
.JL
-''SPE~Y RAI\D

m
Q

ru
Q

U
~
Z
:J

UNIVAC 1218

UNIVAC
FEDERAL SYSTEMS DIVISION

St. Paul. Minnesota

November,] 969

CHANGE 2

To: All holders of the 1218 Programmers Reference Manu~l, PX 2910
0

From: Adv~nced Programming Oepartment

Insert the changes as fOllows: (with 33 enclosures)

1. Title page: Remove and replace with new title page ~tt~ched.

2. Remove p~ge iii and replace with new page iii ~tt~ched.

3. Remove Table of Contents pages ix/x thru xxv and replace with new pages
ix/x thru xxvii attached.

40 Remove page 11-0-23/11-0-24 and replace with new page II-0-23/II-0~24
attached.

5. Following Section II-F insert new tab, "9200/9300 Subsystem," and
new pages II-G-l/II-G-2 thru II-G-39 o

PROGRAMMERS REFERENCE MANUAL
FOR

UNIVAC 1218 COMPUTER

PX 2910

REVISION C

CHANGE 2

NOVEMBER 1969

UNIVAC
FEDERAL SYSTEMS DIVISION

CD 19b8 by SPErmy R4ND CORPORATION.

CHANGE 2

CHANGE RECORD

Change No. Date Reason for Change

Rev C August 1968 Retyped and extensively revised entire manual.

Rev C July 1969 Updated and revised manual. Deleted section
Change 1 on 1469 High-Speed Printero

Change 2 November]969 Added Section II-G which describes the use of
the 9200/9300 Computer as a peripheral device.
Minor corrections o

ii

CHANGE 2

LIST OF EFFECTIVE PAGES

Page No~ Change in Effect Page No. Change in Effect

Title Page Rev C, Change 2 III-C-27 Rev C, Change
i i thru iii Rev C, Change 2 III-C-2A thru III-C-30 Rev C
v Rev C, Change III-C-31 thru III-C-42 Rev C, Ch::lnge
Letter Rev C IV-l Rev C, Change
ix Rev C, Change 2 IV-A-1 thru IV-I' -14 Rev C
xv thru xxvii Rev C, Change 2 IV -B-1 thru IV -J3-:!;) Rev C
1-1 Rev C IV-B-26 thru IV-B-28 Rev C, Change
I-A -1 thru I-A-i 5 Rev C IV-B-29 Rev C
I-B-1 thru I-B-46 Rev C IV-B-30 thru IV-B-34 Rev C, Change 1
l-C-1 thru I-C-17 Rev C IV-B-35 thru IV-B-40 Rev C
11-] Rev C IV -C-1 thru IV-C-6 Rev C
II-A-1 thru II-A-12 Rev C IV-O-1 Rev C, Change
II-B-1 thru II-B-8 Rev C IV-0-2 thru IV-0-6 Rev C
ll-C-1 thru 11-C-7 Rev C IV-0-7 thru IV-D-8 Rev C, Ch;:mge 1
II-C-8 Rev C, Change 1 IV-0-9 thru IV-0-10 Rev C
ll-C-9 thru ll-C-23 Rev C IV-E-l Rev C, Change 1
11-0-1 thru 11-0-23 Rev C IV-E-2 Rev C
II-D-2·1 Rev C, Change 2 IV-E-3 thru IV -E-t1 Rev C, Change
11-0-25 thru 11-0-29 Hev C IV-F-1 Rev C, Change
I I -E-1 Rev C, Change 1 IV-F-2 thru IV-F-ll Rev C
II-F-1 thru II-F-10 Rev C IV- F-12 thru IV-F-J4 R('v C, Change
II-F-11 Rev C, Change V-I Rev C
II-G-l thru II-G-39 Rev C, Change 2 tT 1\ 1 thru V-A -] 6 n r"

V-1-\-1 nev l.-

111-1 thru 111-2 Rev C V-B-l thru V-B-2 Rev C
III-A-l thru III-A-13 Rev C V-C-l thru V-C-4 Rev C
III-B-I thru III-B-26 Rev C A-I thru A-4 Rev C
III-C-1 thru lII-C-26 Rev C

iii

CHANGE 1

PREFACE

The UNIVAC 1218 System includes the UNIVACQV 1218 Military Computer, standard
peripheral equipment, and a set of standard computer software. This manual was
written to meet the needs and requirements of the programmer. It gives general
information about the computer, peripheral equipment, and the standard software
available with the computer. The principal software packages consists of:

1) Assemblers.
2) Operator service routines.
3) Programmer service subroutines.

Organizationally, the manual is comprised of five major sections, each of which
has several parts. Section I contains general information concerning the com­
puter hardware and functional capabilities of the computer. It gives the
reader logical and functional characteristics of the instruction repertoire
and describes the Input/Output (I/O) characteristics of the computer in detail.
In addition, hardware features are included such as size, power, and cooling
requirements, as well as compatibility between peripheral equipment and other
computers.

Section II contains functional information concerning peripheral equipments
commonly used in a 1218 System.

Section III describes the family of TRIM assemblers available with the compu­
ter. Since computer memory size and peripheral equipment differ from site to
site, three assemblers have been written and are available to satisfy the
user's needs.

Section IV describes operator service routines. Operator routines are those
routines used by a computer operator, under manual control, to perform compu­
ting-center operations. Typical routines of this category are paper tape
load, magnetic tape handler, program trace, memory dump, and so forth. Such
routines perform a service to the user, but they do not become integrated
into his programs. Most of these routines may also be 6perated under program
control.

Section V describes programmer service subroutines. The standard package of
programmer service subroutines saves the user time since it contains general
subroutines that are used often. These subroutines are supplied in assembler
source language for easy integration into the user's program. Subroutines
in this category include mathematical, conversion, and assembler support sub­
routines.

The information contained in this manual is generally written from the stand­
point of a UNIVAC 1218 Computer operating in the 1218 mode with exceptions for
other modes specifically noted. Therefore, this manual also serves as the
programming manual for the UNIVAC 1218 Computer.

The following page is a pre-addressed application for future revisions to this
~anual. To receive future revisions to the manual, the end user need only fill
1n the necessary data and return the application by mail.

v

CHANGE 2

TABLE OF CONTENTS

Section Title ~

I UNIVAC 1218 Military Computer I-I

I-A Description of Computer I-A-l

1. General Characteristics I-A-l
2. Physical Description I-A-l

2.1 Approximate Size and Weight I-A-2
2.2 Environment I-A-2
2.3 Cooling I-A-2
2.4 Power Requirements I-A-2

3. Functional Description I-A-2
3.1 Control I-A-2
3.2 Memory I-A-6

3.2.1 Bootstrap Memory I-A-6
3.2.2 Main Memory I-A-6

3.3 Arithmetic I-A-6
3.4 Input/Output (I/O) 1-A-6
3.5 Registers and Their Contents I-A-7

3.5.1 Addressable Registers I-A-7
3.5.2 Non-addressable Registers I-A-8

4. Summary of Technical Characteristics 1-A-9
4.1 Memory I-A-9
4.2 Input/Output (I/O) I-A-9

4.2.1 Channels I-A-9
4.2.2 Buffered Transfers I-A-9
4.2.3 Operating Modes I-A-9
4.2.4 Transfer Times I-A-I0
4.2.5 In terrupts I-A-I0
4.2.6 Priority I-A-I0
4.2.7 Program Control I-A-lO

4.3 Arithmetic I-A-IO
4.4 Control I-A-ll

I-B Computer Instructions 1-B-l

1. General 1-8-1
2. Word Formats I-B-l

2.1 Format I 1-8-1
2.2 Format II 1-8-2

3. Symbol Conventions 1-8-2
4. In s truc ti on s 1-8-4

ix

CHANGE 1

Section

I-B-l

I-B-2

I-B-3

I-B-4

I-B-5

I-B-6

I-B-7

I-B-8

TABLE OF CONTENTS (CONT.)

Title --
Transfer Instructions

1. General
2. Instructions

Arithmetic Instructions

1. General
2. Instructions

Shift Instructions

1. General
2. Instructions

Logical Instructions

1. General
2. Compare Instructions
3. Complement Instructions
4. Selective Set Instruction
5. Selective Clear Instruction
6. Selective Substitute Instructions
7. Parity Skip Instructions

Modifying Instructions

1. General
2. Instructions

Jump Instructions

1. Introduction
2. Unconditional Jump Instructions
3. Conditional Jump Instructions

Skip and Stop Instructions

1. General
2. Instructions

Input/Output Instructions

1.. General
2. Buffer Transfer Instructions
3.. Buffer Termination Instructions

x

I-B-8

I-B-H
I-B-8

I -B-12

I -B-12
l-R-12

I-B-H~

I-B-18
I -B-18

I-B-21

I-B-21
I-B-21
I-B-23
I-B-24
I-B-24
I-B-25
I-B-26

I-B-27

I-B-27
I-B-27

I-B-29

I-B-29
I-B-29
I-B-32

I-B-37

I-B-37
I-B-37

I-B-40

I-B-40
I-B-40
I-B-42

TABLE OF CONTENTS (CONT.)

Section Ti tIe

I-C

II

II-A

4. Override Instructions
5. Miscellaneous I/O Instructions

Input/Output (I/O) Characteristics

1. General
2. Input/Output Interface

2.1 Data Transfers
2cl.l Peripheral Operation
2.1.2 Intercomputer Operation
2.1.3 Forced Transfers (Override)

2.2 Interrupts
2.2.1 Channel Interrupts
2.2.2 Special Interrupts

3. Input/Output Priority
4. Operating Modes

4.1 Single Channel Mode
4.2 Dual Channel Mode
4.3 Externally Specified Indexing (ESI) Mode

Peripheral Equipment

UNIVAC 1232 Input/Output Console

1 • Basic Information
1.1 On-Line Operation
1.2 Off-Line Operation

2. Input/Output Control
2.1 Computer Control
2.2 Panel Control

3. Operation of Units
3.1 Perforated Tape Reader
3.2 Tape Perforator
3.3 Printer
3.4 Keyboard
3.5 Keyboard Interrupt
3.6 Switches and Indicators
3.7 External Function Manual Controls

xi

CHANGE 1

I-B-43
I -B-44

I-C-l

I-C-l
I-C-3
I-C-3
I-C-3
I-C-7
I-C-7
I-C-8
I-C-9
I-C-9
I -C - 10
I -C-ll
I-C- 11
I-C- 14
I-C- 16

11-1

II-A-l

II-A-l
II-A-l
II-A-l
II-A-l
II-A-l
II-A-5
II-A-5
II-A-5
II-A-6
II -A-7
II-A-7
II -A-II
II-A-ll
II-A-12

CHANGE 1

Section

II-B

II-C

TABLE OF CONTENTS (CONT.)

Title

UNIVAC 1532 Input/Output Console

1. General Description
1.1 Operational Characteristics

1.1.1 On-line Mode
1.1.2 Off-line Mode

2. Functional Description
2.1 General
2.2 Punching Output Data
2.3 Printing Output Data
2.4 Reading Input Data
2.5 Keyboard Input
2.6 Function Instructions

3. Programming Considerations
3.1 General
3.2 Tape Reading Procedures
3.3 Keyboard Input Procedures

3.3.1 Keyboard-Printer Entry Via Interrupt
3.3.2 Keyboard-Printer Entry Via Computer

Commands
3.4 Tape Punching Procedures
3.5 Printer Procedures
3.6 Off-line Operations

Magnetic Tape System (Type l240A)

1. Basic Information
2. Input/Output Sequence for 1240A Magnetic Tape

System
2.1 Address Word
2.2 Instruction Word

3. Interrupt and .Status Word
4. Magnetic Tape Operations

4.1 Master Clear (Bit 16)
4.2 Read (Bit 11-15)
4.3 Write (Bit 11-15)
4.4 Rewind (Bits 11-15)
4.5 Rewind-Read (Bits 11-15)
4.6 Space File Forward/Backward (Bits 11-15)
4.7 Write Tape Mark (Bits 11-15)
4.8 Back Space (Bits 11-15)
4.9 Search (Bits 11-15)

50 Format Portion of Instruction Word
:i.l Modulus
5.2 Character
5.3 Parity
5.4 Density

xii

II-B-l

II-B-l
II -B-1
II -B-1
II-B-2
II-B-2
II-B-2
II-B-2
II-B-3
II-B-3
II-B-5
II-B-6
II-B-6
II-B-6
II-B-7
II-B-7
II-B-7

II-B-8
lI-B-8
II-B-8
II-B-8

ll-C-l

ll-C-l

ll-C-l
ll-C-4
ll-C-4
ll-C-4
II -C-7
ll-C-7
ll-C-7
ll-C-8
ll-C-9
ll-C-9
ll-C-9
ll-C-9
ll-C-I0
lI-C-10
ll-C-I0
TI-C-IO
ll-C-l1
ll-C-l1
ll-C-11

TABLE OF CONTENTS (CONT.)

Sec t ion Ti tIe

11-0

6. Tape System Moduli
6.1 Modulus 3: (Bits 10 and 09 = 00)
6.2 Modulus 4: (Bits 10 and 09 = 01)
6.3 Modulus 5: (Bits 10 and 09 = 10)
6.4 Modulus 6: (Bits 10 and 09 = 11)

7. Status Word
7.1 Improper Condition (Bits 29 and 14)
7.2 Output liming Error (Bits 25 and 10)
7.3 Input Timing Error (Bits 24 and 09)
7.4 Incorrect Frame Count (Bits 23 and 09)
7.5 Lateral Parity Error (Bits 22 and 07)
7.6 Last Tape Motion (Bits 20 and 05)
7.7 Longitudinal Parity Error (Bits 21 and 06)
7.8 Tape Mark (Bits 19 and 04)
7.9 No Write Enable (Bits 18 and 03)
7.10 End of Tape (Bits 17 and 02)
7 • 11 Low Tape (B its 16 and 01)
7.12 Load Point (Bits 15 and 00)

8. Tape Marker s
9. Logical Selection of Tape Transports

10. 1240A High Speed Printer Off-line Compatihility
11. Programming Considerations

11.1 General
11.2 Write Procedures
11.3 Read Procedures
11.4 Search Procedures
11.5 Record Length
11.6 End of File
11.7 Editing of Tape
11.8 Bad Tape

Magnetic Tape System (Type 1540/1541)

1. General Information
2. Performance of Function
3. Ouplexing
4. Tape Markers
5. Status Word and Interrupt (Status Interrupt)

5.1 Improper Condition (Bit 14 = 1)
5.2 Duplex Control (Bit 13; 0 = In Control;

1 = Not In Control)
5.3 Transport Ready (Bi t 12 = 1)
5.4 XIRG Oetected (Bit II = 1)
5.5 Output Timing Error (Bit 10 = 1)
5.6 Input Timing Error (Bit 09 = 1)
5.7 Incorrect Frame Count (Bit 08 = 1)

xiii

CHANGE 1

II-C-12
II -C-12
II-C-12
II-C-12
I I -C -12
II-C-1~
II-C-15
II -C-16
II-C-16
1I-C-16
II-C-16
II -C -1 tl
II -C-17
II-C-17
II-C-17
II -C-I7
II -C-l 7
II-C-17
II-C-17
II -C-I8
II-C-18
II-C-19
II-C-l q

II -C-22
II -C -22
II-C-23
II-C-23
II-C-23
II-C-23

II -0-1

11-0-1
11-0-1
11-0-3
11-0-3
11-0-5
11-0-7

II -0-7
I I -0-8
11-0-8
11-0-8
11-0-8
11-0-0

CHANGE 1

TABLE OF CONTENTS (CONT.)

Section Title

5.8 Lateral Parity Error (Bit 07 = 1)
5.9 Longitudinal Parity Error (Bit 06 = 1)
5.10 Last Tape Motion (Bit 05; 1 = Backward

o = Forward
5.11 Tape Mark (Bit 04 = 1)
5.12 No Write Enable (Bit 03 = 1)
5.13 End of Tape (Bit 02 = 1)
5.14 Low Tape (Bit 01 = 1)
5.15 Load Point Bit 00 = 1)

6. External Function Commands - Function Words
6.1 Format (Bits 10-7)
6.2 Character Designator (Bit 8); 1 Selects

Octal, 0 Selects Bioctal
6.3 Modulus

6.3.1 Modulus 3 (Designator Bits 10 and
09 = 00)

6.3.2 Modulus 4 (Designator Bits 10 and
09 = 01)

6.3.3 Modulus 5 (Designator Bits 10 and
09 = 10)

6.3.4 Modulus 6 (Designator Bits 10 and
09 = 11)

6.4 Parity Designator (Bit 7), 1 Selects Odd,
o Selects Even

6.5 Density Designator (Bits 6 and 5)
6.6 Operation Code

6.6.1 Read Operations
6.6.1.1 Read-Forward

Read-Backward
6.6.1.3 Read-Modified Stop
6.6.1.4 Selective Read-Forward/Backward

6.6.2 Write Operation - General Information
6.6.2.1 Write
6.6.2.2 Write - Ignore Error Halt
6.6.2.3 Write - Extended Interrecord

Gap (XIRG)
6.6.2.4 Write Tape Mark

6.6.3 Space File - Forward/Backward
6.6.4 Rewind
6.6.5 Multifunction Operations (General

Information)
6.6.5.1 Search (Type I and Type II -

Forward/Backward)
6.6.5.2 Search File Forward/Backward
6.6.5.3 Rewind-Read

xiv

1I-D-9
11-D-9

1I-D-IO
11-0-10
I1-D-10
11-0-10
II-D-10
11-D-IO
II-D-10
11-0-11

11-D-11
11-0-15

11-0-15

11-D-15

11-0-15

I1-D-15

11-0-17
11-0-17
II-D-17
11-D-17
11-0-19
11-D-19
11-D-19
11-0-19
11-0-20
11-D-20
11-0-20

11-D-21
11-0-21
11-0-21
11-0-21

11-0-22

11-0-22
11-0-23
11-0-23

TABLE OF CONTENTS (CONT.)

Section Title

II-E

II-F

II-G

6.6.5.4 Rewind-Clear Write Enable
606.5.5 Rewind-Read-Clear Write Enable

6.6.6 Request Transport Status
6.6.7 Transmit Extra (Bits 17, 16 and 6 = 1,

o and 1, Respectively)
7. Magnetic Tape Unit - High-Speed Printer Off-line

Capability
8. Operating Instructions
9. Sequence of Events

UNIVAC High-Speed Printer (Model 1469)

(This section has been intentionally omitted.)

~
UNIVAC 1004 Card Processor

1. Basic Information
2. Message and Word Formats
3. Manual Operating Procedures

3.1 Ca rd Reader
3.2 Card Punch
3.3 High-Speed Printer

UNIVAC 9200/9300 Subsystem

1. General Information
2. Military Computer/ICCU Interface

2.1 Introduction
2.2 Data Formats

2.2.1 ICCU Data Transfer Formats
2.2.2 Header Formats

2.3 Header Information
2.3.1 Message Header Format
2.3.2 Control Block

xv

CHANGE 2

11-0-23
11-0-23
11-0-23

11-0-24

I I -0-24
11-0-27
11-0-27

II-E-l

I I -F-l

II-F-l
II-F-6
II-F-IO
II-F-ll
II-F-ll
II-F-ll

II-G-1

II-G-l
II-G-I
II-G-1
II-G-l
II-G-3
II-G-3
II-G-3
II-G-3
II-G-ll

CHANGE 2

TABLE OF CONTENTS (CONT.)

Section Title

2.4 Control Word Formats
2.4.1 Master External Function Word
2.4.2 External Interrupt Status Word

2.4.2.1 Error Status
2.4.2.2 Command Byte

2.5 Initiation Sequnce
206 Data Transfer Sequences

2.6.1 Output Data Transfer
2.6.2 Input Data Transfer
2.6.3 Special Functions

2.6.3.1 Output Data Transfer
2.6.3.2 Input Data Transfer

2.6.4 Maintenance Data Turnaround
2.7 Error Notification

3. 9200/9300/ICCU Interface
3.1 Introduction
3.2 Data Formats

3.2.1 ICCU Data Transfer Formats
3.2.2 Header Formats

3.3 Header Information
3.4 Slave Command Words

3.4.1 Slave Command Byte
3.4.2 Slave Status Byte
3.4.3 Sense Byte Formats

3.4.3.1 Sense Byte 1
3.4.3.2 Sense Byte 4

3.5 Initiation Sequence
3.6 Data Transfer Sequences

3.6.1 Input Data Transfer
3.6.2 Output Data Transfer
3.6.3 Special Functions

3.6.3.1 Input Data Transfer
3.6".3.2 Output Data Transfer

3.6.4 Maintenance Data Turnaround
3.7 Error Notification

4. 9200/9300 Operating Procedures
4.1 Next Instruction/Halt Display
4.2 Initializing Procedures

4.2.1 Power
4.2.2 Printer
4.2.3 Card Reader
4.2.4 Card Punch

4.3 Program Loading
4.4 Running and Stopping

4.4.1 Manual Stopping
4.4.2 Automatic Stopping
4.4.3 Power

xvi

II-G-12
II-G-12
II-G-12
II-G-13
II-G-13
II-G-14
II-G-14
II-G-14
II-G-15
II-G-15
II-G-16
II-G-16
II-G-17
II-G-17
II-G-17
II-G-17
II-G-IB
II-G-IB
II-G-IB
II-G-IB
II-G-IB
II-G-IB
II-G-19
II-G-20
II-G-20
II-G-21
II-G-22
II-G-22
II-G-22
II-G-23
II-G-23
II-G-24
II-G-24
II-G-24
II-G-25
II-G-25
II-G-25
II-G-25
II-G-27
II-G-27
II-G-27
II-G-27
II-G-2B
II-G-29
II-G-29
II-G-29
II -G- 29

Section

III

III-A

III-B

TABLE OF CONTENTS (CONT.)

4.5 Programmed Halting
4.6 Abnormal Stopping

Title

4.6.1 Abnormal Stop Indications
4.6.2 Abnormal Conditions

4.6.2.1 Printer
4.6.2.2 Card Reader
4.6.2.3 Card Punch
4.6.2.4 Processor

Assembly Systems

1. TRIM I
2. TRIM II
3. TRIM III

TRIM I Assembly System

1. Basic Information
2. Symbolic Addressing

2.1 Labels
2.2 Tags

3. Input Language Format
3.1 Format A
3.2 Format B
3.3 Format C

4. Special Operators
5. The LOK Tag
6. Input Tape Format
7. TRIM I Outputs
8. Ground Rul e s
9. Loading and Operating Procedures

9.1 Loading the Assembler
9.2 Using the Assembler
9.3 Error Detection and Display

TRIM II Assembly System

1 •
2.

Introduction
Description
2.1 Source Language

2.1.1 Label
2.1.2 Statement

2.1.2.1 Operator
2.1.2.2 Operand(s)

2.1.3
2.1.4

Notes
Symbo 1 s

xvii

CHANGE 2

II-G-29
II-G-30
II-G-30
II-G-31
II-G-31
II-G-34
II-G-36
II-G-39
111-1

111-1
111-1
111-1

III-A-l

III-A-l
III-A-l
III-A-l
III-A-l
III-A-2
III-A-3
III-A-4
III-A-4
III-A-:1
III-A-7
III-A-7
III-A-7
I II -A--8
III-A-IO
III-A-I0
III-A-I0
III-A-li

III-B-l

III-B-l
III-B-l
III-B-l
III-B-4
III-B-,1
III-B-4
III-B-5
III-B-:1
1I1-B-:)

CHANGE 2

TABLE OF CONTENTS (CONT.)

Section Title

III-C

2.2 Header and Declarative Operations
2.2.1 Allocation Header (ALLOC)
2.2.2 Program Header (PROG)
2.2.3 DEBUG Declarative

2.3 Mono-Operations
2.3.1 Format A
2.3.2 Format B
2.3.3 Format C

2.4 Poly-Operations
2.4.1 Reserve Operation (RESERV)
2.4.2 CLEAR Operation
2.4.3 MOVE Operation
2.4.4 I/O Operations
2.4.5 REMARK Operation
2.4.6 DATA Operation
2.4.7 Punch Contents Operation (PCHC)
2.4.8 Punch Text Operation (PCRT)
2.4.9 Type Text Operation (TYPT)
2.4.10 Type Contents Operation (TYPC)
2.4.11 Double Set Operation (DBLSET)
2.4.12 SETSR Operation

2.5 Debugging Operations
2.6 TRIM II Outputs

3. Programming Procedures
3.1 Input Tape Format
3.2 Ground Rules

4. Loading and Operating Procedures
4.1 Loading the Assembler
4.2 Using the TRIM II Assembler
4.3 Error

4.3.1
4.3.2
4.3.3
4.3.4

Detection and Display
Set Base Address in AL
Illegal Output Reselect in AL
UN ALLOC TAGS
DUP LBL

TRIM III Assembly System

1. Int roduct i on
2. Description

2.1 Source Language
2.1.1 Label
2. 1. 2 S tat em e n t

2.1.2.1 Operator
2.1.2.2 OperandCs)

2. 1.3 Not es
2.1.4 Symbols

xviii

III-B-()
111-B-6
lII-B-7
III-B-7
l1I-B-8
lII-B-8
lII-B-9
lII-B-9
lII-B-10
III-B-10
III -B-11
III -B-12
III -B-14
III-B-15
III-B-15
III-B-16
II1-B-17
111-8-17
III-B-U1
111-8-19
111-8-19
lII-B-20
111-8-21
111-8-22
111-8-22
111-8-22
111-8-24
111-8-24
111-8-24
TTT 0 <)c::
.L.L.L - U-';;;'J

III-B-25
111-8-26
III-B-26
111-8-26

l11-C-1

lll-C-l
lII-C-l
lI1-C-4
11I-C-4
l11-C-5
lll-C-5
lll-C-5
lI1-C-5
I1I-C-5

Section

3.

40

2.2 Header
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

TABLE OF CONTENTS (CONT.)

Title

and Declarative Operations
Control Header (CONTR)
Allocation Header (ALLOC)
Program Header (PROG)
Correction Header (CORREC)
DEBUG Declarative
OUTPUT Declarative
DECKID Declarative
ENDATA Declarative

203 Mono-Operations
2.3.1 Format A
2.3.2 Format B
2.3.3 Format C

2.4 Poly-Operations
2.4.1 Reserve Operation (RESERV)
2.4.2 CLEAR Operation
2.4.3 MOVE Operation
2.4.4 I/O Operations
2.4.5 Library CALL Operation
2.4.6 REMARK Operation
2.4.7 DATA Operation
2.4.8 Punch Contents Operation (PCHC)
2.4.9 Punch Text Operation (PCHT)
2.4.10 Type Contents Operation (TYPC)
2.4.11 Type Text Operation (TYPT)
2.4.12 Doubleset Operation
2.4.13 SETSR Operation

2.5 Debugging Operation
2.6 TRIM III Outputs
Programming Procedures
3.1 Paper Tape Input Format

3.1.1 Keyboard Co~rection Methods
3.2 80-Column·Card Input Format
3.3 Magnetic Tape Input Format
3.4 Source Program Corrections

3.4.1 Paper Tape Correction Format
3.4.2 Card Correction Format

305 Ground Rules
TRIM III Loading and Operating Procedures
4.1 Basic Information
4.2 Loading TRIM III
4.3 Initializing TRIM III
4.4 Using TRIM III
4.5 Operator Instruction Typeouts

4. 5. 1 Set Key 1
4.5.2 Identify MTUS in A
4.5.3 Identify Tape Job in AL
4.504 Remove Input Tape to Save

xix

CHANGE 2

Page

III-C-6
III-C-6
III-C-8
III-C-8
III-C-9
III-C-9
III-C-ll
III-C-ll
III-C-ll
III-C-12
III-C-12
III-C-13
III-C-13
III-C-13
III-C-14
III-C-14
III-C-16
III-C-17
III-C-18
III-C-19 .
III-C-19
III-C-19
III-C-21
III-C-21
111-C-22
III-C-23
III-C-23
III-C-24
III-C-26
III-C-27
III-C-27
III-C-27
III-C-28
III-C-31
III-C-31
III-C-32
III-C-32
III-C-34
III-C-35
III-C-35
III-C-36
III-C-36
III-C-37
III-C-38
III-C-38
III-C-39
III-C-39
TT1-(-39

CHANGE 2

Section

IV

IV-A

III-B

TABLE OF CONTENTS (CONT.)

Title

4.5.5 Select Outputs in A
4.5.6 If Necessary Change Scratch Tapes for

This Output
4.5.7 MTU ERROR CTXX Improve Condition
4.5.8 Set Base Address in AL
4.5.9 NNNNN Duplicate Label XXXXXX
4.5.10 Unallocated Tags nnnnn XXX XXX AAAAA
4.5.11 TCS Error XX Table XX
4.5.12 Poly-Code Bank OFL

Operator Service Routines

UPAK I Paper Tape Utility Package

l.
2.

3.

General Information
Program Description
2.1 Paper Tape Load

2.1.1 Load Absolute Typewriter Code
2.1.2 Load Absolute Bioctal Code
2.1.3 Load Relocatable Bioctal Code

2.2 Paper Tape Absolute Typewriter Code Dump
2.3 Paper Tape Absolute Bioctal Code Dump
2.4 Inspect and Change
2.5 Store Constant in Memory
2.6 Search Memory
2.7 Copy Paper Tape
2.8 Typewriter Dump
Loading and Operating Procedures
3.1 Loading UPAK I
3.2 Using UPAK I

3.2.1 Paper Tape Load
3.2.2 Paper Tape Absolute Typewriter Code Dump
3.2.3 Paper Tape Absolute Bioctal Oump
3.2.4 Inspect and Change
3.2.5 Store Constant in Memory
3.2.6 Search Memory
3.2.7 Copy Paper Tape
3.2.8 Typewriter Dump

UPAK III Utility Package III

1. General Information
2. Control Program

2.1 Program Description
2.2 Loading UPAK III
2.3 Expanding UPAK III

xx

Page

III-C-39

III-C-40
III-C-40
III-C-40
III-C-40
III-C-41
III-C-41
III-C-41

IV-l

IV-A-l

IV-A-l
IV-A-l
IV-A-2
IV-A-2
IV-A-3
IV-A-4
IV -:\-5
IV-A-~
IV-A-6
IV -r'\-()
IV-A-h
IV-A-7
IV-A-7
TV -A-A
IV-A-fl
IV-A-G
TV -.A-C)
IV-A-ll
IV --,\-11
IV-A-ll
IV -A-12
IV-A-13
IV-A-13
IV-A-13

IV -R-1

IV -B-1
IV -B-1
IV -B-1
JV-B-~\

IV-B-5

Section

3.

4.

5.

6.

7.

8.

9.

TABLE OF CONTENTS (CONT.)

Title

Paper Tape Handler Module (PTHAN)
3.1 Program Description
3.2 Operation Procedures

3.2.1 Operation of Inspect and Change
3.2.2 Operation of Store Constant in Memory
3.2.3 Manual Operation of all Paper Tape Loads
3.2.4 Program Operation of All Paper Tape Loads
3.2.5 Manual Dump of Typewriter Code
3.2.6 Program Operation of Dump Typewriter Code
3.2.7 Manual Dump of Absolute Bioctal Code
3.2.8 Manual Operation of Dump Bioctal Code

Magnetic Tape Handler Module (UMTH)
4.1 Program Description
4.2 Input Parameters
4.3 Operating Procedures

4.3.1 Operation Under Program Control
4.3.2 Manual Operation

4.4 Alarms and Status Indications
Magnetic Tape Duplication Module (MTDUP)
5.1 Program Description
5.2 Input Parameters
5.3 Operating Procedures

5.3.1 Operation Under Program Control
5.3.2 Manual Operation

5.4 Alarms and Status Indications
TRIM III Output 10 Load Module (LOADIO)
6.1 Program Description
6.2 Input Parameters
6.3 Operating Procedures

6.3.1 Operation Under Program Control
6.3.2 Manual Operation

6.4 Alarms and Status Indications
Inspect and Cha'nge and Store Constant Module
7.1 Program Description
7.2 Operating Procedure

7.2.1 Inspect and Change
7.2.2 Store Constant in Memory

Pri n t Memo ry Con ten t s (PRINTC)
n.l Pro~Jram Dpscription
8.2 Operating Procedure

8.2.1 Operation Under Program Control
n.2.2 Manual Operation

Card Hand1pr (DATeD)
0.1
0.2
°.3
0.4

Program Description
Input Parameters
Operating Procedure
A 1 a rm s

xxi

CHANGE 2

Page

IV-B-6
IV-B-6
IV-B-9
IV-B-9
IV-B-IO
IV-B-lO
IV-B-ll
IV-B-l1
IV -B-1 1
IV -B-1 1
IV -B-12
IV -B-12
IV -B-12
IV-B-12
IV -B-16
IV -B-16
IV -B-16
IV-B-17
IV-B-lf\
IV-R-ln
IV -B-1 ()
IV -B-21
IV -B-21
IV -B-21
IV -B-:2:2
IV -B-22
IV -B-22
IV -B-2,}
IV-B-24
IV -R-:~4
IV-I1-~-l
IV -B-:2:)
IV -B-:2'-)
IV -B-:2;)
IV -B-~~)
IV -B-2;-,
IV -B-:?h
IV -R-:21l
IV-R-:26
IV -B-~';
IV-B-:2i
IV -H -:2 'I
IV -B- :"'11
IV-B-:2n
IV -B-:i 1
IV-B-:11
IV-B-:12

CHANGE 2

TABLE OF CONTENTS (CONT.)

Secti on Ti tIe

IV-C

IV-D

IV-E

10. Printer Line Image on Tape and Tape-to-Printer
Module (POTPOP)
10.1 Program Description
10.2 Input PRrameters
10.3 POT Operating Procedures

10.3.1 Under Program Control
10.3.2 M8nual Operation

10.4 POT Operating Procedures
10.4.1 Under Program Control
10.4.2 Manual Operation

10.5 Alarms and Status Indicators
11. MRgnetic Tape Handler Module (JOSH)

11.1 Program Description
11.2 Input Parameters
11.3 OperRting Procedures

11.3.1 Operation Under Program Control
11.3.2 Manual Operation
1] .1.3 Speeial Considerations

TRIM Corrector
1. General Information
2. Input Formats

2.1 Delete Correction
2.2 Replace Correction
2.3 Insert Correction

3. Preparation of Correction Tapes
4. Operating Procedures

TRIM Library Builder (LIBBLD)

1. General Information
2. Inputs

2.1 Building or Updating
2.2 Listing

3. Outputs
3.1 Building or Updating
3.2 Listing

4. Operating Procedures
4.1 Library and Updating Procedures
4.2 Library Listing Procedures

5. Typeouts

TRACE Debugging Program (TRACK)

1. General Information
2. Input
3. Output

xxii

IV-B-32
IV -B-:12
IV-B-32
IV-B-33
IV -B-:13
IV-B-3:1
IV -B-:14
IV -B-:1,-l
IV-B-34
IV -B-34
IV -B-34
IV-B-34
IV -B-:)~,
IV -B-:1()
IV -B-29
IV-B-40
TV -B-40

IV -C - i
IV -c -> I
IV -C-J
IV -C-2
IV -c-~
IV -r -~;
IV -c _.J
I V ...(; -.;-,

IV -D-l

IV -D-]
IV-D-l
IV -D-l
IV -D -:i
IV -D-:-.
IV-D-;i
IV -I) -()
IV-O-7
IV-D-7
IV-D-I
IV _D_l/

IV -E- I

IV -E-1
IV -E-1
IV-E-~

TABLE OF CONTENTS (CONT.)

Section Title

IV-F

V

V-A

V-B

4. User Ground Rules
5. Operating Procedures

Card-to-Tape Processor (CART)

1. General
2. Input
3. Operations

3.1 Card-to-Taping a Single Job
3.2 Card-to-Taping Consecutive Job
3.3 Replacing Jobs
3.4 Inserting Jobs
3.5 Deleting Jobs
3.6 Punching Jobs
3.7 Listing Jobs
3.8 Withdrawing Jobs
3.9 Correcting Jobs

4. Operating Procedures
5. Informative and Error Typeouts
Programmer Service Subro utines

Mathematical Subroutine

1. Fixed Pojnt Square Root (SQR)
2. Fixed Point Sine and Cosine (SINCOS)
3. Fixed Point Arctangent (RTAN)
4. Fixed Point Arcsine (ARCSIN)
5. Fixed Point Natural Logarithm (NATLOG)
6. Fixed Point Exponential (EXPON)
7. Floating Point Arithmetic Package
8. Floating Point to Fixed Point Conversion
9. Fixed Point to Floating Point Conversion

10. Floating Point Compare
11 • Flo a t:[n gPo i n t Sq ua r e Roo t
12. Floating Point Tangent
13. Floating Point Sine and Cosine
14. Floating Point Arc-Sine and Arc-Tangent
15. Floating Point Natural Logarithm
16. Floating Point Arithmetic

Conversion Subroutine

1. Convert Octal to Typewriter - Coded Decimal
2. Decimal to Octal Routine (OOCTL)

xxiii

CHANGE 2

Page

IV-E-2
IV-E-3

IV -F-1

IV -F-1
IV -F-1
IV -F-4
IV -F -:1
IV -F-5
IV -F - ()
IV -F-7
IV-F-7
IV -F-8
IV -F-O
IV -F-9
IV ·-f·- J 0
IV -F -12
IV-F-J:i

,

V-A-1

V-A-l

V-A-l
V-A-l
V-A-2
V-A-3
V-A-5
V-A-6
V-A-8
V-A-IO
V -A-II
V -A-12
V-A-12
V-A-13
V -A-13
V-A-14
V-A-15
V-A-16

V-B-I

V-B-l
V-B-2

CHANGE 2

Section

V-C

TABLE OF CONTENTS (CONT.)

Ti tIe

Assembler Support Subroutines

1. TRIM Debugging Package (DEBUG)
2. Type Text Subroutine (TYPT)
3. Type Contents Subroutine (TYPC)
4. Punch Text Subroutine (PCHT)
5. Punch Contents Subroutine (PCHC)

xxiv

V-C-l

V-C-l
V-C-2
V-C-2
V-C-3
V-C-3

Table

I-A-l

1-8-1
1-8-2

I-C-l
I-C-2

II-A-l
II-A-2

11-8-1

II-C-l
II-C-2

11-0-1
11-0-2

11-0-3
11-0-4

II-E-l

II-F-l
II-F-2
II-F-3

III-A-l

111-8-1

III-C-l
III-C-2
III-C-3

IV-A-l

IV-8-1

A-I
A-2

A-3

A-4

LIST OF TA8LES

Title --
Memory Address Allocation

Repertoire of Instructions
Summary of Conditional Jump Instructions

Data Transfer Rates
I/O Function Priority

Manual-Automatic Controls
Field Data Code

ASCII Code for the UNIVAC 1532 Keyboard Printer

Operation Codes
Octal Recording

Word Assembly Time (Microseconds)
Chart Showing the Effects of Various UNIVAC

Computers Operating with the UNIVAC 1540 or
1541 Magnetic Tape Subsystem

Operation Codes
Type Symbols and Codes

(This table has been deleted.)

80-Column Code
8uffer Sizes for Computer 1004 Communications
Summary of Command Codes

TRIM I Coding Symbols

TRIM II Coding Symbols

TRIM III Coding Symbols
Coding Symbols for Card Input
TCS Error s

UPAK I Entrance Addresses

Entrance Addresses and Assigned 8ases

Equivalent Input Format Codes
Field Data Code (6 8its), UNIVAC 1232 Keyboard

Typewr iter
ASCII Code (7 8its), UNIVAC 1532 Keyboard and

Typewri ter
TRIM Internal Character Code Chart (6 8its)

xxv

and

CHANGE 2

I-A-ll

1-8-4
1-8-33

I-C-2
I-C-IO

II-A-5
II-A-8

11-8-4

II-C-6
II-C-ll

11-0-9

11-0-16
11-0-18
II-D-28

II-F-2
II-F-8
II-F-9

III-A-2

111-8-5

III-C-5
III-C-28
III-C-42

IV-A-l

IV-8-2

A-I

A-2

A-3
A-4

CHANGE 2

Figure

I -A-1
I-A-2
I-A-3

I-C-1
I-C-2

II-A-1
II-A-2
II -;\-3
II-A-4

II -B-1
II -B-2
II -B-3
II-B-4

II-C-1
II -C-2
II -C-3
II -C-4
II -C-5
II-C-6
II-C-7
II -C-8
II -C-o
II-C-lO

11-0-1
II -0-2
II -0-3
II -0-4
I 1-0-5
11-0-6
11-0-7
II -0-8
11-0-9
11-0-10
11-0-11

I1-E-l
II-E-2

I1-E-3
I1-E-4
II-E-5
II-E-6

LI ST OF ILLUSTRATIONS

Title --
UNIVAC 1218 Computer (4 Drawer)
UNIVAC 1218 Computer (6 Drawer)
Computer General Block Diagram

Inpu t/Outpu t In terface
Intercomputer Communication

UNIVAC ® 1232A I/O Console
Block Diagram of Console
1232 I/O Console, External Function Word
Keyboard Layout

Block Diagram of I/O Console
Keyboard Layout
Function Instruction Encoding
Sequence of Program Operations for Tape Read

Block Diagram of Magnetic Tape System
l240A Interface
Address Word
Instruction Word
Status Word Format
Bioctal Tape Format
Octal Tape Format
Magnetic Tape - High-Speed Printer Interface
Sequence of Events in Tape - Printer Operation
Sequence of Programming References - Magnetic Tape

System

Magnetic Tape Unit - Computer Interface
Type 1540 Magnetic Tape System (Maximum Configuration)
Type 1541 Magnetic Tape System (Maximum Configuration)
Tape Format
Magnetic Tape Unit Status Word Format
External Function Word Format
Bioctal Tape Format
Octal Tape Format
Magnetic Tape Unit - Tape File
Transmit-Extra Computer Word Format
Magnetic Tape - Printer Interface

(This illustration has been deleted.)

1
xxvi

I-A-3
I-A-4
I-A-5

I-C-4
I-C-8

II-A-2
II-A-3
II-A-4
II-A-lO

II-B-3
II -B-5
II-B-6
II -B-7

II-C-2
II-C-3
II-C-5
II-C-5
II-C-7
II-C-13
II-C-14
II -C-18
II-C-20

II -C-2l

11-0-3
11-0-4
11-0-4
II -0-5
11-0-6
II -0-12
11-0-13
11-0-14
11-0-24
11-0-25
11-0-26

Figure

II-F-l
II-F-2
II-F-3

II-G-l
II-G-2
II-G-3
II-G-4
II-G-5
II-G-6
II-G-7
II-G-S

III-B-l
III-B-2

III-C-l
III-C-2
III-C-3
III-C-4
III-C-5
III-C-6
III-C-7
III-C-S

IV-B-l
IV-B-2
IV-B-3
IV-B-4
IV-B-5
IV-B-6
IV-B-7
IV-B-S

IV-D-l
IV-D-2

LIST OF ILLUSTRATIONS (CONT.)

Title --
Computer/1004 Card Processor Interface
Command Code Format (First Word Only)
Data Words

ICCU Communication and Interface
Data Formats, IS-bit Interface
Data Formats, 30-bit Interface
Data Formats, 36-bit Interface
Message Header Format, IS-bits
Message Header Format, 30-bits
Message Header Format, 36-bits
9200/9300 Control Console

Block Chart for TRIM II - Pass 1
Block Chart for TRIM II - Pass 2

TRIM III Solution of a Problem
TRIM III Segments 1 and 2
TRIM III Segments 3 and 4
Sample CONTR Header and Declarative Operations
Sample Correction Coding
Typical Coded Programmer Card Input
Typical Punched Card Input Operation
TRIM III Output 12 from Card Input

Tape Address Parameter
UMTH Input Parameters
MTDUP Input Parameters
LOADIO Input Parameters
DATCD Address Card Format
DATCD Instruction Card Format
POTPOP Input Parameters
JOSH Input Parameters

Library Directory
Library Routines Format

xxvii

CHANGE 2

II-F-3
II-F-7
II-F-S

II-G-2
II-G-4
II-G-5
II-G-6
II-G-7
II-G-S
II-G-9
II-G-26

III-B-2
III-B-3

III-C-l
III-C-2
III-C-3
III-C-7
III-C-IO
III-C-29
III-C-30
III-C-33

IV-B-3
IV-B-13
IV-B-19
IV-B-24
IV-B-2S
IV-B-29
IV-B-32
IV-B-36

IV-D-5
IV-D-6

~

UNIVAC I FEDERAL SYSTEMS DIVISION

APPLICATION FOR MANUAL REVISIONS

Upon receipt of this manual, please fill in the necessary data. It is impor­
tant that the addressee be the end user so that the operating personnel will
receive all revisions to the manual.

Comments concerning this manual may be set to Univac using the same address
which appears on the reverse side of this page.

EQUIPMENT NAME _______________________________ _

SERIAL NO. ________________________ __ MODEL OR PART NO. ______ __

MANUAL TITLE ____________ --------------------__ __

_________________________ MANUAL NUMBER ________________ _

PURCHASING AGENCY ___________________________ _

NAME OF USER ___________________________ __.,...-----

ADDRESS OF USER ______________________________ _

a ATTN; __ __

iTAPLE STAPLE

>:'OLD

--------------------------------------~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1145 SAINT PAUL, MINNESOTA

UNIVAC
FEDERAL SYSTEMS DIVISION

UNIVAC PARI<
P.O. BOX 3525
8T. PAUL. MINN. 55101

ATTN: ENGINEERING AND PROGRAMMING SUPPORT SERVICES DEPT., M.S. 8631

--------------------------------------~ FOLD

SECTION I. UNIVAC 1218 MILITARY COMPUTER

This section provides an introduction to the UNIVAC 1218 Computer. It is not
intended to serve as a detailed technical description of the UNIVAC 1218
Computer, but rather as a presentation of information that is essential to
programming the UNIVAC 1218 Computer.

The section consists of three subsections which describe the following aspects
of the UNIVAC 1218 Computer:

1) The general physical and functional characteristics of the computer.
2) The format and execution characteristics of all instructions.
3) The functional input/output characteristicso

I-I

SECTION I-A. DESCRIPTION OF COMPUTER

I. GENERAL CHARACTERISTICS

The UNIVACQP1218 Military Computer is a medium-scale, stored-program, general­
purpose computer designed to provide high reliability under adverse operating
environments. The UNIVAC 1218, hereinafter called simply the computer, utilizes
modular design concepts in both the memory section and the input/output (I/O)
section.

The computer is equipped with a 4-microsecond internal random access core memory
in sizes of 4,096, 8,192, 16,384, and 32,768 18-bit words with a read access
time of 1 0 8 microseconds. In addition to this, other random-access storage de­
vices connected to I/O channels provide unlimited memory capacities. A portion
(32 word locations) of core memory has a characteristic non-destructive feature
which stores constants and instructions for automatic recovery from fault situ­
ations and for an initial load of routines.

The computer is designed with a modular I/O section which provides the option of
either 4 or 8 I/O channels for communication with peripheral equipment or other
computers. Each 4-channel module is available in either of two types of inter­
face design. I/O communication is normally accomplished in an 18-bit parallel
mode; however, single channels from two modules can be combined by switch setting
into one 36-bit I/O channel.

Arithmetic operations can be performed on the basis of a single-length 18-bit
word, or a double length 36-bit word if greater precision is required for com­
patibility with other computers. The repertoire of 98 instructions allows
complete programming freedom in mathematical and logical computations, as well
as full control of I/O buffer transfers and of real-time, on-line operations.
The computer features buffered parallel transfers, one's complement binary
arithmetic, direct addressing, and program-controlled automatic address or
operand modification via eight control-memory-contained index registers.

The ability of the computer to process various applications concurrently is
implemented by a program intervention system called interrupts. These interrupts
may originate at some remote external device (external interrupts) or they may
originate within the computer (internal interrupts). Since more than one may
occur at the same time, the computer possesses a priority scheme with decision­
making qualities so that it can select the branch of operation for solving the
problem requiring the most urgent attention. Under program control the other
interrupts may be honored, in turn, according to the next highest priority or
they may be ignored. With this interrupt feature, real-time problem solution
and maximum proc~ssing potential of the system is realized since less important
routines can occupy the computer's surplus time.

2. PHYSICAL DESCRIPTION

The physical characteristics of the computer depend upon the size of memory and
the number of I/O channels. The computer is housed in a single cabinet that
contains the power supply, logic circuits, core memory, maintenance and control

T A ,
~-n-~

panel v and a cooling systemo Logic modules are encapsulated printed circuit
cards which plug into the wired chassis of easily accessible vertical pull-out
drawers. The cabinet contains either four or six of these drawers, as shown in
Figures I-A-l and I-A-2, depending upon the memory and I/O channel options. The
front of each drawer is the associated portion of the computer control panel.
The power supply is mounted in a horizontal drawer at the bottom of the cabinet.
A list of the other physical characteristics follows.

201 APPROXIMATE SIZE AND WEIGHT

Height
Width

Depth
Weight

- 72 inches
- 25 inches (4-drawer)
- 38 inches (6-drawer)
- 30 inches
- 834 pounds (4-drawer)

1180 pounds (6-drawer)

2.2 ENVIRONMENT
. 0 0

Operating temperatures - 0 C to 80 C
Non-operating temperatures - -62 C to +750 C
Humidity - relative humidity to 95 per cent

2.3 COOLING

Blower forced ambient air (water cooling optional).

2.4 POWER REQUIREMENTS

115-volt, ~ 5 per cent, 3-phase, 400 cps, 1250 watts maximum and lI5-volt, + 10
per cent, single-phase, 60-cps, 208 watts.

30 FUNCTIONAL DESCRIPTION

Figure I-A-3 is a general block diagram of the computer. As indicated, the
computer has four major functional sections: control, memory, arithmetic, and
I/O.

3.1 CONTROL

The control section contains circuitry necessary to procure, modify, and execute
the single address instructions of a program stored in the core memory of the
computer. It controls parallel transfers of instructions and data. Direct or
indirect addressing capabilities and automatic address and operand modification
are directed by the control section translators and the timing of the synchron­
ous electronic master clock. This section controls all arithmetic, logical,
and sequential operations of the computer except those assigned to the I/O sec­
tion. It has facilities to permit an interruption of the running program when
certain real-time events require such interventions.

I-A-2

8. Doors Open b. Doors Closed

Figure I-A-1. UNIVAC 1218 Computer (4 Drawer)

H
I
:t>
I
~

a) Doors Open b. Doors Closed

Figure I-A-2. UNIVAC 1218 Computer (6 Drawers)

Com

o

Per
Dev

.. -puters
I
I
r
I

~pheral
ices --

--

Control Arithmetic
Section -- -- Section -

Timing Function Mathematical and

Operation Code
Logical Operations

Control Translation

A • H

"
, r , r

Input/Output Memory .. Section Section
fIl

o~
.......... (1) -- ..
H r::

r:: - ...
Cl) co

..s::
u

-- Single Channel Permanent Storage of
Dual Channel 4k, Sk, 16k, 32k

Externally Specified lS-Bi t Words
Index-Intercomputer

Figure I-A-3. Computer General Block Diagram

I-A-5

302 MEMORY

The computer memory consists of up to· 32,768 l8-bit words of addressable storage
locations divided into two distinct sections in a continuous addressing struc­
tureo The two sections are bootstrap memory and main memory. The master clock
in the computer controls and synchronizes all operations performed by the var­
ious sections through the electronic timing chains allotted to them. The read/
restore cycle time of main memory is 4 microseconds. All control and timing
sequences for the various functions the computer performs are based on this 4-
microsecond cycle. An instruction from main memory storage can be transferred
to the control section for execution in approximately 1.S microseconds.

30201 BOOTSTRAP MEMORY

The computer is provided with 3210 nondestructive readout memory locations
(002008 through 002378) which contain computer instructions and constants for
an initial load program (bootstrap). This provides the ability to enter an
initial package of utility routines that may be used to load and/or debug more
sophisticated programs. These memory locations have unique characteristics
since they are transformer cores which operate in a special type of non-destruc­
tive readout mode. They are not accessible to the programmer for store-type
instructions.

3.2.2 MAIN MEMORY

Main memory consists of IS-bit addressable core storage locations with a read­
restore cycle time of 2 microseconds. All locations are accessible to the
programmer at random and to all sections of the computer on a time shared basis.
Some locations are allocated for specific purposes, as defined in Table I-A-l.
The number of main memory locations is equal to the total memory size minus the
locations used for bootstrap memory.

30 3 ARITHMETIC

The arithmetic section, which contains a subtractive type adder, performs all the
arithmetic and logical operations for the computer under direction of the func­
tion code translator and I/O control. The arithmetic section and memory are
shared by the control section and the I/O section. After an instruction is
executed 9 the I/O section may gain control of memory for an input or output
transfer on an active channel. It is also supplied to the S register of memory
control for the reference required to transfer the word. The arithmetic section
is used by control for any address or operand modification requested by an in­
struction and for overflow detection if overflow exists at the completion of any
arithmetic instruction except multiply.

3.4 INPUT/OUTPUT (I/O)

The I/O section of the computer controls the communications between the computer
and the peripheral devices connected in a system. There may be up to 8 peri­
pheral equipments connected directly to the computer. Communication, the passing
of one computer word from or to the computer, can be carried on with only one
peripheral device at a time; however, communications on several channels may be
interlaced.

I-A-6

The computer may also communicate with other computers. To do so, the connecting
I/O channel must be manually switched into intercomputer operation. Communica­
tion with computers or peripheral devices that have word lengths greater than
IS bits (36-bit maximum) is possible by using two adjacent I/O channels in com­
bination.

Besides handling all information transfer between the computer and other devices,
the I/O section of the computer handles all interrupts. Interrupts provide the
means to intervene in program operation, thus giving the computer real-time and
fault detection and correction capabilities.

Because a complete understanding of the I/O operations is essential to program­
ming the computer, a separate section entitled Input/Output (I/O) Characteris­
tics is included in this document.

3.5 REGISTERS AND THEIR CONTENTS

All registers in the computer may be classified as addressable or non-addressable.
Only the registers separate from the normal core storage registers are discussed
here. Addressable registers are directly available to the programmer through
computer instructions o The other functional registers are non-addressable.

3.5.1 ADDRESSABLE REGISTERS

A A 36-bit arithmetic accumulator which:

1) Contains the product of two IS-bit quantities.
2) Contains the 36-bit dividend for a divide instruction.
3) Is used as an accumulator for double length arithmetic and logical

functions.
4) Has shifting capabilities and complementing capabilities.

AU The upper accumulator (most significant IS bits) of A which:

1) Contains a mask for logical instructions.
2) Captures the remainder for the divide process.
3) Has shifting capabilities.
4) Has complementing capabilities.

AL The lower accumulator (least significant IS bits) of A which:

1) Is used as the main accumulator for the arithmetic section for all
functionsD

2) Contains quotient for the divide process; contains sum for add.
3) Has ~hifting capabilities.
4) Has complementing capabilities.

B The contents of the active index register in control memory which are
used to mOdify y to form an address or an operand in every odd-numbered
instruction less than 50S. B is an IS-bit one's complement number that
may be used to increment or decrement. When the quantity, y + B, is
used as an address, only the number of lower order bits sufficient to
fill the S register is transmitted.

I-A-7

ICR

(P)

An index control register (3 bits) contains the index register identifier
currently active in address or operand modification requested by instruc .
tions. Anyone of eight index registers may be selected by the numerical
value entered into this register by the program.

The contents of the program address register, P, that is, the address
of the instruction currently being entered for execution, is incremented
by one in the arithmetic section as soon as the instruction is trans­
ferred from memory. If the computer is stopped, the P register exhibits
the address of the next instruction, (P) + 1. This is incremented by
one again if the condition stated by a SKIP instruction is satisfied.
When the current instruction is a return jump, (P) + 1 is stored in the
core location specified by the instruction, and the entrance address of
the new routine is entered into the program address register.

When the return jump is the result of an interrupt, (P) is stored in the
core location specified by the instruction since the interrupt condition
does not initiate the (P) + 1 sequence.

SR A 4-bit special register, SR, through which the program has control of
the 4,096-word modules in core memory (in all instructions numbered
under 508 except jump and enter constant or add constant instructions).
When the 23 bit contains one, the remaining bits of SR are used to extend
u for an address instead of the upper bits of P. If the 23 bit of SR is
zero, the most significant bits of P extend u for the address. There­
fore, y (the address) equal to up or uSR is determined by the 23 bit of
SR (active if = 1), refer to Section I-B.

3.5.2 NON-ADDRESSABLE REGISTERS

CO Two 18-bit output buffer registers for transferring data or instruction
and words (external function) to external devices which may include other
CE computers. The 00 register is the buffer register for the odd-numbered

channels (1, 3, 5, and 7) and the CE register is for the even-numbered
channels (0, 2, 4, and 6). These two output registers may be linked in
consecutive even-odd pairs to permit 36-bit parallel output transfers
when words larger than 18 bits are desired.

D An 18-bit arithmetic exchange register holds an operand for the adder
during arithmetic operations.

F A 7-bit function register holds the function code of the instruction
being executed. The low order six bits hold the function code (f for
Format I instructions and m for Format II instructions). The most
significant bit is set for Format II instructions only. Computer con­
trol is directed from this register.

S An address register receives the address of a memory location at the
beginning of a memory cycle and holds it to control the translators and
circuitry throughout the read/write cycle. The S register may receive
its address from the I/O section (which generates certain assigned ad­
dresses), the control section, the arithmetic section, or from an input
channel connected to a device capable of specifying an address.

I-A-8

X An l8-bit exchange or communication register in the arithmetic section
which receives operands for arithmetic and logical instructions.

Z An l8-bit main memory buffer register for all transfers to and from
core memory. The Z register communicates with all other sections of
the computer since core memory may contain instructions, control words,
and data.

4. SUMMARY OF TECHNICAL CHARACTERISTICS

401 MEMORY

Cycle Time:

Capacity:

Type:

OrganizatiDn:

4.2 INPUT/OUTPUT (I/O)

4.2.1 CHANNELS

4 microseconds (1.8 microsecond access)

4,096; 8,192; 16,384; or 32,768 l8-bit words

Coincident current, magnetic core

Addresses 00000 through 00177 allocated to
index registers, I/O control registers, and
interrupt registers

Addresses 00200 through 00237 allocated to
bootstrap memory; a 32-word transformer core,
nondestructive readout memory used for boot­
strap (initial load) program storage. Addresses
00240 to end of memory are used for program and
data storage

Four input and four output or eight input and eight output channels are avail­
able. Each channel provides 18 parallel data lines plus necessary control
lines. Channels can be paired to form 36-bit dual channels.

4.2.2 BUFFERED TRANSFERS

All input/output transfers are fully buffered, do not require program attention,
and operate asynchronously at the rate required by the external device. Control
words guide the active buffers by defining the memory location, buffer direction
and monitor.

Normal Single Channel: l8-bit parallel data transfers.

Normal Dual Channel: 36-bit parallel data transfers.

I-A-9

Externally Specified Index
(Dual Channel):

Intercomputer Single Channel:

Intercomputer Dual Channel:

4.2.4 TRANSFER TIMES

Maximum Input/Output
Transfer Rate:

4.2.5 INTERRUPTS

IS-bit parallel data transfers with data
storage index address specified by external
device; can be used to automatically multiplex
data to or from unique buffer locations.

IS-bit parallel data transfers allow
communication with other UNIVAC IS-bit
computers (direct cable connection).

30/36 bit parallel data transfers allow
communication Ai th the other computers such
as the UNIVACQV1230, 1107, and 490 Computers.

100 kc, IS-bit words
16 usec per IS-bit word (input or output)
20 usec per 30/36-bit word (input or output)

33 unique interrupts are provided as follows:

1 synchronizing interrupt (not channel associated)
8 external interrupts (one per channel)
8 external function monitor interrupts (one per channel)
8 output monitor interrupts (one per channel)
8 input monitor interrupts (one per channel)

402.6 PRIORITY

Priority of interrupts is according to function as listed above. Sub-priority
is established according to channel numbers 7 through O.

40207 PROGRAM CONTROL

Eighteen program instructions are devoted to the control of input/output v
providing positive control and a high degree of sophistication in programming.

4.3 ARITHMETIC

Organi zation:

Registers:

Functions:

IS-bit, parallel, one's complement, integerv
binary.

Two IS-bit, addressable.

Arithmetic operations including double length
add and subtract. Logical and bit manipulation.

I-A-IO

Instruction Execution Times: Add, subtract, logical: 8 usec
Multiply: 38 usec (average); 48 usec (maximum)

4.4 CONTROL

Divide: 48 usec (maximum)
Add, double length: 12 usec
Compare/mask compare and branch: 12 usec
Register shifts: right, left, single, double:
(4 + 0.67n) usec
Where n = number of places shifted. Instruction
times represent total execution including instruc­
tion and operand acquisition. Whenever address
modification is desired, add four microseconds.

Instruction Repertoire: 98 single-address instructions.

Address Modification: Via eight memory contained index registers.

Synchronizing: Either internal or external sync selectable
by control panel switch setting.

Address

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016

000017

(000020-
000037)

Internal sync provides an interrupt every
1/1024 second.
External sync provides capability for variable­
granularity clock or high priority alarm
recognition.

TABLE I-A-lo MEMORY ADDRESS ALLOCATION

Storage Function

Fault Interrupt, Entrance Address
Bl, Index Register
B2, Index Register
B3, Index Register
B4, Index Register
B5, Index Register
86, Index Register
87, Index Register
80, Index Register
Memory Word
Memory Word
Memory Word
Memory Word
Memory Word
Synchronizing Interrupt and Real-Time Clock Entrance
Address
Scale Factor Shift Count Word

External Function Buffer Control lEFCB) Registers

I-A-ll

TABLE I-A -1. MEMORY ADDRESS ALLOCATION (CONT.)

Address Storage Function

000020 EFBC for Channel 0, Terminal Address Word
000021 EFBC for Channel 0, Current Address Word
000022 EFBC for Channel 1, Terminal Address Word
000023 EFBC for Channel 1, Current Address Word
000024 EFBC for Channel 2, Terminal Address Word
000025 EFBC for Channel 2, Current Address Word
000026 EFBC for Channel 3, Terminal Address Word
000027 EFBC for Channel 3, Current Address Word
000030 EFBC for Channel 4, Terminal Address Word
000031 EFBC for Channel 4, Current Address Word
000032 EFBC for Channel 5, Terminal Address Word
000033 EFBC for Channel 5, Current Address Word
000034 EFBC for Channel 6, Terminal Address Word
000035 EFBC for Channel 6, Current Address Word
000036 EFBC for Channel 7, Terminal Address Word
000037 EFBC for Channel 7, Current Address Word

(000040- Output Buffer Control (OBC) Registers
000057)

000040 OBC for Channel 0, Terminal Address Word
000041 OBC for Channel Oe Current Address Word
000042 OBC for Channel 1 e Terminal Address Word
000043 OBC for Channel 1 e Current Address Word
000044 OBC for Channel 2, Terminal Address Word
000045 OBC for Channel 2, Current Address Word
000046 OBC for Channel 3, Terminal Address Word
000047 OBC for Channel 3, Current Address Word
""""~" nor ~,..- Channel 11 Terminal Address Word VVVVuV vuv J.V.&. ~e

000051 OBC for Channel 4, Current Address Word
000052 OBC for Channel 5, Terminal Address Word
000053 OBC for Channel 5, Current Address Word
000054 OBC for Channel 6, Terminal Address Word
000055 OBC for Channel 6, Current Address Word
000056 OBC for Channel 7, Terminal Address Word
000057 OBC for Channel 7, Current Address Word

(000060- Input Buffer Control (IBC) Registers
000077)

000060 IBC for Channel 0, Terminal Address Word
000061 IBC for Channel 0, Current Address Word
000062 IBC for Channel 1 e Terminal Address Word
000063 lBC for Channel I, Current Address Word
000064 IBC for Channel 2, Terminal Address Word
000065 IBC for Channel 2, Current Address Word

I-A-12

Address

000066
000067
000070
000071
000072
000073
000074
000075
000076
000077

(000100-
000117)

000100
000101
000102
000103
000104
000105
000106
000107
000110
000111
000112
000113
000114
000115
000116
000117

(000120-
000137)

000120
000121
000122
000123
000124
000125
000126
000127
000130
000131
000132
000133

TABLE I-A-l. MEMORY ADDRESS ALLOCATION (CONT.)

Storage Function

IBC for Channel 3, Terminal Address Word
IBC for Channel 3, Current Address Word
IBC for Channel 4, Terminal Address Word
IBC for Channel 4, Current Address Word
IBC for Channel 5, Terminal Address Word
IBC for Channel 5, Current Address Word
IBC for Channel 6, Terminal Address Word
IBC for Channel 6, Current Address Word
IBC for Channel 7, Terminal Address Word
IBC for Channel 7, Current Address Word

External Interrupt (EI) Registers

EI for Channel 0, Entrance Address
EI for Channel 0, Interrupt Word
EI for Channel 1, Entrance Address
EI for Channel 1, Interrupt Word
EI for Channel 2, Entrance Address
EI for Channel 2, Interrupt Word
EI for Channel 3, Entrance Address
EI for Channel 3, Interrupt Word
EI for Channel 4, Entrance Address
EI for Channel 4, Interrupt Word
EI for Channel 5, Entrance Address
EI for Channel 5, Interrupt Word
EI for Channel 6, Entrance Address
EI for Channel 6, Interrupt Word
EI for Channel 7, Entrance Address
EI for Channel 7, Interrupt Word

External Function Monitor Interrupt (EFMI) Registers

EFMI for Channel 0, Entrance Address
Memory Word
EFMI for Channel 1, Entrance Address
Memory Word
EFMI for Channel 2, Entrance Address
Memory Word
EFMI for Channel 3, Entrance Address
Memory Word
EFMI for Channel 4, Entrance Address
Memory Word
EFMI for Channel 5, Entrance Address
Memory Word

I-A-13

TABLE I -A-I. MEMORY ADDRESS ALLOCATION (CONT.)

Address Storage Function

000134 EFMI for Channel 6, Entrance Address
000135 Memory Word
000136 EFMI for Channel 7, Entrance Address
000137 Memory Word

(000140- Output Monitor Interrupt (OMI) Registers
000157)

000140 OMI for Channel 0 9 Entrance Address
000141 Memory Word
000142 OMI for Channel 1 , Entrance Address
000143 Memory Word
000144. OMI for Channel 2, Entrance Address
000145 Memory Word
000146 OMI for Channel 3, Entrance Address
000147 Memory Word
000150 OMI for Channel 4, Entrance Address
000151 Memory Word
000152 OMI for Channel 5, Entrance Address
000153 Memory Word
000154 OMI for Channel 6, Entrance Address
000155 Memory Word
000156 OMI for Channel 7, Entrance Address
000157 Memory Word

(000160- Input Monitor Interrupt (IMI) Registers
000177)

000160 IMI for Channel 0, Entrance Address
"""1L1 VVV.lU.l Memory Word
000162 IMI for Channel 1, Entrance Address
000163 Memory Word
000164 IMI for Channel 2, Entrance Address
000165 Memory Word
000166 IMI for Channel 3, Entrance Address
000167 Memory Word
000170 IMI for Channel 4, Entrance Address
000171 Memory Word
000172 IMI for Channel 5, Entrance Address
000173 Memory Word
000174 IMI for Channel 6, Entrance Address
000175 Memory Word
000176 IMI" for Channel 79 Entrance Address
000177 Memory Word

(00200- Nondestructive Readout Memory Allocations
00237)

I-A-14

Address

00200
00201
00202
00203
00204
00205
00206
00207
00210
00211
00212
00213
00214
00215
00216
00217
00220
00221
00222
00223
00224
00225
00226
00227
00230
00231
00232
00233
00234
00235
00236
00237

(00240-
77777)

TABLE I-A-l. MEMORY ADDRESS ALLOCATION (CONT.)

Storage Function

Bootstrap Word 1
Bootstrap Word 2
Bootstrap Word 3
Bootstrap Word 4
Bootstrap Word 5
Bootstrap Word 6
Bootstrap Word 7
Bootstrap Word 8
Bootstrap Word 9
Bootstrap Word 10
Bootstrap Word 11
Bootstrap Word 12
Bootstrap Word 13
Bootstrap Word 14
Bootstrap Word 15
Bootstrap Word 16
Bootstrap Word 17
Bootstrap Word 18
Bootstrap Word 19
Bootstrap Word 20
Bootstrap Word 21
Bootstrap Word 22
Bootstrap Word 23
Bootstrap Word 24
Bootstrap Word 25
Bootstrap Word 26
Bootstrap Word 27
Bootstrap Word 29
Bootstrap Word 29
Bootstrap Word 30
Bootstrap Word 31
Bootstrap Word 32

Instruction word and data storage organized in
10000a-word banks with the upper octal character
of address specifying the bank address (00240 - ,
07777 = remainder of. bank 0i 10000 - 17777 = bank It
20000 - 27777 = bank 2).

I-A-15

SECTION I-B. COMPUTER INSTRUCTIONS

1. GENERAL

The computer has a repertoire of 98 instructions which generally fall into
eight categories: transfer, arithmetic, shift, logical, modifying, jump, skip
and stop, and 1/0 0 Each of these categories is covered under a separate sub­
section of this section I-B. Certain instructions perform functions applicable
to more than one category; therefore, they are listed under both categorieso
For example, an instruction which skips on a specific I/O condition is listed
under skip and stop instructions and also under I/O instructions.

The word formats applicable to all instructions and the symbol conventions used
to describe the instructions are defined in the following paragraphs.

2. WORD FORMATS

All instructions conform to one of the two basic word formats.

201 FORMAT I

12

t
f: function code, six high order bits.
u! twelve low order bits.

11
y
u

0]

Legal function codes for Format I instructions are 02 through 478 and 518
through 76S. The definition and usage of u are determined by the function code
utilizing u in two distinct manners:

I} u Used as a Constant.

In this case, u itself is the operand and requires no further memory
reference; however, u is extended to IS bits. {Refer to paragraph 4,
entitled "Instructions".}

2} u Used as an Address.

In this case, u is used as the lower order 12 bits of an address refer­
ring to a memory cell within a lOOOOS-word bank. The entire address is
15 bits, designated as up or USRt and is described below.

u is defined as a IS-bit address whose three high order bits consist of the
t~ree higher order bits of P and whose twelve low order bits are u.

up = 114 I 13 I 12 .l 11
y

P 14-12

The bits supplied by P specify the bank address.

1-8-1

y
u

01
•

uSR is defined as a I5-bit address whose three high order bits consists of the
three lower order bits and the high order bit of SR and whose twelve low order
bits are u. The bits supplied by SR specify the bank address.

uSR = [14 I 13 I 12 I, 11 0 I
V ~--------~vJ---------J

SR2_0 u

Certain Format I instructions allow the use of either up or uSR as the operand
address; for these instructions uSR is used if SR is ACTIVE and up is used when­
ever SR is INACTIVE. These instructions are identified specifically in the de­
tailed description of the instructions.

2.2 FORMAT II

117 12 111 615 01
\~-----------Vlr----------~J\~----~v~----~J~

f m k

f: function code, six high order bits.
m: minor function code, six bits.
k: operand designator, six bits.

The function code for Format II instructions is always 508. The minor function
code determines the type of operation to be performed. Format II instructions
perform a variety of operations and can be classified in two instruction cate­
gories:

1) No Memory Address Needed.

In this case, the information existing in the computer's arithmetic or
control registers and the operand designator, k, are sufficient to per­
form the specified operation.

2) Initiate I/O Buffer.

In this case, the two memory cells immediately following the instruction
are used to contain the buffer control words. The complete instruction
must therefore occupy three sequential memory cells (refer to I/O instruc­
tions).

3. SYMBOL CONVENTIONS

The following symbols are used to aid in describing the instructions in the
succeeding subsections,

AU
I\r
rU ..

A
B
f

Upper accumulator, l8-bit arithmetic register.
Lower accumulator, IS-bit arithmetic register.
AU and AL linked together to form one 36-bit arithmetic register.
Contents of the active index register, l8-bit one's complement.
Function code, high order six bits of all instruction words.

I-B-2

F
k
m
M

NI
P
SR
u
up
uSR
Y
y

()
()i
()f
()n
(y + 1, Y)

L() ()

or
() ()

() v ()

($()

()' or ()
() ()
(y)

xy

Function register, seven bits.
Designator contained in Format II instructions, six bits.
Minor function code contained in Format II instructions, six bits.
Memory word specified by (y), (y + B), L(y)(AU) or L (y + B)(AU)
of compare instruction.
Next instruction.
The program address register.
Special register, 4-bit core memory bank designator.
The low order 12 bits contained in Format I instruction words.
u prefaced with core memory bank designator bits of P.
u prefaced with core memory bank designator bits of SR.
u extended or up or uSR'
The address or constant formed by y or y + B with or without sign
extension.
Contents of the address or register.
Initial contents of the address or register.
Final contents of the address or register.
Designates any single nth bit of the contents of a register.
Designates the contents of two' consecutive memory locations linked
together to form a 36-bit word. Address Y + 1 contains the most
significant half of the word while address Y contains the least
significant halfo
The colon in a logical expression indicates comparison.
The bit-by-bit or logical product (logical AND) defined by:

°l~ 1 01
Logical sum, or inclusive OR defined by:

°lg~ 1 11
Half add, half subtract, or exclusive OR defined by:

°lg~ 1 10
The one's complement of the contents of the address or register
Algebraic product of the contents of two locations
When the contents of Yare used as an address, only that lower por­
tion of the word that can be contained in S is transferred
Transfer the quantity stated at the left of the symbol to the
address or register stated at the right of the symbol.
Console and control panel are used to designate I/O console or the
computer control panel.
x preceding some symbol indicates that the sign of the 12-bit
constant has been extended to produce an IS-bit word, that is:

xY =

6 bits 12 bits

I-B-3

4. INSTRUCTIONS

Table I-B-l summarizes the complete repertoire of 102 computer instructions in
the order of their function codes. The table lists the mnemonic symbol, a
brief description of the operation performed, the execution time, and the
instruction type. Each instruction is described in detail in subsections I-B-1
through I-B-8 which are organized according to instruction type. Function
codes which are not listed in Table I-B-l are classified as either illegal or
not used.

Illegal function codes are: 00, 01, 77, 5000, 5001, and 5077.

If an illegal function code is encountered in a program, program control is
transferred to either the fault interrupt entrance address, 000000, or to the
first address of the bootstrap program, 00200, depending upon the position of
the AUTO RECOVERY switch on the control panel. When the switch is in the up
position, program control is transferred tQ address 00200 and the bootstrap
program automatically loads any program previously mounted in the appropriate
I/O device~ When the switch is in the down position, program control is trans­
ferred to address 000000, which may contain a jump to a sequence of instructions
designed to identify the fault instruction o

Function codes which are not used are: 5002 through 5010, 5014, 5040 9 5064
through 5071, and 5074 through 5076.

If a not-used function code is encountered in a program, a 4-miorosecond instruc­
tion sequence occurs but no operation is performed. The program then proceeds
to the next instruction.

TABLE I-B-l. REPERTOIRE OF INSTRUCTIONS

Function
Code

02
03
04
05

06
07
10
11
12
13
14
15
16
17

20

Mnemonic
Symbol

CMftL
CMALB
SLSU
SLSUB

CMSK
CMSKB
ENTAU
ENTAUB
ENTAL
ENTALB
ADDAL
ADD ALB
SUBAL
SUBALB

ADDA

Time
Description (usec)

Compare Y 8
Compare Y + B 12
Selective Substitute 8
Selective Substitute
Y + B 12
Masked Compare Y 8
Masked Compare Y + B 12
Enter AU, Y 8
Enter AU. Y + B 12
Enter AL, Y 8
Enter AL, Y + B 12
Add Y, 18 bit 8
Add Y + B. 18 bit 12
Subtract Y, 18 bit 8
Subtract Y + B,
,n LJ~
10 U1L

Add Y. 36 bit

I-B-4

10
l~

12

Instruction
Type

Logical

Transfer

1
Arithmetic

Function
Code

21
22
23

24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
51
52

53

54
55
56
57

60
61

62
63

64
65

66
67

TABLE I-B-l. REPERTOIRE OF INSTRUCTIONS (CONT.)

Mnemonic
Symbol

ADDAB
SUBA
SUBAB

MULAL
MULALB
DIVA
DIVAB
IRJP
IRJPB
ENTB
ENTBB
JP
JPB
ENTBK
ENTBKB
CL
CLB
STRB
STRBB
STRAL
STRALB
STRAU
STRAUB
SLSET
SLCL

SLCP

IJPEI
IJP
BSK
ISK

JPAUZ
JPALZ or JPEQ

JPAUNl
JP ALNl or JPt()T

JPAUP
JPALP or JPMLEQ

JPAUNG
JPLNG or JPMGR

Description

Add Y + B, 36 bit
Subtract Y, 36 bit
Subtract Y + B,
36'bit
Multiply Y
Multiply Y + B
Divide, Y
Divide, Y + B
Indirect RJP, Y
Indirect RJP, Y + B
Enter B, Y
Enter B, Y + B
Jump, Y
Jump, Y + B
Enter, B, U
Modify, B, U
Store Zero, Y
Store Zero, Y + B
Store, B, Y
Store B, Y + B
Store AL, Y
Store AL, Y + B
Store AU, Y
Store AU, Y + B
Selective Set (lOR),
Selective Clear
(AMl) , Y

Time
(usee)

16
12

16
26-49
30-53

48
52
12
16
12
16
4
8
8
12
8
12

'12
12
8
12
8
12

Y 8

8
Selective Complement
(XOR) , Y 8
Indirect Jump (RIL), Y 8
Indirect Jump, Y 8
Increment B, Skip, Y 16
Decrement Index, Skip,
Y
JP if (AU) = 0, Y
JP if (AL) = 0 or
(AL) = M, Y
JP if (AU) ~ 0, Y
JP if (AL) ~ 0 or
(AL) ~ M, Y
JP if AU17 = 0, Y
JP if AL17 = 0 or
M~(AL)t Y
JP if AU17 = 1, Y
JP if AL17 = 1 or
M~(AL)t Y

1-B-5

12
4

4
4

4
4

4
4

4

Instruction
Type

Arithmetic

Jump
Jump
Transfer
Transfer
Jump
Jump
Transfer
Modifying
Transfer

Logical

Logical

Logical
Jump
Jump
Modifying

Modifying
Jump

Function
Code

70
71
72
73
74
75
76
5011
5012
5013
5015
5016
5017

5020

5021
5022
5023
5024
5026

5027

5030

5032

5034

5036

5041
5042
5043
5044
5045
5046
5047
5050
5051
5052
5053
5054

5055

TABLE I-B-l. REPERTOIRE OF INSTRUCTIONS (CONT.)

Mnemonic
Symbol

ENTALK
ADDALK
STRICR
BJP
STRADR
STRSR
RJP
IN
OUT
EXF
INSTP
'OUTSTP
EXFSTP

SRSM

SKPIIN
SKPOIN
SKPFIN
WTFI
OUTOV

EXFOV

RIL

RXL

SIL

SXL

RSHAU
RSHAL
RSHA
SF
LSHAU
LSHAL
LSHA
SKP
SKPNBO
SKPOV
SKPNOV
SKPODD

SKPEVN

Description
Time

(usec)

Enter AL, Y
Add U, 12 bits
Store ICR, Y
Decrement B, Jump, Y
Store Address, Y
Store SR, Deactivate
Return Jump, Y
Initiate Input Buff. k
Initiate Output Buff, k
External Function
Terminate Input, k
Terminate Output, k
Terminate External
Function, k
Set Resume ff
(Intercomp)
Skip Input Inact, k
Skip Output, Inact, k
Skip Ext Fnct Inact
Wait for Interrupt
Force Output One
Word, k
Force External Func­
tion One Word, k
Remove Interrupt
Lockout
Remove External Inter­
rupt Lockout
Set Interrupt
Lockout
Set External Inter­
rupt Lockout
Right Shift AU, k
Ri«ht Shift AL, k
Right Shift A, k
Scale A Left, k, SF
Left Shift AU, k
Left Shift AL, k
Left Shift A, k
Skip Console Key, k
Skip No Borrow
Skip Overflow
Skip No Overflow
Skip L(AU, AL) Odd
Parity
Skip L(AU, AL) Even
Parity

I-B-6

4.67
4.67
8
12
8
8
8
20
20
20
4
4

4

4
6
6
6
4

4.67

4.67

4

4

4

4
18
18
24
24
18
18
24
6
6
6
6

6

6

Instruction
Type

Transfer
Arithmetic
Transfer
Modifying
Transfer
Transfer
Jump
I/O

I/O

l
Shift

Skip

1
Skip

Skip

TABLE I-B-1. REPERTOIRE OF INSTRUCTIONS (CONT.)·

Function Mnemonic Time Instruction
Code Symbol. Description (usec) Type

5056 STOP Stop Console Key, k 4.67 Stop
5057 SKPNR Skip No Resume ff

(Intercomp) 6 Skip
5060 RND Round AU 5.33 Arithmetic
5061 CPAL Complement AL 5.33 Logical
5062 CPAU Complement AU 5.33 1 5063 CPA Complement A 5.33
5072 ENTICR Enter ICR, k 4 Transfer
5073 ENTSR Enter, SR, k 4 Transfer

I-B-7

SECTION I-B-l. TRANSFER INSTRUCTIONS

1. GENERAL

Transfer instructions either transfer data from a memory storage location to a
register or store the contents of a register in a memory location.

2. INSTRUCTIONS

10

11

12

13

32

33

ENTER AU (ENTAU)
Execution time: 8 microseconds

y = up or uSR
Clear AU. Then transmit (y) to AU.

ENTER AU (ENTAUB)
Execution time: 12 microseconds

y = up or uSR
Clear AU. Then transmit (y + B)
to AU.

ENTER AL (ENTAL)
Execution time: 8 microseconds

y = up or uSR
Clear AL. Then transmit (y) to AL.

ENTER AL (ENTALB)
Execution time: 12 microseconds

y = up or uSR
Clear AL. Then transmit (y + B) to AL.

ENTER B (ENTB)
Execution time: 12 microseconds

y = up or uSR
Trarismit (y) to B
The full 18 bits of (y) are transmitted
to the B register (a normally addressable
core cell).

ENTER B (ENTBB)
Execution time: 16 microseconds

y = up or uSR
Transmit (y + B) to BICR
The full 18 bits (y + B) are transmitted
to the B register (a normally addressable
core cell).

