COMPUTER SCIENCES CENTER

PURDUE UNIVERSITY

User's Manual

for the

AILCOR-University of Illinois
ALGOL~60 Translater

April 5, 1965

CONTENTS

1. Introduction

2. Hardware Representation

2.1.

Introduction

Conventions and Restrictions
Alphabet and Numerals

Word Symbols

Boolean Values

Arithmetic Operators

Logical and Relational Operators
Separators, Brackets and Others
The 'CODE' Word Symbol

The 'FINIS! Word Symbol

3. Input/Output Operations

3.1.
3.2.
3.3.
3.4.

3‘5.

3.6.

3.7.

Introduction

Code Procedures for Input/Output
Simplified Input/butput
The Format Procedure

3.4.1. Introduction

3.4.2, Syntax

3.4.3. Semantics

Field Specifiers
3-501. Swtax
3.5.2. Semantics

The Input and Output Procedures
3.6.1. Introduction

3.6.2. Syntax

3.6.3. Semantics

Data

k. Procedures

l'l'.l.
L}..Z.
4.3,

Introduction
Procedures Written in ALGOL

Procedures Written in Other Source languages

5. The IBSYS Operating System and the ALGOL Translator

6, Procedure for Submission of an ALGOL Job

6.1. Introduction

6.2. Coding and Keypunching

6.3. System Control Cards for ALGOL
6.L. Data Cards

6.5. Binary Cards and ALGOL

6.6, Library Routines on Tape or Cards
6.7. Typical Deck Makeup

7. Errors and Error Messages
7.1. Introduction
7.2. Classes of Errors and Their Detection
7.2.1. Syntax Error
7.2.2. Semantic Error

7.2.3. Errors Detectable Only During Executlon
7.2.4. Machine and/or Translator Errors

7.3. Error Messages

8. A Feature of ALGOL-60 Not Implemented, own

Appendices
. Deck Identification Card Format
Bibliography

Hardware Representation of ALGOL-60 Elements

o o w =

. Examples of ALGOL-60 Programs

1. Introduction

The purpose of this manual is to explain the differences which exist
between ALGOL-60 as it is defined in "Revised Report on the Algorithmic
Language ALGOL-60" (Ref. 1) and as it actually has been implemented by the
AICOR-University of Illinois programming group. Relatively few features
of ALGOL-60 have not been implemented, so this manual consists mostly of
an explanation of the "hardware" representation of ALGOL rather than devi-
ations from it.

This manual is specifically addressed to those individuals who have a
working knowledge of ALGOL and merely want information to enable them to
transform their programs into the "hardware" form and get them onto the
computer. This manual is in no way to be regarded as a primer in program-

ming, in ALGOL or any other programming language.

ALGOL page 1 « (4/5/65,)

2. Hardware Representation

2.1l. Introduction

A large part of the basic symbols of ALGOL are not available at present
as the symbols usable by computer systems. Therefore, in order to use ALGOL
at all, certain alterations have had to be made to the ALGOL symbol set.

Computer word size imposes practical limitations on the magnitude of num-
bers, number of significant digits, etc., used in ALGOL programs. Size of
core storage effectively limits the size of arrays. Some of the more impor-
tant restrictions are discussed in the following sections. Omitted from
discussion are those too obvious to merit special, detailed attention (e.g.,
a computer core having 32,768 words cannot store an array of 2,000,000 ele-
ments) and those which exist, but will cause trouble only in the rarest of
instances (e.g., only 4096 different identifier names are actually permitted),

In the tables which follow, two hardware representations of some symbols
are shown under the headings of "hardware representation®™ and "tolerated re-
presentation."” These optional representations are called "tolerated,” and
in every case where such a representation occurs in a source program, the
user will be so advised on his output. Not all symbols have both represen-
tations and a blank in the tables under "tolerated hardware representation®

implies that no such representation exists.

2,2, Conventions and Restrictions

The most obvious restrictions are that subscripts and superscripts cannot
be used. But there arc others, and each symbol group will be discussed in
turn. For the morent, we will consider a more important class of unavail-

able symbols, that of the word symbols, begin, end, if, go to, etc. Clearly,

ALGOL page 2 - (4/5/65.)

we cannot use bold-face print or underline certain words if we expect to
enter the information into a computer. Another convention must be adopted
to identify these word symbols and distinguish them from the apparently iden-
tical English words "begin," "end," "if," ¥go to," etc., to which they bear
no other relation. The convention which has been adopted here is that of
enclosing each of the word symbols in a pair of "escape symbols", apostro-
phes; that is, in hardware representation the word symbol begin becomes
'BEGIN', end becomes 'END', go to becomes !GO TO'. It should be noted that
except in strings, blanks are ignored in hardware representation, just as in
publication ALGOL, so that 'GO TO' is identical to 'GOTO' or 'G0 TO' and
'BE GIN' is as acceptable as 'BEGIN'.

Minor restrictions not mentioned in the ALGOL Report have been imposed by
the nature of the 7094 computer. The word size of the 7094 is 35 binary bits
plus sign bit; in floating point arithmetic, 8 of these 35 bits are used for
the exponent part. This Translator does not distinguish internally between
integer arithmetic and real arithmetic, but does both in floating point mode,

Hence, the following restrictions exist on number size:

- 38 < exponent < + 38

10

|integer|< 134,217,727,

2.3. Alphabet and Numerals

Note that begin has become 'BEGIN' and not 'begin' or 'Begin', Standard
character sets for computers do not normally include lower case as well as
upper case alphabetic characters, so lower case letters, though permitted in

publication ALGOL, will not be used in hardware representation.

ALGOL page 3 - (4/5/65.)

Numerals appear in publication ALGOL in only one form; hence no altera-
tion of numerals is necessary in hardware representation, since this form is

identical to that in computer symbol sets.

2.4, Word Symbols-

A large part of the ALGOL symbols are word symbols and a list of the hard-
ware representation is given below,

The careful reader will note that two non-ALGOL word symbols, 'CODE! and
'FINIS', appear at the end of the list below, The introduction of these
word symbols was made necessary by implementation requirements, and neither
interferes in any way with the action of any other word symbol, They are

discussed in Sections 2.9. and 2,10. respectively.

ALGOL page 4 = (4/5/65.)

ALGOL

Publication Language Symbol
go_to
if
then
else

for

Hardware Representation
IGO TO!

1Pt

' THEN !
'ELSE!
'FOR!

'DOI
'STEP!
'UNTIL!

' COMMENT !
'BEGIN'
'END!
'OWN' (Not Implemented)
'BOOLEAN !
' INTEGER ¢
YREAL"
TARRAY!
'SWITCH!
'PROCEDURE !
'STRING!
*LABEL"
'VALUE!
'CODE
'FINIS!

page 5 -« (h/5/650)

2.5. Boolean Values

The two values of Boolean variables and expressions, true and false, are
ALGOL word symbols., Their hardware representation is analogous to that of
other word symbols: true is represented as 'TRUE' and false as 'FALSE',
The actual internal representation of true and false is

true 7TITTVTITNNT
false 000000000000

The last statement should not be misinterpreted as meaning that true and
false values of Boolean variables can be read as data in the forms shown
above, This is not true at all; there does not exist a procedure by which
Boolean values may be read directly as data. It is suggested that if a user
wishes to input Boolean values, he use the real values O and 1 for false and
true respectively and use these real values to create Boolean values by means
of, for example, an if statement. There are, of course, other means of ac~

camplishing the same end.

2.6, Arithmetic Operators

Some, but not all, of the ALGOL arithmetic operators are available in the
7094 and 1401 character sets. The hardware representations of all the arith-

metic operators are tabulated below.

ALGOL Symbol Description Hardware Tolerated
Representation Representation
+ plus +
- minus -
X multiplication *
/ division /
: integer division //
t exponentiation 1POWER! 3

ALGOL page 6 - (4/5/65.)

