SUmn

®
microsystems

Programming Utilities & Libraries

Part Number: 800-3847-10
Revision A of 27 March, 1990

Trademarks

SunOS™, Sun Workstation®, as well as the word ‘‘Sun’’ followed by a numerical suffix, are trademarks
of Sun Microsystems, Incorporated.

UNIX® and UNIX System V® are trademarks of Bell Laboratories.
PDP-11® is a trademark of Digital Equipment Corporation.

All other products or services mentioned in this document are identified by the trademarks or service
marks of their respective companies or organizations.

Copyright © 1990 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means — graphic, electronic, or mechanical — including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter-
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232 4,745,407
4,679,014 4,435,792 4,719,569 4,550,368 in addition to foreign patents and applications pending.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California. We acknowledge the following individuals and institutions for their role in
its development: The Regents of the University of California, the Electrical Engineering and Computer Sciences
Department at the Berkeley Campus of the University of California, and Other Contributors.

Chapter 1 Shared Libraries

Contents

1.1. Definitions

Shared ODJECLvecsscesirenens

Shared Library

Static vs. Dynamic Link Editing

Position Independent Code (PIC)
Static and Dynamic Link Editors

1.2. Using Shared Libraries

Building a Program to Use Shared Libraries
Binding Mode Options

-Bstatic and -Bdynamic

-N and —-n Options for 1d

Binding of PIC with Non-PIC
-dc and -dp Options

Use of Assertions

The -assert Option

Run-Time Use of Shared Libraries

SunOS Shared Libraries

Dynamic vs. Static Binding Semantics

OO R A RN NN NN NNN -

Debuggers
Performance Issues ...

Dependencies on Other Files

Setuid Programs

1.3. Version Control ...,

—iii—

Contents — Continued

Version Numbers of . so’s

Version Management Issues

1.4. Shared Library Mechanisms

Memory Sharing

The C Compiler

The Assembler

crt0 ()

Link Editors: 1dand 1d. so
ld.so

Binding and Unbinding Routines: dlopen(),dlsym(),

dlclose(),dlerror()

1.5. Building a Shared Library

Building the . so File

The . sa File

Building the . sa File

1.6. Building a Better Library

Sizing Down the Data Segment

Using xstr to Extract String Definitions

Better Ordering of Objects

CIt 0.0 DEPENACNCY ... esssss s e sssirsss o

The ldconfig Command
1.7. Shared Library Problems

........

14d. so Is Deleted

Wrong Library Is Used

Error Messages

Chapter 2 Lightweight Processes
2.1. Introduction

Definition

Functionality ...
Tutorial Goals

2.2. Threads

Stack Issues

iv.

O \O O 0o oo

10
10
10
11

11
12
12
12
13
13
14
14
15
15
15
15
15
16
16

17
17
17
17
18
18
20

Contents — Continued

Stack Size

Protecting Against Stack Overflow

Coroutines

Custom Schedulers .

Special Context Switching

2.3. Messages
Messages vs. Monitors

Rendezvous Semantics

Messages and Threads

Intelligent Servers

2.4, AZENLS ...

System Calls

Non-blocking I/O Library ...

Using the Non-Blocking 10 Library
Examples of Agents

2.5. Monitors and Conditions ...

Monitors vs. Interrupt Masking
Programming with Monitors

Monitors and Events

Condition Variables

Enforcing the Monitor Discipline

Nested Monitors

Reentrant Monitors

Monitor Program Examples

2.6. Exceptions

Synchronous Traps ..

Implementation

Example of Exception Handling
2.7. Big Example

Chapter 3 System V Interprocess Communication Facilities
3.1. IPC Facilities in the SunOS Operating System

File I/O and Pipes

20
20
21
22
23
25
25
26
26
28
29
30
30
31
36
39
40
40
41
41
41
42
42
42

45
45
46
47

53
53

Contents — Continued

State Files and File Locking

Named Pipes

Networking Facilities
3.2. System V IPC Facilities in Release 4.1

Configuring System V IPC Facilities

System V IPC Permissions

IPC System Calls, Key Arguments, and Creation Flags
System V IPC Configuration Options

.........

3.3. Messages
Structure of a Message Queue

Initializing a Message Queue with msgget ()

Controlling Message Queues withmsgctl ()

Sending and Receiving Messages with msgsnd () and
msgrcv ()

3.4. Semaphores

Structure of a Semaphore Set

Initializing a Semaphore Set with semget ()

Controlling Semaphores with semct1 ()

Performing Semaphore Operations with semop ()coccevvcnen

3.5. Shared Memory

Structure of a Shared Memory Segment

Using shmget () to Get Access to a Shared Memory
Segment

4.1. Introduction

Controlling a Shared Memory Segment with shmectl () ...

Attaching and Detaching a Shared Memory Segment with
shmat () and shmdt ()

Chapter 4 SCCS — Source Code Control System

The sccs Command

Initializing the SCCS History File: sccs create ...

Basic sccs Subcommands

Deltas and VEISIONS ..o oo ees s srsssssssssssseesssssmm o

SIDs

.vi.

53
53
54
54
54
54
55
56
56
57
58
60

63
67
68
70
72
77
81
81

82
84

87

93
93
93
93
94
95

Contents — Continued

ID Keywords

4.2. sccs Subcommands

Checking FilesInand Out

Checking Out a File for Editing: sccs edit ...

Checking in a New Version: sccs delta......

Retrieving a VErsion: SCCS get ...

Reviewing Pending Changes: sccs diffs

Deleting Pending Changes: sccs unedit
Combining delta and get: sccs delget ...,
Combining delta and edit: sccs deledit ...
Retrieving a Version by SID: sccs get -1 ...
Retrieving a Version by Date and Time: sccs get -c
Repairing a Writable Copy: sccs get -k -G ...
Incorporating Version-Dependent Information: ID Keywords

MakKing INQUILIESovevvveoeee e ssssssssosss s essssssssssssssssssssssssssssessese

Seeing Which Version Has Been Retrieved: The what
Command ...

Determining the Most Recent Version: sccs get -g ..
Determining Who Has a File Checked Out: sccs info

Displaying Delta Comments: sccs prt
Updating a Delta Comment: sccs cdc ..

Comparing Checked-In Versions: sccs scecsdiff

Displaying the Entire History: sccs get -m -p

............

Creating Reports: sccs prs -d

Deleting Committed Changes

Replacing a Delta: sces fix ...

Removing a Delta: sccs rmdel ...
Reverting to an Earlier Version

Excluding Deltas from a Retrieved Version ...

Combining Versions: sccs comb .

4.3. Version Control for Binary Files

4.4, Maintaining Source Directories

Duplicate Source Directories

~vii—

101
101
101
102
102
103
103
103
103
104
104
105
106
106

Contents — Continued

4.6. Administering SCCS Files ...

4.7. Reference Tables

Chapter 5 make User’s Guide
5.1. Overview ...

SCCS and make

Keeping SIDs Consistent Across Files

Starting a New Release

Temporary Files used by SCCS

4.5, BrancChesooooeoooeoeeeeeeeeeeseesessseses s

Using Branches

Creating a Branch Delta
Retrieving Versions From Branch Deltas

Interpreting Error Messages: sccs help

Altering History File Defaults: sccs admin
Validating the History File

Restoring the History File

Dependency Checking: make vs. Shell Scripts
Writing a Simple Makefile

Basic Use of Implicit Rules ...

Processing Dependencies

Unknown Targets ...

Running Commands SIlently ...

Ignoring a Command’s Exit Status

Automatic Retrieval of SCCS Files

Suppressing SCCS Retrieval ...
Passing Parameters: Simple make Macros

Command Dependency Checking and .KEEP_STATE ...

Suppressing or Forcing Command Dependency Checking

for Selected Lines

The State File

Hidden Dependencies and . KEEP_STATE

— viii —

106
106
107
107
107
110
110
110
111
111
111
112
112
112

115
115
116
118
119
122
122
122
123
124
124
124
125

126
126
127

Contents — Continued

Hidden Dependencies and . INIT

Displaying Information About a make Run

5.2. Compiling Programs with make

Compilation Strategies

A Simple Makefile ...

Using make’s Predefined Macros ...

Using Implicit Rules to Simplify a Makefile: Suffix Rules
When to Use Explicit Target Entries vs. Implicit Rules

Implicit Rules and Dynamic Macros ...

Dynamic Macro Modifiers ...

Dynamic Macros and the Dependency List: Delayed Macro
REfEICIICESoooooee e s s sssesie

Dependency List Read TWICE ..o e ssissineoenn
Rules Evaluated ONCEeoooooooeoeeeeeeeeee e veeeeeseeses e ses e
No Transitive Closure for Suffix RUles ..o

Adding SUffix RUIESooimemmeneiesseeesssss s sseseees

Pattern-Matching Rules: an Alternative to Suffix Rules

5.3. Building Object Libraries

make’s Default Suffix Rules and Predefined Macros ...

Libraries, Members and Symbols
Library Members and Dependency Checking

Library Member Name-Length Limit ...

.PRECIOUS: Preserving Libraries Against Removal Due

to Interrupts
Libraries and the $% Dynamic Macro ...

5.4. Maintaining Programs and Libraries With make

More about Macros ...,

Suffix Replacement in Macro References ..
Using 1int with make
Linking With System-Supplied Libraries

Compiling Programs for Debugging and Profiling
Conditional Macro Definitions

135
135
136
136
136
137
138
141
141
141
142

142
142
142
142
143
143
144
144
145
146

Contents — Continued

5.5. Maintaining Software Projects
Organizing A Project for Ease of Maintenance ...

5.6. Closing Remarks about make

Compiling Debugging and Profiling Variants

Maintaining Separate Program and Library Variants

Pattern-Replacement Macro References
Makefile for a Program with Separate Variants

Makefile for a Library with Separate Variants ...

Maintaining a Directory of Header Files

Compiling and Linking With Your Own Libraries ...

Nested make Commands

Forcing A Nested make Command to Run

The MAKEFLAGS Macro

Macro Definitions and Environment Variables: Passing
Parameters to Nested make Commands

Compiling Other Source Files

Compiling and Linking a C Program with Assembly
Language Routines

Compiling 1ex and yacc Sources
Specifying Target Groups With the + Sign

Maintaining Shell Scripts with make and SCCS ...

Running Tests with make

Escaped References to a Shell Variable

Shell Command Substitutions

Command Replacement Macro References

Command Replacement Macro Assignment

Using include Makefiles

Installing Finished Programs and Libraries
Building the Entire Project

Maintaining Directory Hierarchies With Recursive Makefiles

Recursive Targets

Recursive install Targets

Maintaining A Large Library as a Hierarchy of Subsidiaries

146
148
148
150
151
151
152
152
153
154

154
157

157
157
159
159
159
160
160
160
161
161
162
163
163
163
164
164
165
166
168

Contents — Continued

Chapter 6 1int — a Program Verifier for C ..

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.

Chapter 7 Performance Analysis

7.1
7.2.
7.3.
7.4.

Chapter 8 m4 — a Macro Processor

8.1.
8.2.
8.3.
8.4.
8.5.

Using lint

A Word About Philosophy

Unused Variables and Functions ...

Set/Used Information

Flow of Control

Function Values

Type Checking

Type Casts ...

Nonportable Character Use ...
Assignments of Longs to Ints

Strange Constructions
Pointer ALIGNMENL ..o
Multiple Uses and Side Effects

Implementation

Portability ...

Shutting 1int Up
Library Declaration Files

Considerations When Using 1int

lint Options

t ime — Display Time Used by a Program ...
prof — Generate Profile of a Program

gprof — Generate a Call Graph Profile

tcov — Statement-Level Analysis

Using the m4 Command

Defining Macros

Quoting and Comments

Macros with Arguments

Arithmetic Built-ins

—Xi—_

169
169
170
170
17
17
172
172
173
173
174
174
175
175
175
176
177
178
179
179

181
181
184
186
188

193
194
194
195
197
197

Contents — Continued

8.6. File Manipulation

8.7. Running SunOS Commands
8.8. Conditionals

8.9. String Manipulation

8.10. Printing

8.11. Summary of Built-In m4 Macros

Chapter 9 lex — a Lexical Analyzer Generator

9.1. lex Source

9.2. lex Regular Expressions
9.3. lex Actions

9.4. Ambiguous Source Rules

9.5. lex Source Definitions

9.6. Using lex

9.7. lex and yacc

9.8. Examples

9.9. Left Context-Sensitivity

9.10. Character Set

9.11. Summary of Source Format
9.12. Caveats and Bugs

Chapter 10 yacc — Yet Another Compiler-Compiler
10.1. Basic Specifications

10.2. Actions

10.3. Lexical Analysis

10.4. How the Parser Works

10.5. Ambiguity and Conflicts

10.6. Precedencecovveeoeeeeeeseeseeeoseeeses s

10.7. Error Handling

10.8. The yacc Environment

10.9. Hints for Preparing Specifications
Input Style

Left Recursion

198
199
199
200
201
201

203
206
207
210
214
216
217
218
218
221
223
224
226

227
230
232
234
236
240
244
247
249
249
250
250

Contents — Continued

Lexical Tie-ins 251
Reserved Words 252
10.10. AQVanCed TOPICS ..o eeeerserseesnmmesmsssssssesssesse 252
Simulating Error and Accept in Actions 252
Accessing Values in Enclosing Rules. e ame i e et ks 252
Support for Arbitrary Value TYPES ... ssssesssssoees 253
10.11. A Simple Example e sttt 254
10.12. yacc Input SYNLaxoiiiisicoresein 256
10.13. An Advanced Example ..., 1Y |
10.14. Old Features Supported but not Encouraged ..., 262

Chapter 11 The curses Library: Screen-Oriented Cursor

MOBIONIS ..o smrssss s s s s s s 265

OVEIVIEW ..o e ssssssesse s s s sssss s s s s ssssssssses o 265
Terminology ... 265
Cursor Addressing CONVENLONS ... eeeeeeeseesesssessessno 266
Compiling Things 266
Screen Updating . 267
Naming CONVEIIONSccceeoeoooeceeesrsssesssossessoseseessssssssseseeeesessessinee 267

11.1. Variables st s e e 268
11.2. Programming Curses ... 269
Starting Up 269

The Nitty-Gritty ..o 269
Output 269

INDPUL ..oooooe s sssssmmssssssresmsssssssssssssssssssssssasssesssssessosossins 270
Miscellaneous 270
Finishing Up 270

11.3. Cursor Motion Optimization: Standing Alone 270
Terminal Information 271
Movement Optimizations, or, Getting Over Yonder ..., 271

11.4. Curses Functions 272
OULPUL FUNCLOMSoooocooee oo serssnessssssssesssssssssssssssssssseesssnssssssesssssssssssnes 272
addch () and waddch () — Add Character to Window 272

— xiii —

Contents — Continued

addstr () and waddstr () — Add String to Window

box () — Draw Box Around Window

clear () and wclear () — Reset Window

clearok () — Set Clear Flag

......

clrtobot () and weclrtobot () — Clear to Bottom ...

clrtoeol() and wclrtoeol () — Clear to End of

Line

delch () and wdelch () — Delete Character ..o,
deleteln () and wdeleteln () — Delete Current Line ...

erase and werase () — Erase Window

flushok — Control Flushing of stdout

idlok — Control Use of Insert/Delete Line
insch () and winsch () — Insert Character

insertln() and winsertln () —InsertLine ...

move and wmove () — Move

overlay () — Overlay Windows

overwrite () — Overwrite Windows

printw() and wprintw () — Print to Window ...

refresh () and wrefresh () — Synchronize ...

standout () and wstandout () — Put Characters in

Standout Mode

Input Functions

crbreak and nocrbreak — Set or Unset from Cbreak

echo () and noecho () — Turn EchoOnorOff ...

getch() and wgetch () — Get Character from Terminal ...

getstr () and wgetstr () — Get String from Terminal

raw () and noraw () — Tum Raw Mode Onor Off ...

scanw () and wscanw () — Read String from Terminal

Miscellaneous Functions

baudrate — Get the Baudrate

delwin () — Delete a Window

endwin () — Finish up Window Routines

xiv

273
273
273
273

273
273
274
274
274
274
274
275
275
275
275
275
276

276
276

276
276
276
277
271
2717
271
2717
278

Contents — Continued

erasechar — Get Erase Character 278
getcap () — Get Termcap Capability 278
getyx () — Get Current Coordinatesooeeeeencseenssson. 278
inch{() and winch () — Get Character at Current
COOTAINALEScooeoreeereere e sssss s esssssse s ssses s sss s sssss e 278
initscr () — Initialize Screen Routines 278
killchar — Get Kill Character ... 279
leaveok () — Set Leave Cursor Flag .. 279
longname () — Get Full Name of Terminal ... 279
mvwin — Move Home Position of Window 279
newwin () — Create a New Window ... 280
nl () and nonl () — Tum Newline Mode Onor Off 280
scrollok — Set Scroll Flag for Window w280
subwin () — Create a Subwindow ... 280
touchline — Indicate Line Has Been Changed ... 280
touchoverlap — Indicate Overlapping Regions Have
Been ChanGeAdooeeeeeeeeoee e sseeeeseeeeeseee s ssmseeesesssssosssss e 281
touchwin () — Indicate Window Has Been Changed ... 281
unctrl () — Return Representation of Character ... 281
DILAILSoooo oo sessssssss e sssssss s e snsss s sessss e ssnsss s e 281
gettmode () — Get tty StAtiStCSoooooovooovoeeeeeee e 281
MVCUL () — MOVE CUTSOTooccererrrrenerrssnmemensesss s ssssssesse e 281
scroll () — Scroll Window vt 281
savetty () and resetty () — Save and Reset tty Flags ... 281
setterm () — Set Terminal Characteristics ..o 282
EBED e sisssr s ssssaisis s s sss s s st es s s s e 282
_PULCNAT () e ssans s sssnsasssns e 282
11.5. Capabilities from termcap ..., cermesems s s 282
OVEIVIEWoooveeeeressinssessssssrsesssssss s ssimsss s sssss s sessss st s ssssssesssssssss s sssessns 282
Variables Set By setterm () ..o 283
Variables Set By gettmode () ..cccrnnsinrvsinnns 284
11.6. The WINDOW SLIUCLULEccccomvrrmeeeremsissssssssssssssssesssssessssssssssssssssssss s 284
11.7. Example . 286

- XV —

Contents — Continued

Chapter 12 System V curses and terminfo:
12.1.

12.2.

Overview

What is curses?

What is terminfo?
How curses and terminfo Work Together

Other Components of the Terminal Information Utilities

Package ..

Working with cur ses Routines
What Every curses Program Needs
The Header File <curses.h>

The Routines initscr (), refresh (), and endwin () ...

Compiling a curses Program

More about initscr () and Lines and Columns ..o,

More about refresh () and Windows
Simple Output and Input

Output

addch () — Write a single character to stdsCr ...,

addstr () — write a string of characters to stdscr ...

printw() — formatted printing on stdsSCr ..o,

move () — position the cursor for stdscrcrnns

mvaddch — move and print a character

mvaddstr — move and print a string

mvprintw — move and print a formatted string

clear () and erase () — clearthe screen ...,

clrtoeol () and clrtobot () — partial screen clears

Input

getch () — read a single character from the current

terminal

getstr () — read character string into a buffer ...

scanw () — formatted input conversion

Controlling Output and Input

Output Attributes
Bit Masks

—Xvi-

289
290
290
291
292

292
293
293
293
294
295
295
295
297
297
297
298
298
299
300
300
301
301
301
302

302
303
304
305
305
306

Contents — Continued

attron(),attrset (),and attroff () — setor

modify attributes 307
standout () and standend () — highlight with
preferred attribute ... 307
Bells, Whistles, and Flashing Lights ... 307
beep () and £lash () — ring bell or flash screen 308
Input Options e s e s s e e 308
echo () and noecho () — turn echoingonand off ... 310
cbreak () and nocbreak () — turn ‘ ‘break for each
character’”” onor off ..., 310
Building Windows and Pads .. 310
Window Output and Input 310
The Routines wnoutrefresh () and doupdate() ... 311
NEW WINAOWSooooooeore s s ssssssss s sssssssssssssssssssssssssssssssssses 312
newwin () — open and return a pointer to new window 312
SUDWIIL () oot see s eee s ess st ene s esessssssssenes et esesenssstesasassrane 313
Using Advanced curses FEatures ... 313
Routines for Drawing Lines and Other Graphics ... 314
Routines for Using Soft Labels 315
Working with More than One Terminal 316
12.3. Working with terminfo ROULNESoeoeeeersseeemmenernerseneee 317
What Every terminfo Program Needs 317
Compiling and Running a terminfo Program ... 318
An Example terminfo Program ... 318
12.4. Working with the terminfo Database ..o 321
Writing Terminal DeSCriptions ... 321
Naming the Terminal 321
Learning About the Capabilities ... 322
Specifying Capabilities ... sssssssssseseressssssene 322
Basic Capabilities 324
Screen-Oriented Capabilities ... eeeeeemeeeereessesosesssneeseneen 324
Keyboard-Entered Capabilities v 325
Parameter String Capabilities ... 325

— Xvil -

Contents — Continued

12.5.

Appendix A make Enhancements Summary
A.1. New Features
Default MaKEIleo.ccooeerreeeeeceeeesessess s ssnes e

Compiling the Description

Testing the Description

Comparing or Printing terminfo Descriptions

Converting a termcap Description to a terminfo
Description

curses Program Examples

The editor Program
editor — a Sample Program Listing

The highlight Program

The scatter PIOZTAM ... vesesesneesse s sssssssssessssenssses

The show Program

The two Program
The window Program

The State File .make.state ..o,

Hidden Dependency Checking

Command Dependency Checking

Automatic Retrieval of SCCS Files

Tilde Rules Superceded ...
SCCS HiStOrY FleS ...

Pattern-Matching Rules: More Convenient than Suffix Rules

Pattern Replacement Macro References ...

New Options

Support for C++ and Modula-2
Naming Scheme for Predefined Macros

New Special-Purpose Targets

New Implicit Rule for 1int ...

Macro Processing Changes

Macros: Definition, Substitution, and Suffix Replacement
Patterns in Conditional MACIOSoeerinrenssive s

— Xviii —-

326
327
327

328
328
328
330
333
335
336
337
339

341
341
341
341
341
341
341
341
342
342
343
344
344
344
345
345
345
345
345

Contents — Continued

Shell Command Output in Macros SN 346
Improved axr Library SUPPOIL ... cesssesesssssssssssssmsssssssnes 346

Lists of Members s e s s 346
Handling of ar’s Name Length Limitation ... 346

Target Groups ettt s ke e et e 346

A.2. Incompatibilities with Previous Versions of make ... 347
New Meaning for -d Option ... 347
DYNAMIC MACTOSoocvocrvreserssssssssesssssnsssssssssss s ssssssmasssssssssssssssssesssssnes 347

Tilde Rules not SUPPOTIEA ...t sssssesssmssssssssnsine 347
Target Names Beginning with . / Treated as Local Filenames 348
INAEX ... s s s ss s s st ssss s st sss st e e st s s 349

— Xix —

OO 00000 OO 0R000000UaCORa0 O 0 R PRSI
e L e

Tables

Table 4-1 SCCS ID Keywords 112
Table 4-2 SCCS Utility Commands 113
Table 4-3 Data Keywords forprs -d 113
Table 5-1 make’s Standard Suffix Rules 138
Table 5-2 make’s Predefined and Dynamic Macroscereeeremnsnsssicines 140
Table 5-3 Summary of Macro Assignment Order ... 156
Table 7-1 Control Key Letters for the t ime Command 183
Table 7-2 Default Timing Summary Chart .. 183
Table 8-1 Operators for the eval Built-Inin m4 198
Table 8-2 Summary of Built-In m4 Macros . 201
Table 9-1 Changing Internal Array Sizes in lex . 225
Table 9-2 Regular Expression Operators in lex . 225

Table 11-1 Description of Terms
Table 11-2 Variables to Describe the Terminal Environment
Table 11-3 Variables Set by setterm() ...
Table 11-4 Variables Set By gettmode () ...

—xxi—

Figure 3-1 IPC Permissions Data StrUCKULEommmrecromensersmeneressssessne 55
Figure 3-2 IPC Permission MOAESccovermmmmremmineecssmemmessssessossssssssssesessssesssnes 55
Figure 3-3 Structure of a Message QUEUEvueverrmnmrsssssmnsssssesinsssssssnn 57
Figure 3-4 Message Queue Control StrUCKUTEccooovvveneessssosssmsssssmsssesnen 58
Figure 3-5 Message Header Structureccoen 58
Figure 3-6 Synopsis Of MSGGet ()omrecrmemmnenrrimnnne e sessssmssessesssnsee 59
Figure 3-7 Sample Program to Illustrate msgget () ... 59
Figure 3-8 Synopsis of msgctl () 60
Figure 3-9 Sample Program to Illustrate msgct 1 () 61
Figure 3-10 Synopses of msgsnd () and msgrcv () 63
Figure 3-11 Sample Program to llustrate msgsnd () and msgrcv () .. 64
Figure 3-12 Structure of @ SEmMaphore ... 69
Figure 3-13 Synopsis Of SEMGet () ..o sesane s sessesse 70
Figure 3-14 Sample Program to Illustrate semget () ... 71
Figure 3-15 Synopsis of semct1 () T 17
Figure 3-16 Sample Program to Illustrate semctl () 73
Figure 3-17 Synopsis of semop () ..., 77

Figure 3-18 Sample Program to Illustrate semop ()

Figure 3-19 Structure of a Shared Memory Segment ..
Figure 3-20 Synopsis of shmget () ...