1-B-8

(y) ~AU

(Y) ---- AU

(Y) ---- AL

fy) ----. AL

(Y) ---. B

(Y) ---+ B

36

40

41

42

43

44

45

ENTER B WITH CONSTANT (ENTBK)
Execution time: 8 microseconds

y = u
Clear
NOTE:

(sign extended to 18 bits)
B. Then transmit y to B.

u is a l2-bit one's complement
number contained within the in­
struction; it does not refer
to an address. Example of
enter B with constant when
u = 7701:
Bi = any value
Bf = 777701

CLEAR Y (STORE ZERO) (CL)
Execution time: 8 microseconds

y = up or uSR
Store an l8-bit word of zeros at
storage address y.

CLEAR Y (STORE ZERO) (CLB)
Execution time: 12 microseconds

y = up or uSR
Store an l8-bit word of zeros at
storage address y + B.

STORE B (STRB)
Execution time: 12 microseconds

y = up or uSR
Store B at storage address y.

STORE B (STRBB)
Execution time: 16 microseconds

y = up or uSR
Store B at storage address y + B.

STORE AL (STRAL)
Execution time: 8 microseconds

y = up or uSR
Store (AL) at storage address y.
(AL) f = (AL) i

STORE AL (STRALB)
Execution time: 12 microseconds

y = up or uSR
Store (AL) at storage address y + B~

(AL)f = (AL)i

I-B-9

o _______ Y

o --- Y

B ----. Y

B ----. Y

(AL) ---. Y

(AL)---. Y

1 .)

50 72

50 73

70

STORE AU (STRAU)

Execution time: 8 microseconds

y = up or uSR
Store (AU) at storage address y.
(AU)f = (AU)i

STORE AU (STRAUB)
Execution time: 12 microseconds

y = up or uSR
Store (AU) at storage address y + B.
(AU)f = (AU)i

ENTER INDEX CONTROL REGISTER (ENTICR)
Execution time: 4 microseconds

Clear the index control register. Then
transmit the three low order bits of k
to the ICR.

ENTER SPECIAL REGISTER (ENTSR)
Execution time: 4 microseconds

Clear the special register. Then
transmit the four low order bits of k
to the SR. (SR3 = 1 activates the SR.)

ENTER AL WITH CONSTANT (ENTALK)

Execution time: 4.67 microseconds

y = u (with sign extended to 18 bits).
Clear AL. Then transmit y to AL.

Example of enter AL with constant when
u = 0001

(AL)i = any value
(AL)f = 000001 (+ 1)

Example of enter AL with constant when
u = 7776

(AL)i = any value
(AL)f = 777776 (- 1)

(AU) ---- Y

k3_0 -- SR

NOTE: u is a l2-bit one's complement number
contained within the instruction; it
does not refer to an address.

I-B-I0

72

74

75

STORE INDEX CONTROL REGISTER (STRICR)

Execution time: 8 microseconds

y = up

(ICR) ---.~ Y5-0

Replace the least significant 6 bits of the
(y) with a 6-bit value equal to the memory
address of the index register defined by ICR.
As this instruction effects a 6-bit partial
transfer, the upper 12 bits of (y) remain
unchanged.

NOTE: ICR = 0 produces memory address 10.
ICR = 1 through 7, memory addresses
01 through 07 respectively.

STORE ADDRESS (STRADR)

Execution time: 8 microseconds

y = up
Replace the low order 12 bits of (y) with
the low order 12 bits of (AL). As this
instruction effects a partial transfer, .
the higher order 6 bits of (y) remain un­
disturbed.
(AL)f = (AL)i

Example of a store address instruction:

732504
= 567777

562504

STORE SPECIAL REGISTER (STRSR)

Execution time: 8 microseconds

y = up
Replace the low order 6-bits of (y) with

(AL)ll_O --... Y11 - 0

(SR) -~ .. Y
5

-
0

a 6-bit value of which the low order 4 bits
are equal to the contents of the special
register with the remaining bits equal to zero;
store the result at y, then clear the special
register. As this instruction effects a 6-bit
partial transfer, the upper 12 bits of (y)
remain undisturbed.

NOTE: This instruction deactivates the special
register.

1-8-11

SECTION I-B-2. ARITHMETIC INSTRUCTIONS

1. GENERAL

Arithmetic instructions combine the contents of a specified memory location
with the contents of the accumulator. Single length addition and subtraction
are performed in an 18-bit parallel mode using one memory location and the
lower half of the A register (AL). Double length addition and subtraction are
performed in a 36-bit parallel mode using two consecutive memory locations and
both halves of the A register. Multiply and divide instructions utilize one
memory location and both halves of the A register. After all arithmetic
instructions, the result is left in the appropriate portion of the A register.

2. INSTRUCTIONS

14

15

16

ADD AL (ADDAL)

Execution time: 8 microseconds

y = up or uSR
Add (y) to (AL) and leave the result in
AL. Set overflow designator if overflow
occurs.* (AL)f are all ones if (AL)i and
(y) are all ones.

ADD AL (ADDALB)

Execution time: 12 microseconds

y = up or uSR
Add (y + B) to (AL) and leave the result

(AL) + (y) ____ AL

in AL. Set overflow designator if overflow
occurs.* (AL)! are all ones if (AL)i and
(y + B) are al ones.

SUBTRACT AL (SUBAL)

Execution time: 8 microseconds

y = up or uSR
Subtract (y) from (AL) and leave the
difference in AL. Set overflow desig­
nator if overflow occurs.* (AL)f are
all ones if (AL)i are all ones, and (y)
are all zeros.

(AL) - (Y)---...AL

*The overflow designator is cleared only by the execution of instruction
skip on overflow (f t m = 50 52) or instruction skip on no overflow
(f, m = 50 53).

1-B-12

17

20

SUBTRACT AL (SUBALB) (AL) - (y) ----... AL

Execution time: 12 microseconds

y = up or uSR
Subtract (y + B) from (AL) and leave the
difference in AL. Set overflow designator
if overflow occurs.* (AL)f are all ones if
(AL)i are all ones and (y + B) are all zeros.

ADD A (ADDA) (A) + (y + 1, Y) -----. A

Execution time: 12 microseconds

y = up or uSR
Add to (A) the double-length (36-bit) number
contained in storage cells y + 1; y, and
leave the result in A. Set overflow designator
if overflow occurs.* The least significant

. half is in cell y, and the most significant
half is in y + 1. The sign of the double
length number is indicated by the most sig­
nificant bit of (y + 1). Address y must
be even; that is, the rightmost octal digit
must be 0, 2, 4, or 6.

NOTE: The instruction is executed in the
following manner: Clear the borrow
designator. The AU and AL registers
are linked to form a continuous 36-bit
A register. Therefore, any borrow for
AL comes from AU; and any end around
borrow for AU is blocked and recorded
in the borrow designator leaving A
uncorrected. The skip on no borrow
instruction (Code 50, 51) is used to
test for required correction. Only
add A or subtract A instructions set
the designator.

Example of a double add with y = 07506

(A)i = 201007430145
address 07506 = 351123
address 07~07 = 077430

(A)f = 300440001271

(least significant half)
(most significant half)
(unadjusted sum)

* The overflow designator is cleared only by the execution of instruction skip
on overflow (f,m = 50 52) or instruction skip on no overflow (f, m = 50 53).

I-B-13

21

22

23

ADD A (ADDAB) (A) + (Y + 1, y)---. A

Execution time: 16 microseconds

y = up or uSR
Add to (A) the double-length (36-bit) number
contained in storage cells y + B + 1, y + B
leaving the result in A. Set overflow designator
if overflow occurs.* The least significant
half is in cell y + B, and the most significant
half is in cell y + B + 1. The sign of the
double-length number is the sign of (y + B + 1).
Address y + B must be even. (See note of
instruction 20.)

SUBTRACT A (SUBA) (A) - (Y + 1, Y)---+ A

Execution time: 12 microseconds

y =. up or uSR
Subtract from (A) the double-length (36-bit)
number contained in storage cells y + 1, y, and
leave the difference in A. Set overflow desig­
nator if overflow occurs.* The least significant
half is in cell y and the most significant
half is in cell y + 1. The sign of the double­
length number is the sign of (y + 1). Address y
must be even. (See note of instruction 20.)

SUBTRACT A (SUBAB) A - (Y + 1, y) ---+ A

Execution time; 16 microseconds

y = up or uSR
Subtract from (A) the double-length number
contained in storage cells y + B + 1, y + B,
and leave the difference in A. Set overflow
designator if overflow occurs*. The least
significant half is in cell y + Bt and the most
significant half is in cell y + B + 1. The
sign of the double length number is the sign
of (y + B + 1). Address y + B must be even.
The computer executes subtract A in a manner
analogous to the add A instruction. (See
note of instruction 20.)

* The overflow designator is cleared only by the execution of instruction skip
on overflow (ft m = 50 52) or instruction skip on no overflow (f, m = 50 53).

I-B-14

24

25

26

MULTIPLY AL (MULALB) (AL) (Y) --.-. A

Execution time: 26-49 microseconds

y = up or uSR
Multiply (AL) by (y) leaving the double
length product in A. If the factors are
considered integers, the product is an
integer in A. The multiplication process
is executed on the absolute value of the
factors, then corrected for algebraic sign.

MULTIPLY AL (MULALB) (AL) (Y) ------ A

Execution time: 30-53 microseconds

y = up or uSB
Multiply (ALJ by (y + B) leaving the double
length product in A. If the factors are
considered integers, the product is an integer
in A. The multiplication process is executed
on the absolute value of the factors, then
corrected for algebraic sign.

DIVIDE A (DIVA) (A) -7- (Y)---'AL;REMAINDER----. AU

Execution time: 48 microseconds

y = up or uSR
Divide (A) by (y) leaving the quotient in AL
and the remainder in AU. The remainder always
bears the sign of the dividend, Ai, with the
results satisfying the relationship: dividend
= quotient x divisor + remainder. Set overflow
designator if overflow occurs*. If overflow
occurs, (AL) becomes O.

Examples of the four possible sign combinations
of the dividend/divisor and the results:

Dividend Divisor Quotient.

+5 +4 +1
+5 -4 -1
-5 +4 -1
-5 -4 +1

Remainder

+1
+1
-1
-1

* The overflow designator is cleared only by the execution of instruction skip
on overflow (f, m = 50 52) or instruction skip on no overflow (f t m = 50 53).

I-B-15

27

50 51

50 52

·5053

50 60

DIVIDE A (DIVAB) (A)7 (Y)~AL:REMAINDER~AU

Execution time: 52 microseconds

y = up or uSR
Divide (A) by (y + B) leaving the quotient
in AL and the remainder in AU. The remainder
bears the sign of the dividend, Ai. (See
instruction 26.)

SKIP ON NO BORROW (SKPNBO)

Execution time: 6 microseconds skip; 4.67 no skip

If the last previous add A or subtract A required
a borrow, take next instruction; otherwise, skip
the next instruction. Ignore k. The skip occurs
if no correction to (A) is needed. This allows
a correcting instruction to be inserted to save
program steps. The correcting instruction will
be subtract A where (Y + 1, Y) = 000000000001.

SKIP ON OVERFLOW (SKPOV)*

Execution time: 6 microseconds; 4.67 no skip

If an overflow condition occurred on a previous
arithmetic instruction, skip the next instruction;
otherwise, take the next instruction. Ignore k
and clear the overflow designator.

SKIP ON NO OVERFLOW (SKPNOV)*

Execution time: 6 microseconds skip; 4.67 no skip

If an overflow condition did not occur on a pre­
vious arithmetic instruction, skip the next in­
struction; otherwise, take the next instruction.
Ignore k and clear the overflow designator.

ROUND AU (RND) If (AU) pos., (AU) + AL17---. AL
If (AU) neg., (AU) - ALI7---' AL

Execution time: 5.33 microseconds

If (AU) are positive, add bit position 17 of AL
to (AU); if (AU) are negative subtract the com­
plement of bit position 17 of AL from AU and leave
the resultant rounded (AU) in AL. Ignore k. (AU)i
= (AU)f. An application of this instruction would be:
a double length value in A is normalized as far as
possible to the left; however, only a rounded single
length number is required for the accuracy desired.

* The overflow designator is cleared only by the execution of instruction skip
on overflOW (f, m = 50 52) or instruction skip on no overflow (f, m = 50 53).

I-B-16

71 ADD CONSTANT TO AL (ADDALK)

Execution time: 4.67 microseconds

y = u (sign extended to 18 bits)
Add y to (AL) and leave the result in
AL. The effect of this instruction is
to increment/decrement (AL) with a
constant contained within the instruction.

(AL) + xY~AL

Example of add constant to AL when u = 0002 (+ 2)

(AL)i = 057777
(AL)f = 060001 (incremented)

Example of add constant to AL when u = 7775 (- 2)

(AL) i = 067055
(AL)f = 067053 (decremented)

1-B-17

SECTION 1-8-3. SHIFT INSTRUCTIONS

1. GENERAL

Shift instructions shift the contents of a selected register to the right or
left a specified number of bit positions. All shift instructions are Format II
instructions. The type of shift is specified by the f and m fields and. with
one exception. the number of bit position shifts to be executed is specified
by the k field. The exception is the scale factor shift instruction (50 44)
which uses both the k field and the upper two bits of the A register to determine
when the correct number of bit position shifts has been executed.

2. INSTRUCTIONS

50 41 RIGHT SHIFT AU (RSHAU)

~G

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k ~ 0)

Shift (AU) to the right k-bit positions. The higher
order bits are replaced with the original sign bit.
AU17. as the value is shifted. This is an end-off
shift (that is, the low order bits are lost upon
completion of the shift).

Example of right shift AU with k = 2:

(AU)i (positive) = 370000
after first shift 174000
after second shift 076000

(AU)i (negative) = 400000
after first shift 600000
after second shift 700000

RIGHT SHIFT AL (RSHAL)

Execution time: 4 microseconds (k = 0). 5.33 + 2k/3 microseconds (k ~ 0)

Shift (AL) to the right k-bit positions. The
higher order bits are replaced with the original
sign bit. AL17, as the value is shifted. This is
an end-off shift (that is, the low order bits are
lost upon completion of the shift).

50 43 RIGHT SHIFT A (RSHA)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k ~ 0)

Shift (A) to the right k-bit positions. The higher
order bits are replaced with the original sign bit.
A35. as the value is shifted. This is an end-off
shift (that is. the low order bits are lost upon
completion of the shift).

1-8-18

Example of right shift A with k = 2:

(A)i (positive)
after first shift
after second shift

tA)i (negative)
after first shift
after second shift

50 44 SCALE FACTOR (SF)

= 370000 000000
174000 000000
076000 000000

= 400000 000000
600000 000000
700000 000000

Execution time: 8 microseconds (k = 0); 9.33 + 2k/3 (k i 0)

Shift (A) circularly to the left until either A35 ~ A34
or k minus shift count = 0; then store the
positive quantity k minus shift count at memory
address 00017. The effect of the instruction is to
normalize (A) to the left subject to k. Scale factor
is extremely useful when working with numerical
values in floating point notation.

Example of scale factor with k = 7:

(A)i = 170000 000000 (positive, not normalized)
after first shift 360000 000000 (positive, normalized).
The computer, sensing (A) now normalized, stores
k minus the shift count (7-1) at address 00017. The
l8-bit quantity is 000006.

Example of scale factor with k = 3:

(A)i = 600000 000000 (negative, not normalized)
after first shift 400000 000001 (negative, normalized),
The computer then stores the quantity 000002 at address 00017.

Example of scale factor with k = 1:

(A)i = 070000 000000 (positive, not normalized)
after first shift 160000 0000000 (positive, not normalized),
The computer, having exhausted k, stores the quantity
000000 at 00017 leaving (A) only partially normalized.

1-8-19

50 45 LEFT SHIFT AU (LSHAU)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k 1 0)

Shift (AU) circularly to the left k-bit positions. The lower
order bits are replaced with the higher order bits as the
word is shifted.

Example of left shift AU with k = 2:

(AU)i
after first shift
after second shift

= 300000
600000
400001

No bits are lost with the execution of left shift instructions.

50 46 LEFT SHIFT AL (LSHAL)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k 1 0)

Shift (AL) circularly to the left k-bit positions. The lower
order bits are replaced with the higher order bits as the
word is shifted. No bits are lost with the execution of left
shift instructions. (See examples of instruction 50 45).

50 47 LEFT SHIFT A (LSHA)

Execution time: 4 microseconds (k = 0); 5.33 + 2k/3 microseconds (k ~ 0)

Shift (A) circularly to the left k-bit positions. The lower
order bits are replaced with the higher order bits as the
word is shifted. No bits are lost with the execution of left
shift instructions.

Example of left shift A with k = 2:

(A)i
after first shift
after second shift

= 300000 000000
Lnnnnn nnnnnn uvvvvv vvvvvv

400000 000001

I-B-20

SECTION 1-8-4. LOGICAL INSTRUCTIONS

1. GENERAL

Logical instructions perform five basic operations: compare, complement,
selective set, selective clear, and selective substitute. The parity skip
instructions are also included here since they provide the means for conditional
skips based on the results of a logical operation.

2. COMPARE INSTRUCTIONS

Four compare instructions are used to test and record certain conditions in
preparation for the execution of an arithmetic conditional jump instruction.
The compare instructions set the comparison designator, a 3-stage register, and
the conditional jump instruction samples the comparison designator to determine
if the jump condition has been satisfied. The comparison designator records
the results of compare instructions as follows:

1) The compare stage is set upon the computer's execution of anyone of the
compare instructions.

2) The less than stage is set if a compare instruction finds (AL) less than
the contents of an addressed memory location, or L(AL) (AU) less than the
logical product of (AU) and the contents of the addressed memory location
(whichever applies).

3) The equals stage is set if a compare instruction finds (AL) equal to the
contents of an addressed memory location or finds the logical product of
(AL) and (AU) equal to the logical product of (AU) and the contents of
the addressed memory location (whichever applies).

The comparison designator is cleared by the execution of any instruction other
than the arithmetic conditional jump instructions (function codes 60-67). There­
fore, in order to set the compare stages desired, a compare instruction must
immediately precede the jump instruction, or immediately precede the first of a
consecutive string of jump instructions. Otherwise, these jump instructions are
executed without reference to the comparison designator. While the comparison
designator is set, all interrupts are locked out. For an explanation of the
manner in which the comparison designator is interpreted, refer to the descrip­
tion of the jump instructions.

I-B-2l

02

03

06

COMPARE AL(CMAL)

Execution time: 8 microseconds

y" = up or uSR

(AL) : (y)

(AL)f = (AL)i

Compare algebraically (AL) with (y) and set the
comparison designator as follows:

Set the compare stage
Set the less than stage if (AL)< (y)
Set the equals stage if (AL) = (y)

COMPARE AL (CMALB)

Execution time: 12 microseconds

y = up or uSR

(AL) : (y)

(AL)f = (AL)i

Compare algebraically (AL) with (y + B) and set
the comparison designator as follows:

Set the compare stage
Set the less than stage if (AL) < (y + B)
Set the equals stage if (AL) = (y + B)

COMPARE WITH MASK (CMSK)

Execution time: 8 microseconds

y = up or uSR

L(AU) (AL) : L(AU) (Y)

(A)f = (A)i

Compare algebraically the masked bits of (AL)
with corresponding bits of (y) and set compar­
ison designator as follows:

Set the compare stage
Set the less than stage if L(AL) (AU)<L(y) (AU)
Set the equals stage if L(AL) (AU) = L(y) (AU)

The masked bits of (AL) are those bits which corres­
pond to bits set in (AU).

Example of compare with mask:

(AU)i = 007777 Mask
(y) = 123451
(AL)i = 222351
Compare 2351 with 3451
(AU)f = 007777, (AL)f = 222351

I-B-22

07 COMPARE WITH MASK (CMSKB)

Execution time: 12 microseconds

y = up or uSR

L(AU) (AL): L(AU) (Y)

(A) f = (A) i

Compare algebraically the masked bits of (AL)
with corresponding bits of (y + B) and set the
comparison designator as follows:

Set the compare stage
Set the less than stage if L(AL) (AU)< L(y + B) (AU)
Set the equals stage if L(AL) (AU) ::: L(y + B) (AU)

The masked bits of (AL) are those bits which correspond
to bits set in (AU).

Example:

(AU)i = 000377
(y + B) = 674201
(AL)i = 377601
Compare 201 with 201
(AU)f = 000377, (AL)f = 377601

3. COMPLEMENT INSTRUCTIONS

Four complement instructions are provided. Three of these instructions are used
to effect a bit-by-bit complement of the entire contents of the AL, AU, or A
register. The fourth is used to complement selected bits of AL. The bits
complemented are determined by the presence of Its in corresponding bit positions
of a designated storage location Yo .

50 61

50 62

COMPLEMENT AL (CPAL)

Execution time: 5.33 microseconds

Complement (AL), leaving the result in AL.
Ignore ko

NOTE: This instruction effects a bit-by-bit
complement with the following exception:
all zeros (positive zero) will remain
all zeros.

I
COMPLEMENT AU (CPAU) (AU) ----.. AU

Execution time: 5.33 microseconds

Complement (AU), leavinu the result in AU.
Ignore k. (See note for instruction 50 61).

I-B-23

50 63

53

COMPLEMENT A (CPA)

Execution time: 5.33 microseconds

Co.ple.ent (A) leaving the result in A.
Ignore k. (See note for instruction 50 61).

SELECTIVE COMPLEMENT (SLCP) L(AL)' (Y) (t) L(AL) (y)1 ---+AL
or

COMPLEMENT (AL) for (y) = 1 n n Execution time: 8 microseconds

y = up
Complement the individual bits of (AL)
corresponding to ones in (y). leaving the
remaining bits of (AL) unaltered; that is,
complement (AL)n for (y)n = 1. This is a
bit-by-bit exclusive OR.

Example of selective complement instruction:

(AL)i = 123456
(Y) = 070007
(AL)f = 153451

4. SELECTIVE SET INSTRUCTION

The selective set instruction is used to force ones into selected bit positions
of the AL register. The bit positions into which ones are forced are determined
by the presence of ones in corresponding bit positions of a designated storage
location Y.

51 SELECTIVE SET (SLSET)

Execution time: 8 microseconds

v = Un
'" J.

or (AL) v (Y) --..-. AL

SET (AL)n for (Y)n = 1

Set the individual bits of (AL) to ones corresponding
to ones in (y). leaving the remaining bits of (AL)
unaltered. This is a bit-by-bit inclusive OR.

Example of selective set:

(AL)i = 123456
(y) = 000077
(AL)f = 123477

5. SELECTIVE CLEAR INSTRUCTION

The selective clear instruction is used to force zeros into selected bit posi­
tion. of the AL register. The bit positions into which zeros are forced are
deterained by the presence of Zeros in corresponding bit positions of a desig­
nated storage location Y.

1-8-24

52 SELECTIVE CLEAR (SLCL) L (AL) (Y) ---. AL

Execution time: 8 microseconds or CLEAR (AL)n for (Y)n = 0

y = up
Clear the individual bits of (AL) corresponding
to zeros in (y), leaving the remaining bits of (AL)
unaltered. The effect of this instruction is to
compute the bit-by-bit (or logical) product of (AL)
and (y), le~ving the result in AL. This is a bit-by­
bit AND.

Example of selective clear:

(AL). == 123456
1

(Y) = 707070
(AL)f == 103050

6 0 SELECTIVE SUBSTITUTE INSTRUCTIONS

The selective substitute instructions are used to replace bits in selected bit
positions of the AL register with bits from corresponding bit positions of a
designated storage location Y. The bit positions affected by the selective
substitute instructions are determined by the presence of l's in the correspond­
ing bit positions of the AU register.

04

05

SELECTIVE SUBSTITUTE (SLSU)

Execution time: 8 microseconds

y = up or uSR

L(AU) , (AL) + L(AU) (y)---.AL

or (Y) -. AL for (AU) = 1 n n n

Replace the individual bits of (AL) with bits
of (y) corresponding to ones in (AU), leaving
the remaining bits of (AL) unaltered.

Example of selective substitute:

(AU)i = 007777 Mask
(Y) = 123451
(AL)i = 666666
(AL)f = 663451

SELECTIVE SUBSTITUTE (SLSUB)

Execution time: 12 microseconds

L(AU) , (AL) + L(AU) (Y)---'AL

y == up or uSij
Replace the Individual bits of (AL) with bits
of (y + B) corresponding to ones in (AU), leaving
the remaining bits of (AL) unaltered.

I-B-25

7. PARITY SKIP INSTRUCTIONS

The following two instructions permit programmed conditional skips based on
the parity of the bit-by-bit product of the contents of AL and AU. Parity is
odd if the number of ones in the resulting product is odd; parity is even if the
number of ones in the resulting product is even.

50 54

50 55

SKIP ON ODD PARITY (SKPODD)

Execution time: 6 microseconds skip; 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is odd. skip the next instruc­
tion; otherwise, take the next instruction. Ignore k.
(AU)f = (AU)i; (AL)f = (AL)i

Example of skip on odd parity:

.(AU) 000077 mask
(AL) 127723
bit-by-bit product = 000023
bit sum = 3
Since the bit sum is odd. the next instruction is skipped.

SKIP ON EVEN PARITY (SKPEVN)

Execution time: 6microseconds skip; 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is even, skip the next
instruction; otherwise, take the next instruction.
Ignore k.

1-8-26

SECTION I-B-5. MODIFYING INSTRUCTIONS

1. GENERAL

Modifying instructions provide a simple method of incrementing or decrementinq
the current value of a B register or a storage location used as an index.

2. INSTRUCTIONS

37

56

57

MODIFY B WITH CONSTANT (ENTBKB)

Execution time: 12 microseconds

y = u (sign extended to 18 bits)
Add y to B (add a constant to B).

Bi + xy--. B

The effect of this instruction is to add a con­
stant u to B: however, since u is a 12-bit one's
complement number, the instruction can be used to
increment or decrement B.

B SKIP (BSK) If B = (Y), Skip NI
If B i (Y), Increment B by 1 and

Execute NT

Execution time: 16 microseconds

y = up
Test Band (y) for equality. Skip the next
instruction if equal; otherwise, increment
B by I and execute the next instructiono

INDEX SKIP (ISK) If (Y) = 0, Skip NI
If (y) ~ 0, Decrement (Y) by I and

Execution time: 12 microseconds
Execute NI

y = u
If (y) i 0, subtract one from (y) leaving
the result in y, and take the next instruction;
otherwise skip the next instruction leaving
(y) unaltered.

If (y)i = 777777, then
(Y)f = 777776 and there is no skip.

1-B-27

73 BJUMP (BJP) If B 1: 0, B-1---+B and y----.p
If B = 0, Execute NI

Execution time: 12 microseconds

y = up
If B * 0, subtract 1 from B then jump
to y; otherwise execute the next instruction
leaving B unaltered. (Negative zero 1: 0.)

NOTE: As B is a one's complement number and can take
values less than zero, the B jump will be
effective only for program loops where B is
initially positive.

1-B-28

SECTION 1-8-6. JUMP INSTRUCTIONS

1. INTRODUCTION

Jump instructions are used to transfer program control to other portions of a
program or to other programs. Jump instructions fall into two general categories:
conditional and unconditional. Conditional jumps transfer program control only
if certain specified conditions exist. Unconditional jumps always transfer
program control.

2. UNCONDITIONAL JUMP INSTRUCTIONS

Seven unconditional jump instructions are providedo The use of each instruction
is dependent upon the purpose for transferring program control. The names and
mnemonics of these instructions convey the suitability of each instruction
for a particular application. The three key words used are defined below.

30

1) Direct.

The word direct signifies that control is to be transferred directly to
the address specified by the lower 12 bits of the instruction and the
upper 3 bits of the P register. Since the P register must obviously be
set to the bank in which the jump instruction is stored, direct jumps
are normally used to transfer r.ontrol within a memory bank. However, a
direct jump with B modification can be used to transfer control between
hanks.

2) Indirect.

The word indirect signifies that control is to be transferred to an
address contained in the lower 15 bits of the storage location specified
by the lower 12 bits of the instruction and the upper 3 bits of the P
register. Indirect jumps require an additional memory location and an
extra memory access; however, they permit transfer of program control to
any address in memory, regardless of bank designation.

3) Return.

The word return implies that program control is being transferred tem­
porarily and that control may be returned to this point in the program
after a specific task has been performed. Therefore, return jumps store
the address of the next sequential instruction in the program before
transferring program control.

INDIRECT RETURN JUMP (IRJP) (P) + 1---' (y) ; (y) + 1---. P

Execution time= 12 microseconds

Instruction executed from running program:
y = up
Store (P) + 1 at the address given in the low
order 15 bits of (y), then increment that address
by one and enter it into the program address register.

1-8-29

31

Instruction executed from entrance register on interrupt:
y = u
Store (P) at the address which is the low order
15 bits of (y), then increment that address by one
(1) and enter it into the program address register.

Example of an indirect return jump executed from
address 22000:

Address
Initial
Contents

Final
Contents Explanation

22000 30 6500 Same Execute subroutine from
main program.

26500 01 7420 Same Constant defining
location of desired
subroutine.

17420

17421

37 2164 02 2001

Same

Subroutine exit address.

Subroutine entrance
address (control is
transferred here from
indirect return jump).

The effect of the above sequence upon execution
of the indirect return jump at address 22000 is
to transfer control to the subroutine starting at
17421, but at the same time, letting the subroutine
know where to return control.

INDIRECT RETURN JUMP (IRJPB) (P) + 1 ----. (y)

Execution time: 16 microseconds

Instruction executed from running program:
y = up
Store (P) + 1 at the address given in the low order
15 bits of (y + B), then increment that address by
one and enter it into the program address register.

(Y) + 1---. P

Instruction executed from entrance register on interrupt:
y = u
Store (P) at the address which is the low order 15
bits of (y + B), then increment that address by one
and enter it· into the program address register.

I-B-30

34

35

54

55

76

DIRECT JUMP (JP) N1 = (Y)

Execution time: 4 microseconds

y = up
Unconditionally jump to y. (Reset P = y)

DIRECT JUMP (JPB) y---. P NI = (Y)

Execution time: 8 microseconds

y = up
Unconditionally jump to y + B.

NOTE: Because B is an 18-bit one's complement
number, care must be taken when using this
instruction; in addition, it is possible
th~t address, y + B, may not be relative to
the same core bank from which the (35) direct
jump was executed. Consider a direct jump
with y = 03560 and B = 010000; in this case
y + B = 03560 + 010000 = 13560.

INDIRECT JUMP AND REMOVE INTERRUPT LOCKOUT (IJPEI)
(Y) ---. P and RIL

Execution time: 4 microseconds

y = up Address = (y)14-0
Remove interrupt lockout (enable interrupts).
Then jump to the address which is the low order
15 bits of (y). An application of this instruction
is the termination of a subroutine activated by
an interrupt.

INDIRECT JUMP (IJP)

Execution time: 8 microseconds

y = up Address = (Y)14-0
Jump to the address which is the low
order 15 bits of (y).

(Y) ---+ P

DIRECT RETURN JUMP (RJP)

Execution time: 8 microseconds

(P) + 1 ----. Y Y + 1----. P

y = up
Store (P) + 1 at y, then jump to y + 1. This
instruction transfers to y a full 18-bit word,
the lower 15 bits being the address (P) + 1 with
the upper three bits set to zero. When this instruction
is executed from an interrupt entrance register by an
interrupt, store P. Do not initiate the (P) + 1
sequence.

1-B-31

3. CONDITIONAL JUMP INSTRUCTIONS

Eight conditional jump instructions are provided. Since these instructions
transfer program control only if the AL and AU registers satisfy certain
arithmetic conditions, they are often called arithmetic conditional jump in­
structions. These instructions (function codes 60-67) may be used with or with­
out an associated compare instruction. When a compare instruction is used, it
must immediately precede the conditional jump instruction (or the first of a
sequence of conditional jump instructions). If a compare instruction is not
used, the jump is executed upon satisfying the condition directly stated by
the instruction. If a compare instruction is used with one or more jump in­
structions, the satisfaction of the jump condition is dependent upon the status
of the 3-stage comparison designator. Table I-B-2 provides a summary
of the conditional jump instructions when used separately and with a compare
instruction. The letter M in the table represents the value that (AL) or L(AL)
(AU) are compared to during execution of the compare instruction. This value
is actually (y) for an 02 instruction, (y + B) for an 03, (y) masked by (AU)
for 06, and (y +·B) masked by (AU) for 07. Note that (AU) can be-used as a
mask, but never as one of the values compared by a compare instruction. There­
fore, when the comparison designator is set (refer to logical instructions),
the jump condition is dependent only upon the relative values of (AL) or L(AL)
(AU) and M.

I-B-32

TABLE I-B-2. SUMMARY OF CONDITIONAL JUMP INSTRUCTIONS

Jump Compare ComQare Designator Set Results
Instr Designator Eguals Stage Less Than Stage If a
Code Not Set Set Not Set Not Set Set Jump Occurs

60 JP if (AU) =0 JPo (AL) = M No JP * * (AU) = 0 or (AL) = M ,

61 JP if (AL) = 0 JP; (AL) = M No JP * * (AL) = 0 or M

62 JP if (AU) 1: 0 No JP JP; (AL) 1: M * * (AU) 1: 0 or (AL) 1: M

t--of 63 JP if (AL) 1: 0 No JP JP; (AL) i= M • * (AL) 1: 0 or M I
Ol
I
v"
v"

64 JP if (AU) ~ 0 * * JP; (AL) ~M No JP (AU) POSe or (AL) ~ M

65 JP if (AL) ~ 0 * * JP; (AL) ~M No JP (AL) POSe or (AL) ~ M

66 JP if (AU) < 0 * * No JP JP; (AL) < M (AU) NEG. or (AL) <M

67 JP if (AL) < 0 * * No JP JP; (AL) < M (AL) NEG. or (AL) < M

* Does not apply

60

61

62

JUMP AU ZERO (JP ADZ) Compare stage not set, (AU) == 0, y ---- p
Compare and equals stages set, y---. P

Execution time: 4 microseconds

Y = up
Jump to Yj that is, Reset P = y, if:

Compare stage of the comparison designator is not
set and (AU) = O. (negative zero acts as not zero);
or

Compare stage of the comparison designator is set
and the equals stage of the comparison designator is
set.

Otherwise, execute next instruction.

JUMp· AL ZERO (JPALZ)
JUMP IF EQUAL (JPEQ)

Compare stage not set, (AL) = 0, Y----- P
Compare and equals stages set, Y-----P

Execution time: 4 microseconds

y = up
Jump to y; that is, reset P = Y if:

Compare stage of the comparison designator is not
set and (AL) = O. (Negative zero acts as not zero}; or

Compare stage of comparison designator is set,
and the equals stage of the comparison designator
is set.

Otherwise, execute next instruction.

JUMP AU NOT ZERO (JP AUNZ)

Compare stage not set, (AU) t 0, Y~P
Compare stage set, equals stage
stage not set, Y ---. P

Execution time: 4 microseconds

y = up
Jump to Yi that is, reset P = y, if:

Compare stage of comparison designator is not
set and (AU) t 0; or

Compare stage of comparison designator is set,
and the equals stage of the comparison designator
is not set.

Otherwise, execute next instruction.

1-8-34

63

64

65

JUMP AL NOT ZERO (JPALNZ) Compare stage not set, (AL) i: 0, Y---"P
JUMP NOT EQUAL (JPNOT) Compare stage set, equals stage

not set, Y --. P

Execution time: 4 microseconds

y = up
Jump to y; that is, reset P = y, if:

Compare stage of comparison designator is
not set and (AL) i: 0; or

Compare stage of comparison designator is
set, and the equals stage of comparison
is not set.

Otherwise, execute next instruction.

JUMP AU POSITIVE (JPAUP) Compare stage not set, (AU) ~ 0, Y-----P
Compare stage set, less than
stage not set, Y ---. P

Execution time: 4 microseconds

y = up
Jump to Yj that is, reset P = y, if:

Compare stage of comparison designator is not
set and (AU) ~ 0; or

Compare stage of comparison designator is set,
and the less than stage of comparison is not.

Otherwise, execute next instruction.

JUMP AL POSITIVE (JPALP) Compare stage not set, (AL) ~ 0, y----.p
JUMP M LESS OR EQUAL (JPMLEQ)

Compare stage set, less
than stage not set, y---.p

Execution time: 4 microseconds

y = up
Jump to Yi that is, reset P = y, if:

Compare stage of comparison designator is
not set and (AL) ~ 0; or

Compare stage of comparison designator is
set, and the less than stage of comparison
designator is not set.

Otherwise, execute next instruction.

1-8-35

66

67

73

JUMP AU NEGATIVE (JPAUNG) Compare stage not set, (AU) < 0, y---.p
Compare and less than
stages set, Y ---.p

Execution time: 4 microseconds

y = up
Jump to yt that is, reset P = y, if:

Compare stage of comparison designator is not
set and (AU) < 0; or

Compare stage of comparison designator is set,
and the less than stage of comparison designator
is set.

Otherwise, execute next instruction.

JUMP AL NEGATIVE (JPALNG)
JUMP M GREATER (JPMGR)

Compare stage not set, (AL) < 0, Y ---. P
Compare and less than
stages set, Y -.p

Execution time: 4 microseconds

y = up
Jump to Yj that is, reset P = y, if:

Compare stage of comparison designator is
not set and (AL) < 0; or

Compare stage of comparison designator is
set and the less than stage of the comparison
designator is set.

Otherwise, execute next instruction.

B JUMP (BJP) If B f= 0, B-1 --+ Band Y ~ P
If B = O. execute NI

Execution time: 12 microseconds

y = up
If B ¢ 0, subtract one from B then jump to ~j
otherwise,execute the next instruction leavlng
B unaltered. (Negative zero f= 0.)

NOTE: The B jump instruction is listed here
because it does provide the means to
jump conditionally. Since the jump
condition is based on the contents of
the B register and since the contents of
B are modified each time the condition
is satisfied, the instruction is more
accurately defined as a modifying
instruction.

1-8-36

SECTION 1-8-7. SKIP AND STOP INSTRUCTIONS

1. GENERAL

Skip instructions are used to skip one instruction and then continue in sequence.
The stop instruction permits programmed stops in a running program. The in­
structions which follow provide the means for programming both conditional
and unconditional skips and stops.

2. INSTRUCTIONS

50 21 SKIP ON INPUT INACTIVE (SKPIIN)

Execution time: 6 microseconds skip; 4.67 no skip

Test for output activity on channel k. If inactive,
skip the next insturction; otherwise, take the next
instruction.

50 22 SKIP ON OUTPUT INACTIVE (SKPOIN)

Execution time: 6 microseconds skip; 4.67 no skip

Test for output activity on channel k. If inactive,
skip the next instruction; otherwise, take the next
instruction.

50 23 SKIP ON EXTERNAL FUNCTION INACTIVE (SKPFIN)

Execution time: 6 microseconds skip; 4.67 no skip

Test for external function activity or channel k. If
inactive, skip the next instruction; otherwise, take
the next instruction.

50 50 SKIP ON KEY SETTING (SKP)

Execution time: 6 microseconds skip; 4.67 no skip

If bit 4, 3, 2, 1, or 0 of k is one and the corresponding
skip key 4, 3, 2, 1, or 0 is set, or if bit 5 of k is
a one (unconditional skip), skip the next instruction.

Otherwise, take the next instruction.

Examples of skip with:

k = 01 (bit 0) skip if skip key 0 is set
k = 02 (bit 1) skip if skip key 1 is set
k = 04 (bit 2) skip if skip key 2 is set
k = 10 (bit 3) skip if skip key 3 is set
k = 20 (bit 5) skip if skip key 4 is set
k = 40 (bit 5) skip unconditionally
k = 03 (bits 1, 0) skip if either key 1 or 0 is

1-8-37

set

50 51

50 52

50 53

50 54

50 55

SKIP ON NO BORROW (SKPNBO)

Execution time: 6 microseconds skip; 4.67 no skip

If the last previous add A or subtract A required
a borrow, take next instruction; otherwise, skip
the next instruction. Ignore k. The skip occurs
if no correction to (A) is needed. This allows a
correcting instruction to be inserted to save pro­
gram steps. The correcting instruction will be
subtract A where (Y + 1, Y) = 000000000001.

SKIP ON OVERFLOW (SKPOV)

Execution time: 6 microseconds skip; 4.67 no skip

If an overflow condition occurred on a previous
arithmetic instruction, skip the next instruction;
otherwise, take the next instruction. Ignore k and
clear the overflow designator.

SKIP ON NO OVERFLOW (SKPNOV)

Execution time: 6 microseconds skip; 4.67 no skip

If an overflow condition did not occur on a previous
arithmetic instruction, skip the next instruction;
otherwise, take the next instruction. Ignore k and
clear the overflow designator.

SKIP ON ODD PARITY (SKPODD)

Execution time: 6 microseconds skip; 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is odd, skip the next instruc­
tion; otherwise, take the next instruction. Ignore k.

(\ 4 Jul', f = (I\ n) _. (AI '\ f - (Ar). .• ,n.u"i' "~ ,, ~ - '· '1

Example of skip odd parity:

(AU)
(AL)

000071 mask
127723

bit-by-bit product
bit sum

= 000023
= 3

Since the bit sum is odd, the next instruction is skipped.

SKIP ON EVEN PARITY (SKPEVN)

Execution time: 6 microseconds skip; 4.67 no skip

If the sum of the bits resulting from the bit-by-bit
product of (AL) and (AU) is even, skip the next
instruction; otherwise, take the next instruction. Ignore k.

1-8-38

50 56 STOP ON KEY SETTING (STOP)

Execution time: 4.67 microseconds

If bit 4, 3, 2, 1, or 0 of k is one and the correspondina
console stop key 4, 3, 2, 1, or 0 is set, or if bit
5 of k is a one (unconditional stop), stop the computer;
otherwise, take the next instruction.

Examples of stop with:

k = 01 (bit 0) stop if stop key 0 is set
k = 02 (bit 1) stop if stop key 1 is set
k = 04 (bit 2) stop if stop key 2 is set
k = 10 (bit 3) stop if stop key 3 is set
k = 20 (bit 4) stop if stop key 4 is set
k = 40 (bit 5) stop unconditionally
k = 03 (bits It 0) stop if either stop key 1 or 0 is set

50 57 SKIP ON NO RESUME (SKPNR)

56

57

Execution time: 6 microseconds skip; 4.67 no skip

If the resume designator on channel k is not set
(indicating unsuccessful transfer of a word to an
output device), skip the next sequential instruction;
otherwise, take the next instruction.

B SKIP (BSK) If B = (Y), SKIP NI
If B * (Y), advance B by 1 and execute NI

Execution time: 16 microseconds

y = up
Test Band (y) for equality. Skip next instruction if
equal; otherwise, increment B by 1 and read the next
instruction.

INDEX SKIP (15K) If (Y) = 0, SKIP NI
If (Y) ~ 0, decrement (Y) by 1 and execute NI

Execution time: 12 microseconds

y = u
If (y) ~ 0, subtract one from (y) leaving the result in y,
and take the next instruction; otherwise, skip the next instruc­
tion leaving (y) unaltered.

If (y)i = 777777, then
(y)f = 777776 and there is no skip.

I-B-39

SECTION I-B-S. INPUT/OUTPUT INSTRUCTIONS

10 GENERAL

I/O instructions are used to program the transfer of data between the computer
and various peripheral devices. All I/O instructions are Format II instruc­
tions o The function code v f, is always 50S; the minor function code, m, defines
the operation to be performed; and when applicable, the operand designator, k,
specifies the number of the I/O channel on which the operation is to be per­
formed.

2. BUFFER TRANSFER INSTRUCTIONS

Data is transferred between the computer and peripheral devices in a buffer
modeo An input buffer is a block of consecutive storage locations into which
a peripheral device, connected to an input channel, places data. An output
buffer is a block of consecutive storage locations from which a peripheral
device, connected to an output channel, receives data. Buffer transfers are
normally controlled by assigned memory locations designated as control words.
Two control words are assigned to each type of transfer (input, output, and
external function) on each I/O channel.

Prior to the beginning of a buffer transfer on a specific channel, the control
words for that channel and transfer type must be set to the initial and terminal
addresses of the buffer. The channel must then be activated to begin the data
transfer. Once the buffer transfer has been started, it is carried out by the
I/O section of the computer without further program control. The I/O section
transfers one IS-bit buffer word at a time in single channel mode and two IS­
bit words at a time in dual channel ESI modes. Before each IS-bit or 36-bit
transfer, the buffer control words are checked for equality. If the two con­
trol words are not equal, the second control word is incremented (or decremented)
and a transfer is made. When the equality check indicates that the two control
words are equal, the buffer is automatically terminated.

The input, output, and external function transfer instructions (50 11, 50 12,
and 50 13) are used to establish the buffer limits and activate the channel.
When coding these instructions, the programmer supplies the buffer terminal
address and the buffer initial address in the lower 15 bits of the two instruc­
tion locations following the buffer transfer instruction. The format illus­
trated on the following page defines the contents of the 3-word sequence be­
ginning at address n.

The transfer instruction at address n specifies the type of transfer (input,
output, or external function) and the channel on which the transfer is to occur.
When the instruction is executed, the contents of addresses n + 1 and n + 2
are stored in the two assigned buffer control registers for the particular
channel and type of transfer.

1-B-40

Address n 17

I

n + 2 17 16

I I
J Buffer Direction-------­

Designator

Buffer Monitor-----------~
Interrupt Designator

f

15

Unassigned--------------------

Buffer Transfer
12 11 6 5 0 Instruction

I I I (50 11, ~O 12,
or 50 13) m k

14 0 Terminal

I Address Word

Buffer Terminal Address

17 16 15 14 0 Initial Address
~~~--~------------------------------~ I I J Word 
~~Jr-~~------------------------------~ 

Buffer Direction------~ Buffer Initial Address 
Designator 

Buffer Monitor------------­
Interrupt Designator 

Una s s ig ned ------------' 

The word at address n ~ 1 IS stored in the first of the two assigned buffer 
control registers. This word contains the buffer terminal address in the lower 
15 bits v the buffer direction designator, the continuous data in the upper-most 
bitv and buffer monitor interrupt designator in bit 16. For input transfers, 
the buffer terminal address is the address of the last word to be transferred 
during this buffer operation. For output or external function transfers, the 
buffer terminal address must be one greater than the address of the last word 
to be transferred from an incrementing buffer or one less than th~ addrpss of 
the last word to be transferred from a decrementing buffer. 

The word at address n + 2 is stored in the second of the two assigned buffer 
control registers. This word contains the initial buffer address in the lower 
15 bits and the monitor interrupt designator and buffer direction designatur in 
bits 16 and 17, respectively. If set to 1, the monitor interrupt designator 
causes a monitor interrupt to occur when the buffer is terminated. The buffer 
direction designator is used to specify either a forward buffer or a bar-kward 
buffero If this bit is zero, the buffer initial address must be less than the 
buffer terminal address and the initial address control word is incremented 
after each equality check and word transfer. If this bit is set to 1, the buffer 
initial address must be greater than the buffer terminal address and the initial 
address control word is decremented after each equality check and word transfer. 
Bits 16 and 17 must be set to the same configuration in both words v n + land 
n + 20 



It should be noted that v in the input mode, the I/O section performs one last 
transfer after the equality check indicates that the buffer is to be terminated; 
therefore, when a one word buffer is to be transferred, both the initial and 
terminal addresses must be set to the address of the one word to be transferred. 
In output or external function modes of operation, the terminal address for a 
one word output or external function buffer must be one greater or one less 
than the initial address, which is the address of the word to be transferred. 
The reason for this is that the computer waits for one additional output request 
or external function request from the peripheral equipment to ensure that the 
last word of the buffer was received. No transfer results from this additional 
request. 

50 11 

50 12 

50 13 

INPUT TRANSFER (IN) (P + 1) -+ 60 + 2k 

Execution time: 20 microseconds (P + 2) --+ 61 + 2k 

SET INPUT ACTIVE ON CHAN. k 

Initiate input transfer on channel k. 

Transfer buffer limit address words (for input buffer) 
from the following two instruction locations to the input 
buffer control registers for the designated channel. Other 
I/O channel and processor activity proceeds normally. 

OUTPUT TRANSFER (OUT) (P + 1)--+40 + 2k 

Execution time: 20 microseconds (P + 2)--+41 + 2k 

SET OUTPUT ACTIVE ON CHAN. k 

Initiate output transfer on channel k. 

Transfer buffer limit address words (for output buffer) 
from the following two instruction locations to the out­
put buffer control registers for the designated channel. 
Other I/O channel and processor activity proceeds normally. 

EXTERNAL FUNCTION (EXF) (P + 1) -+- 20 + 2k 

Execution time: 20 microseconds (P + 2)--+ 21 + 2k 

SET EXTERNAL FUNCTION ON CHAN k 

Initiate external function mode on channel ko 

Transfer buffer limit addresses (for the function buffer) 
from the following two instruction locations to the EXF 
buffer control registers for the designated channel. 

3. BUFFER TERMINATION INSTRUCTIONS 

Normally buffer transfers are terminated automatically by the I/O section after 
the last word of the buffer has been transferred. However, under certain con­
ditions the programmer may wish to terminate a buffer under program control. 
Three instructions are provided for this purpose. These instructions (50 15, 
50 16, and 50 17) immediately terminate the buffer transfer on the specified 
channel and deactivate the channel. 

1-8-42 



50 15 

50 16 

50 17 

TERMINATE INPUT (INSTP) 

CLEAR INPUT ACTIVE CHAN. k 

Execution time: 4 microseconds 

Terminate input on channel k. 

No monitor interrupt will occur as a result of 
the execution of this instruction. 

TERMINATE OUTPUT (OUTSTP) 

CLEAR OUTPUT ACTIVE CHAN. k 

Execution time: 4 microseconds 

Terminate output on channel k. 

No monitor interrupt will occur as a result of 
the execution of this instruction. 

TERMINATE EXTERNAL FUNCTION (EXFSTP) 

CLEAR EXTERNAL FUNCTION ACTIVE CHAN. k 

Execution time: 4 microseconds 

Terminate external function mode on channel k. 

No monitor interrupt will occur as a result of 
the execution of this instruction. 

4. OVERRIDE INSTRUCTIONS 

Certain peripheral equipments accept external functions and output data from 
the computer pnly if the transfer is forced by the computer. The two override 
instructions (50 26 and 50 27) force a transfer by simulating a request signal 
(output data request or external function request), placing the information on 
the data lines, and setting the acknowledge signal. Upon detecting the acknow­
ledge signal, the peripheral device accepts the data just as if the peripheral 
device had requested it. It should be noted that the execution of an override 
instruction forces only one transmission; it does not initiate an automatic 
buffer. 

For example, to send a 3-word external function buffer to a magnetic tape unit, 
the external function override instruction (50 27) must be executed three times, 
and the programmer must provide a delay between executions to allow time for 
the tape unit to accept the information. 

50 26 OUTPUT OVERRIDE (OUTOV) 

Execution time: 4.67 microseconds 

Wait for the output device to accept the word in the 
C register(s). Then simulate an output request on 
channel k and transfer the word designated by the 
address in the output buffer control register for 
that channel. Ignore the ESI mode if active. This 

1-B-43 



50 27 

instruction will transfer a word whether the buffer 
is active or not. The transfer takes place under 
control of the output buffer control registers. 

EXTERNAL FUNCTION OVERRIDE (EXFOV) 

Execution time: 4.67 microseconds 

Wait for the output device to accept the word in the 
C register(s). Then simulate an external function 
request on channel k and transfer the word designated 
by the address in the external function buffer control 
register for that channel. Ignore the ESI mode if active. 
This instruction will transfer a word whether the buffer 
is active or not. The transfer takes place under control 
of the external function buffer control registers. 

5. MISCELLANEOUS I/O INSTRUCTIONS 

The instruction repertoire includes the following instructions which are useful 
in programming the transfer of information between the computer and peripheral 
deviceso 

50 20 

50 21 

50 22 

50 23 

SET RESUME (SRSM) 

Execution time: 4 microseconds 

Set the resume designator for channel k group to 
permit honoring the next requesting output function 
on that group. Loss of any information currently 
held by that output register(s) for a peripheral 
device is allowed by this instruction. 

SKIP ON INPUT INACTIVE (SKPIIN) 

Execution time: 6 microseconds skip; 4.67 no skip 

Test for input activity on channel k. If inactive, skip 
the next instruction; otherwise, take the next instruction. 

SKIP ON OUTPUT INACTIVE (SKPOIN) 

Execution time: 6 microseconds; 4.67 no skip 

Test for output activity on channel k. If inactive, skip 
the next instruction; otherwise, take the next instruction. 

SKIP ON EXTERNAL FUNCTION INACTIVE (SKPFIN) 

Execution time: 6 microseconds skip; 4.67 no skip 

Test for external function activity on channel k. If 
inactive, skip the next instruction; otherwise, take the 
next instruction. 

1-8-44 



50 24 
or 

50 25 

50 30 
or 

50 31 

50 32 
or 

50 33 

50 34 
or 

50 35 

50 36 
or 

50 37 

WAIT FOR INTERRUPT (WTFI) 

Execution time: 4 microseconds 

Stop the computer until any interrupt occurs and 
allow I/O to continue; ignore k, then execute the 
instruction located in the interrupt entrance 
register designated by the interrupt. 

REMOVE INTERRUPT LOCKOUT (RIL) 

Execution time: 4 microseconds 

Remove the interrupt lockout; enable all external and 
monitor interrupts, all channels. Ignore k. This 
instruction should be used only if interrupt lock­
out was set with a 50 34 or 50 35 instruction 
(SIL). It will not remove interrupt lockout set 
with a 50 36 or 50 37 instruction (SXL). 

REMOVE EXTERNAL INTERRUPT LOCKOUT (RXL) 

Execution time: 4 microseconds 

Enable external interrupts, all channels. Ignore k. 
This instruction should be used only if interrupt 
lockout was set with a 50 36 or 50 37 instruction 
(SXL). It will not remove interrupt lockout set 
with a 50 34 or 50 35 instruction (SIL). 

SET INTERRUPT LOCKOUT (SIL) 

Execution time: 4 microseconds 

Set the interrupt lockout; disable all external and 
monitor interrupts, all channels. Ignore k. 

SET EXTERNAL INTERRUPT LOCKOUT (SXL) 

Execution time: 4 microseconds 

Disable external interrupts, all channels. Ignore k. 

1-8-45 



54 INDIRECT JUMP AND REMOVE INTERRUPT LOCKOUT (IJPEI) 

50 57 

(Y) -+ P and RIL 

Execution time: 8 microseconds 

y = up Address = (Y)14-0 
Remove interrupt lockout (enable interrupts). Then jump 
to the address which is the low order 15 bits of (y). 
An application of this instruction is the termination of 
a subroutine activated by an interrupt. 

SKIP ON NO RESUME (SKPNR) 

Execution time: 6 microseconds skip; 4.67 no skip 

If the resume designator on channel k is not set (indicat­
ing unsuccessful transfer of a word to an output device), 
skip the next sequential instruction; otherwise, take the 
next instruction. 

I-B-46 



SECTION I-C. INPUT/OUTPUT (I/O) CHARACTERISTICS 

1. GENERAL 

Communication between the computer and external equipment is accomplished by a 
computer program and the I/O section of the computer via the I/O channels and 
their associated control circuits. The modular design of the I/O section 
provides for two customer selected options: 

1) Number of I/O channels. 
2) Type of interface. 

The I/O section may consist of one or two modules, each of which contains four 
I/O channels and their associated control circuits. Channel numbering depends 
upon the I/O configuration selected. The list below gives the channel numbers 
for the two possible selections. 

Number of Channel 

4 
8 

Channel Numbers 

0, 2, 4v and 6 
o through 7 

Each I/O channel has two cables~ one for input and one for output. On the 
output cable the computer sends command codes (external functions) and output 
data to external equipment. On the input cable the computer receives status 
information (external interrupts) and input data from the external equipment. 
Each cable contains 18 data lines and the control lines necessary to effect 
data transfer o Data transfer is carried on in a parallel mode; that is, all 
information bits are transferred at once. In single-channel mode 18 bits are 
transferred. In dual-channel mode two channels act as one and 36 bits are 
transferred. 

Except for external interrupts, all data is transferred to or from buffers in 
the computer's main memory. The program need only initiate the transfer and 
specify the buffer limits (first and last addresses of the buffer area). The 
I/O section then carries out the buffer transfer without further program con­
trol. The transfer is directed by request and acknowledge control signals. The 
external equipment must request the transfer of each word and the computer must 
acknowledge the transfer of each word. The rate at which data is transferred 
is normally determined by the request rate of the external equipment since this 
is usually slower than the computer's maximum transfer rate. 

The maximum data transfer rate of the 
I/O channel interface design and main 
computer/external equipment interface 
limits the maximum data transfer rate 
Two types of interface are availableo 
transfer data at 0 and -3 volt signal 

computer is dependent upon two factors: 
memory cycle time. The design of the 
(I/O channels and associated circuits) 
on each I/O module (four channel group)o 
One type of interface is designed to 

levels and is often called fast interface. 

I-C-l 



The second type is designed to transfer data at 0 and -15 volt signal levels 
and is often called slow interface. The two interface types are optional in 
four channel groups, and both types may be used on one computer. For example, 
an eight-channel computer may have four -3 volt channels and four -15 volt 
channels. Table I-C-l gives the maximum data transfer rates for both inter­
face types. The single channel rate applies to one channel or a combination 
of channels in the same four-channel group. The dual-channel rate applies to 
dual-channel mode which combines two channels from different four channel 
groups. All rates specified are for one-way communication; the total through­
put rate (simultaneous input and output) is limited to 50,000 36-bit words or 
629500 IS-bit words by the maximum main memory rate. 

Interface Type 

-3 volt 

-3 volt 

-3 volt 

-15 volt 

-15 volt 

-15 volt 

TABLE I-C-l. DATA TRANSFER RATES 

Channel 
Configuration 

Single-Channel 

Dual-Channel 
1 odd channel 
and 1 even 
channel 

Multi-Channel 
1 or more odd 
channel(s) and 
1 or more even 
channel(s) 

Single-Channel 

Dual-Channel 
1 odd channel 
and 1 even 
channel 

Multi-Channel 
1 or more odd 
channels and 
1 or more even 
channels 

I-C-2 

Maximum Data 
Transfer Rate 
(Words per Second) 

41,667 l8-bit words 

100,000 IS-bit words 
(50,000 36-bit woTds) 

62,500 l8-bit words 
(max main memory rate) 

31,667 IS-bit words 

S3,334 IS-bit words 
(41,667 36-bit words 
max -15 volt inter­
face rate) 

41.667 IS-bit words 



2. INPUT/OUTPUT INTERFACE 

2.1 DATA TRANSFERS 

All I/O channels are capable of communicating with either a peripheral equip­
ment, which is subordinate to the computer, or with another computer. The option 
of peripheral operation or intercomputer operation is selectable by a switch 
associated with each channel on the front panel of the computer. 

201.1 PERIPHERAL OPERATION 

When communicating with the computer, a peripheral equipment is subordinate to 
the computer. The computer program initiates communication by activating a 
channel and defining an input or output buffer. An input buffer is a storage 
area in main memory into which data received from an external equipment is 
stored. An output buffer is a storage area in main memory from which data is 
read and sent to an external equipment. All data transfers, except external 
interrupt transfers, are accomplished in a buffer mode. After program initia­
tion, communication is directed by control signals transmitted between the 
computer and peripheral equipment over the input and output cables. 

Figure I-C-l shows the interface between the computer and a peripheral equipment. 
On the output cable the computer can send either output data to be handled by 
the peripheral equipment or external functions, which direct the peripheral 
equipment to perform some operation. On the input cable the computer can 
receive either input data to be processed by the computer or external interrupts 
which provide the computer with status information concerning the peripheral 
equipment. The types of transfers are differentiated from one another by the 
request/acknowledge signals which control the transfer. All requests are honored 
by the computer according to a fixed priority scheme. 

The general sequence of events which occurs for each type of transfer is given 
below. 

1) Sequence for data transfer to the computer from peripheral equipment: 

a) Program control initiates input buffer for given channel. 

b) Peripheral equipment places data word on information lines. 

c) Peripheral equipment sets the input request line to indicate that 
it has data ready for transmission. 

d) Computer detects the input request. 

e) Computer samples the information lines at its own convenience. 

f) Computer sets the input acknowledge line, indicating that it has 
sampled the data. 

I-C-3 



External -- Function Request (EFR) Line -
External Function Acknowledge (EFA) Line . .. 

- Output Data Request (ODR) Line -
Output Data Acknowledge (ODA) Line . .. 
Output Data Lines (18) -

Computer Output Cable Per i pheral 
Equipment 

- External Interrupt Request (EIR) Line 
-

- Input Data Request (lDR) Line 
... 

Input Data Acknowledge (IDA) Line .. -
- Input Data Lines (18) 
~ 

Input Cable 

Figure I-C-l. Input/Output Interface 

I-C-4 



g) Peripheral equipment senses the input acknowledge line. 

h) Peripheral equipment drops the input request line. 

Steps b) through h) of this sequence are repeated for every data word 
until the number of words specified in the input buffer have been 
transferred. 

2) Sequence for interrupt code transfer to the computer: 

a) Peripheral equipment places the interrupt code on the information 
lines. 

b) Peripheral equipment sets the interrupt line. 

c) Computer detects the interrupt. 

d) Computer samples the input lines and stores interrupt code in memory 
location 101 plus twice the channel number. 

e) Computer sets the input acknowledge line, indicating that it has 
sampled the information and when no data requests or interrupt lockout 
exist it reads its next instruction from memory location 100 plus 
twice the channel number. 

f) Peripheral equipment senses the input acknowledge line. 

g) Peripheral equipment drops the interrupt signal. 

h) Peripheral equipment may change the data lines anytime after dropping 
the interrupt signal. 

The input acknowledge is the computer response to either an input request 
or to an interrupt. To eliminate misinterpretation of the input acknow­
ledge signal, peripheral equipment must not interrupt until its last 
input request has been acknowledged by the computer. Under emergency 
conditions, when data loss is of secondary importance, a request may be 
dropped but data lines must remain stable for not less than four micro­
seconds o If, during these four microseconds, an acknowledge is received, 
the peripheral equipment may assume successful transfer of the last data 
word. At any time, after the four-microsecond interval, the peripheral 
equipment may change the data lines and send an interrupt. When these 
conditions prevail, an input acknowledge signal that occurs after the 
interrupt is raised will be in answer to the interrupt. 

3) Sequence for data transfer from computer to peripheral equipment: 

a) Program control initiates output buffer for given channel. 

b) Peripheral equipment sets the output request line when it is in a 
condition to accept data. 

I-C-5 



c) Computer detects output request. 

d) Computer (at its convenience) places data on the output information 
lines. 

e) Computer sets the output acknowledge line, indicating that data is 
ready for sampling. 

f) Peripheral equipment detects the output acknowledge. 

g) Peripheral equipment may drop output request any time after 
detecting output acknowledge. 

h) Peripheral equipment samples the data on the output lines. 

i) Computer drops output acknowledge. 

All steps o"f thi s sequence except the fi rst are repea ted for every da ta 
word until the number of words specified in the output buffer have been 
transferred. The computer also has the option of forcing any word of an 
output buffer; that is, it can, under program control, send an output 
data word regardless of the state of the output request line. 

4) Sequence for external function transfer from the computer to peripheral 
equipment: 

a) Program control initiates external function buffer for a given 
channel. 

b) Peripheral" equipment sets the external function request line when 
it is in a condition to accept external functions. 

c) Computer detects external function request. 

d) Computer (at its convenience) places external function code on the 
output lines. 

e) Computer sets the external function acknowledge line indicnting that 
an external function is ready for sampling. 

f) Peripheral equipment detects the external function. 

g) Peripheral equipment may drop the external function request any time 
after detecting the external function. 

h) Peripheral equipment samples the external function code on the output 
lines. 

i) Computer drops the external function acknowledge and clears the output 

lines. 

I-C-6 



All steps of this sequence except the first are repeated for every 
external function message until the number of words specified in the 
external function buffer have been transferred. 

The computer also has the option of forcing any word of an external 
function buffer; that is, it can, under program control, send an external 
function code regardless of the state of the external function request 
line for that channel. This option is necessary so that the computer 
can override whatever function the peripheral equipment is performing in 
order to re-establish positive control. 

2.1.2 INTERCOMPUTER OPERATION 

Any I/O channel can be selected as an intercomputer channel by a channel­
associated switch on the control panel. The selection of a given channel as 
an intercomputer channel affects only the logic concerned with the output and 
external function buffers. A channel which is sending data or external func­
tions to a given peripheral device holds the data in the output registers 
for a fixed minimum time period, after which any output or external function 
request on any other channel which is part of the same 4-channel group can cause 
the data to be changed. However, a channel sending data or external functions 
to another computer must hold the information in the output register(s) until 
the receiving computer acknowledges receipt of those words. This acknowledge 
signal is received on what is known as the output data request line (when not in 
intercomputer mode). This line, in the intercomputer mode, is known as the 
resume line. 

This resume line is connected to the input acknowledge line of the receIvIng 
computer (see .Figure I-C-2). Activation of the resume signal on the trans­
mitting computer channel causes the setting of the resume flip-flop for the 
even or odd group of four channels. It is this flip-flop whichv when set, . 
allows the transmitting computer to proceed to the next highest priority out­
put function (the next output data word or external function message). If an 
output channel is holding data for another computer and no resume is received 
from that computer, the output registers are tied up indefinitely and no output 
buffers or external function buffers to other equipment can proceed. To limit 
the possibility of this hang-up occurring, two instructions are provided by 
which the computer program can monitor the status of the resume flip-flop. 
These instructions are: skip on no resume (50 57k) and set resume (50 20k). 
The former allows examination of the resume flip-flop, and the latter allows 
the program to correct the situation in which the hang-up exists. 

2.1.3 FORCED TRANSFERS (OVERRIDE) 

The computer has the ability, under program control, to force the transfer of 
a word from an external function buffer or output buffer regardless of the 
state of the request line on that channel. Peripheral devices should have the 
ability to accept such forced transmissions, realizing that loss of data or 
even loss of a previous external function word is unimportant under conditions 
when this option is used. Instructions 50 26 and 50 27 are the override 
instructions used to accomplish forced transfers. 

I-C-7 



Computer 
Output 

Channel 

I 
I 

Ready (ODA) 1-- Input Oat 
I Request 

a 

a Resume (ODR)L- Input Dat 
I Acknowled 

I 
External External 
Function I Interrupt 
Acknowledge I 
External I 
Function -----i 
Request I 

I 
~---l8 or 36 Information Lin 

I 
I 

ge 

es 

.. -
--.... 

Computer .. - Input 
Channel 

... -

. Figure I ... C-2. Intercomputer Communication 

An override instruction on an intercomputer channel will not be executed until 
a resume (acknowledge) is received from the receiving computer (until a resume 
flip-flop is set) unless a set resume instruction precedes the override instruc­
tion in the program. Any delay, therefore, in an acknowledge from the recei ving 
computer will hold up the program since the program will not proceed until the 
override instruction has been executed, which will not occur until the resume 
flip-flop has been set. 

2.2 INTERRUPTS 

The computer design incorporates a means of interrupting program operation when 
certain events occur. Events which cause program interruption are called inter­
rupt conditions and the signals generated to cause the interruptions are called 
interrupts. When an interrupt condition occurs in the computer, the resulting 
interrupt is called an internal interrupt. When an interrupt condition occurs 
in an external equipment and is transmitted over an I/O channel, the resulting 
interrupt is called an external interrupt. 

When an interrupt occurs, a flip-flop associated with that particular interrupt 
is set. The flip-flop is cheeked during the I/O priority sean and the 
interrupt is honored according to a fixed priority sequence. When the interrupt 
is honored, program control is transferred to a memory location assigned to that 
interrupt. Memory locations used for this purpose are called interrupt entrance 
addresses and are identified in Table I-A-I. Programmers must anticipate the 
occurrence of interrupts and preset the interrupt entrance addresses with in­
structions which will either provide for interrupt processing or return control 
to the interrupted program. The instruction normally set in the interrupt en­
trance address is the Indirect Return Jump instruction. This instruction stores 
the address of tne next instruction in the interrupted program at some memory 
location (CAT) and transfers program control to that location plus one (CAT+I). 

I-C-8 



The location (CAT) is specified by the contents of the address in the lower 12 
bits of the instruction. By using this method the programmer may load an 
interrupt processing routine at CAT+l and terminate this routine with an in­
direct jump on CAT to return program control to the interrupted program. Most 
interrupts are optional in the sense that they can be disabled or locked out. 
This is accomplished when a set interrupt lockout (SIL) instruction is executed. 
The SIL instruc'tion locks out all interrupts except fault interrupts. A set 
external interrupt lockout (SXL) instruction is also provided. This instruction 
locks out only external interrupts. Two corresponding instructions (RIL and RXL) 
are provided to remove these interrupt lockout conditions. A lockout condition 
prevents the transfer of program control; however, it does not inhibit the 
occurrence of the interrupt or the setting of, the interrupt flip-flop. There­
fore, after a lockout condition is removed, interrupts which occurred but were 
not honored during the lockout are honored according to the priority sequence. 
If two interrupts of the same type occur during a lockout, the second is ignored. 
Interrupts can be classified as channel interrupts and special interrupts. 
Channel interrupts are associateq with a particular I/O channel. They are 
either external interrupts received on the input cable of an I/O channel or 
buffer monitor interrupts generated internally by the I/O section of the com­
puterg Special interrupts are not associated with any particular channel. 
They provide special-purpose interrupt capability. 

2.2.1 CHANNEL INTERRUPTS 

1) External Interrupts. 

External interrupts originate in equipment outside of the computer and 
are transmitted to the computer through an I/O channel. Normally an 
interrupt code is associated with an external interrupt. This code can 
be used by the computer program to interpret the meaning of the interrupt. 
The external equipment places the interrupt code on the input data lines 
and sets the external interrupt request line. During the I/O priority 
scan, the computer senses the external interrupt request, stores the 
interrupt code at the external interrupt entrance address plus one, and 
transfers program control to the external interrupt entrance address. 

2) Buffer Monitor Interrupts. 

Input data, output data, and external function buffers can be originated 
with or without monitor. When a buffer is initiated with monitor, an 
interrupt is generated when the buffer terminates. The interrupt, which 
is generated internally by the I/O section of the computer, transfers 
program control to the interrupt entrance address for that channel and 
buffer type. 

2.2.2 SPECIAL INTERRUPTS 

1) Fault Interrupts. 

Fault interrupts indicate program faults. A fault interrupt is generated 
when an instruction with an illegal function code is encountered in the 
program. Illegal function codes are 00, 01, 77, 5000. 5001, and 5077. 

I-C-9 



2) Synchronizing Interrupt. 

The computer is provided with one synchronizing interrupt line. This 
line may be connected to any external equipment. The external equipment 
places an interrupt signal on the line when a specific interrupt condition 
exists. No interrupt code is received at the time of the interrupt. If 
amplifying data is required, the interrupt processing routine must initiate 
an input buffer to accept the data. The synchronizing interrupt has higher 
priority than an external interrupt or any buffer monitor interrupt. The 
synchronizing interrupt is not locked out by a Set External Interrupt 
Lockout (SXL) instruction. 

3. INPUT/OUTPUT PRIORITY 

The computer normally performs an I/O priority scan during each of the major 
control sequences (I,B,R,W) required in the execution of an instruction. In 
addition, those instructions which employ a shift sequence (except scale factor 
shift) also initiate a scan during the la~t shift. The I/O scan examines all 
pending I/O operations and establishes priority in two steps. 

1) The I/O scan first sets function priority for each pending I/O request 
and determines which has highest priority according to the function 
priority list (refer to Table I-C-2). Lower numbered functions have 
higher priority. 

2) I/O scan then examines all channels on which the highest priority func­
tion is requested and sets the channel translator for the highest numbered 
channel requesting the function. 

Priority is therefore first established according to function and then according 
to channel number. Since the synchronizing interrupt is not channel dependent, 
no channel priority determination is required for that function. Function 
priority for all interrupts except the synchronizing interrupt is disregarded 
if the interrupts are currently locked out. 

TABLE I-C-2. I/O FUNCTION PRIORITY 

Priority Function 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Synchronizing Interrupt 
Override Instruction 
External Function Request 
Output Data Request 
Input Data Request 
External Interrupt 
External Function Monitor Interrupt 
Output Monitor Interrupt 
Input Monitor Interrupt 

I-C-IO 



Priority of output type functions (external function and output data requests) 
alternates with priority of input type functions (input data and external 
interrupt) such that after an output type request has been honored, higher 
priority is granted to input type requests and vice versa. 

The priority for fault interrupts is not shown in Table I-C-2 because the 
fault interrupt is not an I/O function. Priority for a fault interrupt is 
higher than any I/O function. 

4. OPERATING MODES 

The computer is capable of operating in a number of I/O modes which provide 
versatility in communications with external equipment. Three communication modes 
may be selected by switch setting on the computer control panel. These modes 
are single-channel, dual-channel, and externally specified indexing (ESI). 

401 SINGLE CHANNEL MODE 

In single channel mode the computer communicates with external equipment over 
one input/output channelo Normally both the input cable and the output cable 
are used to form a closed loop transmission path; however, in some cases the 
external equipment is not capable of two way communications. Except for ex­
ternal interrupt transfers all communications are accomplished in a buffer mode. 
Buffers are initiated by the computer program and carried to completion by the 
I/O section of the computer. External interrupt transfers are initiated by the 
external equipment. In single-channel mode the external equipment may be another 
computer or a peripheral equipment. Single-channel communication with a peri­
pheral equipment is described in the following paragraphs. Intercomputer commu­
nication is carried out in the same manner except for the differences described 
under paragraph 2.1.2, Intercomputer Operation. 

To accomplish communication between the computer and a peripheral equipment, the 
specific command and data transfers must be programmed in logical order. Prior 
to initiating an input or output data transfer the computer program must first 
initiate an external function buffer to prepare the peripheral equipment for 
the operation to be performed. The program then initiates the data transfer. 
After the data has been transferred the peripheral equipment may send an ex­
ternal interrupt to inform the computer of the status of the operation. The 
occurrence of the external interrupt transfer is dependent entirely upon the 
peripheral equipment. Some peripheral equipment always sends an external 
interrupt after completing (or attempting) an operation; others never send an 
external interrupt. In coding a program to direct an input/output operation 
the programmer must know whether or not an external interrupt will be received 
and code the program accordingly. For example, if a program is to direct the 
transfer of data from computer memory to magnetic tape, the program must first 
send the necessary external functions to command the tape unit to write data on 
tape in some desired format. The program must then initiate an output data 
transfer to move the data from memory to the magnetic tape unit. When the data 
has been transferred, or when an error is encountered, the magnetic tape unit 
sends an external interrupt indicating the status of the operation. The pro­
gram may then interpret the status information and proceed based on the status 
of the last operation. 

I-C-ll 



The following examp"le illustrates the roles of the program and the I/O section 
in transferring a 3-word external function buffer to a peripheral equipment. 
Assume that the equipment is connected to channel 02 and that the external 
function words are stored in memory at addresses 10000, 10001, and 10002. 
The program must first activate channel 02 and define the buffer limits. The 
coding required is as follows: 

Address n-l - previous instruction. 
Address n - 501302 (I/O instruction). 
Address n+l - 010003 (buffer terminal address). 
Address n+2 - 010000 (buffer initial address). 
Address n+3 - Next instruction. 

When the computer executes the I/O instruction 501302, channel 02 is activated 
and the buffer limits are transferred from addresses n+l and n+2 to the external 
function buffer control words for channel 02 (addresses 000024 and 000025). 
(Note that the buffer terminal address is specified as one greater than the 
address of the last buffer word.) The I/O section then assumes control of the 
operation and the program proceeds to the instruction located at address n+3. 
From this point on, the transfer is accomplished by request and acknowledge 
signals under control of the I/O section. The peripheral equipment sends exter­
nal function requests and the computer sends external function acknowledges after 
placing the external function words on the data lines. The number of words 
transferred is controlled by the buffer control words. The sequence of actions 
for the 3-word buffer is shown below: 

I/O Action State of Buffer Control Words 

Honor EF request 
Read and compare control words 
Increment (000025) by one 
Set first word, (010000), on data lines 
Set EF acknowledge line 
Honor EF request 
Read and compare control words 
Increment (000025) by one 
Set second word, (010001), on data lines 
Set EF acknowledge line 
Honor EF request 
Read and compare control words 
Increment (000025) by one 
Set third word, (010002), on data lines 
Set EF acknowledge line 
Honor EF request 
Read and compare control words 
Clear active flip-flop for channel 02 
Terminate buffer 

(000024) = 010003 
(000025) = 010000 
010001---. 000025 

(000024) = 010003 
(000025) = 010001 
o i 0002 ----+ 000025 

(000024) = 010003 
(000025) = 010002 
010003 --+ 000025 

(000024) = 010003 
(000025) = 010003 

Note that the active flip-flop is cleared and the buffer is terminated immed­
iately after the buffer control words are found to be equal. After termination. 
the current address control word (000025) is equal to the terminal address con­
trol word (000024). This I/O sequence is used for external function transfers 
and for output data transfers. Input data transfers are executed in a slightly 

I-C-12 



different manner. The differences are illustrated by the example shown below 
for a 3-word input transfer on channel 02. Assume that the same memory area 
(addresses 10000, 10001, and 10002) is to be used for buffer storage. The 
input buffer control word locations for channel 02 are 00064 and 00065. The 
coding required to initiate the input buffer is as follows: 

Address n-l - previous instruction. 
Address n - 501102 (I/O instruction). 
Address n+l - 010002 (buffer terminal address). 
Address n+l - 010000 (buffer initial address). 
Address n+3 - Next instruction. 

When the computer executes the I/O instruction 501102, channel 02 is activated 
and the buffer limits are transferred "from addresses n+l and n+2 to the input 
buffer control word locations for channel 02 (addresses 00064 and 00065). (Note 
that in this case the buffer terminal address is specified as the address of 
the last buffer wordo) The I/O section then assumes control of the input oper­
ation and the program proceeds to the instruction located at address n+3. The 
manner in which the I/O section executes the input buffer is illustrated by the 
sequence of actions shown below. 

I/O Action State of Buffer Control Words 

Honor 10 request 
Read and compare control words 
Increment (000065) by one 
Set first word, (010000), on data lines 
Set 10 acknowledge line 
Honor 10 request 
Read and compare control words 
Increment (000065) by one 
Set second word, (010001), on data lines 
Set 10 acknowledge line 
Honor 10 request 
Read and compare control words 
Clear active flip-flop for channel 02 
Increment (000065) by one 
Set third word, (010002), on data lines 
Set 10 acknowledge line 
Terminate buffer 

Note that the differences are as follows: 

(000064) = 010002 
(000065) = 010000 
010001 --+ 000065 

(000064) = 010002 
(000065) = 010001 
010002 ----.000065 

(000064) = 010002 
(000065) = 010002 

010003 ---+ 000065 

(000064) = 010002 
(000065) = 010003 

1) The terminal address control word must initially be equal to the address of 
the last buffer word rather than one greater than the address of the last 
buffer word (one less for decrementing buffer). 

2) The active flip-flop is cleared immediately after equality of buffer con­
trol words but the sequence continues in order to complete the transfer 
of the last buffer word. 

3) After termination the current address control word is one greater than the 
terminal address control word (one less for decrementing buffer). 

T ,.. , .... 
.l-v-.l0 



In the examples given above the words at addresses n+l and n+2 must always 
contain the buffer limits in the lower 15 bits. However, the uppermost two 
bits of these words may also contain information used to define two program­
selectable options. The bits used and the options designated by them are given 
below: 

1) Bit 17. 

This bit is used to designate buffer direction. When this bit is not 
set, a forward buffer is executed; that is, the first word transferred 
is taken from (or stored in) the lower of the two buffer limits, and this 
lower limit is incremented each time a word is transferred. When this 
bit is set to 1, a backward buffer Is executed; that is, the first word 
transferred is taken from (or stored in) the higher of two buffer limits, 
and this higher limit is decremented each time a word is transferred. 
Note that the address in the initial address buffer control word (n+2) 
must always be the address of the first word to be transferred regardless 
of buffer direction. Buffer direction is optional for all three types of 
buffeTs. 

2) Bit 16. 

When this bit is set to 1, a buffer monitor interrupt is generated when 
the buffer terminates. All three types of buffers can be initiated either 
with or without monitor. 

Since the compare circuits compare all 18 bits of the control words, the upper 
two bits must be set to the same state in both control words. 

4.2 DUAL CHANNEL MODE 

Dual channel mode combines two adjacent I/O channels (00 and 01 or 02 and 03, 
and so forth) into one 36-bit I/O channel. Dual channel mode is available only 
on computers with eight channels. Selection of channels for dual channel mode 
does not affect the mode of operation on other channels. The channels selected 
for dual-channel operation must be of the same type; that is, both -3 volt inter­
face and both -15 volt interface. 

Dual channel operation combines both the input and output cables of the two 
channels. Data is transferred in 36-bit parallel mode; however, the I/O section 
of the computer handles the data as two l8-bit words. The request and acknow­
ledge signals which control the transfer of data are transmitted over the odd 
numbered channel. Therefore, the odd numbered channel must be used by the 
programmer to activate the channels and initiate buffer operations. If a pair 
of channels are in dual channel mode and a request is detected on a request 
line of an even numbered channel, the computer interprets the request as a 
desire to communicate in single channel mode. The computer then replies on the 
even numbered channel. In this case the computer accepts input as one 18-bit 
word on the even channel and sends output as two identical 18-bit words on 
the even and odd channels. 

I-C-l4 



In dual channel mode the current buffer control word, used to count the number 
of words transferred, is incremented or decremented twice for each 36-bit 
transmission; however, the control words are compared only once for each 36-bit 
transmission. Since buffer termination occurs only after the addresses in the 
two control words are found to be equal, the buffer limits must be both 
odd or both even when the buffer is initiated. During dual channel buffer 
operations, two buffer locations are filled or emptied as a result of each 
36-bit word transfer. Therefore, a buffer of six memory words is sent or 
received during three 36-bit word transfers. 

The example below illustrates the required programmed instructions and the I/O 
actions which occur when the computer receives a 6-word input buffer in dual 
channel mode. Assume that the equipment is connected to channels 02 and 03 and 
that the words are to be stored at lo'cations 003000 through 003005. The coding 
required to initiate the buffer is as follows: 

Address n-l - previous instruction. 
Address n - 501103 (I/O instruction). 
Address n+l - 003004 (terminal address). 
Address n+2 - 003000 (initial address). 
Address n+3 - next instruction. 

When the computer executes the I/O instruction (501103), channels 02 and 03 are 
activated and the buffer limits are transferred from addresses n+l and n+2 to 
the input buffer control words for channel 03 (addresses 00066 and 00067). The 
program then proceeds to the instruction at n+3 and the I/O section assumes 
control of the I/O operation on channel 3. 

The sequence of the I/O actions is shown below: 

I/O Action 

Honor 10 request 
Read and compare control words 
Increment (00067) by 1 
Accept and store data from channel 02 
(18 bits) at 003000 
Increment (00067) by 1 
Accept and store data from channel 03 
(18 bits) at 003001 
Set ID acknowledge 
Honor 10 request 
Read and compare control words 
Increment (00067) by 1 
Accept and store data from channel 02 
(18 bits) at 003002 
Increment (00067) by 1 
Accept and store data from channel 03 
(18 bits) at 003003 
Set 10 acknowledge 
Honor 10 request 
Read and compare control words 
Clear active flip-flop for channel 03 

State of Buffer Control Words 

(00066) = 003004 
(00067) = 003000 
003001 --+ 00067 

003002 ---.00067 

(00066) = 003004 
(00067) = 003002 
003003 --+ 00067 

003004 --+ 00067 

(00066) = 003004 
(00067) = 003004 

I-C-15 



1/0 Action State of Buffer Control Words 

Increment (00067) by 1 
Accept and store data from channel 02 
(18 bits) at 003004 
Increment (00067) by 1 
Accept and store data from channel 03 
(18 bits) at 003005 
Set ID acknowledge 
Terminate buffer 

003005 ---. 00067 

003006 ---. 00067 

(00066) = 003004 
(00067) = 003006 

The same two program-selectable options of buffer direction and monitor inter­
rupt used in single-channel mode may also be used in dual-channel mode. 

In the example above, note that the buffer terminal address as specified in 
word n+l is the address of the second to the last word of the buffer. This is 
required because the last two words of the buffer are transferred after the 
check indicates that the buffer is to be terminated. If this buffer was to 
be initiated asa backward buffer, the initial address would be specified as 
003005 and the terminal address wo~ld be specified as 003001, and addresses 
003005 through 003000 would be filled in descending order. 

The buffer limits required to initiate an external function or output data 
buffer in dual-channel mode are the same as those required for single-channel 
mode; that is, the initial address must specify the address of the first 
buffer word and the buffer terminal address must be one greater than the 
address of the last buffer word (one less for decrementIng buffer). As in 
single-channel mode, output type buffers are terminated i~~ediately after 
equality of buffer control words causes clearing of the active flip-flop. After 
termination, the buffer control words are equal. For example, to transfer six 
words, stored in addresses 03000 through 03005, as a forward output data buffer 
without monitor, words n+l and n+2 must initially be set to 003006 and 003000 
and after termination the control words are both set to 003006. If the seme 
buffer is to be transferred as a backward output data buffer with monitor, 
words n+l and n+2 must initially be set to 603005 and 602777 and after termin­
ation the control words are both set to 602777. 

~.3 EXTERNALLY SPECIFIED INDEXING (ESI) MODE 

ESI mode combines adjacent I/O channels into one 36-bit channel. Selection of 
two channels for ESI mode does not affect the mode of operation on the other 
channels. The channels selected for ESI mode must be of the same type; that 
is, both -3 volt interface or both -15 volt interface. ESI mode is availahle 
only on computers with eight I/O channels. 

The ESI mode allows the external equipment to specify the first address o:lny 
pair of control memory locations which are used, instead of the normal buffer 
control words, to control the I/O operation. The program must establjsh buffer 
limits in these control memory locations before initiating an ESI operation. 
To initiate the operation the program need only activate the odd channel with ~n 
I/O buffer instruction (50llXX for input, 50l2XX for output.) However, because 
of the manner in which these instructions are executed, the buffer initiatlng 
instruction must be followed by dummy buffer limits. These limits may be zero 
or any constant value required by other portions of the program. They are 

I-C-16 



required only because the computer always stores the words from n+l and n+2 
and proceeds to n+3 after executing a buffer initiating instruction at address 
n. The sequence of events which occurs during an output buffer transfer in ESI 
mode is as follows: 

1) Computer program activates the output on the odd numbered channel and 
stores the dummy buffer limits from program addresses n+l and n+2 in the 
normal output buffer control word locations for the odd numbered channel. 

2) External equipment sets a IS-bit even-numbered, index address, I, on odd 
channel input cable (the address may be anywhere in main memory). 

3) External equipment sets the output data request line on the odd channel. 

4) When the computer honors the request, the words at addresses I and 1+1 
are used as buffer control words. 

5) After checking control words and incrementing (1+1), the computer sets 
the output word on both output channels. 

6) Computer sets the output acknowledge line on the odd channel. 

7) Steps 2) through 6) are repeated for each word of the buffer; when the 
contents of I and 1+1 are equal during the equality check the buffer is 
terminated in the same manner as a single-channel buffer. 

The sequence of events for input is similar. All input control signals are set 
on the odd channel as is the index address, I. However, the peripheral equip­
ment places the input word (18 bits) on the data lines of the even channel 
before setting the input request on the odd channel. When it is accepted by 
the computer,. the input word is stored at the address designated by the lower 
15 bits of 1+1. 

After the index address, I, is specified by the external equipment, the two 
words stored in memory at I and 1+1 are treated as normal buffer control words. 
The three program-selectable options of buffer direction and monitor interrupt, 
used in single-channel mode, are available in ESI mode. When an ESI buffer with 
monitor interrupt is terminated, the index address, I, is automatically stored 
in the appropriate monitor interrupt status word (monitor interrupt entrance 
address +1 for the odd channel). 

If the external equipment raises a request on the even-numbered channel, the 
computer interprets the request as a desire to communicate in single-channel 
mode. The computer ignores the index address which may appear on the odd­
numbered channel and communicates with the external equipment in single­
channel mode over the even-numbered channel. Output data is set on both chan­
nels; however, this does not interfere with single-channel communication. 

Except for the fact that the index address is stored when a buffer with monitor 
is terminated, ESI buffers terminate in the same manner as single-channel buffers. 
Therefore, the same differences between input type buffers and output type buf­
fers described for single-channel mode apply to ESI buffers. 

I-C-17 



SECTION II. PERIPHERAL EQUIPMENT 

The computer may be connected to a variety of military or commercial peripheral 
equipments. These include: 

1) Paper tape reader-punch units. 
2) Magnetic tape systems. 
3) High speed printer units. 
4) Card reader-punch units. 
5) Teletype printer units. 
6) Display and display interface units. 
7) Radars and radar adapter units. 
8) Manual entry devices. 

To program the communications between the computer and any of these peripheral 
equipments, the programmer must be familiar with the functional characteristics 
of the peripheral equipment as well as those of the computer. It is impracti­
cal to describe in this document, the functional characteristics of all 
possible peripheral equipments which could be connected to the computer. There­
fore, the following subsections describe only those equipments which are most 
commonly used with the computer. 

11-1 



H 
H 
I 
~ 
I 

1\:1 

Figure II-A-l. UNIVAC<B)1232A I / O Console 



SECTION II-A. UNIVAC 1232 INPUT/OUTPUT CONSOLE 

1. BASIC INFORMATION 

The UNIVAC(])1232 I/O Console (Figure II-A-l ) has a paper tape punch and 
reader as standard equipment, with a keyboard and printer as an option. Input 
and output devices communicate with the computer through a single I/O channel. 
See Figure II-A-2. 

1.1 ON-LINE OPERATION 

In the on-line operation the I/O console provides means for entering data into 
the computer by punched tape or an alphanumeric keyboard. It provides means 
for recording output data from the computer by either punching tape or print­
ing on paper media or both simultaneously. 

1.2 OFF-LINE OPERATION 

In the off-line operation the I/O console provides means to: 

1) Print on paper media by keyboard entry. 
2) Perforate tape by keyboard entry. 
3) Perforate tape and print on paper media simultaneously by keyboard entry. 
4) Print on paper media from a perforated tape. 
5) Perforate tape from a perforated tape. 
6) Perforate tape and print on paper media simultaneously from a perforated 

tape. 

INPL~/OL~PL~ CONTROL 

The I/O sequences are manually enabled from the control panel or automatically 
enabled by the computer program. 

2.1 COMPUTER CONTROL 

The computer controls the I/O console through the external-function word, as 
specified in Figure II-A-3, as follows: 

1) Bits 0, I, and 2 control the output devices. A one in bit ° allows the 
status of the printer (bit 1) and perforator (bit 2) to be controlled 
by the information in bits 1 and 2. A zero in bit ° causes bits 1 and 2 
to be ignored and the status of the output devices to remain unchanged. 
With a one in bit 0, a one in bit 1 enables the printer and a zero in bit 
1 disables the printer, and a one in bit 2 enables the perforator and 
a zero in bit 2 disables the perforator. 

2) Bits 3, 4, 5, and 6 control the input devices. A one in bit 3 allows 
the status of the keyboard (bit 4) and reader (bits 5 and 6) to be 
controlled by the information in bits 1, 5, and 6. 

3) A zero in bit 3 causes bits 4, 5, and 6 to be ignored and the status of 
the input devices remain unchanged. With a one in bit 3; a one in bit 4 

II-A-l 



r 

Output Cable 
A , I . ~ .~ ~~ 

Q) 
~ 

"0 
Q) 

-+oJ ~ 
en ~ Q) Q) 
Q) 0 -+oJ ~ -+oJ ~ ,... = s:: en "0 en "0 

Q) 0" ..lI:I Q) Q) Q) Q) 

-+oJ Q) 0 = ~ ~ 
~ 

= c:: « 0" ~ ~ 
Q.. Q) Q Q) Q 

E c c c:: = c:: = 0 0 0 ~ ~ 
u .~ .""" C'CS C) C'CS C) 

-+oJ -+oJ -+oJ « -+oJ « 
E C) C) C'CS CtS 
0 = C Q C'CS Q C'CS ,... = = -+oJ ~ 

~ ~ ~ -+oJ C'CS -+oJ C'CS 

5- Q = Q 
C'CS ~ ~ § 

-+oJ C'CS C'CS -+oJ -+oJ -+oJ 
C'CS C = = = ~ = Q ,... ,... 0 Q.. Q.. 

Q) Q) -+oJ = -+oJ -+oJ = ~ 

>< >< 0 
~ ~ 

Control 
---- ---------- 1-- - - - --,. ~ . 

" " Amplifiers -

" 

and Gates -

Function 
Register 

Output Register 

Control 
Circuitry 

.. -

--

Input Cable 
A , 

.~ .~ 

,.. 
Q) 

~ 
-+oJ 

= = Q.. ,... e ,... 0 
Q) u 
-+oJ 
c 0 
~ E-t 

C'CS 
-+oJ 
C'CS 

Q 

- ------ --- - ---1 
I 

Drivers I 
I 

.~ I 
I 
I 

Input Register 

.~ .~ L _________ ~ ______ _ 
---------------------~ Output 

Devices 
i - -~.-- - - -';---1 
I Tape I 
I Pr inter Perfor- I 
I ator, 
~ __ ~~ ____ ~~ __ J 

Input 
Devices 
r-----------, 
I I 
I Key- Tape I 
I board Reader I 
I I 
L ___ ·~ ____ ~~ ___ J 

I I 

Figure II-A-2. Block Diagram of Console 

lI-A-3 



29 

Not used 

7 6 5 4 3 2 1 o I 

0= 

l=E 
~ 

0= Disabl 

1 = Enable 
-

0= Di sable pu 

1 = Enable pun 
-

0= Di sable i npu 

1 = Enable input 
ioo.---

0= Disable keyboard 

1 = Enable keyboard 
~ 

0= Di sable reader 

1 = Enable reader 

o = St op readi ng operation if i 

1= Start reading operation if 

Disable output 

nab1e out put 

e printer 

printer 

nch 

ch 

t 

S = 0 

is = 1 

Figure II-A-3. 1232 I/O Console, External Function Word 

II-A-4 



enables the keyboard and ~ zero in bit 4 disables the keyboard, a one in 
bit 5 enables the reader and a zero in bit 5 disables the reader, and a 
one in bits 5 and 6 starts the reading operation and a zero in bits 5 
or 6 stops the reading operation. 

The status of the I/O console is determined by the latest external-function word. 

2.2 PANEL CONTROL 

The computer external-function words are manually duplicated by the operation 
of the control panel switches specified in Table II-A-l. 

TABLE II-A-l. MANUAL-AUTOMATIC CONTROLS 

Unites) 
Controlled 

Out put Devices 
Printer 
Perforator 

Input Devices 
Keyboard 
Reader 
Reader 

External-Function 
Word Bit 

o 
1 
2 

3 
4 
5 
6 

3. OPERATION OF UNITS 

3.1 PERFORATED. TAPE READER 

Control Panel Switches 
Set Clear 

None 
Print 
Punch 

None 
Keyboard 
Read 
Start-Read 

None 
Print Clear 
Punch Clear 

None 
Keyboard Clear 
Read Clear 
Start-Read Clear 

The perforated tape reader is adjustable to read chad-type tape with 5, 6, 7, 
or 8 channels and widths of 11/16 inch, 7/8 inch, or 1 inch. The reader reads 
tape at a rate of 300 frames per second. The tape is transported through the 
reader by an electric motor drive with a pinch r.oller and a brake. The 
following sequence is typical: 

1) The reader is enabled and the motor,attains operating speed. 

2) Tape is placed in the reader and the start read indicator-switch is 
operated. 

3) If a sprocket hole of the tape is positioned over the sensor, no advance­
ment of the tape shall occur; if the tape is positioned so that the 
sensor is between sprocket holes, the clutch shall be engaged and the 
tape will be advanced. 

4) The next sprocket hole that reaches the sensor actuates the brake and 
t he tape stops. 

5) The signal caused by the data holes in each frame sets the corresponding 
input lines through the action of the input. register. 

II-A-5 



6) The signal caused by the sprocket hole causes the control circuitry to 
set the input-data-request line. 

7) The computer responds with an input-data acknowledge signal, which indi­
cates that the input-data lines have been sampled. The control circuitry 
clears the input-data-request line, clears the input-data lines, and 
engages the clutch to advance the tape. 

Steps 4 through 7 are repeated until operation of the reader is stopped. 

3.2 TAPE PERFORATOR 

The tape perforator perforates chad-type tape. The tape perforator is adjust­
able to perforate 5, 6, 7, or 8 channels on, 11/16 inch, 7/8 inch or 1 inch 
tape. It perforates 10 frames per inch at:a tape speed of 11 inches per 
second. The tape is transported through the perforator by an electric motor 
drive. The fo~lowing sequence is typical. 

1) The perforator is enabled. 

2) The control circuitry sets the output-data-request line. 

3) The computer, in synchronism with internal priorities, detects the out­
put-data-request signal. 

4) The computer places data on the o~tput line. 

5) The computer sets the output-acknowledge line. 

6) The control·circuitry detects the output-acknowledge signal, gates the 
data on the output-data lines to the output register, and clears the 
output-data-request line. 

7) A magnetic head associated with the perforator drive mechanism generates 
a pulse at the appropriate time to gate the output register content to 
the tape perforator. This energizes the perforating mechanism while the 
tape is stopped. 

8) The control circuitry generates a pulse that de-energizes the perforating 
mechanism, clears the output register, and sets the output-data-request 
line. 

Steps 3 through 8 are repeated until perforator operation is stopped. 

II-A-6 



3.3 PRINTER 

The printer prints data, one character at a time, on paper media. The printer 
prints a character corresponding to the field-data code as specified in Table 
II-A-2. The printer can print 10 characters per second. The printout has 10 
characters per inch horizontally, 72 characters per line, and 6 lines per inch 
vertically. The following sequence is typical: 

1) The printer is enabled. 

2) The control circuitry sets the output-data-request line. 

3) The computer, in synchronism with internal priorities, detects the output­
data-request signal. 

4) The computer places data on the output data lines. 

5) The computer sets the output-acknowledge line. 

6) The control circuitry detects the output-acknowledge signal, gates the 
data on the output-data lines to the output register, and clears the 
output-data-request line. 

7) The control circuitry causes the printer to perform the print or control 
function indicated by the data bits in the register. 

8) Upon completion of the print function the control circuitry clears the 
output register and sets tne output-data-request line. 

Steps 3 through 8 are repeated until operation of the printer is stopped. 

3.4 KEYBOARD 

The keyboard, Figure II-A-4, generates the data codes in Table II when corres­
ponding labeled keys are operated. Data entered into the keyboard is simul­
taneously printed by the printer if the printer and the copy mode are enabled. 
The following sequence is typical: 

1) The keyboard is enabled. 

2) When a key is operated, the corresponding input-data lines are set through 
the action of the input register. 

3) The control circuitry sets the input-data-request line. 

4) When the computer responds with an input-data-acknowledge signal, the 
control circuitry clears the input-data-request line and the data lines. 

Steps 2 through 4 are repeated each time a key is depressed until operation of 
the keyboard is stopped. 

II-A-7 



TABLE II-A-2. FIELD DATA CODE 

Signals on Data Lines 
Symbol or 
Function 

Master Space· 

Keyboard 
Symbol 

Upper Case UC 

Lower Case LC 

Line Feed LF 

Carriage Return RETURN 

Space 

A A 
B B 
C C 

D D 

E E 

F F 

G G 

H H 

I I 

JJ 

K K 

L L 

M M 

N N 

o 0 

P P 

Q Q 

R R 

S S 

T T 

U U 

V V 

w w 
x X 

Y Y 

Prin ted 5 
Symbol 2 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 
P 

Q 
R 

S 

T 

U 

V 

w 
X 

Y 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
c 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

*Master space indicates absence of Info~.ation. 

II-A-8 

o 
o 
o 
o 
o 
o 
o 
o 
1 

1 

1 

1 

1 

1 

1 

I 

o 
o 
o 
o 
o 
o 
o 
o 
1 

1 

1 

1 

1 

1 

1 

o 
o 
o 
o 
I 

I 

1 

1 

o 
o 
o 
o 
I 

I 

1 

1 

o 
o 
o 
o 
1 

1 

1 

1 

o 
o 
o 
o 
1 

1 

1 

o 
o 
1 

1 

o 
o 
1 

1 

o 
o 
1 

1 

o 
o 
1 

1 

o 
o 
1 

1 

o 
o 
1 

I 

o 
o 
1 

1 

o 
o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 
1 

o 

Octal 
Code 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 



TABLE II-A-2. FIELD DATA CODE (CONT.) 

Signals on Data Lines 
Symbol or Keyboard Printed 

25 24 2
3 22 21 2

0 Octal 
Function Symbol Symbol Code 

Z Z Z 0 1 1 1 1 1 37 

) 1 0 0 0 0 0 40 

1 0 0 0 0 1 41 

+ + + 1 0 0 0 1 0 42 

< < < 1 0 0 0 1 1 43 

= = = 1 0 0 1 0 0 44 

> > > 1 0 0 1 0 1 45 

1 0 0 1 1 0 46 

$ $ $ 1 0 0 1 1 1 47 

* * * 1 0 1 0 0 0 50 

( ( ( 1 0 1 0 0 1 51 

" " " 1 0 1 0 1 0 52 

1 0 1 0 1 1 53 

? ? ? 1 0 1 1 0 0 54 

I 1 0 1 1 0 1 55 

1 0 1 1 1 0 56 

Stop ~ ~ 1 0 1 1 1 1 57 

0 0 0 1 1 0 0 0 0 60 

1 1 1 1 1 0 0 0 1 61 

2 2 2 1 1 0 0 1 0 62 

3 3 3 1 1 0 0 1 1 63 

4 4 4 1 1 0 1 0 0 64 

5 5 5 1 1 0 1 0 1 65 

6 6 6 1 1 0 1 1 0 66 

7 7 7 1 1 0 1 1 1 67 

8 8 8 1 1 1 0 0 0 70 

q q q 1 1 1 0 0 1 71 

1 1 1 0 1 0 72 

1 1 1 0 1 1 73 

/ / / 1 1 1 1 0 0 74 

1 1 1 1 0 1 75 

Special SPEC Cl 1 1 1 1 1 0 76 

• • 1 1 1 1 1 1 77 Idle I I 

II-A-9 



.... .... 
I 
> 
I ..... 
o 

CDCDCDCDCD@CDCDCDCD®@9 
(f)888800000GG ~ 
~~~~t 8 0 (0 0) 808 CD 8 CD O~ 
~8088G)8000(!)g