2.7. Logical and Relational Operators

The logical and Boolean operators are not available in the symbol set,
and all have been transliterated into word symbols enclosed by escape syme
bols. For the convenience of the skilled ALGOL programmer, an alternate,
"tolerated," set of abbreviated word symbols for these operators is pro-
vided, The beginning ALGOL programmer will doubtlessly wish to use the long

form, since there is less chance for human misinterpretation.

ALGOL Symbol Description Hardware Tolerated

Representation Representation

< - less than 'LESS! 'LS!

< less than or equal to 'NOT GREATER' Q!

= equal to 'EQUAL! 1EQ?

2 greater than or equal 'NOT LESS® 'GQ!
to

> greater than 'GREATER® 'GR!?

not equal to 'NOT EQUAL® INQ*

= logical equivalent 'EQUIV! YEQVY

o logical implies TIMPL! 'IMP!

v logical or 'OR!?

A logical and 'AND*

- logical negation 'NOT!?

ALGOL page 7 - (4/5/65.)

2.8. Separators, Brackets and Others

This category of symbols includes all those not previously discussed,
The following list shows each publication symbol, its hardware representation

and its tolerated hardware representation, if any,

oK
Tolerated

Publication Description Hardware Hardware
Language Representation Representation

P) comma s

. decimal point .

10 base 10 !

: colon ve

; semicolon . $

= assignment symbol o= =

#orbd blank space

(left parenthesis (

) right parenthesis)

[left bracket / (

] right bracket /))

¢ left string quote v "

? right string quote 1)e "

2.9. The 'CODE' Word Symbol

The 'CODE' word symbol is not a part of the set of word symbols in the
ALGOL Report. The word "code" is used in the report to indicate that a pro-
cedure's body does not appear with its declaration, but appears instead out-
side the program in which it is declared, as a procedure written either in
ALGOL or some other source language. Its use with this Translator has that

same purpose, but it will be considered as a true word symbol with the form
'CODE'.

For discussion of the code procedure see Section 4.3.

2.10. The 'FINIS! Word Symbol

There is no provision in ALGOL for notifying a translating program that
the end of a source program has been reached. It has been found desirable,
from the standpoint of efficient translation of ALGOL source programs, to
have some means of signaling the end of a source program, and the word sym-
bol 'FINIS' is used for that purpose with this Translator. Hence 'FINIS!
must be the last word symbol of every ALGOL source program, following the

final 'END' of the program or comments after this final 'END',

3. _Input/Output Operations

3.1. Introduction
There is no specification in the ALGOL Report for input/output operations

in ALGOL. This was not an oversight on the part of the designing committee,
but a result of its realization that input/output operations vary so much
from one installation to another and from one computer to another that spe-
cifications for input/output were better left to each installation, Hence
the Translator uses code procedures for input/output. The use of these pro-

cedures is described in detail in the following sections.

3.2. Code Procedures for Input/Output-

There are several ALGOL code procedures which are associated with the
input/output operations presently available through the Translator, These
basic I/0 procedures are viewed in the same light as standard functions;
that is, they are considered to have such importance and universal appli-

cability that they are global to all ALGOL programs compiled by the Transla-

ALGOL page 9 - (4/5/65.)

tor. For the user this means that there is no need to declare the input/-
oeutput procedures. It further implies that the identifiers used for these
procedures must have the same restricted use as those set aside for the stan-~
dard functions, sin, cos, exp, etc. To use the identifiers for any other
purpose can cause an error condition. However, one can "submerge" any of
these procedure names by declaring a procedure or variable with the same
name, as one can do with ordinary identifiers in nested blocks.

For example,

begin real a, b, c;
read (a, b);
c=a+ b;
print (a, b, ¢)

end

shows the use of the read and print code procedures. Neither has been de-
clared in the example, since this is unnecessary.
On the other hand,

begin real a, b, ¢, d;
read (b); begin
procedure read (e, f);
e = ft2; read (a, b)
end;
read (d); ¢ := a + b;
print (a, b, ¢, d)
end

shows an entirely different use of a declared procedure with the same name
as read. This procedure is declared in an inner block, used there, and is
no longer defined after exit from that block. Hence the statement "read (b)"

causes the real number b to be read; "read (a, b)" causes the calculation

a :=bt2 to be made; and "read (d)" causes the real number d to be read.

ALGOL page 10 - (4/5/65.)

3.3. Simplified Input/Output

Since ALGOL is a language designed for expressing algorithms in numerical
analysis, input and output operations are concerned mainly with the trans-
mission of numerical data.

There are two input procedures and two output procedures designed espe-
cially for the user who does not have specific format requirements.

The two simplified input procedures are read and readmatrix, and both
accept data in a free form. The form of the read procedure call is

read (a, b, c,...)
where a, b, c,... are previously declared variables, either simple or sub-
scripted. The procedure reads one variable at a time, so if subseripted
variables appear in the list, then subscripts must be specified. For ex-
ample, let a be an array of dimension 3 x4 and b and ¢ be simple vari-
ables, Then

read (a, b, ¢)
is incorrect, while

read (a (1,2) b, c)
is acceptable. Of course, in the last case, only element a (1,2) will be
read, and not the entire array.

If the user has an entire array to be read, a second easy-to-use procedure
is available, readmatrix. The form of its call is

readmatrix (a, b, ¢,...)
where a, b, ¢,... are array identifiers. The procedure reads elements of
an array in such a way that the last subscript changes first, then the pre-
ceding one, etc.

ALGOL page 11 - (4/5/65.)

The input data in both cases is assumed to be in a free form. The data
can be any ALGOL number (see section 2.5., ALGOL Report) and placed anywhere
on 2 card. The numbers are separated by three blanks, a comma, or the end
of the card (columm 72). Successive calls for either of the procedures does
not initiate reading from a new card; reading proceeds continuously from one
number to the next on a card and when that card is exhausted (column 72) it
proceeds to the next.

The two outpu: procedures for simplified uee are print and printmatrix.
The form of the print call is

print (Ey, Ep, ...)
where E, E5, ... reprezend arithmetic expressions. Of course, an arithmetic
expression may consist of simply a variable name, and in most cases it pro-
bably will, so
print (area, depth, velocity ¥ weight)
is an acceptable print procedure call., All the output from such a call will
be printed on the off—ling printer according to the standard format list
X, SEULT
That is, the numbers will be printed in lines of 5, each with 7 digits to
the right of the decimal point, in what is commonly called "scientific nota-
tion". The number -3765.831 would appear in this notation as |
-.3765831Euuk
and the number .00376 becomes
«3760000E~ 102
The printmatrix procedure call is

printmatrix (a, b, €, «cue)

ALGOL page 12 - (L/5/65.)

where a, b, ¢, are array identifiers. Output is by rows in exactly
the same format as that of print, 5 elsments per line. The 3 x 4 array b
would be printed as

by1 P12 P13 by Doy

b22 b3 by, by b2

P33 by,

No alphabetic data can be input or output with any of the four simplified
procedures.

For more control over the format of the input and output, other procedures
are available and are described in the following sections.

At this point, it appesars desirable to begin using certain unfamiliar
terms and notation, such as "syntax" and "semantics" and unconventional
brackets < > and vertical lines |. These conventions have been borrowed
from the field of linguistics and are highly useful in describing precisely
how parts of a language (and ALGOL is a language, however limited it may be)
can be pﬁt together to mean something to someone or something. The reason
for including these conventions here is mainly to be precise in describing
certain things omitted by the ALGOL Report, but also to initiate the ALGOL
beginner in the terminology of the ALGOL Recport. sAbi].iw‘:.y to read and under-
stand the Report will be indispensable to the active ALGOL user, so an at-
tempt to entirely avoid the notaticn problem would be false economy. If the
reader keeps in mind these interpretations of the symbols, he should progress
well, |

: ist
I means Yor®

<> arc siTply broclets that mean that the terms enclosed
by tham go together to form a single unit.

ALGOL page 13 - (4/5/65.)