Figure 3-21 Sample Program to Ilustrate shmget ()

Figure 3-22 Synopsis of shmct1 () ...
Figure 3-23 Sample Program to Illustrate shmct1l ()

Figure 3-24 Synopses of shmat () and shmdt ()

— XXiil —

Figures — Continued

Figure 3-25 Sample Program to Illustrate shmat () and shmdt () ... 88
Figure 4-1 Evolution of an SCCS File . 108
Figure 4-2 Tree Structure with Branch Deltas 109
Figure 4-3 Extending the Branching Concept 110
Figure 5-1 Makefile Target Entry Format 116
Figure 5-2 A Trivial Makefile 117
Figure 5-3 Simple Makefile for Compiling C Sources: Everything

Explicit 130
Figure 5-4 Makefile for Compiling C Sources Using Predefined

Macros 132
Figure 5-5 Makefile for Compiling C Sources Using Suffix Rules ... 132
Figure 5-6 The Standard Suffixes List 133
Figure 5-7 Makefile for a C Program With System-Supplied Libraries 145
Figure 5-8 Makefile for a C Program with Alternate Debugging and

Profiling Variants ... 147
Figure 5-9 Makefile for a C Library with Alternate Variants ... 148
Figure 5-10 Makefile for Separate Debugging and Profiling Program

Variants 150
Figure 5-11 Makefile for Separate Debugging and Profiling Library
Variants 151

Figure 5-12 Target Entry for a Nested make Command 153
Figure 5-13 Makefile for C Program With User-Supplied Libraries ... 154
Figure 9-1 Anoverview of lex 204
Figure 9-2 lex with yacc 205
Figure 9-3 Sample character table. 223
Figure 12-1 A Simple curses Program 291
Figure 12-2 A Shell Script Using terminfo Routines ... 292

Figure 12-3 initscr (), refresh(),and endwin() ina
Program 294

Figure 12-4 Multiple Windows and Pads Mapped to a Terminal Screen ... 296
Figure 12-5 Input Option Settings for curses Programs 309

— XXiv —

Figures — Continued

Figure 12-6 Sending a Message to Several Terminals 317

Figure 12-7 Typical Framework of a terminfo Program ... 317

— XXV —

Preface

The following chapters describe a number of system facilities, utility commands,
and libraries of primary interest to application developers.

o Chapter 1: Shared Libraries

This chapter describes Sun’s approach to shared library support, along with
techniques for using and creating shared libraries.

o Chapter 2: Lightweight Process Library

this chapter describes Sun’s implementation of lightweight processes.
o Chapter 3: System V Interprocess Communication Facilities

This chapter describes facilities that support standard System V IPC.
o Chapter 4: SCCS — Source Code Control System

SCCS is a version control utility for source files.
o Chapter 5: make User’s Guide

make is a utility that provides consistent generation of programs and sys-
tems.

o Chapter 6: 1int — aProgram Verifier for C

lint is a utility that you can use to check your C programs for internal con-
sistency and portability.

o Chapter 7: Performance Analysis

This chapter describes system utilities for timing, prof
analysis of programs.

o Chapter 8: m4 — a Macro Processor
m4 is a parametric macro-language (pre)processor,
o Chapter 9: 1ex — a Lexical Analyzer Generator
lex is a program generator that produces scanning routine
o Chapter 10: yacc — Yet another Compiler Compiler

yacc is a program generator that produces parsing routines in C.

— Xxvii —

Preface — Continued

Bibliography and
Acknowledgements

[m]

Chapter 11: The curses Library

This chapter describes the cur ses screen-cursor motion library package
derived from BSD.

Chapter 12: System V curses and terminfo

This chapter describes the standard System V curses terminal-display
library routines and support facilities.

Appendix A

This appendix summarizes the enhancements made to Sun’s version of the
make utility.

For detailed information about system utilities, library functions, file- and
device-level facilities, and other details about specific features of the operating
system, refer to the SunOS Reference Manual.

This manual has been derived in large part from sources that include technical
papers distributed with U.C. Berkeley’s BSD release, System V Release 3 docu-
mentation, and others. In particular, Sun Microsystems wishes to acknowledge
the following sources:

1.

Aho, A. V., and Corasick, M. J., Efficient String Matching: An Aid to Biblio-
graphic Search, Comm. ACM 18, 333-340 (1975).

Allman, Eric, Source Code Control System, University of California at
Berkeley.

Amold, K. C.R. C., Curses — Screen Updating and Cursor Movement
Optimization: A Library Package, Bell Laboratories, Murray Hill, New Jer-
sey.

Author’s Acknowledgements:
This package would not exist without the work of Bill Joy, who, in writ-
ing his editor, created the capability to generally describe terminals,
wrote the routines which read this database [and] implement optimal
cursor movement ... Doug Merritt and Kurt Shoens also were
extremely important, as were ... Ken Abrams, Alan Char, Mark Horton
and Joe Kalash.

Editor' s Note:
The curses library was implemented by Ken Amold, based on the
screen-updating and optimizing routines originally written by Bill Joy
for the vi editor.

Bonanni, L. E., and Salemi, C. A., Source Code Control System User’s
Guide, Bell Laboratories, Piscataway, New Jersey.

Feldman, S. L., Make — A Program for Maintaining Computer Programs
Bell Laboratories, Murray Hill, New Jersey.

Graham, S. L., Kessler, P. B., and McKusick, M. K., Gprof — A Call Graph
Execution Profiler, Computer Science Division, Electrical Engineering and

— xxviii -

Preface — Continued

10.

11.

12.

13.

14.

15.

16.

Computer Science Department, University of California at Berkeley.

Editor’s Note:
This paper is for the scholar inertested in the theory behind call-graph
profiling.

Johnson, S. C., ‘A Portable Compiler: Theory and Practice’, Proc. 5th
ACM Symp. on Principles of Programming Languages, (January 1978).

Johnson, S. C., Lint, a C Program Verifier Bell Laboratories, Murray Hill,
New Jersey.

Johnson, S. C., Yacc — Yet Another Compiler-Compiler, Bell Laboratories
Computing Science Technical Report #32, July 1978.

Johnson, S. C., and Ritchie, D. M., ‘UNIX Time-Sharing System: Portability
of C Programs and the UNIX System’, Bell System Technical. Journal 57(6)
pp- 2021-2048 (1978).

Kemighan, B. W., and Plauger, P. J., Software Tools, Addison-Wesley, Inc.,
1976.

Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, N. J. (1978).

Kemighan, B. W., and Ritchie, D. M., The M4 Macro Processor, Bell
Laboratories, Murray Hill, New Jersey.

Author’s Acknowledgements:
We are indebted to Rick Becker, John Chambers, Doug Mcllroy, and
especially Jim Weythman, whose pioneering use of m4 has led to
several valuable improvements. We are also deeply grateful to Weyth-
man for several substantial contributions to the code. The m4 macro
processor is an extension of a macro processor called M3 which was
written by D. M. Ritchie for the AP-3 minicomputer.

Kemighan, B. W., UNIX for Beginners — Second Edition, Bell Laboratories,
1978.

Kemighan, B. W., and Ritchie, D. M., UNIX Programming, Ritchie, Bell
Laboratories, Murray Hill, New Jersey.

Lesk, M. E., Lex— A Lexical Analyzer Generator, Computing Science
Technical Report #39, October 1975.

Author’s Acknowledgements:
[The] outside of 1ex is patterned on yacc and the inside on Aho’s string
matching routines. Therefore, both S. C. Johnson and A. V. Aho are
really originators of much of lex, as well as debuggers of it. Many
thanks are due to both. The current version of 1ex was designed, writ-
ten, and debugged by Eric Schmidt.

— XXiX —

Shared Libraries

Operating systems like SunOS have long achieved more efficient use of memory
by sharing a single physical copy of a program’s text (code) among the
processes executing it. But while the text of a program may be shared among its
concurrent invocations, a significant portion of that text, consisting of library
routines, may be duplicated as part of other running programs. For example,
widely-used library functions such as print £ () may be replicated any number
times throughout memory, and again in various executables throughout the file
system. This suggests that still-greater efficiencies can be had by sharing text at
the library level whenever possible.

The SunOS shared library mechanism improves resource utilization in a way that
is both straightforward and flexible:

o No specialized kernel support is required; it uses the standard memory-
mapping and copy-on-write features provided by the mmap(2) system call
and the kernel memory management facilities.

o Itisdesigned to minimize the burdens placed on users of existing code. In
particular:

e Shared libraries are transparent to the programs that use them, as well as
the build procedures for those programs.

e They are largely transparent to standard system utilities, including
debuggers.

e Shared libraries are transparent to library source code written in C.
However, some special procedures are necessary when building the
shared libraries themselves.

e The allocation of address space for shared library routines is handled
automatically.

e Unlike statically-linked executables, programs that rely on shared
libraries need not be rebuilt if an underlying library changes (so long as
that library’s calling interface remains compatible).

e The use of shared libraries is not required. You can specify the static
version of a SunOS shared library as desired.

e Shared libraries may be bound and unbound dynamically, during the
course of program execution.

S u n 1 Revision A of 27 March 1990

microsystems

2 Programming Utilities and Libraries

1.1. Definitions
Shared Object

Shared Library

Static vs. Dynamic Link
Editing

Position Independent Code
(PIC)

Static and Dynamic Link
Editors

1.2. Using Shared Libraries

Building a Program to Use
Shared Libraries

In addition, shared libraries enhance the development environment by making it
easier to modify and test compatible updates to library functions.

A shared object, or . so file, is an a . out(5) format file produced by 14(1). A
shared object differs from a runnable program in that it lacks an initial entry
point. At run-time, such an object may be linked to a number of executing pro-
grams, all of which share access to a single copy of that object.

A shared library is a shared object file that is used as a library. In cases where
the shared library exports initialized data, the shared object (. so) may be paired
with an optional data interface description (. sa) file. (See Building a Shared
Library, below, for details.)

Link editing is the set of operations necessary to build an executable program
from one or more object files. Static linking indicates that the results of these
operations are saved to a file. Dynamic linking refers to these same link-edit
operations when performed at run-time; the executable that results from dynamic
linking appears in the running process, but is not saved to a file.

Position-Independent code (PIC) requires link editing only to relocate references
to objects that are external to the current object module. Position-independent
code is readily shared.

The link-editing facilities of 1d have been made available for use at run-time as
well as at compile-time. At compile time, the static link editor, 1d, can build an
executable file in which some symbols remain unresolved. An executable
(a.out) file that contains unresolved symbols is said to be incomplete. Incom-
plete executables require dynamic link editing at run-time.

The dynamic link editor, /usr/1ib/1d. so, uses the system’s memory
management facilities to map in and bind the shared object files that are required
at run-time, and performs the link editing operations that were deferred by 1d.
As long as the text bound-in at run-time is not subsequently modified (say, by a
link-edit operation or an update to initialized external data), it remains shared
among the various (disparate) programs that use it. However, if the text of a
shared routine should need to be modified by a process during the course of exe-
cution, local (exclusive) copies of the affected pages are created and maintained.

For the application developer, the decision to use shared libraries is made at the
static linking phase, when running 1d. By default, if a shared version of a library
is available, 1d constructs an executable that uses the shared version.

1d combines a variety of object files to produce an executable (a . out) file.
Exactly what code gets produced, and how complete the a . out is, depends on
the command-line options and input files supplied as arguments on the command
line. 1d simply defers the resolution of any symbols that remain after it has run
out of definitions, and assumes that the program will be fully linked by 1d. so at
run-time. 1d accepts as input:

sun Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 3

o Simple object files. 1d simply concatenates (and links) . o files in the order
that they are encountered.

o ar(l)libraries. Each . a file is searched exactly once as it is encountered,
and only those definitions that match an unresolved external symbol are
extracted, concatenated to the text (or data), and linked.

o Shared objects. Any . so encountered is searched for symbol definitions
and references, but does not normally contribute to the concatenated text
(see Binding of PIC with non-PIC, for exceptions having to do with 1d’s ~
dc option). However, the occurrence of each shared object is noted in the
resulting a . out file; this information is used by 1d. so to perform
dynamic link editing at run-time.

1d’s output can be one of two basic types:

o An ‘“‘executable’’ (a.out) file. This file is either a program, if it has an
entry point, or a shared object (. so), if it does not.

o Another ‘‘simple object’’ (. o) file. When given the -r flag, 1d combines
the input object files to form a single, larger one. (This is a special use for
1d which is of little relevance to shared libraries.)

You can indicate which libraries are to be used by supplying a —1name option on
the 1d command line for each. 1d searches each library in the order specified.
The name string is an abbreviated version of the library’s filename; the full name
is of the form ‘libname . a’ if in archive format, or ‘1ibname. so . version’ if
it is in shared object form. (see Version Control below, for a detailed discussion
of the version suffix). At 1d-time, this version information is noted; it must be
matched properly for successful binding at run-time by 1d. so.

The location of the library specified by a -1 option is determined by an ordered
list of directories in which to search called the library search path. This search
path is specified as follows. At compile time, directories specified by the -1
options are searched first, followed by those specified in the

LD_LIBRARY_ PATH environment variable (a colon-separated list of path-
names), and then the default libraries, /usr/1ib, /usr/51ib and
/usr/local/lib. Atmn-time, directories in LD_LIBRARY PATH environ-
ment variable are searched first, followed by libraries specified with -1, and
finally, the default directories.

Each directory supplied with -1 is recorded for use when the program is exe-
cuted, as are the default directories. Directory search information obtained from
1D_LIBRARY_ PATH is not recorded in this manner. However, the search path
that LD_LIBRARY_ PATH contains at run-time is searched at that time; this
allows an alternate set of libraries to be used.

At 1d-time, the library search is satisfied by the first occurrence of either form of
the library (. so or . a if no . so is found), but if both versions are found in the
same directory, the . so form is used by default. However, the choice of whether
a .so or .a version is used by 1d can be controlled by the binding mode
options described in the next section.

sun Revision A of 27 March 1990

microsystems

4 Programming Utilities and Libraries

Binding Mode Options

-Bstatic and -Bdynamic

NOTE

You can specify the binding mode by supplying one of the -Bkeyword options
on the command line;

-Bdynamic Allow dynamic binding, do not resolve symbolic references,
and allow creation of execution-time symbol and relocation
information. This is the default setting. Note that 1d records
the name of the . so file with the highest version number in
the executable.

-Bstatic Force static binding, this mode is also implied by options that
generate non-sharable executable formats.

-Bdynamic and -Bstatic may both be specified a number of times to toggle
the binding mode for specific libraries. Like -1, their influence is dependent
upon their location in the command line. Libraries that appear after a -
Bstatic are linked statically. Libraries that appear after a ~-Bdynamic are
treated as shared (when a shared version is available).

Since -Bdynami c is the default setting, the use of shared libraries in the con-
struction of a program thus ‘‘falls out’’ from installing the . so in 14d’s library
search path.

If -Bstatic is in effect, 1d refuses to use the . so form of a library; it contin-
ues searching for an equivalent library with the . a suffix, and an explicit request
to load a . so file is treated as an error.

The following example shows how -Bstatic and -Bdynamic can be used to
use selected shared and static libraries. This cc command:

r

\.

cc —-o test test.c -Bstatic -lsuntool -lsunwindow =—Bdynamic -lsunwindow -lpixrect]

generates the 1d command:

/bin/1d -dc -dp -e start -X -o test /usr/lib/crt0.o0 test.o -Bstatic -lsuntool \
~-Bdynamic -lsunwindow -lpixrect -lc

-N and -n Options for 1d

@

Since -Bstatic tumns off the use of shared libraries, 1d finds the static (. a)
suntool library and uses it for link editing immediately. The subsequent -

Bdynamic option tells 1d to use shared versions of the sunwindow, pix-
rect and C libraries, if available.

The 1d options ~N and ~n instruct 1d to build a non-pageable executable. Their
use implies a -Bstat ic option.

sun Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 5

Binding of PIC with Non-PIC

—-dc and -dp Options

NOTE

Use of Assertions

The -assert Option

Run-Time Use of Shared
Libraries

4

As noted in the above example, the cc command generates an 1d command with
the —dp and —-dc options. These options are included to facilitate binding of
non-PIC code (generated by default) with the PIC shared libraries that a program
might use. The bindings of interest are to:

o commons, (externs): allocated after the program is completely assembled
(-de);

o initialized data: imported from the shared libraries (—dc); and
o entry points: supplied by the shared libraries (-dp).

Without special handling, references to these objects would require execution-
time link editing, resulting in unsharable code. To improve the degree of sharing
for such programs, -dc and -dp force the allocation of commons and the crea-
tion of aliases for library entry points, respectively. These allocations and aliases
are created as part of the non-PIC executable, and result in programs that are con-
sidered to be ‘‘pure-text’’ non-PIC programs, even though they may require
dynamic link editing.

While it is possible to invoke the 13 command directly, it is generally better
practice to rely on the compiler-driver (such as cc) to generate the appropriate
1d command, so as to remain insulated from any future changes in the compila-
tion environment. Compiler commands such as cc accept and pass on options to
1d.

To help detect any potential sharability or correctmess problems, 1d can validate
certain assertions about an executable that it builds. This assertion checking is
invoked by the ‘‘-assert keyword’’ option, where keyword is one of:

definitions if the resulting program were run now, there would be no run-
time undefined symbol diagnostics. This assertion is set by
default, and is sufficient for validating applications that make
use of shared libraries.

pure-text the resulting executable requires no further relocations to its
text. The code of a shared library should be validated using
this assertion.

At run-time, 1d. so finishes the job started by 1d. That is, it performs the link-
editing operations needed to resolve a program’s remaining references using
shared-library code and data. 1d.so’s first task is to find and map in the
required libraries. It uses slightly different search rules than 1d. 1d. so looks
first in the directories specified by the current value of LD_LIBRARY PATH,
and then in the directories in the search path recorded by 1d (the default direc-
tories and those specified by -L). In addition, 14. so attempts to find the
‘‘best’’ version of a shared library, that is, the version with the highest minor
number (as described under Version Control below).

sun Revision A of 27 March 1990

microsystems

6 Programming Utilities and Libraries

SunOS Shared Libraries

Dynamic vs. Static Binding
Semantics

Debuggers

The shared libraries provided in SunOS are:

o The Clibrary (both BSD and System V variants)

o Window libraries (suntool and sunwindow)

o pixrect

o kemnel virtual memory access (kvm)

o The optional FORTRAN library (purchased and installed separately).

Static (. a) versions of these libraries are also provided.

There are some semantic differences between dynamic and static binding. These
are not expected to cause a problem with programs that avoid questionable prac-
tices with regard to library search order. However, there is a potential for prob-
lems when programs are built from some components that have become dynami-
cally loadable, while others remain static. Given the case where:

hermes% 1d -0 x ...d¢c sc

The executable x is composed of several objects, including a dynamic com-
ponent, dc, and a static component, sc. dc was, prior to the introduction of
shared libraries, an unordered archive file, and both dc and sc contain
definitions for the symbol get sym. Suppose that dc contains a reference to
getsym. If,in dc’s archive version, the definition for get sym preceded its
reference, 1d might have resolved that reference using the definition from sc.
But in dc¢’s current (dynamic) form, its own definition is used instead. This is a
result of the fact that at run-time, 1d . so searches for a symbol definition start-
ing with the main program, and then all . so’s in load order. Even though it
allows for an inconsistency of this sort, this behavior preserves the ability to
interpose definitions on library entry points.

The SunOS debuggers have been modified to deal with the dynamic linking
environment provided by the new 1d. In particular, they understand that symbol
definitions may appear after a program starts executing. However debugger users
must be aware that library symbols will not be resolved until main () has been
called, as the next example shows.

sun Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 7

Performance Issues

Dependencies on Other Files

Users of debugging tools also need to be aware that core files have incomplete
information on the state of shared code. Core files contain only the stack and
data regions of a process image. The text, and more importantly, the static data
regions of dynamically loaded objects, do not appear. Thus, modifications made
to initialized data are not reflected in the core file.

Shared libraries represent a classic space vs. time trade-off. The work of incor-
porating the library code into an address space is deferred in order to save both
primary and secondary storage. Therefore, one can expect to pay a slight CPU
time penalty with programs that use shared libraries. This penalty can be attri-
buted to added cost of:

o dynamically loading the libraries,
o performing the link editing operations, and
o the execution of the library PIC code.

However, these costs can be offset by the savings in I/O access time when library
code is already mapped in by another program, since the (real) I/O time required
to bring in a program and begin execution will be greatly reduced. As long as the
CPU time required to merge the program and its libraries does not exceed the I/O
time saved, the apparent performance of the program will be the same or better.
However, if sharing does not occur, or if the system’s CPU is already saturated,
such savings may not be achieved.

A dynamically bound program consists not only of the executable file that is the
output of 14, but also of the files referred to during execution. Moving a dynam-
ically bound program may also involve moving a number of other files as well.
Moving (or deleting) a file on which a dynamically bound program depends may
prevent that program from functioning.

S u n Revision A of 27 March 1990

microsystems

8 Programming Utilities and Libraries

Setuid Programs

1.3. Version Control

Version Numbers of . so’s

NOTE

Version Management Issues

For those programs that execute with an effective UID (user ID) or GID (group
ID) different than the real UID or GID, 1d. so ignores libraries in directories
other than /usr/1ib, /usr/51ib and /usr/local/1lib in the search
path.

A version numbering mechanism has been provided for shared libraries. This
allows newer compatible versions of a library to be bound at run-time. It also
allows the link editors to distinguish between compatible and incompatible ver-
sions of a library.

The version number is composed of two parts, a major version, and a minor ver-
sion number. This version-control suffix can be extended to an arbitrary string of
numbers in Dewey-decimal format, although only the first two components are
significant to the link editors at this time.

As noted earlier, 1d records the version number of the shared library in the exe-
cutable it builds. When 1d. so searches for the library at run-time, it uses this
number to decide which of the (possibly multiple) versions of a given library is
“‘best,”” or whether any of the available versions are acceptable. The rules it fol-
lows are:

o Major Versions Identical: the major version used at execution time must
exactly match the version found at 1d-time. Failure to find an instance of
the library with a matching major version will cause a diagnostic to be
issued and the program’s execution terminated.

o Highest Minor Version: in the presence of multiple instances of libraries
that match the desired major version, 1d. so will use the highest minor ver-
sion it finds. However, if the highest minor version found at execution time
is lower than the version noted at 1d-time, a warning diagnostic is issued.

Major version numbers should be changed whenever there is an incompatible
change to the library’s interface.

As always, the detection of incompatibilities between library versions remains
the responsibility of the library’s developer.

Whenever there is an incompatible change to the library’s calling interface, the
major number of that library should be changed. A library’s interface is defined
by:

o the names and types of exported functions and their parameters; and
o the names and types of exported data (initialized or not)

Incompatible changes would include the deletion of a exported procedure, dele-
tion of exported data, changes to an procedure’s parameter list, and changes to
data structures declared in a . h file normally included by both the library and the
applications that use it.

Changes to internal library procedures and data do not constitute an interface
change.

sun Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 9

1.4. Shared Library
Mechanisms

Memory Sharing

The C Compiler

Minor versions should be changed to reflect compatible updates to libraries. An
example of a compatible update would be changing a procedure’s algorithm
without changing its parameter list. Although adding a new library routine con-
stitutes an interface change, it can be considered a compatible change.

Note that link-editors silently select the highest compatible version they can
obtain. If the minor version used at 1d-time is higher than the highest one found
at run-time, then although the interfaces should remain compatible, it is possible
that certain bug fixes or compatible enhancements on which the application
depends might be missing: hence the waming message mentioned above.

There is no single mechanism in SunOS that implements shared libraries.
Instead, the ability to construct a shared library comes as a consequence of
enhancements to various existing facilities. The system components and their
features that are instrumental in supporting shared libraries are:

o Virtual memory supports file mapping and ‘‘copy-on-write’” sharing
o PIC generation by the compiler and assembler

o Link editor support for dynamic linking and loading

Memory sharing is provided by the kemel’s virtual memory (VM) system. The
mechanisms of interest for shared libraries are:

o File mapping by way of mmap ().
o Sharing at the granularity of a file page

o A per-page copy-on-write facility that allows run-time modification of a
shared file, without affecting other users of that same file.

The VM system uses these features internally, so that an exec () of a program
is reduced to establishing a copy-on-write mapping of the file containing the pro-
gram. A shared library is added to the address space in exactly the same way,
using this general file-mapping mechanism.

The C compiler’s -pic option generates position-independent code. When -
pic is specified, references to objects that are external to the body of the code
are made by way of linkage tables. These indirect references can degrade execu-
tion performance slightly, depending on of the number of dynamic references to
global objects. The code sequences generated often assume that the linkage
tables are no larger than a limit that is convenient for the specific machine (64K
bytes for an MC68000, or 8K for a SPARC, for instance). In the (presumably
rare) event the tables require a larger size, the compiler can be coerced into gen-
erating code sequences that permit larger linkage-table entries with the -PIC
option.

Shared library code should be generated as PIC using either ~pic or -PIC as
appropriate. The use of PIC in shared libraries results in code that does not
require relocation in order to be used, and is thus inherently sharable by any pro-
gram that uses it. The same copy of PIC code can be shared among multiple pro-
grams, even if that code is placed at different addresses in each program. Any

sun Revision A of 27 March 1990

microsystems

10 Programming Utilities and Libraries

The Assembler

crt0 ()

Link Editors: 1d and 1d. so

@

dependence on actual addresses is isolated to the linkage tables, which are
modified on a per- program basis to match the actual addresses selected.

The linkage tables are actually divided into two portions: a Global Offset Table
(GOT) that provides indirections to data objects referenced by the PIC code, and a
Procedure Linkage Table (PLT) that provides indirections to procedures refer-
enced by the PIC code. The principal difference between the two types of
indirections is that PLT entries are evaluated during dynamic linking, whereas
GOT entries are evaluated at the start of execution.

Code generated by the —pic option requires support from the assembler. This
support is enabled by the -k assembler flag, and is generated automatically by
cc when invoking the assembler for a compilation performed with the -pic or
the —~P IC option.