I (Space) I

NOTE: Functions shown in parentheses are blank.

Figure II-A-4. Keyboard Layout

3.5 KEYBOARD INTERRUPT

The computer may be interrupted from the keyboard by the following sequence:

1) Keyboard is enabled.

2) Printer and copy mode are enabled if printout of the interrupt code is
desired.

3) The interrupt indicator switch on the control panel has been operated.

4) A keyboard key is operated which sets the corresponding field-data code
on the input-data lines and generates an interrupt to the computer.

5) When the computer responds with an input acknowledge,the interrupt and the
input-data lines will be cleared.

Steps 3 through 5 are repeated for each interrupt code to be sent.

3.6 SWITCHES AND INDICATORS

The switches and indicators of the I/O console operate as follows:

1) Power switch and indicator

The power switch switches the input power on and off. The power indi­
cator lights whenever the power switch is in the on position.

2) On-line off-line switch

In the on-line position the I/O console operates as an I/O device for the
computer as specified herein. In the off-line pOSition the I/O console
operates independently of the computer and performs the off-line func­
tions specified herein.

3) Tape-feed indicator switch

The tape perforator generates blank tape with only the sprOCket holes per­
forated whenever the tape-feed indicator switch is operated.

4) Tape-levels switch

The tape-levels switch disables the perforated-tape-reader levels which
are not selected.

5) Input-data indicator switches

The eight input-data indicator switches display the data stored in the
input register and enable data to be manually entered into the input reg­
ister.

II-A-Il

6) Output-data indicator switches

The eight output-data indicator switches display the data stored in the
output register and enables data to be manually entered into the output
register.

7) Master clear switch

The master clear switch stops operation of all units of the I/O console
and sets all the logic to an initial state.

8) Interrupt indicator switch

The interrupt indicator switch enables the generation of an interrupt to
the computer as specified in Keyboard Interrupt.

9) Read, read-one switch

In the read position the perforated-tape reader will read continuously.
In the read-one position the perforated tape reader will read one frame,
advance to the next frame, and stop. This switch is for off-line opera­
tion only.

10) Start-read in·dicator swi tch

The start-read indicator-switch starts the perforated-tape reading opera­
tion.

11) Copy indicator switch

The copy switch enables the I/O console to reproduce the data being sent
to the computer by anyone of the following methods:

a) Print the data on paper media.
b) Perforate the data on tape.
c) Print the data on paper media and perforate the data on tape simul­

taneously.

12) Copy-clear switch

The copy-clear switch disables the copy mode of operation.

3.7 EXTERNAL FUNCTION MANUAL CONTROLS

The print, punch, keyboard, and read indicator-switches, and the print-clear,
punch-clear, keyboard-clear, and read-clear switches enable and disable their
respective units as specified in the I/O panel control.

II-A-12

SECTION II-B. UNIVAC 1532 INPUT/OUTPUT CONSOLE

1. GENERAL DESCRIPTION

The UNIVAC 1532 I/O console is a ruggedized computer I/O and monitoring device
designed to perform reliably in applications where extreme environmental con­
ditions exist. The cabinet and packaging of components for the console follow
the same design plans found in ruggedized UNIVAC computers and peripherals built
for military applications.

The UNIVAC lS32 I/O console consists of a paper tape punch, paper tape reader,
page printer·, alphanumeric keyboard·, control and computer interface logic,
and power supplies assembled into a compact unit which operates on a single in­
put/output channel. Programs or program modifications on punched paper tape
(S to 8 level) prepared off-line manually or on-line under computer program con­
trol by the punch may be loaded by the reader. Alphanumeric entries to the com­
puter may be made at the keyboard with automatic printout. The page printer is
also useful as a program monitoring device; it provides a running record of
real-time and normal program activities. The lS32 I/O console may be used with
all UNIVAC general-purpose military computers.

1.1 OPERATIONAL CHARACTERISTICS

1.1.1 ON-LINE MODE

In the on-line mode of operation, the console with printer option provides the
following operations:

1) Read paper tape input to the computer (any code).

2) Punch paper tape (any code) from computer output.

3) Print on paper (7-bit ASCII) from computer output.

4) Keyboard input to the computer (7-bit ASCII) with print on paper.

S) Keyboard input to the computer with print on paper and (under program con­
trol) punch paper tape in any code.

6) Read paper tape input to the computer and (under program control) print on
paper.

7) Read paper tape input to the computer and (under program control) punch
paper tape (any code).

8) Read paper tape input to the computer and (under program control) print
on paper and punch paper tape (7-bit ASCII).

9) Computer output to punch paper tape (7-bit ASCII) with print on paper.

*The keyboard and printer are optional items.

11-8-1

1.1.2 OFF-LINE MODE

In the off-line mode of operation, the console with printer option provides the
following operations:

1) Print on paper by keyboard entry.
2) Punch paper tape (7-bit ASCII) and print on paper by keyboard entry.
3) Print on paper from paper tape entry (7-bit ASCII).
4) Punch paper tape from paper tape entry (any code).
5) Punch paper tape and print on paper from paper tape entry (7-bit ASCII).

2. FUNCTIONAL DESCRIPTION

2.1 GENERAL

The I/O console consists of the mechanical assemblies, control and computer in­
terface logic a~d power supplies. The control unit provides the required timing
and control signals for the reader, punch, keyboard, and printer, and a com­
patible interface for communication between the computer and the ancillary de­
vices. Figure 11-8-1 shows the information flow between the ancillary units,
control unit, and computer.

The I/O console may be used as an on-line computer peripheral unit or as an off­
line independent unit. As on on-line device, the output units may function as
operational status monitors, operational data output units, or monitors of con­
sole input information.

In on-line operation, the computer controls the operation of the ancillary units
by use of a computer control function instruction. The control unit, upon sen­
sing the function· instruction, activates the necessary control logic to switch
the console into the proper operating mode. The status of the I/O console is
determined by the latest function instruction.

2.2 PL~CHING OUTPUT DATA

When the computer has established the perforator enable function instruction,
the output request signal is sent to the computer. The computer detects the
output request and in synchronism with internal priorities places data on out­
put lines 20 through 27. The output acknowledge line is set by the computer.
The control circuits in the console detect the output acknowledge signal and
gate the data on lines 20 through 27 to a data storage register. The output
request signal is cleared. A magnetic head associated with the reperforator
drive mechanism generates a pulse which gates the data in the storage register
to the tape perforator. This energizes the perforating mechanism which punches
the code on the tape while it is stopped. The control circuits then move the
tape one character ahead, de-energize the perforating mechanism, clear the data
storage register, and reset the output request signal. The computer continues
the output buffer process until all data has been punched on tape, and then de­
energizes the perforator by establishing a perforator disable function instruc­
tion. This function disables the perforator and clears the output request sig­
nal.

11-8-2

Output Cable Input Cable

" , I A

CIJ Q)
Ol Ol c "'0 "'0

0 CIJ CIJ
+0) ~ ~
CIl ~ CIl 3: CIl 3: +0)
Q) u CIJ 0 CIJ 0 0-:s c :s c :s c :s
C" :s C" .!C C" ~ ~

ctS
Q) t.L.. CIJ U CIJ C) ~

+-l
0:: 0:: .-:t 0:: .-,: Q) ctS

ctS E-4 +-l +-l

~
~ ~ Q Q Q Q c co
t.lJ t.lJ 0 0 H H H 0

Control Circuitry

Data Hegister ... ________ +-______ ~

~----~---------~--~

Figure II-B-l. Block Diagram of I/O Console

2.3 PRINTING OUTPUT DATA

When the computer has established the printer enable function instruction, the
output request signal is sent to the computer. 'The computer detects the output
request and in synchronism with internal priorities places data on output lines
20 through 26. The output acknowledge line IS set by the computer. The control
circuits of the console detect the output acknowledge signal and gate the data
on lines 20 through 26 to a data storage register. The output request signal is
cleared. The control circuits cause the printer to perform the print function
indicated by the data bits in the storage register. The print function associ­
ated with each data code is shown in Table II-B-l. Upon completion of the print
function, the control circuits clear the output register and set the output re­
quest signal. The computer continues the output buffer process until all data
has been printed, and then de-energizes the printer by establishing a printer
disable function instruction. This function disables the printer and clears the
output request signal.

2.4 READING INPUT DATA

The operator places the tape in the reader and initiates computer operation.

11-8-3

TABLE II-B-1. ASCII CODE FOR THE UNIVAC 1532 KEYBOARD-PRINTER

Charac ttr CBde
(Bits 2 -2) Printed
Non-Print Codes Character

Functioning
Keys

Charac t&r Code
(Bi ts 2 - 20) Prin ted
Printed Codes Character

NOTE: CTRL is a key that deletes the 26 bit of seven bit code.

000 0000
000 0001
000 0010
000 0011
000 0100
000 0101
000 0110
000 0111
000 1000
000 1001
000 1010
000 1011
000 1100
000 1101
000 1110
000 1111
001 0000
001 0001
001 0010
001 0011
001 0100
001 0101
001 0110
001 0111
001 1000
001 1001
001 1010
001 1011
001 1100
001 1101
001 1110
001 1111
III 1101
III 1111

Printed Codes

010 0000
010 0001
010 0010
010 0011
010 0100
010 0101
010 0110
010 0111
010 1000
010 1001
010 1010
010 1011
010 1100
010 1101

(space)
1
tt

11:

$
%
&
'(apos.)
(
)

*
+

CTRL & @

CTRL & A
. CTRL & B

CTRL & C
CTRL & EDT
CTRL & WRU
CTRL & RU
CTRL & BELL
CTRL & H
CTRL & I
Line Feed
CTRL & K
CTRL & L
Return
CTRL & N
CTRL & 0
CTRL & P
CTRL & Q
CTRL & Tape On
CTRL & X Off
CTRL & Tape Off
CTRL & U
CTRL & V
CTRL & W
CTRL & X
CTRL & Y
CTRL & Z
CTRL, Shift & K
CTRL, Shift & L
CTRL, Shift & M
CTRL, Shift & t
CTRL, Shift &­
Alt. Mode
Rub Out

Space Bar
Shift & I
Shift & tt

Shift & 11:

Shift & $
Shift & %
Shift & &
Shift & '
Shift & (
Shift &)
Shift & *
Shift & +

11-B-4

010 1110
010 1111
011 0000
all 0001
011 0010
all 0011
all 0100
011 0101
011 0110
all 0111
011 1000
011 1001
011 1010
011 1011
011 1100
all 1101
011 1110
011 1111
100 0000
100 0001
100 0010
100 0011
100 0100
100 0101
100 0110
100 0111
100 1000
100 1001
100 1010
100 1011
100 1100
100 1101
100 1110
100 1111
101 0000
101 0001
101 0010
101 0011
101 0100
101 0101
101 0110
101 0111
101 1000
101 1001
101 1010
101 1011
101 1100
101 1101
101 1110
101 1111

.
/
o
1
2
3
4
5
6
7
8
9

<
=
>
?
@

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z
[

/
]

t

Functioning
Keys

.
/
o
1
2
3
4
5
6
7
8
9

,
Shift & <
Shift & =
Shift & >
Shift & ?
Shift & @

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z
Shift & K
Shift & L
Shift & M
Shift & t
Shift &-

The computer starts the reader motor by establishing the start read function
instruction. The tape control positions the tape in the next sprocket hole and
activates the brake which stops the tase. The sensor senses the data on the
tape and set~ the corresponding bits 2 through 27 on the input data lines. The
control circuits set the input request signal. The computer senses the input
request and in synchronism with internal priorities stores the data on the in­
put lines in a memory location. The computer sets the input acknowledge signal.
The console clears the input lines and input request signal upon sensing the in­
put acknowledge signal from the computer. The control circuits engage the
'clutch on the reader, advance the tape to the next frame, sense the data bits
20 through 27 , and set the input request signal. The computer continues the
input buffer process until all data has been read and de-energizes the reader
by establishing a reader disable function instruction. This function disables
the reader and clears the input request signal.

2.5 KEY80ARD INPUT

When the computer has established the keyboard enable function instruction, the
keyboard - printer is prepared for operation. The operator has the choice of
either interrupt or request character transmission.

The operator selects request transmission by depressing the key on the keyboard
for the character required for transmission. The layout of the keyboard is shown
in Figure 11-8-2. When a key is depressed, the code corresponding to that key
is set on input lines 20 through 26 and the corresponding character is printed.
The codes corresponding to the various keys on the keyboard are shown in Table
11-8-1. The control circuits set the input request signal. The computer detects
the input request and in synchronism with internal priorities stores the data on
the input lines in a memory location. The computer sets the input acknowledge
signal. The console control circuits clear the data lines and input request sig­
nal. The operator repe a ts the processes by setting consecutive keys until the
entire message is transmitted.

The operator selects interrupt transmission by depressing the interrupt indica­
tor-switch on the control console and then depresses the key on the keyboard

Figure 11-8-2. Keybo~rd Layout

II-B-5

for the character required for transmission. When the key is operated, the code
corresponding to the key depressed is set on the input lines 20 through 26 and
the corresponding character is printed. The control circuits set the internal
signal. The computer senses the interrupt and in synchronism with internal
priorities stores the data on the input lines in a memory location assigned to
that interrupt channel. The computer sets the input acknowledge signal. The
console control circuits clear the interrupt signal and input data lines. The
operator repeats the process by setting the interrupt indicator-switch and a
keyboard key until the entire message is transmitted.

2.6 FUNCTION INSTRUCTIONS

The function instructions provide the computer, through the computer program,
with a means for maintaining control of the I/O console. The function instruc­
tion words are seven-bit, position-encoded words. An illustration of the en­
coding is shown in Figure II-B-3.

I I
L-Output Control Enable

Printer Enable

Perforator Enable

Input Control Enable

Keyboard Enable

Reader Enable

Start Read
Not Used

Figure II-B-3. Function Instruction Encoding

3. PROG~~MMING CONSIDF~~TIONS

3.1 GENERAL

The I/O console is manually placed in the on-line condition when the operator
sets the on-line/off-line toggle switch on the console. When it is in the on­
line condition, programmed references may begin.

For any operation requested of an output device of the UNIVAC 1532, the output
control enable (bit 20) must be set along with the device selection bit/bits if
it is to perform. To disable operation of an output device, the output control
enable bit must be set and the device selection bit cleared. Similarly, for
operations requesting functions of an input device, the input control enable
(bit 23) must be set along with the device selection bit/bits if the device is
to perform. To start reading by the paper tape photoelectric reader the start
___ ..l Ib:. 'lh\ -··s. L_ ... _... T", ~~"aLl "'pe--+~""- n~ a- .:- + ~e .. .:,.o th •• p ... ;."'.ont
l~ClU \ .1L ,OJ} IIIU L ue 3eL. ~v u~., u~c V J.Gl..A.VII V~ II .A.UP"''' U II.A.'-'\:;, _ ~ .- __

control enable must be set and the device selection bit cleared.

11-8-6

The console does not respond when it is in the off-line condition. Since no
status interrupts are generated by the console when a control function is
attempted in the off-line condition, careful consideration should be given to
the physical operator functions as well as programming restrictions.

3.2 TAPE READING PROCEDURES

To read a data tape, the operator must position the tape on the re~der. The
program procedure for reading a data tape is illustrated in Figure II-B-4. The
computer activates the reader by transmitting the start read mode external
function code to the I/O console. This function word may be transmitted with
force or without force, depending on the type of computer used in the system.

1
Issue Start Read Mode
Code by External
Function Command

Process Character
Read and Establish
One Word Buffer*

3

Issue Reader 4
[)eacti vate Code
by External
Function Command

Establ ish a One Word 2
Input Buffer with
Monitor and Wait for
Internal Interrupt

Repeat Step 3
Unti 1 All
Characters are Read

*No timing problems as
tape reader cycles
with input acknowledge

Figure II-B-4. Sequence of Program Operations for Tape Read

After the command has been received by the console, the computer can establish
the input buffer mode' at its convenience. The reader reads the first frame,
sets the input request, and waits for the input 'acknowledge. The program may
transfer one word into the computer, process this word, and re-establish a
second buffer without considering time since the console holds each character
until the input acknowledge pulse appears.

After the data transmission is complete, the program deactivates the reader by
sending a one in bit position 23 and zeros in bit positions 25 and 26 in an
external function word.

3.3 KEYBOARD INPUT PROCEDURES

Data or control information may be entered from the keyboard-printer in two
different modes.

3.3.1 KEYBOARD-PRINTER ENTRY VIA INTERRUPT

The interrupt mode is enabled by an indicator-switch on the console. When

11-8-7

activated, the next keyed character code is transmitted to the computer with
interrupt.

The internal interrupt routine can store the character code, make the proper
interpretation and transfer to a desired program that performs the required
function or stores the appropriate data word.

3.3.2 KEYBOARD-PRINTER ENTRY VIA COMPUTER COMMANDS

To enter data or control information from the keyboard-print~r, the program
must previously have activated the keyboard by the keyboard-printer enable mode
external function code. The program should establish a one-word input buffer
with monitor on the console input channel. As a key is depressed, the buffer
completes and the internal interrupt alerts the computer. 3The keyboard can be
disabled bI the program by sending a one in bit position 2 and a zero in bit
position 2 in an external function word.

3.4 TAPE PUNCHING PROCEDURES·

To punch a tape, the program must activate the punch by sending the perforator
enable mode external function code to the punch. The program then transmits the
data to be punched to a buffer storage area and establishes the appropriate
length output buffer. The console accepts the data at the convenience of the
punch. When the punching operation is cRmplete, the program can deactivate the
punch by sending a one in bit position ~ and a zero in bit position 22 in an
external function word.

3.5 PRINTER PROCEDURES·

To operate the printer, the program must activate the printer by sending an in­
put disable code and then the printer enable mode external function code to the
printer. The program then transmits the ASCII code data that is to be printed
to a buffer storage area and establishes the appropriate length output buffer.
The console accepts the data at the printer's convenience. When the printing
operation is complete, the program can deactivat.e the printer by sending a one
in bit position 2D and a zero in bit position 21 in an external function word.

3.6 OFF-LINE OPERATIONS

In off-line operation the console unit has the following capabilities:

1) It prints hard copy, or prints hard copy and punches paper tape from the
keyboard.

2) It prints hard copy, punches paper tape, or prints hard copy and punches
paper tape from the paper tape reader.

3) It reproduces and permits correcting paper tape, if tape is punched in
ASCII code.

*No timing considerations need be made in the program since the peripheral unit
cycles with the output acknowledge.

11-8-8

SECTION II-C. MAGNETIC TAPE SYSTEM (TYPE l240A)

1. BASIC INFORMATION

The type l240A Magnetic Tape System provides a large capacity, medium-speed
auxiliary storage area.

The system employs various format selections. They include recording and read­
ing in four moduli, two character types, odd and even parity, and low and high
density. In order to provide compatibility with the high-speed printer, the
mod 5 format is used with a programmed fixed block length of 128 lines or tape
frames to each block of information. One block contains 24 computer words.
Mod 6 format is used for compatibility'with some non UNIVAC systems. The den­
sity selection allows the l240A tape unit to read or write at 200 frames per
inch for low density and at 556 frames per inch for high density. The reading
and writing operation is performed at a tape speed of 112.5 inches per second,
and the rewind operation is done at a tape speed of 225 inches per second. The
block length may vary between 24 computer words and total computer memory. The
recording of 1240 tape sY3tem is the non-return to zero (change-on-one) tech­
nique.

The basic l240A Magnetic Tape System cabinet (Figure II-C-l) consists of three
sections:

1) Magnetic tape control.
2) One tape transport control.
3) Four tape transports.

Auxiliary tape transport controls and tape transports may be added to the system
(up to sixteen transports and four tape transport controls, Figure II-C-2).

The magnetic tape control enables the magnetic tape system to communicate with
the computer by performing the interface digital-to-digital conversion and per­
forming the logical operations of selecting tape function and tape transport.
The tape transport control receives signals from magnetic tape control and per­
forms the logic necessary to control either two or four tape transports. Only
one magnetic tape control is necessary in a system and one tape transport con­
trol is necessary for each cabinet of transports. Figure II-C-2 shows the
l240A interface of system with sixteen transports, four tape transport controls,
and one magnetic tape control.

2. INPUT/OUTPUT SEQUENCE FOR l240A MAGNETIC TAPE SYSTEM

The I/O sequence for the l240A tape system and computer begins wi th the tape
system in an idle state and the following events occur:

1) The computer places an address word on the output data lines. (See Fig­
ures II-C-3 for configuration of address word.)

2) The computer sets the external function line active.

II-C-l

Tape
Transport
Control

Tape
Transport

1

Magnetic Tape Control

Tape
Transport

2

Tape
Transport

3

Tape
Transport

4

Figure II-C-l. Block Diagram of Magnetic Tape System

II-C-2

computer

n

.;..J
.;..J

~
C/)

Q..l C/) C/) Q..l C
C/) ~ Q..l Q) "0 ::s 0
Q..l "0

~
C Q..l 0" • .-1

C Q..l • .-1 ~ Q..l .;..J
• .-1 ~ Q..lJ :: 0::: ()

....J ~ 0::: 0 C
0 ctI C ctI ::s

ctI c ctI ~ .!C .;..J ~
.;..J .!C ~ .;..J ctI () ctI
ctI Q ct: 0.. 0 c::t: 0 ~

0 c::r: 0 ::s ctI
~ .;..J .;..J .;..J c

~ +-l ~ ~ ::s g ::s ~
::s ::s ::s Q..l 0.. 0.. Q..l
0.. 0.. g- ~ ~ ~ ~ ~

c c c ::s ::s ::s ><:
H H H H 0 0 0 t.xJ

r-- - - - I-- - - - - -- - - -- .10-- - ~ - --,
~,

Tape
Transport
Control

TT
...L

r----

TT
2 ----

1

--
TT

...L
,....--
TT

4

~,

L _____ _

,r "

i'1i:'gnetic Tape Control

J

Tape
Transport
Control

2

,....--
TT
8

Tape
Transport
Control

IT
...L

r-'"'-

TT
10 ----

3

~-

TT
12 -

l240A Magnetic Tape System

Tape
Transport,
Control

4

~-

TT
14
~

--
T1

..!.§...

~
'IT
16

---. I
_ _____ --.J

Figure II-C-2. 1240A Interface

1I-C-3

3) The magnetic tape control takes the address word and selects the correct
cabinet and transport.

4) The computer places an instruction word on the output data lines. (See
Figure II-C-4 for configuration of instruction word.)

5) The computer sets the external function line active.

6) The magnetic tape control samples the instruction word, becomes active and
performs the operation specified by the instruction word.

7) The magnetic tape control receives a status word from the tape transport
control, and places it on the input data lines.

8) The magnetic tape control sets the interrupt line active.

9) The computer accepts the interrupt according to priority.

10) The computer program handles the interrupt and determines the action to be
taken using the status word.

11) The magnetic tape system becomes idle.

2.1 ADDRESS WORD

The address word is received by the magnetic tape system via the external com­
mand from the computer. Bit 17 is set, and will be as specified in Figure 11-
C-3. The magnetic tape system operates with the selected cabinet and tape
transport for all operations until another address word is received from the
computer.

2.2 INSTRUCTION WORD

The instruction word is received by the magnetic tape control via the function
co~~and and bit 17 is set to a zero. The instruction word will be as specified
in Figure II-C-4.

3. INTERRUPT AND STATUS WORD

A status interrupt is sent to the computer by the magnetic tape control, 222
microseconds following the completion of all functions except the master clear
and transport address word operation. Along with the interrupt the magnetic
tape control puts a status word on the data lines. This status word is a sig­
nal from tape transport control as to the success of an operation performed on
a tape transport. The computer acknowledges the interrupt signa~ and jumps to
the interrupt entrance address for that channel. (Address 20+Cj). The com­
puter entrance address should contain a RJP (65000 xxxxx) instruction to com­
puter interrupt program. This program determines if the tape operation was
successful. (Figure II-C-5 gives status bits that will be set for any errors
that may occur.)

II-C-4

30 18 17 16 15 06 05 03 02 001

No Meaning Not Used Cabinet Transport
""""-

"-- Address Address
Master Clear

L.....-

Function Word
Designator =1 o = Cabinet 4 o = None
~ 1 = Cabinet 1 1 = TT No. 1

2 = Cabinet 2 2 = TT No. 2
3 = Cabinet 3 3 = TT No. 3
4 = Cabinet 4 4 = 'IT No. 4
5 = Cabinet 1 5 = TT No. 1
6 = Cabinet 2 6 = TT No. 2
7 = Cabinet 3 7 = TT No. 3

I---- L..--

Figure 11-C-3. Address Word

30 18 17 16 15 11 10
I I I

09 I 08 L 07 I 06 05 00 I
I I ,

No Meaning Operation Code I I I Identification Code
i..-.--. Refer to Table

I I II-C-1 I Selective Read =
~ 10 Code

I I I
Master

I I I Write, Tape Mark =
~lear

I I I
001111

Function Word I I I
, Wri te, Tape Mark,

Designator = 0 -IXRG = 001111
~

I I I
I I IDens i ty; High = l/Low= a

I !Parity; Odd = l/Even = 0

ICharacter; Octa1= 1/Biocta1= 0

Modulus
Mod 3 = 00 Mod 4 = 01
Mod 5 = 10 Mod 6 = 11

Figure II-C-4. Instruction Word

II-C-5

TABLE II-C-1. OPERATION CODES

Operation Code

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

.lOOOOx*

10010

10011

10100

10101

10110

10111

110xO*

110xl*

lllxO*

lllxl*

~:c x may be ei ther "0" or ttl"

Operation

READ

READ, Selective

READ, Ignore Error Halt

Space File

SEARCH Type I

SEARCH Type II

SEARCH-File Type I

SEARCH-File Type II

WRITE

WRITE, XIRG

WRITE, Ignore Error Halt

WRITE XIRG, Ignore Error Halt

WRITE Tape Mark

WRITE Tape, XIRG

Backspace

Back space-Read

Backspace-File

Backsearch Type I

Backsearch Type II

Backsearch File Type I

Backsearch File Type II

Rewind

Rewind, Clear Write Enable

Rewind-Read

Rewind-Read, Clear Write Enable

II-C-6

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

'-Loa

'-Low Tap

--End of Tape

'-No Write Enable

L...Tape Mark (End of F
L D' . 1 = Back

~ ast Irectlon 0 - F . - orw
-Longitudinal Parity Error

'-Lateral Parity Error

Incorrect Frame Count

~Input Timing Error

~Output Timing Error

-Not Used
- Improper CondItIon

Figure II-C-5. Status Word Format

d Point

e

ile)
ward
ard

4. MAGNETIC TAPE OPERATIONS

4.1 MASTER CLEAR (BIT 16)

The magnetic tape control performs a master clear whenever power is applied,
when the master clear switch is operated, and whenever the master clear com­
mand is received via the external function command from the computer. The
master clear performs the following:

1) The master clear is accepted by the magnetic tape control system at any
time.

2) The master clear shall not be followed by a status-word interrupt.

3) The master clear stops all tape motion (except a rewind of tape) and
places the system in the idle state.

4) The magnetic tape control accepts an external function command anytime
after a master clear.

4.2 READ (BITS 11-15)

The read function is supplemented by format, density, and identification code
selections. Two types of read operations are performed: normal and selective
read.

II-C-7

CHANGE 1

The read function performs the following:

1) The magnetic tape control, having received the read function, begins
passing tape forward over the read head at a speed of 112.5 inches per
second.

2) The tape transport control checks the parity of each frame, or seven bits,
and passes the information onto magnetic tape control.

3) The magnetic tape control assembles the information into a computer
word for transfer to the computer. The number of frames required to
make up a computer word will depend on the modulus in which it is
written.

4) If the selective read function was selected, the lower six bits of the
computer word are compared with the identification code. If a compari­
son is not correct, the assembled word is disregarded and the next com­
puter word is assembled. Therefore, only words in the record which have
the lower six bits equal to the identification code are transferred to
the computer. In a normal read all words are transferred to the com­
puter through the input data lines.

5) This process continues until the record has been completely read, assem­
bled, and transferred to the computer.

6) A status word is sent to the computer by magnetic tape control at the com­
pletion of the read function, informing the computer of the success of
operation.

7) If an error (parity or input timing) is detected during transmission of
data, the magnetic tape control ceases to transfer data to the computer
for the remainder of that record. At the end of the record a status word
is sent to the computer informing it of the nature of failure.

4.3 WRITE (BITS 11-15)

The write function is supplemented by format and density selections. The tape
speed for a write function is 112.5 inches per second. The following events
will occur:

1) The magnetic tape control takes a word from the computer on the output
data lines.

2) The magnetic tape control disassembles the computer word according to
modulus selection, generates a parity bit, and transfers the seven-bit
frame to the tape transport control for recording on tape.

3) The read-head is activated, causing the tape transport to read back the
information recorded, for parity check purposes.

4) If a parity error is detected, the write operation is halted and a status
word telling the computer of failure is sent over interrupt lines. The

II-C-8

computer program must then correct the procedure as necessary to per­
form the write function. (Write with extended inter-record gap function
is the suggested correction measure.)

5) If no parity error is detected, the process of disassembling and recording
data continues until the computer nQ longer acknowledges the output data
request from the magnetic tape control. This means that the complete
buffer has been recorded on tape.

6) When magnetic tape control detects the end of write, tape motion
is stopped after 3/4 inch of tape has passed the write head. This
3/4 inch of tape is for inter-record gap (IRG). Extended inter-record
gap is 3 1/2 inches.

7) A status word is sent to the computer and the tape system becomes idle.

8) In the write ignore halt function, the magnetic tape control does not
stop the write operation if lateral parity error is detected.

4.4 REWIND (BITS 11-15)

The rewind function causes the tape transport selected·to rewind tape at a rate
of 225 inches per second. If rewind clear write enable function is selected,
the tape stops at load point and a write function is not accomplished on this
unit. If the tape is located at load point when a rewind function is given, no
improper conditions occur.

4.5 REWIND-READ (BITS 11-15)

The rewind-read function causes the same effect as normal rewind, except when
the tape reaches load point. The first record is read into the computer by nor­
mal read function. The status word is sent after the first record is trans­
ferred to the computer. The rewind-read clear write enable disables the write
enable making further writing on this unit impossible. This function is supple­
mented by format and density selection.

4.6 SPACE FILE FORWARD/BACKWARD (BITS 11-15)

When the magnetic tape control is instructed to space file forward/backward, it
causes the addressed tape transport to move in the specified direction, beyond
the next tape mark. The magnetic tape control notifies the computer via the
status word with a tape mark indication.

4.7 WRITE TAPE MARK (BITS 11-15)

This function causes the magnetic tape control to instruct the tape transport
to write a tape mark, a special record having 178 in the first frame, 3 frames
of zeros, and one frame of longitudinal parity_

II-C-9

4.8 BACK SPACE (BITS 11-15)

The back space operation causes the selected tape transport to move one record
in the backward direction. The tape is properly pOSitioned in the inter-record
gap ready for a read or write function. The parity is checked while the back­
space operation is performed and a status word is sent to the computer. The
back space function is supplemented by format and density selections.

4.9 SEARCH (BITS 11-15)

The search function combines the normal read with the ability to conduct on the
first word of a record (in either the forward or backward direction) and trans­
fer only the find record to the computer. The search comparison is performed
on the first word of a record with the identifier (search key) word. The search
word is transmitted to the magnetic tape control by the computer in a one-word
buffer following the instruction word. The search forward/backward file func­
tion performs the same function except the search is limited to a file mark.
There are two types of searches which the magnetic tape control can perform in
comparing the key word with the first word of the record. Type I is defined
as a per bit greater-than-or-equal compare. The following example demonstrates
thi s defini tion:

search key:
find:
find:
no find:
no find:

001101
011101
001101
010101
001100

An identical compare (Type II) is defined as a search comparison with the search
key and the first word of the record exactly identical.

5. FORMAT PORTION OF INSTRUCTION WORD

The format portion of the instruction word consists of modulus, character, and
parity. A complete format selection must be included in all instruction words
which require a record or read operation. The three sections of the format are
discussed in the following paragraphs:

5.1 MODULUS

The magnetic tape system is capable of recording and reading in four different
moduli. These moduli and the appropriate designator bits (bit 10-09) are:

1) 00 = Modulus 3.
2) 01 = Modulus 4.
3) 10 = Modulus 5.
4) 11 = Modulus 6.

TheSe are discussed in titled Tape System Moduli.

II-C-IO

5.2 CHARACTER

There are two types of character recording; octal and bioctal. A one in bit
08 of the instruction word specifies octal. In this type, channels 3, 4, and
5 contain the same information as channels 0, 1, and 2 respectively for each
frame, except that when channels 0, 1, and 2 are all zeros, channels 3, 4, and
5 contain all ones. Odd lateral parity is always generated when recording in
octal character (see Table II-C-2.). A zero in bit 08 specifies bioctal re­
cording. The octal character allows for redundant recording for added re­
liability.

TABLE II-C-2. OCTAL RECORDING

Character Tape Channel s

Octal Binary 6 543 210

0 000 0 III 000

1 001 1 001 001

2 010 1 010 010

3 011 1 all all

4 100 1 100 100

f) 101 1 101 101

6 110 1 110 110

7 III 1 III III

5.3 PARITY

Two parity modes can be utilized, odd or even, bit 07 is used for parity mode
selection. A one in bit 07 specifies odd parity, and in bit 07, a zero speci­
fies even parity.

Data ordinarily is recorded in ~o formats: binary and binary-coded-decimal.
The parity bit is chosen to make the total number of ones (l's) bits in a frame
odd in the binary format and even in the binary-coded-decimal format.

5.4 DENSITY

The magnetic tape system is capable of recording data on tape in two different
programmable densities. The two densities are low density, at 200 frames per
inch, and high density, at 556 frames per inch.

II-C-11

Bit 06 of the instruction word is used for density selection. When bit 06 is
a one, high density is selected; when it is a zero, low density is selected.

6. TAPE SYSTEM MODULI

6.1 MODULUS 3: (BITS 10 AND 09 = 00)

Mod 3 is obtained by reducing 18 bits of a computer word to three (bioctal
character) frames of data. In reading mod 3, a word is sent to the computer
for every three (bioctal character) tape frames. These frames are assembled
in the lower 18 bits (17-00) of the data word. The upper bits, if any, of the
data word contain zeros.

Recording mod 3, the 18 bits (17-00) of a computer word are recorded in three
(biootal characters) 7-bit frames, consisting of a 6-bit character, plus
parity. For octal recording the number of tape frames is doubled. See
Figure II-C-6 for bioctal recording and Figure II-C-7 for octal recording
of bit arrangements on tape.

6.2 MODULUS 4: (BITS 10 AND 09 = 01)

Mod 4 is obtained by reducing 24 bits of a computer word to four (bioctal
characters) frames of data. In reading mod 4, a word is sent to the computer
for every four (bioctal character) tape frames. These frames are assembled
in the lower 24 bits (23-00) of the data word. The upper bits, if any, of
the data word contain zeros.

Recording mod 4, the 24 bits (23-00> of a computer word are recorded in
four (bioctal character) 7-bit frames, consisting of a 6-bit character, plus
parity. For octal recording the number of tape frames is doubled.

6.3 MODULUS 5: (BITS 10 AND 09 = 10)

Mod 5 is obtained by reducing 30 bits of a computer word to five (bioctal
character) frames of data. In reading mod 5, a· word is sent to the computer
for every five (bioctal character) tape frames. These frames are assembled
in the lower 30 bits (29-00) of the data word. The upper bits, if any, of
the data word contain zeros.

Recording mod 5, the 30 bits (29-00) of a computer word are recorded in five
(bioctal character) 7-bit frames, consisting of a 6-bit character, plus
parity. For octal recording the number of tape frames is doubled.

6.4 MODULUS 6: (BITS 10 AND 09 = 11)

Mod 6 is obtained by reducing 36 bits of a computer word to six {bioctal
character} frames of data. In reading mod 6, a word is sent to the computer
for every six (bioctal character) tape frames. These frames are assembled
in the 36 bits (35-00) of the data word.

Recording mod 6, the 36 bits (35-00) of a computer word are recorded in six

II-C-12

Forward Tape Oxide p 05 04 03 02 01 3rd Frame
Direction Side p 11 10 09 08 07 2nd Frame

j
• P 17 16 15 14 13 1st Frame

6 5 4 3 2 I 0 Tape Channel

Modulus 3

Oxide p 05 04 03 02 01 00 4th Frame
Side p II 10 09 08 07 06 3rd Frame • p 17 16 IS 14 13 12 2nd Frame

p 23 22 21 20 19 18 1 st Frame

This Edge

] 6 5 4 3 2 I 0 Tape Channel Of Tape
Next To
Transport Modulus 4

Oxide p 05 04 03 02 01 00 5th Frame
Side p II 10 09 08 07 06 4th Frame

• p 17 16 IS 14 13 12 3rd Frame
p 23 22 21 20 19 18 2nd Frame
p 29 28 27 26 25 24 1 st Frame

6 5 4 3 2 I 0 Tape Channel

Modulus 5

P 05 04 03 02 01 00 6th Frame
p II 10 09 08 07 06 5th Frame

Oxide P 17 16 15 14 13 12 4th Frame
Side P 23 22 21 20 19 18 3rd Frame

• p 29 28 27 26 25 24 2nd Frame
p 35 34 33 32 31 30 1st Frame

6 5 4 3 2 I 0 Tape Channel

Modulus 6

JiiNII'l"O II-C-6. Bioctal Tape Format j, ..&. 'd "" ~

II-C-13

Forward Tape
Direction

I

This Edge
Of Tape
Next To
Transport }

Oxide
Side

Oxide
Side

Oxide
Side

Oxide
Side

•

•

•

. -

•

P 02 01 00 02 01 00
p 05 04 03 05 04 03
p 08 07 06 08 07 06
P 11 10 09 11 10 09
P 14 13 12 14 13 12
p 17 16 15 17 16 15

6 5 4 3 2 1 0

Modulus 3

P 02 01 00 02 01 00
p 05 04 03 05 04 03
p 08 07 06 08 07 06
p 11 10 09 11 10 09
P 14 13 12 14 13 12
P 17 16 15 17 16 15
p 20 19 18 20 19 18
p 23 22 21 23 22 21

6 5 4 3 2 1 0

Modulus 4
~-- - - .A - --P 02 01 00 02 21 00
P 05 04 03 05 04 03
p 08 07 06 08 07 06
p 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 17 16 15
P 20 19 18 20 19 18
P 23 22 21 23 22 21
P 26 25 24 26 25 24
p 29 28 27 29 28 27 -- -- - -6 5 4 3 2 1 0

Modulus 5 -
P 02 01 00 02 01 00
P 05 04 03 05 04 03
p 08 07 06 08 07 06
p 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 17 16 15
P 20 19 18 20 19 18
P 23 22 21 23 22 21
P 26 25 24 26 25 24
p 29 28 27 29 28 27
p 32 31 30 32 31 30
P 35 34 33 35 34 33 - -~ 6543210

Modulus 6

6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1 st Frame

Tape Channel

10th Frame
9th Frame
8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

.12th Frame
11th Frame
10th Frame

9th Frame
8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame

.2nd Frame
1st Frame

Tape Channel

Figure II-C-7. Octal Tape Format

II-C-14

(bioctal character) 7-bit frames, consisting of a 6-bit character, plus parity.
For octal recording the number of tape frames is doubled.

7. STATUS WORD

A status interrupt is sent to the computer 222 microseconds following the
completion of every function except master clear and transport address selection.
A status word is placed on the data lines of the input cable. The bit
structure of the status word enables the computer to determine whether or
not the previous function was successfully completed.

The computer program must recognize that after issuing an external function
instruction to the magnetic tape system, no subsequent external function
command (except addressing and master clear) will be recognized until receipt
of the acknowledge to the status interrupt, signifying the end of the first
instruction.

Figure II-C-5 shows bit assignments in the status word. These conditions
are described below.

7.1 IMPROPER CONDITION (BITS 29 AND 14)

A one in bits 29 and 14 may imply that operator intervention is necessary to
overcome the difficulty. An improper condition will occur whenever:

1) Reference tape transport is not in automatic condition.

2) No tape transport is selected when one is required.

3) A forward command is sent to a tape transport whose tape is positioned
at end of tape.

4) A reverse command is sent to a tape transport whose tape is positioned
at load point (except a rewind operation).

5) A write instruction is issued to a tape transport that has no write
enable.

When the computer has been notified of an improper condition, the computer
program may then refrain from issuing further external function commands to
thp. tape system to allow visual inspection of the trouble, or it may issue
another external function command. An incoming external function command to the
tape system causes the improper condition indicator to extinguish.

A tape transport not in automatic condition implies one of the following
situations:

1) Tape transport was manually removed from automatic.

2) Tape transport not in ready condition for one of the following reasons:

a) Power off.

II-C-15

b) Tape broken.
c) Lamp burnout.
d) Tape load was not accomplished when tape was mounted.

7.2 OUTPUT TIMING ERROR (BITS 25 AND 10)

A one in bits 25 and 10 indicates that the computer did nJt acknowledge the
first output data request, or the computer acknowledged the output data
request too late (however, it did acknowledge the output data request for the
data word to be written in its proper place). The acknowledge time is related
to format and density.

Also an output timing error can occur during search operations if the magnetic
tape system does not receive the search key before the start of reading the
record. This time requirement may be as short as two milliseconds.

7.3 INPUT TIMING ERROR (BITS 24 AND 09)

A one in bits 24 and 09 indicates that magnetic tape control information on
the input cable was not accepted by the computer before the subsequent word
was to be placed on the input cable. This condition indicates that the
computer lost one or more words of the last record. If an input timing
error occurs, data transmission to the computer ceases for the remainder of
the record.

7.4 INCORRECT FRAME COUNT (BITS 23 AND 08)

A one in bits 23 and 08 indicates either some ~rames were lost, or improper
modulus specified (that is; there were not enough frames in the record to
complete an integral number of computer words). This situation may result from
0ne or more of the following:

1) One or more characters were not properly read or recorded.
2) Bad spots on the tape caused characters to be lost.
3) qeading a record with the wrong format (for example, reading mod 4

with a tape record in mod 5).

A longitudinal parity error usually occurs in conjunction with an incorrect
frame count if frames were lost.

7.5 LATERAL PARITY ERROR (BITS 22 AND 07)

A one in bits 22 and 07 informs the computer that the lateral parity of one or
more frames read did not agree with that specified in the format.

7.6 LAST TAPE MOTION (BITS 20 AND 05)

A one in bits 20 and 05 indicates that the last tape motion was backward.
A zero indicates that the last tape motion was forward.

II-:-16

7.7 LONGITUDINAL PARITY ERROR (BITS 21 AND 06)

When recording, longitudinal parity is generated by magnetic tape control for
each channel and recorded after the last frame of the record. When reading
(read, back space, post-write check) the longitudinal parity of a record is
checked by magnetic tape control, and if in error, noted in the status word
(bits 21 and 06).

7.8 TAPE MARK (BITS 19 AND 04)

A one in bits 19 and 04 indicates that the magnetic tape control has sensed
a tape mark during a read, write, (before a search comparison is made during
a search file instruction) or back space function.

7.9 NO WRITE ENABLE (BITS 18 AND 03)

A one in bits 18 and 03 informs the computer that the referenced tape transport
has no write enable when a write operation is attempted or that the write
enable ring is not inserted in the tape reel.

7.10 END OF TAPE (BITS 17 AND 02)

To prevent reading or writing off the end of the tape, an end of tape reflective
marker is placed a minimum of 14 feet from the physical end of the tape.

When the end of tape mark is sensed, a 1/2 second time-out begins. When this
time period is completed, no further forward movement of the tape will be
possible. However, the tape may be moved in the reverse direction past the
reilective marker and then moved forward. When the marker is again sensed,
the time-out is initiated again, and the forward tape motion will halt
after 1/2 second.

7.11 LOW TAPE (BITS 16 AND 01)

A one in bits 16 and 01 informs the computer that the tape is positioned less
than 100 feet from the end of tape.

7.12 LOAD POINT (BITS 15 AND 00)

Since the first several feet of tape undergo excessive wear and are required
to load the transport, no recording is done on this protion of the tape.
Recording begins at load point and this point is recognized by the magnetic
tape system by means of a reflective marker placed at least ten feet from
the physical beginning of tape. The write, load point, delay allows infor­
mation to be written on the tape approximately 3/4 inch beyond the load
point marker with the tape moving in the forward direction.

8. TAPE MARKERS

The load point and end of tape markers are pressure-sensitive, adhesive-coated
strips of aluminum 1 by 3/16 inch. The markers are detected by reflective
photo-sensing means. Both markers are placed on the base (uncoated) side

II-C-17

of the tape with the 1-inch dimension parallel to the tape. The load point
marker is placed 1/32 inch from track O. or the front edge of the tape.
The end of tape marker is placed 1/32 inch from track 6 or inside edge of
the tape.

9. LOGICAL SELECTION OF TAPE TRANSPORTS

Selector switches to change the logical address of each tape transport are
provided. Any physical tape transport may be switched to any logical address.
If logical address selections are duplicated, the lowest order physical tape
transport has priority; however, no two cabinets may have the same logical
address. This will be the responsibility of the operator.

10. 1240A HIGH-SPEED PRINTER OFF-LINE COMPATIBILITY

The magnetic tape subsystem is capable of communicating directly with the
high-speed printer subsystem for off-line operation. The interface between
the magnetic tape unit and printer is shown in Figure II-C-8.

t
30 Data I Lines

~
~ t

High Output Data Request I Input Acknowledge Magnetic
t . Speed
I

. Tape
Printer Output Acknowledge I Input Data Request System -

~ t
External Function I Interrupt

~

~ ,
Figure 1I-C-8. Magnetic Tape - High-Speed Printer Interface

1) The printer output is connected to the magnetic tape system's input
(input and output as used here are in reference to the computer).

2) The data to be printed off-line must be recorded in records on tape in
the following format: Record length of 120 Field data characters.

3) The magnetic tape system reads each record of data from tape in the
following format: Modulus 5.

4) At the magnetic tape unit function register, the operator manually
selects the character, parity, and density.

5) Each record of 120 characters forms 24 30-bit data words which is
printed as one line by the high-speed printer.

6) A tape mark is recognized by the high-speed printer as a top of form
command. This positions the paper to the top of the next page.

7) A record of less than 24 words (preferably one computer word, five
characters) causes the high-speed printer to stop the printing operation.
This record is not printed if the characters are space codes (05).

II-C-IB

8) With the magnetic tape system switched to the printer mode, the desired
tape transport selected and the tape positioned at load point, the high­
speed printer initiates operation when it is placed in the on-line
position.

The normal sequence of events for transfer of data from the magnetic tape
system to the printer is as follows: (See Figure II-C-9).

1) The printer sets its output data request (e).

2) The magnetic tape system, in the idle state (a) recognizes this first
output data request from the printer as an external function and starts
the read operation.

3) The magnetic tape system places the information on the data lines and
sets its input data request (c).

4) The printer recognizes the magnetic tape system input data request as
an output acknowledge (f).

5) The printer samples the data lines and clears its output data request.

6) The magnetic tape system recognizes the clearing of the printer output
data request as an input acknowledge (b).

Steps 3, 4, 5, and 6 are repeated for each word of the record.

The normal sequence for sending an external function command top of form from
the magnetic tape system to the printer is the same as reading a record except
that when the magnetic tape system detects the tape mark, it will set bit 4
in the status word, and when the interrupt (d) is set, the printer will
r~cognize this as an external function command top of form (g) (Figure II-C-9).

11. PROGRAMMING CONSIDERATIONS

11 • 1 GENERAL

The magnetic tape system is manually placed in an operational condition. The
operator functions include mounting tapes on transports, turning power on, and
initially positioning tapes. With the magnetic tape system operational,
programmed references may begin. Generally, all programming of the tape system
must be done with force and must conform to a standard sequence 0·1 ret"erence.
(Figure II-C-lO illustrates this sequence.)

Once the tape system receives and starts to execute the operations in an
instruction word, further external function commands, other than master clear,
are ignored. The programmer must remember when an external function command
may be logically issued. After issuing an external function command other
than address word and master clear, the computer may not logically issue
another function command until the computer acknowledges the receipt of an
interrupt from the tape system.

II-G-19

Step 1 of Figure ll-C-IO is required only on the initial reference of a ~ape
transport or when a reference to another transport is desired.

a'~,--__________________ ~r (
-))~---------------------------

b. ____ ~

c. ________________ ~I"\ ___ ~r (~--------------------------
J J

d. __________________________ ~r r~------------------~
J J

e. ____ ~ \~---

f. ________________ -J r

Figure ll-C-9. Sequence of Events in Tape-Printer Operation

11.2 WRITE PROCEDURES

To write, the instruction word must include complete format selection
(modulus, character, and parity), and density. Use of the procedure out­
lined in Figure ll-C-IO will result in a record of words boing written on
tape. Length of record is determined when the output buffer is initiated.

After the status interrupt is received, signifying end of a write operation,
the program must check the following four conditions to determine successful
completion of the write operation:

1) No improper condition in the status word.
2) No output timing error in the status word.
3) No lateral parity error in the status word.
4) Output buffer is terminated.

11-C-20

Step 1

Step 2

Step 3

Step 4

Step 5

\7
Issue Address Word
By The External
Function Command

Form Instruction
Word, Include Operation
Code, Format, And
Density As Applicable

Initiate Required
Output And/Or Input
Buffers

Issue Instruction
Word By The External
Function Command.
Indicate Tape
System Busy

When Tape System
Interrupt Occurs,
Execute Interrupt
Subroutine, Which
Takes The Status
Word Off Input
Cable. Indicate
Tape System Is
Not Busy

v
Figure II-C-IO~ Sequence of Programming References - Magnetic Tape System

II-C-2l

If the status word indicates an output timing error, the computer did not
acknowledge the first output data request, or the computer acknowledged the
output data request too late (however, it did acknowledge the request) for
the data word to be written in its proper place. The acknowledge time is
related to format and density.

It is possible for an output timing error to occur that will not be shown
in the status word. Such a condition results if the computer did not
acknowledge the output data request (other than the first output data request
from the tape system). The system recognizes this situation as end of
record and, consequently, indicates no error. However, if words are left
unwritten in the output buffer, this constitutes an output timing error
condition.

If a lateral parity error is indicated in the status word, the write operation
was terminated when the post write check detected an incorrect frame. It
is the responsibility of the program to decide and provide the recovery
procedures.

11.3 READ PROCEDURES

To read, the instruction word must include complete format selection, identi­
fication code (if read selective) and density. Use of the procedure outlined
in Figure II-C-10 will result in a record being read from tape. The length
of the input buffer must be long enough to cover the record to be read.

An input timing or parity error will terminate the data input to the computer
unless the read operation is with the ignore error halt option. The status
interrupt will still be sent by the magnetic tape system at the end of
that record.

11.4 SEARCH PROCEDURES

To search, the instruction word must include complete format selection and
density. The identifier word will be rec ived by the magnetic tape system
via a one-word output buffer. Tape motion is started upon the receipt of the
instruction word and an output timing error will occur if the magnetic tape
system does not receive the identifier within the time from start of tape
motion and when the compare is made. This time requirement may be as short
as two milliseconds. One record will then have been passed. The search is
terminated by an output timing error and a parity error.

When searching backwards, the 30-bit identifier word sent by the computer
must be reversed; characterwise, its configuration is dependent upon format.
Examples are given below:

Original Computer Word
Mod 5 Identifier
Mod 4 Identifier
Mod 3 Identifier
Mod 6 Identifier

Bioctal

3456745321
2153745634
0053745634
0000745634
5374563400

11-C-22

Octal

3456745321
1235476543
0035476543
0000476543
3547654300

11.5 RECORD LENGTH

There are no limits on record length within physical tape capacity. When
reading tapes of unknown record length, the input buffers must be made
sufficiently large to insure reading the entire record. Another method is
to initiate an input buffer with monitor and make provision for the initiation
of additional buffers to read the complete record.

11.6 END OF FILE

The normal end-of-file inter-record gap is approximately 3/4 inch long followed
by a tape mark (001 Ill) and its associate check character. The end of file
is always recorded with even parity.

11.7 EDITING OF TAPE

By suitable programming, an inter-record gap of any length may be written to
precede any·record. Records may be rewritten for tape updating, and they may
be lengthened, provided suitable inter-record gap was used on a previous
recording. A record may be inserted for a previously used extended inter­
record gap.

11.8 BAD TAPE

When writing a record, if a tape bad spot is encountered where recording is
marginal or impossible, the tape may be back spaced to the beginning of the
record and rewritten with an extended inter-record gap. Jhe long inter­
record gap will probably he sufficient to move the bad spot past the recording
head. Successive extended inter-record gaps may be ~Titten if the bad spot
still appears.

II-C-23

SECTION II-D. MAGNETIC TAPE SYSTEM (TYPE 1540/1541)

1. GENERAL INFORMATION

The militarized UNIVACUY 1540/1541 Magnetic Tape Units provide large capacity
auxiliary storage devices for computing systems operating under severe environ­
mental conditions.

The UNIVAC 1540 Magnetic Tape Unit employs a pinch-roller type of tape trans­
port and the 1541 Unit is equipped with a single capstan vacuum loop transport.
The units are functionally identical; however, the 1541 has a higher data trans­
fer rate. The UNIVAC 1540/1541 Magnetic Tape Units may be operated on-line
under complete computer program control as an I/O storage device or with a high­
speed printer for off-line printing of tape recorded information. A flexible
format allows recording and reading of four moduli (18-, 24-, 30-, or 36-bit
computer words) and three densities, and provides recording of magnetic tapes
which is compatible in all respects with industry-accepted tape systems.
Either even or odd frame parity may be utilized and for added reliability, the
redundant octal format is provided. A read-after-write feature checks each
frame for parity immediately after recording. Longitudinal parity recording
and checking are automatic. A duplexing capability is provided so that two
computers communicating with the same magnetic tape unit may share its facili­
ties under program control. In this way, data or programs stored on one tape
are available to both computers. Further savings in the facilities are enhanced
by the ability of the 1540/1541 Magnetic Tape Units to read information in
either the forward or backward motion of the tape.

Records of data may be of variable lengths and are separated "by 3/4-inch inter­
record gaps (IRG) unless otherwise extended by suitable programming. Records
may be lengthened if suitable interrecord gaps were provided in previous re­
cordings.

Either the UNIVAC 1540 or the 1541 Magnetic Tape Unit is compatible with all
UNIVAC military compu~rs. Compatibility both in tape format and computer pro­
grams with the UNIVAC~1240 Magnetic Tape Unit is provided through a manual
switch selection on the 1540 or 1541 basic unit. This feature gives the func­
tional characteristics that are identical with those of the 1240 subsystem and
permits the use of software packages designed for earlier systems.

2. PERFORMANCE OF FUNCTION

Either the 1540 or the 1541 Magnetic Tape Unit communicates with the computer
In the request-acknowledge mode (see Figure 11-0-1). The computer issues
commands to the magnetic tape unit by means of the external function signal and
function words. When the magnetic tape control inspects the function word, it
selects the specified tape transport and performs the specified operation. Each
tape transport cabinet contains a l6-position address switch for each tape trans­
port so that each can be assigned a logical number (1 through 16). UNIVAC
1540/1541 programs use positions I through 8 only. The additional positions
(9 through 16) are used to provide compatibility with UNIVAC 1240 programs.
The address selection bits of the instruction word are interpreted by the

11-0-1

magnetic tape control according to the physical position of these switches. No
two transports may be assigned the same logical number (that is; to allow iden­
tical function on both units). If duplication does exist, priority is allocated
to the transport at the most remote position to the left of the basic unit (the
top transport having priority over the bottom unit in the 1540) regressing
toward the basic unit, then those connected to the right side beginning at the
remote position. The operator must determine the logical addresses required by
each program and set the switches accordingly. (See Figures II-D-2 and II-D-3
for order of priority scheme.)

The instruction word contains the code for one of six basic operations -
duplex selection, read, search, write, space file, and rewind - or a combination
of two basic operations. To accept an external function command, the magnetic
tape unit must be in the ready state (that is; operable but not performing
a specific operation). The completion of an operation or a master clear
places the magnetic tape unit in the ready state.

The general sequence of events for on-line operation with a computer (the
magnetic tape control in automatic mode and in the ready state) is as follows:

1) Computer issues an instruction word via the external function command.

2) Magnetic tape control samples the instruction word and becomes busy.

3) Magnetic tape control selects the addressed tape transport.

4) Operations stated in the instruction word are initiated and carried
to completion.

5) Magnetic tape control sets a status word on the input lines as described
in subsequent paragraphs.

6) Magnetic tape control interrupts the computer with external interrupt
signal after completion of the operation.

7) Magnetic tape control issues stop command to transport.

8) Computer samples status word and acknowledges interrupt whereby the
magnetic tape unit becomes idle.

Steps 7 and 8 may be interchanged, or may occur simultaneously.

Status words and input data are transferred on the input lines with identifying
signals on the external interrupt line and the input request line, respectively.
The computer acknowledges receipt of these transfers via the input acknowledge
line.

Function words and output data are transferred on the output lines with iden­
tifying signals on the external function line and the output acknowledge lines,
respectively. The output request line notifies the computer of the ability
of the magnetic tape unit to accept output data.

11-D-2

I -.-...----- - ---,
External Function

Output Request I I
Output Output Acknowledge I I
Cable

I I
18 to 36 Out put Lines I I

UNIVAC I MTC I
Computer

External Interrupt I I
Input Data Request I I

Input
I I Cable Input Acknowledge

I I
18 to 36 In ut Lines I I

L -- - - ---
__ --.J

Figure 11-0-1. Magnetic Tape Unit - Computer Interface

3. DUPLEXING

Either of two computers with compatible interface can exercise control over
the magnetic tape unit when the duplexing capability is utilized. The fol­
lowing duplex control functions are provided via the instruction word:

1) Demand duplex control (master clear).
2) Request duplex control.
3) Release duplex control.

To complete the communication, the status word with interrupt provides duplex
control status to the computers as follows:

1) Not in duplex control.
2) In duplex control.

Through these messages, each computer has control of the switching functions of
the duplexer and each is informed of the operational status of the magnetic
tape units it shares with the other.

4. TAPE MARKERS

The load point and end of tape markers are adhesive-coated strips of aluminum
one inc'h by 3/16 inch, placed on the base (uncoated) side of the tape with
the one-inch dimension parallel to the tape edge; see Figure I1-D-4 for

11-D-3

Order of

Basic Magnetic
Tape Unit

Unit Basic Magnetic
Tape Unit

Add-On Uni t

Unit

Priority --+ 1 3 7 5

Unit

1 Tape
ndler

1

2 4 8 6

2 Tape 2 Tape Majnetic 2 Tape 2 Tape
andlers Handlers C atPe

i
andlers Handler on ro

Figure 11-D-2. Type 1540 Magnetic Tape System
(Maximum Configuration)

Basic Magnetic
Tape Unit

Add-On Uni t

Unit

1 Tape

Unit Basic Magnetic
Tape Unit

1 Tape 1 Tape
Magnetic

Unit Unit Unit

1 Tape 1 Tape 1 Tape Tape
Handler andler Handler Control Handler Handler Handler

2 3 4.-..
Order

of -+8 7

Priority

Figure 11-D-3. Type 1541 Magnetic Tape System
(Maximum Configuration)

11-0-4

6

Unit

1 Tape
Handler

5

tape format. The load point marker is placed 1/32 inch from track 0 or out­
side edge of the tape and at least ten feet from the beginning of the tape.
The end of tape marker is placed 1/32 inch from track 6 or inside of the tape
and at least 15 feet from the end of the tape. The markers are detected by
reflective photoelectric sensors.

5. STATUS WORD AND INTERRUPT (STATUS INTERRUPT)

The computer program is interrupted after completion of every operation per­
formed by the magnetic tape control, except master clear and transport address
selection. The magnetic tape control places a status word on the channel
input lines and a signal on the channel external interrupt line. The bit
structure of the status word (see Figure II-D-5) enables the computer program
to determine the status of the magnetic tape unit and whether or not the
requested operation was completed successfully. Errors encountered during a
requested operation, as well as the physical status of the magnetic tape unit,
are indicated in the status word. The term,status interrupt, is used to express
this philosophy since the computer program is interrupted and the status of the
magnetic tape unit and the encountered errors are designated in the status word.
Any such interrupt sent to the computer must be aCKnowledged by the computer
before another external function with an instruction word is recognized by the
magnetic tape control. Successful completion of an operation contains no
error indications, but other indications of tape status may be present.

The status word requires a word of at least 15 bits. If the computer accepts
words larger than 15 bits, the information in the next higher order bits
beginning at bit 15 is not interpreted. A detailed explanation of each bil.
of the status word follows.

End of tape marker
3/16" x 1" on non­
oxide side of tape

00000
00000
00000

'---~IIOOOI
... ____ 110001

Trailing ,10001
end 10001

nter­
record
gap 3/4"
normal
(3 1/2"
xtended)

zooo
ZOOOX
ZOOOX
ZOOOX
ZOOOX X
ZOOOX X X
ZOOOX X X

--+14' min
L-y-l

'--Tape mark

Z = Longitudinal parity
P = Lateral parity
X = Data bit

Recorded
data

Rear
edge

rite
load
oint
elay

1/2"
in

P P P 00000
X X X 00000

X X 00000
X X+- IRG ... I0001
X X 10001

X 10001
X 10001

'-y--J

'-Tape mark
Load point marker
3/16" x 1" on non­
oxide side of tape

Forward direction oxide down

Figure II=D=4. Tape Format

11-0-5

10' min

~ • .----------------------- Computer Input Word

354- Not Interpreted ---+ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 = Improper Condition --------~

1 = No }
Duplex Control ----....I

o = Yes

1 = TrHnsport Ready -------------------....1

1 = XIRG Detected --------------------------

1 = Output Timing Error

1 = Input Timing Error

1 = Incorrect Frame Count --------------------------~

1 = Lateral Parity Error ------------------------------....1
1 = Longitudinal Parity Error ----------------------------....1
1 = Backward }

- Last motion of tape --------------....1
o = Forward

1 = T~pe Mark (End. of File)

1 = No Write Enable

1 = End of Ta_pe~~~~~~~~~~~~~~~~~~~~~~~~1 I
1 = Low Tape .