For example,

<unsigned integer> ::= <digit> l <unsigned integer><digit>
can be read "An unsigned integer is either a digit or an entity composed of
an unsigned integer followed by a digit." This is simple enough, but the de-
finition is strange in that it uses "unsigned integer" to define "unsigned
integer." This is a recursive definition and is quite simple to explain:
an unsigned integer is either a single digit (0,1,2,...,9) or an entity com-
posed of a digit following one or more digits. With these conventions in
mind, we proceed to an exposition of the more comprehensive input and output

procedures,

3.4, The Format Procedure

3.4.1., Introduction

The format procedure provides the basic information to the input/output
procedures for the placement and scaling of information, whether it is on a
card image as input or on a printed page as output.

In the following section, the complete syntax of the format procedure is
given in the same notation used for the ALGOL Report; a discussion of the
meanings and uses of the various constructions completes the coverage of the

format procedure,

ALGOL page 14 - (4/5/65.)

3.4,2. Syntax

<format call> ::= FORMAT (<integer expression>, <format list>)

<format list> ::= <format string> | <format list>, <format string>

<format string> 2:= <left string quote> <secondary list> <right string
quote>

<secondary list> ::= <secondary> | <secondary list>, <secondary>

<secondary> ::= <field specifier> | (<format primary>) | <unsigned
integer> (<format primary>)

<format primary> ::=<field specifier> | <format primary>, <field
specifier>

<field specifier> ::= <F-conversion> | <E-conversion> | <X-field>
| <H-field> | <void-specification> | <record

separator>

3.4.3. Semantics

<format call>: The form of the format procedure call is
FORMAT (E, "A, B, C, ...") ,
where the E represents an integer expression and the list of indefinite
length, A, B, C, ..., represents units of information concerning the form
of data. The integer expression denoted by E above identifies a logical
tape unit available to the user. It is the responsibility of the user to

satisfy this requirement.

ALGOL page 15 - (4/5/65.)

The tape numbers designated by the integer expression E correspond to

the tape units as follows:

E Unit Use

1 SYSINL (input) or SYSOUl (output) regular input (output) tape
2 SYSUT1 (A3) scratch tape

3 SYSUT2 (B3) scratch tape

I SYSUT4 (BL) scratch tape

5 SYSPP1 (B2) regular punch tape

6 SYSoul (Bl) regular print tape

7 SYsIui (A2) regular input tape

2 SYSCX1 (A5) scratch tape

The term "scratch tape" in the table means that during execution those
tapes are available to the user for whatever use he wishes.

The number‘gfg_is a special all-purpose parameter which, when used, auto-
matically causes designation of the regular input tape (SYSIN1) if the call
is readf or readmatrixf or the regular print tape (SYSOUl) if the call is
printf or printmatrixf. Using E=5 in connection with an output procedure
causes information to be written on the output tape with an indication that

it is to be punched rather than printed.

<format list>: This is a list of ALGOL strings separated by commas. No
fixed number of such strings is required in a format call, in contrast to
the normal procedure call, That is, the format procedure is considered to
have an arbitrary number of formal parameters.

Each of the strings must be enclosed in string quotes, and might appear as
"A, B, C,...", whers A, B, C, ... represents a list (of arbitrary length) of

units of informetion concerning the form of data. These units of information

ALGOL page 16 - (L/5/65.)

are field-specifiers, which prescribe a form for data, or collections of
field-specifiers enclosed in parentheses. The field-specifiers provide for
input or output of (1) numerical data in the familiar decimal notation

(as 123.76) or in “scientific notation" or exponential form (as .12376 x 103),
(2) blank fields, and (3) alphabetic-numeric information, such as titles,

headings, notes to the user, etc., or act as record separators.

<secondary>: The secondary exists for two important reasons. Both are con-
cerned with the use of a portion of a format list more than once for a given
input or output procedure call, To be realistic here, we must assume that
the secondary consists of several field-specifiers enclosed by parentheses,
and perhaps preceded by an unsigned integer. Such a secondary might appear
as
3(Py, Py, P3)

where the Pi are field specifiers. This has the same effect as the format
list

(Pl, P2, P3), (Py, Pz, PB)’ (Pl, P, P3)
and, except in the case mentioned below, the same effect as

Pis Py Pys Pys Ppy Py, P, By, Py

The other use for the secondary enclosed by parentheses occufs when an in-
put or output procedure call lists more variables than are listed in the con-
trolling format procedure call, When the format list has been exhausted but
the input‘or output list has not, then control of format goes back to the
last left parenthesis before the end of the format list, and input or output
proceeds according to the field specifiers to the right of this left paren-

thesis.

ALGOL page 17 - (L/5/65.)

<primary>: The primary consists of a single field specifier or several
field specifiers separated by commas. It should be apparent that in many

cases a primary is also a secondary (e.g., when it consists of a single

field specifier).

<record separator>: The record separator is a slash or a series of slashes.
Since j‘.nput is in the form of card images on magnetic tape, each slash in
the format list causes reading of a new card image; for output, each slash
causes a new line of printing or punching to be started. The first field
of the new record is that specified by the first field specifier following
the record separator. In general, n successive slashes will cause n-1
blank lines on the printed output or n - 1 successive cards not read,

The format procedure call must account for every colum in the unit re-
cord with which it is concerned. With input, the originating medium is a
card, so every colunn on the card must be accounted for, beginning with
column 1 and continuing through the last column containing information of
interest. The Translator assumes that unaccounted for columns remaining
to the right in a card image are of no interest. For example,

FORMAT (7, "F 10.4, 3 F 15.6, 5 X, F 10.4, 10 X")
accounts for all 80 columms on the card, even though the last 10 (71-80)
colums are to be skipped and not read. We can accomplish exactly the same
thing by
FORMAT (7, “F 10.4, 3 F 15,6, 5 X, F 10.4")

On the other hand, we cannot ignore leading blank fields (or X-fields,

generally). Thus,

FORMAT (7, “F 10.4, 5 X, F 10.4")

ALGOL page 18 - (4/5/65.)

and
FORMAT (7, "10 X, F 10.4, 5 X, F 10.4")
are not equivalent.

The same general idea is true for output, the essential difference being
the fact that instead of reading card images, we are printing lines of char-
acters, 132% characters per line, or punching cards, 80 columns per card,
and every space must be accounted for. Again all unspecified spaces to the

right of specified fields are left blank.

3.5, Field Specifiers

3.5.1, Syntax

<F-conversion> s+:=F <unsigned integer> - <digit> | <unsigned integer>
F <unsigned integer> . <digit>

<E-conversion> ::= B <unsigned integer> . <digit> | <unsigned integer>
E <unsigned integer> - <digit>

<X-field> s 1= <unsigned integer> X

<H-field 12— <unsigned integer> H <proper string>

<record separator :3= /| <record separator>/

3.5.2. Semantics

<F~-conversion> *
The F-conversion field specifier is of the form nFw.d, where n , W,

and 4 are unsigned integers. If n= 1, it may be omitted.

s#the first character of every output record to be printed is used as carriage
control by the 1401l. So at most 131 characters per line can actually be

printed.

ALGOL page 19 - (4/5/65.)

The n 4in this field specifier denotes the number of such consecutive

fields; hence 3F10.3 is equivalent to
F10.3,F10.3,F10.3,
and 1F10.3 is equivalent to simply F10.3.

The w in this field specifier indicates the total width of the field
in number of characters. The appearance of numbers in the F-conversion is
the familiar form of a sequence of decimal digits in which there appears one,
and only one, decimal point. Hence, the total characters in the field must
include the decimal point. A number in this conversion may be either plus
or minus, so W must also include one column count for the sign.

For input the plus sign may or may not be punched at the discretion of
the user; the minus sign must be punched and must precede the most signifi-
cant digit in the field.

For output, the plus sign will not be printed; the minus sign will be
printed in the first column to the left of the most significant digit in the
field. Leading zeroes will not be printed.

The d in the field specifier denotes the number of digits to the right
of the decimal point. This number does not include space for the decimal
point itself. d must not be greater than 20.

