six tape frames of octal character format. If
a computer delivers a word larger than 18 bits for recording, the magnetic
tape control records the lower order 18 bits of the word on the tape and
discards the remaining high order bits. During mod 3 reading operations,
three tape frames are assembled as an 18-bit computer word for bioctal
character format, or six tape frames are assembled as an 18-bit computer word
in octal character format. If the computer word size is larger than 18 bits,
the frames are assembled in the lower order 18 bits and zeros are placed in
remaining high order bits (see Figures II-D-7 and II-D-8).

6.3.2 MODULUS 4 (DESIGNATOR BITS 10 AND 09 = 01)

A 24-bit computer word is disassembled and recorded as four tape frames of
bioctal character format or eight tape frames of octal character format. If

a computer delivers a word larger than 24 bits for recording, the magnetic
tape control records the lower order 24 bits of the word on the tape and
discards the remaining high order bits. During mod 4 reading operations,

four tape frames are assembled as a 24-bit computer word for bioctal character
format or eight tape frames are assembled as a 24-bit computer word for octal
character format. If the computer word size is larger than 24 bits, the
frames are assembled in the lower order 24 bits and zeros are placed in
remaining high order bits (see Figures II-D-7 and II-D-8).

6.3.3 MODULUS 5 (DESIGNATOR BITS 10 and 09 = 10)

A 30-bit computer word is disassembled and recorded as five tape frames of
bioctal character format or ten tape frames of octal character format, If

a computer delivers a word larger than 30 bits for recording, the magnetic
tape control records the lower-order 30 bits of the word on the tape and
discards the remaining high order bits. During mod 5 reading operations, five
tape tape frames are assembled as a 30-bit computer word for bioctal character
format or ten tape frames are assembled as a 30-bit computer word for octal
character format, If the computer word size is larger than 30 bits, the
frames are assembled in the lower order 30 bits and zeros are placed in
remaining high order bits (see Figures II-D-7 and II-D-8),.

6.3.4 MODULUS 6 (DESIGNATOR BITS 10 AND 09 = 11)

A 36-bit computer word is disassembled and recorded as six tape frames of
bioctal character format or twelve tape frames of octal character format.
During mod 6 reading operations, six tape frames are assembled as a 36-bit
computer word for bioctal character format or twelve tape frames are assembled
as a 36-bit computer word for octal character format (see Figures II-D-7 and
11I-D-8).

II-D-15

TABLE II-D-2.

CHART SHOWING THE EFFECTS OF VARIOUS UNIVAC COMPUTERS

OPERATING WITH THE UNIVAC 1540 OR 1541 MAGNETIC TAPE SUBSYSTEMS

NOTE: LSB = least significant bits; MSB = most significant bits
Computer Mod 3. Mod 4. Mod 5 Mod 6
BCD Write BCD Write BCD Write BCD Write
UNIVAC 1218 For each 18- For each 18- For each 18- For each 18-

and 1219 bit word re- bit word re- bit word re- bit word re-
single chan- ceived, 1540 ceived, 1540 ceived, 1540 ceived, 1540
nel (one 18- or 1541 or 1541 or 1541 or 1541
bit word is writes 3 writes 4 writes 5 writes 6 frames
output/ frames on frames on frames on on tape: 3
request) tape. Mod 3 tape: 1 tape: 2 frames of zeros
recommended frame of ze- frames of ze- followed by 3
for single ros followed ros followed data frames
channel by 3 data by 3 data
operation frames frames
UNIVAC For each 36- For each 36- For each 36- For each 36-
1218 and bit word re- bit word re- bit word re- bit word re-
1219 dual ceived, 1540 ceived, 1540 ceived, 1540 ceived, 1540
channel or 1541 writes or 1541 writes or 1541 writes or 1541 writes
(one 36- 3 frames on 4 frames on 5 frames on 6 frames on
bit word tape. Since tape. Since tape. Since tape. Mod 6
is output/ only 18 LSB only 24 LSB only 30 LSB recommended
request) are written, are written, are written, for dual
18 MSB are 12 MSB are 6 MSBare lost. channel
lost lost Mod 5 commonly ' operation
used when pre-
paring tapes
for 30-bit com-
puters (CP-642B,
UNIVAC 1206 or
1230)
UNIVAC For each 30- For each 30- For each 30- For each 30-
1206, 1212 bit word re- bit word re- bit word re- bit word re-
CP-642B, or ceived, 1540 ceived, 1540 ceived, 1540 ceived, 1540
1230 (one or 1541 writes or 1541 writes or 1541 writes or 1541 writes
30-bit word 3 frames on 4 frames on 5 frames on 6 frames on
is output/ tape. Since tape. Since tape. Mod 5 tape. 1 frame
request) only 18 LSB only 24 LSB recommended of zeros followed
are written, are written, for operation by 5 data
12 MSB are 6 MSB are with CP-642B, frames. Mod 6 is

lost

lost

1206, or 1230
computers

commonly used
when preparing
tapes for 36-bit
computers

II-D-16

6.4 PARITY DESIGNATOR (BIT 7), 1 SELECTS ODD; O SELECTS EVEN

Either odd (the total number of ones in a frame is odd) or even (the total
number of ones in a frame is even) lateral parity may be specified in the
instruction word for bioctal character writing and reading operations; however,
odd parity is selected by the magnetic tape control for the octal character
writing and reading operations. For compatible tapes, odd parity is chosen
for binary data codes and even parity is chosen for binary coded decimal

(BCD) data.

6.5 DENSITY DESIGNATOR (BITS 6 AND 5)

00 selects 200 fpi; 10 selects 556 fpi; Ol selects 800 fpi; and 11 selects
same density as last instruction.

At low density, data is recorded at 200 frames per inch, at medium density
555.5 frames per inch, and at high density 800 frames per inch, Density must
be specified in instruction words requesting reading or writing operations,
Refer to Table II-D-1 for word assembly and disassembly time.

6.6 OPERATION CODE

The operation code is located in bits 15 through 11 of the instruction word.
l.egal operation codes exist for the six basic operations and for combinations
of these operations, The six basic operations are duplex selection, read,
search, write, space file, and rewind. Operation codes using any basic oper-
ation (except rewind) must be supplemented by format and density codes placed
in bits 10 through O7 and bits 06 and 05 respectively, of the instruction
word, Table II-D-3 is a listing of the operation codes and Figure II-D-§
shows the structure of the entire instruction word.

6.6.1 READ OPERATIONS

The selected transport moves tape at 120 inches per second (by the 1540) or 150
inches per second (by the 1541) in either direction and transfers seven bit
frames (read from tape) to the magnetic tape control. Parity, even or odd,

as specified in the format is checked for each frame of the record. The

six data bits are assembled into 18-, 24-, 30-, or 36-bit computer words
according to the modulus and character designator of the format, The assembled
computer word is placed on the data lines of the computer input cable and the
input request (IR) line is set. The computer samples the data lines at its
convenience and sets the input acknowledge line to the magnetic tape control.
The tape continues to move and new words are being assembled until the end

of record (interrecord gap) is reached. The computer must sample the input
lines and acknowledge each IR within a specified time (governed by density,
character, and modulus - Table II-D-1) to prevent loss of one or more words

in the record., If the computer fails to sample the input lines and acknow-
ledge the IR within the allotted time during any type of read operation, an
input timing error occurs and the magnetic tape control ceases to transfer

data to the computer for the remainder of the record. Following the detection
of the end of record, the magnetic tape control sets an input timing error
status word on the input lines and interrupts the computer program by

I1-D-17

TABLE II-D-3. OPERATION CODES

Operation Code Operation
00000 Read (read forward)
00001 Read: selective (selective read-forward)
00010 Read: modified stop
00011 Space file
00100 Search type 1
00101 Search type 1I
00110 Search file type 1
00111 Search file type II
01000 Write
01001 Write XIRG
01010 Write ignore error halt
01011 Write XIRG; ignore error halt
01100 Write modified stop
01101 Write edit
0l110 Write tape mark
01111 Write tape mark
10000 Backread (read backward)
10001 Backread selective (selective read-backward)
10010 Backread modified stop
10011 Backspace file
10100 Backsearch type I
10101 Backsearch type II
10110 Backsearch file type I
10111 Backsearch file type II
11000 Rewind
11001 Rewind, clear write enable
11010 Rewind
11011 Rewind, clear write enable
11100 Rewind-read
11101 Rewind-read, clear write enable
11110 Rewind-read
11111 Request transport-status

Bits 17, 16, and 6 = 1, 0,and 1, respectively, transmit extra

I1-D-18

setting the external interrupt (EI) line on that channel, When the computer
acknowledges the interrupt, the magnetic tape unit becomes ready,

In all types of read operations, format and density selections must be made
in each instruction.

6.6.1.1 READ-FORWARD

The selected transport reads one record according to the format stated and
checks each frame for parity. If a parity error is detected, the magnetic
tape control continues to transfer data to the computer for the remainder of
that record. After sensing the end of record, the magnetic tape control sends
a status word to the computer with a signal on the external interrupt line.
This status word contains magnetic tape unit status and any or all error
indications encountered during the reading of the record.

6.6.1.2 READ-BACKWARD

The selected transport reads one record backward to the next interrecoyd gap
(back one record) according to format and density stated in the instruction
word. Lateral and longitudinal parity are checked while reading. If an

error is detected during backward motion, the reading operation continues and
the status word, upon detection of interrecord gap, contains the magnetic tape
unit status and the error indication., Characters are assembled in each computer
word in the same position as in a forward read. Computer words, however, are
transmitted in reverse order.

6.6.1.3 READ-MODIFIED STOP

The selected transport reads one record according to the format stated and
checks each frame for parity. At the completion of the read, the magnetic tape
is stopped farther in the IRG, The status word sent to the computer after
detection of end of record contains magnetic tape unit status and any or all
error indications including parity error.

6.6.1.4 SELECTIVE READ-FORWARD/BACKWARD

The selected transport reads one record according to the format stated and
checks each frame for parity. Words are read and assembled as in a rgad-forward/
backward. A selective read code contained in the least significant six bits
(05 through 00) of a computer word, is sent by a single word output buffer

to the tape unit before it can read and assemble one word. Should this word
be formed before the selective read code is transmitted, an output timing
error is detected. The magnetic tape control compares the least significant
six bits (05 through 00) of each assembled computer word with the selective
read code., If the comparison is negative, the word is discarded and reading
continues, A positive comparison causes the word to be transmitted to the
computer. However, if a parity error is detected in either case, further
transfer of data ceases for the remainder of the record. The status word sent
to the computer after detection of end of record contains magnetic tape

unit status and any or all error indications.

II-D-19

6.6.2 WRITE OPERATION - GENERAL INFORMATION

When the magnetic tape control senses a write function, the selected transport
moves the tape forward and records the interrecord gap. A signal is placed on
the computer output request (OR) line. The computer, at its convenience,
responds with a word on the data lines and places a signal on the channel
output acknowledge (OA) line. The magnetic tape control recognizes the 0A,
samples the data lines and removes the output request. The word is transferred
to the disassembly register and another output request is issued. The magnetic
tape control dissembles each word according to the modulus selected in the
write function word, generates frame parity, and transfers the seven bits to

the transport for recording on tape according to the density selected. As

the recording frame passes over the read head, it is checked for parity.

‘If a parity error is detected, the magnetic tape control stops the write
operation and the tape motion. A status word, indicating an error in recording,
is placed on the channel input lines with a signal on the external interrupt
line. If no error occurs during recording, the process continues until the
computer no longer acknowledges the output request within the time allotted

for another word to be disassembled and written. This time is dependent on
format and density (refer to Table II-D-1). When the computer does not

respond within the allotted tine, the end of write is assumed by the magnetic
tape control. Longitudinal parity is written and the recording process is
terminated. Tape motion is stopped after a portion of the interrecord gap is
written on the tape. The magnetic tape control removes the output request and
places a status word, indicating successful conpletion of the write, on the
input lines and sets the external interrupt line. When the computer acknow-
ledges the interrupt, the magnetic tape subsystem becomes idle. If the
computer acknowledges the output request after the allotted time but before

the interrupt is sent, the magnetic tape control interprets the action as an
output timing error and notifies the computer in the status word.

NOTE: The normal interrecord gap is approximately 3/4 inch in length and the
extended interrecord gap is approximately 3 1/2 inches in length.

6.6.2.1 WRITE

The selected transport writes on the tape according to the format and density
stated in the function word. If no recording error is detected, the normal
operation continues until the computer no longer transfers data, at which time
longitudinal parity is written and the status word with interrupt is sent to
the computer.

6.6.2.2 WRITE-IGNORE ERROR HALT

The selected transport writes on the tape according to the format and density
stated in the function word, but the magnetic tape control does not stop the
writing process if lateral parity errors are detected as the recorded frames
pass over the read head. The status word sent to the computer with interrupt
after completion contains magnetic tape unit status and any or all errors
encountered.

I1-D-20

0.6.2,3 WRITE-EXTENDED INTERRECORD GAP (XIRG)

The selected transport records an extended interrecord gap of 3 1/2 inches
instead of the normal 3/4 inch IRG preceding a normal write portion of the
operation. If no data is transferred from the computer for recording, the
extended interrecord gap is present on the tape and an output timing error
occurs, The status word sent to the computer after completion contains mag-
netic tape unit status and any or all error indications detected as in a nor-
mal write operation.,

NOTE: There is a special length interrecord gap. Under program control, inter-
record gaps other than the fixed 3/4 inch and 3 1/2 inch lengths may be
written. Successive 3/4 or 3 1/2 inch gaps may be written by issuing
the appropriate write functions without initiating output buffers at
the computer. The program must be prepared to handle the output timing
error. that is indicated in the interrupt status word following each
write operation performed in this manner.

6.6.2.4 WRITE TAPE MARK

The selected transport writes a fixed format tape mark. The tape mark is a
special record having ones in only the 0-, 1-, 2-, and 3-bit positions of the
first frame, followed by three frames of zeros and one frame of longitudinal
parity. The entire record is written by the magnetic tape control upon
receiving the instruction word. Format selection can be ignored. To be compa-
tible with other tape systems, the tape mark must be exactly as specified
above. A status word with interrupt is sent to the computer after completion
of the write tape mark operation,

6.6.3 SPACE FILE-FORWARD/BACKWARD

The selected transport moves the tape in the selected direction to the IRG
beyond the next tape mark and indicates tape mark in the status word. The tape
is positioned in the IRG for reading or writing, (See positions A and B in
Figure II-D-9). Space file forward positions the tape at A; space file back-
ward positions the tape at B, Format and density must be stated in the
instruction word since parity is checked during the tape motion. Any error
detected and magnetic tape unit status is indicated in the status word sent

to the computer with interrupt after completion, If the tape is at load point
at the time the back space or at end of tape at the time the space file
instruction is given, an improper condition exists and is noted in the status
word,

6.6.4 REWIND

The selected transport rewinds the tape backward to the load point at rewind
speed, The status word with interrupt is sent to the computer after the
magnetic tape control initiates the rewind and not at the completion of the
rewind., If the tape is at load point, when the instruction is received, no

11-D-21

tape notion or improper condition results, but the status word indicates

load point. This provides a method of testing for completion of the rewind
operation,

6.6.5 MULTIFUNCTION OPERATIONS (GENERAL INFORMATION)

Multifunction operations consist of combinations of basic operations of the
magnetic tape unit, and can be performed in response to the one instruction
word from the computer. Examples are the search operations which combine the
features of a read with the ability to do a search on the first word of records,
compare these words against an identifier (search key) word, and read on a

find. Other multifunction operations combine a read with a rewind operation.
Combinations of functions such as these save on computer instructions, and

provide some capabilities that cannot be achieved by using the basic operations
one at a time,.

6.6.5.1 SEARCH (TYPE I AND TYPE II - FORWARD/BACKWARD)

The search operation combines the features of read forward/backward and a
search. The selected tape transport reads/records from the tape either
forward or backward and compares the first word* of each tape record with a
search key (identifier word) which is transmitted from the computer to the
magnetic tape unit by an output buffer of one word. When a compare is
affirmative, that find record is transmitted to the computer as in a read
forward/backward.

Tape motion is started upon receipt of the instruction word. If the magnetic
tape unit does not receive the search key from the computer before it starts
reading the record, an output timing error occurs. ‘This reaaing start time
wmay be as short as two and one-half milliseconds. The search operation

is terminated by the magnetic tape unit when this timing error is detected

by the magnetic tape control. The status word containing magnetic tape unit
status and any or all error indications is sent to the computer upon detecting
the end of the record in which the error occurred. When the tape motion is
stopped due to an error, the tape will be positioned in the interrecord gap
before the record in which the error occurred if the motion is backward, and
after the record if the motion is forward. A parity error can result from a
faulty parity check on any frame of the tape being searched.

The ones (type I) compare is a bit-by-bit greater-than-or-equal compare. If
the first word of the record is greater than or equal to the search key
identifier word, a find is made. A six-bit example is shown below.

Search key or identifier word 001101
Find, if first word is 011101
Find, if first word is 001101
No find, if first word is 010101
No find, if first word is 001100

#* In a forward search, the first word encountered in each record is the first
word of the record. In a backward search, the first word encountered in each
record is the last word of the record.

11-D-22

The identical (type II) compare is an exact equal compare. The first word of

the record must be exactly equal to the search key identifier word to define
the find record.

6.6.5.2 SEARCH FILE * FORWARD/BACKWARD

The magnetic tape control performs a search forward/backward type I or type II
as directed by operation code, on the selected tape transport, until it detects
a find or a tape mark,** If a tape mark is detected before a find, the search
file operation is terminated and the tape mark status code is present in the
status word sent to the computer after detecting end of record.

6.6.5.3 REWIND-READ

The selected transport rewinds the tape to the load point at rewind speed and
then performs a normal read of the first record according to the format and
density stated in the instruction word. A status word containing magnetic

tape unit status and any or all errors is sent to the computer with interrupt
after detecting the end of record.

6.6.5.4 REWIND-CLEAR WRITE ENABLE

The selected transport performs a normal rewind of the tape to load point and
clears the write enanle. This selected transport no longer performs a write
function without manual intervention. The status interrupt is presented upon
initiation of the rewind and not upon completion.

6.6.5.5 REWIND-READ-CLEAR WRITE ENABLE

The selected transport performs a rewind-clear write enable and then a normal
read of the first record in the forward direction according to the format
stated in the instruction word. A status word containing magnetic tape unit
status and any or all errors is sent to the computer with interrupt after
detecting the end of record.

6.6.6 REQUEST TRANSPORT STATUS

No tape operation is performed. The magnetic tape unit sends a status word
reflecting the status of the selected tape transport to the computer with
interrupt. However, when the not ready indication is obtained, the remainder

of the status word may not be valid as it may have been if derived from other
handlers.

* A file is defined as one or more records separated by tape marks (see Figure
I11-D-9),

#% A tape mark is a special record on a tape placed there by the operation,
write tape mark (see Figure 1I-D-4).

I11-D-23

CHANGE 2

Tape Forward Direction >
File
N
/ \
§ 1RG IRG | Record | IRG|Record | IRG | Record | IRG | Record IRGIIRG
Tape /
Tape Mark
Mark Starting B
Position Position
A
Position

Figure II-D-9. Magnetic Tape Unit - Tape File

6.6.7 TRANSMIT EXTRA (BITS 17, 16, AND 6 = 1, 0, AND 1, RESPECTIVELY)

The transmit extra instruction word is sent under program control in response
to an interrupt indicating a frame count error at the end of a read operation.
All bits other than 17, 16, and 6 of the instruction word are ignored.

The transmit extra provides data recovery capabilities by the transmission of

a single data word containing the extra characters of an incomplete computer
word (6 bits per character) and denoting those character positions void of
data. The extra characters appear in the most significant character positions
consistent with the specified modulus. Each bit of the least significant six
refers to a character position in the word originating in the magnetic tape
control assembly register. All bits beyond the modulus limits contain O's.
Whenever a bit in the least significant character is 1, the corresponding
character in the assembly register is invalid; when a bit is 0, the correspond-
ing character is valid (see Figure II-D-10).

In the redundant format, the lack of one frame (character) would not allow the
last frame to enter the assembly register and the frame would be lost. However,
this would be a valid improper frame count and would be accompanied by a
longitudinal parity error.

-

7. MAGNETIC TAPE UNIT - HIGH-SPEED PRINTER OFF-LINE CAPABILITY

Either magnetic tape unit is capable of communicating directly with the
high-speed printer* for off-line operation, The magnetic tape unit

communicates with the high-speed printer unit in the request-acknowledge moae.
(The magnetic tape-printer interface is shown in Figure II-D-11).

Using terms based on computer-magnetic tape unit communication and computer-

high-speed printer communication in this discussion, the output to the highf
speed printer interface is connected to the input from the magnetic tape unit

“Does not apply to the 9200/9300 Subsystem,

I1-D-24

Extra Frame Indicator
Bioctal Assembled Word ,///—- Binary

/
5432 1|0 5 43

210
UV WXY 00* , 0000O0O
VWXY ZO01 000001
WXYZ-~-03 000011
XY Z - -07 000111 Mod 6
YZ---1T7 001111
Z -~ ~ =37 011111
-VWXY 00* 000000
-WXYZOl1 000001
-XYZ-03 000011 Mod 5
-YZ--07 000111
_tz - - =17 010 1111 o
Mod 5 Limits
- - WXY 00* 00000O00O
--XYZO1 000001
--YZ-03 000011 Mod 4
- —TZ - - 07 0 0’0 111 .
- i Mod 4 Limits
- - -XY 00% 0000O00O
--=-Y2ZO1 000001 Mod 3
- - _12 - 03 00 010 11 o
Mod 3 Limits

NOTE: Z denotes last frame. Y denotes second last frame, and so forth. A O
in the extra frames indicator denotes a valid frame of data in the
corresponding portion of the computer word within the modulus limits.

* The word is identical to the last (normally transmitted) word except that
Zp has been destroyed, no extra frames are present,and the transmit extra
command should not have been used.

Figure II-D-10., Transmit-Extra Computer Word Format

II-D-25

interface; that is, the high-speed printer output request line is connected to
the magnetic tape unit input acknowedge line; the magnetic tape unit input
request line is connected to the high-speed printer output acknowledge line;
the magnetic tape unit interrupt line is connected to the high-speed printer
external function line; the magnetic tape unit data lines are connected to the
high-speed printer data lines,

The high-speed printer exercises control of the off-line system after the
magnetic tape unit is switched to printer mode, the desired tape transport is
selected, and the tape is positioned at load point. The high-speed printer
initiates the operation when it is placed in off-line position.

The data on magnetic tape to be printed off-line must be recorded in 120 Field
data character record lengths (120 characters per line on high-speed printer),
As each record is read from the tape and transmitted to the high-speed printer,
the 120 characters are printed as one line and the paper is advanced to the

next line position., Each 30-bit word delivered to the high-speed printer must
contain five Field data code characters (refer to Table II-D-4). These are in
turn disassembled into six-bit characters and stored in the character core
memory of the high-speed printer control unit, One word can be stored each

54 microseconds, (Refer to Table II-D-1 for recording density limitationms.)
When the core memory character counter indicates 120 characters, the print cycle
cycle is initiated and the line is printed., A record of less than 24 30-bit
words indicates to the high-speed printer to stop the print operation. A record
of five space codes (05) stops the print operation without printing a line.

30 Data Lines

— wnmelme sm—

Output Data Request! Input Acknowledge

Output Acknowledge Input Data Request

A

External Function Interrupt

—— e oo o—

Figure II-D-11, Magnetic Tape — Printer Interface

I1I-D-26

8. OPERATING INSTRUCT IONS

To prepare the off-line magnetic tape unit-high-speed printer system for opera-
tion, the operator must select:

1) Character, parity, and density of the recorded tape at the magnetic tape
unit cabinet.

2) Switch the magnetic tape unit to printer mode.

3) Select the desired tape transport,

4) Load and position the tape at load point,

D) Place the high-speed printer in off-line position.
9. SEQUENCE OF EVENTS

The normal sequence of events for transfer of data to the high speed printer
is as follows:

1) High-speed printer sets its output data request,

2) Magnetic tape subsystem, in the ready state, recognizes the first output
data request,

3) The magnetic tape unit places a word on the data lines and sets its input
data request,

4) High-speed printer recognizes this input data request as an output
acknowledge.

5) High-speed printer samples the data lines and clears its output data
request.,

6) Magnetic tape unit recognizes the clearing of the output data request
as an input acknowledge.

Steps 3 through 6 are repeated until the complete record is transferred, at
which time the line is printed, the paper is advanced, and the cycle is re-
initiated, The process continues until the end of file tape mark is read. The
high-speed printer recognizes the tape mark as a command to position the paper
at top of form on the next page. The interrupt line of the magnetic tape unit
being connected to the external function line of the high-speed printer permits
the end of record and the tape mark codes to be sent to the high-speed printer
with commands to move paper one line space or top of form, respectively.

11-D-27

TABLE II-D-4. TYPE SYMBOLS AND CODES

Binary Binary
Octal Code Character Octal Code Code Character
00 000 000 | Absolute value 27 010 111 R
01 000 001 } Arrow (up) 30 011 000 S
02 000 010 8 Subscript eight 31 011 001 T
03 000 011 [Bracket (open) 32 011 010 U
04 000 100] Bracket (close) 33 011 011 V
05 000 101 Space (undercut) 34 011 100 W
06 000 110 A 35 011 101 X
07 000 111 B 36 011 100 Y
10 001 000 C 37 011 111 Z
11 00l 001 D 40 100 000)
12 001 0l0 E 41 100 001 -
13 001 011 F 42 100 010 +
14 001 100 G 43 100 011 <
15 001 101 H 44 100 100 =
16 001 110 I 45 100 101 >
17 001 111 J 46 100 110 < Equal to or
less than
20 010 o000 K
47 100 111 { Left-hand brace
21 010 001 L
50 101 000 *Star
22 010 010 M
31 101 000 (
23 010 011 N
52 101 010 > Equal to or
24 010 100 0 greater than
25 010 101 P 53 101 011 '
26 010 110 Q 54 101 100 Right -hand
brace

11-p-28

TABLE II-D-4, TYPE SYMBOLS AND CODES (CONT.)

Binary Binary
Octal Code Character Octal Code Character
55 101 101 V Or 67 110 111 7
56 101 110 ' 70 111 000 8
57 101 111 # 71 111 001 9
60 110 000 0 ' 72 111 010 A And
61 110 001 1 73 111 011 :
62 110 010 2 74 111 100 /
63 110 Oil 3 75 111 101 .
64 110 100 4 76 111 110 — Arrow right
65 110 101 5 77 111 111 x Multiply sign
66 110 110 6

I11-D-29

CHANGE 1

SECTION II-E. UNIVAC HIGH-SPEED PRINTER (MODEL 1469)

(This section has been intentionally omitted.)

IT-E-1

SECTION II-F. UNIVAC 1004 CARD PROCESSOR

1. BASIC INFORMATION

The UNIVAC<:) 1004 Card Processor is a character-oriented data processing
computer. It may be adapted to be used as a peripheral equipment to a larger
computer. The UNIVAC 1004 Card Processor has the ability to perform arithmetic
functions, transfers, and compare operations using XS-3 coded characters (refer
to Table II-F-1). It contains a magnetic core memory consisting of 961
character locations. It also contains a built-in card reader and high speed
printer, A card punch as well as other peripherals may be included in the

1004 System.,

"The operation of the 1004 Processor is under the control of a series of
instructions wired on a plugboard. This series of instructions is referred

to as the 1004 program and each individual instruction is called a step. Each
step indicates that data is to be manipulated in some manner. When the machine
has completed all of the program steps, it is said to have completed its internal
cycle,

The plugboard, housed in a recess at the right of the 1004 processor, can be
removed for wiring or for storage when other plugboards are in use,

The discussion of 1004 operation presented here is with respect to the standard
1004 plugboard. This is a universal UNIVAC pre-wired plugboard for use with

a 1004 equipped with the universal computer/1004 interface adapter. It is
identified as: Part No. 4010507 B; Plugboard Assembly, Wired. No attempt

is made to describe the full capabilities of the 1004 processing section.

For a detailed description of programming a 1004 plugboard, refer to the
reference manual for the UNIVAC 1004 Card Processor, 80-Column.

The format of the data interface between the computer and the 1004 System is
a computer word, The adapter disassembles the words from the computer into
6-bit XS-3 characters for the 1004. Similarly, the adapter accepts the XS-3
characters from the 1004 and assembles them into the word length of the
associated computer. Because of the operation of the interface adapter, all
buffers to or from the 1004 must be packed XS-3 characters.

Figure II-F-1 shows the interface signals, both control and data, transmitted
between equipments during operation. Note that there are no external function
or external interrupt lines.

Five types of messages are utilized in communication between the computer and
the 1004:

1) Command message (computer to 1004).
2) Reply message (1004 to computer).
3) Read data message (1004 to computer).
4) Punch data message (computer to 1004).
5) Print data message (computer to 1004).

ITI-F-1

TABLE II-F-1.

80-COLUMN CODE

80-Column 80-Column
Card Printable XS-3 Card Printable XS-3
Code Characters Code Code Characters Code
12-1 A 01 0100 7 7 00 1010
12-2 B 01 0101 8 8 00 1011
12-3 Cc 01 0110 9 9 00 1100
12-4 D 01 0111 12 & 01 0000
12-5 E 01 1000 11 - (minus) 00 0010
12-6 F 01 1001 12-8 ? 01 0011
12-7 G 01 1010 11-8 I (exclam.) 10 0011
12-8 H . 01 1011 0-1 / 11 0100
12-9 1 01 1100 2-8 + 11 0011
11-1 J 10 0100 3-8 # 01 1101
11-2 K 10 0101 4-8 @ 10 1110
11-3 L 10 0110 5-8 : (colon) 01 0001
11-4 M 10 0111 6-8 > 11 1110
11-5 N 10 1000 7-8 ' (apos.) 10 0000
11-6 0 10 1001 |i2-3-8 . (period) 01 0010
11-7 P 10 1010 |12-4-8 o 11 1101
11-8 Q 10 1011 {12-5-8 [00 1111
11-9 R 10 1100 [12-6-8 < 01 1110
0-2 S 11 0101 |12-7-8 = 01 1111
0-3 T 11 0110 |[11-3-8 $ 10 0010
G-4 j 11 0111 |11-4-8 * 10 0001
0-5 v 11 1000 [11-5-8] 00 0001
0-6 W 11 1001 [11-6-8 : (semi-cel.) 00 1110
0-7 X 11 1010 {11-7-8 A 10 1111
0-8 Y 11 1011 | 0-2-8 # 11 0000
0-9 z 11 1100 | 0-3-8 , (comma) 11 0010
0 0 00 0011 | 0-4-8 % 11 0001
1 1 00 0100 | 6-5-8 (10 1101
2 2 00 0101 | 0-6-8 \ 00 1101
3 3 00 0110 | 0-7-8) 11 1111
4 4 00 0111
5 5 00 1000 | Blank No Space N.B. 00 0000
6 00 1001

II-F-2

Computer

Computer Input Cable

~~ ‘
/ \ Input Data Lines
-t }
!" | Input Request
g+ T+
| | Input Acknowledge
t t
\ /
~
-~
!V output Data Lines
! ! Qutput Acknowledge
! l Output Request
d T
v
~ 7

Computer Output Cables

omeeoe0o >

1004 Card
Processor

Figure II-F-1. Computer/1004 Card Processor Interface

II-F-3

When the 1004 is turned on and started, the only message it will respond to is
the command. When a computer chooses to utilize the 1004 Subsystem, it must
first initiate an output buffer to send a 30-character command message to the
1004, The first word of the command message is coded to signify what 1004
function is to be performed. When the 1004 receives a legitimate command
message it will immediately respond by sending a 30-character reply message

to the computer. To receive the reply message, the computer must initiate

an input buffer after sending the command. The content of the reply message
is not significant since its only purpose is to inform the computer that the
1004 has received a complete command message. The reply, however, will always
be identical in content to the last command.

After the command has been sent and the reply has been received, the next step
depends upon the type of function to be performed. In general, the function
will require the transfer of data, and the computer is required to initiate

the appropriate input or output data buffer. If an output data message is sent
to the 1004, the 1004 will respond with a reply message in exactly the same
manner as it does for a command. If an input data message is received from

the 1004, no reply message will follow.

The standard plugboard (#4010507 B) provides for the following major functions
to be performed by the 1004 subsystem: card reading, card punching, printing,
and data transmission to and from the computer. Each function is initiated by
the computer by transmission of a command message to the 1004, It is per-
missible to specify more than one function in a single command message. When
this is done, a fixed internal priority scheme determines the order in which
the functions are performed. The computer cannot send a new command until all
functions specified by the previous command have been completed.

Each of the 1004 functions is discussed briefly below:

1) Transmit Read Data.

This function transfers a 90-character read data message from the 1004
to the computer, The first 80 characters are from the 1004 read storage;
the last 10 characters are not significant. The computer must initiate
an input buffer to receive the data. The data transferred is from the
last card that was read into read storage.

2) Read

This function causes the card reader to read the next card. The 80-column
card code is automatically translated into 80 XS-3 characters and stored
in the 1004 read storage where it will destroy any data previously stored
there. After reading a card, a transmit read data command must be used

to transfer the data into the computer. The computer must initiate these
two commands for each card to be read.

3) Receive Print Data

This function transfers a 150-character print data message from the com-
puter to the 1004, The first 132 characters are stored in the 1004 print

II-F4

4)

5)

6)

7)

8)

9)

10)

11)

storage. The last 18 characters are not significant. The computer must
initiate an output buffer to send the data.

Print

This function causes the 1004 printer to print one line consisting of
the 132 characters currently in the print storage. After printing the
line, the 1004 will automatically space to the next line. When 64 lines
of a 66-line page are printed, the 1004 will home paper to a position
defined by a pre-punched paper tape control loop (usually top of next
page) .

Receive Punch Data

This function transfers a 90-character punch data message from the com-
puter to the 1004. The first 80 characters are stored in the 1004 punch
storage. The last 10 characters are not significant. The computer must
initiate an output buffer to send the data.