User-written assembly code for use in a shared object must also be PIC. Refer to
the appropriate Sun-3 Assembly Language Reference for your Sun system for
details.

Every main program produced by the standard languages is linked with a pro-
gram prologue module, crt0 (). This module contains the program’s entry
point, and performs various initializations of the environment prior to calling the
program’smain () function. crt0 () refers to the symbol __DYNAMIC. As
described above, when 1d builds an executable requiring execution-time link
editing, it defines this symbol as the address of a data structure containing infor-
mation needed for execution-time link editing operations. If the structure is not
needed, any reference to the symbol __DYNAMIC is relocated to zero.

At program start-up, crt0 () tests to see whether or not the program being exe-
cuted requires further link editing. If not, cxt 0 () simply proceeds with the
execution of the program as it always has — no further processing is involved.
However, if __DYNAMIC is defined, cxrt0 () opens the file

/usr/1lib/1d. so and requests the system to map it into the program'’s
address space via the mmap () system call. It then calls 1d. so, passing as an
argument the address of its program’s __DYNAMIC structure. crt0 () assumes
that 1d . so’s entry point is the first location in its text. When the call to 1d. so
returns, the link editing operations required to begin the program’s execution
have been completed.

After 1d has processed all of its input files, it attempts to resolve each symbolic
reference to a relative offset within the executable being built. 1d is able to
complete this symbolic reduction at 1d-time only if:

o all information relating to the program has been given and no . so will be
added at execution time or

o the program has an entry point and symbolic reduction can be made for
those symbols defined in the program

After performing all the reductions it can, if there are no further symbols to
resolve, the output is a fully linked (static) executable. However, if any
unresolved symbols remain, then the executable will require further link editing

S u n Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 11

1d.so

Binding and Unbinding
Routines: dlopen (),
dlsym(),dlclose(),
dlerror ()

at run-time. In this case, 1d deposits the information (including version number)
needed to obtain any needed . so files, in the data space of the incomplete exe-
cutable.

It should be noted that uninitialized ‘‘common’’ areas (essentially all uninitial-
ized C globals) are allocated by the link editor gfter it has collected all refer-
ences. In particular, this allocation can not occur in a program that still requires
the addition of information contained in a . so file, as the missing information
may affect the allocation process. Initialized ‘‘commons,’” however, are allo-
cated in the executable in which their definition appears.

After 1d has performed all the symbolic reductions it can, it attempts to
transform all relative references to absolute addresses. 1d is able to do this rela-
tive reduction only if it has been provided some absolute address.

At run-time, after receiving control from cxrt 0 (), 1d. so, executes a short
bootstrap routine that performs any relocations 1d . so itself requires. It then
processes the information contained in the __DYNAMIC structure of the program
that called it. 1d.so examines the list of required dynamic objects Each ele-
ment of the list contains an offset relative to the __DYNAMIC structure of an
array of 1ink_ object structures and has information to identify a . so that
must be incorporated. The identification is the name specified on the 1d com-
mand line used to build the program, and includes a bit indicating whether the
object was named explicitly or via a -1 option. Some version control informa-
tion is also recorded for each entry inthe 1d_need array. 1d. so looks up the
indicated file, and maps it into the process’s address space.

After all modules comprising the program have been placed in the address space,
1d. so attempts to resolve the remaining symbols. After performing allocations
for all uninitialized commons 1d . so attempts to resolve all unbound references
that occur outside of procedure linkage tables.

Unresolved procedural references in the linkage tables are not processed during
program startup. Instead, such references are initialized such that the initial call
results in a transfer of control to 1d. so. When called in this way, 1d. so first
resolves the reference to an absolute address, and then modifies the linkage table
entry to use that address. Deferring the binding of procedural entry-points until
the first call eliminates unnecessary bindings to entry points that the program
may not use.

SunOS provides a programmatic interface to the run-time linker, which you can
use to bind or unbind shared libraries during the course of program execution.
dlopen () allows you to get access to a shared library, which it binds to the
process’s address space (if it isn’t bound already). dlsym() returns the address
of a given symbol within a (bound) shared library. d1close () deletes a refer-
ence to a shared object. When the last reference is deleted, the shared object is
removed from the process’s address space. dlerroxr () can be used to obtain
information about the last error occurring as the result of dlopen (),
dlsym(),ordlclose(). Referto 1d(3) for details.

sun Revision A of 27 March 1990

microsystems

12 Programming Utilities and Libraries

1.5. Building a Shared
Library

Building the . so File

The . sa File

®

In the simplest of cases, the commands needed to build a shared library might be:

But note that this assumes that the library exports no initialized data. And it
makes no guarantee that the library text makes the most efficient possible use of
space, or allows for a minimal amount of paging.

As noted earlier, a shared library should be structured to avoid undue
modification in the course of dynamic linking and execution. Otherwise, it is
possible that some or all of the shared text may be rendered unsharable when run.
Although this lack of sharing would not effect the correct execution of library
routines, it will impact system performance. If only a few programs use the
library, this impact is small. But for a widely-used library, the impact on system
performance could be significant. Thus, shared library objects should be PIC,
they should be validated using the pure—text assertion, and those libraries
that export initialized data should be accompanied by a data interface description
(.sa)file.

To build the . so portion of a shared library, simply invoke 1d with the list of
object files that will comprise it. The version number is not automatically gen-
erated by 1d (which creates a file named a . out by default), but you can specify
the full name of the library, including the version number, with 1d’s —o option.
It is strongly suggested that you use the —assert pure-text assertion to
uncover any instances of non-PIC code.

The . sa file is used to support 1d’s —dc option, which provides a space/time
efficient implementation of the interface between non-position-independent code
and dynamically linked objects. The . sa file is an ar-format file (archive
library) that contains the exported initialized data used by a shared library. When
present, the . sa file it is statically linked at 1d-time to insure correct allocation.

A data item is exported from a library if a program that uses the library refers to
the data item by name. The contents of the data item are included if they are
specified by value in the declaration. For instance, with a definition of the form:

char *strlist[] = { "string 1", "string 2" };
the data itself must be included in the . sa file, whereas with:
struct *strlist[] = { ptrl, ptr2 };

definitions for the objects named ptr1 and ptxr2 would not necessarily have to
be included. Note that if ptr1 were itself defined as an initialized global in the
library source, say:

extern char *ptrl = NULL
then this definition would also have to go into the . sa file.

Uninitialized data (exported or not) is handled automatically, and need not be
included in the . sa file. If the library does not export any data, then a . sa

sun Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 13

would be unnecessary. The full name of a . sa also includes a version number
that must match the version string of the . so it accompanies.

CAUTION If a shared object exports initialized data, it is very important that a . sa file
be created that contains such data. Failure to do so can degrade the perfor-
mance of applications or, if the library is used heavily, the system as a whole.
Further, in the event that such data is located within the text segment of the
shared object, it is possible for 1d to confuse the data with procedures
defined by the library and to incorrectly link applications that reference
such data.

Initialized data can appear in the text segment of a shared object if it is part of a
source file that is compiled with the —-R (make initialized data read-only) option.

Building the . sa File To build a . sa file:

1. Segregate the declarations of exported initialized data from the sources for
each object, and place them in a separate source file. Make sure that an up-
to-date object is compiled from each of those data-description sources, and
include each of those data-description objects in both the static and shared
versions of the library.

2. Create a separate (static) archive library composed of only the data-
description objects, and give it a name of the form ‘1 ibname. sa . version’.
This archive constitutes the . sa file. Be sure that the . sa has the same ver-
sion number as the . so it is to accompany.

3. Use ranlib(1) to incorporate a symbol table within the . sa archive.

As an example, consider the system’s C library. It contains a number of data
structures that are initialized at program startup and which are exported to appli-
cations. Examples of these include the global variable errno, and the array of
error messages sys_errlist.

The C library source has been constructed such that the variable errno appears
in its own source file (errno. c). This accomplishes step 1 of the procedure
outlined above. The relevant portion of this source file consists of the line:

int errno = 0; /* global error return value, initially

This source file is compiled -pic, and the resulting object file, errno .o, is
archived into the C library’s . sa file. Since everything placed in a . sa file must
also appear in the . so file. errno. o is also included in the . so file. Thus
errno. o is also linked into the C library’s . so file when it is built.

Once all such files have been placed in the . sa file, it is processed with ranlib

to add a symbol table.
1.6. Building a Better Library code that maximizes sharing is considered ‘better’’ because it makes
Library more efficient use of the system’s memory resources. Building the library com-

ponents PIC is an important and easy first step, but there are other tuning stra-
tegies to consider as well.

S ll n Revision A of 27 March 1990
microsystems

14 Programming Utilities and Libraries

Sizing Down the Data
Segment

Using xst r to Extract String
Definitions

One way to maximize sharing is to minimize a . so’s data segment (containing
initialized data), and its bss segment (containing uninitialized data). Often a

. so’s data requirements are large because a significant portion of that data that
is functionally read-only. There are several problems with this mix of read-only
and modifiable data:

o data that could be shared is not,
o anunnecessary amount of swap space is reserved, and

o read-only data fragments the read-write storage, spreading it over more
pages.

One approach is to move initialized read-only data into the text segment. This is
done by compiling with the —R option. However caution needs to be exercised,
since initialized data structures that contain pointers require relocation at run-
time.
For instance, given the declarations:
(3\
void test();
int x;
struct fxy({

void (*p0) ();

int *pl;

}:
struct fxy example = {test, &x};

\ J

The references to &x and test are instances of pointers embedded in an initial-
ized structure. The actual addresses to which those pointers are resolved will not
be determined until the program starts executing, and the shared object is placed
in the address space. If this data structure is placed in the text segment of the
shared object through the use of the —R option, then the relocation will cause that
portion of the text segment to become unshared. Such data structures should not
be contained in modules compiled with the -R option. You can check whether
such relocations are occurring within a shared object by specifying the ‘~
assert pure-text’option when building the shared object.

Another common example of initialized data containing pointers is an array of
strings:

char *errlist[] = {"errl™, "err2"};

The xstxr (1) utility can be used to make code containing initialized strings
more sharable. It segregates the literal string data from its relocatable references,
which allows the literal data to be merged safely into the text segment. However,
files containing references to the string data should not be compiled with the —R
option.

If there are several related pieces of data, another strategy is to coalesce the
smaller items into a larger structure and allocate the space from the heap.

sun Revision A of 27 March 1990

microsystems

Chapter 1 — Shared Libraries 15

Better Ordering of Objects

crt0.o Dependency

The ldconfig Command

1.7. Shared Library
Problems

1d. so Is Deleted

The order of the objects in the executable can be important to minimizing the
memory requirements. Since objects are concatenated together, linking in the
wrong order may result in a unnecessarily large memory requirement. Two
approaches that encourage better utilization of memory resources are:

o Routines that are frequently called should be packaged together, and isolated
from startup or rarely-called code.

o A set of routines that represent a common sequence should also be packaged
together. For example, given modules A, B, C, D, and E, where A and B fit
on one VM page, C and D fit on another, and E fits on a partial page, if A
always calls into E and never calls into B, the memory requirements may be
reduced by a page if E follows A.

Sometimes a program will define its own crt0 () initial routine. If it is
intended that the program use shared libraries, then the programmer needs to pro-
vide a hook for the run-time linker. Further discussion of this can be found under
1ink(5) in the SunOS Reference Manual.

ldconfig(8)is a program used to construct a run-time linking cache for use by
1d.so. The cache has a default list of directories /usr/1ib, /usr/51ib,
/usr/lib/fsoft, /usr/1lib/£68881, /usr/lib/ffpa, and
/usr/lib/fswitch and will accept as input a list of additional directories to
augment this list. 1dconfig records the pathname of the highest compatible
version of each shared library in the specified search path.

At runtime, 1d. so first queries the cache to determine which is the best version
of alibrary in a particular directory. If the cache is unable to satisfy the request,
1d. so enumerates the directory entries for the best version.

Since many system utilities are built to use shared libraries, and thus rely on
dynamic link-editing, the potential exists for chaos if an important shared library
(such as the C library) or /usr/1ib/1d. so should be deleted.

If the latter has been deleted, you will see the following message:

(crt0: no /usr/lib/ld.so]

To deal with the chaos resulting from either the shared C library or 1d. so being
deleted, a number of commands and utilities have been statically linked. These
include: rcp(l) init(8), getty(8), sh(l), csh(l), mv(1), 1n(1), tar(l) and
restore(8). Since most system utilities may be rendered unusable by this con-
dition, it may be necessary to boot the system single-user in order to restore
either /usr/1ib/1d.so or the Clibrary. Refer to System and Network
Administration for procedures to restore these files.

sun Revision A of 27 March 1990

microsystems

16 Programming Utilities and Libraries

Wrong Library Is Used 1d. so will not detect a library that is newly installed in the cache unless the
cache is rebuilt using 1dconfig. Thus, a program that depends on the newly-
installed library may not be able to find it. You can use the 1dd(1) command to
identify the libraries on which a program depends.

Error Messages
[ld.so: libname.so.major not found J

1d. so failed to find a library with the appropriate major version number.

ld.so: open error for library
1d.so: can’'t read struct exec for library
ld.so: library is not for this machine type

Either the shared object has been corrupted, has incorrect access permissions, or
was built to execute on another processor architecture.

ld.so: call to undefined procedure symbol from address
ld.so: Undefined symbol symbol

These messages generally indicate that the execution path attempts to refer to an
undefined symbol. This is usually the result of a programming error.

(ld. so.cache corrupted]

The file /etc/1d.so.cache has become damaged. To correct it, remove the
existing file and reboot the system. The file will be rebuilt.

(ld.so: warning library has older version than expected]

The version of the shared library that is currently being used has a minor version
number that is lower than the version that was present at the time the application
was compiled.

sun Revision A of 27 March 1990

microsystems

2.1. Introduction

Definition

Functionality

Lightweight Processes

This tutorial provides some examples of how to use the lightweight process
library. Although the term *‘lightweight processes’’ is often used, it is really a
misnomer since the fundamental property of lightweight processes is not that
they are somehow ‘‘lighter’’ than ordinary processes, but that a lightweight pro-
cess represents a thread of control not bound to an address space. If threads
appear to operate more efficiently than ordinary SunOS processes, it is because
threads communicate via shared memory instead of a filesystem. Because
threads can share a common address space, the cost of creating tasks and inter-
task communication is substantially less than the cost of using more *‘heavy-
weight’’ primitives. The availability of lightweight processes provides an
abstraction well-suited to writing programs which react to asynchronous events
such as servers. In addition, lightweight processes are useful for simulation pro-
grams which model concurrent situations.

The idea is to provide a process abstraction: a thread is a data type representing a
flow of control. A number of operations are available to manipulate threads,
including ways to control their scheduling and communication. Lightweight
processes exist independently of virtual memory, I/O, resource allocation, and
other operating system-supported objects, but are able to smoothly work with
these objects.

The lightweight process abstraction for managing asynchrony is superior to the
UNIX system signal abstraction. Under the UNIX system, a signal causes a sort
of context switch (to a new instruction and optionally, to a new location on the
stack) but the thread is the same: for example, you can longjmp () to the main
program (the signal handler and main program can’t run in parallel). Critical
sections are implemented by disabling interrupts. With lightweight processes,
the only way to manage an asynchronous activity is via a thread. There are no
asynchronous exceptions in a thread. Critical sections are implemented with
monitors. There is no need to lock out interrupts, with the concomitant possibil-
ity of losing information while in the critical section.

The Sun lightweight process library provides primitives for manipulating
threads, as well as for controlling all events (interrupts and traps) on a processor.
The present library is supported for user-level processes only. This means that
the time slice given to a process by the operating system is shared by all the
threads within that process. Further, LWP objects are not accessible outside of

S ll n 17 Revision A of 27 March 1990

microsystems

18 Programming Utilities and Libraries

Tutorial Goals

2.2. Threads

the containing process. Briefly, the primitives supported by the library include:

o Thread creation, destruction, status gathering, scheduling manipulation,
suspend and resume

o Multiplexing the clock (any number of threads can sleep concurrently)

o Individualized context switching (e.g., it is possible to specify that a given
set of threads will touch floating point registers and only those threads will
context switch these registers)

o Monitors and condition variables to synchronize threads
o Extended rendezvous (message send-receive-reply) between threads

o An exception handling facility that provides both notify and escape excep-
tions

o A way to map interrupts into extended rendezvous
o A way to map traps into exceptions

o Utilities to allocate red-zone-protected stacks, and to provide some stack
integrity checking for environments that lack sophisticated memory manage-
ment

Scheduling is by default, priority-based, non-preemptive within a priority. How-
ever, sufficient primitives are available that it is possible to write your own
scheduler. For example, to provide a round-robin time-sliced scheduler, a high-
priority thread may periodically reshuffle the queue of time-sliced threads which
are at a lower priority. Although pure coroutine scheduling is possible, it is not
required and purely preemptive scheduling may be used. Threads currently lack
kernel support, so system calls still serialize thread activity, although the non-
blocking 1/0 library (libnbio.a) mitigates this problem somewhat. When a set of
threads are running, it is assumed that they all share memory.

This tutorial provides some practical examples of how to program using light-
weight processes. Also included is some discussion of the rationale for the light-
weight process primitives. Syntax details of the lightweight process primitives
are not supplied in this tutorial, though they can be found in the SunOS Reference
Manual.

The lightweight process mechanism allows several threads of control to share the
same address space. Each lightweight process is represented by a procedure
which will be converted into a thread by the 1wp_create () primitive. Once
created, a thread is an independent entity, with its own stack as supplied by its
creator. lwp_create () performs a number of actions: a thread context is allo-
cated, the stack is initialized, and the thread is made eligible to run. A collection
of threads runs within a single ordinary process. This collection is sometimes
called a pod.

Lightweight processes (LWP’s or threads) are scheduled by priority. It is always
the case that the highest priority non-blocked thread is executing. Threads may
block on certain occurrences, such as the arrival of a message or the procurement

S ll n Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 19

of a monitor lock. Within a priority, threads execute on a first-come, first-served
basis. Thus, if two threads are created at the same priority, they will execute in
the order of creation.

Here is an example of how to do something simple with lightweight processes.
The program below creates a thread which prints out the ‘‘hello world’’ message
and then terminates (by ‘‘falling through’’ the procedure). main () becomes a
lightweight process as soon as a LWP primitive (here, pod_setmaxpri())is
called. Note that main () is created with a priority of MAXPRIO so that it may
set things up as it wishes before allowing other threads to run.

4)
#include <lwp/lwp.h>
#include <lwp/stackdep.h>

#define MAXPRIO 10

main(argc, argv)
int argc;
char **argv;

thread_t tid;
int task();

printf("main here\n"); /* 1 */
(void)pod setmaxpri (MAXPRIO) ; /* 2 x/
lwp_setstkcache (1000, 2); /* 3 */
lwp_create(&tid, task, MAXPRIO,
0, lwp_newstk(), 0); /* 4 %/
}

task ()
{
printf ("hello world\n");
/* now, fall through and terminate this thread */

}
\ J

The command to compile this program (call it foo.c) is:
example ce -o foo foo.c -llwp

Let’s go through this program line by line. We begin by printing a message
‘‘main here’’ at line 1. Then, pod_setmaxpri () tumsmain () into a light-
weight process (as it’s the first LWP primitive to be called).

pod_setmaxpri () also specifies the maximum scheduling priority: in this
case, 10. The range of scheduling priorities 1..10 is now available to the client.
If we didn’t use pod_setmaxpri () the available priority would be just
MINPRIO. Now, main () is a thread running at a priority of 10, the maximum
priority. In other words, main () will execute until it explicitly blocks or other-
wise yields control to another thread.

lwp_setstkcache () initializes a cache of stacks that can be used by subse-
quent lwp_newstk () calls. lwp_newstk () will return a stack of at least
the size specified in the 1wp_setstkcache () call (here, 1000 bytes), and this
stack is red-zone protected. The second argument to 1wp _setstkcache ()

S u n Revision A of 27 March 1990

microsystems

20 Programming Utilities and Libraries

Stack Issues

Stack Size

Protecting Against Stack
Overflow

specifies how big the cache should be initially (how many stacks it should con-
tain). Larger numbers will require more memory, but will make cache faults less
likely. On a fault, an additional cache of the same size will be allocated. A stack
allocated from the stack cache will automatically be freed when the thread that
uses it dies. Allocation from this cache is almost as efficient as using statically
allocated stacks.

At line 4, we create a new thread. This thread will begin execution at task (),
have a scheduling priority of 10, use the stack cache for a stack, and take no
arguments initially. Even though it will run at the same priority as main (),
task () will not run until main () relinquishes control because of the FCFS
scheduling policy for threads at the same priority, and task () is at the same
priority asmain (). (It is not a good programming practice to rely on the order-
ing of threads within a priority since this assumption may not hold on a multipro-
cessor or in the presence of external scheduling). The identity of the new thread
isreturned in tid. This identity may be used in subsequent LWP primitives.

When the main () thread ‘‘falls through’’, it terminates. At this point, task ()
will run, print its message, and terminate. The LWP library will notice that no
more threads remain, and the program will terminate.

Be careful not to confuse threads with ordinary heavyweight processes. For
example, there are no inheritance rules about lightweight processes, and light-
weight processes do not have their own set of descriptors.

A major problem is to determine how big to make the thread stacks. Once this
determination is made, you can decide how or if you need protection against
exceeding this limit. UNIX presents the same problem to the user, but it rarely
causes trouble because the maximum stack length is very big. Allocating large
stacks is not a big performance drain because pages are only allocated if actually
used. Hence, you can allocate very large stacks fairly casually.

lwp newstk () automatically allocates red-zone protected stacks (references
beyond the stack limit will generate a SIGSEGV event). There are two ways to
ensure stack integrity when not using 1wp_newstk (). One way is to use the
CHECK () macro at the beginning of each procedure (before any locals are
assigned), in conjunction with the 1wp checkstkset () primitive. If the
procedure exceeds the thread stack limit, the procedure will return and set a glo-
bal variable. Another way is to use the lwp_stkcswset () primitive. This
enables stack checking on context switching. Although this is transparent to the
client programs, it may not detect errors until after the stack limit has been
exceeded. Thus, with 1lwp_stkcswset (), an error is considered fatal.
CHECK () detects errors before any damage is done, so error recovery is possi-
ble.

It is possible to assign a statically allocated stack to a thread. Thus, in the pro-
gram above, we could declare a stack as follows, using the macros defined in

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 21

Coroutines

stackdep.h to declare the stack portably. MINSTACKSZ () is added to
include any stack room needed by the LWP library to execute the LWP primi-
tives.

')
#include <lwp/lwp.h>

#include <lwp/lwpmachdep.h>

#include <lwp/stackdep.h>

#define MINSTACKSZ 1024
#define MAXPRIO 10

stkalign_t stack[1000+MINSTACKSZ];

main()

{
int task();
thread t tid;

(void)pod_setmaxpri (MAXPRIO) ;
lwp create(&tid, task, MAXPRIO, 0, STKTOP (stack), 0);
}

task ()
{

printf ("task: hello world\n");
}

_)

It is possible to use threads as pure coroutines in which one thread explicitly
yields control to another. 1wp yield () allows athread to yield to either a
specific thread at the same priority, or the next thread in line at the same priority.
Here is an example of three coroutines: main (), coroutine (), and
other (). The result should be the numbers 1 through 7 printed in sequence.
In the case where a generic yield is done (lwp_yield (THREADNULL)), the
current thread goes to the end of its scheduling queue. When a specific yield is
done, the specified thread butts in front of the current one at the front of the
scheduling queue. Since we are just using coroutines, a single priority
(MINPRIO) is sufficient and we do not increase the number of available priori-
ties with pod_setmaxpri ().
F)
#include <lwp/lwp.h>
#include <lwp/stackdep.h>

thread t col; /* main’s tid */
thread t co2; /* coroutine’s tid */
thread_t co3; /* other's tid */
main (argc, argv)

int argc;

char **argv;
int coroutine(), other():
lwp_ self (&col);

lwp_setstkcache (1000, 3);
_ S

sun Revision A of 27 March 1990

microsystems

22 Programming Utilities and Libraries

Custom Schedulers

(lwp_create(&co2, coroutine, MINPRIO, O,)
lwp_newstk (), 0);
lwp_create(&co3, other, MINPRIO, 0, lwp newstk(), 0);
printf ("1\n") ;
lwp_yield (THREADNULL); /* Yyield to coroutine */
printf ("4\n");
lwp_yield(co3); /* yieldto other */
printf ("6\n");
exit (0);
}

coroutine() {
printf ("2\n");
if (lwp_yield(THREADNULL) < 0) {
lwp_perror("bad yield"):;
return;
}
printf ("7\n");
}

other () {
printf ("3\n");
lwp_yield (THREADNULL) ;
printf ("5\n");

There are three ways to provide scheduling control of threads to the client. One
way is to do nothing and simply provide the client a pointer to a thread context
which can be scheduled at will. This method suffers from the fact that most
clients don’t want to be bothered by constructing their own scheduler from
scratch. Another way to do it is to provide a single scheduling policy, with very
little client control over what runs next. The UNIX system provides such a pol-
icy. While this is the simplest (from the point of view of the client) way to go, it
makes it difficult to implement policies that take into account the differing
response time needs of client threads. We chose to take a middle ground in an
effort to avoid these problems. There is a default scheduling policy, but enough
primitives are provided that it is possible to construct a wide variety of schedul-
ing policies based on it.

It is possible to custom-build your own scheduler by using the primitives
lwp_suspend(), lwp_yield(), lwp_resume(), lwp_setpri (), and
lwp_resched(). 1lwp_suspend () may also be used in debugging, to
ensure that a thread is stopped before inspecting it. Here, we give an example of
how to build a round-robin time-sliced scheduler. The idea is to have a high
priority thread act as a scheduler, with the other threads at a lower priority. This
scheduler thread simply sleeps for the desired quantum. When the quantum
expires, the scheduler issues a 1wp_resched () command for the priority of
the scheduled threads. This causes a reshuffling of the run queue at that priority.