For example,

format (6, *F 8.4, F 6.2, F 10.3’)
specifies a set of three fields, of 8, 6, and 10 colums respectively. In
the first, 4 digits lie to the right of the decimal point (which takes up one
column itself). This leaves, of the original 8 columns, one more for the sign

and 2 for digits to the left of the decimal point. In the second, 2 digits

ALGOL page 20 - (4/5/65.)

lie to the right of the decimal point and 2 to the left, leaving, of the
original 6 colums, one for the sign and one for the decimal point. In the
third, 3 digits lie to the right of the decimal point and 5 to the left.
Suppose we wish to print -12.1372, 21.63, and + 17238.312 according to the

above format specification, With b representing blank spaces, our printed
line would look‘like this:

~12.1372{b 21.63(17238. 312

field 1 [field2] field 3

<E-conversion>.
The E-conversion field specifier is of the form nEw.d, where n, w and
d are unsigned integers. As with the F-conversion, if n= 1, it may be
omitted,
The n in this field specifier denotes the number of such censecutive
fields; hence 3 E 13.7 is equivalent to
E 13.7, E 13.7, E 13.7,

and 1 E 13.7 is equivalent to E 13.7,

Again paralleling the F-conversion, the w denotes the entire width of the

field in number of characters., The appearance of numbers in the E~conversion
resembles the form widely known as "scientific notation," a decimal fraction
followed by an exponent of 10, as, for example, |
.78325 x 103,
The exact form of numbers in the E-conversion is
+.dd... d Etee,
where d's represent decimal digits, the E implies "exponent follows" and the

eeé represents a two digit exponent of 10. The two sign positions, one for

ALGOL page 21 - (4/5/65.)

the number itself and one for the exponent, are indicated by +. Note that
every number in this conversion has at least six columns of its field used
for "bookkeeping! symbols:

+ . E tee
Hence, if a field were specified as B 13.7, the field would be 13 columns
wide, only 7 of which can contain digits of the number put into this conver-
sion. Similarly, E 14.9 is an invalid field specification, since only
1, - 6 = 8 columns are available for digits of the number. A specification
of E 14.3 does not use all 8 of the columns available to it for placement of
significant digits of the number.

For example, if we want to place -138,714.31 into E-conversion form in a
field 14 columns wide, we specify E 14.8, and we have

-.13871431E+06.
A field specification of E 12.6 results in
- 13871LEH06,
and one of E 14.6 results in
-.13871LLbbEH06.
In both these last cases, information has been lost in the conversion (the
last two digits, 31, of the original number) .

The F-conversion and E-conversion are the only conversions presently pro-
vided with ALGOL for input/output of numerical information, and integers as
data have not been mentioned. There is no special integer conversion, but
integers can be handled through either the F-conversion or the W"
For example, the integer 317 becomes, in F 5.0 conversion

+317 or b317

ALGOL page 22 - (4/5/65.)

It is important to note that the sign and decimal point must be accounted for.
The same number in E 9.3 becomes

+.317E4+03 or b,317EbO3;
in this case, we have had to provide for the 6 character spaces always pre-
sent in the E-conversion. In the E-conversion, d must not be greater than 30,
<X-field>.,

The X-field specifiér is of the form nX, where n is an unsigned integer.
The X-field is a field of n blank spaces. The n cannot be omitted, even
if it equals 1.

The X-field makes it easy to space printed output as desired, and permits
skipping of unwanted information on input cards. For example, suppose we
have cards with six 10-column fields (beginning in column 1) and we wish to
read only from the second, third and fifth fields. Assume the data in these
fields are in F 10.4 conversion. The format call will look like this:

format (6, '10X, 2 F 10.4, 10X, F 10.4").

A readf call of

readf (4, B, C)
will cause the data in fields 2, 3 and 5 to be stored as variables A, B and
C, respectively. Note that in the format call above, the sixth field has not
been accounted for, and need not be.
<H-field>.

The H-field specifier is of the form
nHss...s,

where the n is an integer and the ss...s is a proper string; i.e., the
SS...5 is a list consisting of any n characters available in the character

set, except the escape symbols.

ALGOL page 23 - (L/5/65.)

The use of the H-field is primarily to print labels, titles, variable
names, etc., so as to make interpretation of printed output easier. For
example, | K

FORMAT (7, "23 HbCOMPUTEDbAVERAGESbb=bb, F 12.4"),

PRINTF (AVG)
will cause the 23 characters, including blanks, following H to be printed,
followed by the current value of the variable AVG in F 12.4 conversion. If
AVG = 138.7642, we would have

bCOMPUTEDLAVERAGESbb=bbbbbb138. 7642
as the printed output. ﬁ
The user is responsible for assuring that n is precisely the number of

characters he intends to be in the H-field.

WARNING: The first character of each output record is used by the 1401

as a carriage control character.

3.6. The Input and Output Procedures
2.6. . _Introduction

The input and output procedures must each be preceded by a2 format proce-
dure call in order for the computer to be able to correctly position and
scale the input or output information, as the case may be. The ;et of sim-
plified input/output procedures assumes a standard format, so that the user
need not concern himself with providing formats for them. Indeed, he cannot,
since the simplified procedures ignore all formats. Complete information on

all input/output procedures follows.

ALGOL page 24 - (4/5/65.)

3,6,2. Syntax

<read call> ::= READ (<input list>)

<readf call> : 1= READF (<input list>)

<readmatrix call> s 3= READMATRIX (<array identifier list>)
<readmatrixf call> : ;= READMATRIXF (<array identifier list>)
<input list> . ::=<variable> | <input list, variable>

<array identifier list> :i=<array jdentifier> / <array identifier list>,

<array identifier>

3,6.3. Semantics

<read call>: The form of the read procedure call is

read (a, by Cy eoe)
where a, by, C, <. represents a list of variables, simple or subscripted,
separated by commas. The variables must have been previously declared. They
are read from card images on the input tape (number 7) ignoring any format
calls which may appear in the program. Te procedure does not start reading
automatically from a new card, but accepts ALGOL numbers in any defined form
(see the ALGOL Report, section 2.5, Numbers), separated by a comma, three
blanks, or the end of a card (column 72), continuously until the input list
is exhausted. Further calls for the read procedure cause continuation of

reading the same card, not for a new card.

<readf call>: The form of the readf procedure is jdentical to that of the
read call, The difference between the two is that the readf procedure reads

input according to the 1ast executed format procedure call.

ALGOL page 25 - (L/5/65.)

<readmatrix call>: The form of the readmatrix procedure call is

readmatrix (a,0,Cyeece)
where a,b,c,.... are array jdentifiers., The procedure reads elements of an
array in such a way that the last index changes first, then the preceding
one, etc, The elements are acceptable in any ALGOL number form, separated

by three blanks, a comma, or the end of a card (colum 72).

<readmatrixf call>: The form of the readmatrixf procedure call is identical
to that of the readmatrix., The difference between the two is that the read-

matrixf procedure reads input according to the last executed format procedure

call.

<input list>: The form of the input list is
A, B, C, ...

where A, B, G, ... represents a series of previously declared identifiers.
They may be simple variables or elements of an array; in the latter case, the
subscripts must be present, as for example a (2,3) and b (7,6). The array
jdentifier above, without the subscripts, is not acceptable.

The user should keep in mind that the format procedure call not only con-
trols the form of the data but also prescribes the logical tape number from

which the data is read (see section 3.4.3.).

ALGOL page 26 - (4/5/65.)