Punch

This function causes the 1004 card punch to punch one card containing

the 80 characters currently in the punch storage. The 1004 automatically
translates from the XS-3 code to 80-column card code during this process.
Receive Special Data

This function is used for test purposes only. It transfers 90 characters
from the computer to a special storage area in the 1004 memory. This
area is filled in reverse (ascending) order.

Transmit Special Data

This function is used for test purposes only., It transfers 90 characters
from the 1004 special storage area to the computer. This area is emptied
in reverse (ascending) order.

Space One Line

This function causes the 1004 printer to space one line without printing.
Home Paper

This function causes the paper form in the printer to be advanced to a
position defined by a pre-punched paper tape control loop (usually top

of next page).

Punch Blank Card

This function clears 1004 punch storage and causes one blank card to be
punched.

II-F-5

12) Stop

This function causes the 1004 processor to stop. The unit must then be
manually restarted before any more functions can be performed.

2. MESSAGE AND WORD FORMATS

A 30-character command message must first be sent to the 1004. The purpose of
this message is to allow the computer to signal the 1004 to perform one or more
of its functions (read, punch, and so forth). The format of the command message
is shown in Figure II-F-2. Note that only the first word contains significant
command information. The command message is master bit encoded and it is pos-
sible to set more than one command bit in a single message. Several instances
in which it may be convenient to set multiple command bits are listed below.

1) If bits 4 and 5 of character 2 are both set, the command instructs the
1004 to read a card and transmit data to the computer in one operation.
It should be noted, however, that due to the priority of the plugboard
logic, the transmit read data function is performed first and then the
read function, Thus, each successive operation actually transfers the
data from the card that was read in the previous operation. If this
order of events is not satisfactory for a particular user application, it
will be necessary to program the two commands separately.

2) If bits 2 and 3 of character 2 are both set, the command instructs the 1004

to receive a print data message and to print that data in the same opera-
tion.

3) If bits O and 1 of character 2 are both set, the command instructs
the 1004 to receive a punch data message and to punch that data in the
same operation.

The computer cannot send a new command message to the 1004 until the previous
operation has been completed. After receiving a command message the 1004 will
always respond with a reply message. Only the commands, receive punch data

and receive print data, may be followed by a data output buffer. The first will
be followed by 80 characters of data plus ten non-significant characters.

The second will be followed by 132 characters of data plus 18 non-significant
characters. These characters must be in XS-3 code packed into data words.
Figure II-F-3 shows the format of 30-bit and 18-bit data words. After receiving
an output data message the 1004 always responds with a reply message.

There are two possible buffer lengths that will be transmitted by the 1004: a
30-character buffer (reply message) or 90 characters of data read from a card.

The 1004 transmits a reply message to the computer to signal the end of an
output operation. This message is sent by the 1004 either after receipt of a

command message or after receipt of output data (print data message or punch
data mes$sage).

The reply message plays a significant role in the communication between the
computer and 1004 by signifying the end of an output buffer.

I11-F-6

Character 1 Character 2 Character 3

43| 2|1lolsl4a]l3l2]l1tlol5)4l3]2l1l0 Not Used
/
-
Not Used
Punch Blank

L Home Paper

Space 1 Line

Transmit Special Data

Receive Special Data

Punch

Receive Punch Data

Print

Receive Print Data

Read

Transmit Read Data

111 100 Command Identifier

Figure II-F-2. Command Code Format (First Word Only)

I11-F-7

38'B;t 20@—24| 23e—> 18| 17e—>12 |11 e—>6 | 5e—>0
or
T L i 1 1§
1st 2nd 3rd 4th 5th
Character Character Character Character Character
I L 4
18-Bit 17Te——12} 1] «e—» 6 54——0
Word

Figure II-F-3. Data Words

Receipt of a reply message guarantees that the 1004 has accepted all of the
output data and permits the computer to initiate its next input or gutput
buffer. The reply message is 30 characters. While the content of the reply
is not significant, it might be noted that it will be identical to the last
command message received by the 1004,

Only the command transmit read data may be followed by a data input buffer
(after receipt of reply). This buffer will be 80 characters of data plus

10 non-significant characters (a total of 90 characters). The data word format
is identical to that of output data and is shown in Figure II-F-3.

Tables II-F-2 and II-F-3 summarize the buffer sizes required for computer/1004
communication and the commands used to initiate communications.

TABLE II-F-2. BUFFER SIZES FOR COMPUTER/1004 COMMUNICATIONS

Message 30-Bit Words 18-Bit Words Number Of 6-Bit
Type Characters

Command Message 6 10 30

Reply Message 6 10 30

Print Data Message 30 50 150

Punch Data Message 18 30 90

Read Data Message 18 30 90

II-F-8

TABLE II-F-3. SUMMARY OF COMMAND CODES

i *
Command Type First Command Word

30 Bit 18 Bit
Read 7420000000 742000
Read and Transfer 7460000000 746000
Punch and Transfer 7403000000 740300
Print and Transfer 7414000000 741400
Home Paper. 7400040000 740004
Space One Line 7400100000 740010

* Only the first word is significant; however, six 30-bit words or ten
18-bit words must be sent.

Sample routines which may be used to program communications between a computer
and a 1004 Card Processor are given below. The routines are coded in

TRIM III source language and are intended for use with the computer in the
1219 1/0 buffering mode and a 1004 with a standard plugboard. The routines
assume that the buffer areas referenced contain the proper number of words

and that the first word of each command buffer contains the proper command
code.

1) Read-a-Card Routine

OUT*CH1004

O*READCOM+11 (+12 for 1218 modes)
O*READCOM

IN*CH1004

O*WAIT+11

O*WAIT

SKPIIN*CH1004

JP*LOK-1

OUT*CH1004

0*TRANS+11 (+12 for 1218 modes)
O*TRANS

IN*CH1004

I1-F-9

CHANGE 1

1) Read-a-Card Routine (Continued)

O*WAIT+11
O*WAIT
SKPIIN*CH1004
JP*LOK-1
IN*CH1004
O*INBUFF+35
O0*INBUFF
SKPTIN*CH1004
JP*LOK-1

2) Print/Punch Routine

OUT*CH1004

O*PRINTFCT+11 (+12 for 1218 modes)
O*PRINTFCT

IN*CH1004

O*WAIT+11

O*WAIT

SKPIIN*CH1004

JP*LOK-1

OUT*CH1004

O*PRINTBUFF+61 (+62 for 1218 modes, +35 or 36 for punch)
O*PRINTBUFF

IN*CH1004

O*WAIT+11

O*WAIT

SKPIIN*CH1004

JP*LOK-1

3) Home Paper Routine

OUT*CH1004
O*HOMPAP+11 (+12 for 1218 modes)
0*HOMPAP

IN*CH1004

O*WAIT+11

O*WAIT

SKPIIN*CH1004

JP*LOK-1

3. MANUAL OPERATING PROCEDURES

Prior to utilizing the UNIVAC 1004 Card Processor as peripheral equipment, it is
necessary to place all switches and controls in the normal operating position and
initialize the particular input/output device to be exercised. The manual pro-
cedures which must be performed at the 1004 control panel for each input/output
device are given on the next page.

I11-F-10

CHANGE 1

3.1 CARD READER

The input card deck to be read must be mounted in the card reader input hopper.
To initialize the card reader, depress the following 1004 switches in order:

1) CLEAR
2) START
3) FEED
4) RUN

3.2 CARD PUNCH

Prior to performing a card punch operation, the operator must ensure that there
are sufficient blank cards in the punch to perform the operation. To initialize
the card punch, depress the following 1004 punch switches in order:

1) OFF
2) ON
3) START

After a card punch operation is performed, the last card punched remains in the
card punch. To remove this card, depress the following 1004 punch switches
in order:

1) OFF
2) ON
3) START

3.3 HIGH-SPEED PRINTER

Prior to performing a printing operation, the operator must ensure that there
is sufficient paper in the printer to perform the operation. To initialize
the high-speed printer, depress the following 1004 switches in order:

1) CLEAR
2) START
3) RUN

II-F-11

CHANGE 2

SECTION II-G. UNIVAC 9200/9300 SUBSYSTEM

1. GENERAL INFORMATION

The UNIVACC:)92OO/9300 Computer is a character-oriented data processing com-
puter., It may be adapted as a peripheral to a larger computer through the use
of the UNIVAC Intercomputer Control Unit (ICCU). The 9200/9300 Computer is
internally programmed and is available with a complete line of software, It
contains plated-wire memory divided into 8-bit bytes with a minimum of 8K

(8191) bytes. It also contains a built-in high speed printer, card reader

and card punch, Other peripherals are also available with the 9200/9300 System.

The operation of the 9200/9300 Military Computer Subsystem is accomplished by
the ICCU, The ICCU provides for the conversion and transmission of words

to bytes and bytes to words between the 9200/9300 Subsystem and the military
computer, See Figure II-G-1. To control the flow of data, the ICCU uses
external functions and interrupts.

Univac standard software (handlers resident in both computers) work together
in order to transfer data. The military computer program initiates all data
transfers and, as such, acts as the master. The 9200/9300 Program acts as a
slave, accepting data or control commands, printing lines, and punching or
reading cards as directed by the master.

The discussion of the 9200/9300 military computer interface was prepared using
the Definition of Interface: UNIVAC 18, 30, or 36-Bit Computer with UNIVAC
Intercomputer Control Unit, PX 5458, and the 9200/9300 Resident Handler Program
created by the System Programming Department of UNIVAC Federal Systems Division.

No attempt is made to describe the complete operation or programming of the
9200/9300 Computer. For detailed information on the 9200/9300 System refer
‘to the documentation describing that system; especially, Preliminary Operation
Instructions for the UNIVAC 9200 Systems, UP-7537.

2. MILITARY COMPUTER/ICCU INTERFACE

2.1 INTRODUCTION

To avoid duplication, one basic interface will be used for the 18, 30, and 36-
bit word lengths with a resident handler, for each unique machine, written

from the basic interface.

The basic interface between a military computer and the ICCU shall be defined
as follows.

2.2 DATA FORMATS

I1-G-1

CHANGE 2

r—— = — - - — — — — — - — =
|
: 9200/9300 Subsystem I
T
| | |
Printer | Processor " | .
il it .
| | Univac
< ‘ » Military
l Card -] * Computer
R
I gader |CCU* . ! -
I - | >
|
| Card “ | >
Punch
| l
| I
| |
- o e o o o)

* |CCU contained in the 9200/9300 Processor Cabinet

Figure I1-G-1. 1CCU Communication and Interface

I11-G-2

CHANGE 2

2.2.1 ICCU DATA TRANSFER FORMATS

The ICCU can transfer data for a specific word length (18, 30, or 36-bits) in
three data format modes. Presently, the handler programs are written in data
format mode B only.

Figure II-G-2 illustrates data format modes for én 18-bit interface; Figure
IT1-G-3, a 30-bit interface and Figure II-G-4, a 36-bit interface.

2.2.2 HEADER FORMATS

Header blocks transfer functional information from the master to the slave.
The blocks, in fixed word length format, are transformed to 8-bit bytes for
the slave.

Figure II-G-5 illustrates fixed-word length format for an 18-bit interface;
Figure II-G-6, a 30-bit interface and Figure II-G-7, a 36-bit interface.

2.3 HEADER INFORMATION

Message headers and control block headers contain information that is used

by the slave program to perform the desired operation. The message header

is sent once to each device to establish the format for the desired operation.
Any subsequent calls, using the special function (see Subsection 2.6.3), will
result in the same operation as specified in the last header sent to that
device., The message header can precede the output buffer and be sent with each
data transfer that takes place.

2.3.1 MESSAGE HEADER FORMAT

The message header is 6-bytes as shown in the word format in Figure II-G-35,
II-G-6, or II-G-7. The byte format is:

Bit Position

7 6514 0 Byte
XX S Function 1
XX Device Number 2

XX Translation Code
XX Control Field

XX Character
AX Count

S O oW

II-G-3

CHANGE 2

Format A
(1 word)
17 16 9 8 7 0
X X
I I (2 bytes)
0 1 1
MSB® LSB®
Format B (1 word)
17 12 11 6.5 0
I I {3 bytes)
2 1 2 1 0 1
XX XX XX
MSB LSB
Format C (72 bits
17 017 : 017 017 0 4 words)
17 1098 21 12 11 43 14 13 6 5 16 15 8 7
| 1 [I] T T T
| | | | | | | |
L | ! ! ' ' ' ! (72 bits)
0 ‘/: ;\‘] 9 bytes
MSB LSB

(:) X - Bits ignored on output from register, zero filled on input to register
@ MSB - Most Significant Bit

LSB - Least Significant Bit

Figure II1-G-2. Data Formats, 18-hit Interface

I1-G-4

CHANGL 2

Format A
(1 word)
29 23 22 159 14 87 0
XXX XXX X(:) XX XXX XX
I I (2 bytes)
0 1 0 {
| @
MSéz) LSB
Format B (1 word)
29 24 23 18 17 12 11 65 0

I I I I I (5 hytes)
0 297 2 9v1 29 1 2. ¥1 C 1
X X XX XX XX XX

MSB LSB
4 words
Format C (20 Bits)
29 029 029 029 0
23'22 15114 71629|27 20I19 12l]1 413 26 '25 18|17 I[|19 2'1 24|231§158|7 0
: I I | I I
|] | 1 | 1 1] |] | | I
?hzansu
(15
bytes
0d7 0 ¢ 7
Ms8 LSB

(:) X - Bits ignored on output from register, zero filled on input to register
(2) MSB - Most Significant Bit
LS8 - Least Significant Bit

Figure 11-G-3. Data Formats, 30-hit Interface

11-6-5

CHANGE 2

Format A
35 34 27 26 25 18 17 16 9 8 gl! vord)
xl X X X
4 byt
0 I 7 I 1 0 I 1 0 I , (4 bytes)
@
MSB LSé:)
Format B
(1 word)
35 30 29 24 23 18 17 12 11 65
D241 0 2 0 2/770211 1\7 XA#“V“S)
XX X X
NSB L XX XX XX s
Format C

35 : 0 35 0 (2 word:)
28'27 21‘20 13 12 43 32 31 24123 16 15 B8 17 72 bit
1 T T

\

(72 bits)
0 g7 0 g 7\ 9 bytes

MSB LSB

(:) X - Bits ignored on output from register, zero filled on input to register
@ WSB - Most Significant Bit
LSB - Least Significant Bit

Figure I1-G-4. Data Formats, 36-hit Interface

I11-G-6

CHANGE 2

Format A
17 16 987 0
X 1 X 2
X 3 X 4
X 5 X 6
Format B
1 12 11 6 5 0
1 2 3
4 5 6
Format C
17 017 0 117 017 0
112 314 |5 6 X X X

Figure 11-G-5. Message Header Format, 18-Bits

II-G-7

CHANGE 2

Format A
29 22 15 1
1 2
3 4
5 6
Format B
29 24 23 18 11 12 11 B
1 2 3 4
6 X X X
Format C
29 0 29 0 29 29
1121314 5 | 6] X X X |X| X X

Figure I1-G-6. Message Header Format,30 Bits

I1-6-8

CHANGE 2

Format A
35 34 27 25 18 168 9 7
X 1 X 2 X 3 X 4
5 6 X X
Format B
35 3029 24 23 18 17 12 11 6 5 0
1 2 3 4 5]
format C
35 6 35 0
1 2 3 4 5 6 X X X

Figure I1-G-7. Message Header Formats,36 Bits

I1-G-9

CHANGE 2

Where:
XX is not used
S - Bit 5 of Byte 1. If S

no data transferred. If S
or an input function,

0, setup function performed by this header,
1, header immediately precedes output data

Function - Bits 0O-4 of Byte 1. Describes the action to take place as
given in the following codes.

Code Operation

Illegal

Write

Read Forward

Read Backward

Not Used

Maintenance Turnaround

W= O

Device Number - Byte 2, Specifies the device to or from which
the data is to be transferred according to the following codes.

Code Device

Card Reader

Serial Read/Punch
Printer

Row Read/Punch

1001 Card Controller

O W N~

Translation Code - Byte 3. Specifies type of translation desired by the
master. The data will be translated to the desired code on input and
translated from the desired code on output.

Code Translation

No Translation
XS-3

Field Data
ASCII

BCD

Binary

bW - O

Control Field - Byte 4. The interpretation of this field depends upon the
device specified in byte 1 according to the following:

Card Reader - The contents of this field are ignored.

I1-G-10

CHANGE 2

Serial Read/Punch - Contains one half the number of columns to
be punched on a card. If equal to zero, a full 80 columns are
punched.

Printer - The upper two bits (4 and 5) of this field contain a
print line length code, where: 00 denotes a 132 character print
line, O1 denotes a 120 character print line. Bits 0 to 3 contain
a spacing code of O, 1, or 2. The printer will space this number
of lines automatically after each print function.

Character Count - 12 bits. The number of data bytes to be sent
to or from master on input or output. The count is right justified with
the least significant bits in byte 5 and contains the number of characters
in the input/output block.

2.3.2 CONTROL BLOCK

Special functions of the slave peripherals are signaled by the use of a
control block.

The control block has the following format.

Bit Position

7 0 Byte
XX | Function Code 1
XX | Device Number 2
XX N1 3
XX N2 4
XX N3 5
XX N4 6

Where:

XX is not used

Function code - Byte 1. Describes the action to take place.

Code (Octal) Operation

20 Space N1 lines on printer

21 Skip printer carriage to
channel NI1.

22 Select alternate punch stacker.

I1-G-11

CHANGE 2

Device Number - Byte 2. Specifies the device on which the control function
is to be performed. The codes are the same as those used for the message
header.

N1, N2, N3, N4 - Bytes 3-6. Contain parameters necessary for the specific
function according to the following codes.

Function Code Parameters
20 N1 = Space count
N2, N3, N4 not used.
21 N1 = Channel to skip to

on forms control tape.
Channel 7 is top of form.
N2, N3, N4 not used.

2.4 CONTROL WORD FORMATS
2.4.1 MASTER EXTERNAL FUNCTION WORD

The Master External Function Word (MEFW) is sent by the master to the ICCU

to initiate all data transfers, special functions and control operations.
The format of the MEFW is:

Master
Bit Position

1716 1514131211 109876543210
X D F | C

Where:

XX - Bits 17 and 16. Ignored (not transferred to slave)

D - Bits 15-4. Input data transfers: message header byte count;
6= (D) £ 7777,. Output data transfers: byte count for message header

and data; 6 £ (D) £ 7777g (Number of words sent to slave times number of
bytes per master computer word.) Special functions: device number;

(1 = card reader, 2 = card punch, 3 = printer etc.); 1 £ (D) £ 5. Control
functions: O

F - Bits 3 and 2. Data Format Selection: F = 00 select format A,
F 01 select format B, F = 10 select format C, F = 11 not defined.

1

C - Bits 1 and 0. Control Field: C = 00 set "ATTENTION" interrupt to
slave, C = 01 input data to master, C = 10 output data from master,
C = 11 invalid.

2.4.2 EXTERNAL INTERRUPT STATUS WORD

When the slave sends an external interrupt to the master, this interrupt is
accompanied by an External Interrupt Status Word (EISW) made up of a command
byte from the slave and sense byte (1) from the ICCU. The EISW accompanying
an interrupt terminating a data transfer will have a command byte of zero.
The format of the EISW is:

I1-G6-12

CHANGE 2

Master

Bit Position 17 16 1514 1312 11109876543210

X|R S X C

Where:

X - Bits 17 and 8. Always zero.

R - Bits 16. Selective Reset - One if a preceding operation has been
terminated by the slave with a selective reset. (Error detected by slave

channel.)

S - Bits 15-9. Error Status - Presented to both the master and the slave
by the ICCU. (See Subsection 2.4.2.1.)

C - Bits 7-0. The command byte from the slave. (See Subsection 2.4.2.2.)

2.4.2.1 ERROR STATUS

15 14 13 12 9
R[X|B X

Where:
R - Bit 15. Command Reject - Unspecified command issued to ICCU.
X - Bits 14 and 12-9. Not used.

B - Bit 13. Bus Out Check - Even parity on bus out during transmission
of data or command to ICCU from slave channel,.

2.4.2.2 COMMAND BYTE

76543210
E I1C

Where:

E - Bits 7-4. Error Code - An error has been detected by the slave and
has the following interpretation.

Code Reason
1 An illegal format detected by slave.
P An illiegal device number referenced.

I1-6-13

CHANGE 2

Code Reason

3 A punch check has occurred and recovery has failed.

4 An illegal function code received by the slave.

5 No initiation sequence performed to initiate the
master/slave interface.

I - Bits 3, 2. Interpretation code. 01 : Termination of output
functions. 10 : Hardware or software error

C - Bits 1, O, Always 11 identifying the external interrupt command.
2.5 INITIATION SEQUENCE

Prior to the execution of any data transfers or control functions, the
master computer must perform an initiation sequence (handshake).

The handshake is performed as follows.
1) Send MEFW with control field, (bits 1, 0), set to zero.
2) Receive external interrupt from slave. The command byte of the

accompanying EISW will have a S field of O, I field of Ol and a
C code of 11.

2.6 DATA TRANSFER SEQUENCES

All data transfers sequences shall originate in the master computer. The
interface for output, input, and special functions is defined below.

2.6.1 OUTPUT DATA TRANSFER

Any data sent to the slave for output must be preceded by a message header.

The message header may be sent to the slave without any accompanying data to
set up the slave handler for a specific format and the subsequent use of the
special function. Multiple card images may be sent depending on the memory

size of the slave. The output data transfer sequence is:

1) Send the MEFW to the ICCU via an external function command.

2) Initiate an output buffer with a length equal to the word length of
message header plus the word length of the output data buffer plus
one word (length in 18, 30, or 36 bit words, not bytes).

3) Accept an external interrupt and accompanying EISW upon completion of
data transfer (channel end interrupt). The command byte of the EISW
will be zero upon termination of data transfer.

4) Accept an external interrupt and accompanying EISW signaling completion
of the output function (device end interrupt).

I11-G-14

CHANGE 2

2.6.2 1INPUT DATA TRANSFER

To input data, a message header is sent to the slave to request input of
data or to set up the slave handler for a specific input format and the
subsequent use of the special function. Multiple cards may be read depending
on the memory size of the slave. The input data transfer sequence is:

1) Send the MEFW to the ICCU via an external function command.

2) Initiate an output buffer with a length equal to the word length of
the message header plus one word (number of words not bytes).

3) Accept an external interrupt and accompanying EISW upon completion of

data transfer (channel end interrupt). The command byte of the EISW will

be zero upon termination of data transfer.

4) Initiate an input buffer with a length equal to the number of words
being sent multiplied by the number of characters per word plus one.

5) Send the MEFW to the ICCU via an external function command.

6) Accept input data and upon completion of data transfer accept an

external interrupt and EISW (device end interrupt). The command byte of

the EISW will be zero.

Due to the timing characteristics of the slave handler and the ICCU, the
master should issue the MEFW for input immediately upon receipt of the
first interrupt.
2.6.3 SPECIAL FUNCTIONS
For convenience in performing I/0 operations, special functions are provided
as specified in the last message header sent to each device. The handshake
sequence sets up the slave handler to perform as follows.

1) Read one card (80 column), translate to X5-3

2) Punch one card (80 column), translate from XS-3

3) Print one line (120 characters), translate from XS-3
If an I/0 function is to be performed other than specified above, a message
header must be sent for that device to reset the slave handler to perform in

the manner desired.

A special function code must be given in the D field of the MEFW in place of
the byte count to use the special function.

1I-G-15

CHANGE 2

Special function codes are:

Code Device MEFW Control Field
1 Reader 01
2 Serial Punch 10
3 Printer 10
4 Row Punch 10
5 Card Controller 10

The data transfer format for special functions must be format B.
2.6.3.1 OUTPUT DATA TRANSFER
The output of data using the special function is:
1) Send the MEFW to the ICCU via an external function command.
2) Initiate an output buffer with a length equal to the length of output
data buffer plus one word (18, 30, or 36-bit words not
bytes).
3) Accept an external interrupt and accompanying EISW upon completion of
data transfer (channel end interrupt). The command byte of the EISW

will be zero on termination of data transfer.

4) Accept an external interrupt and accompanying EISW signaling completion
of the output function (device end interrupt).

After the first interrupt is received, output data may be sent to another
device in the slave. Output to the same device must not be sent until the
second interrupt (device end) is received for that device,
2.6.3.2 INPUT DATA TRANSFER
The input of data using the special function is;
1) Initiate an input buffer with a length equal to the number of bytes
per word being sent multiplied by the number of words and rounded to the
next largest word if a fractional word exists.
2) Send the mfFW to the ICCU via an external function command.
3) Accept input data and upon completion of data transfer accept an

external interrupt and EISW (device end interrupt).

The same timing note for the output data transfer also applies to input data
transfer.

I1-G-16

CHANGE 2

2.6.4 MAINTENANCE DATA TURNAROUND

The maintenance function provides a means for checking the linkage between
the master and the slave. Performance of this function does not involve any
slave peripheral device.

When using the maintenance turnaround, full cycles must be used; that is,

send data to slave and retrieve data from slave. Data will be returned to
the master in the same code as sent to slave. The maintenance turnaround

sequence 1is:

1) Send a message header and output buffer containing turnaround data to
the slave. The MEFW should have a D field of 0. The Message header
has a function code of 3.

2) Upon completion of output send a message header to the slave for input
of turnaround data. The D field of the MEFW = O and the function code
in the message header = 3,

3) Send a MEFW for input to return data to the master.

The output and input data transfer rules are found in Subsection 2.6.1 and
2.6.2.

2.7 ERROR NOTIFICATION

Peripheral or format errors and interface errors can occur with the slave
system. Subsection 2.4.2.2 describes the format errors. The sense byte of
the EISW presents interface errors to the master. If the slave is unable
to get the proper response from the ICCU, it comes to a stop and displays
'F3'. This indicates that the slave attempted recovery and failed. The
system should be cleared and restarted.

3. 9200/9300 / ICCU INTERFACE
3.1 INTRODUCTION

To avoid duplication one basic interface will be used for the 9200/9300 Com-
puter with the ICCU 18, 30, and 36-bit word lengths. The ratio between the
number of characters per computer word and the length of the message header,
creates a unique program for the 30-bit computer family. The only modification
required between various data formats is in the number of bytes accepted in

the header that is sent from the master computer.

Since the 9200/9300 / ICCU interface is dependent upon the military computer/
ICCU interface frequent reference will be made to Section 2.

The basic interface between a 9200/9300 Computer and the ICCU shall be de-
fined as follows.

I1-G-17

CHANGE 2

3.2 DATA FORMATS
3.2.1 ICCU DATA TRANSFER FORMATS

The transfer of data between the ICCU and the 9200/9300 Computer is always

in the form of one 8-bit byte per character (regardless of the number of bits
used per character). Thus, even though only data format B (Figures II-G-2,
II-G-3, II-G-4) is being discussed here, the number of characters per master
computer words (transferred multiple) is the only factor that requires change
for a different data format.

3.2.2 HEADER FORMATS

The header formats are the same as described in Subsection 2.2.2 except for
the additional consideration given to the number of characters per master
computer words which changes with the change in data format.

3.3 HEADER INFORMATION

The contents of the message header (Subsection 2.3) controls the performance
of the slave. A message header should be sent to each slave peripheral device
to enable it to perform the required operations. For convenience, a predeter-
mined message header (Subsection 2.6.3) is given to each peripheral handler
whenever a handshake function is performed. Upon receiving the message header,
the slave sets up its peripheral handlers to perform in the specified manner.
The control header causes the slave to perform the required action requested
by the master. The execution of the control function is done immediately

upon receipt of the header.

3.4 SLAVE COMMAND WORDS

The slave command format controls all interface between the slave and the
ICCU. The command is sent to the ICCU via the least significant byte of the
XIOF instruction. A status byte is presented to the slave when a TIO
instruction is executed. The ICCU adds sense bytes to the MEFW and presents
them to the slave when the appropriate command is issued.

3.4.1 SLAVE COMMAND BYTE

Slave command bytes are:

Command Function

XX00 0000 Test I/0 - No operation, supply status
to the slave.

XX01 0000 Set Inhibit Status - This command is
processed as a Test I/0. (If accepted,

II1-G-18

CHANGE 2

Command Function

it does not generate new status.) The
status byte is presented to the channel
and Inhibit Status In (bit 6 of sense
byte) is set.

XX10 0000 Reset Inhibit Status - Same action as
set inhibit status, except bit 6 of
sense byte is reset.

XXXX 0100 Sense - Transmit 4 bytes of sense data
to the slave. The second and third bytes
are taken from the word register (bits
0-7 and 8-15). This provides a means
of transmitting 16 bits of the MEFW
(Subsection 2.4.1) from the master to
the slave. The first byte is detail for
the unit check status. The fourth byte
has the same format as bits 16-9 of the
EISW. (Subsection 2.4.2)

DDDD DD10 (:) Input - Transmit data to the slave.
pbDD DDO1 (D) Output - Call for data from the slave.
DDDD DD11 (:) Set External Interrupt Request - No

data transfer. Send external interrupt
request to the master, with the 8-bit
command code on master input data lines

0-7.
<.4.2 SLAVE STATUS BYTE
Slave status bytes are as follows.
Bit Designation Interpretion
0 Attention The master has issued a control command to

the ICCU, or the master has issued the first
command and a slave command is required to
initiate data transfer.

When the attention interrupt has been
generated, the slave must issue a sense
command in order to examine the MEFW. Hard-
ware restrictions will cause all subsequent
commands to be rejected if the sense command
is not issued.

(1) X and D bits are not interrupted by the {CCU. D bits are passed on to

J

A

the master via an EISW (Subsection 2.4.2).

I1-G-19

CHANGE 2

Bit Designation

1 Status Modifier
2 Not used

3 Busy

4 Channel End

5 Device End

6 Unit Check

=1

Unit Exception

3.4.3 SENSE BYTE FORMATS

Interpretation

Used only on control unit busy sequence.

Indicates the control unit cannot accept a

command because:

1) It is executing a previously initiated
1/0 operation; status modifier also is
set. The control unit is defined as
busy from the time a command from the
channel is loaded into the command
register until both Channel End and
Cevice End are set.

2) The control unit is holding pending status
conditions detected subsequent to com-
pletion of the last data transfer com-
mand. (Not applicable to Test I1/0 or
Set Reset Inhibit Status.)

Always occurs with Device End.

A data transfer was terminated or a control
command was accepted. (Control commands
are control immediate types.)

Set simultaneously with bits 0-35 in sense
byte 1.

Set whenever an external function is received
from the master during a data transfer;
that is, master termination.

Four sense bytes are presented to the slave channel. Sense bytes 2 and 3
contain the MEFW from the master (Subsection 2.4.1).

3.4.3.1 SENSE BYTE 1

Sense byte 1 contains the following.

Bit Designation
0 Command Reject
1 Not used

Interpretation

Unspecified command issued to ICCU. This
indication (to slave) is suppressed if
command byte has incorrect parity.

Transmitted as zero.

I11-G-20

-

Designation

Bus Out Check

Not used
Not used
Not used

Inhibit Status
in FF state

Not used

3.4.3.2 SENSE BYTE 4

CHANGE 2

Interpretation

Even parity on bus out during transfer of
data or command to ICCU from slave channel.

Transmitted as zero.
Transmitted as zero.
Transmitted as zero.

Number 1 whenever the FF is set.

Transmitted as zero.

Sense byte 4 contains the following.

Bit

0

-~

Designation

Selective Reset

Master Termina-
tion

Not used

Bus Parity Error

Format Register
FF 2

Format Register
FF 1

Master Function
Register FF 2

Master Function
Register FF 1

Interpretation

An operation has been terminated by the
slave with selective reset (error detected
by slave channel).

An operation has been terminated by the
master before normal completion. (Will
always be a 0 to a sense command, status
FF 7 is set by same condition.)

Always transmitted as zero.

A parity error has been detected on the

slave output bus. (Will always be a O

to a sense command, bit 2 of first sense

byte is set by the same condition.)

Same as bit 3 of last MEFW, If the master is
off-line, then same as bit 0 of slave sense
command byte (Subsection 3.4.1).

Same as bit 2 of last MEFW. If the master is
off-line, then same as bit 1 of slave sense
command byte (Subsection 3.4.1).

Same as bit 1 of last MEFW.

Same as bit O of last MEFW.

II-G-21

CHANGE 2

3.5 INITIATION SEQUENCE
The slave will not accept any data transfers until a handshake function has
been issued by the master. (Subsection 2.5) The handshake establishes
the interface and allows the slave to set up its peripherals to operate in
a pre-determined format (Subsection 2.6.3).
The response to the MEFW is performed as follows,

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICCU Buffer Control Word (BCW) to accept four sense bytes from ICCU.

3) Send sense command to ICCU.

4) Accept interrupt upon termination of sense byte input.

5) Perform handshake set up function.

6) Send an external interrupt request to the master with a D code of O,
3.6 DATA TRANSFER SEQUENCES
All data transfer termination sequences shall originate in the slave upon
termination of the.slave BCW. The interface for I/0 and special functions is
defined below.
3.6.1 INPUT DATA TRANSFER
Any input data to the slave is output data from the master (Subsection 2.6.1)
and will contain a message header followed by the data, if so selected, in the
message header. The input data transfer sequence is:

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICCU BCW to accept four sense bytes from ICCU.

3) Send sense command to ICCU.

4) Accept interrupt upon termination of sense byte input.

5) Load ICCU BCW to accept number of bytes in D field of MEFW,

6) Send XIOF instruction in order to input data to the slave.

7) Accept an external interrupt upon completion of transfer.

8) !

[l 2]

et up peripheral according to message header and do the desired function
if data present,

9) Send an external interrupt request to master with a D code equal to the
device address of the peripheral used.