#include <lwp/lwp.h>
#include <lwp/stackdep.h>

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 23

Special Context Switching

(#define MAXPRIO 10
main(argc, argv)
int argc;
char **argv;

int scheduler(), task(), i;
(void) pod_setmaxpri (MAXPRIO) ;
lwp_setstkcache (1000, 5);
(void) lwp_create((thread_t *)0, scheduler, MAXPRIO, 0,
lwp newstk (), 0);
for (i = 0; 1 < 3; i++)
(void) lwp create((thread t *)0, task, MINPRIO, 0,
lwp newstk(), 1, 1i);
exit (0);
}

scheduler () {
struct timeval quantum;
quantum.tv_sec = 0;
quantum.tv_usec = 10000;
for(;;) |
lwp_sleep(&quantum) ;
lwp_resched (MINPRIO) ;

}

/* these tasks are scheduled round-robin, preemptive * /
task (arg) {
for(;;)
printf ("task %d\n", arg);

A thread can pretend to be the only activity executing on its machine even
though many threads are running. The LWP library is the entity that provides
this illusion. As such, the LWP library provides for context switches between
threads which cause volatile machine resources to be multiplexed so that each
thread operates with its own set of machine resources. In many cases, a context
switch requires only that machine registers and the stack be multiplexed. In
other cases, floating point state, memory management registers, and even
software state may be multiplexed as well. The LWP library allows threads to
have differing amounts of switchable state to efficiently allow processes with dif-
ferent resource needs to coexist.

In addition to switchable state, a thread will possess state that is updated by other
primitives. This per-thread state includes such information as messages sent to a
thread, and monitor locks it holds. The only per-thread state maintained by the
library is that used to support the LWP primitives, whereas heavyweight
processes entail a considerable amount of per-process state. With threads, this
amount of state is much smaller with the intent that only those threads which
need to should maintain additional state. Thus, operating-system-specific infor-
mation such as signal state, accounting information, and file descriptors is not

Sun Revision A of 27 March 1990

microsystems

24

Programming Utilities and Libraries

found in the thread context. It is up to the clients to provide as much ‘‘weight”’
as is required.

The reason that special contexts are not directly incorporated into the context of a
thread is that not all threads will use these contexts and there is no reason to
make a thread pay for something it won’t use. The LWP library will allocate a
new context buffer for each special context a thread is initialized with, and pass a
pointer to this context to the save and restore routines defined for this context.
The id of the previous and new threads to use the context are also passed in, in
case the save and restore routines maintain per-thread information about a special
context. This information could be used, for example, by a memory-
management special context to avoid doing work if the previous and current
threads access the exact same memory management registers.

To use the special context mechanism, you first define a special context with the
lwp ctxset () primitive. This requires that you figure out how to save and
restore the state required by your context and provide procedures to do this. In
the example below, which context-switches the C-library global errno, the rou-
tines _ libc_save() and __ libc restore() are provided, and the con-
text they will save into and restore from is of type 1ibc_ctxt_t. The routine
libcenable () is used to define the context, and the global LibcCtx
remembers the cookie that defines the context.

Once a special context is defined, you may initialize any thread to use the
resource multiplexed by the special context by using 1lwp_ctxinit (). The
initialization of a given thread to use a special context can be done directly, or, if
the resource permits, by catching a trap when the resource is first used by a
thread. In the example below, we expect that each thread accessing e rrno will
be initialized via 1ibcset () to use the special libc context. Threads protected
with this special context can read e rrno without fear that another thread can
change errno (e.g., via a system call) from undemeath them. Because this
errno multiplexing is quite useful, it is available in the routine

lwp libcset () which does all of the work for you.

#include <lwp/lwp.h>
#define TRUE 1

typedef struct libc_ctxt t {
int libc_errno;

} libc_ctxt_t;

static int LibcCtx:;

/* enable libc special contexts */
libcenable ()
{
extern void _ libc_save():
extern void __ libc_ restore();

LibcCtx = lwp_ctxset (__libc_save, _ libc_restore,
sizeof (libc_ctxt_t), TRUE);
}

/* set a thread to have libc context */
|\ J

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 25

2.3. Messages

Messages vs. Monitors

(1wp_ libcset (tid)

thread_t tid;
{

(void) lwp_ctxinit (tid, LibcCtx):
}

/* routines for saving/restoring global library data. */
void
__libc_save(cntxt, old, new)
caddr_t cntxt;
thread t old;
thread t new;
{
extern int errno;
#ifdef lint
old = old;
new = new;
#endif lint

((libc_ctxt_t *)cntxt)->libc_errno = errno;

}

void
__libc_restore(cntxt, old, new)
caddr_t cntxt:;
thread t old;
thread t new;
{
extern int errno;
#ifdef lint
old = old;
new = new;
#endif lint

errno = ((libc_ctxt_t *)cntxt)->libc_errno;

There are two predominant types of process synchronization in use today: the
rendezvous paradigm and the monitor paradigm. The lightweight process pack-
age provides both, in part to avoid denying a large number of people their favor-
ite primitives, and in part because each has compelling reasons.

Rendezvous has the advantages that it maps cleanly to Sun interprocess-
communications facilities (Sun RPC), can potentially support communication
across different address spaces, is higher-level than monitors because both data
transmission and synchronization are combined into a single concept, and is a
natural way to map asynchronous events into higher-level abstractions since mes-
sages are reliable and conditions are not.

S u n Revision A of 27 March 1990

microsystems

26 Programming Utilities and Libraries

Rendezvous Semantics

Messages and Threads

The big advantage with monitors are their familiarity to UNIX system program-
mers (via similarity to sleep () and wakeup () in the kemnel), and the
efficiency win when protected data is accessed: with rendezvous, a context
switch is always required; with monitors, a context switch is only necessary if the
monitor lock is busy at the time of access.

To use messages, one thread issues amsg_send () and another thread issues a
msg_recv (). Whichever thread gets to the corresponding primitive first waits
for the other, hence the term rendezvous. When the rendezvous takes place, the
sender remains blocked until the receiver decides to issue amsg_reply ().
Immediately after msg_reply () returns, both threads are unblocked.

It is the responsibility of the sender to provide the buffer space both for a mes-
sage to be sent to the receiver, and for a reply message from the receiver. Either
of these messages may be empty. While the sender is blocked, the receiver has
access to the buffers provided by the sender. When the receiver replies, she is
undertaking not to use these buffers any more: the transaction is complete. If
memory management was used to share address spaces, the sender’s buffers
would be mapped into the receiver’s address space only for the duration of the
rendezvous. Because both send and receive buffers are provided by the sender,
there is no need for further synchronization to tell the receiver that her reply was
accepted by the sender.

Sometimes it is desired to perform a non-blocking send in which the sender does
not block on a send request. We did not provide this as a primitive because it is
easily implemented by using an additional thread to do the send.

Messages are sent to threads, and each thread has exactly one queue associated
with it to receive messages on. We could have provided message queues (ports)
as objects not bound to processes. This would give more flexibility, but would
require a more complex selection primitive to really justify the extra functional-
ity. In addition, it would complicate the implementation because we desire to
terminate a rendezvous on behalf of the remaining thread should one of the ren-
dezvousing threads be destroyed.

To receive a rendezvous request, a process specifies the identity of the sending
thread it wishes to rendezvous with. Optionally, a receiver may specify that any
sender will do. There is no other form of selection available. If more power is
needed, the client can build server processes which act as intelligent ports capa-
ble of performing complex selection criteria. Note that the id of the sending
thread or agent is supplied to the receiver by the LWP library, so that it is not
possible to forge the identity of the sender.

Here is an example of basic message passing. main () creates two threads,
sender () and receiver (). Because it has a higher priority, the receiver
starts first and blocks, awaiting a rendezvous. Then, the sender runs and prepares
a message. However, the sender sleeps for 2 seconds before sending it. In this
time, the receiver gave up waiting and tried again, now waiting with infinite pati-
ence. The sender wakes up a second later and attempts to rendezvous with the
receiver. This rendezvous immediately succeeds, the receiver reads the message,
prepares a reply, and replies. At this point, the rendezvous is complete and both

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 27

sender and receiver are runnable processes. Because the receiver has a higher
priority, the message ‘‘done receiving’’ is printed ahead of the ‘‘got reply’’ mes-
sage. Note that the receiver should not touch any of the data mentioned in the
send once the reply has been made.

4 \
#include <lwp/lwp.h>

#include <lwp/stackdep.h>

#include <lwp/lwperror.h>

#define MAXPRIO 10

thread_t cl, c2;

main(argc, argv)
int argc;
char **argv;

int sender(), receiver();

(void)pod_setmaxpri (MAXPRIO) ;
lwp_setstkcache (1000, 3);
lwp_create(&cl, sender, MINPRIO, 0, lwp newstk(), 0);
lwp_create(&c2, receiver, MINPRIO+1, 0,
lwp_newstk(), 0);
exit (0);
}

sender () {
char out[20];
char in[30];
int i;
struct timeval wait;
wait.tv_sec = 2;
wait.tv_usec = 0;

for (i = 0; i < 19; i++)
out[i] = (int)’A’ + 1i;

out [19] = "\0’;

lwp_sleep (&wait) ;

if (msg_send(c2, out, 20, in, 26) == -1) {
lwp_perror("msg_send");
return;

}
printf ("got reply %s\n", in);
}

receiver() {
int i;
struct timeval wait;
char *arg, *res;
int asz, rsz;
thread t sender;

wait.tv_sec = 1;
wait.tv_usec = 0;

/* tryone second */
\ J

sun Revision A of 27 March 1990

microsystems

28 Programming Utilities and Libraries

Intelligent Servers

(sender = THREADNULL; /* take message from anyone */)
if (msg_recv(&sender, &arg, &asz, &res, &rsz, &wait)
== -1) {
if (lwp_geterr() != LE_TIMEOUT) ({
lwp_perror ("msg_recv");
return;

}

/* wait forever or until message arrives from sender */
if (msg_recv(&sender, &arg, &asz, &res, &rsz,

INFINITY) == -1) {
lwp_perror("msg_recv");
return;

}
}
printf ("got message %s\n", arg):
for (1 = 0; i < rsz - 1; i++4)
res[i] = (int)’'B’ + i;
res[rsz - 1] = '\0’;
msg_reply (sender) ;
printf ("done receiving\n"):;

Because the reply can be done at any time, a receiver can receive a number of
messages before replying to them. This makes it possible to implement complex
servers. In the following example, processes send requests in a random orderto a
server thread. The server serializes the requests and processes them in the order
associated with the request.

(™y
#include <lwp/lwp.h>
#include <lwp/stackdep.h>
thread t pt:

typedef struct port_msg {
int order;
char *msg;

} port_msg;

#define MAXPRIO 10
main(argc, argv)
int argc;
char **argv;

int process{();
int port():

(void) pod_setmaxpri (MAXPRIO) ;
lwp_setstkcache (1000, 3);

/* argument to new thread is order # */
lwp create((thread t *)0, process, MINPRIO, O,
lwp_newstk(), 1, 3);

lwp create((thread t *)0, process, MINPRIO, O,
_ J

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 29

2.4. Agents

lwp_newstk(), 1, 0);

lwp_create((thread t *)0, process, MINPRIO, O,
lwp_newstk(), 1, 2);

lwp_create((thread t *)0, process, MINPRIO, O,
lwp newstk(), 1, 1);

lwp_create(&pt, port, MAXPRIO, 0, lwp_newstk(), 0);

exit (0);

}

process (id)
int id;

{
port_msg m;
char buf[10];

m.order = 1id;
m.msg = buf;
printf ("sending %d\n", id);
msg_send(pt, (char *)&m, sizeof (port_msg), 0, 0):
printf ("%d replied to\n", 1id):;
}

/*
* collect messages in any order, process them in order
*/
port ()
{
thread t sender;
char *arg;
int asz;
port_msg *request:;
thread t senders[4];
int i;
for(i = 0; i < 4; i++) {
/* convenient way to receive from any sender */
MSG_RECVALL (&sender, &arg, &asz, 0, 0, INFINITY);
request = (port_msg *)arg;
printf (*got %d\n", request->order);
senders [request~->order] = sender;

for (i = 0; 1 < 4; i++) {
msg_reply (senders{i]);

Some environments will present asynchronous interrupts to the client. For exam-
ple, on a bare machine, a character typed at a tty can cause an interrupt to ran-
domly steal control away from the executing program. Similarly, a signal can
interrupt the current thread. Because of the random nature of interrupts, it is hard
to understand programs that deal with them. The lightweight process library pro-
vides a simple way to transform asynchronous events into synchronous ones.

sun Revision A of 27 March 1990

microsystems

30 Programming Utilities and Libraries

System Calls

Non-blocking I/O Library

A message paradigm (as opposed to a monitor paradigm) was chosen for map-
ping interrupts because an interrupt cannot wait for a monitor lock if held by a
client. Even if condition variables are used outside of a monitor, it is still neces-
sary to add memory to the condition variable to prevent races (just before the
client decides to sleep, an interrupt comes in, causing a condition to be notified,
which is missed by the client, who then sleeps, resulting in deadlock). Adding a
flag to a condition to prevent this is analogous to converting the condition into a
1-bit message.

With asynchronous interrupts, an event causes a sort of context switch within the
same thread. With LWP’s, a thread must synchronously rendezvous with an
interrupt. Thus, to have an event do something asynchronously, it is necessary to
use a separate thread to handle it. To simulate typical UNIX signal handling, you
would create two threads: one thread to represent the main program, and another
thread at a higher priority to represent the signal handler. The latter thread would
have an agent set up to receive signals.

The agent mechanism is provided to map asynchronous events into messages to a
lightweight process. A message from an agent looks exactly like a message from
another thread. When you create an agent, you also provide a portion of the
pod’s address space for the agent to store its message. You cannot receive the
next message from an agent until you reply to the current one. Because the LWP
scheduler is preemptive, when a signal is mapped into a message, it will cause
the highest priority thread blocked on the agent to run next. Client threads which
have agents can use all of the LWP library facilities (monitors, condition vari-
ables, messages) to synchronize with other threads.

The agent mechanism does its best to process signals as rapidly as possible.
Nonetheless, it is possible that events will be missed because the kemel does not
remember more than one signal occurring while a signal is being processed.
Furthermore, signals are not delivered for each occurrence of I/O. Therefore, a
thread which wakes up from a SIGIO agent for example, should not sleep again
until read () on the descriptor fails, indicating that another SIGIO will be
delivered when more I/O is available.

When an interrupt arrives, the LWP library saves only volatile information about
the interrupt, and wakes up any threads waiting on the agent. On a bare machine,
volatile information would include for example, the character typed in from a tty.
Under SunOS, volatile information includes the state normally delivered to a sig-
nal handler as well as the identity of the thread running at the time of the event.
This volatile information is passed as a message to the client thread.

A set of heavyweight processes can execute concurrently in the kernel. For
example, three heavyweight processes can concurrently initiate writes to the
same device. This is not the case for lightweight threads. Some relief can be
provided by marking descriptors asynchronous with £cnt1 (2). This allows
threads to block on STGIO agents and only block on a system call when it is
likely to be immediately productive (i.e., without blocking indefinitely).

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 31

Using the Non-Blocking 10
Library

Similarly, a thread can block on a SIGCHLD agent instead of blocking on a
wait (2) system call. However, there is no general solution to the problem of
having several threads execute system calls concurrently until the LWP primi-
tives are made available as true system calls operating on a shared set of descrip-
tors. The use of the non-blocking I/O library can help by automatically blocking
a thread attempting any I/O until such I/O is likely to succeed immediately. The
blocked thread will try the system call again automatically when a SIGIO event
occurs. A

Here is an example of how to use the non-blocking IO library. We have a pro-
cedure compute_pi that runs at low priority, and a procedure reader that runs at
high priority. If we link this program without the non-blocking IO library, the
reader will prevent the compute-bound thread from running since the read ()
system call blocks. However, if we link in the non-blocking IO library, the
compute-bound procedure will execute until some IO is made available (in this
case, by the user typing something at the terminal).

{ N\
#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#define MAXPRIO 10

main(argc, argv)
int argc:;
char **argv;

int reader():
thread t tid;

pod_setmaxpri (MAXPRIO) ;
lwp_setstkcache (3000, 2);
lwp_create(&tid, reader, MAXPRIO, 0, lwp_newstk(), 0);
lwp_setpri (SELF, MINPRIO);
compute pi();
exit (0) ;
}

reader ()

{
char buf[256];
int cnt;

for(;;) |
cnt = read(0, buf, 256);
bufcnt] = 0;
printf ("\ngot %s\n", buf):;

}

compute_pi ()
{
for(;;) |
/* compute pi to a zillion places */
}
}

. J

sun Revision A of 27 March 1990

microsystems

32

Programming Utilities and Libraries

C)

Here is another example of how to use the non-blocking I/O library. The first
program is a server which accepts requests over the wire. When a request
arrives, a thread is created to handle the request so that accepting and processing
the requests can proceed in parallel. The processing of the request consists in
sleeping for the amount of time specified in the request message. Note that if the
non-blocking I/0 library is not linked in, the main program loop prevents any
(lower priority) request-processing threads from executing. 1wp_datastk ()
is used to put the message on the stack of the newly-created thread. Thus, there
is no need to keep the message in main.
{ N
/*

* sleep server program.

*/
#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#include <lwp/lwperror.h>
#include <netinet/in.h>
#¥include <sys/socket.h>
#include <errno.h>

#define MYPORT 8889
#define MAXPRIO 10
#define BUFSIZE 10

struct message {

int timeout;

int msgsize;

char buf [BUFSIZE];
} message;
extern int errno;

main ()
{
int s;
struct sockaddr_in addr;
int len = sizeof (struct sockaddr_ in);
int fromlen;
int rlen;
void compute();
stkalign_t sp:
caddr_t loc;

if (pod_setmaxpri (MAXPRIO) < 0) {
lwp perror ("pod_setmaxpri");
_exit(1);
}
if (lwp_setstkcache (5000, 5) < 0) {
lwp_perror ("lwp_setstkcache");
_exit(1);
}
if ((s = socket (AF_INET, SOCK_DGRAM, IPPROTQO_UDP)) < 0)
{

\ J

S u n Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 33

perror ("can’t get socket");
_exit(1);
}
addr.sin_addr.s_addr = INADDR ANY;
addr.sin_family = AF_INET;
addr.sin_port = MYPORT;
if (bind(s, (struct sockaddr *)é&addr, len) < 0) {
perror ("bind") ;
close(s) ;
_exit(1);
}
if (getsockname (s, (caddr_t)&addr, &len) != 0) {
perror("can’t get name");
close(s);
_exit(1);
}
for(;;) {
do {
fromlen = len;
rlen = recvfrom(s, (caddr_t)&message,
sizeof (struct message), O,
&addr, &fromlen):;

} while ((rlen == -1) && (errno == EINTR)):;
if (rlen == -1) {

perror ("recvfrom") ;

_exit(1);

}
sp = lwp datastk{(message.buf,

message.msgsize, &loc);
lwp_create((thread_t *)0, compute, MINPRIO,
0, sp, 2, message.timeout, loc):
}
exit (0);
}

void

compute (timeout, msg)
int timeout;
char *msg;

struct timeval time;
time.tv_sec = timeout;
time.tv_usec = 0;

printf ("$s\n", msqg):
lwp_sleep(&time);
printf ("%s slept %d secs\n", msg, timeout);
}
/*
* program to send a message to the sleep-server.
* yusage: slp <servername> <timeout in seconds> <message>
*/
#include <sys/types.h>
#include <netinet/in.h>
_ J

sun Revision A of 27 March 1990

microsystems

34 Programming Utilities and Libraries

(#include <sys/socket.h>
#include <netdb.h>
#include <errno.h>

#define MYPORT 8889
#define BUFSIZE 10

struct messsage {

int timeout;

int msgsize;

char buf[BUFSIZE];
} message;

extern int errno;

main{argc, argv)
int argc;
char **argv;

int s;

struct sockaddr_in addr;

int len = sizeof (struct sockaddr_in);
int err;

struct hostent *hp;

char *server;

if (argc !'= 4) {
printf ("usage: %s server seconds message\n",
argv[0]);
exit (2);
}
server = argv([l];
message.timeout = atoi(argv([2]);
message.msgsize = strlen(argv([3]) + 1;
bcopy (argv[3], message.buf, message.msgsize);
if ((hp = gethostbyname (sexrver)) == 0) {
printf ("can’t get host name\n");
exit (1) ;
}
bcopy (hp->h_addr, &addr.sin_addr, hp->h_length);
addr.sin_family = AF_INET;
addr.sin_port = MYPORT;

if ((s = socket (AF_INET, SOCK_DGRAM, IPPROTO UDP)) < 0)
{

perror(“"can’t get socket");

exit (1) ;
}

do {
err = sendto(s, (caddr_t)é&message,
sizeof (message), 0, &addr, len);

} while ((err == -1) && (errno == EINTR));
if (err == -1) {

perror ("sendto") ;

exit(1);

}

J

\
@ S ll Il Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 35

[exit (0);]
}

A final example of the non-blocking 1/O library illustrates how the wait (2)
system call can be used. Here, the parent process forks two children. The chil-
dren do something (in this case, they just sleep) and terminate with an exit status.
The parent would like to reap the children, but does not want to block in the pro-
cess. The solution is to link in the non-blocking 1/O library which lets the parent
block without stopping other threads. Behind the scenes, a SIGCHLD agent
thread is watching for terminating processes. If the non-blocking I/O library is
not linked in, the wait will succeed, but the otherwork thread will not get a
chance to run. Note that threads using system calls remapped by the non-
blocking I/O library automatically receive the C-library special context, so errno
is not lost across context switches.

#include <lwp/lwp.h>

#include <lwp/lwpmachdep.h>

#include <signal.h>

main ()

{
int child;
union wait stat;
void otherwork() ;

(void) pod setmaxpri (10);
(void) lwp_setstkcache (1000, 2);
(void) lwp_create((thread t *)0, otherwork,
MINPRIO, 0, lwp_newstk(), 0);
if (fork() == 0) {
sleep(5);
_exit(7);
} else if (fork() == 0) {
sleep(3);
_exit (5);
}
for (;:;) { /* reapchildren */
child = wait (&stat);
printf ("%d got %d\n", child, stat.w_retcode);

if (child == -1) {
perror ("wait");
break;
}
}
exit (0);

1

void
otherwork ()
{
struct timeval time;
time.tv_sec = 2;
. W,

sun Revision A of 27 March 1990

microsysterns

36 Programming Utilities and Libraries

Examples of Agents

(time.tv_usec = 0;
for(;;) |
printf ("otherwork here\n");
lwp_sleep (&time);
}
}
\ J

We present two examples of agent use below. The first example shows how a
traditional UNIX signal handler can be emulated. Note the use of monitors to
protect access to shared state. The second example shows the use of a SIGIO
agent.

r

/* Example of the UNIX system style of signal handling */
#include <lwp/lwp.h>

#include <lwp/stackdep.h>

#include <signal.h>

#define MAXPRIO 10
mon_t mid;
int shared state;

main({argc, argv)
int argc;
char **argv;

int sigint_catch() ;
int task();
int taskl():

(void) pod_setmaxpri (MAXPRIO) ;

lwp_setstkcache (3000, 3);

mon_create (&mid) ;

(void) lwp create((thread t *)0, sigint_catch, MAXPRIO,
0, lwp_newstk(), 0);

/%
* the signal handler will preempt the main program
* so we give it the higher priority
*/

lwp_setpri (SELF, MINPRIO);

for(;;) {

/* do other work */;
mon_enter (mid) ;

/* access shared_state */
mon_exit (mid) ;

}

exit (0);

}

sigint_catch()

{
eventinfo_t sigmem;
char *arg;

.

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 37

int asz;
thread t sender;

agt_create(&sender, SIGINT, (char *)&sigmem);
for(;:) {

(void) msg_recv (&sender, &arg, &asz,

0, 0, INFINITY);

(void) msg_reply (sender) ;

printf ("got “C\n");

mon_enter (mid) ;

/* access shared state */

mon_exit (mid) ;

N =
*

Example showing how to process SIGIO */

Some points about this code:

1. because the system call could be interrupted, we

check for EINTR. In order that errno is accurate, we
make sigio_catch a libc thread (else, it may be lost
on a context switch).

2. We reset stdin before returning so the shell won’t
get confused. (It would otherwise get EWOULDBLOCK
trying to read stdin, and bomb out with an error).

/

#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#include <signal.h>
#include <fcntl.h>
#include <errno.h>
#define TRUE 1

#define MAXPRIO 10

* ok ok ok %k Ok F X X X %

main(argc, argv)
int argc;
char **argv;

int sigio_catch();
thread_t tid;

(void) pod_setmaxpri (MAXPRIO) ;
lwp_setstkcache (3000, 3);
lwp_create (&tid, sigio_catch, MAXPRIO,
0, lwp_newstk(), 0);
lwp_libcset (tid);
lwp_setpri (SELF, MINPRIO) ;
/* do main’s work */
}

sigio_catch{()
{
int ecnt;

\. J/

sun Revision A of 27 March 1990

microsystems

38 Programming Utilities and Libraries

char buf[256];

int £d = 0; /* stdin */

extern int errno;

int emask, rmask, wmask;

eventinfo_t agtmemory;

thread t sender;

char *arg;

int asz;

int inputbits = 01 << £d;

/ *
* Enable SIGIO on stdin. When we actually read, it
* may still return EWOQULDBLOCK (SIGINT before SIGIO

delivered flushes input leaving nothing to read),
* so need to read again.