3.6.4. Syntax

<print call> ::= PRINT (<output list>)

<printf call> ¢ 1= PRINTF (<output list>)

<printmatrix call> : = PRINTMATRIX (<array identifier list>)
<printmatrixf call> +:— PRINTMATRIXF (<array identifier list>)
<output list> ::= <arithmetic expression> | <output list>,

<arithmetic expression>
<array identifier list> ::= <array identifier> / <array identifier list>,

<array identifier>

3.6.5. Semantics
<print call>: The form of the print procedure call is

print (B, Ep, vee)
where Ey, Ep, ... represents arithmetic expression. The procedure evaluates
the arithmetic expressions at execution time and places the results on the
output tape for the off-line printer according to the standard format list

'1X, SElL.T7'

<printf call>: The form of the printf procedure call is

printf (Ey, Ep, ...)
where the Ey, Eg, ... represent arithmetic expressions. Despit.e' its name,
the procedure can be used for various output tasks, such as placing inter-
mediate results on scratch (utility) tapes, placing card images on the punch
output tape for punching into cards, or printing output on the off-line
printer, depending upon the logical tape unit prescribed by the last executed
format procedure call preceding the printf procedure call (see section 34.3.)

which also controls the data transmitted.

ALGOL page 27 - (4/5/65.)

<printmatrix>: The form of the printmatrix procedure call is
printmatrix (a,b,c,....)

where a,b,c,.... are array identifiers. The elements of the array are printed
by rows on the off-line printer according to the standard format list

'5F14.7!
Hence, the 2 x 3 matrix a will be printed as

811 412 813 32 2

agy

<printmatrixf>: The form of the printmatrixf procedure call is
printmatrixf (a,b,c,....)
where a,b,c,.... are array identifiers. The elements of the array are out-

put to the tape unit specified by the last executed format procedure call

preceding the printmatrixf procedure call, which also controls the format of
the data thus transmitted.

<output list>: The output list consists of arithmetic expressions of any
kind, separated by cammas, but cannot be void. That is, an output procedure
such as
printf() .

is not valid, even though the controlling format may consist entirely of an
H-field. Carriage control characters for the 1401 may be inserted into out-
put records by using an F1,0 field specifier. For example,

FORMAT (1, "F1.0, HPAGE HEADING")

PRINTF(1)

ALGOL page 28 - (4/5/65.)

will produce the following output line

1 PAGE HEADING
The numeral 1 in the first character position will be used by the 1401 for
carriage control and will cause a page to be ejected before the heading is

printed.

3.7. Data

The actual introduction of data into the computer is handled by subroutines
of the Operating System (see section 5.), and requires the use of one basic
control instruction

$ DATA
which must appear on a card, with the $ in colum 1, and must immediately
follow the last card of the ALGOL source program. The data cards then follow
the $ DATA card. Form of data has been discussed in Sections 3.3., 3.4.,
and 3.5. The $ DATA card is not required if the program has no associated
data.

L. Procedures

4.1. Introduction
One of the most useful features of ALGOL is the ease with which subpro-

grams or pieces of programs that are frequently used can be included in a
given ALGOL program by means of the ALGOL procedure. There are generally two
types of procedures which will be considered for use by ALGOL users:

1) those written jin ALGOL and

2) those written in some other source language.

We consider each in turn.

ALGOL page 29 - (4/5/65.)

4.2. Procedures written in ALGOL

These procedures present no unusual problems. They should be written in
accordance with the description of procedures in the ALGOL Report and trans-
literated for machine use as described in the section of this manual con-

cerned with hardware representation.

4.3. Procedures written in other source languages

This type of procedure can be incorporated into an object program produced

by the ALGO Translator. However, the user must write such a procedure so as
to be compatible with the translator-produced object program. The information
necessary to do this may be obtained from the ALCOR-ALGOL reference manual

which is on file in the programming systems library in Computer Sciences Center.

ALGOL page 30 - (4/5/65.)

5. The IBSYS Operating System and the ALGOL Translator

The Translator runs under the control of the IBSYS Operating System and
many of the "housekeeping" chores for the Translator such as the manipula-
tion of magnetic tapes, loading the translated program for execution, pro-
céssing error conditions, and input/output conversion are performed by the
common routines of the system.

The 7094/1401 computer system at the Computer Sciences Center, is oper-
ated on an open-shop programming and closed-shop operating basis. This
means that the user must submit his program, punched into cards, to the
Computer Sciences Center for rumning and cannot have direct access to the
computers. The programs submitted are arranged in "batches" of many jobs,
placed on magnetic tape by the 1401 computer, and processed one after the
other by the 7094. Every job must, then, be appropriately identified with
a program ($ID) card. This card is described in Appendix A. Since the
system must be informed what processing is to be carried out on the job
following the $ID card, $ control cards must be placed before that job,
The control cards necessary for translation and execution of an ALGOL pro-

gram are described in Section 6.3.

6. Procedure for Submitting an ALGOL Job

6.1. Introduction

This section concerns the details of actually preparing an ALGOL source
program for entry into the computer. Of necessity, the source program must
be punched into cards, appropriately identified, accompanied by certain

IBSYS control cards, and properly submitted at the dispatching room.

AIGOL page 31 - (L/5/65.)

The sole object of this section is to make this ALGOL Manual self-
contained, in that if a potential user knows how to program in ALGOL, then
all the information he needs to put an ALGOL job on the computer is avail-
able to him in this manual. If he requires more than this minimum body of
information concerning non-ALGOL portions of the operating system, sub-
routine library, etc., then he will have to look to other publications, The
procedures outlined in this chapter may be changed in time, so the reader

is cautioned to assure that he has the latest version.

6.2. Coding and Keypunching

Assuming that the user has completed the planning of his program, the
next step is to place the ALGOL statements on a coding sheet so as to
facilitate keypunching. We assume that BCD cards are used as the primary
input medium of the source program. Hardware ALGOL is a one-dimensional
continuum, so placement of the statements on cards has no meaning of any

kindo That is,
'BEGIN' 'REAL' VOLUME, PRESSURE, TEMPERATURE., 'INT

EGER' NUMBER, EXPERIMENT, DATE., 'REAL' 'PROCEDURE®
INTEGRATION (ALPHA, BETA, GAMMA).,

is as acceptable and meaningful as
'BEGIN'
'REAL' VOLUME, PRESSURE, TEMPERATURE,.,
' INTEGER' NUMBER, EXPERIMENT, DATE.,
'REAL' 'FPROCEDURE!
INTEGRATION (ALPHA, BETA, GAMMA).,
even though the second version is somewhat more readable for humans.

Except in strings, blanks have no meaning in AIGOL, so blanks can be in-

serted at will, to make it easier to human readers to read and understand

ALGOL page 32 - (4/5/65.)

an ALGOL program. Since placement of the ALGOL statements on cards is
strictly a matter of personal preference, there are no special ALGOL coding
forms. The only restriction to placement on cards is that columns 73-80
should not contain ALGOL symbols; these columns are used strictly for iden-

tification, and are not read by the Translator. Use of this field for iden

tification is optional with the user; they may be left blank if so desired.
It is, however, suggested that some numbering system be used in this field
to assure that the cards are in their proper order.

For examples of ALGOL programs that have been translated and executed,
and whose structure is apparent to the human reader, see Appendix D of this
manual. In order to make the various parts of the programs more easily
understood by human readers, liberal use has been made of the comment word

symbol and comments after the final end of the programs.

6.3. System Control Cards for ALGOL
6.3.1. The $ID card

This card is same $ID card that is used for all Computer Sciences Center
systems, It must be the first card of every job. The $ID card is described

in detail in Appendix A.

6.3.2. The $EXECUTE ALGOL card

This card is required on all ALGOL jobs. The form of the card is:

1l 16
$EXECUTE AIGOL

When this card is read by IBSYS the first record of the ALGOL subsystem is
read into core storage and control is relinquished to it. Any $-control
card which appears after the $EXECUTE card is processed by the ALGOL system
itself.

ALGOL page 33 - (4/5/65.)

6.3.3. ALGOL Monitor Control Cards
a) The $COMPILE ALGOL Card.

This card is required for every ALGOL source program, It
causes translation of the source program that follows this

card.

b) The $NOGO Card.

