Lisp-Machine Data Types

34 3fe e e e ofe e e e e ofe o ofe e sfe e she e s ofe s s s o s sfe s s s s s s sfe s e o s e e ofe e e sfe e sfe e sfe s e s sl s sl sk s sl sl s e e sk s s sfe sl s s sfesfe sl sfe e e e sfesge e

This file is confidential. Don’t show it to anybody, don’t hand it out to people,
don’t give it to customers, don’t hardcopy and leave it lying around, don’t talk
about it on airplanes, don’t use it as sales material, don’t give it as background to
TSSEs, don’t show it off as an example of our (erodable) technical lead, and don’t
let our competition, potential competition, or even friends learn all about it. Yes,
this means you. This notice is to be replaced by the real notice when someone

defines what the real notice is.

The purpose of this chapter is to categorize and define all the objects that occur
in I-machine memory, both visible and invisible. The categorization of a storage
object is done according to its data type as specified by its type code. The
definitions are presented in order by Lisp-object type.

The essence of I-machine architecture is its support of the execution of the Lisp
language at the hardware level. This dictates the salient features of individual
architectural components. In particular, I-machine data representations reflect the
fact that, in a Lisp machine, every datum is a Lisp object. Every word in memory
therefore contains either a Lisp object reference or part of the stored
representation of a Lisp object. (The only exceptions are forwarding pointers and
special markers. "Invisible" to ordinary Lisp code, these are used primarily for
system memory management, including garbage collection.)

I-machine architecture is fully type coded: every word in memory has a data-type
field. The function of the data-type encoding, to be described in this chapter, is to
allow I-machine hardware to discriminate between the types of data it is operating
on in order to handle each appropriately. More information in how I-machine
instructions use different types of data is contained in another chapter. See the
section "Macroinstruction Set".

The chapter first introduces the I-machine’s basic storage unit. It then lists the
different ways that a Lisp object can be stored in memory and describes the
components of these representations. Note the interrelation between object
references and stored representations of objects: while a stored representation is
the target of an object reference, it can also contain object references as part of
its structure. This relationship reflects the nature of the Lisp language.

As part of its introduction to stored representations, the chapter discusses those
stored objects that are not object references, including those that are invisible.
This includes forwarding pointers, which are used when list or structure objects
are moved. These are discussed here, despite the fact that the structures they are
used in have not yet been defined. The general overview of data types encountered
in I-machine memory makes forward references to some structures necessary. The
reader can make use of the cross references supplied to help clarify these sections.

- After the introduction, the body of the chapter describes and defines the structure
of each of the Lisp objects that the I-machine architecture accommodates with a
specifically assigned data type. The concluding section summarizes the data-type
information.

Introduction to Lisp-Machine Objects

Lisp-Machine Data Types : Page 2

Memory Words

Length and Format

Words are the basic unit of storage on the I machine. Every item in memory,
including object references and object representations, is made up of one or more
words. Whenever we refer to an address, it is the address of some word. More
information on addresses is available elsewhere. See the section "Memory Layout
and Addressing".

A word contains 40 bits, which are assigned to the following fields:
Position Length Field Name
<39:38> 2 bits Cdr Code

<37:32> 6 bits Data Type
<31:0> 32 bits Address or Immediate Data

o R o e +
|CDR| TYPE | ADDRESS/DATA |
e oo e +
39 37 31 0

Fields

The data-type field indicates what kind of information is stored in a word. Each
Lisp object referenced by its own assigned data type is explained in detail in the
data-type section. See the section "Data-type Definitions". The functions of data
types that do not serve as Lisp object references are described in an introductory
section. See the section "Components of Stored Representations".

The address or immediate data field is interpreted according to the data type of
the word. This field contains either the address of the stored representation of an
object, or the actual representation of an object. This is explained in the sections
covering the individual data types.

The cdr-code field is used for various purposes. For header data types, the cdr-code
field is used as an extension of the data-type field. For stored representations of
lists, the contents of this field indicate how the data that constitute the list are
stored. Other uses of the cdr-code field are for instruction sequencing and for
storing information about displaced arrays. Use of the cdr code is explained in the
sections on lists, arrays, headers, and compiled functions.

Classes of Stored Object Representations

Figure OBJECT-REPRESENTATIONS illustrates the ways in which objects are
represented.

Lisp-Machine Data Types Page 3

[Figure caption: Classes of stored object representations.]

The storage structures for Lisp objects are introduced here so that the reader will
be able to see how the various data types function within them.

There are three fundamentally different ways that Lisp objects are stored in
memory. An object can be stored

e as a list,
e as immediate data,
s or as a structure.

A list object is an object built out of one or more conses. Refer to the Reference
Guide to Symbolics-Lisp for the definition of a cons. The representation consists of
a block of memory words strung together by means of the cdr codes. Often the
block consists of only one or two words, so it is important to avoid the overhead of
having an extra header word: this is why list representation and structure
representation are different. The following types of objects have list
representations:

conses,
lists,

big ratios,

double-precision floating-point numbers,
complex numbers,

dynamic closures,

lexical closures, and

generic functions

Note that there is a difference between the concept of a list as a type of structure
and the concept of the data type user::dtp-list. All the above data types use list
structure, including cdr coding (described later). Only the object references to lists
and conses use the data type user::dtp-list. (There is no dtp-cons.)

An immediate object does not require any additional memory words for its
representation. Instead the entire object representation is contained right in the
object reference. To be an immediate object, an object type must not be subject to
side-effects, must have a small representation, and must have a need for very
efficient allocation of new objects of that type. The following types of objects have
immediate representations:

small integers (fixnums),
single-precision floating-point numbers,
small ratios,

characters, and

packed instructions.

A structure object is represented as a block of memory words. The first word
contains a header with a special data type code. Usually all words after the first
contain object references. The header contains enough information to determine
the size of the object’s representation in memory. Further, it contains enough
information about the type of the object so that a legal object reference
designating this object can be constructed. Structure representation is designed to
work for large objects. Some attention is also paid to minimizing overhead for
small objects, but there is always at least one word of overhead. The objects

Lisp-Machine Data Types Page 4

represented as structures are:

symbols,

instances,

bignums,

arrays, and
compiled functions.

The stored representation of a list or structure object is contained in some number
of consecutive words of memory. Each memory word within the structure may
contain

an object reference,

a header,

a forwarding pointer, or
a special marker.

The data-type code identifies the word type. For example, an array is represented
as a header word, which contains such information as the length of the array, and,
following the header, memory words that contain the elements of the array. An
object reference to the array contains the address of the first memory word in the
stored representation of the array.

Components of Stored Representations

The components of the stored representations to be found in Lisp machine memory
are either object references, headers, forwarding (invisible) pointers, or special
markers.

Object References

Object references are the mechanism by which one refers to an object. The object
reference is the fundamental form of data in this and any Lisp system. Object
references are similar in function to the "pointers" of other languages. As noted
before, an object reference can both point to the representation of a Lisp object
and be a component part of such a representation.

There are three types of object references:

object references by address
immediate object references, and
pointers.

Figure OBJECT-REFERENCES illustrates the three types of object references.

[Figure caption: Three types of object references.]

Object references by address are implemented by a memory word whose address
field contains the virtual address of the stored representation of the object. Such

Lisp-Machine Data Types Page 5

memory words are categorized as pointer data. Examples of this type of object
reference are symbols, lists, and arrays.

Immediate object references are implemented by memory words that directly
contain the entire representation of the object. These are implemented by memory
words that contain the object in the 32-bit immediate data field. Examples of this
type of object reference are small integers (fixnums) and single-precision
floating-point humbers.

Pointers are implemented in the same way as object references by address. The
difference between these two types is that pointers contain the virtual addresses of
locations that do not contain objects: they point instead to locations within objects
-- for example, to the value cell of a symbol. Pointers are also categorized as
pointer data.

