
Programming Utilities & Libraries

'---~--'.-------'--- '--

Part Number: 800-3847-10
Revision A of 27 March, 1990

Trademarks

SunOS™, Sun Workstation®, as well as the word "Sun" followed by a numerical suffix, are trademarks
of Sun Microsystems, Incorporated.

UNIX® and UNIX System V® are trademarks of Bell Laboratories.

PDP-II ® is a trademark of Digital Equipment Corporation.

All other products or selVices mentioned in this document are identified by the trademarks or selVice
marks of their respective companies or organizations.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reselVed. No part of this work covered by copyright hereon may be reproduced in any fonn or by any
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an infonnation
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack­
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter­
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,1904,527,2324,745,407
4,679,0144,435,7924,719,5694,550,368 in addition to foreign patents and applications pending.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California. We acknowledge the following individuals and institutions for their role in
its development: The Regents of the University of California, the Electrical Engineering and Computer Sciences
Department at the Berkeley Campus of the University of California, and Other Contributors.

Contents

Chapter 1 Shared Libraries .. 1

1.1. Definitions ... 2

Shared Object .. 2

Shared Library .. 2

Static vs. Dynamic Link Editing .. 2

Position Independent Code (PIC) ... 2

Static and Dynamic Link Editors ... 2

1.2. Using Shared Libraries ... 2

Building a Program to Use Shared Libraries .. 2

Binding Mode Options .. 4

-Bstatie and -Bdynarnie ... 4

-N and -n Options for Id ... 4

Binding of PIC with Non-PIC ... 5

- de and -dp Options .. 5

Use of Assertions .. 5

The -assert Option .. 5

Run-Time Use of Shared Libraries 5

SunOS Shared Libraries 6

Dynamic vs. Static Binding Semantics , ,."';,~:,,.;;;, .. ;';,,',", ~~: ;;:

Debuggers , , , ,' ~ .. ,»+> ... ,+;"".,~.~ .. ;; ..• +~:;;; •• ~,,,

Performance Issues .. , "" ~+,~~.':,:;;;;~~~:.:;:.:;:;: •• ~, ·.; . ., ~H
Dependencies on Other Files , "',,',· ,.:;,.; ... ;;;:;:'1',,,.,"~,.," ;;>:::.

Setuid Programs .. ;,+;"., ;':.:.:.: •... ;;;+:::

1.3. Version Control , .. ;.;:;:;:;:;:;:" .. ~ 8

- iii-

Contents - Continued

Version Num1::>ers of . so 's ... 8

Version Management Issues ... 8

1.4. Shared Library Mechanisms .. 9

Memory Sharing .. 9

The C Compiler ... 9

The Assembler .. 10

crtO () ... 10

Link Editors: Id and Id. so ... 10

Id. so ... 11

Binding and Unbinding Routines: dlopen (), dlsym (),
dlclose () , dlerror () ... 11

1.5. Building a Shared Library .. 12

Building the . so File .. 12

The . sa File ... 12

Building the . s a File .. 13

1.6. Building a Better Library .. 13

Sizing Down the Data Segment .. 14

U sing x s t r to Extract String Definitions .. 14

Better Ordering of Objects .. 15

crtO.o Dependency .. 15

The Idconfig Command .. 15

1.7. Shared Library Problems ... 15

Id. so Is Deleted ... 15

Wrong Library Is Used .. 16

Error Messages ... 16

Chapter 2 Lightweight Processes ... 17

2.1. Introduction ... 17

Definition ... 17

Functionality .. 17

Tutorial Goals ... 18

2.2. Threads .. 18

Stack Issues .. 20

-iv-

Contents - Continued

Stack Size ... 20

Protecting Against Stack Overflow ... 20

Coroutines ... 21

Custom Schedulers .. 22

Special Context Switching .. 23

2.3. Messages ... 25

Messages vs. Monitors ... 25

Rendezvous Semantics .. 26

Messages and Threads ... 26

Intelligent Servers ... 28

2.4. Agents .. 29

System Calls .. 30

Non-blocking I/O Library ... 30

Using the Non-Blocking 10 Library ... 31

Examples of Agents ... 36

2.5. Monitors and Conditions ... 39

Monitors vs. Interrupt Masking .. 40

Programming with Monitors .. 40

Monitors and Events .. 41

Condition Variables ... 41

Enforcing the Monitor Discipline .. 41

Nested Monitors .. 42

Reentrant Monitors .. 42

Monitor Program Examples .. 42

2.6. Exceptions ... 44

Synchronous Traps ... 45

Implementation .. 45

Example of Exception Handling .. 46

2.7. Big Example ... 47

Chapter 3 System V Interprocess Communication Facilities 53

3.1. IPC Facilities in the SunOS Operating System .. 53

File I/O and Pipes ... 53

-v-

Contents - Continued

State Files and File Locking ... 53

Nam.ed Pipes .. 53

Networking Facilities ... 54

3.2. System V IPC Facilities in Release 4.1 .. 54

Configuring System V IPC Facilities .. 54

System V IPC Pennissions .. 54

IPC System Calls, Key Arguments, and Creation Flags 55

System V IPC Configuration Options ... 56

3.3. Messages ... 56

Structure of a Message Queue ... 57

Initializing a Message Queue with msgget () .. 58

Controlling Message Queues with msget 1 () .. 60

Sending and Receiving Messages with msgsnd () and
msgrev () ... 63

3.4. Semaphores ... 67

Structure of a Semaphore Set ... 68

Initializing a Semaphore Set with semget () ... 70

Controlling Semaphores with s emet 1 () .. 72

Perfonning Semaphore Operations with semop () 77

3.5. Shared Memory .. 81

Structure of a Shared Memory Segment .. 81

Using shmget () to Get Access to a Shared Memory

Segment .. 82

Controlling a Shared Memory Segment with shmetl () 84

Attaching and Detaching a Shared Memory Segment with
shmat () and shmdt () .. 87

Chapter 4 secs - Source Code Control System ... 93

4.1. Introduction ... 93

The sec s Command .. 93

Initializing the sees History File: sees create 93

Basic sees Subcommands .. 94

Deltas and Versions ... 95

SIDs .. 95

-vi-

Contents - Continued

ID Keywords ... 95

4.2. sees Subcommands ... 96

Checking Files In and Out ... 96

Checking Out a File for Editing: sees edit 96

Checking in a New Version: see s de 1 t a... 96

Retrieving a Version: sees get .. 97

Reviewing Pending Changes: see s di f f s .. 97

Deleting Pending Changes: sees unedit .. 98

Combining delta and get: sees delget 98

Combining delta and edit: sees deledit 98

Retrieving a Version by SID: sees get -r 98

Retrieving a Version by Date and Time: sees get -e 98

Repairing a Writable Copy: sees get -k -G 98

Incorporating Version-Dependent Infonnation: ID Keywords 99

Making Inquiries ... 100

Seeing Which Version Has Been Retrieved: The what
Command ... 100

Detennining the Most Recent Version: see s ge t - g 100

Detennining Who Has a File Checked Out: sees info 100

Displaying Delta Comments: sees prt ... 101

Updating a Delta Comment: sees ede ... 101

Comparing Checked-In Versions: sees seesdiff 101

Displaying the Entire History: sees get -m -p 102

Creating Reports: sees prs -d ... 102

Deleting Committed Changes .. 103

Replacing a Delta: see s fix ... 103

Removing a Delta: sees rmdel ... 103

Reverting to an Earlier Version 103

Excluding Deltas from a Retrieved Version .. 104

Combining Versions: see s e omb .. 104

4.3. Version Control for Binary Files .. 105

4.4. Maintaining Source Directories .. 106

Duplicate Source Directories 106

-vii-

Contents - Continued

sees aIld make .. 106

Keeping SIDs Consistent Across Files .. 106

Starting a New Release .. 107

Temporary Files used by sees ... 107

4.5. Branches ... 107

Using BraIlches .. 110

Creating a Branch Delta .. 110

Retrieving Versions From BraIlch Deltas ... 110

4.6. Administering sees Files ... 111

Interpreting Error Messages: sec she 1 p ... 111

Altering History File Defaults: sees admin ... 111

Validating me History File .. 112

Restoring the History File .. 112

4.7. Reference Tables .. 112

Chapter 5 make User's Guide .. 115

5.1. Overview .. 115

Dependency Checking: make vs. Shell Scripts .. 115

Writing a Simple Makefile .. 116

Basic Use of Implicit Rules .. 118

Processing Dependencies ... 119

Null Rules ... 122

Unknown Targets .. 122

Running Commands Silently ... 122

Ignoring a Command's Exit Status ... 123

Automatic Retrieval of sees Files ... 124

Suppressing sees Retrieval .. 124

Passing Parameters: Simple make Macros ... 124

Command Dependency Checking and . KEEP_STATE 125

Suppressing or Forcing CommaIld Dependency Checking
for Selected Lines .. 126

The State File ... 126

Hidden Dependencies aIld . KEEP_STATE .. 127

- viii-

Contents - Continued

Hidden Dependencies and . INIT .. 128

Displaying Infonnation About a make Run ... 128

5.2. Compiling Programs with make .. 130

Compilation Strategies .. 130

A Simple Makefile ... 130

Using make's Predefined Macros ... 131

U sing Implicit Rules to Simplify a Makefile: Suffix Rules 132

When to Use Explicit Target Entries vs. Implicit Rules 134

Implicit Rules and Dynamic Macros ... 134

Dynamic Macro Modifiers ... 135

Dynamic Macros and the Dependency List: Delayed Macro
References ... 135

Dependency List Read Twice .. 135

Rules Evaluated Once ... 136

No Transitive Closure for Suffix Rules .. 136

Adding Suffix Rules .. 136

Pattern-Matching Rules: an Alternative to Suffix Rules 137

make's Default Suffix Rules and Predefined Macros 138

5.3. Building Object Libraries ... 141

Libraries, Members and Symbols .. 141

Library Members and Dependency Checking .. 141

Library Member Name-Length Limit ... 142

. PRECIOUS: Preserving Libraries Against Removal Due
to Interrupts ... 142

Libraries and the $% Dynamic Macro ... 142

5.4. Maintaining Programs and Libraries With make ... 142

More about Macros .. 142

Embedded Macro References ... 143

Suffix Replacement in Macro References ... 143

Using lint willi make .. 144

Linking With System-Supplied Libraries ... 144

Compiling Programs for Debugging and Profiling 145

Conditional Macro Definitions .. 146

-ix-

Contents - Continued

Compiling Debugging and Profiling Variants .. 146

Maintaining Separate Program and Library Variants 148

Pattern-Replacement Macro References .. 148

Makefile for a Program with Separate Variants 150

Makefile for a Library with Separate Variants 151

Maintaining a Directory of Header Files ... 151

Compiling and Linking With Your Own Libraries 152

Nested make Commands ... 152

Forcing A Nested make Command to Run ... 153

The MAKEFLAGS Macro .. 154

Macro Definitions and Environment Variables: Passing
Parameters to Nested make Commands ... 154

Compiling Other Source Files ... 157

Compiling and Linking a C Program with Assembly
Language Routines ... 157

Compiling lex and yacc Sources .. 157

Specifying Target Groups With the + Sign .. 159

Maintaining Shell Scripts with make and sees .. 159

Running Tests with make ... 159

Escaped References to a Shell Variable ... 160

Shell Command Substitutions .. 160

Command Replacement Macro References ... 160

Command Replacement Macro Assignment ... 161

5.5. Maintaining Software Projects ... 161

Organizing A Project for Ease of Maintenance ... 162

Using include Makefiles ... 163

Installing Finished Programs and Libraries ... 163

Building the Entire Project .. 163

Maintaining Directory Hierarchies With Recursive Makefiles 164

Recursive Targets ... 164

Recursive install Targets ... 165

Maintaining A Large Library as a Hierarchy of Subsidiaries 166

5.6. Closing Remarks about make .. 168

-x-

Contents - Continued

Chapter 6 lint - a Program Verifier for C... 169

6.1. Using lint .. 169

6.2. A Word About Philosophy ... 170

6.3. Unused Variables and Functions .. 170

6.4. Set/Used Information .. 171

6.5. Flow of Control .. 171

6.6. Function Values .. 172

6.7. Type Checking .. 172

6.8. Type Casts ... 173

6.9. Nonportable Character Use .. 173

6.10. Assignments of Longs to Ints .. 174

6.11. Strange Constructions .. 174

6.12. Pointer Alignment .. 175

6.13. Multiple Uses and Side Effects ... 175

6.14. Implementation .. 175

6.15. Portability .. 176

6.16. Shutting lint Up .. 177

6.17. Library Declaration Files ... 178

6.18. Considerations When Using lint .. 179

6.19. lint Options ... 179

Chapter 7 Performance Analysis .. 181

7.1. time - Display Time Used by a Program ... 181

7.2. prof - Generate Profile of a Program .. 184

7.3. gprof - Generate a Call Graph Profile .. 186

7.4. tcov - Statement-Level Analysis ... 188

Chapter 8 m4 - a Macro Processor ... 193

8.1. Using the m4 Command .. 194

8.2. Defining Macros ... 194

8.3. Quoting and Comments ... 195

8.4. Macros with Arguments .. 197

8.5. AritlImetic Built-ins ... 197

-xi-:-

Contents - Continued

8.6. File Maniplliation .. 198

8.7. Running SunOS Commands ... 199

8.8. Conditionals .. 199

8.9. String Manipulation ... 200

8.10. Printing ... 201

8.11. Summary of Built-In m4 Macros ... 201

Chapter 9 lex - a Lexical Analyzer Generator .. 203

9.1. lex Source ... 206

9.2. lex Regular Expressions ... 207

9.3. lex Actions ... 210

9.4. Ambiguous Source Rules .. 214

9.5. lex Source Definitions ... 216

9.6. Using lex ... 217

9.7. lex and yacc .. 218

9.8. Examples .. 218

9.9. Left Context-Sensitivity .. 221

9.10. Character Set ... 223

9.11. Summary of Source Format .. 224

9.12. Caveats and Bugs .. 226

Chapter 10 yacc - Yet Another Compiler-Compiler 227

10.1. Basic Specifications ... 230

10.2. Actions .. 232

10.3. Lexical Analysis .. 234

10.4. How me Parser Works ... 236

10.5. Ambiguity and Conflicts ... 240

10.6. Precedence .. 244

10.7. Error Handling .. 247

10.8. The yacc Environment .. 249

10.9. Hints for Preparing Specifications .. 249

Input Style ... 250

Left Recursion .. 250

-xii-

Contents - Continued

Lexical Tie-ins .. 251

Reserved Words ... 252

10.10. Advanced Topics .. 252

Simulating Error and Accept in Actions ... 252

Accessing Values in Enclosing Rules. .. 252

Support for Arbitrary Value Types ... 253

10.11. A Simple Example .. 254

10.12. yacc Input Syntax ... 256

10.13. An Advanced Example ... 257

10.14. Old Features Supported but not Encouraged .. 262

Chapter 11 The curses Library: Screen-Oriented Cursor
Motions ... 265

Overview .. 265

Tenninology .. 265

Cursor Addressing Conventions ... 266

Compiling Things ... 266

Screen Updating .. 267

Naming Conventions .. 267

11.1. Variables .. 268

11.2. Programming Curses ... 269

Starting Up .. 269

The Nitty-Gritty ... 269

Output .. 269

Input .. 270

Miscellaneous .. 270

Finishing Up .. 270

11.3. Cursor Motion Optimization: Standing Alone ... 270

Tenninal InfollIlation ... 271

Movement Optimizations, or, Getting Over Yonder 271

11.4. Curses Functions ... 272

Output Functions ... 272

addch () and waddch () - Add Character to Window............. 272

- xiii-

Contents - Continued

addstr () and waddstr () - Add String to Window ~72

box () - Draw Box Around Window .. 273

clear () and wclear () -Reset Window...................................... 273

clearok () - Set Clear Hag .. 273

clrtobot () and wclrtobot () - Clear to Bottom 273

clrtoeol () and wclrtoeol () - Clear to End of

Line .. 273

delch () and wdelch () - Delete Character 273

deleteln () and wdeleteln () - Delete Current Line 274

erase and werase () -Erase Window... 274

flushok - Control Flushing of stdout ... 274

idlok - Control Use of Insert/Delete Line ... 274

insch () and winsch () - Insert Character 274

insertln () and winsertln () - Insert Line 275

move and wmove () - Move ... 275

over lay () - Overlay Windows ... 275

overwrite () - Overwrite Windows .. 275

pr int w () and wpr int w () - Print to Window............................ 275

refresh () and wrefresh () - Synchronize 276

standout () and wstandout () - Put Characters in

Standout Mode .. 276

Input Functions .. 276

crbreak and nocrbreak - Set or Unset from Cbreak

mode ... 276

echo () and noecho () - Tum Echo On or Off 276

get ch () and wget ch () - Get Character from Terminal 276

getstr () and wgetstr () - Get String from Terminal 277

raw () and noraw () - Tum Raw Mode On or Off 277

scanw () and wscanw () -Read String from Terminal 277

Miscellaneous Functions .. 277

baudrate - Get the Baudrate .. 277

delwin () - Delete a Window.. 278

endwin () - Finish up Window Routines ... 278

-xiv-

Contents - Continued

erasechar - Get Erase Character ... 278

get cap () - Get Tenncap Capability .. 278

get yx () - Get Current Coordinates .. 278

inch () and winch () - Get Character at Current
Coordinates ... 278

ini t s cr () - Initialize Screen Routines ... 278

killchar - Get Kill Character .. 279

leaveok () - Set Leave Cursor Flag .. 279

longname () - Get Full Name of Tenninal 279

mvwin - Move Home Position of Window ... 279

newwin () - Create a New Window ... 280

nl () and nonl () - Tum Newline Mode On or Off 280

scrollok - Set Scroll Flag for Window.. 280

subwin () - Create a Subwindow ... 280

touchline - Indicate Line Has Been Changed 280

touchoverlap - Indicate Overlapping Regions Have
Been Changed ... 281

touchwin () - Indicate Window Has Been Changed 281

un ct r 1 () - Return Representation of Character 281

Details 281

get tmode () - Get tty Statistics .. 281

mvcur () - Move Cursor ... 281

scroll () - Scroll Window ... 281

s a vet t y () and re set t y () - Save and Reset tty Flags 281

set term () - Set Tenninal Characteristics 282

tstp .. 282

yutchar () ... 282

11.5. Capabilities from termcap .. 282

Overview .. 282

Variables Set By setterm () ... 283

Variables Set By gettmode () ... 284

11.6. The WINDOW structure ... 284

11.7. Example .. 286

-xv-

Contents - Continued

Chapter 12 System V curses and terrninfo: ... 289

12.1. OveIView .. 290

What is curses? .. 290

What is terminfo? .. 291

How curses and terminfo Work Together ... 292

Other Components of the Terminal Information Utilities
Package ... 292

12.2. Working with curses Routines .. 293

What Every curses Program Needs .. 293

The Header File <cur se s . h> ... 293

The Routines initscr () ,refresh () ,and endwin () 294

Compiling a curses Program .. 295

More about ini tscr () and Lines and Columns 295

More about refresh () and Windows ... 295

Simple Output and Input .. 297

Output .. 297

addch () - Write a single character to stdscr 297

addstr () - write a string of characters to stdscr 298

printw () - fonnatted printing on stdscr 298

move () -position the cursor for stdscr .. 299

mvaddch - move and print a character .. 300

mvaddstr - move and print a string .. 300

mvpr i nt w - move and print a formatted string 301

clear () and erase () - clear the screen .. 301

clrtoeol () and clrtobot () - partial screen clears 301

Input .. 302

getch () - read a single character from the current
terminal ... 302

get s t r () - read character string into a buffer 303

scan w () - formatted input conversion ... 304

Controlling Output and Input ... 305

Output Attributes .. 305

Bit Masks ... 306

-xvi-

Contents - Continued

attron (), attrset (), and attroff () - set or
modify attributes .. 307

standout () and standend () -highlight with
preferred attribute 307

Bells, Whistles, and Flashing Lights ... 307

beep () and flash () - ring bell or flash screen 308

Input Options ... 308

echo () and noecho () - turn echoing on and off 310

cbreak () and nocbreak () - turn "break. for each
character" on or off ... 310

Building Windows and Pads .. 310

Window Output and Input .. 310

The Routines wnoutrefresh () and doupdate () 311

New Windows ... 312

newwin () - open and return a pointer to new window.............. 312

subwin () ... 313

Using Advanced curses Features ... 313

Routines for Drawing Lines and Other Graphics 314

Routines for Using Soft Labels ... 315

Working with More than One Tenninal... 316

12.3. Working with terminfo Routines .. 317

What Every terminfo Program Needs ... 317

Compiling and Running a terminfo Program .. 318

An Example terminfo Program ... 318

12.4. Working with the terminfo Database ... 321

Writing Terminal Descriptions ... 321

Naming me Tenninal .. 321

Learning About the Capabilities ... 322

Specifying Capabilities .. 322

Basic Capabilities .. 324

Screen-Oriented Capabilities .. 324

Keyboard-Entered Capabilities ... 325

Parameter String Capabilities ... 325

- xvii-

Contents - Continued

Compiling the Description ... 326

Testing t:I1e Description .. 327

Comparing or Printing terminfo Descriptions 327

Converting a termcap Description to a terminfo
Description ... 328

12.5. curses Program Examples .. 328

The editor Program ... 328

edi tor - a Sample Program Listing .. 330

The highlight Program ... 333

The scatter Program .. 335

The show Program .. 336

The two Program ... 337

The window Program ... 339

Appendix A make Enhancements Summary ... 341

A.l. New Features .. 341

Default Makefi1e .. 341

The State File. make. state .. 341

Hidden Dependency Checking .. 341

Command Dependency Checking ... 341

Automatic Retrieval of sees Files ... 341

Tilde Rules Superceded ... 341

sees History Files .. 342

Pattern-Matching Rules: More Convenient than Suffix Rules 342

Pattern Replacement Macro References .. 343

New Options .. 344

Support for C++ and Modula-2 .. 344

Naming Scheme for Predefined Macros .. 344

New Special-Purpose Targets .. 345

New Implicit Rule for lint .. 345

Macro Processing Changes ... 345

Macros: Definition, Substitution, and Suffix Replacement 345

Patterns in Conditional Macros ... 345

- xviii-

Contents - Continued

Shell Command Output in Macros .. 346

Improved ar Library Support ... 346

Lists of Members ... 346

Handling of ar's Name Length Limitation ... 346

Target Groups 346

A.2. Incompatibilities with Previous Versions of make 347

New Meaning for -d Option ... 347

Dynamic Macros ... 347

Tilde Rules not Supported ... 347

Target Names Beginning with. / Treated as Local Filenames 348

Index ... 349

-xix-

Tables

Table 4-1 sees ID Keywords .. 112

Table 4-2 sees Utility Commands .. 113

Table 4-3 Data Keywords for p r s -d ... 113

Table 5-1 make's Standard Suffix Rules .. 138

Table 5-2 make's Predefined and Dynamic Macros .. 140

Table 5-3 Summary of Macro Assignment Order .. 156

Table 7-1 Control Key Letters for the time Command ... 183

Table 7-2 Default Timing Summary Chart .. 183

Table 8-1 Operators for the eval Built-In in m4 .. 198

Table 8-2 Summary of Built-In m4 Macros .. 201

Table 9-1 Changing Internal Array Sizes in lex .. 225

Table 9-2 Regular Expression Operators in lex .. 225

Table 11-1 Description of Terms .. :;,:.;: .. ;,,',.,

Table 11-2 Variables to Describe the Terminal Envif()llIlt1elJ~t.~;; :L.;, .. ,.;;;; .. ;.,.

Table 11-3 Variables Set by setterm ()

Table 11-4 Variables Set By gettmode ()

- xxi-

Figures

Figure 3-1 IPC Permissions Data Structure ... 55

Figure 3-2 IPC Permission Modes .. 55

Figure 3-3 Structure of a Message Queue .. 57

Figure 3-4 Message Queue Control Structure .. 58

Figure 3-5 Message Header Structure ... 58

Figure 3-6 Synopsis of ms gget () ... 59

Figure 3-7 Sample Program to Illustrate msgget () ... 59

Figure 3-8 Synopsis ofmsgctl () ... 60

Figure 3-9 Sample Program to Illustrate msgct 1 () ... 61

Figure 3-10 Synopses ofmsgsnd () and msgrcv () .. 63

Figure 3-11 Sample Program to illustrate msgsnd () and msgrcv () 64

Figure 3-12 Structure of a Semaphore 69

Figure 3-13 Synopsis of semget () .. 70

Figure 3-14 Sample Program to illustrate semget () .. 71

Figure 3-15 Synopsis of semctl () .. 72

Figure 3-16 Sample Program to illustrate semctl () .. 73

Figure 3-17 Synopsis of semop () 77

Figure 3-18 Sample Program to illustrate s emop () 78

Figure 3-19 Structure of a Shared Memory Segment ,.,".,." ~ ... " ... ;.;:;+.: ;:;:;:.; •• ,";:;:::,..

Figure 3-20 Synopsis of shrnget ()

Figure 3-21 Sample Program to illustrate

Figure 3-22 Synopsis of shrnctl ()

Figure 3-23 Sample Program to Illustrate shmctl ()

Figure 3-24 Synopses of shrnat () and shrndt ()

- xxiii-

87

Figures - Continued

Figure 3-25 Sample Program to lliustrate shmat () and shmdt () 88

Figure 4-1 Evolution of an SCCS File ... 108

Figure 4-2 Tree Structure with Branch Deltas ... 109

Figure 4-3 Extending the Branching Concept .. 110

Figure 5-1 Makefile Target Entry Fonnat .. 116

Figure 5-2 A Trivial Makefile ... 117

Figure 5-3 Simple Makefile for Compiling C Sources: Everything
Explicit ... 130

Figure 5-4 Makefile for Compiling C Sources Using Predefined

Macros .. 132

Figure 5 -5 Makefile for Compiling C Sources Using Suffix Rules 132

Figure 5-6 The Standard Suffixes List .. 133

Figure 5-7 Makefile for a C Program With System-Supplied Libraries 145

Figure 5-8 Makefile for a C Program with Alternate Debugging and
Profiling Variants ... 147

Figure 5-9 Makefile for a C Library with Alternate Variants 148

Figure 5-10 Makefile for Separate Debugging and Profiling Program

Variants ... 150

Figure 5-11 Makefile for Separate Debugging and Profiling Library
Variants ... 151

Figure 5-12 Target Entry for a Nested make Command ... 153

Figure 5-13 Makefile for C Program With User-Supplied Libraries 154

Figure 9-1 An overview of lex ... 2()4

Figure 9-2 lex with yacc ... 205

Figure 9-3 Sample character table. ... 223

Figure 12-1 A Simple curses Program ... 291

Figure 12-2 A Shell Script Using terminfo Routines ... 292

Figure 12-3 ini tscr (), refresh () , and endwin () in a

Program ... 294

Figure 12-4 Multiple Windows and Pads Mapped to a Tenninal Screen 296

Figure 12-5 Input Option Settings for curses Programs 309

-xxiv -

Figures - Continued

Figure 12-6 Sending a Message to Several Terminals .. 317

Figure 12-7 Typical Framework of a terminfo Program 317

-xxv-

Preface

The following chapters describe a number of system facilities, utility commands,
and libraries of primary interest to application developers.

D Chapter 1: Shared Libraries

This chapter describes Sun's approach to shared library support, along with
techniques for using and creating shared libraries.

D Chapter 2: Lightweight Process Library

this chapter describes Sun's implementation of lightweight processes.

D Chapter 3: System V Interprocess Communication Facilities

This chapter describes facilities that support standard System V !PC.

D Chapter 4: sees - Source Code Control System

sees is a version control utility for source files.

o Chapter 5: make User's Guide

make is a utility that provides consistent generation of programs and sys­
tems.

o Chapter 6: lint - a Program Verifier for C

lint is a utility that you can use to check your C programs for internal con­
sistency and portability.

D Chapter 7: Perfonnance Analysis

This chapter describes system utilities for timing, prc.tilln£>an~(rCjD.yeiraE~e
analysis of programs.

D Chapter 8: m4 - a Macro Processor

m 4 is a parametric macro-language (Plie)plro(;es~;;(jr. .. <>

o Chapter 9: lex - a Lexical Analyzer Generator
.............

lex is a program generator that produces scanning routirieswy.

o Chapter 10: yacc - Yet another Compiler Compiler

yacc is a program generator that produces parsing routines in C.

- xxvii-

Preface - Continued

Bibliography and
Acknowledgements

o Chapter 11: The cur s e s Library

This chapter describes the cur s e s screen-cursor motion library package
derived from BSD.

o Chapter 12: System V curses and terminfo

This chapter describes the standard System V curses terminal-display
library routines and support facilities.

o Appendix A

This appendix summarizes the enhancements made to Sun's version of the
make utility.

For detailed infonnation about system utilities, library functions, file- and
device-level facilities, and other details about specific features of the operating
system, refer to the SunOS Reference Manual.

This manual has been derived in large part from sources that include technical -
papers distributed with U.C. Berkeley's BSD release, System V Release 3 docu­
mentation, and others. In particular, Sun Microsystems wishes to acknowledge
the following sources:

1. Aho, A. V., and Corasick, M. J., Efficient String Matching: An Aid to Biblio­
graphic Search, Comm. ACM 18, 333-340 (1975).

2. Allman, Eric, Source Code Control System, University of California at
Berkeley.

3. Arnold, K. C. R. C., Curses - Screen Updating and Cursor Movement
Optimization: A Library Package, Bell Laboratories, Murray Hill, New Jer­
sey.

Author's Acknowledgements:
This package would not exist without the work of Bill Joy, who, in writ­
ing his editor, created the capability to generally describe tenninals,
wrote the routines which read this database [and] implement optimal
cursor movement ... Doug Merritt and Kurt Shoens also were
extremely important, as were ... Ken Abrams, Alan Char, Mark Horton
and Joe Kalash.

Editor's Note:
The curses library was implemented by Ken Arnold, based on the
screen-updating and optimizing routines originally written by Bill Joy
for the vi editor.

4. Bonanni, L. E., and Salemi, C. A., Source Code Control System User's
Guide, Bell Laboratories, Piscataway, New Jersey.

5. Feldman, S. I., Make-A Program/or Maintaining Computer Programs
Bell Laboratories, Murray Hill, New Jersey.

6. Graham, S. L., Kessler, P. B., and McKusick, M. K., Gprof-A Call Graph
Execution Profiier, Computer Science Division, Electrical Engineering and

- xxviii-

Preface - Continued

Computer Science Department, University of California at Berkeley.

Editor's Note:
This paper is for the scholar inertested in the theory behind call-graph
profiling.

7. Johnson, S. C., 'A Portable Compiler: Theory and Practice', Proc. 5th
ACM Symp. on Principles of Programming Languages, (January 1978).

8. Johnson, S. C., Lint, a C Program Verifier Bell Laboratories, Murray Hill,
New Jersey.

9. Johnson, S. C., Yacc- Yet Another Compiler-Compiler, Bell Laboratories
Computing Science Technical Report #32, July 1978.