This card causes the source program to be translated if
there is a $COMPILE ALGOL card present but execution will
be deleted. The option $GO may be used to indicate that
execution is desired after translation. GO is redundant since
the monitor always assumes that execution is desired unless

$MOGO appears in the deck.
¢) The $DECK Card.
This card requests that a binary object deck be punched for

the program being translated.

d) The $DUMP Card.
This control card option permits one area of memory to be
dumped if the program is terminated for any reason other
than a normal exit. The form of the card is:

1
$DUMP(OCT1,0CT2,M)

OCTL and OCT2 are two octal addresses, and the area between
OCT1 and OCT2 will be dumped in mode M which is interpreted

as follows:

ALGOL page 34 - (L/5/65.)

OCTAL

BCD

SQUEZY - mnemonics with address & tag
SQUEZY and OCTAL

OCTAL and mnemonics

OCTAL, mnemonics, and BCD

i

mn

I

ERErRRERER
I
oMWW

e) The $DATA Card,
If the program contains data, then the data must be preceded
by a $DATA card.

Any of the above dcscribed ALGOL Monitor options with the exception of
$DATA may be combined on one §$ control card. The options are separated
by commas, For exzmple:

$COMPILE ALGOL, DECK,DUMP(4327L,77777,6)
has the same effect as three separate cards

$COMPILE ALGOL

$DECK

$DUMP(43274,77777,6)

6.4. Data Cards

The control card $DATA need be present only if data cards for the
ALGOL program are prescnt. Of itself, the $DATA card does not cause any
activity on the part of the monitor or the Translator but simply states
that the cards which follow contain data intended to be read by the immedi-
ately preceding ALGOL program.

The data cards themselves should be punched in accordance with the format

procedure call which describes them (see section 3.4.).

AIGOL page 35 - (4/5/65.)

6.5. Binary Cards and ALGOL

Generally speaking, there are two distinct uses to which binary cards
are put: for entire compiled (translated) programs and for subroutines for
a source program written in some language other than binary.

If a user gets, by use of the system control card $DECK, a binary deck
of his translated object program, then he may use this binary deck whenever
he chooses without further reference to ALGOL.

If, on the other hand, a user has a subroutine on binary cards, no matter
where he got it, he must satisfy the requirements for the use of the contents

of the binary deck as a code procedure. These requirements are described in

detail in section 4.3.

6.6. Library Routines on Tape or Cards

The subroutine library is at the disposal of the ALGOL user through the

code procedure declaration., This facility is not yet available, but will

be in the near future; at that time, specific instructions for its use will

be available as a replacement for this section.

ALGOL page 36 - (4/5/65.)

6.7. Typical Deck Makeu

yd

'/ DATA CARDS
/ $DATA
yautl '

/ ALGOL SOURCE PROGRAM

e

$COMPILE ALGOL,DECK

/ $EXECUTE ALGOL

COMMENTS TO OPFERATORS

$ID CARD

The control cards shown here will cause the ALGOL source program to be
translated and produce a binary object deck. Also the absence of the NOGO

option specifies that execution is desired if there are no fatal translation

errors.,

ALGOL Page 37 ~ (4/5/65.)

Z. Errors and Error Messages

1.1, Introduction
The most simple-minded translating programs simply reject a source pro-

gram when an error in syntax has been found. Such a summary dismissal of
an erroneous source program can be a frustrating and time-consuming ex-
perience for the user, so more soﬁhisticated translators now perform ex-
tensive syntax analysis during translation of the source program, and at-
tempt to "fix" the source program where errors are detected and continue
translation. Obviously, with a language such as ALGOL wherein redundancy
is purposely minimized, only minor errors can be repaired, and a truly

gross error can only result in abortion of the translating attempt.

7.2, Classes of Errors and Their Detection

7.2.1, Syntax Error

Suppose
if (Boolean Expression) then Expression E,; else Expression E,

appears in a source program; the semicolon after E, obviously is out of

place, and a well-designed translator can recognize this, disregard the
semi-colon, and translate the statement correctly. On the other hand, if
the programmer omits every end in a multiple-block program, the translator
normally has insufficient information on which to base an attempt at in-
serting the missing end's, and so must abandon its attempt 2t translation.

That is, a sequence of begin's

begin
begin
begin
begin
begin

ALGOL page 38 - (4/5/65.)

might be interpreted in several ways as far as block structure is concerned.

Consider

begin end begin end begin end

begin end begin end end

end end end
end begin end.

These are just a few of the several structures five begin's can imply; no
computer program can be expected to pick the correct one in a given case.
Perhaps the foregoing example is far-fetched. Consider the case where
'BEGIN' is written BEGIN, BEGIN is then nothing more than another iden~
tifier, and has lost its identity as a basic ALGOL symbol. Presumably,
under such circumstances an 'END! will appear, and have no 'BEGIN' to
be matched with. It is not reasonable to expect such errors to be repair-
able, since the identifier BEGIN could legitimately be used in the same pro-

gram in which the mistake might appear.

7.2.2. Semantic Error

A second type of error likely to occur, apart from syntactical or
"grammatical" errors, is the case in which the program simply does not do
what the user had intended. The source statements may very well constitute
a valid ALGOL program, the Translator may translate it correctly, the data
may be perfectly acceptable--but the results are not those expected.

Such an error condition can never be detected by anyone or any machine

unless he or it knows what the programmer meant to tell the computer to do.

ALGOL page 39 - (4/5/65.)

At present there is no alternative to a careful examination of the struc-
ture of the source program by the user or programmer. In some programming
systems, a trace mode is provided to aid the user in following through the
action of the program. There is no such special device available for ALGOL
users, but a liberal use of print calls at appropriate points in the pro-

gram will accomplish the same end result.

1.2.3. Errors Detectable Only During Execution

A third type of error which from time to time appears is a pathological

condition during execution after a successful translation. This can result
from two somewhat related occurrences. The first cause could be that the
data introduced into the machine were not within the domain of the data for
which the program was written. The second is that, although the syntax of
the ALGOL source program is correct, the semantics of the program is not;
that is, the statements are grammatically correct but under certain circume

stances the program can enter a loop and never come out of it. An example;

begin real a; 0;
as=
again: a :=a + 1;
go o again; print (a)
end

Syntactically, this is a perfectly good ALGOL program, but it will run in-
definitely; it can never reach the print procedure call because the go to
statement will always send control back to statement "again". Hence, this
type of error will show up only during actual operation of the object pro-
gram. This type of error cannot, then, be detected at translation time, and

must be dealt with by a "post mortem" on the "dead" object program,

ALGOL page 40 - (L/5/65.,)

Note that there is only a fine distinction between this last error type
and that discussed in Section 7.2.2. The essential difference lies in the
fact that the first need not stop execution of the program, whereas the
second will either stop execution or make the computer perform in such a
peculiar manner (as an indefinite loop) as to require operator interven-

tion.

7.2.4. Machine and/or Translator Errors

Certain error conditions are not necessarily due to negligence on the
part of the programmer, but rather to limitations inherent in the Trans-
lator. The most obvious limitation is that on the length of program, or
portion thereof, imposed by the size of the computer's core memory, which
is, of course, not infinitely large. Such error conditions can frequently
be corrected by minor alterations to the source program, If changes are
impossible or impractical, then a talk with the programmer charged with
maintenance of the Translator is in order. If no such individual exists s
then the thwarted user is referred to the hogm@er's Manual, which de-
scribes the structure of the Translator in some detail and contains infor-
mation for dealing with these error conditions.

Finally, it must be pointed out that computers are only machines and are
not infallible. They make mistakes. To be sure, the incidence of computer
errors is low when compared to that of humans, and the design of the machine
is usually such that errors of this nature are detected, but nevertheless ’
the user should expect, from time to time, to find that his program did not

run and that the failure was actually due to machine trouble. The remedy is

ALGOL page 41 - (4/5/65.)

simple: report a suspected machine error to the consultant on duty and try
to run the program again after the computer has been checked and verified
as accurate. A tolerant attitude toward machine errors will make life more

pleasant for the camputer user.

7.3. Error Messages

The various error typeé discussed in the preceding sections which are
detectable by this Translator are reported to the user by means of printed
érror messages, along with whatever other printed information he has re-
quested (See Section 5.).