II-G-22

CHANGE 2

3.6.2 OUTPUT DATA TRANSFER
Any output data from the slave is input data to the master (Subsection 2.6.2)
and will contain a message header. The message header is transferred into the
slave which performs the necessary functions and sends the output to the
master, The output data transfer sequence is:
1) Accept interrupt from ICCU looking for attention bit in status word.
2) Load ICCU BCW to accept four sense bytes from ICCU.
3) Send sense command to ICCU,
4) Accept interrupt upon termination of sense byte input.
5) Load ICCU BCW to accept number of bytes in D field of MEFW,
6) Send XIOF instruction in order to input data to the slave.
7) Accept on external interrupt upon completion of transfer.
8) Set up peripheral according to message header and
a) if data bit set, perform the desired function.
b) if data bit not set, send an external interrupt request with a
D code equal to the device address of set up peripheral. This
completes this transfer sequence,
9) Accept interrupt from ICCU looking for attention bit in status word.
10) Load ICCU BCW to accept four sense bytes from ICCU,
11) Send sense command to ICCU.
12) Accept interrupt upon termination of sense byte input.
13) Load ICCU BCW in order to output data from the slave.
14) Send XIOF in order to output data from the slave.
15) Accept an external interrupt upon completion of transfer from the ICCU.
3.6.3 SPECIAL FUNCTIONS
Special functions streamline the data transfer operations by avoiding message
headers. The device address of the peripheral to be used is sent in the

D field of the MEFW. (Subsection 2.6.3) The slave performs as before,
sending or receiving data.

11-G-23

CHANGE 2

3.6.3.1 INPUT DATA TRANSFER
The input of data to the slave using the special function is:
1} Accept interrupt from ICCU looking for attention bit in status word.
2) Load ICCU BCW to accept four sense bytes from ICCU.
3) Send sense command to ICCU.
4) Accept interrupt upon termination of sense byte input.
5) Load ICCU BCW with pre-determined buffer length for input to the slave.
6) Send XIOF instruction which calls for input data.
7) Accept external interrupt which signals the end of data transfer.
8) Perform the desired output function.
9) Send an external interrupt request with address of device used in D field.
3.6.3.2 OUTPUT DATA TRANSFER
The output of data from the slave using the special function is:
1) Accept interrupt from ICCU looking for attention bit in status word.
2) Load ICCU BCW to accept four sense bytes from ICCU.
3) Send sense command to ICCU,
4) Accept interrupt upon termination of sense byte input.
5) Perform the desired input from the slave peripheral.

6) Load the ICCU BCW with pre-determined buffer length in order to output
data from the slave to the master.

7) Send XIOF instruction in order to output data from the slave
8) Accept an external interrupt upon completion of data transfer,
3.6.4 MAINTENANCE DATA TURNAROUND

Maintenance data turnaround uses the same sequences as I/0 data transfers.
However, the slave peripheral reference is omitted. (Subsections 3.6.1 and

Ve e/

I11-G-24

CHANGE 2

3.7 ERROR NOTIFICATION

The slave will notify the master via an external interrupt request of errors
it detects according to the error codes found in Subsection 2.4.2.1. Error
stops will also be displayed on the slave console according to the standard
9200/9300 peripheral error codes listed in Subsection 4.

Recovery procedures given in Subsection 4 should be followed when these error
stops occur. The error stop and display of 'F3' means an unrecoverable ICCU
error has occured and a master clear, restart procedure must be performed.

4. 9200/9300 OPERATING PROCEDURES

The operating instructions and program haulting information are presented for
programmer reference. Complete information on the operation of the 9200/9300
Computer can be found in the UNIVAC 9200 Systems, Preliminary Operating
Instructions, UP-7537, Revision 1. Figure II-G-8 shows the 9200/9300 Control
Console, The bulk of the operating procedures discussed in this section are
performed at this console.

4.1 NEXT INSTRUCTION/HALT DISPLAY (White indicators)
Figure II-G-8 shows the NEXT INSTRUCTION/HALT DISPLAY Indicators. When a halt or
stop occurs, a code related to the particular halt or stop is displayed on
the four groups of indicators. The various halt and stop codes are given in
a following section together with the action to be taken by the operator in each
case.
The indicators function individually as follows:

1) Lit - Represents a binary 1 in the related bit position.

2) Unlit - Represents a binary O in the related bit position.
The four bit positions (8, 4, 2, and 1) are represented by the four indicators,
from left to right, within each group. The least significant group of indica-

tors is at the right.

The significance of this display and the interpretation of the indicators at
any one time depends upon the role they are called upon to play at that time.

For the operator, the primary concern is the use of these indicators to dis-
play the code related to a particular halt or stop in the processing. These
codes are displayed in hexadecimal form.

4.2 INITIALIZING PROCEDURES

The first step in an operating procedure is to prepare the peripheral units to
be used in the run for an operating (ready) condition.

I1I-G-25

CHANGE 2

POMER PRINTER READFR PUNCH
o CFF TEF LN CUEAR H PAGE EE-LN CLEAR FEED G FE-AN CLEAR FEED
0FF OFF - oN OFF - (]
LINE LINE LINE
ON- ON- OFF ON- OFF
LINE LINE LIN
| G-A PRINTER
| 0-3 READER OP ABN DEV MEM NEAT 'NSTRUCTICN HALT GISPLAY
1 0-C PUNCH CHAN R A D ADD NEM
OO OOO0OO OOOO OOOO OO0O0O
RUN STOP OE GISPLAY SELECT
START INST CYCLE LDAD pROC A 3 C 0 3 DISPLAY ALTER GATA ENTRY
oN lON |ON poce 1 | 1 [B
OFF | OFF | GFF 1/0 ofo 0 0 0 |o
tA
PRGC TEST
A3N MODE
CHANNEL MEMORY ADDRESS
CLEAD CLEAR A 3 C
1 1 [R 1 ! [R 1 | [B
0] 0] 0 fofc 0 0 0 jofo 0 0 o [o
. GREEN INDICATOR . NED INDICATOR O WHITE INDICATOR

Figure |1-G-8.

9200,/9300 Control Console

I11-G-26

4.2.

CHANGE 2

POWER

Turn on the system operating power.

4.2.2 PRINTER

With no continuous form paper in the printer, the following procedure is
followed.

1)

2)

3)

4)

3)

Install the proper form control tape loop.
Check the setting of the optional Line Spacing switch, if provided.
Check the type bar. Change the bar, if necessary.

Be certain that the Character Font switch setting is in agreement with
the kind of type bar (48 or 63) to be used.

Install the proper continuous form paper.

If the proper paper is already installed, follow the appropriate elements
of this procedure.

Set the PRINTER ON-LINE switch,

Depress the PRINTER CLEAR switch.

4.2.3 CARD READER

With the input magazine empty of cards, the following procedure is followed.

1)

2)

3)

4)

3)

Set the READER ON-LINE switch.

Press the READER FEED switch to clear the ready station of any card
that may have remained from a previous run.

Place the program cards for the run in the input magazine.

The first reader data cards can be placed on top of the program cards
if the capacity of the magazine will permit. :

Press the READER CLEAR switch.

Press the READER FEED once to introduce the first program card into the
ready station.

4.2.4 CARD PUNCH

With the input magazine empty the following procedure is followed.

1)

Set the PUNCH ON-LINE switch.

I1-G-27

CHANGE 2

2)

3)

NOTE:

4)

NOTE:

Press the PUNCH FEED twice to clear the wait and ready stations of any
cards that may have remained from a previous run,

The red PUNCH Abnormal indicator will light following each of these
FEED switch depressions. In each case, press the PUNCH CLEAR switch.

Place the initial supply of cards in the input magazine.

If card reading is to be performed, a blank card is placed before the
first card to be read.

Press the PUNCH FEED twice to feed cards to the wait and ready stations.
The PUNCH CLEAR is pressed between the two depressions of the FEED switch
to clear the PUNCH Abnormal indicator.

If the punch is left loaded with cards when the system operating
power is turned off, feed at least one card after turning the power
on. A card that has been left in the wait station can be mispunched
when operation is resumed.

4.3 PROGRAM LOADING

With the desired peripheral units in a ready condition, the following procedure
is followed to load the program.

1)

2)

3)
4)

5)

6)

Set the device address in the DATA ENTRY switches. (Standard reader
device address is 0000 0001).

Depress the CLEAR (Processor Clear). While holding the CLEAR switch
depressed, the operator makes the lamp test of the indicators on the
control console.
This is the only time that the Processor CLEAR switch need be used
until the run is completed. If it is used at any other time, except
under abnormal conditions, the continuity of the program will be
disturbed. ~

Set the processor in the load mode.

Press the START switch once to cause the reading of the first program
card.

Set the processor in the run mode.

Press the START switch to initiate the reading of the balance of the
program cards.

The reading of the program cards may be interrupted by one or more halt and
proceed instructions. There is a possibility that there may be some action
required of the operator at this time before the program loading is resumed
by again pressing the START switch (See Subsection 4.5).

I11-G-28

CHANGE 2

At the end of program loading, the system can go directly into the run auto-
matically if the input magazine or magazines are already supplied with cards
and unless a halt and proceed instruction intervenes between the program load-
ing of the run.

NEXT INSTRUCTION/HALT DISPLAY indication of "OOEE" (0000 0000 1110 1110) means
the program was loaded correctly. If a start does not occur, press START
to execute the program,

4.4 RUNNING AND STOPPING

4..1.1 MANUAL STOPPING

During operation, the operator can stop the processing at any time by pressing
down the upper portion of the INST switch on the control console; the RUN

indicator will be on, the STOP indicator will turn on.

This is the only proper means of manually stopping the operation. With the
operation stopped in this manner, it is resumed by pressing the START.

4.4.2 AUTOMATIC STOPPING

If the processing stops automatically during the run while the system opera-
ting power remains on, it is usually due to one of the following:

1) A programmed halt. The RUN indicator will be OFF, the STOP indicator
will be ON (See Subsection 4.5).

2) An abnormal stop. The RUN indicator may be either ON or OFF, the STOP
indicator will be ON (See Subsection 4.6).

4.4.3 POWER
If there is no immediate need for the equipment, press the POWER OFF switch.

If the system is not to be used for an extended period of time, such as
overnight, press the POWER OFF switch. When the POWER indicator turns off,
throw the main circuit breaker to OFF.

4.5 PROGRAMMED HALTING

During the loading of a program or during the running of data, the operation
may stop automatically as the result of a halt and proceed instruction includ-
ed in the program. At that time, a code related to the halt will be displayed
on the NEXT INSTRUCTION/HALT DISPLAY indicators.

A programmed halt calls for some action to be taken by the operator to make
the run proceed. Until the operator is fully acquainted with the programs,
the reason for a halt and the action to be taken are [{urnished by a run guide.

After performing the action required, the operation is usually resumed simply
by pressing the START switch.

I11-G-29

CHANGE 2

1.6

If at

ABNORMAL STOPPING

the start of a run, the operation cannot get under way or, during a run,

the operation stops automatically for some reason other than a halt and pro-
ceed instruction, the reason for the abnormal stop is indicated on the control
console.

4.0.1

ABNORMAL STOP INDICATIONS

Two types of abnormal stop indications are provided:

1)

NOTE:

NEXT INSTRUCTION/HALT DISPLAY - These indicators are used to display the
nature of an abnormal stop in code form. These codes are generated to
be displayed when required by various routines (software) such as the
Report Program Generator (RPG) and the Input Output Control System
(10CS).

DISPLAY SELECT - The source of the abnormal stop indications displayed
here is directly from the equipment (hardware).

It is quite possible for two or more abnormal conditions to occur at the
same time resulting in the display of a peculiar code in the NEXT
TNSTRUCTION/HALT DISPLAY. This would be a display of the combination
of the codes, for example:

Code (6304) - HALT DISPLAY (0110 0011 0000 0100)
Code (6320) - HALT DISPLAY (0110 0011 0010 0000)
Code (6340) - HALT DISPLAY (0110 0011 0100 0000)

Combincd Display 0110 0011 0110 0100

The 1-bit indications in the right-hand groups can give the clue tc the
individual abnormal indications. Use of the DISPLAY SELECT to analyze
the abnormalties may also be helpful at this time.

In addition to these two types of indications, the operator should be aware
of the functioning of the following.

1)

r))

3)

The green POWER indicator to show that main power is being supplied to
the system.

The green and red RUN and STOP indicators to show that the system is
running or how it was stopped.

The read abnormal indicators: PRINTER, READER, PUNCH, PROC ABN (Processor

Abnormal), and TEST MODE to show whether the related element of the sys-
tem is functional.

IT-G-30

CHANGE 2

4.6.2 ABNORMAL CONDITIONS

The following subsection is a listing of the various abnormal conditions which
includes:

1)

2)

3)

4)

5)

Description of the abnormal condition.

The software code applied to the condition, For the peripheral units,
the first two characters signify the particular unit as follows:

61 (0110 0001) - Card Reader

62 (0110 0010) - Card Punch

63 (0110 0011) - Printer
The indications displayed by both the NEXT INSTRUCTION/HALT DISPLAY and
the DISPLAY SELECT. Some abnormal conditions are signalled by one type
and not the other.
The reason for the abnormal condition.

The action to be taken to resume operation.

4.6.2.1 PRINTER

Description - Out-of-forms

Code - 6301

Indications - HALT DISPLAY (0110 0011 0000 0001)

DISPLAY SELECT -- I/0 A - OP

Reason - The forms supply is either exhausted or torn.

Action - Install a new supply of forms.

Press the PRINTER CLEAR.
Press the START.

Description - Form Overflow Set

Code - 6302

Indications - HALT DISPLAY (0110 0011 0000 0010)

DISPLAY SELECT -- I/0 A - DEV

Reason - This is not an error condition. The form overflow code 1 (001) has

been sensed in the form control tape and, before the form overflow
operation is completed, some abnormal condition, usually Out-of-Forms,
takes place. Thus, this HALT DISPLAY will appear in conjunction with
the display of the abnormal condition.

I11-G-31

CHANGE 2

Action - When the abnormal condition causing the stop is corrected, the
operation is resumed according to the nature of the abnormal condition.

Description - Interrupt Pending

Code - 6304

Indications - HALT DISPLAY (0110 0011 0000 0100)
DISPLAY SELECT -- None

Reason - A program interrupt related to the printer has been set pending action
by the program. This is not an error condition. Some abnormal
condition has occurred at this time to cause the operation to stop.
Thus, this HALT DISPLAY will appear in conjunction with the display
of the abnormal condition.

Action - When the abnormal condition causing the stop is corrected and opera-
tion resumed, the interrupt should be satisfied quickly by the pro-
gram without further operator intervention.

Description - Wrong Character Font Switch Setting
Code - 6308

Indications - HALT DISPLAY (0110 0011 0000 1000)
DISPLAY SELECT -- I/0 A - OP

Reason - The setting of the Character Font switch does not agree with the
kind of type bar installed.

Action - Correct the Character Font switch setting or install the proper bar.
Because this indication occurs at the time of the first printing
operation, it may be necessary to restart the run.

Description - Memory Overload
Code - 6320

Indications - HALT DISPLAY (0110 0011 0010 0000)
DISPLAY SELECT -- I/0 A - MEM

Reason - At the time the printer is ready to print a line, the data for that
line has been entered into the print storage area of memory but the

printer has not obtained sufficient access time to perform the oper-
ation.

Action - This should occur very rarely with proper programming. If it does:
Daencoe +ha DDTNTED MTIDA
LITOD LITC LIV INL LY Ukdunil,

Press the START.

II-G6-32

CHANGE 2

Description - Paper Runaway
Code - 6340

Indications - HALT DISPLAY (0110 0011 0100 0000)
DISPLAY SELECT -- I/0 A - DEV

Reason - This can include:
At the start of a run when the HOME switch is pressed, the tape may
not be perforated with the home position code.
During the run, the program may have called for a skip code not per-
forated in the tape.
The form control tape lamp may have burned out.

Action - Correct the cause of the abnormal eonditign in either the tape or the
program. Install a new lamp if necessary. Reposition the form to
the terminal line related to the skip code causing the runaway.

Press the PRINTER CLEAR.
Press the START.

Description - Not Ready
Code - 6380

Indications - HALT DISPLAY (0110 0011 1000 000Q)
DISPLAY SELECT -~ I/0 A - ABN

Reason - The printer is not ready for operation, This can include:
The shield at the left end of the type bar path is open.
The cover over the right end of the type bar path is open.
The internal power to the printer may be off.

Action - Correct the abnormal condition.
Press the PRINTER CLEAR.
Press the START.

Description - Off-Line

Indications - DISPLAY SELECT -- A/0 A -- OP

Reason - The program has called for the use of the printer while the PRINTER
switch is set OFF-LINE,

Action - Set the PRINTER ON-LINE,
Press the PRINTER CLEAR.
Press the START.

Description - Control or Data Parity Error

Indication - DISPLAY SELECT -- I/0 A - MEM

11-G-33

CHANGE 2

Reason - A parity error has occurred in either a control byte governing the
operation of the printer or in a data byte.

Action - Consult the supervisor. It will first be necessary to determine if
the parity error was in a control or a data byte. It will also be
necessary to determine whether this failure is only momentary or
requires field engineering service.

4.6.2.2 CARD READER
Description - Off-Line
Code - 6100

Indications - HALT DISPLAY (0110 0001 0000 0000)
DISPLAY SELECT -- None

Reason - The program has called for the use of the reader while the READER
switch is set OFF-LINE,

Action - Set the READER ON-LINE.
Press the READER CLEAR.
Press the START.

Description - Interrupt Pending
Code - 6104

Indications - HALT DISPLAY (0110 0001 0000 0100)
DISPLAY SELECT -- None

Reasons - A program interrupt related to the reader has been set pending
action by the program. This is not an error condition. Some abnormal
condition has occurred to cause the operation to stop. Thus, this
HALT DISPLAY will appear in conjunction with the display of the ab-

normal condition,

Action - When the abnormal condition causing the stop is corrected and oper-
ation resumed, the interrupt should be satisfied quickly by the pro-
gram without further operator intervention.

Description - Empty Magazine or Full Stacker

Code - 6140

Indications - HALT DISPLAY (0110 0001 0100 0000)
DISPLAY SELECT -- I/0 B - OP

Reason - This can include:

The input magazine is empty.
The output stacker is full.

I1-G-34

CHANGE 2

Action - If the magazine is empty, refill it., If the stacker is full, empty it.

Press the READER CLEAR.
Press the START.

Description - Magazine Jam or Interlock Open

Code - 6140

Indications - HALT DISPLAY (0110 0001 0100 0000)

Reason -

Action -

DISPLAY SELECT -- I/0 B - ABN

This can include:

A card in the magazine has jammed or otherwise failed to feed to the
ready station.

The top cover of the reader is open or the internal power to the
reader is shut off,

If a card has jammed in the magazine; remove the cards, examine
the card at the bottom of the stack, repair er remake it if ncooizary,
and return it to its position at the bottom of the stack.

Open the top cover to be sure that there is no card in the re=dy sta-
tion. If there is, be sure that the card is not damaged. A damaged
card here should be repaired or remade and returned to its position at
the bottom of the stack.

Place the stack of cards in the magazine.
Press the READER CLEAR.

Press the READER FEED.,

Press the START.

If the top cover is open, close it.

Press the READER CLEAR.,
Press the START.

If there is no card jam and the top cover is closed, the internal power
to the reader may be off. Consult the supervisor.

Description - Read Station or Card Stacker Jam

Code -~ 6180

Indications - HALT DISPLAY (0110 0001 1000 0000)

Reason -

DISPLAY SELECT -- I/0 B - DEV
This can inclinde:

Failure of a card to be fed properly to or through the read :iation.
Failure of a card to be fed properly to the card s.acker.

11-G-35

CHANGE 2

Action - If a card has jammed at the read station, clear the jam and repair
or remake the card. Remove the card from the ready station. Take
the cards from the magazine, place the two cards removed from inside
the reader in their proper sequence at the bottom of the stack.

Place the stack of cards in the magazine.
Press the READER CLEAR.

Press READER FEED.

Press the START.

If a card has jammed in the card transport, clear the jam and repair
or remake the card. Place that card in its proper sequence at the
rear of the stacker.

Press the READER CLEAR.
Press the START.

If there is no card jam, the last card fed from the ready station and
now in the card stacker may not have been read. This can indicate
a failure in the reading mechanism. Consult the supervisor.
Such a reading failure may be momentary or may require field engineering
service. After clearing all cards from the reader, make a second
attempt at reading that card in order to determine if the failure was
only mementary.

Description - Control Parity Error

Indication - DISPLAY SELECT -- I/0 B - MEM

Reason - A parity error has occurred in a control byte governing the operation
of the card reader.

Action - Consult the supervisor. It will be necessary to determine if this
failure is only momentary or requires field engineering service.

4.6.2.3 CARD PUNCH
Description - Off-Line
Code - 6200

Indications - HALT DISPLAY (0110 0010 0000 0000)
DISPLAY SELECT -- I/0 C - OP

Reason - The program has called for the use of the punch while the PUNCH switch
is set OFF-LINE.

Action - Set the PUNCH ON-LINE.

Press the PUNCH CLEAR.
Press the START.

I1I-G-36

CHANGE 2

Description - Empty Magazine or Full Stacker
Code - 6202

Indications - HALT DISPLAY (0110 0010 0000 0010)
DISPLAY SELECT -- I/0 C - OP

Reason - This can include:
The input magazine is empty.
A stacker is full.

Action - If the magazine is empty, refill it. If a stacker is full, empty it.
Press the PUNCH CLEAR.
Press the START.

Description - Interrupt Pending
Code - 6204

Indications - HALT DISPLAY (0110 0010 0000 0100)
DISPLAY SELECT -- None

Reason - A program interrupt related to the punch has been set pending action
by the program. This is not an error condition. Some abnormal
condition has occurred to cause the operation to stop., Thus, this
HALT DISPLAY will appear in conjunction with the display of the
abnormal condition.

Action - When the abnormal condition causing the stop is corrected and operation
resumed, the interrupt should be satisfied quickly by the program
without further operator intervention.

Description - Punch Check Error

Code - 6220

Indications - HALT DISPLAY (0110 0010 0010 0000)
PROGRAM SELECT -- I/0 C - DEV

Reason - The last card fed to the error stacker has not passed the punch check.

Action - Because the setup for the last card punched (error card) is still
available, another card punched from that same setup can be obtained
by pressing the PUNCH CLEAR and the START., This card will also be
subject to the punch check.

The punching may pass the check on the second attempt. If it does,
the run will continue.

I11-6-37

CHANGE 2

If another punch check error occurs, it might be advisable to examine
the contents of the punch storage area if the punching error is

not immediately apparent. Consult the supervisor. There is the
possibility of failure in the punching mechanism requiring field
engineering service.

Description - Magazine or Card Transport Jam, Interlock Open

Code - 6260

Indications - HALT DISPLAY (0110 0010 1000 0000)

Reason -

Action -

DISPLAY SELECT -- I/0 C - ABN

This can include:

A card has failed to feed from the magazine to the ready station usu-
ally because of a jam in the throat of the magazine.

A card has failed to feed from the ready station to the wait station
usually because of a jam at the read station.

A card has failed to feed properly through the punch station or to the
card stackers.

The top-front cover of the punch is open or the internal power to the
punch is shut off.

When card reading is involved in the punch operation, it is best
to have the advice of the supervisor when handling card jams. The
proper procedure may depend upon the nature of the program.

When the application involves punching only into blank cards, the fol-
lowing is suggested. It is based on the premise that, unless all of

a card has passed into the stacker area beyond the punch station, the
punching setup for that card remains.

Thus, recovery from a jam in the magazine, ready station, read station,
wait station, or punch station can be made by using this procedure.

Remove the blank cards from the magazine. Discard any damaged cards
at the bottom of the stack.

Clear all cards from the card transport; damaged or undamaged.
Place a supply of cards in the magazine.

Press the PUNCH CLEAR and then the PUNCH FEED to advance the first
card to the ready station.

Again press the PUNCH CLEAR and the PUNCH FEED to advance the first
card to the wait station.

Press the START.

A jammed card in a card stacker is remade and placed in its proper
sequence in the file of punched cards.

11-G-38

CHANGE 2

Description - Control or Data Parity Error
Indication - DISPLAY SELECT -- I/0 C MEM

Reason - A parity error has occurred in either a control byte governing the
operation of the punch or in a data byte.

Action - Consult the supervisor., It will be necessary to determine if the
parity error was in a control or data byte. It will also be nec-
essary to determine whether this failure is only momentary or re-
quires field engineering service.

4.6.2.4 PROCESSOR

Description - General Purpose Channel Error

Indication - DISPLAY SELECT -- PROC A - CHAN

Reason - An abnormal condition exists in a peripheral unit connected to the
processor through the general purpose channel.

Action - Consult the supervisor to locate the source of the error.

Description - Address Error

Indication - DISPLAY SELECT -- PROC A - ADD

Reason - An attempt has been made to enter a restricted address location or
to address a location beyond the capacity of the memory of the system
being used.

Action - Consult the supervisor to locate the source of the error.

Description - Parity Error or Divide Error (Hardware)

Indication - DISPLAY SELECT -- PROC A - MEM

Reason - A parity error has occurred in the processor or, if the system is
equipped with the optional multiply, divide, and edit feature, an

error has occurred while performing division.

Action - Consult the supervisor to determine the nature of the error and
whether it is momentary or requires field engineering service.

1T-G-39

SECTION III. ASSEMBLY SYSTEMS

The TRIM family consists of three operational assemblers, The user can select
the assembler which best fits his equipment configuration, thus getting the
maximum use of the computer,

1. TRIMI

TRIM I is a simple assembler which operates with a minimum of equipment, re-
quiring only a computer with a paper tape reader-punch unit, The assembler
translates monocode (one-to-one) mnemonic operations into machine code instruc-
tions with appropriate address allocation.

In operation, TRIM I makes two passes on the source program tapes. The first
pass stores the labels from the source program to allow forward references.
Those labels and indicators giving the relative position in the program are
stored and retained for the second pass. The second pass makes the actual
assembly of machine instructions and allocates the addresses. The source
program size is limited only by the number of labels used. TRIM I requires

a minimum of 400010 words of core memory.

2. TRIM II

TRIM II is an assembler which operates on a computer with a paper tape reader-
punch unit and a console typewriter. In addition to the monocode (one-to-one)
mnemonics of TRIM I, it also accepts polycode (one-to-many) mnemonic operations
in the source program., The source language also has debugging aids which

cause dumps of registers and memory contents wherever desired by the programmer.
The assembler can be instructed to ignore debugging operations if desired. TRIM
IT requires a minimum of 8000;n words of core memory.

3. TRIM III

TRIM IIT is an assembler which operates on a computer with a magnetic tape unit,
paper tape reader-punch unit, a console typewriter, a card processor, and a high
speed printer, :

This assember has a source language librarian for aiding the programmer in
selecting subroutines for incorporation into the program during the assembly
process. The programmer uses call operatioms in his source program to implement
retrieval from the source library.

The source programming language includes the operations of TRIM I and TRIM II,
Operations which aid debugging in this language cause generations that present
diagnostic information to the programmer during a run, This works with the
TRIM debugging package (DEBUG) discussed later., In addition TRIM III may be
controlled via control operations.

In operation, TRIM III makes only one pass on the source program input. Sub-
routines are retrieved from the magnetic tape source library and added to the
end of the soyrce program. Assembled programs can then be written on magnetic
tape, cards, or paper tape. Diagnostic errors are typed on the console type-

III-1

writer. These features cut TRIM III assembly time to a minimum,

The assembler possesses source language correction capability in conjunction
with an assembly run,

TRIM III requires a minimum of 16000,y words of core memory.

III1-2

SECTION III-A., TRIM I ASSEMBLY SYSTEM

1. BASIC INFORMATION

TRIM 1 is a simple assembly system which converts a source program tape written
with symbolic addressing into an object program tape with absolute addressing
suitable for loading into the computers via the utility packages.

2. SYMBOLIC ADDRESSING
2.1 LABELS

In an absolute-addressed program every word is assigned an absolute address
during the coding process, In the TRIM I system only those words which are
referred to by instructions require an address, although the address is symbolic
rather than absolute. The term label is used rather than address since it more
accurately describes the function of the symbolic address. A label may never

be incremented or decremented, Words which are not referred to need not be
labeled. Unlabeled words following one another on the source program tape are
ultimately assigned to consecutive memory addresses. For any given assembly
run each label used must be unique.

2.2 TAGS

Instructions are written with mnemonic or octal notation for the function and/
or subfunction codes. The u or k portion of an instruction word may be either
a constant, an octal notation,or a symbolic notation (alphanumeric) referring

to a constant (either an absolute address or an item of data).

Whenever any instruction refers to a label, the u portion of that instruction
is called a tag. The tag must be identical with the label to which it refers
but may be followed by a + or - and an octal integer to provide for increments
or decrements. Thus an instruction may refer to an unlabeled instruction in

terms of its sequential position preceding or following a labeled instruction.

Symbolic addressing simplifies the task of coding., In addition it permits the

transfer of programs to any region of memory since the symbolic addressed
program is independent of memory locations,

III-A-1

3. INPUT LANGUAGE FORMAT

The programmer uses a uniform set of symbols as separators in all coding (refer
to Table III-A-1).

TABLE III-A-1. TRIM I CODING SYMBOLS

Symbol Coding Significance

—> Delimits the statement. Must always precede
the statement operator. Must precede notes;
omit if notes are not given.

‘/, Signifies the end of an operation. Must
precede header operations. Must precede
end-of-tape double period symbols.

. ' Separates statement components.
+ . Specifies an integer increment to follow,

- Specifies an integer decrement to follow.

.. Specifies end-of tape read-in. Must terminate
every input tape.

The input language as prepared by the programmer consists of a list of opera-
tions which perform the step-by-step processing of a problem. An operation has
the following configuration:

L S N

[label] —_— [statement] —_ [notes]‘}

L - The label is a name that uniquely identifies the operation. It consists
of up to six alphanumeric characters but never starts with O, a number,
or LOK. The first operation of each program or subroutine must have a
label. Otherwise only an operation referred to by a tag in the state-
ment of another operation requires a label. Tags have the same notation
restrictions as labels except that tags may be incremented by + an octal
integer. Each label of an assembly run must be unique. Conversely, any
number of tags may refer to a given label.

S - The statement defines the operation and is always required.

III-A-2

N - Descriptive notes may follow the statement; they are for the pro-
grammer's use and in no way affect the meaning of the operation.
Notes should not exceed 40 characters.

—> The straight arrow is a major separator which delimits the statement.

‘,1 The curved arrow designates the end of each operation and signals the
start of the next one. It must precede the first operation of any
program.

The operation statement may be in one of the following formats:

3.1 FORMAT A
W Vo
— [Operator] . [operand] —
W - The operator is the f or fm portion of the operation statement and is

the mnemonic representation of the desired function code of the com-
puter instruction repertoire.

Vo - Represents the u or k portion of the statement and may be a tag, a tag
+ an integer, or an integer only. Integers must be in octal repre-
sentation., Incrementing or decrementing of integers is not permitted.

If W is absent, TRIM I generates zeros for the operand without any
error indication.

Examples:
——DENThL'CA?;/
—> STRADRCAT ti/

—+»CMAL" CAT=:1/

—4>ENTBK°%Z)

—» ENTALK* 7776 —» Minus 1 to AE/

—» STOP+DOG —» DOG defined by an EQUALS op:/
—q-SKPOIN:I/ Results in 502207

—4»0?%2/ Results in 506500

—» JPeLOK-10 —» LOK signifies THIS address
‘—->0UT06 —> Output transfer channel‘bj
— 0eCHEESE —» Buffer terminal addres‘s/

~

III-A-3

—— 0eCHEESE —» Buffer initial address

—.ENTAE/ Results in 12000‘0/
—DJP:/ Results in 340000
3.2 FORMAT B

"TRIM I also accepts programs coded with absolute function codes and absolute or
symbolic addressing. Normal instructions are represented by a 2-digit function
code followed by a point separator and the desired u or mk. However, absolute
instructions may also be represented by six consecutive digits without a point

separator.
Examples:
— 12033505 —»
— 63*CAT+6
— 50-130;ﬁi:v
— 506200 —»
— 3506200 —»

3.3 FORMAT C

Constants may be represented in a number of ways.

—s 7 —> Results in
— 70 —» Results in
—_— 77— Results in
— 7700 —» Results in
— 777 —> Results in
— 77070 —» Results in
— 7777 —» IllegaI:/
— 777 —» Results in
— 123456 —» Results in

000002/
700002/
0000 71/
770000
</
000771/
0770 72/

000777+
</
123456
</

*Whenever there is an expressed value following the point separator, only one
or two digits are permitted in the operator position.

III-A-4

4. SPECIAL OPERATORS

Each program to be assembled by TRIM 1 requires an initial header operation
for identification purposes. A header operation consists of the program name
in the L coding position, a header operator in the W coding position, and two
identifying operands, Vg and Vi, in which the programmer specifies his name
or initials and the date of program preparation respectively.

L W Vg V1 N
</ POKER —» PROGeSMITHeJAN6S —

A carriage return must always precede a header operation.

In addition to the special PROG header operator, TRIM I provides for five
additional special operators useful to the programmer.

1) The SETADR operation informs TRIM I that the next instruction is to
be assigned to the address specified by the V operand. Addressing will
follow sequentially until interrupted by a subsequent SETADR operation,

L W v N

[optional] — SETADR [absolute address —_
label in octal

2) The REMARK operation is for the programmer's use to amplify normal
explanatory notes and in no way affects the generated programs. The
operation may not exceed one line in length,

L W V
[Optional] —» REMARK o desired statement up to
label one line in length ‘)

3) The EQUALS operation permits the programmer to assign absolute values
to symbolic tags in his program which do not have corresponding labels.
The EQUALS operation may never be used like a SETADR operation, but per-
tains only to constants or addresses outside the program, such as fixed
memory locations, key settings, channel designations, or references to
addresses of program labels other than those of the program currently
being assembled.

L W vV N
LABEL — EQUALS o [absolute value] —_
in octal

ITI-A-5

4)

5)

Examples:
CAT — EQUALS ¢ 4 —»
DOG — EQUALS ¢ 36 —»

CON —» EQUALS ¢ 7776 —»

Examples of use of the above:
~— STOP « CA’I“/

~— LSHAL e CAT

(G

—_— OUT"CAE/'
—— ENTAL ¢ DOG
——# STRADR ¢ DO_‘G/
—— ENTALK ¢ C92/
——» ENTBK o C?ﬁ/

The DBLSET operation frees the programmer from the responsibility for
insuring that the Y of a double add or subtract instruction be located
at an even address. The DBLSET operation is normally followed by a Y
constant to which it refers. TRIM I examines the address to which the
constant (or instruction) would normally be assigned., If the address

is odd, a word of zeros is first generated to insure that the constant
(or instruction) will be assigned to an even address. If the address is
even, no generation results,

L W N
optional — DBLSET e
label

The RESERV operation causes the desired number of sequential words to be
reserved within a program, The operation generates as many zero words as
specified by V. The V operand may never be zero.