10. Johnson, S. C., and Ritchie, D. M., 'UNIX Time-Sharing System: Portability
of C Programs and the UNIX System', Bell System Technical. Journal 57(6)
pp. 2021-2048 (1978).

11. Kernighan, B. W., and PI auger, P. J., Software Tools, Addison-Wesley, Inc.,
1976.

12. Kernighan, B. W., and Ritchie, D. M., The C Programming Language,
Prentice-Hall, N. J. (1978).

13. Kernighan, B. W., and Ritchie, D. M., The M4 Macro Processor, Bell
Laboratories, Murray Hill, New Jersey.

Author's Acknowledgements:
We are indebted to Rick Becker, John Chambers, Doug Mcilroy, and
especially Jim Weythman, whose pioneering use of m4 has led to
several valuable improvements. We are also deeply grateful to Weyth­
man for several substantial contributions to the code. The m4 macro
processor is an extension of a macro processor called M3 which was
written by D. M. Ritchie for the AP-3 minicomputer.

14. Kernighan, B. W., UNIXfor Beginners-Second Edition, Bell Laboratories,
1978.

15. Kernighan, B. W., and Ritchie, D. M., UNIX Programming, Ritchie, Bell
Laboratories, Murray Hill, New Jersey.

16. Lesk, M. E., Lex-A Lexical Analyzer Generator, Computing Science
Technical Report #39, October 1975.

Author's Acknowledgements:
[The] outside of lex is patterned onyacc and the inside on Abo's string
matching routines. Therefore, both S. C. Johnson and A. V. Abo are
really originators of much of lex, as well as debuggers of it. Many
thanks are due to both. The current version of lex was designed, writ­
ten, and debugged by Eric Schmidt.

- xxix-

1
Shared Libraries

Operating systems like SunOS have long achieved more efficient use of memory
by sharing a single physical copy of a program's text (code) among the
processes executing it. But while the text of a program may be shared among its
concurrent invocations, a significant portion of that text, consisting of library
routines, may be duplicated as part of other running programs. For example,
widely-used library functions such as printf () may be replicated any number
times throughout memory, and again in various executables throughout the file
system. This suggests that still-greater efficiencies can be had by sharing text at
the library level whenever possible.

The SunOS shared library mechanism improves resource utilization in a way that
is both straightforward and flexible:

o No specialized kernel support is required; it uses the standard memory­
mapping and copy-on-write features provided by the mmap(2) system call
and the kernel memory management facilities.

o It is designed to minimize the burdens placed on users of existing code. In
particular:

• Shared libraries are transparent to the programs that use them, as well as
the build procedures for those programs.

• They are largely transparent to standard system utilities, including
debuggers.

• Shared libraries are transparent to library source code written in C.
However, some special procedures are necessary when building the
shared libraries themselves.

• The allocation of address space for shared library routines is handled
automatically.

• Unlike statically-linked executables, programs that rely on shared
libraries need not be rebuilt if an underlying library changes (so long as
that library's calling interface remains compatible).

• The use of shared libraries is not required. You can specify the static
version of a SunOS shared library as desired.

• Shared libraries may be bound and unbound dynamically, during the
course of program execution.

1 Revision A of 27 March 1990

2 Programming Utilities and Libraries

1.1. Definitions
Shared Object

Shared Library

Static vs. Dynamic Link
Editing

Position Independent Code
(PIC)

Static and Dynamic Link
Editors

1.2. Using Shared Libraries

Building a Program to Use
Shared Libraries

In addition, shared libraries enhance the development environment by making it
easier to modify and test compatible updates to library functions.

A shared object, or . so file, is an a . out(S) format file produced by Id(1). A
shared object differs from a runnable program in that it lacks an initial entry
point. At run-time, such an object may be linked to a number of executing pro­
grams, all of which share access to a single copy of that object.

A shared library is a shared object file that is used as a library. In cases where
the shared library exports initialized data, the shared object (. so) may be paired
with an optional data interface description (. sa) file. (See Building a Shared
Library, below, for details.)

Link editing is the set of operations necessary to build an executable program
from one or more object files. Static linking indicates that the results of these
operations are saved to a file. Dynamic linking refers to these same link-edit
operations when performed at run-time; the executable that results from dynamic
linking appears in the running process, but is not saved to a file.

Position-Independent code (PIC) requires link editing only to relocate references
to objects that are external to the current object module. Position-independent
code is readily shared.

The link -editing facilities of 1 d have been made available for use at run-time as
well as at compile-time. At compile time, the static link editor, Id, can build an
executable file in which some symbols remain unresolved. An executable
(a. out) file that contains unresolved symbols is said to be incomplete. Incom­
plete executables require dynamic link editing at run-time.

The dynamic link editor, /usr / lib/ Id. so, uses the system's memory
management facilities to map in and bind the shared object files that are required
at run-time, and performs the link editing operations that were deferred by Id.
As long as the text bound-in at run-time is not subsequently modified (say, by a
link-edit operation or an update to initialized external data), it remains shared
among the various (disparate) programs that use it. However, if the text of a
shared routine should need to be modified by a process during the course of exe­
cution, local (exclusive) copies of the affected pages are created and maintained.

For the application developer, the decision to use shared libraries is made at the
static linking phase, when running Id. By default, if a shared version of a library
is available, Id constructs an executable that uses the shared version.

Id combines a variety of object files to produce an executable (a. out) file.
Exactly what code gets produced, and how complete the a. out is, depends on
the command-line options and input files supplied as arguments on the command
line. Id simply defers the resolution of any symbols that remain after it has run
out of definitions, and assumes that the program will be fully linked by Id. so at
run-time. Id accepts as input:

Revision A of 27 March 1990

Chapter 1 - Shared Libraries 3

o Simple object files. Id simply concatenates (and links) .0 files in the order
that they are encountered.

o ar(1) libraries. Each. a file is searched exactly once as it is encountered,
and only those definitions that match an unresolved external symbol are
extracted, concatenated to the text (or data), and linked.

o Shared objects. Any. so encountered is searched for symbol definitions
and references, but does not normally contribute to the concatenated text
(see Binding of PIC with non-PIC, for exceptions having to do with Id's -
de option). However, the occurrence of each shared object is noted in the
resulting a. out file; this information is used by Id. so to perform
dynamic link editing at run-time.

Id's output can be one of two basic types:

o An "executable" (a. out) file. This file is either aprogram, if it has an
entry point, or a shared object (. so), if it does not.

o Another "simple object" (.0) file. When given the -r flag, Id combines
the input object files to form a single, larger one. (This is a special use for
1 d which is of little relevance to shared libraries.)

You can indicate which libraries are to be used by supplying a -lname option on
the Id command line for each. Id searches each library in the order specified.
The name string is an abbreviated version of the library's filename; the full name
is of the form '1 ibname . a' if in archive format, or ' 1 ibname . so. version' if
it is in shared object form. (see Version Control below, for a detailed discussion
of the version suffix). At Id-time, this version information is noted; it must be
matched properly for successful binding at run-time by Id. so.

The location of the library specified by a -1 option is determined by an ordered
list of directories in which to search called the library search path. This search
path is specified as follows. At compile time, directories specified by the - L
options are searched first, followed by those specified in the
LD _LIBRARY_PATH environment variable (a colon-separated list of path­
names), and then the default libraries, /usr / lib, /usr / 51ib and
/ us r / 1 oe al / 1 ib. At run-time, directories in LD _ LIBRARY _PAT H environ­
ment variable are searched first, followed by libraries specified with -L, and
finally, the default directories.

Each directory supplied with -Lis recorded for use when the program is exe­
cuted, as are the default directories. Directory search information obtained from
LD _LIBRARY _PATH is not recorded in this manner. However, the search path
that LD _LIBRARY_PATH contains at run-time is searched at that time; this
allows an alternate set of libraries to be used.

At Id-time, the library search is satisfied by the first occurrence of either form of
the library (. so or . a if no . so is found), but if both versions are found in the
same directory, the . so form is used by default. However, the choice of whether
a . so or . a version is used by 1 d can be controlled by the binding mode
options described in the next section.

Revision A of 27 March 1990

4 Programming Utilities and Libraries

Binding Mode Options

-Bstatic and -Bdynamic You can specify the binding mode by supplying one of the - Bkeyword options
on the command line:

-Bdynamic

-Bstatic

Allow dynamic binding, do not resolve symbolic references,
and allow creation of execution-time symbol and relocation
infotmation. This is the default setting. Note that 1 d records
the name of the . so file with the highest version number in
the executable.

Force static binding, this mode is also implied by options that
generate non-sharable executable formats.

-Bdynamic and -Bstatic may both be specified a number of times to toggle
the binding mode for specific libraries. Like -1, their influence is dependent
upon their location in the command line. Libraries that appear after a -
Bstatic are linked statically. Libraries that appear after a -Bdynamic are
treated as shared (when a shared version is available).

NOTE Since -Bdynamic is the default setting, the use of shared libraries in the con­
struction of a program thus lJalls out" from installing the. so in Id's library
search path.

If -Bstatic is in effect, Id refuses to use the . so fotm of a library; it contin­
ues searching for an equivalent library with the . a suffix, and an explicit request
to load a . so file is treated as an error.

The following example shows how -Bstatic and -Bdynamic can be used to
use selected shared and static libraries. This cc command:

cc -0 test test.c -Bstatic -lsuntool -lsunwindow -Bdynamic -lsunwindow -lpixrect

generates the 1 d command:

/bin/ld -dc -dp -e start -x -0 test /usr/lib/crtO.o test.o -Bstatic -lsuntool \
-Bdynamic -lsunwindow -lpixrect -lc

- N and - n Options for 1 d

Since - B s tat i c turns off the use of shared libraries, 1 d finds the static (. a)
suntoollibrary and uses it for link editing immediately. The subsequent­
Bdynamic option tells Id to use shared versions of the sunwindow, pix­
rect and C libraries, if available.

The Id options -N and -n instruct Id to build a non-pageable executable. Their
use implies a -Bstatic option.

Revision A of 27 March 1990

Chapter 1 - Shared Libraries 5

Binding of PIC with Non-PIC

-de and -dp Options

Use of Assertions

The -assert Option

As noted in the above example, the e e command generates an 1 d command with
the -dp and -de options. These options are included to facilitate binding of
non-PIC code (generated by default) with the PIC shared libraries that a program
might use. The bindings of interest are to:

o commons, (externs): allocated after the program is completely assembled
(-de);

o initialized data: imported from the shared libraries (-de); and

o entry points: supplied by the shared libraries (-dp).

Without special handling, references to these objects would require execution­
time link editing, resulting in unsharable code. To improve the degree of sharing
for such programs, -de and -dp force the allocation of commons and the crea­
tion of aliases for library entry points, respectively. These allocations and aliases
are created as part of the non-PIC executable, and result in programs that are con­
sidered to be "pure-text" non-PIC programs, even though they may require
dynamic link editing.

NOTE While it is possible to invoke the Id command directly, it is generally better
practice to rely on the compiler-driver (such as ee) to generate the appropriate
Id command, so as to remain insulated/rom any future changes in the compila­
tion environment. Compiler commands such as ee accept and pass on options to
Id.

To help detect any potential sharability or correctness problems, 1 d can validate
certain assertions about an executable that it builds. This assertion checking is
invoked by the "-a s s ert keyword" option, where keyword is one of:

definitions if the resulting program were run now, there would be no run-

pure-text

time undefined symbol diagnostics. This assertion is set by
default, and is sufficient for validating applications that make
use of shared libraries.

the resulting executable requires no further relocations to its
text. The code of a shared library should be validated using
this assertion.

Run-Time Use of Shared
Libraries

At run-time, Id. so finishes the job started by Id. That is, it perfonns the link­
editing operations needed to resolve a program's remaining references using
shared-library code and data. Id. so's first task is to find and map in the
required libraries. It uses slightly different search rules than Id. Id. so looks
first in the directories specified by the current value of LD _LIBRARY_PATH,
and then in the directories in the search path recorded by Id (the default direc­
tories and those specified by - L). In addition, Id. so attempts to find the
"best" version of a shared library, that is, the version with the highest minor
number (as described under Version Control below).

Revision A of27 March 1990

6 Programming Utilities and Libraries

SunOS Shared Libraries

Dynamic vs. Static Binding
Semantics

Debuggers

The shared libraries provided in SunOS are:

o The C library (both BSD and System V variants)

o Window libraries (suntool and sunwindow)

o pixreet

o kernel virtual memory access (kvm)

o The optional FORlRAN library (purchased and installed separately).

Static (. a) versions of these libraries are also provided.

There are some semantic differences between dynamic and static binding. These
are not expected to cause a problem with programs that avoid questionable prac­
tices with regard to library search order. However, there is a potential for prob­
lems when programs are built from some components that have become dynami­
cally loadable, while others remain static. Given the case where:

hermes% l.d -0 It ••• de se

The executable x is composed of several objects, including a dynamic com­
ponent' de, and a static component, se. de was, prior to the introduction of
shared libraries, an unordered archive file, and both de and s e contain
definitions for the symbol get s ym. Suppose that de contains a reference to
getsyrn. If, in de's archive version, the definition for getsym preceded its
reference, Id might have resolved that reference using the definition from sc.
But in de's current (dynamic) form, its own definition is used instead. This is a
result of the fact that at run-time, Id. so searches for a symbol definition start­
ing with the main program, and then all . so's in load order. Even though it
allows for an inconsistency of this sort, this behavior preserves the ability to
interpose definitions on library entry points.

The SunOS debuggers have been modified to deal with the dynamic linking
environment provided by the new Id. In particular, they understand that symbol
definitions may appear after a program starts executing. However debugger users
must be aware that library symbols will not be resolved until main () has been
called, as the next example shows.

Revision A of 27 March 1990

Performance Issues

Dependencies on Other Files

Chapter 1 - Shared Libraries 7

[ji. ::~I. :.: .':. ':.~ '.,< :. ••••.• • •• i~~ ••••.•••••...•....•••••••••• : .•.•••..•....•••.••••..•...•.•••.••••..••••••••••••••••••••••.•.) ••..•• <.. ...• .ii··
I

••••••.•• ' •••••••••••••••••••

.ii.:,:\.. ·\i.; ··n:n .•.•.••••••.•••.
': .. > .• L .•.•. :: . :.' .: ... P.P ... : .. :.f: .: .. M.: '.' ."': ::.: . 6.Hffi('. : : , • :. : :: •...• : :H»<"<:'''' ;::
..... :. .:.::.,:.::. :.'.:.:,'.: .:: :::: :: :'.: .. , < :':.' •.••. :':.::.' :.: ,.,::,.::,:<:",'<jl:j!:)::j;:j><:: <:::::,
;, < . ,.:.: : <: . .L<''''''''''':::< .' ••••••••••••••••••• . '< : : : .' .,.:: .'.': ,'. . < •.. : ': . :' ,::::i: .>nU : •. ': :,:: ::::.: : , >:») :::... i:. ::: '.:! .>. :::: :., .• : :.' .' ::.,: : ,::' : •.• ' • :: :~.,
.. ' ... '.' , : :' : <>::< . <> . .><:: .: j:)<.. : i :: < .'.:: . .'< . .):: .. , ».> n:. >.). »>::>: < {::::::::< >
: :> • : . .:.::.: , : , :. : . : .' ::< : « ::....... '.: L.::.) ... ::::.: : •. ::: : . .? ... (:<: :}. : .' .• I' · /
....>.< .••. · .,•• ' ••.. <: ..•..••.•..••.•..•..•...•...•. ;I;,,~ .•. ~ .• · .·...;?)i •.•.. ii ... ,. iii.· .. · Ii.> it · ••.. ·
" .. : : . : :. : : ... ',:: . .<: r·:u

Users of debugging tools also need to be aware that core files have incomplete
infonnation on the state of shared code. Core files contain only the stack and
data regions of a process image. The text, and more importantly, the static data
regions of dynamically loaded objects, do not appear. Thus, modifications made
to initialized data are not reflected in the core file.

Shared libraries represent a classic space vs. time trade-off. The work of incor­
porating the library code into an address space is deferred in order to save both
primary and secondary storage. Therefore, one can expect to pay a slight CPU
time penalty with programs that use shared libraries. This penalty can be attri­
buted to added cost of:

o dynamically loading the libraries,

o perfonning the link editing operations, and

o the execution of the library PIC code.

However, these costs can be offset by the savings in I/O access time when library
code is already mapped in by another program, since the (real) I/O time required
to bring in a program and begin execution will be greatly reduced. As long as the
CPU time required to merge the program and its libraries does not exceed the I/O
time saved, the apparent perfonnance of the program will be the same or better.
However, if sharing does not occur, or if the system's CPU is already saturated,
such savings may not be achieved.

A dynamically bound program consists not only of the executable file that is the
output of ld, but also of the files referred to during execution. Moving a dynam­
ically bound program may also involve moving a number of other files as well.
Moving (or deleting) a file on which a dynamically bound program depends may
prevent that program from functioning.

Revision A of 27 March 1990

8 Programming Utilities and Libraries

Setuid Programs

1.3. Version Control

Version Numbers of . so's

For those programs that execute with an effective UID (user ID) or GID (group
ID) different than the real UID or OlD, Id. so ignores libraries in directories
other than /usr/lib, /usr/51ib and /usr/local/lib in the search
path.

A version numbering mechanism has been provided for shared libraries. This
allows newer compatible versions of a library to be bound at run-time. It also
allows the link editors to distinguish between compatible and incompatible ver­
sions of a library.

The version number is composed of two parts, a major version, and a minor ver­
sion number. This version-control suffix can be extended to an arbitrary string of
numbers in Dewey-decimal format, although only the first two components are
significant to the link editors at this time.

As noted earlier, Id records the version number of the shared library in the exe­
cutable it builds. When Id. so searches for the library at run-time, it uses this
number to decide which of the (possibly multiple) versions of a given library is
"best," or whether any of the available versions are acceptable. The rules it fol­
lows are:

[J Major Versions Identical: the major version used at execution time must
exactly match the version found at Id-time. Failure to find an instance of
the library with a matching major version will cause a diagnostic to be
issued and the program's execution terminated.

[J Highest Minor Version: in the presence of multiple instances of libraries
that match the desired major version, Id. so will use the highest minor ver­
sion it finds. However, if the highest minor version found at execution time
is lower than the version noted at Id-time, a warning diagnostic is issued.

Major version numbers should be changed whenever there is an incompatible
change to the library's interface.

NOTE As always, the detection of incompatibilities between library versions remains
the responsibility of the library's developer.

Version Management Issues Whenever there is an incompatible change to the library's calling interface, the
major number of that library should be changed. A library's interface is defined
by:

[J the names and types of exported functions and their parameters; and

[J the names and types of exported data (initialized or not)

Incompatible changes would include the deletion of a exported procedure, dele­
tion of exported data, changes to an procedure's parameter list, and changes to
data structures declared in a . h file normally included by both the library and the
applications that use it.

Changes to intemallibrary procedures and data do not constitute an interface
change.

Revision A of 27 March 1990

1.4. Shared Library
Mechanisms

Memory Sharing

The C Compiler

Chapter 1 - Shared Libraries 9

Minor versions should be changed to reflect compatible updates to libraries. An
example of a compatible update would be changing a procedure's algorithm
without changing its parameter list. Although adding a new library routine con­
stitutes an interface change, it can be considered a compatible change.

Note that link-editors silently select the highest compatible version they can
obtain. If the minor version used at Id-time is higher than the highest one found
at run-time, then although the interfaces should remain compatible, it is possible
that certain bug fixes or compatible enhancements on which the application
depends might be missing: hence the warning message mentioned above.

There is no single mechanism in SunOS that implements shared libraries.
Instead, the ability to construct a shared library comes as a consequence of
enhancements to various existing facilities. The system components and their
features that are instrumental in supporting shared libraries are:

o Virtual memory supports file mapping and "copy-on-write" sharing

o PIC generation by the compiler and assembler

o Link editor support for dynamic linking and loading

Memory sharing is provided by the kernel's virtual memory (VM) system. The
mechanisms of interest for shared libraries are:

o File mapping by way of nuna p () .

o Sharing at the granularity of a file page

o A per-page copy-on-write facility that allows run-time modification of a
shared file, without affecting other users of that same file.

The VM system uses these features internally, so that an exec () of a program
is reduced to establishing a copy-on-write mapping of the file containing the pro­
gram. A shared library is added to the address space in exactly the same way,
using this general file-mapping mechanism.

The C compiler's -pic option generates position-independent code. When­
pic is specified, references to objects that are external to the body of the code
are made by way of linkage tables. These indirect references can degrade execu­
tion perfonnance slightly, depending on of the number of dynamic references to
global objects. The code sequences generated often assume that the linkage
tables are no larger than a limit that is convenient for the specific machine (64K
bytes for an MC68000, or 8K for a SPARC, for instance). In the (presumably
rare) event the tables require a larger size, the compiler can be coerced into gen­
erating code sequences that pennit larger linkage-table entries with the -PI C
option.

Shared library code should be generated as PIC using either -pic or -PIC as
appropriate. The use of PIC in shared libraries results in code that does not
require relocation in order to be used, and is thus inherently sharable by any pro­
gram that uses it. The same copy of PIC code can be shared among multiple pro­
grams, even if that code is placed at different addresses in each program. Any

Revision A of 27 March 1990

10 Programming Utilities and Libraries

The Assembler

crtO()

Link Editors: 1 d and 1 d. 50

dependence on actual addresses is isolated to the linkage tables, which are
modified on a per- program basis to match the actual addresses selected.

The linkage tables are actually divided into two portions: a Global Offset Table
(GOT) that provides indirections to data objects referenced by the PIC code, and a
Procedure Linkage Table (PL T) that provides indirections to procedures refer­
enced by the PIC code. The principal difference between the two types of
indirections is that PLT entries are evaluated during dynamic linking, whereas
GOT entries are evaluated at the start of execution.

Code generated by the -pic option requires support from the assembler. This
support is enabled by the - k assembler flag, and is generated automatically by
c c when invoking the assembler for a compilation performed with the -p i c or
the -PI C option.

User-written assembly code for use in a shared object must also be PIC. Refer to
the appropriate Sun-3 Assembly Language Reference for your Sun system for
details.

Every main program produced by the standard languages is linked with a pro­
gram prologue module, crtO (). This module contains the program's entry
point, and perfonns various initializations of the environment prior to calling the
program's main () function. crtO () refers to the symbol __ DYNAMIC. As
described above, when Id builds an executable requiring execution-time link
editing, it defines this symbol as the address of a data structure containing infor­
mation needed for execution-time link editing operations. If the structure is not
needed, any reference to the symbol __ DYNAMIC is relocated to zero.

At program start-up, crt 0 () tests to see whether or not the program being exe­
cuted requires further link editing. Ifnot, crtO () simply proceeds with the
execution of the program as it always has - no further processing is involved.
However, if __ DYNAMIC is defined, crtO () opens the file
/u5r /lib/ld. 50 and requests the system to map it into the program's
address space via the rnma p () system call. It then calls 1 d . 50, passing as an
argument the address of its program's __ DYNAMIC structure. crtO () assumes
that Id. so's entry point is the first location in its text. When the call to Id. so
returns, the link editing operations required to begin the program's execution
have been completed.

After Id has processed all of its input files, it attempts to resolve each symbolic
reference to a relative offset within the executable being built. Id is able to
complete this symbolic reduction at Id-time only if:

o all infonnation relating to the program has been given and no . 50 will be
added at execution time or

o the program has an entry point and symbolic reduction can be made for
those symbols defined in the program

After perfonning all the reductions it can, if there are no further symbols to
resolve, the output is a fully linked (static) executable. However, if any
unresolved symbols remain, then the executable will require further link editing

Revision A of 27 March 1990

ld. so

Binding and Unbinding
Routines: dlopen () ,
dlsym(),dlclose(),
dlerror ()

Chapter 1 - Shared Libraries 11

at run-time. In this case, Id deposits the infonnation (including version number)
needed to obtain any needed . so files, in the data space of the incomplete exe­
cutable.

It should be noted that uninitialized "common" areas (essentially all uninitial­
ized C globals) are allocated by the link editor after it has collected all refer­
ences. In particular, this allocation can not occur in a program that still requires
the addition of infonnation contained in a . so file, as the missing information
may affect the allocation process. Initialized "commons,' , however, are allo­
cated in the executable in which their definition appears.

After Id has perfonned all the symbolic reductions it can, it attempts to
transform all relative references to absolute addresses. 1 d is able to do this rela­
tive reduction only if it has been provided some absolute address.

At run-time, after receiving control from crt 0 () , Id. so, executes a short
bootstrap routine that performs any relocations Id. so itself requires. It then
processes the infonnation contained in the __ DYNAMIC structure of the program
that called it. Id. so examines the list of required dynamic objects Each ele-
ment of the list contains an offset relative to the DYNAMIC structure of an
array of link_object structures and has infotmation to identify a . so that
must be incorporated. The identification is the name specified on the ld com­
mand line used to build the program, and includes a bit indicating whether the
object was named explicitly or via a -1 option. Some version control informa­
tion is also recorded for each entry in the Id _need array. Id. so looks up the
indicated file, and maps it into the process's address space.

After all modules comprising the program have been placed in the address space,
Id. so attempts to resolve the remaining symbols. After perfotming allocations
for all uninitialized commons Id. so attempts to resolve all unbound references
that occur outside of procedure linkage tables.

Unresolved procedural references in the linkage tables are not processed during
program startup. Instead, such references are initialized such that the initial call
results in a transfer of control to Id. so. When called in this way, Id. so first
resolves the reference to an absolute address, and then modifies the linkage table
entry to use that address. Deferring the binding of procedural entry-points until
the first call eliminates unnecessary bindings to entry points that the program
may not use.

SunOS provides a programmatic interface to the run-time linker, which you can
use to bind or unbind shared libraries during the course of program execution.
dlopen () allows you to get access to a shared library, which it binds to the
process's address space (if it isn't bound already). dlsym() returns the address
of a given symbol within a (bound) shared library. dlclose () deletes a refer­
ence to a shared object. When the last reference is deleted, the shared object is
removed from the process's address space. dlerror () can be used to obtain
information about the last error occurring as the result of dlopen () ,
dlsym () , or dlclose (). Refer to Id(3) for details.

Revision A of 27 March 1990

12 Programming Utilities and Libraries

1.5. Building a Shared
Library

Building the. so File

The. sa File

In the simplest of cases, the commands needed to build a shared library might be:

But note that this assumes that the library exports no initialized data. And it
makes no guarantee that the library text makes the most efficient possible use of
space, or allows for a minimal amount of paging.

As noted earlier, a shared library should be structured to avoid undue
modification in the course of dynamic linking and execution. Otherwise, it is
possible that some or all of the shared text may be rendered unsharable when run.
Although this lack of sharing would not effect the correct execution of library
routines, it will impact system performance. If only a few programs use the
library, this impact is small. But for a widely-used library, the impact on system
performance could be significant. Thus, shared library objects should be PIC,
they should be validated using the pure-text assertion, and those libraries
that export initialized data should be accompanied by a data interface description
(. sa) file.

To build the . so portion of a shared library, simply invoke Id with the list of
object files that will comprise it. The version number is not automatically gen­
erated by Id (which creates a file named a. out by default), but you can specify
the full name of the library, including the version number, with 1 d's -0 option.
It is strongly suggested that you use the -assert pure-text assertion to
uncover any instances of non-PIC code.

The . sa file is used to support Id's -de option, which provides a space/time
efficient implementation of the interface between non-position-independent code
and dynamically linked objects. The . sa file is an ar-format file (archive
library) that contains the exported initialized data used by a shared library. When
present, the . sa file it is statically linked at Id-time to insure correct allocation.

A data item is exported from a library if a program that uses the library refers to
the data item by name. The contents of the data item are included if they are
specified by value in the declaration. For instance, with a definition of the form:

char *strlist[] = { "string 1", "string 2" };

the data itself must be included in the . s a file, whereas with:

struct *strlist[] = { ptrl, ptr2 };

definitions for the objects named ptrl and ptr2 would not necessarily have to
be included. Note that if pt r 1 were itself defined as an initialized global in the
library source, say:

extern char *ptr1 = NULL

then this definition would also have to go into the . sa file.

Uninitialized data (exported or not) is handled automatically, and need not be
included in the . sa file. If the library does not export any data, then a . sa

Revision A of 27 March 1990

Chapter 1 - Shared Libraries 13

would be unnecessary. The full name of a . sa also includes a version number
that must match the version string of the . so it accompanies.

CAUTION Ifa shared object exports initialized data, it is very important that a . sa file
be created that contains such data. Failure to do so can degrade the perfor­
mance of applications or, if the library is used heavily, the system as a whole.
Further, in the event that such data is located within the text segment of the
shared object, it is possible for Id to confuse the data with procedures
defined by the library and to incorrectly link applications that reference
such data.

Building the . sa File

1.6. Building a Better
Library

Initialized data can appear in the text segment of a shared object if it is part of a
source file that is compiled with the - R (make initialized data read-only) option.

To build a . s a file:

1. Segregate the declarations of exported initialized data from the sources for
each object, and place them in a separate source file. Make sure that an up­
to-date object is compiled from each of those data-description sources, and
include each of those data-description objects in both the static and shared
versions of the library.

2. Create a separate (static) archive library composed of only the data­
description objects, and give it a name of the form' 1 ibname . sa. version'.
This archive constitutes the . sa file. Be sure that the . sa has the same ver­
sion number as the . so it is to accompany.

3. Use ranlib(1) to incorporate a symbol table within the . sa archive.

As an example, consider the system's C library. It contains a number of data
structures that are initialized at program startup and which are exported to appli­
cations. Examples of these include the global variable errno, and the array of
error messages sys_errlist.

The C library source has been constructed such that the variable err n 0 appears
in its own source file (errno. c). This accomplishes step 1 of the procedure
outlined above. The relevant portion of this source file consists of the line:

int errno = 0; /* global error return value, initially

This source file is compiled -pic, and the resulting object file, errno .0, is
archived into the C library's. sa file. Since everything placed in a . sa file must
also appear in the . so file. errno. 0 is also included in the . so file. Thus
errno.o is also linked into the C library's. so file when it is built.

Once all such files have been placed in the . sa file, it is processed with ranlib
to add a symbol table.

Library code that maximizes sharing is considered' 'better" because it makes
more efficient use of the system's memory resources. Building the library com­
ponents PIC is an important and easy first step, but there are other tuning stra­
tegies to consider as well.

Revision A of 27 March 1990

14 Programming Utilities and Libraries

Sizing Down the Data
Segment

Using xstr to Extract String
Definitions

One way to maximize sharing is to minimize a . so's data segment (containing
initialized data), and its bss segment (containing uninitialized data). Often a
. so's data requirements are large because a significant portion of that data that
is functionally read-only. There are several problems with this mix of read-only
and modifiable data:

o data that could be shared is not,

o an unnecessary amount of swap space is reserved, and

o read-only data fragments the read-write storage, spreading it over more
pages.