The Translator numbers consecutively every card image of an ALGOL source
program, and the output from every program submission contains these num-
bered card images, otherwise exactly as they were punched into the cards,
The numbered card images are particularly helpful in analyzing programming
errors when they occur.

Figures 7.1 and 7.2 show typical output for erroneous programs,

AIGOL page 42 - (4/5/65.)

AICOR-ILLINOIS 7090 ALGOL COMPILER

1 '‘BEGIN' REAL' !'PROCEDURE' B(X)., 'INTEGER' X., 'CODE' .,
2 'REAL! C.,
3 ¢ 'PROCEDURE' M(X)., 'COD®E!,,
L M(3)., M(IABEL).,
Z LABEL.. C.= B(3).,
7 'BEGIN' 'REAL' AZ.,
8 'EEAD' 'ABRRAY' A(/1.0.10,SIN(3.0,6.3).. B, AZ..
B(LABEL) .,
9
10 'END!
n 'END!
12 'FINIS!
CARD NO. SYNTACTICAL FRRORS IN ALGOL PROGRAM
8009 8 TLLEGAL OCCURRENCE OF CHAR. UNDEFINED DELIMITER IN OR AFTER
STATEMENT FOLLOWING A BLOCK BEGIN ., IT HAS BEEN DROPPED FROM
THE SOURCE PROGRAM,
1 8 ILIEGAL CONSTANT. TWO PERIODS. THE CHARACTER FOLLOWING IS
21 8 ARRAY DECLARATION. BOUND PAIR SEPARATORS NOT RIGHT
2026 8 CALL OF FUNCTION OR PROCEDURE, THE NUMBER OF PARAMETERS IN
: SIN WITH KIND REAL CODE FUNCTION WITH PARAMETERS DIFFERS
FROM PREVIOUS USE
1012 8 IDENTIFIER B IS NOT SIMPLE OR FUNCTION WITHOUT PARAMETERS
1030 8 IDENTIFIER AZ IS NOT DECLARED OR IS UNDEFINED AT THIS
POINT
2003 8 CALL OF FUNCTION OR PROCEDURE. ACT. PAR. IABEL (LABEL)
NOT COMPATIBLE WITH FORMAL PAR. (INTEGER SIMPLE)
8012 8 A ARRAY DECLARATION IS ENDZD BY A ., BUT IS NOT COMPLETED.

FIGURE 7.1.

ALGOL | page 43 - (4/5/65.)

AICOR-ILLINOIS 7090 ALGOL COMPILER

1 'BEGIN' 'REAL' A,B,C.,
2 A=A(1).,
3 B= A(2).,
L 'GOTO* A., C=A(3).,
5 1GOTO' A., A(L).,
6 'GOTO' A., A(L).,
7 'END' 'FINIS'
CARD NO. SYNTACTICAL ERRORS IN ALGOL PROGRAM
1031 2 IDENTIFIER A IS NOT ARRAY OR FUNCTION WITH PARAMETERS
L0146 3 IDENTIFIER A WAS USED TWICE WITH THE SAME WRONG TYPE OR
KIND. TO SAVE SPACE SUCH ERRORS ARE ONLY PRINTED THE FIRST
TIME THEY OCCUR, CHECK PROGRAM
1025 L IDENTIFIER A IS NOT LABEL
1009 5 IDENTIFIER A IS NOT ARRAY OR PROCEDURE WITH PARAMETERS
9001 THE FOLLOWING TOLERATED CHAR, WERE USED IN PROGRAM., =

FIGURE 7.2.

8. A Feature of ALGOL Not Implemented, own

The type declaration own has not been implemented in the Translator and
will, therefore, be ignored and passed over as if it were not present if it
appears in a source program.

No plans exist at present for the implementation of this ALGOL feature,
However, a judicious use of global variables should make it possible for the
careful programmer to accomplish the same thing as would be accomplished by
the use of own. That is, by keeping "own variables" global, instead of local

to certain blocks, they remain defined throughout execution of the program.

ALGOL page L - (4/5/65.)

APPENDICES

Appendix A,
Deck Identification Card Format

Columns 1-3 $10

Colums 4-6 must be blank

Colums 7-72 Accounting information arranged in five fields and
separated by asterisks as described below.

Example 1:
$ID 70777%#2%20%15%James Arnold—C.S. 200

The first parameter is an account number assigned by Computer Sciences
Center to each project or course. This is either a four or five digit
number. The first digit must be punched in column seven.

The second parameter is an estimate of the maximum 7094 processing time
(in minutes) required by the Jjob. This estimate includes all compilation
time and program execution time. If the actual run time is less than the
estimate, the user is charged only for the time used. If the run time ex-
ceeds the estimate, the job is automatically terminated but only the estie
mated time is charged to the users account.

The third and fourth fields contain estimates of the maximum output that
will be produced by the object program. The first is an estimate of the
number of pages to be printed (60 lines per page) and the second an estimate
of the number of cards to be punched., These estimates are only for executione
time output. Program listings, binary object decks, and any other system
outputs are excluded from this estimate. If either of these estimates is
exceeded the job will be automatically terminated with the message "OUTPUT
ESTIMATE EXCEEDED".

The last field contains the name of the person submitting the job followed
by the name of his department and course number (if any).

The above example indicates that the job is to be charged to account num-
ber 70777, will require no more than 2 minutes of computer time, with output
a maximum of 20 pages and 15 punched cards, and is to be returned to
James Arnold. Notice that leading zeros are not required. In fact a zero
parameter may be indicated by two consecutive asterisks. For example:

$ID 1106%20%1200%*Raymond Crawford—E.E.

This card specifies a 20 minute time estimate, a maximum of 1200 pages of
output and no punched cards.

ALGOL page 45 ~ (L/5/65.)

Appendix A. (cont'd.)

Every job deck submitted to the Computer Sciences Center for processing
must include an $ID card. This card must be the first eard of the deck and
it is very important that it be punched exactly as described above. Several
routines within the system scan this card prior to processing and, if in-

consistencies are detected, reject the job. If this occurs > the message
"ILLEGAL ID CARD" is output for the offending job.

ALGOL page L6 ~ (4/5/65,)

Appendix B.

Bibliography on ALGOL-60

1. "Introduction to ALGOL," Baumann, Samelson, Bauer and Feliciano,
Oak Ridge National laboratories.

This is the revised and extended version of the ALGOL Manual
of the ALCOR group, translated from the original German at
Oak Ridge National laboratories, It is a tutorial paper of
seme 100 typewritten pages and is by far the best presently
aveilable, in the writer's opinion, for individual study by
persons not previously familiar with ALGOL or any cther
similar automatic programming language. It is well-written,
and on an elementary level.

2, "Structure and Use of ALGOL-60," H. Bottenbruch, Journal of the

Association for Computing Machinery 9 (April, 1962), p, 1l6le221.

This is a wellewritten tutorial paper by a staff member of
Oak Ridge National Laborafories. It is somewhat more advanced
in presentation than [1], and for this reason is not recommended
for persons who have no previeus knewledge of programming,
However, it is highly recommended for programmers desiring a
complete exposition of the subject of the structure and use of
the ALGOL language. This publication is available from the

Digital Computer laboratory as a reprint to qualified users,

ALGOL page 47 - (4/5/65.)

Appendix B.

Bibliography on ALGOL-60 (cont'd.)

3. "An Introduction to ALGOL-60," H. R, Schwarz, Communications of
the Association for Computing Machinery 5 (February, 1962) p. 82-95.

The object of this paper is to explain the ALGOL Report with
descriptions of the syntactic structures and examples., It is
‘not intended to be a complete introduction to programming via
ALGOL, and is not, therefore, recommended as a first paper on
the subject. It should prove valuable, particularly in under-
standing the ALGOL Report, to those who have already read [1],
(2], [6], or [7]. This paper is available (September, 1963)

as a reprint from the ACM.

L4e "Introduction to ALGOL and its Application," H. Rutishauser, File
No. 452, DCL, University of Illinois, May 4, 1962.