1 = Load Point --~

Figure II-D-5~ Magnet ic Tape Uni t - Stiit 11E ~oTd Format

11-0-6

5.1 IMPROPER CONDITION (BIT 14 = 1)

An improper condition occurs whenever:

1) Selected tape transport is not in automatic condition. A tape transport
not in automatic condition implies one of the following situations:

a) Tape transport was manually removed from automatic.
b) Tape transport not in ready condition for one of the following reasons:

1. Power off.
2. Tape broken.
3. Lamp burnout.
4. Tape load was not accomplished when tape was mounted.

(This situation also causes the transport ready bit in the status
word to be cleared.)

2) No tape transport is selected when one is required.

3) A forward command is sent to a tape transport whose tape is positioned
at end of tape.

4) A reverse command other than a rewind operation is sent to a tape
transport whose tape is positioned at load point.

5) A write instruction is issued to a tape transport that has no write
enable. (This situation also causes the no write enable bit in the
status word to be set.) After the computer is notified of an improper
condition, the computer program may then refrain from issuing further
external function commands to the tape system to allow visual i'nspection
of the trouble and operator intervention to overcome the difficulty,
or it may issue another external function command. An incoming external
function command to the tape system clears the improper condition
indication.

5.2 DUPLEX CONTROL (BIT 13; 0 = IN CONI'ROLi 1 = M)T IN CONTROL)

1) The status of the duplexer is indicated by bit 13 of the status word
and is sent to one of the two computers, depending on the action
initiated.

2) The condition not in control (bit 13 = 1) is sent to the issuing computer
when a word is transmitted by that computer while the duplexer is not
in the proper position.

3) The condition not in control (bit 13 = 1) is sent to the nonissuing
computer when that computer loses control as a result of a demand
duplex control issued by the other computer.

4) The condition in control (bit 13 = 1) is sent to the issuing computer
when a request duplex control is issued and the duplexer is transferred
to the control of that computer.

11-0-7

5.3 TRANSPORT READY (BIT 12 = 1)

The transport ready bit indicates that the last-addressed tape transport is in
a ready condition as follows:

1) Power is on.
2) Magnetic tape reel is mounted and tape is properly loaded.
3) Tape marker detector lamp is operating.

5.4 XIRG DETECTED (BIT 11 = 1)

The XIRG detected bit indicates that an extended interrecord gap (3 1/2 inches
between records) was sensed during tape read. Tape movement cuntinues until
the next record is read.

5.5 OUTPUT TIMING ERROR (BIT 10 = 1)

If the computer issues a write instruction to the magnetic tape control and
does not transfer the first output data word, or transfers a requested data
word"too late to be written in its proper place and before the interrupt is
sent to the computer following end of record, an output timing error occurs.
This word transfer time is related to format and density as shown in
Table 11-0-1. An output timing error can occur during search o~ selective
read operations if the magnetic tape control does not receive a search key
or selective read code before assembling.the first word. The time require­
ment may be as short as 2 1/2 milliseconds from the time the instruction
word is received by the magnetic tape control until the search key, selective
read code, or the first data word must be received.

5.6 INPUT TIMING ERROR (BIT 09 = 1)

If the computer issues a read instruction and fails to accept a word placed
on the input cable by the magnetic tape control "before the next word is to
be placed on the input cable, an input timing error occurs. This error
indicates that the computer lost one or more words of the last record since
data transmission to the computer ceases for the remainder of the record.
The tape continues to move to the end of record, at which time the magnetic
tape control sends the status word indicating the error with an interrupt
to the computer.

5.7 INCORRECT FRAME COUNT (BIT 08 = 1)

An improper modulus specified or some frames lost causes an incorrect frame
count error. This may be caused by one or more of the following:

1) There were not enough frames in the record to complete an integral
number of computer words.

2) One or more characters were not properly read or recorded.

11-0-8

TABLE 11-0-1. WORD ASSEMBLY TIME (MICROSECONDS)

Format UNIVAC 1540 UNIVAC 1541

Modulus Character 200 fpi 556 fpi 800 fpi* 200 fpi 556 fpi 800 fpi f.~

3 Bioctal 125 45 31.2 100 36 25

4 Bioctal 167 60 41.6 133.3 48 33.3

5 Bioctal 208 75 52.0 166.6 59.9 41.6

6 Bioctal 250 90 62.4 200 72 50

3 Octal 250 90 62.4 200 72 50

4 Octal 334 120 83.2 266.6 96 66.6

5 Octal 416 150 104.0 333.2 119.8 83.2

6 Octal 500 180 124.8 400 144 100

*Refer to individual computer technical description brochures for interface
compatibility definition.

3) Bad spots on the tape caused characters to be lost.

4) Reading the record with the wrong formst (for example, reading mod 4
with a tape record in mod 5).

Longitudinal parity error can be expected with incorrect frame count error
except during reading with the wrong modulus.

5.8 LATERAL PARITY ERROR (BIT 07 = 1)

During a writing process, a parity bit is added to each six-bit character
according to a format specified and the seven bits are recorded as one frame.
If the magnetic tape control detects a frame whose lateral parity does not agree
with that specified by the format, during any read type operation or during
the post-write check of the recording operation, a lateral parity error occurs.

5.9 LONGITUDINAL PARITY ERROR (BIT 06 = 1)

During a writing process, a longitudinal even parity bit is generated by the
magnetic tape control for each tape channel and recorded after the last frame
of the record. If the magnetic tape control detects an error in this parity
during any read type operation or during the post-write check of the recording
operation, a longitudinal parity error occurs. If a frame count error ever
oc.curs, the longitudinal parity error usually occurs. Both would be indicated
in the status word.

11-0-9

5.10 LAST TAPE MOTION (BIT 05; 1 = BACKWARD, 0 = FORWARD)

Any status word with interrupt sent to the computer at the completion of an
operation indicates the direction of the last tape motion. The program can
determine whether the tape is positioned at the beginning or the end of
the record.

5.11 TAPE MARK (BIT 04 = 1)

A recorded tape mark (refer to write tape mark) separates files of information
on the tape. Any read, space file, search file or back read operation that is
limited to a file and the post-write check of the write tape mark operation
indicates a tape mark in the status word.

5. 12 NO WRITE ENABLE (BIT 03 = 1)

When a write operation is attempted on a selected transport that has its
write enable cleared or the write enable ring is not inserted in the tape
reel, the no write enable is indicated in the status word.

5.13 END OF TAPE (BIT 02 = 1)

When the end of tape reflective marker is sensed by the magnetic tape unit,
a 1/2 second time-out begins, after which no forward movement of tape is
possible. Reverse direction tape motion past the tape marker is possible.
The end of tape indication appears in the status word. If forward tape motion
is reinitiated, the marker is sensed again and after the 1/2 second time-out,
the forward tape motion is stopped.

5.14 LOW TAPE (BIT 01 = 1)

A tape supply detector senses less than 100 feet of tape remaining on the
selected transport reel. The magnetic tape control indicates a low tape any
time a status word is sent to the computer with the tape positioned within
100 feet of end of tape.

5.15 LOAD POINT (BIT 00 = 1)

Recording on a tape begins at load point (a reflective tape marker placed at
least ten feet from the physical beginning of the tape). The write-load
point delay allows for a gap of at least 1/2 inch beyond the load point marker
(in the forward direction) before the first record may be written. The mag­
netic tape control indicates load point in the status word whenever an opera­
tion requesting backward motion of tape is attempted with the selected
tape positioned at load point.

6. EXTERNAL FUNCTION COMMANDS - FUNCTION \\uRDS

Operations and tape selections are requested by function words being sent to
the magnetic tape unit with an external function from the computer. A master
clear of the magnetic tape unit is performed when a demand duplex control

11-0-10

command is sensed by the magnetic tape control. It differs from the other
operations in these three respects:

1) It may be performed at any time, even when magnetic tape unit is busy.

2) It has priority over all other operations in the instruction word (see
Figure 11-0-6).

3) It does not result in a status interrupt to the issuing computer.

The master clear stops all tape motion (except a rewinding tape) and sets the
magnetic tape unit in the ready state. At any time after a master clear, the
magnetic tape control accepts another external function. Since this function
is not considered a normal operation, its use should be restricted to times
when the magnetic tape unit is believed to be in an illogical state or when its
state cannot be determined. The master clear does not clear the write enable
which is set manually. To clear the write enable, a form of clear write
enable instruction must be used.

Individual operations are performed by the magnetic tape unit under direction
of an instruction word. When the computer output word is transmitted with an
external function signal, it is sensed at the magnetic tape control as a
command. The operation to be performed, format and density, if required, and
the transport selection address or reading bits are defined in the instruction
word. The format for the instruction word is shown in Figure 11-0-6. The
individual tape transport is selected by bits 05 through 00 of the instruction
word. The magnetic tape unit consists of a maximum of eight tape transports,
each of which must be assigned a logical number by the operator on the transport
selection switch provided for each tape handler.

6.1 FORMAT '{BITS 10 - 7)

The format portion of the instruction word contains modulus, character, and
parity designators. A complete format selection must be included in all
instruction words which request a reading or recording operation with the
exception that modulus may be ignored in the write tape mark instruction. The
modulus designator and the character designator direct the magnetic tape
control in the assembly and disassembly of computer words from or to tape frames.

6.2 CHARACTER DESIGNATOR (BIT 8); 1 SELECTS OCTAL, 0 SELECTS BIOCTAL

Bioctal or octal (redundant) format is specified in operations requiring
reading or writing. The bioctal format disassembles 18-, 24-, 30-, or 36-bit
computer words into 3, 4, 5, or 6 six-bit-plus-parity tape frames, respectively
during recording (vice versa for reading). (See Figure ·II-D-7.) The octal
format disassembles 18-,24-,30-, or 36-bit computer words into 6, 8, 10, or
12 tape frames, respectively, during recording (vice versa for reading).
Tape channels 3, 4, and 5 contain the same information as channels 0, 1, and
2, respectively, in each frame, except when channels 0, 1, and 2 contain
zeros, channels 3, 4, and 5 contain ones. Odd parity is selected by the
magnetic tape control when writing or reading octal characters. The redundant
recording in octal format adds to the reliability (see Figure II-D-8).
For compatible tapes. data must be recorded in biocta1 format.

II-D-1l

Transmit Extra
1 0 1

35----------18 17 16 15 14 13 12 11 10 918 r 7 6 5 4 3 2 1 01
U2 I I = Not Used Operat ion Oode .-4

I ~ I = Addressing Switch*
"0

bit i I~ I Position
Duplex Control Code **

6 Mod 3 o 01~1>a 0 1 i 0 1 1
Nondup1ex 000 4

. .c ~ 0 1 .. 1 0 2
Mod o 1 IU

";: 0 1 .. 1 1 3
Re lease Control 010 Mod 5 1 o I~ 0 1 1 0 0 4
Release Request 1 o 0 Mod 6 1 1 I 1 1 0 .. 0 1 5

.:-11 1 0 8 1 0 6
Dema nd Cont ro 1 110 -- - - 1 0 .. 1 1 7
(Master Clear) Biocta1 01 1 0 1 0 0 8

1 1 (0 0 1 9
__ Oct~_ ~ 1 1 8 1 0 10

Even 0 1 1 It 1 1 11
~----- --- Odd 1 1 1 1 0 0 12

Transmit Extra Code 1 0 1 0 0 It 0 1 13
200 Frames per Inch o 0 0 0 It 1 0 14
556 Frames per Inch 1 0 0 0 It 1 1 15

0 0 1 0 0 16
800 Frames per Inch 0 1
Same as Last

1 1 Instruction ----------Bias
0 0 0 0 o Normal

Bias
0 1 0 0 0 Force

Bias
1 0 0 0 0 Force High

Bias
1 1 0 0 0 Force L.ow

Bias

* Indicates position of address switch on each tape transport. Allowance is
made for 16 tape transports to retain program conpatibi1ity with UNIVAC
1240 Magnetic Tape Subsystems. Programs written for use on the UNIVAC
1540/1541 Magnetic Tape Subsystems address only tape transport positions
1 through 8.

** I = zero or one.

Figure 11-0-6. External Function Word Format

II-D-12

Forward Tape
Direction

This edge
of tape
next to
transport }

Oxide
Side

Oxide
Side

Oxide
Side

-...

Oxide
Side

~-- - -
P 05 04 03 02 01 00 "'"
P 11 10 09 08 07 06
p -. 17 16 15 14 13 12

----- - -
6 5 4 3 2 1 0

Modulus 3

-- - 00-P 05 04 03 02 01
P 11 10 09 08 07 06
P 17 16 15 14 13 12
P 23 22 21 20 19 18 - ~ - -
6 5 4 3 2 1 0

Modulus 4

- ~

"-

P 05 04 03 02 01 00
P 11 10 09 08 07 06
p 17 16 15 14 13 12
P 23 22 21 20 19 18
p" 29 28 27 26 25 24

-- -6 5 4 3 2 1 0

Modulus 5

-- - -
P 05 04 03 02 01 00
P 11 10 09 08 07 06
p 17 16 15 14 13 12
P 23 22 21 20 19 18
P 29 28 27 26 25 24
P 35 34 33 32 31 30 - --~ - ~

6 5 4 3 2 1 0

Modulus 6

Figure II-D-7. Bioctal Tape Format

II-0-13

3rd Frame
2nd Frame
1st Frame

Tape Channel

4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

Forward Tape
Direction

This edge
of tape
next to
transport

Forward Tape
Direction

Oxide
Side

Oxide
Side

Oxide
Side

Oxide
Side

P 02 01 00 02 01 00-
P 05 04 03 05 04 03
P 08 07 06 08 07 06
p 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 U 16 15

- -6 5 4 3 2 1 0

Modul us 3
- - -- -

00 P 02 01 00 02 01
P 05 04 03 05 04 03
P 08 07 06 08 07 06
p 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 17 16 15
P 20 19 18 20 19 18
P 23 22 21 23 22 21

.......

6 !) 4 3 2 1 0

Modulus 4
-~

P 02 01 00 02 01 00 ~
P 05 04 03 05 04 03
p 08 07 06 08 07. 06
p 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 17 16 15
P 20 19 18 20 19 18
P 23 22 21 23 22 21
P 26 25 24 26 25 24
p 29 28 27 29 28 27 - - - --~ ~

6 5 4 3 2 1 0

Modulus 5

-----~ - -
P 02 01 00 02 01 00
P 05 04 03 05 04 03
p 08 07 06 08 07 06
p 11 10 09 11 10 09
p 14 13 12 14 13 12
P 17 16 15 17 16 15
P 20 19 18 20 19 18
P 23 22 21 23 22 21
p 26 25 24 26 25 24
p 29 28 27 29 28 27
p 32 31 30 32 31 30
P 35 34..23 35 34 33 -- -6543210

Modulus 6

Figur.e II ... D-8. Octal Tape Format

11-D-14

6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

10th Frame
9th Frame
8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

12th Frame
11th Frame
10th Frame
9th Frame
8th Frame
7th Frame
6th Frame
5th Frame
4th Frame
3rd Frame
2nd Frame
1st Frame

Tape Channel

6.3 MODULUS

The modulus specifies the length of the computer word to be recorded on tape
or read from the tape (Refer to Table II-D-2).

6.3.1 MODULUS 3 (DESIGNATOR BITS 10 AND 09 = 00)

An l8-bit computer word is disassembled and recorded as three tape frames
of bioctal character format or six tape frames of octal character format. If
a computer delivers a word larger than 18 bits for recording, the magnetic
tape control records the lower order 18 bits of the word on the tape and
discards the remaining high order bits. During mod 3 reading operations,
three tape frames are assembled as an l8-bit computer word for bioctal
character format, or six tape frames are assembled as an l8-bit computer word
in octal character format. If the computer word size is larger than 18 bits,
the frames are assembled in the lower order 18 bits and zeros are placed in
remaining high order bits (see Figures II-D-7 and II-D-8).

6.3.2 MODULUS 4 (DESIGNATOR BITS 10 AND 09 = 01)

A 24-bit computer word is disassembled and recorded as four tape frames of
bioctal character format or eight tape frames of octal character format. If
a computer delivers a word larger than 24 bits for recording, the ma~netic
tape control records the lower order 24 bits of the word on the tape and
discards the remaining high order bits. During mod 4 reading operations,
four tape frames are assembled as a 24-bit computer word for bioctal character
format or eight tape frames are assembled as a 24-bit computer word for octal
character format. If the computer word size is larger than 24 bits, the
frames are assembled in the lower order 24 bits and zeros are placed in
remaining high order bits (see Figures II-D-7 and 11-0-8).

6.3.3 MODULUS 5 (DESIGNATOR BITS 10 and 09 = 10)

A 30-bit computer word is disassembled and recorded as five tape frames of
bioctal character format or ten tape frames of octal character format. If
a computer delivers a word larger than 30 bits for recording, the magnetic
tape control records the lower-order 30 bits of the word on the tape and
discards the remaining high order bits. During mod 5 reading operations, five
tape tape frames are assembled as a 30-bit computer word for bioctal character
format or ten tape frames are assembled as a 30-bit computer word for octal
character format. If the computer word size is larger than 30 bits, the
frames are assembled in the lower order 30 bits and zeros are placed in
remaining high order bits (see Figures II-D-7 and II-D-8).

6.3.4 MODULUS 6 (DESIGNATOR BITS 10 AND 09 = 11)

A 36-bit computer word is disassembled and recorded as six tape frames of
bioctal character format or twelve tape frames of octal character format.
During mod 6 reading operations, six t'ape frames are assembled as a 36-bi t
computer word for bioctal character format or twelve tape frames are assembled
as a 36-bit computer word for octal character format (see Figures II-D-7 and
11-0-8) .

11-0-15

TABLE 11-0-2. CHART SHOWING THE EFFECTS OF VARIOUS UNIVAC COMPUTERS
OPERATING WITH THE UNIVAC 1540 OR 1541 MAGNETIC TAPE SUBSYSTEMS

NOTE: LSB =

Computer

UNIVAC 1218
and 1219
single chan­
nel (one 18-
bit word is
output/
request)

UNIVAC
1218 and
1219 dual
channel
(one 36-
bi t word
is output/
request)

UNIVAC
1206, 1212
CP-642B, or
1230 (one
30-bit word
is output/
request)

least significant bits; MSB = most significant bits
Mod 3 Mod 4 Mod 5 Mod 6

BCD Write BCD Write BCD Write BCD Write

For each 18-
bi t word re­
ceived, 1540
or 1541
writes 3
frames on
tape. Mod 3
recommended
for single
channel
operation

For each 36-
bi t word re­
ceived, 1540
or 1541 wri tes
3 frames on
tape. Since
only 18 LSB
are written,
18 MSB are
lost

For each 30-
bi t word re­
ceived, 1540
or 1541 writes
3 frames on
tape. Since
only 18 LSB
are written,
12 MSB are
lost

For each 18-
bi t word re­
ceived, 1540
or 1541
writes 4
frames on
tape: 1
frame of ze­
ros followed
by 3 data
frames

For each 36-
bi t word re­
ceived, 1540
or 1541 writes
4 frames on
tape. Since
only 24 LSB
are written,
12 MSB are
lost

For each 30-
bit word re­
ceived, 1540
or 1541 writes
4 frames on
tape. Since
only 24 LSB
are written,
6 MSB are
lost

11-0-16

For each 18-
bit word re­
ceived, 1540
or 1541
writes 5
frames on
tape: 2
frames of ze­
ros followed
by 3 data
frames

For each 36-
bi t word re­
ceived, 1540
or 1541 writes
5 frames on
tape. Since
only 30 LSB
are written,
6 MSB are lost.
Mod 5 commonly
used when pre­
paring tapes
for 30-bit com­
puters (CP-642B,
UNIVAC 1206 or
1230)

For each 30-
bi t word re­
ceived, 1540
or 1541 writes
5 frames on
tape. Mod 5
recommended
for operation
wi th CP-642B,
1206, or 1230
computers

For each 18-
bit word re­
ceived, 1540
or 1541
writes 6 frames
on tape: 3
frames of zeros
followed by 3
data frames

For each 36-
bi t word re­
ceived, 1540
or 1541 writes
6 frames on
tape. Mod 6
recommended
for dual
channel
operation

For each 30-
bit word re­
ceived, 1540
or 1541 writes
6 frames on
tape. 1 frame
of zeros followed
by 5 data
frames. Mod 6 is
commonly used
when preparing
tapes for 36-bit
computers

6.4 PARITY DESIGNATOR (BIT 7), 1 SELECTS ODD; 0 SELECTS EVEN

Either odd (the total number of ones in a frame is odd) or even (the total
number of ones in a frame is even) lateral parity may be specified In the
instruction word for bioctal character writing and reading operations; however,
odd parity is selected by the magnetic tape control for the oct~l character
writing and reading operations. For compatible tapes, odd parity is chosen
for binary data codes and even parity is chosen for binary coded decimal
(BCD) data.

6.5 DENSITY DESIGNATOR (BITS 6 AND 5)

00 selects 200 fpi; 10 selects 556 fpi; 01 selects 800 fpi; and 11 selects
same density as last instruction.

At low density, data is recorded at 200 frames per inch, at medium density
555.5 frames per inch, and at high density 800 frames per inch. Density must
be specified in instruction words requesting reading or writing operations.
Refer to Table II-D-1 for word assembly and disassembly time.

6.6 OPERATION CODE

The operation code is located in bits 15 through 11 of the instruction word.
Legal operation codes exist for the six basic operations and for combinations
of these operations. The six basic operations are duplex selection, read,
search, write, space file, and rewind. Operation codes using any basie oper­
ation (except rewind) must be supplemented by format and density codes placed
in bits 10 through 07 and bits 06 and 05 respectively, of the instruction
word. Table I1-D-3 is a listing of the operation codes and Figure II-D-~
shows the structure of the entire instruction word.

6.6.1 READ OPERATIONS

The selected transport moves tape at 120 inches per second (by the 1540) or ISO
inches per second (by the 1541) in either direction and transfers seven bit
frames (read from tape) to the magnetic tape control. Parity, even or odd,
as specified in the format is checked for each frame of the record. The
six data bits are assembled into 18-, 24-, 30-, or 36-bit computer words
according to the modulus and character designator of the format. The assembled
computer word is placed on the data lines of the computer input cable and the
input request (IR) line is set. The computer samples the data lines at its
convenience and sets the input acknowledge line to the magnetic tape control.
The tape continues to move and new words are being assembled until the end
of record (interrecord gap) is reached. The computer must sample the input
lines and acknowledge each IR within a specified time (governed by density,
character, and modulus - Table II-D-l) to prevent loss of one or more words
in the record. If the computer fails to sample the input lines and acknow­
ledge the IR within the allotted time during any type of read operation, an
input timing error occurs and the magnetic tape control ceases to transfer
data to the computer for the remainder of the record. Following the detection
of the end of record, the magnetic tape control sets an input timing error
status word on the input lines and interrupts the computer program by

I1-D-17

Operation

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

TABLE 11-0-3. OPERATION CODES

Code Operation

Read (read forward)

Read: selective (selective read-forward)

Read: modified stop

Space file

Search type I

Search type II

Search file type I

Search file type II

Write

Write XIRG

Write ignore error halt

Write XIRG; ignore error

Write modified stop

Write edit

Write tape mark

Write tape mark

Backread (read backward)

halt

Backread selective (selective read-backward)

Backread modified stop

Backspace file

Backsearch type I

Backsearch type II

Backsearch file type I

Backsearch file type II

Rewind

Rewind, clear write enable

Rewind

Rewind, clear write enable

Rewind-read

Rewind-read, clear write enable

Rewi nd- read

Request transport-status

Bits 17, 16, and 6 = 1, O,and 1, respectively, transmit extra

11-0-18

setting the external interrupt (EI) line on that channel. When the eomp~ter
acknowledges the interrupt, the magnetic tape unit becomes ready.

Tn all types of read operations, format and density selections must be made
in each instruction.

6.6.1.1 READ-FORWARD

The selected transport reads one record according to the format It.tea and
checks each frame for parity. If a parity error is detected, the magnetic
tape control continues to transfer data to the computer for the reMainder of
that record. After sensing the end of record, the magnetic tape control sends
a status word to the computer with a signal on the external interrupt line.
This status word contains magnetic tape unit status and any or all error
indications encountered during the reading of the record.

6.6.1.2 READ-BACKWARD

The selected transport reads one record backward to the next interreco~d gap
(back one record) according to format and density stated in the instruction
word. Lateral and longitudinal parity are checked while reading. It an
error is detected during backward motion, the reading operation continues .nd
the status word, upon detection of interrecord gap, contains the magnetic t.pe
unit status and the error indication. Characters are assembled in eech comp~ter
word in the same position as in a forward read. Computer words, however, are
transmitted in reverse order.

6.6.1.3 READ-MODIFIED STOP

The selected transport reads one record according to the format stated and
checks each frame for parity. At the completion of the read, the magnetic tape
is stopped farther in the IRG. The status word sent to the computer ~ftef
detection of end of record contains magnetic tape unit status and any or all
error indications including parity error.

6.6.1.4 SELECTIVE READ-FORWARD/BACKWARD

The selected transport reads one record according to the format stated anq
checks each frame for parity. Words are read and assembled as in a r,ad-forward/
backward. A selective read code contained in the least significant .ix bits
(05 through 00) of a computer word, is sent by a single word output butfer
to the tape unit before it can read and assemble one word. Should this word
be formed before the selective read code is transmitted, an output timing
error is detected. The magnetic tape control compares the least signitleant
six bits (05 through 00) of each assembled computer word with the sel$ctive
read code. If the comparison is negative, the word is discarded and reading
continues. A positive comparison causes the word to be transmitted to the
computer. However, if a parity error is detected in either case, further
transfer of data ceases for the remainder of the record. The status word sent
to the computer after detection of end of record contains magnetic tape
unit status and any or all error indications.

II-D-19

6.6.2' WRiTE OPERATION - GENERAL INFORMATION

When the magnetic tape control senses a write function, the selected transport
moves the tape forward and records the interrecord gap. A signal is placed on
the computer output request (OR) line. The computer, at its convenience,
responds with a word on the data lines and places a signal on the channel
output acknowledge (OA) line. The magnetic tape control recognizes the OA,
samples the data lines and removes the output request. The word is transferred
to the dis~ssembly register and another output request is issued. The magnetic
tape conttotdissembles each word according to the modulus selected in the
wri te function word, generates frame pari ty, and transfers the seven bi ts to
the transport for recording on tape according to the density selected. As
the recording frame passes over the read head, it is checked for parity.
If a parity error is detected, the magnetic tape control stops the write
operation and the tape motion. A status word, indicating an error in recording,
is placed on the channel input lines with a signal on the external interrupt
line. If no error occurs during recording, the process continues until the
computer no longer acknowledges the output request within the time allotted
for another word to be disassembled and written. This time is dependent on
format and density (refer to Table II-D-l). When the computer does not
respond within the allotted tine, the end of wiite is assumed by the magnetic
tape control. Longitudinal parity is written and the recording process is
terminated. Tape motion is stopped after a portion of the interrecord gap is
written on the tape. The magnetic tape control removes the output request and
places a status word, indicating successful conpletion of the write, on the
input lines and sets the external interrupt line. When the computer acknow­
ledges the interrupt, the magnetic tape subsystem becomes idle. If the
computer acknowledges the output request after the allotted time but before
the interrupt is sent, the magnetic tape control interprets the action as an
output timing error and notifies the computer in the status word.

NOTE: The normal interrecord gap is approximately 3/4 inch in length and the
extended interrecord gap is approximately 3 1/2 inches in length.

6.6.2.1 WRITE

The selected transport writes on the tape according to the format and density
stated in the function word. If no recording error is detected, the normal
oper~ti.on continues until the computer no longer transfers data, at which time
longitudinal parity is written and the status word with interrupt is sent to
the co"!puter.

6.6.2.2 WRITE-IGNORE ERROR HALT

The selected transport writes on the tape according to the format and density
stated in the function word, but the magnetic tape control does not stop the
writing process if lateral parity errors are detected as the recorded frames
pass over the read head. The status word sent to the computer with interrupt
after completion contains magnetic tape unit status and any or all errors
encountered.

II-D-20

b.6.2.3 WRITE-EXTENDED INTERRECORD GAP (XIRG)

The selected transport records an extended interrecord gap of 3 1/2 inches
instead of the normal 3/4 inch IRG preceding a normal write portion of the
operation. If no data is transferred from the computer for recording, the
extended interrecord gap is present on the tape and an output timing error
occurs. The status word sent to the computer after completion contains mag­
netic tape unit status and any or all error indications detected as in a ~or­
mal write operation.

NOTE: There is a speciHl length interrecord gap. Under program control, inter­
record gaps other than the fixed 3/4 inch and 3 1/2 inch lengths may be
written. Successive 3/4 or 3 1/2 inch gaps may be written by issuing
the appropriate write functions without initiating output buffers at
the computer. The program must be prepared to handle the output timing
erro~. that is indicated in the interrupt status word following e8ch
write operation performed in this manner.

6.6.2.4 WRITE TAPE MARK

The selected transport writes a fixed format tape mark. The tape mark is a
special record having ones in only the 0-, 1-, 2-, and 3-bit positions of the
first frame, followed by three frames of zeros and one frame of longitudinal
parity. The entire record is written by the magnetic tape control upon
receiving the instruction word. Format selection can be ignored. To be compa­
tible with other tape systems, the tape mark must be exactly as specified
above. A status word with interrupt is sent to the computer after completion
of the write tape mark operation.

6.6.3 SPACE FILE-FORWARD/BACKWARD

The selected transport moves the tape in the selected direction to the IRG
beyond the next tape mark and indicates tape mark in the status word. The tape
is positioned in the IRG for reading or writing. (See positions A anq B in
Figure 11-0-9). Space file forward positions the tape at A; space file back­
ward positions the tape at B. Format and density must be stated in the
instruction word since parity is checked during the tape motion. Any error
detected and magnetic tape unit status is indicated in the status word sent
to the computer with interrupt after yompletion. If the tape is at load point
at the time the back space or at end of tape at the time the space file
instruction is given, an improper condition exists and is noted in the ~tatus
word.

6.6.4 REWIND

The selected transport rewinds the tape backward to the load point at rewind
speed. The status word with interrupt is sent to the computer after the
magnetic tape control initiates the rewind and not at the completion of the
rewind. If the tape is at load point. when the instruction is received, no

11-0-21

tape noti~n or improper condition results, but the status word indicates
load point. This provides a method of testing for completion of the rewind
operation.

6.6.5 MULTIFUNCTION OPERATIONS (GENERAL INFORMATION)

Multifunction operations consist of combinations of basic operations of the
magnetic tape unit, and can be performed in response to the one instruction
word from the computer. Examples are the search operations which oombine the
features of a read with the ability to do a search on the first word of records,
compare these words against an identifier (search key) word, and read on a
find. Other multifunction operations combine a read with a rewind operation.
Combinations of functions such as these save on computer instructions, and
provide some capabilities that cannot be achieved by using the basic operations
one at a time.

6.6.5.1 SEARCH (TYPE I AND TYPE II - FORWARD/BACKWARD)

The search operation combines the features of read forward/backward and a
search. The selected tape transport reads/records from the tape either
forward or backward and compares the first wordf.; of each tape record wi th a
search key (identifier word) which is transmitted from the computer to the
magnetic tape unit by an output buffer of one word. When a compare is
affirmative, that find record is transmitted to the computer as in a read
forward/backward.

Tape motion is started upon receipt of the instruction word. If the magnetic
tape unit does not receive the search key from the computer before it starts
reading the record, an output timing error occurs. This reaolng start time
"my be as short as two and one-half milliseconds.. The search operation
is terminated by the magnetic tape unit when this timing error is detected
by the magnetic tape control. The status word containing magnetic tape unit
status and any or all error indications is sent to the computer upon detecting
the end of the record in which the error occurred. When the tape motion is
stopped due to an error, the tape will be positioned in the interrecord gap
before the record in which the error occurred if the motion is backward, and
after the record if the motion is forward. A parity error can result from a
faulty parity check on any frame of the tape being searched.

The ones (type I) compare is a bit-by-bit greater-than-or-equal compare. If
the first word of the record is greater than or equal to the search key
identifier word, a find is made. A six-bit example is shown "below.

Search key or identifier word
Find, if first word is
Find, if first word is
No find, if first word is
No find, if first word is

001101
011101
001101
010101
001100

* In a forward search, the first word encountered in each record is the first
word of the record. In a backward search, the first word encountered in each
record is the last word of the record.

11-0-22

The identical (type II) compare is an exact equal compare. The first word of
the record must be exactly equal to the search key identifier word to define
the find record.

6.6.5.2 SEARCH FILE ~:~ FORWARD/BACKWARD

The magnetic tape control performs a search forwardibackward type I or type II
as directed by operation code, on the selected tape transport. until it detects
a find or a tape mark.** If a tape mark is detected before a find, the search
file operation is terminated and the tape mark status code is present in the
status word sent to the computer after detecting end of record.

6.6.5.3 REWIND-READ

The selected transport rewinds the tape to the load point at rewind speed and
then performs a normal read of the first record according to the format and
density stated in the instruction word. A status word containing magnetic
tape unit status and any or all errors is sent to the computer with interrupt
after detecting the end of record.

6.6.5.4 REWIND-CLEAR WRITE ENABLE

The selected transport performs a normal rewind of the tape to load point and
clears the write enanle. This selected transport no longer performs a write
function without manual intervention. The status interrupt is presented upon
initiation of the rewind and not upon completion.

6.6.5.5 REWIND-READ-CLEAR WRITE ENABLE

The selected transport performs a rewind-clear write enable and then a normal
read of the first record in the forward direction according to the format
stated in the instruction word. A status word containing magnetic tape unit
status and any o~ all errors is sent to the computer with interrupt after
detecting the end of reoord.

6.6.6 REQUEST TRANSPORT STATUS

No tape operation is performed. The magnetic tape unit sends a status word
reflecting the status of the selected tape transport to the computer with
interrupt. However, when the not ready indication is obtained, the remainder
of the status word may not be valid as it may have been if derived from other
handlers.

* A file is defined as one or more records separated by tape marks (see Figure
11-0-9) .

** A tape mark is a special record on a tape placed there by the operation,
write tape mark (see Figure 11-0-4).

11-0-23

CHANGE 2

A
Position

Tape Forward Direction

File
______________________ ~A~ ____________________ ~

~ "
Record IRG Record IRG Record IRG Record

Tape
Mark Starting

Position

Tape
Mark

Figure 11-0-9. Magnetic Tape Unit - Tape File

R
Position

6.6.7 TRANSMIT EXTRA (BITS 17, 16, AND 6 = 1, 0, AND 1, RESPECTIVELY)

The transmit extra instruction word is sent under program control in response
to an interrupt indicating a frame count error at the end of a read operation.
All bits other than 17, 16, and 6 of the instruction word are ignored.

The transmit extra provides data recovery capabilities by the transmission of
a single data word containing the extra characters of an incomplete computer
word (6 bits per character) and denoting those character positions void of
data. The extra characters appear in the most significant character positions
consistent with the specified modulus. Each bit of the least significant six
refers to a character position in the word originating in the magnetic tape
control assembly register. All bits beyond the modulus limits contain O's.
Whenever a bit in the least significant character is 1, the corresponding
character in the assembly register is invalid; when a bit is 0, the correspond­
ing character is valid (see Figure II-O-lO).

In the redundant format, the lack of one frame (character) would not allow the
last frame to enter the assembly register and the frame would be lost. However,
this would be a valid improper frame count and would be accompanied by a
longitudinal parity error.

7. MAGNETIC TAPE UNIT - HIGH- SPEED PRINTER OFF-LINE CAPABILITY

Either magnetic tape unit is capable of communicating directlv with the
high-speed printer* for off-line operation. The magnetic tape unit
communicates with the high-speed printer unit in the request-acknowledge moae.
(The magnetic tape-printer interface is shown in Figure 11-0-11).

Using terms based on computer-magnetic tape unit communication and computer­
high-speed printer communication in this discussion, the output t~ the high~
speed printer interface is connected to the input from the magnetIc tape unIt

~"Does not apply to the 9200/9300 Subsystem.

II-D-24

Bioctal

u V W X Y 00*

V W X Y 2 01

W X Y 2 - 03

X Y 2 - - 07

Y 2 - 17

2 - - - - 37

- V W X Y OO~:c

- W X Y 2 01

- X Y 2 - 03

- Y 2 - - 07

-t2 - - - 17

- - W X Y 00*

- - X Y 2 01

- - Y 2 - 03

- -t2 - - 07

- X Y 00*

- Y 2 01

-t2 -03

Extra Frame Indicator

Binary

5 4 3 2 1 0

o 0 0 0 0 0

o 0 0 0 0 1

o 0 0 0 1 1

000 1 1 1 Mod 6

o 0 1 1 1 1

o 1 1 1 1 1

o 0 0 0 0 0

o 0 0 0 0 1

o 000 1 1 Mod 5

000 1 1 1

°to 1 1 1 1
Mod 5 Limi ts

o 0 0 000

o 0 000 1

o 000 1 1 Mod 4

o 0to 1 1 1
Mod 4 Limi ts

o 0 0 000

o 0 000 1 Mod 3

0 o 010 1 1
Mod 3 Limi ts

NOTE: 2 denotes last frame. Y denote$ second last frame. and so forth. A 0
in the extra frames indicator denotes a valid frame of data in the
corresponding portion of the computer word within the modulus limits.

* The word is identical to the last (normally transmitted) word except that
Zo haS been destroyed, no extra frames are present,and the transmit extra
command should not have been used.

Figure 11-D-10. Transmit-Extra Computer Word Format

11-D-25

interface; that is, the high~speed printer output request line is connected to
the magnetic tape unit input acknowedge line; the magnetic tape unit input
request line is connected to the high-speed printer output acknowledge line;
the magnetic tape unit interrupt line is connected to the high-speed printer
external function line; the magnetic tape unit data lines are connected to the
high-speed printer data lines.

The high-speed printer exercises control of the off-line system after the
magnetic tape unit is switched to printer mode, the desired tape transport is
selected, and the tape is positioned at load point. The high-speed printer
initiates the operation when it is placed in off-line position.

The data on magnetic tape to be printed off-line must be recorded in 120 Field
data character record lengths (120 characters per line on high-speed printer).
As each record is read from the tape and transmitted to the high-speed printer,
the 120 characters are printed as one line and the paper is ~dvanced to the
next line position. Each 30-bit word delivered to the high-speed printer must
contain five Field data code characters (refer to Table II-D-4). These are in
turn disassembled' into six-bit characters and stored in the character core
memory of the high-speed printer control unit. One word can be stored e~ch
54 microseconds. (Refer to Table II-D-l for recording density limitations.)
When the core memory character counter indicates 120 characters, the print cycle
cycle is initiated and the line is printed. A record of less th~n 24 30-bi1
words indicates to the high-speed printer to stop the print operation. A record
of five space codes (05) stops the print operation without printing a line.

'If) n_ ... _ Lines
~

vV Ua La

Output Data Request I Input Acknowledge
I ~

Output Acknowledge
I

Input Data Request
~

External Function Interrupt
~

Figure I1-D-ll. Magnetic Tape - Printer Interface

11-0-26

o. OPERATING INSTRUCTIONS

To prepRre the off-line mRgnetic tape unit-high-speed printer system for oper:l­
f ion, the operator must select:

1) Character, pRrity, Rnd density of the recorded tRpe at the mRgnetic t~pe
unit cabinet.

2) Switch the magnetic t~pe unit to printer mode o

3) Select the desired tRpe transport.

4) LORd and position the tRpe at lORd point.

5) PIRce the high-speed printer in off-line position.

9. SEQUENCE OF EVENTS

The normRI sequence of events for trRnsfer of dRtR to the high speed printer
is RS follows:

1) High-speed printer sets its output dRta request.

2) Magnetic tape subsystem, in the ready stRte, recognizes the first output
datR request.

3) The magnetic tRpe unit places R word on the data lines Rnd sets its input
dRta request.

4) High-speed printer recognizes this input dRtR request RS an output
Rcknowledge.

5) High-speed printer samples the data lines and cleRrs its output dRtR
request.

6) MRgnetic tRpe unit recognizes the cleRring of the output data request
as Rn input acknowledge.

Steps 3 through 6 are repeated until the complete record is transferred, R.
which time the line is printed, the paper is advanced, and the cycle is re­
initiated. The process continues until the e~d. of file tape mark is reRd. The
high-speed printer recognizes the tape mark as a commRnd to position the paper
at top of form on the next page. The interrupt line of the magnetic tape unit
being connected to the external function line of the high-speed printer permits
the end of record and the tape mark codes to be sent to the high-speed printer
with commands to move paper one line space or top of form, respectively.

II-D-27

TABLE II-0-4. TYPE SYMBOLS AND CODES

Binary Binary
Octal Code Character Octal Code Code Character

00 000 000 Absolute value 27 010 III R

01 000 001 t Arrow (up) 30 all 000 S

02 000 010 8 Subscript eight 31 all 001 T

03 000 all [Bracket (open) 32 all 010 U

04 000 100] Bracket (close) 33 all all v

05 000 101 Space (undercut) 34 all 100 W

06 000 110 A 35 all 101 x

07 000 III B 36 all 100 y

10 001 000 C 37 all III Z

11 001 001 0 40 100 000

12 001 010 E 41 100 001

13 001 all F 42 100 010 +

14 001 100 G 43 100 all <

15 001 101 H 44 100 100 =
16 AA' , , A

I 45 100 101 > UUJ. J.J.U

17 001 111 J 46 100 110 < Equa 1 to or
less than

20 010 000 K
{ 47 100 III Left-hand brace

21 010 001 L
50 101 000 *Star

22 010 010 M
51 101 000 (

23 010 all N
52 101 010 > Equa 1 to or

24 010 100 0 greater than

25 010 101 P 53 101 011

26 010 110 Q 54 101 100 } Right -hand
brace

11_0-28

TABLE 11-0-4. TYPE SYMBOLS AND CODES (CONT.)

Binary Binary
Octal Code Character Octal Code Character

55 101 101 V Or 67 110 III 7

56 101 110 70 III 000 8

57 101 III =f 71 III 001 9

fIJ 110 000 0 72 III 010 " And

61 110 001 1 73 III all

62 110 010 2 74 III 100 /

63 110 all 3 75 III 101

64 110 100 4 76 III 110 ~Arrow right

65 110 101 5 77 III III x Multiply sign

66 110 110 6

11-D-29

CHANGE 1

SECTION II-E. UNIVAC HIGH-SPEED PRINTER (MODEL 1469)

(This section has been intentionally omitted.)

II-E~l

SECTION II-F. UNIVAC 1004 CARD PROCESSOR

1. BASIC INFORMATION

The UNIVAcQD 1004 Card Processor is a character-oriented data processing
computer. It may be adapted to be used as a peripheral equipment to a larger
computer. The UNIVAC 1004 Card Processor has the ability to perform arithmetic
functions, transfers, and compare operations using XS-3 coded characters (refer
to Table II-F-l). It contains a magnetic core memory consisting of 961
character locations. It also contains a built-in card reader and high speed
printer. A card punch as well as other peripherals may be included in the
1004 System.

The operation of the 1004 Processor is under the control of a series of
instructions wired on a plugboard. This series of instructions is referred
to as the 1004 program and each individual instruction is called a step. Each
step indicates that data is to be manipulated in some manner. When the machine
has completed all of the program steps, it is said to have completed its internal
cycle.

The plugboard, housed in a recess at the right of the 1004 processor, can be
removed for wiring or for storage when other plugboards are in use.

The discussion of 1004 operation presented here is with respect to the standard
1004 plugboard. This is a universal UNIVAC pre-wired plugboard for use with
a 1004 equipped with the universal computer/1004 interface adapter. It is
identified as: Part No. 4010507 B; Plugboard Assembly, Wired. No attempt
is made to describe the full capabilities of the 1004 processing section.
For a detailed description of programming a 1004 plugboard, refer to the
reference manual for the UNIVAC 1004 Card Processor, 80-Column.

The format of the data interface between the computer and the 1004 System is
a computer word. The adapter disassembles the words from the computer into
6-bit XS-3 characters for the 1004. Similarly, the adapter accepts the XS-3
characters from the 1004 and assembles them into the word length of the
associated computer. Because of the operation of the interface adapter, all
buffers to or from the 1004 must be packed XS-3 characters.

Figure II-F-1 shows the interface signals, both control and data, transmitted
between equipments during operation. Note that there are no external function
or external interrupt lines.

Five types of messages are utilized in communication between the computer and
the 1004:

1) Command message
2) R~p1y message
3) Read data message
4) Punch data message
5) Print data message

(computer to 1004).
(1004 to computer).
(1004 to computer).
(computer to 1004).
(computer to 1004).

II-F-1

TABLE II-F-l. 80-COLUMN CODE

80-Column 80-Column
Card Printable XS-3 Card Printable XS-3
Code Characters Code Code Characters Code

12-1 A 01 0100 7 7 00 1010

12-2 B 01 0101 8 8 00 1011

12-3 C 01 0110 9 9 00 1100

12-4 D 01 0111 12 & 01 0000

12-5 E 01 1000 11 - (minus) 00 0010

12-6 F 01 1001 12-8 ? 01 0011

12-7 G 01 1010 11-8 (exclam.) 10 0011

12-:-8 H 01 1011 0-1 / 11 0100

12-9 I 01 1100 2-8 + 11 0011

11-1 J 10 0100 3-8 It 01 1101

11-2 K 10 0101 4-8 @ 10 1110

11-3 L 10 0110 5-8 (colon) 01 0001

11-4 M 10 0111 6-8 > 11 1110

11-5 N 10 1000 7-8
,

(apos.) 10 0000

11-6 0 10 1001 12-3-8 . (period) 01 0010

11-7 P 10 1010 12-4-8 0 11 1101

11-8 Q 10 1011 12-5-8 [00 1111

11-9 R 10 1100 12-6-8 < 01 1110

0-2 S 11 0101 12-7-8 = 01 1111

0-3 T 11 0110 11-3-8 $ 10 0010

0-4 U 11 0111 11-4-8 * 10 0001

0-5 V 11 1000 11-5-8] 00 0001

0-6 W 11 1001 11-6-8 (semi-col.) 00 1110

0-7 X 11 1010 11-7-8 6 10 1111

0-8 y 11 1011 0-2-8 i= 11 0000

·0-9 Z 11 1100 0-3-8 f (comma) 11 0010

0 0 00 0011 0-4-8 % 11 0001

1 1 00 0100 9-5-8 (10 1101
r} r} 00 0101 n L 0 \ nn 1 1 n 1

" " v-u-v \ VV J.J.VJ.

3 3 00 0110 0-7-8 '\ 11 1111 I

4 4 00 0111

5 5 00 1000 I Blank No Space N.B. 00 0000

6 6 00 1001

II-F-2

computer Input Cable

,.. '"
(\ Input Data Lines -- · I - t I

I I Input Request
.- I I - · I I Input Acknowledge · ...

-I
)

\
..... "

A
Computer D 1004 Card

A Processor
P
T
E
R

". '"
I \ output Data Lines
I . --I f -I I output Acknowledge
I I ---,
I I Output Request

.- I I
r-- I •

\ I
'-/

Computer Output Cables

Figure II-F-I. Computer/lOO4 Card Processor Interface

II-F-3

When the 1004 is turned on and started, the only message it will respond to is
the command. When a computer chooses to utilize the 1004 Subsystem, it must
first initiate an output buffer to send a 30-character command message to the
1004. The first word of the command message is coded to signify what 1004
function is to be performed. When the 1004 receives a legitimate command
message it will immediately ,respond by sending a 30-character reply message
to the computer. To receive the reply message, the computer must initiate
an input buffer after sending the command. The content of the reply message
is not significant since its only purpose is to inform the computer that the
1004 has received a complete command message. The reply, however, will always
be identical in content to the last command.

After the command has been sent and the reply has been received, the next step
depends upon the type of function to be performed. In general, the function
will require the transf~r of data, and the computer is required to initiate
the appropriate input or output data buffer. If an output data .message is sent
to the 1004, the 1004 will respond with a reply message in exactly the same
manner as it does' for a command. If an input data message is received from
the 1004, no reply message will follow.

The standard plugboard (#4010507 B) provides for the following major functions
to be performed by the 1004 subsystem: card reading, card punching, printing,
and data transmission to and from the computer. Each function is initiated by
the computer by transmission of a command message to the 1004. It is per­
missible to specify more than one function in a single command message. When
this is done, a fixed internal priority scheme determines the order in which
the functions are performed. The computer cannot send a new command until all
functions specified by the previous command have been completed.

Each of the 1004 functions is discussed briefly below:

1) Transmit Read Data.

This function transfers a 90-character read data message from the 1004
to the computer. The fl~st ao characters are from the 1004 read sto~age;
the last 10 characters are not significant. The computer must initiate
an input buffer to receive the data. The data transferred is from the
last card that was read into read storage.

2) Read

This function causes the card reader to read the next card. The aO-column
card code is automatically translated into ao XS-3 characters and stored
in the 1004 read storage where it will destroy any data previously stored
there. After reading a card, a transmit read data command must be used
to transfer the data into the computer. The computer must initiate these
two commands for each card to be read.

3) Receive Print Data

This function transfers a ISO-character print data message from the com­
puter to the 1004. The first 132 characters are stored in the 1004 print

II-F-4

storage. The last 18 characters are not signlfican't. The computer must
initiate an output buffer to send the data.

4) Print

This function causes the 1004 printer to print one line consisting of
the 132 characters currently in the print storage. After printing the
line, the 1004 will automatically space to the next line. When 64 lines
of a 66-line page are printed, the 1004 will home paper to a posi tion
defined by a pre-punched paper tape control loop (usually top of next
page).

5) Receive Punch Data

This function transfers a 90-charaeter punch data message from the com­
puter to the 1004. The first 80 characters are stored in the 1004 punch
storage. The last 10 characters are not significant. The computer must
initiate an output buffer to send the data.

6) Punch

This function causes the 1004 card punch to punch one card containing
the 80 characters currently in the punch storage. The 1004 automatically
translates from the XS-3 code to aO-column card code during this process.

7) Receive Special Data

This function is used for test purposes only. It transfers 90 characters
from the computer to a special storage area in the 1004 memory. This
area is filled in reverse (ascending) order.

8) Transmit Special Data

This function is used for test purposes only. It transfers 90 characters
from the 1004 special storage area to the computer. This area is emptied
in reverse (ascending) order.

9) Space One Line

This function causes the 1004 printer to space one line without printing.

10) Home Paper

This function causes the paper form in the printer to be advanced to a
position defined by a pre-punched paper tape control loop (usually top
of next page).

11) Punch Blank Card

This function clears 1004 punch storage and causes one blank card to be
punched.

II-F-5

12) Stop

This function causes the 1004 processor to stop. The unit must then be
manually restarted before any more functions can be performed.

2. MESSAGE AND WORD FORMATS

A 30-character command message must first be sent to the 1004. The purpose of
this message is to allow the computer to signal the 1004 to perform one or more
of its functions (read, punch, and so forth). The format of the command message
is shown in Figure II-F-2. Note that only the first word contains significant
command information. The command message is master bit encoded and it is pos­
sible to set more than one command bit in a single message. Several instances
in which it may be convenient to set multiple command bits are listed below.

1) If bits 4 and 5 of character 2 are both set, the command instructs the
1004 to read a card and transmit data to the computer in one operation.
It should be noted, however, that due to the priority of the plugboard
logic, the transmit read data function is performed first and then the
read function~ Thus, each successive operation actually transfers the
data from the card that was read in the previous operation. If this
order of events is not satisfactory for a particular user application, it
will be necessary to program the two c'ommands separately.

2) If bits 2 and 3 of character 2 are both set, the command instructs the 1004
to receive a print data message and to print that data in the same opera­
tion.

3) If bits 0 and 1 of character 2 are both se~ the command instructs
the 1004 to receive a punch data message and to punch that data in the
same operation.

The computer cannot send a new command message to the 1004 until the previous
operation has been completed. After receiving a command message the 1004 will
always respond with a reply message. Only the commands, receive punch data
and receive print data, may be followed by a data output buffer. The first will
be followed by 80 characters of data plus ten non-significant characters.
The second will be followed by 132 characters of data plus 18 non-significant
characters. These characters must be in XS-3 code packed into data words.
Figure II-F-3 shows the format of 30-bit and lB-bit data words. After receiving
an output data message the 1004 always responds with a reply message.

There are two possible buffer lengths that will be transmitted by the 1004: a
30-character buffer (reply message) or 90 characters of data read from a card.

The 1004 transmits a reply message to the computer to signal the end of an
output operation. This message is sent by the 1004 either after receipt of a
command message or after receipt of output data (print data message or punch
data me$sage).

The reply message plays a significant role in the communication between the
computer and 1004 by signifying the end of an output buffer.

II-F-6

Character 1 Character 2 Character 3
Not Used

\\------------', V

Not Used

Punch Blank

Home Paper

~------------ Space 1 Line

~--------------- Transmit Special Data

~------------------ Receive Special Data

----Punch

~--------- Receive Punch Data

~--------- P r i n t

~----------Receive Print Data

~------------------Read

'----------------------- Tran smi tRead Da ta

'-------111 100 Command Identifier

Figure II-F-2. Command Code Format (First Word Only)

II-F-7

30-Bi t 129~ . 24 123 . ·
18

1
17" .12 111 _ 6

I

5 ..
• 0 I Word

I I i I I
1st 2nd 3rd 4th 5th

Character Character Character Character Character

IS-Bi t 17 III . 12 1 11 ...--.6 5 .. ~O
Word

Figure II-F-3. Data Words

Receipt of a reply message guarantees that the 1004 has accepted all of the
output data and permits the computer to initiate its next input or ~utput
buffer. The reply message is 30 characters. While the content of the reply
is not significant, it might be noted that it will be identical to the last
command message received by the 1004.

Only the command transmit read data may be followed by a data input buffer
(after receipt of reply). This buffer will be 80 characters of data plus
10 non-significant characters (a total of 90 characters). The data word format
is identical to that of output data and is shown in Figure II-F-3.

Tables II-F-2 and II-F-3 summarize the buffer sizes required for computer/1004
communication and the commands used to initiate communications.

TABLE II-F-2. BUFFER SIZES FOR COMPUTER/lOO4 COMMUNICATIONS

Message 30-Bi t Words lS-Bit Words Number Of 6-Bit
Type Characters

Command Message 6 10 30

Reply Message 6 10 30

Print Data Message 30 50 150

Punch Data Message 18 30 90

Read Data Message 18 30 90

II-F-8

TABLE II-F-3. SUMMARY OF COMMAND CODES

Command Type
First Command Word*

30 Bit 18 Bit

Read 7420000000 742000

Read and Transfer 7460000000 746000

Punch and Transfer 7403000000 740300

Print and Transfer 7414000000 741400

Home Paper. 7400040000 740004

Space One Line 7400100000 740010

* Only the first word is significant; however, six 30-bit words or ten
18-bit words must be sent.

Sample routines which may be used to program communications between a computer
and a 1004 Card Processor are given below. The routines are coded in
TRIM III source language and are intended for use with the computer in the
1219 I/O buffering mode and a 1004 with a standard plugboard. The routines
assume that the buffer areas referenced contain the proper number of words
and that the first word of each command buffer contains the proper command
code.

1) Read-a-Card Routine

OUT*CH1004
0*READCOM+11 (+12 for 1218 modes)
O*READCOM
IN*CH1004
0*WAII+11
O*WAIT
SKPIIN*CH1004
JP*LOK-1
OUT*CH1004
0*TRANS+11 (+12 for 1218 modes)
O*TRANS
IN*CH1004

II-F-9

CHANGE 1

1) Read-a-Card Routine (Continued)

O~:~WAIT+ll

O~:;WAIT

SKPIIN*CHl004
JP*LOK-l
IN~cCHl004

0::cINBUFF+35
O):cINBUFF
SKPIIN*CHl004
JP*LOK-l

2) Print/Punch Routine

OUT~:CCHl004

O~:cPRINfFCT+ll (+12 for 1218 modes)
O)!;PRI NTFCT
IN)!;CHI004
O~;WAIT+ll

O*WAIT
SKPIIN*CHI004
JP~cLOK-l

OUT*CHI004
0):cPRINTBUFF+61 (+62 for 1218 modes, +35 or 36 for punch)
O~cPRI NTBUFF
IN*CHI004
O*WAIT+II
O):cWAIT
SKPIIN*CHI004
JP~:CLOK-l

3) Home Paper Routine

OUT*CHI004
O*HOMPAP+ll (+12 for 1218 modes)
O~CHOMPAP

IN*CHI004
0*WAIT+1I
O*WAIT
SKPI I N':CCH I 004
JP*LOK-I

3. MANUAL OPERATING PROCEDURES

Prior to utilizing the UNIVAC 1004 Card Processor as peripheral equipment, it is
necessary to place all switches and controls in the normal operating position and
initialize the particular input/output device to be exercised. The manual pro­
cedures which must be performed at the 1004 control panel for each input/output
device are given on the next page.

II-F-lO

CHANGE 1

3.1 CARD READER

The input card deck to be read must be mounted in the card reader input hopper.
To initialize the card reader, depress the following 1004 switches in order:

1) CLEAR
2) START
3) FEED
4) RUN

3.2 CARD PUNCH

Prior to performing a card punch operation, the operator must ensure that there
are sufficient blank cards in the punch to perform the operation. To initialize
the card punch, depress the following 1004 punch switches in order:

1) OFF
2) ON
3) START

After a card punch operation is performed, the last card punched remains in the
card punch. To remove this card, depress the' following 1004 punch switches
in order:

1) OFF
2) ON
3) START

3.3 HIGH-SPEED PRINTER

Prior to performing a printing operation, the operator must ensure that there
is sufficient paper in the printer to perform the operation. To initialize
the high-speed printer, depress the following 1004 switches in order:

1) CLEAR
2) START
3) RUN

II-F~ll

CHANGE 2

SECTION II-G. UNIVAC 9200/9300 SUBSYSTEM

1. GENERAL INFORMATION

The UNIVACCB)9200/9300 Computer is a character-oriented data processing com­
puter. It may be adapted as a peripheral to a larger computer through the use
of the UNIVAC Intercomputer Control Unit (ICCU). The 9200/9300 Computer is
internally programmed and is available with a complete line of software. It
contains plated-wire memory divided into 8-bit bytes with a minimum of 8K
(8191) bytes. It also contains a built-in high speed printer, card reader
and card punch. Other peripherals are also available with the 9200/9300 System.

The operation of the 9200/9300 Military Computer Subsystem is accomplished by
the ICCU. The ICCU provides for the conversion and transmission of words
to bytes and bytes to words between the 9200/9300 Subsystem and the military
computer. See Figure II-G-l. To control the flow of data, the ICCU uses
external functions and interrupts.

Univac standard software (handlers resident in both computers) work together
in order to transfer data. The military computer proqram initiates all data
transfers and, as such~ acts as the master. The 9200/9300 Program acts as a
slave, accepting data or control commands, printing lines, and punching or
reading cards as directed by the master.

The discussion of the 9200/9300 military computer interface was prepared using
the Definition of Interface: UNIVAC 18, 30, or 36-Bit Computer with UNIVAC
Intercomputer Control Unit, PX 545H,and the 9200/9300 Resident Handler Program
created by the System Programming Department of UNIVAC Federal Systems Division.

No attempt is made to describe the complete operation or programming of the
9200/9300 Computer. For detailed information on the 9200/9300 System refer
'to the documentation describing that system; especially, Preliminary Operation
Instructions for the UNIVAC 9200 Systems, UP-7S37.

2. MILITARY COMPUTER/ICeD INTERFACE

201 INTRODUCTION

To avoid duplication, one basic interface will be used for the 18, 30, and 36-
bit word lengths with a resident handler, for each unique machine, written
from the basic interface.

The basic interface between a military computer and the ICCD shall be defined
as follows.

2c2 DATA FORMATS

II-G-l

CHANGE :2

r---- ------------,

I 9200/9300 Subsystem
I
I
I
I
I
I
I
I
I

L

Printer

I

I
I Processor
I

Card
Reader

Card
Punch

--- -
--

ICCU* -~ -
--

_J

* ICCU contained in the 9200/9300 Processor Cabinet

-
..
--
-:.. -
--

Figure II-G-l. ICCU Communication and Interface

II-G-2

Univac
Military
Computer

CHANGE 2

2.2.1 ICCU DATA TRANSFER FORMATS

The ICCU can transfer data for a specific word length (18, 30, or 36-bits) in
three data format modes. Presently, the handler programs are written in data
format mode B only.

Figure II-G-2 illustrates data format modes for an 18-bit interface; Figure
II-G-3, a 30-bit interface and Figure II-G-4, a 36-bit interface.

2.2.2 HEADER FORMATS

Header blocks transfer functional information from the master to the slave.
The blocks, in fixed word length format, are transformed to A-bit bytes for
the slave.

Figure II-G-5 illustrates fixed-word length format for an 18-bit interface;
Figure II-G-6, a 30-bit interface and Figure II-G-7, a 36-bit interface.

2.3 HEADER INFORMATION

Message headers and control block headers contain information that is used
by the slave program to perform the desired operation. The message header
is sent once to each device to establish the format for the desired operation.
Any subsequent calls, using the special function (see Subsection 2.6.3), will
result in the same operation as specified in the last header sent to that
device. The message header can precede the output buffer and be sent with each
data transfer that takes place.

2.3.1 MESSAGE HEADEH FORMAT

The message header is 6-bytes as shown in the word format in Figure II-G-5,
II-G-6, or II-G-7. The byte format is:

Bit Position

7 654

xx ~ Function

XX Device Number

XX Translation Code

XX Control Field

XX Character

XX Count

II-G-3

o Byte

1

2

3

4

5

6

CHANGE 2

MSB

Format A

Format B
17 12 11

9 7
(1 word)

o

(2 bytes)

wo rd)

LSB

(72 bitS)
o 4 wo rd s

(72 bit s)
7 9 bytes

DDDDDDD ~--..;.....,
LSB

CD X - Sits ignored on output from register j zero fi lied on input to register
(1) MSB - Most Significant Bit

LSB - Least Significant Bit

Figure II-G-2. Data Formats, l8-bit Interface

II-G-4

MSB

Format A

Format B

MSB

Format C
29

7

29 23 22
1

X X X X X X X

MSs<V

29 24 23 1 B 17

15 14 B 7 D

XXXXXXX

12 11 6 5

(1 word)

(2 bytes)

CD
LSB

(1 wo r d)
o

(5 bytes)

LSB

o

DDDDDDDDDODDO'-------'Lsa
CD X - Bits ignored on output from register, zero fi lied on input to register
(1) MSB - Mo s t Sign i f i can t Bit

LSa - Least Significant Bit

Figure II-G-3. Data Formats, 3D-bit Interface

CHANGE 2

Format A

(4 bytes)

®
lSB

Format B
(1 word)

(6 bytes)

lSB

Format C
35 o (2 wo rdS)
r--_2_B-r-2_7 __ 21..,..-2 __ 0 ----r---...-r--~~....;;....;..-..-..;;;~~--'~ ~---""r-'----. .1 2 bit s

DDDDDDD____...
CD X .. Bits ignored on output from register, zero filled on input to register
<l) MSB - Most Significant Bit

lSB - least Significant Bit

Figure II-G-4. Data Formats, 36-bit Interface

II-G-6

CHANGE 2

Format A

17 16 9 B 7 o

X 1 X 2

X 3 X 4

X 5 X 6

Format B

17 12 11 6 5 0

1 2 3

4 5 6

Format C

17 o 17 0 17 o 17 o

6 X

Figure II-G-5. Message Header Format, 18-Bits

II-G-7

CHANGE 2

Format A

29 22 15 7 o

1 2

3 4

5 S

Format B

29

2 3 4 5

S x x x x

Format C

29 o 29

Figure II-G-S. Message Header Format,30 Bits

II-G-8

CHANGE 2

Format A
3 5 34 27 25 18 16 9 7 0

X 1 X 2 X 3 X A

5 6 X X

Format B

35 30 29 24 23 18 17 12 11 6 5 o

3 4 I 5 6

Format C

35 o 35 0

I 2 3 4 151 I 6 X X X I

Figure II-G-7. Message Header Formats,36 Bits

11-G-9

CHANGE 2

Where:

XX is not used

S - Bit 5 of Byte 1.
no data transferred.
or an input function.

If S = 0, setup function performed by this header,
If S = 1, header immediately precedes output data

Function - Bits 0-4 of Byte 1. Describes the action to take place as
given in the following codes.

Code

o
1
2
3
4
5

Operation

Illegal
Write
Read Forward
Read Backward
Not Used
Maintenance Turnaround

Device Number - Byte 2. Specifies the device to or from which
the data is to be transferred according to the following codes.

Code

1
2
3
4
5

Device

Card Reader
Serial Read/Punch
Printer
Row Read/Punch
1001 Card Controller

Translation Code - Byte 3. Specifies type of translation desired by the
master. The data will be translated to the desired code on input and
translated from the desired code on output.

Code Translation

0 No Translation
1 XS-3
2 Field Data
3 ASCII
4 BCD
5 Binary

Control Field - Byte 4. The interpretation of this field depends upon the
device specified in byte 1 according to the following:

Card Reader - The contents of this field are ignored.

II-G-IO

CHANGE 2

Serial Read/Punch - Contains one half the number of columns to
be punched on a card. If equal to zero, a full 80 columns are
punched.

Printer - The upper two bits (4 and 5) of this field contain a
print line length code, where: 00 denotes a 132 character print
line, 01 denotes a 120 character print line. Bits 0 to 3 contain
a spacing code of 0, 1, or 2. The printer will space this number
of lines automatically after each print function.

Character Count - 12 bits. The number of data bytes to be sent
to or from master on input or output. The count is right justified with
the least significant bits in byte 5 and contains the number of characters
in the input/output block.

2.3.2 CONTROL BLOCK

Special functions of the slave peripherals are signaled by the use of a
control block.

The control block has the following format.

Bit Position

7 o
XX Function Code

XX Device Number

XX Nl

XX N2

XX N3

XX N4

Where:

XX is not used

Byte

1

2

3

4

5

6

Function code - Byte 1. Describes the action to take place.

Code (Octal) Operation

20 Space Nl lines on printer
21 Skip printer carriage to

channel N1.
22 Select alternate punch stacker.

II-G-ll

CHANGE 2

Device Number - Byte 2. Specifies the device on which the control function
is to be performed. The codes are the same as those used for the message
header.
Nl, N2, N3, N4 - Bytes 3-6. Contain parameters necessary for the specific
function according to the following codes.

Function Code

20

21

Parameters

Nl = Space count
N2, N3, N4 not used.
Nl = Channel to skip to
on forms control tape.
Channel 7 is top of form.
N2, N3, N4 not used.

2.4 CONTROL WORD FORMATS

2.4.1 MASTER EXTERNAL FUNCTION WORD

The Master External Function Word (MEFW) is sent by the master to the ICCU
to initiate all data transfers, special functions and control operations.
The format of the MEFW is:

Master
Bit Position

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X D) F I C I
Where:

XX - Bits 17 and 16. Ignored (not transferred to slave)

o - Bits 15-40 Input data transfers: message header byte count;
6 S (D) S 777780 UUtput aata transfers: byte count for message header
and data; 6 ~ (D) S 77778 (Number of words sent to slave times number of
bytes per master computer word.) Special functions: device number;
(1 = card reader, 2 = card punch, 3 = printer etc.); 1 S (D) ~ 5. Control
functions: 0

F - Bits 3 and 2. Data Format Selection: F = 00 select format A,
F = 01 select format B, F = 10 select format C, F = 11 not defined.

C - Bits 1 and O. Control Field: C = 00 set "ATTENTION" interrupt to
slave, C = 01 input data to master, C = 10 output data from master,
C = 11 invalid.

2.4.2 EXTERNAL INTERRUPT STATUS WORD

When the slave sends an external interrupt to the master, this interrupt is
accompanied by an External Interrupt Status Word (EISW) made up of a command
byte from the slave and sense byte (1) from the ICCU. The EISW accompanying
an interrupt terminating a data transfer will have a command byte of zero.
The format of the EISW is:

II-G-12

CHANGE 2

Master
Bit Position 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IxlRI S Ixl C

Where:

x - Bits 17 and 8. Always zero.

R - Bits 16. Selective Reset - One if a preceding operation has been
terminated by the slave with a selective reset. (Error detected by slave
channel.)

S - Bits 15-9. Error Status - Presented to both the master and the slave
by the ICCU. (See Subsection 2.4.2.1.)

C - Bits 7-0. The command byte from the slave. (See Subsection 2.4.2.2.)

2.4.2.1 ERROR STATUS

15 14 13 12 9

I R I X I B I X

Where:

R - Bit 15. Command Reject - Unspecified command issued to ICeU.

X - Bits 14 and 12-9. Not used.

B - Bit 13. Bus Out Check - Even parity on bus out during transmission
of data or command to ICCU from slave channel.

2.4.2.2 COMMAND BYTE

Where:

765 4 3 2 1 0

E II C

E - Bits 7-4. Error Code - An error has been detected by the slave and
has the following interpretation.

1
2

Reason

An illegal format detected by slave.
An illegal device number referenced.

II-G-13

CHANGE 2

Code

3
4
5

I - Bits 3, 2.
functions. 10

Reason

A punch check has occurred and recovery has failed.
An illegal function code received by the slave.
No initiation sequence performed to initiate the
master/slave interface.

Interpretation code. 01: Termination of output
Hardware or software error

C - Bits 1, O. Always 11 identifying the external interrupt command.

2.5 INITIATION SEQUENCE

Prior to the execution of any data transfers or control functions, the
master computer must perform an initiation sequence (handshake).

The handshake is performed as follows.

1) Send MEFW with control field, (bits 1, 0), set to zero.

2) Receive external interrupt from slave. The command byte of the
accompanying EISW will have a S field of 0, I field of 01 and a
C code of 11.

2.6 DATA TRANSFER SEQUENCES

All data transfers sequences shall originate in the master computer. The
interface for output, input, and special functions is defined below.

2.6.1 OUTPUT DATA TRANSFER

Any data sent to the slave for output must be preceded by a message header.
The message header may be sent to the slave without any accompanying data to
set up the slave handler for a specific format and the subsequent use of the
special function. Multiple card images may be sent depending on the memory
size of the slave. The output data transfer sequence is!

1) Send the MEFW to the ICCU via an external function command.

2) Initiate an output buffer with a length equal to the word length of
message header plus the word length of the output data buffer plus
one word (length in 18, 30, or 36 bit words, not bytes).

3) Accept an external interrupt and accompanying EISW upon completion of
data transfer (channel end interrupt). The command byte of the EISW
will be zero upon termination of data transfer.

4) Accept an external interrupt and accompanying EISW signaling completion
of the output function (device end interrupt).

II-G-14

CHANGE 2

2.6.2 INPUT DATA TRANSFER

To input data, a message header is sent to the slave to request input of
data or to set up the slave handler for a specific input format and the
subsequent use of the special function. Multiple cards may be read depending
on the memory size of the slave. The input data transfer sequence is;

1) Send the MEFW to the ICCU via an external function command.

2) Initiate an output buffer with a length equal to the word length of
the message header plus one word (number of words not bytes).

3) Accept an external interrupt and accompanying EISW upon completion of
data transfer (channel end interrupt). The command byte of the EISW will
be zero upon termination of data transfer.

4) Initiate an input buffer with a length equal to the number of words
being sent multiplied by the number of characters per word plus one.

5) Send the MEFW to the ICCU via an external function command.

6) Accept input data and upon completion of data transfer accept an
external interrupt and EISW (device end interrupt). The command byte of
the EISW will be zero.

Due to the timing characteristics of the slave handler and the ICCU, the
master should issue the MEFW for input immediately upon receipt of the
first interrupt.

2.6.3 SPECIAL FUNCTIONS

For convenience in performing I/O operations, special functions are provided
as specified in the last message header sent to each device. The handshake
sequence sets up the slave handler to perform as follows.

1) Read one card (80 column), translate to XS-3

2) Punch one card (80 column), translate from XS-3

3) Print one line (120 characters), translate from XS-3

If an I/O function is to be performed other than specified above, a message
header must be sent for that device to reset the slave handler to perform in
the manner desired.

A special function code must be given in the D field of the MEFW in place of
the byte count to use the special function.

II-G-15

CHANGE 2

Special function codes are:

Code Device

Reader
Serial Punch
Printer
Row Punch

MEFW Control Field

1
2
3
4
5 Card Cont ro ller

01
10
10
10
10

The data transfer format for special functions must be format B.

2.6.3.1 OUTPUT DATA TRANSFER

The output of data using the special function is~

1) Send the MEFW to the ICCU via an external function command.

2) Initiate an output buffer with a length equal to the length of output
data buffer plus one word (18, 30, or 36-bit words not
bytes).

3) Accept an external interrupt and accompanying EISW upon completion of
data transfer (channel end interrupt). The command byte of the EISW
will be zero on termination of data transfer.

4) Accept an external interrupt and accompanying EISW signaling completion
of the output function (device end interrupt).

After the first interrupt is received, output data may be sent to another
device in the slave. Output to the same device must not be sent until the
second interrupt (device end) is received for that device,

2.6.3.2 INPUT DATA TRANSFER

The input of data using the special function is;

1) Initiate an input buffer with a length equal to the number of bytes
per word being sent multiplied by the number of words and rounded to the
next largest word if a fractional word exists.

2) Send the lYJ£FW to the ICCU via an external function comnand.

3) Accept input data and upon completion of data transfer accept an
external interrupt and EISW (device end interrupt).

The same timing note for the output data transfer also applies to input data
transfer.

II-G-16

CHANGE 2

2.6.4 MAINTENANCE DATA TURNAROUND

The maintenance function provides a means for checking the linkage between
the master and the slave. Performance of this function does not involve any
slave peripheral device.

When using the maintenance turnaround, full cycles must be used; that is,
send data to slave and retrieve data from slave. Data will be returned to
the master in the same code as sent to slave. The maintenance turnaround
sequence is:

1) Send a message header and output buffer containing turnaround data to
the slaveg The MEFW should have a D field of O. The Message header
has a function code of 5.

2) Upon completion of output send a message header to the slave for input
of turnaround data. The D field of the MEFW = 0 and the function code
in the message header = 5.

3) Send a MEFW for input to return data to the master.

The output and input data transfer rules are found in Subsection 2.6.1 and
2.6.2.

2.7 ERROR NOTIFICATION

Peripheral or format errors and interface errors can occur with the slave
system. Subsection 2.4.2.2 describes the format errors. The sense byte of
the EISW presents interface errors to the master. If the slave is unable
to get the proper response from the ICCU, it comes to a stop and displays
'F3'. This indicates that the slave attempted recovery and failed. The
system should be cleared and restarted.

3. 9200/9300 / ICCU INTERFACE

3.1 INTRODUCTION

To avoid duplication one basic interface will be used for the 9200/9300 Com­
puter with the ICCU 18, 30, and 36-bit word lengths. The ratio between the
number of characters per computer word and the length of the message header,
creates a unique program for the 30-bit computer family. The only modification
required between various data formats is in the number of bytes accepted in
the header that is sent from the master computer.

Since the 9200/9300 / ICCU interface is dependent upon the military computer/
ICCU interface frequent reference will be made to Section 2.

The basic interface between a 9200/9300 Computer and the ICCl] shall be de­
fined as follows.

II-G-17

CHANGE 2

3.2 DATA FORMATS

3.2.1 ICCU DATA TRANSFER FORMATS

The transfer of data between the ICCU and the 9200/9300 Computer is always
in the form of one 8-bit byte per character (regardless of the number of bits
used per character). Thus, even though only data format B (Figures II-G-2,
II-G-3, II-G-4) is being discussed here, the number of characters per master
computer words (transferred multiple) is the only factor that requires change
for a different data format.

3.2.2 HEADER FORMATS

The header formats are the same as described in Subsection 2.2.2 except for
the additional consideration given to the number of characters per master
computer words which changes with the change in data format.

3.3 HEADER INFORMATION

The contents of the message header (Subsection 2.3) controls the performance
of the slave. A message header should be sent to each slave peripheral device
to enable it to perform the required operations. For convenience, a predeter­
mined message header (Subsection 2.6.3) is given to each peripheral handler
whenever a handshake function is performed. Upon receiving the message header,
the slave sets up its peripheral handlers to perform in the specified manner.
The control header causes the slave to perform the required action requested
by the master. The execution of the control function is done immediately
upon receipt of the header.

3.4 SLAVE COMMAND WORDS

The slave command format controls all interface between the slave and the
ICCU. The command is sent to the ICCU via the least significant byte of the
XIOF instruction. A status byte is presented to the slave when a TIO
instruction is executed. The ICCU adds sense bytes to the MEFW and presents
them to the slave when the appropriate command is issued.

3.4.1 SLAVE COMMAND BYTE

Slave command bytes are~

Command

XXOO 0000

XXOI 0000

Function

Test I/O - No operation, supply status
to the slave.

Set Inhibit Status - This command is
proce s sed a s a Test I/O. (If accepted,

II-G-IS

Command

XXIO 0000

XXXX 0100

DODD 0010 CD
DODD 0001 CD
DODD 0011 CD

:~.4.2 SLAVE STATUS BYTE

Slave status bytes are as follows.

Bit Designation

o Attention

CHANGE 2

Function

it does not generate new status.) The
status byte is presented to the channel
and Inhibit Status In (bit 6 of sense
byte) is set.

Reset Inhibit Status - Same action as
set inhibit status, except bit 6 of
sense byte is reset.

Sense - Transmit 4 bytes of sense data
to the slave. The second and third bytes
are taken from the word register (bits
0-7 and 8-15). This provides a means
of transmitting 16 bits of the MEFW
(Subsection 2.4.1) from the master to
the slave. The first byte is detail for
the unit check status. The fourth byte
has the same format as bits 16-9 of the
EISW. (Subsection 2.4.2)

Input - Transmit data to the slave.

Outpu~ - Call for data from the slave.

Set External Interrupt Request - No
data transfer. Send external interrupt
request to the master, with the 8-bit
command code on master input data lines
0-7.

Interpretion

The master has issued a control command to
the ICCU, or the master has issued the first
command and a slave command is required to
initiate data transfer.

When the attention interrupt has been
generated, the slave must issue a sense
command in order to examine the MEFW. Hard­
ware restrictions will cause all subsequent
commands to be rejected if the sense command
is not issued.

CD X and D bits are not interrupted by the ICCD. D bits are passed on to
the master via an EISW (Subsection 2.4.2).

II-G-19

CHANGE 2

Bit Designation

1 Status Modifier

2 Not used

3 Busy

4 Channel End

5 Device End

6 Unit Check

7 Unit Exception

3.4.3 SENSE BYTE FORMATS

Interpretation

Used only on control unit busy sequence.

Indicates the control unit cannot accept a
command because:
1) It is executin9 a previously initiated

I/O operation; status modifier also is
set. The control unit is defined as
busy from the time a command from the
channel is loaded into the command
register until both Channel End and
Device End are set.

2) The control unit is holding pending status
conditions detected subsequent to com­
pletion of the last data transfer com­
mand. (Not applicable to Test I/O or
Set Reset Inhibit Status.)

Always occurs with Device End.

A data transfer was terminated or a control
command was accepted. (Control commands
are control immediate types.)

Set simultaneously with bits 0-5 in sense
byte 1.

Set whenever an external function is received
from the master during a data transfer;
that is, master termination.

Four sense bytes are presented to the slave channel. Sense bytes 2 and 3
contain the MEFW from the master (Subsection 2.4.1).

3.4.3.1 SENSE BYTE 1

Sense byte 1 contains the following.

Bit Designation

o Command Rej ec t

1 Not used

Interpretation

Unspecified command issued to ICCU. This
indication (to slave) is suppressed if
command byte has incorrect parity.

Transmitted as zero.

II-G-20

Bit

2

3

4

5

6

7

Designation

Bus Out Check

Not used

Not used

Not used

Inhibit Status
in FF state

Not used

3.4.3.2 SENSE BYTE 4

CHANGE 2

Interpretation

Even parity on bus out during transfer of
data or command to ICCU from slave channel.

Transmitted as zero.

Transmitted as zero.

Transmitted as zero.

Number 1 whenever the FF is set.

Transmitted as zero.

Sense byte 4 contains the following.

Bit

o

1

2

3

4

5

6

7

Designation

Selective Reset

Master Termina­
tion

Not used

Bus Parity Error

Format Regi ster
FF 2

Format Register
FF 1

Master Function
Register FF 2

Master Function
Register FF 1

Interpretation

An operation has been terminated by the
slave with selective reset (error detected
by slave channel).

An operation has been terminated by the
master before normal completion. (Will
always be a 0 to a sense command, status
FF 7 is set by same condition.)

Always transmitted as zero.

A parity error has been detected on the
slave output bus. (Will always be a 0
to a sense command, bit 2 of first sense
byte is set by the same condition.)

Same as bit 3 of last MEFW. If the master is
off-line, then same as bit 0 of slave sense
command byte (Subsection 3.4.1).

Same as bit 2 of last MEFW. If the master is
off-line, then same as bit 1 of slave sense
command byte (Subsection 3.4.1).

Same as bit 1 of last MEFW.

Same as bit 0 of last MEFW.

II-G-21

CHANGE 2

3.5 INITIATION SEQUENCE

The slave will not accept any data transfers until a handshake function has
been issued by the master. (Subsection 2.5) The handshake establishes
the interface and allows the slave to set up its peripherals to operate in
a pre-determined format (Subsection 2.6.3).

The response to the MEFW is performed as follows.

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICCU Buffer Control Word (BCW) to accept four sense bytes from ICCU.

3) Send sense command to ICCUo

4) Accept interrupt upon termination of sense byte input.

5) Perform handshake set up function.

6) Send an external interrupt request to the master with a D code of O.

3.6 DATA TRANSFER SEQUENCES

All data transfer termination sequences shall originate in the slave upon
termination of the.slave BCW. The interface for I/O and special functions is
defined below.

3.6.1 INPUT DATA TRANSFER

Any input data to the slave is output data from the master (Subsection 2.6.1)
and will contain a message header followed by the data, if so selected, in the
message header. The input data transfer sequence is~

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICCU BCW to accept four sense bytes from ICCU.

3) Send sense command to ICCU.

4) Accept interrupt upon termination of sense byte input.