Headers

A header is the first word in the stored representation of structure objects. The
header marks the boundary between the stored representations of two objects and
contains information about the object that it heads. This information is either
immediate data, when the header type is user::dtp-header-i, or it is the address of
some descriptive data, when the header type is user:dtp-header-p. The header-i
format contains object-specific immediate data in bits <31:0>. The header-p format
contains the address of an object-specific item in bits <31:0>. Object references
usually use the address of an object’s header as the address of the object. (The
only exceptions are the object reference to a compiled function and the object
reference to an array with a leader, which reference contains the address of the
prefix header.) :

The cdr-code field of a header word is used as the header-type field: it
distinguishes what kind of object the structure represents. The four header types
for each type of header format are:

DTP-HEADER-P
Header Type Symbolic Name Object Type
0 user::%header-type-symbol Symbol
1 user::%header-type-instance Instance
2 user::%header-type-leader Array leader
3 Reserved
DIP-HEADER-I
Header Type Symbolic Name Object Type
0 user::%header-type-compiled-function Compiled Function
1 user::%header-type-array Array
2 user::%header-type-number Number
3 Reserved

It is possible to change the memory location of an object represented by a
structure. In this case, the object’s header is moved to a new location and the
object’s old location is filled with a word of data type user::dtp-header-forward,
an invisible pointer that contains the address of the new location of the reference.
The object references in the locations of the old structure are all replaced with
pointers of the type user::dtp-element-forward, which contain the addresses of the
new locations of the objects. This arrangement allows all existing references to the
object to continue to work. Refer to Figure MOVED-ARRAY. Forwarding pointers

Lisp-Machine Data Types Page 6

are described more fully in the next section. See the section "Forwarding
(Invisible) Pointers".

[Figure caption: Use of forwarding pointers to move an array.]

Forwarding (Invisible) Pointers

A forwarding pointer specifies that a reference to the location containing it should
be redirected to another memory location, just as in postal forwarding. These are
also called invisible pointers. They are used for a number of internal bookkeeping
purposes by the storage management software, including the implementation of
extendible arrays.

The data types of the forwarding pointers are:

user::dtp-external-value-cell-pointer
user::dtp-one-q-forward
user::dtp-header-forward
user::dtp-element-forward

An external-value-cell pointer is used to link a symbol’s value cell to a closure or
instance value cell. It is not invisible to binding and unbinding. See the section
"Binding Stack".

A one-q-forward pointer forwards only the cell that contains it, that is, it indicates
that the required data is contained at the address specified in the address field of
the user::dtp-one-q-forward word and that the cdr-code of the required data is the
cdr code of the user::dtp-one-q-forward word. This pointer is used to link a
symbol value or function cell to a wired cell or a compiled-function’s function cell,
as well for as many other applications.

A header-forward pointer is used when a whole structure is forwarded. This word
marks where the header used to be, and contains the address of where the header
is now. When an array with a leader is forwarded, user::dtp-header-forward
pointers replace both the prefix header and the leader header. The other words of
the structure are forwarded with user::dtp-element-forward pointers. The address
field of an element-forward pointer contains the new address of the word that used
to be there. The cdr code of the required data is stored with the relocated data --
the cdr code of the header-forward pointer is ignored. Every word of the structure
except the headers contains an element-forward pointer.

A header-forward pointer is also used in connection with list representation. List
representation is explained fully in another section. See the section
"Representation of Lists". When a one-word cons must be expanded to a two-word
cons by rplacd, a new two-word cons is allocated and the old one-word cons is
replaced by a header-forward pointer containing the address of the new cons. (The

Lisp-Machine Data Types Page7

cdr code of the header-forward pointer is always user::cdr-nil for
garbage-collection purposes.) The cdr code in the location containing the
forwarding pointer is ignored. This is one difference between a header-forward
pointer and a one-q-forward pointer: the cdr code in the location containing a
one-q-forward pointer is used rather than ignored. See Figure EXPANDING-CONS.
This figure illustrates how a cons whose car contains a reference to a fixnum and
whose cdr is nil is changed when an rplaed instruction changes its cdr to another
fixnum,

[Figure caption: Use of forwarding pointers to expands a cons.]

*
S s o o s s s e e e oo s e e o s s sl s s o s 3 o o s e e e e e sl ofe ol sl ol sfesfe sfesfe sfe s sfe s sfesfe s s s s sfe e e e sfe s s e e e e s s s o sl ok s sl o s s s sge sfesfesfe s

Notes

In the paragraph about one-q-forward pointers the phrase "an internal processor
register,” was removed. We can reinsert it later when we decide exactly how

references to the stack buffer are going to be handled.
s 3 s she e ofe o s shesfeofe fe o s sfesfe e o sfesfesfe e s s o e ke s ok s e s sfe ke sk s s s sfesfe fe s s o sfesfe e s s s s s sfeofe e e s s s ke e s s ol ofe s o sfesfe s s sfe e s s sfese s sk

Special Markers

A special marker indicates that the memory location containing it does not
currently contain an object reference. An attempt to use the contents of that
location signals an error. The address field of a special marker is used by
error-handling software to determine what kind of error should be reported. (The
hardware does not use the special-marker address field.)

- The data types of the special markers are:

user::dtp-null
user::dtp-monitor-forward
user::dtp-ge-forward

A null special marker is placed in the value cell or function cell of a symbol or in
the instance-variable value cell in an instance, in those cases when no value has
been assigned. The address field of the null marker contains the address of the
name of the variable. This makes it possible for an error handler to return the
name of the offending variable when an attempt to use the value of an unbound
variable is detected.

A null special marker is also used to initialize a freshly-created virtual memory
page in case it is accidentally accessed before an object is created in it. The
address field contains the word’s own address.

The encoding of the null-special-marker data type is zero. Memory that is
initialized to all bits zero thus contains all null words, which will cause a trap if
referenced.

Lisp-Machine Data Types

Page 8

The monitor special marker is intended for use with a debugging feature that will
allow modifications of a particular storage location to be intercepted. See the
section "Exception Handling".

A marker of type user::dtp-ge-forward is used by the garbage collector and may
only appear in oldspace. When an object is evacuated from oldspace, each word of
the object’s former representation contains a user::dtp-ge-forward that points to
the new location of that word. It is categorized here as a special marker, rather
than as a pointer, since it is visible only to the garbage-collecting system, never to

Lisp code.

Operand-Reference Classification

Immediate data

Pointer data

Null

Immediate Header
Pointer Header
HFWD

EFWD

1FWD

EVCP

GC

Monitor

Data

Header

Immediate

Pointer

user::dtp-fixnum, user::dtp-small-ratio, user::dtp-single-float,
user::dtp-character, user::dtp-packed-instruction,
user::dtp-spare-immediate-1, user::dtp-spare-immediate-2 (22
type codes)

user::dtp-double-float, user::dtp-bignum, user::dtp-big-ratio, '
user::dtp-complex, user::dtp-spare-number,
user::dtp-instance, user::dtp-list-instance,
user::dtp-array-instance, user::dtp-string-instance,
user::dtp-nil, user::dtp-list, user::dtp-array, user::dtp-string,
user::dtp-symbol, user::dtp-locative, user::dtp-lexical-closure,
user::dtp-dynamic-closure, user::dtp-compiled-function,
user::dtp-generic-function, user::dtp-spare-pointer-1,
user::dtp-spare-pointer-2, user::dtp-spare-pointer-3,
user::dtp-spare-pointer-4, user::dtp-even-pe, user::dtp-odd-pe,
user::dtp-call-compiled-even, user::dtp-call-compiled-odd,
user::dtp-call-indirect, user::dtp-call-generic,
user::dtp-call-compiled-even-prefetch,
user::dtp-call-compiled-odd-prefetch,
user::dtp-call-indirect-prefetch,
user::dtp-call-generic-prefetch (33 type codes)

user::dtp-null (1 type code)

user::dtp-header-i (1 type code)

user::dtp-header-p (1 type code)

user::dtp-header-forward (1 type code)
user::dtp-element-forward (1 type code)
user::dtp-one-q-forward (1 type code)
user::dtp-external-value-cell-pointer (1 type code)
user::dtp-ge-forward (1 type code)
user::dtp-monitor-forward (1 type code)

The union of immediate data and pointer data (55 type codes)

The union of immediate header and pointer header (2 type
codes)

The union of immediate data and immediate header (21 type
codes)

The union of pointer data, null, pointer header, HFWD, EFWD,

Lisp-Machine Data Types Page 9

1FWD, EVCP, and monitor (42 type codes)

Data-Type Descriptions

This section defines how each type of object is represented in storage and explains
how the stored representations make use of type-coded objects.