One approach is to move initialized read-only data into the text segment. This is
done by compiling with the - R option. However caution needs to be exercised,
since initialized data structures that contain pointers require relocation at run­
time.

For instance, given the declarations:

void test();
int x;
struct fxy{

void (*pO)();
int *pl;
} ;

struct fxy example = {test, &x};

The references to &x and test are instances of pointers embedded in an initial­
ized structure. The actual addresses to which those pointers are resolved will not
be detennined until the program starts executing, and the shared object is placed
in the address space. If this data structure is placed in the text segment of the
shared object through the use of the - R option, then the relocation will cause that
portion of the text segment to become unshared. Such data structures should not
be contained in modules compiled with the - R option. You can check whether
such relocations are occurring within a shared object by specifying the ,­
assert pure-text' option when building the shared object.

Another common example of initialized data containing pointers is an array of
strings:

char *errlist[] = {"errl", "err2"};

The x s t r (1) utility can be used to make code containing initialized strings
more sharable. It segregates the literal string data from its relocatable references,
which allows the literal data to be merged safely into the text segment. However,
files containing references to the string data should not be compiled with the - R
option.

If there are several related pieces of data, another strategy is to coalesce the
smaller items into a larger structure and allocate the space from the heap.

Revision A of 27 March 1990

Better Ordering of Objects

crtO.o Dependency

The ldconfig Command

1.7. Shared Library
Problems

ld. so Is Deleted

Chapter 1 - Shared Libraries 15

The order of the objects in the executable can be important to minimizing the
memory requirements. Since objects are concatenated together, linking in the
wrong order may result in a unnecessarily large memory requirement. Two
approaches that encourage better utilization of memory resources are:

D Routines that are frequently called should be packaged together, and isolated
from startup or rarely-called code.

D A set of routines that represent a common sequence should also be packaged
together. For example, given modules A, B, C, D, and E, where A and B fit
on one VM page, C and D fit on another, and E fits on a partial page, if A
always calls into E and never calls into B, the memory requirements may be
reduced by a page if E follows A.

Sometimes a program will define its own crt 0 () initial routine. If it is
intended that the program use shared libraries, then the programmer needs to pro­
vide a hook for the run-time linker. Further discussion of this can be found under
link(5) in the SunOS Reference Manual.

ldconf ig(8) is a program used to construct a run-time linking cache for use by
ld. so. The cache has a default list of directories /usr / lib, /usr / 5lib,
/usr/lib/fsoft,/usr/lib/f68881,/usr/lib/ffpa,and
/ us r / 1 ib / f s wit ch and will accept as input a list of additional directories to
augment this list. ldconfig records the pathname of the highest compatible
version of each shared library in the specified search path.

At runtime, 1 d . s a first queries the cache to detennine which is the best version
of a library in a particular directory. If the cache is unable to satisfy the request,
Id. so enumerates the directory entries for the best version.

Since many system utilities are built to use shared libraries, and thus rely on
dynamic link -editing, the potential exists for chaos if an important shared library
(such as the C library) or /usr / lib/ Id. so should be deleted.

If the latter has been deleted, you will see the following message:

(crtO: no /usr/lib/ld.so]
To deal with the chaos resulting from either the shared C library or 1 d . s a being
deleted, a number of commands and utilities have been statically linked. These
include: rcp(1) init(8), getty(8), sh(I), csh(I), mv(1), In(l), tar(1) and
restore(8). Since most system utilities may be rendered unusable by this con­
dition, it may be necessary to boot the system single-user in order to restore
either /usr/ lib/ ld. so or the C library. Refer to System and Network
Administration for procedures to restore these files.

Revision A of 27 March 1990

16 Programming Utilities and Libraries

Wrong Library Is Used

Error Messages

Id. so will not detect a library that is newly installed in the cache unless the
cache is rebuilt using Idconfig. Thus, a program that depends on the newly­
installed library may not be able to find it. You can use the 1 dd(1) command to
identify the libraries on which a program depends.

(____ l_d_._s_o_: __ l_i_b_na_~ ___ .s_o __ .~ __ if_or __ n_o_t __ f_o_u_n_d ______________________ ~J

Id. so failed to find a library with the appropriate major version number.

ld. so: open error for library
ld. so: can't read struct exec for library
ld. so: library is not for this machine type

Either the shared object has been corrupted, has incorrect access pennissions, or
was built to execute on another processor architecture.

ld. so: call to undefined procedure symbol from address
ld. so: Undefined symbol symbol

These messages generally indicate that the execution path attempts to refer to an
undefined symbol. This is usually the result of a programming error.

(Id.so.cache corrupted
J

The file / etc/ Id. so. cache has become damaged. To correct it, remove the
existing file and reboot the system. The file will be rebuilt.

ld. so: warning library has older version than expected

The version of the shared library that is currently being used has a minor version
number that is lower than the version that was present at the time the application
was compiled.

Revision A of 27 March 1990

2.1. Introduction

Definition

Functionality

2
Lightweight Processes

This tutorial provides some examples of how to use the lightweight process
library. Although the term "lightweight processes" is often used, it is really a
misnomer since the fundamental property of lightweight processes is not that
they are somehow "lighter" than ordinary processes, but that a lightweight pro­
cess represents a thread of control not bound to an address space. If threads
appear to operate more efficiently than ordinary SunOS processes, it is because
threads communicate via shared memory instead of a filesystem. Because
threads can share a common address space, the cost of creating tasks and inter­
task communication is substantially less than the cost of using more' 'heavy­
weight" primitives. The availability of lightweight processes provides an
abstraction well-suited to writing programs which react to asynchronous events
such as servers. In addition, lightweight processes are useful for simulation pro­
grams which model concurrent situations.

The idea is to provide a process abstraction: a thread is a data type representing a
flow of control. A number of operations are available to manipulate threads,
including ways to control their scheduling and communication. Lightweight
processes exist independently of virtual memory, I/O, resource allocation, and
other operating system-supported objects, but are able to smoothly work with
these objects.

The lightweight process abstraction for managing asynchrony is superior to the
UNIX system signal abstraction. Under the UNIX system, a signal causes a sort
of context switch (to a new instruction and optionally, to a new location on the
stack) but the thread is the same: for example, you can long jmp () to the main
program (the signal handler and main program can't run in parallel). Critical
sections are implemented by disabling interrupts. With lightweight processes,
the only way to manage an asynchronous activity is via a thread. There are no
asynchronous exceptions in a thread. Critical sections are implemented with
monitors. There is no need to lock out interrupts, with the concomitant possibil­
ity of losing information while in the critical section.

The Sun lightweight process library provides primitives for manipulating
threads, as well as for controlling all events (interrupts and traps) on a processor.
The present library is supported for user-level processes only. This means that
the time slice given to a process by the operating system is shared by all the
threads within that process. Further, L WP objects are not accessible outside of

17 Revision A of 27 March 1990

18 Programming Utilities and Libraries

Tutorial Goals

2.2. Threads

the containing process. Briefly, the primitives supported by the library include:

o Thread creation, destruction, status gathering, scheduling manipulation,
suspend and resume

o Multiplexing the clock (any number of threads can sleep concurrently)

o Individualized context switching (e.g., it is possible to specify that a given
set of threads will touch floating point registers and only those threads will
context switch these registers)

o Monitors and condition variables to synchronize threads

o Extended rendezvous (message send-receive-reply) between threads

o An exception handling facility that provides both notify and escape excep­
tions

o A way to map interrupts into extended rendezvous

o A way to map traps into exceptions

o Utilities to allocate red-zone-protected stacks, and to provide some stack
integrity checking for environments that lack sophisticated memory manage­
ment

Scheduling is by default, priority-based, non-preemptive within a priority. How­
ever, sufficient primitives are available that it is possible to write your own
scheduler. For example, to provide a round-robin time-sliced scheduler, a high­
priority thread may periodically reshuffle the queue of time-sliced threads which
are at a lower priority. Although pure coroutine scheduling is possible, it is not
required and purely preemptive scheduling may be used. Threads currently lack
kernel support, so system calls still serialize thread activity, although the non­
blocking lID library (libnbio.a) mitigates this problem somewhat. When a set of
threads are running, it is assumed that they all share memory.

This tutorial provides some practical examples of how to program using light­
weight processes. Also included is some discussion of the rationale for the light­
weight process primitives. Syntax details of the lightweight process primitives
are not supplied in this tutorial, though they can be found in the SunOS Reference
Manual.

The lightweight process mechanism allows several threads of control to share the
same address space. Each lightweight process is represented by a procedure
which will be converted into a thread by the lwp_create () primitive. Once
created, a thread is an independent entity, with its own stack as supplied by its
creator. lwp _create () perfonns a number of actions: a thread context is allo­
cated, the stack is initialized, and the thread is made eligible to run. A collection
of threads runs within a single ordinary process. This collection is sometimes
called a pod.

Lightweight processes (LWP's or threads) are scheduled by priority. It is always
the case that the highest priority non-blocked thread is executing. Threads may
block on certain occurrences, such as the arrival of a message or the procurement

Revision A of 27 March 1990

Chapter 2 - Lightweight Processes 19

of a monitor lock. Within apriority, threads execute on a first-come, first-served
basis. Thus, if two threads are created at the same priority, they will execute in
the order of creation.

Here is an example of how to do something simple with lightweight processes.
The program below creates a thread which prints out the "hello world" message
and then terminates (by' 'falling through" the procedure). main () becomes a
lightweight process as soon as a LWP primitive (here, pod_setmaxpriO) is
called. Note that main () is created with a priority ofMAXPRIO so that it may
set things up as it wishes before allowing other threads to run.

iinclude <lwp/lwp.h>
iinclude <lwp/stackdep.h>

#define MAXPRIO 10

main (argc, argv)
int argc;
char **argv;

thread_t tid;
int task();

printf (nmain here\nn); /* 1 */
(void)pod_setmaxpri(MAXPRIO); /* 2 */
lwp_setstkcache(1000, 2); /* 3 */
lwp_create(&tid, task, MAXPRIO,

task ()
{

0, lwp_newstk(), 0); /* 4 */

printf(nhello world\nn);
/* now, fall through and terminate this thread */

The command to compile this program (call it foo.c) is:

example cc -0 foo foo.c -llwp

Let's go through this program line by line. We begin by printing a message
"main here" at line 1. Then, pod_setmaxpri () turns main () into a light­
weight process (as it's the first L WP primitive to be called).
pod_setmaxpri () also specifies the maximum scheduling priority: in this
case, 10. The range of scheduling priorities 1 .. 10 is now available to the client.
If we didn't use pod _ setmaxpri () the available priority would be just
MINPRIO. Now, main () is a thread running at a priority of 10, the maximum
priority. In other words, main () will execute until it explicitly blocks or other­
wise yields control to another thread.

lwp _setstkcache () initializes a cache of stacks that can be used by subse­
quent lwp _ newstk () calls. lwp _newstk () will return a stack of at least
the size specified in the lwp_setstkcache () call (here, 1000 bytes), and this
stack is red-zone protected. The second argument to 1 wp _ set s t kcac he ()

Revision A of 27 March 1990

20 Programming Utilities and Libraries

Stack Issues

Stack Size

Protecting Against Stack
Overflow

specifies how big the cache should be initially (how many stacks it should con­
tain). Larger numbers will require more memory, but will make cache faults less
likely. On a fault, an additional cache of the same size will be allocated. A stack
allocated from the stack cache will automatically be freed when the thread that
uses it dies. Allocation from this cache is almost as efficient as using statically
allocated stacks.

At line 4, we create a new thread. This thread will begin execution at task (),
have a scheduling priority of 10, use the stack cache for a stack, and take no
arguments initially. Even though it will run at the same priority as main () ,
task () will not run until main () relinquishes control because of the FCFS
scheduling policy for threads at the same priority, and task () is at the same
priority as main (). (It is not a good programming practice to rely on the order­
ing of threads within a priority since this assumption may not hold on a multipro­
cessor or in the presence of external scheduling). The identity of the new thread
is returned in tid. This identity may be used in subsequent LWP primitives.

When the main () thread "falls through", it terminates. At this point, task ()
will run, print its message, and terminate. The L WP library will notice that no
more threads remain, and the program will terminate.

Be careful not to confuse threads with ordinary heavyweight processes. For
example, there are no inheritance rules about lightweight processes, and light­
weight processes do not have their own set of descriptors.

A major problem is to determine how big to make the thread stacks. Once this
determination is made, you can decide how or if you need protection against
exceeding this limit. UNIX presents the same problem to the user, but it rarely
causes trouble because the maximum stack length is very big. Allocating large
stacks is not a big performance drain because pages are only allocated if actually
used. Hence, you can allocate very large stacks fairly casually.

lwp_newstk () automatically allocates red-zone protected stacks (references
beyond the stack limit will generate a SIGSEGV event). There are two ways to
ensure stack integrity when not using 1 wp _ ne w s t k (). One way is to use the
CHECK () macro at the beginning of each procedure (before any locals are
assigned), in conjunction with the lwp _ checkstkset () primitive. If the
procedure exceeds the thread stack limit, the procedure will return and set a glo­
bal variable. Another way is to use the lwp _ stkcswset () primitive. This
enables stack checking on context switching. Although this is transparent to the
client programs, it may not detect errors until after the stack limit has been
exceeded. Thus, with 1 wp _ s t k c s w set () , an error is considered fatal.
CHECK () detects errors before any damage is done, so error recovery is possi­
ble.

It is possible to assign a statically allocated stack to a thread. Thus, in the pro­
gram above, we could declare a stack as follows, using the macros defined in

Revision A of 27 March 1990

Coroutines

Chapter 2 - Lightweight Processes 21

stackdep. h to declare the stackportably. MINSTACKSZ () is added to
include any stack room needed by the LWP library to execute the LWP primi­
tives.

#include <lwp/lwp.h>
#include <lwp/lwpmachdep.h>
#include <lwp/stackdep.h>

#define MINSTACKSZ 1024
#define MAXPRIO 10

stkalign_t stack[lOOO+MINSTACKSZ];

main ()
{

int task();
thread_t tid;

(void)pod_setmaxpri(MAXPRIO) ;
lwp_create(&tid, task, MAXPRIO, 0, STKTOP(stack) , 0);

task ()
{

printf("task: hello world\n");

It is possible to use threads as pure coroutines in which one thread explicitly
yields control to another. lwp_yield () allows a thread to yield to either a
specific thread at the same priority, or the next thread in line at the same priority.
Here is an example of three coroutines: main () , coroutine (), and
other (). The result should be the numbers 1 through 7 printed in sequence.
In the case where a generic yield is done (lwp_yield (THREADNULL)), the
current thread goes to the end of its scheduling queue. When a specific yield is
done, the specified thread butts in front of the current one at the front of the
scheduling queue. Since we are just using coroutines, a single priority
(MINPRIO) is sufficient and we do not increase the number of available priori­
ties with pod_setmaxpri () .

#include <lwp/lwp.h>
#include <lwp/stackdep.h>

thread t col;
thread t co2;
thread t co3;
main (argc, argv)

int argc;
char **argv;

/ * main's tid * /
/ * coroutine's tid * /
/ * other's tid * /

int coroutine(), other();
lwp_self(&col) ;

lwp_setstkcache(lOOO, 3);

sun
microsystems

Revision A of 27 March 1990

22 Programming Utilities and Libraries

Custom Schedulers

lwp_create(&co2, coroutine, MINPRIO, 0,
lwp_newstk(), 0);

lwp_create(&co3, other, MINPRIO, 0, lwp_newstk(), 0);
printf(nl\nn) ;
lwp_yield(THREADNULL); /* yieldtocoroutine */
printf(n4\nn) ;
1 wp _yield (co3); / * yield to other * /
printf(n6\nn) ;
exit(O);

coroutine () {
printf(n2\nn) ;
if (lwp-yie1d(THREADNULL) < 0)

lwpyerror (nbad yieldn);
return;

printf(n7\nn) ;

other () {
printf(n3\nn);
lwp-yield(THREADNULL);
printf(n5\n") ;

There are three ways to provide scheduling control of threads to the client. One
way is to do nothing and simply provide the client a pointer to a thread context
which can be scheduled at will. This method suffers from the fact that most
clients don't want to be bothered by constructing their own scheduler from
scratch. Another way to do it is to provide a single scheduling policy, with very
little client control over what runs next. The UNIX system provides such a pol­
icy. While this is the simplest (from the point of view of the client) way to go, it
makes it difficult to implement policies that take into account the differing
response time needs of client threads. We chose to take a middle ground in an
effort to avoid these problems. There is a default scheduling policy, but enough
primitives are provided that it is possible to construct a wide variety of schedul­
ing policies based on it.

It is possible to custom-build your own scheduler by using the primitives
lwp_suspend(},lwp_yield(},lwp_resurne(},lwp_setpri(},and
lwp_resched (). lwp_suspend () may also be used in debugging, to
ensure that a thread is stopped before inspecting it. Here, we give an example of
how to build a round-robin time-sliced scheduler. The idea is to have a high
priority thread act as a scheduler, with the other threads at a lower priority. This
scheduler thread simply sleeps for the desired quantum. When the quantum
expires, the scheduler issues a lwp _ resched () command for the priority of
the scheduled threads. This causes a reshuffling of the run queue at that priority.

#include <lwp/lwp.h>
#include <lwp/stackdep.h>

Revision A of 27 March 1990

Special Context Switching

Chapter 2 - Lightweight Processes 23

*define MAXPRIO 10
main (argc, argv)

int argc;
char **argv;

int scheduler(), task(), i;
(void)pod_setmaxpri(MAXPRIO);
lwp_setstkcache(1000, 5);
(void) lwp_create«thread_t *)0, scheduler, MAXPRIO, 0,

lwp_newstk(), 0);
for (i = 0; i < 3; i++)

(void) lwp_create«thread_t *)0, task, MINPRIO, 0,
lwp_newstk(), 1, i);

exit(O);

scheduler () {
struct timeval quantum;
quantum.tv sec = 0;
quantum.tv_usec = 10000;
for (; ;) {

lwp_sleep(&quantum) ;
lwp_resched(MINPRIO) ;

/ * these tasks are scheduled round-robin, preemptive * /
task (arg) {

for(;;)
printf("task %d\n", arg);

A thread can pretend to be the only activity executing on its machine even
though many threads are running. The L WP library is the entity that provides
this illusion. As such, the L WP library provides for context switches between
threads which cause volatile machine resources to be multiplexed so that each
thread operates with its own set of machine resources. In many cases, a context
switch requires only that machine registers and the stack be multiplexed. In
other cases, floating point state, memory management registers, and even
software state may be multiplexed as well. The L WP library allows threads to
have differing amounts of switchable state to efficiently allow processes with dif­
ferent resource needs to coexist.

In addition to switchable state, a thread will possess state that is updated by other
primitives. This per-thread state includes such information as messages sent to a
thread, and monitor locks it holds. The only per-thread state maintained by the
library is that used to support the L WP primitives, whereas heavyweight
processes entail a considerable amount of per-process state. With threads, this
amount of state is much smaller with the intent that only those threads which
need to should maintain additional state. Thus, operating-system-specific infor­
mation such as signal state, accounting infonnation, and file descriptors is not

Revision A of 21 March 1990

24 Programming Utilities and Libraries

found in the thread context. It is up to the clients to provide as much "weight"
as is required.

The reason that special contexts are not directly incorporated into the context of a
thread is that not all threads will use these contexts and there is no reason to
make a thread pay for something it won't use. The LWP library will allocate a
new context buffer for each special context a thread is initialized with, and pass a
pointer to this context to the save and restore routines defined for this context.
The id of the previous and new threads to use the context are also passed in, in
case the save and restore routines maintain per-thread infonnation about a special
context. This infonnation could be used, for example, by a memory­
management special context to avoid doing work if the previous and current
threads access the exact same memory management registers.

To use the special context mechanism, you first define a special context with the
lwp_ctxset () primitive. This requires that you figure out how to save and
restore the state required by your context and provide procedures to do this. In
the example below, which context-switches the C-library global errno, the rou­
tines _libc_save () and _libc_restore () are provided, and the con­
text they will save into and restore from is of type libc_ctxt_t. The routine
libcenable () is used to define the context, and the global LibcCtx
remembers the cookie that defines the context.

Once a special context is defined, you may initialize any thread to use the
resource multiplexed by the special context by using 1 wp _ ctxini t (). The
initialization of a given thread to use a special context can be done directly, or, if
the resource pennits, by catching a trap when the resource is first used by a
thread. In the example below, we expect that each thread accessing errno will
be initialized via libcset () to use the speciallibc context. Threads protected
with this special context can read errno without fear that another thread can
change errno (e.g., via a system call) from underneath them. Because this
er rno multiplexing is quite useful, it is available in the routine
lwp _libcset () which does all of the work for you.

*include <lwp/lwp.h>

*define TRUE 1

typedef struct libc ctxt t
int libc_errno;

} libc_ctxt_t;
static int LibcCtx;

/* enable libc special contexts */
libcenable ()
{

extern void __ libc_save();
extern void __ libc_restore();

LibcCtx = lwp_ctxset(__ libc_save, __ libc_restore,
sizeof (libc_ctxt_t), TRUE);

/* set a thread to have libc context */

Revision A of 27 March 1990

2.3. Messages

Messages vs. Monitors

Chapter 2 - Lightweight Processes 25

Iwp_Iibcset(tid)
thread_t tid;

(void) lwp_ctxinit(tid, LibcCtx);

/* routines for saving/restoring global library data. */
void
__ libc_save(cntxt, old, new)

caddr_t cntxt;
thread_t old;
thread_t new;

extern int errno;
#ifdef lint

old = old;
new = new;

#endif lint

«libc_ctxt_t *)cntxt)->libc_errno

void
__ libc_restore(cntxt, old, new)

caddr_t cntxt;
thread told;
thread_t new;

extern int errno;
#ifdef lint

old = old;
new = new;

#endif lint

errno;

errno = «libc_ctxt t *)cntxt)->libc_errno;

There are two predominant types of process synchronization in use today: the
rendezvous paradigm and the monitor paradigm. The lightweight process pack­
age provides both, in part to avoid denying a large number of people their favor­
ite primitives, and in part because each has compelling reasons.

Rendezvous has the advantages that it maps cleanly to Sun interprocess­
communications facilities (Sun RPC), can potentially support communication
across different address spaces, is higher-level than monitors because both data
transmission and synchronization are combined into a single concept, and is a
natural way to map asynchronous events into higher-level abstractions since mes­
sages are reliable and conditions are not.

Revision A of 27 March 1990

26 Programming Utilities and Libraries

Rendezvous Semantics

Messages and Threads

The big advantage with monitors are their familiarity to UNIX system program­
mers (via similarity to sleep () and wakeup () in the kernel), and the
efficiency win when protected data is accessed: with rendezvous, a context
switch is always required; with monitors, a context switch is only necessary if the
monitor lock is busy at the time of access.

To use messages, one thread issues a msg_ send () and another thread issues a
ms g_ re cv (). Whichever thread gets to the corresponding primitive first waits
for the other, hence the tenn rendezvous. When the rendezvous takes place, the
sender remains blocked until the receiver decides to issue a msg_ reply () .
Immediately after msg_reply () returns, both threads are unblocked.

It is the responsibility of the sender to provide the buffer space both for a mes­
sage to be sent to the receiver, and for a reply message from the receiver. Either
of these messages may be empty. While the sender is blocked, the receiver has
access to the buffers provided by the sender. When the receiver replies, she is
undertaking not to use these buffers any more: the transaction is complete. If
memory management was used to share address spaces, the sender's buffers
would be mapped into the receiver's address space only for the duration of the
rendezvous. Because both send and receive buffers are provided by the sender,
there is no need for further synchronization to tell the receiver that her reply was
accepted by the sender.

Sometimes it is desired to perfonn a non-blocking send in which the sender does
not block on a send request. We did not provide this as a primitive because it is
easily implemented by using an additional thread to do the send.

Messages are sent to threads, and each thread has exactly one queue associated
with it to receive messages on. We could have provided message queues (ports)
as objects not bound to processes. This would give more flexibility, but would
require a more complex selection primitive to really justify the extra functional­
ity. In addition, it would complicate the implementation because we desire to
tenninate a rendezvous on behalf of the remaining thread should one of the ren­
dezvousing threads be destroyed.

To receive a rendezvous request, a process specifies the identity of the sending
thread it wishes to rendezvous with. Optionally, a receiver may specify that any
sender will do. There is no other fonn of selection available. If more power is
needed, the client can build server processes which act as intelligent ports capa­
ble of perfonning complex selection criteria. Note that the id of the sending
thread or agent is supplied to the receiver by the L WP library, so that it is not
possible to forge the identity of the sender.

Here is an example of basic message passing. main () creates two threads,
sender () and rece i ver (). Because it has a higher priority, the receiver
starts first and blocks, awaiting a rendezvous. Then, the sender runs and prepares
a message. However, the sender sleeps for 2 seconds before sending it. In this
time, the receiver gave up waiting and tried again, now waiting with infinite pati­
ence. The sender wakes up a second later and attempts to rendezvous with the
receiver. This rendezvous immediately succeeds, the receiver reads the message,
prepares a reply, and replies. At this point, the rendezvous is complete and both

sun Revision A of 27 March 1990
microsystems

Chapter 2 - Lightweight Processes 27

sender and receiver are runnable processes. Because the receiver has a higher
priority, the message "done receiving" is printed ahead of the "got reply" mes­
sage. Note that the receiver should not touch any of the data mentioned in the
send once the reply has been made.

*include <lwp/lwp.h>
*include <lwp/stackdep.h>
*include <lwp/lwperror.h>
*define MAXPRIO 10

thread_t c1, c2;

main (argc, argv)
int argc;
char **argv;

int sender(), receiver();

(void)pod_setmaxpri(MAXPRIO);
lwp_setstkcache(1000, 3);
lwp_create(&c1, sender, MINPRIO, 0, lwp_newstk(), 0);
lwp_create(&c2, receiver, MINPRIO+1, 0,

lwp_newstk(), 0);
exit(O);

sender ()
char out[20];
char in[30];
int i;
struct timeval wait;

wait.tv_sec = 2;
wait.tv_usec = 0;

for (i = 0; i < 19; i++)
out[i] = (int)'A' + i;

out[19] = '\0';
lwp_sleep(&wait) ;
if (msg_send(c2, out, 20, in, 26) -1)

lwp yerror ("msg_send") ;
return;

printf("got reply %s\n", in);

receiver ()
int i;
struct timeval wait;
char *arg, *res;
int asz, rsz;
thread_t sender;

wait. tv_sec = 1;
wait.tv_usec = 0;

/ * try one second * /

sun
microsystems

Revision A of 27 March 1990

28 Programming Utilities and Libraries

Intelligent Servers

sender = THREADNULL; / * take message from anyone * /
if (msg_recv(&sender, &arg, &asz, &res, &rsz, &wait)

== -1) {
if (lwp_geterr() != LE_TIMEOUT)

lwpyerror (nmsg_recvn) ;
return;

/ * waitforever or until message arrives from sender * /
if (msg_recv(&sender, &arg, &asz, &res, &rsz,

INFINITY) == -1) {
lwpyerror(nmsg_recv") ;
return;

printf(ngot message %s\nn, arg);
for (i = 0; i < rsz - 1; i++)

res[i] = (int}'B' + i;
res[rsz - 1] = '\0';
msg_reply(sender);
printf("done receiving\nn);

Because the reply can be done at any time, a receiver can receive a number of
messages before replying to them. This makes it possible to implement complex
servers. In the following example, processes send requests in a random order to a
server thread. The server serializes the requests and processes them in the order
associated with the request.

#include <lwp/lwp.h>
#include <lwp/stackdep.h>
thread t pt;

typedef struct port_msg {
int order;
char *msg;

port_msg;

#define MAXPRIO 10
main (argc, argv)

int argc;
char **argv;

int process();
int port () ;

(void)pod_setmaxpri(MAXPRIO) ;
lwp_setstkcache(1000, 3);

/ * argument to new thread is order # * /
lwp_create«thread_t *)0, process, MINPRIO, 0,

lwp_newstk(), 1, 3);
lwp_create«thread_t *)0, process, MINPRIO, 0,

sun Revision A of 27 March 1990
microsystems

2.4. Agents

Chapter 2 - Lightweight Processes 29

lwp_newstk(), 1, 0);
lwp_create«thread_t *)0, process, MINPRIO, 0,

lwp_newstk(), 1, 2);
lwp_create«thread_t *)0, process, MINPRIO, 0,

lwp_newstk(), 1, 1);
lwp_create(&pt, port, MAXPRIO, 0, lwp_newstk(), 0);
exit(O);

process (id)
int id;

1*

port_msg m;
char buf[10];

m.order = id;
m.msg = buf;
printf("sending %d\n", id);
msg_send(pt, (char *)&m, sizeof(port_msg), 0, 0);
printf("%d replied to\n", id);

* collect messages in any order, process them in order
*1
port ()
{

thread_t sender;
char *arg;
int asz;
port_msg *request;
thread t senders[4];
int i;

for(i = .0; i < 4; i++)
/ * convenient way to receive from any sender * /
MSG_RECVALL(&sender, &arg, &asz, 0, 0, INFINITY);
request = (port_msg *)arg;
printf("got %d\n", request->order);
senders [request->order] = sender;

for (i = 0; i < 4; i++) {
msg_reply(senders[i]);

Some environments will present asynchronous interrupts to the client. For exam­
ple, on a bare machine, a character typed at a tty can cause an interrupt to ran­
domly steal control away from the executing program. Similarly, a signal can
interrupt the current thread. Because of the random nature of interrupts, it is hard
to understand programs that deal with them. The lightweight process library pro­
vides a simple way to transfonn asynchronous events into synchronous ones.

Revision A of 27 March 1990

30 Programming Utilities and Libraries

System Calls

Non-blocking I/O Library

A message paradigm (as opposed to a monitor paradigm) was chosen for map­
ping interrupts because an interrupt cannot wait for a monitor lock if held by a
client. Even if condition variables are used outside of a monitor, it is still neces­
sary to add memory to the condition variable to prevent races (just before the
client decides to sleep, an interrupt comes in, causing a condition to be notified,
which is missed by the client, who then sleeps, resulting in deadlock). Adding a
flag to a condition to prevent this is analogous to converting the condition into a
I-bit message.

With asynchronous interrupts, an event causes a sort of context switch within the
same thread. With L WP's, a thread must synchronously rendezvous with an
interrupt. Thus, to have an event do something asynchronously, it is necessary to
use a separate thread to handle it To simulate typical UNIX signal handling, you
would create two threads: one thread to represent the main program, and another
thread at a higher priority to represent the signal handler. The latter thread would
have an agent set up to receive signals.

The agent mechanism is provided to map asynchronous events into messages to a
lightweight process. A message from an agent looks exactly like a message from
another thread. When you create an agent, you also provide a portion of the
pod's address space for the agent to store its message. You cannot receive the
next message from an agent until you reply to the current one. Because the LWP
scheduler is preemptive, when a signal is mapped into a message, it will cause
the highest priority thread blocked on the agent to run next. Client threads which
have agents can use all of the LWP library facilities (monitors, condition vari­
ables, messages) to synchronize with other threads.