L W Y N

label be reserved in

[Optional] — RESERV J no, of words to] —»
octal

ITII-A-6

5. THE LOK TAG

If the programmer wishes to reference unlabeled instructions in his program,
he may do so in terms of a specific instruction by means of the LOK tag plus
or minus an octal value. LOK always refers to the instruction in which it
appears. For example if the instruction JP-LOK-3 appears at address 04503,
the resulting generation will be 34 4500. Thus, the instruction falling at
address 04500 need not have been labeled. No valid program label may begin
with the letters LOK. Reasonable care should be taken in the use of the LOK
tag since corrections to the original program may affect the LOK references.

6. INPUT TAPE FORMAT

TRIM I is available in two versions; one version accepts a source program pre-
pared in field data code; the other version accepts a source program prepared
in ASCII code (Refer to Appendix A, Tables A-1, A-2, and A-3).

The term source code refers to the code in which the input tapes are prepared.

Input to TRIM I is via punched paper tape. The source program tape must begin
with a carriage return and terminate with a carriage return and two periods.

7. TRIM I OUTPUTS

TRIM I provides four optional punched paper tape outputs of the assembled pro-
gram., All the outputs are loadable via the utility packages.

The available outputs are:

No. 2 - Absolute assembled program, sequential line identifier, source
program, and assembly error alarms when applicable. This is a
side-by-side listing in source code preceded by a program summary
consisting of the number of memory locations used and inclusive
addresses.

No. 3 - Absolute assembled program in source code, consisting of carriage
return, 88, carriage return, addresses and instructions, a carriage
return, double period, and checksum.

No. 4 - Absolute assembled program in bioctal format, consisting of a 76
code, inclusive area addresses followed by the instructions only,
with a checksum.

No. 5 - Relocatable assembled program in bioctal format starts with a 75
code followed by the assembled program relative to base 00000, and
terminates with a checksum, The output tape may be loaded starting
at any desired memory location. One restriction is placed on No. 5
outputs; that is, if the program contains double-length add or
subtract instructions and was assembled at an even address, it must

always be loaded at an even address. If the same program was

assembled at an odd address, it must always be loaded at an odd
address.

8. GROUND RULES

1) No TRIM I label may exceed six characters. The label must not begin
with a number, the letter O, or LOK,

2) Each input program tape prepared for the TRIM I assembler must begin
with a carriage return and terminate with a carriage return and two
periods.

3) Each break in sequence of addressing constitutes a program area. A
total of 24 such areas is permitted.

4) The SETADR operation automatically creates a new program area.
5) A RESERV operation of zero words is illegal.

6) The maximum size program which TRIM I can assemble is limited only by
the number of program labels including the labels of EQUALS opera-
tions. The maximum number of labels allowed is approximately
110010 for each 800019 words of memory.

7) All numbers must be octal integers. Decimal numbers will cause an
error,

8) TRIM I provides a limited amount of error detection and console dis-
play. All other errors will be indicated by multiples of 100
following the notes of the instruction concerned on the No. 2 output,
Thus -100 indicates one error, 200 indicates two errors in this instruc-
tion, and so forth. This error display mechanism assumes that no
on-line typewriter is available,

9) Keyboard correction methods for TRIM assembler: Typing-error correc-
tion procedures have been incorporated in all versions of the TRIM I,
TRIM II, and TRIM III assemblers, and the TRIM corrector for deleting
immediate keyboard errors that might be made in the preparation of
input tapes for these same programs on the I/0 console,

Since it is impossible to back up the paper tape in preparation and punch
code-delete codes over the erroneous frame or frames, any typing errors
must be identified by a special code or codes following the erroneous
data. On the UNIVAC ® 1232 1/0 console, the backspace code of the key-
board is designated as a reject code. The backspace is identified by
the upward pointing arrow (4) below the stop code (®) on the same key
on the left hand side of the keyboard. In lower case, this key punghes

d 77 and types the same arrow (4) on the printer., On the UNIVAC

1532 1/0 console the RUB OUT key is used to generate a reject code.

This key punches a 177 code on tape. No symbol is printed on paper.

III-A-8

- One reject code - a single reject code (77 or 177) anywhere on an input tape
to the TRIM assemblers or corrector informs that routine that the legal
code that immediately preceded the 77 or 177 should be rejected.
Example:
oer Y vtE? AL/t rcact T (carriage return - line feed)

This statement appearing on the console printer and punched as one
of the statements on a program tape will be interpreted as:

O ENTAL'CAT (carriage return)
by that assembler or corrector.

Three consecutive reject codes - three consecutive rejects (77-77-77 or
177-177-177) on an assembler or corrector input tape inform that routine

that the entire statement being formed should be rejected, and that pro-

cessing of a new statement should not begin until a carriage return is
found.

Example 1:
O ENTAL'CAT (carriage return - line feed)

MoOoSE O STRAL'D ? t ! JP'TIGER (carriage return - line feed)
O ADDALK'63 (carriage return - line feed)

MICE O STRAL'DOG (carriage return - line feed)

These statements appearing in a program to be assembled by a TRIM
assembler will be interpreted by that assembler as:

0O ENTAL'CAT (carriage return)
O ADDALK'63 (carriage return)
MICE O STRAL'DOG (carriage return)
Example 2:
143'1 % 2 (carriage return - line feed)
GoOFOSLSUB'JUNK t ¢ ¢ (carriage return - line feed)

RIGHT O JK * P'HONI } OR (carriage return - line feed)

III-A-9

These statements on a correction tape will be interpreted by the TRIM
corrector as:

143'2 (carriage return)

RIGHT JP'HONOR (carriage return)

NOTE: All examples are for correcting inputs to the field data version
on the 1232 I/0 Console.

9. LOADING AND OPERATING PROCEDURES
Prior to loading the TRIM I assembler the computer and paper tape reader-punch
unit must be placed in the operational state with all switches in the normal
operating position. ' Since the assembler is loaded by a utility package, the
utility package must be already loaded into memory at addresses which will not
be occupied by the assembler,
9.1 LOADING THE ASSEMBLER

1) Master clear the computer and the reader-punch unit,

2) Mount the TRIM I assembler tape in the reader.

3) Set the P register to the utility package starting address for
paper tape load.

4) Start the computer.
9.2 USING THE ASSEMBLER
1) Pass i.
a) Master clear the computer and reader-punch unit,
b) Set the P register to 1400.
c) Set PROGRAM SKIP keys 1 and 2,

d) If no error displays are desired during assembly, set PROGRAM SKIP
key 3.

e) Mount a source program tape in the reader.
f) Start the computer,

g) The computer will stop after the tape has been read. Repeat steps
" e) and f) for each source program tape.

III-A-10

2) Pass 2,
a) Release PROGRAM SKIP key 1.

b) Set the AL register to the number of the desired output (2, 3, 4, or 5;
refer to paragraph 7, TRIM I OUTPUTS).

c) Mount a source program tape in the reader (program tapes must be
loaded in exactly the same order as for pass 1).

d) Start the computer,

e) The assembler will assemble the input tape and punch it. Repeat
steps c¢) and d) for each source program tape.

f) Release PROGRAM SKIP key 2.

g) Start the computer. The assembler will finalize the output tape with
a checksum and trailer.

h) Set PROGRAM SKIP key 2 and start with step b) to obtain additional
outputs,

9.3 ERROR DETECTION AND DISPLAY

TRIM I contains limited error detection capabilities. The majority of pro-
grammer errors can be handled internally. However, since PROGRAM SKIP key
settings are essential to the assembly process, assembly will always stop when
these keys are improperly set. These error stops are indicated by a 1 or a 2
in the AL register.

1) (AL) =1 Set PROGRAM SKIP key 1.

2) (AL) =2 Set PROGRAM SKIP key 2.
Set the appropriate PROGRAM SKIP key and start the computer to continue assembly.
The programmer has the option of requesting that the assembler stop and display

pertinent information in the A registers for basic programmer errors or request-
ing that the assembler handle these errors internally, thereby forcing an assembly.

If PROGRAM SKIP key 3 is set, the assembler will force the assembly. If PROGRAM
SKIP key 3 is not set, the assembler will stop for the following errors:

1) (AL) = 3; (AU) = sequential line identifier. This error stop occurs
during pass 1 and means that no starting address has been given for the
program via the SETADR operation. To correct:

a) Clear AL.

b) Set AL(14.0) to the desired address.

III-A-11

c) Start the computer,

d) If the stop and display option has not been selected, assembly
will not stop and TRIM I will arbitrarily assign the program to
the base address 01200.

2) (AL) = 4; (AU) = sequential line identifier. This error stop occurs
during pass 1 and means that the source program contains too many
program segments (24 are permitted). This error is non-recoverable.
Assembly may be continued by starting the computer after each such
stop; however, all addressing will be sequential from the point of
overflow. The effect of this error is the same whether or not the
stop option is selected. ‘

3) (AL) = 5; (AU) = sequential line identifier. This error stop occurs
during pass 2 and indicates an unallocated tag. The recovery pro-
cedure is:

a) Start the computer., The computer will stop again with the
unallocated tag displayed in AU and AL in TRIM internal code
(see Appendix A, Table A-4). The codes are left justified in
AU with overflow to AL,

b) Start the computer. The computer will stop with AL cleared.
c) Set AL(y4.0) to the desired address*
d) Start the computer,

4) (AL) = 6; (AU) = sequential line identifier., This error stop may
occur during pass 1 or pass 2 and indicates that the source program
contains too many labels. The error is non-recoverable. Assembly
may be continued by starting the computer, but all subsequent
unallocated labels and tags will be assigned to address 07777,

The effect of this error is the same whether or not the stop option
is selected.

5) (AL) = 7. This error stop occurs during pass 2 and indicates that no
output number or an illegal output number was selected. The recovery
procedure is:

a) Start the computer. The computer will stop again with AL cleared.

b) Enter the desired output number in bits 2-0 of AL. .

*If the unallocated tag refers to an instruction within the program, set
ALy7 to 1. If the tag is a constant or refers to a fixed address outside
the program, ALj7 should be zero.

III-A-12

6)

c) Start the computer.

(AL) = 10. This error stop indicates an illegal character preceding an
operator. Reposition the tape and start over. If error persists the
source program tape should be examined and corrected.

ITI1-A-13

SECTION III-B., TRIM II ASSEMBLY SYSTEM

1. INTRODUCTION

The TRIM II assembiy system provides programming assistance through the use
of its symbolic shorthand. This simplified system converts a source program
written with symbolic addressing into an object program with absolute or
relocatable addressing. TRIM II produces the assembled object program on
punched paper tape suitable for loading into the computer via the utility
packages,

. DESCRIPTION

TRIM II is a 2-pass assembler designed for a minimum equipment configuration of
a computer with at least 8,192 (decimal) words of core memory and an I/0
console containing a paper tape reader, paper tape punch, and console type-
writer. The assembler accepts a source prcgram expressed symbolically,
absolutely, or in combination thereof and converts it into an ordered set of
machine instructions suitable for loading via the utility packages.

The term 2-pass means the source program tapes must be loaded into the computer
*wize. The first suech loading, constituting pass 1, assimilates and stores
information needed for pass 2 (refer to Figure III-B-1). At the completion of
pass 1 the source program tapes must again be loaded, and the desired output
must be selected. Using the information accumulated during pass 1, pass 2
reads, assembles, and punches on paper tape each source program instruction,
statement by statement. This second loading constitutes pass 2 (refer to
Figure I11-B-2). Subsequent outputs are achieved by repeating pass 2.

2.1 SOURCE LANGUAGE

A TRIM source program as prepared by the programmer is composed of a list of
operations which perform the step-by-step processing of a problem., An operation
has the following general format:

[label] —> [statement] — [notes]

</

The general format may be further subdivided into:

[latel] — [opefator] . [operaxg(s)] — [no?es]‘//

I11-B-1

¢-9-1I1

| Executive
rol :

Permanent Temporary
Table 5 > o Area
Mnemonic Storage
Operator Translator- Table
Lo —f Input W Allocator
WS1
Temporary
o] Table 6
Label
Table
Temporary
o Table 6 1
Label
Table
INPUT: a. Reads one item into WSl
b. Adds allocations to Table 6
c. Checks for debug status
TRAN/ALIOC: a. Adds labels to Table 6
b. Performs pseudo generation
c. Forms the area storage table for output 4
EXECUTIVE: a. Monitors key settings
b. Performs initializations
c. Executes secondary subroutines

Figure III-B-1. Block Chart for TRIM II - Pass 1

€-g9-I11

Executive

Control
¥
Permanent, ~ |Temporary
ggemonic Storage 3
eratory
- Tabl 4
Input |{WS1 _Tiblﬁ/ Translator- | |} qq ~—/ Output
Allocator 5 Types
6
11
Temporary
Table 6
Label
EXECUTIVE: a. Monitors key settings
b. Performs initializations
c¢. Executes secondary routines
INPUT: a. Reads one item into WSl
TRAN/ALLOC: a. Performs generation into WS3 one item at a time
b. Adds mnallocated tags to Table 6
OUTPUT: a. Punches one WS3 item at a time in accordance with the numbered output
request (for output 2 also punches the WSl item with the first WS3 item)
b. Output 6 will be produced all at once; and does not require that the

source tape be reloaded as for other outputs

Figure III-B-2. Block Chart for TRIM II - Pass 2

2.1.1 "LABEL

The label identifies this particular statement. A label is not required for
every statement. In an absolute-addressed program every word is assigned an
absolute address during the coding process, The assembling process of the

TRIM II system equates the label to the machine address assigned to the in-
struction generated by the statement. Only those statements which are referred
to by other statements require a label or symbolic address. Where more than
one instruction is generated by a statement, the label refers to the address

of the first instruction generated, The term label is used rather than address
since it more accurately describes the function of the symbolic address. A
label may never be incremented or decremented. The instructions or words
generated from unlabeled statements following one another on the source program

tape are ultimately assigned to consecutive memory addresses. Each label of
an assembly run must be unique.

A label may consist of not more than six alphanumeric characters, but it never
begins with the letter O or a number; it never consists of the letters LOK
alone, The first instruction of each program or subroutine must have a label.

An operand which refers to another operation label is called a tag. The tag
must be identical with the label it refers to but may be followed by a +

octal or decimal integer to facilitate reference to unlabeled operations. When-
ever a decimal integer is used, it must be followed by the letter D. A tag
coincides with the u or k portion of the instruction word. Tags have the same
notation restrictions as labels except they may be incremented. Any number of
tags may refer to a given label.

If the programmer wishes to reference unlabeled instructions in his program, he
may do so in terms of a specific instruction by means of the LOK tag plus or
minus an integer. LOK always refers to the instruction in which it appears.

For example,if the instruction JP<LOK-3 appears as address 04503, the resulting
generation will be 34 4500. Thus the instruction falling at address 04500 need
not have been labeled. No valid program label may consist only of the letters
LOK. Reasonable care should be taken in the use of the LOK tag since corrections
to the original program may affect the LOK references,

2.1.,2 STATEMENT

The statement of an operation is made up of an operator and operand(s). The
statement defines the operation,

2.1.,2.1 OPERATOR

The operator may be a symbolic shorthand or octal notation which identifies
the basic function to be performed. The operator must be present. It may
cause the assembler to generate one machine instruction or a group of machine
instructions. The operator coincides with the function code, f, and/or
subfunction code, m, of the instruction word.

III1-B-4

2.1.2.2 OPERAND(S)

One or a series of operands associated with the basic operator are referred to
as Vg, V1 ... Vn. These may take several forms depending upon the basic oper-
ator, They define, modify, or complete the function.

The operand(s) coincides with the u or k portion of an instruction word and may
be either a constant in octal notation or a symbolic alphanumeric notation
referring to a constant (either an absolute address or an item of data).

2.1.3 NOTES

Descriptive notes may follow the statement; they are for the programmer's use
and in no way affect the instructions generated from the statement. Notes may
not exceed 40 (decimal) characters.

2.1.4 SYMBOLS

The programmer uses a uniform set of .symbols as separators in all coding. These
symbols are defined in Table III-B-1,

TABLE III-B-1. TRIM II CODING SYMBOLS

Symbo1l Coding Significance

— (tab) Major separator delimiting the
statement. Must always precede the
statement operator. Must precede
notes; omitted if notes are not

given,

‘// (CR) Specifies the end of an operation.
Must precede end-of-tape double
period,

, (comma) Separates certain subsets of

statement components,

e {point) Separates statement components,

+ Specifies an integer increment to
follow,

- Specifies an integer decrement to
follow.,

A (delta) Specifies space.

| (vertical line) Special control character.

.. (double periods) Specifies end-of-tape read-in.

Must terminate every input tape.

III-B-5

2.2 HEADER AND DECLARATIVE OPERATIONS

TRIM II recognizes two types of header operations,

L W Vo Vi N
POKER —>ALLOC ¢ JONES e 10 MAY1963 —
POKER — PROG * JONES e 10 MAY1963 —>

2.2.1 ALLOCATION HEADER (ALLOC)

The ALLOC header informs TRIM II that the operations following constitute
assignments of absolute values to labels and/or tags. Any number of ALLOC
tapes may be loaded, but all must be loaded prior to the loading of program
tapes. An allocation tape must always begin with a carriage return, When the
allocations are on a separate tape, the tape must terminate with a carriage
return and two periods. An ALLOC tape has the following format:

L W Vo Vi
ALLOC] . [namé] . [datélr/
assigned value ‘/

<

—>

(e

|

assigned value

1

f_—1l__'—"t—':|_'_‘l’"—_‘
[+M]
o
[¢)
(o]

e e)) -
~—

|

)
assigned value]
]
)

A

assigned value
etc.

1) L - The label of the ALLOC header operation itself is optional,
However, each assignment operation following must have a label.

2) W - The operator of this header operation is always ALLOC, and must be
present, For the subsequent assignment operations, W must be an
absolute numeric value expressed either in octal or decimal. When
expressed decimally, the number must be followed by the letter D;
for example:

CAT — OlOO(l/
DOG —» 5129'/
CHIPS —» 12‘/
CHOPS —» IOEV/
3) V - The V operands of this header operation take the form name and date

as illustrated. These operands are omitted for subsequent assignment
operations,

I11-B-6

2.2.2 PROGRAM HEADER (PROG)

The PROG header informs TRIM II that the operations to follow are program
operations as distinguished from allocation operations. The PROG header must
precede the first statement of a program. The PROG header operation must always
be preceded by a carriage return, A program header has the following format:

L W Vo Vi
program ——»[PROG e [name . date] —»
‘V} [name]] [] []
1) L - The label of the PROG header operation is optional; however, when

present, it is considered to be the name of the program.

2) W - The operator of this header operation is always PROG and must be
present.,

3) V - The V operands of this header operation normally take the form
name and date as illustrated. The operands are optional and
completely flexible in number and length within the maximum line
length.

2.2.3 DEBUG DECLARATIVE
TRIM II accepts the declarative operation:

L | N

[label] —+ DEBUG —+

The DEBUG operator informs TRIM II that generation is to be performed for
debugging operations contained in the source program. If the DEBUG operator is
absent, no generation will occur for such debugging operations. The DEBUG
operation when used must be loaded prior to the first PROG header. It may be
loaded separately or as the last operation on an ALLOC tape; for example:
L W Vo Vi
</ POKER — ALLOC « JONES * 10MAY1963
CHIPS —» 0123%t)

CHOPS —» 124§'/

CHAPS —s 13881)‘/

ITI-B-7

2.3 MONO-OPERATIONS

Mono or one-to-one operations consist of mnemonic function codes (refer to
computer instructions) and symbolic addresses, absolute machine codes, or
constants,

Mono-operation statements may be in one of the following formats.

2.3.1

Vo -

FORMAT A
W Vo

—»[operator] . [operand] —
The operator is the f, or fm portion of the operation statement and is
the mnemonic representation of the desired function code of the computer
instruction repertoire,
Represents the u or k portion of the statement and may be a tag, + an
integer, or an integer only. Integers may be in octal or decimal repre-
sentation. When decimal representation is used, the integer must be
followed by the letter D. Incrementing or decrementing of integers is
not permitted. If Vo is absent, TRIM II generates zeros for the operand
without any error indication,
Examples:
—DENTAL'CAT‘}
—ﬂ»STRADR'CAT+i/
—» CMAL® CAT-BD‘/
—.ENTBKOQBE/
—»ENTALK 7776 —» Minus 1 to 6&/
—» STOP*DOG —» DOG defined by an ALLOC 032/
-4>SKPOIN:1/ Results in 502207
—4>CPAH/ Results in 506200
— JPeLOK~10 —» LOK signifies this address
—» QUTe6 —» Output transfer channel 3/
—» 0+CHEESE+1 —» Buffer terminal éddres:/

I111-B-8

— O e CHEESE —» Buffer initial addres‘sj
— ENTAL'-/ Results in 120000
— JD Results in 340000
2.3.2 FORMAT B
TRIM II also accepts programs coded with absolute function codes and absolute
or symbolic addressing. Normal instructions are represented by a 2-digit func-
tion code followed by a point separator and the desired u or mk operand., How-
ever, absolute instructions may also be represented by six consecutive digits
without a point separator,
Examples:
—» 12 * 3505 —»
—» 63 * CAT+6 —»
—» 50 ¢ 1306 —»
— 50 ¢ 6200 —»
— 506200 —»
2.3.3 FORMAT C

Constants may be represented in a number of ways:

— 7 — Results in 00000;1’/
—s Te (0 —» Results in 700092/

—s 77 —> Results in OOOO?Z/

—> 7T7Te 0 —» Results in 770092/

— 777 —» Results in 00077;7/

— 77070 —» Results in 0770?2/

— 7777 —» IllegaI:/

—> T77e —» Results in OOOT?Zt/
— 123456 —» Results in 1234?3/

*Whenever there is an expressed value following the point separator, only 1 or
2 digits are permitted in the operator position,

I11-B-9

Two special mono-operations are available for the programmer's use: STOP and
SKP. If either of these operators is used without a k operand, TRIM II will

automatically generate an unconditional instruction of 50 56 40 or 50 50 40
respectively,

2.4 POLY-OPERATIONS

Frequently groups of instructions which perform a specific function appear
iteratively in a program. A single poly-operation generates a unique sequence
of instructions designed to perform some such specified function. This is the
one-to-many relationship between instructions herein termed poly-coding; the
parent instruction being termed a poly-operation., TRIM II provides 14 such
poly-operations. In some cases TRIM II generates only a single instruction or,
as in the case of the REMARK operation, no instructions, It is permissible

when coding a routine to intermix mono- and poly-operations in any desired order.

The CLEAR and MOVE poly-operations use the currently active B register, and the
MOVE poly-operation also uses AU in the generated coding., If the programmer
does not wish the data in these registers to be destroyed, he must store and
restore the data around a MOVE or CLEAR operation, The MOVE and CLEAR operations
store and restore the programmer's special register setting.

Since poly-operations may generate more than one machine instruction, the tag
LOK + an integer must not be used in poly-operation coding.

2.4.1 RESERVE OPERATION (RESERV)
L W V0
[label] —» RESERV U] [number of words] —

The RESERV operation causes the desired number of sequential words to be
reserved within a program. The operation generates the number of zero words*
specified by the Vgy operand.

1) L - The label for this operation is optional,

2) W - RESERV must always be present.

3) Vp- Specifies by an octal or decimal integer the number of zero words to
be generated. V(may never be left blank or specified as zero.

*TRIM II output No. 2, used primarily for hard-copy debugging and documentation
reflects only the first generated zero word of each RESERV operation. TRIM II
outputs 3, 4, and 5 contain the requested number of zero words.

H=v

III-B-10

Examples:
Assume CAT = 1000 and DOG = 2000
CAT —> RESERV e 12 —» (Generates zeros at addresses 1000-1011

DOG —» RESERV ¢ 10D —> Generates zeros at addresses 2000-2011

2.4.2 CLEAR OPERATION

L W Vo vy

[label] —+ CLEAR o [number S] . [starting address] —

of word

The CLEAR operation clears to zero those memory addresses specified in the

The label for this operation is optional.
CLEAR must always be present.

Specifies by an octal or decimal integer the number of consecutive
memory locations to clear. Vo may never exceed 4000 octal or 2048D.

A VO of zero is not permitted.

operation.
1) L -
2) W -
3) Vp-
4) V-

Specifies the first address of the area to be cleared. The address
may be expressed as an absolute octal number or as a symbolic tag
plus or minus an octal or decimal integer; that is, CAT-12D or CAT-14.
All the words to be cleared must be wholly contained within one
memory bank.

Examples of CLEAR operations and the absolute coding generated by
the assembler are given below.

Examples:
Assume EXAM1 = 1000, EXAM2 = 1006, and CAT = 10123.

Input Operation Generated Coding

EXAMl —» CLEAR ¢ 70 <+ 7000 —» 36 0067
75 1005
50 7300
41 7000
73 1003
50 7300

ITII-B-11

Input Operation Generated Coding

EXAM2 —» CLEAR ¢ 21D e CAT —» 36 0024
75 1013
50 7311
41 0123
73 1011
50 7300

A symbolic representation of the instructions generated is
given below.

ENTBK * [No. of locations - l]-ﬂ»Set B for No. of locations
STRSR * [OK+4 — Store current SR
ENTSR [Bank No. of Clear area] —> Set SR to Clear area
CLB . Fﬁrst location] —» (Clear word at first location + B
BJP ¢ LOK-1 — Decrement B and repeat loop
ENTSR e O —* Return to current bank when B is zero

2.4.3 MOVE OPERATION

L W Vo Vi Vo

[1abe1]—>MOVE e [number . [from address] . [to address] —
of words

1) L - The label for this operation is optional.
2) W - MOVE must always be present,

3) Vp- Specifies by an octal or decimal integer the number of sequential
words to be moved. VQ may never exceed 4000 octal or 2048D. A Vg
of zero is not permitted.

4) V- Specifies the first address of a block of data to be moved. It may
be expressed as an absolute address in octal or as a symbolic tag plus
or minus an octal or decimal integer. All the words to be moved
must be wholly contained within one blank,

5) Vo- Specifies the first address to which the block of data is to be
moved. It is expressed the same as the V; operand. All the
destination addresses must also be wholly contained within one
bank.

Examples of move operations and the absolute coding generated by the
assembler are listed on the follewing page.

III-B-12

Examplesz
Assume EXAM3 = 1014, EXAM4 = 1024, and CAT = 1056

Input Operation Generated Coding

EXAM3 —> MOVE ¢ 10 e« CAT e+ T7000—» 36 0007
75 1023
50 7300
11 1056
50 7300
47 7000
73 1016
50 7300
EXAM4 —> MOVE =+ 100 e« 1200 e CAT-100 —» 36 0077
75 1033
50 7311
11 2000
50 7310
47 0756
73 1026
50 7300

A symbolic representation of the instructions generated is given below.

ENTBK O[No of locations - 1]—*~Set B for No. of words

STRSR » LOK+6 — Store current SR

ENTSR -[Bank No. of from address]-—v-Set SR to origin bank
ENTAUB e [from address] — Get word at from address + B

ENTSR [Bank No. of to address] —=» Set SR to destination bank
STRAUB e [to address] —> Store word at to address + B

BJP ¢ LOK-4 —> Decrement B and repeat loop

ENTSR ¢ 0 —» Return to current bank when B is zero

III-B-13

2.4.4 -1/0 OPERATIONS

L) VO Vl ; V2 V3
[channel] [AD] ‘number of] [buffer
[label] —> EXFCT | umber | * |mAD * |buffer * |starting| ™™
) B BK words address
[MBK_ L] L J
p— - 1 r— P~
channel] AD number of] buffer
[label] —* BUFIN | number | * |mMAD * |buffer * |starting| ™™
BK words address
| MBK B] 8]
"channel] [AD] [number of| buffer |
Dabel] —* BUFOUT * | number * |{maD * |buffer * starting| "
BK words address
| MBK _ _ _ ! i
1) L - Label for these operations is optional.
2) W - The operator must always be present.
3) Vp- Specifies the channel number expressed as an integer or symbolic tag.
4) V)- Specifies the buffer mode and must be present:
AD - Advance without monitor.
MAD - Advance with monitor.
BK - Back without monitor.
MBK - Back with monitor.
5) Vo- Specifies as an octal or decimal integer the number of buffer words
involved. Maximum of five digits.
6) Vs- Specifies the address in memory at which buffering is to begin.

Vg3 may be expressed absolutely or as a symbolic tag plus or minus an
octal or decimal integer.

ITI-B-14

Examples:
Assume CAT = 1000 and CHAN = 05

[1abeq-—>EXFCT « 7 o AD o 1 e CAT —» Generates 501307
001001
001000

[label]—bBUFIN © 6 o MAD o 10 o CAT — Generates 501106
201007
201000

[label]—bBUFOUT e O ¢BK e 10 e CAT+7 — Generates 501200
400777
401007

[label]—’BUFOUT e 1 '« MBKse 100D e CAT+100D —Generates 501201
601000
601144

[label]-’BUFIN * CHAN ¢ AD ¢ 77 o 25000 — Generates 501105
025076
025000

NOTE: The examples above illustrate the fact that,
for output and external function buffers, the
inclusive buffer limits define a number of words
which is one greater than the actual number of
words to be transferred. These buffers terminate
before transferring the word located at the ter-
minal address.

2.4.5 REMARK OPERATION

L W Vo

[label] —> REMARK ° [desired statement] —

The REMARK operation causes no object program generation. It is simply an aid
to the programmer in expanding normal program notes. REMARK operations may not
exceed one line in length,
2.4.6 DATA OPERATION

L W VO

[label] — DATA - [integer, binary point specification] —

III-B-15

The DATA operation allows the programmer to specify a positive or negative data
integer and its binary point position, The bits are numbered from right to
left 0-17D, The binary point specification must be separated from its asso-
ciated integer by a comma. The absence of a minus sign implies a positive
integer. The label is optional,.

Examples:

[label] — DATA + 24D,9D — Generates 030000

or

[1abe1] — DATA « 30,11 —+ Generates 030000
The binary representation is:

17 16 1514 13 12 11 10 9 8

7 0
[0 O O O 1 1 0 0000

54321
00000O0]

6
0

and
[1abe1] — DATA * 123,4 — Generates 002460

The binary representation is:

17 16 1514 131211 109876543210
[OOO OOOO 1010011000 0]

2e4.7 PUNCH CONTENTS OPERATION (PCHC)

L W Vo

[1abe1]——> PCHC ¢ [information to be punched | —»
and/or typewriter commands

The PCHC operation produces generated coding which, when run on the computer
with the PCHC* subroutine, causes the octal contents of A, AU, AL, B, or any
memory location to be punched on the high-speed paper tape punch, The words
to be punched may be interspersed with the following typewriter control sym-
bols to provide subsequent listing in the desired format.

operand performance
o [CR| o carriage return, line feed
oA o orelsple space

The vertical bars indicate the information enclosed is a special symbol
directing the typewriter. Each CR and SP must begin and end with the vertical
bar, Controls are separated from other operands by point separators.

* See paragraph 3.2 8).

III-B-16

Vo specifies the operands in the order in which they are to be punched. Except
for the typewriter commands, all operands imply their contents are to be punched.

Such operands may be A, AU, AL, active B, a tag or a tag + an absolute value,
or an absolute address.

Examples:

CAT —»PCHC « A s A o 7070 ¢ A e« DOG-11D o IcRl—
~—>PCHC » DOG » A ¢ B o ISPl « AU o ICRI e AL —
—»PCHC * |lcrRl + [crl e TA—>
—»PCHC s DOG+10 + ISPl o cAT —

2.4.8 PUNCH TEXT OPERATION (PCHT)

L W Vo

[label] — PCHT . [text and/or typewriter commands]

The PCHT operation produces coding which, when run on the computer with the
PCHT* subroutine, causes the text and/or typewriter commands in the V operand
position to be punched by the high-speed paper tape punch. The text may be
interspersed with the following typewriter contrel symbols as desired, each
CR and SP must be set off between two vertical bars.

operand performance
ICRI carriage return, line feed
A or ISP| space

NOTE: Point separators are not required within Vy; they will be punched
if present.

Vp is the text to be punched interspersed with typewriter command desired by

the programmer. If the text is too long for one PCHT operation, the programmer
may write successive operations,

Examples:
CAT —> PCHT e PROFIT A AND A LOSS A FOR ISP| —»
—» PCHT =+ JULY A 10, A 1967 ICR| —>

2.4.9 TYPE TEXT OPERATION (TYPT)

L) Vo
[label] —» TYPT o [text and/or typewriter commands]._>

*See paragraph 3.2 8).

III-B-17

The TYPT operation results in generated coding which, when run on the computer
with the TYPT* subroutine, causes the text and/or commands in the Vg operand

position to be typed by the typewriter. The text may be interspersed with the
following typewriter commands:

operand performance
ICRI carriage return, line feed
A or ISPi space (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol direct-
ing the typewriter. Each CR or SP must begin and end with a vertical bar,

Vo is the text to be typed interspersed with typewriter commands. If the text
is too long for one TYPT operation, the programmer may use successive operations
to complete the text,

Examples:

CAT —» TYPT e PROFIT |SP| AND A LOSS A FOR —»
—» TYPT e JULY A 10, A 1967 |CR| —»

NOTE: Point separators are not required within Vg; they will be typed
if present,

2.4,10 TYPE CONTENTS OPERATION (TYPC)
L] Vo

[lahel] —» TYPC L information to be typed and/or | —»
typewriter commands

The TYPC operation results in generated coding which, when run on the computer
with the TYPC* subroutine, causes the octal contents of A, AU, AL, current B,
or any memory location to be typed on the typewriter, The words to be typed
may be interspersed with the following typewriter commands:

operand performance
e |ICR| o carriage return, line feed
¢ Aeor e|SP| e spacé (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol
directing the typewriter. Each CR or SP must begin and end with a vertical bar.

*See paragraph 3.2 8).