Representations of Symbols

The object reference to a symbol is a word of data type user::dtp-symbol or
user::dtp-nil. The address field of this word contains the address of a header of
type user::dtp-header-p. The header is followed by four words. The header’s
header-type field equals user::%header-type-symbol and the address field of the
header contains the address of the symbol’s name cell. The five words that
constitute a symbol object, in order, are:

SYMBOL-NAME-CELL address of the symbol’s name
SYMBOL-VALUE-CELL the value, or an unbound marker
SYMBOL-FUNCTION-CELL the definition, or an unbound marker
SYMBOL-PROPERTY-CELL the property list
SYMBOL-PACKAGE-CELL the home package, or NIL

W RO

See Figure SYMBOL-REPRESENTATION.

[Figure caption: Structure of a symbol object.]

The special symbols nil and t reside in fixed memory locations: (nil at zonel+0,
address 1000000000; and t at zonel+5, address 1000000005).

Representations of Instances and Related Data Types

The data types described in this section are used by the flavor system, which deals
with flavors, instances, instance variables, generic functions, and message passing.
A flavor describes the behavior of a family of similar instances. An instance is an
object whose behavior is described by a flavor. An instance variable is a variable
that has a separate value associated with each instance. A generic function is a
function whose implementation dispatches on the flavor of its first argument and
selects a method that gets called as the body of the generic function. Generic
functions are described in the section on function data types. See the section
"Representation of Functions and Closures". In message passing, an instance is
called as a function; the function’s first argument, known as the message name, is
a symbol that is dispatched upon to select a method that gets called.

See the Lisp documentation for more information about flavors, instances, instance
variables, and messages.

Lisp-Machine Data Types Page 10

Flavor Instances

The object reference to an instance is a word of data type user::dtp-instance
whose address field points to the instance structure. The stored representation of
an instance consist of a header with type user::dtp-header-p, whose header-type
field equals user::%header-type-instance. The words following the header of the
instance are the value cells of the instance variables. They contain either object
references or an unbound marker. The cdr codes are not used. The address field of
the header contains the address of the hash-mask field of a flavor-description
structure. This description structure is called a flavor.

A flavor contains information shared by all instances of that flavor. The
architecturally defined fields of a flavor are:

¢ the array header, part of the packaging of the structure (It must be a
short-prefix array format, but is not checked.)

¢ the named-structure symbol, part of the packaging of the structure

¢ the size of an instance, used by the garbage collector and by the instance
referencing instructions (user::%instance-ref and the like)

e the name of the flavor, used by the type-of function

¢ the hash mask, used by the hardware for method lookup

 the handler hash table address, used by the hardware for method lookup
* additional fields known only to the flavor system

A handler table is a hash table that maps from a generic function or a message to
the function to be invoked and a parameter to that function. Typically, the
function is a method and the parameter is a mapping table used by that method to
access instance variables. The mapping table is a simple, short-prefix ART-Q array.
For speed, the format of handler tables is architecturally defined and known by
hardware. Handler hash tables are packaged inside arrays, but this is software
dependent, not hardware or architecture dependent.

A handler table consists of a sequence of three-word elements. The address of the
first word of the first element is in the flavor. Each element consists of:

the key This is a generic function (user::dtp-generic-function), a
message name (user::dtp-symbol), or nil, which is a default
that matches everything (user::dtp-nil).

the method This is a program-counter value (user::dtp-even-pc or
user::dtp-odd-pc) addressing the instruction at which the
compiled function corresponding to the method is to be
entered, or it is a fixnum. A fixnum is used as a special
accelerator for instance-variable access: the sign of the fixnum
is 0 to get or 1 to set the instance variable and the remaining
bits are the offset in the instance of the slot to be accessed.

the parameter This is a parameter that gets passed from the function or
message to the method as an extra argument. If the parameter
in the handler table is nil, the generic function or message is
used as the parameter.

Lisp-Machine Data Types Page 11

Method entries are normally of type user::dtp-even-pe or user::dtp-odd-pc. An
interpreted method traps to a special entry point to the Lisp interpreter; this is
implemented by storing the interpreter (a user::dtp-compiled-function) as the

method handler and storing the actual method as the parameter.

Each unused three-word slot in the handler hash table, plus a fence slot at the
end of the table, is filled with nil, a default method function, and nil. The default
method function takes care of rehashing after a garbage collection, default
handling, and error signalling.

Figure INSTANCE-REPRESENTATION illustrates the structure of an instance
object, an instance descriptor, and a handler table. Refer to the chapter on
function calling to see how instances, methods, and generic functions are applied.
See the section "Handler Table".

[Figure caption: The structure of an instance.]

P
s sl ofe sfe 3 o she 3 ok 2 fe sfe s sfe s ik sfe s sie o sfe sfe e sfe s sfe o ofe o e ofe s s s e s e sfe e ofe s ofk s ofe sfe e sfe e sfe s s sie 2fe s sje s sie sfe sfesfe sfe s sfe sfesfe sfe sjesfe sfe s sfe e sfesfesfese e e

Notes

The fixnum accelerator for instance variable access could go away. The order of
entries in the handler table should be whatever is easiest for the hardware. The
header of an instance could point either at the hash mask in the middle of the

flavor or at the beginning of the flavor.
sie sfe sje sje e sje ofe sfe sfe sje s sfe sje sk sfe ofe s sfe sfe sfe sfeafe ofe ok sfe s ofe sle sfe s st sfe sfe sfe sje e sfe sfe ofe s sfe sfe sfe sfe e sfe sfe sfe sfe e sfe s ofe sfe sfe afe sfe s sfe ofe ok sfe sfe e e sfe st sfe sge e st e e sk e sk ek

List Instances

The object reference to a list instance is a word of data type
user::dtp-list-instance whose address field points to an instance structure. The
instance structure for a list instance is the same as that for an ordinary instance.
Trap handlers written in Lisp enable other list-manipulation instructions to
operate in a generic manner on objects of the list-instance data type. See the
section "Flavor Instances".

Array Instances

The object reference to an array instance is a word of data type
user::dtp-array-instance whose address field points to an instance structure. The
instance structure for an array instance is the same as that for an ordinary
instance. Trap handlers written in Lisp enable other array-manipulation
instructions to operate in a generic manner on objects of the array-instance data
type. See the section "Flavor Instances".

String Instances

Lisp-Machine Data Types Page 12

The object reference to a string instance is a word of data type
user::dtp-string-instance whose address field points to an instance structure. The
instance structure for a string instance is the same as that for an ordinary
instance. Trap handlers written in Lisp enable other string-manipulation
instructions to operate in a generic manner on objects of the string-instance data
type. See the section "Flavor Instances".

Representation of Characters

The object reference to a character is an immediate object of data type
user::dtp-character, which contains the following fields in its data field:

Position Symbolic Neme Description
<31:28> (4 bits) $%%CHAR-BITS Control, Meta, Super, Hyper bits
<27:16> (12 bits) %%CHAR-STYLE Italic, large, bold, ...

<15:8> (8 bits) %%CHAR-CHAR-SET Character set
<7:0> (8 bits) $%$CHAR-SUBINDEX Index within this character set

e $ommmpmmmmmee e e $ommmmeee +
|CC| TYPE |BITS| STYLE |CHAR-SET |SUBINDEX|
e e —— e 4o +
3937 31 27 15 7 0

Note that the fields in a character object are not used by the hardware. They may
change in future software.

Py

Notes

Note that character format is currently invisible to the hardware.
3 3 3 s s 2 o s o s o s e e s s s o o s s o o o s e ok s o e s e e fe e e e e ot s sfe o o s s s s s o o o ofeofe e it e e e e e e s o e ok s ok o sl s o o s s e e e s

Representations of Numbers

Fixnum Representation

A fixnum is represented by an immediate object whose data field contains a 32-bit,
two’s-complement integer. Its data type is user::dtp-fixnum.