The agent mechanism does its best to process signals as rapidly as possible.
Nonetheless, it is possible that events will be missed because the kernel does not
remember more than one signal occurring while a signal is being processed.
Furthennore, signals are not delivered for each occurrence of I/O. Therefore, a
thread which wakes up from a S I G 10 agent for example, should not sleep again
until read () on the descriptor fails, indicating that another SIGIO will be
delivered when more I/O is available.

When an interrupt arrives, the L WP library saves only volatile infonnation about
the interrupt, and wakes up any threads waiting on the agent. On a bare machine,
volatile information would include for example, the character typed in from atty.
Under SunOS, volatile information includes the state nonnally delivered to a sig­
nal handler as well as the identity of the thread running at the time of the event.
This volatile infonnation is passed as a message to the client thread.

A set of heavyweight processes can execute concurrently in the kernel. For
example, three heavyweight processes can concurrently initiate writes to the
same device. This is not the case for lightweight threads. Some relief can be
provided by marking descriptors asynchronous with fcntl (2). This allows
threads to block on SIGIO agents and only block on a system call when it is
likely to be immediately productive (Le., without blocking indefinitely).

Revision A of 27 March 1990

Using the Non-Blocking 10
Library

Chapter 2 - Lightweight Processes 31

Similarly, a thread can block on a SIGCHLD agent instead of blocking on a
wait (2) system call. However, there is no general solution to the problem of
having several threads execute system calls concurrently until the L WP primi­
tives are made available as true system calls operating on a shared set of descrip­
tors. The use of the non-blocking I/O library can help by automatically blocking
a thread attempting any I/O until such I/O is likely to succeed immediately. The
blocked thread will try the system call again automatically when a SIGIO event
occurs.

Here is an example of how to use the non-blocking 10 library. We have a pro­
cedure compute yi that runs at low priority, and a procedure reader that runs at
high priority. If we link this program without the non-blocking 10 library, the
reader will prevent the compute-bound thread from running since the read ()
system call blocks. However, if we link in the non-blocking 10 library, the
compute-bound procedure will execute until some 10 is made available (in this
case, by the user typing something at the terminal).

#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#define MAXPRIO 10

main (argc, argv)
int argc;
char **argv;

int reader();
thread_t tid;

pod_setmaxpri(MAXPRIO);
lwp_setstkcache(3000, 2);
lwp_create(&tid, reader, MAXPRIO, 0, lwp_newstk(), 0);
lwp_setpri(SELF, MINPRIO);
computeyi () ;
exit(O) ;

reader ()
{

char buf[256];
int cnt;

for (; ;) {
cnt = read(O, buf, 256);
buf[cnt] = 0;
printf("\ngot %s\n", buf);

computeyi ()
{

for (; ;) {
/ * compute pi to a zillion places * /

sun
microsystems

Revision A of 27 March 1990

32 Programming Utilities and Libraries

()

Here is another example of how to use the non-blocking I/O library. The first
program is a server which accepts requests over the wire. When a request
arrives, a thread is created to handle the request so that accepting and processing
the requests can proceed in parallel. The processing of the request consists in
sleeping for the amount of time specified in the request message. Note that if the
non-blocking I/O library is not linked in, the main program loop prevents any
(lower priority) request-processing threads from executing. 1 wp _ da t a s t k ()
is used to put the message on the stack of the newly-created thread. Thus, there
is no need to keep the message in main.

/*
* sleep server program.
*/

#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#include <lwp/lwperror.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <errno.h>

#define MYPORT 8889
#define MAXPRIO 10
#define BUFSIZE 10

struct message {
int timeout;
int msgsize;
char buf[BUFSIZE];

message;
extern int errno;

main ()
{

int s;
struct sockaddr_in addr;
int len = sizeof(struct sockaddr_in);
int fromlen;
int rlen;
void compute();
stkalign_t sp;
caddr_t loc;

if (pod_setmaxpri(MAXPRIO) < 0) {
lwpyerror("pod_setmaxpri n);

_exit(l);

if (lwp_setstkcache(5000, 5) < 0) {
lwpyerror("lwp_setstkcache");
_exit(l);

if «s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP» < 0)
{

Revision A of 27 March 1990

Chapter 2 - Lightweight Processes 33

perror("can't get socket");
_exit(l);

addr.sin_addr.s_addr = INADDR ANY;
addr.sin_family = AF_INET;
addr.sin-port = MYPORT;
if (bind(s, (struct sockaddr *)&addr, len) < 0) {

perror("bindn);
close(s) ;
_exit(l);

if (getsockname(s, (caddr_t)&addr, &len) != 0) {
perror("can't get name");
close(s);
_exit (1) ;

for (; ;) {
do {

fromlen = len;
rlen = recvfrom(s, (caddr_t)&message,

sizeof(struct message), 0,
&addr, &fromlen);

while «rlen == -1) && (errno == EINTR»;
if (rlen == -1) {

perror(nrecvfromn);
_exit (1) ;

sp = lwp_datastk(message.buf,
message.msgsize, &loc);

lwp_create«thread_t *)0, compute, MINPRIO,
0, sp, 2, message.timeout, loc);

exit(O);

void
compute(timeout, msg)

int timeout;
char *msg;

struct timeval time;
time.tv_sec = timeout;
time.tv_usec = 0;

printf(n%s\nn, msg);
lwp_sleep(&time);
printf(n%s slept %d secs\n", msg, timeout);

/*
* program to send a message to the sleep-server.
* usage: sip <servername> <timeout in seconds> <message>
*/

#include <sys/types.h>
#include <netinet/in.h>

sun
microsystems

Revision A of 27 March 1990

34 Programming Utilities and Libraries

*include <sys/socket.h>
*include <netdb.h>
*include <errno.h>

*define MYPORT 8889
*define BUFSIZE 10

struct mess sage
int timeout;
int msgsize;
char buf[BUFSIZE]i

message;

extern int errno;

main (argc, argv)
int argc;
char **argv;

int s;
struct sockaddr_in addr;
int len = sizeof(struct sockaddr_in);
int err;
struct hostent *hPi
char *server;

if (argc ! = 4)

printf(nusage: %s server seconds message\n",
argv[O]);

exit(2);

server = argv[l];
message.timeout = atoi(argv[2]);
message.msgsize = strlen(argv[3]) + 1;
bcopy(argv[3], message.buf, message.msgsize);
if «hp = gethostbyname(server» == 0) {

printf(ncan't get host name\nn);
exit(l);

bcopy(hp->h_addr, &addr.sin_addr, hp->h_length);
addr.sin_family = AF_INET;
addr.sin-port = MYPORT;

if «s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP» < 0)
{

do

perror(ncan't get socket n);
exit(l);

err = sendto(s, (caddr_t)&message,
sizeof(message), 0, &addr, len);

while «err == -1) && (errno == EINTR»;
if (err == -1) {

perror(nsendto");
exit(l);

sun Revision A of 27 March 1990
microsystems

Chapter 2 - Lightweight Processes 35

[

exit(O); J

---~ ----------"
A final example of the non-blocking I/O library illustrates how the wait (2)

system call can be used. Here, the parent process forks two children. The chil­
dren do something (in this case, they just sleep) and tenninate with an exit status.
The parent would like to reap the children, but does not want to block in the pro­
cess. The solution is to link in the non-blocking I/O library which lets the parent
block without stopping other threads. Behind the scenes, a SIGCHLD agent
thread is watching for tenninating processes. If the non-blocking I/O library is
not linked in, the wait will succeed, but the otherwork thread will not get a
chance to run. Note that threads using system calls remapped by the non­
blocking I/O library automatically receive the C-library special context, so errno
is not lost across context switches.

*include <lwp/lwp.h>
*include <lwp/lwpmachdep.h>
*include <signal.h>

main ()
{

int child;
union wait stat;
void otherwork();

(void)pod_setmaxpri(10);
(void) lwp_setstkcache (1000, 2);
(void)lwp_create«thread_t *)0, otherwork,

MINPRIO, 0, lwp_newstk(), 0);
if (for k () == 0) {

sleep(S);
_exit(7);

else if (fork () 0) {
sleep(3);
_exit(S);

for (ii) { /* reapchildren */
child = wait(&stat);
printf("%d got %d\n", child, stat.w_retcode);
if (child == -1) {

exit(O);

void
otherwork ()
{

perror ("wait ") i
break;

struct timeval time;
time.tv sec = 2;

sun
microsystems

Revision A of 27 March 1990

36 Progranuning Utilities and Libraries

Examples of Agents

time.tv_usec = 0;
for (; ;) {

printf("otherwork here\n");
lwp_sleep(&time) ;

We present two examples of agent use below. The first example shows how a
traditional UNIX signal handler can be emulated. Note the use of monitors to
protect access to shared state. The second example shows the use of a SIGIO
agent.

/* Example of the UNIX system style of signal handling */
*include <lwp/lwp.h>
#include <lwp/stackdep.h>
*include <signal.h>

#define MAXPRIO 10
mon_t mid;
int shared_state;

main (argc, argv)
int argc;
char **argv;

int sigint_catch();
int task();
int task1();

(void)pod_setmaxpri(MAXPRIO);
Iwp_setstkcache(3000, 3);
mon_create(&mid);
(void) lwp_create«thread_t *)0, sigint_catch, MAXPRIO,

0, lwp_newstk(), 0);

/*
* the signal handler will preempt the main program
* so we give it the higher priority
*/

Iwp_setpri(SELF, MINPRIO);
fore;;) {

/* do other work */;
mon_enter (mid) ;
/* access shared_state */
mon _ exi t (mid) ;

exit(O);

sigint_catch ()
{

event info t sigmem;
char *arg;

Revision A of 27 March 1990

Chapter 2 - Lightweight Processes 37

int asz;
thread t sender;

agt_create(&sender, SIGINT, (char *)&sigmem);
for (; ;) {

(void) msg_recv(&sender, &arg, &asz,
0, 0, INFINITY);

(void) msg_reply(sender);
printf("got AC\n");
mon_enter (mid) ;
/* access shared_state */
mon_exit (mid) ;

/* Example showing how to process SIGIO */

/*
* Some points about this code:
* 1. because the system call could be interrupted, we
* check for EINTR. In order that errno is accurate, we
* make sigio_catch a libc thread (else, it may be lost
* on a context switch) .

*
* 2. We reset stdin before returning so the shell won't
* get confused. (It would otherwise get EWQULDBLOCK
* trying to read stdin, and bomb out with an error) .
*/

#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#include <signal.h>
#include <fcntl.h>
#include <errno.h>
#define TRUE 1
#define MAXPRIO 10

main (argc, argv)
int argc;
char **argv;

int sigio_catch();
thread_t tid;

(void)pod_setmaxpri(MAXPRIO);
lwp_setstkcache(3000, 3);
lwp_create(&tid, sigio_catch, MAXPRIO,

0, lwp_newstk(), 0);
lwp_libcset(tid);
lwp_setpri(SELF, MINPRIO);
/* do main's work */

sigio_catch ()
{

int cnt;

sun
mlcrosystems

Revision A of 27 March 1990

38 Programming Utilities and Libraries

/*

char buf[256];
int fd = 0; /* stdin */
extern int errno;
int emask, rmask, wmask;
eventinfo_t agtmemory;
thread_t sender;
char *arg;
int asz;
int inputbits 01 « fd;

/*
* Enable SIGIO on stdin. When we actually read, it
* may still return EWOULDBLOCK (SIGINT before SIGIO
* delivered flushes input leaving nothing to read),
* so need to read again.
*/

fcntl(fd, F_SETFL, FASYNCIFNDELAY);
rmask = inputbits;
emask = wmask = 0;
agt_create(&sender, SIGIO, &agtmemory);

for (; ;)

/*
* block pending notification that reading would
* be useful meanwhile, main can get work done.
*/

(void) msg_recv(&sender, &arg, &asz,
0, 0, INFINITY);

(void) msg_reply(sender);
select (32, &rmask, &wmask, &emask,

(struct timevel *)0);
if (rmask & inputbits) {

cnt = read(fd, buf, 256);
if (cnt != -1 II errno != EWOULDBLOCK II

errno != EINTR)
break;

buf[cnt] = 0;
printf("\ngot %s\n", buf);
fcntl(fd, F_SETFL, 0); /* reset stdin so no

shell confusion */

* To do simple signal handling within main,
* we could just write:
*/

main (argc, argv)
int argc;
char **argv;

int cnt;
char buf[256];

sun
microsystems

Revision A of 27 March 1990

2.5. Monitors and
Conditions

Chapter 2 - Lightweight Processes 39

int fd = 0; /* stdin */
extern int errno;
int emask, rmask, wmask;
eventinfo_t agtmemory;
thread_t sender;
char *arg;
int asz;
int inputbits = 01 « fd;

(void)pod_setmaxpri(l);
fcntl(fd, F_SETFL, FASYNCIFNDELAY);
rmask = inputbits;
emask = wmask = 0;
agt_create(&sender, SIGIO, &agtmemory);

for (; ;) {
(void) msg_recv(&sender, &arg, &asz,

0, 0, INFINITY);
(void) msg_reply(sender);
select (32, &rmask, &w.mask, &emask,

(struct timeval *)0);
if (rmask & inputbits) {

cnt = read(fd, buf, 256);
if (cnt != -1 I I errno != EWOULDBLOCK I I

errno != EINTR)
break;

buf[cnt] = 0;
printf("\ngot %s\n", buf);
fcntl(fd, F_SETFL, 0);
exit (0) ;

The monitor-condition variable paradigm is a familiar one to kernel programmers
because of the analogue to sleep () and wakeup () in the UNIX system ker­
nel.

A monitor implements a critical section. This is a reentrant region of code in
which access is serialized. As a result, shared data accessed by this code is pro­
tected against races that can lead to incorrect interpretations of the data. Once a
thread is executing within a monitor, other threads block until that monitor is
exited. When thread priorities are equal, they are queued first-come-first-served
for access to the monitor. This ensures fair, serial access to the protected data.

As an example, a producer and consumer thread may use a monitor to protect
access to a buffer of data being produced or consumed (so that the state of the
buffer's "fullness" is consistent). When the producer has filled the buffer, it
must wait for the consumer to drain the buffer. This sort of synchronization is
provided by condition variables. When a thread waits on a condition, it atomi­
cally gives up the monitor and blocks pending a notification. The result of the
notification is that the blocked thread will eventually reacquire the monitor in

Revision A of 27 March 1990

40 Programming Utilities and Libraries

Monitors vs. Interrupt
Masking

Programming with Monitors

order to attempt access to the buffer again.

One goal of lightweight processes is to avoid the use of sigsetmask' s or other
primitives which lock out interrupts to prevent races. By using monitors as a
synchronization tool, and by using threads with agents to handle interrupts, the
use of interrupt masking can be eliminated, and the risk of dropping interrupts
reduced.

Within the L WP library itself, most critical sections are implemented by disa­
bling the scheduler (and not by disabling interrupts) for the duration of the criti­
cal section. If an interrupt arrives during a critical section, it is processed only to
the point of saving the volatile interrupt state. At the end of a critical section, if
there are any accumulated events, scheduling decisions are made based upon the
agents associated with the events. Interrupts are only masked to ensure that a)
the nugget stack is not grown indefinitely by repeated interrupts and b) as a
thread is being resumed, to ensure that the new context is loaded atomically.
Thus, interrupts are only disabled as a consequence of an interrupt occurring, and
never preventively.

Typically, there is some state associated with a condition. When the state
acquires a given value, a thread can take some action. Otherwise, it will wait
until the state changes. For example, if a buffer is full, a thread writing to the
buffer will wait until the state of the buffer indicates that it is no longer full.
Another thread reading from the buffer will cooperate by notifying any such
waiting thread when the buffer is no longer full. Because the buffer state is
accessed by several threads, it is protected by a monitor. Otherwise, a thread
could decide to wait for a state change, only to have the state change before the
wait can be executed, resulting in deadlock. Therefore, both the waiter and the
notifier must access the state in a monitor, and the wait primitive (cv _ wai t)
must atomically release the monitor. The typical wait code looks like this:

man_enter (m) ;

while (! state)
cv_wait(cv);

The while loop is there because if there are several threads waiting in the monitor
when the condition is broadcast, all of them wake up, but the first thread to gain
entry to the monitor may alter the state, invalidating it for the other awakened
threads. In our current example, if two producers are awakened because the
buffer is no longer full, the first one may fill the buffer again and wait, leaving
the second one to run. The second producer must not add to the buffer now,
because it is full again.

Some subtle points about thread scheduling priority should be mentioned. Note
that threads queue for monitors and conditions based upon thread priority. No
context switch necessarily takes place when a monitor is exited. Thus, a monitor
that is repeatedly reentered by a high-priority thread can starve other threads

Revision A of 27 March 1990

Monitors and Events

Condition Variables

Enforcing the Monitor
Discipline

Chapter 2 - Lightweight Processes 41

wanting access to the monitor. Care should be taken in assigning priorities to
threads using monitors, since a low-priority thread which owns a monitor can
still prevent a higher priority thread from accessing that monitor. If a low­
priority thread owning a monitor is preempted, it may cause long delays to more
important threads needing monitor access.

Since events are processed by threads, state manipulated by a thread receiving
agent messages can be protected by monitors and condition variables. Thus,
after receiving an agent message, a thread may enter a monitor before accessing
some global state. Since the L WP library has a large memory for events, no
events should be lost if this thread has to block for access to the monitor.

cv _broadcast () awakens all threads blocked on a condition.
cv _notify () awakens only a single thread blocked on a condition.
cv _not if y () can result in deadlock states if the awakened thread is not the
particular one that should notice a state change and should only be used when it
is known that a single other thread is involved. cv _notify () is available
because it is more efficient to awaken only a single thread. Note that an awak­
ened thread will be queued to reacquire the monitor. When the thread actually
resumes, it will own the monitor it released when it waited for the condition with
cv_wait ().

Because it is both confusing to the programmer and expensive to implement, no
provision for a condition to be shared by several monitors is made. Instead, con­
dition variables are bound to a monitor when they are created. It would be possi­
ble to let them be bound when the condition is waited upon, but it would allow
the very improbable case of having a waiter awaken in a state testing loop, only
to find that his condition was reassigned.

man_destroy () will remove any conditions bound to the monitor being
removed. Ifmon _destroy () fails because some threads are still waiting on
an associated condition, you can use cv _ wai ter s () to see which threads are
blocked on conditions associated with the monitor, followed by
1 wp _de s t roy () to teIDlinate the blocked threads. After the offending threads
are terminated, man_destroy () should succeed.

Because a thread which forgets to exit a monitor may deadlock the system, it is
convenient to use the exception handler mechanism to enforce the enter-exit dis­
cipline. The MONITOR () macro enforces this discipline by ensuring that
m~n _ exi t () is called when the procedure that embodies the monitor exits. (It
is good form to use a single procedure to contain a monitor, viz:)

faa () {
MONITOR (m) ;

This method ensures that no matter how the procedure is exited (barring
longjmp()), the monitor will be exited. That is, if the procedure raises an

Revision A of 27 March 1990

42 Programming Utilities and Libraries

Nested Monitors

Reentrant Monitors

Monitor Program Examples

exception or returns explicitly or implicitly, the monitor is freed.

When a thread blocks on a condition while holding several (nested) monitor
locks, all of the locks except the current one are held. This ensures that the
thread does not need to painfully reacquire all of its locks, with the concomitant
possibility of deadlock if not all of the locks remain available. If thread Tl holds
monitor Ml and wants to acquire monitor M2, and thread T2 holds monitor M2
and wants to acquire monitor Ml, deadlock results. One way to avoid this error
is to require that the monitors are always acquired in a certain order.

When a monitor is used to protect a data structure, it may happen, for infonna­
tion hiding reasons, that two different procedures wish to use the same monitor.
It may also happen that one of those procedures wishes to use the facilities pro­
vided by the other. If these procedures are accessed by the same thread the moni­
tor calls are reentrant. If you anticipate such use, you should program your mon­
itors as

if (mon_enter(m) < 0) {
error ("bad monitor");

However, if you wish to catch reentrant monitor use as an error, you should pro­
gram monitors as:

if (mon_enter(m) != 0) {
error("reentrant monitor");

The following is a simple example of monitor use. As described above, we have
a producer and a consumer thread, synchronizing with condition variables. To
spice it up a bit, we've added some scheduling to make things more realistic.

*include <lwp/lwp.h>
*include <lwp/stackdep.h>

thread t c1, c2, sched;
mon_t m1;
cv_t notempty, notfull;
int cnt = 0;
int in = 0;
int out = 0;
*define MAXBUF 20
char buf[MAXBUF];
*define MAXPRIO 10

main (argc, argv)
int argc;
char **argv;

Revision A of 27 March 1990

Chapter 2 - Lightweight Processes 43

int producer(), consumer();
int sch () ;

(void)pod_setmaxpri(MAXPRIO);
lwp_setstkcache(3000, 3);
lwp_create(&c1, producer, MINPRIO+1, 0,

lwp_newstk(), 0);
lwp_create(&c2, consumer, MINPRIO, 0,

lwp_newstk(), 0);
lwp_create(&sched, sch, MAXPRIO, 0, lwp_newstk(), 0);
mon_create (&rn1) ;
cv_create(¬empty, m1);
cv_create(¬full, m1);
exit(O);

put (c) /* add a character to the buffer */
char c;

MONITOR (m1) ;
while (cnt == MAXBUF) { /* buffer never> MAXBUF */

printf("waiting on notfull\n");
cv_wait(notfull);

buf[in] = Ci

in = (in + 1) % MAXBUFi
cnt++;
cv_broadcast(notempty); /* may be a no-op */

get (c)
char *c;

MONITOR (ml) ;
while (cnt == 0) { /* buffer never < 0 chars */

printf("waiting on notempty\n");
cv_wait(notempty);

*c = buf[out]i
out = (out + 1) % MAXBUFi
cnt--;
cv_broadcast(notfull)i

producer() {
char Ci

int i;
int j;

for(j = 0; j < 500; j++) {
c = "abcdefghijklrnnopqrstuvwxyzn[cnt]i
/* produce */
put(c);

printf(nproducer done\nn);

sun Revision A of 27 March 1990
microsystems

44 Programming Utilities and Libraries

2.6. Exceptions

consumer ()
{

char c;
int i;
int j;

for (j = 0; j < 500; j ++) {
get(&c);
/* consume the character */

printf("consumer done\n")i

sch ()
{

int k;
thread t X;
struct timeval wait;

x = c1;
wait.tv_sec = 0;
wait.tv_usec = 100000;

for(k = 0; k < 100; k++)
lwp_sleep(&wait);
lwp_setpri(x, MINPRIO);
if (x.thread_id c1.thread_id)

x c2;
else

x c1;
lwp_setpri(x, MINPRIO+1)i

The exception primitives can be used to manage synchronous exceptional condi­
tions in a lightweight process. There are no asynchronous exceptions supported
by threads because asynchrony can be managed completely with threads and
agents, and in a more well-structured fashion. For example, when parsing com­
mands and anticipating an interrupt from the keyboard, you can simply create a
thread to parse the command and a thread with an agent to catch the interrupt.
When the agent thread catches the interrupt it can simply destroy the parsing
thread. This is more elegant than doing a longjrnp () from a signal handler
when an interrupt occurs.

There are several aspects of exceptions. First, you can use exit_handlers to be
invoked automatically any time a procedure exits. Second, you can provide an
exception handler which assumes control anywhere back on the procedure calling
chain (escape exceptions). Third, you can provide an exception handler which is
invoked at the time of an exception and leaves the flow of control alone when it
returns (notification exceptions). Finally, you can map machine faults (synchro­
nous traps) into exceptions. An exception is an event caused by the explicit (or
implicit, in the case of synchronous traps) invocation of exc _raise () .

Revision A of 27 March 1990

Synchronous Traps

Implementation

Chapter 2 - Lightweight Processes 45

When a procedure can exit via a large number of ret urn statements or excep­
tion raises, it is difficult to monitor the flow of control. Thus, exit handlers can
be established by exc _on _ exi t () to ensure that a particular action is taken on
procedure exit, no matter how the procedure exits. For this reason, no primitive
to remove an exit handler is provided, because this provides a way to defeat the
whole purpose of exit handlers.

setjrnp () and longjmp () support non-local gotos, but do not give the pro­
grammer a disciplined way to invoke them. Pattern-directed handler invocation
gives the client an opportunity to establish a set of handlers which are matched
by particular patterns. For example, an exception in a memory allocation routine
can be raised in such a way that a particular handler (say, a garbage collector) can
be explicitly invoked by using a well-known pattern. The CATCHALL pattern
can be used by a thread either to implement more general sorts of pattern match­
ing (by handling those patterns it wants and discarding those patterns it is not
interested in and reraising the exception), or to catch exceptions which must
always be caught (e.g., a routine which normally allocates some memory per­
manently and returns should free the memory if an exception occurs).

exc _notify () is provided for those exceptions which require an action to be
executed on behalf of the exception handler and control to be returned to the
raiser of the exception. The handler of a notify exception establishes a function,
as well as an argument which can refer to an execution-time environment. By
providing a null function, a handler can indicate that only escape exceptions
(invoked by exc_raiseO) are to be used.

Exception handling is useful for assisting disciplined use of lightweight process
primitives. The MONITOR () macro is one example. Another is the fork ()
example discussed in the next section.

Some events are completely synchronous, such as division by zero faults. For
such events, it is not logical to allocate a separate thread, since threads are
intended to handle asynchronous events. In the lightweight process world, syn­
chronous events appear to be exceptions. Use a gt _ t rap () to enable excep­
tion mapping for a given event. Note that unhandled exceptions cause termina­
tion of the offending thread.

One possible way to implement an exception mechanism at the language level
would be to use a L WP special context to contain a pointer to the current excep­
tion handler for each thread. Using this context, it would be possible to search
backwards on the exception chain looking for pattern matches.

Rather than require the client to explicitly pass in a context variable to be used to
save and restore exception context, the L WP implementation allocates the con­
text automatically. This is less efficient because by using local variables as con­
texts, allocation and freeing of the context are free. However, in addition to the
more pleasant interface, there are several advantages to the implicit allocation
strategy. Because the stack is reset when an exit handler runs, there is no room
for local variables to be used by the library code that implements exit handlers
(note that the exit handler can make procedure calls of undetermined depth!).
This is especially problematic when several exit handlers have been established.

Revision A of 27 March 1990

46 Programming Utilities and Libraries

Example of Exception
Handling

Also, if the system being used can't take interrupts on a separate stack, a fair
amount of interrupt masking may be required to protect the stack once it is reset.

Exception handling is really a language issue. However, since synchronous traps
may be mapped into exceptions, the L WP library itself must be able to access the
exception contexts. Thus, the exception handling facility is part of the L WP
library and not a separate language facility. In the future, a more flexible inter­
face to agt _ tr ap () may be provided so languages can provide their own style
of exception handling.

In the following example, we use the exception handling mechanisms to facili­
tate a garbage collector. In the event that a resource is exhausted, the client
attempts to correct things by notifying the garbage collector. If the next attempt
to obtain the resource fails, the client gives up by raising an exception. As an
exercise, pretend that the client had resources that needed to be freed as a result
of the fatal exception. Use CATCHALL handlers to allow procedures higher up
the calling chain to free the resources they allocated.

#include <lwp/lwp.h>
#include <lwp/stackdep.h>

#define ATTRIBUTE 9
#define FATAL 7
#define MAXPRIO 10

main (argc, argv)
char **argv;

int task();

(void)pod_setmaxpri(MAXPRIO);
lwp_setstkcache(1000, 3);
(void) lwp_create((thread_t *)0, task, MINPRIO, 0,

lwp_newstk(), 0);
exit(O);

task ()
{

int garb_collect();

/ * establish garbage collector for AITRIBUTE-type resources * /
(void) exc_handle(ATTRIBUTE, garb_collect, ATTRIBUTE);

/ * establish handler for unrecoverable errors * /
if (exc_handle(FATAL, 0, 0) == 0)

someprocedure();
else

abort () ;

someprocedure ()
{

char *r;
char *getresource();

sun
mlcrosystems

Revision A of 27 March 1990

2.7. Big Example

Chapter 2 - Lightweight Processes 47

r = getresource(ATTRIBUTE);
/ * use resource * /

char *
getresource(attribute)

int attribute;

int (*f)();
char *resource;
char *obtain();

resource = obtain(attribute);
if (resource == 0) {

(void) exc_notify(attribute);
resource = obtain(attribute);
if (resource == 0)

exc_raise(FATAL);

return(resource);

garb_collect (atr)
int atr;

/*
* garbage collect resource o/type atr such that
* obtain might succeed if tried again.
*/

char *
obtain (atr)

int atr;

/*
* try to allocate resource of type at r
* return 0 if unable to get the resource.
*/

/ * try to get resource * /
/ * couldn't get it * /
/ * garbage collect * /
/* try again * /
/ * still couldn't get it * /
/* give up * /

This example illustrates many of the L WP features: exit handlers, monitors, con­
dition variables, messages, threads. It is a parallel binary tree fringe comparator.
Given two binary trees Tl and T2, they have the same fringe if and only if their
leaf nodes are equivalent when read left to right.

Part of the program relies on a fork () and join () mechanism. The idea is
that a thread may wish to start some threads and wait for n of them to tenninate.
(To wait for one specific thread to die, use lwp -.Join.) Thus, a program could
look like:

Revision A of 27 March 1990

48 Programming Utilities and Libraries

proc () {

tfork(threadl);
tfork(thread2);
tfork(thread3);
join (2) ; / * wait for any 2 forked threads to die * /
... ,
join(l); / * wait for last thread to die * /

To make this work, we have t f or k () create its thread via an intennediary
which uses an exit handler (see exc _ on_ exi t(3L)) to ensure that the thread
calls die () when it tenninates. die () will keep track of the number ofter­
minated threads. Since a tfork () 'ed thread may be destroyed by another
thread, lwp_destroy () should be encapsulated by a procedure that calls
di e () as well. This is an illustration of how the exception handling facility can
be used to create new protocols (enforced exit actions, for example).

The program begins by declaring two trees (which don't, in this case, have the
same fringe). Then, we create three threads: one thread to evaluate each tree, and
one thread to compare leaf values and serve as an infonnation exchanger. The
two tree evaluators proceed in parallel, sending a message to the comparator con­
taining the leaf value when a leaf is encountered. When the comparator finds a
mismatch, it tenninates the tree evaluators. When the main program joins suc­
cessfully, the two evaluators are dead. It then sends a message to the comparator
to find out what the results were.

The tree evaluators are simple: they merely recurse down their subtree, pausing
to tell the comparator when a leaf is encountered. The comparator is fairly com­
plex. It first receives a message from either of the two tree evaluators (which,
after all, are running in parallel. As an exercise, add preemptive round-robin
scheduling to this program!). Then, it waits for a message from the other tree
evaluator (else, it could get another value from the same tree evaluator). If the
answers disagree, the comparator tenninates the evaluators to prevent further
(useless and confusing) messages from being sent. Finally, because the two trees
being compared may be structurally quite different, one evaluator may finish
while the other remains active. As a result, the comparator could do a
msg_recv () on a non-existent thread. Therefore, we check this condition by
noting ifmsg_recv () fails. Just to show that it's possible, this program lints
when Hnted with the LWP lint library!