I1I-B-18

Vo specifies the operands in the order in which they are to be typed. Except
for the typewriter commands, all operands imply their contents are to be
typed. Such operands may be A, AU, AL, active B, a tag or tag + an absolute
value or an absolute address.
Examples:
CAT—» TYPC ® A e AeAe7070 « A o A *D0G-11D o [CR|] —»

—» TYPC o AUeAe AL |SP| ¢ B o HORSE —»

2.4.11 DOUBLE SET OPERATION (DBLSET)
L W

[1abe1] — DBLSET —»
The DBLSET 6peration insures that the Y of a double add or subtract instruction
is located at an even address. The DBLSET operation is normally followed by a
Y constant. TRIM II examines the address to which the constant (or instruction)
would normally be assigned. If the address is odd, a word of zeros is first
generated to insure that the constant (or instruction) will be assigned to an
even address., If the address is even, no generation results.
2.4.12 SETSR OPERATION

L W Vo

[label] —> SETSR e [alphanumeric tag]—>
The SETSR operation enables the programmer to place responsibility for setting
k of an ENTSR instruction upon TRIM II. Based upon an ALLOC operation for the
assembled address of the referenced tag, TRIM II will generate an ENTSR
instruction (5073 k) with the proper k value for each SETSR operation.

1) L - Label is optional.
2) W - SETSR must be present,

3) Vp- Must be an alphanumeric name corresponding to a program label
or an allocated value. Vp may not be incremented or decremented.

Examples:

Assume CAT is a label at 36421 and DOG is a label at 70460 and COW is
allocated to 01000, then: :

SETSR —» CAT —» Generates 507313

SETSR — DOG —* Generates 507317

SETSR —» COW —& Generates 507310

= " e 1

III-B-19

2.5 DEBUGGING OPERATIONS

TRIM II provides two debugging operations for punching a paper tape output of
either the contents of registers AU, AL, and current B, or the contents of
specified sequential memory locations. These operations are recognized by
TRIM II only if a DEBUG declarative operation is present in the program prior
to the first PROG header operation. If this condition is satisfied, these
operations generate a set of three or five instructions in the object program
which, when run on the computer with the DEBUG* subroutine, produce the desired
punched output. Each set of instructions is assigned a sequential identifying
number which appears with each punched output, thereby enabling programmer
recognition of repeated times through given coding paths. The debugging opera-
tions take the following form:

L W N

[label] — DUMPR —»

L W Vo Vi N

[label] —» DUMPM . [number of e raddress of firstjy —»
words to dump] [word to dump]

1) L - Label is optional.
2) W - DUMPR or DUMPM must always be present.

3) Vp- Applicable to the DUMPM operation only. Specifies the total number
of memory locations to be dumped. The number may be expressed in
octal or in decimal followed by the letter D.

4) V;- Applicable to the DUMPM operation only. Expresses the address of
the first word to be dumped. It may be expressed as an integer or
a tag plus or minus an integer,

Examples:

[1abel| —» DUMPR —»

tlabelz —» DUMPM o 12 o 10000 —

tlabel: —» DUMPM o 10D o 110000 —»
-label: —» DUMPM o 10D o CAT+28D —»
[1abel] —» DUMPM o 12 o CAT-15 —
:labell — DUMPM o 64D o CAT —»

*See paragraph 3.2 8).

ITI-B-20

Examples of the DUMPR and DUMPM operation and the coding generated
by the assemhler are given below.

Examples:
Assume EXAMS = 1000, EXAM6 = 1050, and DEBUG = 30000

Input Operation Generated Coding

EXAM5 —* DUMPR —» 301001
030000
000001

EXAM6 —= DUMPM ¢ 5 ¢ 10000 —» 301051
030000
400002
000005
010000

A symbolic representation of the instructions generated is given below.
The first three instructions apply to both DUMPR and DUMPM. The last
two instructions apply to DUMPM only.

IRJP ¢ DEBUG —® Indirect return jump to DEBUG

0 e DEBUG —+ Address of DEBUG

0 for DUMPR, 4 for DUMPM

No.. of DUMPR or DUMPM operation in this
program

X o [Y]—>§

[No. of words]-—b No. of words to be dumped
[First address]-—» Address of first word to be dumped

Both DUMPR and DUMPM operations preserve existing values in AU, AL, and the
current B register.

2.6 TRIM II OUTPUTS
TRIM II provides six optional punched paper tape outputs of the assembled pro-

gram. All the outputs except outputs No. 6 and 11 are loadable via the utility
package.

ITI-B-21

The available outputs are:

No.

No.

No.

No.

No.

No.

2 - Absolute assembled program, sequential line identifier, source
program, and assembly error alarms when applicable. This is a
side-by-side listing in source code preceded by a program summary

consisting of the number of memory locations used and inclusive
addresses,

3 - Absolute assembled program in source code, consisting of a carriage
return, 88, carriage return, addresses and instructions, carriage
return, double period and checksum,

4 - Absolute assembled program in bioctal format, consisting of 76
code, inclusive area addresses followed by the instructions only,
and a checksum,

5 - Relocatable assembled program in bioctal format consisting of a 75
code followed by the assembled program relative to base 00000 and a
checksum, The output tape may be loaded starting at any desired
memory location (if the program is to be loaded in different memory
banks, SR register manipulation must be handled by the program).

6 - Allocation output in source code consisting of an ALLOC header
followed by all program tags and labels and addresses in allocation
format. To insure a complete allocation tape, output 6 should not
be the first requested output of an assembly run,

11- Source program on paper tape in source code,

3. PROGRAMMING PROCEDURES

3.1

INPUT TAPE FORMAT

Source program tapes must be punched in source code, and the resulting punched
paper tape serves as input to TRIM II.

3.2 GROUND RULES

1)

2)

3)

TRIM II is available in two versions; one version accepts a source
program prepared in field data code, the other version accepts a
source program in ASCII code. Refer to Appendix A, Tables A-2 and
A-3. Input to TRIM II is via punched paper tape. Each source tape
must begin with a carriage return and terminate with a carriage return
and two periods. The term source code used herein refers to code in
which the input tapes are prepared. '

No TRIM II label may exceed six characters. The label must not begin
with a number, the letter O, or consist only of the letters LOK. The

first instruction of every program must have an assigned label.

Each break in sequence of addressing constitutes a program area. A
total of 27 such areas are permitted.

III-B-22

4)

6)

7)

8)

9)

The maximum size program which TRIM II can assemble is limited only by
the number of program and allocation labels. The maximum number of
labels allowed is approximately 1100j0 for each 800010 words of memory.

TRIM II provides a limited amount of error detection with error typeouts
(see TRIM II assembler operating procedure), All other errors are in-
dicated by multiples of 100 following the notes of the instruction con-
cerned on the No, 2 output. Thus 100 indicates one error; 200 indicates
two errors in this instruction, and so forth. Typical errors are un-
convertible numbers, illegal operators, no label first instruction, dup-
licate label, and so forth,

TRIM I operators SETADR and EQUALS are ignored by TRIM II. The ALLOC
operation replaces these two functions.

When specifying a decimal integer, the letter D occupies one digit posi-
tion; therefore, the maximum decimal integer that can be expressed is
99999D,

Due to space considerations the TYPT, TYPC, PCHT, PCHC, and DEBUG sub-
routines are supplied on tape separate from the TRIM II package in both
source language and object language formats. Therefore, when using these
operations, it is necessary either to assemble the subroutine(s) with the
running program or load them independently with the running program. If
the programmer assembles any of these subroutines with his program he may
allocate them or let TRIM II allocate them sequentially following the end
of his program. In either case the programmer must allocate the tag CHAN
used by these source language subroutines to reference the paper tape

1/0 channel. If the programmer does not assemble any of these sub-
routines with his program but uses poly-operations calling on them, he
must allocate the subroutines to a desired address. If he does not,

TRIM II will arbitrarily allocate them as follows:

TYPT 17000
TYPC 17160
PCHT 16400
PCHC 16560
DEBUG 17470

Keyboard correction methods; Typing error correction procedures have
been incorporated in TRIM I, TRIM II, and TRIM III assemblers, and

the TRIM corrector for deleting immediate keyboard errors that might be
made in the preparation of input tapes for these same programs on the
UNIVAC 1232 and 1532 I/0 consoles. These procedures are described under
TRIM I, paragraph 8.

II1I-B-23

4.. LOADING AND OPERATING PROCEDURES
Prior to loading the TRIM II assembler, the computer, paper tape reader-punch
unit, and console typewriter must be placed in the operational state with all
switches in the normal operating position. Since the assembler is loaded by
a utility package, the utility package must be already loaded into memory at
addresses which will not be occupied by the assembler.
4.1 LOADING THE ASSEMBLER
To load TRIM II, perform the following steps:

1) Master clear the computer and the I/0 console.

2) Mount the TRIM II assembler tape in the reader.

3) Set the P register to the utility package starting address for
paper tape load.

4) Start the computer.
4.2 USING THE TRIM II ASSEMBLER
1) Pass 1
a) Master clear the computer.
b) Set the P register to 1400,
c) Set PROGRAM SKIP keys 1 and 2.

d) Set PROGRAM SKIP key 3 for error typeout suppression during assembly
(see paragraph 4.3).

~—

" :
Mount a source program tape in the reader.

o

f) Start the computer.

g) The computer will stop after the source program tape has been read.
Repeat steps e) and f) until all tapes have been read in.

2) Pass 2
a) Release PROGRAM SKIP key 1.

b) Set the AL register to desired output number (2, 3, 4, 5, 6, or 11;
refer to paragraph 2.6).

I11-B-24

c) Mount a source program tape in the reader (program tapes must be
loaded in exactly the same order as for pass 1).

d) Start the computer,

e) The Assembler will assemble the input tape and punch the output tape.
Repeat steps ¢) and d) until all tapes have been read in and punched.

f) Release PROGRAM SKIP key 2.
g) Start the computer.

h) The assembler will finalize the output tape with a checksum and
trailer.

i) Set PROGRAM SKIP key 2 and repeat from step b) to obtain additional
outputs.

4.3 ERROR DETECTION AND DISPLAY

TRIM II contains certain error detection capabilities. The majority of pro-
grammer errors can be handled internally., However, since PROGRAM SKIP key
settings are essential to the assembly process, assembly will always stop
when PROGRAM SKIP keys 1 and 2 are not set. The proper action to take is in-
dicated by the following typeout: SET KEYS 1 AND 2. Set both PROGRAM SKIP
keys 1 and 2 and start the computer to continue assembly,

The programmer has the option of requesting that the assembler stop and type
out pertinent information for basic programmer errors, or requesting that the
assembler handle these errors internally, thereby forcing an assembly.

If PROGRAM SKIP key 3 is set, the assembler will force the assembly., If
PROGRAM SKIP key 3 is not set, the assembler will stop after typing the follow-
ing identifiers,

4,3.1 'SET BASE ADDRESS IN AL'

This typeout and error stop occurs during pass 1 and means that no starting
address has been given. To correct:

1) Clear the AL register.
2) Set AL(15-0) to the desired address in octal.

3) Start the computer. The assigned base address will then be typed out
and assembly will continue.

ITI-B-25

If typeout suppression has been selected (PROGRAM SKIP key 3 set), assembly

will not stop and TRIM II will arbitrarily assign the program to the base
address 01200,

4.3.2 'ILLEGAL OUTPUT RESELECT IN AL’

This typeout and error stop indicates an illegal output has been selected at
the start of pass 2, To recover, start the computer. When the computer stops
again, reselect the output in AL, and start the computer.

NOTE: 1If poly-operation generation results in a memory bank overflow,
output 2 is the only legal output that may be requested. If a

legal output has been selected and the above typeout occurs, bank
overflow is the cause,

4.3.3 'UNALLOC TAGS'

This typeout and error stop occurs during pass 2 and indicates an unallocated
tag., The first such typeout is followed by a typeout of the sequential line
identifier and the tag name. After recovery, the address is also typed.

Thereafter only the sequential line identifier, the tag name, and the address
to which the tag was equated during recovery are typed.

The recovery procedure is:
1) Set the AL register to the desired value,

2) If the tag refers to an instruction contained within the program being
assembled, set AL;7 to 1. If the tag is a constant or refers to a fixed
address outside the program, ALj7 must be O,

3) If the user wishes all later unallocated tags allocated to the same
address, set the AU register to any nonzero value.

4) Start the computer. TRIM II will type the manual allocation and use
it to continue assembly,

4,3.4 'DUP LBL'

If during generation a duplicate label is discovered, TRIM II types the
sequential line identifier, DUP LBL, and the label name. The assembly will
continue without a computer stop.

III-B-26

SECTION III-C. TRIM III ASSEMBLY SYSTEM

1. INTRODUCTION

The TRIM III assembly system provides programming assistance through the use

of its symbolic shorthand. As illustrated in Figure III-C-1, this assembly
system converts a source program written with symbolic addressing into an
object program with absolute or relocatable addressing. TRIM III produces the
assembled object program on punched paper tape, punched cards, or magnetic tape.

Input Data
The TRIM I1I ¥
Definition (Input) »> | Assembly Object
of a Language System Program
Problem ‘

Output Data

Figure III-C-1, TRIM III Solution of a Problem

TRIM III has an easy-to-use but effective library retrieval capability. The
library of subroutines is stored on the assembler magnetic tape. The user
simply calls by name those subroutines he wishes to include with his assembled
program. TRIM III honors the calls by automatically adding them to the end

of the source program during assembly. A companion program to TRIM III called
the library builder routine provides easy library building, insertion, replace-
ment, deletion, and listing capabilities.

TRIM III possesses source language level correction capability in combination
with an assembly run, Although this feature is primarily designed for use
with paper tape input, it may be used with any combination of input modes.

2. DESCRIPTION

TRIM III is basically designed for a minimum equipment configuration of a
computer with at least 16,384 words of core memory, a magnetic tape system with
two or more tape transports, and an I/0 console consisting of a punched tape
reader, tape punch, keyboard, and console typewriter. Optional equipment is

an on-line card processor system with card reader, card punch, and high-speed
printer.

The TRIM III assembler is stored on magnetic tape in functional segments.
During an assembly run the segments are read into computer memory and executed
in the proper sequence by the assembler controlling routine., See Figures
II1I-C-2 and ITI-C-3. TRIM III is a single external pass assembler, It accepts
a source program, converts it to TRIM code, and stores it on magnetic tape for
subsequent processing. If the user has included calls for library subroutines
in his source program, TRIM III selects them from the library and adds them to
the end of the source program before proceeding with assembly. TRIM III also
has source language correction capability in conjunction with an assembly run.

II1I-C-1

TRIM III
Controlling Routine

¢-0-III

H
41 R 1
Table 1 | | Table 1
4 |
\WA I V)
Source Input > ‘ ol . — O \
Program Converter | Librarian VY
Initial | l Final.
Source | gourcgm
Progra - —_—— - - rogr
' rogr L . f_
l ' n "
| — e — | ables 7%
Table 2 . _ _lTablesal_{ _ _| 11='==="‘7
Input ILibrary | o,)
Operators |gg;é:rg | VY
— ILabels | téiﬂfgrYMn
| /"J , ra
Table 6 == J
Label/Tag
Alloca- . * Magnetic Tape Table = Core Table 10
tions -~ ** Table 11 On Magnetic Tape A =
Table 12 On Magnetic Tape B
v I\
Vv \Y
Segment 1 Segment 2

Figure III C-2, TRIM III Segments 1 and 2

TRIM III
Controlling Routine

e-0-111

TRIM III
f Outputs
No. 1
No. 2
Table 1 Table 3 No. 3
Object No. 4
S? Translator- S? Output Language No. 5
\YAY/ > Allocator AV Converter * & Editing ’
, 2 1no.
}Final Assembled Information|No. 6
Source Object No. 7
t:igiig"_ Program \ No. 10*
No.11
No.12
Table 5 Table 6 No. 13
Mnemonic Label/Tag No. 14
Qperators Alloca- *
No. 16*
J\
—V Vv
Segment 3 Segment 4

Figure III-C-3,

* Qutput No. 10 is Table 3; Output No. 16 is Table 15

TRIM III Segments 3 and 4

2.1 SOURCE LANGUAGE

A TRIM program as prepared by the programmer is composed of a list of operations
which perform the step-by-step processing of a problem. An operation has the
following general format:

[label] — [statement] g [notes]‘/
The general format may be further subdivided into:
L W Vn N

[labell»[operator} o [operand(s)]—> [notes]'/

2.1.1 LABEL

The label identifies this particular statement, A label is not required for
every statement, In an absolute-addressed program every word is assigned an
absolute address during the coding process. The assembling process of the

TRIM III system equates the label to the machine address assigned to the in-
struction generated by the statement. Only those statements which are referred
to by other statements require a label or symbolic address. Where more than
one instruction is generated by a statement, the label refers to the address of
the first instruction generated. The term label is used rather than address
since it more accurately describes the function of the symbolic address. A
label may never be incremented or decremented. The instructions or words
generated from unlabeled statements following one another on the source program
tape are ultimately assigned to consecutive memory addresses. Each label of

an assembly run must be unique.

A label may consist of not more than six alphanumeric characters; it never
begins with the letter O or a number, and never consists of the leters LOK
alone. The first instruction of each program or subroutine must have a label.

An operand which refers to another operation label is called a tag. The tag
must be identical with the label it refers to except that it may be followed

by a + octal or decimal integer to facilitate reference to unlabeled operations.
Whenever a decimal integer is used, it must be followed by the letter D. A

tag coincides with the u or k portion of the instruction word. Tags have the
same notation restrictions as labels except they may be incremented. Any
number of tags may refer to a given label.

If the programmer wishes to reference unlabeled instructions in his program

in another manner, he may do so in terms of a specific instruction by means

of the LOK tag plus or minus an integer. LOK always refers to the instruction
in which it appears. For example, if the instruction JPeLOK-3 appears at
address 04503, the resulting generation is a jump to address 04500. Thus the
instruction falling at address 04500 need not have been labeled. No valid
program label may consist only of the letters LOK. Reasonable care should be
exercised in the use of the LOK tag since corrections to the original-program
may affect the LOK references.

I11-C-4

2.1.2 STATEMENT

The statement of an operation is made up of an operator and operand(s). The
statement defines the operation.

2.1.2.1 OPERATOR

The operator may be a symbolic shorthand or octal notation which identifies the
basic function to be performed. The operator must always be present. It may
cause the assembler to generate one machine instruction or a group of machine
instructions. The operator coincides with the function code f, and/or sub-
function code m, of the instruction word.

2.1.2.2 OPERAND(S)

One or a series of operands associated with the basic operator are referred
to as Vg, VI ... Vn. These may take several forms depending upon the basic
operator, -They define, modify, or complete the function.

The operand(s) coincides with the u or k portion of an instruction word and
may be either a constant in octal notation or a symbolic alphanumeric notation
referring to a constant (either an absolute address or an item of data).

2.1.3 NOTES

Descriptive notes may follow the statement; they are for the programmer's use
and in no way affect the instructions generated from the statement. Notes must
be restricted in length such that the entire source statement does not exceed
one line or one card.

2.1.4 SYMBOLS

The program uses a uniform set of symbols as separators in all coding. These
symbols are depicted in Table III-C-1 below.

TABLE III-C-1. TRIM III CODING SYMBOLS

Symbol Coding Significance

— (tab) Major separator delimiting the statement,
' Must always precede the statement operator.
Must precede notes; omitted if notes are
not given,

‘/} (CR) Specifies the end of an operation. Must
precede end-of-tape double period.

' (comma) Separates certain subsets of statement
components,

. (point) Separates statement components.

III-C-5

TABLE III-C-1. TRIM III CODING SYMBOLS (CONT.)

Symbol Coding Significance

+ Specifies an integer increment to follow.

- Specifies an integer decrement to follow.

A (delta) Specifies space.
| (vertical line) Special control character.
oo (double period) Specifies end-of-tape read-in. Must

terminate every input tape.

2.2 HEADER AND DECLARATIVE OPERATIONS
TRIM III recognizes four types of header operations:
L W Vo Vi N
POKER —= CONTR ¢ JONES ¢ 10 DEC1964 —»
POKER — ALLOC * JONES + 10 DEC1964 —»
POKER — PROG d JONES ¢ 10 DEC1964 —»

POKER — CORREC e JONES e 10 DEC1964 —»

2.2.1 CONTROL HEADER (CONTR)

The CONTR header operation is a convenience for the user. It enables him to
group all of his assembler declarative operations following one CONTR header.

A label and identifying operands may be used with the CONTR header, but TRIM III
does not require them,

L W Vo Vl
[1abe1] —> [CONTR] . [name] . [date] —
Operations which may follow a CONIR header are ALLOC, DEBUG, OUTPUT, REMARK,
DECKID and CALL. CALL operations may also follow a PROG header. Figure IIT-C-4

shows typical coding for a CONTR header and the declarative operations used
with it,

IT1-C-6

L-D-1II

UNIVAC CODING FORM

TITLE PROGRAMMER
PAGE of PLT. EXT MS
DATE
LABEL | OPERATOR OPERANDS AND NOTES
POKER ™ CONIR JONES + 16NOVEMBER1963
POKER __ —» ALLOC JONES + 1GNOVEMBER
POKER —> 05000
CHIP —> 05500
DERUG __ —* 13000
TYPT —> 12700
—> QUTPUT 1:6-225:6-11
—> DEBUG
—» CALL SINE TODEC TYPT
—> REMARK CONTR TAPE FOR DATAX REVISION 3
—> DECKID SINE
(] —>
—
—>
—»>
—>
—
—
—>
—>
—>
—>
—>
—>
—>

Figure IIT-C-4. Sample CONTR Header And Delcarative Operations

2.2.2 ALLOCATION HEADER (ALLOC)

The ALLOC header follows a CONTR operation and informs TRIM III that the
operations which follow constitute assignments of absolute values to labels and/
or tags, Any number of ALLOC tapes or cards may be loaded. An allocation tape
must always be preceded by a carriage return (see paragraph 3), When the
allocations are on a separate tape, the tape must terminate with a carriage
return and two periods. ALLOC operations have the following format:

[} Vo Vi

[acLoc] e [name] o [date]

</

[label
label [3551gned vnlue]‘)

] =
[taber -
[label] [a851gned value]‘/
[label] [asmgned value]‘/

etc.

1) L - The label of the ALLOC header operation itself is optional., However,
each assignment operation following must have a label.

2) W - The operator of this header operation is always ALLOC, and must be
present. For the subsequent assignment operation, W must be an
absolute numeric value expressed either in octal or decimal., When

expressed decimally, the number must be followed by the letter D,
for example:

CAT —» 0102/)
Do —» 51%2/

CHIPS —» 13/

.

CHOPS —» 192/

3) V - The V operands of this header operation take the form name and date
as illustrated, These operands are omitted for subsequent assignment
operations,

2.2.3 PROGRAM HEADER (PROG)

The PROG header informs TRIM III that the operations to follow are program
operations as distinguished from control operations. The PROG header must
precede the first statement of a program. The PROG header operation on paper
tape must always be preceded by a carriage return (see paragraph 3). A program
header has the following format:

L W VO Vi
[Piggzam]—-b[PROG] . [name] . [date]

I11-C-8

1) L - The label of the PROG header operation is optional; however, when
present it is considered to be the name of the program.

2) W - The operator of this header operation is always PROG and must be
present,

3) V - The V operands of this header operation normally take the form name
and date as illustrated. The operands are optional and completely
flexible in number and length within the maximum line length.

2.2.4 CORRECTION HEADER (CORREC)

The CORREC header informs TRIM III that the operations following are source
language corrections to be integrated into the source language program under
assembly. A maximum of 192 correction operations is permitted for any one
assembly run. Three types of correction operations are provided by TRIM III:

1) Insertions or additions,
2) Replacements.
3) Deletions,

Although the correction feature is primarily intended for use with paper tape
input mode, it may be used with any combination of input modes, the only
restriction being that all corrections must be read in prior to read-in of
the source program.

The format of correction operations is identical to that required by the TRIM
corrector (refer to the TRIM corrector description contained in this manual).
Figure III-C-5 shows a sample of correction coding which may be used with the
CORREC leader in the TRIM III assembler.

Corrections are always made on the basis of the sequential line identifier
associated with each source program statement. This sequential identifier
appears on TRIM III outputs 2, 12, and 14. If assembly consists of multiple
source programs, it must be remembered that the sequential identifiers are
cumulative and correction is based upon these cumulative identifiers in any
given assembly., If two or more correction operations bear the same integral
and fractional identifier, the last one read will supersede the preceding one
with the same identifier, permitting a programmer to correct a correction,
Only the last such correction will count towards the 192 maximum,

2.2.5 DEBUG DECLARATIVE
TRIM III accepts the declarative operation:
L W N

[1abe1] —» DEBUG —»

II1-C-9

01-0-1I11

TITLE MANL (CORRECTIONS) UNIVAC PROGRAMMER
PAGE 1 of 1 PLT EXT. MS
TAPE CORRECTION FORM DATE
LABEL | OPERATOR | OPERANDS AND NOTES
«’ JvaNL —» CoRREC o W.C. Roos ¢ 8Nov 1964
112 05 <’
MANL17 —» MOVE e 10 ¢ MANLS e MANL99 —+ INSERT CORRECTION
470 <
—» ENTALK ¢ 501 —» REPLACE CORRECTION
6 ¢ 05 <’ ‘
— BUFIN ¢ CHANL ¢ MAD « 100D ¢ MANL ,
6 * 05 < <
— BUFIN e CHAN * MAD * 100 » MANL80 —» CORRECTS A CORRECTION
201 © <
—» DELETE ¢ 18D —» DELETES THIS AND NEXT 17
17 o <’
—> DELETE + —» DELETES THIS ONE ONLY
315 * 05 <’
| MANLS99 —» RESERV __* 8D ADDITION TO END OF PROGRAM
315 ¢ 10 <
| MANLAU —> 0 s
<’
315015 o/
MANLAL —> 0 *
316 o <’ «
MANLB —_— 0 °)
. < <«
N L)
. <
—_— ®

Figure III-C-53. Sample Correction Coding

The DEBUG operator informs TRIM III that generation is to be performed for
debugging operations contained in the source program. If the DEBUG operator

is absent, no generation will occur for such debugging operations. The DEBUG
operation when used must be loaded prior to the first PROG header. It normally
appears on the CONTR tape.

2.2,6 OUTPUT DECLARATIVE
TRIM III accepts the declarative operation:

L W v 1] Vn N

[1abe1] — oureur - [ni)- [.. [n] —

The OUTPUT operation permits the user to specify the assembler outputs he
desires. The outputs are specified by number in the Vg through V, position.

Up to eight outputs may be requested by the OUTPUT operation. Requests in
excess of .eight will be ignored and multiple OUTPUT statements are not permitted.
An example of a legal OUTPUT operation is given below.

—+> OUTPUT 1 ® 15 ¢ 6 © 2 ¢ 5 —»
2.2.7 DECKID DECLARATIVE
TRIM IITI accepts the declarative operation:

L W VO N

[1abe1] —» DECKID [name] —

The DECKID operation permits the user to specify card identification on printer
or source card outputs he may select from TRIM III, From one to four alphanumeric
characters may be specified in the Vy position. These characters together with
a 4-digit sequential octal number beginning with 0001, are added to each TRIM
III statement that is also assigned a sequential line identifier., This card
information will appear on the side-by-side printer listing output of the
program (output 12) and the punched card output in source language (output 15).
The new card identification and numbering preempts that which might be

present if the input source program is on cards. Any number of DECKID state-
ments may be inserted anywhere in the source program; however, each DECKID
operation affects only those statements following that DECKID statement, and
the card numbering will always begin with 000l.

2.2.8 ENDATA DECLARATIVE

The ENDATA operation is used with card input to TRIM III. It informs the
assembler of the end of a card deck. It does not mean the end of all input.
The ENDATA operation does not cause any object language generation. It may
have a label and notes. One blank card must follow each ENDATA card.

L W

[L] —» ENDATA —+

II1-C-11

2.3 MONO-OPERATIONS

Mono or one-to-one operations consist of the mnemonic function codes in the
instruction repertoire and symbolic addresses, absolute machine codes, or
constants. Mono-operation statements may be in one of the following formats:

2.3.1 FORMAT A

L W Vo

[label] — [operator] . [operand] —>

[L - The label is optional.

W - The operator is the f or fm portion of the operation statement and is the
mnemonic representation of the desired function code of the computer
instruction repertoire.

Vo- Represents the u or k portion of the statement and may be a tag, a tag *
an integer, or an integer only. Integers may be in octal or decimal
representation. When decimal representation is used, the integer must be
followed by the letter D. Incrementing or decrementing of integers is
not permitted. If V., is absent, TRIM III generates zeros for the operand
without error indications.

Examples:

— ENTALeCAT —»
—» STRADR«CAT+1 —»
— CMAL*CAT-8D —»
— ENTBK*28D —»

— ENTALKe 7776 —» Minus 1 to AL

—» STOPeDOG —» DOG defined by an ALLOC opn
—+ SKPQINe7 —»

—» CPAU —» Results in 506200

—= JPe[0OK-10 —» LOK signifies this address
— OUTe6 —» Output transfer channel 6
— QeCHEESE+]1 —» Buffer terminal address

—— O*CHEESE —» Buffer initial address
—bENTAgj Results in 120000

— JPe —» Results in 340000

I11-C-12

2.3.2 FORMAT B

TRIM III also accepts programs coded with absolute function codes and absolute
or symbolic addressing. Normal instructions are represented by a 2-digit
function code followed by a point separator and the desired u or mk operand.
However, absolute instructions may also be represented by 6 consecutive digits
without a point separator,

Examples:

—» 123505 —»
— 63°CAT+6 —»
— 5001305 —>
— 5006200 —»
—+ 506200 —>

2.3.3 FORMAT C

Constants may be represented in a number of ways:

—7—> Results in 000007
—>Te0 — Results in 700000
— 77 —» Results in 000077
—TTe() —» Results in 770000
— 777 —> Results in 000777
—T77070 —» Results in 077070
—TTTe7 —» Illegal*

—» 777 —» Results in 000777*
—» 123456 —» Results in 123456

Two special mono-operations are available for the programmer's use; STOP and
SKP, If either of these operators is used without a k operand, TRIM III will
automatically generate an unconditional instruction of 50 56 40 or 50 50 40
respectively.

2.4 POLY-OPERATIONS

Frequently groups of instructions which perform a specific function appear
iteratively in a program. A single poly-operation generates a unique sequence
of instructions designed to perform some such specified function., This is the
one-to-many relationship between instructions herein termed poly-coding; the
parent instruction is termed a poly-operation. TRIM III provides for several
poly-operations. In some cases TRIM III generates only a single instruction or,

*Whenever there is an expressed value following the point separator, only 1 or
2 digits are permitted in the operator position,

ITII-C~13

as in the case of REMARK and CALL operation, no instructions. It is permissible
when coding a routine to intermix mono- and poly-operations in any desired order.

The CLEAR and MOVE poly-operations use the currently active B register and the
MOVE poly-operation also uses AU in the generated coding. If the programmer
does not wish the data in these registers to be destroyed, he must store and
restore the data around a MOVE or CLEAR operation. The MOVE and CLEAR opera-
tions store and restore the programmer's special register setting. Since
poly-operations generate more than one machine instruction, the tag LOK + an
integer must not be used for poly-operation coding.

2.4.1 RESERVE OPERATION (RESERV)

L W VO
Dabeﬂ — RESERV e |Number —
of words

The RESERV operation causes the desired number of sequential words to be
reserved within a program. The operation generates the number of zero words¥
specified by the VO operand. .

1) L - The label for this operation is optional.
2) W - RESERV must always be present.

3) V0 - Specifies by an octal or decimal integer the number of zero words to

be generated. VO may never equal zero.

Examples:

Assume CAT = 1000 and DOG = 2000
CAT —» RESERV e 12 —» Generates zeros at addresses 1000-1011
DOG —> RESERV e 10D —» Generates zeros at addresses 2000-2011

2.4.2 CLEAR OPERATION

L W VO Vl
[labeq — CILEAR e [Number . [starting address] —
of words

The CLEAR operation clears to zero those memory addresses specified in the
operation.

1) L - The label for this operation is optional.

2) W - CLEAR must always be present.

*TRIM III outputs 2, 12, and 14, used primarily for hard-copy debugging and
documentation, reflect only the first generated zero word of each RESERV opera-
tion. All other object language outputs contain the requested number of zero
words.

I11-C-14

3) Vp- Specifies by an octal or decimal integer the number of consecutive
memory locations to clear. Vg may never exceed 4000 octal or 2048D.
A Vg of zero is not permitted.

4) V- Specifies the first address of the area to be cleared. The address
may be expressed as an absolute octal number or as a symbolic tag
plus or minus an octal or decimal integer; that is, CAT-12D or CAT-14,

All the words to be cleared must be wholly contained within one
memory bank.

Examples of coding for CLEAR operations are given below.
[1abe1] —scLEAR + 180 . FLIPH2D —»
[label] e CLEAR - 22 .+ FLIP+14 —»
[label] —>CLEAR + 100D °* FLAP-5 —»
[label] —=CLEAR + 4000 s+ 130000 —

Examples of CLEAR operations and the absolute coding generated by
the assembler are given below.

Assume EXAM1 = 1000, EXAM2 = 1006, and CAT = 10123

Input Operation Generated Coding

EXAM1 —= CLEAR ¢ 70 e 7000 — 36 0067
75 1005
50 7300
41 7000
73 1003
50 7300

EXAM2 —> CLEAR e 21D e CAT —» 36 0024
75 1013
50 7311
41 0123
73 1011
50 7300

A symbolic representation of the instructions generated is given below.

—>ENTBK *[No. of locations -1]—eSet B for No. of locations
—»STRSR » LOK+4 —> Store current SR

—>ENTSR ¢ [Bank No. of clear area] —»Set SR to clear area
—+»CLB ¢ [First location] — Clear word at first location + B
—»BJP * LOK-1 —> Decrement B and repeat loop

—»ENTSR e O —+ Return to current bank when B is zero

II1-C-15

2.4.3 MOVE OPERATION

L W V0 V1 Vo
[1abe1] — MOVE . [number e |from address] . Eo address] —>
of words

1) L - The label for this operation is optional.
2) W - MOVE must always be present.