*/

fcntl(fd, F_SETFL, FASYNC|FNDELAY);

rmask = inputbits;

emask = wmask = 0;

agt_create (&sender, SIGIO, &agtmemory):

*

for(;;) |

/*
* block pending notification that reading would
* be useful meanwhile, main can get work done.
*/

(void) msg_recv(&sender, &arg, &asz,

0, 0, INFINITY);
(void) msg_reply (sender) ;
select (32, &rmask, &wmask, &emask,
(struct timevel *)0);
if (rmask & inputbits) {
cnt = read(fd, buf, 256);

if (cnt != -1 || errno != EWOULDBLOCK ||
errno != EINTR)
break;

}
buf[cnt] = 0;
printf ("\ngot %s\n", buf);
fcntl (fd, F_SETFL, 0); /* reset stdin so no
shell confusion */
}
/*
* To do simple signal handling within main,
* we could just write:

*/

main (argc, argv)
int argc;
char **argv;

int cnt;
char buf[256];

7

\.
S ll n Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 39

2.5. Monitors and
Conditions

(int fd = 0; /* stdin */

extern int errno;

int emask, rmask, wmask;
eventinfo_t agtmemory;
thread_t sender;

char *arg;

int asz;

int inputbits = 01 << £4;

(void) pod setmaxpri(l);

fcntl (£d, F_SETFL, FASYNC | FNDELAY) ;
rmask = inputbits;

emask wmask = 0;

agt_create(&sender, SIGIO, &agtmemory);

for(;;) {
(void) msg_recv(&sender, &arg, &asz,
0, 0, INFINITY);
(void) msg_reply (sender);
select (32, &rmask, &wmask, &emask,
(struct timeval *)0);
if (rmask & inputbits) {
cnt = read(fd, buf, 256);
if (cnt != -1 || errno != EWOULDBLOCK ||
errno != EINTR)
break;
}
}
buf{cnt] = 0;
printf ("\ngot %s\n", buf);
fcntl(£d, F_SETFL, 0);
exit (0) ;

The monitor-condition variable paradigm is a familiar one to kemel programmers
because of the analogue to sleep () and wakeup () in the UNIX system ker-
nel.

A monitor implements a critical section. This is a reentrant region of code in
which access is serialized. As a result, shared data accessed by this code is pro-
tected against races that can lead to incorrect interpretations of the data. Once a
thread is executing within a monitor, other threads block until that monitor is
exited. When thread priorities are equal, they are queued first-come-first-served
for access to the monitor. This ensures fair, serial access to the protected data.

As an example, a producer and consumer thread may use a monitor to protect
access to a buffer of data being produced or consumed (so that the state of the
buffer’s ‘‘fullness’’ is consistent). When the producer has filled the buffer, it
must wait for the consumer to drain the buffer. This sort of synchronization is
provided by condition variables. When a thread waits on a condition, it atomi-
cally gives up the monitor and blocks pending a notification. The result of the
notification is that the blocked thread will eventually reacquire the monitor in

sun Revision A of 27 March 1990

microsystems

40 Programming Utilities and Libraries

Monitors vs. Interrupt
Masking

Programming with Monitors

4

v

order to attempt access to the buffer again.

One goal of lightweight processes is to avoid the use of sigsetmask’s or other
primitives which lock out interrupts to prevent races. By using monitors as a
synchronization tool, and by using threads with agents to handle interrupts, the
use of interrupt masking can be eliminated, and the risk of dropping interrupts
reduced.

Within the LWP library itself, most critical sections are implemented by disa-
bling the scheduler (and not by disabling interrupts) for the duration of the criti-
cal section. If an interrupt arrives during a critical section, it is processed only to
the point of saving the volatile interrupt state. At the end of a critical section, if
there are any accumulated events, scheduling decisions are made based upon the
agents associated with the events. Interrupts are only masked to ensure that a)
the nugget stack is not grown indefinitely by repeated interrupts and b) as a
thread is being resumed, to ensure that the new context is loaded atomically.
Thus, interrupts are only disabled as a consequence of an interrupt occurring, and
never preventively.

Typically, there is some state associated with a condition. When the state
acquires a given value, a thread can take some action. Otherwise, it will wait
until the state changes. For example, if a buffer is full, a thread writing to the
buffer will wait until the state of the buffer indicates that it is no longer full.
Another thread reading from the buffer will cooperate by notifying any such
waiting thread when the buffer is no longer full. Because the buffer state is
accessed by several threads, it is protected by a monitor. Otherwise, a thread
could decide to wait for a state change, only to have the state change before the
wait can be executed, resulting in deadlock. Therefore, both the waiter and the
notifier must access the state in a monitor, and the wait primitive (cv_wait)
must atomically release the monitor. The typical wait code looks like this:

' N
mon_enter (m) ;

while (!state)
cv_wait (cv);
mon_exit (m) ;
\. J

The while loop is there because if there are several threads waiting in the monitor
when the condition is broadcast, all of them wake up, but the first thread to gain
entry to the monitor may alter the state, invalidating it for the other awakened
threads. In our current example, if two producers are awakened because the
buffer is no longer full, the first one may fill the buffer again and wait, leaving
the second one to run. The second producer must not add to the buffer now,
because it is full again.

Some subtle points about thread scheduling priority should be mentioned. Note
that threads queue for monitors and conditions based upon thread priority. No
context switch necessarily takes place when a monitor is exited. Thus, a monitor
that is repeatedly reentered by a high-priority thread can starve other threads

sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 41

Monitors and Events

Condition Variables

Enforcing the Monitor
Discipline

wanting access to the monitor. Care should be taken in assigning priorities to
threads using monitors, since a low-priority thread which owns a monitor can
still prevent a higher priority thread from accessing that monitor. If a low-
priority thread owning a monitor is preempted, it may cause long delays to more
important threads needing monitor access.

Since events are processed by threads, state manipulated by a thread receiving
agent messages can be protected by monitors and condition variables. Thus,
after receiving an agent message, a thread may enter a monitor before accessing
some global state. Since the LWP library has a large memory for events, no
events should be lost if this thread has to block for access to the monitor.

cv_broadcast () awakens all threads blocked on a condition.

cv_notify () awakens only a single thread blocked on a condition.
cv_notify () canresult in deadlock states if the awakened thread is not the
particular one that should notice a state change and should only be used when it
is known that a single other thread is involved. cv_notify () is available
because it is more efficient to awaken only a single thread. Note that an awak-
ened thread will be queued to reacquire the monitor. When the thread actually
resumes, it will own the monitor it released when it waited for the condition with
cv_wait().

Because it is both confusing to the programmer and expensive to implement, no
provision for a condition to be shared by several monitors is made. Instead, con-
dition variables are bound to a monitor when they are created. It would be possi-
ble to let them be bound when the condition is waited upon, but it would allow
the very improbable case of having a waiter awaken in a state testing loop, only
to find that his condition was reassigned.

mon_destroy () will remove any conditions bound to the monitor being
removed. If mon_destroy () fails because some threads are still waiting on
an associated condition, you can use cv_waiters () to see which threads are
blocked on conditions associated with the monitor, followed by

lwp_destroy () to terminate the blocked threads. After the offending threads
are terminated, mon_destxroy () should succeed.

Because a thread which forgets to exit a monitor may deadlock the system, it is
convenient to use the exception handler mechanism to enforce the enter-exit dis-
cipline. The MONITOR () macro enforces this discipline by ensuring that
mon_exit () is called when the procedure that embodies the monitor exits. (It
is good form to use a single procedure to contain a monitor, viz:)

foo () {
MONITOR(m) ;

.7

This method ensures that no matter how the procedure is exited (barring
longjmp()), the monitor will be exited. That is, if the procedure raises an

sun Revision A of 27 March 1990

microsystems

42 Programming Utilities and Libraries

Nested Monitors

Reentrant Monitors

Monitor Program Examples

exception or returns explicitly or implicitly, the monitor is freed.

When a thread blocks on a condition while holding several (nested) monitor
locks, all of the locks except the current one are held. This ensures that the
thread does not need to painfully reacquire all of its locks, with the concomitant
possibility of deadlock if not all of the locks remain available. If thread T1 holds
monitor M1 and wants to acquire monitor M2, and thread T2 holds monitor M2
and wants to acquire monitor M1, deadlock results. One way to avoid this error
is to require that the monitors are always acquired in a certain order.

When a monitor is used to protect a data structure, it may happen, for informa-
tion hiding reasons, that two different procedures wish to use the same monitor.
It may also happen that one of those procedures wishes to use the facilities pro-
vided by the other. If these procedures are accessed by the same thread the moni-
tor calls are reentrant. If you anticipate such use, you should program your mon-
itors as

if (mon_enter(m) < 0) {
error ("bad monitor"™);

}

However, if you wish to catch reentrant monitor use as an error, you should pro-
gram monitors as:

if (mon_enter(m) != 0) {
error ("reentrant monitor");

}

The following is a simple example of monitor use. As described above, we have
a producer and a consumer thread, synchronizing with condition variables. To
spice it up a bit, we’ve added some scheduling to make things more realistic.

()
#include <lwp/lwp.h>
#include <lwp/stackdep.h>

thread t cl, c¢2, sched;
mon_t ml;

cv_t notempty, notfull;
int cnt = 0;

int in = 0;

int out = 0;

#define MAXBUF 20
char buf [MAXBUF];
#define MAXPRIO 10

main(argc, argv)

int argc;

char **argv;
_ y,
sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes

43

({
int producer (), consumer();
int sch{():

(void) pod_setmaxpri (MAXPRIO) ;

lwp_ setstkcache (3000, 3);

lwp_create(&cl, producer, MINPRIO+1, O,
lwp _newstk(), 0);

lwp create(&c2, consumer, MINPRIO, 0,
lwp_newstk(), 0);

mon_create (&ml) ;
cv_create (¬empty, ml);
cv_create (¬full, ml);
exit (0);

}

put(c) /* add a character to the buffer */
char c;
{
MONITOR (ml) ;
while (cnt == MAXBUF) { /* buffer never > MAXBUF */
printf ("waiting on notfull\n");
cv_wait (notfull);
}
buf [in] = c;
in = (in + 1) % MAXBUF;
cnt++;
cv_broadcast (notempty); /* may be a no-op */

}

get (c)
char *c;
{
MONITOR (ml) ;
while (cnt == 0) { /* buffer never < 0 chars */
printf ("waiting on notempty\n");
cv_wait (notempty) ;
}
*c = buf[out];
out = (out + 1) % MAXBUF;
cnt—-;
cv_broadcast (notfull);
}

producer () {
char c¢;
int 1i;
int j:

for(j = 0; 3 < 500; F++) {

lwp_create (&sched, sch, MAXPRIO, 0, lwp newstk(), 0);

¢ = "abcdefghijklmnopgrstuvwxyz"{cnt];
/* produce */
put (c) ;
}
printf ("producer done\n");
_ J
sun Revision A of 27 March 1990

microsystems

44 Programming Utilities and Libraries

2.6. Exceptions

rconsumer()
{
char ¢;
int 1i;
int j;
for(j = 0; j < 500;
get (&c);
/* consume the character */

i+ o

}
printf ("consumer done\n");
}

sch()
{
int k;
thread t x;
struct timeval wait;
X = cl;
wait.tv_sec = 0;
wait.tv_usec = 100000;
for(k = 0; k < 100; k++) {

lwp_sleep (&wait);

lwp_setpri(x, MINPRIO):;

if (x.thread_id == cl.thread_id)
X c2;

else
X cl;

lwp_ setpri(x, MINPRIO+1);

L}

The exception primitives can be used to manage synchronous exceptional condi-
tions in a lightweight process. There are no asynchronous exceptions supported
by threads because asynchrony can be managed completely with threads and
agents, and in a more well-structured fashion. For example, when parsing com-
mands and anticipating an interrupt from the keyboard, you can simply create a
thread to parse the command and a thread with an agent to catch the interrupt.
When the agent thread catches the interrupt it can simply destroy the parsing
thread. This is more elegant than doing a long jmp () from a signal handler
when an interrupt occurs.

There are several aspects of exceptions. First, you can use exit_handlers to be
invoked automatically any time a procedure exits. Second, you can provide an
exception handler which assumes control anywhere back on the procedure calling
chain (escape exceptions). Third, you can provide an exception handler which is
invoked at the time of an exception and leaves the flow of control alone when it
returns (notification exceptions). Finally, you can map machine faults (synchro-
nous traps) into exceptions. An exception is an event caused by the explicit (or
implicit, in the case of synchronous traps) invocation of exc_raise ().

sun

microsystems

Revision A of 27 March 1990

Chapter 2 — Lightweight Processes 45

Synchronous Traps

Implementation

When a procedure can exit via a large number of return statements or excep-
tion raises, it is difficult to monitor the flow of control. Thus, exit handlers can
be established by exc_on_exit () to ensure that a particular action is taken on
procedure exit, no matter how the procedure exits. For this reason, no primitive
to remove an exit handler is provided, because this provides a way to defeat the
whole purpose of exit handlers.

setjmp () and longjmp () support non-local gotos, but do not give the pro-
grammer a disciplined way to invoke them. Pattern-directed handler invocation
gives the client an opportunity to establish a set of handlers which are matched
by particular patterns. For example, an exception in a memory allocation routine
can be raised in such a way that a particular handler (say, a garbage collector) can
be explicitly invoked by using a well-known pattern. The CATCHALL pattern
can be used by a thread either to implement more general sorts of pattern match-
ing (by handling those patterns it wants and discarding those pattems it is not
interested in and reraising the exception), or to catch exceptions which must
always be caught (e.g., a routine which normally allocates some memory per-
manently and returns should free the memory if an exception occurs).

exc_notify () is provided for those exceptions which require an action to be
executed on behalf of the exception handler and control to be returned to the
raiser of the exception. The handler of a notify exception establishes a function,
as well as an argument which can refer to an execution-time environment. By
providing a null function, a handler can indicate that only escape exceptions
(invoked by exc_raise()) are to be used.

Exception handling is useful for assisting disciplined use of lightweight process
primitives. The MONITOR () macro is one example. Another is the fork ()
example discussed in the next section.

Some events are completely synchronous, such as division by zero faults. For
such events, it is not logical to allocate a separate thread, since threads are
intended to handle asynchronous events. In the lightweight process world, syn-
chronous events appear to be exceptions. Use agt_trap() to enable excep-
tion mapping for a given event. Note that unhandled exceptions cause termina-
tion of the offending thread.

One possible way to implement an exception mechanism at the language level
would be to use a LWP special context to contain a pointer to the current excep-
tion handler for each thread. Using this context, it would be possible to search
backwards on the exception chain looking for pattern matches.

Rather than require the client to explicitly pass in a context variable to be used to
save and restore exception context, the LWP implementation allocates the con-
text automatically. This is less efficient because by using local variables as con-
texts, allocation and freeing of the context are free. However, in addition to the
more pleasant interface, there are several advantages to the implicit allocation
strategy. Because the stack is reset when an exit handler runs, there is no room
for local variables to be used by the library code that implements exit handlers
(note that the exit handler can make procedure calls of undetermined depth!).
This is especially problematic when several exit handlers have been established.

sun Revision A of 27 March 1990

microsystems

46 Programming Utilities and Libraries

Example of Exception
Handling

Also, if the system being used can’t take interrupts on a separate stack, a fair
amount of interrupt masking may be required to protect the stack once it is reset.

Exception handling is really a language issue. However, since synchronous traps
may be mapped into exceptions, the LWP library itself must be able to access the
exception contexts. Thus, the exception handling facility is part of the LWP
library and not a separate language facility. In the future, a more flexible inter-
face to agt_trap () may be provided so languages can provide their own style
of exception handling.

In the following example, we use the exception handling mechanisms to facili-
tate a garbage collector. In the event that a resource is exhausted, the client
attempts to correct things by notifying the garbage collector. If the next attempt
to obtain the resource fails, the client gives up by raising an exception. As an
exercise, pretend that the client had resources that needed to be freed as a result
of the fatal exception. Use CATCHALL handlers to allow procedures higher up
the calling chain to free the resources they allocated.

r p
#include <lwp/lwp.h>
#include <lwp/stackdep.h>

#define ATTRIBUTE 9
#define FATAL 7
#define MAXPRIO 10

main(argc, argv)
char **argv;
{
int task{():

(void)pod_setmaxpri (MAXPRIO) ;
lwp_setstkcache (1000, 3);
(void) lwp_create((thread t *)0, task, MINPRIO, O,
lwp_newstk(), 0);
exit (0);
}

task ()

{
int garb_collect ()

/* establish garbage collector for ATTRIBUTE-type resources */
(void) exc_handle (ATTRIBUTE, garb_collect, ATTRIBUTE) ;

/* establish handler for unrecoverable errors */

if (exc_handle(FATAL, 0, 0) == 0)
someprocedure () ;

else
abort (),

}

someprocedure ()

{

char *r;

char *getresource() ;
o
sun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 47

2.7. Big Example

r = getresource (ATTRIBUTE) ;
/* use resource */

}

char *

getresource (attribute)
int attribute;

{
int (*£f) ()
char *resource;
char *obtain():;

resource = obtain(attribute); /* tryto getresource */
if (resource == 0) { /* couldn’t getit */
(void) exc_notify (attribute); /* garbage collect */
resource = obtain (attribute); /* tryagain */
if (resource == 0) /* still couldn’t getit */
exc_raise (FATAL) ; /* giveup */

}

return (resource) ;

}

garb collect (atr)
int atr;
{
/*
* garbage collect resource of type at r such that
* obtain might succeed if tried again.
*/
}

char *
obtain(atr)
int atr;
{
/*

* try to allocate resource of type atr
* return 0 if unable to get the resource.
*/

This example illustrates many of the LWP features: exit handlers, monitors, con-
dition variables, messages, threads. It is a parallel binary tree fringe comparator.
Given two binary trees T1 and T2, they have the same fringe if and only if their
leaf nodes are equivalent when read left to right.

Part of the program relieson a fork () and join () mechanism. The idea is
that a thread may wish to start some threads and wait for n of them to terminate.
(To wait for one specific thread to die, use lwp_join.) Thus, a program could
look like:

sun Revision A of 27 March 1990

microsystems

48

Programming Utilities and Libraries

'4)
proc () {
tfork(threadl);
tfork (thread2?) ;
tfork (thread3) ;
join(2); /* wait for any 2 tforked threads to die */
join (1) /* wait for last thread to die */
}

. /

To make this work, we have tfork () create its thread via an intermediary
which uses an exit handler (see exc_on_exit(3L)) to ensure that the thread
calls die () when it terminates. die () will keep track of the number of ter-
minated threads. Since a tfork () 'ed thread may be destroyed by another
thread, 1wp_destroy () should be encapsulated by a procedure that calls

die () as well. This is an illustration of how the exception handling facility can
be used to create new protocols (enforced exit actions, for example).

The program begins by declaring two trees (which don’t, in this case, have the
same fringe). Then, we create three threads: one thread to evaluate each tree, and
one thread to compare leaf values and serve as an information exchanger. The
two tree evaluators proceed in parallel, sending a message to the comparator con-
taining the leaf value when a leaf is encountered. When the comparator finds a
mismatch, it terminates the tree evaluators. When the main program joins suc-
cessfully, the two evaluators are dead. It then sends a message to the comparator
to find out what the results were.

The tree evaluators are simple: they merely recurse down their subtree, pausing
to tell the comparator when a leaf is encountered. The comparator is fairly com-
plex. It first receives a message from either of the two tree evaluators (which,
after all, are running in parallel. As an exercise, add preemptive round-robin
scheduling to this program!). Then, it waits for a message from the other tree
evaluator (else, it could get another value from the same tree evaluator). If the
answers disagree, the comparator terminates the evaluators to prevent further
(useless and confusing) messages from being sent. Finally, because the two trees
being compared may be structurally quite different, one evaluator may finish
while the other remains active. As a result, the comparator could do a
msg_recv () on anon-existent thread. Therefore, we check this condition by
noting if msg_recv () fails. Just to show that it’s possible, this program lints
when linted with the LWP lint library!

4 ~
#include <lwp/lwp.h>

#include <lwp/stackdep.h>

#include <lwp/lwperror.h>

#define NULL 0

thread t cmp, pl, p2;

thread t driver;

int tfork{():

cv_t cv;

mon_t mon;
\ J
sSsun Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 49

(int numdead = 0;
typedef struct tree_t {
int wval;
struct tree_t *left, *right;
} tree_t;
#define TREENULL ((tree_t *) 0)
#define TRUE 1
#define FALSE 0
#define MAXPRIO 10

tree t t1[] = {
{0, &tl[1], &tl[2]},
{1, &t1[3], &tl[4]},
{4, TREENULL, TREENULL},
{1, TREENULL, TREENULL},
{3, TREENULL, &tl[51},
{5, TREENULL, TREENULL},
}i

tree_t t2[] = {
{0, &t2[1}, &t2([2]},
{1, TREENULL, TREENULL},
{2, &t2[3], &t2[4}},
{3, TREENULL, TREENULL},
{4, TREENULL, TREENULL},
}i:

main ()

{
int compare(), parsetree();
int answer;

if (pod_setmaxpri (MAXPRIO) ==
lwp_perror ("setmaxpri");

(void) lwp_self (&driver) ;
tfork (&cmp, compare, 0);

join(2);

if (answer)
else

exit (0);
}

compare ()

{
int valil;
thread_t next;
thread t sender;
int samefringe = TRUE;
int *resbuf;

(void) lwp_setstkcache (10000, 5);
tfork(&pl, parsetree, (int)tl);
tfork (&p2, parsetree, (int)t2);

(void)msg_send(cmp, (caddr_t)0, O,
(caddr_t) &answer, sizeof (answer));

(void) printf("same fringe\n");

(void) printf("not same fringe\n"):;

-1)

J

sun

microsystems

Revision A of 27 March 1990

50 Programming Utilities and Libraries

int ressize;
int *argbuf;
int argsize;
int err;

for(;:) {
err = MSG_RECVALL (&sender, (caddr_t *)&argbuf,
&argsize, (caddr_t *)é&resbuf,
&ressize, INFINITY):
if (err < 0)
lwp_ perror ("MSG_RECVALL") ;
if (SAMETHREAD (sender, driver)) {
*resbuf = samefringe;
(void) msg_reply(driver);
return;
}
vall = *argbuf;
next = (SAMETHREAD (sender, pl) ? p2 : pl);
(void) msg_reply (sender) ;
err = msg_recv(&next, (caddr_t *)&argbuf,
&argsize, (caddr_t *)é&resbuf,
&ressize, INFINITY):;
if (err < 0) { /* hedied */
samefringe = FALSE;
destroy(sender) ;
} else {
samefringe = (*argbuf == vall);
if (!samefringe) {
destroy(pl):;
destroy(p2):
} else
(void)msg_reply (next) ;

}

parsetree (t)

tree_t *t;
{
if (t == TREENULL)
return;
if ((t->left == TREENULL) && (t->right == TREENULL)) {
/* leaf */

(void)msg_send({cmp, (caddr_t)s&t->val,
sizeof (int), (caddr t)0, 0);
} else {
parsetree (t->left);
parsetree (t->right) ;

}

tfork (new, adr, arg)
thread t *new;
int (*adr) ():
int arg;

\ J

S ll n Revision A of 27 March 1990

microsystems

Chapter 2 — Lightweight Processes 51

extern void prochelp():
static int init = 0;

if (init == 0) {
init = 1;
(void)mon_create (&mon) ;
(void) cv_create (&cv, mon):;

}

(void) lwp_create(new, prochelp, MINPRIO, O,

lwp_newstk(), 2, adr, arg):;
}

void

prochelp (proc, arg)
int (*proc) ():

{

extern void die();

(void)exc_on_exit(die, (caddr_t)0);
proc{arg) ;

}

void
die()
{
MONITOR (mon) ;
nunndead++;
{void)cv_notify(cv);

}

join (cnt)
{
MONITOR (mon) ;
while (numdead < cnt)
(void) cv_wait (cv) ;
numdead -= cnt;

}

/* use this instead of lwp_destroy with tfork and join */
destroy (pid)

thread t pid;
{

die();

(void) lwp_destroy (pid) ;

S u n Revision A of 27 March 1990

microsystems

52 Programming Utilities and Libraries

S ll ll Revision A of 27 March 1990

microsystems

3.1. IPC Facilities in the
SunOS Operating
System

File I/O and Pipes

State Files and File Locking

Named Pipes

System V Interprocess Communication
Facilities

Interprocess Communication involves sharing data between processes and, when
necessary, coordinating access to the shared data. Release 4.1 of the SunOS
operating system (referred to hereafter as ‘‘Release 4.1,”” or ‘‘4.1°’) provides a
number of facilities and mechanisms by which processes can communicate.

In the simplest case, processes can communicate by writing to and reading infor-
mation from files. Alternatively, a process may provide data for direct consump-
tion by another concurrent process using a pipe. Pipes employ the basic byte-
stream model used for file I/O.

A process may deposit context in a state file for use by a later invocation.
Processes that make use of state files can prevent multiple concurrent access (and
race conditions on writes), by using lock files to simulate semaphores. Before
attempting to open a state file for write access, a program can test for the
existence of a lock file, to determine whether the desired file or device is avail-
able. A simple way to create a lock file is to use the open(2) system call with
the O_CREAT and O_EXCL, flags. When called in this way, open () creates the
lock file only if it does not already exist. If multiple processes both attempt to
get alock at about the same time, only the first will succeed. The other processes
may be instructed to block (suspend execution) until such time as the lock file is
removed, or to exit with an appropriate error message.

Lock files are most useful when the lock is to persist through a reboot of the sys-
tem. A case in point is the permissions file used by SCCS.

Additionally, the system provides library routines such as £1ock(3) and
lock£(3) for advisory or mandatory file locking. Locks placed with £1lock ()
are only visible to processes running on the local processor. Locks placed with
lockf () are visible to any process running on any processor with access to the
file. 1lockf () also provides record locking for fine-grained control over
updates to specific regions (strings of contiguous bytes) within a file.