5) Load ICCU BCW to accept number of bytes in D field of MEFWo

6) Send XIOF instruction in o"rder to input data to the slave.

7) Accept an external interrupt upon completion of transfer.

8) Set up peripheral according to message header and do the desirerl function
if data present.

9) Send an external interrupt request to master with a D code equal to the
device address of the peripheral used.

II-G-22

CHANGE 2

3.6.2 OUTPUT DATA TRANSFER

Any output data from the slave is input data to the master (Subsection 2.6.2)
and will contain a message header. The message header is transferred into the
slave which performs the necessary functions and sends the output to the
master. The output data transfer sequence is:

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICCU BCW to accept four sense bytes from ICCU.

3) Send sense command to ICCU.

4) Accept interrupt upon termination of sense byte input.

5) Load ICCU BCW to accept number of bytes in D field of MEFWo

6) Send XIOF instruction in order to input data to the slave.

7) Accept on external interrupt upon completion of transfer.

8) Set up peripheral according to message header and

a) if data bit set, perform the desired function.
b) if data bit not set, send an external interrupt request with a

D code equal to the device address of set up peripheral. This
completes this transfer sequence.

9) Accept interrupt from ICCU looking for attention bit in status word.

10) Load ICCU BCW to accept four sense bytes from ICCU o

11) Send sense command to ICCU.

12) Acc~pt interrupt upon termination of sense byte input.

13) Load ICCU BCW in order to output data from the slave.

14) Send XIOF in order to output data from the slave.

15) Accept an external interrupt upon completion of transfer from the ICCU.

3.6.3 SPECIAL FUNCTIONS

Special functions streamline the data transfer operations by avoiding message
headers. The device address of the peripheral to be used is sent in the
D field of the MEFW. (Subsection 2.6.3) The slave performs as before,
sending or receiving data.

II-G-23

CHANGE 2

3.6&3.1 INPUT DATA TRANSFER

The input of data to the slave using the special function is~

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICCU BCW to accept four sense bytes from ICCU.

3) Send sense command to ICCU.

4) Accept interrupt upon termination of sense byte input.

5) Load ICCU BCW with pre-determined buffer length for input to the slave.

6) Send XIOF instruction which calls for input data.

7) Accept external interrupt which signals the end of data transfer.

8) Perform the desired output function.

9) Send an external interrupt request with address of device used in D field.

3.6.3.2 OUTPUT DATA TRANSFER

The output of data from the slave using the special function is:

1) Accept interrupt from ICCU looking for attention bit in status word.

2) Load ICeU BCW to accept four sense bytes from ICCU.

3) Send sense command to ICCU o

4) Accept interrupt upon termination of sense byte input.

5) Perform the desired input from the slave peripheral.

6) Load the ICCU BCW w'i th pre-determined buffer length in order to output
data from the slave to the master.

7) Send XIOF instruction in order to output data from the slave

8) Accept an external interrupt upon completion of data transfer o

3.6.4 MAINTENANCE DATA TURNAROUND

Maintenance data turnaround uses the same sequences as I/O data transfers.
However, the slave peripheral reference is omitted. (Subsections 3.6.1 and
3.6.2)

II-G-24

CHANGE 2

3.7 ERROR NOTIFICATION

The slave will notify the master via an external interrupt request of errors
it detects according to the error codes found in Subsection 2.4.2.1. Error
stops will also be displayed on the slave console according to the standard
9200/9300 peripheral error codes listed in Subsection 4.

Recovery procedures given in Subsection 4 should be followed when these error
stops occur. The error stop and display of 'F3' means an unrecoverable ICCU
error has occured and a master clear, restart procedure must be performed.

4. 9200/9300 OPERATING PROCEDURES

The operating instructions and program haulting information are presented for
programmer reference. Complete information on the operation of the 9200/9300
Computer can be found in the UNIVAC 9200 Systems, Preliminary Operating
Instructions, UP-7537, Revision I. Figure II-G-8 shows the 9200/9300 Control
Console. The bulk of the operating procedures discussed in this section are
performed at this console.

4.1 NEXT INSTRUCTION/HALT DISPLAY (White indicators)

Figure II-G-8 shows the NEXT INSTRUCTION/HALT DISPLAY Indicators. When a halt or
stop occurs, a code related to the particular halt or stop is displayed on
the four groups of indicators. The various halt and stop codes are given in
a following section together with the action to be taken by the operator in each
case.

The indicators function individually as follows:

I) Lit - Represents a binary 1 in the related bit position.

2) Unlit - Represents a binary 0 in the related bit position.

The four bit positions (8, 4, 2, and I) are represented by the four indicators,
from left to right, within each group. The least significant group of indica­
tors is at the right.

The significance of this display and the interpretation of the indicators at
anyone time depends upon the role they are called upon to play at that time.

For the operator, the primary concern is the use of these indicators to dis­
play the code related to a particular halt or stop in the processing. These
codes are displayed in hexadecimal form.

4.2 INITIALIZING PROCEDURES

The first step in an operating procedure is to prepare the peripheral units to
be used in the run for an operating (ready) condition.

II-G-25

CHANGE 2

POWER PR INTER READFR PUNCH

fit e e e
li~ en :FF "N '_EAn HOME ;PAr.F l fF LIt tlHR HEn emu IFF· Lit I'.LHR FEED CONI

D D OFF OFF ON OFF - ON
LiNt LINE LINE

O~ ON· OFF ON· OFF
LINE LINE LINE

I a-A PRINT~
I o·a READER OP ABN DEV I'EM
I o· C PUNCH CHAN R A 0 ADD MO'

NEAT INSTnUGTIGN HALT OISPLAY

P·APROC 0000 0000 0000 0000 0000
RUN STOP

ee
OP

l)
DISPLAY SELECT

00000
START I NST CYCLE LOAD PPOC a c 0 E DISPLAY ALTER CllIA ENTRY

ON ON ON

OFF OFF OFF D r~' I I I I I I D DIIIIJDJI]:
PRGC

A8N

e
CHAtlNEL

TEST
MODE

e

DOITO
e GREEN I NO I CATon

1 III

MEMORY ADDRESS

I rTn 1 1'YVrl11'YVrl1
rI'Ffll

a L:l:.1Jo~o~o~a
e r.ED 11<QICATOR o WHITE INDICATOR

Figure II-G-B. 9200/9300 Control Console

II-G-26

CHANGE 2

4.2.1 POWER

Turn on the system operating power.

4.2.2 PRINTER

With no continuous form paper in the printer, the following procedure is
followed.

1) Install the proper form control tape loop.

Check the setting of the optional Line Spacing switch, if provided.

2) Check the type bar. Change the bar, if necessary.

Be certain that the Character Font switch setting is in agreement with
the kind of type bar (48 or 63) to be used.

3) Install the proper continuous form paper.

If the proper paper is already installed, follow the appropriate elements
of this procedure.

4) Set the PRINTER ON-LINE switch.

5) Depress the PRINTER CLEAR switch.

4.2.3 CARD READER

With the input magazine empty of cards, the following procedure is followed.

1) Set the READER ON-LINE switch.

2) Press the READER FEED switch to clear the ready station of any card
that may have remained from a previous run.

3) Place the program cards for the run in the input magazine.

The first reader data cards can be placed on top of the program cards
if the capacity of the magazine will permit.

4) Press the READER CLEAR switch.

5) Press the READER FEED once to introduce the first program card into the
ready station.

4.2.4 CARD PUNCH

With the input magazine empty the following procedure is followed.

1) Set the PUNCH ON-LINE switch.

II-G-27

CHANGE 2

2) Press the PUNCH FEED twice to clear the wait and ready stations of any
cards that may have remained from a previous run.

The red PUNCH Abnormal indicator will light following each of these
FEED switch depressions. In each case, press the PUNCH CLEAR switch.

3) Place the initial supply of cards in the input magazine.

NOTE: If card reading is to be performed, a blank card is placed before the
first card to be read.

4) Press the PUNCH FEED twice to feed cards to the wait and ready stations.
The PUNCH CLEAR is pressed between the two depressions of the FEED switch
to clear the PUNCH Abnormal indicator.

NOTE: If the punch is left loaded with cards when the system operating
power is turned off, feed at least one card after turning the power
on. A card that has been left in the wait station can be mispunched
when operation is resumed.

4.3 PROGRAM LOADING

With the desired peripheral units in a ready condition, the following procedure
is followed to load the program.

1) Set the device address in the DATA ENTRY switches. (Standard reader
device address is 0000 0001).

2) Depress the CLEAR (Processor Clear). While holding the CLEAR switch
depressed, the operator makes the lamp test of the indicators on the
control console.

NOTE: This is the only time that the Processor CLEAR switch need be used
until the run is completed. If it is used at any other time, except
under abnormal conditions, the continuity of the program will be
disturbed.

3) Set the processor in the load mode.

4) Press the START switch once to cause the reading of the first program
card.

5) Set the processor in the run mode.

6) Press the START switch to initiate the reading of the balance of the
program cards.

The reading of the program cards may be interrupted by one or more halt and
proceed instructions. There is a possibility that there may be some action
required of the operator at this time before the program loading is resumed
by again pressing the START switch (See Subsection 4.5).

II-G-28

CHANGE 2

At the end of program loading, the system can go directly into the run auto­
matically if the input magazine or magazines are already supplied with cards
and unless a halt and proceed instruction intervenes between the program load­
ing of the run.

NEXT INSTRUCTION/HALT DISPLAY indication of "OOEE" (0000 0000 1110 1110) means
the program was loaded correctly. If a start does not occur, press START
to execute the program.

,1. <1 RUNNING AND STOPPING

4. ,1. I MANUAL STOPPING

During operation, the operator can stop the processing at any time by pressing
down the upper portion of tfte INST switch on the control console; the RUN
indicator will be on, the STOP indicator will turn on.

This is the only proper means of manually stopping the operation. With the
operation stopped in this manner, it is resumed by pressing the START.

4.4.2 AUTOMATIC STOPPING

If the processing stops automatically during the run while the system opera­
ting power remains on, it is usually due to one of the following:

1) A programmed halt. The RUN indicator will be OFF, the STOP indicator
will he ON (See Subsection 4.5).

2) An abnormal stop. The RUN indicator may be either ON or OFF, the STOP
indicator will be ON (See Subsection 4.6).

4.4.3 POWER

If there is no immediate need for the equipment, press the POWER OFF switch.

If the system is not to be used for an extended period of time, such as
overnight, press the POWER OFF switch. When the POWER indicator turns off,
throw the main circuit breaker to OFF.

,1.!l PROGRAMMED HALTING

During the loading of a program or during the running of data, the operation
may stop automatically as the result of a halt and proceed instruction includ­
ed in the program. At that time, a code related to the halt will be displayed
on the NEXT INSTRUCTION/HALT DISPLAY indicators.

A programmerl halt calls for some action to be taken by the operator to make
the run proceed. Until the operator is fully acquainted with the programs,
the reason for a halt and the action to be taken are furnished by a run guide.

Aftpr performing thf> ~r.tion rf>quired, the operat.ion is usually rf>slIrnf>d simply
by pressing the START switch.

II-G-29

CHANGE 2

,L 6 ABNORMAL STOPPING

If at the start of a run, the operation cannot get under way or, during a run,
the operation stops automatically for some reason other than a halt and pro­
repd instrurtion, the reason for the abnormal stop is indicated on the control
console.

4. I).] t\B1\URMAL STOP INDICATIONS

Two types of abnormal stop indications are provided:

]) NEXT INSTRUCTION/HALT DISPLAY - These indicators are used to display the
n~ture of an abnormal stop in code form. These codes are generated to
he displayed when required by various routines (software) such as the
Report Program Generator (RPG) and the Input Output Cont~ol System
(TOCS).

2) DfSPLAY SELECT - The source of the abnormal stop indications displayed
here is directly from the equipment (hardware).

NOTE: It is quite possible for two or mQre abnormal conditions to occur at the
same time resulting in the display of a peculiar code in the NEXT
TNSTRUCTION/HALT DISPLAY. This would be a display of the combination
of the codes, for example:

Code (6~04) - HALT DISPLAY (OlIO 0011 0000 0100)
Code (6320) - HALT DISPLAY (0110 0011 0010 0000)
Code (6~40) - HALT DISPLAY (0110 0011 0100 0000)

Combin~d Display 0110 0011 0110 0100

The I-bit indications in the right-hand groups can give the clue t(the
individual abnormal indications. Use of the DISPLAY SELECT to analyze
til(> ~hnormalti('s may also be helpful at this time.

In adeii lion to these two types of indications, the operator should be aware
oft 11t' f 11 net ion i n g 0 f t he folIo wi n g .

1) The green POWER indicator to show that main power is being supplied to
the system.

2) The green and red RUN and STOP indicators to show that the system is
running or how it was stopped.

~) The read abnormal indicators; PRINTER, READER, PUNCH, PHOC ABN (Processor
Abnormal), and TEST ~DDE to show whether the related element of the sys­
tem is functional.

II-G-30

CHANGE 2

4.6.2 ABNORMAL CONDITIONS

The following subsection is a listing of the various abnormal conditions which
includes:

1) Description of the abnormal condition.

2) The software code applied to the condition. For the peripheral units,
the first two characters signify the particular unit as follows:

61 (0110 0001) - Card Reader
62 (0110 0010) - Card Punch
63 (0110 0011) - Printer

3) The indications displayed by both the NEXT INSTRUCTION/HALT DISPLAY and
the DISPLAY SELECT. Some abnormal conditions are signalled by one type
and not the other.

4) The reason for the abnormal condition.

5) The action to be taken to resume operation.

4.6.2.1 PRINTER

Description - Out-of-forms

Code - 6301

Indications - HALT DISPLAY (0110 0011 0000 0001)
DISPLAY SELECT -- I/O A - OP

Reason - The forms supply is either exhausted or torn.

Action - Install a new supply of forms.
Press the PRINTER CLEAR.
Press the START.

Description - Form Overflow Set

Code - 6302

Indications - HALT DISPLAY (0110 0011 0000 0010)
DISPLAY SELECT -- I/O A - DEV

Reason - This is not an error condition. The form overflow code 1 (001) has
been sensed in the form control tape and, before the form overflow
operation is completed, some abnormal condition, usually Out-of-Forms,
takes place. Thus, this HALT DISPLAY will appear in conjunction with
the display of the abnormal condition.

II-G-31

CHANGE 2

Action - When the abnormal condition causing the stop is corrected, the
operation is resumed according to the nature of the abnormal condition.

Description - Interrupt Pending

Code - 6304

Indications - HALT DISPLAY (0110 0011 0000 0100)
DISPLAY SELECT -- None

Reason - A program interrupt related to the printer has been set pending action
by the program. This is not an error condition. Some abnormal
condition has occurred at this time to cause the operation to stop.
Thus, this HALT DISPLAY will appear in conjunction with the display
of the abnormal condition.

Action - When the abnormal condition causing the stop is corrected and opera­
tion resumed, the interrupt should be satisfied quickly by the pro­
gram without further operator intervention.

Description - Wrong Character Font Switch Setting

Code - 6308

Indications - HALT DISPLAY (0110 0011 0000 1000)
DISPLAY SELECT -- I/O A - OP

Reason - The setting of the Character Font switch does not agree with the
kind of type bar installed.

Action - Correct the Character Font switch setting or install the proper bar.
Because this indication occurs at the time of the first printing
operation, it may be necessary to restart the run.

Description - Memory Overload

Code - 6320

Indications - HALT DISPLAY (0110 0011 0010 0000)
DISPLAY SELECT -- I/O A - MEM

Reason - At the time the printer is ready to print a line, the data for that
line has been entered into the print storage area of memory but the
printer has not obtained sufficient access time to perform the oper­
ationo

Action - This should occur very rarely with proper programming. If it does:
Press the PRI~7ER CLEAR.
Press the START.

II-G-32

Description - Paper Runaway

Code - 6340

Indications - HALT DISPLAY (0110 0011 0100 0000)
DISPLAY SELECT -- I/O A - DEV

Reason - This can include:

CHANGE 2

At the start of a run when the HOME switch is pressed, the tape may
not be perforated with the home position code.
During the run, the program may have called for a skip code not per­
forated in the tape.
The form control tape lamp may have burned out.

Action - Correct the cause of the abnormal eonditiQn in either the tape or the
program. Install a new lamp if necessary. Reposition the form to
the terminal line related to the skip code causing the runaway.
Press the PRINTER CLEAR.
Press the START.

Description - Not Ready

Code - 6380

Indications - HALT DISPLAY (0110 0011 1000 0000)
DISPLAY SELECT -- I/O A - ABN

Reason - The printer is not ready for operation. This can include:
The shield at the left end of the type bar path is open.
The cover over the right end of the type bar path is open.
The internal power to the printer may be off.

Action - Correct the abnormal condition.
Press the PRINTER CLEAR.
Press the START.

Description - Off-Line

Indications - DISPLAY SELECT A/O A -- OP

Reason - The program has called for the use of the printer while the PRINTER
switch is set OFF-LINE.

Action - Set the PRINTER ON-LINE.
Press the PRINTER CLEAR.
Press the START.

Description - Control or Data Parity Error

Indication - DISPLAY SELECT -- I/O A ~ MEM

II-G-33

CHANGE 2

Reason - A parity error has occurred in either a control byte governing the
operation of the printer or in a data byte.

Action - Consult the supervisor. It will first be necessary to determine if
the parity error was in a control or a data byte. It will also be
necessary to determine whether this failure is only momentary or
requires field engineering service.

4. 6.2·.2 CARD READER

Description - Off-Line

Code - 6100

Indications - HALT DISPLAY (0110 0001 0000 0000)
DISPLAY SELECT -- None

Reason - The program has called for the use of the reader while the READER
switch is set OFF-LINE.

Action - Set the READER ON-LINE.
Press the READER CLEAR.
Press the START.

Description - Interrupt Pending

Code - 6104

Indications - HALT DISPLAY (0110 0001 0000 0100)
DISPLAY SELECT -- None

Reasons - A program interrupt related to the reader has been set pending
action by the program. This is not an error condition. Some abnormal
condition has occurred to cause the operation to stop. Thus, this
HALT DISPLAY will appear in conjunction with the display of the ab­
normal condition.

Action - When the abnormal condition causing the stop is corrected and oper­
ation resumed, the interrupt should be satisfied quickly by the pro­
gram without further operator. intervention.

Description - Empty Magazine or Full Stacker

Code - 6140

Indications - HALT DISPLAY (0110 0001 0100 0000)
DISPLAY SELECT -- I/O B - OP

Reason - This can include:
The input magazine is empty.
The output stacker is full.

II-G-34

CHANGE 2

Action - If the magazine is empty, refill it. If the stacker is full, empty it.
Press the READER CLEAR.
Press the START.

Description - Magazine Jam or Interlock Open

Code - 6140

Indications - HALT DISPLAY (0110 0001 0100 0000)
DISPLAY SELECT -- I/O B - ABN

Reason - This can include:
A card in the magazine has jammed or otherwise failed to feed to the
ready station.
The top cover of the reader is open or the internal power to the
reader is shut off.

Action - If a card has jammed in the magazine; remove the cards, examine
the card at the bottom of the stack, repair or remake it if n:"" ... : :,sarYr
and return it to its position at the bottom of the stack.

Open the top cover to be sure that there is no card in the reddy sta­
tion. If there is, be sure that the card is not damaged. A damaged
card here should be repaired or remade and returned to its position at
the bottom of the stack.

Place the stack of cards in the magazine.
n_~ __ ... t._ READER CLEAR. C'.l~:':' "J1~

Press the READE R FEED.
Press the START.

If the top cover is open, close it.

Press the READER CLEAR.
Press the START.

If there is no card jam and the top cover is closed, the internal power
to the reader may be off. Consult the supervisor.

Description - Read Station or Card Stacker Jam

Code - 6180

Indications - HALT DISPLAY (0110 000] 1000 0000)
DISPLAY SELECT -- 1/0 B - DEV

t(P,8S0n .- This can include:
Failure of a card to be fed properly to or through the read tdtion.
Failure of a card to be fed properly to the card sLacker.

II-G-35

CHANGE 2

Action - If a card has jammed at the read station, clear the jam and repair
or remake the card. Remove the card from the ready station. Take
the cards from the magazine, place the two cards removed from inside
the reader in their proper sequence at the bottom of the stack.

Place the stack of cards in the magazine.
Press the READER CLEAR.
Press READER FEED.
Press the START.

If a card has jammed in the card transport, clear the jam and repair
or remake the card. Place that card in its proper sequence at the
rear of the stacker.

Press the READER CLEAR.
Pre s s the START.

If there is no card jam, the last card fed from the ready station and
now in the card stacker may not have been read. This can indicate
a failure in the reading mechanism. Consult the supervisor.

Such a reading failure may be momentary or may require field engineering
service. After clearing all cards from the reader, make a second
attempt at reading that card in order to determine if the failure was
only mementary.

Description - Control Parity Error

Indication - DISPLAY SELECT -- I/O B - MEM

Reason - A parity error has occurred in a control byte governing the operation
of the card reader.

Action - Consult the supervisor. It will be necessary to determine if this
failure is only momentary or requires field engineering service.

4.6.2.3 CARD PPNCH

Description - Off-Line

Code - 6200

Indications - HALT DISPLAY (0110 0010 0000 0000)
DISPLAY SELECT -- I/O C - OP

Reason - The program has called for the use of the punch while the PUNCH switch
is set OFF-LINE.

Action - Set the PUNCH ON-LINE.
Press the PUNCH CLEAR.
Press the START.

II-G-36

Description - Empty Magazine or Full Stacker

Code - 6202

Indications - HALT DISPLAY (0110 0010 0000 0010)
DISPLAY SELECT -- I/O C - OP

Reason - This can include:
The input magazine is empty.
A stacker is full.

CHANGE 2

Action - If the magazine is empty, refill it. If a stacker is full, empty it.
Press the PUNCH CLEAR.
Pre s s the START.

Description - Interrupt Pending

Code - 6204

Indications - HALT DISPLAY (0110 0010 0000 0100)
DISPLAY SELECT -- None

Reason - A program interrupt related to the punch has been set pending action
by the program. This is not an error condition. Some abnormal
condition has occurred to cause the operation to stop. Thus, this
HALT DISPLAY will appear in conjunction with the display of the
abnormal condition.

Action - When the abnormal condition causing the stop is corrected and operation
resumed, the interrupt should be satisfied quickly by the program
without further operator intervention.

Description - Punch Check Error

Code - 6220

Indications - HALT DISPLAY (0110 0010 0010 0000)
PROGRAM SELECT -- I/O C - DEV

Reason - The last card fed to the error stacker has not passed the punch check.

Action - Because the setup for the last card punched (error card) is still
available, another card punched from that same setup can be obtained
by pressing the PUNCH CLEAR and the START. This card will also be
subject to the punch check.

The punching may pass the check on the second attempt. If it does,
the run will continue.

II-G-37

CHANGE 2

If another punch check error occurs, it might be advisable to examine
the contents of the punch storage area if the punching error is
not immediately apparent. Consult the supervisor. There is the
possibility of failure in the punching mechanism requiring field
engineering service.

Description - Magazine or Card Transport Jam, Interlock Open

Code - 62bO

Indications - HALT DISPLAY (0110 0010 1000 0000)
DISPLAY SELECT -- I/O C - ABN

Reason - This can include:
A card has failed to feed from the magazine to the ready station usu­
ally because of a jam in the throat of the magazine.
A card has failed to feed from the ready station to the wait station
usually because of a jam at the read station.
A card has failed to feed properly through the punch station or to the
card stackers.
The top-front cover of the punch is open or the internal power to the
punch is shut off.

Action - When card reading is involved in the punch operation, it is best
to have the advice of the supervisor when handling card jams. The
proper procedure may depend upon the nature of the program.

When the application involves punching only into blank cards, the fol­
lowing is suggested. It is based on the premise that, unless all of
a card has passed into the stacker area beyond the punch station, the
punching setup for that card remains.

Thus, recovery from a jam in the magazine, ready station, read station,
wait station, or punch station can be made by using this procedure.

Remove the blank cards from the magazine. Discard any damaged cards
at the bottom of the stack.
Clear all cards from the card transport; damaged or undamaged.
Place a supply of cards in the magazine.
Press the PUNCH CLEAR and then the PUNCH FEED to advance the first
card to the ready station.
Again press the PUNCH CLEAR and the PUNCH FEED to advance the first
card to the wait station.
Press the START.
A jammed card in a card stacker is remade and placed in its proper
sequence in the file of punched cards.

II-G-38

CHANGE 2

Description - Control or Data Parity Error

Indication - DISPLAY SELECT -- I/O C MEM

Reason - A parity error has occurred in either a control byte governing the
operation of the punch or in a data byte.

Action - Consult the supervisor. It will be necessary to determine if the
parity error was in a control or data byte. It will also be nec­
essary to determine whether this failure is only momentary or re­
quires field engineering service.

4.6.2.4 PROCESSOR

Description - General Purpose Channel Error

Indication - DISPLAY SELECT -- PROC A - CHAN

Reason - An abnormal condition exists in a peripheral unit connected to the
processor through the general purpose channel.

Action - Consult the supervisor to locate the source of the error.

Description - Address Error

Indication - DISPLAY SELECT -- PROC A - ADD

Reason - An attempt has been made to enter a restricted address location or
to address a location beyond the capacity of the memory of the system
being used.

Action - Consult the supervisor to locate the source of the error.

Description - Parity Error or Divide Error (Hardware)

Indication - DISPLAY SELECT -- PROC A - MEM

Reason - A parity error has occurred in the processor or, if the system is
equipped with the optional multiply, divide, and edit feature, an
error has occurred while performing division.

Action - Consult the supervisor to determine the nature of the error and
whether it is momentary or requires field engineering service.

SECTION III. ASSEMBLY SYSI'EMS

The TRIM family consists of three operational assemblers. The user can select
the assembler which best fits his equipment configuration, thus getting the
maximum use of the computer.

1. '!RIM I

TRIM I is a simple assembler which operates with a minimum of equipment, re­
quiring only a computeT with a paper tape reader-punch unit. The assembler
translates monocode (one-to-one) mnemonic operations into machine code instruc­
tions with appropriate address allocation.

In operation, TRIM I makes two passes on the source program tapes. The first
pass stores the labels from the source program to allow forward references o

Those labels and indicators giving the relative position in the program are
stored and retained for the second pass. The second pass makes the actual
assembly of machine instructions and allocates the addresses. The source
program size is limited only by the number of labels used. TRIM I requires
a minimum of 400010 words of core memory.

2. '!RIM II

TRIM II is an assembler which operates on a computer with a paper tape reader­
punch unit and a console typewriter. In addition to the monocode (one-to-one)
mnemonics of TRIM I, it also accepts polycode (one-to-many) mnemonic operations
in the source program. The source language also has debugging aids which
cause dumps of registers and memory contents wherever desired by the programmer.
The assembler can be instructed to ignore debugging operations if desired. TRIM
II requires a minimum of 800010 words of core memory.

3. TRIM III

TRIM III is an assembler which operates on a computer with a magnetic tape unit,
paper tape reader-punch unit, a console typewriter, a card processor, and a high
speed printer.

This assember has a source language librarian for aiding the programmer in
selecting subroutines for incorporation into the program during the assembly
process. The programmer uses call operatio~s in his source program to implement
retrieval from the source library.

The source programming language includes the operations of TRIM I and TRIM II.
Operations which aid debugging in this language cause generations that present
diagnostic information to the programmer during a run. This works with the
TRIM debugging package (DEBUG) discussed later. In addition TRIM III may be
controlled via control operations.

In operation, TRIM III makes only one pass on the source program input. Sub­
routines are retrieved from the magnetic tape source library and added to the
end of the so~rce program o Assembled programs can then be written on magnetic
tape, cards, or paper tape. Diagnostic errors are typed on the console' type-

111-1

writer. These features cut TRIM III assembly time to a minimum.

The assembler possesses source language correction capability in conjunction
with an assembly run.

TRIM III requires a minimum of 1600010 words of core memory.

111-2

SECTION III-A. TRIM I ASSEMBLY SYSTEM

10 BASIC INFORMATION

TRIM I is a simple assembly system which converts a source program tape written
with symbolic addressing into an object program tape with absolute addressing
suitable for loading into the computers via the utility packages.

20 SYMBOLIC ADDRESSING

201 LABELS

In an absolute-addressed program every word is assigned an absolute address
during the coding process. In the TRIM I system only those words which are
referred to by instructions require an address, although the address is symbolic
rBther than absolute. The term label is used rather than address since it more
accurately describes the function of the symbolic address. A label may never
be incremented or decremented. Words which are not referred to need not be
labeled o Unlabeled words following one another on the source program tape are
ultimately assigned to consecutive memory addresses. For any given assembly
run each label used must be unique.

Instructions are written with mnemonic or octal notation for the function and/
or subfunction codes. The u or k portion of an instruction word may be either
a constant, an octal notation,or a symbolic notation (alphanumeric) referring
to a constant (either an absolute address or an item of data).

Whenever any instruction refers to a label, the u portion of that instruction
is called a tag. The tag must be identical with the label to which it refers
but may be followed by a + or - and an octal integer to provide for increments
or decrements. Thus an instruction may refer to an unlabeled instruction in
terms of its sequential position preceding or following a labeled instruction.

Symbolic addressing simplifies the task of coding. In addition it permits the
transfer of programs to any region of memory since the symbolic addressed
program is independent of memory locations.

III-A-l

3. INPUT LANGUAGE FORMAT

The programmer uses a uniform set of symbols as separators in all coding (refer
to Table III-A-l).

Symbol

•

+

TABLE III-A-l. TRIM I CODING SYMBOLS

Coding Significance

Delimits the statement. Must always precede
the statement operator. Must precede notes;
omit if notes are not given.

Signifies the end of an operation. Must
precede header operations. Must precede
end-of-tape double period symbols.

Separates statement components •

Specifies an integer increment to follOW.

Specifies an integer decrement to follow.

Specifies end-of tape read-in. Must terminate
every input tape.

The input language as prepared by the programmer consists of a list of opera­
tions which perform the step-by-step processing of a problem. An operation has
the following configuration:

L

[label] ---+

S

r s ta temen t 1
l J

N

r notes 1 J
L J 4""

L The label is a name that uniquely identifies the operation. It consists
of up to six alphanumeric characters but never starts with Ot a number,
or LOK. The first operation of each program or subroutine must have a
label. Otherwise only an operation referred to by a tag in the state­
ment of another operation requires a label. Tags have the same notation
restrictions as labels except that tags may be incremented by ~ an octal
integer. Each label of an assembly run must be unique. Conversely, any
number of tags may refer to a given label.

S The statement defines the operation and is always required.

III-A-2

N Descriptive notes may fOllow the statement; they are for the pro­
grammer's use and in no way affect the meaning of the operation.
Notes should not exceed 40 characters.

The straight arrow is a major separator which delimits the statement.

The curved arrow desi.gnates the end of each operation and signals the
start of the next one. It must precede the first operation of any
program.

The operation statement may be in one of the following formats:

3.1 FORMAT A

w Vo

--+ [operator] • [operand] --+

W The operator is the f or fm portion of the operation statement and is
the mnemonic representation of the desired function code of the com­
puter instruction repertoire.

Va Represents the u or k portion of the statement and may be a tag, a tag
± an integer, or an integer only. Integers must be in octal repre­
sentation. Incrementing or decrementing of integers is not permitted.
If ~ is absent, TRIM I generates zeros for the operand without any
error indication.

Examples:

--+ENTAL.CA~

--+ STRADR ·CAT +.!J
-+CMAL.CAT=!J

-+FNTBK.~

-+ ENTALK· 7776 --+

-+ STOp· DOG

....... SKPOIN.~

-+CPA!J

....... JP·LOK-10

--+ OUT·6 --+

-+ O·CHEESE --+

Minus 1 to A:;

DOG defined by an EQUALS op;J

Results in 502207

Results in 506200

LOK signifies THIS addres~

Output transfer channel ~

Buffer terminal addre~

III-A-3

---+ O-CHEESE ---+

---. FNTA';;

---'J~

3.2 FORMAT B

Buffer initial addre:;;

Results in l200~

Results in 340000

TRIM I also accepts programs coded with absolute function codes and absolute or
symbolic addressing. Normal instructions are represented by a 2-digit function
code followed by a point separator and the desired u or mk. However, absolute
instructions may also be represented by six consecutive digits without a point
separa tor.

Examples:

----+ 12-3505 ---+

---+ 63-CAT:!/

----+ 50 -1306 --+

---. 50- 6200 --+

--+ 506200 --+

3.3 FORMAT C

Constants may be represented in a number of ways.

---+ 7--+ Results in 00000:;

---+ 7· 0 ----+ Results in 70000~

---+ 77---. Results in 00007!J

---+ 77-0---. Results in 770002;

----+ 777----+ Results in 0OO77~

----+ 77070 ---+ Results in 077072J

--+ 777-7 --+ Illega~

----+ 777 - ---. Results in ooo77~

---. 123456 ----+ Results in l234~

*Whenever there is an expressed value following the point separator, only one
or two digits are permitted in the operator position.

III-A-4

4. ·SPECIAL OPERATORS

Each program to be assembled by TRIM 1 requires an initial header operation
for identification purposes. A header operation consists of the program name
in the L coding position, a header operator in the W coding position, and two
identifying operands, Vo and VI, in which the programmer specifies his name
or initials and the date of program preparation respectively.

L W N

.J POKER --. PROG-SMITH-JAN68

A carriage return must always precede a header operation.

In addition to the special PROG header operator, TRIM I provides for five
additional special operators useful to the programmer.

1) The SETADR operation informs TRIM I that the next instruction is to
be assigned to the address specified by the V operand. Addressing will
follow sequentially until interrupted by a subsequent SETADR operation.

L

[
OPtional]
label

W

--+ SETADR -
V

[
absolute addreSS]
in octal

N

2) The REMARK operation is for the programmer's use to amplify normal
explanatory notes and in no way affects the generated programs. The
operation may not exceed one line in length.

L

[
OPtional]
label

W

REMARK -
V

[
desired statement up to])
one line in length

3) The EQUALS operation permits the programmer to assign absolute values
to symbolic tags in his program which do not have corresponding labels.
The EQUALS operation may never be used like a SETADR operation, but per­
tains only to constants or addresses outside the program, such as fixed
memory locations, key settings, channel designations, or references to
addresses of program labels other than those of the program currently
being assembled.

L

LABEL

W

EQUALS -
V

[
absolute value]
in octal

III-A-5

N

Examples:

CAT ----. EQUALS. 4--.

DOG ---+ EQUALS • 36--.

COW ---+ EQUALS • 7776--+

Examples of use of the above:

---+ STOP • CA:;

---+ LSHAL • CA!J

----. OUT • CA!J .

--. ENTAL • D~

---. STRADR. D~

---. ENTALK • CO!;

---+ ENTBK. CO!;

4) The DBLSET operation frees the programmer from the responsibility for
insuring that the Y of a double add or subtract instruction be located
at an even address. The DBLSET operation is normally followed by a Y
constant to which it refers. TRIM I examines the address to which the
constant (or instruction) would normally be assigned. If the address
is odd, a word of zeros is first generated to insure that the constant
(or instruction) will be assigned to an even address. If the address is
even, no generation results.

L

[
OPtional]
label

W N

DBLSET

5) The RESERV operation causes the desired number of sequential words to be
reserved within a program. The operation generates as many zero words as
specified by V. The V operand may never be zero.

L

[
OPtional]
label

W

----. RESERV •

III-A-6

V N

[

no. of words to 1---+
be reserved in
octal

5. THE LOK TAG

If the programmer wishes to reference unlabeled instructions in his program,
he may do so in terms of a specific instruction by means of the LOK tag plus
or minus an octal value. LOK always refers to the instruction in which it
appears. For example if the instruction JP·LOK-3 appears at address 04503,
the resulting generation will be 34 4500. Thus, the instruction falling at
address 04500 need not have been labeled. No valid program label may begin
with the letters LOK. Reasonable care should be taken in the use of the LOK
tag since corrections to the original program may affect the LOK references.

6. INPUT TAPE FORMAT

TRIM I is available in two versions; one version accepts a source program pre­
pared in field data code; the other version accepts a source program prepared
in ASCII code (Refer to Appendix A, Tables A-I, A-2, and A-3).

The term source code refers to the code in which the input tapes are prepared.

Input to TRIM I is via punched paper tape. The source program tape must begin
with a carriage return and terminate with a carriage return and two periods.

7. TRIM I OUTPUTS

TRIM I provides four optional punched paper tape outputs of the assembled pro­
gram. All the outputs are loadable via the utility packages.

The available outputs are:

No. 2 - Absolute assembled program, sequential line identifier, source
program, and assembly error alarms when applicable. This is a
side-by-side listing in source code preceded by a program summary
consisting of the number of memory locations used and inclusive
addresses.

No. 3 - Absolute assembled program in source code, consisting of carriage
return, 88, carriage return, addresses and instructions, a carriage
return, double period, and checksum.

No o 4 - Absolute assembled program in bioctal format, consisting of a 76
code, inclusive area addresses followed by the instructions only,
with a checksum.

No.5 - Relocatable assembled program in bioctal format starts with a 75
code followed by the assembled program relative to base 00000, and
terminates with a checksum. The output tape may be loaded starting
at any desired memory location. One restriction is placed on No. 5
outputs; that is, if the program contains double-length add or
subtract instructions and was assembled at an even address, it must

always be loaded at an even address. If the same program was
assembled at an odd address, it must always be loaded at an odd
address.

8. GROUND RULES

1) No TRIM I label may exceed six characters. The label must not begin
with a number, the letter 0, or LOK.

2) Each input program tape prepared for the TRIM I assembler must begin
with a carriage return and terminate with a carriage return and two
periods.

3) Each break in sequence of addressing constitutes a program area. A
total of 24 such areas is permitted.

4) The SETADR operation automatically creates a new program area.

5) A RESERV operation of zero words is illegal.

6) The maximum size program which TRIM I can assemble is limited only by
the number of program labels including the labels of EQUALS opera­
tions. The maximum number of labels allowed is approximately
110010 for each 800010 words of memory.

7) All numbers must be octal integers. Decimal numbers will cause an
error.

8) TRIM I provides a limited amount of error detection and console dis­
play. All other errors will be indicated by multiples of 100
following the notes of the instruction concerned on the No. 2 output.
Thus·lOO indicates one error, 200 indicates two errors in this instruc-
tion, and so forth. This error display mechanism assumes that no
on-line typewriter is available.

9) Keyboard correction methods for TRIM assembler: Typing-error correc­
tion procedures have been incorporated in all versions of the TRIM I,
TRIM II, and TRIM III assemblers, and the TRIM corrector for deleting
immediate keyboard errors that might be made in the preparation of
input tapes for these same programs on the I/O console.

Since it is impossible to back up the paper tape in preparation and punch
code-delete codes over the erroneous frame or frames, any typing errors
must be identified by a special code or codes following the erroneous
data. On the UNIVAC aD 1232 I/O console, the backspace code of the key­
board is designated as a reject code. The backspace is identified by.
the upward pointing arrow (t) below the stop code «(!)) on the same key
on the left hand side of the keyboard. In lower case, this key pun~hes
a 77 and types the same arrow (.) on the printer. On the UNIVAC (H)
1532 I/O console the RUB OUT key is used to generate a reject code.
This key punches a 177 code on tape. No symbol is printed on paper.

III-A-8

One reject code - a single reject code (77 or 177) anywhere on an input tape
to the TRIM assemblers or corrector informs that routine that the legal
code that immediately preceded the 77 or 177 should be rejected.

Example:

o ER t NTE t AL / t t CAG t T (carriage return - line feed)

This statement appearing on the console printer and punched as one
of the statements on a program tape will be interpreted as:

o ENTAL'CAT (carriage return)
by that assembler or corrector.

Three consecutive reject codes - three consecutive rejects (77-77-77 or
177-177-177) on an assembler or corrector input tape inform that routine
that the entire statement being formed should be rejected, and that pro­
cessing of a new statement ihould not begin until a carriage return is
found.

Example 1 :

0 ENTAL'CAT (carriage return - line feed)

MOOSE 0 STRAL'D t t t JP'TIGER (carriage return - line feed)

0 ADDALK'63 (carriage return - line feed)

MICE 0 STRAL'DOG (carriage return - line feed)

These statements appearing in a program to be assembled by a TRIM
assembler will be interpreted by that assembler as:

o ENTAL 'CAT (carriage return)

o ADDALK'63 (carriage return)

MICE 0 STRAL'DOG (carriage return)

Example 2:

143 tit 2 (carriage return - 1 ine feed)

GOOFOSLSUB'JUNK t t t (carriage return - line feed)

RIGHT 0 JK t P'HONI t OR (carriage return - line feed)

III-A-9

These statements on a correction tape will be interpreted by the TRIM
corrector as:

143'2 (carriage return)

RIGHT JP'HONOR (carriage return)

NOTE: All examples are for correcting inputs to the field data version
on the 1232 I/O Console.

9. LOADING AND OPERATING PROCEDURES

Prior to loading the TRIM I assembler the computer and paper tape reader-punch
unit must be placed in the operational state with all switches in the normal
operating position. ' Since the assembler is loaded by a utility package, the
utility package must be already loaded into memory at addresses which will not
be occupied by the assembler.

9.1 LOADING THE ASSEMBLER

1) Master clear the computer and the reader-punch unit.

2) Mount the TRIM I assembler tape in the reader.

3}Set the P register to the utility package starting address for
paper tape load.

4) Start the computer.

9.2 USING THE ASSEMBLER

1) Pass 1.

a} Master clear the computer and reader-punch unit.

b) Set the P register to 1400.

c) Set PROGRAM SKIP keys 1 and 2.

d) If no error displays are desired during assembly, set PROGRAM SKIP
key 3.

e) Mount a source program tape in the reader.

f) Start the computer.

The computer will stop after the tape has been read.
e) and f) for each source program tape.

III-A-10

Repeat steps

2) Pass 2.

a) Release PROGRAM SKIP key 1.

b) Set the AL register to the number of the desired output (2, 3, 4, or 5;
refer to paragraph 7, TRIM I OUTPUTS).

c) Mount a source program tape in the reader (program tapes must be
loaded in exactly the same order as for pass 1).

d) Start the computer.

e) The assembler will assemble the input tape and punch it. Repeat
steps c) and d) for each source program tape.

f) Release PROGRAM SKIP key 2.

g) Start the computer. The assembler will finalize the output tape with
a checksum and trailer.

h) Set PROGRAM SKIP key 2 and start with step b) to obtain additional
outputs.

9.3 ERROR DETECTION AND DISPLAY

TRIM I contains limited error detection capabilities. The majority of pro­
grammer errors can be handled internally. However, since PROGRAM SKIP key
settings are essential to the assembly process, assembly will always stop when
these keys are improperly set. These error stops are indicated by a 1 or a 2
in the AL register.

1) (AL) = 1

2) (AL) = 2

Set PROGRAM SKIP key 1.

Set PROGRAM SKIP key 2.

Set the appropriate PROGRAM SKIP key and start the computer to continue assembly.

The programmer has the option of requesting that the assembler stop and display
pertinent information in the A registers for basic programmer errors or request­
ing that the assembler handle these errors internally, thereby forcing an assembly.

If PROGRAM SKIP key 3 is set, the assembler will force the assembly. If PROGRAM
SKIP key 3 is not set, the assembler will stop for the following errors:

1) (AL) = 3; (AU) = sequential line identifier. This error stop occurs
during pass I and means that no starting address has been given for the
program via the SETADR operation. To correct:

a~ Clear AL.

b) Set AL(14-O) to the desired address.

III-A-ll

c) Start the computer.

d) If the stop and display option has not been selected, assembly
will not stop and TRIM I will arbitrarily assign the program to
the base address 01200.

2) (AL) = 4; (AU) = sequential line identifier. This error stop occurs
during pass 1 and means that the source program contains too many
program segments (24 are permitted). This error is non-recoverable.
Assembly may be continued by starting the computer after each such
stop; however, all addressing will be sequential from the point of
overflow. The effect of this error is the same whether or not the
stop option is selected.

3) (AL) = 5; (AU) = sequential line identifier. This error stop occurs
during pass 2 and indicates an unallocated tag. The recovery pro­
cedure is:

a) Start the computer. The computer will stop again with the
unallocated tag displayed in AU and AL in TRIM internal code
(see Appendix ~Table A-4). The codes are left justified in
AU with overflow to AL.

b) Start the computer. The computer will stop with AL cleared.

c) Set AL(14-O) to the desired address*

d) Start the computer.

4) (AL) = 6; (AU) = sequential line identifier. This error stop may
occur during pass 1 or pass 2 and indicates that the source program
contains too many labels. The error is non-recoverable. Assembly
may be continued by starting the computer. but all subsequent
unallocated labels and tags will be assigned to address 07777.
The effect of this error is the same whether or not the stop option
is selected.

5) (AL) = 7. This error stop occurs during pass 2 and indicates that no
output number or an illegal output number was selected. The recovery
procedure is:

a) Start the computer. The computer will stop again with AL cleared.

b) Enter the desired output number in bits 2-0 of AL.

·If the unallocated tag refers to an instruction within the program, set
AL17 to 1. If the tag is a constant or refers to a fixed address outside
the program, ALl7 should be zero.

I11-A-12

c) Start the computer.

6) (AL) = 10. This error stop indicates an illegal character preceding an
operator. Reposition the tape and start over. If error persists the
source program tape should be examined and corrected.

III-A-13

SECTION III-B. TRIM II ASSEMBLY SYSTEM

1. INTRODUCTION

fhe TRIM II assembiy system provides programming assistance through the use
of its symbolic shorthand. This simplified system converts a source program
written with symbolic addressing into an object program with absolute or
rplocatable addressing. TRIM II produces the assembled object program on
punched paper tape sujtable for loading into the computer via the utility
parkages o

DESCRIPTION

TRIM II is a 2-pa~s assembler designed for a mInImum equipment configuration of
n computer with at least 8,102 (decimal) words of core memory and an I/O
console containing a paper tape reader, paper tape punch, and console type­
writer o The assembler accepts a source program expressed symbolically,
absolutely, or in combination thereof and converts it into an ordered set of
machine instructions suitable for loading via the utility packages.

The term 2-pass means the source program tapes must be loaded into the computer
+wi~e. The first su~h loading, constituting pass 1, assimilates and stores
information needed for pass 2 trefer to Figure III-B-l)o At the completion of
pass 1 the source program tapes must again be loaded, and the desired output
must be selected o Using the information accumulated during pass 1, pass 2
reads g assembles, and punches on paper tape each source program instruction,
statement by statemento This second loading constitutes pass 2 (refer to
Figure 111-8-2). Subsequent outputs are achieved by repeating pass 2.

2.1 SOURCE LANGUAGE

A TRIM source program as prepared by the programmer is composed of a list of
operations which perform the step-by-step processing of a problem. An operation
has the following general format:

[statement] __ [notes]..;
The general format may be further subdivided into:

111-8-1

Executive
Control'

I

Permanent Temper a r}'
Table 5 Area
Mnemonic

Translator-
Storage

Operator Table -- Input '-lBble Allocator
.........

~ W51
Temporary

... Table 6
Label
Table

.........
Temporary

Table 6
Label
Table

..........

Irt>lIT: a. Reads one item into WSI
b. Adds allocations to Table 6
c. Checks for debug status

TRAN/ALLOC: a. Adds labels to Table 6
b. Performs pseudo generation
c. Forms the area storage table for output 4

EXECurIVE: a. Monitors key settings
b. Perfor.s initializations
c. Executes secondary subroutines

Figure III-8-1. Block Chart for TRIM II - Pass I

H
H
H
I

t:C
I

W

Input WSI

EXECurIVE: a.
b.
c.

INPUT: a.

TRANI ALLOC : a •
b.

OlITPUT: a.

b.

Permanent
Table 5

Executive
Control

Translator­
Allocator

Monitors key settings
Performs initializations
Executes secondary routines

Reads one item into W5l

Temporary

W53 1-------.. Output

Performs generation into WS3 one item at a time
Adds anallocated tags to Table 6

2 Output
3

4

5 Types
6
11

Punches one WS3 item at a time in accordance with the numbered output
request (for output 2 also punches the WSI item with the first WS3 item)
Output 6 will be produced all at oncei and does not require that the
source tape be reloaded as for other outputs

Figure III-B-2. Block Chart for TRIM II - Pass 2

2.1.1 "LABEL

The label identifies this particular statement. A label is not required for
every statement. In an absolute-addressed program every word is assigned an
absolute address during the coding process. The assembling process of the
TRIM II system equates the label to the machine address assigned to the in­
struction generated by the statement. Only those statements which are referred
to by other statements require a label or symbolic address. Where more than
one instruction is generated by a statement, the label refers to the address
of the first instruction generated. The term label is used rather than address
since it more accurately describes the function of the ~ymbolic address. A
label may never be incremented or decremented. The instructions or words
generated from unlabeled statements following one another on the source program
tape are ultimately assigned to consecutive memory addresses. Each label of
an assembly run must be unique.

A label may consiSt of not more than six alphanumeric characters, but it never
begins with the letter 0 or a number; it never consists of the letters LOK
alone. The first instruction of each program or subroutine must have a label.

An operand which refers to another operation label is called a tag. The tag
must be identical with the label it refers to but may be followed by a ±
octal or decimal integer to facilitate reference to unlabeled operations. When­
ever a decimal integer is used, it must be followed by the letter D. A tag
coincides with the u or k portion of the instruction word. Tags have the same
notation restrictions as labels except they may be incremented. Any number of
tags may refer to a given label.

If the programmer wishes to reference unlabeled instructions in his program, he
may do so in terms of a specific instruction by means of the LOK tag plus or
minus an integer. LOK always refers to the instruction in which it appears.
For example,if the instruction JPeLOK-3 appears as address 04503, the resulting
generation will be 34 4500 0 Thus the instruction falling at address 04500 need
not have been labeled. No valid program label may consist only of the letters
LOK o Reasonable care should be taken in the use of the LOK tag since corrections
to the original program may affect the LOK references.

The statement of an operation is made up of an operator and operand(s)o The
statement defines the operation.

The operator may be a symbolic shorthand or octal notation which identifies
the basic function to be performed. The operator must be presento It may
cause the assembler to generate one machine instruction or a group of machine
instructions. The operator coincides with the function code, f, and/or
subfunction code, m, of the instruction word.

III-B-4

2.1.2.2 OPERAND{S)

One or a series of operands associated with the basic operator are referred to
as VO, VI 000 Vno These may take several forms depending upon the basic oper­
ator. They define, modify, or complete the functiono

The operand{s) coincides with the u or k portion of an instruction word and may
be either a constant in octal notation or a symbolic alphanumeric notation
referring to a constant (either an absolute address or an item of data).

Descriptive notes may follow the statement; they are for the programmer's use
and in no way affect the instructions generated from the statement. Notes may
not exceed 40 (decimal) characters.

20104 SYMBOLS

The programmer uses a uniform set of .symbols as separators in all coding. These
symbols are defined in Table III-B-l.

TABLE III-B-l.

Symbol

.J (CR)

, (comma)

• (point)

+

l:l (delta)

(vertical line)

(double periods)

TRIM II CODING SYMBOLS

111-B-5

Coding Significance

Major separator delimiting the
statemento Must always precede the
statement operator. Must precede
notes; omitted if notes are not
given •

Specifies the end of an operation.
Must precede end-of-tape double
periodo

Separates certain subsets of
statement components •

Separates statement components o

Specifies an integer increment to
follow.

Specifies an integer decrement to
follow.

Specifies space.

Special control character.

Specifies end-of-tape read-in.
Must terminate every input tape.

2.2 HEADER AND DECLARATIVE OPERATIONS

TRIM II recognizes two types of header operations.

L W Vo VI N

POKER --+ ALLOC • JONES • 10 MAY1963 ~

POKER -+ PROG • JONES • 10 MAY1963 --.

2.2.1 ALLOCATION HEADER (ALLOC)

The ALLOC header informs TRIM II that the operations following constitute
assignments of absolute values to labels and/or tags. Any number of ALLOC
tapes may be loaded, but all must be loaded prior to the loading of program
tapes. An allocation tape must always begin with a carriage return. When the
allocations are on a separate tape, the tape must terminate with a carriage
return and two' periods. An ALLOC tape has the following format:

L W Vo VI

.J [label] ---. [ALLOC] • [name] • [date].;

[label] --+ [aSSigned value].;

[label] ---. [ass igned value].;

[label] ---. [aSSigned value].;

[label] ---. [aSSigned value].;
etc.

1) L - The label of the ALLOC header operation itself is optional.
However, each assignment operation following must have a label.

2) W - The operator of this header operation is always ALLOC, and must be
present. For the subsequent assignment operations, W must be an
absolute numeric value expressed either in octal or decimal o When
expressed decimally, the number must be followed by the letter 0;
for example:

CAT ~ DIDO?,;

DOG ~ 5120.)

CHIPS --+ 1:;

CHOPS ~ lO~

3) V - The V operands of this header operation take the form name and date
as illustrated. These operands are omitted for subsequent assignment
operations.

111-8-6

2.2".2 PROGRAM HEADER (PROG)

The PROG header informs TRIM II that the operations to follow are program
operations as distinguished from allocation operations. The PROG header must
precede the first statement of a program. The PROG header operation must always
be preceded by a carriage return. A program header has the following format:

L w Vo

• [name] •

1) L - The label of the PROG header operation is optional; however, when
present, it is considered to be the name of the program.

2) W - The operator of this header operation is always PROG and must be
present.

3) V - The V operands of this header operation normally take the form
name and date as illustrated. The operands are optional and
completely flexible in number and length within the maximum line
length.

202.3 DEBUG DECLARATIVE

TRIM II accepts the declarative operation:

L w N

[label] ~ DEBUG---+

The DEBUG operator informs TRIM II that generation is to be performed for
debugging operations contained in the source program. If the DEBUG operator is
absent, no generation will occur for such debugging operations. The DEBUG
operation when used must be loaded prior to the first PROG header. It may be
loaded separately or as the last operation on an ALLOC tape: for example:

L W Vo VI

.; POKER ---+ ALLOC • JONES • lOMAY1963.;

CHIPS ---. O123~

CHOPS ---+ 124~

CHAPS ---. 1388~

---+ DEBU~

III-B-7

2.3 MONO-OPERATIONS

Mono or one-to-one operations consist of mnemonic function codes (refer to
computer instructions) and symbolic addresses, absolute machine codes, or
constants.

Mono-operation statements may be in one of the following formats.

203. 1 FORMAT A

w
~ [operator]

Vo
- [operand]--+

W The operator is the f, or fm portion of the operation statement and is
the mnemonic representation of the desired function code of the computer
instruction repertoire.

va - Represents the u or k portion of the statement and may be a tag, ± an
integer, or an integer only. Integers may be in octal or decimal repre­
sentation. When decimal representation is used, the integer must be
followed by the letter D. Incrementing or decrementing of integers is
not permitted. If Vo is absent, TRIM II generates zeros for the operand
without any error indication.

Examples:

-+ ENTAL-CAT.)

--. STRAD R -CAT + ;..J
-+ CMAL-CAT-8~

-+ENTBK-28!J

-+ENTALK-7776 -+

-+ STOP- DOG --+

-+SKPOIN-l;

--+CPA~

---+JP-LOK-lO ~

---+ O-CHEESE+ 1 --+

Minus 1 to A;J

DOG defined by an ALLOC op;J

Results in 502207

Results in 506200

LOK signifies this addre~

Output transfer channel ~

Buffer terminal addres~

111-8-8

--+ O· CHEESE --.

---+ ENTA;J

---'J~

2.3.2 FORMAT B

Buffer initial addres~

Results in 120000

Results in 340000

TRIM II also accepts programs coded with absolute function codes and absolute
or symbolic addressing. Normal instructions are represented by a 2-digit func­
tion code followed by a point separator and the desired u or mk operand. How­
ever, absolute instructions may also be represented by six consecutive digits
without a point separator.

Examples:

--+ 12 • 3505 --+

--+63 • CAT+6 --.

--+ 50 • 1306 --+

-+ 50 • 6200 --+

--+ 506200 -+

2.3.3 FORMAT C

Constants may be represented in a number of ways:

-+ 7 ~ Results in 00000l;

----. 7 - 0 --+ Results in 7000~

---+ 77 ----. Results in 00007';;

--... 77. 0 ---+ Results in 770002J

---+ 777 --+ Results in 00077;';

---. 77070 --+ Results in 077072J

~ 777 - 7 --+ Illegal:;

---+ 777- -+ Results in 000777;J

----+- 123456 ----. Results in 12345~

*Whenever there is an expressed value' following the point separator, only 1 or
2 digits are permitted in the operator position.

111-B-9

Two special mono-operations are available for the programmer's use: STOP and
SKP. If either of these operators is used without a k operand, TRIM II will
automatically generate an unconditional instruction of 50 56 40 or 50 50 40
respectively.

2.4 POLY-OPERATIONS

Frequently groups of instructions which perform a specific function appear
iteratively in a program. A single poly-operation generates a unique sequence
of instructions designed to perform some such specified function. This is the
one-to-many relationship between instructions herein termed poly-coding; the
parent instruction being termed a poly-operation. TRIM II provides 14 such
pOly-operations. In some cases TRIM II g~nerates only a single instruction or,
as in the case of the REMARK operation, no instructions. It is permissible
when coding a routine to intermix mono- and poly-operations in any desired order.

The CLEAR and MOVE poly-operations use the currently active B register, and the
MOVE poly-operation also uses AU in the generated coding. If the programmer
does not wish the data in these registers to be destroyed, he must store and
restore the data around a MOVE or CLEAR operation. The MOVE and CLEAR operations
store and restore the programmer's special register setting.

Since poly-operations may generate more than one machine instruction, the tag
LOK ± an integer must not be used in poly-operation coding.

2.4.1 RESERVE OPERATION (RESERV)

L w Vo

[label] --. RESERV • [number of wordS] ~

The RESERV operation causes the desired number of iequential words to be
reserved within a program. The operation generates the number of zero words*
specified by the Vo operand.

1) L - The label for this operation is optional.

2) W - RESERV must always be present.

3) Vo- Specifies by an octal or decimal integer the number of zero words to
be generated. Vo may never be left blank or specified as zero.

*TRIM II output No.2, used primarily for hard-copy debugging and documentation
reflects only the first generated zero word of each RESERV operation. TRIM II
outputs 3, 4, and 5 contain the requested number of zero words.

III-B-10

Examples:

Assume CAT = 1000 and DOG = 2000

CAT -+ RESERV • 12 --+ Generates zeros at addresses 1000-1011

DOG ~ RESERV • 100 --+ Generates zeros at addresses 2000-2011

2.4.2 CLEAR OPERATION

L w

--+ CLEAR •
[

number] • [starting address] -+
of words

The CLEAR operation clears to zero those memory addresses specified in the
operation •.

1) L - The label for this operation is optional.

2) W - CLEAR must always be present.

3) VO- Specifies by an octal or decimal integer the number of consecutive
memory locations to clear. Vo may never exceed 4000 octal or 20480.
A Vo of zero is not permitted.

4) Vl- Specifies the first address of the area to be cleared. The address
may be expressed as an absolute octal number or as a symbolic tag
plus or minus an octal or decimal integer, that is, CAT-12D or CAT-14.
All the words to be cleared must be wholly contained within one
memory bank.

Examples of CLEAR operations and the absolute coding generated by
the assembler are given below.

Examples:

Assume EXAMI = 1000, EXAM2 = 1006, and CAT = 10123.

Input Operation Generated Coding

EXAM 1 --+ CLEAR • 70 • 7000---+

III-B-li

36 0067
75 1005
50 7300
41 7000
73 1003
50 7300

Input Operation

EXAM2 --+ CLEAR • 210 • CAT---.

Generated Coding

36 0024
75 1013
50 7311
41 0123
73 1011
50 7300

A symbolic representation of the instructions generated is
given below.

ENTBK· [NO. of locations - 1] -+ Set B for No. of loca tions

STRSR· LDK+4 ---+ Store current SR

ENTSR· [Bank No. of Clear area] --+ Set SR to Clear area

CLB • [F irs t 10 cat ion] ---. C 1 ear wo rd at fir s t 10 cat ion + B

BJP • LOK-l --+- Decrement B and repeat loop

ENTSR • 0 --+ Return to current bank when B is zero

204.3 MOVE OPERATION

L w VI

•
[
number]
of words

[from address] • [to address] --+ •

1) L - The label for this operation is optional.

2) W - MOVE must always be present.

3) Vo- Specifies by an octal or decimal integer the number of sequential
words to be moved. Vo may never exceed 4000 octal or 20480. A Vo
of zero is not permitted.

4) Vl-: Specifies the first address' of a block of data to be moved. It may
be expressed as an absolute address in octal or as a symbolic tag plus
or minus an octal or decimal integer. All the words to be moved
must be wholly contained within one blank.

5) V2- Specifies the first address to which the block of data is to be
moved. It is expressed the same as the VI operand. All the
destination addresses must also be wholly contained within one
bank.

Examples of move operations and the absolute coding generated by the
assembler are listed on the following page.

111-8-12

Examples:

Assume EXAM3 = 1014. EXAM4 = 1024, and CAT = 1056

Input Operation Generated Coding

EXAM3 --. MOVE • 10 • CAT • 7000 ---+

EXAM4 ---+ MOVE • 100· 1200 • CAT-IOO---+

36 0007
75 1023
50 7300
11 1056
50 7300
47 7000
73 1016
50 7300

36 0077
75 1033
50 7311
11 2000
50 7310
47 0756
73 1026
50 7300

A symbolic representation of the instructions generated is given below.

ENTBK • [NO of locations - 1] --. Set B for No. of words

STRSR. LOK+6 --+ Store current SR

ENTSR • [Bank No. of from address] --. Set SR to origin bank

ENTAUB • [from address] ~ Get word at from address + B

ENTSR • [Bank No. of to address] ~ Set SR to destination bank

STRAUB. [to address] --. Store word at to address + B

BJP. LOK-4 ~ Decrement B and repeat loop

ENTSR • 0 --. Return to current bank when B is zero

I11-B-13

2.4.4 . I/O OPERATIONS

L W Vo VI V2 V3

[label] -. EXFCT [Channe~ · [i] • [number Of] [bUffer l • . . ~ number buffer startIng
words address

[label] --. BUFIN • ~Channel] •

~l
• ~number Of] [bUffer l number buffer • starting-

words address

[label] - BUFOUT • [Channe~ • [AD] • ~number Of] [bUffer l number MAD buffer • starting-+
BK words address

MBK

1) L - Label for these operations is optional.

2) W - The operator must always be present.

3) VO- Specifies the channel number expressed as an integer or symbolic tag.

4) Vl - Specifies the buffer mode and must be present:

AD - Advance without monitor.

MAD - Advance with monitor.

BK - Back without monitor.

MBK - Back with monitor.

5) V2- Specifies as an octal or decimal integer the number of buffer words
involved. Maximum of five digits.

6) V3- Specifies the address in memory at which buffering is to begin.
V3 may be expressed absolutely or as a symbolic tag plus or minus an
octal or decimal integer.

lII-B-14

Examples:

Assume CAT = 1000 and CHAN = 05

[label] --+EXFCT • 7 • AD • 1 • CAT --+ Generates 501307
001001
001000

[label] --+ BUFIN • 6 • MAD • 10 • CAT --+ Genera tes 501106
201007
201000

[1 abe 1] --. BUFOUT • o • BK • 10 • CAT+7 ---+ Generates 501200
400777
401007

[label] -+ BUFOUT • 1 • MBK· 1000 • CAT+IOOO -+Generates 501201
601000
601144

[label] --. BUFIN • CHAN. AD • 77 • 25000 -+ Genera te s 501105
025076
025000

NOTE: The examples above illustrate the fact that,
for output and external function buffers, the
inclusive buffer limits define a number of words
which is one greater than the actual number of
words to be transferred. These buffers terminate
before transferring the word located at the ter­
minal address.

204.5 REMARK OPERATION

L w

[label] --+ REMARK • [desired statement] --.

The REMARK operation causes no object program generation. It is simply an aid
to the programmer in expanding normal program notes. REMARK operations may not
exceed one line in length.

2.4.6 DATA OPERATION

L w Vo
[label] ~ DATA • [integer, binary point specification] --.

1II-B-15

The DATA operation allows the programmer to specify a positive or negative data
integer and its binary point position. The bits are numbered from right to
left 0-170. The binary point specification must be separated from its asso­
ciated integer by a comma o The absence of a minus sign implies a positive
integer. The label is optional o

Examples:

[label] --. DATA • 24D.90

or

[label] --. DATA • 30,11

The binary representation is:

~ Generates 030000

--. Generates 030000

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 01

and

[label] -+ DATA • 123,4

The binary representation is:

Generates 002460

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
10000000101001100001

2.4.7 PUNCH CONTENTS OPERATION (PCHC)

L w
[label]--' PCHC •

Vo

[
information to be punched] --.
and/or typewriter commands

The PCHC operation produces generated coding which. when run on the computer
with the PCHC* subroutine. causes the octal contents of A, AUt AL, B. or any
memory location to be punched on the high-speed paper tape punch. The words
to be punched may be interspersed with the following typewriter control sym­
bols to provide subsequent listing in the desired format.

operand

• I CR I •
• 6 • 0 r • I SP I •

performance

carriage return, line feed

space

The vertical bars indicate the information enclosed is a special symbol
directing the typewriter. Each CR and SP must begin and end with the vertical
bar. Controls are separated from other operands by point separators.

~c See paragraph 3.2 8).

111-8-16

Vo specifies the operands in the order in which they are to be punched. Except
for the typewriter commands, all operands imply their contents are to be punched.
Such operands may be A, AU, AL, active B, a tag or a tag ± an absolute value,
or an absolute address.

Examples:

CAT ----. PCHC • A • ~ • 7070 • ~ • DOG-lID

....... PCHC • DOG • ~ • B • I SP I • AU

---PCHC • I CR I • ICRI • TA---

--. PCHC • DOG+lO • I spi • CAT--+

2.4.8 PUNCH TEXT OPERATION (PCHT)

L w Vo

• Icnl-+

• ICRI •

[label) --+ PCHT • [text and/or typewriter commands]

AL -+

The PCHT operation produces coding which, when run on the computer with the
PCHT~c subroutine, causes the text and/or typewriter commands in the Vo operand
position to be punched by the high-speed paper tape punch. The text may be
interspersed with the following typewriter control symbols as desired. each
CR and SP must be set off between two vertical bars.

operand performance

ICR I carriage return, line feed

6 or ISPI space

NOTE: Point separators are not required within VO; they will be punched
if present.

Vo is the text to be punched interspersed with typewriter command desired by
the programmer. If the text is too long for one PCHT operation, the programmer
may write successive operations.

Examples:

CAT -+ PCHT • PROFIT 6 AND 6 LOSS 6 FOR ISPI -+

...... PCHT • JULY 6 10, 6 1967 ICR 1--+

204.9 TYPE TEXT OPERATION (TYPT)

L W

[label] -+ TYPT •

Vo
[text and/or typewriter commandsJ-+

*See paragraph 3 0 2 8).

111-8-17

The TYPT operation results in generated coding which, when run on the computer
with the TYPT* subroutine, causes the text and/or commands in the Vo operand
position to be typed by the typewriter. The text may be interspersed with the
following typewriter commands:

operand performance

ICRI carriage return, line feed

tJ. or ISP I space (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol direct­
ing the typewriter. Each CR or SP must begin and end with a vertical bar.

Vo is the text to be typed interspersed with typewriter commands. If the text
is too long for one TYPT operation, the programmer may use successive operations
to complete th~ text.

Examples:

CAT --. TYPT • PROFIT ISPI AND tJ. LOSS tJ. FOR--'

--+ TYPT • JULY tJ. 10, tJ. 1967 I CR I --.

NOTE: Point separators are not required within VO; they will be typed
if present.

2.4010 TYPE CONTENTS OPERATION (TYPC)

L w

[label] -+ TYPC •

Vo

[
information to be typed and/or] --.
typewriter commands

The TYPC operation results in generated coding which, when run on the computer
with ~he TYPC* subroutine, causes the octal contents of A, AU, AL, current B,
or any memory location to be typed on the typewriter. The words to be typed
may be interspersed with the following typewriter commands:

operand performance

• ICR I • carriage return, line feed

• tJ.. or ·ISPI • space (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol
directing the typewriter. Each eR or SP must begin and end with a vertical bar.

*See paragraph 3.2 8).

111-8-18

Vo specifies the operands in the order in which they are to be typed. Except
for the typewriter commands, all operands imply their contents are to be
typed. Such operands may be At AU, AL, active Bf a tag or tag ± an absolute
value or an absolute address.

Examples:

CAT -. TYPC • A • II • II • 7070 • II • II • DOG-lID • ICR I

-. TYP C • AU. II • AL • I SP I • B • HORSE ~

2.4011 DOUBLE SET OPERATION (DBLSET)

L w

[label] ~ DBLSET-+

The DBLSET operation insures that the Y of a double add or subtract instruction
is located at an even address. The DBLSET operation is normally followed by a
Y constant. TRIM II examines the address to which the constant (or instruction)
would normally be assigned. If the address is odd, a word of zeros is first
generated to insure that the constant (or instruction) will be assigned to an
even address. If the address is even, no generation results.

2.4012 SETSR OPERATION

L w

[label] --. SETSR •

Vo

[alPhanumeric tag]-+

The SETSR operation enables the programmer to place responsibility for setting
k of an ENTSR instruction upon TRIM II. Based upon an ALLOC operation for the
assembled address of the referenced tag, TRIM II will generate an ENTSR
instruction (5073 k) with the proper k value for each SETSR operation.

1) L - Label is optional.

2) W - SETSR must be present.

3) VO- Must be an alphanumeric name corresponding to a program label
or an allocated value. Vo may not be incremented or decremented.

Examples:

Assume CAT is a label at 36421 and DOG is a label at 70460 and COW is
allocated to 01000, then:

SETSR --. CAT --. Genera tes 507313

SETSR --. DOG -+ Generates 507317

SETSR --+ COW --+ Genera tes 507310

111-8-19

2.5 DEBUGGING OPERATIONS

TRIM II provides two debugging operations for punching a paper tape output of
either the contents of registers AU, AL, and current B, or the contents of
specified sequential memory locations. These operations are recognized by
TRIM II only if a DEBUG declarative operation is present in the program prior
to the first PROG header operationo If this condition is satisfied, these
operations generate a set of three or five instructions in the object program
which, when run on the computer with the DEBUG* subroutine, produce the desired
punched output. Each set of instructions is assigned a sequential identifying
number which appears with each punched output, thereby enabling programmer
recognition of repeated times through given coding paths. The debugging opera­
tions take the following form:

L

[label]

L

w

-+ DUMPR--+

w

N

Vo N

-+ DUMPM •
[

number of]. [addreSs of first] -+
words to dump word to dump

1) L - Label is optional.

2) W - DUMPR or DUMPM must always be present.

3) VO- Applicable to the DUMPM operation only. Specifies the total number
of memory locations to be dumped. The number may be expressed in
octal or in decimal followed by the letter Do

4) Vl- Applicable to the DUMPM operation only. Expresses the address of
the first word to be dumped. It may be expressed as an integer or
a tag plus or minus an integer.

Examples:

[label] --+ DUMPR -+

[label] -+ DUMPM • 12 • 10000--+

[label] -+ DUMPM • 10D • 110000 --+

[label] -+ DUMPM • 10D • CAT+28D--+

[label] -+ DUMPM • 12 • CAT-15-+

[label] -+ DUMPM • 64D • CAT -+

*See Paragraph 3 0 2 8).

III-B-20

Examples of the DUMPR and DUMPM operation and the coding generated
by the assemhler are given below.

Examples:

Assume EXAMS = 1000, EXAM6 = 1050, and DEBUG = 30000

Input Operation

EXAMS --+ DUMPR --+

EXAM6 --+ DUMPM • 5 • 10000--+

Generated Coding

301001
030000
000001

301051
030000
400002
000005
010000

A symbolic representation of the instructions generated is given below.
The first three instructions apply to both OUMPR and OUMPM. The last
two instructions apply to DUMPM only.

IRJP • DEBUG --+ Indirect return jump to DEBUG

o • DEBUG --. Address of DEBUG

X • [y] --+ X = 0 for DUMPR, 4 for DUMPM
Y = No o< of DL~R or DL~WM operation in this

program

[NO. of words]~ No. of words to be dumped

[First address]~ Address of first word to be dumped

Both DUMPR and DUMPM operations preserve existing values in AU, AL, and the
current B register.

2 0 6 TRIM II OUTPUTS

TRIM II provides six optional punched paper tape outputs of the assembled pro­
gramo All the outputs except outputs Noo 6 and 11 are 10adab1e via the utility
package.

111-8-21

The available outputs are:

No. 2 - Absolute assembled program, sequential line identifier, source
program, and assembly error alarms when applicable. This is a
side-by-side listing in source code preceded by a program summary
consisting of the number of memory locations used and inclusive
addresses.

No.3 - Absolute assembled program in source code, consisting of a carriage
return, 88, carriage return, addresses and instructions, carriage
return, double period and checksum.

Noo 4 - Absolute assembled program in bioctal format, consisting of 76
code, inclusive area addresses followed by the instructions only,
and a checksum.

Noo 5 - Relocatable assembled program in bioctal format consisting of a 75
code followed by the assembled program relative to base 00000 and a
checksum o The output tape may be loaded starting at any desired
memory location (if the program is to be loaded in different memory
banks, SR register manipulation must be handled by the program).

Noo 6 - Allocation output in source code consisting of an ALLOC header
followed by all program tags and labels and addresses in allocation
format. To insure a complete allocation tape, output 6 should not
be the first requested output of an assembly run.

No. 11- Source program on paper tape in source code.

3. PROGRAMMING PROCEDURES

3 0 1 INPUT TAPE FORMAT

Source program tapes must be punched in source code, and the resulting punched
paper tape serves as input to TRIM II.

3 0 2 GROUND RULES

1) TRIM II is available in two versions; one version accepts a source
program prepared in field data code, the other version accepts a
source program in ASCII code. Refer to Appendix A, Tables A-2 and
A-3. Input to TRIM II is via punched paper tape. Each source tape
must begin with a carriage return and terminate with a carriage return
and two periods. The term source code used herein refers to code in
which the input tapes are prepared.

2) No TRIM II label may exceed six characters. The label must not begin
with a number, the letter 0, or consist only of the letters LOK. The
first instruction of every program must have an assigned label a

3) Each break in sequence of addressing constitutes a program area o A
total of 27 such areas are permitted.

111-8-22

4) The maximum size program which TRIM II can assemble is limited only by
the number of program and allocation labels. The maximum number of
labels allowed is approximately 110010 for each 800010 words of memory.

5) TRIM II provides a limited amount of Arror detection with error typeouts
(see TRIM II assembler operating procedure). All other errors are in­
dicated by multiples of 100 following the notes of the instruction con­
cerned on the No.2 outputo Thus 100 indicates one error; 200 indicates
two errors in this instruction, and so forth. Typical errors are un­
convertible numbers, illegal operators, no label first instruction, dup­
licate label, and so forth.

6) TRIM I operators SETADR and EQUALS are ignored by TRIM 110 The ALLOC
operation replaces these two functions.

7) When specifying a decimal integer, the letter D occupies one digit posi­
tion; therefore, the maximum decimal integer that can be expressed is
99999Do

8) Due to space considerations the TYPT, TYPC, PCHT, PCHC, and DEBUG sub­
routines are supplied on tape separate from the TRIM II package in both
source language and object language formats. Therefore, when using these
operations, it is necessary either to assemble the subroutine(s) with the
running program or load them independently with the running program. If
the programmer assembles any of these subroutines with his program he may
allocate them or let TRIM II allocate them sequentially following the end
of his program o In either case the programmer must allocate the tag CHAN
used by these source language subroutines to reference the paper tape
I/O channelo If the programmer does not assemble any of these sub­
routines with his program but uses poly-operations calling on them, he
must allocate the subroutines to a desired address. If he does not,
TRIM II will arbitrarily allocate them as follows:

TYPT
TYPC
PCHT
PCHC
DEBUG

17000
17160
16400
16560
17470

9) Keyboard correction methods; Typing error correction procedures have
been incorporated in TRIM I, TRIM II, and TRIM III assemblers, and
the TRIM corrector for deleting immediate keyboard errors that might be
made in the preparation of input tapes for these same programs on the
UNIVAC 1232 and 1532 I/O consoles. These procedures are described under
TRIM I, paragraph 8.

111-8-23

4 0 . LOADING AND OPERATING PROCEDURES

Prior to loading the TRIM II assembler, the
unitv and console typewriter must be placed
switches in the normal operating positiono
a utility package, the utility package must
addresses which will not be occupied by the

4.1 LOADING THE ASSEMBLER

computer, paper tape reader-punch
in the operational state with all
Since the assembler is loaded by
be already loaded into memory at
assembler.

To load TRIM II, perform the following steps:

1) Master clear the computer and the I/O console.

2) Mount the TRIM II assembler tape in the reader.

3) Set the P register to the utility package starting address for
pa pe:r ta pe load.

4) Start the computer.

4.2 USING THE TRIM II ASSEMBLER

1) Pass 1

a) Master clear the computer.

b) Set the P register to 1400.

c) Set PROGRAM SKIP keys 1 and 2.

d) Set PROGRAM SKIP key 3 for error typeout suppression during assembly
(see paragraph 4.3).

Mount T'\ nrr ~m +~T'\a
P~V~~Q." l.Opv

f) Start the computer.

in the reader.

g) The computer will stop after the source program tape has been read.
Repeat steps e) and f) until all tapes have been read in.

2) Pass 2

a) Release PROGRAM SKIP key 1.

b) Set the AL register to desired output number (2, 3, 4, 5, 6, or 11;
refer to paragraph 2.6).

c) Mount a source program tape in the reader (program tapes must be
loaded in exactly the same order as for pass 1).

d) Start the computer.

e) The Assembler will assemble the input tape and punch the output tape.
Repeat steps c) and d) until all tapes have been read in and punched.

f) Release PROGRAM SKIP key 2.

g) Start the computer.

h) The assembler will finalize the output tape with a checksum and
trailer.

i) Set PROGRAM SKIP key 2 and repeat from step b) to obtain additional
outputso

4 0 3 ERROR DETECTION AND DISPLAY

TRIM II contains certain error detection capabilities. The majority of pro­
grammer errors can be handled internally. However, since PROGRAM SKIP key
settings are essential to the assembly process, assembly will always stop
when PROGRAM SKIP keys 1 and 2 are not set. The proper action to take is in­
dicated by the following typeout: SET KEYS I AND 2. Set both PROGRAM SKIP
keys 1 and 2 and start the computer to continue assembly.

The programmer has the option of requesting that the assembler stop and type
out pertinent information for basic programmer errors, or requesting that the
assembler handle these errors internally, thereby forcing an assembly.

If PROGRAM SKIP key 3 is set, the assembler will force the assembly. If
PROGRAM SKIP key 3 is not set, the assembler will stop after typing the follow­
ing identifiers.

4.3.1 'SET BASE ADDRESS IN AL'

This typeout and error stop occurs during pass 1 and means that no starting
address has been given. To correct:

1) Clear the AL register.

2) Set AL(15-O) to the desired address in octal.

3) Start the computer. The assigned base address will then be typed out
and assembly will continue.

111-8-25

If typeout suppression has been selected (PROGRAM SKIP key 3 set), assembly
will not stop and TRIM II will arbitrarily assign the program to the base
address 01200.

4.3.2 'ILLEGAL OUTPUT RESELECT IN AL'

This typeout and error stop indicates an illegal output has been selected at
the start of pass 2. To recover, start the computer. When the computer stops
aga,in, reselect the output in AL, and start the computer.

NOTE: If poly-operation generation results in a memory bank overflow,
output 2 is the only legal output that may be requested. "If a
legal output has been selected and the above typeout occurs, bank
overflow is the cause.

4.3.3 'UNALLOC TAGS'

This typeout and error stop occurs during pass 2 and indicates an unallocated
tag. The first such typeout is followed by a typeout of the sequential line
identifier and the tag name. After recovery, the address is also typed.

Thereafter only the sequential line identifier, the tag name, and the address
to which the tag was equated during recovery are typed.

The recovery procedure is:

1) Set the AL register to the desired value.

2) If the tag refers to an instruction contained within the program being
assembled, set AL17 to 1. If the tag is a constant or refers to a fixed
address outside the program, AL17 must be O.

3) If the user wishes all later unallocated tags allocated to the same
address, set the AU register to any nonzero value.

4) Start the computer. TRIM II will type the manual alloc'ation and use
it to continue assembly.

4.3.4 'DUP LBL'

If during generation a duplicate label is discovered, TRIM II types the
sequential line identifier, DUP LBL, and the label name. The assembly will
continue without a computer stop.

111-8-26

SECTION III-C. TRIM III ASSEMBLY SYSTEM

1. INTRODUCTION

The TRIM III assembly system provides programming assistance through the use
of its symbolic shorthand. As illustrated in Figure III-C-l, this assembly
system converts a source program written with symbolic addressing into an
object program with absolute or relocatable addressing. TRIM III produces the
assembled object program on punched paper tape, punched cards, or magnetic tape.

The
Definition

of a
Problem

(
Input) __ ••

Language

TRIM III
Assembly
System

Figure III-C-l. TRIM III Solution of a Problem

Input Data •
Obj ect
Program

• Output Data

TRIM III has an easy-to-use but effective library retrieval capability. The
library of subroutines is stored on the assembler magnetic tape. The user
simply calls by name those subroutines he wishes to include with his assembled
program. TRIM III honors the calls by automatically adding them to the end
of the source program during assembly. A companion program to TRIM III called
the library builder routine provides easy library building, insertion, replace­
ment, deletion, and listing capabilities.

TRIM III possesses source language level correction capability in combination
with an assembly run. Although this feature is primarily designed for use
with paper tape input, it may be used with any combination of input modes.

2. DESCRIPTION

TRIM III is basically designed for a mInImum equipment configuration of a
computer with at least 16,384 words of core memory, a magnetic tape system with
two or more tape transports, and an I/O console consisting of a punched tape
reader, tape punch, keyboard, and console typewriter. Optional equipment is
an on-line card processor system with card reader, card punch, and high-speed
printero

The TRIM III assembler is stored on magnetic tape in functional segments.
During an assembly run the segments are read into computer memory and executed
in the proper sequence by the assembler controlling routine. See Figures
III-C-2 and III-C-3 o TRIM III is a single external pass assembler. It accepts
a source program, converts it to TRIM code, and stores it on magnetic tape for
subsequent processing. If the user has included calls for library subroutines
in his source program, TRIM III selects them from the library and adds them to
the end of the source program before proceeding with assembly. TRIM III also
has source language correction capability in conjunction with an assembly run.