3) V- Specifies by an octal or decimal integer the number of sequential
words to be moved. Vy may never exceed 4000 octal or 2048D. A Vg
of zero is not permitted.

4) Vi- Specifies the first address of a block of data to be moved. It may
be expressed as an absolute address in octal or as a symbolic tag
plus or minus an octal or decimal integer. All the words to be
moved must be wholly contained within one bank,

5) Vo- Specifies the first address to which the block of data is to be moved.
It is expressed the same as the Vj operand. All the destination
addresses into which data are to be moved must be wholly contained
within one bank.

Examples of coding for MOVE operations are given below.

[label —» MOVE s 78D » CAT e DOG-7 —»

[label] —» MOVE * 10 * HORSE+10 * COW+8D —+
[label —» MOVE * 4000 s CAT * PIG —»

— MOVE 100D ¢ 30000 e CAT —»

]
[1abe1] —+ MOVE * 100D s O e 10000 —»
[1abe1]

Examples of move operations and the absolute coding generated by the
assembler are given below,

Assume EXAM3 = 1014, EXAM4 = 1024, and CAT = 1056

Input Operation Generated Coding

EXAM3 —> MOVE ¢ 10 e CAT e 7000 —» 36 0007
75 1023
50 7300
11 1056
50 7300
47 7000
73 1016
50 7300

III-C-16

Input Operation ‘ Generated Coding

EXAM4 —> MOVE e« 100 < 12000 e CAT-100 —» 36 0077

75 1033
50 7311
11 2000
50 7310
47 0756
73 1026
50 7300

A symbolic representation of the instructions generated is given below.

—»ENTBK * [No. of locations-1] —»Set B for No. of words

—STRSR ¢ LOK+6 —» Store current SR

—ENTSR * [Bank No. of from address]—>Set SR to origin bank
—»ENTAUB * [from address] — Get word at from address + B

—+»ENTSR * [Bank No. of to address] —» Set SR to destination bank
—+STRAUB * [To address] —»Store word at to address + B

—»BJP ¢ LOK-4 — Decrement B and repeat loop

—+&#ENTSR ¢ O —» Return to current bank when B is zero

2.4.4 1/0 OPERATIONS

[lahel]—'EXFCTO channel] * [AD 7 « (number of Te[buffer start: —>
number MAD [buffer words| |ing address
m o
| MBK
[label]-#BUFINo channel] « [AD 1 & Cnumber of Te[buffer start-W—»
number | MAD buffer words| |ing address
BK - -
[MBK
[label]—bBUFOUT' channel} ° [AD 1 ¢ |number of sjpbuffer start-|—
number MAD buffer words| jing address
BK
[MBK

1) L - Label for these operations is optional.
2) W - The operator must always be present.

3) Vo~ Specifies the channel number expressed as an integer or a symbolic
tag.

4) V- Specifies the buffer mode and must be present:

a) AD - Advance without monitor.
b) MAD - Advance with monitor.

III-C-17

c) BK - Back without monitor.
d) MBK - Back with monitor.

5) Vo - Specifies as an octal or decimal integer the number of buffer words
involved. Maximum of five digits.

6) Vg - Specifies the address in memory at which buffering is to begin. V3
may be expressed absolutely or as a symbolic tag plus or minus an
octal or decimal integer.

Examples:
Assume CHAN = 07 and CAT = 10000

‘[labeI]-'EXFCT oCHANsAD e 1« 30000—» Generates 501307
| 030001
030000

[label]—’BUFIN o6 o MAD » 10 » CAT —> Generates 501106
210007
210000

ﬁabeﬂ-«»BUFOUT-:a- BK o 7 o CAT+7 — Generates 501203
410000
410007

[1abe1]—>BUFOUT e 0 eMBK e 100D ¢ CAT+99D— Generates 501200
607777
610143

NOTE: The examples above illustrate the fact that,
for output and external function buffers, the
inclusive buffer limits define a number of words

which is one greater than the actual number of
words to be transferred. These buffers terminate

HULUS LY WU LaQuaSLAT LA ATUe

before transferring the word located at the ter-
minal address.

2.4.5 LIBRARY CALL OPERATION
L W Vo Vi Vi
[label] — CALL -~ [n] * [n] e [n] —>

The CALL operation permits the programmer to specify by name (label of the
PROG header) the subroutines he wishes the assembler to retrieve from the
library of subroutines. A single CALL operation may name up to eight such
subroutines. If the user requires more than eight subroutines, he may specify
them with additional CALL operations. Subroutines retrieved from the library
are automatically added to the end of the source program and assembled with it.
The user has complete control of their address allocation if he wishes via
ALLOC operations.,

IT1-C-18

Whenever a CALL operation follows the CONTR header, TRIM III will honor the
calls, but the CALL operation itself will not appear on a side-by-side output
listing. Only those operations following a PROG header appear on such list-
ings. If a subroutine retrieved from the library contains CALL operations,
these calls will also be retrieved and added to the end of the composite
program until the last CALL operation has been honored. A request for

output No, 7 causes all library CALL operations to be ignored.

The CALL operation causes no object program generation.
Examples:
—» CALL*TYPTFLP 'SINEOTYPC —
— CALL*PCHC —»
2.4.6 REMARK OPERATION

L W VO

[label] —» REMARK ° [desired statement] —>

The REMARK operation causes no object program generation., It is simply an
aid to the programmer in expanding normal program notes,

The REMARK statement may not exceed one line or one card in length.
2.4.7 DATA OPERATION

v
L W 0

[label] —> DATA o [integer, binary point specification] —>

The DATA operation allows the programmer to specify a positive or negative data
integer and its binary point position. The bits are numbered from right to
left 0-17D, The binary point specification must be separated from its asso-
ciated integer by a comma, The absence of a minus sign implies a positive
integer. The label is optional,

*Examples:
[1abe1] —» DATA * 24D, 90 —» Generates 030000
or
[1abe1] — DATA » 30, 11 —» Generates 030000

The binary representation is:

1716 1514 1312111098 7
[0 000 1 10 0000

6543210
0000000

III-C-19

[1abe1] '— DATA » 123,4 —» Generates 002460

The binary representation is:

1716 15141312 11 109876543210
(00O 0O 0O0OO0O 1010011000 0]

2.4.8 PUNCH CONTENTS OPERATION (PCHC)
L W Vo

[1abe1] —» PCHC . information to be punched | —»
and/or typewriter commands

The PCHC operation results in generated coding which, when run on the computer
with the PCHC* subroutine, causes the octal contents of A, AU, AL, B or any
memory location to be punched on the high-speed paper tape punch, The words
to be punched may be interspersed with the following typewriter control symbols
to provide subsequent listing in the desired format.

Operand Performance
*|CRl carriage return, line feed
e A eor e ISPle space

The vertical bars indicate the information enclosed is a special symbol direct-
ing the typewriter., Each CR and SP must begin and end with the vertical bar.
Controls are separated from other operands by point separators,
1) L - The label is optional,
2) W - The operator PCHC must be present.
3) Vo- Specifies the operands in the order in which they are to be punched.
Except for the typewriter commands, all operands imply their con-
tents are to be punched. Such operands may be A, AU, AL, active B,
a tag or a tag + an absolute value, or an absolute address.
Examples:
CAT — PCHCeA »A 7070 ¢ A * DOG-11D [CRl —»
— PCHC*DOGe A ¢B o AL —»
— PCHCe* ICR| * AU |SP| ¢ AL —>

— PCHC * DOG+10 * ISPl o CAT —»

*See paragraph 3.4 6).

I11-C-20

2.4.9 PUNCH TEXT OPERATION (PCHT)
L L] Vo
[labeq — PCHT o [text and/or typewriter commands] —>

The PCHT operation results in generated coding which, when run on the computer
with the PCHT* subroutine, causes the text and/or typewriter commands in the Vo
operand position to be punched by the high-speed paper tape punch. The text
may be interspersed with the following typewriter control symbols as desired;
each CR and SP must be set off between two vertical bars.

Operand Performance
Icrl carriage return, line feed
A or |spl space

1) L - The label is optional.

2) W - The operator PCHT must be present.

3) VO— Is the text to be punched interspersed with typewriter commands
desired by the programmer. If the text is too long for one PCHT
operation, the programmer can write successive operations.
Examples:

CAT —» PCHT*PROFIT A AND A LOSS A FOR —
—> PCHT » JULY A 10, A 1967 |CRl —»

NOTE: Point separators are not required within Vp; they will be
punched if present.

2.4.10 TYPE CONTENTS OPERATION (TYPC)
L W Vo

[label] —+> TYPC . information to be typed and/or| —»
typewriter commands

The TYPC operation results in generated coding which, when run on the computer
with the TYPC* subroutine, causes the octal contents of A, AU, AL, current B,
or any memory location to be typed on the typewriter., The words to be typed
may be interspersed with the following typewriter commands.

*See paragraph 3.4 6).

II1-C-21

Operand Performance
o ICR| o carriage return, line feed
e A e or o ISPle space (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol direct-
ing the typewriter. Each, CR or SP must begin and end with a vertical bar.

1) L - The label is optional,

2) W - The operator TYPC must be present.

3) V.- Specifies the operands in the order in which they are to be typed.
Except for the typewriter commands, all operands imply their contents
are to be typed. Such operands may be A, AU, AL, active B, a tag
or a tag + an absolute value, or an absolute address,

Examples:

CAT—>TYPC * A s A e A o 7070 ¢« A o A s DOG-11D « ICRI —*

—»TYPC ®» AU « A o AL o |SPl ¢« B e« HORSE —»

2.4,11 TYPE TEXT OPERATION (TYPT)
L W Vo
[label] —+ TYPT [text and/or typewriter command{]——’
The TYPT operation results in generated coding which, when run on the computer
with the TYPT* subroutine, causes the text and/or commands in the V operand

position to be typed by the typewriter. The text may be interspersed with
the following typewriter commands:

Operand Performance
Icrl carriage return, line feed
A or Ispl space (may be used for formatting)

1) L - The label is optional,
2) W - The operator TYPT must be present.
3) Vy- Is the text to be typed interspersed with typewriter commands, If

the text is too long for one TYPT operation, the programmer may use
successive operations to complete the text.

*See paragraph 3.4 6).

I11-C-22

Examples:
CAT —» TYPT » PROFIT ISPl AND A LOSS A FOR —»
—»TYPT ¢ JULY A 10, A 1967 |CR| —>

NOTE: Point separators are not required within Vg, they will be typed
if present,

2.4.12 DOUBLE SET OPERATION
L L
[1abe1] —» pBLSET —>
The DBLSET operation insures that the Y of a double add or subtract instruction
is located at an even address. The DBLSET operation is normally followed by
a Y constant., TRIM III examines the address to which the following constant
(or instruction) would normally be assigned. If the address is odd, a word
of zeros is first generated to insure that the constant (or instruction) will
be assigned to an even address. If the address is even, no generation results.
2.4.13 SETSR OPERATION
L W Vo
[label] — SETSR . [alphanumeric tag] —

The SETSR operation enables the programmer to place responsibility for setting

k of an ENTSR instruction upon TRIM III. Based upcn an ALLOC operation or the
assembled address of the referenced tag, TRIM III generates an ENTSR instruction
(5073 k) with the proper k value for each SETSR operation.

1) L - Label is optional.

2) W - SETSR must be present.

3) V- Must be an alphanumeric tag corresponding to a program label or an
allocated value, The tag may not be incremented or decremented.

Examples:

Assume CAT is a label at 36421 and DOG is a label at 704060 and COW is
allocated to 010000, then:

—+ SETSR » CAT — Generates 507313
—= SETSR ¢ DOG — Generates 507317

—» SETSR * COWN — Generates 507310

I11-0-23

2.5 DEBUGGING OPERATIONS

TRIM III provides two debugging operations for punching a paper tape output
of either the contents of registers AU, AL, and current B, or the contents of
specified sequential memory locations. TRIM III recognizes these operations
only if a DEBUG declarative operation is read prior to the first PROG header
operation. When recognized, these operations generate a set of three or five
instructions in the object program which, when run on the computer with the
DEBUG* subroutine, produce the desired dump. Each set of instructions is
assigned a sequential identifying number which appears with each punched out-
put, thereby enabling programmer recognition of repeated times through given
coding paths., The debugging operations take the following form.

L W N
[labeI] —» DUMPR —»
L W VO Vy N

ﬁabeq —+ DUMPM number of ¢ {address of first| —»
words to dump word to dump

1) L - Label is optional.
2) W - DUMPR or DUMPM must always be present.

3) V- Applicable to the DUMPM operation only. Specifies the total number
of memory locations to be dumped. The number may be expressed in
octal or in decimal followed by the letter D.

4) V- Applicable to the DUMPM operation only. Expresses the address of
the first word to be dumped. It may be expressed as an integer or
a tag plus or minus an integer.

abel] —» DUMPR —»

labell —+= DUMPM e« 12 . 10000 —»

f—'_'l'—-—"l

label

.label] —» DUMPM s 10D s 10000 —»
] —» DUMPM e 10D e CAT+28D —»

label —+ DUMPM o 12 . CAT-15 —»

Llabel] —» DUMPM o 64D o CAT —»

*See paragraph 3.4 6).

I11-C-24

Examples of the DUMPR and DUMPM operations and the coding generated
by the assecmhler are given below,

Examples:
Assume EXAM5 = 1000, EXAM6 = 1050, and DEBUG = 30000.

Input Operation Generated Coding

EXAM5 — DUMPR —» 301001
030000
000001

EXAM6 — DUMPM « 5 » 10000 —= 301051
030000
400002
000005
010000

A symbolic representation of the instructions generated is given below. The
first three instructions apply to both DUMPR and DUMPM. The last two instruc-
tions apply to DUMPM only.

— IRJP » DEBUG — Indirect return jump to DEBUG
— 0 ¢ DEBUG — Address of DEBUG
—X o [Y] X = 0 for DUMPR, 4 for DUMPM
= No. of DUMPR or DUMPM operation
in this program
— [No. of words] —= No. of words to be dumped
— [First address] — Address of first word to be dumped

Both DUMPR and DUMPM operations preserve existing values in AU, AL, and the
current B register.

TRIM III also provides two additional debugging operations for programmer use:
DSTOP and DTYPT.

L W
[1abel] ~— DsTOP —»
The DSTOP operation permits the programmer to intersperse strategic debugging
stops within his program. If the DEBUG operator is read in the assembly prior
to the PROG header, the DSTOP will generate an unconditional stop (505640);
otherwise, TRIM III will ignore the operation,

L W V0

babel] —> DTYPT o [text and/or typewriter commands]——»

II1-C-25

The DTYPT operation performs the same function as the TYPT operation. If the
DEBUG operator is read in the assembly prior to the PROG header, TRIM III will
perform the generation; otherwise, the operation will be ignored. -

2.6 TRIM III OUTPUTS

TRIM III provides 13 different outputs of the assembled and/or source program.
The user selects his outputs in accordance with his needs and the available
peripheral devices.

The available outputs are listed under the output device on which they are pro-
duced.

Monitoring typewriter:

No. 1 - Program summary consisting of the number of memory locations used
and inclusive addresses,

Paper tape punch: Except for outputs 6 and 11, all paper tapes are loadable via
the utility packages. Outputs 6 and 11 may be used as input to TRIM III,

No. 2

Absolute assembled program, sequential line identifier, source program,
and assembly error alarms when applicable. This is a side-by-side
listing in source code preceded by a program summary consisting of

the number of memory locations used and inclusive addresses.

No. 3 - Absolute assembled program in source code, consisting of a carriage
return, 88, carriage return, addresses and instructions, a carriage
return, double period and checksum.

No. 4 - Absolute assembled program in bioctal format, consisting of a 76
code, inclusive area addresses followed by the instructions only, and
a checksum,

No. 5 - Relocatable assembled program in bioctal format starts with a 75
code followed by the assembled program relative to base 00000, and
terminates with a checksum. The output tape may be loaded starting
at any desired memory location.

No. 6 - Allocation output in source code consisting of an ALLOC header,
followed by all program tags and labels and addresses in allocation
format.

No. 11- The source program only, produced in source code,

High-speed printer:

No. 12~ Absolute assembled program, sequential line identifier, deck and card

number if applicable, source program, and assembly error alarms when

applicable. This is a side-by-side listing suitable for hard-copy
editing and documentation,

I1I-C-26

CHANGE 1

-No. 14 - This is the same as output No. 12 except that there is no card in-
formation and page size is assumed to be 11 inches wide by 8%
inches long.

Card processor:

No. 13 -~ Relocatable assembled program on Hollerith-eoded 80-column cards.
The first card contains only the base load address. Subsequent cards
contain up to 8 computer words, a cumulative checksum, and a card
sequence number,

No. 15 - Source program only, on Hollerith-coded 80-column cards. Each card
contains one TRIM III statement as well as any card deck identifica-
tion and sequence number.

Magnetic tape unit:
Relocatable object program. Assembled object program in assemble table 3 format.

No. 10 - During assembly TRIM III automatically produces this output on the
magnetic scratch tape. The tape data can be loaded into the computer
memory absolutely or relocated to any specified base address by the
utility packages.

No. 16 - Source program on magnetic tape. This output does not include
declarative operations such as ALLOC, OUTPUT, or DECKID. Output
No. 16 may be used as input to TRIM III.

Miscellaneous:

No. 7 - Output No. 7 is not itself an output, but does affect all other
requested outputs, since it causes TRIM III to ignore all library
CALL operations of the input program.

3. PROGRAMMING PROCEDURES
3.1 PAPER TAPE INPUT FORMAT

Two versions of TRIM III are available; one version accepts a source program
paper tape prepared in field data code, the other version accepts a source
program paper tape prepared in ASCII code (refer to Appendix A, Tables A-2
and A-B) .

Each source tape must begin with a carriage return and terminate with a
carriage return and two periods.

3.1.1 KEYBOARD CORRECTION METHODS

Typing-error correction procedures have been incorporated in both versions of
the TRIM I, TRIM II, and TRIM III assemblers, and the TRIM corrector for deleting
immediate keyboard errors that might be made in the preparation of input tapes
for these programs on the UNIVAC 1232 and 1532 I/0 consoles. These procedures

mnT -

are described under TRIM I, paragraph 8.

I11-C-27

3.2 80-COLUMN CARD INPUT FORMAT

For those installations whose peripheral equipment configuration includes an
on-line card reader, TRIM III accepts source programs prepared in Hollerith
code on standard 80-column cards as well as source programs prepared on paper
tape. The two input types may be intermixed.

Basically the coding format is similar for either card or paper tape unit.

Interpretation of coding separator symbols for card input is given in
Table III-C-2,

TABLE III-C-2. CODING SYMBOLS FOR CARD INPUT

Symbol Rows Punched
—> (start statement) (none)
—> (start notés) 4,8 4,8 4,8
‘/ (carriage return) (none)

| (vertical line) 11, 3, 8

e (point separator) 11, 4, 8

. (period) 12, 3, 8

. (comma) 0, 3, 8

+ (plus) 12

- (minus) 11

The straight coding arrow is interpreted according to its format position; it
represents a SKIP key at the beginning of a statement and three dashes at the
end of a statement. The point separator is represented by the * key in all card
input.

Card control: The ENDATA operation card followed by one blank card denotes
the end of a card input deck.

Coding format: The examples on the top of page III-C-30 illustrate the basic
coding format for card input: (Also see Figure I1I-C-6).

I111-C-28

LABEL] OPERATOR OPERANDS AND NOTES

' WEADER TYPE

MS.

EXT

PROGRAMMER

PLT.

CODING FORM

62-0-1I11

of

PAN

TITLE
PAGE

[
PAN — PROG e CMR 4 OCTOBER 1964 XS-3 TO OCTAL INTEGER CONVERSION
B PAN —% 0 .) o
A —% ENTAU ® PTMP XS-3 INTEGER TO AU B
N —# ENTBK ® 3 ____SHIFT INDEX -
's| — ENTALK e 0) - o
x PANI —# LSHA e 6 _‘7
w — JPALZ e FAN2
—# ADDALK . M4 CHANGE_TO 6-BIT BCD -
—» LSHAL e 14
pllo{o] 0| FPAN2 — BJP e PANI
'Alloo]1 —& ENTBK ° 2 SET INDEX FOR 3 CHARACTERS
Nilojoj1 LAN3 _ —P® ENTAL e INCR CONVERSION LOOP
? 0[0] 1 —% LSHAL e 2
[%lolo1 —% ADDAL e INCR (INCR) INITIALLY CLEARED
&lojol1 — LSHAL ° 1
0lo/1 — STRAL e PTMP
0/0/1 —& ENTALK)
pllolo[1]7] | —% LSHA e 6
Ao ! —p ADDAL e ETMP
Njioj0 19} | —& STRAL e INCR
s!|olo] —» BJP ® DAN3
~)
Xl0.0 —» e e pPaAN CONVERTED VALUE IN AL AND INCR
Blolo PTMP —» 0 ° TEMPORARY
0[0 INCR —» 0 . INTEGER WORD _
0[0 —& ENDATA .
s - L
! —> °
—> .
- °
x —> L]
fre —> °
o
—» .
— .

Figure I1I-C-6. Typical Coded Programmer Card Input

DECK CARD INS

ID NO. NO. L W v N

BO17 0005 CAT4 —+>ENTAUB e+ DOG5-+MASK FOR SEARC‘H/
BO17 0005 05 — CMSK . CATlO‘/

BO17 0006 — JPNOT * LOK-3 — LOOK AGAIﬁ/

Card Tormat: Card format uses card columns 1-4 for deck identifier, 5-8 for

card number, 9-10 for card insert number, 11-16 for the label,
and 21-80 for statement and notes.

la——+»4 H 4+—>»8 9@«—>»10 lle—>16 2]le

Deck Id Card No. Ins. Label Statement - - - NOEEE/;?

No.

Three dashes (---), punched code 4,8, always follow the statement whether or
not there are notes. The REL (release) key terminates the card., TRIM III
makes no provision for the statement and notes to overflow one card., Any
attempt to continue notes on a second card results in improper generation
for that card.

The column-skip feature on the key punch provides a convenient means to bypass
unused columns reserved for the label. The keypunch operator begins a label
with column 11 and skips any unused columns between the end of the label and
column 21. If no label is present, the operator depresses the SKIP key and

the card is automatically positioned at column 21. The statement always begins
at column 21. Figure III-C-7 shows a typical input operation in punched card
format.

//Domoos7 FRMT1 CMSK*SPACE --—NO PARAGRAPH NUMBER

/’I i 1 (1] ittt n

n ini mie 11 1L 1
oooQ@oroon;ofoooosoooRoofgooosoeco0o00000006000f0000000000000500080000090008080
FIIASET RN RBINS TR ANNNUSRNINRNNNDUSRIBAAOLBUBEOBEN DU RINIBEROMBETNN I H SN
(T ARRRREERRRY ERRRRR RN ERRRRRRERY 51 RET ERRRRR RN RN R RN RN R RN RRR AR RRRRRERE!

f-23888

2202222222222 222222202222 22222222222222220 20222222 222422222122222222222212121
33333333333330333333§333333332333333333333333333333333333333333333233333333333133
Baaa a0t aQe st e aBatBaea e BRB 4004000000000 40800 0004000000000 000000
555555555955555555555555555 55555 5555555555555 555555555555555553555555558559
G6GEEGQEEoBoCoCEo600865Goa060C00scPOCGoesoCGO0E6666666666666666566666666666666666

UNIVAC

71111vrii;iiii""iiii'??? IRRRERRREE 1REE SR AERERERRRERRERERERREREERRERERREREREE]

.............

llllllIllIllIGIlIlllllllllllllll'lllllllllllllllllllllllllll&lllﬂlIlill%ﬁl&!l!sﬂ

PRINTED N U § A

-l“\?!!ll“!ill!ll! Ill 5"' ‘7113‘5 Y W tnuss 'lll! V!i]&(ﬂﬁi S0 59 86 §1 627 63 64 5 B6 6 61 50 3

9589999933399 ! 999 9989 ! L] KRR R | §] !!!!!!!!9!99!9!9339599!!99
T2y Hi " J

Figure III-C-7, Typical Punched Card Inpnt Operation

IT1-C-30

CHANGE 1
3.3 MAGNETIC TAPE INPUT FORMAT

TRIM III accepts source programs recorded on magnetic tape in the following
formats:

1) TRIM III Output No. 16 format.

2) All Magnetic tape outputs from the Card-to-Tape (CART) Processor
Program.

The TRIM III Output No. 16 consists only of source program operations; therefore,
any required declarative operations (for example, OUTPUT, ALLOC or DECKID) must
be provided by the user via cards as a separate tape. The output of CART in-
cludes all operations contained on the card deck used in the card-to-tape
operation.

3.4 SOURCE PROGRAM CORRECTIONS

When so directed by a CORREC header operation, TRIM III will perform source
program corrections in conjunction with an assembly run. Outputs from the
assembly will include the requested corrections. The following rules govern
the use of the correction capability:

1) A maximum of 192 corrections per assembly is allowed.
2) Corrections must follow the CORREC header.

3) All corrections must be loaded prior to the loading of the source
program to be corrected.

4) Corrections need not be in any special order. TRIM III will sort the
correction items prior to merging them with the source program.

5) If two or more correction operations bear the same integral and fractional
value, the last such operation overrides. This permits programmers to
correct an erroneous correction.

6) Corrections are based on the assembler-assigned sequéntial line identifier
for each source statement (see paragraph 2.2.4).

7) The integral and fractional portions of the correction identifier must
be expressed in octal notation only. The integer is limited to a maximum
of 6 digits; the fraction (which indicates insertion or addition) is
limited to 3 digits. The fraction is a straight binary magnitude, (for
example, the correction identifiers 122, 1220, and 12200 all have
the same value).

8) Corrections may be prepared on punched cards or punched paper tape.

ITI-C-31

CHANGE 1
4.4.1 PAPER TAPE CORRECTION FORMAT

The format of correction operations prepared on paper tape is identical to
that required by the TRIM corrector (refer to input formats in the TRIM
corrector description contained in this manual) with the following exceptions:

1) Corrections must follow a CORREC header.

2) A maximum of six integral digits is permitted.

3.4.2 CARD CORRECTION FORMAT

Specral formatting rules apply to correction operations prepared on 80-column
punched cards, Except for the CORREC header each correction action requires
two cards. The first card contains the integer and fraction of the sequential
identifier while the second card contains the correction operation itself. If
the correction operation is an insertion or replacement, the first ten columns
of this second card may also contain card identifications which are included in

the outputs 12 and 15 of the assembled corrected program, unless a DECKID
operator is used.,

On the first card, the integral portion of the sequential identifier must begin
in column 11, A point separator (asterisk) must not be used. The fractional
portion, if any, must begin in column 21 and must be terminated with the con-
ventional three dashes. If there is no fraction, one zero code followed by the
three dashes must still be punched beginning at column 21,

An ENDATA card followed by a. blank card must always follow the last correction
card even if other cards are to follow in the assembly.

The following example of card correction format makes changes to the program
illustrated in Figure III-C-8.

Column: 11 21
Card 9 r///f]
Card 8 r//, ENDATA --- |
Card 7 ‘/LIBX00191 0nTT - I
Card 6 r//, 22 1 ——- l
Card 5 r///k DELETE *3 l
Card 4 |/ 14 0 --- |
Card 3 r///VLIBX0011 CAD 0%1000 --- Current Address]
Card 2 r//! 12 0 ——n l
Card 1 r//, BITSUM CORREC --- I

III-Cc-32

CHANGE 1

PAGE 001
OUTPUT 12
MEM. STRG. USED 11061
00240 THRU 00404
01000 THRU 07743
20000 THRU 21747
L.OK INSTR L1ID DECK CARD LO
0 LIBX 0001 BITSUM PROG*JRS*6NOV64 FLEX
00240 34 0364 1 LIBX 0002 BITSUM JP*SEOK LIBBLD BOTTSTRAP LOAD
00241 76 0355 2 LIBX 0003 UPAKX RJP*ERP
00242 40 0247 3 LIBX 0004 UPAK CL*CHECK CLEAR ACCUM CKSUM
00243 42 0254 4 LIBX 0005 STRB*BNASTY SAVE B
00244 76 0345 5 LIBX 0006 UPAK1 RJP*RF READ FRAME
00245 61 0244 6 LIBX 0007 JPALZ*UPAK1 IGNORE LEADER
00246 34 0270 7 LIBX 0008 JP*BILD
00247 00 00000 10 LIBX 0009 CHECK o* ACCUM CKSUM
00250 00 0000 11 LIBX 0010 SUM 0* ZERO CONST
00251 00 0000 12 LIBX 0011 CAD o* CURRENT ADDR
00252 00 0000 13 LIBX 0012 FAD o* FINAL ADDR
00253 00 0076 14 LIBX 0013 BIO T6* BIOCTAL CODE
00254 00 0000 15 LIBX 0014 BNASTY 0% BKEEPER
00255 00 0000 16 LIBX 0015 BUWD 0* DATA 1/0 BUFFER
00256 (0 0000 17 LIBX 0016 0*
00257 00 0000 20 LIBX 0017 0*
00260 00 0000 21 LIBX 0018 0*
00261 00 0000 22 LIBX 0019 o*
00262 00 0000 23 LIBX 0020 0*
00263 00 0000 24 LIBX 0021 0*
00264 00 0000 25 LIBX 0022 0*
00265 00 0000 26 LIBX 0023 0*
00266 00 0000 27 LIBX 0024 o*
00267 00 0000 30 LIBX 0025 o*
00270 40 0247 31 LIBX 0026 BILD CL*CHECK
00271 10 0250 32 LIBX 0027 ENTAU*SUM CL AU
00272 76 0335 33 LIBX 0028 RJP*BILD7 6 DIGITS OF ADDRS
00273 50 4717 34 LIBX 0029 LSHA*17
00274 46 0251 35 LIBX 0030 STRAU*CAD
00275 10 0250 36 LIBX 0031 ENTAU*SUM
00276 50 4703 37 LIBX 0032 LSHA*3
00277 70 0001 40 LIBX 0033 ENTALK*1
00300 74 0336 41 LIBX 0034 STRADR*BILD7+1
00301 76 0335 42 LIBX 0035 RIP*BILD7 GET REST OF ADDRS
00302 44 0252 43 LIBX 0036 STRAL*FAD
00303 70 0002 44 LIBX 0037 ENTALK*2
00304 74 0336 45 LIBX 0038 STRADR*BILD7+1
00305 76 0335 46 LIBX 0039 BILD2 RJP*BILD7
00306 32 0251 47 LIBX 0040 ENTB*CAD

Figure III-C-8, TRIM III Output 12 from Card Input

CHANGE 1

3.5 GROUND RULES

Regardless of the input format, there are certain conventions which the pro-
grammer must bear in mind when coding for TRIM III.

1) No label may exceed six characters. The label must not begin with a
number, the letter O, nor may it consist only of letters LOK. The label
may never contain a +, -, comma, or point separator code.

2) The maximum size program which TRIM III can assemble is limited only by
the number of memory locations above address 13000g used for label/tag
storage (3 words per label or tag).

3) Each break in addressing sequence constitutes a program area. A total
of 64 such areas is permitted.

4) TRIM I operators SETADR and EQUALS are ignored by TRIM III. The ALLOC
operation replaces these two functions.

5) When specifying a decimal integer, the letter D occupies one digit position:
therefore, the maximum decimal integer that can be expressed is 99999D.

6) Assembler support subroutines TYPT, TYPC, PCHT, PCHC, and the debugging
package, DEBUG, are included in the TRIM III library of subroutines. The
programmer uses a CALL operation to retrieve them from the library. The
programmer may allocate these subroutines through normal ALLOC operations.
If he does not allocate them, TRIM III will assign them sequential
addresses immediately following the principal program. If these sub-
routines are not assembled with the principal program and the programmer
has not provided for their allocation, TRIM III will arbitrarily assign
all references to them to the following fixed addresses:

TYPT 17000
TYPC 17160
PCHT 16400
PCHC 16560
DEBﬁG 17470

Each of these five subroutines uses the tag CHAN for all I/O instructions,
It is the programmer's responsibility to provide an ALLOC operation
equating CHAN to the appropriate I/0 channel.

7) If a program contains ADDA, ADDAB, SUBA, or SUBAB instructions, regardless
of whether or not a DBLSET operation was used, the following restrictions
shall apply to loading a TRIM III output No. 5, 10, or 13 intc computer
memory :

a) If the program was assembled starting at an even address, it must be
loaded starting at an even address.

I11-C-34

CHANGE 1

b) If the program was assembled starting at an odd address, it must be
loaded starting at an odd address.

8) TRIM III informs the user of a duplicate label via a typeout on the on-
line typewriter. The typeout includes the sequential line identifier,
the warning, DUP LBL, and the label name. Except for the warning typeout
TRIM III will normally ignore duplicate labels equating all references to
the address of the first such label. However, if the user has allocated
a label which is in fact a duplicate, that allocation is lost with un-
predictable results in address assignment.

9) Any program to be assembled by TRIM III must be assembled for only one
32K segment of memory, either 000000 through 077777 or 100000 through
177777. This means that the assembled program must reside in one 32K
segment or the other, but not both. This does not preclude inter-segment
references which would be implemented exactly as for inter-bank references.
The TRIM assemblers do not provide any alarm indications for this condition.

4. TRIM III LOADING AND OPERATING PROCEDURES
4.1 BASIC INFORMATION

TRIM III is a magnetic-tape-stored assembly system which accepts source programs
written with absolute or mnemonic function codes and symbolic addressing and
produces assembled output programs suitable for loading into the computer and/
or hard copy editing and documentation. TRIM III has been designed to fit the
channel and equipment configuration of the center in which it is used. The
assembler provides the user with a simple means for selecting three optional
modes of input, and each mode is represented by a number code.