Another facility that makes use of the file system for IPC is the System V named
pipe mechanism. A named pipe (also referred to as a FIFO) has an entry in the
file system, but otherwise behaves like an ordinary pipe. It allows one process to
provide output directly to another process through ordinary reads and writes to
the named device. Unlike ordinary pipes, when the processes terminate, the
named pipe remains available for use by other processes. (Refer to mknod(8) for

sun 53 Revision A of 27 March 1990

microsystems

54 Programming Utilities and Libraries

Networking Facilities

3.2. System V IPC
Facilities in Release 4.1

Relying on the native virtual
memory manager, in conjunction
with the mmap(2) system call, often
provides better performance for
shared access to read-only seg-
ments in memory.

Configuring System V IPC
Facilities

System V IPC Permissions

more information.)

Named pipes suffer from all the limitations of regular pipes. For instance, the
sender is unknown to the process reading the pipe. Unfortunately, this allows
multiple processes to interleave output. Input from a named pipe should there-
fore be used with caution.

Release 4.1 supports two important facilities for networking and IPC in general.
They are: TLI (from System V) and sockets (from BSD). These facilities, which
both support the file I/O (byte stream) model, can be used for IPC on the local
host. They are often preferred when a service has both local and network clients.
For more information about networking and general IPC facilities, refer to Net-
work Programming.

Release 4.1 provides the following System V facilities for memory-based IPC on
a local system:

o Messages
o Semaphores
o Shared Memory

These facilities allow local processes to share and process messages, to share
access to memory segments in a manner that is compatible with existing System
V applications, and to coordinate access to shared objects.

If the process that creates an IPC facility dies, the facility does nor expire along
with it; an IPC facility must be removed explicitly. A shared memory segment
remains active, even after it has been flagged for removal, as long as it is attached
anywhere in the address space of any process. Only after the last attachment is
released, is the (detached) segment freed.

In order to use these facilities, they must be configured into your kemel. The
relevant configuration options are:

IPCMESSAGE forthe System V Messages facility.
IPCSEMAPHORE

for the System V Semaphore facility.
IPCSHMEM for the System V Shared Memory facility.

For details on how to configure a kemnel, refer to System and Network Adminis-
tration.

Permissions for a System V IPC facility can be extended to users other than the
one for which the facility was created. The creating process identifies the default
owner. Unlike files, however, the creator can assign ownership of the facility to
another user; it can also revoke an ownership assignment. The current owner
process, in turn, can grant read or write access to still other users.

The definition for the IPC permissions data structure ipc perm, is given in
<sys/ipc.h>, as shown below.

sSun

microsystems

Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities 55

Figure 3-1

Figure 3-2

IPC System Calls, Key
Arguments, and Creation
Flags

IPC Permissions Data Structure

'Y)
struct ipc_perm
{
ushort uid; /* owner’s user id */
ushort gid; /* owner’s group id */
ushort cuid; /* creator’s user id */
ushort cgid; /* creator’s group id */
ushort mode; /* access modes */
ushort seq; /* slot usage sequence number */
key t key; /* key */
}:
\ J

This structure is common to all System V IPC facilities. Permissions for an IPC
facility are initialized by the creating process, and can be modified by any pro-
cess that has permission to perform control operations on that facility. Permis-
sions are specified as octal values in the flags argument of the appropriate IPC
creation or control system call:

IPC Permission Modes
Access Permissions Octal Value
Write by Owner 0200
Read by Owner 0400
R/W by Owner 0600
Write by Group 0020
Read by Group 0040
R/W by Group 0060
Write by Others 0002
Read by Others 0004
R/W by Others 0006

For instance, if read access by the owner, and read/write by others is desired, the
permissions value would be 0406.

Multiple processes requesting access to a common IPC facility must have a
means for determining the identity of the desired facility. To that end, system
calls that initialize or provide access to an IPC facility make use of a key argu-
ment (of type key t). This key is a value that is either known to all the pro-
grams, or preferably, one that can be derived from a common seed at run time,
The typical method for deriving a key is to use ftok(3) to convert a convenient
filename to a suitable value. The value derived is virtually unique within the sys-
tem. It can be used by all programs (processes) that attempt to obtain access to
the facility.

System calls that initialize or get access to a System V IPC facility return an ID
number (of type int). This ID is used by IPC system calls that perform read,
write and control operations, once the facility’s ID has been acquired.

S u n Revision A of 27 March 1990

microsystems

56 Programming Utilities and Libraries

If the key argument is specified as IPC_PRIVATE (defined to be zero), the call
initializes a new instance of an IPC facility that is private to the creating process.

When the IPC_CREAT flag is supplied in the flags argument appropriate to the
call, the system call attempts to create the facility if it does not exist already.

When called with both IPC_CREAT and IPC_EXCL flags, the system call fails
if the facility already exists. This can be useful when more than one process may
attempt to initialize the facility. One such case might involve several server
processes having access to the same facility. If they all attempt to create the
facility with IPC_EXCL in effect, only the first attempt succeeds.

If neither of these flags is given, and the facility already exists, the system calls
to get access simply return the ID of the facility. If IPC_CREAT is omitted and
the facility is not already initialized, the calls fail.

These control flags are combined, using logical (bitwise) OR, with the octal per-
mission modes to form the flags argument. For example:

[msgid = msgget (ftok ("/tmp™, ‘A’), (IPC_CREAT | IPC_EXCL | 0400));

System V IPC Configuration
Options

3.3. Messages

initializes a new message queue, but only if the queue does not exist already.
The first argument evaluates to a key based on the string; the second, the com-
bined permissions and control flags.

A number of system configuration options* for data structures used by System V
IPC facilities can be adjusted in the system configuration file. Some of these
options set limits on the amount of resources avaliable to an IPC facility. Those
that affect specific system calls are discussed in the descriptions of those system
calls. For more information about System V IPC configuration options, you may
wish to refer to System and Network Administration.

The System V messaging facility provides processes with a means to send and
receive messages, and to queue messages for processing in an arbitrary order.
Unlike the typical file byte-stream model of data flow (in sockets and TLI), Sys-
tem V messages each have an explicit length. More importantly, messages can
be assigned a specific type. Among other uses, this allows a server process to
direct message traffic between multiple clients on its queue (by using the PID of
the client process as the message type). For operations involving single-message
transactions, a server can balance the load between multiple server processes that
have access to the queue.

Before a process can send or receive a message, the queue must be initialized by
making an msgget(2) system call. The owner or creator of a queue can change
its ownership or permissions using msgct 1(2). In addition, any process with
permission to do so can use msgctl () to perform control operations.

Referto config(8) and Installing SunOS 4.1 for information on how to configure a SunOS operating system
kemnel.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Comnamication Facilities 57

Structure of a Message Queue

Figure 3-3

@

Operations to send and receive messages are performed respectively by the
msgsnd () and msgrcv () system calls (see msgop(2)). When a message is
sent, its text is copied to the message queue.

msgsnd () and msgrcv () can be performed as either blocking, or non-
blocking operations. A blocked message operation remains suspended until one
of three conditions occurs:

o The call succeeds.

o The process receives a signal.

o The queue is removed.

A message queue is composed of a control structure with a unique ID, a linked

list of message headers, and a buffer in which to store the text of the message(s).
The identifier for the queue is referred to as the msqgid.

Structure of a Message Queue

control header message

]

structure buffer

The control structure for the message queue contains the following information:
o A permissions structure.

o A pointer to the first message on the queue.

o A pointer to the last message on the queue.

o The current number of bytes in the queue.

o The number of messages in the queue.

o The maximum number of bytes allowed in the queue.

o The process ID (PID) of last message sender.

o The PID of last message receiver.

o The time the last message was sent.

o The time the last message was received.

sun Revision A of 27 March 1990

microsystems

58 Programming Utilities and Libraries

o The time of the last change to the structure.

Each message header contains the following information:

o A pointer to the next message on the queue.

o The message type.

o The message text size.

o The message text address.

The message queue control structure is defined in the header file

<sys/msg.h>:

Figure 3-4 Message Queue Control Structure

e 2
struct msgid_ds
{
struct ipc_perm msg_perm; /* access permission struct */
struct msg *msg_first; /* ptr to first message on q */
struct msg *msg_last; /* ptr to last message on q */
ushort msg_cbytes; /* current # bytes on q */
ushort msg_qgnum; /* # of messages on q */
ushort msg_gbytes; /* max # of bytes on g */
ushort msg_1lspid; /* pid of last msgsnd */
ushort msg_lrpid; /* pid of last msgrcv */
time_t msg_stime; /* last msgsnd time */
time t msg_rtime; /* last msgrcv time */
time t msg_ctime; /* last change time */
}i
\ J

Likewise, the definition for the message-header data structure is given as:

Figure 3-5 Message Header Structure

struct msg
{

struct msg *msg next; /* ptr to next message on q */

long msg_type; /* message type */
short msg_ts; /* message text size */
short msg_spot; /* message text map address */
};
\. J/
Initializing a Message Queue The msgget () system call is used to initialize a new message queue. It can
with msgget () also be used to return the message queue ID (msqid) of the existing queue that

corresponds to the key argument. When the call fails, it returns —1, and sets the
external variable errno to the appropriate error code. msgget () has the
synopsis shown below.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 59

Figure 3-6 Synopsis of msgget ()
-~

(#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget (key, msgflg)

key t key;

int msgflg;
\ y
The value passed as the msgf1lg argument must be an octal integer, which
incorporates settings for the queue’s permissions and control flags, as described
under System V IPC Permissions, above.
The MSGMNT kemel configuration option determines the maximum number of
unique message queues that the kernel will support. msgget () fails when this
limit is exceeded.
The following example is a simple exerciser to illustrate the msgget () system
call. The program begins by prompting for a key, an octal permissions code, and
finally, for your choice of control flags. It allows all possible combinations. If
msgget () fails, the program indicates that there was an error, and displays the
value of errno. Otherwise, it displays the message queue ID that the call
returned.

Figure 3-7 Sample Program to Illustrate msgget ()

/*

** msgget.c:

* %
* %

x/

#include
#include
#include
#include

extern void
extern void

This is a simple exerciser of the msgget () system call.
** Tt prompts for the arguments, makes the call, and reports the
** results.

main ()

{

key_tkey; /* key to be passed to msgget() */
/* msgflg to be passed to msgget () */
/* return value from msgget () */

int msgflg,
msqgid;

(void)

"All numeric input is expected to follow C conventions:\n");

Illustrate the msgget () system call.

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/msg.h>

exit ();
perror();

fprintf (stderr,

(void) fprintf({stderr, "\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\tO0... 1is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf (stderr, "IPC_PRIVATE == %#1lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter desired key: ™);

sun

microsystems

Revision A of 27 March 1990

60 Programming Utilities and Libraries

4 (void) scanf("%1i", &key): h

(void) fprintf (stderr, "\nExpected flags for msgflg argument are:\n");
(void) fprintf (stderr, "\tIPC_EXCL =\t%#8.80o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT =\t%#8.80\n", IPC_CREAT);
(void) fprintf (stderr, "\towner read =\t%#8.8o0\n", 0400);
(void) fprintf (stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf (stderr, "\tgroup read =\t%#8.80o\n", 040);
(void) fprintf (stderr, "\tgroup write =\t%#8.8o\n", 020);
(void) fprintf (stderr, ™\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
(void) fprintf (stderr, "Enter desired msgflg value: ");
(void) scanf("%i", s&msgflqg);

(void) fprintf (stderr, "\nmsgget: Calling msagget (%$#1lx, %#o0)\n",
key, msgflg);
if ((msgid = msgget (key, msgflg)) == -1)
{
perror ("msgget: msgget failed");
exit (1);
} else {
{void) fprintf (stderr,
"msgget : msgget succeeded: msqgid = %d\n", msqgid);
exit (0);
}
/* NOTREACHED */

\. J
Controlling Message Queues The msgctl () system call is used to alter the permissions and other charac-
with msgctl () teristics of a message queue. Its synopsis is as follows:

Figure 3-8 Synopsis of msgct1()

4 ™
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(msqgid, cmd, buf)
int msqgid, cmd;
struct msqgid ds *buf;
- J

Upon successful completion, the call returns zero. It returns —1 on failure, and
sets errno appropriately.

The msqid argument must be the ID of an existing message queue. The cmd
argument is one of the following:

IPC_STAT Place information about the status of the queue in the the data
structure pointed to by buf. The process must have read per-
mission for this call to succeed.

IPC_SET Set the owner’s user and group ID, the permissions, and the size
(number of bytes) of the message queue. A process must have
the effective user ID of the owner, creator or the super-user for
this call to succeed.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 61

IPC_RMID Remove the message queue specified by the msqgid argument.

The following sample program illustrates the msgct 1(2) system call with all its
various flags.

Figure 3-9 Sample Program to Illustrate msgctl ()

** msgetl.c: Illustrate the msgctl() system call.

*x This is a simple exerciser of the msgctl() system call. It allows

** you to perform one control operation on one message queue. It

** gives up immediately if any control operation fails, so be careful not

** to set permissions to preclude read permission; you won’t be able to reset
** the permissions with this code if you do.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>

static void do_msgetl();

extern void exit () ;

extern void perror();

static char warning _message[] = "If you remove read permission for\

yourself, this program will fail frequently!";

main()
{
struct msqid_dsbuf; /* queue descriptor buffer for IPC_STAT
and IPC_SET commands */
int cmd, /* command to be given to msgetl() */
msqid; /* queue ID to be given to msgctl() */

(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");
(void) fprintf (stderr, "\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\tO0... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the msqgid and cmd arguments for the msgctl() call. */
(void) fprintf (stderr,

“"Please enter arguments for msgctl() as requested.");
(void) fprintf (stderr, "\nEnter the desired msqid: ");
(void) scanf ("%i", s&msqid);

(void) fprintf (stderr, "Valid msgctl commands are:\n");

(void) fprintf{(stderr, "\tIPC_RMID = %d\n", IPC_RMID);

(void) fprintf (stderr, "\tIPC_SET %d\n", IPC_SET):;

(void) fprintf (stderr, "\tIPC_STAT %d\n", IPC_STAT);

(void) fprintf (stderr, "\nEnter the value for the desired command: ");
(void) scanf("%i", &scmd);

]

i

switch (cmd) {

case IPC_SET:
/* Modify settings in the message queue control structure. */
(void) fprintf({stderr, "Before IPC_SET, get current values:");
/* fall through to IPC_STAT processing */

case IPC_STAT:
/*
** Get a copy of the current message queue control structure
** and show it to the user.

S u ll Revision A of 27 March 1990
microsystems

62 Programming Utilities and Libraries

4 */
do_msgctl(msqid, IPC_STAT, &buf);
(void) fprintf(stderr,
"msg_perm.uid = %d\n", buf.msg perm.uid);
(void) fprintf(stderr,
"msg_perm.gid = %d\n", buf.msg_perm.gid);
(void) fprintf(stderr,
"msg_perm.cuid = %d\n", buf.msg_perm.cuid);
(void) fprintf(stderr,
"msg_perm.cgid = %d\n", buf.msg_perm.cgid);
(void) fprintf(stderr, "msg_perm.mode = %#oc, ",
buf.msg_perm.mode) ;
(void) fprintf(stderr, "“access permissions = %$#o\n",
buf.msg_perm.mode & 0777);
(void) fprintf(stderr, “msg_cbytes = %d\n", buf.msg cbytes);
(void) fprintf(stderr, "msg_gbytes = %d\n", buf.msg gbytes);
(void) fprintf(stderr, "msg _gnum = %d\n", buf.msg _gnum);
{(void) fprintf(stderr, "msg_lspid = %d\n", buf.msg lspid);
(void) fprintf(stderr, "msg lrpid = %d\n", buf.msg lrpid);
(void) fprintf(stderr, "msg stime = %s", buf.msg_stime ?
ctime (sbuf.msg stime) : "Not Set\n");
(void) fprintf(stderr, "msg rtime = %s", buf.msg_rtime ?
ctime (¢buf.msg rtime) : "Not Set\n");
(void) fprintf(stderr, "msg _ctime = %s", ctime (&buf.msg _ctime));
if (cmd == IPC_STAT)

break;
/*
** Now continue with IPC_SET.
*/

(void) fprintf(stderr, "Enter desired msg perm.uid: ");
(void) scanf ("%hi", &buf.msg _perm.uid);

(void) fprintf(stderr, "Enter desired msg_perm.gid: ");
(void) scanf("%hi", &buf.msg perm.gid);

(void) fprintf(stderr, "%s\n", warning message);
(void) fprintf(stderr, "Enter desired msg perm.mode: ");
(void) scanf("%hi", s&buf.msg_perm.mode);

(void) fprintf(stderr, "Enter desired msg gbytes: ");
(void) scanf("%hi", &buf.msg _gbytes);

do_msgctl(msqid, IPC_SET, &buf);
break;

case IPC_RMID:

default:
/* Remove the message queue or try an unknown command. */
do_msgctl(msgid, cmd, (struct msqgid_ds *)NULL);
break;

}

exit (0);

/* NOTREACHED */

}

/*
* % Print indication of arguments being passed to msgctl(), call msgctl{),
** and report the results.
*k If msgetl() fails, do not return; this example doesn’t deal with
** errors, it just reports them.
*x/
static void
do_msgctl (msqid, cmd, buf)
struct msqid_ds*buf;
int cmd,
msqgid;

sun

microsystems

Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities 63

({ 3
register int rtrn;/* hold area for return value from msgctl() */
(void) fprintf(stderr, "\nmsgctl: Calling msgctl (%d, %d, %s)\n",
msqid, cmd, buf ? "“gbuf" : "(struct msgid_ds *)NULL");
rtrn = msgctl(msqid, cmd, buf);
if (rtrn == -1) {
perror{"msgctl: msgctl failed");
exit (1);
/* NOTREACHED */
} else {
(void) fprintf (stderr, "msgctl: msgctl returned %d\n", rtrn);
}
}
\.. J

Sending and Receiving
Messages with msgsnd () and
msgrcv ()

Figure 3-10

msgsnd(2) and msgrcv(2) are used to send and receive messages, respectively.
Their synopses are as follows:

Synopses of msgsnd () andmsgrev ()
' N

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(msqgid, msgp, msgsz, msgflg)
int msqgid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrcv(msqgid, msgp, msgsz, msgtyp, msgflg)
int msqgid;
struct msgbuf *msgp;
int msgsz;
long msgtyp:;
int msgflg;
. J

Upon successful completion, these system calls each return zero; when unsuc-
cessful, they return —1, and set the external variable errno to the appropriate
error code.

The msqgid argument must be the ID of an existing message queue. The msgp
argument is a pointer to a structure that contains the type of the message and its
text. The msgsz argument specifies the length of the message (in bytes).

Various control flags can be passed in the msgf 1g argument. Flags can be com-
bined within the argument using logical OR operator. If TPC_NOWATIT is set, a
send or receive operation that cannot complete will fail. For instance, a non-
blocking msgrcv () operation will fail if there is no message to receive. If
MSG_NOERROR is set, then a message longer than the size specified by msgsz
is truncated to that size. Note that the trailing portion of the truncated message is
lost. Without the MSG_NOERROR flag, attempting to receive a message that is
longer than expected results in failure.

sun

microsystems

Revision A of 27 March 1990

64 Programming Utilities and Libraries

The msgtyp argument to msgrcv () is used to indicate the type of message to
receive. If this argument is equal to zero, the call receives the first message on
the queue. Ifit is greater than zero, the call receives the first message of the indi-
cated type.

If msgt yp is less than zero, the call receives the first extant message on the
queue with lowest type value, up to and including the absolute value of the argu-
ment. For instance, if msgt yp has a value of —3, the call retrieves the first mes-
sage of type 1, if any, or the first message of type 2, if any, or the first message of
type 3. It would not receive a message of type 4. This allows you to prioritize
message processing according to type.

The following sample program illustrates msgsnd () and msgrcv ().

Figure 3-11 Sample Program to lllustrate msgsnd () and msgrcv ()

/%
** msgop.c: Illustrate the msgsnd() and msgrcv() system calls.

* %

*x This is a simple exerciser of the message send and receive

** routines. It allows the user to attempt to send and receive as many
** messages as desired to or from one message queue.

*/

#include <stdioc.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

static intask{();

extern void exit () ;
extern char *malloc();
extern void perror();
char first_on_gqueue[] = "-> first message con queue",
full buf[] = "Message buffer overflow. Extra message text discarded.";
main ()
{
register int c; /* message text input */
int choice; /* user'’s selected operation code */
register int i; /* loop control for mtext */
int msgflg; /* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqgid, /* message queue ID to be used */
maxmsgsz, /* size of allocated message buffer */
rtrn; /* return value from msgrcv or msgsnd */

(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");
(void) fprintf (stderr, "\tOx... is interpreted as hexadecimal,\n");
(void) fprintf (stderr, "\t0... 1is interpreted as octal,\n");
(void) fprintf (stderr, "\totherwise, decimal.\n");

/* Get the message queue ID and set up the message buffer. */

(void) fprintf(stderr, "Enter desired msqgid: ");
(void) scanf ("%i", &msqid);
/*

* % Note that <sys/msg.h> includes a definition of struct msgbuf
** with the mtext field defined as:

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 65

* % char mtext[1];
*% therefore, this definition is only a template, not a directly
** yseable structure definition, unless you only want to send
** and receive messages of 0 or 1 byte.
* %k To handle this, we malloc an area big enough to contain the
** template — the size of the mtext template field + the size of
** the mtext field we want. Then we can use the pointer returned
** by malloc as a struct msgbuf with an mtext field of the size
** we want.
*% Note also that sizeof msgp—>mtext is valid even though msgp
** isn’t pointing to anything yet. Sizeof doesn’t dereference msgp,
**x it just uses its type to figure out what we are asking about.
*/
(void) fprintf(stderr, "Enter the message buffer size you want: ");
(void) scanf("%$i", &maxmsgsz);
if (maxmsgsz < 0) {
(void) fprintf(stderr, "msgop: %s\n",
"The message buffer size must be >= 0.%);
exit (1) ;
/* NOTREACHED */
}
msgp = (struct msgbuf *)malloc((unsigned) (sizeof (struct msgbuf) —
sizeof msgp—>mtext + maxmsgsz));
if (msgp == NULL) {
(void) fprintf{stderr, "msgop: %s %d byte messages\n",
"could not allocate message buffer for"™, maxmsgsz);
exit (1) ;
/* NOTREACHED */
}

/* Loop through message operations until the user is ready to quit. */
while (choice = ask()) {
switch (choice) ({
case 1: /* msgsnd() requested: Get the arguments, make the
call, and report the results. */
(void) fprintf(stderr, "Valid msgsnd message %s\n%,
"types are positive integers.");
(void) fprintf(stderr, "Enter desired msgp—>mtype: ");
(void) scanf("%$1i", s&msgp—>mtype);

if (maxmsgsz) {

/* Since we’ve been using scanf, we need the
following loop to throw away the rest of
the input on the line after the entered
mtype before we start reading the mtext. */

while ({c = getchar()) != ’\n’ && c != EOF)

(void) fprintf(stderr, "Enter a %s:\n",

"one line message");
for (i = 0; ((c = getchar()) != '\n’); i++) {
if (i >= maxmsgsz)
(void) fprintf(stderr,
"\n%¥s\n", full buf);
while ((c = getchar()) != "\n’)
break;
}
msgp—>mtext [1] = ¢;
}

msgsz = i;
} else
msgsz = 0;

(void) fprintf(stderr,
"\nMeaningful msgsnd flag is:\n");

S u n Revision A of 27 March 1990

microsystems

66 Programming Utilities and Libraries

({void) fprintf (stderr, "\tIPC NOWAIT =\t%#8.80\n",)
IPC_NOWAIT);
(void) fprintf (stderr, "Enter desired msgflg: ");

(void) scanf("%i", &msgflg);

(void) fprintf (stderr, "%s(%d, msgp, %d, %#o)\n",
"msgop: Calling msgsnd", msqid, msgsz, msgflg);

(void) fprintf (stderr, "msgp—>mtype = %$ld\n",
msgp—>mtype) ;

(void) fprintf (stderr, "msgp—>mtext = \"");

for (i = 0; 1 < msgsz; i++)
{(void) fputc(msgp—->mtext([i]}, stderr);

(void) fprintf (stderr, "\"\n");

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if (rtrn == -1)
perror ("msgop: msgsnd failed");
else
(void) fprintf(stderr,
"msgop: msgsnd returned %d\n", rtrn);
break;

case 2: /* msgrcv() requested: Get the arguments, make the
call, and report the results. */
for (msgsz = ~1; msgsz < 0 || msgsz > maxmsgsz;
(void) scanf("%i", &msgsz))
(void) fprintf (stderr,
"$s (0 <= msgsz <= %d): ",
"Enter desired msgsz", maxmsgsz);

(void) fprintf (stderr,
(void) fprintf (stderr,
(void) fprintf (stderr,

"msgtyp meanings:\n");
"\t 0 $s\n", first_on_queue);
"\t>0 %s of given type\n",

first_on_queue);
(void) fprintf (stderr,
"\t<0 %s with type <= |msgtypl\n",
first_on_queue) ;
(void) fprintf (stderr, "Enter desired msgtyp: ");
(void) scanf ("%1li", &msgtyp):

(void) fprintf (stderr,
"Meaningful msgrev flags are:\n");

(void) fprintf (stderr, "\tMSG_NOERROR =\t%#8.80o\n",
MSG_NOERROR) ;

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
IPC_NOWAIT);

(void) fprintf (stderr, "Enter desired msgflg: ");

(void) scanf ("%i", s&msgflg);

(void) fprintf(stderr, "%$s(%d, msgp, %d, %1ld, %#o);\n",
"msgop: Calling msgrcv",
msqid, msgsz, msgtyp, msgflg);

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if (rtrn == -1)
perror ("msgop: msgrcv failed");
else {

(void) fprintf(stderr, "msgop: %s %d\n",
"msgrcv returned", rtrn);
(void) fprintf(stderr, "msgp—>mtype = %1ld\n",
msgp—>mtype) ;
(void) fprintf(stderr, "msgp->mtext is: \"");
for (i = 0; 1 < rtrn; i++)
(void) fputc (msgp—>mtext{i], stderr);
(void) fprintf(stderr, "\"\n");
}
break; J

sun

microsystems

Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities 67

}
/%

* %
* *

*/

ask ()
{

default:

(void) fprintf(stderr, "msgop: operation unknown\n");

break;
}
}
exit (0);
/* NOTREACHED */

Ask user what to do next. Return the user’s choice code.
Don’t return until the user selects a valid choice.

static

int response; /* User’s response. */

do {

(void) fprintf(stderr, "Your options are:\n");

(void) fprintf(stderr, "\tExit =\t0 or Control-D\n");
{void) fprintf(stderr, "\tmsgsnd =\tl\n");

(void) fprintf (stderr, "\tmsgrcv =\t2\n");

(void) fprintf(stderr, "Enter your choice: ");

/* Preset response so ""D" will be interpreted as exit. */

response = 0;
(void) scanf ("%i",

} while (response < 0 || response > 2);

return(response) ;

&response) ;

3.4. Semaphores

®

Semaphores provide a mechanism by which processes can query or alter status
information. They are often used to monitor and control the availability of sys-
tem resources, such as System V shared memory segments. Semaphores may be
operated on as individual units, or as elements in a set. A semaphore set consists
of a control structure and an array of individual semaphores. By default, a set of
semaphores may contain up to 25 elements; this limit can be altered using the
SEMMSL system configuration option.