Bignum Representation

The object reference to a bignum is a word of data type user::dtp-bignum, whose
address field points to the bignum structure. The header word of the structure
contains data type user::dtp-header-i, with the header-type field equal to
user::%header-type-number, and user::%header-subtype-bignum. (Note that
fifteen values of the 4-bit header subtype field are available for expansion.) See
Figure BIGNUM-REPRESENTATION. The following fields in the header word are
specific to bignums:

Position Symbolic Name Description
<31:28> $3HEADER-SUBTYPE-FIELD 0 for a bignum
<27> %3BIGNUM-SIGN 0 for a positive number, 1 for a

Lisp-Machine Data Types Page 13

negative number
<26:0> %%BIGNUM-LENGTH the number of fixnums that follow

Note that the hardware does not make use of these header-word fields. Following
the header is a sequence of fixnums that make up the bignum. The
least-significant part of the bignum is stored in the first fixnum. The fixnums are
two’s complement and use all 32 bits for each digit. The bignum sign bit is the
value of all the most significant bits not explicitly stored in the bignum.

Therefore, -1_32. would occupy 2 words: the header with sign 1 and length 1, and a
fixnum of 0. (The notation -1_31 stands for a two’s complement -1 that has been
multiplied by 281, that is, shifted left 31 places.)

T{nﬁiiiﬁéi:5155&116868686686686BBBBGBBBBBBBIT
B T 0
T — e +
ICCI FIXNUM |00000000000000000000000000000000|
BT 0

1_31. would also occupy 2 words: the header with sign 0 and length 1, and a
fixnum that happens to be -1_31.

T +
INM | HEADER-I |BIGN|000000000000000000000000001 |
__ +
39 0
e T — +
ICCI FIXNUM |10000000000000000000000000000000|
____________________ _— —————¢
39]

[Figure caption: Structure of an object of type user::dtp-bignum]

3
s ofe se s e o oo ofe sfeofe o ofe s sfesfe sfesfe fe sfesfe s sfe e s sfe ke shesfe e sfesfe e sfesfe e sfesfe s sfesie sl sfe e sfesfe s sfesfe s o sfesfe s sfesfe sjesfeofe sfesfe sfe s siesfe e sfesfe sfe s e sfefe e siesfesie sk

Notes:

See SYS:SYS2;BIGDEFS.LISP, BIGNUM.LISP. Essentially the same code should

run on the I Machine. --Moon
e e e oje ofe sie sje sje e sfe ofe sk sk sfe sje sfe sfe s s s sfe sfe sfe sfe s sfe sfe sfe sfe e o ofe sfe sfe e e sfe sfe sfe e e sfe sie s sje s sfe o ofe sk oo ofe sk ofe e e e sie sfersje sk ofe sje e sl sl sfe s sfe se sfe s s s s sl e e sk

Small-Ratio Representation
A small ratio is represented by an immediate object of data type

Lisp-Machine Data Types Page 14

user::dtp-small-ratio. The data field is divided into two subfields as follows:

Position Description
<31:16> form a two’s-complement numerator. 0 is an
illegal value.
<15:0> is an unsigned denominator. 0 and 1 are
illegal values.
L L e et --+ ety +
ICC|SM-RAT| NUMERATOR | DENOMINATOR |
tomt—mmee toosem e e +
39 37 31 15 0

The illegal values are so because of either division by zero, or because the number
is an integer and should be represented as such. Note that the hardware does not
make use of the fields of the small ratio.

Big-Ratio Representation

The object reference to a big ratio is a word of data type user::dtp-big-ratio,
whose address field points to a cons pair. The car of the cons contains the
numerator of the ratio, and the cdr contains the denominator. See

Figure BIG-RATIO.

[Figure caption: Representation of a big ratio.]

Single-precision Floating-point Representation

A single-precision floating-point number is represented as an immediate object of
data type user::dtp-single-float whose data field contains a 32-bit IEEE single
basic floating-point number. The following fields are defined:

Position Symbolic Name Description
<31> $$SINGLE-SIGN 0 for positive numbers, 1 for negative numbers
<30:23> %%SINGLE-EXPONENT excess-127 exponent
<22:0> $%%SINGLE-FRACTION positive fraction, with hidden 1 on the left

T $opmmmmmeeee L T ———— +
|CC|SNG-FL|S| EXPONENT| FRACTION |
e $otmmmmmmeee e +
39 37 31 22 0

*
e sfe s o s s o ofeofe s ofe o ofe s sfe s sfe s s o sfe s s s s s s o s s o s e e e el e afesfeofeofesfe s sfe s sfe s s s sfesfe e e s e s e s ke sk st sl sk e e s s e e e s s e sfesfe s

Notes
Same as the 3600, except for 6-bit data-type field.
Do we want to reference the IEEE standard?

s 3 e e e s s ofe s e o s shefe e s s s sfe s sfe fe s s sfesfe e o sfesfesfe e e s s o o sheshe e o s s o sfeafesle e s s sfe s s sfesfe e s afe sfesfe s s sfe sfe e e 3 sfesfesfe o s sfesfe e e e sfese

Lisp-Machine Data Types Page 15

Double-precision Floating-point Representation

The object reference to a double-precision floating-point number is a word of data
type user::dtp-double-ﬂoat. The address field of the double-float word contains the
address of a cons pair. See Figure DOUBLE-FLOAT. The data fields in the words
of the cons pair hold two fixnums, contalmng the sign, exponent, and fraction as
packed fields. The most-significant word is stored first, violating normal byte-order
conventions. The second fixnum contains the low 32 b1ts of the fraction. The first
fixnum contains the following fields:

Position Symbolic Name Description
<31> $$DOUBLE-SIGN 0 for a positive number,
1 for a negative number
<30:20> %%DOUBLE-EXPONENT excess-1023. exponent

<19:0> $%%DOUBLE-FRACTION-HIGH top 20 bits of fraction
{excluding the hidden bit)

e e +
|CC| FXNM |S| EXPONENT | FRACTION-RIGH |
e e +
39 37 31 19 0

The second fixnum contains one field:

Position Symbolic Name Description

<31:0> %3FRACTION-LOW bottom 32 bits of fraction
s O T +
|CC| FXNM | FRACTION-LOW |
$mmpmmmemt T +
39 37 31 0

In non-generic code double-precision ﬂoatmg-pomt numbers are often represented
with a special immediate representation as a pair of fixnums. Avoiding the normal
in-memory object representation saves consing overhead.

[Figure caption: Representation of a double-precision floating-point number.]

%
s sfe e e o s sfeofe e o s sfesfeofe sk s sfeofesfe fe s sk s sfesfesfe e o sfesfesfesfe s s s sfesfesfe e sfe s o o sfe ke sfe e e s s sfe s sfeofe e s s sfeofe e s sfesfeafe ofe sfe sfesfeofe o sfesfesfesfe s sfe e siesk

Notes

Similar to the 3600, except that a cons is used instead of a structure to eliminate
the overhead of a header word.

Note that the two halves of the number are being stored in arguably the wrong
order, since the least-significant bits of the fraction should be first. This is
consistent with the 3600. The real basis for deciding should be the order that data
are fed into the double-precision floating-point processor chip, if there is one.

Lisp-Machine Data Types Page 16

e s sfe s s sfe s sfe s s sfe o s sfe o s o sfe s s sfe s s o s s s afe o o sfe s s e e ofe e fe e e e e sfe sl shesfe sfesfe s s s 3 s o o s s s s o o o o s o o o o o sfe s s s e sfe e nfe e e

Complex-Number Representation

The object reference to a complex number is a word of data type
user::dtp-complex, whose address points to a cons pair. The car of the cons
contains the real part of the number, and the cdr contains the imaginary part. See
Figure COMPLEX-NUMBER.

[Figure caption: Representation of a complex number.]

The Spare-Number Type

An object reference using user::dtp-spare-number can be employed by software to
implement additional numeric data types. Functions that require numeric data
types as arguments will behave properly (usually trapping out to user-defined
handlers) with user::dtp-spare-number operands.