Input Mode Number Code
Cards 000001
Paper Tape 000002
Magnetic Tape 000003

Each TRIM III has one normal mode built into it (the one prevailing at the center
where it is used). If only the normal mode is required, the user need not con-
cern himself with the modes at all. However, if different input modes are to

be used (for example, card and paper tape in combination) TRIM III users must
familiarize themselves with the input mode codes and their use,

Prior to loading and operating TRIM III, the computer and the I/0 equipment

(magnetic tape unit, I/0 console or card processor) must be placed in the
cperational state with all switches in the normal operating position,

III-C-35

CHANGE 1
4.2 LOADING TRIM III

1) For installations possessing a magnetic tape wired bootstrap:

a) Mount the TRIM III assembler tape on magnetic tape cabinet 1,
transport 1, and set the corresponding write enable button on
the magnetic tape control panel.

b) At the computer control panel, press MASTER CLEAR, LOAD, and
START. The TRIM III executive will be loaded into memory and the
computer will stop with P = 01404.

2) For installations possessing a paper tape wired bootstrap:

a) Mount the TRIM III assembler tape on magnetic tape cabinet 1, trans-
port 1, and set the corresponding write enable button on the magnetic
tape control panel.

b) Mount the TRIM III paper tape loader in the paper tape reader.

c) At the computer control panel, press MASTER CLEAR, LOAD, and START.
The TRIM III executive will be loaded into memory and the computer
will stop with P = 01404,

4.3 INITIALIZING TRIM III

When the computer stops with P = 01404, it is necessary to-identify the magnetic
tape configuration to be used for assembly. This identification need be made
only once for all subsequent assemblies unless it is necessary to change the
configuration, TRIM III expects tape information in the format OOXXCT where XX
is the channel number (bits 6 through 11), C is the tape cabinet number (bits

3 through 5), and T is the transport number (bits O through 2). Thus, 001512
represents channel 15, cabinet 1, transport 2, and 000112 represents channel

1, cabinet 1, transport 2,

The procedures required to initialize TRIM III are as follows:

1) Set the AU register to the number (OOXXCT) which identifies the location
of the assembler tape. '

2) Set the AL register to the number (OOXXCT) which identifies the transport
to be used as the magnetic scratch tape.

3) Start the computer. The computer stops with AU and AL cleared.

4) If only two transports are to be used in the assembly, start the computer.
When the computer stops with P set to 01400, TRIM III is ready for use
(refer to paragraph 4.4).

5) If more than two transports are to be used in the assembly, perform the
procedures below.

a) If source input is to be from magnetic tape, set the AU register to

the number (OOXXCT) which identifies the transport to be used for
source input.

III-C-36

CHANGE 1

b) If a magnetic tape output other than output No. 10 is to be requested,

set the AL register to the number (OOXXCT) which identifies the
transport on which the output is to be produced. Output No. 10 is
always produced on the scratch tape.

c) Start the computer. When the computer stops with P set the 01400,
TRIM III is ready for use (refer to paragraph 4.4).

If, at any time during assembly, the user wishes to change the magnetic tape
configuration, he may do so by setting P to 01404 and repeating the initiali-
zation procedures.

4.4 USING TRIM III

1)

2)

3)

4)
5)
6)
7)
8)

9)

10)

11)

For paper tape input, mount the source tape in paper tape reader.
For card input, initialize the card reader.

For magnetic tape input, mount the input tape as follows:

a) If two tape transports are being used, mount the input tape on
the scratch tape transport.

b) If three or four transports are being used mount the input tape
on the transport designated for the input tape. Since this transport
is used only for magnetic tape input, no warning typeout occurs.
Master clear.
Set P = 01400.
Set PROGRAM SKIP key 1.
For error typeout suppression, set PROGRAM SKIP key 3.

If source input is other than the normal mode, set AL to the proper
code. (For normal mode, AL remains equal to zero.)

Start the computer.

TRIM III prepares to read input. If further operator action is necessary
to continue assembly of the input currently being read, the computer

stops after an operator instruction typeout occurs on the on-line type-
writer, Refer to paragraph 4.5 to determine the operator action required.

When the current read-in is complete, the computer stops with AL equal to
zero, At this time the operator must perform one of the following:

a) If additional input is required, mount the source input on the input

device as directed in 1), 2), or 3) above and restart the procedure
at step 8) above.

I11-C-37

CHANGE 1

b) If no additional input is required, release PROGRAM SKIP key 1 and
 start the computer. TRIM III begins assembling the program., If
further operator action is necessary, the computer stops after an
operator instruction typeout (refer to paragraph 4.5).

12) If for any reason the operator wishes to abort an output during process-
ing, he must perform the following procedures:

a) Stop the computer.
b) Master clear the computer.
c) Set the P register to 01401.

d) Start the computer. TRIM III begins processing the next requested

output. If all outputs have been processed, the typeout SELECT
OUTPUTS IN A will occur.

NOTE: Since TRIM III includes correction features, it is possible to correct
a source program and assemble it for the desired new outputs in the
same assembly run. Although this feature is intended primarily for the
paper tape input mode, it may be used with any combination of input
modes. Correction tapes or cards must be read in before the source
program(s). If the assembly consists of multiple source programs, it
must be remembered that the sequential line identifiers are cumulative
and the corrections are based upon these identifiers in any given
assembly. The input of the corrections and source program proceeds as
in a normal assembly run., After the corrections have been read in, the
source program(s) must follow with PROGRAM SKIP key 1 still set., Any
outputs selected will contain the requested corrections including source
program outputs 15 (cards), 11 (paper tape), and 16 (magnetic tape).

4.5 OPERATOR INSTRUCTION TYPEOUTS

TRIM III contains limited error detection capability. The majority of programmer
errors are handled internally. However, it is desirable when practicable to
permit the user to take corrective action during the assembly process in order

to achieve an accurate assembly., The headings of the subparagraphs which follow
are instruction typeouts that may occur during assembly. Information given

in each subparagraph directs operator actions required by the typeout. When
PROGRAM SKIP key 3 is set, certain typeouts are suppressed.

4.5.1 SET KEY 1
This typeout will occur if the user has not set PROGRAM SKIP key 1 at the start

of the assembly process. To correct, set PROGRAM SKIP key 1 and start again.
PROGRAM SKIP key 3 has no effect on this error typeout.

ITI-C-38

CHANGE 1
4.5.2 IDENT. MTUS IN A

This typeout occurs when no magnetic tape configuration identification has been
made prior to the first assembly, To correct this condition, perform the follow-
ing steps:

1) Identify magnetic tape units exactly as outlined in paragraph 4.3 of
this section.

2) Start the computer. PROGRAM SKIP key 3 has no effect on this error
typeout.

4.5.3 IDENTIFY TAPE JOB IN AL

This typeout occurs when the magnetic tape input to be read is in the format
produced by the CART (card-to-tape) program. Since this format may contain
more than one source program on the same tape, the operator must identify the
program to be read from tape by performing the following actions:

1) Set the AL register to the number which identifies the position of the
program on the tape (1 for the first program, 2 for the second program,
and so forth).

2) Start the computer. TRIM III directs the tape unit to pass tape until
the selected program is reached and then begins reading the input program.
If two or more programs on the same tape are to be assembled together,
these procedures are repeated for each program,

4.5.4 REMOVE INPUT TAPE TO SAVE

This typeout occurs when input has been read from the magnetic tape transport
identified as the scratch transport. The output No. 10 will also be written
on this transport during the assembly process, Therefore, if the input tape
is to be saved, the operator must change the tape on the scratch transport
before the output No. 10 is produced. This typeout occurs each time a magnetic
tape read-in is completed; therefore, if more than one input program is read
from the same magnetic tape, the operator must remove the-tape only after the
last input has been read. After the last magnetic tape input has been read
and the tape has been removed, the operator must mount a scratch tape on the
scratch tape transport and proceed with the assembly at step 11) of paragraph
4.4,

«4.5.5 SELECT OUTPUTS IN A

This typeout may occur twice during an assembly. If it occurs before any out-
puts have been produced, it indicates that the programmer has neglected to
select outputs via a programmed output operation. To correct this condition,
perform the following steps:

1) Set AUs_g and AL5_0p to desired output numbers.

2) Start the computer,

I11-C-39

CHANGE 1

a) The computer stores the outputs and stops. Repeat steps a) and
b) until all desired outputs (not more than eight) have been
selected. When the procedure is repeated with either AU or AL
equal to zero, TRIM III assumes all selections have been made
and proceeds. PROGRAM SKIP key 3 has no effect on this typeout.

If this typeout occurs after at least one output has been produced, it indicates
that the assembly is complete. If another program is to be assembled at this
time, the operator may elect to stack the output No. 10 for the next program
behind the output No. 10 for the previously assembled program on the scratch
tape. To select this option, perform the following steps:

1) Set PROGRAM SKIP key 2.

2) Start the computer. After TRIM III performs an index table adjustment,
the computer stops with P set to 01400,

3) Release PROGRAM SKIP key 2, and begin assembly of the next program.

4.5.,6 IF NECESSARY CHANGE SCRATCH TAPES FOR THIS OUTPUT

This typeout occurs when a magnetic tape output, other than output No. 10, has
been requested but no tape transport has been identified for magnetic tape
output. The typeout indicates that TRIM III is ready to write the magnetic
tape output on the scratch tape and destroy the output No. 10 in the process,

If the operator does not wish to save the output No. 10, he may start the
computer to continue assembly. If the operator does wish to save the output
No. 10, he must change the tape on the scratch tape transport before starting
the computer to continue assembly.

4.5.7 MTU ERROR CTXX IMPR. COND.

typeout indicates an error cond on the XX tape unit. r

s ition The use
st correct the condition before restarting the assembly. PROGRAM SKIP key 3
as no effect on this error.

|,.o

hi

mu
h
4.5.8 SET BASE ADDR. IN AL

This typeout indicates that the programmer has neglected to allocate the first
program label. To correct, set ALj5_0 to the desired base address and start.
If PROGRAM SKIP key 3 is set, TRIM III arbitrarily allocates the program to
address 01200, and no typeout occurs,

4.5.9 NNNNN DUP. LBL XXXXXX

This typeout occurs when the source program contains at least two identical
labels. TRIM III equates all references to a duplicate label to the address
of the first such label. TRIM III does not stop after the typeout. NNNNN is
the sequential program line identifier number and XXXXXX is the duplicate
label. If PROGRAM SKIP key 3 is set, the typeout does not occur,

ITII-C-40

CHANGE 1

4.5.,10 UNALLOC TAGS
NNNNN XXXXXX AAAAA

By far the most common programmer error is the use of a tag for which no
allocation was made and which does not appear anywhere in the source program
as a label. TRIM III will stop after typing NNNNN XXXXXX (sequential line
-identifier and tag name). To correct, perform the following steps:

1) Set AL to the address at which the tag is to be allocated (if the
tag is to be allocated to zero, leave AL clear).

2) If the tag refers to an instruction contained within the program
being assembled, set AL;7 to a 1.

3) If the user wishes he may allocate all future unallocated tags to the
address in AL by setting AU to any nonzero value.

4) Start the computer. TRIM III types the manual allocation and uses it to
continue assembly,

The typeout UNALLOC tags occurs once only. Thereafter, only the identifier
and the tag are typed. If the user elects to allocate all unallocated tags
to a fixed address, only the first such tag is typed.

If PROGRAM SKIP key 3 is set, TRIM III arbitrarily allocates all unallocated
tags to address 00000.

4,5.11 TCS ERR XX TBL XX

This typeout indicates the table control system (TCS) of TRIM III has detected
an error while attempting to operate on the indicated table. When meaningful,
the number of the item being manipulated when the error occurred is displayed
in AU. Table III-C-3 describes the errors which TCS detects.

TRIM III has been designed so that a table overflow error will seldom occur.
If a table overflow error does occur, the programmer may extend the limits of
the table as set in the table design and restart at the TCS entrance 10012.

If the limits cannot be extended, the programmer must eliminate the cause of
the overflow or reassemble his program in smaller segments. PROGRAM SKIP key 3
has no effect on errors of this type.

4.5.12 POLY-CODE BANK OFL
This typeout indicates that generation resulting from a poly-code used in the
source program has nverflowed from one bank to the next. TRIM III does not

stop following this *ypeout but will produce the selected outputs even though
they will require correction. PROGRAM SKIP key 3 has no effect on this typeout.

I11-C-41

CHANGE 1

TABLE III-C-3. TCS ERRORS

Error
Number ’ Meaning Usual Cause
1 Illegal Table Number*
2 Illegal Media Designation*
3 Illegal TCS Function Code* Assembler error, Bad
TRIM III tape
4 Misused Q-Replace
5 Illogical TCS Function Sequence
6 Table Not Found* CALL used but no Library
Directory on tape
7 Table Overflow Too many labels, segments,
or corrections
8 Too Many Tape Units Referenced
or Item Length of Zero Loose cabling
9 Unrecoverable Tape Error
Table 1 Bad scratch area behind
TRIM III
Table 3 Bad scratch tape

% .
Incorrect table design or control parameters,

ITI-C-42

CHANGE 1
SECTION IV. QPERATOR SERVICE ROUTINES

Operator service routines are those routines used by the computer operator,
under manual control, to perform computing center operations. Such routines
perform handling service to the user; however, they do not become integrated
into his programs. This category includes routines such as load/dump packages,
trace debugging routines, and program corrector routines.

UPAK I - This is a paper tape utility package which loads assembled program
tapes and makes memory dumps on paper tapes. The package provides other
console conveniences such as inspect and change memory cell contents, store
constant in memory, and so forth,

UPAK III - This is an expanded modular utility package. The modules of the
package operate normally under manual control; however, they can also be
activated under program control. A control routine loads one or all modules
as specified by parameters. The package has the following capabilities:

1) Paper tape handler.

2) Computer control panel operations such as inspect and change.

3) Magnetic tape handler, UMTH (basic handler for UNIVAC magnetic tape system).
4) Magnetic tape duplicator.

5) Loader for assembler produced magnetic tape object programs.

6) Memory dump on the high-speed printer.

7) Card/load/dump.

8) Print image on magnetic tape and tape-to-printer.

9) Magnetic tape handler, JOSH (complete handler for magnetic tape system).

Since UPAK III is modular, additional utility functions may be added without
changing the general characteristics of the package.

TRIM corrector - This routine corrects source programs. It reads correction
tapes and erroneous source tapes into the computer, makes the necessary cor-
rections, and punches a corrected tape. The routine is a companion to the
TRIM I and TRIM II assemblers.

TRIM library builder ~ This routine updates source magnetic tape libraries
which are used with the TRIM III assembler. It also has editing capabilities.

Trace debugging program - This program traces the execution sequence of a
program during a processing run. It produces serial information pertaining

to the address and contents of the instruction executed, operand if applicable,
B register content, and the entire A register.

CART - This routine performs a punched-card-to-magnetic tape conversion, with
optional correction and listing capability.

Iv-1

SECTION IV-A. UPAK I PAPER TAPE UTILITY PACKAGE

1. GENERAL INFORMATION

UPAK I is a collection of routines combined into one program which is designed
to perform utility functions for computer operators and programmers. The
routines which comprise UPAK I are:

1) Paper tape load.

2) Paper tape absolute bioctal dump.

3) Paper tape absolute typewriter code dump.
4) Typewriter dump.

5) Inspect and change.

6) Store constant.

7) Search memory.

8) Copy paper tape.

The paper tape load and dump routines can be operated either manually from the
computer control panel or under control of a user's program. All other
routines must be operated manually from the computer control panel. When

any of the routines are operated manually, interrupts are locked out.

UPAK I occupies approximately 2250 (octal) memory locations. It may be
loaded at any desired address in memory above 01000; however, the entire
package must be loaded within one memory bank. UPAK I is supplied with a
self-loader on the front of the tape. The computer's wired paper tape
bootstrap loads the self-loader, which then may be used to load UPAK I. The
self-loader uses addresses 00540 through 00777 in core memeory.

2. PROGRAM DESCRIPTION

When UPAK I is loaded in memory, each individual routine can be used to per-
form one or more specific functions. The routines are accessible through
entrance addresses, which are octal increments relative to the base address
(address at which UPAK I is loaded). Table IV-A-1 specifies the entrance
addresses for all UPAK I routines. If a routine is operated manually, the
operator enters the routine by setting the P register to the entrance address
after manually setting any necessary initial parameters. If the routine is
operated under program control, the controlling program must first set initial
parameters and then execute a return jump to the programmed entrance address.

TABLE IV-A-1. UPAK I ENTRANCE ADDRESSES

Entrance Type of Entry and
Address Routine Entered
Base Address + 0O Programmed entrance. Paper tape load
+ 2 Programmed entrance. Paper tape

absolute bioctal dump

IV-A-1

TABLE IV-A-1. UPAK I ENTRANCE ADDRESS (CONT.)

Entrance Type of Entry and
Address Routine Entered
Base Address + 4 Programmed entrance. Paper tape
absolute typewriter code dump
+ 6 Manual entrance. Paper tape load
+10 Manual entrance. Paper tape

absolute typewriter code dump

+12 Manual entrance. Paper tape
' absolute bioctal dump

+14 Inspect and change

+16 Store constant in memory
+20 Search memory

+22 Copy paper tape

+26 Typewriter dump

2.1 PAPER TAPE LOAD

The paper tape load routine consists of a load selector and three load sub-
routines. The load selector reads paper tape until a nonzero frame is

found. It then examines the nonzero frame to determine the type of tape to
be loaded, and calls one of the three load subroutines to load the tape. The
table below lists the criteria used to select the load subroutine.

Nonzero Frame Subroutine Called

75 Load relocatable bioctal code
76 Load absolute bioctal code
All other codes Load absolute typewriter code

2.1.1 LOAD ABSOLUTE TYPEWRITER CODE

A carriage return followed by either an 8 or an 88 and another carriage

return normally activates this load subroutine. A single 8 indicates the input
tape has no checksum; and 88 indicates the input tape has a checksum. The
subroutine ignores any data which may precede either of these two combinations.
Each tape instruction is preceded by a 5-digit address. Addresses need not

be sequential; however, all five digits must be present. The next 6 digits
constitute the instruction to be loaded; all six digits must be present. The

IV-A-2

load subroutine, in effect, accumulates the first 11 octal digits following

a carriage return and loads the last 6 digits at the address specified by

the first 5 digits. All other character codes, including notes, are ignored.
A carriage return signals the end of the instruction. If less than 11

octal digits are accumulated, the instruction is not loaded. A final carriage
return followed by a double period (..) terminates the load and initiates a
checksum verification when required. The tape format is shown below.

No checksum format Checksum format

8 88

AAAAA IIIIII AAAAA TIIIIII

AAAAA IIIIII . AAAAA TIIIII

AAAAA TIIIIII AAAAA IIIIII
Cccccce

PROGRAM SKIP keys may be set to provide several options during the load (refer
to paragraph 3.2.1).

2.1.2 LOAD ABSOLUTE BIOCTAL CODE

The absolute bioctal tape must begin with a 76 (code for absolute bioctal tape).
Immediately after the 76 code are the initial and final addresses consisting

of five digits each. 6-digit instructions follow without further addressing,
and the tape is terminated by a 6-digit checksum. The tape format is shown
below.

Absolute Bioctal Tape Format

76 Absolute Bioctal Code
II

II

IF I - Initial address
FF

FF F Final address

XX

XX X - Instruction words
XX

XX

LY

XX
XX
XX
CC C - Checksum
CcC
CcC

IV-A-3

The load subroutine stores the initial and final addresses and begins load-

ing the instructions into memory starting at the initial address. As each
three frames of tape are read, they are loaded into the next sequential address
in memory. After the final address has been loaded, the subroutine verifies
the checksum. PROGRAM SKIP keys may be set to provide several options during
the load (refer to paragraph 3.2.1).

2.1.3 LOAD RELOCTABLE BIOCTAL CODE

The relocatable bioctal tape must begin with a 75 (code for relocatable bioctal
tape). The entire program must be relative to base zero. Six-digit instruc-
tions follow the 75 code without addressing. Each instruction is preceded by
a l-digit modification code which tells the load subroutine how to modify the
instruction for storage. The tape is terminated by a 6-digit checksum preceded
by a code of 7. The computer operator specifies the load base address in AU;
the load routine then uses this information to accomplish the tape load. The

tape can be loaded anywhere in computer memory. The tape format is shown
below:

Relocatable Bioctal Tape Format

75 Relocatable bioctal code
MX M - Modification code

XX X - Instruction words

XX

XM

XX

XX

XX
MX
XX

X7 7 - Checksum code
CcC C - Checksum

CcC

CcC

1V-A-4

Modification codes appearing on a relocatable bioctal tape are:

Code Meaning Type of Instruction

0 - No modification Constant or 4-digit Y unmodified
1 Add base address to Y11-O 4-digit Y modified

2 No modification S5-digit Y unmodified

3 Add base address to Y14;O S5-digit Y modified ,(bit 15 is set

to O or 1 depending on specified
base address)

4 Increment current load Negative or positive increment
: address by instruction
value.
5, 6 Not used Not used
7 Checksum follows Tape checksum

PROGRAM SKIP keys may be set to provide several options during the load
(refer to paragraph 3.2.1).

2.2 PAPER TAPE ABSOLUTE TYPEWRITER CODE DUMP

This routine punches the contents of a specified memory area on paper tape in
absolute typewriter code. The format in which the tape is dumped is the same
as the "88" format (with checksum at the end) described in paragraph 2.1.1.
The output tape includes both the addresses and the contents of the memory
locations being dumped. The routine provides the option of typing the out-
put rather than punching it on tape.

2.3 PAPER TAPE ABSOLUTE BIOCTAL CODE DUMP

This routine punches the contents of a specified memory area on paper tape in
absolute bioctal code. The format in which the tape is dumped is the same

as the format described in paragraph 2.1.2. If more than one program area is
dumped successively on the same tape, the areas may be separated by either a
2-frame leader or a 256-frame leader. The 2-frame option permits the tape

to be loaded continuously (without stopping between areas).

IV-A-5

2.4 INSPECT AND CHANGE

The inspect and change routine causes the contents of memory location
specified in AU to be displayed in AL. The contents of AL may then be
changed manually. (AL) is then returned to the memory address from which it
was taken. The inspection address need be entered only the first time since
(AU) is increased by 1, and the contents of sequential addresses will be
brought into AL with each successive performance of the inspect and change
function. If the user wishes to inspect the contents of some addresses other
than the next sequential address, he may do so by setting the new address

in AU before returning AL to memory. The routine provides the option of

punching and/or typing the inspect addresses and their contents. The format
of the punched tape and typeout is given below.

READ-WRITE

8

AAAAA NN NNNN FF FFFF

.

AAAAA NN NNNN FF FFFF

AAAAA is the inspect address,NN NNNN is the new content of the address, and
FF FFFF is the former content of the address. The punched tape may be used
as an errata tape for the program in memory.

2.5 STORE CONSTANT IN MEMORY

This routine stores a constant in a specified number of consecutive memory
addresses. The operator manually enters the constant and the limits of the
memory area. If a constant of zero is specified, the memory area is cleared;
however, the routine never clears addresses occupied by UPAK I.

2.6 SEARCH MEMORY

This routine searches a specified memory area for all values which satisfy the
conditions specified by a mask and a searchand. All values in the memory

area that satisfy the conditions are typed on the console typewriter. The
format of the typeout is given on the next page.

IV-A-6

SEARCH 1219

LLLLL TO UUUUU
MM MMMM SS SSSS
AAAAA CC CCCC
AAAAA CC cCCC

AAAAA CC CCCC
END SEARCH

LLLLL and UUUUU are the lower and upper limits of the search area; MM MMMM is
the mask; SS SSSS is the searchand; and AAAAA is the address of a word, CC
CCCC, which. satisfies the conditions of the mask and searchand. An example
is given below to demonstrate the capability provided by this routine.

Example:

Assume that the operator wishes to find all I/O instructions in a program
loaded in memory beginning at address 010000 and ending at address 020000.
The typeout below illustrates the limits, mask, and searchand to be specified.

SEARCH 1219

10000 to 20000 } Memory limits

77 4000 50 0100} Mask and searchand
10123 50 1306 |
12777 50 1106
13011 50 1203 L Instructions which
14000 50 3600 satisfy conditions
16520 50 1305 of mask and searchand
16540 50 1105
17000 50 1505
17500 50 3200
END SEARCH

2.7 COPY PAPER TAPE

This routine produces on exact copy of a paper tape. It is a faster and more
reliable method than off-line duplication.

2.8 TYPEWRITER DUMP

This routine produces a typed hard copy of the contents of a specified memory
area. The format of the output is shown on the next page.

IV-A-T7

CORE DUMP FROM LLLLL TO UUUUU

LLLLL ~ CCCCCCy CCCCCCy . €cgcec,
BBBBB ---
XXXXX e CCCCCCn

LLLLL and UUUUU are the lower and upper limits of the memory area to be
dumped; CCCCCo is the contents of the lower limit; CCCCCC, through CCCCCCy
are the contents of the next seven sequential addresses; and BBBBB is 10
(octal) greater than LLLLL, CCCCCC, is the contents of the upper limit,
Addresses are typed only for every 10 (octal) words. If the content of any
address is zero, it is indicated by a blank space rather than zeros. If one
entire line contains all zeros, it is indicated by a blank line. If two

or more consecutive lines contain all zeros, only one blank line appears on
the output. The routine provides the option of punching the information on

paper tape.
3. LOADING AND OPERATING PROCEDURES

3.1 LOADING UPAK I

UPAK I is provided on punched paper tape. The tape is subdivided into two
parts: a self-loader in absolute bioctal format and UPAK I in »elocatable
bioctal format. To load UPAK I, the following procedure is used:

1) Place the tape in the reader.
2) Master clear the computer and read-punch unit.
3) Press the LOAD button to activate paper tape bootstrap.

4) Start the computer. The computer stops with AU and AL equal to
zero after the self-loader is in memory.

5) Set AU to the desired UPAK I base address.

6) Start the computer. The computer stops with AU and AL equal to zero
after UPAK I has been loaded.

After UPAK I has been loaded into memory, addresses 00540-00777, occupied by
the UPAK I loader, are available for use. It should be noted, however, that
any subsequent loading of UPAK I will use these addresses to accomplish the
load.

Automatic checksum verification by the paper tape load subroutines is the only
error detection function performed by UPAK I. If tape and load checksums
agree, the computer comes to a normal stop with AU and AL equal to zero. If

they do not agree, the computer stops with (AU) = load checksum and (AL) = tape
checksum.

IV-A-8

The format of the UPAK I tape is such that only the self-loader is loaded

via paper tape bootstrap. Control is then given to a temporary checksum
verification routine which verifies that the self-loader is properly contained
in memory. If verification is correct, the computer stops with AU and AL
clear. Upon restarting, control is given to the self-loader which loads

UPAK I. 1If verification is incorrect, the computer stops with AU equal to

the load checksum 2nd AL equal to the tape checksum. After UPAK I has been
loaded, the same checksum indication is provided in AU and AL.

3.2 USING UPAK I

The procedures required to operate all routines of UPAK I are given in the
following subparagraphs. All procedures are for manual operation and

assume that the computer and I/0 console have been placed in the operational
state with all switches in the normal operating position. If paper tape
load and dump routines are to be operated under program control, input
parameters must be set by the controlling program before the program
executes a return jump to the programmed entrance of the routine.

3.2.1 PAPER TAPE LOAD
1) Master clear the computer.
2) Set the P register to the UPAK I base address +6.
3) Mount the tape to be loaded in the reader.

4) If the tape to be loaded is relocatable, set the AU register to
the starting address of the load.

5) Set the PROGRAM SKIP key options desired (refer to 7) below).

6) Start the computer. The computer stops when the tape is loaded.
Load error indications are dependent upon the load options selected.
If no options are selected, the computer stops with AU equal to the
computed checksum and AL equal to the tape checksum. If checksums are
equal, AU and AL are clear.

7) Load Options. The following options are selectable via PROGRAM SKIP
keys:

a) Absolute Bioctal Load

1. PROGRAM SKIP key O - If this key is set, a tape checksum veri-
fication is performed but information read from tape is not
stored in memory. At the completion of the read, AU is set to
the computed checksum and AL is set to the tape checksum. If
the checksums are equal, AU and AL are cleared.

2. PROGRAM SKIP key 3 - If this key is set, program areas are

1V-A-9

typed on the on-line typewriter. The format for each area is:

BBBBB TO EEEEE

BBBBB is the beginning address and EEEEE is the end address.

3. PROGRAM SKIP key 4 - If this key is set, a tape verify is
performed. This option causes information read from tape to
be compared to information stored in core memory. Differences

are indicated in one of three ways depending upon the setting
of PROGRAM SKIP keys 1 and 2.

a. If PROGRAM SKIP key 1 is set, differemces are typed on
the on-line typewriter in the following format:

AAAAA TT TTIT CC CCCC

AAAAA is the core address, TTTTTT is the tape word and
CCCCCC is the core word.

b. If PROGRAM SKIP key 2 is set, differences are punched on
paper tape for off-line listing. The format is the same
as for on-line typeout.

c. If PROGRAM SKIP keys 1 and 2 are not set, differences are
displayed in AU and AL during computer stops. During the
first step, the core address is displayed in AU and the
tape word is displayed in AL. After the computer is re-~
started, a second stop occurs with the core word displayed
in AU and the tape word displayed in AL, After the com-
puter is again restarted the tape word is stored in core
memory (unless PROGRAM SKIP key O is set) and the verify
continues.

b) Relocatable Bioctal Load

1. PROGRAM SKIP keys O, 1, 2, and 4 provide the same option as
for absolute bioctal load. PROGRAM SKIP key 3 is ignored.

c¢) Absolute Typewriter Code Load

1. PROGRAM SKIP keys O, 1, 2, and 4 provide the same options as
for absolute bioctal load.

2. PROGRAM SKIP key 3 - If this key is set, the subroutine permits

the loading of a typewriter code tape which does not contain
the tape identifier (carriage return, 8 or 88, carriage return).

1V-A-10

3.2.2 PAPER TAPE ABSOLUTE TYPEWRITER CODE DUMP
1) Master clear the computer.
2) Set the P register to the UPAK I base address +10g.
3) Set AU to the first address to be dumped.
4) Set AL to the last address to be dumped.
5) Set PROGRAM SKIP key 1 if output is to be typed rather than punched.
6) Start the computer. After punching the contents of the specified
addresses on tape, the computer stops. To obtain another dump begin
at step 3).
3.2.3 PAPER TAPE ABSOLUTE BIOCTAL DUMP
1) Mastef clear the computer.
2) Set the P register to the UPAK I base address +12g.
3) Set AU to the first address to be dumped.

4) Set AL to the last address to be dumped.

5) Set PROGRAM SKIP key 4 if a 2-frame trailer is to be punched after
the dump.

6) Start the computer. The computer stops after punching the contents
of the specified addresses. :To obtain another dump begin at step 3).
If a 2-frame trailer is selected in step 5) and more than one dump
is punched on the same tape, the tape can be loaded, without stops,
by the paper tape load routine. If the 2-frame trailer is not selected,
a 256-frame trailer is punched after the dump.

3.2.4 INSPECT AND CHANGE

1) Master clear the computer.

2) Set the P register to the UPAK I base address +14g.

3) Set AU to the first address to be inspected.

4) Set the PROGRAM SKIP key options desired (refer to 8) below).

5) Start the computer. The computer stops with the address in AU
and its contents in AL.

6) If desired, change the address in AU and/or the contents in AL.

7) Start the computer.

IV-A-11

8)

a) If the contents only were altered, the new contents are stored
at the original address and the computer stops with the next
sequential address in AU and its contents in AL,

b) If the address only was changed, the old contents are restored
to the proper memory location, and the computer stops with the
new address in AU and its contents in AL.

c) If both the address in AU and its contents in AL were changed,
the new contents are stored at the original address, and the
computer stops with the new address in AU and its contents in AL.

Inspect and change options,
The following options are selectable via PROGRAM SKIP keys.

a) PROGRAM SKIP key 1 - If this key is set, the addresses inspected
and their contents are typed on the on-line typewriter. The
format of the typeout is:

READ-WRITE
AAAAA NN NNNN FF FFFF

AAAAA is the inspected address, NN NNNN is the new content, and FF
FFFF is the former content.

b) PROGRAM SKIP key 2 - If this key is set, an errata tape of the
changes is punched. The tape is punched in paper tape absolute
typewriter code format and can be loaded via the UPAK I paper
tape load routine. To finalize the tape after all changes have
been punched, set P to UPAK I base address +24g and start the
computer. Two periods and a trailer are then punched on tape.
If the errata tape is to be punched without a leader set PROGRAM
SKIP keys 2 and 3 before the first address is inspected.

3.2.5 STORE CONSTANT IN MEMORY

1)
2)
3)
4)
3)
6)
7)

Master clear the computer.

Set the P register to the UPAK I base address +l6g.

Set the first storage address in AU,

Set the last storage address in AL.

Start the computer. The computer stops with AU cleared.
Set the constant in AU.

Start the computer. The computer stops after storing the constant
in all addresses of the specified memory area.

IV-A-12

3.2.6 SEARCH MEMORY

1) Master clear the computer.

2) Set the P register to the UPAK I base address +20g.

3) Set AU to the search mask.

4) Set AL to the searchand.

5) Start the computer. The computer stops with AU and AL cleared.

6) Set AU to the lower limit of the area to be searched.

7) Set AL to the upper limit of the area to be searched.

8) Start the computer. The computer compares the logical product
of mask and searchand with the logical product of the mask and
each memory location in the specified area. If the logical
products are equal, the address of the memory location and its
contents are typed on the on-line typewriter (refer to paragraph
2.6 for the format of the typeout).

3.2.7 COPY PAPER TAPE
1) Master clear the computer.
2) Set the P register to the UPAK I base address +228.

3) Mount the tape to be copied in the reader.

4) Start the computer. The computer reads the input tape and punches
an exact copy.

5) To stop the copy routine set PROGRAM SKIP key O. This key should
be set while the routine is copying the trailer on the input tape.
If more trailer is required on the output tape, depress the tape
feed button on the I/0 console.

3.2.8 TYPEWRITER DUMP

1) Master clear the computer.

2) Set the P register to the UPAK I base address +26g.

3) Set AU to the address of the first word to be dumped.

4) Set AL to the address of the last word to be dumped.

5) Set PROGRAM SKIP key O if the output is to be punched rather than typed
on the on-line typewriter.

IV-A-13

6) Start the computer. The computer stops after typing (or punching)
the contents of the specified memory locations (refer to paragraph
2.8 for the format of the output).