Before a process can use a semaphore, the semaphore set must be initialized
using semget(2). The semaphore’s owner or creator can change its ownership
or permissions using semct 1(2). In addition, any process with permission to do
so can use semctl () to perform control operations. Semaphore operations are
performed by the semop(2) system call. This call accepts a pointer to an array
of semaphore operation structures; each structure in the operations array contains
information about an operation to perform on a semaphore. The operations array
is described in detail under Semaphore Operations, below.

Any process with read permission can test to see whether a semaphore has a zero
value, by supplying a 0 in the sem_op field of the operation structure. Opera-
tions to increment or decrement a semaphore require alter permission (that is,
write permission).

sun Revision A of 27 March 1990

microsystems

68 Programming Utilities and Libraries

Structure of a Semaphore Set

If an attempt to perform any of the requested operations should fail, none of the
semaphores are altered. The process will block (unless the IPC_NOWAIT flag is
set), and will remain blocked until one of the following occurs:

o the semaphore operations can all complete, in which case the call succeeds
o the process receives a signal, or
o the semaphore set is removed.

If a nonblocking semaphore operation fails, the call returns —1 and sets errno
appropriately.

Only one process can update a semaphore set at any given time. Simultaneous
requests by different processes are performed in an arbitrary order. When an
array of operations is given by a semop () call, the updates are made atomically.
That is, no updates are committed until all operations in the array can complete
successfully.

Once a process performs an operation on a semaphore, the system does not keep
track of whether or not that operation has been undone. If a process with
exclusive use of a semaphore terminates abnormally and neglects to undo the
operation or free the semaphore, the semaphore will remain locked in memory.
To prevent this, semop () accepts the SEM_UNDO control flag. When this flag
is in effect, semop () allocates an undo structure for each semaphore operation.
That structure contains the operation needed to return the semaphore to its previ-
ous state. When the process dies, the system applies the operations in the undo
structures. That way an aborted process need not leave a semaphore set in an
inconsistent state.

If processes share access to a resource controlled by a semaphore, operations on
the semaphore should not be made with SEM_UNDO in effect. If the process that
currently has control of the resource terminates abnormally, the resource is
presumed to be inconsistent. Another process must be able to recognize this in
order to restore the resource to a consistent state.

When performing a semaphore operation with SEM_UNDO in effect, you must
also have it in effect for the call that would perform the reversing operation.
When the process runs normally, the reversing operation updates the undo struc-
ture with a complementary value. This insures that, unless the process is aborted,
the values applied to the undo structure will eventually cancel out to zero. When
the undo structure reaches zero, it is removed. Using SEM_UNDO inconsistently
can lead to undue resource consumption, since undo structures which are allo-
cated may not be freed (until the system is rebooted).

A semaphore set is composed of a control structure with a unique ID, along with
an array of semaphores. The identifier for the semaphore or array is referred to
as the semid.

sSsun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 69

Figure 3-12

Structure of a Semaphore
control semaphore
structure array

The control structure for the semaphore contains the following information:

[m}

[w]

a

u]

o

The permissions structure.

A pointer to first semaphore in the array.

The number of semaphores in the array.

The time of the last operation on any semaphore the array.

The time of the last update to any semaphore in the array.

Each semaphore structure in the array, contains the following information:

a

u]

o

o

The semaphore value.
The PID of the process performing the last successful operation.
The number of processes waiting for the semaphore to increase.

The number of processes waiting for the semaphore to reach zero.

The control structure is defined in the header file: <sys/sem.h>:

N
rstruct semid ds
{
struct ipc_perm sem perm; /* permission struct */
struct sem *sem base; /* ptr to first semaphore in set */
ushort sem nsems; /* # of semaphores in set */
time t sem otime; /* last semop time */
time_t sem_ctime; /* last change time */
i
/
The sem perm member of this structure uses ipc_perm (defined in
<sys/ipc.h>) as a template.
sun Revision A of 27 March 1990

microsystems

70 Programming Utilities and Libraries

Initializing a Semaphore Set

with semget ()

Figure 3-13

The semaphore structure is defined as:

\
(struct sem
{

ushort semval; /* semaphore text map address */
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */
}i
\. J

in that header file as well.

The semget () system call is used to initialize or gain access to a semaphore.
When the call succeeds, it returns the semaphore ID (semid). When the call
fails, it returns —1, and sets the external variable errno to the appropriate error
code. semget () has the following synopsis:

Synopsis of semget ()

'd ™\
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget (key, nsems, semflg)
key t key;
int nsems, semflg;

As noted above, the key argument is a value associated with the semaphore ID.

The nsems argument specifies the number of elements in a semaphore array.
The call fails if nsems is greater than the number of elements in an existing
array; when the correct count not known, supplying O for this argument assures
that it will succeed. The semf1lg argument is used to specify the initial access
permissions and creation control flags.

The SEMMNT system configuration option determines the maximum number of
semaphore arrays allowed. The SEMMNS option determines the maximum possi-
ble number of individual semaphores in across all semaphore sets. semget ()
fails when one of these limits would be exceeded. Due to fragmentation between
semaphore sets, you may not be able to allocate all available semaphores.

The following program illustrates the semget () system call. It begins by
prompting for a hexadecimal key, an octal permissions code, and control com-
mand combinations selected from a menu. All possible combinations are
allowed.

It then requests the number of semaphores in the array, and issues the system call
to initialize the array. If the call succeeds, the program displays the semaphore
ID returned. Otherwise, it displays an error message.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 71

Figure 3-14

Sample Program to Illustrate semget ()

Illustrate the semget () system call.

/*

** semget.c:

x%

* %

* %

** results.

*x/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

extern void
extern void

main{()

{

exit () ;
perror{);

This is a simple exerciser of the semget () system call.
It prompts for the arguments, makes the call, and reports the

key tkey; /* key to be passed to semget() */

int semflg; /* semflg to be passed to semget () */
int nsems; /* nsems to be passed to semget () */
int semid; /* return value from semget () */
(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");
(void) fprintf (stderr, "\tOx... is interpreted as hexadecimal,\n");
(void) fprintf (stderr, "\t0... 1is interpreted as octal,\n");
(void) fprintf (stderr, "\totherwise, decimal.\n");

{void) fprintf(stderr, "IPC PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter desired key: ");
(void) scanf("%$1i", &key):
(void) fprintf (stderr, "Enter desired nsems value: "};
(void) scanf("%i", &nsems);
(void) fprintf (stderr, "\nExpected flags for semflg are:\n");
{void) fprintf(stderr, "\tIPC_EXCL = \t%#8.80o\n", IPC_EXCL);
(void) fprintf (stderr, "\tIPC_CREAT = \t%#8.80o\n", IPC_CREAT);
(void) fprintf (stderr, "\towner read = \t%#8.8o\n", 0400);
(void) fprintf (stderr, "\towner alter = \t%#8.8o\n", 0200);
(void) fprintf (stderr, "\tgroup read = \t%#8.8o\n", 040);
(void) fprintf (stderr, "\tgroup alter = \t%#8.8o\n", 020);
(void) fprintf (stderr, "\tother read = \t%#8.8o0\n", 04);
(void) fprintf (stderr, "\tother alter = \t%#8.8o\n", 02);
(void) fprintf(stderr, "Enter desired semflg value: ");
(void) scanf ("%i", &semflg);
(void) fprintf(stderr, "\nsemget: Calling semget ($#1x, %d, %#o)\n",
key, nsems, semflg);
if ((semid = semget (key, nsems, semflg)) == -1) {
perror ("semget: semget failed™);
exit (1);
} else {

(void) fprintf (stderr, "semget: semget succeeded: semid = %d\n",

semid) ;

exit (0);

}
/*NOTREACHED*/

qaif’mbmwmwm

un

Revision A of 27 March 1990

72 Programming Utilities and Libraries

Controlling Semaphores with The semctl () system call allows a process to alter permissions and other
semctl () characteristic of a semaphore set. Its synopsis is as follows:

Figure 3-15 Synopsis of semct1 ()

(A
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(semid, semnum, cmd, arg)

int semid, cmd;
int semnum;
union semun
{

int wval;

struct semid ds *buf;
ushort * array;
} arg;

semid is a valid sempahore ID. semnum is used to select a ssmaphore within
an array by its index. The cmd argument is one of the following control flags.
What you supply for arg depends upon the control flag given in cmd.

GETVAL Retumn the value of a single semaphore.

SETVAL Set the value of a single semaphore. In this case, arg is taken as
arg.val,an int.

GETPID Return the PID of the process that performed the last operation on
the semaphore or array.

GETNCNT Return the number of processes waiting for the value of a semaphore
to increase.

GETZCNT Retumn the number of processes waiting for the value of a particular
semaphore to reach zero.

GETALL Retum the values for all semaphores in a set. In this case, arg is
taken as arg.array, a pointer to an array of unsigned shorts.

SETALL Set values for all semaphores in a set. In this case, arg is taken as
arg.array, a pointer to an array of unsigned shorts.

IPC_STAT
Return the status information contained in the control structure for
the semaphore set, and place it in the data structure pointed to by
arg.buf, a pointer to a buffer of type semid_ds.

IPC_SET Set the effective user/group identification and permissions In this
case, arg istaken as arg.buf.

IPC_RMID
Remove the specified semaphore set.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 73

Figure 3-16

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID commands. Read/write per-
mission is required as applicable for the other control commands.

The following program illustrates semct 1 ().

Sample Program to Illustrate semctl ()

/%
¥ semctl.c:
X%

*k This is a simple exerciser of the semctl() system call. It

** allows you to perform one control operation on one semaphore set.

** Tt gives up immediately if any control operation fails, so be careful not
** to set permissions to preclude read permission; you won’t be able to reset
** the permissions with this code if you do.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <time.h>

struct semid ds semid_ds;

static void do_semctl();
static void do_stat () ;
extern char *malloc () ;
extern void exit (};
extern void perror () ;
char warning message|[]
yourself,
main ()

{
union semun
int

semid,
semnum;

(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");

{(void)
(void)
(void)

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

(void)
(void)

fprintf (stderr,
scanf ("%i",

(void)
(void)
(void)
{(void)
{void)
(void)
(void)
{void)
{void)
(void)
(void)

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

Illustrate the semctl() system call.

this program will fail frequently!";

arg; /* union to be passed to semctl() */
cmd, /* command to be given to semctl() */

i, /* work area */

/* semid to be passed to semctl() */
/* semnum to be passed to semctl() */

&semid) ;

= "If you remove read permission for\

"\t0x... is interpreted as hexadecimal, \n");
"\t0... 1is interpreted as octal,\n");
"\totherwise, decimal.\n");

"Enter desired semid value: “);

"Valid semctl cmd values are:\n"):;

"\tGETALL = %d\n", GETALL);
"\tGETNCNT = %d\n", GETNCNT);
"\tGETPID = %d\n", GETPID);
"\tGETVAL = %d\n", GETVAL);
"\tGETZCNT = %d\n", GETZCNT);
"\tIPC_RMID = %d\n", IPC_RMID);
"\tIPC_SET = %d\n", IPC_SET);
"\tIPC_STAT = %d\n", IPC_STAT);
"\tSETALL = %d\n", SETALL);
"\tSETVAL = %d\n", SETVAL);

(void)
(void)

fprintf (stderr,
scanf ("%i",

"\nEnter desired cmd:

&cmd) ;

");

sun

microsystems

Revision A of 27 March 1990

74 Programming Utilities and Libraries

case
case
case
case

case
case

}

case

case

case

case

case

/* Perform some setup operations needed by multiple commands. */
switch (emd) {

GETVAL:

SETVAL:

GETNCNT:

GETZCNT:

/* Get the semaphore number for these commands. */

(void) fprintf(stderr, "\nEnter desired semnum value: ");
(void) scanf("%i", &semnum);

break;

GETALL:
SETALL:
/* Allocate a buffer for the semaphore values. */
(void) fprintf (stderr,

"Get number of semaphores in the set.\n");
arg.buf = &semid_ds;
do_semctl (semid, 0, IPC_STAT, arg);
if (arg.array =

(ushort *)malloc((unsigned)

(semid ds.sem nsems * sizeof (ushort)))) {

/* Break out if we got what we needed. */
break;
}
(void) fprintf (stderr,
"semctl: unable to allocate space for %d values\n",
semid_ds.sem_nsems) ;
exit (2);
/*NOTREACHED* /

/* Get the rest of the arguments needed for the specified command.
switch (cmd) {

SETVAL:

/* Set value of one semaphore. */

(void) fprintf(stderr, "\nEnter desired semaphore value: ");
(void) scanf("%i", &arg.val);

do_semctl (semid, semnum, SETVAL, arg);

/* Fall through to verify the result. */
(void) fprintf (stderr,
"Perform semctl GETVAL command to verify results.\n");

GETVAL:

/* Get value of one semaphore. */
arg.val = 0;

do_semctl (semid, semnum, GETVAL, arg);
break;

GETPID:

/* Get PID of last process to successfully complete a
semctl (SETVAL), semctl(SETALL), or semop() on the
semaphore. */

arg.val = 0;

do_semctl (semid, 0, GETPID, arg);

break;

GETNCNT:

/* Get number of processes waiting for semaphore value
to increase. */

arg.val = 0;

do_semctl (semid, semnum, GETNCNT, arg);

break;

GETZCNT:
/* Get number of processes waiting for semaphore value

*/

sun

microsystems

Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities

75

to become zero. */
arg.val = 0;
do_semctl (semid, semnum, GETZCNT, arg);
break;

case SETALL:

/* Set the values of all semaphores in the set. */

(void) fprintf(stderr, "There are %d semaphores in the set.\n",
semid_ds.sem nsems) ;

(void) fprintf(stderr, "Enter desired semaphore values:\n");

for (i = 0; i < semid ds.sem_nsems; i++) {
(void) fprintf(stderr, "Semaphore %d: ", 1i);
(void) scanf("$hi", &arg.arrayl[i]):;

}

do_semctl (semid, 0, SETALL, arg);

/* Fall through to verify the results. */
(void) fprintf(stderr,
"Perform semctl GETALL command to verify results.\n");

case GETALL:

/* Get and print the values of all semaphores in the set.*/

do_semctl (semid, 0, GETALL, arg);

(void) fprintf (stderr, "The values of the %d semaphores are:\n",
semid ds.sem nsems);

for (i = 0; i < semid_ds.sem_nsems; i++)
(void) fprintf(stderr, "%d ", arg.arrayl[i]);

(void) fprintf(stderr, "\n");

break;

case IPC_SET:
/* Modify mode and/or ownership. */
arg.buf = &semid_ds;
do_semctl (semid, 0, IPC_STAT, arg);
(void) fprintf (stderr, “Status before IPC_SET:\n");
do_stat ()

(void) fprintf(stderr, "Enter desired sem perm.uid value: ");
(void) scanf("%hi", &semid ds.sem perm.uid);

(void) fprintf(stderr, "Enter desired sem perm.gid value: ");
(void) scanf("%$hi", &semid_ds.sem perm.gid);

(void) fprintf(stderr, "%s\n", warning message);
(void) fprintf (stderr,

"Enter desired sem perm.mode value: ");
(void) scanf("$hi", &semid_ds.sem_perm.mode);

do_semctl (semid, 0, IPC_SET, arg):;

/* Fall through to verify changes. */
(void) fprintf (stderr, "Status after IPC SET:\n");

case IPC_STAT:
/* Get and print current status. */
arg.buf = &semid ds;
do_semctl(semid, 0, IPC_STAT, arg);
do_stat ();
break;

case IPC_RMID:
/* Remove the semaphore set. */
arg.val = 0;
do_semctl (semid, 0, IPC_RMID, arg);
break;

default:
/* Pass unknown command to semctl. */
arg.val = 0;
do_semctl (semid, 0, cmd, arg);

J

S u n Revision A of 27 March 1990

microsystems

76 Programming Utilities and Libraries

r break;)
}
exit (0);
/*NOTREACHED* /
}
/ *
*% Print indication of arguments being passed to semctl(), call semctl(),
** and report the results.
*% If semctl() fails, do not return; this example doesn’t deal with
** errors, it just reports them.
*/
static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,
semid,
semnum;
{
register int i; /* work area */
(void) fprintf(stderr, “"\nsemctl: Calling semctl(%d, %d, %d, ",
semid, semnum, cmd);
switch (emd) {
case GETALL:
(void) fprintf (stderr, "arg.array = %#x)\n", arg.array):;
break;
case IPC_STAT:
case IPC_SET:
(void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);
break;
case SETALL:
(void) fprintf (stderr, "“arg.array = [", arg.buf);
for (i = 0;1i < semid ds.sem nsems;) {
(void) fprintf(stderr, "%d", arg.arrayl[i++]);
if (i < semid _ds.sem nsems)
(void) fprintf(stderr, ", ");
}
(void) fprintf(stderr, "1)\n");
break;
case SETVAL:
default:
(void) fprintf(stderr, "arg.val = %d)\n", arg.val);
break;
}
i = semctl(semid, semnum, cmd, arg);
if (i == =1) {
perror("semctl: semctl failed");
exit (1);
/* NOTREACHED */
}
(void) fprintf(stderr, "semctl: semctl returned %d\n", i);
return;
}
/ *
¥k Display contents of commonly used pieces of the status structure.
*/
static void
do_stat ()
{
(void) fprintf(stderr, "sem perm.uid = %d\n", semid ds.sem perm.uid);
(void) fprintf (stderr, "sem perm.gid = %d\n", semid_ds.sem perm.gid);
(void) fprintf(stderr, “"sem perm.cuid = %d\n", semid_ds.sem perm.cuid);
(void) fprintf(stderr, "sem perm.cgid = %d\n", semid_ds.sem perm.cgid);
. J
sSun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 77

(void) fprintf(stderr,

semid ds.sem perm.

(void) fprintf (stderr,

semid_ds.sem perm.

(void) fprintf (stderr,
(void) fprintf(stderr,

ctime (&semid_ds.sem_otime) : "Not Set\n");

(void) fprintf (stderr,

"sem perm.mode = %#o, ",)
mode) ;

"access pe}missions = %#o\n",

mode & 0777);

"sem nsems = %d\n", semid ds.sem nsems);
"sem otime = %s", semid_ds.sem otime ?

“"sem_ctime = %s", ctime(&semid_ds.sem ctime));

Performing Semaphore
Operations with semop ()

The semop () system call is used to perform operations on a semaphore set. It’s
synopsis is as follows:

Figure 3-17 Synopsis of semop ()
e)
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semop(semid, sops, nsops)
int semid;
struct sembuf *sops;
unsigned nsops;
L)
The semid argument is the semaphore ID that was returned by a previous
semget () call. The sops argument is a pointer to an array of structures, each
of which contains the following information about a semaphore operation:
o The semaphore number.
o The operation to be performed.
o Control flags, if any.
sembuf is the structure of semaphores in the array, as defined in the
<sys/sem.h> header file.
The nsops argument specifies the length of the array, the maximum size of
which is determined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop () call, 100 by default.
The operation to be performed is determined as follows:
o A positive integer means to increment the semaphore value by that amount.
o A negative integer means to increment the semaphore value by that amount.
However, a ssmaphore can never take on a negative value. An attempt to set
a semaphore to a value below zero either will either fail or block, depending
on whether or not TPC_NOWAIT is in effect.
o A value of zero means to wait for the semaphore value to reach zero.
The following control flags can be used with semop () :
@ Sumn Revision A of 27 March 1990
microsystems

78

Programming Utilities and Libraries

IPC_NOWAIT this operation command can be set for any operations in the
array. The system call will return unsuccessfully without
changing any semaphore values at all if any operation for which
IPC_NOWAIT is set cannot be performed successfully. The
system call will be unsuccessful when trying to decrement a
semaphore more than its current value, or when testing for a
semaphore to be equal to zero when it is not.

SEM_UNDO this command allows individual operations in the array to be

undone when the process exits.

The following program illustrates the semop () system call.

Figure 3-18 Sample Program to Illustrate semop ()

/*

** semop.c: Illustrate the semop() system call.

* %

*x This is a simple exerciser of the semop() system call. It allows

** you

to set up arguments for semop(), make the call, and reports the

**% results repeatedly on one semaphore set. You must have read

** permission on the semaphore set or this exerciser will fail. (It needs
** read permission to get the number of semaphores in the set and report
** their values before and after calls to semop().)

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static intask();

extern void exit (),

extern void free();

extern char *malloc(};

extern void perror();

static struct semid ds semid ds; /* status of semaphore set */
static char error_mesgl[] = "semop: Can’t allocate space for %d\
semaphore values. Giving up.\n";

static char error_mesg2[] = "semop: Can’t allocate space for %d\

sembuf structures. Giving up.\n";

main{()
{
register int i; /* work area */
int nsops; /* number of operations to be performed */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to be performed */

(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf(stderr, “\totherwise, decimal.\n");

/* Loop until the invoker doesn’t want to do anymore. */
while (nsops = ask(&semid, &sops)) {

/* Initialize the array of operations to be performed.*/
for (i = 0; i < nsops; i++) {
(void) fprintf(stderr,

sun

microsystems

Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities 79

"\nEnter desired values for operation %d of %d.\n",
i + 1, nsops);
(void) fprintf (stderr,
"sem num(valid values are 0 <= sem num < %d): ",
semid _ds.sem_nsems);
(void) scanf("%$hi", &sops[i].sem num);
(void) fprintf(stderr, “sem_op: ");
(void) scanf ("%hi", &sops[i).sem op);
(void) fprintf (stderr,
"Expected flags in sem flg are:\n");
(void) fprintf (stderr, "\tIPC NOWAIT =\t%#6.6o\n",
IPC_NOWAIT);
(void) fprintf (stderr, “\tSEM _UNDO =\t%#6.60\n",
SEM_UNDO) ;
(void) fprintf(stderr, "sem_flg: ");
(void) scanf("%$hi", &sops[i].sem_flqg);

/* Recap the call to be made. */
(void) fprintf (stderr,
"\nsemop: Calling semop(%d, &sops, %d) with:",
semid, nsops);
for (i = 0; i < nsops; i++)
{
(void) fprintf(stderr, "\nsops[%d].sem num = %d, ", i,
sops[i].sem_num);
(void) fprintf(stderr, "sem op = %d, ", sops[i].sem op);
(void) fprintf(stderr, "sem flg = %#o\n",
sops[i].sem flg);

/* Make the semop() call and report the results. */

if ((i = semop(semid, sops, nsops)) == -1) {
perror(“"semop: semop failed"):;
} else {
(void) fprintf(stderr, "semop: semop returned %d\n", 1i);
}
}
/*NOTREACHED*/
}
/*
*% Ask user if (s)he wants to continue.
*%

** On the first call:
*x Get the semid to be processed and supply it to the caller.
** On each call:

* % 1. Print current semaphore values.

bl 2. Ask user how many operations are to be performed on next call to
*x semop. Allocate an array of sembuf structures sufficient for the
*% job and set caller supplied pointer to that array. (The array

*x is reused on subsequent calls as long as it is big enough. If

* % it isn’t big enough, it is freed and a larger array is allocated.)
*/

static

ask (semidp, sopsp)

int *semidp; /* pointer to semid (only used first time) */

struct sembuf **sopsp;

{

static union semun arg; /* argument to semctl */

int i; /* work area */

static int nsops = 0;/* size of currently allocated
sembuf array */

static int semid = ~1; /* semid supplied by user */

@ sun Revision A of 27 March 1990

microsystems

80 Programming Utilities and Libraries

[static struct sembuf *sops; /* pointer to allocated array */)
if (semid < 0) {
/* First call; get semid from user and the current state of
the semaphore set. */
(void) fprintf(stderr,
"Enter semid of the semaphore set you want to use: ");
(void) scanf ("%i", &semid);
*semidp = semid;
arg.buf = &semid_ds;
if (semctl(semid, 0, IPC_STAT, arg) == -1) {
perror ("semop: semctl (IPC_STAT) failed");
/* Note that if semctl fails, semid ds remains filled with
zeroes, so later test for number of semaphores will be zero. */
{void) fprintf (stderr,
"Before and after values will not be printed.\n");
} else {
if ((arg.array = (ushort *)malloc{
(unsigned) (sizeof (ushort) * semid ds.sem nsems)))
== NULL) {
(void) fprintf(stderr, error mesgl,
semid ds.sem_nsems);
exit (1)
}
}
}
/* Print current semaphore values. */
if (semid_ds.sem nsems) {
(void) fprintf (stderr, "There are %d semaphores in the set.\n",
semid_ds.sem_nsems) ;
if (semctl(semid, 0, GETALL, arg) == -1) {
perror (“"semop: semctl(GETALL) failed");
} else {
(void) fprintf (stderr, "Current semaphore values are:");
for (1 = 0; i < semid ds.sem nsems;
(void) fprintf (stderr, " %d", arg.array([i++]))
(void) fprintf (stderr, "\n");
}
}
/* Find out how many operations are going to be done in the next
call and allocate enough space to do it. */
(void) fprintf(stderr, "How many semaphore operations do you want %s\n",
"on the next call to semop()?%);
(void) fprintf(stderr, "Enter 0 or control-D to quit: ");
i=0;
if (scanf("%i", &i) == EOF || i == 0)
exit (0);
if (i > nsops) {
if (nsops)
free ((char *)sops);
nsops = i;
if ((sops = (struct sembuf *)malloc((unsigned) (nsops *
sizeof (struct sembuf)))) == NULL) {
(void) fprintf(stderr, error_mesg2, nsops);
exit (2);
}
}
*sopsp = sops;
return (i);
}
L y
sSun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 81

3.5. Shared Memory

Structure of a Shared

Memory Segment

Figure 3-19

In the SunOS operating system, the most effecient method for implementing
shared memory applications is to rely on native virtual memory management and
the mmap(2) system call. For shared memory applications that are to be compa-
tible with System V, the SunOS operating system also provides the standard Sys-
tem V shared memory facilities.