III-C-l

t-I
t-I
t-I
I
n
I

'"

Source
Program

Input
Converter

•

Table 2
Input
Operators

.... -
1

I
I

TRIM III
Controlling Routine

-

:

Table 1

@
Initial
Source
Progra

-

I
I

~~
I

-- - - -,

Librarian 1

I
I

I L_·-_- r --
I
I r.t'ables 7~

___ I ll~
I - - ---
I ____ .ITables 4.131. _

I Library I
Calls &

I Header I
I Labels I
I _.J
..... _-/

~
~ bra ry 01.:&
& Libra

-

..

Table 1

@
Final
Source
PrQgram

~

Table 6j
label/Talg
Alloca­
tions -

* Magnetic Tape Table = Core Table 10
** Table lIOn Magnetic Tape A =

Table 12 On Magnetic Tape B

\~-----------------v~--------------~/\~--------------~V~--------------~

Segment 1 Segment 2

Fiaure III C-2. TRIM III Segments 1 and 2

H
H
H
I

("')

~

TRIM III
Controlling Routine ,

Table 1 Table 3

@ Tran sla tor ... @ Output
~ Allocator Converter -

Final Assembled
Source Obj ec t

~ ~
Program

.. -
Ta!>le 5 Table 6

Mnemonic - Label/Tag
Opera tor s Alloca-

~ ~
\~----------------------~v~------------------------"~--------~v~--------~

Segment 3 Segment 4

,Obj ec t
Language .. & Editing
Informa ti on

TRIM III
Outputs

No. 1

No. 2

No. 3

No. 4

No • 5

No. 6

No. 7

No.10*

No.ll

No.12

No.13

No.14

No.15

No.16*

* Output No. 10 is Table 3: Output No. 16 is Table 15

Figure III-C-3. TRIM III Segments 3 and 4

2.1 SOURCE LANGUAGE

A TRIM program as prepared by the programmer is composed of a list of operations
which perform the step-by-step processing of a problem. An operation has the
following general format:

[label] - [statement] - [notes].;
The general format may be further subdivided into:

L w N

[label] -[operator] • [operand(s>] _ [notes].;

201.1 LABEL

The label identifies this particular statement. A label is not required for
every statement. In an absolute-addressed program every word is assigned an
absolute address during the coding process. The assembling process of the
TRIM III system equates the label to the machine address assigned to the in­
struction generated by the statement. Only those statements which are referred
to by other statements require a label or symbolic address o Where more than
one instruction is generated by a statement, the label refers to the address of
the first instruction generatedo The term label is used rather than address
since it more accurately describes the function of the symbolic address. A
label may never be incremented or decremented. The instructions or words
generated from unlabeled statements following one another on the source program
tape are ultimately assigned to consecutive memory addresses. Each label of
an assembly run must be uniqueo

A label may consist of not more than six alphanumeric characters; it never
begins with the letter 0 or a number, and never consists of the leters LOK
alone. The first instruction of each program or subroutine must have a label.

An operand which refers to another operation label is called a tag. The tag
must be identical with the label it refers to except that it may be followed
by a ~ octal or decimal integer to facilitate reference to unlabeled operations.
Whenever a decimal integer is used, it must be followed by the letter D. A
tag coincides with the u or k portion of the instruction word. Tags have the
same notation restrictions as labels except they may be incremented. Any
number of tags may refer to a given label.

If the programmer wishes to reference unlabeled instructions in his program
in another manner, he may do so in terms of a specific instruction by means
of the LOK tag plus or minus an integer. LOK always refers to the instruction
in which it appears. For example, if the instruction JP.LOK-3 appears at
address 04503, the resulting generation is a jump to address 04500. Thus the
instruction falling at address 04500 need not have been labeled. No valid
program label may consist only of the letters LOK. Reasonable care should be
exercised in the use of the LOK tag since corrections to the original· program
may affect the LOK references.

III-C-4

2 • 1" • 2 STATEMENT

The statement of an operation is made up of an operator and operand(s). The
statement defines the operation.

2.1.2.1 OPERATOR

The operator may be a symbolic shorthand or octal notation which identifies the
basic function to be performed. The operator must always be present. It may
cause the assembler to generate one machine instruction or a group of machine
instructions. The operator coincides with the function code f, and/or sub­
function code m, of the instruction word o

2.1.2.2 OPERAND(S)

One or a series of operands associated with the basic operator are referred
to as VO, VI ••• Vno These may take several forms depending upon the basic
operator. ·They define, modify, or complete the function.

The operand(s) coincides with the u or k portion of an instruction word and
may be either a constant in octal notation or a symbolic alphanumeric notation
referring to a constant (either an absolute address or an item of data).

2 .. 1 0 3 NOTES

Descriptive notes may follow the statement; they are for the programmer's use
and in noway affect the instructions generated from the statement. Notes must
be restricted in length such that the entire source statement does not exceed
one line or one card.

2 .. 1.4 SYMBOLS

The program uses a uniform set of symbols as separators in all coding. These
symbols are depicted in Table III-C-l below.

•

TABLE III~C-l. TRIM III CODING SYMBOLS

Symbol Coding Significance

(tab)

(CR)

(comma)

(point)

Major separator delimiting the statement.
Must always precede the statement operator.
Must precede notes; omitted if notes are
not giveno

Specifies the end of an operation. Must
precede end-of-tape double period.

Separates certain subsets of statement
components ..

Separates statement components •

III-C-5

TABLE III-C-l. TRIM III CODING SYMBOLS (CONT.)

Symbol Coding Significance

+ Specifies an integer increment to followo

(delta)

(vertical line)

(double period)

Specifies an integer decrement to followo

Specifies spcce o

Special control character o

Specifies end-of-tape read-ina Must
terminate every input tapeo

202 HEADER AND DECLARATIVE OPERATIONS

TRIM III recognizes four types of header operations:

L W Vo VI N

POKER ---+ CONTR • JONES • 10 DEC1964 ----+

POKER ----+ ALLOC • JONES • 10 DEC1964 ----+

POKER ---+ PROG • JONES • 10 DEC1964 ---+

POKER ---+ CORREC • JONES • 10 DECl964 --.

202 0 1 CONTROL HEADER (CONTR)

The CONTR header operation is a convenience for the user. It enables him to
group all of his assembler declarative operations following one CONTR headero
A label and identifying operands may be used with the CONTR header, but TRIM III
does not require them o

L W

[label] -+ [CONTR]

Vo
• (name] •

Operations which may follow a CONTR header are ALLOC, DEBUG, OUTPUT, REMARK,
DECKID and CALL. CALL operations may also follow a PROG header. Figure III-C-4
shows typical coding for a CONTR header and the declarative operations used
with ito

III-C-6

TITLE UNIVAC CODING FORM PROGRAMMER
PAGE of PLT. EXT MS

DATE

LABEL I OPERATOR I OPERANDS AND NOTES
~ HEADER TYPE

POKER --+ CONTR · JONES • 16NOVEMBER 1 963
POKER --+ ALLOC · JONES. 16NOVEMBER
POKER --+ 05000 ·
CHIP --+ 05500 ·
DEBUG --+ lTIOOO ·
TYPT --+ 12700 ·

--+ OUTPUT · 1-6-2-5·6-11
--+ DEBUG ·
--+ CALL • SINE TODEC TYPT

--+ REMARK • CONTR TAPE FOR DATAX REVISION 3
--+ DECKID · SINE
--+ · ••
--+ •
--+ ·
--+ ·
-+. •
--+ •

--+ ·
-+ ·
-+ •

--+ •
--+ ·
--. •
--. •
--+ •

Figure III-C-4. Sample CONTR Header And Delcarative Operations

2.2.2 ALLOCATION HEADER (ALLOC)

The ALLOC header follows a CONTR operation and informs TRIM III that the
operations which follow constitute assignments of absolute values to labels and/
or tagso Any number of ALLOC tapes or cards may be loaded. An allocation tape
must always be preceded by a carriage return (see paragraph 3). When the
allocations are on a separate tape, the tape must terminate with a carriage
return and two periods. ALLOC operations have the following format:

L W Vo

• [name]

[labe11-[aSSigned vlllue1.J

[labe11 [as signed val ue].J

[label] fassigned value].;
l etc.

•

1) L - The label of the ALLOC header operation itself is optional. However,
each assignment operation following must have a label.

2) W - The operator of this header operation is always ALLOC, and must be
present. For the subsequent assignment operation, W must be an
absolute numeric value expressed either in octal or decimal. When
expressed decimally, the number must be followed by the letter Of
for example:

CAT --. OlO~

DOG --. 5l2!J

CHIPS --.. 1;;
CHOPS -+ lO~

3) V - The V operands of this header operation take the form name and date
as illustrated. These operands are omitted for subsequent assig~ment
operations.

202.3 PROGRAM HEADER (PROG)

The PROG header informs TRIM III that the operations to follow are program
operations as distinguished from control operations. The PROG header must
precede the first statement of a program. The PROG header operation on paper
tape must always be preceded by a carriage return (see paragraph 3). A program
header has the following format:

L W

[
program] --+ [PROG]

name
•

Vo
[name]

lll-C-8

1) L - The label of the PROG header operation is optional; however, when
present it is considered to be the name of the program.

2) W - The operator of this header operation is always PROG and must be
present.

3) V - The V operands of this header operation normally take the form name
and date as illustrated. The operands are optional and completely
flexible in number and length within the maximum line length.

2.2.4 CORRECTION HEADER (CORREC)

The CORREC header informs TRIM III that the operations following are source
language corrections to be integrated into the source language program under
assembly. A maximum of 192 correction operations is permitted for anyone
assembly run. Three types of correction operations are provided by TRIM III:

1) Insertions or additions.
2) Replacements.
3) Deletions.

Although the correction feature is primarily intended for use with paper tape
input mode, it may be used with any combination of input modes, the only
restriction being that all corrections must be read in prior to read-in of
the source program.

The format of correction operations is identical to that required by the TRIM
corrector (refer to the TRIM corrector description contained in this manual).
Figure III-C-5 shows a sample of correction coding which may be used with the
CORREC leader in the TRIM III assembler.

Corrections are always made on the basis of the sequential line identifier
associated with each source program statement. This sequential identifier
appears on TRIM III outputs 2, 12, and 14. If assembly consists of multiple
source programs, it must be remembered that the sequential identifiers are
cumulative and correction is based upon these cumulative identifiers in any
given assembly. If two or more correction operations bear the same integral
and fractional identifier, the last one read will supersede the preceding one
with the same identifier, permitting a programmer to correct a correction o

Only the last such correction will count towards the 192 maximum o

2.2.5 DEBUG DECLARATIVE

TRIM III accepts the declarative operation:

L w N

--. DEBUG ~

III-C-9

1-1
1-1
1-1
I

("')
I
~

o

TITLE MANL (CORRECTIONS)
PAGE 1 of 1

LABEL I OPERATOR

~·MANL HEADER TYPE

-+ CORREC

112 • 05 ~
MANL17 -+ MOVE

47· 0 .,./
-+ ENTALK

6 • 05 ./
-+ BUFIN

6 - 05 .;
~ BUFIN

201 • .;
---+ DELETE

17 - .;
-+ DELETE

315 • 05 ..;
MAHL99 -+ RESERV

315 -10 .J
MAHLAl! ---+ 0

315 -15 .,I
MANLAL -+ 0

316 - .,J
MANLB -+ 0

- ..; . "
-+

• ./
---.

UNIVAC PROGRAMMER
PLT. EXT. MS

TAPE CoRRECTION FORM DATE

I OPERANDS AND NOTES

• VV. C. Raas - 8Nav 1964

• 10 .. MANL8 • MANL99 -+ INSERT CORRECTION

• !501 -+ REPLACE CORRECTION

• CHANL· MAD • 100D • MANL 1

~

• CHAN • MAD - 100 - MANL80 -+ CORRECTS A CORRECTION

• l8D ---+ DELETES THIS AND NEXT 17

• --. DELETES THIS ONE ONLY

• 8D ADDITION TO END OF PROGRAM

- }

,.."

• J

~

•
;?

l

•

•

Figure III-C-5. Sample Correction Coding

The DEBUG operator informs TRIM III that generation is to be performed for
debugging operations contained in the source program. If the DEBUG operator
is absent, no generation will occur for such debugging operations. The DEBUG
operation when used must be loaded prior to the first PROG header. It normally
appears on the CONTR tape.

2.2.6 OUTPUT DECLARATIVE

TRIM III accepts the declarative operation:

L W V 0 VI Vn N

[label] --+ OUTPlIT • [n]. [n]

The OUTPUT operation permits the user to specify the assembler outputs he
desires. The outputs are specified by number in the Vo through Vn position.
Up to eight outputs may be requested by the OUTPUT operation. Requests in
excess of.eight will be ignored and multiple OUTPUT statements are not permitted.
An example of a legal OUTPUT operation is given below.

---. OU1PUT • 1 • 15 • 6 • 2 • 5 ---.

2.2.7 DECKID DECLARATIVE

TRIM III accepts the declarative operation:

L W Vo N

[1 abe 1] --+ DECKID • [name] --.

The DECKID operation permits the user to specify card identification on printer
or source card outputs he may select from TRIM III. From one to foura4banumeric
characters may be specified in the Vo position. These characters together with
a 4-digit sequential octal number beginning with 0001, are added to each TRIM
III statement that is also assigned a sequential line identifier. This card
information will appear on the side-by-side printer listing output of the
program (output 12) and the punched card output in source language (output 15).
The new card identification and numbering preempts that which might be
present if the input source program is on cards. Any number of DECKID state­
ments may be inserted anywhere in the source program; however, each DECKID
operation affects only those statements following that DECKID statement, and
the card numbering will always begin with 0001.

2.2.8 ENDATA DECLARATIVE

The ENDATA operatio~ is used with card input to TRIM III. It informs the
assembler of the end of a card deck. It does not mean the end of all input.
The ENDATA operation does not cause any object language generation. It may
have a label and notes. One blank card must follow each ENDATA card.

L W
rLl --+ ENDATA --.
L J

III-C-li

2.3 MONO-OPERATIONS

Mono or one-to-one operations consist of the mnemonic function codes in the
instruction repertoire and symbolic addresses, absolute machine codes, or
constants. Mono-operation statements may be in one of the following formats:

2 • 3 • 1 FORMAT A

w Vo
[opera tor] - [operand]--+

L - The label is optional.

W - The operator is the f or fm portion of the operation statement and is the
mnemonic representation of the desired function code of the computer
instruction ~epertoire.

VO- Represents the u or k portion of the statement and may be a tag, a tag +
an integer, or an integer only. Integers may be in octal or decimal
representation. When decimal representation is used, the integer must be
followed by the letter D. Incrementing or decrementing of integers is
not permitted. If Vo is absent, TRIM III generates zeros for the operand
without error indications.

Examples:

-+ ENTAL-CAT ----+

-+ STRADR-CAT+l --+

-+ CMAL-CAT-8D -+

--+ ENTBK - 28D ----+

-+ ENTALK-7776 -+

-+ STOP-DOG -+

-+ SKPOIN-7 --+

---+ CPAD ---+

-+ JP-LOK-lO ---+

-+ ODT-6-+

-+ O-CHEESE+l --.

-+ O-CHEESE --+

-+ ENTA~

-+ Jp. --+

Minus 1 to AL

DOG defined by an ALLOC opn

Results in 506200

LOK signifies this address

Output transfer channel 6

Buffer terminal address

Buffer initial address

Results in 120000

Results in 340000

III-C-12

2 •. 3.2 FORMAT B

TRIM III also accepts programs coded with absolute function codes and absolute
or symbolic addressing. Normal instructions are represented by a 2-digit
function code followed by a point separator and the desired u or mk operand.
However, absolute instructions may also be represented by 6 consecutive digits
without a point separator.

Examples:

--+ 12-3505 -.
--+ 63-CAT+6 --+
----+ 50 -1305 ----+
---+ 50 -6 200 --.
--+ 506200 --+

2.3.3 FOlmAT C

Constants may be represented in a number of ways:

-+7--+ Results in 000007

--+7-0 -+ Results in 700000

---.77 --+ Results in 000077

--+ 77 - 0 ---+ Results in 770000

--+777 ---+ Results in 000777

---+ 77070 --+ Results in 077070

--+777 - 7-' Illegal*

--+777----. Results ·in 000777*

--+ 123456 --+ Results in 123456

Two special mono-operations are available for the programmer's use; STOP and
SKP. If either of these operators is used without a k operand, TRIM III will
automatically generate an unconditional instruction of 50 56 40 or 50 50 40
respectively.

2.4 POLY-OPERATIONS

Frequently groups of instructions which perform a specific function appear
iteratively in a program. A single poly-operation generates a unique sequence
of instructions designed to perform some such specified function. This is the
one-to-many relationship between instructions herein termed poly-coding; the
parent instruction is termed a poly-operation. TRIM III provides for several
poly-operations. In some cases TRIM III generates only a single instruction or,

*Whenever there is an expressed value following the point separator, only 1 or
2 digits are permitted in the operator position.

III-C-13

as in the case of REMARK and CALL operation, no instructions. It is permissible
when coding a routine to intermix mono- and poly-operations in any desired order.

The CLEAR and MOVE poly-operations use the currently active B register and the
MOVE poly-operation also uses AU in the generated coding. If the programmer
does not wish the data in these registers to be destroyed, he must store and
restore the data around a MOVE or CLEAR operation. The MOVE and CLEAR opera­
tions store and restore the programmer's special register setting. Since
poly-operations generate more than one machine instruction, the tag LOK ~ an
integer must not be used for poly-operation coding.

2.4.1 RESERVE OPERATION (RESERV)

w

--+ RESERV •
[
Number]
of words

The RESERV operatIon causes the desired number of sequential words to be
reserved within a program. The operation generates the number of zero words*
specified by the Vo operand.

1) L - The label for this operation is optional.

2) W - RESERV must always be present.

3) Vo -Specifies by an octal or decimal integer the number of zero words to
be generated. Vo may never equal zero.

Examples:

Assume CAT = 1000 and DOG = 2000

CAT --+ RESERV • 12 ---. Generates zeros at addresses 1000-1011

DOG --+ RESERV • 100 --+ Generates zeros at addresses 2000-2011

2.4.2 CLEAR OPERATION

L w VI

[1 abe 1] --+ CLEAR •
[
Number]
of words

[starting address] ~ •

The CLEAR operation clears to zero those memory addresses specified in the
operation.

1) L - The label for this operation is optional.

2) W - CLEAR must always be present.

*TRIM III outputs 2, 12, and 14, used primarily for hard-copy debugging and
documentation, reflect only the first generated zero word of each RESERV opera­
tion. All other object language outputs contain the requested number of zero
words.

111-C-14

.3) Vo- Specifies by an octal or decimal integer the number of consecutive
memory locations to clear. Vo may never exceed 4000 octal or 20480.
A Vo of zero is not permitted.

4) Vl- Specifies the first address of the area to be cleared. The address
may be expressed as an absolute octal number or as a symbolic tag
plus or minus an octal or decimal integer; that i~CAT-120 or CAT-14.
All the words to be cleared must be wholly contained within one
memory bank.

Examples of coding for CLEAR operations are given below.

[label] --+ CLEAR • 180 • FLIP+ 120 --+

[label] ---. CLEAR • 22 • FLIP+14 --+

[label] ---. CLEAR • 1000 • FLAP-5 -.

[label] ---+ CLEAR • 4000 • 130000 --+

Examples of CLEAR operations and the absolute coding generated by
the assembler are given below.

Assume EXAMI = 1000, EXAM2 = 1006, and CAT = 10123

EXAM 1

EXAM2

Input Operation Generated Coding

----. CLEAR • 70 • 7000 --+ 36 0067
75 1005
50 7300
41 7000
73 1003
50 7300

--. CLEAR • 210 • CAT--+ 36 0024
75 1013
50 7311
41 0123
73 1011
50 7300

A symbolic representation of the instructions generated is given below.

---+ENTBK e[No. of locations -lJ---+Set B for No. of locations
--+STRSR • LOK+4 --+ Store current SR
........ ENTSR • [J3ank No. of clear area] --+Set SR to clear area
........ CLB • [First location] --+ Clear word at first location + B
........ BJP • LOK-l --+ Decrement B and repeat loop
........ ENTSR • 0 ---+ Return to current bank when B is zero

111-C-15

2.4.3 MOVE OPERATION

w

MOVE •
[
number 1 • [from address] • [to address]
of wordsJ

1) L The label for this operation is optional.

2) W - MOVE must always be presento

3) Vo- Specifies by an octal or decimal integer the number of sequential
words to be moved. Vo may never exceed 4000 octal or 2048Do A Vo
of zero is not permitted.

4) Vl- Specifies the first address of a block of data to be moved o It may
be expressed as an absolute address in octal or as a symbolic tag
plus or minus an octal or decimal integer. All the words to be
moved must be wholly contained within one bank.

5) V2- Specifies the first address to which the block of data is to be moved.
It is expressed the same as the VI operand. All the destination
addresses into which data are to be moved must be wholly contained
within one bank.

Examples of coding for MOVE operations are given below.

[label] ---. MOVE • 78D • CAT • DOG-7 -+

[label] ---. MOVE • 10 • HORSE +10 • COw+8D---.

[label) ---. MOVE • 4000 • CAT • PIG--'

r labell
L J

---. MOVE • 100D • 0 • 10000 -.

[label] --+ MOVE • 100D • 30000 • CAT-+

Examples of move operations and the absolute coding generated by the
assembler are given below.

Assume EXAM3 = 1014, EXAM4 = 1024, and CAT = 1056

Input Operation Generated Coding

EXAM3 -+ MOVE • 10 • CAT • 7000 --+

III-C-16

36 0007
75 1023
50 7300
11 1056
50 7300
47 7000
73 1016
50 7300

Input Operation

EXAM4 MOVE • 100 • 12000 • CAT-IOO -.

Generated Coding

36 0011
15 1033
50 7311
11 2000
50 1310
41 0156
13 1026
50 7300

A symbolic representation of the instructions generated is given below.

--.ENI'8K· [No. of locations-I] Set B for No. of words
--..STRSR • LOK+6 --. Store current SR
--+ENTSR • [Bank No. of from address]---+ Set SR to origin bank
-+ENTAUB· [from address] ---.. Get word at from address + B
--+ENTSR ., [Bank No. of to address] ----- Set SR to destination bank
--+STRAUB • [To address] -.Store word at to address + B
--+8JP • LOK-4 --.. Decrement B and repeat loop
--.ENTSR • 0 --+ Return to current bank when B is zero

2.4.4 I/O OPERATIONS

L W Vo VI V2

[label]-EXFCT • LChanne~
number . ~] • ~umber buffer

[label] -BUFIN • LChannel] •
number ~ 1

• ~number
buffer

(label]-.... BUFOUT. rchannell • ~ AD]1 · fnumber
Lnumber J MAD. Lbuffer

BK
MBK .

1) L - Label for these operations is optional.

2) W - The operator must always be present.

V3

of J.~bUffer start-J-
words ing address

of J.~buffer start-J-
words ing address

of J.[buffer start-J--+
words ~ng address

3) Vo- Specifies the channel number expressed as an integer or a symbolic
tag.

4) Vl- Specifies the buffer mode and must be present:

a) AD - Advance without monitor.
b) MAD - Advance with monitor.

III-C-17

c) BK - Back without monitor.
d) MBK - Back with monitor.

5) V2 - Specifies as an octal or decimal integer the number of buffer words
involved o Maximum of five digits.

6) V3 - Specifies the address in memory at which buffering is to begino V3
may be expressed absolutely or as a symbolic tag plus or minus an
octal or decimal integer o

Examples:

Assume CHAN = 07 and CAT = 10000

[1 a be 1] -. EXFCT • CHAN • AD • 1. 30000 --+ Generates 501307
030001
030000

Generates 501106
210007

[label]-'BUFIN • 6 • MAD • 10 • CAT---.

210000

[label]-'BUFOUT. 3 • BK • 7 • CAT+7--+ Generates 501203
410000
410007

[label]-+-BUFOUT. 0 • MBK • 1000 • CAT+99n~Generates 501200
607777

NOTE: The examples above illustrate the fact that,
for output and external function buffers, the
inclusive buffer limits define a number of words
which is one greater than the actual number of
words to be transferred. These buffers terminate
before transferring the word located at the ter­
minal address.

204.5 LIBRARY CALL OPERATION

L w

[label] --+ CALL • • ...

610143

The CALL operation permits the programmer to specify by name (label of the
PROG header) the subroutines he wishes the assembler to retrieve from the
library of subroutines. A single CALL operation may name up to eight such
subroutines. If the user requires more than eight subroutines, he may specify
them with additional CALL operations. Subroutines retrieved from the library
are automatically added to the end of the source program and assembled with it.
The user has complete control of their address allocation if he wishes via
ALLOC operations.

III-C-18

~enever a CALL operation follows the CONTR header, TRIM III will honor the
calls, but the CALL operation itself will not appear on a side-by-side output
listing. Only those operations following a PROG header appear on such list­
ings. If a subroutine retrieved from the library contains CALL operations,
these calls will also be retrieved and added to the end of the composite
program until the last CALL operation has been honored. A request for
output No. 7 causes all library CALL operations to be ignor~d.

The CALL operation causes no object program generation.

Examples:

-.CALL·PCHC --+

2.4.6 REMARK OPERATION

L w

[label] --+ REMARK • [desired statement] -+

The REMARK operation causes no object program generation. It is simply an
aid to the programmer in expanding normal program notes.

The REMARK statement may not exceed one line or one card in length.

2.4.7 DATA OPERATION

L w

[label] ---. DATA • [integer, binary point specification] --+

The DATA operation allows the programmer to specify a positive or negative data
integer and its binary point position. The bits are numbered from right to
left 0-17D. The binary point specification must be separated from its asso­
ciated integer by a comma. The absence of a minus sign implies a positive
integer. The label is optional •

. Examples:

[label] --. DATA. 24D, 9D --+

or

[label] --+ DATA· 30, 11 --.

The binary representation is:

Generates 030000

Generates 030000

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
10000110000000000001

III-C-19

[label] .~. DATA • 123,4 --+ Generates 002460

The binary representation is:

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\0 0 0 0 0 0 0 1 0 100 1 1 0 0 0 01

2.4.8 PUNCH CONTENTS OPERATION (PCHC)

L w

•

Vo

[
informa tion to be punched] ----+
and/or typewriter commands

The PCHC operation results in generated coding which, when run on the computer
with the PCHC* subroutine, causes the octal contents of A, AU, AL, B or any
memory location ,to be punched on the high-speed paper tape punch. The words
to be punched may be interspersed with the following typewriter control symbols
to provide subsequent listing in the desired format.

Operand Performance

• ICRI· carriage return, line feed

• t:. • 0 r • I SP I • space

The vertical bars indicate the information enclosed is a special symbol direct­
ing the typewriter. Each CR and SP must begin and end with the vertical bar.
Controls are separated from other operands by point separators.

1) L - The label is optional.

2) W - The operator PCHC must be present.

3) Vo- Specifies the operands in the order in which they are to be punched.
Except for the typewriter commands, all operands imply their con­
tents are to be punchedo Such operands may be A, AU, AL, active B,
a tag or a tag ~ an absolute value, or an absolute addresso

Examples:

CAT ---+ PCHC. A • l::l • 7070 • l::l • DOG-lID • \CRI -+

--+ PCHC. DOG • l::l • B • AL --+

--+ PCHC· ICRI • AU· I SP I • AL ---+

---+ peHC. DOG+IO • Isp I • CAT --+

*See paragraph 304 6).

111-C-20

2.4.9 PUNCH TEXT OPERATION (PCHT)

L w

[label] --+ PCHT. [text and/or typewri ter commands] --+

The PCRT operation results in generated coding which, when run on the computer
with the PC~ subroutine. causes the text and/or- typewriter commands in the Vo
operand position to be punched by the high-speed paper tape punch. The text
may be interspersed with the following typewriter control symbols as desired;
each CR and SP must be set off between two vertical bars.

Operand Performance

ICRI carriage return, line feed

~ or Ispi space

1) L - The label is optional.

2) W - The operator PCHT must be present.

3) Vo- Is the text to be punched interspersed with typewriter commands
desired by the programmer. If the text is too long for one PCHT
operation. the programmer can write successive operations.

Examples:

CAT --+ PCHT. PROFIT ~ AND ~ LOSS ~ FOR--+

--+ PCHT • JULY ~ 10. ~ 1967 ICRI--+

NOTE: Point separators are not required within Vo; they will be
punched if present.

2.4.10 TYPE CONTENTS OPERATION (TYPC)

L W

[label] ---+ TYPC •

Vo

[
information to be typed and/or] --+
typewriter commands

The TYPC operation results in generated coding which. when run on the computer
with the TYPC· subroutine. causes the octal contents of At AU. AL, current Bt
or any memory location to be typed on the typewriter. The words to be typed
may be interspersed with the following typewriter commands •

• See paragraph 3.4 6).

III-C-21

Operand Performance

• ICRI • carriage return, line feed

• !:::. • or • Isp\ • space (may be used for formatting)

The vertical bars indicate the information enclosed is a special symbol direct­
ing the typewriter. Each, CR or SP must begin and end with a vertical bar.

1) L The label is optional o

2) W - The operator TYPC must be present.

3) VO- Specifies the operands in the order in which they are to be typed.
Except for the typewriter commands, all operands imply their contents
are to be typed. Such operands may be A, AU, AL, active B, a tag
or a tag ± an absolute value, or an absolute address.

Examples:

CAT ---+ TYPC • A·!:::. • ~ • 7070 • ~ • ~ • DOG-lID • ICRI---+

---. TYPC • AU • !:::. • AL • Ispi • B • HORSE --+

204011 TYPE TEXT OPERATION (TYPT)

L W

--+ TYPT • [text and/or typewri ter commands] -----.

The TYPT operation results in generated coding which, when run on the computer
with the TYPT* subroutine, causes the text and/or commands in the Vo operand
position to be typed by the typewriter. The text may be interspersed with
the following typewriter commands:

Operand Performance

ICRI carriage return, line feed

I::l or \SP\ space (may be used for formatting)

1) L - The label is optional o

2) W - The operator TYPT must be present.

3) VO- Is the text to be typed interspersed with typewriter commands. If
the text is too long for one TYPT operation, the programmer may use
successive operations to complete the texto

*See paragraph 3 0 4 6).

I1I-C-22

Examples:

CAT -+Ti'PT • PROFIT Ispi AND LOSS !J. FOR--+

--+ Ti'PT • JULY!J. 10, !J. 1967 \CR I

NOTE: Point separators are not required within Va; they will be typed
if present.

2.4.12 DOUBLE SET OPERATION

L L

[label] --+ DBLSET --+

The DBLSET operation insures that the Y of a double add or subtract instruction
is located at an even address. The DBLSET operation is normally followed by
a Y constant o TRIM III examines the address to which the following constant
(or instruction) would normally be assigned. If the address is odd, a word
of zeros is first generated to insure that the constant (or instruction) will
be assigned to an even address. If the address is even, no generation rpsu11s.

2.4.13 SETSR OPERATION

L W

[label] --+ SETSH •

Vo

[alphanumeriC ta~] --+

The SETSR operation enables the programmer to place responsibility for setting
k of an ENTSR instruction upon TRIM III. Based upon an ALLOC operation or th·~
assembled address of the referenced tag, TRIM III generates an ENTSR instruction
(5073 k) with the proper k value for each SETSR operation.

1) L - Label is optional.

2) W - SETSR must he presento

3) VO- Must be an alphanumeric tag corresponding to a program label or an
allocated value-. The tag may not be incrempnted or decremented.

Examples:

Assume CAT is a label at 36421 and DOG is a latel at 70460 G~d COW is
allocated to 010000, then:

--+SETSR. CAT ---+ Generates 507313

--+ SETSR • DOG ---+ Genera te s ;-)07317

--+ SETSR • COW --+ Genera tes 507310

III-C-:23

2.5 DEBUGGING OPERATIONS

TRIM III provides two debugging operations for punching a paper tape output
of either the contents of registers AU, ALt and current B, or the contents of
specified sequential memory locationso TRIM III recognizes these operations
only if a DEBUG declarative operation is read prior to the first PROG header
operation. When recognized, these operations generate a set of three or five
instructions in the object program which, when run on the computer with the
DEBUGioc subroutine, produce the desired dump. Each set of instructions is
assigned a sequential identifying number which appears with each punched out­
put, thereby enabling programmer recognition of repeated times through given
coding pathso The debugging operations take the following form.

L w N

L W N

[label] ---- DUMPM •

1) L - Label is optional.

2) W - DUMPR or DUMPM must always be presento

3) Vo- Applicable to the DUMPM operation onlyo Specifies the total number
of memory loca tions to be dumped. The number may be expr.essed in
octal or in decimal followed by the letter Do

4) VI - Applicable to the DUMPM operation onlyo Expresses the address of
the first word to be dumped. It may be expressed as an integer or
a tag plus or minus an integer.

Examples of coding for DUMPR or DUwiPM operations are given below.

[label] --+ DUMPR --.

[label] --+ DUMPM • 12 • 10000 --+

[label] --+ DUMPM • 10D • 10000 --.

[label] --+ DUMPM • 10D • CAT+28D ---+

[label] ----+ DUMPM • 12 • CAT-15 --+

[label] --+ DUMPM • 64D • CAT --.

*See paragraph 3 0 4 6).

III-C-24

Examples of the OUMPR and OUMPM operations and the coding generated
by the assembler are given below.

Examples:

Assume EXAMS = 1000, EXAM6 = 1050, and DEBUG = 30000.

Input Operation

EXAMS ~ DUMPR ---.

EXAM6 -+ DUMPM • 5 • 10000 --.

Generated Coding

301001
030000
000001

301051
030000
400002
000005
010000

A symbolic representation of the instructions generated is given below. The
first three instructions apply to both DUMPR and DUMPM. The last two instruc­
tions apply to DUMPM only.

-+IRJP-OEBUG ~Indirect return jump to DEBUG
--+ 0 • DEBUG --.. Address of DEBUG
--+ X • [YJ X = 0 for OUMPR, 4 for OUMPM

Y = No. of DUMPR or DUMPM operation
in this program

---. [No. of words] ---+ No. of words to be dumped
---+ [First address] --. Address of first word to be dumped

Both OOMPR and DUMPM operations preserve existing values in AU, AL, and the
current B register.

TRIM III also provides two additional debugging operations for programmer use:
DSTOP and DTYPT.

w

~ OSTOP---.

The DSTOP operation permits the programmer to intersperse strategic debugging
stops within his program. If the DEBUG operator is read in the assembly prior
to the PROG header, the DSTOP will generate an unconditional stop (505640);
otherwise, TRIM III will ignore the operation.

L w

[label] ~ OTYPT • [text and/or typewriter commands]--.

III-C-25

The DTYPT operation performs the same function as the TYPT operation. If the
DEBUG operator is read in the assembly prior to the PROG header, TRIM III will
perform the generation; otherwise, the operation will be ignored.-

2.6 TRIM III OUTPUTS

TRIM III provides 13 different outputs of the assembled and/or source program.
The user selects his outputs in accordance with his needs and the available
peripheral devices.

The available outputs are listed under the output device on which they are pro­
duced o

Monitoring typewriter:

No. 1 - Program summary consisting of the number of memory locations used
and inclusive addresses.

Paper tape punch: Except for outputs 6 and II, all paper tapes are loadable via
the utility packages. Outputs 6 and 11 may be used as input to TRIM III.

Noo 2 - Absolute assembled program, sequential line identifier, source program,
and assembly error alarms when applicable. This is a side-by-side
listing in source code preceded by a program summary consisting of
the number of memory locations used and inclusive addresses.

Noo 3 - Absolute assembled program in source code, consisting of a carriage
return, 88, carriage return, addresses and instructions, a carriage
return, double period and checksum.

No.4 - Absolute assembled program in bioctal format, consisting of a 76
code, inclusive area addresses followed by the instructions only, and
a checksum o

No.5 - Relocatable assembled program in bioctal format starts with a 75
code followed by the assembled program relative to base 00000, and
terminates with a checksum. The output tape may be loaded starting
at any desired memory location.

No. 6 - Allocation output in source code consisting of an ALLOe header,
followed by all program tags and labels and addresses in allocation
format.

No. 11- The source program only, produced in source code.

High-speed printer:

No. 12- Absolute assembled program, sequential line identifier, deck and card
number if applicable, source program, and assembly error alarms when
applicable. This is a side-by-side listing suitable for hard-copy
editing and documentation.

III-C-26

CHANGE 1

No. 14 - This is the same as output No. 12 except that there is no card in­
formation and page size is assumed to be 11 inches wide by S~
inches long.

Card processor:

No. 13 - Relocatable assembled program on Hollerith-eoded SO-column cards.
The first card contains only the base load address. Subsequent cards
contain up to S computer words, a cumulative checksum, and a card
sequence numher.

No. 15 - Source program only, on Hollerith-coded SO-column cards. Each card
contains one TRIM III statement as well as any card deck identifica­
tion and sequence number.

Magnetic tape unit:

Relocata~le object program. Assembled object program in assemble table 3 format.

No. 10 - During assembly TRIM III automatically produces this output on the
magnetic scratch tape. The tape data can be loaded into the computer
memory absolutely or relocated to any specified base address by the
utility packages.

No. 16 - Source program on magnetic tape. This output does not include
declarative operations such as ALLOC, OUTPUT, or DECKID. Output
No. 16 may be used as input to TRIM III.

Miscellaneous:

No. 7 - Output No.7 is not itself an output, but does affect all other
requested outputs, since it causes TRIM III to ignore all library
CALL operations of the input program.

3. PROGRAMMING PROCEDURES

3.1 PAPER TAPE INPUT FORMAT

Two versions of TRIM III are available; one version accepts a source program
paper tape prepared in field data code, the other version accepts a source
program paper tape prepared in ASCII code (refer to Appendix At Tables A-2
and A-3).

Each source tape must begin with a carriage return and terminate with a
carriage return and two periods.

3.1.1 KEYBOARD CORRECTION METHODS

Typing-error correction procedures have been incorporated in both versions of
the TRIM I, TRIM II, and TRIM III assemblers, and the TRIM corrector for deleting
immediate keyboard errors that might be made in the preparation of input tapes
for these programs on the UNIVAC 1232 and 1532 I/O consoles. These procedures
are described under TRIM I, paragraph 8.

III-C-27

3.2 80-COLUMN CARD INPUT FORMAT

For those installations whose peripheral equipment configuration includes an
on-line card reader, TRIM III accepts source programs prepared in Hollerith
code on standard 80-column cards as well as source programs prepared on paper
tape. The two input types may be intermixed.

Basically the coding format is similar for either card or paper tape unit.
Interpretation of coding separator symbols for card input is given in
Table III-C-2.

TABLE III-C-2. CODING SYMBOLS FOR CARD INPUT

Symbol Key Rows Punched

--. (start statement) (none)

(start notes) ® @ 4,8 4,8 4,8

(carriage return) (none)

(vertical line) 11, 3, 8

• (point separator) 11, 4, 8

(period) 12, 3, 8

(comma) 0, 3, 8

+ (plus) 12

(minus) 11

The straight coding arrow is interpreted according to its format position; it
represents a SKIP key at the beginning of a statement and three dashes at the
end of a statement. The point separator is represented by the * hey in all card
input.

Card control:

Coding format:

The ENDATA operation card followed by one blank card denotes
the end of a card input deck.

The examples on the top of page III-C-30 illustrate the basic
coding format for card input: (Also see Figure III-C-6).

1II-C-28

I
CARD INS LABEL I OPER4TOR ~ _______ -_ OPERANDS AND NOTES

POO:IO r "PAN ----."PROC'· ""' • CMB _4 OCTOBER 1%4 XS-3 TO OCTAL INTEGER CONVERSION

P 0 0 0 t' _p~N ___ -:-. _~ _______ e ___ . _ _ _____ ... _________________ ~ ____ . ___ _
~ A 100 012 .-. ENTAU ___ ._I~M1: ____ ~S--=.!.!NT!=_G,--E_R __ T __ O_A_~U ____________ _

I, ~ :~ ~I! L =: ~~~~~K : ci ""If_I INDE" - ----------- ~===~-=- ~~~---------- ---- ---
n\:I~~~~:~,:rNl·-~;~~~-Ji:.~=--~~:6-BIT :CD--- -------._._- -- --- ______ ;

o ~~~~~~--.------------------------~~~--____________________________________ __
g: ri. P 00 O! g PAN2 ---. BJP e PANl

A 00110 ---. ENTBK • 2----------S-E-T-INDEX FOR 3 CHARACTERS
---~I

N 0 o 1 1 I-AN3 .-. ENTAL • INCR CONVERSION LOOP

S 0 o 1 2 -+ LSHAL • 2
2

~o o 1 3 -+ ADDAL • INCR (INCR) INITIALLY CLEARED a::
fZ ~O o 1 4 -+ LSHAL • 1

00 1 Ii ---. STRAL • PT,MP
H C) 00
H Z

1 6 -+ ENTALK • 0

H C I PiIoTQTiT-;; rr, ---------. -CSHA-n 0 • 6
I U

~ ~I!l~ r~ ---. ADDAL • FTMP
to
-.0 N oio llg -+ STRAL • INCR ------------

S,OO 210 ---. BJP • PAN3
~ olo 2 1 ---. IJI-'

• PAN CONVERTED VALUE IN AL AND INCR

~O o l 21 PTMP ---. 0 • TEMPORARY

00 2 3i INCR -. 0 • INTEG ER WORD --
00,24' -+ ENDATA •

a ---. • ---. •
I

i: -+ •
Z -+ •
<- ---. • Po. l£

U ---. W •
Ww

0

..JC)
---. • t:c:x ---. • 0.:

Figure lll-C-6. Typical Coded Programmer Card Input

DECK CARD INS
10 NO. NO. L W V N

8017 0005 CAT4 ----+ ENTAUB • DOG5-+MASK FOR SEAR~

8017 0005 05 -+CMSK • CATIO.)

8017 0006 ---.. JP NOT· LOK -3 ---+ LOOK AGAI~

Card format: Card format uses card columns 1-4 for deck identifier, 5-8 for
card number, 9-10 for card insert number, 11-16 for the label,
and 21-80 for statement and notes.

1 ~~----+~ 4 5 ~4---.~ 8 9+---+ 10 ll·.---~. 16 21~4-----------------

Deck Id Card No. Ins. Label Statement - - - NO~ No.

Three dashes (---), punched code 4,8, always follow the statement whether or
not there are notes. The REL (release) key terminates the card. TRIM III
makes no provision for the statement and notes to overflow one card. Any
attempt to continue notes on a second card results in improper generation
for that card o

The cOlumn-skip feature on the key punch provides a convenient means to bypass
unused columns reserved for the label. The keypunch operator begins a label
with column 11 and skips any unused columns between the end of the label and
column 21. If no label is present, the operator depresses the SKIP key and
the card is automatically positioned at column 210 The statement always begins
at column 210 Figure III-C-7 shows a typical input operation in punched card
format ..

00210067 FRMT1 CMSK*SPACE --- NO PARAGRAPH NUMBER
I I I I III I II I I II

II I II I II I I I I I I I
010 0 liD I 0 0 I n 180 D 01 DOli DIll a II 11.081 a D a ... 0 88 8 D IIID 0 0 0 0 0 0 ODD 0 0 0 00000000000000 noD
, 2 I I I I I I I 1111 \I n.t " 11 11 1111 II 2' unit n II till H. 11 n II ~ II • 11.1111 I' tl tiM till 4J II II 1111 !lUll II 1111 1111 II II IlUIl 111111 "II" II 11 11 11 ", 'I I' 'I ,\ ..

: 11l' 111' 11111111111111111111

~ 2212 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 21121 Z Z Z Z Z Z 2 2 2 II 2 222222222 l 212 ~ 2 2 2 2 2 2 2 2 2
G.

u 3333333333 3 ~ 313 33333133333331333333333333333333333333333333333333 J 3 3 3 3 3 J 3 3 3 3 3 3 3 j

~ 1.444444444414444444414414' , , 'III' , 4 4 4 , , , 4 4 4 4 , 4114 , , 4 4 4 , , 4 , , 4 4444' 4 4 , 4 4 4 4 4 4 4 4 4 4 4

~ 5555555555555555555555555555515551555555555555155515 5 5 5 5 5 5 5 5 5 5 5 5 S 5 S 5) 5 5 5 5 5 5 5 5) 5 5

& & i II i I & 1116 6 & & & & Ii I I III I &I I 111111 & II I II & II & II I 1& & & II S & & & & & & 6 & & 6 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

11111"1;;;;;;;;;;;;;;;;;1111111111111111111111111111177111111111111111111111111

11I111I11I • ~ III , I1I11111111 , 1I111I1111II11111111111111111 8 ! ! 8 • I 8 8 8 II 8 8 I 8 8 8 8 8 ! ~ 8 e

Figure III-C-7. Typical Punched Card Inpnt Operation

111-C-30

CHANGE 1

3.3 MAGNETIC TAPE INPUT FORMAT

TRIM III accepts source programs recorded on magnetic tape in the following
formats:

1) TRIM III Output No. 16 format.

2) All Magnetic tape outputs from the Card-to-Tape (CART) Processor
Program.

The TRIM III Output No. 16 consists only of source program operations; therefore,
any required declarative operations (for example, OUTPUT, ALLOC or DECKID) must
be provided by the user via cards as a separate tape. The output of CART in­
cludes all operations contained on the card deck used in the card-to-tape
operation.

3.4 SOURCE PROGRAM CORRECTIONS

When so directed by a CORREC header operation, TRIM III will perform source
program corrections in conjunction with an assembly run. Outputs from the
assembly will include the requested corrections. The following rules govern
the use of the correction capability:

1) A maximum of 192 corrections per assembly is allowed.

2) Corrections must follow the OORREC header.

3) All corrections must be loaded prior to the loading of the source
program to be corrected.

4) Corrections need not be in any special order. TRIM III will sort the
correction items prior to merging them with the source program.

5) If two or more correction operations bear the same integral and fractional
value, the last such operation overrides. This permits programmers to
correct an erroneous correction.

6) Corrections are based on the assembler-assigned sequential line identifier
for each source statement (see paragraph 2.2.4).

7) The integral and fractional portions of the correction identifier must
be expressed in octal notation only. The integer is limited to a maximum
of 6 digits; the fraction (which indicates insertion or addition) is
limited to 3 digits. The fraction is a straight binary magnitUde, (for
example, the correction identifiers 12-2, 12-20, and 12-200 all have
the same value).

8) Corrections may be prepared on punched cards or punched paper tape.

III-C-31

CIlAN(a~ 1

:~ (> <10 1 PAPER TAPE CORRECTION FORMAT

The format of correction operations prepared on paper tape is identical to
th~lt required by the TRIM corrector (refer to input formats in the TRIM
corrector description containerl in this manual) with the following exceptions:

j) Corrections must follow a CORREC header.

~) A maximum of six integral digits is permitted.

:~ lie ~ CARD CORRECTION FORMAT

~r)f'r, 1<11 format ting rules apply to correction operations prepared on 80-column
punched cnrrls. Except for the CORREC header each correction action requires
two cards o The first card contains the integer and fraction of the sequential
identifier while the second card contains the correction operation itself. If
thf' correction operation is an insertion or replacement, the first ten columns
of this second card may also contain card identifications which are included in
thf' outputs 12 and 15 of the assembled corrected program, unless a DECKID
opprator is used.

On the first card, the integral portion of the sequential identifier must begin
in column 110 A point separator (asterisk) must not be used o The fractional
portion, if any, must begin in column 21 and must be terminated with the con­
ventional three dashes. If there is no fraction, one zero code followed by the
three dashes must still be punched beginning at column 210

An ENDATA card followed by a· blank card must always follow the last correction
card even if other cards are to follow in the assembly.

The following example of card correction format makes changes to the program
illustrated in Figure III-C-80

Column: 11 21

Card 9

~ Card 8

Card 7 ~ LIBXOO191

Card 6

~ Card 5

ENDATA ---

22 1 ---

Card 4 r'
Card 3 (LIBXOOll

14 o ---

CAD O~¢lOOO --- Current Addrr>ss

-'

Card 2 r 12 o ---

Card 1 (BITSUM CORREC

III-C-32

CHANGE 1

PAGE 001
=~~=========================--==

OUTPUT 12
=~-==

MEMo STRG. USED 11061
00240 THRU ~0404
01000 THRU 07743
20000 THRU 21747

LOK I NSTR L1ID DECK CARD LO

0 LIBX 0001 BITSUM P ROG* JR.5* 6 NOV 64 FLEX
00240 34 0364 1 LIBX 0002 BITSUM JP*SEOK LIBBLD BOTTSTRAP LOAD
00241 76 0355 2 LI BX 0003 UP AKX RJP*ERP
00242 40 0247 3 LIBX 0004 UP AK CL*CHECK CLEAR ACCUM CKSUM
00243 42 0254 4 LIBX 0005 STRB*BNASTY SAVE B
00244 76 0345 5 LIBX 0006 UP AK1 RJP*RF READ FRAME
00245 61 0244 6 LIBX 0007 JPALZ* UPAK 1 IGM>RE LEADER
00246 34 0270 7 LIBX 0008 JP*BILD

00247 00 0000' 10 LIBX 0009 CHECK 0* ACCUM CKSUM
00250 00 0000 11 LIBX 0010 SUM 0* ZERO CONST
002fll 00 0000 12 LIBX 0011 CAD 0* CURRENT ADDR
00252 00 0000 13 LIBX 0012 FAD 0* FINAL ADDR
00253 00 0076 14 LIBX 0013 BID 76* BIOCTAL CODE
00254 00 0000 15 LIBX 0014 BNASTY 0* BKEEPER
00255 00 0000 16 LIBX 0015 BUWD 0* DATA I/O BUFFER
r0256 ('0 0000 17 LIBX 0016 0*

00257 00 0000 20 LIBX 0017 0*
00260 00 0000 21 LIBX 0018 0*
002(,1 00 0000 ")")

'"''"' LIBX 0019 0*
00262 00 0000 23 LIBX 0020 0*
00263 00 0000 24 LIBX 0021 0*
00264 00 0000 25 LIBX 0022 0*
00265 00 0000 26 LIBX 0023 0*
00266 00 0000 27 LIBX 0024 0*

00267 00 0000 30 LIBX 0025 0*
00270 40 0247 31 LIBX 0026 BILD CL*CHECK
00271 10 0250 32 LIBX 0027 ENTAU*SUM CL AU
00272 76 0335 33 LIBX 0028 RJP*BILD7 6 DIGITS OF ADDRS
00273 50 4717 34 LIBX 0029 LSHA*17
00274 46 0251 35 LIBX 0030 STRAU*CAD
00275 10 0250 36 LIBX 0031 ENTAU*SUM
00276 50 4703 37 LIBX 0032 LSHA*3

00277 70 0001 40 LIBX 0033 ENTALK*l
00300 74 0336 41 LIBX 0034 STRADR*BILD7+1
00301 76 0335 42 LIBX 0035 RJP*BILD7 GET REST OF ADDRS
00302 44 0252 43 LIBX 0036 STRAL*FAD
00303 70 0002 44 LIBX 0037 ENTALK*2
00304 74 0336 45 LIBX 0038 STRADR*BILD7+1
00305 76 0335 46 LIBX 00~9 BILD2 RJP*BILD7
00306 32 0251 47 LIBX 0040 ENTB*CAD

J;';rrll"l"'O TTT_r_p.
...... ~ ""' ~..a...a. -'-J -\..I. TRIM III Output 12 from Card Input

III-C-33

CHANGE 1

3 0 5 GROUND RULES

Regardless of the input format, there are certain conventions which the pro­
grammer must bear in mind when coding for TRIM III.

1) No label may exceed six characters. The label must not begin with a
number, the letter 0, nor may it consist only of letters LOK. The label
may never contain a +, -, comma, or point separator code.

2) The maximum size program which TRIM III can assemble is limited only by
the number of memory locations above address 130008 used for label/tag
storage (3 words per label or tag).

3) Each break in addressing sequence constitutes a program area. A total
of 64 such areas is permitted.

4) TRIM I operators SETADR and EQUALS are ignored by TRIM III. The ALLOC
operation replaces these two functions.

5) When specifying a decimal integer, the letter D occupies one digit position:
therefore, the maximum decimal integer that can be expressed is 99999D.

6) Assembler support subroutines TYPT, TYPC, PCHT, PCHC, and the debugging
package, DEBUG, are included in the TRIM III library of subroutines. The
programmer uses a CALL operation to retrieve them from the library. The
programmer may allocate these subroutines through normal ALLOC operations.
If he does not allocate them, TRIM III will assign them sequential
addresses immediately following the principal program. If these sub­
routines are not assembled with the principal program and the programmer
has not provided for their allocation, TRIM III will arbitrarily assign
all references to them to the following fixed addresses:

TYPT 17000

TYPC 17160

PCHT 16400

PCHC 16560

DEBUG 17470

Each of these five subroutines uses the tag CHAN for all I/O instructions.
It is the programmer's responsibility to provide an ALLOC operation
equating CHAN to the appropriate I/O channel.

7) If a program contains ADDA, ADDAB, SUBA, or SUBAB instructions, regardless
of whether or not a DBLSET operation was used, the following restrictions
shall apply to loading a TRIM III output NOg 5, 10, or 13 into computer
memory:

a) If the program was assembled starting at an even address, it must be
loaded starting at an even address.

III-C-34

CHANGE 1

b) If the program was assembled starting at an odd address, it must be
loaded starting at an odd address.

8) TRIM III informs the user of a duplicate label via a typeout on the on­
line typewriter. The typeout includes the sequential line identifier,
the warning. DUP LBL, and the label name. Except for the warning typeout
TRIM III will normally ignore duplicate labels equating all references to
the address of the first such label. However. if the user has allocated
a label which is in fact a duplicat~, that allocation is lost with un­
predictable results in address assignment.

9) Any program to be assembled by TRIM III must be assembled for only one
32K segment of memory, either 000000 through 077777 or 100000 through
177777. This means that the assembled program must reside in one 32K
segment or the other, but not both. This does not preclude inter-segment
references which would be implemented exactly as for inter-bank references.
The TRIM assemblers do not provide any alarm indications for this condition.

40 TRIM III LOADING AND OPERATING PROCEDURES

4~1 BASIC INFORMATION

TRIM III is a magnetic-tape-stored assembly system which accepts source programs
written with absolute or mnemonic function codes and symbolic addressing and
produces assembled output programs suitable for loading into the computer and/
or hard copy editing and documentation. TRIM III has been designed to fit the
channel and equipment configuration of the center in which it is used. The
assembler provides the user with a simple means for selecting three optional
modes of input, and each mode is represented by a number code.

Input Mode Number Code

Cards 000001

Paper Tape 000002

Magnetic Tape 000003

Each TRIM III has one normal mode built into it (the one prevailing at the center
where it is used). If only the normal mode is required, the user need not con­
cern himself with the modes at all. However, if different input modes are to
be used (for example, card and paper tape in combination) TRIM III users must
familiarize themselves with the input mode codes and their use.

Prior to loading and operating TRIM III, the computer and the I/O equipment
(mngnetic tape unit, I/O console or card processor) must be placed in the
operational state with all switches in the normal operating position.

III-C-35

CHANGE 1

402 LOADING TRIM III

1) For installations possessing a magnetic tape wired bootstrap:

a) Mount the TRIM III assembler tape on magnetic tape cabinet I,
transport I, and set the corresponding write enable button on
the magnetic tape control panelo

b) At the computer control panel, press MASTER CLEAR, LOAD, and
START. The TRIM III executive will be loaded into memory and the
computer will stop with P = 01404 0

2) For installations possessing a paper tape wired bootstrap:

a) Mount the TRIM III assembler tape on magnetic tape cabinet 1, trans­
port 1, and set the corresponding write enable button on the magnetic
tape control panelo

b) Mount ~he TRIM III paper tape loader in the paper tape readero

c) At the computer control panel, press MASTER CLEAR, LOAD, and START.
The TRIM III executive will be loaded into memory and the computer
will stop with P = 01404.

4.3 INITIALIZING TRIM III

When the computer stops with P = 01404, it is necessary to-identify the magnetic
tape configuration to be used for assemblyo This identification need be made
only once for all subsequent assemblies unless it is necessary to change the
configuration. TRIM III expects tape information in the format OOXXCT where XX
is the channel number (bits 6 through 11), C is the tape cabinet number (bits
3 through 5), and T is the transport number (bits 0 through 2)0 Thus, 001512
represents channel 15, cabinet 1, transport 2, and 000112 represents channel
I, cabinet 1, transport 20

The procedures required to initialize TRIM III are as follows:

1) Set the AU register to the number (OOXXCT) which identifies the location
of the assembler tape.

2) Set the AL register to the number (OOXXCT) which identifies the transport
to be used as the magnetic scratch tape.

3) Start the computer. The computer stops with AU and AL clearedo

4) If only two transports are to be used in the assembly, start the computero
When the computer stops with P set to 01400, TRIM III is ready for use
(refer to paragraph 4.4)0

5) If more than two transports are to be used in the assembly; perform the
procedures belowo

a) If source input is to be from magnetic tape, set the AU register to
the number (OOXXeT) which identifies the transport to be used for
source input.

III-C-36

CHANGE 1

b) If a magnetic tape output other than output No. 10 is to be requested,
set the AL register to the number (OOXXCT) which identifies the
transport on which the output is to be produced. Output No. 10 is
always produced on the scratch tape.

c) Start the computer. When the computer stops with P set the 01400,
TRIM III is ready for use (refer to paragraph 4.4).

If, at any time during assembly, the user wishes to change the magnetic tape
configuration, he may do so by setting P to 01404 and repeating the ini~i~li­
zation procedures.

4.4 USING TRIM III

1) For paper tape input, mount the source tape in paper tape reader.

2) For card input, initialize the card reader.

3) For magnetic tape input, mount the input tape as follows:

a) If two tape transports are being used, mount the input tape on
the scratch tape transport.

b) If three or four transports are being used mount the input tape
on the transport designated for the input tape. Since this transport
is used only for magnetic tape input, no warn~ng typeout occurs.

4) Master clear.

S) Set P = 01400 0

6) Set PROGRAM SKIP key I.

7) For error typeout suppression, set PROGRAM SKIP key 3.

8) If source input is other than the normal mode, set AL to the proper
code. (For normal mode, AL remains equal to zero.)

9) Start the computer.

10) TRIM III prepares to read input. If further operator action is necessary
to continue assembly of the input currently being read, the computer
stops after an operator instruction typeout occurs on the on-line type­
writer. Refer to paragraph 4.5 to determine the operator action required.

11) When the current read-in is complete, the computer stops with AL equal to
zero. At this time the operator must perform one of the following:

a) If additional input is required, mount the source input on the input
device as directed in I), 2), or 3) above and restart the procedure
at step 8) above.

III-C-37

CHANGE 1

b) If no additional input is required, release PROGRAM SKIP key 1 and
start the computero TRIM III begins assembling the program o If
further operator action is necessary, the computer stops after an
operator instruction typeout (refer to paragraph 4.5)0

12) If for any reason the operator wishes to abort an output during process­
ing,"he must perform the following procedures:

a) Stop the computero

b) Master clear the computero

c) Set the P register to 01401.

d) Start the computero TRIM III begins processing the next requested
output. If all outputs have been processed, the typeout SELECT
OUTPUTS IN A will occur.

NOTE: Since TRIM III includes correction features, it is possible to correct
a source program and assemble it for the desired new outputs in the
same assembly run. Although this feature is intended primarily for the
paper tape input mode, it may be used with any combination of input
modes o Correction tapes or cards must be read in before the source
program(s)o If the assembly consists of multiple source programs, it
must be remembered that the sequential line identifiers are cumulative
and the corrections are based upon these identifiers in any given
assembly. The input of the corrections and source program proceeds as
in a normal assembly runo After the corrections have been read in, the
source program(s) must follow with PROGRAM SKIP key 1 still seto Any
outputs selected will contain the requested corrections including source
program outputs 15 (cards), 11 (paper tape), and 16 (magnetic tape).

405 OPERATOR INSTRUCTION TYPEOUTS

TRIM III contains limited error detection capability. The majority of programmer
errors are handled internallyo However, it is desirable when practicable to
permit the user to take corrective action during the assembly process in order
to achieve an accurate assembly. The headings of the subparagraphs which follow
are instruction typeouts that may occur during assembly. Information given
in each subparagraph directs operator actions required by the typeouto When
PROGRAM SKIP key 3 is set, certain typeouts are suppressed o

4.5.1 SET KEY 1

This typeout will occur if the user has not set PROGRAM SKIP key 1 at the start
of the assembly process o To correct, set PROGRAM SKIP key 1 and start againo
PROGRAM SKIP key 3 has no effect on this error typeout.

III-C-38

CHANGE 1

4.5.2 IDENT. MTUS IN A

This typeout occurs when nG m~gnetic tape configuration identification has been
made prior to the first assembly. To 'correct this condition, perform the follow­
ing steps:

1) Identify magnetic tape units exactly as outlined in paragraph 4.3 of
this section.

2) Start the computer. PROGRAM SKIP key 3 has no effect on this error
typeout.

4.5.3 IDENTIFY TAPE JOB IN AL

This typeout occurs when the magnetic tape input to be read is in the format
produced by the CART (card-to-tape) program. Since this format may contain
more than one source program on the same tape, the operator must identify the
program to be read from tape by performing the following actions:

1) Set the AL register to the number which identifies the position of the
program on the tape (1 for the first program, 2 for the second program,
and so forth).

2) Start the computer. TRIM III directs the tape unit to pass tape until
the selected program is reached and then begins reading the input program.
If two or more programs on the same tape are to be.assembled together,
these procedures are repeated for each program.

405.4 REMOVE INPUT TAPE TO SAVE

This typeout occurs when input has been read from the magnetic tape transport
identified as the scratch transport. The output No. 10 will also be written
on this transport during the assembly process. Therefore, if the input tape
is to be saved, the operator must change the tape on the scratch transport
before the o'utput No. 10 is produced. This typeout occurs each time a magnetic
tape read-in is completed; therefore, if more than one input program is read
from the same magnetic tape, the operator must remove the-tape only after the
last input has been read. After the last magnetic tape input has been read
and the tape has been removed, the operator must mount a scratch tape on the
scratch tape transport and proceed with the assembly at step 11) of paragraph
404 •

• 405 05 SELECT OUTPUTS IN A

This typeout may occur twice during an assembly. If it occurs before any out­
puts have been produced, it indicates that the programmer has neglected to
select outputs via a programmed output operation. To correct this condition,
perform the following steps:

1) Set AU5-O and AL5-O to desired output numbers.

2) Start the computer.

III-C-39

CHANGE 1

a) The computer stores the outputs and stopso Repeat steps a) and
b) until all desired outputs (not more than eight) have been
selected o When the procedure is repeated with either AU or AL
equal to zero, TRIM III assumes all selections have been made
and proceeds o PROGRAM SKIP key 3 has no effect on this typeouto

If this typeout occurs after at least one output has been produced, it indicates
that the assembly is completeD If another program is to be assembled at this
time, the operator may elect to stack the output NOD 10 for the next program
behind the output NoD 10 for the previously assembled program on the scratch
tapeD To select this option, perform the following steps:

1) Set PROGRAM SKIP key 20

2) Start the computero After TRIM III performs an index table adjustment,
the computer stops with P set to 01400 0

3) Release PROGRAM SKIP key 2, and begin assembly of the next programo

4 0 506 IF NECESSARY CHANGE SCRATCH TAPES FOR THIS OUTPUT

This typeout occurs when a magnetic tape output, other than output Noo 10, has
been requested but no tape transport has been identified for magnetic tape
outputo The typeout indicates that TRIM III is ready to write the magnetic
tape output on the scratch tape and destroy the output No o 10 in the process o

If the operator does not wish to save the output No o 10, he may start the
computer to continue assemblyo If the operator does wish to save the output
Noo 10, he must change the tape on the scratch tape transport before starting
the computer to continue assemblyo

40507 MTU ERROR CTXX IMPR. CONDo

This typeout indicates an error condition on the XX tape unito The user
must correct the condition before restarting the assemblyo PROGRAM SKIP key 3
has no effect on this erroro

4 0 508 SET BASE ADDR. IN AL

This typeout indicates that the programmer has neglected to allocate the first
program label o To correct, set AL15-O to the desired base address and starto
If PROGRAM SKIP key 3 is set, TRIM III arbitrarily allocates the program to
address 01200, and no typeout occurs o

4 0 5 0 9 NNNNN DUP. LBL XXXXXX

This typeout occurs when the source program contains at least two identical
labels o TRIM III equates all references to a duplicate label to the address
of the first such label o TRIM III does not stop after the typeout o NNNNN is
the sequential program line identifier number and XXXXXX is the duplicate
label o If PROGRAM SKIP key 3 is set, the typeout does not occuro

III-C-40

CHANGE 1
4.5.10 UNALLOC TAGS

NNNNN XXX XXX AAAAA

By far the most common programmer error is the use of a tag for which no
allocation was'made and which does not appear anywhere in the source program
as a label. TRIM III will stop after typing NNNNN XXXXXX (sequential line

- identifier and tag name). To correct v perform the follo~ing steps:

1) Set AL to the address at which the tag is to be allocated (if the
tag is to be allocated to zero v leave AL clear).

2) If the tag refers to an instruction contained within the program
being assembled, set AL17 to a I.

3) If the user wishes he may allocate all future unallocated tags to the
address in AL by setting AU to any nonzero value.

4) Start the computer. TRIM III types the manual allocation and uses it to
continue assemblyo

The typeout UNALLOC tags occurs once only. Thereafter, only the identifier
and the tag are typed. If the user elects to allocate all unallocated tags
to a fixed address, only the first such tag is typed.

If PROGRAM SKIP key 3 is set, TRIM III arbitrarily allocates all unallocated
tags to address 00000 0

4.5.11 TCS ERR XX TBL XX

This typeout indicates the table control system (TCS) of TRIM III has detected
an error while attempting to operate on the indicated table. When meaningful,
the number of the item being manipulated when the error occurred is displayed
in AU. Table III-C-3 describes the errors which TCS detects.

TRIM III has been designed so that a table overflow error will seldom occur.
If a table overflow error does occur, the programmer may extend the limits of
the table as set in the table design and restart at the res entrance 10012.

If the limits cannot be extended, the programmer must eliminate the cause of
the overflow or reassemble his program in smaller segments. PROGRAM SKIP key 3
has no effect on errors of this typeo

4.5.12 POLY-CODE BANK OFL

This typeout indicates that generation resulting from a poly-code used in the
source program has Qvprflowed from one bank to the next o TRIM III does not
stop following this 1:ypeout but will produce the selected outputs even though
they will require correction. PROGRAM SKIP key 3 has no effect on this typeout.

III-C-41

CHANGE 1

Error
Number

I

2

3

4

5

6

7

8

9

TABLE III-C-3. rcs ERRORS

Meaning

Illegal Table Number·

Illegal Media Designation·

Illegal TCS Function Code·

Misused Q-Replace

Illogic~l TCS Function Sequence

Table Not Found*

Table Overflow

Too Many Tape Units Referenced
or Item Length of Zero

Unrecoverable Tape Error
Table I

Table 3

*Incorrect table design or control parameters.

III-C-42

Usual Cause

Assembler error, Bad
TRIM III tape

CALL used but no Library
Directory on tape

Too many labels, segments,
or corrections

Loose cabling

Bad scratch area behind
TRIM III
Bad scratch tape

CHANGE 1

SECTION IV. OPERATOR SERVICE ROUTINES

Operator service routines are those routines used by the computer operator,
under manual control, to perform computing center operations. Such routines
perform handling service to the user; however, they do not become integrated
into his programs. This category includes routines such as load/dump packages,
trace debugging routines, and program corrector routines.

UPAK I - This is a paper tape utility package which loads assembled program
tapes and makes memory dumps on paper tapes. The package provides other
console conveniences such as inspect and change memory cell contents, store
constant in memory, and so forth.

UPAK III - This is an expanded modular utility package. The modules of the
package operate normally under manual control; however, they can also be
activated under program control. A control routine loads one or all modules
as specified by parameters. The package has the following capabilities;

1) Paper tape handler.
2) Computer control panel operations such as inspect and change.
3) Magnetic tape handler, UMTH (basic handler for UNIVAC magnetic tape system).
4) Magnetic tape duplicator.
~) Loader for assembler produced magnetic tape object programs.
6) Memory dump on the high-speed printer.
7) Card/load/dump.
8) Print image on magnetic tape and tape-to-printer.
9) Magnetic tape handler, JOSH (complete handler for magnetic tape system).

Since UPAK III is modular, additional utility functions may be added without
changing the general characteristics of the package.

TRIM corrector - This routine corrects source programs. It reads correction
tapes and erroneous source tapes into the computer, makes the necessary cor­
rections, and punches a corrected tape. The routine is a companion to the
TRIM I and TRIM II assemblers.

TRIM library builder - This routine updates source magnetic tape libraries
which are used with the TRIM III assembler. It also has editing capabilities.

Trace debugging program - This program traces the execution sequence of a
program during a processing run. It produces serial information pertaining
to the address and contents of the instruction executed, operand if applicable,
B register content, and the entire A register.

CART - This routine performs a punched-card-to-magnetic tape conversion, with
optional correction and listing capability.

IV-l

SECTION IV-A.UPAK I PAPER TAPE UTILITY PACKAGE

1. GENERAL INFORMATION

UPAK I is a collection of routines combined into one program which is designed
to perform utility functions for computer operators and programmers. The
routines which comprise UPAK I are:

1) Paper tape load.
2) Paper tape absolute bioctal dump.
3) Paper tape absolute typewriter code dump.
4) Typewriter dump.
5) Inspect and change.
6) Store constant.
7) Search memory.
8) Copy paper tape.

The paper tape load and dump routines can be operated either manually from the
computer control panel or under control of a user's program. All other
routines must be operated manually from the computer control panel. When
any of the routines are operated manually, interrupts are locked out.

UPAK I occupies approximately 2250 (octal) memory locations. It may be
loaded at any desired address in memory above 01000; however. the entire
package must be loaded within one memory bank. UPAK I is supplied with a
self-loader on the front of the tape. The computer's wired paper tape
bootstrap loads the self-loader, which then may be used to load UPAK I. The
self-loader uses addresses 00540 through 00777 in core memeory.

2. PROGRAM DESCRIPTION

When UPAK I is loaded in memory, each individual routine can be used to per­
form one or more specific functions. The routines are accessible through
entrance addresses, which are octal increments relative to the base address
(address at which UPAK I is loaded). Table IV-A-l specifies the entrance
addresses for all UPAK I routines. If a routine is operated manually, the
operator enters the routine by setting the P register to the entrance address
after manually setting any necessary initial parameters. If the routine is
operated under program control, the controlling program must first set initial
parameters and then execute a return jump to the programmed entrance address.

TABLE IV-A-l. UPAK I ENTRANCE ADDRESSES

Entrance
Address

Base Address + 0

+ 2

Type of Entry and
Routine Entered

Programmed entrance. Paper tape load

Programmed entrance. Paper tape
absolute bioctal dump

IV-A-l

TABLE IV-A-l. UPAK I ENTRANCE ADDRESS (CONT.)

Entrance
Address

Base Address + 4

+ 6

+10

+12

+14

+16

+20

+22

+26

2.1 PAPER TAPE LOAD

Type of Entry and
Routine Entered

Programmed entrance. Paper tape
absolute typewriter code dump

Manual entrance. Paper tape load

Manual entrance. Paper tape
absolute typewriter code dump

Manual entrance. Paper tape
absolute bioctal dump

Inspect and change

Store constant in memory

Search memory

Copy paper tape

Typewriter dump

The paper tape load routine consists of a load selector and three load sub­
routines. The load selector reads paper tape until a nonzero frame is
found. It then examines the nonzero frame to determine the type of tape to
be loaded, and calls one of the three load subroutines to load the tape. The
table below lists the criteria used to select the load subroutine.

Nonzero Frame

75
76
All other codes

Subroutine Called

Load relocatable bioctal code
Load absolute bioctal code
Load absolute typewriter code

2.101 LOAD ABSOLUTE TYPEWRITER CODE

A carriage return followed by either an 8 or an 88 and another carriage
return normally activates this load subroutine. A single 8 indicates the input
tape has no checksum; and 88 indicates the input tape has a checksum. The
subroutine ignores any data which may precede either of these two combinations.
Each tape instruction is preceded by a 5-digit address. Addresses need not
be sequential; however, all five digits must be present. The next 6 digits
constitute the instruction to be loaded; all six digits must be present. The

IV-A-2

load subroutine, in effect, accumulates the first 11 octal digits following
a c~rriage return and loads the last 6 digits at the address specified by
the first 5 digits. All other character codes, including notes, are ignored.
A carriage return signals the end of the instruction. If less than 11
octal digits are accumulated, the instruction is not loaded. A final carriage
return followed by a double period (••) terminates the load and initiates a
checksum verification when required. The tape format is shown below.

No checksum format

8
AAAAA 111111
AAAAA 111111

AAAAA 111111

Checksum format

88
AAAAA 111111
AAAAA 111111

AAAAA 111111

CCCCCC

PROGRAM SKIP keys may be set to provide several options during the load (refer
to paragraph 3.2.1).

2.1.2 LOAD ABSOLUTE BIOCTAL CODE

The absolute bioctal tape must begin with a 76 (code for absolute bioctal tape).
Immediately after the 76 code are the initial and final addresses consisting
of five digits each. 6-digit instructions fOllow without further addressing,
and the tape is terminated by a 6-digit checksum. The tape format is shown
below.

Absolute Bioetal Tape Format

76
II
II
IF
FF
FF
XX
XX
XX
XX

XX
XX
XX
CC
CC
CC

Absolute Bioctal Code

I - Initial address

F Final address

x - Instruction words

C - Checksum

IV-A-3

The load subroutine stores the initial and final addresses and begins load-
ing the instructions into memory starting at the initial address. As each
three frames of tape are read, they are loaded into the next sequential address
in memory. After the final address has been loaded, the subroutine verifies
the checksum. PROGRAM SKIP keys may be set to provide several options during
the load (refer to paragraph 3.2.1).

2.1.3 LOAD RELOCTABLE BIOCTAL CODE

The relocatable bioctal tape must begin with a 75 (code for relocatable bioctal
tape). The entire program must be relative to base zero. Six-digit instruc­
tions fOllow the 75 code without addressing. Each instruction is preceded by
a I-digit modification code which tells the load subroutine how to modify the
instruction for storage. The tape is terminated by a 6-digit checksum preceded
by a code of 7. The computer operator specifies the load base address in AU;
the load routine then uses this information to accomplish the tape load. The
tape can be loaded anywhere in computer memory. The tape format is shown
below:

Relocatable Bioctal Tape Format

75
MX
XX
XX
XM
xx
xx
XX
MX
XX

X7
CC
CC
CC

Relocatable bioctal code
M - Modification code
X - Instruction words

7 - Checksum code
C - Checksum

IV-A-4

Modification codes appearing on a relocatable bioctal tape are:

Code Meaning Type of Instruction

0 No modification Constant or 4-digit Y unmodified

1 Add base address to Y11- O 4-digit Y modified

2 No modification 5-digit Y unmodified

3 Add base address 5-digit Y modi fied .(bi t 15 is set to Y14-0 to 0 or 1 depending on specified

4

5, 6

7

Increment current load
address by instruction
value.

Not used

Checksum follows

base address)

Negative or positive increment

Not used

Tape checksum

PROGRAM SKIP keys may be set to provide several options during the load
(refer to paragraph 3.2.1).

2.2 PAPER TAPE ABSOLlITE TYPEWRITER CODE Dl~P

This routine punches the contents of a specified memory area on paper tape in
absolute typewriter code. The format in which the tape is dumped is the same
as the "88" format (with checksum at the end) desc.ribed in paragraph 2.1.1.
The output tape includes both the addresses and the contents of the memory
locations being dumped. The routine provides the option of typing the out­
put rather than punching it on tape.

2.3 PAPER TAPE ABSOLUTE BIOCTAL CODE DUMP

This routine punches the contents of a specified memory area on paper tape in
absolute bioctal code. The format in which the tape is dumped is the same
as the format described in paragraph 2.1.2. If more than one program area is
dumped successively on the same tape, the areas may be separated by either a
2-frame leader or a .256-frame leader. The 2-frame option permits the tape
to be loaded continuously (without stopping between areas).

IV-A-S

2.4 INSPECT AND CHANGE

The inspect and change routine causes the contents of memory location
specified in AU to be displayed in AL. The contents of AL may then be
changed manually. (AL) is then returned to the memory address from which it
was taken. The inspection address need be entered only the first time since
(AU) is increased by 1, and the contents of sequential addresses will be
brought into AL with each successive performance of the inspect and change
function. If the user wishes to inspect the contents of some addresses other
than the next sequential address, he may do so by setting the new address
in AU before returning AL to memory. The routine provides the option of
punching and/or typing the inspect addresses and their contents. The format
of the punched tape and typeout is given below.

READ-WRITE

8

AAAAA NN NNNN FF FFFF

AAAAA NN NNNN FF FFFF

AAAAA is the inspect address,NN NNNN is the new content of the address, and
FF FFFF is the former content of the address. The punched tape may be used
as an errata tape for the program in memory.

2.5 STORE CONSTANT IN MEMORY

This routine stores a constant in a specified number of consecutive memory
addresses. The operator manually enters the constant and the limits of the
memory area. If a constant of zero is specified, the memory area is cleared;
however, the routine never clears addresses occupied by UPAK I.

2.6 SEARCH MEMORY

This routine searches a specified memory area for all values which satisfy the
conditions specified by a mask and a searchand. All values in the memory
area that satisfy the conditions are typed on the console typewriter. The
format of the typeout is given on the next page.

IV-A-6

SEARCH 1219

LLLLL TO UUUUU
MM MMMM 5S S5SS
AAAAA CC CCCC
AAAAA CC ccce

AAAAA CC CCCC
END SEARCH

LLLLL and UUUUU are the lower and upper limits of the search area; MM MMMM is
the mask; 55 5SSS is the searchand; and AAAAA is the address of a word, CC
CCCC, which. satisfies the conditions of the mask and searchand. An example
is given below to demonstrate the capability provided by this routine.

Example:

Assume that the operator wishes to find all I/O instructions in a program
loaded in memory beginning at address 010000 and ending at address 020000.
The typeout below illustrates the limits, mask, and searchand to be specified.

SEARCH 1219

10000 to 20000 }
77 4000 50 0100}
10123 50 1306
12777 50 1106
13011 50 1203
14000 50 3600
16520 50 1305
16540 50 1105
17000 50 1505
17500 50 3200
END SEARCH

2.7 COpy PAPER TAPE

Memory limits
Mask and searchand

Instructions which
satisfy conditions
of mask and searchand

This routine produces on exact copy of a paper tape. It is a faster and more
reliable method than off-line duplication.

2.8 TYPEWRITER DUMP

This routine produces a typed hard copy of the contents of a specified memory
area. The format of the output is shown on the next page.

IV-A-7

CORE DUMP FROM LLLLL TO UUUUU
LLLLL CCCCCCO CCCCCCl
BBBBB

x xx XX

CCCCCC7

CCCCCC
n

LLLLL and UUUUU are the lower and upper limits of the memory area to be
dumped; CCCCCO is the contents of the lower limit; CCCCCCI through CCCCCC7
are the contents of the next seven sequential addresses; and BBBBB is 10
(octal) greater than LLLLL. CCCCCCn is the contents of the upper limit.
Addresses are typed only for every 10 (octal) words. If the content of any
address is zero, it is indicated by a blank space rather than zeros. If one
entire line contains all zeros. it is indicated by a blank line. If two
or more consecutive lines contain all zeros, only one blank line appears on
the output. The routine provides the option of punching the information on
paper tape.

3. LOADING AND OPERATING PROCEDURES

3.1 LOADING UPAK I

UPAK I is provided on punched paper tape. The tape is subdivided into two
parts: a self-loader in absolute bioctal format and UPAK I in ~elocatable
bioctal format. To load UPAK I, the iollowing procedure is used:

1) Place the tape in the reader.

2) Master clear the computer and read-punch unit.

3) Press the LOAD button to activate paper tape bootstrap.

4) Start the computer. The computer stops with AU and AL equal to
zero after the self-loader is in memory.

5) Set AU to the desired UPAK I base address.

6) Start the computer. The computer stops with AU and AL equal to zero
after UPAK I has been loaded.

After UPAK ! has been loaded into memory, addresses 00540-00777, occupied by
the UPAK I loader, are available for use. It should be noted, however, that
any subsequent loading of UPAK I will use these addresses to accomplish the
load.

Automatic checksum verification by the paper tape load subroutines is the only
error dp.tection function performed by L~AK I. If tape and load checksums
agree, the computer comes to a normal stop with AU and AL equal to zero. If
they do not agree, the compu~er stops with (AU) = lo~d checksum and (AL) = tape
checksum.

IV-A-B

The format of the UPAK I tape is such that only the self-loader is loaded
via paper tape bootstrap. Control is then given to a temporary checksum
verification routine which verifies that the self-loader is properly contained
in memory. If verification is correct, the computer stops with AU and AL
clear. Upon restarting, control is given to the self-loader which loads
UPAK I. If verification is incorrect, the computer stops with AU equal to
the load checksum and AL equal to the tape checksum. After UPAK I has been
loaded, the same checksum indication is provided in AU and AL.

3.2 USING UPAK I

The procedures required to operate all routines of UPAK I are given in the
following subparagraphs. All procedures are for manual operation and
assume that the computer and I/O console have been placed in the operational
state with all switches in the normal operating position. If paper tape
load and dump routines are to be operated under program control, input
parameters must be set by the controlling program before the program
executes a return jump to the programmed entrance of the routine.

3.2.1 PAPER TAPE LOAD

1) Master clear the computer.

2) Set the P register to the UPAK I base address +6.

3) Mount the tape to be loaded in the reader.

4) If the tape to be loaded is relocatable, set the AU register to
the starting address of the load.

5) Set the PROGRAM SKIP key options desired (refer to 7) below).