P

s s sfe ofe e 2 s ofe e e o o s ofe 3 e 3 s ofe e s o sfe afe e fe o s o ofe 2 e s s s sfeofe fe s 3 s o sfe sfe e e s sfe s sfe e sfesfe s s sfe e e s s sfeofe e s s sfesfe s o e sfe s e s sge e e e

Notes

The representations of numbers has changed significantly from the 3600: there are
no longer 16 types of fixnums and 16 types of DTP-FLOAT. The following types
are new: DTP-SMALL-RATIO, DTP-BIG-RATIO, DTP-BIGNUM, DTP-BIG-RATIO,
DTP-COMPLEX. The types DTP-SINGLE-FLOAT and DTP-DOUBLE-FLOAT have
replaced DTP-FLOAT. There is no DTP-EXTENDED-NUMBER.

Shestesfe o o e sfe fe e s ool ke ofe s o s sfe e e sfe e sfesfe e s s sfeofe e o s s s o ofe ofe fe ok s s s s sfeofe e s s sfesfe e sfe e o sfesfe e e 3 sfe sfe e e s sfe e ofe e s sfeofe s sfe sfesfe e sfesge ke

Representations of Lists

The object reference to a list is a word of data type user::dtp-list, whose address
field contains the address of a word that contains the car of a cons. The storage
representation of a list is usually a linked collection of conses. Refer to the
Reference Guide to Symbolics Lisp for a complete description of conses and lists. In
compact form, however, a list can be stored in a sequence of adjacent memory
words. See Figure LIST-REPRESENTATION.

[Figure caption: Ordinary and compact list structures.]

Lisp-Machine Data Types Page 17

The cdr-code tag of a memory word that constitutes an element of a list specifies
how to get the cdr of its associated cons according to whether the list is stored in
normal linked-list form or in compact form. The cdr-code tag works as follows:

Code Symbolic Name Description
0 user:cdr-next Increment the address to get a reference to the
cdr, itself a cons. This is used for compact lists.

1 user::cdr-nil The cdr is user::nil. This is used for both kinds of
list.

2 user:cdr-normal Fetch the next memory word; it contains a reference
to the cdr. This is used for normal lists.

3 (illegal)

A typical, that is, not compact, two-word cons has user::cdr-normal in the
cdr-code tag of its first word and user::cdr-nil in that of second. The car and cdr
operations ignore the cdr code in the second word, but it is helpful to the garbage
collector.

In general, a list representation consists of a contiguous block of one or more
memory words. The cdr code of the last word is always user::cdr-nil. The cdr code
of the second-to-last word may be user::cdr-normal or user::cdr-next. The cdr
code of every other word is user::cdr-next. Note that when a cons consists of
exactly two words, the cdr-normal form is always used in its representation, and
the cdr code of the second word is always user::edr-nil. If the cons happens to be
a list, the cdr code of the first word is user::cdr-next; otherwise, the cdr code of
the first word of the cons is user::cdr-normal.

Note that a user::dtp-list pointer can point into the middle of a list
representation. This happens any time user::cdr-next is used; for instance, if a list
of four elements is fully cdr-coded -- that is, it is stored in compact form -- its
representation consists of four words. The contents of each word is an element of
the list. The cdr codes of the first three words are user::cdr-next; the cdr code of
the last word is user::cdr-nil. An object reference to the cddr of this list has data
type user::dtp-list and the address of the third word. The garbage collector
protects the entire block of storage if any word in it is referenced. See

Figure LIST-STRUCTURE.

[Figure caption: An object reference to the eddr of a list.]

The rplacd operation interacts with cdr coding. An illustration of this was
presented in an earlier section. See the section "Forwarding (Invisible) Pointers".
rplacd of a cons represented with user::cdr-normal simply stores into the second
word. But rplacd of a cons represented with user::cdr-next or user::cdr-nil must
change the representation so that the cdr is represented explicitly before it can be
changed. There is one exception; if the cdr is being changed to nil, the

Lisp-Machine Data Types Page 18

user::cdr-nil cdr code is used to represent it. Use of rplacd can split an object
representation into two independent object representations, one of which might
then be garbage-collected.

user::dtp-header-forward is used to implement list forwarding. If the data-type
tag (of the car) is user::dtp-header-forward, the cdr code is ignored (except by
the garbage collector, which expects it to be user::cdr-nil). The address in the
forwarding pointer points to a pair of words that contain the car and cdr.

Representations of Arrays

The object reference to an array is a word with data type user::dtp-array or
user::dtp-string. The representation of arrays described here does not apply to
object references with data type user::dtp-array-instance or
user::dtp-string-instance.

Whether an array is referred to by user::dtp-array or user::dtp-string has no
effect on its stored representation: the data type of the object reference simply
serves to make the stringp predicate faster.

An array is a structure consisting of a prefix followed by optional data. (Data does
not follow the prefix of an array structure if, for example, the array is displaced.)
A prefix is defined to be a word whose data type is user::dtp-header-i and whose
header type is user::%header-type-array, followed by zero or more additional
words. The prefix defines the type and shape of the array. This is similar to the
3600. The detailed format of the prefix is different from the 3600, and simpler.
The data is a sequence of object references or of fixnums containing packed bytes.

The byte fields in a prefix header’s 32-bit immediate field are:

Position Bits Symbolic Name Description
<31:26> 6 ARRAY-TYPE-FIELD Combination of fields below
<31:30> 2 ARRAY-ELEMENT-TYPE Element type, one of: fixnum,
character, boolean, object-reference.
<29:27> 3 ARRAY-BYTE-PACKING Byte packing. Base 2 logarithm (0 to

5) of the number of elements per word.
6 or 7 in this field is undefined.

<26> 1 ARRAY-LIST-BIT 1 in ART-Q-LIST arrays, 0 otherwise
<25> 1 ARRAY-NAMED-STRUCTURE-BIT 1 in named-structures, 0 otherwise
<24> 1 ARRAY-SPARE-1 (spare for software use)
<23> 1 ARRAY-LONG-PREFIX-BIT 1 if prefix is multiple words
<22:15> 8 ARRAY-LEADER-LENGTH-FIELD Number of elements in the leader
<14:0> 15 ARRAY- Use of these bits depends on the
prefix type, as described below
in the definitions of prefix types
=t t==t===t-t-t-t-to- $mmmmemme e n - +
|AR |EDR-I|TY|BPB|L|S|-|P|L-LEN| |
tomtem——— +-=$===t=4=t-t-$-mm-- - +
39 38 31 30 27 23 15 0

Bits <31:27> correspond to the same bits of the control word of an array register.
Array registers are discussed in the following section. See the section "I-Machine
Array Registers". Bits <26:24> are not used by hardware. Bits <31:27,23> enable

various special pieces of hardware (or microcode dispatches). Bits <22:0> are used

Lisp-Machine Data Types Page 19

by hardware under microcode control. Bits <31:26> are sometimes grouped together
as ARRAY-TYPE-FIELD.

Some arrays include packed data in their stored representation. For example,
character strings store each character in a single 8-bit byte. This is more efficient
than general arrays, which require an entire word for each element. Accessing the
nth character of a string fetches the n/4th word of the string, extracts the
mod(n,4)th byte of that word, and constructs an object reference to the character
whose code is equal to the contents of the byte. Machine instructions in compiled
functions are stored in a similar packed form. For uniformity, the stored
representation of an object containing packed data remains a sequence of object
references. Each word is an immediate object reference to an integer (that is, the
word has data type fixnum), whose 32 bits are broken down into packed fields as
required, such as four 8-bit bytes in the case of a character string.

An array can optionally be preceded by a leader, a sequence of object references
that implements the array-leader feature. If there is a leader, the leader is
preceded by a header of its own, tagged user::dtp-header-p and
user::%header-type-leader; the address field of this header contains the address of
the array’s main header -- that is, the address of the header of the array prefix.
Note that if an array has a leader, the address field of an object reference
designating that array contains the address of the main header, the one after the
leader, not the address of the header at the beginning of the array’s storage,
before the leader. Refer to the diagram, Figure SHORT-PREFIX-ARRAYS.

[Figure caption: Short-prefix arrays with and without leaders.]
The address of leader element user:i of an array whose address is user::a,
regardless of whether the prefix is long or short, is given by (- user::a user:i 1).

The two array formats (user::%array-prefix-short and user::%array-prefix-long)
are provided to optimize speed and space for simple, small arrays, which are the
most common. Wherever possible fields have been made identical in both formats
to simplify the implementation.