Shared memory allows more than one process at a time to attach a segment of
physical memory to its virtual address space. When write access is allowed for
more than one process, an outside protocol or mechanism such as a ssmaphore
can be used to prevent inconsistencies and collisions.

Using System V shared memory, a process creates a shared memory segment
using the shmget (2) system call. This call can also be used to obtain the ID of
an existing shared segment. The creating process sets the permissions, and the
size in bytes for the segment.

The original owner/creator of a shared memory segment can assign ownership to
another user with the shmct 1(2) system call; it can also revoke this assignment.
Other processes with proper permission can perform various control functions on
the shared memory segment using shmctl ().

Once created, a shared segment can be attached to a process’s address space
using the shmat () system call; it can be detached using shmdt (). (See
shmop(2) for details.) The attaching process must have the appropriate permis-
sions for shmat () to succeed. Once attached, the process can read or write to
the segment, as allowed by the permission requested in the attach operation. A
shared segment may be attached multiple times by the same process.

If any of the above-mentioned system calls fails, it returns —1, and sets the exter-
nal variable errno to the appropriate value.

A shared memory segment is composed of a control structure with a unique ID
that points to an area of physical memory. The identifier for the segment is
referred to as the shmid.

Structure of a Shared Memory Segment

control > shared memory segment
structure

The data structure includes the following information about the memory seg-
ment:

o Access permissions.
o Segment size.

o The PID of the process performing last operation.

sun Revision A of 27 March 1990

microsystems

82 Programming Utilities and Libraries

o The PID of the creator process.

o The current number of processes to which the segment is attached.
o The time of the last attachment.

o The time of the last detachment.

o The time of the last change to the segment.

o Memory map segment descriptor pointer.

The structure definition for the shared memory segment control structure can be
found in <sys/shm.h>. This structure definition is shown below.

/*

*/

struct shmid ds {

uint shm segsz;
ushort shm_lpid;

ushort shm cpid;

ushort shm nattch;
time t shm atime;
time t shm dtime;
time_t shm _ctime;

}i;

* There is a shared mem id data structure for each segment in the system.

struct ipc perm shm perm; /* operation permission struct */

/* size of segment in bytes */
/* pid of last shmop */

/* pid of creator */

/* number of current attaches */
/* last shmat time */

/* last shmdt time */

/* last change time */

struct anon_map *shm amp; /* segment anon_map pointer */

Using shmget () to Get
Access to a Shared Memory
Segment

Figure 3-20

A

Note that the shm_perm member of this structure uses ipc_perm as a tem-
plate, as defined in <sys/ipc.h>.

The shmget () system call is used to obtain access to a shared memory seg-
ment. When the call succeeds, it returns the shared memory segment ID
(shmid). When it fails, it returns —1, and sets errno to the appropriate error
code. shmget () has the following synopsis:

Synopsis of shmget ()

f 2
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget (key, size, shmflg)
key t keyz
int size, shmflg;

The value passed as the shmf1g argument must be an integer, which incor-
porates settings for the segment’s permissions and control flags, as described
under System V IPC Permissions, above.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 83

The SHMMNT system configuration option determines the maximum number of
shared memory segments that are allowed, 100 by default.

The system call will fail if the size value is less than SHMMIN or greater than
SHMMAX, the configuration options for the minimum and maximum segment
sizes. By default, SHMIN is 1, SHMAX is 1048576.

The following sample program illustrates the shmget () system call.

Figure 3-21 Sample Program to Illustrate shmget ()

/*k

** shmget.c: Illustrate the shmget () system call.

* %
* X

** Tt prompts for the arguments, makes the call, and reports the results.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit ();
extern void perror();
main ()

{

This is a simple exerciser of the shmget () system call.

key tkey; /* key to be passed to shmget () */

int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget{) */

int size;/* size to be passed to shmget () */

(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");
(void) fprintf(stderr, "\tOx... is interpreted as hexadecimal, \n");
(void) fprintf(stderr, "\t0... 1is interpreted as octal,\n");
(void) fprintf (stderr, "\totherwise, decimal.\n");

/* Get the key. */

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter desired key: ");

(void) scanf ("%1li", &key);

/* Get the size of the segment. */
(void) fprintf(stderr, "Enter desired size: ");
(void) scanf("%i", &size);

/* Get the shmflg value. */

(void) fprintf (stderr, "Expected flags for the shmflg argument are:\n");
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.80\n", IPC_CREAT):;
(void) fprintf (stderr, "\tIPC_EXCL = \t%#8.80o\n", IPC_EXCL);
(void) fprintf(stderr, "\towner read =\t%#8.80\n", 0400);
(void) fprintf (stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
(void) fprintf (stderr, "\tgroup write =\t%#8.80\n", 020);
(void) fprintf(stderr, "\tother read =\t%#8.80\n", 04);

(void) fprintf(stderr, "\tother write =\t%#8.80\n", 02);
(void) fprintf(stderr, "Enter desired shmflg: ");

(void) scanf ("%$i", &shmflg);

/* Make the call and report the results. */

(void) fprintf{stderr, "shmget: Calling shmget (%#1x, %d, %#o)\n",
key, size, shmflqg);

if ((shmid = shmget (key, size, shmflg)) == -=1) {

sun Revision A of 27 March 1990

microsystermns

84 Programming Utilities and Libraries

(perror ("shmget: shmget failed"); h
exit (1) ;
} else {
{void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);
exit (0);
}
/*NOTREACHED*/

Controlling a Shared Memory
Segment with shmct1 ()

Figure 3-22

The shmctl () system call is used to alter the permissions and other charac-
teristics of a shared memory segment. It synopsis is as follows:

Synopsis of shmet 1 ()

4 \
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;
\ J

The shmid argument is the ID of the shared memory segment as returned by
shmget (). The cmd argument is one of following control commands:

SHM LOCK
Lock the specified shared memory segment in memory. The process must
have effective ID of super-user to perform this command.

SHM UNLOCK
Unlock the shared memory segment. The process must have effective ID of
super-user to perform this command.

IPC STAT
Return the status information contained in the control structure, and place it
in the buffer pointed to by buf. The process must have read permission on
the segment to perform this command.

IPC SET
Set the effective user and group identification, and access permissions. The
process must have an effective ID of owner, creator or super-user to perform
this command.

IPC_RMID
Remove the shared memory segment. The process must have an effective ID
of owner, creator or super-user to perform this command.

The example program below allows you to illustrate shmct1 ().

sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilites 85

Figure 3-23 Sample Program to Illustrate shmct1 ()

/*

** shmectl.

*%

*% This
** you to

** (Some operations are done for the user whether requested or not.
** yp immediately if any control operation fails.
** permissions to preclude read permission; you won’t be able to reset the

c: Illustrate the shmctl() system call.

is a simple exerciser of the shmctl() system call. It allows
perform one control operation on one shared memory segment.

** permissions with this code if you do.)

*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
static void do_shmet1();
extern void exit ();
extern void perror () ;
main ()
{

int cmd ;

int shmid;

struct shmid_dsshmid ds;

(void) fprintf (stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\tOx... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\t0... is interpreted as octal,\n");
(void) fprintf (stderr, "\totherwise, decimal.\n");

/* Get shmid and cmd. */

(void) fprintf (stderr, "Enter the shmid for the desired segment: ");

(void) scanf ("%$1i", &shmid);

(void) fprintf(stderr, "Valid shmctl cmd values are:\n");
(void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);
(void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);
(void) fprintf (stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);
(void) fprintf(stderr, “\tSHM LOCK =\t%d\n", SHM LOCK);
(void) fprintf(stderr, "\tSHM UNLOCK =\t%d\n", SHM UNLOCK) ;
(void) fprintf(stderr, "Enter the desired cmd value: ");
(void) scanf ("%i%, &cmd);

switch (emd) {

case

case

IPC_STAT:
/* Get shared memory segment status. */
break;

IPC_SET:

/* Set owner UID and GID and permissions. */
/* Get and print current values. */
do_shmetl (shmid, IPC_STAT, &shmid _ds);

/* Set UID, GID, and permissions to be loaded. */
(void) fprintf(stderr, "\nEnter desired shm perm.uid: ");
(void) scanf ("%hi", &shmid_ds.shm perm.uid);
(void) fprintf(stderr, "Enter desired shm perm.gid: ");
(void) scanf ("%hi", &shmid_ds.shm perm.gid);
(void) fprintf (stderr,

"Note: Keep read permission for yourself.\n");
(void) fprintf(stderr, "Enter desired shm perm.mode: ");
(void) scanf ("$hi", &shmid_ds.shm perm.mode);

It gives
Be careful not to set

sun

microsystems

Revision A of 27 March 1990

86

Programming Utilities and Libraries

microsystems

(break;)
case IPC_RMID:
/* Remove the segment when the last attach point is detached. */
break;
case SHM LOCK:
/* Lock the shared memory segment. */
break;
case SHM_UNLOCK:
/* Unlock the shared memory segment. */
break;
default:
/* Unknown command will be passed to shmctl. */
break;
}
do_shmctl (shmid, cmd, &shmid ds);
exit (0);
/*NOTREACHED*/
}
/%
* % Display the arguments being passed to shmctl(), call shmectl(), and
** report the results.
* % If shmectl() fails, do not return; this example doesn’t deal with
** errors, it just reports them.
*x/
static void
do_shmectl (shmid, cmd, buf)
int shmid,
cmd;
struct shmid_ds*buf;
{
register int rtrn;/* hold area */
(void) fprintf(stderr, "shmetl: Calling shmctl (%d, %d, buf)\n",
shmid, cmd);
if (cmd == IPC_SET) {
(void) fprintf(stderr, "\tbuf->shm perm.uid == %d\n",
buf->shm _perm.uid) ;
(void) fprintf(stderr, "\tbuf->shm perm.gid == %d\n",
buf->shm perm.gid);
(void) fprintf(stderr, "\tbuf->shm perm.mode == %#o\n",
buf->shm_perm.mode) ;
}
if ((rtrn = shmctl (shmid, cmd, buf)) == -1) {
perror ("shmctl: shmctl failed™);
exit (1);
} else {
(void) fprintf(stderr, "shmctl: shmctl returned %$d\n", rtrn);
}
if (emd != IPC_STAT && cmd != IPC_SET)
return;
/* Print the current status. */
(void) fprintf(stderr, "\nCurrent status:\n");
(void) fprintf(stderr, "\tshm perm.uid = $d\n", buf->shm perm.uid);
(void) fprintf(stderr, "\tshm perm.gid = %d\n", buf->shm perm.gid);
(void) fprintf(stderr, "\tshm perm.cuid = %d\n", buf->shm perm.cuid);
(void) fprintf(stderr, "\tshm perm.cgid = %d\n", buf->shm perm.cgid);
(void) fprintf(stderr, "\tshm perm.mode = %#o\n", buf->shm perm.mode) ;
(void) fprintf (stderr, "\tshm perm.key = %#x\n", buf->shm perm.key);
(void) fprintf(stderr, "\tshm_segsz = %d\n", buf->shm segsz);
(void) fprintf(stderr, "\tshm lpid = %d\n", buf->shm_lpid);
(void) fprintf(stderr, "\tshm cpid = %d\n", buf->shm_cpid);
sun Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities 87

[(void) fprintf(stderr, "\tshm nattch = %d\n", buf->shm nattch); A
(void) fprintf(stderr, "\tshm atime = %s",
buf->shm_atime ? ctime(&buf->shm atime) : "Not Set\n");
(void) fprintf(stderr, "\tshm dtime = %s",
buf->shm dtime ? ctime (&¢buf->shm dtime) : "Not Set\n");

(void) fprintf(stderr, "\tshm ctime = %s", ctime (sbuf->shm ctime));

Attaching and Detaching a
Shared Memory Segment with
shmat (} and shmdt ()

Figure 3-24

shmat () and shmdt () are used to attach and detach shared memory seg-
ments. Their synopses are as follows:

Synopses of shmat () and shmdt ()

4 N
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflgqg)
int shmid;

char *shmaddr;

int shmflg;

int shmdt (shmaddr)
char *shmaddr;

Upon successful completion, the shmat () system call returns a pointer to the
head of the shared segment; when unsuccessful, it returns ‘ (char *)-1’ and
sets the external variable errno to the appropriate error code.

The shmid argument is the ID of an existing shared memory segment. The
shmaddr argument is the address at which to attach the segment. If supplied as
zero, the system provides a suitable address. For the sake of portability, it is usu-
ally better to allow the system to determine the address.

The shmflg argument is a control flag used to pass the SHM RND and
SHM RDONLY flags to the shmat () system call.

The shmdt () system call detaches the shared memory segment located at the
address indicated by shmaddr. Upon successful completion, schmdt ()
returns zero; when unsuccessful, it returns —1 and sets the external variable
errno to the appropriate error code.

The following sample program illustrates shmat () and shmdt ().

sun Revision A of 27 March 1990

microsystems

88

Programming Utilities and Libraries

Figure 3-25 Sample Program to Illustrate shmat () and shmdt ()

/*
** gshmop.c: Illustrate the shmat() and shmdt () system calls.
* %
* % This is a simple exerciser for the shmat () and shmdt() system
** calls. It allows you to attach and detach segments and to
** write strings into and read strings from attached segments.
*/
#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define MAXnap 4 /* Maximum number of concurrent attaches. */
static ask ();
static void catcher () ;
extern void exit{);
static good_addr () ;
extern void perror();
extern char *shmat () ;
static struct state { /* Internal record of currently attached segments. */
int shmid; /* shmid of attached segment */
char *shmaddr; /* attach point */
int shmflg; /* flags used on attach */
} ap [MAXnap]; /* State of current attached segments. */

static intnap; /* Number of currently attached segments. */
static jmp_buf segvbuf; /* Process state save area for SIGSEGV catching. */

main()

{
register int action; /* action to be performed */
char *addr; /* address work area */
register int i; /* work area */
register struct state *p; /* ptr to current state entry */
void (*savefunc) (); /* SIGSEGV state hold area */

{void) fprintf(stderr,

"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\tOx... 1s interpreted as hexadecimal, \n");
(void) fprintf(stderr, "\t0... 1is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

while {action = ask(}) {

if (nap) {
(void) fprintf (stderr,
"\nCurrently attached segment (s) :\n");

(void) fprintf(stderr, " shmid address\n") ;
(void) fprintf(stderr, "—-—--- ——=--=---- \n") ;
p = &ap[nap];

while {p—- != ap) {

(void) fprintf(stderr, ¥"%6d", p—>shmid);
{void) fprintf (stderr, "%#11x", p—>shmaddr);
(void) fprintf{stderr, " Read%s\n",
{p—>shmflg & SHM RDONLY) ?
"-Only™ : "/Write");
}
} else
(void) fprintf(stderr,
"\nNo segments are currently attached.\n");

sun

microsystems

Revision A of 27 March 1990

Chapter 3 — System V Interprocess Communication Facilities 89

switch (action) {)

case

case

case

1: /* Shmat requested. */
/* Verify that we have space for another attach. */
if (nap == MAXnap) {
(void) fprintf(stderr, "%s %d %s\n",
"This simple example will only allow",
MAXnap, "attached segments.");
break;
}
p = &ap[nap++];

/* Get the arguments, make the call, report the
results, and update the current state array. */
(void) fprintf (stderr,
"Enter shmid of segment to attach: ");
(void) scanf("%i", &p->shmid);

(void) fprintf (stderr, "Enter desired shmaddr: ");
{void) scanf("%i", &p->shmaddr);

(void) fprintf (stderr,
"Meaningful shmflg values are:\n");

(void) fprintf (stderr, "\tSHM RDONLY = \t%#8.8o\n",
SHM_RDONLY) ;

(void) fprintf (stderr, "\tSHM RND = \t%#8.8o\n",
SHM_RND) ;

(void) fprintf(stderr, "Enter desired shmflg value: ");

(void) scanf({("%i", &p->shmflg);

(void) fprintf (stderr,
"shmop: Calling shmat (%d, %#x, %#o)\n",
p—>shmid, p->shmaddr, p->shmflg);

p—->shmaddr = shmat (p~>shmid, p->shmaddr, p->shmflg);

if (p=>shmaddr == (char *)-1) ({
perror(“shmop: shmat failed");
nap—-;

} else {

(void) fprintf (stderr,
"shmop: shmat returned %#8.8x\n",
p—>shmaddr) ;
}

break;

2: /* Shmdt requested. */
/* Get the address, make the call, report the results,
and make the internal state match. */
(void) fprintf (stderr,
"Enter desired detach shmaddr: ");
(void) scanf("$i", &addr);

i = shmdt (addr);
if(i == =1) {
perror ("shmop: shmdt failed");
} else {
(void) fprintf (stderr,
"shmop: shmdt returned %d\n", 1i);
for (p = ap, 1 = nap; i——; p++) {
if (p—>shmaddr == addr)
*p = ap[--napl;

}
break;

3: /* Read from segment requested. */
if (nap == 0)
break;

(void) fprintf(stderr, "Enter address of an %s",

sun Revision A of 27 March 1990

microsystems

90

Programming Utilities and Libraries

}
/%

* %

*/

"attached segment: ");
{(void) scanf ("%i", &addr);

if (good_addr (addr))
(void) fprintf(stderr, "String @ %#x is ‘%s’\n",
addr, addr);
break;

case 4: /* Write to segment requested. */
if (nap == 0)
break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: V) ;
(void) scanf ("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to
write into a read-only attached segment. */
savefunc = signal (SIGSEGV, catcher);

if (setijmp(segvbuf)) {
(void) fprintf (stderr, "shmop: %s: %s\n",
"SIGSEGV signal caught™,
"Write aborted.");
} else {
if (good_addr(addr)) {
(void) fflush(stdin);
(void) fprintf (stderr, "%s %s $#x:\n",
"Enter one line to be copied",
"to shared segment attached @V,
addr) ;
(void) gets(addr);
}

}
(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */
(void) signal (SIGSEGV, savefunc);
break;

}
exit (0);
/*NOTREACHED*/

Ask for next action.

static

ask ()
{

int response; /* user response */

do {
(void) fprintf (stderr, "Your options are:\n");
(void) fprintf(stderr, "\t"D = exit\n");
(void) fprintf (stderr, "\t 0 = exit\n");
(void) fprintf(stderr, "\t 1 = shmat\n");
(void) fprintf(stderr, "\t 2 = shmdt\n");
(void) fprintf(stderr, "\t 3 = read from segment\n");
(void) fprintf(stderr, "\t 4 = write to segment\n");
{(void) fprintf{stderr,
"Enter the number corresponding to your choice: ");
/* Preset response so ""D" will be interpreted as exit. */
response = 0;
(void) scanf ("%i", &response);
} while (response < 0 || response > 4);
J
Q sun Revision A of 27 March 1990

microsystems

Chapter 3 — System V Interprocess Communication Facilities 91

return (response);
}
/%
* % Catch signal caused by attempt to write into shared memory segment
** attached with SHM RDONLY flag set.
*/
/*ARGSUSED*/
static void
catcher (siqg)
{
longjmp (segvbuf, 1);
/*NOTREACHED*/
}
/%
*x Verify that given address is the address of an attached segment.
** Return 1 if address is valid; 0 if not.
*/
static
good_addr (address)
char *address;

{

register struct state *p; /* ptr to state of attached segment */

for (p = ap; p != &aplnapl; p++)
if (p—>shmaddr == address)
return{l) ;
return(0) ;

@ sSun Revision A of 27 March 1990

microsystems

92 Programming Utilities and Libraries

sun Revision A of 27 March 1990

microsystems

4.1. Introduction

The sccs Command

Initializing the SCCS History
File: sccs create

SCCS — Source Code Control System

Coordinating write access to source files is important when changes may be
made by several people. Maintaining a record of updates allows you to deter-
mine when and why changes were made.

The Source Code Control System (SCCS) allows you to control write access to
source files, and to monitor changes made to those files. SCCS allows only one
user at a time to update a file, and records all changes in a history file.

SCCS allows you to:
o Retrieve copies of any version of the file from the SCCS history.

o Check out and lock a version of the file for editing, so that only you may
make changes to it. SCCS prevents one user from unwittingly ‘‘clobbering’’
changes made by another.

o Check in your updates to the file. When you check in a file, you can also
supply comments that summarize your changes.

o Back out changes made to your checked-out copy.
o Inquire about the availability of a file for editing.
o Inquire about differences between selected versions.

o Display the version log summarizing the changes checked in so far.

The Source Code Control System is composed of the sccs(1) command, which
is a front end for the utility programs in the /usx/sccs directory. The SCCS
utility programs are listed under Reference Tables, at the end of this chapter.

The sccs create command places your file under SCCS control. It creates a
new history file, and uses the complete text of your source file as the initial ver-
sion. By default, the history file resides in the SCCS subdirectory; you may have
to create this subdirectory if it is not already present:

sun 93 Revision A of 27 March 1990

microsystems

94 Programming Utilities and Libraries

Basic sccs Subcommands

The output from SCCS tells you the name of the “‘created’’ file, its version
number (1.1), and the count of lines.

To prevent the accidental loss or damage to an original, sccs create makes a
second link to it, prefixing the new filename with a comma (referred to as the
“‘comma-file.”’) When the history file has been initialized successfully, SCCS
retrieves a new, read-only version. Once you have verified the version against its
comma-file, you can remove that file.

Do not try to edit the read-only version that SCCS retrieves. Before you can edit
the file, you must check it out using the sccs edit command described below.

To distinguish the history file from a current version, SCCS uses the ‘s.’ prefix.

Owing to this prefix, the history file is often referred to as the s . file
(“‘s-dot-file’’). For historical reasons, it may also be referred to as the
““SCCS-file.”’

The format of an SCCS history file is described in sccsfile(s).

The following sccs subcommands perform the basic version-control functions.
They are summarized here, and, except for create, are described in detail
under sccs Subcommands, below.

create Initialize the history file and first version, as described above.

edit Check out a writable version (for editing). SCCS retrieves a writable
copy with you as the owner, and places a lock on the history file so
that no one else can check in changes.

delta Check in your changes. This is the complement to the sccs edit
operation. Before recording your changes, SCCS prompts for a com-
ment, which it then stores in the history file’s version log.

get Retrieve a read-only copy of the file from the s . file. By default,
this is the most recent version. While the retrieved version can be
used as a source file for compilation, formatting, or display, it is not

sun Revision A of 27 March 1990

microsystems

Chapter 4 — SCCS — Source Code Control System 95

Deltas and Versions

SIDs

ID Keywords

intended to be edited or changed in any way. (Attempting to bend
the rules by changing permissions of a read-only version can result
in your changes being lost.)

If you give a directory as a filename argument, sccs attempts to perform the
subcommand on each s . file in that directory. Thus, the command:

sccs get SCCS
retrieves a read-only version for every s. file in the SCCS subdirectory.

prt
Display the version log, including comments associated with each version.

When you check in a version, SCCS records only the line-by-line differences
between the text you check in and the previous version. This set of differences is
known as a delta. The version that is retrieved by an edit or get is con-
structed from the accumulated deltas checked in so far. The terms ‘‘delta’’ and
‘“‘version’’ are often used synonymously. However, their meanings aren’t
exactly the same; it is possible to retrieve a version that omits selected deltas (see
Excluding Deltas from a Retrieved Version, below).

An SCCS delta ID, or SID, is the number used to represent a specific delta. This
is a two-part number, with the parts separated by a dot (.). The SID of the initial
delta is 1.1 by default. The first part of the SID is referred to as the release
number, and the second, the level number. When you check in a delta, the level
number is incremented automatically. The release number can be incremented as
needed. SCCS also recognizes two additional fields for branch deltas (described
under Branch Deltas, below).

Strictly speaking, an SID refers directly to a delta. However, it is often used to
indicate the version constructed from a delta and its predecessors.

SCCS recognizes and expands certain keywords in a source file, which you can
use to include version-dependent information (such as the SID) into the text of
the checked-in version. When the file is checked out for editing, ID keywords
take the following form:

$C%
where C is a capital letter. When you check in the file, SCCS replaces the key-

words with the information they stand for. For example, $I% expands to the SID
of the current version.

You would typically include ID keywords either in a comment or in a string
definition. If you do not include at least one ID keyword in your source file<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>