#include <lwp/lwp.h>
#include <lwp/stackdep.h>
#include <lwp/lwperror.h>
#define NULL 0
thread_t cmp, pl, p2;
thread_t driver;
int tfork();
cv_t cv;
mon t mon;

Revision A of 27 March 1990

Chapter 2 - Lightweight Processes 49

int numdead = 0;
typedef struct tree_t

int val;
struct tree_t *left, *right;

tree_t;
#define TREENULL «tree_t *) 0)
#=define TRUE 1
#define FALSE 0
#define MAXPRIO 10

tree_t t1 [] = {
{ 0, &t1[1], &t1[2]},
{1, &t1 [3] , &t1[4]},
{4, TREENULL, TREENULL} ,
{1, TREENULL, TREENULL} ,
{3, TREENULL, &t1[5] },
{5, TREENULL, TREENULL} ,

} ;

tree_t t2 [] = {

} ;

{O, &t2 [1], &t2 [2]},
{1, TREENULL, TREENULL},
{2, &t2[3], &t2[4]},
{3, TREENULL, TREENULL},
{4, TREENULL, TREENULL},

main ()
{

int compare(), parsetree();
int answer;

if (pod_setmaxpri(MAXPRIO) == -1)
lwpyerror("setmaxpri");

(void)lwp_setstkcache(10000, 5) i

(void)lwp_self(&driver) ;
tfork(&cmp, compare, 0);
tfork (&p1, parsetree, (int) t1) ;
tfork (&p2, parsetree, (int) t2) ;
join(2);
(void)msg_send(cmp, (caddr_t)0, 0,

(caddr_t)&answer, sizeof (answer»;
if (answer)

(void) printf("same fringe\n");
else

(void) printf("not same fringe\n");
exit(O);

compare ()
{

int vall;
thread_t next;
thread_t sender;
int samefringe
int *resbufi

sun
mlcrosystems

TRUE;

Revision A of 27 March 1990

50 Programming Utilities and Libraries

int ressize;
int *argbuf;
int argsize;
int err;

for(;;) {
err = MSG_RECVALL(&Sender, (caddr_t *)&argbuf,

&argsize, (caddr_t *)&resbuf,
&ressize, INFINITY);

if (err < 0)

lwpyerror (nMSG_RECVALLn) ;
if (SAMETHREAD(sender, driver»

*resbuf = samefringe;
(void) msg_reply(driver);
return;

vall = *argbuf;
next = (SAMETHREAD(sender, pI) ? p2 : pI);
(void) msg_reply(sender);
err = msg_recv(&next, (caddr_t *)&argbuf,

&argsize, (caddr_t *)&resbuf,
&ressize, INFINITY);

if (err < 0) { /* hedied */
samefringe = FALSE;
destroy(sender);

else {
samefringe = (*argbuf vall);
if (!samefringe) {

parsetree(t)
tree_t *t;

destroy (pI) ;
destroy(p2);

else
(void)msg_reply(next);

if (t == TREENULL)
return;

if «t->left == TREENULL) && (t->right == TREENULL» {
/* leaf * /
(void)msg_send(cmp, (caddr_t)&t->val,

sizeof (int), (caddr_t)0, 0);
else {

parsetree(t->left);
parsetree(t->right);

tfork(new, adr, arg)
thread_t *new;
int (*adr) () ;
int arg;

sun
mlcrosystems

Revision A of 27 March 1990

Chapter 2 - Lightweight Processes 51

extern void prochelp();
static int init = 0;

if (init == 0) {

init = 1;
(void)mon_create(&mon);
(void) cv_create (&cv, mon);

(void)lwp_create(new, prochelp, MINPRIO, 0,
lwp_newstk(), 2, adr, arg);

void
prochelp(proc, arg)

int (*proc) () ;

extern void die();

(void)exc_on_exit(die, (caddr_t)O);
proc(arg);

void
die ()
{

MONITOR(mon);
numdead++;
(void)cv_notify(cv) ;

join (cnt)
{

MONITOR(mon);
while (numdead < cnt)

(void)cv_wait(cv);
numdead -= cnt;

/ * use this instead of lwp _destroy with tfork and join * /
destroy (pid)

thread t pid;

die () ;
(void)lwp_destroy(pid);

Revision A of 27 March 1990

52 Programming Utilities and Libraries

Revision A of 27 March 1990

3.1. IPC Facilities in the
SunOS Operating
System

File I/O and Pipes

State Files and File Locking

Named Pipes

3
System V Interprocess Communication

Facilities

Interprocess Communication involves sharing data between processes and, when
necessary, coordinating access to the shared data. Release 4.1 of the SunOS
operating system (referred to hereafter as "Release 4.1," or "4.1") provides a
number of facilities and mechanisms by which processes can communicate.

In the simplest case, processes can communicate by writing to and reading infor­
mation from files. Alternatively, a process may provide data for direct consump­
tion by another concurrent process using a pipe. Pipes employ the basic byte­
stream model used for file I/O.

A process may deposit context in a state file for use by a later invocation.
Processes that make use of state files can prevent multiple concurrent access (and
race conditions on writes), by using lock files to simulate semaphores. Before
attempting to open a state file for write access, a program can test for the
existence of a lock file, to detennine whether the desired file or device is avail­
able. A simple way to create a lock file is to use the open(2) system call with
the 0_ CREAT and 0_ EXCL, flags. When called in this way, open () creates the
lock file only if it does not already exist. If multiple processes both attempt to
get a lock at about the same time, only the first will succeed. The other processes
may be instructed to block (suspend execution) until such time as the lock file is
removed, or to exit with an appropriate error message.

Lock files are most useful when the lock is to persist through a reboot of the sys­
tem. A case in point is the pennissions file used by sees.

Additionally, the system provides library routines such as flock(3) and
lockf(3) for advisory or mandatory file locking. Locks placed with flock ()
are only visible to processes running on the local processor. Locks placed with
lockf () are visible to any process running on any processor with access to the
file. lockf () also provides record lOCking for fine-grained control over
updates to specific regions (strings of contiguous bytes) within a file.

Another facility that makes use of the file system for IPe is the System V named
pipe mechanism. A named pipe (also referred to as a FIFO) has an entry in the
file system, but otherwise behaves like an ordinary pipe. It allows one process to
provide output directly to another process through ordinary reads and writes to
the named device. Unlike ordinary pipes, when the processes terminate, the
named pipe remains available for use by other processes. (Refer to mknod(8) for

53 Revision A of 27 March 1990

54 Programming Utilities and Libraries

Networking Facilities

3.2. System V IPC
Facilities in Release 4.1

Relying on the native virtual
memory manager, in conjunction
with the nunap(2) system call, often
provides better performance for
shared access to read-only seg­
ments in memory.

Configuring System V IPC
Facilities

System V IPC Permissions

more infonnation.)

Named pipes suffer from all the limitations of regular pipes. For instance, the
sender is unknown to the process reading the pipe. Unfortunately, this allows
multiple processes to interleave output. Input from a named pipe should there­
fore be used with caution.

Release 4.1 supports two important facilities for networking and !PC in general.
They are: TLI (from System V) and sockets (from BSD). These facilities, which
both support the file I/O (byte stream) model, can be used for !PC on the local
host. They are often preferred when a service has both local and network clients.
For more infonnation about networking and general IPC facilities, refer to Net­
work Programming.

Release 4.1 provides the following System V facilities for memory-based !PC on
a local system:

o Messages

D Semaphores

D Shared Memory

These facilities allow local processes to share and process messages, to share
access to memory segments in a manner that is compatible with existing System
V applications, and to coordinate access to shared objects.

If the process that creates an !PC facility dies, the facility does not expire along
with it; an !PC facility must be removed explicitly. A shared memory segment
remains active, even after it has been flagged for removal, as long as it is attached
anywhere in the address space of any process. Only after the last attachment is
released, is the (detached) segment freed.

In order to use these facilities, they must be configured into your kernel. The
relevant configuration options are:

IPCMESSAGE for the System V Messages facility.

IPCSEMAPHORE
for the System V Semaphore facility.

IPCSHMEM for the System V Shared Memory facility.

For details on how to configure a kernel, refer to System and Network Adminis­
tration.

Pennissions for a System V !PC facility can be extended to users other than the
one for which the facility was created. The creating process identifies the default
owner. Unlike files, however, the creator can assign ownership of the facility to
another user; it can also revoke an ownership assignment. The current owner
process, in tum, can grant read or write access to still other users.

The definition for the !PC permissions data structure ipc _perm, is given in
<sys / ipc . h>, as shown below.

Revision A of 27 March 1990

Figure 3-1

Chapter 3 - System V Interprocess Communication Facilities 55

fPC Permissions Data Structure

struct ipcyerm
{

} i

ushort
ushort
ushort
ushort
ushort
ushort
key_t

uidi
gidi
cuid;
cgidi
mode;
seq;
key;

/* owner's user id */
/* owner's group id */
/* creator's user id */
/* creator's group id */
/* access modes */
/* slot usage sequence number */
/* key */

This structure is common to all System V IPC facilities. Permissions for an !PC
facility are initialized by the creating process, and can be modified by any pro­
cess that has permission to perform control operations on that facility. Permis­
sions are specified as octal values in the flags argument of the appropriate IPC
creation or control system call:

Figure 3-2 fPC Permission Modes

IPC System Calls, Key
Arguments, and Creation
Flags

Access Permissions Octal Value
Write by Owner 0200
Read by Owner 0400
R/WbyOwner 0600

Write by Group 0020
Read by Group 0040
R/WbyGroup 0060
Write by Others 0002
Read by Others 0004
R/W by Others 0006

For instance, if read access by the owner, and read/write by others is desired, the
permissions value would be 0406.

Multiple processes requesting access to a common !PC facility must have a
means for determining the identity of the desired facility. To that end, system
calls that initialize or provide access to an !PC facility make use of a key argu­
ment (of type key_t). This key is a value that is either known to all the pro­
grams, or preferably, one that can be derived from a common seed at run time.
The typical method for deriving a key is to use ftok(3) to convert a convenient
filename to a suitable value. The value derived is virtually unique within the sys­
tem. It can be used by all programs (processes) that attempt to obtain access to
the facility.

System calls that initialize or get access to a System V IPC facility return an ID
number (of type int). This ID is used by !PC system calls that perform read,
write and control operations, once the facility's ID has been acquired.

Revision A of 27 March 1990

56 Programming Utilities and Libraries

If the key argument is specified as IPC_PRIVATE (defined to be zero), the call
initializes a new instance of an IPC facility that is private to the creating process.

When the IPC_CREAT flag is supplied in the flags argument appropriate to the
call, the system call attempts to create the facility if it does not exist already.

When called with both IPC_CREAT and IPC_EXCL flags, the system call fails
if the facility already exists. This can be useful when more than one process may
attempt to initialize the facility. One such case might involve several server
processes having access to the same facility. If they all attempt to create the
facility with IPC _ EXCL in effect, only the first attempt succeeds.

If neither of these flags is given, and the facility already exists, the system calls
to get access simply return the ID of the facility. If IPC _ CREAT is omitted and
the facility is not already initialized, the calls fail.

These control flags are combined, using logical (bitwise) OR, with the octal per­
mission modes to fonn the flags argument. For example:

msqid msgget(ftok("/tmp", 'A'), (IPC_CREAT I IPC_EXCL I 0400));

System V IPC Configuration
Options

3.3. Messages

initializes a new message queue, but only if the queue does not exist already.
The first argument evaluates to a key based on the string; the second, the com­
bined pennissions and control flags.

A number of system configuration options* for data structures used by System V
!PC facilities can be adjusted in the system configuration file. Some of these
options set limits on the amount of resources avaliable to an !PC facility. Those
that affect specific system calls are discussed in the descriptions of those system
calls. For more infonnation about System V !PC configuration options, you may
wish to refer to System and Network Administration.

The System V messaging facility provides processes with a means to send and
receive messages, and to queue messages for processing in an arbitrary order.
Unlike the typical file byte-stream model of data flow (in sockets and TLI), Sys­
tem V messages each have an explicit length. More importantly, messages can
be assigned a specific type. Among other uses, this allows a server process to
direct message traffic between multiple clients on its queue (by using the PID of
the client process as the message type). For operations involving single-message
transactions, a server can balance the load between multiple server processes that
have access to the queue.

Before a process can send or receive a message, the queue must be initialized by
making an msgget(2) system call. The owner or creator of a queue can change
its ownership or pennissions using msgct 1(2). In addition, any process with
pennission to do so can use msgct 1 () to perfonn control operations.

Refer to con f ig(8) and Installing SrmOS 4.J for infonnation on how to configure a SunOS operating system
kernel.

+!!.!! Revision A of 27 March 1990

Structure of a Message Queue

Figure 3-3

Chapter 3 - System V Interprocess Comn,unication Facilities 57

Operations to send and receive messages are perfonned respectively by the
msgsnd () and msgrcv () system calls (see msgop(2)). When a message is
sent, its text is copied to the message queue.

msgsnd () and msgrcv () can be perfonned as either blocking, or non­
blocking operations. A blocked message operation remains suspended until one
of three conditions occurs:

D The call succeeds.

D The process receives a signal.

D The queue is removed.

A message queue is composed of a control structure with a unique ID, a linked
list of message headers, and a buffer in which to store the text of the message(s).
The identifier for the queue is referred to as the msqid.

Structure of a Message Queue

control

structure
header message

buffer

The control structure for the message queue contains the following information:

D A pennissions structure.

D A pointer to the first message on the queue.

D A pointer to the last message on the queue.

D The current number of bytes in the queue.

D The number of messages in the queue.

D The maximum number of bytes allowed in the queue.

D The process ID (pJD) of last message sender.

D The PID of last message receiver.

D The time the last message was sent.

D The time the last message was received.

Revision A of 27 March 1990

58 Programming Utilities and Libraries

Figure 3-4

struct msqid_ds

struct ipcyerm
struct msg
struct msg
ushort
ushort
ushort
ushort
ushort
time t
time t
time t

} ;

Figure 3-5

struct msg
{

D The time of the last change to the structure.

Each message header contains the following information:

D A pointer to the next message on the queue.

D The message type.

D The message text size.

D The message text address.

The message queue control structure is defined in the header file
<sys/msg. h>:

Message Queue Control Structure

msgyerm; /* access permission struct */
msg_first; / ptr to first message on q */
msg_last; / ptr to last message on q */
msg_cbytes; /* current "* bytes on q */
msg_qnum; /* "* of messages on q */
msg_qbytes; /* max "* of bytes on q */
msg_lspid; /* pid of last msgsnd */
msg_lrpid; /* pid of last msgrcv */
msg_stime; /* last msgsnd time */
msg_rtime; /* last msgrcv time */
msg_ctime; /* last change time */

Likewise, the definition for the message-header data structure is given as:

Message Header Structure

struct msg
long
short
short

*msg_next;
msg_type;
msg_ts;
msg_spot;

/* ptr to next message on q */
/* message type */
/* message text size */
/* message text map address */

} ;

Initializing a Message Queue
with ms gget ()

The InS gget () system call is used to initialize a new message queue. It can
also be used to return the message queue ID (msqid) of the existing queue that
corresponds to the key argument. When the call fails, it returns -1, and sets the
external variable errno to the appropriate error code. msgget () has the
synopsis shown below.

+~t!! Revision A of 27 March 1990

Figure 3-6

Figure 3-7

/*

Chapter 3 - System V Interprocess Communication Facilities 59

Synopsis ofmsgget ()

4f:include
4f:include
4f:include

<sys/types.h>
<sys/ipc.h>
<sys/msg.h>

int msgget(key, msgflg)
key_t keYi
int msgflgi

The value passed as the msgflg argument must be an octal integer, which
incorporates settings for the queue's permissions and control flags, as described
under System V [PC Permissions, above.

The MS GMNI kernel configuration option determines the maximum number of
unique message queues that the kernel will support. msgget () fails when this
limit is exceeded.

The following example is a simple exerciser to illustrate the msgget () system
call. The program begins by prompting for a key, an octal permissions code, and
finally, for your choice of control flags. It allows all possible combinations. If
msgget () fails, the program indicates that there was an error, and displays the
value of errno. Otherwise, it displays the message queue ID that the call
returned.

Sample Program to Illustrate rnsgget ()

** msgget.c: Illustrate the msgget() system call.
**
** This is a simple exerciser of the msgget() system call.
** It prompts for the arguments, makes the call, and reports the
** results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

extern void
extern void

main ()
{

exit () ;
perror () ;

key_tkey; /* key to be passed to msgget() */
int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, n\tOx ... is interpreted as hexadecimal,\n fl
);

(void) fprintf (stderr, "\to... is interpreted as octal, \nn);
(void) fprintf(stderr, n\totherwise, decimal.\nn);

(void) fprintf (stderr, "IPC_PRIVATE == %#lx\nn, IPC_PRIVATE);
(void) fprintf(stderr, nEnter desired key: n);

Revision A of 27 March 1990

60 Programming Utilities and Libraries

(void) scanf("%li", &key);

(void) fprintf(stderr, "\nExpected flags for msgflg argument are:\nn);
(void) fprintf(stderr, n\tIPC_EXCL =\t%#8.8o\nn, IPC_EXCL);
(void) fprintf(stderr, n\tIPC_CREAT =\t%#8.8o\nn, IPC_CREAT);
(void) fprintf(stderr, n\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, n\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, n\tgroup write =\t%#8.8o\n", 020);
(void) fprintf(stderr, n\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, n\tother write =\t%#8.8o\n", 02);
(void) fprintf(stderr, nEnter desired msgflg value: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, n\nmsgget: Calling msgget(%#lx, %#o)\n",
key, msgflg);

if ((msqid = msgget(key, msgflg)) == -1)

perror("msgget: msgget failed");
exit (1) ;

else {
(void) fprintf(stderr,

"msgget: msgget succeeded: msqid = %d\n", msqid);
exit(O);

/* NOTREACHED */

Controlling Message Queues
with msgctl ()

The ms get 1 () system call is used to alter the permissions and other charac­
teristics of a message queue. Its synopsis is as follows:

Figure 3-8 Synopsis ofmsgctl ()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(msqid, cmd, buf)
int msqid, cmdi
struct msqid_ds *bufi

Upon successful completion, the call returns zero. It returns -1 on failure, and
sets errno appropriately.

The msqid argument must be the ID of an existing message queue. The cmd
argument is one of the following:

IPC STAT

IPC SET

Place information about the status of the queue in the the data
structure pointed to by buf. The process must have read per­
mission for this call to succeed.

Set the owner's user and group ID, the permissions, and the size
(number of bytes) of the message queue. A process must have
the effective user ID of the owner, creator or the super-user for
this call to succeed.

+~t!! Revision A of 27 March 1990

Chapter 3 - System V Interprocess Comnumication Facilities 61

IPC RMID Remove the message queue specified by the msqid argument.

The following sample program illustrates the msgctl(2) system call with all its
various flags.

Figure 3-9 Sample Program to Illustrate msgctl ()

/*
** msgctl.c: Illustrate the msgctl() system call.

**
** This is a simple exerciser of the msgctl() system call. It allows
** you to perform one control operation on one message queue. It
** gives up immediately if any control operation fails, so be careful not
** to set permissions to preclude read permission; you won't be able to reset
** the permissions with this code if you do.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>

static void do_msgctl():
extern void exit():
extern void perror():
static char warning message[] = "If you remove read permission for\
yourself, this program will fail frequently!":

main ()
{

struct msqid_dsbuf: /* queue descriptor buffer for 1PC_STAT
and IPC_SET commands */

int cmd, /* command to be given to msgctl() */
msqid: /* queue 1D to be given to msgctl() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n"):

(void) fprintf(stderr, ,,\tOx ... is interpreted as hexadecimal,\n"):
(void) fprintf(stderr, ,,\to ... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n"):

/* Get the msqid and cmd arguments for the msgctl() call. */
(void) fprintf(stderr,

"Please enter arguments for msgctl () as requested. "):
(void) fprintf(stderr, "\nEnter the desired msqid: "):
(void) scanf("%i", &msqid);

(void) fprintf (stderr, "Valid msgctl commands are:\n");
(void) fprintf(stderr, "\tIPC_RMID %d\n", 1PC_RMID) :
(void) fprintf(stderr, "\tIPC_SET %d\n", IPC_SET):
(void) fprintf(stderr, "\tIPC_STAT %d\n", 1PC_STAT);
(void) fpr int f (stderr, "\nEnter the value for the desired
(void) scanf("%i", &cmd) :

switch (cmd) {
case IPC SET:

command:

/* Modify settings in the message queue control structure. */
(void) fprintf(stderr, "Before IPC_SET, get current values:"):
/* fall through to 1PC_STAT processing */

case IPC STAT:
/*
** Get a copy of the current message queue control structure
** and show it to the user.

sun
mlcrosystems

") :

Revision A of 27 March 1990

62 Programming Utilities and Libraries

/*
**

*/
do_msgctl(msqid, IPC_STAT, &buf);
(void) fprintf(stderr,

"msg_perrn.uid = %d\n", buLmsg_perm.uid);
(void) fprintf(stderr,

"rnsg_perrn.gid = %d\n", buLmsg_perm.gid);
(void) fprintf(stderr,

"msg_perm.cuid = %d\n", buf.msg_perm.cuid);
(void) fprintf(stderr,

"rnsg_perrn.cgid = %d\n", buf.rnsg_perrn.cgid);
(void) fprintf(stderr, "rnsg_perm.mode = %#0, It,

buf.rnsg_perrn.rnode);
(void) fprintf(stderr, "access permissions = %#o\n",

buf.msg_perm.mode & 0777);
(void) fprintf(stderr, "rnsg_cbytes = %d\n", buf.msg_cbytes);
(void) fprintf(stderr, "rnsg_qbytes = %d\n", buf.msg_qbytes);
(void) fprintf(stderr, "rnsg_qnurn = %d\n", buf.msg_qnurn);
(void) fprintf (stderr, "msg_lspid %d\n", buf.msg_lspid);
(void) fprintf(stderr, "msg_lrpid = %d\n", buf.msg_lrpid);
(void) fprintf(stderr, "msg stirne = %s", buf.rnsg_stime ?

ctirne(&buf.msg_stime) : "Not Set\n");
(void) fprintf (stderr, "rnsg_rtirne = %s", buLmsg_rtime ?

ctirne (&buf .msg_rtime) : "Not Set\n");
(void) fprintf(stderr, "msg_ctirne = %s", ctime(&buf.msg_ctirne));
if (cmd == IPC_STAT)

break;

/*
** Now continue with IPC SET.

*/
(void) fprintf(stderr, "Enter desired msg_perm.uid: It);

(void) scanf ("%hi", &buLrnsg_perm.uid);

(void) fprintf(stderr, "Enter desired msg_perm.gid: It);

(void) scanf("%hi", &buLmsg_perm.gid);

(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr, "Enter desired rnsg_perm.mode: ");
(void) scanf("%hi", &buLmsg_perm.mode);

(void) fprintf(stderr, "Enter desired rnsg_qbytes: It);

(void) scanf("%hi", &buf.msg_qbytes);

do_msgctl(msqid, IPC_SET, &buf);
break;

case IPC RMID:
default:

/* Remove the message queue or try an unknown command. */
do_rnsgctl(msqid, crnd, (struct msqid_ds *)NULL);
break;

exit (0) ;

/* NOTREACHED */

Print indication of arguments being passed to rnsgctl(), call msgctl(),
** and report the results.
** If msgctl() fails, do not return; this example doesn't deal with
** errors, it just reports them.
*/
static void
do_msgctl(msqid, cmd, buf)
struct msqid_ds*buf;
int cmd,

msqid;

sun
microsystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 63

register int rtrn;/* hold area for return value from msgctl() */

(void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d, %s)\n",
msqid, cmd, buf ? "&buf" : " (struct msqid_ds *)NULL");

rtrn = msgctl(msqid, cmd, buf);
if (rtrn == -1) {

perror("msgctl: msgctl failed");
exit(l);
/* NOTREACHED */

else {
(void) fprintf(stderr, "msgctl: msgctl returned %d\n", rtrn);

Sending and Receiving
Messages with msgsnd () and
msgrcv ()

Figure 3-10

msgsnd(2) and msgrcv(2) are used to send and receive messages, respectively.
Their synopses are as follows:

Synopses ofmsgsnd () and msgrcv ()

*include <sys/types.h>
*include <sys/ipc.h>
*include <sys/msg.h>

int msgsnd(msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgpi
int msgsz, msgflg;

int msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)
int msqidi
struct msgbuf *msgpi
int msgszi
long msgtypi
int msgflgi

Upon successful completion, these system calls each return zero; when unsuc­
cessful, they return -1, and set the external variable errno to the appropriate
error code.

The msqid argument must be the ID of an existing message queue. The msgp
argument is a pointer to a structure that contains the type of the message and its
text. The msg s z argument specifies the length of the message (in bytes).

Various control flags can be passed in the ms gf 19 argument. Flags can be com­
bined within the argument using logical OR operator. If IPC _ NOWAIT is set, a
send or receive operation that cannot complete will fail. For instance, a non­
blocking msgrcv () operation will fail if there is no message to receive. If
MSG _ NOERROR is set, then a message longer than the size specified by msgs z
is truncated to that size. Note that the trailing portion of the truncated message is
lost. Without the MSG _ NOERROR flag, attempting to receive a message that is
longer than expected results in failure.

Revision A of 27 March 1990

64 Programming Utilities and Libraries

The msgtyp argument to msgrcv () is used to indicate the type of message to
receive. If this argument is equal to zero, the call receives the first message on
the queue. If it is greater than zero, the call receives the first message of the indi­
cated type.

If ms gt yp is less than zero, the call receives the first extant message on the
queue with lowest type value, up to and including the absolute value of the argu­
ment. For instance, ifmsgtyp has a value of -3, the call retrieves the first mes­
sage of type 1, if any, or the first message of type 2, if any, or the first message of
type 3. It would not receive a message of type 4. This allows you to prioritize
message processing according to type.

The following sample program illustrates msgsnd () and msgrcv () .

Figure 3-11 Sample Program to Illustrate msgsnd () and msgrcv ()

/*
** msgop.c: Illustrate the msgsnd() and msgrcv() system calls.
**
** This is a simple exerciser of the message send and receive
** routines. It allows the user to attempt to send and receive as many
** messages as desired to or from one message queue.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

static intask();
extern void exit();
extern char
extern void

*malloc () ;
perror();

char first_on_queue[] = "_> first message on queue",
full_buff] = "Message buffer overflow. Extra message text discarded.";

main ()
{

register int c;
int choice;
register int i;
int msgflg;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msqid,

maxmsgsz, /*
rtrn; /*

(void) fprintf (stderr,

/* message text input */
/* user's selected operation code */
/* loop control for mtext */
/* message flags for the operation */

/* pointer to the message buffer */
/* message size */
/* desired message type */
/* message queue ID to be used */

size of allocated message buffer */
return value from msgrcv or msgsnd */

"All numeric input is expected to follow C conventions:\n");
(void) fprintf(stderr, "\tOx ... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, ,,\to ... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Get the message queue ID and set up the message buffer. */
(void) fprintf(stderr, "Enter desired msqid: ");
(void) scanf("'i", &msqid);

/*
** Note that <sys/msg.h> includes a definition of struct msgbuf
** with the mtext field defined as:

sun
microsystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 65

** char mtext[l];
** therefore, this definition is only a template, not a directly
** useable structure definition, unless you only want to send
** and receive messages of 0 or 1 byte.
** To handle this, we malloc an area big enough to contain the
** template - the size of the mtext template field + the size of
** the mtext field we want. Then we can use the pointer returned
** by malloc as a struct msgbuf with an mtext field of the size
** we want.
** Note also that sizeof msgp->mtext is valid even though msgp
** isn't pointing to anything yet. Sizeof doesn't dereference msgp,
** it just uses its type to figure out what we are asking about.
*/
(void) fprintf (stderr, "Enter the message buffer size you want: ");
(void) scanf("%i", &maxmsgsz);
if (maxmsgsz < 0) {

(void) fprintf(stderr, "msgop: %s\n",
"The message buffer size must be >= 0.");

exit (1);
/* NOTREACHED */

msgp = (struct msgbuf *)malloc((unsigned) (sizeof(struct msgbuf) -
sizeof msgp->mtext + maxmsgsz»;

if (msgp == NULL) {
(void) fprintf(stderr, "msgop: %s %d byte messages\n",

"could not allocate message buffer for", maxmsgsz);
exit (1);
/* NOTREACHED */

/* Loop through message operations until the user is ready to quit. */
while (choice = ask(» {

switch (choice) {
case 1: /* msgsnd() requested: Get the arguments, make the

call, and report the results. */
(void) fprintf(stderr, "Valid msgsnd message %s\n",

"types are positive integers.");
(void) fprintf(stderr, "Enter desired msgp->mtype: It);

(void) scanf ("%li", &msgp->mtype);

if (maxmsgsz) {
/* Since we've been using scanf, we need the

following loop to throwaway the rest of
the input on the line after the entered
mtype before we start reading the mtext. */

while ((c = getchar(» != '\n' && c != EOF)

(void) fprintf(stderr, "Enter a %s:\n",
"one line message");

for (i = 0; ((c = getchar() != '\n'): i++)
if (i >= maxmsgsz) {

(void) fprintf(stderr,
"\n%s\n", full_buf);

while ((c = getchar(» != '\n')

break:

msgp->mtext[i] c;

msgsz i:
else

msgsz 0;

(void) fprintf(stderr,
"\nMeaningful msgsnd flag is:\n");

sun
microsystems

Revision A of 27 March 1990

66 Programming Utilities and Libraries

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
IPC_NOWAIT) ;

(void) fprintf(stderr, "Enter desired msgflg: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",
"msgop: Calling msgsnd", msqid, msgsz, msgflg);

(void) fprintf(stderr, "msgp->mtype %ld\n",
msgp->mtype);

(void) fprintf(stderr, "msgp->mtext \"");
for (i = 0; i < msgsz; i++)

(void) fputc(msgp->mtext[i], stderr);
(void) fprintf(stderr, "\"\n");

rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if (rtrn == -1)

perror("msgop: msgsnd failed");
else

(void) fprintf(stderr,
"msgop: msgsnd returned %d\n", rtrn);

break;

case 2: /* msgrcv() requested: Get the arguments, make the
call, and report the results. */

for (msgsz = -1; msgsz < 0 I I msgsz > maxmsgsz;
(void) scanf("%i", &msgsz»
(void) fprintf(stderr,

"%s (0 <= msgsz <= %d): ",
"Enter desired msgsz", maxmsgsz);

(void) fprintf(stderr, "msgtyp meanings:\n");
(void) fprintf(stderr, "\t 0 %s\n", first_an_queue);
(void) fprintf(stderr, "\t>O %s of given type\n",

first_an_queue) ;
(void) fprintf(stderr,

,,\t<O %s with type <= Imsgtypl\n",
first_an_queue) ;

(void) fprintf(stderr, "Enter desired msgtyp: ");
(void) scanf("%li", &msgtyp);

(void) fprintf(stderr,
"Meaningful msgrcv flags are:\n");

(void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",
MSG _NOERROR) ;

(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
IPC_NOWAIT) ;

(void) fprintf(stderr, "Enter desired msgflg: ");
(void) scanf("%i", &msgflg);

(void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",
"msgop: Calling msgrcv",
msqid, msgsz, msgtyp, msgflg);

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if (rtrn == -1)
perror("msgop: msgrcv failed");

else {
(void) fprintf(stderr, "msgop: %s %d\n",

"msgrcv returned", rtrn);
(void) fprintf(stderr, "msgp->mtype = %ld\n",

msgp->mtype);
(void) fprintf(stderr, "msgp->mtext is: \"");
for (i = 0; i < rtrn; i++)

(void) fputc(msgp->mtext[i], stderr);
(void) fprintf(stderr, "\"\n");

break;

sun
mlcrosystems

Revision A of 27 March 1990

/*

Chapter 3 - System V Interprocess Commwtication Facilities 67

default:

exit (0);

(void) fprintf(stderr, "msgop: operation unknown\n");
break;

/ * NOTREACHED * /

** Ask user what to do next. Return the user's choice code.
** Don't return until the user selects a valid choice.
*/
static
ask ()
{

int response; /* User's response. */

do {
(void) fprintf(stderr, "Your options are:\n");
(void) fprint f (stderr, "\ tExit =\ to or Control-D\n");
(void) fprintf(stderr, "\tmsgsnd =\tl\n");
(void) fprintf(stderr, "\tmsgrcv =\t2\n");
(void) fprintf(stderr, "Enter your choice: H);

/* Preset response so "-D" will be interpreted as exit. *1
response = 0;
(void) scanf("%i", &response);

while (response < 0 I I response> 2);

return(response);

3.4. Semaphores Semaphores provide a mechanism by which processes can query or alter status
information. They are often used to monitor and control the availability of sys­
tem resources, such as System V shared memory segments. Semaphores may be
operated on as individual units, or as elements in a set. A semaphore set consists
of a control structure and an array of individual semaphores. By default, a set of
semaphores may contain up to 25 elements; this limit can be altered using the
SEMMSL system configuration option.