Description of the two prefix types:

user::%array-prefix-short:

Position Bits Symbolic Name . Description
<14:0> 15 ARRAY-SHORT-LENGTH-FIEL Length of the array.
e
|AR|HDR-I|TY|BPB|L|S|-|0|L-LEN| AR-LENGTH |
s e e e e e |
3938 313 27 23 14 0

The prefix is one word. The array is one-dimensional and not displaced, but may
have a leader. Most common arrays including defstructs, editor lines and most

Lisp-Machine Data Types Page 20

arrays with fill-pointers use this type. (You can find out about fill pointers by
using the Document Examiner, or refer to the Reference Guide to Symbolics Lisp.)
See Figure SHORT-PREFIX-ARRAYS.

The address of data element user::i of a short-prefix array whose address is
user::a and whose ARRAY-BYTE-PACKING field is user::b is given by (+ user::a
(ash user::i (- user::b)) 1). When user::b is greater than zero, packed array
elements are stored right-to-left within words, thus the right shift to right-justify
data element user::i is (ash (logand user:i (1- (ash 1 user::b))) (- 5 user::b)).

user::%array-prefix-long:

Position Bits Symbolic Name Description
<14:3> 12 ARRAY-LONG-SPARE Spare.
<2:0> 3 ARRAY-LONG-DIMENSIONS-FIELD Number of dimensions.

e T L T TS VAP W—"
|AR|HDR-I|TY|BPB|L|S|-|1]L-LEN|SPARE |DIMS|
e T S R SO

39 38 3130 27 23 14 3 0

The long prefix format is used for displaced arrays (including indirect arrays),
arrays that are too large to fit in the short-prefix format, and multidimensional
(including zero-dimensional) arrays. The first word of the prefix contains the
number of dimensions in place of the length of the data. The total length of the
prefix is (+ 4 (* user::d 2)) where user::d is the number of dimensions.

The second word of the prefix is the length of the array. For conformally displaced
-arrays, this is the maximum legal linear subscript, not the number of elements
(which may be smaller).

The third word of the prefix is the index offset. This word is always present, even
for non-indirect arrays. Zero should be stored here in non-displaced arrays, since
the this word is always added to the subscript. Always having an index offset
keeps the format uniform and allows the feature that displaced arrays of packed
elements can be non-word-aligned (not presently in the 3600, but planned to be
added soon in support of some new type of TV).

The fourth word of the prefix is the address of the data. This is a locative to the
first word after the prefix for normal arrays, except for normal arrays with no
elements, in which case it is a locative to the array itself to avoid pointing to
garbage. For displaced arrays, this is a locative or a fixnum. For indirect arrays,
this is an array. The cdr code of this word is 0 for a normal array, 1 for a
displaced/indirect array.

The remaining words of the prefix consist of two words for each dimension. The
first word is the length of that dimension and the second word is the value to
multiply that subscript by. Note that this is different from the 3600. See

Figure ARRAY-PREFIX-MULTI.

Lisp-Machine Data Types Page 21

[Figure caption: A two-dimensional array.]

A one-dimensional array with a subscript multiplier not equal to 1 cannot be
encached in an array register. Currently the software considers such arrays illegal
and will never create one.

The way you tell a displaced/indirect array from a normal array is by checking the
cdr code of the fourth word of the prefix (assuming the array has its long prefix
bit set). Indirect arrays can be can detected by the data type tag of the fourth
word. Figure ARRAY-PREFIX-LONG shows a simple displaced array, while the
figure in Figure INDIRECT-ARRAY shows a one-dimensional array indirected to
another two-dimensional array. The following code generates two such arrays:

(setq a (make-array /(4 7))
b (make-array 4 :displaced-to a
:dispaced-index-offset 10.))

[Figure caption: A simple displaced array.]

[Figure caption: A one-dimensional array indirected to a two-dimensional array.]

%
S sie s s s s s ofe o o o o sfe sfe sfe s o ofs s she e 2 o s s s o o o e s fe e e e e sfe e e e e e e sfe sfesfesfe s s s s e fe s e e e o s o o s s sfe s s s sfe s e e s e e e e sfe e

Notes:

The precise algorithm to be used when accessing an indirect array will be
specified later, as a Lisp program. A prototype of it, using the 3600 array format
instead of this array format, can be found in the file
V:>Moon>IMach>3600>array.lisp. This was translated from the existing, working
3600 microcode.

Re ARRAY-BYTE-PACKING field, trapping on 6 or 7: [Trapping this is probably a
pain - BEE] Deleted: The byte fields in the leader’s header word are:

<31:23> 9 ARRAY-LEADER-SPARE-1 ,
<22:15> 8 ARRAY-LEADER-LENGTH-FIELD Number of elements in the leader
<14:0> 15 ARRAY-LEADER-SPARE-2
- - $-———- Fmm————— +
|LD |HDR-I|SPARE-1|L-LEN| SPARE-2|
-t - - tmmm————— +
39 38 31 23 14 0

Lisp-Machine Data Types Page 22

Some static analysis of arrays, in a system 311 world that been used for a week:
99.65% of all arrays are one-dimensional. 2-dimensional and 3-dimensional arrays
exist; no higher-dimensional or 0-dim arrays. The average size of an array is 38
words. There is no category of arrays whose average size is larger than will fit in
15 bits; unfortunately I didn’t measure the size distribution of arrays directly, so I
don’t know the percentage of arrays whose size will not fit in 15 bits, but it must
be very small. All array types are used at least once. The maximum leader length
seen is 38 elements. Unfortunately I didn’t measure what fraction of arrays are
displaced. --Moon Putting the leader before the header of the array rather than
between the prefix and the data, or after the data, increases the size of any array
with a leader by one word, because an additional header before the leader is
required. This costs 2% for the average array with a leader and 5% for the
average non-fonted editor line. This overhead was deemed worthwhile because it
simplifies the hardware; otherwise it would be necessary to allow for the size of
the leader when addressing the data, or vice versa.

The longest array-leader observed was 38 elements, so a maximum limit of 255
elements should not be restrictive. The maximum on the 3600 is 1023.

The leader header uses user::dtp-header-p rather than user::dtp-header-i because
there were more spare header-type codes available for that type of header.

More information from Rel 6.1 99.54% of the arrays are one-dimensional, of which
99.54 are direct (not displaced). Totals: 453049 arrays, 450961 one-dim, 448900
direct one-dim, 2061 indirect one-dim. The distribution of the LOG2(LENGTH) is
as follows: 0: 12493; 1: 16181; 2: 35701; 3: 130120; 4: 93601; 5: 85780; 6: 44053; 7:
26594; 8: 2447; 9: 873; 10: 615; 11: 324; 12: 48; 13: 25; 14: 20; 15: 12; 16: 6; 17: 3;
19: 1; 20: 3.

20.33% of those arrays have a leader The distribution of the
LOG2(LEADER-LENGTH) is as follows: 0: 2; 1: 7962; 2: 5870; 3: 3428; 4: 73835;
5: 181; 6: 1.

Note that it may be possible to get rid of the leader header. This has no hardware
implications.

The subscript multiplier for the last subscript, at the end of the prefix is always 1

and might be removed.
e s s e 3k o s sfeofe ok s s sfe fe e o ofe s shefe o e o s afesfe e s o sfe ofe e fe s s sfe s sfe e s s s s s e fe s o s s s s sfe fe s s s ofe e s o s ol e s ofe s ofe e s sfe e e s sfe e e e

I-Machine Array Registers

An array register is four words on the stack that contain a decoded form of an
array, permitting faster access because no reference to the prefix is required.
I-machine array registers are essentially the same as those on the L-machine, with
the addition of an index-offset feature to allow non-word-aligned array registers
with reasonable speed (on the L-machine they are very slow).