This is a paper describing the structure of the ALGOL language
and is exceptionally rich in non-trivial expository examples.
In view of the ready availability of [1] and [2], this paper
can only be recommended as supplementary reading material,

Limited copies are available at the DCL to qualified users,

5. "An Introduction to ALGOL-60," M. Woodger, Computer Journal 3 (1960),
p. 67"75-

This paper is an effort to make understandable the ALGOL Report
and as such, it succeeds. It can be recommended only as supple=-

mentary reading material,

ALGOL page 48 ~ (4/5/65.)

Appendix B.

Bibliography on ALGOL-60 (cont'd.)

6. "A Primer of ALGOL-60 Programming," E. W, Dijkstra, Academi
Press, 1962. :

This is 2 text explaining the structure and use of AIGOL and
jncludes the version of the ALGOL Report published in May, 1960

in Commmications of ACM, It is rather expensive ($6.00).

7, "A Guide te ALGOL Programming," by D. D, McCracken,
John Wiley and Sens, Inc., 1962,

This is a text, including examples and problems (solutions
for which are previded), and is one of the best commercially
availablg fer the beginning programmer. Rather than an ex-
position of ALGOL in great detail, this publication is a text
on programming computers which uses ALGOL as the progremming
language,

ALGOL page 49 - (4/5/65.)

ALGOL Symbol
ABl...|z
a.lbl.. .l z
olr{2|...|9
true

false

+

~ ™

i A

1\

m v

v

ALGOL

Appendix C.

Symbol Name
upper case alphabet
lower case alphabet
numerals
Boolean true
Boolean false
plus sign
minus sign
multiplication sign
division sign
integer division sign
exponentiation
less than
less than or equal to

equal to

greater than or equal to

greater than

not equal to
logical equivalent
logical implies
logical or
logical and

logical negation

Hardware Representation of ALGOL-60 Elements

Hardware Rep.

Alg|c]...]z
oj1}2...J9
'TRUE!
'FALSE'

+

//

' POWER!
'LESS !

'NOT GREATER'
'EQUAL®
'NOT LESS!
'GREATER!
'NOT EQUAL'
'EQUIV!

1 IMPL!

10R!

1AND!?

'NOT!

Tol. Hrdwe Rep.

1St
110!
I
16Q*
'GR!
NQ!
'EQV!
VIMPt

page 50 - (L4/5/65.)

Appendix C,

Hardware Representation of ALGOL-60 Elements (cont'd,)

ALGOL Symbol Symbol Name Hardware Rep. Tol. Hrdwe Rep.
£go to ‘GO TO!
if 'IF!
then '"THEN®
§_]_-§2 1EISE!
.&E tFOR?

do 'DO!

s comma ’

. decimal point .

10 base 10 ' (apostrophe)
: colon .o

H semi-colon o3

t= assignment sign .=
#ord blank space

step 'STEP!
until YUNTIL'
while "WHILE'
comment YCOMMENT *
(left parenthesis (

) right parenthesis)

{ left bracket /

] right bracket /)

ALGOL page 51 - (4/5/65.)

Appendix C.

Hardware Representation of ALGOL-60 Elements (cont'd.)

ALGOL Symbol
§

’

begin

end
own

boolean

integer
real
array
switch
procedure

string
label

value
code

finis

Note:

ALGOL

Symbol Name
left string quote

right string quote

See Section 2. for discussion of hardware representation

Hardware Rep.
1(:

l)!

'BEGIN!
1le

1OWN!
'BOOIEAN'
'INTEGER'
tREAL!
tARRAY!
'SWITCH'

' PROCEDURE!
'STRING*
'LABEL*
'VALUE!
'CODE!
'FINIS®

and tolerated hardware representation.

page 52 - (4/5/65.)

Tol. Hrdwe Rep.

Appendix D,

les

There follow several examples of ALGOL procedures and complete ALGOL
programs. Their purpose in appearing here is to illustrate the translitera-
tion from publication ALGOL to hardware ALGOL.

Example 1. Example from Section 5.4.2, ALGOL Report.

procedure Spur (a) Order: (n) Result: (=);
value n; array 2; integer n; real s;
begin integer k;
s := O3
for k := 1 step 1 until n do

s := s +alk, k]

end

tPROCEDURE' SPUR (4) ORDER..(N) RESULT..(S).,
'VALUE' N., 'ARRAY' A., 'INTEGER' N., 'REALt §,,
*BEGIN' 'INTEGER' K.,
S .= O.,
'FOR' K .= 1 'STEP! 1 'UNTIL' N 'DO!
S .= S+ A (/K, X/)
TEND!
'FINIS®

ALGOL page 53 - (L/5/65.)

Example 2. Example from Section 5.4.2, ALGOL Report.

procedure Transpose (a) Order: (n); value n;
array a; integer n;
begin real w; integer i, k;
for 1 := 1 step 1 until n do
for k := 1 + i step 1 until n de
begin w := a [i, k];
a [4i, k] :=a [k, i];
a [k, i] :=w
end
end Transpose

*PROCEDURE® TRANSPOSE (A) ORDER .. (N)., 'VALUE' N.,
'ARRAY' A., 'INTEGER' N.,
' 'BEGIN' 'REAL' W., 'INTEGER' I, K.,
'FOR' I .= 1 'STEP' 1 'UNTIL' N 'DO!
'‘FOR' K .= 1 + I 'STEP' 1 'UNTIL' N 'DO?
'BEGIN' W .= A (/ I, K/).,
A (/I, K/) = A(/K, 1/).,
A (/K: I/) =W
TEND ¢ ‘

'END' TRANSPOSE
'FINIS!

ALGOL page 5 - {4/5/65,)

Example 3. Example 1, ALGOL Report.

procedure euler (fct, sum, eps, tim); value eps, tim;
integer tim; real procedure fct; real sum, eps;
comment euler computes the sum of fct (i) for

i from zero up to infinity by means of a
suitably refined euler transformation;

begin integer i, k, n, t; real array m [0: 15];
real mn, mp, ds; i :=n :=t := 0;
m [0] := fet (0); sum :=m [0] /2;
next term: i := i + 1; mn:=fet (i);
for k := 0 step 1 until n do
begin mp := (m + m (k])/2; m [k] := mn;

m = mp
end means;

if (abs (mn) <abs (m [n])) A(n < 15) then
begin ds :=m/2; n :=n + 1;
i3 [n] = m
end accept else
ds := mn;
sum := sum + ds;
if abs (ds) <eps then t :=t + 1 else t 1= Oy
if t < tim then go to next term

end euler

ALGOL page 55 « (4/5/65.)

Example 4., continued,

$ ALGOL
$ Go
'BEGIN' 'COMMENT' COMPLEX DIVISION USING ALGORITHM 116,
COMMUNICATIONS OF ACM, AUG. 1962.,
'REAL' R, P, Q, S, T, U., 'INTEGER' N.,
' PROCEDURE' COMPLEXDIV (A, B, C, D) RESULTS., (E, F).,
'VALUE' A, B, G, D., 'REAL' A, B, C, D.,
'COMMENT' COMPLEXDIV YIEIDS THE COMPLEX QUOTIENT OF
A + IB DIVIDED BY C + ID.,
'BEGIN' 'REAL' R, DEN.,
'IF' ABS (C) 'NOT LESS' ABS (D) 'THEN!
'BEGIN' R .= D/C.,
DEN .=C + R ¥ D.,
E .= (A+B#*R) /DEN.,
F .= (B~ A *R) / DEN
IENDI
'EISE!
'BEGIN' R .= C/D.,
DEN .= D+ R *C.,
E .= (A*R+ B) /DEN.,
F .= (B*R-B) /DEN
1END!
'END' COMPLEX DIV.,
READ (R, P, Q, S).,
COMPLEX DIV (R, P, Q, S, T, U).,
PRINT (R, P, Q, S, T, U)
1END!
'FINIS!

ALGOL page 58 = (4/5/65.)

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	44a
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	57
	58