Before a process can use a semaphore, the semaphore set must be initialized
using semget(2}. The semaphore's owner or creator can change its ownership
or permissions using semctl(2}. In addition, any process with permission to do
so can use s emct 1 () to perform control operations. Semaphore operations are
performed by the s emop(2} system call. This call accepts a pointer to an array
of semaphore operation structures; each structure in the operations array contains
information about an operation to perform on a semaphore. The operations array
is described in detail under Semaphore Operations, below.

Any process with read permission can test to see whether a semaphore has a zero
value, by supplying a 0 in the sem_op field of the operation structure. Opera­
tions to increment or decrement a semaphore require alter permission (that is,
write permission).

Revision A of 27 March 1990

68 Programming Utilities and Libraries

Structure of a Semaphore Set

If an attempt to perform any of the requested operations should fail, none of the
semaphores are altered. The process will block (unless the IPC _ NOWAIT flag is
set), and will remain blocked until one of the following occurs:

o the semaphore operations can all complete, in which case the call succeeds

o the process receives a signal, or

o the semaphore set is removed.

If a nonblocking semaphore operation fails, the call returns -1 and sets errno
appropriately.

Only one process can update a semaphore set at any given time. Simultaneous
requests by different processes are performed in an arbitrary order. When an
array of operations is given by a semop () call, the updates are made atomically.
That is, no updates are committed until all operations in the array can complete
successfully.

Once a process perfonns an operation on a semaphore, the system does not keep
track of whether or not that operation has been undone. If a process with
exclusive use of a semaphore tenninates abnonnally and neglects to undo the
operation or free the semaphore, the semaphore will remain locked in memory.
To prevent this, semop () accepts the SEM _UNDO control flag. When this flag
is in effect, semop () allocates an undo structure for each semaphore operation.
That structure contains the operation needed to return the semaphore to its previ-
0us state. When the process dies, the system applies the operations in the undo
structures. That wayan aborted process need not leave a semaphore set in an
inconsistent state.

If processes share access to a resource controlled by a semaphore, operations on
the semaphore should not be made with SEM _ UNDO in effect. If the process that
currently has control of the resource tenninates abnonnally, the resource is
presumed to be inconsistent. Another process must be able to recognize this in
order to restore the resource to a consistent state.

When perfonning a semaphore operation with SEM _UNDO in effect, you must
also have it in effect for the call that would perform the reversing operation.
When the process runs nonnally, the reversing operation updates the undo struc­
ture with a complementary value. This insures that, unless the process is aborted,
the values applied to the undo structure will eventually cancel out to zero. When
the undo structure reaches zero, it is removed. Using SEM _UNDO inconsistently
can lead to undue resource consumption, since undo structures which are allo­
cated may not be freed (until the system is rebooted).

A semaphore set is composed of a control structure with a unique ID, along with
an array of semaphores. The identifier for the semaphore or array is referred to
as the semid.

Revision A of 27 March 1990

Figure 3-12

Chapter 3 - System V Interprocess Commmncation Facilities 69

Structure of a Semaphore

control ... semaphore

structure array
,-

~

The control structure for the semaphore contains the following information:

o The permissions structure.

o A pointer to first semaphore in the array.

o The number of semaphores in the array.

o The time of the last operation on any semaphore the array.

o The time of the last update to any semaphore in the array.

Each semaphore structure in the array, contains the following information:

o The semaphore value.

o The PID of the process performing the last successful operation.

o The number of processes waiting for the semaphore to increase.

o The number of processes waiting for the semaphore to reach zero.

The control structure is defined in the header file: < s y s / s em . h>:

struct semid ds

} ;

struct ipc-perm sem-permi
struct sem *sem_basei
ushort
time t
time t

sem_nsemsi
sem_otime;
sem_ctime;

/* permission struct */
/* ptr to first semaphore in set */
/* # of semaphores in set */
/* last semop time */
/* last change time */

The sem_perm member of this structure uses ipcyerm (defined in
<sys/ipc. h» as a template.

Revision A of 27 March 1990

70 Programming Utilities and Libraries

Initializing a Semaphore Set
with s emget ()

Figure 3-13

The semaphore structure is defined as:

struct sem

} ;

ushort semval;
short sempid;
ushort semnent;
ushort semzent;

in that header file as well.

/* semaphore text map address */
/* pid of last operation */
/* # awaiting semval > eval */
/* # awaiting semval = 0 */

The semget () system call is used to initialize or gain access to a semaphore.
When the call succeeds, it returns the semaphore ID (semid). When the call
fails, it returns -1, and sets the external variable errno to the appropriate error
code. semget () has the following synopsis:

Synopsis of semget ()

#include <sys/types.h>
#include <sys/ipc.h>
#inelude <sys/sem.h>

int semget(key, nsems, semflg)
key_t key;
int nsems, semflg;

As noted above, the key argument is a value associated with the semaphore ID.

The nsems argument specifies the number of elements in a semaphore array.
The call fails if nsems is greater than the number of elements in an existing
array; when the correct count not known, supplying 0 for this argument assures
that it will succeed. The semf 19 argument is used to specify the initial access
pennissions and creation control flags.

The SEMMNI system configuration option detennines the maximum number of
semaphore arrays allowed. The SEMMNS option detennines the maximum possi­
ble number of individual semaphores in across all semaphore sets. s emget ()
fails when one of these limits would be exceeded. Due to fragmentation between
semaphore sets, you may not be able to allocate all available semaphores.

The following program illustrates the semget () system call. It begins by
prompting for a hexadecimal key, an octal pennissions code, and control com­
mand combinations selected from a menu. All possible combinations are
allowed.

It then requests the number of semaphores in the array, and issues the system call
to initialize the array. If the call succeeds, the program displays the semaphore
ID returned. Otherwise, it displays an error message.

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 71

Figure 3-14 Sample Program to Illustrate semget ()

/*
** semget.c: Illustrate the semget() system call.
**
** This is a simple exerciser of the semget() system call.
** It prompts for the arguments, makes the call, and reports the
** results.
*/

#include
#include
#include
#include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/sem.h>

extern void
extern void

exit () ;
perror() ;

main ()
{

key_tkey; /*
int semflg;
int nsems;
int semid;

key to be passed to semget() */
/* semflg to be passed to semget() */
/* nsems to be passed to semget() */
/* return value from semget() */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf (stderr, "\tOx ... is interpreted as hexadecimal, \n") ;
(void) fprintf(stderr, "\to ... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

(void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, "Enter desired key: ");
(void) scanf("%li", &key);

(void) fprintf(stderr, "Enter desired nsems value: ");
(void) scanf("%i", &nsems);

(void) fprintf(stderr, "\nExpected flags for semflg are:\n");
(void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
(void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);
(void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);
(void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);
(void) fprintf(stderr, "\tgroup alter = \t%#8.Bo\n", 020);
(void) fprintf(stderr, "\tother read = \t%#B.8o\n", 04);
(void) fprintf(stderr, "\tother alter = \t%#B.Bo\n", 02);
(void) fprintf(stderr, "Enter desired semflg value: ");
(void) scanf("%i", &semflg);

(void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %d, %#o)\n",
key, nsems, semflg);

if ((semid = semget(key, nsems, semflg»
perror("semget: semget failed");
exit (1) ;

else {

-1) {

(void) fprintf(stderr, "semget: semget succeeded: semid
semid) ;

exit(O);

/*NOTREACHED*/

%d\n",

Revision A of 27 March 1990

72 Programming Utilities and Libraries

Controlling Semaphores with
semctl ()

Figure 3-15

The semctl () system call allows a process to alter permissions and other
characteristic of a semaphore set. Its synopsis is as follows:

Synopsis of s emct I ()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(semid, semnum, cmd, arg)
int
int
union

} arg;

semid, cmd;
semnum;
semun

int val;
struct semid ds *buf;
ushort * array;

semid is a valid sempahore ID. semnum is used to select a semaphore within
an array by its index. The cmd argument is one of the following control flags.
What you supply for arg depends upon the control flag given in cmd.

GETVAL Return the value of a single semaphore.

SE TVAL Set the value of a single semaphore. In this case, ar g is taken as
arg . val, an into

GE TP I D Return the PID of the process that performed the last operation on
the semaphore or array.

GE TNCNT Return the number of processes waiting for the value of a semaphore
to increase.

GE T Z CNT Return the number of processes waiting for the value of a particular
semaphore to reach zero.

GETALL Return the values for all semaphores in a set. In this case, arg is
taken as ar g . ar ray, a pointer to an array of unsigned shorts.

SETALL Set values for all semaphores in a set. In this case, arg is taken as
arg. array, a pointer to an array of unsigned shorts.

IPC STAT

Return the status information contained in the control structure for
the semaphore set, and place it in the data structure pointed to by
arg . buf, a pointer to a buffer of type semid _ ds.

IPC SET Set the effective user/group identification and permissions In this
case, arg is taken as arg. buf.

IPC RMID

Remove the specified semaphore set.

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 73

A process must have an effective user identification of OWNER/ CREATOR or
super-user to perfonn an IPC_SET or IPC_RMID commands. Read/write per­
mission is required as applicable for the other control commands.

The following program illustrates semctl () .

Figure 3-16 Sample Program to Illustrate semctl ()

/*
* * semct 1 . c:
**

Illustrate the semctl() system call.

** This is a simple exerciser of the semctl() system call. It
** allows you to perform one control operation on one semaphore set.
** It gives up immediately if any control operation fails, so be careful not
** to set permissions to preclude read permission; you won't be able to reset
** the permissions with this code if you do.
*/

#include
#include
#include
#include
#include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/sem.h>
<time.h>

static void do semctl();
-

static void do stat () ; -
extern char *malloc();
extern void exit();
extern void perror();

char warning_message[] = "If you remove read permission for\
yourself, this program will fail frequently!";

main ()
{

union semun arg; /* union to be passed to semctl() */
int cmd, /* command to be given to semctl() */

i, /* work area */
semid, /* semid to be passed to semctl() */
semnum; /* semnum to be passed to semctl() */

(void) fprintf(stderr,
nAll numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, n\tOx ... is interpreted as hexadecimal,\nn);
(void) fprintf(stderr, n\tO ... is interpreted as octal,\ntl);
(void) fprintf(stderr, n\totherwise, decimal.\n");

(void) fprintf(stderr, nEnter desired semid value: ");
(void) scanf(n%i", &semid);

(void) fprintf(stderr, nValid semctl cmd values are:\n");
(void) fprintf(stderr, n\tGETALL %d\n", GETALL);
(void) fprintf(stderr, "\tGETNCNT %d\n", GETNCNT);
(void) fprintf(stderr, "\tGETPID %d\n", GETPID);
(void) fprintf(stderr, "\tGETVAL %d\n", GETVAL);

n\tGETZCNT
n\tIPC_RMID
n\tIPC_SET
n\tIPC_STAT
n\tSETALL

%d\nn, GETZCNT);
%d\nn, IPC_RMID);
%d\nn, IPC_SET);
%d\nn, IPC_STAT);
%d\n", SETALL);

(void) fprintf(stderr,
(void) fprintf(stderr,
(void) fprintf(stderr,
(void) fprintf(stderr,
(void) fprintf(stderr,
(void) fprintf(stderr,
(void) fprintf(stderr,

n\tSETVAL %d\nn, SETVAL);
n\nEnter desired cmd: ");

(void) scanf ("%i", &cmd);

sun
microsystems

Revision A of 27 March 1990

74 Programming Utilities and Libraries

/* Perform some setup operations needed by mUltiple commands. */
switch (cmd)
case GETVAL:
case SETVAL:
case GETNCNT:
case GETZCNT:

/* Get the semaphore number for these commands. */
(void) fprintf(stderr, "\nEnter desired semnum value: ");
(void) scanf("%i", &semnum);
break;

case GETALL:
case SETALL:

/* Allocate a buffer for the semaphore values. */
(void) fprintf(stderr,

"Get number of semaphores in the set.\n");
arg.buf = &semid_ds;
do semctl(semid, 0, IPC_STAT, arg);
if (arg.array =

(ushort *)malloc«unsigned)
(semid_ds.sem_nsems * sizeof(ushort»»

/* Break out if we got what we needed. */
break;

(void) fprintf(stderr,
"semctl: unable to allocate space for %d values\n",
semid_ds.sem_nsems) ;

exit(2);
/*NOTREACHED*/

/* Get the rest of the arguments needed for the specified command. */
switch (cmd) {
case SETVAL:

/* Set value of one semaphore. */
(void) fprintf(stderr, "\nEnter desired semaphore value: ");
(void) scanf("%i", &arg.val);
do_semctl(semid, semnum, SETVAL, arg);

/* Fall through to verify the result. */
(void) fprintf(stderr,

"Perform semctl GETVAL command to verify results.\nn);

case GETVAL:
/* Get value of one semaphore. */
arg.val = 0;
do_semctl(semid, semnum, GETVAL, arg);
break;

case GETPIO:
/* Get PIO of last process to successfully complete a

semctl(SETVAL), semctl(SETALL), or semop() on the
semaphore. */

arg.val = 0;
do_semctl(semid, 0, GETPIO, arg);
break;

case GETNCNT:
1* Get number of processes waiting for semaphore value

to increase. */
arg.val = 0;
do_semctl(semid, semnum, GETNCNT, arg);
break;

case GETZCNT:
1* Get number of processes waiting for semaphore value

sun
microsystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 75

to become zero. */
arg.val = 0:
do semctl(semid, semnum, GETZCNT, arg):
break:

case SETALL:
/* Set the values of all semaphores in the set. */
(void) fprintf(stderr, "There are %d semaphores in the set.\n",

semid_ds.sem_nsems);
(void) fprintf(stderr, "Enter desired semaphore values:\n"):
for (i = 0: i < semid_ds.sem_nsems; i++) {

(void) fprintf(stderr, "Semaphore %d: ", i):
(void) scanf("%hi", &arg.array[i]):

do semctl(semid, 0, SETALL, arg):

/* Fall through to verify the results. */
(void) fprintf(stderr,

"Perform semctl GETALL command to verify results.\n"):

case GETALL:
/* Get and print the values of all semaphores in the set.*/
do_semctl(semid, 0, GETALL, arg):
(void) fprintf(stderr, "The values of the %d semaphores are:\n",

semid_ds.sem_nsems);
for (i = 0: i < semid_ds.sem_nsems: i++)

(void) fprintf(stderr, "%d ", arg.array[i);
(void) fprintf(stderr, "\n"):
break;

case IPC SET:
/* Modify mode and/or ownership. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC_STAT, arg):
(void) fprintf(stderr, "Status before IPC_SET:\n"):
do_stat () ;

(void) fprintf(stderr, "Enter desired sem_perm.uid value: "):
(void) scanf("%hi", &semid_ds.sem_perm.uid):

(void) fprintf(stderr, "Enter desired sem_perm.gid value: ");
(void) scanf("%hi", &semid_ds.sem_perm.gid):

(void) fprintf(stderr, "%s\n", warning_message);
(void) fprintf(stderr,

"Enter desired sem_perm.mode value: 0):
(void) scanf("%hi", &semid_ds.sem_perm.mode):

do_semctl(semid, 0, IPC_SET, arg):

/* Fall through to verify changes. */
(void) fprintf(stderr, "Status after IPC SET:\n");

case IPC STAT:
/* Get and print current status. */
arg.buf = &semid_ds;
do_semctl(semid, 0, IPC STAT, arg):
do_stat () ;
break:

case IPC RMID:
/* Remove the semaphore set. */
arg.val = 0:
do semctl(semid, 0, IPC_RMID, arg);
break;

default:
/* Pass unknown command to semctl. */
arg.val = 0:
do_semctl(semid, 0, cmd, arg);

sun
microsystems

Revision A of 27 March 1990

76 Programming Utilities and Libraries

/*

break;

exit (0) ;
/*NOTREACHED*/

** Print indication of arguments being passed to semctl(), call semctl(),
** and report the results.
** If semctl() fails, do not return; this example doesn't deal with
** errors, it just reports them.
*/
static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,

/*
**
*/

semid,
semnum;

register int i; /* work area */

(void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d, ",
semid, semnum, cmd);

switch (cmd) {
case GETALL:

(void) fprintf(stderr, "arg.array
break;

case IPC_STAT:
case IPC SET:

(void) fprintf(stderr, "arg.buf
break;

case SETALL:

%#x)\n", arg.array);

%#x)\n", arg.buf);

(void) fprintf(stderr, "arg.array = [", arg.buf);
for (i = O;i < semid_ds.sem_nsems;) {

(void) fprintf(stderr, "%d", arg.array[i++]);
if (i < semid_ds.sem_nsems)

(void) fprintf(stderr, ", H);

(void) fprintf(stderr, "])\n");
break;

case SETVAL:
default:

(void) fprintf(stderr, "arg.val
break;

i semctl(semid, semnum, cmd, arg);
if (i == -1) {

perror("semctl: semctl failed");
exit (1) ;
/* NOTREACHED */

%d)\n", arg.val);

(void) fprintf(stderr, "semctl: semctl returned %d\n", i);
return;

Display contents of commonly used pieces of the status structure.

static void
do_stat ()
{

(void) fprintf(stderr, "sem_perm.uid = %d\n", semid_ds.sem_perm.uid);
(void) fprintf(stderr, "sem_perm.gid = %d\n", semid_ds.sem_perm.gid);
(void) fprintf(stderr, "sem_perm.cuid %d\n", semid_ds.sem_perm.cuid);
(void) fprintf(stderr, "sem_perm.cgid = %d\n", semid_ds.sem_perm.cgid);

sun
mlcrosystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Cornnnmication Facilities 77

(void) fprintf(stderr, "sem_perm.mode = %#0, It,
semid ds.sem perm.mode);

(void) fprintf(stderr, "access permissions = %#o\n",
semid_ds.sem_perm.mode & 0777);

(void) fprintf(stderr, "sem_nsems = %d\n", semid_ds.sem_nsems);
(void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?

ctime(&semid_ds.sem_otime) : "Not Set\n");
(void) fprintf(stderr, "sem_ctime = %s", ctime(&semid_ds.sem_ctime»;

Performing Semaphore
Operations with semop ()

Figure 3-17

The semop () system call is used to perform operations on a semaphore set. It's
synopsis is as follows:

Synopsis of s emop ()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop(semid, sops, nsops)
int semid;
struct sembuf *sops;
unsigned nsops;

The semid argument is the semaphore 1D that was returned by a previous
semget () call. The sops argument is a pointer to an array of structures, each
of which contains the following infonnation about a semaphore operation:

o The semaphore number.

o The operation to be perfonned.

o Control flags, if any.

sembuf is the structure of semaphores in the array, as defined in the
<sys/ sem. h> header file.

The n sop s argument specifies the length of the array, the maximum size of
which is detennined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop () call, 100 by default.

The operation to be performed is determined as follows:

o A positive integer means to increment the semaphore value by that amount.

o A negative integer means to increment the semaphore value by that amount.
However, a semaphore can never take on a negative value. An attempt to set
a semaphore to a value below zero either will either fail or block, depending
on whether or not IPC NOWAIT is in effect.

o A value of zero means to wait for the semaphore value to reach zero.

The following control flags can be used with semop () :

Revision A of 27 March 1990

78 Progranuning Utilities and Libraries

IPC NOWAIT this operation command can be set for any operations in the
array. The system call will return unsuccessfully without
changing any semaphore values at all if any operation for which
IPC_NOWAIT is set cannot be performed successfully. The
system call will be unsuccessful when trying to decrement a
semaphore more than its current value, or when testing for a
semaphore to be equal to zero when it is not.

SEM UNDO this command allows individual operations in the array to be
undone when the process exits.

The following program illustrates the s emop () system call.

Figure 3-18 Sample Program to Illustrate semop ()

/*
** semop.c: Illustrate the semop() system call.
**
** This is a simple exerciser of the semop() system call. It allows
** you to set up arguments for semop(), make the call, and reports the
** results repeatedly on one semaphore set. You must have read
** permission on the semaphore set or this exerciser will fail. (It needs
** read permission to get the number of semaphores in the set and report
** their values before and after calls to semop().)
*/

#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>

static intask () ;
extern void exit();
extern void free () ;
extern char *malloc () ;
extern void perror();

static struct semid ds semid_ds; /* status of semaphore set */

static char error_mesgl[] = "semop: Can't allocate space for %d\
semaphore values. Giving up.\n";

static char error_mesg2[] = "semop: Can't allocate space for %d\
sembuf structures. Giving up.\n";

main ()
{

register int i; /* work area */
int nsops; /* number of operations to be performed */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to be performed */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\tOx ... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\to ... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");

/* Loop until the invoker doesn't want to do anymore. */
while (nsops = ask(&semid, &SOps)) {

1* Initialize the array of operations to be performed.*/
for (i = 0; i < nsops; i++) {

(void) fprintf(stderr,

sun
microsystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 79

/*

"\nEnter desired values for operation %d of %d.\n",
i + 1, nsops);

(void) fprintf(stderr,
"sem_num(valid values are 0 <= sem num < %d): ",
semid_ds.sem_nsems);

(void) scanf("%hi", &sops[i] .sem_num);
(void) fprintf(stderr, "sem_op: n);
(void) scanf("%hi", &sops[i] .sem_op);
(void) fprintf(stderr,

"Expected flags in sem_flg are:\n");
(void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",

IPC_NOWAIT);
(void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",

SEM_UNDO) ;
(void) fprintf(stderr, "sem_flg: ");
(void) scanf("%hi", &sops[i].sem_flg);

/* Recap the call to be made. */
(void) fprintf(stderr,

"\nsemop: Calling semop(%d, &sops, %d) with:",
semid, nsops);

for (i = 0; i < nsops; i++)
{

(void) fprintf(stderr, "\nsops[%d] .sem_num = %d, ", i,
sops[i] .sem_num);

(void) fprintf(stderr, "sem_op = %d, ", sops[i] .sem_op);
(void) fprintf (stderr, "sem_flg = %#o\n",

sops[i] .sem_flg);

/* Make the semop() call and report the results. */
if «i = semop(semid, sops, nsops)) == -1) {

perror("semop: semop failed");
else {

(void) fprintf(stderr, "semop: semop returned %d\n", i);

/*NOTREACHED*/

** Ask user if (s)he wants to continue.
**
** On the first call:
** Get the semid to be processed and supply it to the caller.
** On each call:
** 1. Print current semaphore values.
**
**
**
**
**

2. Ask user how many operations are to be performed on next call to
semop. Allocate an array of sembuf structures sufficient for the
job and set caller supplied pointer to that array. (The array
is reused on subsequent calls as long as it is big enough. If
it isn't big enough, it is freed and a larger array is allocated.)

*/
static
ask (semidp, sopsp)
int *semidp; /* pointer to semid (only used first time) */
struct sembuf **sopsp;

static union semun
int i;
static int nsops

static int semid

arg;
/*

0;/*

-1;

/* argument to semctl */
work area */
size of currently allocated
sembuf array */

/* semid supplied by user */

sun
microsystems

Revision A of 27 March 1990

80 Programming Utilities and Libraries

static struct sembuf*sops; /* pointer to allocated array */

if (semid < 0) {

/* First call; get semid from user and the current state of
the semaphore set. */

(void) fprintf(stderr,
"Enter semid of the semaphore set you want to use: ");

(void) scanf("%i", &semid);
*semidp = semid;
arg.buf = &semid_ds;
if (semctl(semid, 0, IPC_STAT, arg) == -1) {

perror("semop: semctl(IPC_STAT) failed");

/* Note that if semctl fails, semid ds remains filled with
zeroes, so later test for number of semaphores will be zero. */

(void) fprintf(stderr,
"Before and after values will not be printed.\nn);

else {
if «arg.array = (ushort *)malloc(

(unsigned) (sizeof(ushort) * semid_ds.sem_nsems»)
== NULL) {

(void) fprintf(stderr, error_mesg1,
semid_ds.sem_nsems);

exit (1);

/* Print current semaphore values. */
if (semid_ds.sem_nsems) {

(void) fprintf(stderr, "There are %d semaphores in the set.\n",
semid_ds.sem_nsems);

if (semctl(semid, 0, GETALL, arg) == -1) {
perror("semop: semctl(GETALL) failed");

else {
(void) fprintf(stderr, "Current semaphore values are:");
for (i = 0; i < semid_ds.sem_nsems;

(void) fprintf(stderr, " %d", arg.array[i++]»

(void) fprintf(stderr, "\n");

1* Find out how many operations are going to be done in the next
call and allocate enough space to do it. */

(void) fprintf(stderr, "How many semaphore operations do you want %s\n",
"on the next call to semop()?");

(void) fprintf(stderr, "Enter a or control-D to quit: ");
i = 0:
if (scanf("%i", &i)

exit(O):
if (i > nsops)

if (nsops)

EOF II i

free«char *)sops):
nsops = i;

0)

if «sops = (struct sembuf *)malloc((unsigned) (nsops *
sizeof(struct sembuf»» == NULL) {
(void) fprintf(stderr, error_mesg2, nsops);
exit(2);

*sopsp = sops;
return (i);

Revision A of 27 March 1990

3.5. Shared Memory

Structure of a Shared
Memory Segment

Figure 3-19

Chapter 3 - System V Interprocess Communication Facilities 81

In the SunOS operating system, the most effecient method for implementing
shared memory applications is to rely on native virtual memory management and
the mmap(2) system call. For shared memory applications that are to be compa­
tible with System V, the SunOS operating system also provides the standard Sys­
tem V shared memory facilities.

Shared memory allows more than one process at a time to attach a segment of
physical memory to its virtual address space. When write access is allowed for
more than one process, an outside protocol or mechanism such as a semaphore
can be used to prevent inconsistencies and collisions.

Using System V shared memory, a process creates a shared memory segment
using the shmget(2) system call. This call can also be used to obtain the ID of
an existing shared segment. The creating process sets the permissions, and the
size in bytes for the segment.

The original owner/creator of a shared memory segment can assign ownership to
another user with the s hmet 1(2) system call; it can also revoke this assignment.
Other processes with proper permission can perform various control functions on
the shared memory segment using s hme t 1 () .

Once created, a shared segment can be attached to a process's address space
using the shmat () system call; it can be detached using shmdt (). (See
shmop(2) for details.) The attaching process must have the appropriate pennis­
sions for s hma t () to succeed. Once attached, the process can read or write to
the segment, as allowed by the permission requested in the attach operation. A
shared segment may be attached multiple times by the same process.

If any of the above-mentioned system calls fails, it returns -1, and sets the exter­
nal variable errno to the appropriate value.

A shared memory segment is composed of a control structure with a unique ID
that points to an area of physical memory. The identifier for the segment is
referred to as the s hmid.

Structure of a Shared Memory Segment

control
structure

shared memory segment

The data structure includes the following information about the memory seg­
ment:

D Access pennissions.

D Segment size.

D The PID of the process performing last operation.

Revision A of 27 March 1990

82 Programming Utilities and Libraries

/*

[J The PID of the creator process.

[J The current number of processes to which the segment is attached.

[J The time of the last attachment.

[J The time of the last detachment.

[J The time of the last change to the segment.

[J Memory map segment descriptor pointer.

The structure definition for the shared memory segment control structure can be
found in < s y s / s hm . h>. This structure definition is shown below.

* There is a shared mem id data structure for each segment in the system.
*/

struct shmid_ds {
struct ipcyerm shmyerm; /* operation permission struct */
uint shm_segsz; /* size of segment in bytes */
ushort shm_lpid; /* pid of last shmop */
ushort shm_cpid; /* pid of creator */
ushort shm_nattch; /* number of current attaches */
time t shm_atime; /* last shmat time */
time t shm_dtime; /* last shmdt time */
time t shm_ctime; /* last change time */
struct anon_map *shm_amp; /* segment anon_map pointer */

} ;

Using shmget () to Get
Access to a Shared Memory
Segment

Figure 3-20

Note that the shm yerm member of this structure uses ipc yerm as a tem­
plate, as defined in <sys/ ipc. h>.

The shmget () system call is used to obtain access to a shared memory seg­
ment. When the call succeeds, it returns the shared memory segment ID
(shmid). When it fails, it returns -1, and sets errno to the appropriate error
code. shmget () has the following synopsis:

Synopsis of shmget ()

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key, size, shmflg)
key_t key;
int size, shmflg;

The value passed as the shmflg argument must be an integer, which incor­
porates settings for the segment's pennissions and control flags, as described
under System V fPC Permissions, above.

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 83

The SHMMNI system configuration option detennines the maximum number of
shared memory segments that are allowed, 100 by default.

The system call will fail if the size value is less than SHMMIN or greater than
SHMMAX, the configuration options for the minimum and maximum segment
sizes. By default, SHMIN is 1, SHMAX is 1048576.

The following sample program illustrates the shmget () system call.