The four array-register words on the stack are

Control word a fixnum containing the following packed fields:

Position Bits Symbolic Name Description

<31:30> 2 %$ELEMENT-TYPE One of: fixnum, character,
boolean, or object-reference

<29:27> 3 $$BYTE-PACKING Base 2 logarithm (0 to 5) of

the number of elements per word

Lisp-Machine Data Types Page 23

<26:22> 5 $%BYTE-OFFSET Offset from word boundary in
units of array elements

<21:0> 22 %%EVENT-COUNT Used for validity checking

Base address The address of the first element in the array

Array length The number of elements in the array

Array Object reference

The %%EVENT-COUNT field is a copy of the internal processor register
array-event-count. This copy is set when the array register is created, and updated
by Lisp code whenever an exception is taken because the #%EVENT-COUNT field
does not match the array-event-count register. The array-event-count register is
incremented by Lisp code whenever the size of an array is changed, invalidating
all array registers that have been created. The array-event-count register is by
convention always nonzero, forcing the Lisp code to do an extra increment if the
new contents would be zero. This convention permits the creation of array
registers that always trap, which may be used for encaching objects of type
user::dtp-array-instance and user::dtp-string-instance.

To read an element of an array encached in a array register:

1. If the event count is not equal to the contents of the internal processor
register array-event-count, trap and re-decode the array into the array
register. This trap need not be handled in hardware/firmware since it will not
happen often.

2. Add the low 5 bits of the subscript to %%BYTE-OFFSET; save the 5-bit sum
and save the carry out of bit (%%BYTE-PACKING - 1).

3. Compare the subscript against the array length, trap unless
(user::%unsigned-lessp user::subscript length) is true.

4. Shift the subscript right by <%»BYTE-PACKING> bits.

5. Add the shifted subscript, the base address, and the saved carry. Read that
memory word.

6. Use the low %%BYTE-PACKING bits of the 5-bit add, %%BYTE-PACKING,
and %%ELEMENT-TYPE to extract the array element from the word read
from memory.

Much of the above happens in parallel, as it does on the L-machine. The
comparison against the array length actually happens after the address is sent to
memory, but if the subscript is out of bounds the memory read is cancelled and no
page fault occurs.

The following table lists the valid array types for each array element type for all
possible values of array byte packing.

fixnum character boolean object
array-byte-packing
0 art-fixnum art-fat-string =xxx art-q
1 art-16b XXX XXX XXX
2 art-8b art-string XXX XXX
3 art-4b X2X XXX XXX

Lisp-Machine Data Types Page 24

4 art-2b XXX XXX XXX
5 art-1b XXX art-boolean xxx

336 2l s e e e e e o e e e fe e e ofe s s e e e s s s e e e ke sfe e sfesfesfe s o sfe s s s st s s s s s s 3 o 3 e 36 e e s s sfe s s s o s ofe e sfeofeofe e el e e sl s s s s g sk

Notes: This (non-word-alligned array registers) can be optimized by an additional

5-bit adder and a special carry input to the main adder.

Representations of Functions and Closures

Representation of Compiled Functions

The object reference to a compiled function is a word of data type
user::dtp-compiled-function, whose address field points to a word inside a
compiled-function structure. The compiled-function structure consists of three
parts: the prefix, the body, and the suffix. The prefix is two words long and has a
fixed format. The body is a sequence of one or more instructions. The suffix is at
least one word long and contains debugging information and constant data. The
object reference to a compiled function contains the address of the first word in
the body, which is usually the first instruction executed when the function is
called. The prefix extends to lower addresses. The suffix is at higher addresses
than the body. The hardware, however, knows nothing about the format of the
prefix or suffix.

I-Machine compiled functions differ from those of the 3600 by not having a
constants/external references table, since references to constants and to external
value and function cells are stored in-line in the body. In addition, the "args-info"
of an I-Machine compiled function is not stored explicitly, since it can easily be
reconstructed from the entry instruction by software.

The first word in the prefix is a header word that identifies this object as a
compiled function and specifies its size and the sizes of its parts. The bits in this
word are:

39-38 $HEADER-TYPE~-COMPILED-FUNCTION
37-32 DTP-HEADER-I

31-18 Size of the suffix (14 bits)

17-0 Total size of the object (18 bits)

The second word in the prefix is available for use as the function cell that
contains the current definition of the function. Typically the function cell of the
symbol that names a function contains a user::dtp-one-q-forward invisible pointer
with the address of the function cell of the compiled function, which contains a
dtp-compiled-function reference to the beginning of its own body. This is the same
as on the 3600. If the function is redefined, then the function cell will point
someplace else and execution will be slower. If user::dtp-call-compiled-even/odd is
used, inter-function references bypass the function cell. This is discussed in detail
in the chapter on function calling. See the section "Function Entry".

The even half of the first word in the body is the first instruction of the function,
known as the entry instruction. This is the point at which execution usually
begins. The entry instruction checks the number of arguments. This is discussed

Lisp-Machine Data Types Page 25

in detail in the chapter on function calling. See the section "Function Entry".

The first word in the suffix contains an object reference to a list containing
information not needed while executing the function. This information is used
mainly by the debugger (also by the compiler and the interpreter). The car of this
list is the name of the function and the cdr of the list is an a-list containing
information such as names and stack locations of local variables. The cdr code of
the first word in the suffix is user::edr-nil (encoded as 1), which is the illegal
instruction sequencing code. This word, with this cdr code, serves as a "fence" that
prevents instruction fetchahead from running past the end of the body of a
function.

If the body contains any full-word function-calling instructions, the suffix contains
linkage information beginning at its second word. The linkage information is a
sequence of fixnums joined together by cdr-next codes and terminated by a cdr-nil
code. There is a 4-bit byte for each full-word function-calling instruction in the
body, which contains the number of arguments to that call (0 to 13), or 14 if the
number of arguments is larger than 13, in which case the next two 4-bit bytes
contain the number of arguments, or 15 if the compiler does not know the number
of arguments or does not want the linker to bypass the entry instruction of the
called function. If the linkage information terminates with user::cdr-nil before all
of the full-word function-calling instructions have been accounted for, the missing
4-bit bytes are assumed to contain 15.

Succeeding words of the suffix contain the stored representations of list-type
constants used by the function (including double-floats, ratios, and complex
numbers). Putting these constants in the suffix of the function that uses them
minimizes paging. Structure-type constants are typically stored immediately after
the function that uses them, again to minimize paging.

See Figure COMPILED-FUNCTION

Another section in this chapter discusses the data types of the instructions. (See
the section "Instruction Representation".) Refer to the chapter on the instruction
set for a discussion of instruction sequencing. See the section "Instruction
Sequencing".

[Figure caption: The structure of a compiled function.]

*

Notes:

Not only does this (using the edr code 1 as a fence) avoid loading the instruction
cache with extraneous words from functions other than the one being executed,
but more importantly it avoids a subtle bug involving fetchahead past the
free-pointer for allocation of compiled code, after a sequence of timing coincidences
has left words there containing valid data types for instructions. The bug is that
obsolete data could get into the instruction cache and not get cleared out when a

Lisp-Machine Data Types Page 26

new function was created at the same address.
Note that the hardware does not do the invalidate Icache. Efland

Note that the design is intended to put the function cell and the entry instruction
both on the same page and in the same cache line, minimizing the cost of
indirecting through a function cell. The loader may want to insert extra words to
keep compiled functions aligned on appropriate boundaries so that the function cell
and entry instruction always fall into the same cache line, if we have a cache.

Generic Functions

An object reference to a generic function has data type user::dtp-generie-function.
The address field points to a structure whose content is not architecturally
defined; it is used internally by the flavor system. See the section "Generic
Functions and Message Passing”.

Representation of Lexical Closures

The object reference to a lexical closure is a word of data type
user::dtp-lexical-closure, which points to a cons pair. The car of the cons is the
lexical environment, and the cdr is the function.

The lexical environment, in a typical software implementation, is a cdr-coded list
of value cells associated with the closure. In such an implementation, this list
must be compact, that is, cdr-coded using user::cdr-next, since instructions that
access the lexical variables compute addresses of the variables simply as an offset
past the address of the environment. See Figure LEXICAL-CLOSURE.

When a lexical closure is called as a function, the environment will be made an
argument to the function. For more information, refer to the chapter on function
calling. See the section "Starting a Function Call",

[Figure caption: The structure of a lexical closure.]

Representation of Dynamic Closures

The object reference to a dynamic closure is a word of data type
user::dtp-dynamic-closure, which points to a list structure. The format of a
dynamic closure is not architecturally defined, but is determined by software. (The
hardware traps to Lisp to funcall dynamic closures.)