1V-A-14

SECTION IV-B., UPAK III UTILITY PACKAGE III

1. GENERAL INFORMATION

UPAK ITI is a modular utility system comprised of stacked programs in the
TRIM III output No. 10 format on magnetic tape. A control program loaded
by magnetic tape bootstrap accomplishes loading of one or more of the compo-
nent modules. UPAK III presently has the following modules:

Module 1 Paper tape handler (PTHAN).

Module 2 Magnetic tape handler (UMTH).

Module 3 Magnetic tape duplication (MTDUP).

Module 4 TRIM III output 10 load (LOAD1O).

Module 5 Inspect and change and store constant (ICH-STC).
Module 6 Print memory contents (PRINTC).

Module 7 Card handler (DATCD).

Module 10 Printer line image on tape and tape-to-printer (POTPOP).
Module 11 Magnetic tape handler (JOSH).

The modular framework of UPAK III, however, will permit the incorporation of
additional modules with a minimum of effort. Refer to paragraph 1.2.3,
expanding UPAK III.

UPAK III assumes a minimum equipment configuration of one computer with

a minimum of 16,384D words of core memory, one magnetic tape unit with two
transports, an I/0O console, and a card processor. UPAK III may be loaded
anywhere in computer memory above address 01000 with the single restriction
that any module must be entirely contained within a single memory bank. Most
UPAK III functions can be operated under program control as well as manually
from the computer control panel,

2. CONTROL PROGRAM
2.1 PROGRAM DESCRIPTION

The control program of UPAK III is basically a module loader. It may be
loaded by magnetic tape bootstrap anywhere in core memory above address
01000. However, it must be wholly contained within one bank of memory.

Through manual parameter specification, the control program loads one module
or all modules at a given time. If one specific module is requested, the

load address must be specified, If more than one module but not the

entire package is desired at specific addresses, the user must repeat the

load procedure for each particular module. If module number zero is specified
UPAK III loads all of the modules at the base addresses denoted in Table
IV-B-1; the base address parameter is ignored.

Module entrances are determined by standard increments to their load address
as shown in Table IV-B-1,

Care must be exercised in specifying a module base load address to the control
program so that the module is loaded entirely within one memory bank.

IV-B-1

TABLE IV-B-1,

ENTRANCE ADDRESSES AND ASSIGNED BASES

Module No. Base Entrance Increments to Base
PTHAN 1 01100 + 3 - ICH Entrance
Size: 1060g + 4 - STC Entrance
+ 6 - Programmed PT Load
+ 0 - Manual PT Load
+12 - Programmed Typewriter
Code Dump
+ 2 - Manual Typewriter
Code Dump
+10 - Programmed Bioctal Dump
+ 1 - Manual Bioctal Dump
UMTH 2 02200 + 0 - Programmed Entrance
Size: 600g + 2 - Manual Entrance
MTDUP 3 03000 + 0 - Programmed Entrance
Size: T12g + 2 - Manual Entrance
[.OAD10 4 04000 + 0 - Programmed Entrance
Size: 600g + 2 - Manual Entrance
TCH-STC 5 04700 + 0 - ICH Entrance
Size: T7g + 1 - STC Entrance
PRINTC 6 05000 + 0 - Programmed Entrance
Size: 430g + 2 - Manual Entrance
DATCD 7 06000 + 0 - Programmed Card Load
Size: 626g + 2 - Manual Card Load
+ 3 - Programmed Card Dump
+ 5 - Manual Card Dump
POTPOP 10 07000 + 0 - Programmed line image
on tape
Size: 434g + 2 - Manual line image on
tape
+ 3 - Programmed tape-to-
printer
5 - Manual tape-to-printer
JOSH 11 10000 0 - Programmed Entrance
Size: 640g + 2 - Check status entrance
+ 4 - Check busy entrance
+10 - Manual Entrance

1v-B-2

2.2 LOADING UPAK III

To load the UPAK III control program via magnetic tape bootstrap, mount the
UPAK III tape on transport 1 of cabinet 1. Then,

1) Master clear the computer.
2) Push the LOAD button to activate bootstrap.

3) Start the computer. When the computer stops, a parameter is displayed in
AU. The parameter format is shown in Figure IV-B-1,

17 16 15{14 13 12|11 10 98 76|54 3|2 10

Tape Transport No.

L— Tape Cabinet No.

‘— Tape Unit I/0
Channel No. 00-178

L— Not Used

~— I/0 Mode Indicator
000 Dual Channel
001-111 Single Channel

Figure IV-B-1. Tape Address Parameter

IvV-B-3

If the parameter does not specify the tape channel, address, and mode
desired, change AU as desired.

NOTE: The logical selection of the tape address is not restricted to
cabinet 1, transport 1 at this time.

4) Enter a 16-bit control program load address in AL if desired. If AL

is zero, the control program will be loaded at its assigned address,
012000.

5) Start the computer, When the computer stops, the control routine is
loaded.

UPAK IITI may be loaded via paper tape bootstrap through use of a core-stored
magnetic tape bootstrap program. To accomplish the load perform the following
steps:

1) Mount the UPAK III magnetic tape on cabinet 1, transport 1.

2) Place the PTMTBS* No. 4 paper tape in the paper tape reader.

3) Master clear the computer.

4) Press the LOAD button on the control panel.

5) Start the computer. When the computer stops, a parameter is displayed
in AU. The parameter format is shown in Figure IV-B-1.

If the parameter does not specify the tape channel, address, and mode
desired, change AU as desired.

NOTE: The logical selection of the tape transport is not restricted
to cabinet 1, transport 1 at this time.

6) Enter a 16-bit control program load address in AL if desired. I
is zero, the control program will be loaded at this assigned add
012000. '

f AL
T

ess,
7) Start the computer. When the computer stops, the control routine is
loaded.
To load UPAK III modules, perform the following steps:
1) Master clear the computer.
2) Set P to the base address of the control routine.
3) Set AU to MMXXCT where MM is the module number; XXCT is the UPAK III
tape address (channel XX, cabinet C, and transport T). If MM is zero,

all modules will be loaded at their assigned addresses (refer to Table
IV-B-1).

*Magnetic tape bootstrap on paper tape.

Iv-B-4

4). Set a 16-bit load address for the requested module in AL, if desired.
If AL is zero, the control program will load the module at the assigned
address (refer to Table IV-B-1).

5) Start the computer. The computer stops after the module is loaded.
To operate specific modules,refer to paragraphs 3 through 11.

6) To load another module, repeat steps 3) through 5) above.
2,3 EXPANDING UPAK III

User expansion of the UPAK III system to incorporate one or more additional
modules may be accomplished through use of TRIM III., When expanded, UPAK III
operates normally except when specifying the control routine parameter MM = 00.
To validate this parameter it is necessary to change the number of modules in
the system by errata to the UPAK III control routine (address, base + 66g)
before specifying MM = 00. This word should contain 7000XX where XX is the
number of modules minus one in octal. Without this errata, MM = 00 results in
loading the original UPAK III modules only.

To add modules to UPAK III:
1) Mount the TRIM III tape.
2) Mount the UPAK III tape as the TRIM III scratch tape.
3) Load TRIM III, |

4) Change TRIM III address 01057 from zero to the number of files on the
UPAK III tape (actual number of modules plus two).

5) Assemble the program that is to become the next UPAK III module. Care
should be taken so that the base address is compatible with other UPAK
III module base addresses.

6) After the last desired output has been produced (one output other than
a source output - 11, 15 or 16 - must be selected) and the SELECT OUTPUTS

IN A typeout occurs, set PROGRAM SKIP key 2 and start the computer. The
computer stops at address 01400.

7) Release PROGRAM SKIP key 2.

8) Repeat steps 5) and 7) until all desired additional modules have been
assembled.

9) Rewind the expanded UPAK III tape and remove it from the scratch
transport.

IV-B-5

3. PAPER TAPE HANDLER MODULE (PTHAN)
3.1 PROGRAM DESCRIPTION

PTHAN is a collection of subroutines which provides paper tape I/0 functions and
examination and alternation of memory for program debugging. The seven sub-
routines are:

1) Load absolute typewriter code.
2) Load absolute bioctal code.

3) Load relocatable bioctal code.
4) Dump absolute typewriter code.
5) Dump absolute bioctal code.

6) Inspect and change.

7) Store constant in memory.

PTHAN may be loaded anywhere in computer memory above address 01000 with the
single restriction that the entire package must be entirely contained within
a single memory bank. All functions operate either manually or under program
control except for the inspect and change and store constant in memory func-
tions, which are manually operable only.

Entrance addresses to the several subroutines are assigned relative to the
PTHAN base address as shown in Table IV-B-1.

PTHAN subroutines use the currently active B register but store and restore
their original value. The load subroutines when operating under program con-
trol also store and resiore the user's special register setting.

1) Inspect and change.

The inspect and change routine causes the contents of the memory location
specified in AU to be displayed in AL. The contents of AL may then be
changed manually. (AL) is then returned to the memory address from which
it was taken. The inspection address need be entered only the first
time, since (AU) is increased by one and the contents of sequential
addresses will be brought into AL with each successive performance of

the inspect and change function. Should the user wish to inspect the
contents of some address other than the next sequential address, he may
do so by setting the new address in AU before returning (AL) to memory.

2) Store constant in memory.

The store constant in memory function permits the user to load a speci-
fied area of memory with a value manually entered into AU. If (AU) =0
the area is cleared.

3) Load absolute typewriter code.

A carriage return, followed by either an 8 or an 88 activates the load
routine. A single 8 indicates that the tape has no checksum (user

IV-B-6

4)

prepared tapes). An 88 indicates that the tape is terminated with a
6-digit checksum (TRIM outputs 2 and 3 and UPAK typewriter code dumps).
A carriage return must follow the 8 or 88 code.

Once the load routine has been activated, it accumulates the first 5
digits following each carriage return and assembles them as the address.
It then accumulates the next six digits and stores them at the accumu-
lated address., All characters following the first 11 digits are

ignored until another carriage return is found. If less than 11 digits
are accumulated, the instruction will not be loaded. Examples of tape
formats are shown below,

Each tape to be loaded must terminate with a carriage return and a double
period (..), which terminates the load and initiates a checksum verifi-
cation when required. If the checksum verification is correct, the load
terminates with (AU) and (AL) = 0. When it is incorrect, the load ter-
minates with (AU) = computed checksum and (AL) = tape checksum,

If PROGRAM SKIP key 1 is set the load subroutine performs checksum veri-
fication without storing the information in memory.

Format With Format With
No Checksum Check sum
8 88

XXXXX XX XXXX XXXXX XX XXXX
XXXXX XX XXXX XXXXX XX XXXX

XXXXX XX XXXX XX XXXX(Checksum)

e o LN

Load absolute bioctal code.

The absolute bioctal tape must begin with a 76 (code for absolute bioctal
tape with 5-digit addressing)., Immediately after the 76 or 77 code are
the initial and final addresses consisting of 5 digits each, 6-digit
instructions follow without further addressing, and the tape is termin-
ated by a 6-digit checksum,

IV-B-7

3)

Absolute Bioctal
76 Tape Format

76 Absolute Bioctal Code
II

I1 I-initial address

IF

FF F-final address

FF

XX X-instruction words
XX

XX

XX
XX
XX
CC C-checksum

cC
cC

If PROGRAM SKIP key 1 is set, the absolute bioctal load subroutine will
perform a checksum verification without loading into memory.

Load relocatable bioctal code.

The relocatable bioctal tape must begin with a 75 (code for relocatable
bioctal tape). The entire program must be relative to base zero. Six-
digit instructions follow the 75 code without addressing. Each instruc-
tion is preceded by a 1-digit modification code which tells the load
routine how to modify the instruction for storage. The tape is terminated
by a 6-digit checksum preceded by a code of 7. The computer operator
specifies the load base address in AU; the load routine then uses this
information to accomplish the tape load.

Relocatable Bioctal Tape Format

a

75 Relocatable Bioctal Code
MX M-Modification code

XX X-Instruction words

e o »

X7 T-Checksum code
CcC C—Checksum

CC

cC

1v-B-8

Modification codes appearing on a relocatable bioctal tape are:

Code Meaning Type of Instruction
0 No modification Constant or 4-digit Y unmodified
1 Add base address
to Y110 4-digit Y modified
2 No modification S5-digit Y unmodified
3 Add base address
to Y140 S5-digit Y modified (bit 15 is set to
* 0 or 1 depending on specified base
address)
4 Increment current

load address by
instruction value Negative or positive increment

5, 6 Not used Not used

7 Checksum follows Tape checksum

If PROGRAM SKIP key 1 is set, the relocatable bioctal load subroutine will
perform a checksum verification without loading into memory.

6) Dump absolute typewriter code.
This dump is initiated manually or under program control for output on
punched paper tape. The 88 code format (with checksum at the end) is the

only one dumped. The output tape includes both the addresses and the
contents of the memory locations being dumped.

7) Dump absolute bioctal code.

The absolute bioctal dump is initiated manually or under program control for
output on punched paper tape. The tape format is a 77 code followed by:

a) The initial and final addresses of the area being dumped.
b) The contents of the inclusive memory addresses.
¢) The checksum.

If more than one program area is dumped successively on the same tape,
each such area is formatted as described.

3.2 OPERATION PROCEDURES
3.2.1 OPERATION OF INSPECT AND CHANGE
1) Set P to PTHAN base address +3.

2) Set the desired memory address to be inspected in AU.

I1V-B-9

3)

4)

5)

6)
3.2.2
1)
2)
3)

1)

5)
6)

7)
3.2.3
1)
2)
3)
4)

Start the computer. The computer stops with the address in AU and its
contents in AL,

The user may now change the address in AU and/or the contents in AL,
Start the computer.
a) If the contents only were altered, the new contents are stored at

the original address and the computer stops with the next sequential
address in AU and its contents in AL,

b) If the address only was changed, the old contents are restored to the
proper memory location and the computer stops with the new address in

AU and its contents in AL.

c) If both the address in AU and its contents in AL were changed, the
new contents are stored at the original address, and the computer
stops. with the new address in AU and its contents in AL.

Any number of such sequences may be executed starting with step 4).

OPERATION OF STORE CONSTANT IN MEMORY

Set P to PTHAN base address + 4.

Set the first storage address in AU,

Set the last storage address in AL.

Start the computer. PTHAN records these addresses and the computer
stops with AU cleared.

Set the desired constant in AU,

Start the computer. PTHAN sto memory locations
is

(AU) a
within the parameters establi in

res success
hed steps 2) and
Additional entrances may be made starting from step 2).

MANUAL OPERATION OF ALL PAPER TAPE LOADS

Mount a tape in the reader.

Set P to PTHAN base address.

Set PROGRAM SKIP key 1 if checksum verification only is desired.

For relocatable bioctal load only set the starting address in AU.
(Not required if PROGRAM SKIP key 1 is set.)

IV-B-10

5) - Start the computer. When the computer stops, AU is set to the computed
checksum and AL is set to the tape checksum. If the checksums are equal
AU and AL are both clear,
6) Successive tapes may be loaded without resetting P.
3.2.4 PROGRAM OPERATION OF ALL PAPER TAPE LOADS
1) The tape to be loaded must be mounted in the reader.
2) For relocatable bioctal load only, the controlling program must enter
AU with the starting address of the load and then execute a return
jump or indirect return jump to PTHAN base address + 6.
3.2.5 MANUAL DUMP OF TYPEWRITER CODE
1) Set P to PTHAN base address + 2.
2) Set thé first address to be dumped in AU.
3) Set the last address to be dumped in AL.
4) Start the computer.
5) Successive dumps may be taken by starting from step 2).
3.2.6 PROGRAM OPERATION OF DUMP TYPEWRITER CODE
The controlling program must:
1) Enter AU with the first address to be dumped.

2) Enter AL with the last address to be dumped.

3) Execute a return jump or indirect return jump to PTHAN base address + 12
(octal). :

3.2.7 MANUAL DUMP OF ABSOLUTE BIOCTAL CODE
1) Set P to PTHAN base address + 1.
2) Set the first address to be dumped in AU,
3) Set the last address to be dumped in AL.
4) Start the computer.

5) Successive dumps may be taken by starting from step 2).

Iv-B-11

3.2.8 PROGRAM OPERATION OF DUMP BIQCTAL CODE
The controlling program must:
1) Enter AU with the first address to be dumped.

2) Enter AL with the last address to be dumped.

Execute a return jump or indirect return jump to PTHAN base address
+ 10 (octal).

4. MAGNETIC TAPE HANDLER MODULE (UMTH)

4.1 PROGRAM DESCRIPTION

UMTH provides the user with the basic magnetic tape handling services of read,
write, write tape mark, search, pass n records, space file, rewind. These
services may be recorded in single or dual channel operation, high or low
density, bioctal or octal coding and odd or even parity (even parity may be used
with BCD only). Only forward buffering is permitted.

This module may be loaded anywhere in core memory above address 01000 with the
restriction that the entire module must be wholly contained within one memory
bank. Both manual and programmed entrances are provided to UMTH (refer to
Table IV-B-1).

4.2 INPUT PARAMETERS

Six parameter entries govern operation of UMTH. These parameters may be set
manually or under program control. The format of the parameters is shown in
Figure IV-B-2.

IV-B~12

Parameter 1

17116 15|14 13 12]11 10 98 76154 3|21 0
L Transport No.
Cabinet No.

I1/0 Channel No. (must be
odd number for dual channel)

Operation Code
-~ Read variable length record
- Write variable length record
- Write tape mark
Search
- Pass n records
- Space file
- Rewind

L Not Used

Direction for search, space file,
and pass n records

0 - Forward

L__ .1 - Backward

H= RO 00

== OO MO

O OQOKF QO -
]

Figure IV-B-2, UMTH Input Parameters (Sheet 1 of 3)

1V-B-13

Parameter 2

17 1615114113 12}11 10 98 7 6

543210

L~ Not Used
Density

L{_} - Same density

Parity
O - Even (used with

L_} - 0dd

Coding
0 - Bioctal
1 - Octal

Modulus

0 0 - Modulus 3 (18 bits)
0 1 - Modulus 4 (24 bits)
1 0 - Modulus 5 (30 bits)
L1 1 - Modulus 6 (36 bits)

No. of records to
pass or No. of
files to space

(778 maximum)

000001 through 111111

0 0 - 200 frames/inch (low for 1240)
1 0 - 556 frames/inch (high for 1240)
0 1 - 800 frames/inch

as last instruction

BCD only)

Figure IV-B-2. UMTH Input Parameters (Sheet 2 of 3)

Iv-B-14

Parameter 3

17 16[/15 14131211 109876543210

Not Used

Parameter 4

1716 151413 1211109876543210

Parameter S5

17 16 1514 13 1211 1098 76543210

Parameter 6

1716 1514131211 109876543210

Buffer initial
address for read,
write, or search

No. of words (octal)
for read, write
or search

Search constant for
single channel
search, first half
of search constant
for dual channel
search

Second half of
search constant for
dual channel

Figure IV-B-2. UMTH Input Parameters (Sheet 3

IV-B-15

search

of 3)

4.3 OPERATING PROCEDURES
4.3.1 OPERATION UNDER PROGRAM CONTROL

The calling program must enter UMTH with parameter 1 in AU and parameter 2 in
AL, 1If parameters 3, 4, 5 and 6 are required they must be stored in consecutive
memory addresses and the active B register must contain the address of parameter
3 upon entering UMTH. These consecutive addresses may consist of two, three,
or four words depending upon the operation to be performed. Parameters 3 and
4 are needed for read and write operations; parameters 3, 4, and 5 are needed
for single-channel search operation; parameters 3, 4, 5, and 6 are meeded for
dual-channel search operations. The calling program enters UMTH by executing
a return jump or indirect return jump to UMTH base address + 1. The magnetic

tape to be handled must be mounted on the proper transport before starting
the calling program,

Upon resumption of control, the calling program may check the contents of the
A register to verify a successful operation (see paragraph 4.4).

4.3.2 MANUAL OPERATION
1) Master clear the computer.
2) Set P to UMTH.base address.
3) Mount the magnetic tape to be handled on a tape transport,
4) Set parameter 1 in AU; set parameter 2 in AL,
5) Start the computer.
6) When the computer stops, set parameter 3 in AU; set parameter 4 in AL.

7) Start the computer. If the operation to be performed is a search, the
computer stops again.

8) Set parameter 5 in AU, and, if needed set parameter 6 in AL,
9) Start the computer.

If an improper condition is encountered, correct the condition and start the
computer, UMTH then re-executes the operation.

After completion of a successful operation the computer stops. To execute

another operation, start again and the computer stops with parameters 1 and 2
in AU and AL. Proceed with the next operation from step 3) above.

IV-B-16

4.4 . ALARMS AND STATUS INDICATIONS

Under both manual and program operation, UMTH uses the A register to indicate
the status of the operation attempted.

If (AL) = zero, a successful operation is indicated.

If (AL) = 777777, an unsuccessful operation is indicated.

(AU) = status word. Bit indications for the status word are as follows:

Bit Set Indication
17 UMTH tried to recover seven times
unsuccessfully
16-15 not used
14 improper condition
13 duplex control (1540 only, 1 = no,
0 = yes)
12 transport ready (1540 only)
11 - xirg detected (1540 only)
10 output timing error
9 input timing error
8 incorrect frame count
7 lateral parity error
6 longitudinal parity error
5 last motion of tape (1 = backward,

0 = forward)

4 tape mark (end of file)
3 no write enable

2 end of tape

1 low tape

0 load point

UMTH does not try to recover upon detection of an input or output timing
error,

UMTH assumes the following:

1) That search constants for a backward search must be reversed character-
wise (1240 only).

2) That whenever dual-channel operation is selected, the number of words

to input or output (parameter 4) must be even. The buffer initial

address (parameter 3) may be even or odd.

IV-B-17

3) That-address 00141 is reserved for use by UMTH as an indirect interrupt
address, '

4) That the contents of AU, AL, and B prior to entering UMTH need not
be restored upon exit,

5. MAGNETIC TAPE DUPLICATION MODULE (MTDUP)

5.1 PROGRAM DESCRIPTION

The MTDUP module of UPAK III may be used with the computer when operating with
one magnetic tape unit with two transports and an I/0 console. The module
copies the content of one magnetic tape (From tape) onto another (To tape).
The normal copy process continues until MTDUP encounters two consecutive

tape marks or until end-of-tape, whichever occurs first.

MTDUP performs the duplication in the following sequence:
1) Rewind From tape and To tape.
2) Read one record from From tape into user-specified buffer,
3) Use buffer control words to determine buffer limits, and write the
record on the To tape. Repeat steps 2) and 3) until two successive tape
marks have been found or end-of-tape is detected.

4) Rewind both tapes if verification option is selected.

5) Read one record from From tape into user-specified buffer and checksum
the record.

6) Read one record from To tape into user-specified buffer and checksum
the record. Compare record checksum for From and To tapes. If not
equal, add one to error counter; repeat steps 5) and 6) until two
successive tape marks or end-of-tape have been found.

7) Rewind both tapes if rewind option was selected.

8) If the error counter is zero, type COPY-OK; otherwise type ERR-XXX
where XXX is the number of copy errors detected.

NOTE: The user may alter the number of successive tape marks terminating
his From tape. To do this, he must store the exact number desired
at MTDUP label CAT.

MTDUP occupies approximately 712g memory locations and may be loaded anywhere
in computer memory above address 01000 with the restriction that the entire
module must be loaded entirely within one memory bank. The module operates
either under program control or manually from the computer control panel.

IV-B-18

5.2 . INPUT PARAMETERS

The six input parameters to MIDUP are shown in Figure IV-B-3. Parameters 4
and 6 need not be exact terminal addresses but they must be large enough to
accommodate the largest record on the From tape. Parameters 5 and 6 are

required only for verification.

Parameter 1

17

16 {15 14 (13 }12

11 10(9 8 76(543|210

Figure

Transport No.
L————--for From Tape
Cabinet No. for

'——— From Tape

Channel No. for Magnetic
Tape (odd for dual channel)

Density

00 - 200 Frames/Inch (Low for 1240)
10 - 556 Frames/Inch (High for 1240)
01 - 800 Frames/Inch

C
0
1

Modul
00 -
01
10 -
11

Rewind Op

0 - Do no
1 - Rewin

Mode
0 - Single ch

IV-B-3. MTDUP

11 - Same as last instruction

Parity
0 - Even

t——1 - 0dd

oding
- Bioctal
- Octal

us
Modulus 3 (18 bits)
Modulus 4 (24 bits)
Modulus 5 (30 bits)
Modulus 6 (36 bits)

tion
t rewind after MTDUP
d after MTIDUP

annel

L——1 - Dual channel

Input Parameters (Sheet 1 of 3)

IV-B-19

Parameter 2

17 16

151413 12111098 76|5431210

Parameter 3

Not Used

Transport No. for
To tape

Cabinet No. for
To tape

17 16

Parameter 4

1514131211109876543210

Not Used

Buffer Initial Address
for From Tape

17 16

1514131211 109876543210

Figure IV-B-3.

B

L——————Not Used

IV-B-20

uffer Terminal Ad-

dress for From Tape

MTIDUP Input Parameters (Sheet 2 of 3)

Parameter 5

17 161151413 1211 109876543210

Buffer Initial Ad-
dress for To Tape

Not Used

Parameter 6

17161151413 1211109876 543210

Buffer Terminal Ad-
dress for To Tape

Not Used

Figure IV-B-3. MIDUP Input Parameters (Sheet 3 of 3)

5.3 OPERATING PROCEDURES
5.3.1 OPERATION UNDER PROGRAM CONTROL
The calling program enters the active B register with the address of the first
of six successive computer words containing parameters 1 through 6 in the
required order, and executes a return jump or indirect return jump to MIDUP
base address., Upon resumption of control, the calling routine may check the
contents of AU and AL for errors (refer to paragraph 5.4). Both the From tape
and the To tape must be mounted on the proper transports before starting the
calling program,
5.3.2 MANUAL OPERATION

1) Master clear the computer.

2) Set P to MTDUP base address + 2.

3) Mount the From tape and the To tape on tape transports (same I/0
channel).

4) Set parameter 1 in AU; set parameter 2 in AL.

Iv-B-21

5) Start.the computer.

6) When the computer stops, set parameter 3 in AU; set parameter 4 in AL.

7) Start the computer,

8) When the computer stops, set parameter 5 in AU; set parameter 6 in AL.

9) Start the computer. When the duplication process is complete and
successful, the typeout COPY-OK occurs on the on-line typewriter, If
the typeout ERR-XXX occurs, it indicates that XXX errors were detected
during the process,

5.4 ALARMS AND STATUS INDICATIONS

An improper condition of a tape unit or a status word error after seven tries
causes MTDUP to exit (or stop) with AU equal to the status word from the tape
system. This indicates that MTDUP did not complete the duplication, If the
tape duplication is completed without tape system errors, the computer stops
with AU clear.

If the duplication process was completed without tape system errors, but
checksum errors were .detected upon check~reading the new tape against the old,
the number of such checksum errors (for each separate record on tape) is dis-
played in AL.

MTDUP assumes the following:

1) That both the From and To tapes are mounted on tape transports served
by a common I/0 channel.

2) That the I/0 console is on-line with the computer.

3) That address 00141 is reserved for use by MIDUP as an indirect interrupt
address.

4) That the contents of AU, AL, and B, prior to entering MTDUP, need not be
restored upon exit.

6. TRIM III OUTPUT 10 LOAD MODULE (LOAD10)
6.1 PROGRAM DESCRIPTION

In the course of its assembly process, TRIM III produces the object program in
tabular form on magnetic tape. This table serves as the source for all assembler
outputs reflecting the object program. The table, called output No. 10, may

also be loaded into computer memory by this UPAK III module. TRIM III can stack
a maximum of 40g of these outputs on one tape. Each output is a file on the
output tape. Files are numbered 1 through 40 in the order of their appearance

on tape. The user has two load options:

1) That the program shall be loaded absolutely with addressing assigned
at assembly time.

IV-B-22

2) - That the program shall be loaded relative to auy specified base address.

TRIM III writes each output 10 file on magnetic tape in a specified format. The
format consists of a 30-word sentinel record, some number of 140g-word instrvuc-
tion records, a l1-word sentinel (included in the last cecord), and a tape mark.
All sentinel words consist of the octal characters 747474, The instruction
records consist of a l-word file count, 378 instruction items, and two spare
words. The file count specifies the number of items from the beginning of the

file to the end of the record in which it appears. Each item has the following
format:

Word O E Sequential Identifier } Used by TRIM III only
Word 1 M Address
Word 2 Instruction

1) Word O contains a line error counter, E, and a sequential line
identifier used by TRIM III but not by UPAK III.

2) Word 1 contains a modification code, M, and an address, M tells the
load routine how to modify the instruction for storage for a relocatable
load. M may be any one of the following codes:

Code Meaning Type of Instruction
0 No modification Constant or 4-digit Y unmodified
Add base address
1 to Yll-O 4-digit Y modified
2 No modification 5-digit Y unmodified
3 Add base address
to Yi4.0 5-digit Y modified (bit 15 is set

to 0 or 1 depending on specified
base address)

The address is the address for this instruction assigned at assembly

time.

3) Word 2 contains the machine instruction or constant to be stored.

IV-B-23

6.2

Two

INPUT PARAMETERS

parameters govern the operation of the TRIM III output 10 load module.

They are shown in Figure IV-B-4.

Parameter 1

Parameter 2

17 16 15 14 13 12§11 10 98 7 6|5 43|21 0

Transport No. of
L—Output 10 Tape

Cabinet No. of
L_Output 10 Tape

1/0 Channel
—No . (0-178)

File No. of Output
L 10 to be Loaded (0-408)

1716|1514 131211 109876543210

Base Address for Relocatable Load,
L-——_-Zero for Absolute Load

___Not Used

Figure 1V-B-4. LOAD1O Input Parameters

- 6.3 OPERATING PROCEDURES

6.3.1

OPERATION UNDER PROGRAM CONTROL

The calling program must enter AU with parameter 1, enter AL with parameter 2
if the load is relocatable, and execute a return jump or indirect return jump
to this module base address. The output 10 tape must be mounted on the proper
transport before starting the calling program.

6.3.2 MANUAL OPERATION

1)
2)
3)
4)
5)

Master clear the computer.

Set P to the output 10 load base address + 2.

Mount the output 10 tape on a transport.

Set parameter 1 in AU; set parameter 2 in AL.

Start the computer. When the computer stops with AL clear, the load
is complete,

Iv-B-24

6.4 - ALARMS AND STATUS INDICATIONS

After completing (or attempting) the load, the module returns control to the
using program with AL containing one of the following status conditions:

1) (AL) = 0, indicates a successful load,
2) (AL) positive, indicates the load routine has attempted to read the
same record seven times and failed. AL contains the status word.

LOAD 10 always stops if an improper condition arises., AL contains the tape
status word normalized left (sign bit set).

LOAD 10 uses address 00141 as an indirect interrupt address.
LOAD 10 does not restore the original contents of AU, AL, or B.
7. INSPECT AND CHANGE AND STORE CONSTANT MODULE
7.1 PROGRAM DESCRIPTION
This module consists of two routines: inspect and change, and store constant
in memory. The inspect and change routine causes the contents of the memory
location specified in AU to be displayed in AL. The contents of AL may then
be changed manually. (AL) is then returned to the memory address from which
it was taken. The inspection address need be entered only the first time,
since (AU) is increased by one and the contents of sequential addresses are
brought into AL with each successive performance of the inspect and change
function. Should the user wish to inspect the contents of some address other
than the next sequential address, he may do so by setting the new address in
AU before returning (AL) to memory.
The store constant in memory routine permits the user to load a specified area
of memory with a value manually entered into AU. If (AU) = O the area is
cleared.
7.2 OPERATING PROCEDURE
7.2.1 INSPECT AND CHANGE

1) Master clear the computer.

2) Set P to the module base address.

3) Set AU to the memory address to be inspected.

4) Start the computer. The computer stops with the address in AU and
its contents in AL.

5) The user may now change the address in AU and/or the contents in AL.

IV-B-25

CHANGE

6)

The PR
a high
on the
prints

1)

2)

1

Start the computer. One of the following occurs:

a) 1f the ~ontents only were aitered, the new contents are stored
at the original address and the computer stops with the next
sequential address in AU and its contents in AL,

b) If the address only was changed, the contents of AL are restored
and the computer stops with the new address in AU and its contents
in AL.

c¢) 1If both the address in AU and its contents in AL were changed, the
new contents are stored at the original address, and the computer

tops with the new address in AU and its contents in AL,

Any number of such sequences may be executed starting with step 3).

STORE CONSTANT IN MEMORY

Master clear the computer,

Set P to the module base address + 1.

Set the first storage address in AU.

Set the last storage address in AL.

Start the computer. The computer stops with AU cleared.

Set the desired constant in AU,

Start the ccomputer, The specified constant is stored in all memory
locations within the parameters established in steps 3) and 4),

Additional ewtrances mav be made by starting from step 3).

INT MEMORY CONTENTS {PRINTC)

INTC module of UPAK III may be used when the computer is operating with
-speed printer. This module lists a specified area of computer memory
high-speed printer, s
each linc in the following format:

Nine columns of data. separated from each other by five spaces, except
for the first column, which is separated by six spaces,

The first column contains the 5-digit octal address of the memory word
in the second column.

IV-B-26

uppressing the printout of any zero words. PRINTC

CHANGE 1

3) Columns two through nine contain the contents of eight (10g) consecutive
addresses beginning with the address shown in the first column. The
first 2 digits (function code position) of these memory words are sepa-
rated from the other four by one space.

4) If the contents of any memory address to be listed is zero (000000), the
zero codes are not printed and that column is left blank. If the
contents of the addresses of an entire line are zeros, the address in
column one is not printer either.

5) If the contents of addresses for two or more consecutive lines are zeros,
PRINTC still only allows one blank line between the last printed line
and the next group of eight (10g) addresses containing a nonzero
quantity, no matter how much memory area lies in between.

PRINTC occupies approximately 450g memory locations and may be 1oaded anywhere
in computer memory above address 01000 with the restriction that the entire
module shall be contained entirely within one memory bank. The module operates
either under program control or manually from the computer control panel.

8.2 OPERATING PROCEDURE

Prior to operating this module the operator must initialize the high-speed
printer and ensure that the printer is loaded with enough paper to print the
required information