6) Start the computer. The computer stops when the tape is loaded.
Load error indications are dependent upon the load options selected.
If no options are selected, the computer stops with AU equal to the
computed checksum and AL equal to the tape checksum. If checksums are
equal, AU and AL are clear.

7) Load Options. The following options are selectable via PROGRAM SKIP
keys:

a) Absolute Bioctal Load

1. PROGRAM SKIP key 0 - If this key is set, a tape checksum veri­
fication is performed but information read from tape is not
stored in memory. At the completion of the read, AU is set to
the computed checksum and AL is set to the tape checksum. If
the checksums are equal, AU and AL are cleared.

2. PROGRAM SKIP key 3 - If this key is set, program areas are

IV-A-9

typed on the on-line typewriter. The format for each area is:

BBBBB TO EEEEE

BBBBB is the beginning address and EEEEE is the end address.

3. PROGRAM SKIP key 4 - If this key is set, a tape verify is
performed. This option causes information read from tape to
be compared to information stored in core memory. Differences
are indicated in one of three ways depending upon the setting
of PROGRAM SKIP keys 1 and 2.

a. If PROGRAM SKIP key 1 is set. differences are typed on
the on-line typewriter in the following format:

AAAAA TT TTTT cc ecce

AAAAA is the core address, TTTTTT is the tape word and
CCCCCC is the core word.

b. If PROGRAM SKIP key 2 is set, differences are punched on
paper tape for off-line listing. The format is the same
as for on-line typeout.

c. If PROGRAM SKIP keys 1 and 2 are not set, differences are
displayed in AU and AL during computer stops. During the
first step, the core address is displayed in AU and the
tape word is displayed in AL. After the computer is re­
started, a second stop occurs with the core word displayed
in AU and the tape word displayed in AL. After the com­
puter is again restarted the tape word is stored in core
memory (unless PROGRAM SKIP key 0 is set) and the verify
continues.

b) Relocatable Bioctal Load

c)

1. PROGRAM SKIP keys 0, I, 2, and 4 provide the same option as
for absolute bioctal load. PROGRAM SKIP key 3 is ignored.

Absolute Typewriter Code Load

1. PROGRAM SKIP keys 0, 1, 2, and 4 provide the same options as
for absolute bioctal load.

2. PROGRAM SKIP key 3 - If this key is set, the subroutine permits
the loading of a typewriter code tape which does not contain
the tape identifier (carriage return, 8 or 88, carriage return).

IV-A-lO

3.2.2 PAPER TAPE ABSOLUTE TYPEWRITER CODE DUMP

1) Master clear the computer.

2) Set the P register to the UPAK I base address +108.

3) Set AU to the first address to be dumped.

4) Set AL to the last address to be dumped.

5) Set PROGRAM SKIP key 1 if output is to be typed rather than punched.

6) Start the computer. After punching the contents of the specified
addresses on tape, the computer stops. To obtain another dump begin
at step 3).

3.2.3 PAPER TAPE ABSOLUTE BIOCTAL DUMP

1) Master clear the computer.

2) Set the P register to the UPAK I base address +128.

3) Set AU to the first address to be dumped.

4) Set AL to the last address to be dumped.

5) Set PROGRAM SKIP key 4 if a 2-frame trailer is to be punched after
the dump.

6) Start the computer. The computer stops after punching the contents
of the specified addresses. 'To obtain another dump begin at step 3).
If a 2-frame trailer is selected in step 5) and more than one dump
is punched on the same tape, the tape can be loaded, without stops,
by the paper tape load routine. If the 2-frame trailer is not selected,
a 256-frame trailer is punched after the dump.

3.2.4 INSPECT AND CHANGE

1) Master clear the computer.

2) Set the P register to the UPAK I base address +148.

3) Set AU to the first address to be inspected.

4) Set the PROGRAM SKIP key options desired (refer to 8) below).

5) Start the computer. The computer stops with the address in AU
and its contents in AL.

6) If desired, change the address in AU and/or the contents in AL.

7) Start the computer.

IV-A-11

a) If the contents only were altered, the new contents are stored
at the original address and the computer stops with the next
sequential address in AU and its contents in AL.

b) If the address only was changed, the old contents are restored
to the proper memory location, and the computer stops with the
new address in AU and its contents in AL.

c) If both the address in AU and its contents in AL were changed,
the new contents are stored at the original address, and t,he
computer stops with the new address in AU and its contents in AL.

8) Inspect and change options.

3.2.5

1)

2)

3)

4)

The following options are selectable via PROGRAM SKIP keys.

a) PROGRAM SKIP key 1 - If this key is set, the addresses ins~cted
and their contents are typed on the on-line typewriter. The
format of the typeout is:

READ-WRITE
AAAAA NN NNNN FF FFFF

AAAAA is the inspected address, NN NNNN is the new content, and FF
FFFF is the former content.

b) PROGRAM SKIP key 2 - If this key is set, an errata tape of the
changes is punched. The tape is punched in paper tape absolute
typewriter code format and can be loaded via the UPAK I paper
tape load routine. To finalize the tape after all changes have
been punched, set P to UPAK I base address +248 and start the
computer. Two periods and a trailer are then punched on tape.
If the errata tape is to be punched without a leader set PROGRAM
SKIP keys 2 and 3 before the first address is inspected.

STORE CONSTANT IN MEMORY

Master clear the computer.

Set the P register to the UPAK I base address +168.

Set the first storage address in AU.

Set the last storage address in AL.

5) Start the computer. The computer stop, with AU cleared.

6) Set the constant in AU.

7) Start the computer. The computer stops after storing the constant
in all addresses of the specified memory area.

IV-A-12

3.2.6 SEARCH MEMORY

1) Master clear the computer.

2) Set the P register to the UPAK I base address r208.

3) Set AU to the search mask.

4) Set AI... to the searchand.

5) Start the computer. The computer stops with AU and AI... cleared.

6) Set AU to the lower limit of the area to be searched.

7) Set AI... to the upper limit of the area to be searched.

8) Start the computer. The computer compares the logical product
of mask and searchand with the logical product of the mask and
each memory location in the specified area. If the logical
products are equal, the address of the memory location and its
contents are typed on the on-line typewriter (refer to paragraph
2.6 for the format of the typeout).

3.2.7 COpy PAPER TAPE

1) Master clear the computer.

2) Set the P register to the UPAK I base address +228 .

3) Mount the tape to be copied in the reader.

4) Start the computer. The computer reads the input tape and punches
an exact copy.

5) To stop the copy routine set PROGRAM SKIP key O. This key should
be set while the routine is copying the trailer on the input tape.
If more trailer is required on the output tape, depress the tape
feed button on the I/O console.

3.2.8 TYPEWRITER DUMP

1) Master clear the computer.

2) Set the P register to the UPAK I base address +268.

3) Set AU to the add~ess of the first word to be dumped.

4) Set AI... to the address of the last word to be dumped.

5) Set PROGRAM SKIP key 0 if the output is to be punched rather than typed
on the on-line typewriter.

IV-A-13

6) Start the computer. The computer stops after typing (or punching)
the contents of the specified memory locations (refer to paragraph
2.8 for the format of the output).

IV-A-14

SECTION IV-B. UPAK III UTILITY PACKAGE III

1. GENERAL INFORMATION

UPAK III is a modular utility system comprised of stacked programs in the
TRIM III output No. 10 format on magnetic tape. A control program loaded
by magnetic tape bootstrap accomplishes loading of one or more of the compo­
nent modules. UPAK III presently has the following modules:

Module 1
Module 2
Module 3
Module 4
Module 5
Module 6
Module 7
Module 10
Module 11

Paper tape handler (PTHAN).
Magnetic tape handler (UMTH).
Magnetic tape duplic·ation (MTDUP).
TRIM III output 10 load (LOADlO).
Inspect and change and store constant (ICH-STC).
Print memory contents (PRINTC).
Card handler (DATCD).
Printer line image on tape and tape-to-printer (POTPOP).
Magnetic tape handler (JOSH).

The modular framework of UPAK III, however, will permit the incorporation of
additional modules with a minimum of effort. Refer to paragraph 1.2.3,
expanding UPAK III.

UPAK III assumes a minimum equipment configuration of one computer with
a minimum of 16,3840 words of core memory, one magnetic tape unit with two
transports, an I/O console, and a card processor. UPAK III may be loaded
anywhere in computer memory above address 01000 with the single restriction
that any module must be entirely contained within a single memory bank. Most
UPAK III functions can be operated under program control as well as m~nualIy
from the computer control panel.

2. CONTROL PROGRAM

2.1 PROGRAM DESCRIPTION

The control program of UPAK III is basically a module loader.· It may be
loaded by magnetic tape bootstrap anywhere in core memory above address
01000. However, it must be wholly contained within one bank of memory.

Through manual parameter specification, the control program loads one module
or all modules at a given time. If one specific module is requested, the
load address must be specified. If more than one module but not the
entl~e package is desired at specific addresses, the user must repeat the
load procedure for each particular module. If module number zero is specified
UPAK III loads all of the modules at the base addresses denoted in Table
IV-B-l; the base address parameter is ignored.

Module entrances are determined by standard increments to their load address
as shown in Table IV-B-I.

Care must be exercised in specifying a module base load address to the control
program so that the module is loaded entirely within one memory bank.

IV-B-l

TABLE IV-B-lo ENTRANCE ADDRESSES AND ASSIGNED BASES

Module

PTHAN

Size: 10608

UMTH

Size: 6008

MTDUP

Size: 7128

LOADI0

Size: 6008

TCH-STC

Size: 778

PRINTC

Size: 4508
DATCD

C~~n.
o..J~L.oC;.

POTPOP

Size: 4348

JOSH

Size: 6408

No.

I

2

3

4

5

6

7

10

11

Base

01100

02200

03000

04000

04700

05000

06000

07000

10000

IV-B-2

Entrance Increments to Base

+ 3 - ICH Entrance

+ 4 - STC Entrance

+ 6 - Programmed PT Load

+ 0 - Manual PT Load

+12 - Programmed Typewriter
Code Dump

+ 2 - Manual Typewriter
Code Dump

+10 - Programmed Bioctal Dump

+ 1 - Manual Bioctal Dump

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - ICH Entrance

+ 1 - STC Entrance

+ 0 - Programmed Entrance

+ 2 - Manual Entrance

+ 0 - Programmed Card Load

+ 2 - Manual Card Load
+ 3 - Programmed Card Dump

+ 5 - Manual Card Dump

+ 0 - Programmed line image
on tape

+ 2 - Manual line image on
tape

+ 3 - Programmed tape-to­
printer

+ 5 - Manual tape-to-printer

+ 0 - Programmed Entrance

+ 2 Cher.k status entrance

+ 4 - Check busy entrance

+10 - Manual Entrance

2.2 LOADING UPAK III

To load the UPAK III control program via magnetic tape bootstrap. mount the
UPAK III tape on transport 1 of cabinet 1. Then,

1) Master clear the computer.

2) Push the LOAD button to activate bootstrap.

3) Start the computer. When the computer stops, a parameter is displayed in
AU. The parameter format is shown in Figure IV-B-l.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210 I

T ape Transport No.

'--- Tape Cab inet No.

"- Tape Uni t I/O
Channel No. 00-178

'- Not Used

--- I/O Mode Indlcator
000 Dual Channel
001-111 Single Channel

Figure IV-B-l. Tape Address Parameter

IV-B-3

If the parameter does not specify the tape channel, address, and mode
desired, change AU as desired.

NOTE: The logical selection of the tape address is not restricted to
cabinet I, transport 1 at this time.

4) Enter a 16-bit control program load address in AL if desired. If AL
is zero, the control program will be loaded at its assigned address,
012000.

5) Start the computer. When the computer stops, the control routine is
loaded.

UPAK III may be loaded via paper tape bootstrap through use of a core-stored
magnetic tape bootstrap program. To accomplish the load perform the following
steps:

1) Mount the UPAK III magnetic tape on cabinet 1, transport 1.

2) Place the PTMTBS* No.4 paper tape in the paper tape reader.

3) Master clear the computer.

4) Press the LOAD button on the control panel.

5) Start the computer. When the computer stops, a parameter is displayed
in AU. The parameter format is shown in Figure IV-B-l.

If the parameter does not specify the tape channel, address, and mode
desired, change AU as desired.

NOTE: The logical selection of the tape transport is not restricted
to cabinet 1, transport 1 at this time.

6) Enter a l6-bit control program load address in AL if desired. If AL
is zero, the control program will be loaded at this assigned address,
012000.

7) Start the computer. When the computer stops, the control routine is
loaded.

To load UPAK III modules, perform the following steps:

1) Master clear the computer.

2) Set P to the base address of the control routine.

3) Set AU to MMXXCT where MM is the module number; XXCT is the UPAK III
tape address (channel XX, cabinet C, and transport T). If MM is zero,
all modules will be loaded at their assigned addresses {refer to Table
IV-B-ll.

*Magnetic tape bootstrap on paper tape.

IV-B-4

4). Set a 16-bit load address for the requested module in AL, if desired.
If AL is zero, the control program will load the module at the assigned
address (refer to Table IV-B-l).

5) Start the computer. The computer stops after the module is loaded.
To operate specific modules,refer to paragraphs 3 through 11.

6) To load another module, repeat steps 3) through 5) above.

2.3 EXPANDING UPAK III

User expansion of the UPAK III system to incorporate one or more additional
modules may be accomplished through use of TRIM III. When expanded, UPAK III
operates normally except when specifying the control routine parameter MM = 00.
To validate this parameter it is necessary to change the number of modules in
the system by errata to the UPAK III control routine (address, base + 668)
before specifying MM = 00. This word should contain 7000XX where XX is the
number of m~dules minus one in octal'. Without this errata, MM = 00 results in
loading the original UPAK III modules only.

To add modules to UPAK III:

1) Mount the TRIM III tape.

2) Mount the UPAK III tape as the TRIM III scratch tape.

3) Load TRIM III.

4) Change TRIM III address 01057 from zero to the number of files on the
LTAK III tape (actual number of modules plus two).

5) Assemble the program that is to become the next UPAK III module. Care
should be taken so that the base address is compatible with other UPAK
III module base addresses.

6) After the last desired output has been produced (one output other than
a source output - 11, 15 or 16 - must be selected) and the SELECT OUTPUTS
IN A typeout occurs, set PROGRAM SKIP key 2 and start the computer. The
computer stops at address 01400 0

7) Release PROGRAM SKIP key 2.

8) Repeat steps 5) and 7) until all desired additional modules have been
assembled o

9) Rewind the expanded UPAK III tape and remove it from the scratch
transporto

IV-B-5

3. PAPER TAPE HANDLER MODULE I,PTBAN)

3.1 PROGRAM DESCRIPTION

Pl'HAN is a collection of subrolltin'~s which provides paper tape I/O functions and
examination and alternation of memory for program debugging. The seven sub­
routines are:

1) Load absolute typewriter code.
2) Load absolute bioctal cod~.
3) Load relocatable bioctal code.
4) Dump absolute typewriter code.
5) Dump absolute bioctal rod~~.
6) Inspect and change.
7) Store constant in memory.

PTHAN may be loaded anywhere in computer memory above address 01000 with the
single restriction that the entire package must be entirely contained within
a single memory bank. All functions operate either manually or under program
control except for the inspect and change and store constant in memory func­
tions, which are manually operable only.

Entrance addresses to the several subroutines are assigned relative to the
PTHAN base address as shown in Table IV-B-l.

PTHAN subroutines use the currently active 8 register but store and restore
their original value. The load subroutines when operating under program con­
trol also store and reStore the user's special register setting.

1) Inspect and change.

The inspect and change routine causes the contents of the memory location
specified in AU to be displayed in AL. The contents of AL may then be
changed manually. (AL) is then returned to the memory address from which
it was taken. The inspection ~ddress need be entered only the first
time, since (AU) is increased by one and the contents of sequential
addresses will be hrought into AL with each successive performance of
the inspect and change function. Should the user wish to inspect the
contents of some address other than the next sequential address, he may
do so by setting the new address in AU before returning (AL) to memory.

2) Store constaut in memory.

The store constant in memory function permits the user to load a speci­
fied area of memory with a value manually entered into AU. If (AU) = 0
the area is cleared.

3) Load absolute typewriter code.

A carriage return. followed by either an 8 or an 88 activates the load
routine. A single 8 indicates that the tape has no checksum (user

IV-8-6

prepared tapes). An 88 indicates that the tape is terminated with a
6-digit checksum (TRIM outputs 2 and 3 and UPAK typewriter code dumps).
A carriage return must follow the 8 or 88 code.

Once the load routine has been activated. it accumulates the first 5
digits following each carriage return and assemble. them as the address.
It then accumulates the next six digits and stores them at the accumu­
lated address. All characters following the first 11 digits are
ignored until another carriage return is found. If less than 11 digits
are accumulated. the instruction will not be loaded. Examples of tape
formats are shown below.

Each tape to be loaded must tenninate with a carriage return and a double
period (••). which terminates the load and initiates 8 checksum verifi­
cation when required. If the checksum verification is correct. the load
terminates with (AU) and (AL) = O. When it is incorrect. the load ter­
minates with (AU) = computed checksum and (AL) = tape checksum.

If pgOGRAM SKIP key I is set the load subroutine performs checksum veri­
fication without storing the information in memory.

Fonnat Wi th
No Checksum

8
XXXXX xx XXXX
XXXXX xx XXXX

XXXXX XX XXXX ..

Format Wi th
Checksum

88
XXXXX xx XXXX
XXXXX XX XXXX

. . .
XX XXXX(Checksum)

4) Load absolute bioctal code.

The absolute bioctal tape must begin with a 76 (code for absolute bioctal
tape with 5-digit addressing). Immediately after the 76 or 77 code are
the initial and final addresses conSisting of 5 digits eacho 6-digit
instructions follow without further addressing, and the tape is termin­
ated by a 6-digit checksum.

IV-B-7

Absol~te Bioctal
76 Tape Format

76
II
II
IF
FF
FF
XX
XX
XX

XX
n
XX
CC
CC
CC

Absolute Bioctal Code

I-initial address

F-final address

X-instruction words

C-checksum

If PROGRAM SKIP key I is set, the absolute bioctal load subroutine will
perform a checksum verification without loading into memory.

5) Load relocatable bioctal code.

The relocatable bioctal tape must begin with a 75 (code· for relocatable
bioctal tape). The entire program must be relative to base zero. Six­
digit instructions follow the 75 code without addressing. Each instruc­
tion is preceded by a I-digit modification code which tells the load
routine how to modify the instruction for storage. The tape is terminated
by a 6-digit checksum preceded by a code of 7. The computer operator
specifies the load base address in AU; the load routine then uses this
information to accomplish the tape load.

Relocatable Bioctal Tape Format

75
MX
XX
XX
~

XX
XX
XX
MX
XX

X7
CC
CC
CC

Relocatable Bioctal Code
M~odification code
X-Instruction words

7-Checksum code
C-Checksum

IV-B-B

Modification codes appearing on a relocatable bioctal tap~ are:

Code

o

1

2

3

4

5, 6

7

Meaning

No modification

Add base address
to Yll-O

No modification

Add base address
to Y14-O

Increment current
load address by
instruction value

Not used

Checksum follows

Type of Instruction

Constant or 4-digit Y unmodified

4-digit Y modified

5-digit Y unmodified

5-digit Y modified (bit 15 is set to
o or 1 depending on specified base
address)

Negative or positive increment

Not used

Tape checksum

If PROGRAM SKIP key 1 is set, the relocatable bioctal load subroutine will
perform a checksum verification without loading into memory.

6) Dump absolute typewriter code.

This dump is initiated manually or under program control for output on
punched paper tape. The 88 code format (with checksum at the end) is the
only one dumped. The output tape includes both the addresses and the
contents of the memory locations being dumped.

7) Dump absolute bioctal code.

The absolute bioctal dump is initiated manually or under program control for
output on punched paper tape. The tape format is a 77 code followed by:

a) The initial and final addresses of the area being dumped.
b) The contents of the inclusive memory addresses.
c) The checksum.

If more than one program area is dumped successively on the same tape,
each such area is formatted as described.

3.2 OPERATION PROCEDURES

3.2.1 OPERATION OF INSPECT AND CHANGE

1) Set P to PTHAN base address +3.

2) Set the desired memory address to be inspected in AU.

IV-B-9

3) Start the computer. The computer stops with the address in AU and its
contents in AL.

4) The user may now change the address in AU and/or the contents in AL.

5) Start the computer.

a) If the contents only were altered, the new contents are stored at
the original address and the cOlllputer stops with the next- sequential
address in AU and its contents in AL.

b) If the address only was changed, the old contents are restored to the
proper memory location and the computer stops with the new address in
AU and its contents in AL.

c) If both the address in AU and its contents in AL were changed, the
new contents are stored at the original address, and the computer
stops. witb the new address in AU and its contents in AL.

6) Any number of such sequences may be executed starting with step 4).

3.2.2 OPERATION OF STORE CONSTANT IN MEMORY

1) Set P to PTHAN base address + 4.

2) Set the first storage address in AU.

3) Set the last storage address in AL.

4) Start the computer. PTHAN records these addresses and the computer
stops with AU cleared.

5) Set the desired constant in AU.

6) Start the computer. PTHAN storeS (AU) at successive memory locations
within the parameters established in steps 2) and 3).

7) Additional entrances may be made starting from step 2).

3.2.3 MANUAL OPERATION OF ALL PAPER TAPE LOADS

1) Mount a tape in the reader.

2) Set P to PTHAN base address.

3) Set PROGRAM SKIP key 1 if checksum verification on'1y is desired.

4) For relocatable bioctal load only set the starting address in AU.
(Not required if PROGRAM SKIP key 1 is set.)

IV-B-IO

5)' Start the computer. When the computer stops, AU is set to the computed
checksum and AL is set to the tape checksum. If the checksums are equal
AU and AL are both clear.

6) Successive tapes may be loaded without resetting P.

3.204 PROGRAM OPERATION OF ALL PAPER TAPE LOADS

1) The tape to be loaded must be mounted in the reader.

2) For relocatable bioctal load only. the controlling program must enter
AU with the starting address of the load and then execute a return
jump or indirect return jump to PTHAN base address + 6.

3.2.5 MANUAL DUMP OF TYPEWRITER CODE

1) Set P to PTHAN base address + 2.

2) Set the first address to be dumped in AU.

3) Set the last address to be dumped in AL.

4) Start the computer.

5) Successive dumps may be taken by starting from step 2).

3.2.6 PROGRAM OPERATION OF DUMP TYPEWRITER CODE

The controlling program must:

1) Enter AU with the first address to be dumped.

2) Enter AL with the last address to be dumped.

3) Execute a return jump or indirect return jump to PTHAN base address + 12
(octal).

302.7 MANUAL DUMP OF ABSOLUTE BIOCTAL CODE

1) Set P to PTHAN base address + 1.

2) Set the first address to be dumped in AU.

3) Set the last address to be dumped in AL.

4) Start the computer.

5) Successive dumps may be taken by starting from step 2).

IV-B-II

3.2.0 PROGRAM OPERATION OF DUMP BIOCTAL CODE

The rontrolling program must:

1) Enter AU with the first address to be dumped.

2) Enter AL with the last address to be dumped.
Execute a return jump or indirect return jump to PTHAN base address
+ 10 (octal).

4. MAGNETIC TAPE HANDLER MODULE (UMTH)

4.1 PROGRAM DESCRIPTION

UMTH provides the user with the basic magnetic tape handling services of read,
write, write tape mark, search, pass n records, space file, rewind. These
services may be recorded in single or dual channel operation, high or low
density, bioctal or octal coding and odd or even parity (even parity may be used
with BCD only). Only forward buffering is permitted.

This module may be loaded anywhere in core memory above address 01000 with the
restriction that the entire module must be wholly contained within one memory
bank. Both manual and programmed entrances are provided to UMTH (refer to
Table IV-B-l).

4.2 INPUT PARAMETERS

Six parameter entries govern operation of UMTH. These parameters may be set
manually or under program control. The format of the parameters is shown in
Figure IV-B-2.

IV-8-12

Parameter 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1
~ __ Transport No.

'-----Cabinet No.

I/O Channel No. (must be
'--------odd number for dual channel)

Operation Code
o 0 1 - Read variable length record
o 1 0 - Write variable length record
o 1 1 - Write tape mark
1 0 0 - Search
1 0 1 - Pass n records
1 1 0 - Space file

... 1 1 1 - Rewind

'----- Not Used
Direction for search, space file,
and pass n records
o - Forward

~_l - Backward

Figure IV-B-2. UMTH Input Parameters (Sheet 1 of 3)

IV-B-I3

Parameter 2

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 J

No. of reco rds to
pass or No. of
files to sp ace
(77

8
maximu m)

I- Not Used 000001 thro ugh 111111

Density
o 0 - 200 frames/inch (low for 1240)
1 0 - 556 frames/inch (high for 1240)
o 1 - 800 frames/inch
1 1 - Same density as last instruction

'---

Parity
o - Even (used with BCD only)
1 - Odd

"-

Coding
o - Bioctal
1 - Octal

"'---

Modulus
o 0 - Modulus 3 (18 bits)
o 1 - Modulus 4 (24 bits)
1 0 - Modulus 5 (30 bits)

-.-1 1 - Modulus 6 (36 bits)

Figure IV-B-2. UMTH Input Parameters (Sheet 2 of 3)

IV-8-14

.Parameter 3

Parameter 4

17 16 IS 14 13 12 11 1098 7 6 S 4 3 2 1 01

Buffer initial
address for read,

~ _________________________________ write, or search

Not Used

17 16 IS 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

No. of words (octal)
for read, write

L---------------------------------------or search

Parameter S

17 16 IS 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

Search constant for
single channel
search, first half
of search constant
for dual channel

~--------------------------------------search

Parameter 6
~------------------------------------~

17 16 IS 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

Second half of
search constant for
dual channel

~--------------------------------------search

Figure IV-B-2. UMTH Input Parameters (Sheet 3 of 3)

IV-B-IS

4.3 OPERATING PROCEDURES

4.3.1 CPERATION UNDER PROGRAM CONTROL

The calling program must enter UMTH with parameter 1 in AU and parameter 2 in
AL. If parameters 3, 4, 5 and 6 are required they must be stored in consecutive
memory addresses and the active B register must contain the address of parameter
3 upon entering OMTH. These consecutive addresses may consist of two, three,
or four words depending upon the operation to be performed. ParaMeters 3 and
4 are needed for read and write operations; parameters 3, 4, and 5 are needed
for single-channel search operation; parameters 3, 4, 5, and 6 are needed for
dual-channel search operations. The calling program enters UMTH by executing
a return jump or indirect return jump to UMTH base address + 1. The ma1)11etic
tape to be handled must be mounted on the proper transport before starting
the calling program.

Upon resumption of control, the calling program may check the contents of the
A register to verjfy a successful operation (see paragraph 4.4).

4.3.2 MANUAL OPERATION

1) Master clear the computer.

2) Set P to OMTH base address.

3) Mount the magnetic tape to be handled on a tape transport.

4) Set parameter 1 in AU; set parameter 2 in AL.

5) Start the computer.

6) When the computer stops, set parameter 3 in AU; set parameter 4 in AL.

7) Start the computer. If the operation to be performed is a search, the
computer stops again.

8) Set parameter 5 in AU, and, if needed set parameter 6 in AL.

9) Start the computero

If an improper condition is encountered, correct the condition and start the
computer. OMTH then re-executes the operation.

After completion of a successful operation the computer stops. To execute
another operation, start again and the computer stops with p'arameters 1 and 2
in AU and AL. Proceed with the next operation from step 3) above.

IV-B-16

4.4 . ALARMS AND STATUS INDICATIONS

Under both manual and program operation, UMTH uses the A register to indicate
the status of the operation attempted.

If (AL) = zero, a successful operation is indicated.

If (AL) = 777777, an unsuccessful operation is indicated.

(AU) = status word. Bit indications for the status word are as follows:

Bit Set

17

16-15

14

13

12

11 .

10

9

8

7

6

5

4

3

2

1

o

Indication

UMTH tried to recover seven times
unsuccessfully

not used

improper condition

duplex control (1540 only t 1 = no t

o = yes)

transport ready (1540 only)

xirg detected (1540 only)

output timing error

input timing error

incorrect frame count

lateral parity error

longitudinal parity error

last motion of tape (1 = backward,
o = forward)

tape mark (end of file)

no write enable

end of tape

low tape

load point

UMTH does not try to recover upon detection of an input or output timing
error.

UMTH assumes the following:

1) That search constants for a backward search must be reversed character­
wise (1240 only).

2) That whenever dual-channel operation is selected, the number of words
to input or output (parameter 4) must be even. The buffer initial
address (parameter 3) may be even or odd.

IV-B-17

3) That-address 00141 is reserved for use by UMTH as an indirect interrupt
address.

4) That the contents of AU, AL, and B prior to entering UMTH need not
be restored upon exit.

5. MAGNETIC TAPE DUPLICATION MODULE (MTDUP)

5.1 PROGRAM DESCRIPTION

The MTDUP module of UPAK III may be used with the computer when operating with
one magnetic tape unit with two transports and an I/O console. The module
copies the content of one magnetic tape (From tape) onto another (To tape).
The normal copy process continues until MTDUP encounters two consecutive
tape marks or until end-of-tape, whichever occurs first.

MTDUP performs the duplication in the following sequence:

1) Rewind From tape and To tape.

2) Read one record from From tape into user-specified buffer.

3) Use buffer control words to determine buffer limits, and write the
record on the To tape. Repeat steps 2) and 3) until two successive tape
marks have been found or end-of-tape is detected.

4) Rewind both tapes if verification option is selected.

5) Read one record from From tape into user-specified buffer and checksum
the record.

6) Read one record from To tape into user-specified buffer and checksum
the record o Compare record checksum for From and To tapes. If not
equal, add one to error counter; repeat steps 5) and 6) until two
successive tape marks or end-of-tape have been found.

7) Rewind both tapes if rewind option was selected.

8) If the error counter is zero, type COPY-OK; otherwise type ERR-XXX
where XXX is the number of copy errors detected.

NOTE: The user may alter the number of successive tape marks terminating
his From tape. To do this, he must store the exact number desired
at MTDUP label CAT.

MTDUP occupies approximately 7128 memory locations and may be loaded anywhere
in computer memory above address 01000 with the restriction that the entire
module must be loaded entirely within one memory bank. The module operates
either under program control or manually from the computer control panel.

IV-B-18

5 . 2 . I NPUT PARAMETERS

The six input parameters to MTDUP are shown in Figure IV-B-3. Parameters 4
and 6 need not be exact terminal addresses but they must be large enough to
accommodate the largest record on the From tape. Parameters 5 and 6 are
required only for verification.

Parameter 1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 J
Trans port No.

L----for From Tape

Cabinet No. for
'------ From Tape

Channel No. for Magnetic
'-----Tape (odd for dual channel)

Density
00 - 200 Frames/Inch (Low for 1240)
10 - 556 Frames/Inch (High for 1240)
01 - 800 Frames/Inch

'----11 - Same as last instruction

Parity
o - Even

-1 - Odd

Coding

L o - Bioctal
1 - Octal

Modulus
o 0 - Modulus 3 (18 bits)
o 1 - Modulus 4 (24 bits)

L
1 0 = Modulus 5 (30 bits)

. 1 1 - Modulus 6 (36 bits)

Rewind Option
o - Do not rewind after MTDUP
1 - Rewind after MTDUP

Mode
o - Single channel

~-1 - Dual channel

Figure IV-B-3. MTDUP Input Parameters (Sheet 1 of 3)

IV-B-19

Parameter 2

17 16 15 14 13 12 11 10 9 8 7 6 543 2 1 0 I

Parameter 3

Cabin
To ta

Not Used

Transport No. for
To tape

et No. for
pe

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ,

Buffer Initial Address
'------------------ for From Tape

'----Not Used

Parameter 4

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I
Buffer Terminal Ad­

~----------------------dress for From Tape

~--Not Used

Figure IV-B-3 o MTDUP Input Parameters (Sheet 2 of 3)

IV-B-20

Parameter 5

1 7 16 15 14 13 12 11 10 9 8 7 6 5 4 ~~ 2 1 0 I
Buffer Initial Ad­

~--dress for To Tape

'-----Not Used

Parameter 6

17 16 15 14 13 12 11 1098 7 6 5 4 3 2 1 01

Buffer Terminal Ad­
~---------------------------------- d re s s for To Ta pe

"-----Not Used

Figure IV-B-3. MTDUP Input Parameters (Sheet 3 of 3)

5.3 OPERATING PROCEDURES

5.3.1 OPERATION UNDER PROGRAM CONTROL

The calling program enters the active B register with the address of the first
of six successive computer words containing parameters 1 through 6 in the
required order, and executes a return jump or indirect return jump to MTDUP
base address. Upon resumption of control, the calling routine may check the
contents of AU and AL for errors (refer to paragraph 5.4). Both the From tape
and the To tape must be mounted on the proper transports before starting the
calling program.

5.3.2 MANUAL OPERATION

1) Master clear the computer.

2) Set P to MTDUP base address + 2.

3) Mount the From tape and the To tape on tape transports (same I/O
channel).

4) Set parameter 1 in AU; set parameter 2 in AL.

IV-B-21

5) Start. the computer.

6) When the computer stops, set parameter 3 in AU; set parameter 4 in AL.

7) Start the computer.

8) When the computer stops, set parameter 5 in AU; set parameter 6 in AL.

9) Start the computer. When the duplication process is complete and
successful, the typeout COPY-OK occurs on the on-line typewriter. If
the typeout ERR-XXX occurs, it indicates that XXX errors were detected
during the process.

5.4 ALARMS AND STATUS INDICATIONS

An improper condition of a tape unit or a status word error after seven tries
causes MTDUP to exit (or stop) with AU equal to the status word from the tape
system. This indic.ates that M'IDUP did not complete the duplication. If the
tape duplication is completed without tape system errors, the computer stops
with AU clear.

If the duplication process was completed without tape system errors, but
checksum errors were .detected upon check-reading the new tape against the old,
the number of such checksum errors (for each separate record on tape) is dis­
played in AL.

MTDUP assumes the following:

1) That both the From and To tapes are mounted on tape transports served
by a common I/O channel.

2) That the I/O console is on-line with the computer.

3) That address 00141 is reserved for use by MTDUP as an indirect interrupt
address.

4) That the contents of AU, AL, and Bt prior to entering MTDUP, need not be
restored upon exit.

60 TRIM III OUTPUT 10 LOAD MODULE (LOADIO)

6.1 PROGRAM DESCRIPTION

In the course of its assembly process, TRIM III produces the object program in
tabular form on magnetic tape. This table serves as the source for all assembler
outputs reflecting the object program. The table, called output No o 10, may
also be loaded into computer memory by this UPAK III module. TRIM III can stack
a maximum of 408 of these outputs on one tape. Each output is a file on the
output tape. Files are numbered 1 through 40 in the order of their appearance
on tape. The user has two load options:

1) That the program shall be loaded absolutely with addressing assigned
at assembly time.

IV-B-22

2) . That the program shall be loaded relative to nny spe~ified hnsp addrp~s.

TRIM III writes each Olltput 10 file on magnetic tape in a specified format. The
format consists of a 30-word sentinel record, some numter of 140s-word instruc­
tion records, a I-word sentinel (included in the last cecord), and a tnpe mark.
All sentinel words consist of the octal characters 747474. The instrllction
records consist of a I-word file count, 378 instruction items, and two spart~
wordso The file count specifies the number of items from the beginning of the
file to the end of the record in which it appears. Each item has the following
format:

Word 0 E Sequential Identifier } Used by TRIM III only

Word 1 M Address

Word 2 Instruction

1) Word 0 contains a line error counter, E, and a sequential line
identifier used by TRIM III but not by UPAK III.

2) Word 1 contains a modification code, M, and an address. M tells the
load routine how to mOdify the. instruction for storage for a relocatable
load. M may be anyone of the following codes:

Code

o

1

2

3

Meaning

No modification

Add base address
to Y11-O

No modification

Add base address
to Y14- 0

Type of Instruction

Constant or 4-digit Y unmodified

4-digit Y modified

5-digit Y unmodified

5-digit Y modified (bit 15 is set
to 0 or 1 depending on specified
base address)

The address is the address for this instruction assigned at assembly
time.

3) Word'2 contains the machine instruction or constant to be storedo

IV-B-23

6.2 INPUT PARAMETERS

Two parameters govern the operation of the TRIM III output 10 load module.
They are shown in Figure IV-B-4.

Parameter 1

17 16 15 14 13 12 11 10 9 8 7 6 543 2 1 0 I
Trans

-Outpu

Cabinet No.
~Output 10 T

I/O Channel
'--No. (0-178)

File No. of Output
~10 to be Loaded (0-40)

8
Parameter 2

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I

port No. of
t 10 Tape

of
ape

Base Address for Reloeatable Load,
1..---Zero for Abso 1 ute Load

___ Not Used

Figure IV-B-4. LOADIO Input Parameters

. 6.3 OPERATING PROCEDURES

6.3.1 OPERATION UNDER PROGRAM CONTROL

The calling program must enter AU with parameter 1, enter AL with parameter 2
if the load is relocatable, and execute a return jump or indirect return jump
to this module base address. The output 10 tape must be mounted on the proper
transport before starting the calling program.

6.3.2 MANUAL OPERATION

1) Master clear the computer.
2) Set P to the output 10 load base address + 2.
3) Mount the output 10 tape on a transport.
4) Set parameter 1 in AU; set parameter 2 in AL.
5) Start the computer. When the computer stops with AL clear, the load

is complete.

IV-B-24

6.4 . ALARMS AND STATUS INDICATIONS

After completing (or attempting) the load, the module returns control to the
using program with AL containing one of the following status conditions:

1) (AL) = 0, indicates' a successful load.
2) (AL) positive, indicates the load routine has attempted to read the

same record seven times and failed. AL contains the status word.

LOAD 10 always stops if an improper condition arises. AL contains the tape
status word normalized left (sign bit set).

LOAD 10 uses address 00141 as an indirect interrupt address.

LOAD 10 does not restore the original contents of AU, AL, or B.

7. INSPECT AND CHANGE AND STORE CONSTANT MODULE

7Ql PROGRAM DESCRIPTION

This module consists of two routines: inspect and change, and store constant
in memory. The inspect and change routine causes the contents of the memory
location specified in AU to be displayed in AL. The contents of AL may then
be changed manually. (AL) is then returned to the memory address from which
it was taken. The inspection address need be entered only the first time,
since (AU) is increased by one and the contents of sequential addresses are
brought into AL with each successive performance of the inspect and change
function. Should the user wish to inspect the contents of some address other
than the next sequential address, he may do so by setting the new address in
AU before returning (AL) to memoryo

The store constant in memory routine permits the user to load a specified area
of memory with a value manually entered into AU. If (AU) = 0 the area is
cleared o

702 OPERATING PROCEDURE

7 0 2.1 INSPECT AND CHANGE

1) Master clear the computer.

2) Set P to the module base address.

3) Set AU to the memory address to be inspected.

4) Start the computer. The computer stops with the address in AU and
its contents in AL.

5) The user may now change the address in AU and/or the contents in AL.

IV-B-25

CHANGE 1

6) Start the computer. One of the following occurs:

Q) I the ~ontents only were altered, the new contents are stored
at the original address and the computer stops with the next
sequentirtl address in AU and its contents in AL.

b) If the address only was changed, the contents of AL are restored
and the computer stops with the new address in AU and its contents
in ALe

C' If bnth the ;ld(irpss in AU and its contents in AL were changed, the
new contents are stored at the original address, and the computer
stops \cith the new address in AU and its contents in AL.

7) Any number of such sequences may be executed starting with step 5)0

702.2 STORE CONSTANT IN MEMORY

1) Master clear the computer.

2) Set P to the module base address + 1.

3) Set the first storage address in AUo

4) Set the last storage address in ALa

5) Start the comoutPY. The computer stops with AU cleared.

6) Set the desired constant in AUo

7) Start ~he r0rnrut~r. The specified constant is stored in all memory
locatlons withIn the parameters established in steps 3) and 4).

8) Addition3 Q~tr1nces may be made by starting from step 3).

80 PRINT MEMORY CONTENTS (PRINTC)

The PRINTC modul of CPAK III may be used when the computer is operating with
a high-speed prl~ter. This module lists a specified area of computer memory
on the high-speed printer, suppressing the printout of any zero words. PRINTC
prints each line i~ the following format:

1) Nine ~olumns of data. separated from each other by five spaces, except
for the fi~st column p which is separated by six spaces.

2) The first column contains the 5-digit octal address of the memory word
in the second column.

IV-B-26

CHANGE 1

3) Columns two through nine contain the contents of eight (108) consecutive
addresses beginning with the address shown in the first column. The
first 2 digits (function code position) of these memory words are sepa­
rated from the other four by one space.

4) If the contents of any memory address to be listed is zero (000000), the
zero codes are not printed and that column is left blank. If the
contents of the addresses of an entire line are zeros, the address in
column one is not printer either.

5) If the contents of addresses for two or more consecutive lines are zeros,
PRINTC still only allows one blank line between the last printed line
and the next group of eight (108) addresses containing a nonzero
quantity, no matter how much memory area lies in between.

PRINTC occupies approximately 4508 memory locations and may be loaded anywhere
in computer memory above address 01000 with the restriction that the entire
module shall be contained entirely within one memory bank. The module operates
either under program control or manually from the computer control panel.

8.2 OPERATING PROCEDURE

Prior to operating this module the operator must initialize the high-speed
printer and ensure that the printer is loaded with enough paper to print the
required information.

8.2.1 OPERATION UNDER PROGRAM CONTROL

The calling program must set AU to the first address to be printed and AL to
the last address to be printed before executing a return jump or indirect return
jump to the PRINTC base address.

80202 MANUAL OPERATION

1) Master clear the computer.

2) Set AU to the first address to be printed; set AL to the last address
to be printed.

3) Set P to the PRINTC base addre~s + 20

4) Start the computer. When the designated area has been processed, PRINTC
stops at the base address + 6 with AU and AL cleared. Another memory
area may be designated at this point and the dump started without changing
the P register.

IV-B-27

CHANGE 1

9. CARD HANDLER (DATCD)

9.1 PROGRAM DESCRIPTION

DATCD consists of two subroutines which provide the input and output of memory
data in a specific format on 80 column punched cards via the card processor.
The two subroutines are:

1) CLOD - Load absolute or relocatable cards (TRIM III, Output No. 13).
2) CDMP - Dump absolute cards (TRIM III, Output No. 13).

DAlCU may be loaded any where in computer memory above address 01000 with the
single restriction that the entire module must be contained within a single
memory bank. Both functions operate either manually or under program control.

CLOU is a subroutine of DATCD that loads instruction words in relocatable format
which it processes from SO-column HOllerith-coded cards read via the card
processor. The user specifies the memory area or areas into which the informa­
tion is loaded.

The input format consists of three types of cards.

1) Address card.

The address card contains an address in columns 1 through 6 and a control
digit of 1 in column 80. CLOD examines the 80th column control digit of
the first card that it buffers in. If it is a 1, CLOD takes the address
contained in columns 1 through 6 of that card as the initial load address.
If it is a 4, CLOD assumes that no address card is present and uses the
contents of the upper half of the A register (AU) as the initial load
address. Any digit other than a 1 or 4 in the 80th column of the first
card causes CLOD to ignore that card and continue to read cards until
a control digit of 4 is found.

Other than the first 6 columns and column 80, the rest of the columns
on the address card are normally blank (per TRIM III,Output 13, or the
output from CDMP - the memory dump on cards). However, if the user wishes
to load manually prepared (key punched) cards in compatible format, he
may cause CLOD to skip its checksum procedure by punching the three
letters ICS in columns 10, 11, and 12 of the address card (ignore checksum).

Hence, the address card is an optional card with an optional feature on
the card itself.

c;dress [~I I
c I S [I j ~21 121 0
-3

1
-2 -9

1 ~

1 2 3 4 5 6 7 8 9 10 11 12 13 • 79 80

Figure IV-B-S. DATCD Address Card Format

IV-B-28

2) Instruction cards.

Following the address card (if any), each card except the last card has
the following format:

a) Eight (10 octal) 6-digit computer instructions or constants in columns
1 through 48 inclusive.

b) Eight (10 octal) relocatable modification digits (one for each data
word) in column 58 through 65. These digits have the same meaning
as those on a relocatable bioctal paper tape:

o - No modification.
1 - Add base address to Yll- O (4-digit Y modified).
2 - No mOdification.
3 - Add base address to Y14-0 (5-digit Y modified bit 15 is set to

o or 1 depending on requested base address for relocatable load).
4 - Increment current load address by constant word value (negative

or positive).
5,6 - Not used.
7 - End of load (corresponding data word not loaded). Naturally, this

digit appears only upon the last card of the load.

c) One 6-digit cumulative checksum, generated by the TRIM III number 13
output or CDMP, in columns 67 through 72. For cards prepared on the
key punch with ICS in columns 10 through 12 of the address card, these
columns are ignored. Cumulative means that the checksum of the preced­
ing card is added to the present card's checksum and punched, and
so forth.

d) One 4-digit card number in either decimal or octal notation in
columns 75 through 87. CLOD makes no reference, examination, or use
of this number, as it is optional.

e) A control digit of 4 in column 80. This is mandatory for all cards
to be loaded by CLOD; any other digit causes the data of that card to
be ignored and the next card read.

1st 2nd thru 8th 8 Modifi- Cumulative Card
Instruc- Instruction cation Checksum Number 4
tion Word Words (6 Col- Digits (Optional) (Op-

umns Each) tional)

-- - - - -1234567---·.48 58 --•• 65 67 --•• 72 75 ----+ 78 80

Figure IV-B-6. DATeD Instruction Card Format

IV-B-29

CHANGE 1

3) Last instruction card.

The last card of any reloc~table or absolute card load has almost exactly
the same format as the other data cards. The number of loadable instruc­
tion words on the last card varies from seven to none. The last card
must always contain a constant word of any value which has a corresponding
modification digit of 7. CLOD ignores this last word and terminates.

CDMP is a subroutine of DATCD that dumps a specified area of core memory on eo
column cards. It first converts the octal words of the specified memory area
into excess-three (XS-3) code. It converts enough words to fill the card buffer
or finish the specified area, and then it punches the data via the card
processor onto eO-column Hollerith-coded cards. This process continues until
the entire specified area has been punched.

The format of the cards punched by CDMP is given below.

1) Address card.

The first card punched by CDMP is the address card which contains the
initial dump address in columns 1 through 6, and a control digit, 1, in
the 80th column. This is the same format as shown in Figure IV-B-5 except
that no information is ever punched in columns 10, 11, and 12.

2) Instruction cards.

Following the address card, each card except the last card has the fol­
lowing format:

a) Eight (10 octal) consecutive 6-digit computer memory words, in
columns 1 through 4e inclusive.

b) Eight (10 octal) relocatable modification digits, (one for each memory
word) in columns 58 through 65. Because this is an absolute dump,
all of these modification digits are zero.

c) One 6-digit cumulative checksum in columns 67 through 72. Cumulative
means that the checksum from the previous card is added tti the check­
sum of the present card before being punched.

d) One 4-digit card number in columns 75 through 78. The cards are num­
bered in octal notation.

e) A control digit of 4 in column 80.

3) Last instruction card.

The last card in any specific memory dump has almost exactly the same
format as the normal instruction cards. The difference is that the
last card contains from zero to seven memory words with a like number
of zero modification digits. Following the last memory word of a dump
(either on the same card or the beginning of the next) CDMP punches a
word of 6 zeros with a corresponding modification digit of 7.

IV-B-30

CHANGE 1

9.2 INPUT PARAMETERS

The card dump section of DATCD (CDMP) requires as input parameters the first
and last address of the memory area to be punched on cards. These addresses
must be present in AU and AL in any order (first-last, or last-first).

The card load section of DATCD (CLOD) requires as an input parameter the
address to begin the memory load. The address may be specified in AU or on
an address card.

9.3 OPERATING PROCEDURE

To load 80-column cards in TRIM III, Output No. 13 format:

1) Place the cards in the card reader input hopper and initialize the
card reader.

2) If the first card is an address card, no parameters are required as
input to DATCD. If no address card is present, AU must be set (manually
or by the calling program) to the base load address.

3) If operation is under program control, the calling program must execute
a return jump or indirect return jump to DATCD base address.

4) For manual operation, set P to the DATCD base address + 2, and start
the computer.

To dump memory on SO-column cards:

1) Make certain the input hopper of the punch unit contains enough blank
cards to punch the data and initialize the card punch.

2) If operation is under program control, the calling program must first
set AU and AL to the first and last addresses of the area to be dumped,
and then execute a return jump or indirect return jump to DATCD base
address + 3.

3) If operation is manual, set AU and AL to the first and last addresses
of the area to be dumped, set P to DATCD base address + 5, and start
the computer.

IV-B-31

CHANGE 1

9.4 ALARMS

The DATCD card load routine (CLOD) always stops before loading any information
from a card if the load address is below 010000 Data from the card can be
loaded at the request address by restarting the computer o However, DATCD
stops before loading information from the next card if the current load address
is still below 01000. This cy~le continues until the load address exceeds 01000.

Unless the ignore checksum option is being employed, DATCD's load routine stops
if it detects an error in the cumulative checksum during a load o Since the
checksum total of all cards preceding any specific card is included in that
card's checksum, the omission or disorder of any cards from a given dump results
in a checksum error during an attempted load.

10c PRINTER LINE IMAGE ON TAPE AND TAPE-TO-PRINTER MODULE (POTPOP)

10.1 PROGRAM DESCRIPTION

POTPOP is a module of UPAK III used when operating with magnetic tape units
and a high-speed printer. One routine (POT) of the module writes a pre­
formatted, XS-3 coded, 132-decimal character buffer on magnetic tape for
subsequent listing on the printer. POT also writes the tape mark which
identifies the end of the listing for the listing routine.

The other routine (POP) lists a POT-generated magnetic tape on the printer.
POP continues to read and print line-records from the designated magnetic tape
until it detects a tape mark.

10.2 INPUT PARAMETERS

The input parameters required by this module are illustrated in Figure IV-B-70
Both parameters 1 and 2 are used by POT. The POP routine uses only the lower
order 10 bits of parameter 1.

Parameter 1

----Transport No.

-----Cabinet No.

~--_ Not Used

Magnetic Tape I/O Channel
""'----No. (00-178)

Write Indicator (for POT Only)
o - Write Buffer

~---l - Write Tape Mark

Figure IV-B-7. POTPOP Input Parameters (Sheet 1 of 2)

IV-B-32

CHANGE 1

Parameter 2

17 16 15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 oj

Buffer Initial Address
~(548-word Buffer)

_Not Used

Figure IV-B-70 POTPOP Input Parameters (Sheet 2 of 2)

10.3 POT OPERATING PROCEDURES

To write a printer line image or tape mark on magnetic tape, perform the pro­
cedures listed under paragraphs 10.3.1 or 10.3.2.

1003 01 UNDER PROGRAM CONTROL

The tape on which information is to be written must be mounted on the transport
specified by parameter 1 and the tape unit must be placed in the ready condition
before starting the calling program. The calling program must set parameters
1 and 2 in AU and AL respectively and execute a return jump or indirect return
jump to the POTPOP base address. Each time the POTPOP module is called in this
manner it writes either a 54S-word buffer or a tape mark on tape. If a buffer
is to be written, the calling program must store the information in the buffer
area in XS-3 code. If the information is written without error, POTPOP returns
to the calling program with AU and AL clear o

10 0 3 02 MANUAL OPERATION

1)

2)

3)

4)

5)

Master clear the computer.

Mount the tape on which information

Set parameter 1 in AU.

Set parameter 2 in AL.

Set P to the POTPOP base address +

is to be written on a tape transport.

2.

6) Start the computer. Either a tape mark or a 548-word buffer beginning
at the address set in AL is written on tape. After the information is
written the computer stops with"AU and AL clear.

10.4 POP OPERATING PROCEDURES

To list a POT-generated tape on the printer, perform the procedures listed
under paragraphs 10.4.1 and 10.4.2.

IV-B-33

CHANGE 1

10.4.1 UNDER PROGRAM CONTROL

The POT-generated tape must be mounted on the tape transport specified. the
magnetic tape unit must be placed in the ready condition. and the printer must
be initialized with sufficient paper in the printer before the calling program
is started. The calling program must enter AU with the address of the tape
transport (parameter 1) and execute a return jump or indirect return jump to
the POTPOP base address + 3. The POP routine reads tape and sends the infor­
mation (coded in XS-3) to the printer in 54S-word buffers. When the POP routine
reads a tape mark the routine returns control to the calling program with AU
and AL clear.

10.4.2 MANUAL OPERATION

1) Master clear the computer.

2) Mount the POT-generated tape on a tape transport.

3) Set parameter 1 in AU.

4) Initialize the high-speed printer.

5) Set P to the POTPOP base address + 5.

6) Start the computer. The POP routine reads tape and prints the infor­
mation on the printer. When a tape mark is read the computer stops
with AU and AL clear.

1005 ALARMS AND STATUS INDICATIONS

POT or POP tries one recovery upon detecting an error in writing or reading a
printer line record on magnetic tapeo If an error occurs on the second attempt,
the routines ignore it and proceed normallyo

An improper condition status word from the tape unit causes POT or p~ to stop
with:

(AU) = 777777 (AL) = 777777

The user may remedy the problem and restart from that point. POT will try
writing the last buffer it was given; POP will attempt to read the next record
on tape.

110 MAGNETIC TAPE HANDLER MODULE (JOSH)

11.1 PROGRAM DESCRIPTION

The JOSH magnetic tape handler provides users with the ability to implement all
of the hardware capabilities of UNIVAC magnetic tape systems while in on-line
operation with the computer.

IV-B-34

Under program operation JOSH provides for three types of user control via thre(~
separate entrances.

1) JOSH base address + 0 - Initiate tape function.

JOSH initiates the requested tape function and returns control to the
calling program allowing it to proceed while the tape action is in
process. The calling program may wait for an interrupt and process it
or let JOSH process it by immediately jumping to the JOSH base address
+ 2.

2) JOSH base address + 2 - Job completion status check.

The tape handler interrupt routine stores a coded status indicator in the
first word of the tape function request packet. The user may perform
his own completion check by analyzing the contents of this word. More
simply, he can enter JOSH at base address + 2 and JOSH will perform the
check ~or him and indicate completion status via a good or bad exit.
A bad exit is executed by an indirect jump to the next instruction in
the calling program. A good exit is executed by an indirect jump to
the next instruction + 1 in the calling program.

3) JOSH base address + 4 - Check busy status.

If the user wishes, he may execute JOSH at this entrance to sample cur­
rent status of the tape function. JOSH returns control to the calling
program immediately with the indication in ALo If the function is still
in progress (busy), AL is set to a nonzero value; if the function is
complete (hardware interrupt status in), AL is clear.

JOSH provides automatic recovery capability by performing up to 10 recovery
attempts in an effort to complete a tape function successfully.

JOSH may be operated either under program control or manually from the computer
control panel. This UPAK III module may be loaded anywhere in computer memory
above address 01000 with the single restriction that the entire module must be
wholly contained within one memory bank. The JOSH program occupies approximately
640B memory locations.

11.2 INPUT PARAMETERS

When operating under control of a user's program, JOSH requires up to seven
words of input parameters. These words must be stored in sequential memory
addresses. The first word must always be zero; it is used as the storage lo­
cation for the magnetic tape status word. The next six words are used to store
parameters 1 through 6 shown in Figure IV-B-B. Only those parameters required
by the operation codes to be performed need be stored. However, the parameters
must be stored in order; that is, if parameter 6 is required it must be stored
in the seventh address of the parameter area. When JOSH is operated manually,
parameters shown in Figure IV-B-B are entered manually into AU and AL.

IV-B-35

Parameter 1 .

17 16 15 14 13 12 11 10 9 S 7 6 5 4 3 2 1 0 J

-Transport No.

-- Cabinet No.

---Magnetic Tape I/O Channel No. (O-17S)

Operation Code

00000 - ~ - Read
00001 - 1 - Read Selective
00010 - 2 Read - Ignore Error Halt
00011 - 3 Read - Retain Control (Tape Handler Holds

Until Function is Complete)
'00100 - 4 - Search - Type I
00101 - 5 - Search - Type II - Identical
00110 - 6 - Search File - Type I
00111 - 7 - Search File - Type II - Identical
01000 - 10 - Write
01001 - 11 - Write
01010 - 12 - Write
01011 - 13 - Write

- Extended Inter-Record Gap
- Ignore Error Halt
- Extended Inter-Record Gap -

01101 - 14
01101 - 15
01110 - 16
01111 - 17
10000 - 20
10001 - 21
10010 - 22
10011 - 23

Ignore Error Halt
- Write Tape Mark
- Write Tape Mark - Extended Inter-Record Gap
- Pass N Files Forward
- Pass N Records Back
- Pass N Records Forward
- Backspace
- Backspace - Read
- Pass N Files Back

10100 - 24 = Back Search - Type I
10101 - 25 - Back Search - Type II - Identical
10110 - 26 - Back Search File Type I
10111 - 27 - Back Search File Type II - Identical
11000 - 30 - Rewind .
11001 - 31 - Rewind - Clear Write Enable
11010 - 32 - Rewind - Read

______ 11011 - 33 - Rewind - Read - Clear Write Enable

Mode

o - Dual Channel
~1 - Single Channel

Figure IV-B-S. JOSH Input Parameters (Sheet 1 of 3)

IV-B-36

Parameter 2

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I

No. of Records to Pass or
--Files to Space (O-77B)

Density

000 - 200 Frames/Inch (Low for 1240)
010 - 556 Frames/Inch (High
001 - 800 Frames/Inch .

-011 - Same as Last Instruction

Parity

000 - Even
-001 - Odd

Coding

000 - Biocta1 (2 Characters/Frame)
--001 - Octal (Redundant)

Modulus

000 - Modulus 3 (lB bits)
001 - Modulus 4 (24 bits)
010 - Modulus 5 (30 bits)

~011 - Modulus 6 (36 bits)

Parameter 3

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 J

Buffer Initial Address
for Read, Write, and

~Search Operations

-Not Used

Figure IV-B-B. JOSH Input Parameters (Sheet 2 of 3)

IV-B-37

Parameter 4

Parameter 5

Parameter 6

17 16 15 14 13 12 11 10 q 8 7 6 5 4 3 2 1 01

Buffer Terminal Address
for Read, Write, and

~Search Operations

-Not Used

17 16 15 14 13 12 11 10 q 8 7 6 5 4 3 2 1 0

Search Constant for Single
Channel Search, First Half
of Search Constant for Dual
Channel Search

17 16 15 14 13 12 11 10 q 8 7 6 5 4 3 2 1 0

Second Half of Search
Constant for Dual Channel
Search

Figure IV-B-8. JOSH Input Parameters (Sheet 3 of 3)

IV-B-38

11.3 OPERATING PROCEDURES

11.3.1 OPERATION UNDER PROGRAM CONTROL

Before starting the calling program, any required tape must be mounted on the
specified transports and the magnetic tape unit must be placed in the ready
condition. The calling program must contain the required parameters in con­
secutive memory locations. The calling program defines the parameter locations
by entering the active B register with the first address of the parameter packet
before executing a return jump or indirect return jump to the JOSH base address.
The first word of the packet must be a blank word (zero). JOSH a~tomatically
extracts the required parameters, initiates the tape function, and returns con­
trol to the calling program.

At any time the calling program may check to determine if the tape function is
completed by executing a return jump or indirect return jump to JOSH base
address + 4. JOSH checks the tape function and returns control to the calling
program wi th.:

1) AL clear if the tape function is complete,
2) AL set to a nonzero value if the tape function is still in process.

The calling program may check the status of an attempted tape operation by
either of two methods:

1) If the calling program executes a return jump or indirect return jump
to JOSH base address + 2, JOSH waits for the interrupt, interprets the
status word, and returns control to the calling program via a good or
bad exit.

a) A good exit returns control to the next instruction + I (skips one
instruction) in the calling program. AU and AL are both clear upon
return.

b) A bad exit returns control to the next instruction in the calling
program with the following status indications in AU and AL:

(AU) ~
(AL) =)

tape unit status word
1, 2, 3, 4, 5, or 6
1 ~ tape mark
2 ~ improper cond i t i on
3 ~ unrecoverable tape error
4 ~ parameter error
5 ~ low tape
6 ~ end of tape

2) The calling program may wait for the interrupt and interpret the status
word by checking for the status codes, defined above, in the first word
of the parameter packet (0 indicates successful completion). If this
method is used, the calling program must ensure that the interrupt has
been received before attempting to interpret the status. This can be
done by looping through an RJP or IRJP to JOSH base address + 4 and check­
ing status only when control is returned with AL clear.

IV-B-39

11.3.2 MANUAL OPERATION

1) ~ount any required tape on a tape transport and place the tape unit in the
ready condition.

2) Master clear the computer.

3) Set P to the JOSH base address + 10.

4) Set AU to parameter 1; set AL to parameter 2.

5) Start the computer. The computer stops with AU and AL clear.

6) Set AU to parameter 3; set AL to parameter 4. If these parameters are
not necessary for the operation code selected in parameter 1, leave
AU and AL clear.

7) Start the computer. The computer stops with AU and AL clear.

8) Set AU to parameter 5; set AL to parameter 6. If these parameters are
not necessary for the operation code selected in parameter 1, leave
AU and AL clear.

9) Start the computer. When the tape function is completed, the computer
stops with the status word displayed in AU for operator interpretation.

11.3.3 SPECIAL CONSIDERATIONS

1) Search constants for a backward search must be reversed characterwise.

2) Whenever dual-channel operation is selected, the buffer must specify an
even number (2, 4, 6, A, and so forth) of memory words.

3) Address 00141 is reserved for use by JOSH as an indirect interrupt
address.

4) The contents of AU, AL, and active B are not restored.

5) If the user elects to use the status checking feature of JOSH base
address + 2, he must do so before re-entry into JOSH to do the next
tape functiono

IV-B-40

SECTION IV-C. TRIM CORRECTOR

1. GENERAL INFORMATION

The TRIM corrector program is a service routine designed to provide operators
and programmers with the means to correct source programs without manually
preparing a new source program tape. The TRIM corrector first reads and stores
a list of correction operations from punched tape. Each correction operation
contains an identifier which relates the correction to a specific operation in
the source program. The correction operations may be read in any order and may
be contained on any number of tapes; however, all correction tapes must be read
before any source program tapes are read. After each tape is read, the program
stops to allow the next tape to be mounted in the reader. After all corrections
have been read, the program sorts the corrections by identifier into a sequential
list in ascending order. The program then reads the uncorrected source program
one operation at a time. The source program may be read from source program
tapes (manually punched or TRIM Output No. 11) or from program listing tapes
(1RIM Output No.2); however, all tapes used in a correction run must be of tht~
same type. After each tape is read, the program stops to allow the next tape
to be mounted in the reader.

If source program tapes are read, the program assigns a sequential identifi­
cation number to each operation as the operation is read. The first source
operation read is assigned the number 0, the second operation is assigned the
number 1, and so forth. No at tempt is made by the prog.ram to determine the
type of operation being read. If the source program is read from a program
listing tape (TRIM output No.2) the program discards all information on the
tape except the LIID numbers and the source operations. The LIID numbers are
used as the identification numbers.

As each source operation is read (from either type of tape), the program deter­
mines the identification number of the operation and compares the number with
the identifier of the next correction to be processed. If the source operation
identification number is smaller, the source operation is punched on the cor­
rected source tape without alteration. If the correction identifier is smaller,
the correction operation is punched on the corrected source tape. If the two
numbers are equal, the correction operation is inspected to determine the type
of correction specified. The correction is then processed and the next source
operation is read. When all correction and source operations have been pro­
cessed, the program punches a double period and the checksum on the corrected
source tape and comes to a final stop. The corrected source tape is ready for
input to either the TRIM I or II assembly system.

2. INPUT FORMATS

Correction tapes must begin with a carriage return and terminate with a carriage
return and two periods. Each correction on the tape must consist of an identi­
fier and one of three types of correction operations. The general format for
a correction is as shown on the next page.

IV-C-l

[Ide n t if i e r]..)

[correction operation]..)

The identifier may consist of an integ'er only or an integer and a fraction.
The, integer defines the operation in the source program at which the correction
is to be applied. The fraction is used only with insert type corrections to
define the sequence in which instructions are to be inserted into a source
program. The maximum size of the integer is five characters and the maximum
size of the fraction is three characters. When the source program is to be
read from tapes generated by a TRIM assembly system, the integer portion of the
identifiers used with correction operations may be taken directly from the LlID
numbers on the hard-copy listing of the tape. When the source program is to
be read from manually prepared source tapes, identifiers may be determined by
sequentially numbering all operations contained on the tapes to be read. One
method of accomplishing this numbering process is to first obtain a hard copy
of all information on the source tapes and then number each operation seque~
tially (starting with zero and using octal numbers only). The number of an
operation may then be used as the identifier for a correction which applies to
that operation.

2.1 DELETE CORRECTION

The identifier of a delete correction is the number of the operation (or first
operation of a group of sequential operations) to be deleted frem the source
program. The correction operation consists of a~, the word DELETE, and
a carriage return when only one program operation item is to be deleted. If
more than one sequential program operation is to be deleted, the word DELETE
is followed by a point separator and the number (in octal) of operations to
be deleted. A carriage return must follow the operation. Two examples are
given below.

Example 1 deletes item 127 from the source program:

127 -2;
-+DELETE.J

Example 2 deletes items 127 through 133 from the source program:

l27-V

--.. DELETE-!J

2.2 REPLACE CORRECTION

Thp identifier of a replace correction is the identification number of a
source program ~peration to be replaced by the correction operation. The
correction operation may be any TRIM source language operation. The correction
operation must not exceed 80 characters in length (including control codes)

IV-C-2

and "must be terminated with a carriage return. The example which follows
replaces the source program operation 105 with the correction operation.

105-V

CAT --+ ENfBK 35 --+ INITIALIZE INDE!J

2.3 INSERT CORRECTION

The identifier of an insert correction contains an integer and a fraction
separated by a point separator. The integer appears before the point separator
and specifies the source program operation after which the correction opera­
tion is to be inserted. The fraction defines the correction as an insert cor­
rection and also specifies the order in which operations are inserted when more
than one operation is to be inserted at the same point in the source program.
For example, if two corrections with identifiers 12-1 and 12-2 are read by
the TRIM corrector, the correction operation associated with 12-1 is inserted
after source operation 12 and the correction operation associated with 12-2
is inserted after correction operation 12-1. The correction operation to be
inserted may be any TRIM source language operation. The correction operation
must not exceed 80 characters in length (including control codes). An ex­
ample of the coding required to insert three instructions after operation 106
of a source program follows.

Example:

106 :!J
DOG ~ ENTAU-SU!J

106;;

--+ LSHA-!J

106-!J

GETOUT --+ RJP-DOI;;

Additions may be made to the end of a source program by means of either the
insert or replace correction. For example, if the last source program oper­
ation is number 320, then ei~"her of the methods in the following two examples
may be used to add operations.

Example 1 (insert):

320 -!.J
CAT --+ O.O--+CLEAR srORAGES SU~

IV-C-3

320-:;

ENTBK ~

320-!J

CATI --:.... CLB.WSfR-V

320 eV
---+ BJP-CAT!J

320-5

~ IJP-CA~

Example 2 (replace):

321-~

CAT --. O-O-'CLEAR STORAGES SUB!J

322-V

---. ENTBK- l2J
323-V

CATI --+ CLB-WSfRV

324-~

--+ B.TP -CAT.!,)

325-~

---+ IJP.C~

3. PREPARATION OF CORRECTION TAPES

Correction tapes must be punched in TRIM source code (same code as the program
to be corrected). Any device capable of punching this code may be used to pre­
pare correction tapes; however, this description covers the preparation of tapes
on the UNIVAC I/O consoles only. If another device is used~ care must be taken
to ensure that the proper codes are generated for the required control codes,
When a UNIVAC I/O console is used, the console must be placed in the off-line
mode and the operator must select the option which permits punching tape while
simultaneously typing on paper by keyboard entry.

The maximum number of correction operations used in a correction run is deier­
mined by the computer memory size. Approximately 2008 corrections are allowed

IV-C-4

for every memory bank (409610 words of core storage). These corrections may
be punched on any number of correction tapes.

Every correction tape must begin with a carriage return code and end with a
carriage return code followed by two consecutive period codes. Except for
special control symbols, the keyboard entries must correspond to the characters
which appear in the operations; that is, key A is activated for an A, key B for
a B, and so forth. Certain special control symbols used for formatting oper­
tions are not reflected on the keyboard. These symbols are defined in Appendix
A, Table A-I, which also lists the key used to represent the symbol and the code
generated by that key. In addition to the keys identified in Table A-I, the
operator must use the line feed key to advance the paper in the typewriter after
each carriage return. The code generated by the line feed key is not used by
the TRIM corrector.

A limited amount of in-process corrections may be made while a correction tape
is being prepared. Specifically, two types of corrections are allowed. One
type deletes the last code punched and the other type deletes all information
punched since the last carriage return code. Refer to TRIM I, paragraph 8,
for the description of these in-process corrections.

4. OPERATING PROCEDURES

The TRIM corrector is' designed to operate with a mInImum equipment configuration
of a computer and an on-line reader-punch unit. Prior to operating the TRIM
corrector the computer and reader-punch unit must be placed in the operational
state with all switches in the normal operating position. The TRIM corrector
absolute bioctal tape must be loaded into computer memory via a utility package.
The procedures for operating the TRIM corrector are given below.

1) Master clear the computer.

2) Set the P register to 00400.

3) Set PROGRAM SKIP keys 1 and 2.

4) Set PROGRAM SKIP key 3 if a side-by-side listing tape is to be used as
input.

5) Mount a correction tape in the reader.

6) Start the computer.

7) When the computer stops with the AL and AU registers clear, repeat steps
5) and 6) for the next correction tape. When all correction tapes have
been read, proceed to step 8). If, at any time, the computer stops
with the AL register set to 007777, the maximum number of corrections
has been exceeded. The operator may terminate the operation or pro­
cess the corrections already stored. To process the corrections al­
ready stored, remove the correction tape from the reader and proceed to
step 8).

IV-C-5

8) Release PROGRAM SKIP key 1.

9) Mount the tape on which the source program is contained. This may be
either a source program tape or a side-by-side listing tape. If the
source program is contained on more than one tape, the tapes must be
read in the proper order (determined by the program sequence and the
correction identifiers).

10) Start the computer. If .no correction tape has been read. the computer
stops immediately with the AL register set to 000007i restart at 1).

11) As the input tape is read, the corrected source program tape is punched.
When the computer stops after an input tape is read, repeat 9) and 10)
for the next tape. When all tapes which contain the source program have
been read, proceed to step 12).

12) Release PROGRAM SKIP key 2.

13) Release PROGRAM SKIP key 3 if this key was set at step 4).

14) Start the computer.

15) When the computer stops, punch a trailer on the output tape (corrected
source tape) and remove the tape from the punch. The checksum on the
corrected source tape may be verified by performing procedures a)
through f) under step 16).

16) Verify the checksum on the corrected source tape as follows:

a) Master clear the computer.

b) Set the P register to 00400.

c) Set PROGRAM SKIP key 4.

d) Mount the tape to be verified in the console reader.

e) Start the computer.

f) When the computer stops with the P register set to 00400, the AU
and AL registers display the checksum indication. If both the AU
and AL registers are clear, the computed checksum and the tape
checksum are the same and the tape may be used as input to a TRIM
assembly system. If AU and AL are not both zero,' AU contains the
computed checksum and AL contains the tape checksum. This
indicates that an error occurred during the correction run.

IV-C-6

CHANGE 1

SECTION IV-D. TRIM LIBRARY BUILDER (LIBBLD)

1. GENERAL INFORMATION

The TRIM III library builder, LIBBLD, is a program by means of which a user may
add, delete, or replace programs on the assembler library. LIBBLD also has the
capability to furnish listings of the library directory and any or all of the
programs in the library. The library builder is designed for use with the
following miinimum equipment configuration:

1 computer with 16K words of memory
1 magnetic tape system with two transports
1 I/O console with paper tape reader, paper tape punch, and typewriter

Optional equipment includes:

1 card reader and high-speed printer
1 card punch'

Input to and output from the library builder is identical to TRIM III source
language formats.

A TRIM III library consists of two parts, the directory which records the names
of the library subroutines ordered by their physical appearance on the tape, and
the library of subroutines themselves. The library directory is stored on
magnetic tape, preceding the library.

2. INPUTS

2.1 BUILDING OR UPDATING

The command tape or deck must always be preceded by a LIBUPD header control
operation and a library number identification operation. For example:

--+ LIBUPD • [name] • [date] --+

-+ LIBM) • [library number] --+

When building a new library, the library number is an assignment of this number
to the library. Once a library has been built, LIBBLD checks the assigned
number against that of the LIBNO operation to ensure that they correspond. If
they do not, an error typeout occurs.

The operations allowed in updating a library are:

REC (record add program at beginning of library)

DEL (delete delete program from library)

WDG (wedge insert program in library, not at the beginning)

IV-D-l

RPL (replace - program with new program)

Only the REC operation is used when building a new library.

These operations are accomplished in two steps:

1) Directory building or updating.
2) Library building or updating.

To insure proper calling, it is the responsibility of the user to enter all
programs in the proper order in the directory. This is dictated by the fact
that the magnetic tape can never be rewound when calling programs from the
library during an assembly run. This requires any program internally calling
on another to precede the called program on the library.

The LIBBLD checks all calls within a program to determine if they are listed
in proper order in the directory, and if not, prints out a call error on the
typewriter.

Input to LIBBLD may be either on paper tape or punched cards.

The format for paper tape input is illustrated in the following example of a
command sequence:

--+ LIIIJPO-JRS-.ruNE 65 ---+

--+ LI BNO-35 --+

--+ DEL-CAT ----+

--+ WDG- MUTT oJEFF --+

--+ RPL -MOP --+

building or updating header.

command to update library 35.

command to enter program DOG at
beginning.

command to delete program CAT.

command to insert program MUTT
following program JEFF.

command to replace old program
MOP with new.

end of commands.

Each entry must be a separate statement. The tab at the end of each statement
may be omitted; however, a carriage return must precede each entry (each line
shown above). A label may precede the beginning tab on the· LIBUPD and LIBNO
statements.

IV-D-2

The format for card input is illustrated in the following example of command
sequence:

ENDATA ---

RPL*MOP ---

WDG*MU'if*JEFF

DEL*CAT ---

REC*DOG

LIBNO*35

LIBUPD*JRS*JUNE 65

Column 21 is the starting point of the command. A blank card must appear as
the last card in the command deck.

2.2 LISTING

The command tape or deck must always be preceded by a LIBLST header control
operation and a library number identification operation. For example:

-+ LIBLST • [name] • [da te] --+

--+ LIBNO • [library number] ---+

The user may request a listing of the directory (DIR), an individual subroutine,
or the entire library of subroutines (LIB).

IV-D-3

Input to ~IBBLD may be either on paper tape or punched cards.

The format for paper tape input is illustrated in the following example of a
command sequence:

--+ LIBLST-JRS-JUNE 65 --. listing header.

--+ LIBNO - 40 ---+ command to list from library 40.

--+ LST- DI R --+ command to list directory.

command to list whole library.

command to list programs, CAT,
cOW, and RAT.

• • end of commands •

The tab at the end of each statement may be omitted; however, a carriage
return must procede each entry (each line shown above). A label may precede
the beginning tab on the LIBLST and LIBNO statements.

The format for card input is illustrated in the following example of a command
sequence:

ENDATA ---

LST*CAT*COW*RAT* .---

LST*LIB --- I
LST*DIR ---

LIBNO*40 --- J
LIBLST*JRS*JUNE 65 ---

IV-D-4

3 .. OUTPUTS

3.1 BUILDING OR UPDATING

When using LIBBLD to build or update a library, the output is the new library
tape, in the format illustrated in Figures IV-D-l and IV-D-2.

Word

Word

1

· • ·
30

8

0

1

2

3

4

5

N - 3

N - 2

N - 1

N

N + 1

7 7 0

7 7 0

LIBRARY

PROG

LABEL

PROG

LABEL

~

PROG

LABEL

a a

a a

7 7 0

0 7 7

0 7 7

NUMBER

1

2
-~
~

N

a

a

0 7 7

A 308 word block of
770077 precedes the
library directory, Hnd it
is terminated by two words
of alphas and one word
of 770077.

Figure IV-D-l. Library Directory

IV-D-5

Word 1

.
•

" ~

1

1

0

0

0

0

0

0

1

1

1

1

0

1

0

-

1

0

1

1 1

1 1

PROG 1

0 1

0 0

PROG 2

0 1

0 0

PROG N

0 1

0 0

1 1

1 1

1 1

0 1

0 2

0 1

0 2

~

0 1

0 2

1 1

A 308 word bloek of
111111 precedes the
library, and it is
terminated by one word of
111111. Each major
program is followed by a
word of DELtAS and a word
of 000002.

Figure IV-D-2. Library Routines Format

3.2 LISTING

When using LIBBLD to list the directory or any or all of the 1ihrary sub­
routines, the output may be requested on punched paper tape, punched cards,
or a high-speed printer.

IV-D-6

CHANGE 1

4. OPERATING PROCEDURES

Prior to operating the library builde=, the computer, magnetic tape unit, and
I/O console must be placed in the operational state with all switches in the
normal operating position. If the card processor is to be used, it must
also be placed in the normal operating position. The library builder absolute
bioctal tape must be loaded into computer memory via a utility package. The
procedures required to operate the library builder are given below. While
operating the program the user must observe typeouts on the console typewriter
and refer to the directions provided in paragraph 5.

4.1 LIBRARY BUILDING AND UPDATING PROCEDURES

1) Mount the tape, on which the new or updated library is to be written,
on a tape transport.

2) If the process is an update, mount the old library tape on a second
tape transport.

3) If input is to be from paper tape, mount the tape containing the con­
trol and command operations in the paper tape reader.

4) If input is to be from cards, mount the control and command card deck
in the card input hopper, initialize the card reader, and set PROGRAM
SKIP key 3 on the computer.

5) If a new library is to built, set PROGRAM SKIP key 1.

6) If the operation is to be performed in dual-channel mode, set the
appropriate channel mode switch to the dual position~ If a library
was written on tape in dual-channel mode, it must be updated in dual­
channel mode.

7) Master clear the computer.

8) Identify the new and old library tapes in AU and AL, respectively, by
setting the magnetic tape channel No. in bits 9 through 6, the cabinet
No. in bits 5 through 3, and the transport No. in bits 2 through O. If
dual-channel mode is to be used, the channel No. must be odd.

9) Set P to 20000.

10) Start the computer. The control and command input is read and the
computer stops,

11) Set PROGRAM SKIP key 2.

12) If any new programs are to be written on the new library, mount the
input program on the appropriate input device (paper tape reader or
card reader). If input is from cards, PROGRAM SKIP key 3 must be set;

IV-D-7

CHANGE 1

if- input is from tape, it must not be set. If no new programs are to
be written, proceed with step 15).

13) Start the computer. The input program is read, and the computer stops.

14) Repeat steps 12) and 13) for each new program to be written on the
library.

15) Release PROGRAM SKIP key 2.

16) Start the computer. The building or updating process is performed and
the new or updated library is written on tape. When the process is
complete, the computer stops after th-e typeout DONE occurs.

4.2 LIBRARY LISTING PROCEDURES

1) Mount the library tape on a tape transport.

2) If listing commands are on paper tape, mount the tape in the reader.

3) If listing commands are on cards, mount the cards in the card input
hopper, initialize the card reader, and set PROGRAM SKIP key 3 on the
computer.

4) Set PROGRAM SKIP key 0 to select output on the high-speed printer; set
PROGRAM SKIP key 4 to select output on the card punch. If neither of
these keys are set, output is on punched paper tape. Only one of the
keys may be set during a given run.

5) Ensure that the output device is ready (paper in the printer, tape in
the tape punch, cards in the card punch).

6) If card or printer output is selected and input is from tape, initialize
the selected output device.

7) If the operation is to be performed in dual-channel mode, set the
appropriate channel mode switch to the DUAL position. If a library
was written in dual-channel mode it must be listed in dual-channel mode.

8) Master clear the computer.

9) Identify the library tape address in AL by setting the magnetic tape
channel No. in bits 9 through 6, the cabinet No. in bits 5 through 3,
and the transport No. in bits 2 through O. If dual-channel operation
is selected, the channel No. must be odd.

10) Set P to 20000.

IV-D-8

11) Start the computer. The listings defined by the input command operations
are produced on the selected output device and the computer stops after
the typeout DONE occurs.

5. TYPEOUTS

1) CALL ERR XXXXXX.

Program XXXXXX was called but is not found in the directory or is not in
the proper order. It must follow the calling program on the library
because the tape is never rewound while calling programs during an
assembly run. Correction must be made before processing is restarted.

2) DIRECTORY.

This typeout, followed by a listing of the directory, occurs whenever a
listing of the directory is requested on paper tape.

3) DONE.

The building, updating, or listing process is complete.

4) ILL-OPERATOR XXX.

An illegal updating command has been detected. Processing continues
and the illegal command it ignored.

5) IMP COND.

An improper condition has been detected on a magnetic tape unit. Correct
the improper condition and start the computer. The magnetic tape func­
tion will be attempted again.

6) LIBNO xxx.
Library xxx is the one being updated or listed.

7) NO HEADER.

No legal header has been read. Correct the tape or card deck, place the
corrected tape or card deck in the reader, and start over.

8) NO LIBNO.

The library to be updated or listed does not contain an identifying
library number o Correct the tape or card deck, place the corrected tape
or card deck in the reader, and start overo

9) READ XXXXXX NEXT.

The wrong source program tape or deck was mounted in the reader. Mount
the correct program and start the computer.

IV-D-9

10) Tes ERR Z TBL Y.

The table control system has detected an error while attempting to
operate on the indicated table Y. The error is unrecoverable and is
the result of internal trouble or a magnetic tape error (X = 9).

11) WRONG LIBNO XXX.

XXX is the library mounted on the tape transport but it is not the one
requested for updating or listing. However, if the user starts the
computer, library XXX will be updated or listed. If updating is re­
quested, the new library assumes the library number which was input via
the command card deck or paper tape.

12) XXXXXX NOT IN DIR.

Program XXXXXX is either not found in the directory or has been deleted
by command.