The list representation allows closures to be stored in the stack (a} la)
with-stack-list); certain special forms such as error-restart exploit this.

The list is always cdr-coded, but nothing actually depends on this. The first

Lisp-Machine Data Types Page 27

element of the list is the function. Succeeding elements are taken in pairs. The
first element of each pair is a locative pointer to the value cell to be bound when
the closure is called. The second element of each pair is a locative pointer to the
closure value cell to which that cell is to be linked. See

Figure DYNAMIC-CLOSURE.

[Figure caption: The structure of a dynamic closure.]

Instruction Representation

The instructions in a compiled function are a sequence of words whose data-type
field selects among three types of words:

* Packed instructions -- data types with type codes 60-77 are used for words that
contain two 18-bit instructions. These are the usual stack-machine type
instructions, similar to those of the 3600.

* Full-word instructions -- data types coded 50 through 57 are used for words that
contain a single instruction, with an address field. These are used for starting
function calls. In addition, data type user::dtp-external-value-cell-pointer (type
code 4) is used to fetch the contents of the value cell of a special variable or
the function cell of a function and push it on the stack. This is actually an
optimization to save space and time (one-half word and one cycle); the value cell
address could be pushed as a constant locative and then a car instruction could
be executed. Besides these, there is one other full-word instruction type, the
entry instructions, which do not contain addresses, but instead look like pairs of
half-word instructions. These are decoded by their opcode field, not by the
data-type field.

¢ Constants -- all other data types encountered among the instructions in a
compiled function are constants. The word from the instruction stream is
pushed on the stack. The hardware will signal an error if the word is a header
or an invisible pointer.

The fields within the various types of instructions are described in the chapter on
the instruction set. See the section "Macroinstruction Set".

s
ﬂi**

Notes:

This scheme, different from the 3600, is designed to eliminate the
constants/external-references table in a compiled function and thereby to enable
prefetching of such data through the normal instruction pipeline. This saves time
and simplifies the hardware by eliminating an addressing mode. H says the
average number of references per constant is small enough that this actually saves
space, compared to the 3600. In cases where there are many calls to the same
function or references to the same constant, the compiler can attemp to encache it

Lisp-Machine Data Types Page 28

in a local variable.

Program-Counter Representations

The program counter (pc) is a register in the I machine that contains the virtual
address of the currently executing instruction. Since most instructions are packed
two-to-a-word, that address has to include information about which half-word
instruction is executing. This information is included in the data-type code of the
pc contents; thus there are two pc data types, user::dtp-even-pc and
user::dtp-odd-pc. Words of these data types are not usually found in the stored
representations of Lisp objects, but occur within stack frames or inside compiled
functions for long branches. See the section "Function Calling, Message Passing,
Stack Group Switching”.

£S5
$******

Notes

The reference for(Topic={Representation of Stack Groups},Type={Section}) has

been removed. The section will probably end up in the function calling chapter.

Data-Type Code Assignments

This section summarizes all of the different data types defined by the architecture.
The data type of a word is stored in its tag field.

It is important to note that not all data types are necessarily understood
completely by a particular implementation. For example, the hardware probably
understands that user::dtp-complex is a number, but it may not be capable of
performing arithmetic operations on complex numbers.

The following tables enumerate all sixty-four data types, along with a brief
description of each. Note that the sixty-four types are grouped into several
common classes.

Headers, Special Markers, and Forwarding Pointers

Eight types:
Type Code Symbolic Name Description
0 DTP-NULL Unbound variable/function,
uninitialized storage
1 DTP-MONITOR-FORWARD This cell being monitored
2 DIP-HEADER-P Structure header, w pointer field
3 DTP-HEADER-I Structure header, w immediate bits
4 DIP-EXTERNAL-VALUE-CELL-POINTER Invisible except for binding
5 DTP-ONE-Q-FORWARD Invisible pointer (forwards 1 cell)
6 DTP-HEADER-FORWARD Invisible pointer
(forwards whole structure)
7 DTP-ELEMENT-FORWARD Invisible pointer in

element of structure

Lisp-Machine Data Types

Number Data Types
Eight types:

Type Code Symbolic Name
10 DTP-FIXNUM
11 DIP-SMALL-RATIO

12 DTP-SINGLE-FLOAT
13 DTP-DOUBLE-FLOAT
14 DTP-BIGNUM

15 DTP-BIG-RATIO

16 DTP-COMPLEX

17 DTP-SPARE-NUMBER

Instance Data Types

Four types:

Type Code Symbolic Name
20

DTP-INSTANCE
21 DTP-LIST-INSTANCE

22 DTP-ARRAY-INSTANCE
23 DTP-STRING-INSTANCE

Primitive Data Types
Eleven types:

Type Code Symbolic Name
24 DTP-NIL
25 DTP-LIST
26 DTP-ARRAY
27 DTP-STRING
30 DTP-SYMBOL
31 DTP-LOCATIVE

32 DTP-LEXICAL-CLOSURE
33 DTP-DYNAMIC-CLOSURE

Description
Small integer
Ratio with small numerator and
denominator
Single-precision floating point
Double-precision floating point
Big integer
Ratio with big numerator or denominator
Complex number
A number to the hardware trap
mechanism

Description
Ordinary instance
Instance that masquerades as a cons
Instance that masquerades as an array
Instance that masquerades as a string

Description

The symbol NIL

A cons

An array that is not a string
A string

A symbol other than NIL
Locative pointer

Lexical closure of a function
Dynamic closure of a function

34 DTP-COMPILED-FUNCTION Compiled code
35 DIP-GENERIC-FUNCTION Generic function (see later section)

36 DTP-SPARE-POINTER-1
37 DTP-SPARE-POINTER-2

Spare pointer
Spare pointer

40 DTP-SPARE-IMMEDIATE-1 Spare immediate
41 DTP-SPARE-IMMEDIATE-2 Spare immediate

42 DTP-SPARE-POINTER-3

43 DTP-CHARACTER

44 DTP-SPARE-POINTER-4

Spare pointer
Common Lisp character object
Spare pointer

Page 29

Note that codes 36, 37, 42, and 44 are spare pointer data types and codes 40 and
41 are spare immediate data types. Object references with these data types can be
used perfectly normally, but there are no built-in hardware operations that do

anything with them.

Lisp-Machine Data Types Page 30

Special Marker for Garbage Collector

One type:
Type Code Symbolic Name Description
45 DTP-GC-FORWARD Object-moved flag for garbage collector

Data Types for Program Counter Values

Two types:
Type Code Symbolic Name Description.
46 DTP-EVEN-PC PC at first packed instruction in word,
or of full-word instruction
47 DTP-ODD-PC PC at second instruction in word

Full-Word Instruction Data Types

Eight types:
Type Code Symbolic Name Description
50 DTP-CALL-COMPILED-EVEN Start call, address is
compiled-function
51 DTP-CALL-COMPILED-0ODD Start call, address is
compiled-function
52 DTP-CALL-INDIRECT Start call, address is
function cell
53 DTP-CALL-GENERIC Start call, address is

generic-function

54 DTP-CALL-COMPILED-EVEN-PREFETCH Same as DTP-CALL-COMPILED-EVEN
but prefetch is desirable

55 DIP-CALL-COMPILED-ODD-PREFETCH Same as DTP-CALL-COMPILED-ODD
but prefetch is desirable

56 DTP-CALL-INDIRECT-PREFETCH Same as DTP-CALL-INDIRECT but
prefetch is desirable
57 DTP-CALL-GENERIC-PREFETCH Same as DTP-CALL-GENERIC

but prefetch is desirable

Half-Word Instruction Data Types
Sixteen types:

Type Code Symbolic Name Description
60-77 DTP-PACKED-INSTRUCTION Used for instructions in compiled
code.

Each word of this type contains two 18-bit instructions, which is why sixteen data
types are used up. Bits <37-36> contain 3 to select the instruction data type. Bits
<39-38>, the cdr code, contain sequencing information described in the chapter on
the instruction set. The instruction in bits <17-0> is executed before the
instruction in bits <35-18>. See the section "Instruction Sequencing”.