Figure 3-21 Sample Program to Illustrate shmget ()

1*
** shmget.c: Illustrate the shmget() system call.

**
** This is a simple exerciser of the shmget() system call.
** It prompts for the arguments, makes the call, and reports the results.

*1

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void
extern void

main ()
{

exit () ;
perror () ;

key_tkey; 1* key to be passed to shmget() *1
int shmflg; 1* shmflg to be passed to shmget() *1
int shmid; 1* return value from shmget() *1
int size;l* size to be passed to shmget() *1

(void) fprintf(stderr,
nAil numeric input is expected to follow C conventions:\nn);

(void) fprintf(stderr, n\tOx ... is interpreted as hexadecimal,\nn);
(void) fprintf(stderr, n\tO ... is interpreted as octal,\nn);
(void) fprintf(stderr, n\totherwise, decimal.\nn);

1* Get the key. *1
(void) fprintf(stderr, nIPC_PRIVATE == %#lx\n", IPC_PRIVATE);
(void) fprintf(stderr, nEnter desired key: ");
(void) scanf(n%lin, &key);

1* Get the size of the segment. *1
(void) fprintf(stderr, nEnter desired size: ");
(void) scanf (n%in, &size);

1* Get the shmflg value. *1
(void) fprintf(stderr, nExpected flags for the shmflg argument are:\n");
(void) fprintf(stderr, n\tIPC_CREAT = \t%#8.8o\n", IPC_CREAT);
(void) fprintf(stderr, n\tIPC_EXCL = \t%#8.8o\nn, IPC_EXCL);
(void) fprintf(stderr, n\towner read =\t%#8.8o\n", 0400);
(void) fprintf(stderr, n\towner write =\t%#8.8o\n", 0200);
(void) fprintf(stderr, n\tgroup read =\t%#8.8o\n", 040);
(void) fprintf(stderr, n\tgroup write =\t%#8.8o\nn, 020);
(void) fprintf(stderr, n\tother read =\t%#8.8o\n", 04);
(void) fprintf(stderr, n\tother write =\t%#8.8o\nn, 02);
(void) fprintf(stderr, nEnter desired shmflg: ");
(void) scanf (n%i ", &shmflg);

1* Make the call and report the results. *1
(void) fprintf(stderr, nshmget: Calling shmget(%#lx, %d, %#o)\nn,

key, size, shmflg);
if (shmid = shmget (key, size, shmflg» == -1) {

sun
microsysterns

Revision A of 27 March 1990

84 Programming Utilities and Libraries

perror("shmget: shmget failed");
exit(1);

else {
(void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);
exit(O);

/*NOTREACHED*/

Controlling a Shared Memory
Segment with shmctl ()

Figure 3-22

The shmctl () system call is used to alter the permissions and other charac­
teristics of a shared memory segment. It synopsis is as follows:

Synopsis of shmctl ()

4I=include <sys/types.h>
41= include <sys/ipc.h>
4I=include <sys/shm.h>

int shmct 1 (shmid, cmd, buf)
int shmid, cmd;
struct shmid ds *buf;

The s hmi d argument is the ID of the shared memory segment as returned by
shmget (). The cmd argument is one of following control commands:

SHM LOCK
Lock the specified shared memory segment in memory. The process must
have effective ID of super-user to perform this command.

SHM UNLOCK
Unlock the shared memory segment. The process must have effective ID of
super-user to perfonn this command.

IPC STAT
Return the status information contained in the control structure, and place it
in the buffer pointed to by bu f. The process must have read permission on
the segment to perfonn this command.

IPC SET
Set the effective user and group identification, and access permissions. The
process must have an effective ID of owner, creator or super-user to perfonn
this command.

IPC RMID
Remove the shared memory segment. The process must have an effective ID
of owner, creator or super-user to perform this command.

The example program below allows you to illustrate shmctl () .

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 85

Figure 3-23 Sample Program to Illustrate shmctl ()

/*
** shmctl.c: Illustrate the shmctl() system call.
**
** This is a simple exerciser of the shmctl() system call. It allows
** you to perform one control operation on one shared memory segment.
** (Some operations are done for the user whether requested or not. It gives
** up immediately if any control operation fails. Be careful not to set
** permissions to preclude read permission; you won't be able to reset the
** permissions with this code if you do.)
*/

#include
#include
#include
#include
#include

<stdio.h>
<sys/types .h>
<sys/ipc.h>
<sys/shm.h>
<time.h>

static void
extern void
extern void

main ()
{

do_shmctl ();
exit () ;
perror() ;

int cmd;
int shmid;
struct shmid_dsshmid_ds;

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n lt);

(void) fprintf(stderr, n\tOx ... is interpreted as hexadecimal,\n");
(void) fprintf (stderr, n\tO... is interpreted as octal, \nlt);
(void) fprintf(stderr, n\totherwise, decimal.\nn);

/* Get shmid and cmd. */
(void) fprintf(stderr, nEnter the shmid for the desired segment: ");
(void) scanf(It%i lt , &shmid);

(void) fprintf(stderr, "Valid shmctl cmd values are:\n");
(void) fprintf(stderr, n\tIPC_RMID =\t%d\nn, IPC_RMID);
(void) fprintf (stderr, n\tIPC_SET =\t%d\n lt , IPC_SET);
(void) fprintf(stderr, n\tIPC_STAT =\t%d\n", IPC_STAT);
(void) fprintf(stderr, n\tSHM_LOCK =\t%d\n", SHM_LOCK);
(void) fprintf(stderr, n\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);
(void) fprintf(stderr, "Enter the desired cmd value: It);
(void) scanf("%i lt , &cmd);

switch (cmd) {
case IPC STAT:

/* Get shared memory segment status. */
break;

case IPC SET:
/* Set owner UIO and GIO and permissions. */
/* Get and print current values. */
do_shmctl(shmid, IPC_STAT, &shmid_ds);

/* Set UIO, GIO, and permissions to be loaded. */
(void) fprintf(stderr, "\nEnter desired shmyerm.uid: If);

(void) scanf(It%hi", &shmid_ds.shm_perm.uid);
(void) fprintf(stderr, "Enter desired shm_perm.gid: ");
(void) scanf("%hi", &shmid_ds.shm_perm.gid);
(void) fprintf(stderr,

"Note: Keep read permission for yourself.\n");
(void) fprintf(stderr, nEnter desired shm_perm.mode: If);

(void) scanf("%hi", &shmid_ds.shm_perm.mode);

sun
mlcrosystems

Revision A of 27 March 1990

86 Programming Utilities and Libraries

1*

break;

case IPC RMID:
1* Remove the segment when the last attach point is detached. *1
break;

case SHM LOCK:
1* Lock the shared memory segment. *1
break;

case SHM UNLOCK:
1* Unlock the shared memory segment. *1
break;

default :
1* Unknown command will be passed to shmctl. *1
break;

do shmctl(shmid, cmd, &shmid_ds);
exit (0);
I*NOTREACHED*/

** Display the arguments being passed to shmctl(), call shmctl(), and
** report the results.
** If shmctl() fails, do not return; this example doesn't deal with
** errors, it just reports them.
*1
static void
do_shmctl(shmid, cmd, buf)
int shmid,

cmd;
struct shmid_ds*buf;

register int rtrn;l* hold area */

(void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d, buf)\n",
shmid, cmd);

if (cmd == IPC_SET) {
(void) fprintf(stderr, "\tbuf->shm_perm.uid %d\n",

buf->shm_perm.uid);
(void) fprintf(stderr, "\tbuf->shm_perm.gid %d\n",

buf->shm_perm.gid);
(void) fprintf(stderr, "\tbuf->shm_perm.mode == %#o\n",

buf->shm_perm.mode);

if «rtrn = shmctl(shmid, cmd, buf)) == -1) {
perror("shmctl: shmctl failed");
exit(l);

else {
(void) fprintf(stderr, "shmctl: shmctl returned %d\n", rtrn);

if (cmd != IPC_STAT && cmd != IPC SET)
return;

/* Print the current status. *1
(void) fprintf(stderr, "\nCurrent status:\n");
(void) fprintf(stderr,
(void) fprintf(stderr,
(void) fprintf (stderr,
(void) fprintf(stderr,
(void) fprintf (stderr,
(void) fprintf(stderr,
(void) fprintf (stderr,
(void) fprintf(stderr,
(void) fprintf (stderr,

n\tshm_perm.uid = %d\n", buf->shm_perm.uid);
"\tshm_perm.gid = %d\n", buf->shm perm.gid);
"\tshm_perm.cuid %d\nn, buf->shm_perm.cuid);
n\tshm_perm.cgid = %d\n", buf->shm_perm.cgid);
"\tshm_perm.mode = %#o\n", buf->shm_perm.mode);
"\tshm_perm.key = %#x\n", buf->shm_perm.key);
"\tshm_segsz = %d\nn, buf->shm_segsz);
"\tshm_lpid %d\n", buf->shm_Ipid);
"\tshm_cpid = %d\n", buf->shm_cpid);

sun
mlcrosystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 87

(void) fprintf (stderr, "\tshm_nattch = %d\n", buf->shm_nattch);
(void) fprintf (stderr, "\tshm_atime = %s",

buf->shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");
(void) fprintf (stderr, "\tshm_dtime = %s",

buf->shm_dtime ? ctime (&buf->shm_dtime) : "Not Set \n") ;
(void) fprintf(stderr, "\tshm_ctime = %s", ctime(&buf->shm_ctime));

Attaching and Detaching a
Shared Memory Segment with
shmat () and shmdt ()

Figure 3-24

shmat () and shmdt () are used to attach and detach shared memory seg­
ments. Their synopses are as follows:

Synopses of shmat () and shmdt ()

*include <sys/types.h>
*include <sys/ipc.h>
*include <sys/shm.h>

char *shmat(shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt(shmaddr)
char *shmaddr;

Upon successful completion, the shmat () system call returns a pointer to the
head of the shared segment; when unsuccessful, it returns' (char *) -1' and
sets the external variable errno to the appropriate error code.

The shrnid argument is the 10 of an existing shared memory segment. The
shmaddr argument is the address at which to attach the segment. If supplied as
zero, the system provides a suitable address. For the sake of portability, it is usu­
ally better to allow the system to determine the address.

The shrnf 19 argument is a control flag used to pass the S HM _ RND and
SHM_RDONLY flags to the shmat () system call.

The s hmdt () system call detaches the shared memory segment located at the
address indicated by shmaddr. Upon successful completion, schrndt ()
returns zero; when unsuccessful, it returns -1 and sets the external variable
errno to the appropriate error code.

The following sample program illustrates shmat () and shmdt ().

Revision A of 27 March 1990

88 Programming Utilities and Libraries

Figure 3-25 Sample Program to Illustrate shmat () and shmdt ()

/*
** shmop.c: Illustrate the shmat() and shmdt() system calls.
**
** This is a simple exerciser for the shmat() and shmdt() system
** calls. It allows you to attach and detach segments and to
** write strings into and read strings from attached segments.
*/

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask () ;
static void catcher();
extern void exit () ;
static good_addr();
extern void perror () ;
extern char *shmat();

static struct state
int shmid;
char *shmaddr:
int shmflg;
ap[MAXnap];

/* Internal record of currently attached segments. */
/* shmid of attached segment */

/* attach point */
/* flags used on attach */

/* State of current attached segments. */

static intnap; /* Number of currently attached segments. */
static jmp_buf segvbuf; /* Process state save area for SIGSEGV catching. */

main()
{

register int action; /* action to be performed */
char *addr; /* address work area */
register int i: /* work area */
register struct state *p; /* ptr to current state entry */
void (*savefunc) (): /* SIGSEGV state hold area */

(void) fprintf(stderr,
"All numeric input is expected to follow C conventions:\n");

(void) fprintf(stderr, "\tOx ... is interpreted as hexadecimal,\n");
(void) fprintf(stderr, "\to ... is interpreted as octal,\n");
(void) fprintf(stderr, "\totherwise, decimal.\n");
while (action = ask()) {

if (nap) {
(void) fprintf(stderr,

"\nCurrently attached segment(s) :\n");
(void) fprintf(stderr, "shmid address\n");
(void) fprintf(stderr, ,,------ ----------\n");

p = &ap [nap] ;
while (p-- != ap) {

else

(void) fprintf(stderr, "%6d", p->shmid);
(void) fprintf(stderr, "%#llx", p->shmaddr);
(void) fprintf(stderr, " Read%s\n",

(p->shmflg & SHM_RDONLY) ?
"-Only" : "/Write");

(void) fprintf(stderr,
"\nNo segments are currently attached. \n") ;

sun
microsystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 89

switch (action) {
case 1: /* Shmat requested. */

/* Verify that we have space for another attach. */
if (nap == MAXnap) {

(void) fprintf(stderr, "is %d %s\n",
"This simple example will only allow",
MAXnap, "attached segments."):

break:

p &ap[nap++];

/* Get the arguments, make the call, report the
results, and update the current state array. */

(void) fprintf(stderr,
"Enter shmid of segment to attach: It);

(void) scanf("%i", &p->shmid):

(void) fprintf(stderr, "Enter desired shmaddr: "):
(void) scanf("%i", &p->shmaddr):

(void) fprintf(stderr,
"Meaningful shmflg values are :\n"):

(void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",
SHM_RDONLY):

(void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",
SHM_RND):

(void) fprintf(stderr, "Enter desired shmflg value: "):
(void) scanf (" %i", &p->shmflg):

(void) fprintf(stderr,
"shmop: Calling shmat(%d, %'x, %'o)\n",
p->shmid, p->shmaddr, p->shmflg);

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg):
if (p->shmaddr == (char *)-1) {

perror("shmop: shmat failed"):
nap--;

else {
(void) fprintf(stderr,

"shmop: shmat returned %#8.8x\n",
p->shmaddr) :

break;

case 2: /* Shmdt requested. */
/* Get the address, make the call, report the results,

and make the internal state match. */
(void) fprintf(stderr,

"Enter desired detach shmaddr: It);

(void) scanf("%i", &addr):

i = shmdt(addr);
if(i == -1) {

perror("shmop: shmdt failed"):
else {

(void) fprintf(stderr,
"shmop: shmdt returned %d\n", i):

for (p = ap, i = nap: i--: p++)
if (p->shmaddr == addr)

*p = ap[--nap];

break:

case 3: /* Read from segment requested. */
if (nap == 0)

break:

(void) fprintf{stderr, "Enter address of an %s",

sun
microsystems

Revision A of 27 March 1990

90 Programming Utilities and Libraries

/*

"attached segment: ");
(void) scanf("%i", &addr);

if (good_addr(addr»
(void) fprintf(stderr, "String @ %#x is '%s'\n",

addr, addr);
break;

case 4: 1* Write to segment requested. */
if (nap == 0)

break;

(void) fprintf(stderr, "Enter address of an %s",
"attached segment: H);

(void) scanf("%i", &addr);

/* Set up SIGSEGV catch routine to trap attempts to
write into a read-only attached segment. */

savefunc = signal(SIGSEGV, catcher);

if (setjmp(segvbuf» {
(void) fprintf(stderr, "shmop: is: %s\n",

"SIGSEGV signal caught",
"Write aborted.");

else {
if (good_addr(addr» {

(void) fflush(stdin);
(void) fprintf(stderr, "%s %s %#x:\n",

"Enter one line to be copied",
"to shared segment attached @",
addr);

(void) gets(addr);

(void) fflush(stdin);

/* Restore SIGSEGV to previous condition. */
(void) signal (SIGSEGV, savefunc);
break;

exit (0) ;

/*NOTREACHED*/

** Ask for next action.
*/
static
ask ()
{

int response; /* user response */

do {
(void) fprintf (stderr, "Your options are:\n");
(void) fprintf (stderr, "\t~D exit\nn);
(void) fprint f (stderr, "\t 0 exit\n");
(void) fpr int f (stderr, "\t 1 shmat\n");
(void) fprintf(stderr, "\t 2 shmdt \n") ;
(void) fprintf(stderr, "\t 3 read from segment \n") ;
(void) fpr int f (stderr , "\t 4 write to segment\n");
(void) fprintf (stderr,

"Enter the number corresponding to your choice: ") ;

/* Preset response so "-0" will be interpreted as exit. */
response = 0;
(void) scanf("%i", &response);

while (response < 0 I I response> 4);

sun
microsystems

Revision A of 27 March 1990

Chapter 3 - System V Interprocess Communication Facilities 91

return (response);

/*
** Catch signal caused by attempt to write into shared memory segment
** attached with SHM RDONLY flag set.
*/
/*ARGSUSED*/
static void
catcher (sig)
{

/*

longjmp(segvbuf, 1);
/*NOTREACHED*/

** Verify that given address is the address of an attached segment.
** Return 1 if address is valid; 0 if not.
*/
static
good_addr(address)
char *address;

register struct state *p; /* ptr to state of attached segment */

for (p = ap; p != &ap[nap]; p++)
if (p->shmaddr == address)

return (1) ;

return(O);

Revision A of 27 March 1990

92 Programming Utilities and Libraries

Revision A of 27 March 1990

4.1. Introduction

The sec s Command

Initializing the sees History
File: sees create

4
sees - Source Code Control System

Coordinating write access to source files is important when changes may be
made by several people. Maintaining a record of updates allows you to deter­
mine when and why changes were made.

The Source Code Control System (SeeS) allows you to control write access to
source files, and to monitor changes made to those files. sees allows only one
user at a time to update a file, and records all changes in a history file.

sees allows you to:

o Retrieve copies of any version of the file from the sees history.

o Check out and lock a version of the file for editing, so that only you may
make changes to it. sees prevents one user from unwittingly "clobbering"
changes made by another.

o Check in your updates to the file. When you check in a file, you can also
supply comments that summarize your changes.

o Back out changes made to your checked-out copy.

o Inquire about the availability of a file for editing.

o Inquire about differences between selected versions.

o Display the version log summarizing the changes checked in so far.

The Source Code Control System is composed of the sees(l) command, which
is a front end for the utility programs in the /usr/ sees directory. The sees
utility programs are listed under Reference Tables, at the end of this chapter.

The sces create command places your file under sees control. It creates a
new history file, and uses the complete text of your source file as the initial ver­
sion. By default, the history file resides in the sees subdirectory; you may have
to create this subdirectory if it is not already present:

93 Revision A of 27 March 1990

94 Programming Utilities and Libraries

Basic sees Subcommands

The output from sees tells you the name of the "created" file, its version
number (1.1), and the count of lines.

To prevent the accidental loss or damage to an original, sees create makes a
second link to it, prefixing the new filename with a comma (referred to as the
"comma-file. ") When the history file has been initialized successfully, sees
retrieves a new, read-only version. Once you have verified the version against its
comma-file, you can remove that file.

Do not try to edit the read-only version that sees retrieves. Before you can edit
the file, you must check it out using the sees edit command described below.

To distinguish the history file from a current version, sees uses the's.' prefix.

Owing to this prefix, the history file is often referred to as the s . file
(' 's-dot-file' '). For historical reasons, it may also be referred to as the
, 'SeeS-file. "

The fonnat of an sees history file is described in sec sf ile(5).

The following sec s subcommands perform the basic version-control functions.
They are summarized here, and, except for create, are described in detail
under sees Subcommands, below.

erea te Initialize the history file and first version, as described above.

edi t Check out a writable version (for editing). sees retrieves a writable
copy with you as the owner, and places a lock on the history file so
that no one else can check in changes.

delta Check in your changes. This is the complement to the sees edit
operation. Before recording your changes, sees prompts for a com­
ment, which it then stores in the history file's version log.

get Retrieve a read-only copy of the file from the s . file. By default,
this is the most recent version. While the retrieved version can be
used as a source file for compilation, fonnatting, or display, it is not

+ sun Revision A of 27 March 1990
microsystems

Deltas and Versions

SIDs

ID Keywords

Chapter 4 - sees - Source Code Control System 95

intended to be edited or changed in any way. (Attempting to bend
the rules by changing permissions of a read-only version can result
in your changes being lost.)

If you give a directory as a filename argument, sees attempts to perform the
subcommand on each s. file in that directory. Thus, the command:

sees get sees

retrieves a read-only version for every s. file in the sees subdirectory.

prt
Display the version log, including comments associated with each version.

When you check in a version, sees records only the line-by-line differences
between the text you check in and the previous version. This set of differences is
known as a delta. The version that is retrieved by an edi t or get is con­
structed from the accumulated deltas checked in so far. The terms "delta" and
"version" are often used synonymously. However, their meanings aren't
exactly the same; it is possible to retrieve a version that omits selected deltas (see
Excluding Deltas from a Retrieved Version, below).

An sees delta ID, or SID, is the number used to represent a specific delta. This
is a two-part number, with the parts separated by a dot (.). The SID of the initial
delta is 1 .1 by default. The first part of the SID is referred to as the release
number, and the second, the level number. When you check in a delta, the level
number is incremented automatically. The release number can be incremented as
needed. sees also recognizes two additional fields for branch deltas (described
under Branch Deltas, below).

Strictly speaking, an SID refers directly to a delta. However, it is often used to
indicate the version constructed from a delta and its predecessors.

sees recognizes and expands certain keywords in a source file, which you can
use to include version-dependent information (such as the SID) into the text of
the checked-in version. When the file is checked out for editing, ID keywords
take the following form:

%C%

where C is a capital letter. When you check in the file, sees replaces the key­
words with the information they stand for. For example, % I % expands to the SID
of the current version.

You would typically include ID keywords either in a comment or in a string
definition. If you do not include at least one ID keyword in your source file,
sees issues the diagniostic:

No Id Keywords (em7)

For more information about ID keywords. refer to Incorporating ID Keywords,
below.

Revision A of 27 March 1990

96 Programming Utilities and Libraries

4.2. sees Subcommands

Checking Files In and Out

Checking Out a File for Editing:
sees edit

Checking in a New Version:
sees delta

The following subcommands are useful when retrieving versions or checking in
changes.

To edit a source file, you must check it out first using sees edi t.1 sees
responds with the delta ID of the version just retrieved, and the delta ID it will
assign when you check in your changes.

You can then edit it using a text editor.

If a writable copy of the file is present, see s edit issues an error message; it
does not overwrite the file if anyone has write access to it.

Having first checked out your file and completed your edits, you can check in the
changes using sees delta.

Checking a file in is also referred to as "making a delta." Before checking in
your updates, sees prompts you for comments. These typically include a brief
summary of your changes.

You can extend the comment to an additional input line by preceding the NEW­
LINE with a backslash:

1 The sees edit command is equivalent to using the -e option to sees get.

Revision A of 27 March 1990

Changed lines count as lines
deleted and inserted.

Retrieving a Version: see s
get

Reviewing Pending Changes:
sees diffs

Chapter 4 - sees - Source Code Control System 97

sees responds by noting the SID of the new version, and the numbers of lines
inserted, deleted and unchanged. sees removes the working copy. You can
retrieve a read-only version using sees get.

Think ahead before checking in a version. Making deltas after each minor edit
can become excessive. On the other hand, leaving files checked out for so long
that you forget about them can inconvenience others.

Comments should be meaningful, since you may return to the file one day.

It is important to check in all changed files before compiling or installing a
module for general use. A good technique is to edit the files you need, make
all necessary changes and tests, compile and debug the files until you are
satisfied, check them in, retrieve read-only copies with get, and then recompile
the module.

To get the most recent version of a file, use the command:

sees get filename

For example:

retrieves program. e, and reports the version number and the number of lines
retrieved. The retrieved copy of program. e has permissions set to read-only.

Do not change this copy of the file, since sees will not create a new delta unless
the file has been checked out. If you force changes into the retrieved copy, you
may lose them the next time someone performs an sees get or an sees
edi t on the file.

Changes made to a checked-out version, but which are not yet checked in, are
said to be pending. When editing a file, you can find out what your pending
changes are using 'sees diffs'. The diffs subcommand uses diff(1) to
compare your working copy with the most recently checked-in version.

hermes% sccs diffs program.c

37e37
<

>

program.e ------

if « (emdy - emd) + 1)

if «(emdy - emd) - 1)

Most of the options to diff can be used. To invoke the -e option to diff, use
the '-C' argument to 'sees diffs'.

Revision A of 27 March 1990

98 Programming Utilities and Libraries

Deleting Pending Changes:
sees unedit

Combining delta and get:
sees delget

Combining delta and edit:
sees deledit

Retrieving a Version by SID:
sees get -r

Retrieving a Version by Date
and Time: sees get -e

Repairing a Writable Copy:
sees get -k -G

sees unedi t backs out pending changes. This comes in handy if you damage
the file while editing it and want to start over. unedi t removes the checked-out
version, unlocks the history file, and retrieves a read-only copy of the most recent
version checked in. After using un edi t, it is as if you hadn't checked out the
file at all. To resume editing, use sees edit to check the file out again. (See
also, Repairing a Writable Copy, below.)

sees delget combines the actions of del ta and get: it checks in your
changes and then retrieves a read-only copy of the new version. However, if
sees encounters an error during the delta, it does not perfonn the get. When
processing a list of filenames, delget applies all the deltas it can, and if
errors occur, omits all of the gets.

sees deledit perfonns a delta followed by an edit. You can use this to
check in a version and immediately resume editing.

The - r option allows you to specify the SID to retrieve:

In some cases you don't know the SID of the delta you want, but you do know
the date on (or before) which it was checked in. You can retrieve the latest ver­
sion checked in before a given date and time using the -e option and a date-time
argument of the form:

-eyy [mm [dd [hh [mm [ss]]]]]

For example:

retrieves whatever version was current as of July 22, 1988 at 12:00 noon. Trail­
ing fields can be omitted (defaulting to their highest legal value), and punctuation
can be inserted in the obvious places; for example, the above line could be writ­
ten as:

sees get -e"88/07/22 12:00:00" program.e

Without checking out a new version, sees get -k -Gfilename retrieves a
writable copy of the text, and places it in the file specified by '-G'. This can be
useful when you want to replace or repair a damaged working copy using di f f
and your favorite editor.

Revision A of 27 March 1990

Incorporating Version­
Dependent Information: ID
Keywords

Defining a string in this way allows
version information to be compiled
into the C object file. If you use this
technique to put 10 keywords into
header (. h) files, use a different
variable in each header file. This
prevents errors from attempts to
redefine the (static) variables.

Chapter 4 - sees - Source Code Control System 99

As mentioned above, sees allows you to include version-dependent infonnation
in a checked-in version through the use of ID keywords. These keywords, which
you insert in the file, are automatically replaced by the corresponding informa­
tion when you check in your changes. sees ID keywords take the fonn:

%C%

where C is an upper case letter.

For instance, % I % expands to the SID of the most recent delta. %W% includes the
filename, the SID, and the unique string @ (#) into the file. This string is
searched for by the what command in both text and binary files (allowing you to
see which source versions a file or program was built from). The %G% keyword
expands to the date of the latest delta. Other ID keywords and the strings they
expand to are listed in the Identification Keywords, table under Reference Tables
at the end of this chapter.

To include version dependent infonnation in a C program, you can use a line like
this:

static char Sccsld[] = "%W%\t%G%";

If the file were named program. c, this line would expand to the following
when version 1.2 is retrieved:

static char Sccsld["@(#)program.c 1.2 08/29/80";

Since the string is defined in the compiled program, this technique allows you to
include source-file information within the compiled program, which the what
command can report:

For shell scripts and the like, you can include ID keywords within comments:

[

%W% %G% J
'------------'

If you check in a version containing expanded keywords, the version-dependent
infonnation will no longer be updated. To alert you to this situation, sees gives
you the warning:

No Id Keywords (cm7)

when a get, edit, or create finds no ID keywords.

Revision A of 27 March 1990

100 Programming Utilities and Libraries

Making Inquiries

Seeing Which Version Has
Been Retrieved: The what
Command

Detennining the Most Recent
Version: sees get -g

Detennining Who Has a File
Checked Out: sees info

The following subcommands are useful for inquiring about the status of a file or
its history.

Since sees allows you (or others) to retrieve any version in the file's history,
there is no guarantee that a working copy present in the directory reflects the ver­
sion you desire. The what command scans files for sees ID keywords. It also
scans binary files for keywords, allowing you to see which source versions a pro­
gram was compiled from.

In this case, the file contains a working copy of version 1.1.

To see the SID of the latest delta, you can use sees get -g:

In this case, the most recent delta is 1.2. Since this is more recent than the ver­
sion reflected by what in the example above, you would probably want to get
the new version.

To find out what files are being edited, type:

sees info

This subcommand displays a list of all the files being edited, along with other
infonnation, such as the name of the user who checked the file out. Similarly,
you can use

sees eheek

silently returns a non-zero exit status if anything is being edited. This can be
used within a makefile to force make(1) to halt if it should find that a source file
is checked out.

If you know that all the files that you have checked out are ready to be checked
in, you can use:

sees delta 'sees tell -u'

to process them all. tell lists only the names of files being edited, one per line.
With the -u option, tell reports only those files checked out to you. If you
supply a username as an argument to -u, sees tell reports only the files
checked out to that user.

Revision A of 27 March 1990

Displaying Delta Comments:
sees prt

Updating a Delta Comment:
sees cdc

Comparing Checked-In
Versions: sees sccsdiff

Chapter 4 - sees - Source Code Control System 101

s c c s prt produces a listing of the version log, also referred to as the delta
table, which includes the SID, time and date of creation, and the name of the user
who checked in each version, along with the number of lines inserted, deleted,
and unchanged, and the commentary:

To display only the most recent entry, use the -y option.

If you forget to include something important in a comment, you can add the
missing infonnation using

sees cdc -rsid

The delta must be the most recent (or the most recent in its branch, see Branches,
below), and you must either be the user who checked the delta in, or you must
own and have pennission to write on both the history file and the sccs subdirec­
tory. When you use cde, sees prompts for your comments and inserts the new
comment you supply:

The new commentary, as displayed by prt, looks like:

To compare two checked-in versions, use:

to see the differences between delta 1.1 and delta 1.2. Most options to di f f can
be used. To invoke the -c option to diff, use the '-C' argument to
, sec s di f f '. Instead of - r, you can use the - cdate-time option to sec s.

+!!!!! Revision A of 27 March 1990

102 Programming Utilities and Libraries

Displaying the Entire History:
sees get -m -p

Creating Reports: see s pr s
-d

If you wish to see a listing of all changes made to the file and the delta in which
each was made, you can use the -m and -p options to get:

To find out what lines are associated with a particular delta, you can pipe the out­
put through grep(1 V):

(sees get -m -p program.e I grep '·1.2'

You can also use -p, by itself to send the retrieved version to the standard out­
put, rather than to the file.

You can use the prs subcommand with the -ddataspec option to derive reports
about files under sees control. The dataspec argument offers a rich set of
i"datakeywords" that correspond to portions of the history file. Data keywords
take the fonn:

:X:

and are listed in the Data Keywords table under Reference Tables at the end of
this chapter. There is no limit on the number of times a data keyword may
appear in the dataspec argument. A valid dataspec argument is a (quoted) string
consisting of text and data keywords.

pr s replaces each recognized keyword with the appropriate value from the his­
tory file.