IV-D-IO

CHANGE 1

SECTION IV-E. TRACE DEBUGGING PROGRAM (TRACK)

1. GENERAL INFORMATION

The trace debugging program (TRACK) traces the course of up to five designated
areas of a program being executed on the computer. TRACK inserts an IRJP to
itself in the first two instructions of each area and then exits to the start­
ing address of the program being traced. When the program re-enters TRACK at
the first area limit, the.original first two instructions are restored, inter­
rupts are locked out, and the trace begins.

TRACK permits the computer to execute a monitored instruction; temporarily stops
the monitored program action; and then causes the instruction just executed,
together with the contents of pertinent registers, to be listed on the monitor­
ing typewriter or punched on paper tape. A version of TRACK is also available
for use with a high-speed printer. Besides displaying the traced instruction
in absolute (octal) coding, TRACK also prints the instruction with its TRIM
symbolic operator for easier identification by the user. TRACK also provides
the options of ignoring subroutines in the trace area or tracing only those
instructions which modify a specified address.

TRACK compares the address of each instruction it executes against the final
address given for the area it is processing. When a match is found, TRACK
exi ts to the traced program's next designated address.

Examination and analysis of the printed register contents permit the programmer
to follow the progress of the running program and to determine the location and
source of errors.

TRACK is available in relocatable (bioctal) format and requires approximately
2,340 (octal) storage locations in the same bank of memory.

Because every monitored instruction requires the execution of at least a
hundred TRACK instructions, and a relatively great amount of time is required
by the typewriter or punch, it is obvious that real-time problems cannot be
traced in the true sense with TRACK.

TRACK does not use or alter the interrupt registers, and it locks out all
interrupts while it is tracing a program area. However, this should not deter
users from tracing programs with interrupts, since the interrupt routine itself
may be specified as one of the areas to trace, or the I/O segments of the
program may be left out of the designated trace areas.

2. INPUT

The input to the TRACK program consists of instructions extracted from desig­
nated areas of the user's program. Input parameters are entered manually
by the program operator. These parameters define the first address of the
user's program, the desired output option, and the areas in the user's program
which are to be traced.

IV-E-l

3. OUTPUT

The output of the TRACK program consists of the traced instructions and cor­
responding addresses together with the contents of pertinent registers. This
output may be a typed or printed hard copy or a punched tape.

The TRACK output for each instruction consists of the information which fol­
lows. Then the information is typed or printed, it appears from left to right
across the page in the order listed below.

1) Address of the executed instruction.
2) Executed instruction in absolute (octal) coding.
3) Executed instruction with operator in TRIM symbolic language.
4) Contents of upper half of accumulator register (AU).
5) Contents of lower half of accumulator register (AL).
6) Present index register being used and its contents (B).
7) Operand of executed instruction.

There are exceptions to this format. In cases 4), 5), and 6), the contents
of the A and B registers are not printed unless a change was made to them; the
identifiers, however, are always printed. In cases 6) and 7), index register
and operand printouts are omitted for instructions where B registers are never
referenced, and the operand is always a constant appearing in the instruction
itself. Also, in case 7) if a fault condition arises (function codes of 00,
01, 77, 5000, or 5077), the word, fault, appears in the operand position.

4. USER GROUND RULES

The user must keep in mind that TRACK replaces the first two instructions of
each designated area with entry instructions to TRACK before starting the mon­
itored routine and, upon returning to TRACK, those original first two instruc­
tions are replaced. Caution must therefore be exercised in choosing the trace
area initial address so that either one of the first two instructions is not
modified by the running program before the program executes those instructions.
Also, a trace output results only once for each entire specified area since the
TRACK entry instructions are replaced by the original program instructions.
If the trace of a repetitive loop is desired, the initial address to the area
must be selected so that the area includes the entire loop process.

TRACK stops prior to executing each instruction if PROGRAM STOP 4 is set.
During the stop, the next instruction of the traced program is displayed in
AL and the address of this instruction is displayed in AU. Any desired changes
may be made tDthem at this time. After restarting the computer, the trace
continues. TRACK also stops if a fault instruction is traced or if a program
stop in the traced program is fulfilled.

Although TRACK locks out all interrupts when initially entered from a program
area and removes this lockout only when control is returned to the traced
program upon completion of the upper limit instruction, TRACK executes
remove interrupt lockout instructions. Care should be exercised by the user
in this regard, expecially when it is desired to trace interrupt routines. If
TRACK is interrupted while monitoring a program area, and in turn monitors the

IV-E-2

CHANGE 1

interrupt subroutine, the flags and storage relating to the first area will he
destroyed, resulting in an erroneous trace.

The addresses given to define a trace area for TRACK are not output area limits
outside of which nothinq is traced. The trace may proceed anywhere throughout
computer memory, and TRACK relinquishes control only after the instruction
at the higher of the two specified area addresses is executed. Therefore. the
contents of all area limit addresses must be legitimate instructions.

5. OPERATING PROCEDURES

The computer and I/O console must be placed in the operntional state with all
switches in the normal operating position. If the TRACK program is to be operated
with a high-speed printer for output, the printer must also be initialized.
Prior to operating the TRACK program, both the user's program to be traced
and the TRACK program must be loaded via a utility package. TRACK may be
loaded at any address in memory with the single restriction that the entire
program must be loaded within one memory hank. The operating procedures arfl
given below.

1) Master clear the computer.

2) Set the P register to the starting address of TRACK.

3) Set the AU register to the starting address of the user's program.

4) Set the AL register for the desired output option:

a) AL set to zero - Track traces all instructions starUng wi th first
instruction designated and ending with last instruction designated.

b) AL set negative - TRACK traces all instructions except those exe­
cuted between a return jump (direct or indirect) and the return from
the jump; that is, subroutines are ignored. If the first instruc­
tion to be traced is an RJP or IRJP to a subroutine, that subroutine
wi 11 be tracerL

c) AL set positive - TRACK considers the value in AL as an nddress
and produces a trace output only for those instructions which alter
the contents of that address.

5) Start the computer.
cleared.

The computer stops with the AC and AL re~isters

6) Set the addresseS of tha first and last instructions to' be traced in
AU and AL (either address in either register). The area defined by
these addresses mny be the entire program or any portion thereof. If
only one instruction is to be traced, the address must be set i~ both
AU and AL.

7) Start the computer. The computer stops with AU and AL cleared.

IV-E-3

CHANGE 1

8) Repeat steps 6) and 7) for each desired trace area. A total of five
areas may be designated.

9) If less than five areas have been entered, leave AU and AL clear and
start the computer. The computer stops with AL set to a nonzero value.

10) Set the AU and AL registers to the initial parameters required by the
user's program (if any are required).

11) Set PROGRAM SKIP key 0 if output is to be punched (no action is re­
quired for typewriter output or hiQh-speed printer output).

12) Set PROGRAM STOP key 4 if it desired to stop the program prior to
executing each traced instruction.

13) Start the computer. The user's program starts and runs normally until
a trace area is reached. Then the TRACK program controls the execution
of all tr.ac~d instructions in the user's program. A~ter executing
each traced instruction, TRACK types or punches the trace information for
that instruction.

14) If PROGRAM STOP key 4 is set, the computer stops prior to executing
each instruction. While the computer is stopped, the operator may
change the instruction which is displayed in the AL register. After
changing the instruction, or if no change is desired, start the computer
to continue the trace operation. If a stop condition in the traced
program is fulfilled, TRACK allows the computer to stoP. To continue
the trace operation, start the computer.

15) After !RACK has traced the execution of all in~tructions i~ the first
trace area, control is returned to the user"s program until the next
tr.ace area is reached. When all designated areas have been traced, the
user's program runs to completion and terminates in the normal manner.

16) If the TP~CK output is on punched tape. punch a trailer on the tape,
remove the tape from the punch, and ,obtain a typed hard copy of the
punched tape via off-line operation of the console.

17) If the TRACK output is on the typewriter or printer, remove the hard
copy from the typewriter or printer.

18) Examination and analysis of the hard copy will permit the programmer
to follow the progress of the running program and to determine the
location and source of errors in that program.

IV-E-4

CHANGE 1

SECTION IV-F. CARD-TO-TAPE PROCESSOR (CART)

1. GENERAL

The punched card-to-tape processor, CART, is a computer stored program which
has the ability to stack ordered card decks on magnetic tape for subsequent
continuous processing. By means of appropriate control cards, CART direcfs :he
stacking of cards on tape, with the following options:

1) Card-to-tape, a single job.
2) Card-to-tape. consecutive jobs.
3) Replace jobs on a previous card-to-tape.
4) In~ert job on a previous card-to-tape.
5) Delete jobs on a previous card-to-tape.
6) Punch jobs from a previous card-to-tape.
7) List jobs from a previous card-to-tape.
8) Withdraw specified jobs from a previous card-to-tape.
9) Resequence jobs.

10) Correct jobs from a previous card-to-tape.

The CART program is designed for use with a minimum configuration of the
following UNIVAC equipment:

1) Computer with 16K memory.
2) ~agnetic tape system with two transports.
3) I/O console with typewriter.
4) Card processor.

2. INPUT

Input to the CART program consists of two types of punched cards and, in some
cases, information read from magnetic tape. The two types of punched cards
are control cards and job cards. Control cards direct the operation of the
CAR~ program and must conform to a specific format. Job cards contain in­
[ormation to be written on tape. This information may be in any 8O-column
format and may be written as a separate job or merged with other jobs read
from magnetic tape. The general format for control cards is shown below.

123 456 789 10 11 12 13 202122232425 32 33 34 j 67 ~~ '--v-' '-y-J y \~_--'Vr--_-"I ~ '----y--1-y--

From Tape Format

I Special Option
Operation Code

(Contr.Jl Code)

IV -F-l

I
~ Deck

r 1.0.

I
, Job

Numbers
To Tape Format

1) Control code CTT (columns 1, 2, and 3).

The control code CTT must appear in columns 1, 2, and 3 of all contlul
cards except those with an operation code of ENJ, END, and DEL (cards
with these operation codes must not have any code punched in columns
1, 2, and 3).

2) Operation code (columns 7, 8, and 9).

The code in columns 7, 8, and 9 defines the operation to be performed
by the CART program. The list of legal operation codes given below
describes the operations which can be performed by the CART program.

Operation Code Definition

RPF

DEF

ADD

WDR

LST

OLY

ALL

PUN

~J

END

DEL

Replace the job(s).

Delete the job(s).

Add the job(s) to present library tape.

Withdraw the job(s) from current library tape.

List the selected job(s) on the printer.

Correct the job(s) specified and Write on
output tape.

Correct the job(s) and copy all jobs on
output tape.

Punch the selected job(s).

End of this job.

End of this CART run.

Delete the card(s).

3) Special options (column 11).

The presence of a code in column 11 permits simultaneous performance
of two operations. One of two legal codes may be used. The code~ are
Land R and their meaning to the CART program is as follows:

L - List the selected jobs.
This option is allowed only on a control card with a WDR operation
code. Ine L In column 11 directs CART to list the information
withdrawn from tape while the withdraw operation is being per­
formed.

IV-F-2

R - Resequence the selected job, with the new deck identification
contained in columns 70-77 on the [IT card.
If columns 70-77 are blank, the deck name portion of the deck
10 is not changed, but the card numbers for each deck name are
resequenced. A CTT card must have only one job number in the
job number field when the resequence option is selected. The
resequence option may be selected on control cards with operation
codes at RPF, ADD, WORt ALL, OLY, or PUN. If the resequence
option is selected with RPF, ADD, or ALL operation codes, only
the new job or the corrected job is resequenced.

4) From tape format (columns 13 through 20).

The information in columns 13 through 20 defines the format and
address of information to be read from tape by the CART program.
The codes required are as follows:

Card. Column

13

14

15

i6

17 & 18

19

20

Code and Meaning

H = 800 FPI (1540, 1219 mode only)
M = 556 FPI
L = 200 FPI

o = Octal
B = Bioctal

S = Single Channel
o = Dual Channel

o = Odd Parity
E = Even Parity

Channel number of FROM tape

Cabinet number of FROM tape

Transport of FROM tape

NOTE: If no information is to be read from tape, the codes described
above apply to the To tape; that is, the tape on which information
is to be written.

5) To tape format (columns 25 through 32).

The information in columns 25 through 32 defines the format and address
of the information to be written on tape by the CART program. If the
control card contains either an LST or PUN operation code these columns
must be left blank. If the control card contains an ADD operation code
and no information is to be read from tape, the To tape information is
coded in columns 13 through 20 and this portion of the card is left
blank.

IV-F-3

The codes required are as follows:

Card Column

25

26

27

28

29 & 30

31

Code and Meaning

H = 800 FPI (1540, 1219 mode only)
M = 556 FPI
L = 200 FPI

o = Ocatl
B = Bioctal

S = Single Channel
o = Dual ·Channel

o = Odd Parity
E = Even Parity

Channel Number of To tape

Cabinet Number of To tape

32 Transport of To tape

6) Job numbers (columns 34 through 67).

The information in columns 34 through 67 defines the jobs to be pro­
cessed. Job numbers must be octal numbers and must not be longer than
two digits •. A comma, dash, or period must follow each job number
specified. A comma serves to separate two job numbers. A dash between
two job numbers indicates that all jobs from the first number through
the second number are to be processed. A period must follow the last
job number in the job-number field. Job numbers must be specified in
numerical order for all operation codes except LST, WOR, and PUN. An
example of a typical job number field is as follows:

Example: 3 f 6-10, 12, 14

This field indicates that jobs 3, 6, 7, 10, 12, and 14 are to be pro­
cessed.

7) Deck 1.0. (columns 70 through 77).

When the resequence option (R) is coded in column 11, the deck identi­
fication name may be contained in columns 70 through 77.

3. OPERATIONS

The CART program reads a control card and performs the operation specified by
the operation code. Job cards which may be required for the operation must
follow the control card in the input deck. If a tape previously written by
CART is to be revised, it must be defined in the From Tape field of the
control card. The card sequences for the various operations of the CART program
are defined with examples in the following subparagraphs.

IV-F-4

3.1 CARD-TO-TAPING A SINGLE JOB

For a single job the card sequence is a CeT control card with an ADD operation
code and blank To tape and job number fields, a job card deck, and ENJ card,
and an END card. This sample deck also resequences the job as it is being
written on tape. The first card 1.0. is NUIDO001.

_END ______ -. _______ -..- ___---.. _ ~ _________ _
.__EtiJ _______ ___. _____ ~ __ ~~ __ __ _ ___ -

U:_CCa::L _ lJiF:.UT_C8.E~ EllP __ l.-JOE-DfLIA..Qr-i JAP.£ W L,L.E:t:., F'~·mUu.iCEL!....- __ _
TT ADD R MBS00511 MU;D0001

I 2 I • I I I I I \I " n IJ 14 \I \I IJ \I It • II n n 24 n 21 21 21 ft • II It D Mil. n • JI • 41 Q a 4J II II U M 15 II IJ ••• 1\ a a 14 •• Il •• II J\ n n M J5 21 n JI JI •

11

22

33

44

5 5 5 5 5 5 5 5 5 5 5 5 5 5·5

11&&&6611&&&11&&1&&&&&&&&&16161161&111&11111111111111&11111111111111111&11&11&16

7 7 7 1111 11 7 7 7 7 7 7 11-1 111111111111111 7 11111 7 11 7 1111 7 7 11 7 1111 7 111 7 11 7 11 7 7 11 7 111111111

1.1811111111111111.111111181111111111111111111111111111111111111.11111111111.1.1

199999991199119119911999911991191 •• 1.9991191 •• 11 •• 11"9'1'9'99999'1'1919'999999'
1 2 1 4 S , 1 I I 11 11 11 1) 14 IS " 11 I' 11 21 21 22 23 24 25252121 7' 11 31 n lJ M J5 II 31 1111414142 U" 45 41 41 41 41 51 t1 525354 55 555154 5' 1111 12 il j4 55 U U II •• " 17 IJ 14 15 15 11 II II.

".'NTIEt' IhI U .•. Aa UNIV,. •• E I'8al i

3.2 CARD-TO-TAPING CONSECUTIVE JOBS

This sample deck illustrates the card sequence for writing two. jobs on tape.

_Et--l[I ______ .~~ __ -. -

_ENJ---- --.-----____ INPULCA&ll.S EJlf'~ JQ:B2. ___ _ _EtoiJ _________ _
__ _ t tlf'-'U:ARlJ,; [Q.R 1Q.Bl ~ __ _

TT ADD LOS00511

--
---~ -----

• I I 4 I I 1 I I II " .f IJ .4 \I \I IJ \I II • II n n f4 n 21 tJ tI ft JI 11 U n M J5]I JI JI :It .. 41 42 41 .. 45 .. 41 ... , 1111 It U 54 • 1111 • II • 11 a a 14 •• Il •• " " Jt n M 11 II " JI JI •

111 1

22222 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 222 2 2 2 2 222 2 2 2 2·2 222 2 2 2 2 2 2 2

33

444444444444.4 4.4 4 4 4 44 4 4 4 4 4 4 4 4 4 4444444444

5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55

111111&1111&11 •• 11111&&&&111.1&&&11&111&1 •• 1&&&&&&&.&&&&11111111&1111111&&111111

1111171171117111711171

1111.1111 •••• 1111 ••• 111 ••• 1.111 •• 1.1118.1111111.111.11.1111.11111111111111111111

'9'SI9I'9999919'9S!'999999!!"!9'99'9!9'99'9'999'91991!9'9999199999S191SS'999999
1 2 3 4 5 I I I ! 11 11 11 1] 14 15 /I 11 11 IS 20 21 n 23 24 2571 21 71 71 3. 31 37 3] 34 J5 J& 31 31 It 4' 41 424344 4541 41 41 4t 51 51 52535455 51 51 5' 511111 U 5] 14 &5 U 17 JeW 7314 15 " JJ)1 11 It

rftfNTIO IN U&A. UNIVAO t '·'i'M' •

IV-F-5

3.3 REPLACING JOBS

This sample deck replaces jobs 1, 3, 4, and 5 and yields a new tape with a
new format~ The input tape is written in single channel, medium density,
odd parity, and bioctal character coding. The output tape is written in
single channel, low density, odd parity, and octal character coding. The input
tape is on transport 2; the output tape is on transport 3.

'/.

_ .-.£N·L _ _ _ _ _ _ _ _ _ _
_ _ _ lljP'JI. ('.sED:::;....!O ,,&£PL.aJ::E...JOB5...0N raPE _ ,Z- _EN . .,L _ _ _ _ _ _ _ _ __

, I _ _ _ J.ljPf.tL c.as.nu-o .E£:F'L£ll:E ..JDf.:4-Ll!·{ !aPE_

'ir- ---E:N·L - -- --- - - - --,/ _ _ _ ...lliPfJ.I. 1d1F~DL.TO RE:PL.a,cE ~!:3..Jlr'1 T.apE _ _ _ /c:::. EN.I ,r :: -= ..lNPJ.[~RfiOCl.HPL~E ..JD:E:l_QJ'~ ISPE= = =
,~: TT ~:PF t1BS00512 LO~;0051:3 1, :3-5.
, 1 I I 4 I I 1 I • 11 11 11 11 I. 11 II IJ II " II II ft n I. n II 21 II 21 • II 12 n M " • II • " •• , Q U n II 12 53 M 51 • 51 • H • II a a .. 15 • 11 •• II 11 n 1J 1. 11 n n 11 11 •

11

222 2 2 2 2 2 2 2 2 2 2 2 2 2 222 222 2 2 2 2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 2 2 2 2 2 2 2 2 2 2 2 2 222 22 2 2 Z 2 Z 222 22 2 2 2 2 2 2

333333333333313133

44

55

&&&&&&&&&1&&&&&1&1111&&&&&&&1&1&&&&1&1&&111&111111&16&&&&&&1&&1&1&11111&1&1&6&&6

17777717777177777777777777777117771771171171777177711711717771777717777717777771

11111111111111111111118181111111111111111111111111118181811111111111111111111111

IS91191111191111119999999911"11111111111111111111199!11!III!III!IIIII!119999999
, , 3 , I I I ! I ,. II 1l 11 14 U 11 Il 11 11 If II II II 14 21 lS II II " 31 31 II U " IS " 31 31 3t ... , n II 44 U .. 41 U 41 5111 52 53 ~ 51 51 51 II II H II 12 11 14 IS " " II " I: II 13 14 1, 16 11 11 79 ..

P'fItINTIO IN U,S.A. UNIVAC; I f~i"i' •

rV-F-6

3.4 INSERTING JOBS

In the example below, the input cards become the new job 6 on the output
tape. The inserted job is resequenced as each new deck name is encountered
since there is no deck 1.0. specified in columns 10-11. When inserting a
job, CART always inserts the input cards ahead of the job number specified.

_ Jti,"",l~ ____ ~ _____ .-. ~ -.-.. _ ~ ___ -.-..
1 _ __ Ff'£JE@!EtyD .. l!PT..]EcLNA!1E.S J:!!Ll~.JiOLB~H.8!iGr.Q: __ _

/.1 _ __ J.!:!Et~~S~ ~ It!1rRKD~E:@..0L-'(!!:§·lQ.B6.J:!ILLBL _
I/--TT ADD R MODOOS11 MOD00514 6.

121.I'J ••• "nqMft." •• ~nDBMBana.anaa.aana •• ftua~ •• u ••• ~a.Ma.~ ••• ~.a ••• p ••• nnnMftNnNN.
11

22

11333333111333331333313333333333333333333113133331311333333131333333313333333331

44

55555555555555555555555555555555155555511115555155551555555151555555555555555555

I II I I I I I III I II I II I II I I I I 11,11 III I III II 1111.1 I 11111 111111111 II I I I • I • I I & & I & I I I I I I & I

11111771117111111111111711111111111111111111111111111111711111111711177171171111

1111111111111111.111I11111

I I I 1 1 I I I \1 I I I I I I I I I I I I I • I I II I I I I • 1 I I I I I 1 I I • I 1 I I I I • II •• I It' I I • I • I I I • I I I I 1 I I I I I 9 9 I 9
I 2 3 • 5 , 1 I , \I II 12 n I. II " \1 \I \I 2t !I U II 2. n JI 21 2t •• 31 II D M • a naB •• 1 a a .. a ... 1 51 a II If a • 11 II •• II 12 II .. IS II 11 II • .,,, "13 1. n l')J 11 11 n

", .. Tao IN U •• .A. "N.YAC i p .. i'MMla

3.5 DELETING JOBS

The sample CTT card below directs CART to delete jobs 5, 1, 10, and 12.
The new tape is on transport 3.

CTr DEf LOSOOS14 LOS00513 S,7-1~.
12J.I'J"."UqMft."~ •• nnDMBan •• anaaMn.naa.fta.M •• U ••• ~ •• Ma • .,a •• n ••••• n ••• nnnMftNn •••
11

22

1333333333333333333333333333333333333333 3 3 3 3 1 3 3 3 3 II 1 33 1 I 1 33 3 3 3 1 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

44

55

I I • II

111111111111111111111111111111 7 111

111,11,11111"11,,,1,11111111,11,1.1,,1,11,,111 •• 1., •• ,1111.,11 •• ,1".1.1,,111,1

JIII11111111119119911'19"'199
I 2 3 • 5 I 1 I , 11 " Il Il I. 15 11 11 \I " B 21 n n ,. n fI n H H • II II n M n a J1 U .1 ... M U ... 1 111/ If 51 .. 55 II IJ II H .. II n Sl It 15 II 11 H ... " 12 1] 14 15 15 11 71 1! II

...... TaD ''-' U..... ".IVAII i ' .. '18MM •

IV-F-7

CTT

3.6 PUNCHING JOBS

The sample CTT card below directs CART to punch cards for job 5. The new
card deck is re~equenced beginning with a deck 1.0. of CARDOOOI. Resequencing
is done in conjunction with other card-to-tape functions. A new CTT card is
required for each job unless an old sequence number contained on tape is to be
used. The new sequence number is entered in columns 70-77 of the CTT card.

PUN R LOS00513 c; ._' .
1 2 J 4 I I 1 I I II II IJ IS 14 11 11 IJ 11 11 11 11 JJ 23 24 15 11 J1 11 11 II 11 J2 II S4 S5 31 JJ II 3t 41 41 4J 41 " U 41 41 41 " 1111 12 IS 54 II II II 51 II II .. a a 14 a II II II II 11 II 12 n l' IS 11 " I. II II

11

22

33

44

55

&&&&&&6&&&&&&&&&6&6&&&&&&&&&66&666&66&6666&6&6666666&666&&&&&&66&6&6&&666&&6&666

11 1 1 1 7 7 7 7 7 1 1 7 1 1 7 7 7 7 7 1 1 1 1 1 1,1 1 7 1 1 1 1 1 1 1 1 1 11 11 11 1 1 11 1 1 1 1 1 1 1 1 1

11888888888888811111188888888888888881181118881811811181811118811111188888888888

99999999999999999999999999999999999999919999999199999999999999999999999999999999
I 2 1 , 5 & 1 I ! 10 11 11 13 14 IS 11 11 I. l' 2. 21 21 23 24 15 2& 21 2. 2' 38 31 31 33 S4 35 3& 37 31 31 41 41 4J U « 4S " 47 41 U 51 51 52 53 54 55 5& 51 51 SI II 11 &2 53 " 55 " 6J ,It,,..,. '71 '1 11 'j J, 11 '1 19 33

~ftINTED IN U.S.A. U c:

3.7 LISTING JOBS

The sample CTT card below directs CART to list jobs It 3. and 5.

CTT i..ST
1 2 J 4 5 I 1 I I 11 II IJ IS 14 11 11 11 11 II 11 21 JJ 23 24 n 11 J1 11 n II 11 J2 II S4 S5 sa SJ II sa 41 " 4J 41 " 41 • 41 41 " II 51 12 IS 54 II II 51 II II II 11 a a 14 a II IJ II II II II 12 11 14 15 II " II I. II

1111111111111111111111 1 111

22

33

44

55

6666666&6&6&&&&6&&6&666666&&&6&666&&&&&&&6&&&&&&&&&&&&&&&&&&&&&&6&&&&&66&6&66666

111111111711

18888881118111811118118888181111811811811111181111888888188888818188811888888188

99999999999999999999999999999991199999911191119999999999999999999999999999999999
1 I 1 , 5 & II! 10 11 12 13 14 15 " 17 11 It 21 21 222324 25 2& 21 21 2' 3131 32 33 34 35 31 31 31 3141 41 4J U 44 45 41 47 " " n 51 525354 55 51 57 5. 5. II 11 52 n" IS " un .. ,. .. 12 73 14 II 1& 11)1 11 II

~RINTED IN V,S.A. I P·ii'" .

IV-F-B

'CTT

3.8 WITHDRAWING JOBS

This operation gives the user the capability to build a library by extracting
only those specified jobs from previously written tape and placing them on a
new tape. A CTT card is required each time a different input tape is refer­
enced.

The sample CTT card below directs CART to write jobs 5, 6, and 2 on the
output tape, in that order. The L in column 11 directs the printer to list the
jobs that are being withdrawn.

l~DR L M8S00513
111.1"' •• "nnN •• " •• _~DDRB_D_B.n •• M._p __ .d.aM •• d ••• fl •• M •• A ••••••••• N ••• nnaN •• n" ••
111'111111111111

J 21 2 2 2 2 2 2 2 2 2 22 2 222222222222222

IIll3313133333333333313333333333331331131333333333333333333331333333333333333311

44

55,5551555555555

" •• "1,111,1",,1,11,1111,,,11111111,1111,1,111111,,111111111111111111111111111

71171711171117111111711111117111111711111111111111777711117117177777711171111111

",1111",1"1"""1111111"""1",1""",,,,,, •••• ".",1.", •• ,.""",.""
111111'111II1111111111111111I11111I1
I 2 1 , 5 I 1 • t II \I 11 U " It II 11 I. II " 71 Z2 n !. 25 • 21 B n _ II U Ii M •• Jl •••• , 42 Q M , 51 1111 Ie •• 51 ••• II " Ii It •• " ... JII .. n lJ l' 7S 71 71 71 " •

.... TKO IN u..... "MWA8 • ,.iiMii ,

IV-F:-9

3.9 CORRECTING JOBS

The correct option gives the user the capability to update current library tnpes
by deleting, inserting, Rnrt replacing cards.

A listing accompanies the correction operations. It consists of the corrected
statements and the statement that follows any correction. When a delete is
performed, the first statement that is deleted, DELETE, and the first statement
after the deleted statements are printed. When a replace is performed, the new
statement and the following statement are printed. When an insert is performed,
the inserted cards and one statement after the new cards are printed.

The CTT card must include either the ALL or the OLY operator. ALL directs the
CART program to copy all jobs from an input tape while correcting the jobs
specified in the job number field of the CTT card. OLY directs the program to
copy only the jobs that it is correcting.

Corrections are made to a job according to the deck 1.0. specified on each
correction card. These cards must be in the same order as they are on the
tape. An ENJ card must follow the correction cards for each job. Correction
cards for insertion or replacement are simply the new source language cards.
The new source cards replace incorrect cards and insert new cards according to
the deck 1.0. in columns 1-10. Spaces are not equated with zeros by CART.
Thus, the user must be certain that the deck 1.0. on bis correction card has
spaces and zerQs that exactly correspond to those on his original card and
written on the tape •. The correction card for deleting cards must include DEL
in columns 7-9, the deck 1.0. of the first card to be deleted in columns 13-22,
left justified and the number of cards to be deleted in columns 25-27. right
justified. If a deck name appears in two or more separate segments of a job,
any corrections are made to the segment that appears first, unless a correction
card(s) for a segment with a different deck name separates the correction
cards for the segments with identical deck names. Two examples of the organi­
zation for correction card decks are shown below.

1) ALL operator.

The sample correction deck on the top of page IV-F-ll directs CART to:

a) Correct job I with a replacement and an insert.

b) Copy job.

c) Correct job 3 by deleting the card with a deck 1.0. of TESTO008
and the following 3 cards.

d) Copy the rest of the input tape.

IV-F-IO

EN . ..,f
DEL-TE~:T0008 4
ENJ- - - - -

rffioOO6s - TH I S CA~~n LITrL '"""BE INSERTED E:ETt.l£'Eti T~;TO~]06 AriD TES:TOOO?
-~ -.-.. - - -. --- --.- - -- -.-
~EST0003 THIS CARD WILL ~EPLACE A CARD WITH ~~E 2~ME DECK ID.
cff ALL- LOSOO5t8 -LO~l5ij5141,r- - - -
1 I I • I I J I I 11 " 12 n 14 II 1. IJ 1. It JI 21 n U M 21 ,. JJ ,. " JI II U IS It 15 • U, U Q .. U .. 41 M 51 51 51 W 55 II 51 II II • II 12 U II •• II J1 n 11 14 1$ It 'J I. " •

11

222222222222222222222~2222222222222222222%222222222222 2222222222222222222i222222

JJ33333333333333333333333~333l333333333333333333l3333333333333333333333333333333

44

55

111&11111111111&&&&&&&&&&&&&1&&&&&&&11&&1&&1&&&&&1&&&&&&&&&11&&&&&&&1&&&&&&&&&&&

11111111111111111111171117717111177711111111117171171111111777717117711117771111

•• """"1,,111,,,11,88811111118,,8,1111118188888888888888188888181118881118888

1199111199991111991991919919191111119911199999999999999919999!999111999999999999
1 2 3 4 5 I I • filII 1/ 11 14 15 II 11 II I! 2171 77 23 14 25 Ii 27 21 n • II J2 13 3. 35 31 37 31 3 •••• , 4! 43 44 45 4& 41 41 ., 5151 51 53 54 55 51 5) SIS. II II II n U Ii II 51 .. '" ,11 11)3 J4)\ " 11 /, 1! "

~tNTIIO IN u....... UNIVAC i f·*"I' I

2) OLY operator.

This sample correction deck directs CART to correct job 4 with a
replacement and correct job 5 by deleting 3 cards and inserting 1 card.
Only jobs 4 and 5 are written on the output tape.

-- -Ii E 1:- ~:~~.) Ci\:~ tl • --

22

3313

44'4

55

111111111111111111115&&1&111&&&&&1&&&&&&&&&&&1&&&11&6&&6&&&&&IIIIIIIII&&&&EI&&I&

11171171171717117171711717171717117171771177711177 7 71717 7 7 717 7 717 717 777117171777

•• ",1", LIII I 8 III • I 8 8 8 II I 8 II III 8 • 8 I 8 I 8 I • 8 8 8 8 8 8 B 8 I 111I • I • 8 •• II 8 III 1111I111 8 III 8 8

111111911999919199999991999999999199999999999999999999999!!19!99!9911'!9!1!9!11!
1 2] 4 5 I) • ! II " 11 '.l 11 1\ IS)) II " '171 7! 13 " 25 2S 11 It l! 38 JI 37 II 343535 3) 31 3' 41" .,.3 It 45414) U " ~I ~I 515] 54 551& 5/ 51 !! II II II 13 54 IS "" 51'· 1: Il)3" 15 II)J 11)! ..

·"INTI:D ,,.. U.S.A. UNIVAC it-2'idll

IV-F-ll

CHANGE 1

4. OPERATING PROCEDURES

The procedures below assume that all equipment to be used has been placed in
the operational state with all switches in the normal operating position. The
CART program must be loaded into memory starting at address 01000. The proce­
dures required to operate the CART program are given below.

1) Master clear the computer.

2) Mount tapes as follows (all tapes must be at load point):

a) Card-to-taping single or consecutive jobs.
Mount a scratch tape on the transport selected as the From tape on
the CTT card and set the write enable button.

b) LST and PUN operations.
Mount the input tape on the transport selected as the From tape on
the CTT card.

c) Other operations.
Mount the input tape on the specified From tape transport and a
scratch tape on the tape transport selected as the To tape on the
CTT card and set the write enable button.

3) Place the input card deck in the card reader input hopper.

4) Place two blank cards at the end of the input card deck and initialize
the card reader.

5) Set the P register to 01000.

6) Start the computer. The CART program provides informative typeouts on
the on-line typewriter while performing the requested operations. Error
conditions are also indicated by typeouts. Observe the typeouts as they
occur and refer to paragraph 5.

The CART program continuously performs the operations specified on CTT cards.
In order to stop the program, the user must place an end card (in addition to
any that are necessary for an option) in the input card deck. The CART pro­
gram resumes operation upon restarting the computer. When the CART program is
stopped in order for the user to change tapes or change the address of tape
units, he must reinitialize the program. This is done by rewinding all user
tapes, setting P = 01000, and starting the computer.

When CART writes on a tape, the tape is positioned before the end of job sen­
tinel upon completion of an operation. This position gives the user the
capability to merge tapes by using the WOR operator.

IV-F-12

CHANGE 1

NOTE: If the punch is used for output, perform the procedure necessary to
remove the last card punched from the punch.

5. INFORMATIVE AND ERROR TYPEOUTS

1) SET SINGLE DUAL SWITCH TO --- FOR CHANNEL ---.

fhis typeout always occurs to remind the user of the mode and channel of
the tape unit that he has specified on the CTT card.

2) END OF INPUT TAPE.
This typeout indicates that the CART program has detected an end of
tape sentinel block.

3) Typeouts will indicate the operation that is currently being performed
and the job numbers as the jobs are being processed.

a) CORRECT AND COpy ONLY.
CORRECT JOB NUMBER.
IN (j ob number)
IN

b) CORRECT AND COpy ALL.
CORRECT JOB NUMBER.
IN
IN

c) REPLACE JOB NUMBER.
IN
IN

d) ADD JOB NUMBER.
In card-to-taping jobs, no job numbers are typed out. In inserting
jobs, the job numbers are typed for the jobs from the input tape
that are placed before the new jobs.

e) DELETE JOB NUMBER.
IN
IN

f) LIST JOB NUMBEli.
IN
IN

g) WITHDRAW JOB NUMBER.
IN
IN

h) PUNCH JOB NUMBER.
IN
IN

IV -F -13

CHANGE 1

4) ILLEGAL OPERATOR.

The operation code is either incorrect or not placed in the proper
columns of the CTT card. When the condition is corrected, start the
computer.

5) ILLEGAL JOB NUMBER.

A job number is greater than two digits, job numbers are not properly
separated by punctuation, or the first job number does not begin in
column 34 of the CTT card.

6) ILLEGAL TAPE FORMAT.

The components of the From and/or the To tape format(s) are improperly
represented by the letter codes or the letter codes are placed incorrectly
in the columns of the CTT card.

7) INCORRECT CTT CARD.

This typeout occurs after ILLEGAL JOB NUMBER, ILLEGAL OPERATOR, and
ILLEGAL TAPE FORMAT. It also occurs when the job number field
of a CTT card is not terminated by a period or when any information on
a CTT card is placed in an incorrect column. When the condition is
corrected, initialize the card reader and start the computer.

8) BAD INPUT TAPE.
NO RECOVERY.

This typeout indicates that the input tape is in error, and a new
input tape is required. If any manual manipulation of tape units is
necessary, the CART program must be reinitiated. Otherwise, restart
the computer.

9) MTU ERROR.
IMPROPER CONDITION.

Correct an improper conOltlOn on the tape transports that are designated
in the From and To tape fields on the CTT card. If the position of
any tapes being used is changed manually, the CART program must be
reinitiated. Otherwise, restart the computer.

10) MID ERROR.
INPUT TIMING ERROR.
NO RECOVERY.

The requirements for correction of this condition are the same as
specified for BAD INPUT TAPE.

11) MTU ERROR.
OUTPUT TIMING ERROR.
NO RECOVERY.

This typeout indicates a problem within CART or incorrect hardware
operation. The input tape is not in error.

IV -F -14

V. PROGRAMMER SERVICE SUBROUTINES

Programmer service subroutines are those subroutines which the programmer
assembles with his routine to perform a subordinate function. These sub­
routines exist in source assembler language for easy integration into user's
programs.

Programmer service subroutines include mathematical subroutines, conversion
subroutines, and assembler support subroutines.

V-I

SECTION V-A. MATHEMATICAL SUBROUTINES

1. FIXED POINT ~UARE ROOT (SQR)

GENERAL DESCRlPTION: The fixed point square root subroutine computes the
square root of a positive number, N, where N may be zero or
.0000018 ~ N ~ 1777778.

The input N is reduced or raised to a number X·2f where 2 ~ X < 4.
Within these limits, the subtraction of the hyperbola C/X+D from the straight
line A(X+D)+B yields a very close approximation to the curve Y = ./'Y/./'l.
Therefore ~ is computed:

IN ': I = Y = ../2 (2)f/2 where

Y = A(X+D)+B-C/(X+D)

If the shifting to reduce or raise N to X was odd. then

I = Y (2)f/2 = Y ../2 (2) (f-l)/2

If the shifting was even, then I = Y 42 (2)f/2

One pass through Newton's formula, ~ = 1/2 [(N/I) + I] ,yields ~
accurate from 13 t~ 16 binary bits.

MEMORY USED: 1508

APPROXIMATE RUN TIME: 220-290 microseconds.

INPUT PARAMETERS: Positive number (N) scaled 218 in A (integral bits in AU,
fractional bits in AL). The first 16 Significant bits only
are used.

OUTPUT PARAMETERS: ~scaled 218 in A. There are 16 significant bits maximum.

CONsrANrS USED: A = 0.104327 = 0653258 scaled 218

B = 1.19815 = 0462568 scaled 214

C = 3.38816 = 1543308 scaled 214

D = 2.82785 = 1323748 scaled 214

,j2 = 1324058 scaled 215

2. FIXED POINT SINE AND COSINE (SIM:;OS)

GENERAL DESCRIPTION: This subroutine computes sine and cosine of an angle X
in BAMS (binary angular measurement). where 00 ~ X <3600 • The first three
significant bits are stored to determine the quadrant that X lies in. The
remainder of X, which is less than 450 , is further divided. The first seven
bits are stored in an index register for referencing a SINE table and a

V-A-l

COSINE table, each 2008 long with function values for the range 00 _45°; the
last seven bits are converted to radians, and since they represent an angular
measurement of only' 00 -0°20'56", the SINE of this small angle (SIN B) equals
the angle in radians (SIN 8=B); the COSINE may be represented by the formula:
COS B = 1 - B2/2.

Substituting in the formulas:

SIN(A+B) = SIN A COS B + SIN B COS A
COS{A+B) = COS A COS B - SIN A SIN B

We obtain:

SIN{A+B) = SIN A(l-B2/2) + B COS A
COS(A+B) = COS A{1-S2/2) - B SIN A

Where SIN A and COS A are obtained by table-lookup. The original three
significant bits are referenced for the correct quadrant, and the sine and
cosine values just computed are or are not interchanged, and they are or are
not complemented (negated), accordingly, for SIN X and COS X.

MEMORY USED: 5458 (4008 Table)

APPROXIMATE RUN TIME: 251-349 microseconds.

INPUT PARAMETERS: An angle (X) in BAMS scaled 217 , less than 3600 in AU.

OUTPUT PARAMETERS: SIN X in AU,COS X in AL, both scaled 216.

REMARKS: Tested accuracy over 3600 range = ±.OOO0148 (14-bit accuracy)

3. FIXED POINT ARCTANGENT (RTAN)

GENERAL DESCRIPTION: This subroutine computes the angle a whose tangent is
Y over X, where QO~ a < 3600. Y and X are made absolute and the smaller of
[Yix] -- [xtYJ (=Z=TAN9) is computed. The most significant six bits of

this tangent value (=A) are stored in an index register for referencing an
angle table which is expressed in BAMS (binary angular measurement) in 64
non-linear increments of 54 to 27 minutes from 0° to 45°. The absolute angle
e is then computed using the formula:

e = TAN _1 A + 1/2 ~ (i~~z)

If Y was greater than X, then:

a = 900 - e for first quadrant
a = 90° + 9 for second quadrant
a = 270° - 9 for third quadrant
a = 270° + e for fourth quadrant

V-A-2

If X was greater than or equal to Y, then:

a = 9 for 'first quadrant
a = lSOo - 9 for second quadrant
a = lSOo + 9 for third quadrant
a = 3600 - 9 for fourth quadrant

The original sign values of Y and X determine the quadrant.

MEMORY USED: 226S

APPROXIMATE RUN TIME: 235 microseconds, average.

INPUT PARAMETERS: Y in AU, X in AL, both to the same scale, positive or
negative.

OUTPUT PARAMETERS: An angle (a) in BAMS scaled 217 in AL.

REMARKS: Tested accuracy over all quadrants is to +10", -20".

4. FIXED POIN! ARCSINE (ARCSIN)

GENERAL DESCRIPTION: This subroutine converts the sine of an angle into its
corresponding angle in the range -900 to 900 • The input (IS-bit word) is the
sine of the angle expressed in octal digits and scaled 216 The output (18-
bit word) gives the corresponding angle in BAMS and is scaled 21S

METHOD: The approach taken here utilizes the results (decimal digits) ob­
tained by Kogbetliantz [1, 2] :

(1) Arcsin X = ± I X I {AO + __ a_1 ___ +
bl - IXI2

__ a_2_~_} for 0:S IXI~1/ 2
b2- IXI2

(2)

where: A~ = 0.5249978317

al = 0.09425018578

a2 = 1.484093006

bl = 1.270451499

b2 = 3.702672882

Arcsin X = ~ { : + 1/2 arcsin (2 IXI 2 -I)} for * !f X !f sin (31T)

8
where arcsin (2 IXI 2 -1) is then evaluated by using equation (1) above.

since 0 ~ 2 IXI 2 -1~ 1 •
:J2

(3) Arcsin X = 2" {~ -2 (12.73421816 - I X I) • 2-hR
2

}

for sin (31T) ~ Ixl ~ 1 where hand R2 are defined by
8

V-A-3

(3a) E2. (1 - IXI 2)/2 = 2-2h f . h 25 < f < 1 h > 5 • WIt • _ ,_

(3b) R2 = 1/2 (Rl + f/Rl) and Rl = Cl (C2 + f -~)

f + C4

where C
1

= .33431261

C2 =2.76913454

C
3

=1.19031245

C = .53164106
4

E = 0.0852176716

NOT E : In e qua t ion s (1) , (2) , and (3) , the s i g n i s + if 0 ~ X ~ 1
- if -1 ~ X ~ 0

INPUT PARAMETER: The sine of an angle in octal digits scaled 2l6 is entered in
AL.

OUTPUT PARAMETER: The corresponding angle in BAMS scaled 218 in AU. If the
computer stops with 377777 in AU, this indicates that the
inp~t sine is greater than 200000 (1 scaled 216) or less
than -200000 (-1 scaled 216) and is therefore illegal.

COUPLING PROCEDURE:

-+ ENTAL· [octal value of the sine scaled 216]

-+ IRJP • ARCSIN

-+ [abnormal exi t]

-+ [make use of the output value; that is, arcsine, in BAMS scaled 218 in AU]

COMPUTATION TIME:

for 0 ~ IARCSIN X I < ""/4,

for Tr/4 ~ IARCSIN XI < 3 Tr/8,

for 3 Tr/8 !S I ARCSIN X I!STr/2.

MEMORY USED: 2068

208 1/3 - 244 1/3 microseconds

249 2/3 - 297 2/3 microseconds

301 2/3 - 348 1/3 microseconds

ACCURACY: The absolute error is less than or equal to .0000048 BAMS. This
corresponds to an accuracy of five octal digits.

REMARKS: To use this subroutine as an independent program, change the in­
structions at addresses "ARCSIN" and "FIRST-I" to "STOP" and
"JP • ARCSIN" , respectively.

V-A-4

REFERENCES:

1) A. Ralston and H. S. Wi1f, Mathematical Methods for Digital Computers,
John Wiley and Sons, Inc., New York, 1960, pp. 31-33.

2) E.G. Kogbet1iantz, Computation of Arcsine N for 0 < N < 1 Using an
Electronic Computer, I.B.M. Research and Devel., Vol. 2, No.3, July, 1958,
pp. 218-222.

5. FIXED POINT NATURAL LOGARITHM (NATLOG)

GENERAL DESCRIPTION: This subroutine computes the natural logarithm of any
number N where 3777778 x 2-0377578 ~N ~ 3777778 x 2°377578. The number N
should be expressed in the input format (1) N = N1 x 2N2 = N1 x 2- S
Where 1 ~ N1 ~ 3777778 and S = scaling factor of N = -N2

Both N1 and S should be given in octal notation. N1 is entered in AU and S
is entereg in AL. The output In N appears in A in octal notation and is
scaled 24! 10.

METHOD: Using Maehly's method [1] in the reduced range 2- 1/2 < F* < 21/2
where N = 2M • F, 1 < F < 2 and F* = F I$. six correct significant places may
be obtained with the following approximation:

In N = loge N ~ (M+l/2) In 2 + Q3(F).

Here (~i) Q3(F) = P + f -Pk I
o k=1 I F+Tk

with the coefficients:

Po = 3.68165660310
PI = 34.41069291010

P2 = 8.12650383410
P
3

= 0.266519566610
Tl = 10.37967214010
T2 = 2.05121281310
T3 = 0.424995249710

INPUT PARAMETER: With N expressed in the proper input format.
N2 2- S

N = Nl • 2 = Nl •
where 1 ~ Nl ~ 3777778
and S = sea 1 i ng factor of N = -N2

(N} and S are in octal notation), Nl is entered in AU and S in AL.

V-A-5

Thus consider the number:

-9 N = 100.1468 = 1001468 x 2

Input format of N: N = 1001468 x 2- 118

Nl = 1001468 is entered in AU and S = -N2 = 118 is entered in AL.

An equally valid input format for N = 100.1468 is N = 200314
8

• 2- 128, with

Nl = 2003148 and S = 128

OUTPUT PARAMETER: The natural logarithm of N is given in A in octal notation
and scaled 22010.

EXECUTION SEQUENCE:

--+ ENTAU • [octal value of Nl]

--+ ENTAL • [octal value of scaling s]
--+ IRJP • NATLOG'

--+ [use output value found in A]
RESTRICTIONS: The starting address of this subroutine, which corresponds to

the label "NATLOG", must be even-numbered.

MEMORY USED: 768

COMPUTATION TIME: 232 2/3 - 243 2/3 microseconds.

ACCURACY: In various trial runs the absolute errors obtained were less than
4 x 2-14. This assures at least five correct places in the output
value scaled 220.

REMARKS: To use this subroutine as an independent program, change the instruc­
tions at addresses NATLOG and EXIT to STOP and JP NATLOG, respectively

REFERENCE: A.Ralston and H.S. Wilf, Mathematical Methods for Digital Computers,
John Wiley & Sons, Inc., New York, 1962, pp. 28-30.

6. FIXED POINT EXPONENTIAL (EXPON)

GENERAL DE~RIPTION: This subroutine computes eN for -37.77778~N~37.77778.
The input (18-bit word) is the octal value of N scaled 212 in AL. The output
consists of the six most significant octal digits of eN in At and its
scaling in AU.

METHOD: A rational approximation to eN adapted for use on computers [1] is
capaDLe of attaining high accuracy in a relatively short time. The range of
N is reduced by multiplying the binary representation of N by l092e.

V-A-6

Denoting the integral part of the product by M and the fractional part by F,
we have

(1) eN -_ e(M+F)/log~e = 2M • eF• ln2 • where 0 < F < 1

Further reduction of the range (0, ln2) of F • ln2 leads to

(2) eN = 2M - 2A(K) • ePK_ln2 = 2M • 2A(K) • e2 whereP = F - A(K)
K

K-l
A(K) = L Si/2 i +l

i=O

Si = sign of P K' So = 1 since Po = F >0

Z = PK • In2

Finally, eZ is approximated by the rational function Pm(Z)/Pm(_Z)

M •
where (2m)! Pm(Z) = M! ~ (2m-j)! ZJ/ [.i! (m-j)!]

, j=O

The degree of accuracy of the approximations varies wi th K and M. Th'lr" for
K = 2, m = 2, the theory predicts an accuracy of six places.

For K = 2, m = 2, the rational approximation becomes

(3) eN ~ 2M [2A(2) + Ai· P]
(P- 2) P+A3

where P = P
2

= F - A(2)

i 1/4 if 0 < F < 1/2
A(2)

3/4 if 1/2 ~ F ~ 1

{

20.58795 8446910 if 0 < F < 1/2

Al 29.11577 0055710 if 1/2 ~ F ~ 1

A2 = 8.65617 0234010

A3 = 24.97642 7712010
12

INPUT PARAMETER: The octal representation of N, scaled 2 , is entered in AL.

OUTPUT PARAMETER: The six most significant octal digits of eN appear in AL
and its scaling factor appears in AU. Thus

AU =
17

8 } means eN = 104102
9

x 2- 15 = 1.041028
AL = 1041028

V-A-7

and AU = -14 }

AL = 125~628 means eN = 1250628 x 212 = 1250620000
8

COUPLING SEQUENCE:

--. ENTAL. [octal value of N, scaled 12]

--. IRJP • EXPON

--. [Make use of output value in A]

MEMORY USED: 728 (508 instructions and 228 constants)

COMPUTATION TIME: 192 2/3 - 228 2/3 microseconds

ACCURACY: The absolute error is less than three bits. This corresponds to an
accuracy of five significant octal places.

REMARKS: To use this subroutine as an independent program, change the instruc­
tions at add'resses EXPON and EXIT to srop and JP EXPON, respecti vely.

REFERENCE: A. Ralston and H. S. Wilf, Mathematical Methods for Digital
Computers, John Wiley and Sons, Inc. New York, 1960, pp. 19-22.

7. FLOATING POINT ARITHMETIC PACKAGE

GENERAL DESCRIPTION: This program provides the basic floating point arithmetic
operations for addition, multiplication and division. This package is normally
used where floating capability and compact data structure are desired and where
medium speed arithmetic operations are tolerable.

NUMBER REPRESENTATION: The floating point format utilized is described below
with each operand occupying 36 bits or two computer words.

The floating point word structure is as follows:

~.~--------------- 36 bits

I s I c

where S (1 bit) indicates the sign
C (8 bits) is the biased characteristic
M (27 bits) is the mantissa.

M

The number notation used is ones complement (that is, to obtain the algebraic
complement of a floating point value, all 36 bits are complemented rather than
the sign bit, S, alone.

PAR~~ETER RANGE: A floating point nlliTaber N must satisfy one of the
following conditions:

a) N = °

V-A-8

If N = 0, then S = C = M = O. If N # Ot then N is represented by the expression
M·2x, where (by definition) 1/2 ~M ~ 1 and X = C-128. The binary point for
M is assumed between C and M;therefore, given any N 1 Ot the most significant
bit of M must contain a one; this condition is referred to as N being normalized
(or M containing the maximum number of significant bits). The characteristic,
C, represents the true binary characteristic of the number N biased by
128 (X+128).

OPERATIONS AVAILABLE:

Operation Algorithm Execution Time (12l9)

ADD (A) + (B) --+A 220-235 microseconds

MULTIPLY (A) • (B) --+A 310-315 microseconds

DIVIDE (A) • (B}--+A 272-321 microseconds

INPUT PARAMETERS: Two normalized floating point input parameters arp. required
for each operation, operand A and operand B.

A. Operand A is located in the A (AU, AL) regifter, with
the most significant half in AU.

B. Operand B is stored in memory with its address in the
currently selected (ICR) B register. The least sig­
nificant half of operand B is stored in address (B)
with the most significant half in (B) +1.

OUTPUT PARAMETER: One output parameter is computed for each operation. The
normalized floating point Result is located in the A
register.

STORAGE REQUIRED: This package occupies a total of 3248 cells, including
temporary storage.

ERRORS: An error occurs:

1) When division by zero or an unnormalized number is attempted.

2} When a characteristic overflow occurs denoting a l"es~29 where INI ~ 21~
(If characteristic underflow occursJ that is, INI < 2- no error will
occur and the result will be +0.

ALGEBRAIC FORMULAS: The following formulas are used to maintain 1 1/2
precision (27 bits) required by the 1-8-27 floating point
format:

A = A + A 2 1

V-A-9

B = B + B
2 1

A· B ~ A2B2

PROGRAMMING CONSIDERATIONS:

+ A2Bl + B2Al

[1--:;-]

In order to execute a floating point operation, the programmer must perform
must perform the following steps:

1) Select a B register and load it with the address of the B operand

2) Load the A register with the A operand

3) Perform a direct or indirect return jump to the add (FADD), multiply
(FMUL), or divide (FDIV) routine. The return jump instruction must be
followed by an error exit and a normal exit in that order.

Upon completion of a normal operation, control is transferred to the return
jump instruction +2 with the normalized packaged result in the A register.
The original contents of SR, ICR and BO-B7 remain unaltered. An error exit
will restore control to the return jump instruction +1.

REMARKS: The floating point package is structured so that the entrance cell
for add is the first cell of the package; mUltiply entrance
address is ADO +66; and divide entrance address is ADD +147 (octal).

This package does not provide subtract. However, the programmer
obviously need only complement the appropriate operand and perform
an add.

The package can be located anywhere in core as long as it is con­
tained wholly within one bank, and the base address is at an even
core location.

8. FLOATING POINT TO FIXED POINT CONVERSION

GENERAL DESCRIPTION: This subroutine converts a floating point number to a
scaled, fixed pOint number.

INPUT: Floating point number in register At wi th the most significant half
in AU and the least significant half in AL.

OUTPUT: Fixed point number in At its scaling in the current B register.
A scaling of zero means the binary pOint is at the right end of
register A. A positive scaling indicates that the point is to the
left and a negative scaling that the point is to the right.

V-A-IO

METHOD: The 9 bits of the characteristic are masked off and the 27 bit mantissa
retained as the fixed point number. The characteristic is used to evaluate
the scaling.

CALLING SEQUENCE:

Address Mnemonic Operand

L ENTAL (N least)

L+l ENATU (N most)

L+2 IRJP (FLTFIX)

L+3 () (Return)

RESTRICTIONS: Must be wholly contained wi thin one bank.

9. FIXED POINT TO FLOATING POINT CONVERSION

GENERAL DESCRIPTION: This subroutine converts a scaled fixed point number, N,
to a floating point. The scaling reference point is the right end of register
A; positive to the left and negative to the right.

INPUT: Fixed point number in register Ai scaling of number in current B
register.

OUTPUT: Floating pOint number in A; with the most significant half in AU
and the least significant half in AL.

CALLING SEQUENCE:

Address Mnemonic Operand

L ENTAL (N least)

L+l ENTAU (N most)

L+2 ENfBK (scaling)

L+3 IRJP (FIXFLT)

L+4 () (Return)

NOTE: If N = ± 0, the resultant floating point number will equal all O's.

RESTRICTIONS: All of the routine must be in one bank. The scaling S must
satisfy th~ inequality:

o ~ 243 - S - X ~ 377 (all octal)

where X is the number of shifts required to make the contents of
bit positions 34 and 35 unequal.

V-A-ll

10. FLOATING POINT COMPARE

GENERAL DESCRIPTION: This subroutine compares algebraically two floating point
numbers.

INPUT: Floating point number, A, in register A, with the most significant
half in AU and the least significant half in AL. The floating point
number, B, must be in core locations, Y, and Y + 1, with the most
significant half in Y + I and the least significant half in Y.
The current B register must contain the address, Y.

OUTPUT: The routine returns control to one of three locations depending on the
outcome of the compare.

CALLING SEQUENCE:

Address Mnemonic Operand

L IRJP • (CMAFLT)

L+l JPB LOK

L+2 (JP) (Return here if A >B

L+3 (JP) A=B

L-i04 (JP) A< B)

RESTRICTIONS: The routine must be entirely contained within the same bank.

11. FLOATING POINT SQUARE ROOT

GENERAL DESCRIPTION: This subroutine computes the square root of a normalized
floating point number, N. N = 0 or 0.14693679 .10-38 ~ N ~O .17014118.1039 •

METHOD: N is scaled so that N = X.2
S

, 2 ~ X < 4. Since the subtraction
of the hyperbola C/(X+D) from the straight line A(X+D) +B yields a good
approximation to rx I$. a close guess to the../N can be found:

A(X+D)+B-C/(C+D) ~ Y = rx / ~
../N E:: Y • 2 S/2 (S is odd)

../N E:: Y • ./2 . 2S/ 2 (S is even)

Letting I equal this guess, one pass through Newton's Formula,

./N~ 1/2(~ + I)
Y i e 1 d s the.IN to at 1 e a s t 26 bin a r y bit s •

INPUT: N must be in register A wi th the most significant half in AU and the
least significant half in AL.

OUTPUT: .IN in register A wi th the most significant half in AU and the least
significant half in AL.

V-A-12

CALLING SEQUENCE:
Address Mnemonic Tag

L ENfAU N most

L+I ENTAL N least

L+2 IRJP (FS}RT)

L+3 JPAUMi (ERROR CHECK)

RESTRICTIONS: Location FSQRT must be at an even core storage address. The
routine may be in any bank, but it must be entirely contained
within that bank. The routine assumes N is normalized.

12. FLOATING POINf TANGENT

GENERAL DESCRIPTION: This subroutine computes the tangent of a floating point
argument in radians.

METHOD: This routine uses FLOATA, FSIN, and FCOS.

FTAN(X) = FSIN(X)
FCOS(X)

CALUNG SEQUENCE:

Address

L

L+l

L+2

L+3

Mnemonic

IRJP

0

0

(RETURN)

Operand

(FTAN)

TAG 1

TAG 2

TAG 1 is the address of the least significant half of X and TAG 2 is the
address of the least significant half of FTAN(X). Register A also contains
FTAN(X) upon return from the routine.

RESTRICTIONS: FTAN must be wholly contained with one bank. All registers
except A are saved. TAG 1 and TAG 2 must be in the same bank
as the return jump instruction.

13. FLOATIMi POINT SINE AND COSINE

GENERAL DESCRIPTION: This subroutine computes SIN and COS of an angle in
radians expressed in floating point.

METHOD: For the SIN, 900 is subtracted from the argument. For both SIN and
COS, the argument is reduced to

o ~ IArgl ~ 2

V-A-13

If the argument falls within the range, n -: -t 0.0004, n + 0, 1, 2, or 3,
the correct value is taken from a table and used for the function value.
Otherwise the angle is reduced to the 1st quadrant with appropriate adjustment
of sign and used in

5 2i f(X) = 1 +r a2i
X

i=l

CALLING SEQUENCE:

Address Mnemonic Operand

L IRJP (FSIN, FCOS)
L+l 0 TAG 1

L+2 0 TAG 2
L+3 (Return)

TAG 1 is the address of the least significant half of the argument and TAG 2
the address of the least significant half of the function value. Register A
also contains the answer upon return from the routine.

RESTRICTIONS: This routine must be wholly contained within one bank. TAG 1
and TAG 2 must be in the same bank as the return jump instruc­
tion. This routine also uses FLOATA.

14. FLOATING POINT ARCSINE AND ARCTANGENT

GENERAL DESCRIPTION: This subroutine computes ARCSIN or ARCTAN given an (X,Y)
coordinate.

METHOD:

For ARCSIN,

then FASIN

For ARCTAN,

Z = Y/§ + y2

(Z)= FATAN(Z/ JCZ2)
Z = Y

X

feZ):;: 7f/4 + 2: C2i+
l 7 (Zz -+ 11) 2i + 1

i=O

The appropriate adjustment is made for the quadrant in which (X,Y) appears.

V-A-14

CALLING SEQUENCE:

Address Mnemonic Operand

L IRJP (FASIN, FATAN)

L+l 0 TAG 1

L+2 0 TAG 2

L+3 0 TAG 3

L+4 (Return) TAG

TAG 1. is the address of the least significant half of the Y-coordinate, TAG 2
the address of the least significant half of the X-coordinate, and TAG 3
the. address of the least significant half of the answer. Register A also
contains the answer upon return from the routine.

RESTRICTIONS: The routine must be wholly contained with one bank. TAG 1, TAG 2,
and TAG 3 must be in the same bank as the return jump instruc­
tions. fLOATA and F~RT are used by FASIN and FATAN.

15. FLOATING POINT NATURAL WGARITHM

GENERAL DESCRIPTION: This subroutine computes In(X). X is in floating point
format.

n METHOD: X is changed tD the range 1 ~ Z ~ 10, X = Z.lO
Then In(X) = 10g(X) In(10) = [log(Z) + n] In (10) where

~ c (11'n) 2i + 1 log (Z) = 1/2 + L 2i + 1 z- vlO
i=O z+./IO

CALLING SEQUENCE:

Address Mnemonic Operand

L IRJP (FLN)

L+l 0 TAG 1

L+2 0 TAG 2

L+3 (Return)

TAG 1 is the address of the least significant half of X and TAG 2 the address
of the least significant half of In(X). Register A also contains In(X) upon
return from the routine.

RESTRICTIONS: FLN must be wholly contained within 1 bank. FLOATA, and FIXFLT
are used by FLN. TAG 1 and TAG 2 must be in the same bank
as the return jump instruction.

V-A-lS

16. FLOATING POINT ARITHMETIC

GENERAL DESCRIPTION: This subroutine performs add, subtract, multiply, and
divide operations on floating point numbers. This is the same subroutine as
FLOAT except for I/O parameters and the addition of FSUB.

CALLING SEQUENCE:

Address Mnemonic Operand

L IRJP (FADD, FSUB, FMUL, OR FDIV)
L+l 0 TAG 1
L+2 0 TAG 2

L+3 0 TAG 3

L+4 (Return)

TAG 1 and TAG 2 are the addresses of the least significant halves of operands 1
and 2. TAG 3 is the address of the least significant half of the answer.

For FADD and FMUL, the order of operands 1 and 2 is not important. For FSUB,
operand 1 is the minuend and operand 2 the subtrahend. For FDIV, operand 1
is the dividend and operand 2 the divisor. Register A also contains the
answer upon return from the routine.

RESTRICTIONS: The routine must be wholly contained with one bank. TAG I,
TAG 2, and TAG 3 must be in the same bank as the return jump
instruction.

V-A-16

SECTION V-B. CONVERSION SUBROUTINES

1. CONVERT OCTAL TO TYPEWRITER-CODED DECIMAL (TODE)

GENERAL DESCRIPTION: The TODE subroutine converts an octal number, with a
given number of fractional binary bits, to a coded decimal number with the
requited number of decimal fractional digits. It can handle six octal digits,
including the decimal point, if present. In addition, it handles negative and
positive numbers by uslng a third output word, containing only the minus.code.
Roundoff is optional.

INPUT PARAMETERS:

Variable Words

TODEN

TODENI

TODEN2

TODEN3

OUTPUT PARAMETERS:

Variable Words

TODET }
TODETI

TODET-l

EXECUTION SEQUENCE:

Contents

Octal input number for conversion

Contains the number of binary bits to the right of
the radix point in the input number TODEN.

Number of output decimal digits to right of
decimal point.

Round option: 1 = round; 0 = no round

Contents

Hold resulting decimal number, normalized left,
in typewriter code. Output words are also in AL
and AU.

Contains minus sign code if input is negative and
zeros if input is positive.

1) Load input octal number for conversion in location TODEN.
2) Load number of input fractional binary bits in location TODENl.
3) Load output fractional decimal digit indicator in location TODEN2.
4) Load output roundoff indicator in location TODEN3.
5) Return jump to TODE.
6) Use converted values in AU and AL or in TODET and TODETI.

NOTE: The decimal point appears as a period code in output. For example,
3.5 would be written 63 75 65 in Field data code and as 63 56 65
in ASCII code.

V-8-l

2. DECIMAL TO OCTAL ROUTINE (DOCTL)

GENERAL DESCRIPTION: The DOCTL subroutine~ using typewriter code, converts
decimal numbers, both positive and negative, to octal. It can handle up to 6
typewriter-coded digits, plus) by means of another word, a minus sign if
required. The input number may contain a decimal point as one of the six
digits. The number of fractional binary bits in the output can be selected as
well as the roundoff option.

RESTRICTIONS: Maximum size of input words to be converted is 2 computer
words or 6 digits in code; this includes code for decimal
point -if there is one~ (Range is 1310710 to -1310710).

INPUT PARAMETERS:

Variable Words

DOCTN & DOCTN +1

DOCTN2

DOCTN3

DOCTN -1

OUTPUT PARAMETERS:

Variable Words

DOC TOT and AL

Contents

Contain the 6-digit typewriter-coded number.

Holds number of fractional binary bits requested
in answer.

Contains roundoff option.
1 = no round; 0 = round.

Contains minus sign code if number is negative,
otherwise zero.

Contents

Resulting octal digits, scaled and rounded as
directed by input parameters at memory location
DOC TOT and AL. If BO, error indicator, is nonzero,
then no output is produced.

ALARMS: If an error condition occurs, the computer jumps to address RESTOR
and the error is identified by a number in BO.

BO = 4,
00 = 3,
BO = 2,
BO = 1,

Two decimal points in input number
Input number too large
Too many fractional bits requested
Illegal code in input

EXECUTION SEQUENCE:

1) Load sign at DOCTN-l.
2) Load first part of input number at DOCTN.
3) Load remainder of input number at DOCTN+l, normalized left.
4) Load output fractional binary bits requested in DOCTN2.
5) Load output roundoff indicator in location DOCTr~.
6) Return jump to DOCTL.
7) Use converted value in Al or in DOCTOT.

NOTE: The decimal position is known by the number of binary bits shown
in OOCTN2.

V-B-2

SECTION V-C. ASSEMBLER SUPPORT SUBROUTINES

1. TRIM DEBUGGING PACKAGE (DEBUG)

G~ERAL DES.CR~PTION: The TRIM debugging package is activated by generation in
the operational program resulting from the use of the DUMPM or DUMPR operators.
The package dumps the contents of the AL, AU, and current B registers (OUMPR)
or consecutive addresses and their contents (DUMPM) onto punched paper tape
for subsequent off-line listing. Below are samples of input to and output
from the debugging package.

DUMPR

1) Operational program (shown here, for clarity, in mnemonics)

IRJP-LOK+l
O-DEBUG
0-00002 (0 = DUMPR code; 2 = unique identity number)

2) DEBUG output

2. AU 252525 AL 525252 B 007103

OUMPM

1) Operational program (shown here, for clarity, in mnemonics)

IRJP·LOK+l
O-DEBUG
4-00007
0-00004
0-00240

(4 = DUMPM code; 7 = unique identity number)
(number of words to be dumped)
(address of first word to be dumped)

2) DEBUG output

7. 00240 340245
00241 340645
00242 ~40747
00243 340703

The debugging package is available in three formats:

1) As a TRIM III library subroutine.
2) As a punched paper tape in source language format.
3) As a punched paper tape in relocatable bioctal format.

Formats 1) and 2) use the tag CHAN to reference the paper tape I/O channel.
The programmer is responsible for allocating CHAN to the appropriate I/O
channel number.

V-C-l

2. TYPE TEXT SUBROUTINE (TYPT)

GENERAL DESCRIPTION: TYPT is a special TRIM library subroutine which types
out pre-designated statements at any point in the user's program where he has
inserted a TYPT operator.

The TYPT subroutine processes the object program data words which the type­
text generator of the TRIM assembler produces from the poly-operation TYPT
source statement. Since the TYPT subroutine is called by an IRJP instruction
within the user's object program, the source program must be assembled with the
TYPT subroutine or with the TYPT subroutine allocated to an address at which
it must be loaded when the user's object program is run. If a TYPT statement is
used within a program and the TYPT subroutine is not called or programmer
allocated, the TRIM assembler will automatically allocate it to a fixed address
in the object program.

TYPT unstrings and types the six bit typewriter characters in the words
immediately following the indirect return jump to the TYPT subroutine. It
continues to extract and type from sequential words until an end sentinel code
is encountered. TYPT then exits to the next address of the object program.

TYPT is available in three formats:

1) As a TRIM III library subroutine.
2) As a punched paper tape in source language format.
3) As a punched paper tape in relocatable bioctal format.

Formats 1) and 2) use the tag CHAN to reference the paper tape I/O channel.
The programmer is responsible for allocating CHAN to the appropriate I/O
channel number.

3. TYPE CONTENTS SUBROUTINE (TYPC)

GENERAL DESCRIPTION: TYPC is a special TRIM library subroutine which types
out the present contents of any register or memory address designated after a
TYPC operator at any point in a user's program.

The TYPC ,subroutine interprets the object program code words which the type­
contents generator of the TRIM assembler produces from the poly-operation
TYPC source statement; the TYPC subroutine then types ihe designatc~ register
or memory location contents.

Since the Type subroutine is called by an indirect return jump within the user's
object program, the user's source program must be assembled with the TYPC
subroutine or with the TYPC subroutine allocated to an address at which it
must be loaded when the user's object program is run. If a TYPC statement is
used within a source program and the TYPC subroutine is not called or pro­
grammer allocated, the TRIM assembler will automatically allocate it to a
fixed address in the object program.

V-C-2

TYPC is available in three formats:

1) As a TRIM III library subroutine.
2) As a punched paper tape in source language format.
3) As a punched paper tape in relocatable bioctal format.

Formats 1) and 2) use the tag CHAN to reference the paper tape I/O channel.
The programmer is responsible for allocating CHAN to the appropriate I/O
channel number.

4. PUI\{;H TEXT SUBROUTI NE (PCHT)

GENERAL DESCRIPTION: PCHT is a special TRIM library subroutine which punches
out pre-designated statements at any point in the user's program where he has
inserted a PCHT operator.

The PCHT subroutine processes the object program data words which the punch­
text generator of the TRIM assembler produces from the poly-operation PCHT
source statement. Since the PCHT subroutine is called by an IRJP instruction
within the userts object program, the userts source program must be assembled
with the PCHT subroutine or with the PCHT subroutine allocated to an address
at which it must be loaded when the user's object program is run. If a PCHT
statement is used within a program and the PCHT subroutine is not called or
programmer allocated, the TRIM assembler will automatically allocate it to
a fixed address in the object program.

PCHT unstrings and punches the 6-bit typewriter characters in the words imme­
diately following the indirect return jump to the PCHT subroutine. It continues
to extract and punch from sequential words until an end sentinel code is en­
countered. PCHT then exits to the next address of the object program.

PCHT is available in three formats:

1) As a TRIM III library subroutine.
2) As a punched paper tape in source language format.
3) As a punched paper tape in relocatable bioctal format.

Formats 1) and 2) use the tag CHAN to reference the paper tape I/O channel.
The programmer is responsible for allocating CHAN to the appropriate I/O
channel number.

5. PUNCH CONTENTS SUBROUTINE (PCHC)

GENERAL DESCRIPTION: PCHC is a general TRIM library subroutine .which punches
out the present contents of any register or memory address designated after a
PCHC operator at any point in a user's program.

The PCHC subroutine interprets the object program code words which the punch­
contents generator of the TRIM assembler produces from the poly-operation
PCHC source statement; the PCHC subrout~ne then punches the designated
register or memory location contents.

V-C-3

Since the PCHC subroutine is called by an indirect return jump within the
user's object program, the user's source program must be assembled with the
PCHC subroutine or with the PCHC subroutine allocated to an address at which
it must be loaded when the user's object program is run. If a PCHC statement
is used within a source program and the peHC subroutine is not called or
programmer allocated, the TRIM assembler will automatically allocate it to a
fixed address in the object program.

PCHC is available in three formats:

1) As a TRIM III library subroutine.
2) As a punched paper tape in source language format.
3) As a punched paper tape in relocatable bioctal format.

Formats 1) and 2) use the tag CHAN to reference the paper tape I/O channel.
The programmer is responsible for allocating CHAN to the appropriate I/O
channel number.

V-C-4

>
I

......

Software
Name

Carriage return

Tab

Point separator

Double period

Space

Comma

Vertical bar

Plus

Minus

Software
Symbol

.J

--+

•

00

~

,

I

+

-

TABLE A-I. EQUIVALENT INPUT FORMAT CODES

UNIVAC A~II UNIVAC Field Data
1532 Codes 1232 Codes
Symbol Symbol
Substi tution Substitution

1 5 o 4 o 3

.- 1 3 7 7 6

* 5 2 Special D 7 2

5 6 5 6 Apostrophe • 7 5 7 5

4 0 o 5

5 4 5 6

1 4 1 Exclamation r 5 5

5 3 4 2

5 5 4 1·

0

1

2

3

4

5

6

7

TABLE A-2. FIELD DATA CODE (6 BITS), UNIVAC 1232
KEYBOARD AND TYPEWRITER

0 1 2 3 4 5

Master Upper Lower Line Car. ~
Space Case Case Feed Return

C 0 E F G H

K L M N 0 P

S T U V W X

) - + < = >

* (" : ? I

0 1 2 3 4 5

8 9
,

; / .
(Apos.) (Period)

l:l = SPACE

NOTE: Master space indicates an absence of information.

A-2

6 7

A B

I J

Q R

Y Z

$ -

, ®
(Comma) STOP

6 7

D f
SPEC IDLE

0

00

01

02

03

04 Space

05 (

06 0

07 8

10 @

11 H

12 P

13 X

TABLE A-3. ASCII CODE (7 BITS), UNlVAC 1532
KEYBOARD AND TYPEWRITER

1 2 3 4 5

-

Line Carriage
feed return

! " # $ %

) * + -,
(comma)

1 2 3 4 5

9 : ; < =

A B C D E

I J K L M

Q R S T U

Y Z [/]

A-3

6 7

&
,

(apos.)

/
(period

6 7

> ?

F G

N 0

V W

f +--

0

1

2

3

4

5

6

7

TABLE A-4. TRIM INfERNAL CHARACTER CODE CHART (6 BITS)

0 1

i II

0 1

8 9

G H

Not P
Used

W X

- +

= "

2

2

A

I

Q

Y

,

$

i = ignore

l:l = space

3 4 5

Data Control Characters

3 4 5

B C 0

J K L

R S T

Z ()

/ : Yo
V- • t

6 7

I

6 7

E F

M N

U V

< >

IY- ?

; Not
Used

Data control characters are used as internal controls.

Code 10 is used for zero and letter O.

~ = Field data code symbol.

~ = ASCII code symbol.

A-4

	000
	_001
	001
	002
	003
	004
	005
	006
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	1-01
	1-A-01
	1-A-02
	1-A-03
	1-A-04
	1-A-05
	1-A-06
	1-A-07
	1-A-08
	1-A-09
	1-A-10
	1-A-11
	1-A-12
	1-A-13
	1-A-14
	1-A-15
	1-B-01
	1-B-02
	1-B-03
	1-B-04
	1-B-05
	1-B-06
	1-B-07
	1-B-08
	1-B-09
	1-B-10
	1-B-11
	1-B-12
	1-B-13
	1-B-14
	1-B-15
	1-B-16
	1-B-17
	1-B-18
	1-B-19
	1-B-20
	1-B-21
	1-B-22
	1-B-23
	1-B-24
	1-B-25
	1-B-26
	1-B-27
	1-B-28
	1-B-29
	1-B-30
	1-B-31
	1-B-32
	1-B-33
	1-B-34
	1-B-35
	1-B-36
	1-B-37
	1-B-38
	1-B-39
	1-B-40
	1-B-41
	1-B-42
	1-B-43
	1-B-44
	1-B-45
	1-B-46
	1-C-01
	1-C-02
	1-C-03
	1-C-04
	1-C-05
	1-C-06
	1-C-07
	1-C-08
	1-C-09
	1-C-10
	1-C-11
	1-C-12
	1-C-13
	1-C-14
	1-C-15
	1-C-16
	1-C-17
	2-01
	2-A-02
	2-A-02
	2-A-03
	2-A-04
	2-A-05
	2-A-06
	2-A-07
	2-A-08
	2-A-09
	2-A-10
	2-A-11
	2-A-12
	2-B-01
	2-B-02
	2-B-03
	2-B-04
	2-B-05
	2-B-06
	2-B-07
	2-B-08
	2-C-01
	2-C-02
	2-C-03
	2-C-04
	2-C-05
	2-C-06
	2-C-07
	2-C-08
	2-C-09
	2-C-10
	2-C-11
	2-C-12
	2-C-13
	2-C-14
	2-C-15
	2-C-16
	2-C-17
	2-C-18
	2-C-19
	2-C-20
	2-C-21
	2-C-22
	2-C-23
	2-D-01
	2-D-02
	2-D-03
	2-D-04
	2-D-05
	2-D-06
	2-D-07
	2-D-08
	2-D-09
	2-D-10
	2-D-11
	2-D-12
	2-D-13
	2-D-14
	2-D-15
	2-D-16
	2-D-17
	2-D-18
	2-D-19
	2-D-20
	2-D-21
	2-D-22
	2-D-23
	2-D-24
	2-D-25
	2-D_26
	2-D-27
	2-D-28
	2-D-29
	2-E-01
	2-F-01
	2-F-02
	2-F-03
	2-F-04
	2-F-05
	2-F-06
	2-F-07
	2-F-08
	2-F-09
	2-F-10
	2-F-11
	2-G-01
	2-G-02
	2-G-03
	2-G-04
	2-G-05
	2-G-06
	2-G-07
	2-G-08
	2-G-09
	2-G-10
	2-G-11
	2-G-12
	2-G-13
	2-G-14
	2-G-15
	2-G-16
	2-G-17
	2-G-18
	2-G-19
	2-G-20
	2-G-21
	2-G-22
	2-G-23
	2-G-24
	2-G-25
	2-G-26
	2-G-27
	2-G-28
	2-G-29
	2-G-30
	2-G-31
	2-G-32
	2-G-33
	2-G-34
	2-G-35
	2-G-36
	2-G-37
	2-G-38
	2-G-39
	3-01
	3-02
	3-A-01
	3-A-02
	3-A-03
	3-A-04
	3-A-05
	3-A-06
	3-A-07
	3-A-08
	3-A-09
	3-A-10
	3-A-11
	3-A-12
	3-A-13
	3-B-01
	3-B-02
	3-B-03
	3-B-04
	3-B-05
	3-B-06
	3-B-07
	3-B-08
	3-B-09
	3-B-10
	3-B-11
	3-B-12
	3-B-13
	3-B-14
	3-B-15
	3-B-16
	3-B-17
	3-B-18
	3-B-19
	3-B-20
	3-B-21
	3-B-22
	3-B-23
	3-B-24
	3-B-25
	3-B-26
	3-C-01
	3-C-02
	3-C-03
	3-C-04
	3-C-05
	3-C-06
	3-C-07
	3-C-08
	3-C-09
	3-C-10
	3-C-11
	3-C-12
	3-C-13
	3-C-14
	3-C-15
	3-C-16
	3-C-17
	3-C-18
	3-C-19
	3-C-20
	3-C-21
	3-C-22
	3-C-23
	3-C-24
	3-C-25
	3-C-26
	3-C-27
	3-C-28
	3-C-29
	3-C-30
	3-C-31
	3-C-32
	3-C-33
	3-C-34
	3-C-35
	3-C-36
	3-C-37
	3-C-38
	3-C-39
	3-C-40
	3-C-41
	3-C-42
	4-01
	4-A-01
	4-A-02
	4-A-03
	4-A-04
	4-A-05
	4-A-06
	4-A-07
	4-A-08
	4-A-09
	4-A-10
	4-A-11
	4-A-12
	4-A-13
	4-A-14
	4-B-01
	4-B-02
	4-B-03
	4-B-04
	4-B-05
	4-B-06
	4-B-07
	4-B-08
	4-B-09
	4-B-10
	4-B-11
	4-B-12
	4-B-13
	4-B-14
	4-B-15
	4-B-16
	4-B-17
	4-B-18
	4-B-19
	4-B-20
	4-B-21
	4-B-22
	4-B-23
	4-B-24
	4-B-25
	4-B-26
	4-B-27
	4-B-28
	4-B-29
	4-B-30
	4-B-31
	4-B-32
	4-B-33
	4-B-34
	4-B-35
	4-B-36
	4-B-37
	4-B-38
	4-B-39
	4-B-40
	4-C-01
	4-C-02
	4-C-03
	4-C-04
	4-C-05
	4-C-06
	4-D-01
	4-D-02
	4-D-03
	4-D-04
	4-D-05
	4-D-06
	4-D-07
	4-D-08
	4-D-09
	4-D-10
	4-E-01
	4-E-02
	4-E-03
	4-E-04
	4-F-01
	4-F-02
	4-F-03
	4-F-04
	4-F-05
	4-F-06
	4-F-07
	4-F-08
	4-F-09
	4-F-10
	4-F-11
	4-F-12
	4-F-13
	4-F-14
	5-01
	5-A-01
	5-A-02
	5-A-03
	5-A-04
	5-A-05
	5-A-06
	5-A-07
	5-A-08
	5-A-09
	5-A-10
	5-A-11
	5-A-12
	5-A-13
	5-A-14
	5-A-15
	5-A-16
	5-B-01
	5-B-02
	5-C-01
	5-C-02
	5-C-03
	5-C-04
	A-01
	A-02
	A-03
	A-04