The fonnat of a data keyword value is either simple, in which case the expanded
value is a simple string, or multi-line, in which case the expansion includes
(RETURN I characters.

A (TAB I is specified by '\ t' and a [RETURN) by '\ n' .

Here are some examples:

]

Revision A of 27 March 1990

Deleting Committed Changes

Replacing a Delta: sec s fix

Removing a Delta: sec s
rmdel

Reverting to an Earlier Version

Chapter 4 - sees - Source Code Control System 103

From time to time a delta is checked in that contains small bugs, such as typos,
that need correcting but that do not require entries in the file's audit trail. Or,
perhaps the comment for a delta is incomplete or in error, even when the text is
correct. In either case, you can make additional updates and replace the version
log entry for the most recent delta using sec s fix:

This checks out version 1.2 of progr am. c. When you check the file back in,
the current changes will replace delta 1.2 in the history file, and sees will
prompt for a (new) comment. You must supply an SID with '-r'. Also, the
delta that is specified must be a leaf (most recent) delta.

Although the previously-cheeked-in delta 1.2 is effectively deleted, sees retains
a record of it, marked as deleted, in the history file.

Before using sees fix it is a good idea to make a copy of the current version,
just in case.

To remove all traces of the most recent delta, you can use the rmdel subcom­
mand. You must specify the SID using -r. In most cases, using fix is prefer­
able to rmdel, since fix preserves a record of "deleted" delta, while rmdel
does not.2

To retrieve a writable copy of an earlier version, use' get - k'. This can come
in handy when you need to backtrack past several deltas.

To use an earlier delta as the basis for creating a new one:

o Check out the file as you nonnally would (using see s edit).

o Retrieve a writable copy of an earlier' 'good" version (giving it a different
filename) using get -k:

sees get -k -rsid -Goldname filename

The -Gfilename option specifies the name of the newly retrieved version.

o Replace the current version with the older" good" version:

mv oldname filename

o And finally, check the file back in. In some cases, it may be simpler just to
exclude certain deltas. Or, refer to Branch Deltas, below, for information on
how to use sees to manage divergent sets of updates to a file.

2 Referto sccs-rmdel(1) for more infonnation.

Revision A of 27 March 1990

104 Programming Utilities and Libraries

Excluding Deltas from a
Retrieved Version

Combining Versions: secs
comb

CAUTION

Suppose that the changes that were made in delta 1.3 aren't applicable to the next
version, 1.4. When you retrieve the file for editing, you can use the -x option to
exclude delta 1.3 from the working copy:

Now, when you check in delta 1.5, that delta will include the changes made in
delta 1.4, but not those from delta 1.3. In fact, you can exclude a list of deltas by
supplying a comma-separated list to - x, or a range of deltas, separated with a
dash. For example, if you want to exclude 1.3 and 1.4, you could use:

or

In this example:

sees excludes the range of deltas from 1.3 to the current highest delta in release
1.

In certain cases when using -x there will be conflicts between versions; for
example, it may be necessary to both include and delete a particular line. If this
happens, sees displays a message telling the range of lines affected. Examine
these lines carefully to see if the version sees derived is correct.

Since each delta (in the sense of " a set of changes' ') can be excluded at will, it is
most useful to include a related set of changes within each delta.

The comb subcommand generates a Bourne Shell script that, when run, con­
structs a new history file in which selected deltas are combined or eliminated.
This can be useful when disk space is at a premium.

In combining several deltas, the comb-generated script destroys a portion of
the file'S version log, including comments.

The -psid option indicates the oldest delta to preserve in the reconstruction.
Another option,

-c sid-list

allows you to specify a list of deltas to include. sid-list is a comma-separated
list; you can specify a range between two SIDs by separating them with a dash
('-') in the list. -p and -c are exclusive. The -0 option attempts to minimize
the number of deltas in the reconstruction.

The - s option produces a script that compares the size of the reconstruction with
that of the original. The comparision is given as a percentage of the original the
reconstruction would occupy, based on the number of blocks in each.

Revision A of 27 March 1990

Chapter 4 - sees - Source Code Control System 105

NOTE When using comb, it is a good idea to keep a copy of the original history file on
hand. While comb is intended to save disk space, it may not always. In some
cases, it is possible that the resulting history file may be larger than the original.

4.3. Version Control for
Binary Files

Use sees to control the updates to
source files, and make to compile
objects consistently.

If no options are specified, comb preserves the minimum number of ancestors
needed to preserve the changes made so far.

Although sees is typically used for source files containing ASeII text, the
SunOS version of SCCS allows you to apply version control to binary files as
well (files that contain NULL or control characters, or do not end with a
(NEWLINE I). The binary files are encoded3 into an ASCII representation when
checked in; working copies are decoded when retrieved.

You can use SCCS to track changes to files such as icons, raster images, and
screen fonts.

You can use sccs create -b to force sces to treat a file as a binary file.
When you create or delta a binary file, you get the warning message:

Not a text file (ad31)

You may also get the message:

No id keywords (em7)

These messages may safely be ignored. Otherwise, everything proceeds as
expected:

Since the encoded representation of a binary file can vary significantly between
versions, history files for binary sources can grow at a much faster rate than those
for ASCII sources. However, using the same version control system for all source
files makes dealing with them much easier.

3 See uuencode(lC) for details.

Revision A of 27 March 1990

106 Programming Utilities and Libraries

4.4. Maintaining Source
Directories

Duplicate Source Directori(

sees and make

Keeping SIDs Consistent Across
Files

When using sees, it is the history files, and not the working copies, that are the
real source files.

If you are working on a project and wish to create a duplicate set of sources for
some private testing or debugging, you can make a symbolic link to the sees
subdirectory in your private working directory:

This makes it a simple matter to retrieve a private (duplicate) set of working
copies, of the source files using:

sees get sees

While working in the duplicate directory, you can also check files in and out­
just as you could if you were in the original directory.

sees is often used with make(l) to maintain a software project. The SunOS
version of make provides for automatic retrieval of source files. (Other versions
of make provide special rules that accomplish the same purpose.) It is also pos­
sible to retrieve earlier versions of all the source files, and to use make to rebuild
earlier versions of the project:

As a general rule, no one should check in source files while a build is in progress.
When a project is about to be released, all files should be checked in before it is
built. This insures that the sources for a released project are stable.

With some care, it is possible to keep the SIOs consistent across sources com­
posed of multiple files. The trick here is to edit all the files at once. The
changes can then be made to whatever files are necessary; check in all the files
(even those not changed). This can be done fairly easily by specifying the sees
subdirectory as the filename argument to both edit and delta:

With the del ta subcommand, you are prompted for comments only once; the
comment is applied to all files being checked in. To determine which files have

Revision A of 27 March 1990

Starting a New Release

Temporary Files used by sees

4.5. Branches

Chapter 4 - sees - Source Code Control System 107

changed, you can compare the "lines added, deleted, unchanged" fields in each
file's delta table.

To create a new release of a program, specify the release number you want to
create when you check the file out for editing, using the - r n option to e di t; n is
the new release number:

In this case, when the new version is de 1 t a 'ed, it will be the first level delta in
release 2, with SID 2. 1. To change the release number for all SeeS-files in the
directory, use:

When sees modifies an s . file (that is, a history file), it does so by writing to a
temporary copy called an x . file. When the update is complete, sees uses the
x. file to overwrite the old s . file. This insures that the history file is not dam­
aged when processing tenninates abnonnally. The x . file is created in the same
directory as the history file, is given the same pennissions, and is owned by the
effective user.

To prevent simultaneous updates to an sees file, subcommands that update the
history create a lock file, called a z • file, which contains the PID of the process
performing the update. Once the update has completed, the z . file is removed.
The z • file is created with mode 444 (read-only) in the directory containing the
sees file, and is owned by the effective user.

You can think of the deltas applied to an sees file as the nodes of a tree; the root
is the initial version of the file. The root delta (node) is number' 1.1 ' by default,
and successor deltas (nodes) are named' 1.2', '1.3', and so forth. As noted ear­
lier, these first two parts of the SID are the release and level numbers. The nam­
ing of a successor to a delta proceeds by incrementing the level number. You
have also seen how to check out a new release when a major change to the file is
made. The new release number applies to all successor deltas as well, unless you
specify a new level in a prior release.

Thus, the evolution of a particular file may be represented as follows:

Revision A of 27 March 1990

108 Programming Utilities and Libraries

s.file file

1.1

1.2

11.3 ----
, ... 1.4 , ...

~ ~

2.1 -

... -
~-

...

~ Figure 4-1 Evolution 0/ an sees File

We can call this structure the 'trunk' of the sees delta tree. It represents the nor­
mal sequential development of an sees file; changes that are part of any given
delta depend upon all the preceding deltas.

However, situations can arise when it is convenient to create an alternate branch
on the tree. For instance, consider a program which is in production use at ver­
sion 1.3, and for which development work on release 2 is already in progress.
Thus, release 2 may already have some deltas. Assume that a user reports a prob­
lem in version 1.3 which cannot wait until release 2 to be corrected. The changes
necessary to correct the problem will have to be applied as a delta to version 1.3.
This requires the creation of a new version, but one that is independent of the
work being done for release 2. The new delta will thus occupy a node on a new
branch of the tree.

The SID for a branch delta consists of four parts: the release and level numbers,
and the branch and sequence numbers:

release . level . branch. sequence

The branch number is assigned to each branch that is a descendant of a particular
trunk delta; the first such branch is 1, the next one 2, and so on. The sequence
number is assigned, in order, to each delta on a particular branch. Thus, 1.3.1.1
identifies the first delta of the first branch derived from delta 1.3, as shown
below.

Revision A of 27 March 1990

Chapter 4 - sees - Source Code Control System 109

s.file file

ILl
11.2

1.3 'i'~ --
... ...

1.4 1.3.1.1
.L-"

2.1 "-
"-

'~~
...

~ ... '"

Figure 4-2 Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of
the resulting deltas proceeds in the manner just illustrated.

The first two components of the name of a branch delta are always those of the
ancestral trunk delta. The branch component is assigned in the order of creation
on the branch, independent of its location relative to the trunk. Thus, a branch
delta may always be identified as such from its name, and while the trunk delta
may be identified from the branch delta's name, it is not possible to determine
the entire path leading from the trunk delta to the branch delta. For example, if
delta 1.3 has one branch emanating from it, all deltas on that branch will be
named '1.3.1.n'. If a delta on this branch then has another branch emanating
from it, all deltas on the new branch will be named' 1.3.2.n'. The only informa­
tion that may be derived from the name of delta 1.3.2.2 is that it is the second
chronological delta on the second chronological branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta
1.3.2.2 all of the deltas between it and its trunk ancestor (1.3).

Revision A of 27 March 1990

110 Programming Utilities and Libraries

s.file

... 1.4

2.2

file

1.3

" "
"

1.3.1.2

1.3.2.1 I
1.3.2.2

-

Figure 4-3 Extending the Branching Concept

Using Branches

Creating a Branch Delta

Retrieving Versions From
Branch Deltas

Branch deltas allow the generation of arbitrarily complex tree structures. It is
best to keep the use of branches to a minimum.

You can use branches when you need to keep track of an alternate versions
developed in parallel, such as for bug fixes or experimental purposes.

Before you can create a branch, you must enable the "branch" flag in the history
file using the sees adrnin command, as follows:

The -fb option sets the b (branch) flag in the history file.

To create a branch from delta 1.3, for program. e you would use the sees
edi t subcommand shown below:

When you check in your edited version, the branch delta will have SID 1.3.1.1.
Subsequent deltas made from this branch will be numbered 1.3.1.2, and so on.

Branch deltas usually aren't included in the version retrieved by get. To
retrieve a branch version (the version associated with a branch delta), you must
specifically request it with the - r option. If you omit the sequence number, as in
the next example, sees retrieves the highest delta in the branch:

Revision A of 27 March 1990

4.6. Administering sees
Files

Interpreting Error Messages:
sees help

Altering History File Defaults:
sees admin

Chapter 4 - sees - Source Code Control System 111

By convention, history files and all temporary sees files reside in the sec s sub­
directory. In addition to the standard file protection mechanisms, sees allows
certain releases to be frozen, and access to releases to be restricted to certain
users (see sees-admin(l) for details). History files nonnally have pennissions
set to 444 (read-only for everyone), to prevent modification by utilities other than
sees. In general, it is not a good idea to edit the history files.

A history file should have just one link. sees utilities update the history file by
writing out a modified copy (x. file), and then renaming the copy.

The help subcommand displays information about sees error messages and
utilities.

help normally expects either the name of an sees utility, or the code (in
parentheses) from an sees error message. If you supply no argument, help
prompts for one. The directory /usr / lib/help contains files with the text of
the various messages help displays.

There are a number of parameters that can be set using the admin command. The
most interesting of these are flags. Flags can be added by using the -f option.
For example:

sets the 'd' flag to the value '1'. This flag can be deleted by using:

The most useful flags are:

b Allow branches to be made using the - b option to see s edit (see
Branches, above).

dSlD
Default SID to be used on an sees get or sees edit. If this is just a
release number it constrains the version to a particular release only.

i Give a fatal error if there are no ID keywords in a file. This prevents a ver­
sion from being checked in when the ID keywords are missing or expanded
by mistake.

y The value of this flag replaces the %Y% ID keyword.

-tfile
store descriptive text from file in the s . file. This descriptive text might be
the documentation or a design and implementation document. U sing the -t
option ensures that if the s . file is passed on to someone else, the

Revision A of 27 March 1990

112 Programming Utilities and Libraries

Validating the History File

documentation will go along with it. If file is omitted, the descriptive text is
deleted. To see the descriptive text, use prt -to

The sees admin command can be used safely any number of times on files. A
current version need not be retrieved for admin to work.

You can use the val subcommand to check certain assertions about a history
file. val always checks for the following conditions:

o A corrupted history file.

o The history file can't be opened for reading, or the file is not an sees his­
tory.

If you use the -r option, val checks to see if the indicated SID exists.

Restoring the History File In particularly bad circumstances, the history file itself may get corrupted. The
most common way this happens is for someone to edit it. Since the file contains
a checksum, you will get errors every time you read a corrupted file. To correct
the checksum, use:

CA UTION When sees says that the history file is corrupted, it may indicate serious
damage beyond an incorrect checksum. Be careful to safeguard your
current changes before attempting to correct a history file.

4.7. Reference Tables

Table 4-1 sees ID Keywords

Keyword Expands to
% Z % @ (41:) (search string for the w ha t command)
%M% The current module (file) name
% I % The highest SID applied
%w% shorthand for: % Z% %M% tab % I %

%G% The date of the delta corresponding to the %1% keyword.
%R % The current release number.
%Y% The value of the t flag (set by sees admin).

6.. sun Revision A of 27 March 1990
... microsystems

Keyword

:Dt:
:DL:
:Li:
:Ld:
:Lu:
:DT:
:1 :
:R:
:L:
:B:
:S:
:D:
:Dy:
:Dm:
:Dd:
:T:
:Th:
:Tm:
:Ts:
:P:
:DS:
:DP:
:D1:

Chapter 4 - sees - Source Code Control System 113

Table 4-2 sees Utility Commands

sees Utility Programs
Command I Refer to:

admin sees -admin(1)
cdc sces-cdc(l)
comb sces-comb(1)
delta sces-delta(1)
get sces-get(l)
help sces-help(l)
prs sces-prs(l)
rmdel sces-rmdel(l)
saet sces-saet(l)
secsdiff sces-sccsdiff(l)
unget sces-unget(l)
val sces-val(l)

* what what(l)

* what is a general-purpose command.

Table 4-3 Data Keywords for pr s -d

Data Item File Section Value

* Delta information Delta Table see below
Delta line statistics " :Li:/:Ld:/:Lu:
Lines inserted by Delta " nnnnn
Lines deleted by Delta " nnnnn
Lines unchanged by Delta " nnnnn
Delta type " DorR
sees ID string (SID) : R:.:L:.:B:.:S :
Release number " nnnn
Level number " nnnn
Branch number " nnnn
Sequence number " nnnn
Date Delta created :Dy:/:Dm:/:Dd:
Year Delta created " nn
Month Delta created " nn
Day Delta created " nn
Time Delta created " : Th: : : Tm: : : T s :
Hour Delta created " nn
Minutes Delta created " nn
Seconds Delta created " nn
Programmer who created Delta " logname
Delta sequence number " nnnn
Predecessor Delta seq-no. " nnnn
Sequence number of deltas " :Dn:/:Dx:/:Dg:

included, excluded, ignored

+~Y"!!

Formatf

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

Revision A of 27 March 1990

114 Pro gramming Utilities and Libraries

Table 4-3 DataKeywords!orprs -d-Continued

Keyword Data Item File Section Value Formatf

:Dn: Deltas included (seq #) " :DS: :DS: ... S
:Dx: Deltas excluded (seq #) " :DS: :DS: ... S
:Dg: Deltas ignored (seq #) " :DS: :DS: ... S
:MR: MR numbers for delta " text M
: C: Comments for delta " text M
:UN: User names User Names text M
:FL: Flag list Hags text M
: Y: Module type flag " text S
:MF: MR validation flag " yes or no S
:MP: MR validation pgm name " text S
:KF: Keyword error/warning flag " yes or no S
:BF: Branch flag " yes or no S
: J: Joint edit flag " yes or no S
:LK: Locked releases " :R: ... S
: Q: User defined keyword " text S
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " : I : S
:ND: Null delta flag " yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A fonn of what(1) string N/A :Z::M:\t:I: S
:A: A fonn of what(1) string N/A : Z: : Y: :M: : I: : Z: S
: Z: what(1) string delimiter N/A @(#) S
:F: SCCS file name N/A text S
:PN: SCCS file path name N/A text S

t S = single-line fonnat, M = multi-line
* :Dt: = :DT: : I: :D: :T: :P: :DS: :DP:

Revision A of 27 March 1990

5.1. Overview

This chapter describes Sun's ver­
sion of the make utility, which
includes important features such as
hidden dependency checking, com­
mand dependency checking,
pattern-matching rules, and
automatic retrieval of sees files.
This version can run successfully
with makefiles written for previous
versions of make. However,
makefiles that rely on Sun's
enhancements may not be compati­
ble with other versions of this utility.
Refer to Appendix A, make Enhance­
ments Summary for a complete sum­
mary of Sun's enhancements and
compatibility issues.

Dependency Checking: make
vs. Shell Scripts

5
make User's Guide

make streamlines the process of generating and maintaining object files and exe­
cutable programs. It helps you to compile programs consistently, and eliminates
unnecessary recompilation of modules that are unaffected by source code
changes.

make provides a number of features that simplify compilations, but you can also
use it to automate any complicated or repetitive task that isn't interactive. You
can use make to update and maintain object libraries, to run test suites, and to
install files onto a filesystem or tape. In conjunction with sees, you can use
make to insure that a large software project is built from the desired versions in
an entire hierarchy of source files.

make reads a file that you create, called a makejile, which contains information
about what files to build and how to build them. Once you write and test the
makefile, you can forget about the processing details; make takes care of them.
This gives you more time to concentrate on improving your code; the repetitive
portion of the maintenance cycle is reduced to:

think - edit - make - test ...

While it is possible to use a shell script to assure consistency in trivial cases,
scripts to build software projects are often inadequate. On the one hand, you
don't want to wait for a simple-minded script to compile every single program or
object module when only one of them has changed. On the other hand, having to
edit the script for each iteration can defeat the goal of consistency. Although it is
possible to write a sCript of sufficient complexity to recompile only those
modules that require it, make does this job better.

make allows you to write a simple, structured listing of what to build and how to
build it. It uses the mechanism of dependency checking to compare each module
with the source or intermediate files it derives from. make only rebuilds a
module if one or more of these prerequisite files, called dependency jiles, has
changed since the module was last built. To determine whether a derived file is
out of date with respect to its sources, make compares the modification time of
the (existing) module with that of its dependency file. If the module is missing,
or if it is older than the dependency file, make considers it to be out of date, and
issues the commands necessary to rebuild it.

115 Revision A of 27 March 1990

116 Programming Utilities and Libraries

Writing a Simple Makefile

Figure 5-1
If there is no rule for a target entry,
make looks for an implicit rule to
use.

H the dependency list is terminated
with a semicolon and followed by a
command, that command is
included in the rule. However,
makefiles tend to read better if you
avoid this.

Optionally, a module can be treated as out of date if the commands used to build
it have changed.

Because make does a complete dependency scan, changes to a source file are
consistently propagated through any number of intermediate files or processing
steps. This lets you specify a hierarchy of steps in a top-down fashion.

You can think of a makefile as a recipe. make reads the recipe, decides which
steps need to be performed, and executes only those steps that are required to
produce the finished module. Each file to build, or step to perfonn, is called a
target. The makefile entry for a target contains its name, a list of targets on
which it depends, and a list of commands for building it. The list of commands
is called a rule. make treats dependencies as prerequisite targets, and updates
them (if necessary) before processing its current target. The rule for a target need
not always produce a file, but if it does, the file for which the target is named is
referred to as the target file. Each file from which a target is derived (e.g., that
the target depends on) is called a dependency file.

If the rule for a target produces no file by that name, make performs the rule and
considers the target to be up-to-date for the remainder of the run.

make assumes that only it will make changes to files being processed during the
current run. If a source file is changed by another process while make is run­
ning, the files it produces may be in an inconsistent state.

The basic fonnat for a makefile target entry is:

Makefile Target Entry Format

[

target. ..: [dependency...] 1
______ [c_Omma_nd] ____ ----J

In the first line, the list of target names is terminated by a colon. This, in turn, is
followed by the dependency list if there is one. If several targets are listed, this
indicates that each such target is to be built independently using the rule sup­
plied.

Subsequent lines that start with a CIAl[) are taken as the commands lines that
comprise the target's rule. A common error is to use (SpACE J characters instead
of the leading (lAID.

Lines that start with a * are treated as comments up until the next (unescaped)
(NEWLINE I, and do not tenninate the target entry. The target entry is terminated
by the next nonempty line that begins with a character other than [TAB J or 41=, or
by the end of the file.

Revision A of 27 March 1990

Chapter 5 - make User's Guide 117

A trivial makefile might consist of just one target:

Figure 5 -2 A Trivial M akefile

The convention is to use the name
Makefile. since filenames starting
with a capital are listed first by 1 s;
this highlights the fact that a
makefile is present.

make invokes a Bourne shell to pro­
cess a command line if that line
contains any shell metacharacters.
such as a semicolon (j). redirection
symbols «. >, », I), substitution
symbols (*, ?, [], $, =), or quotes,
escapes or comments (", '. '. \. #,
etc. :), If a shell isn't required to
parse the command line, make
exec () 's the command directly.

[test:
Is test
touch test

When you run make with no arguments, it searches first for a file named
makefile, or if there is no file by that name, Makefile. If either of these
files is under sees control, make checks the makefile against its history file. If
it is out of date, make extracts the latest version.

1

If make finds a makefile, it begins the dependency check with the first target
entry in that file. Otherwise you must list the targets to build as arguments on the
command line. make displays each command it runs while building its targets.

Because the file test was not present (and therefore out of date), make per­
fonned the rule in its target entry. If you run make a second time, it issues a
message indicating that the target is now up to date:

and skips the rule.

Line breaks within a rule are significant in that each command line is perfonned
by a separate process or shell.

This means that a rule such as:

[
test:

cd /tmp
pwd

behaves differently than you might expect, as shown below.

1

Revision A of 27 March 1990

118 Programming Utilities and Libraries

The backslash must be the last
character on the line. The sem i­
colon is required by the shell.

Basic Use of Implicit Rules

You can use semicolons to specify a sequence of commands to perfonn in a sin­
gle shell invocation:

[____ t_e_st __ : ___ C_d __ /_t_m_p ___ p_W_d ________________________________ ~]
Or, you can continue the input line onto the next line in the makefile by escaping
the I NEWLINE I with a backslash (\). The escaped (NEWLINE I is treated as
white space by make.

[test:
cd /tmp

pwd
\

1
When there is no rule given for a specified target, make attempts to use an impli­
cit rule to build it. When make finds a rule for the class of files the target
belongs to, it applies the rule listed in the implicit rule's target entry.

In addition to any makefile(s) that you supply, make reads in the default
makefile, /usr / include/make/ default. mk, which contains the target
entries for a number of implicit rules, along with other information. 4

There are two types of implicit rules. Suffix rules specify a set of commands for
building a file with one suffix from another file with the same basename but a
different suffix. Pattern-matching rules select a rule based on a target and depen­
dency that match respective wild-card patterns. The implicit rules provided by
default are suffix rules.

In some cases, the use of suffix rules can eliminate the need for writing a
makefile entirely. For instance, to build an object file named functions. 0

from a single C source file named functions. c, you could use the command:

This would work equally well for building the object file none such. 0 from the
source file nonesuch. c.

4 Implicit rules were hard-coded in earlier versions of make.

Revision A of 27 March 1990

Processing Dependencies

Chapter 5 - make User's Guide 119

To build an executable file named functions (with a null suffix) from
functions. c, you need only type the command:

The rule for building a . 0 file from a . c file is called the . c . 0 (pronounced
, 'dot -see-dot -oh' ') suffix rule. The rule for building an executable program from
a . c file is called the . c (' , dot-see' ') rule. The complete set of default suffix
rules is listed in Table 5-1 .

Once make begins, it processes targets as it encounters them in its depth-first
dependency scan. For example, with the following makefile:

batch: a b
touch batch

b:
touch b

a:
touch a

c:
echo "you won't see me"

make starts with the target batch. Since batch has some dependencies that
haven't been checked yet, namely a and b, make defers batch until after it has
checked them against any dependencies they might have.

Since a has no dependencies, make processes it; if the file is not present make
perfonns the rule in its target entry.

Next, make works its way back up to the parent target batch. Since there is
still an unchecked dependency b, make descends to b and checks it.

Revision A of 27 March 1990

120 Programming Utilities and Libraries

b also has no dependencies, so make perfonns its rule:

Finally, now that all of the dependencies for batch have been checked and built
(if needed), make checks batch.

Since it rebuilt at least one of the dependencies for batch, make assumes that
ba tch is out of date and rebuilds it; if a or b had not been built in the current
make run, but were present in the directory and newer than batch, make's
timestamp comparison would also result in batch being rebuilt:

Target entries that aren't encountered in a dependency scan are not processed.
Although there is a target entry for c in the makefile, make does not encounter it
while performing the dependency scan for batch, so its rule is not performed.
Target entries that aren't encountered in a dependency scan are not processed.
You can select an alternate starting target like c by entering it as an argument to
the make command.

In the next example, the batch target produces no file. Instead, it is used as a
label to group a set of targets.

Revision A of 27 March 1990

Chapter 5 -make User's Guide 121

batch: abc

a: al a2
touch a

b:
touch b

c:
touch c

al:
touch al

a2:
touch a2

In this case, the targets are checked and processed as shown in the following
diagram:

o make checks batch for dependencies and notes that there are three, and so
defers it.

o make checks a, the first dependency, and notes that it has two dependencies
of its own. SOs continuing in like fashion, make:

1. Checks aI, and if necessary, rebuilds it.

2. Checks a2, and if necessary, rebuilds it.

3. Detennines whether to build a.

4. Checks b and rebuilds it if need be.

5. Checks and rebuilds c if needed.

6. After traversing its dependency tree, make checks and processes the
topmost target, batch. Ifbatch contained a rule, make would per­
fonn that rule. Since batch has no rule, make perfonns no action, but
notes that ba t c h has been rebuilt; any targets depending on ba t c h
would also be rebuilt.

A_ sun Revision A of 27 March 1990 -Y microsystems

122 Progranuning Utilities and Libraries

Null Rules

You can use a dependency with a
null rule to force the target's rule to
be executed. The conventional
name for such a dependency is
FORCE.

Unknown Targets

< .•.•.• »»>.... .····<·.·:·.·c·y .. ····

Running Commands Silently

If a target entry contains no rule, make attempts to select an implicit rule to build
it. If make cannot find an appropriate implicit rule and there is no sees history
from which to retrieve it, make concludes that the target has no corresponding
file, and regards the missing rule as a null rule. With this makefile:

haste: FORCE
echo "haste makes waste"

FORCE:

make perfonns the rule for making haste, even if a file by that name is up to
date:

If a target is named either on the command line or in a dependency list, and it:

o is not a file present in the working directory,
o has no target or dependency entry,
o does not belong to a class of files for which an implicit rule is defined, and
o has no sees history file,
o there is no rule specified for the . DEFAULT special target

make stops processing and issues an error message.5

)<

You can inhibit the display of a command line within a rule by inserting an @ as
the first non- CTAlD character on that line. For example, the following target:

[
quiet:]

@ echo you only see me once

----------"

produces:

S However, if the - k option is in effect, make will cootinue with other targets that do not depend on the one
in which the error occurred.

Revision A of 27 March 1990

Special-function targets begin with
a dot (.). Target names that begin
with a dot are never used as the
starting target, unless specifically
requested as an argument on the
command line.

Ignoring a Command's Exit
Status

If - and @ are the first two such
characters, both take effect.

Unless you are testing a makefile, it
is usually a bad idea to ignore non­
zero error codes on a global basis.

Chapter 5 - mak e User's Guide 123

If you want to inhibit the display of commands during a particular make run, you
can use the -s option. If you want to inhibit the display of all command lines in
every run, add the special target . S I LENT

to your makefile:

.SILENT:
quiet:

echo you only see me once

make nonnally issues an error message and stops when a command returns a
nonzero exit code. For example, if you have the target:

[
rrnxyz:]

rm xyz

'-----------

and there is no file named xyz, make halts after rm returns its exit status.

To continue processing regardless of the command's exit code, use a dash char­
acter (-) as the first non-CIAID character:

[rrnxyz:
-rm xyz

In this case you get a warning message indicating the exit code make received:

Although it is generally ill-advised to do so, you can have make ignore error
codes entirely with the -i option. You can also have make ignore exit codes
when processing a given makefile, by including the . I GNORE special target,
though this too should be avoided.

If you are processing a list of targets, and you want make to continue with the
next target on the list rather than stopping entirely after encountering a non-zero

]

+~Y,.!! Revision A of27 March 1990

124 Programming Utilities and Libraries

Automatic Retrieval of sees
Files

Suppressing sees Retrieval

Passing Parameters: Simple
make Macros

return code, use the -k option.

When source files are named in the dependency list, make treats them just like
any other target. Because the source file is presumed to be present in the direc­
tory, there is no need to add an entry for it to the makefile. When a target has no
dependencies, but is present in the directory, make assumes that that file is up to
date. If, however, a source file is under sees control, make does some addi­
tional checking to assure that the source file is up to date. If the file is missing, or
if the history file is newer, make automatically issues an

sees get -s filename -Gfilename

command to retrieve the most recent version:6 However, if the source file is
writable by anyone, make does not retrieve a new version.

make only checks the timestamp of the retrieved version against the timestamp
of the history file. It does not check to see if the version present in the directory
is the most recently checked-in version. So, if someone has done a get by date
(sees get -e), make would not discover this fact, and you might unwit­
tingly build an older version of the program or object file. To be absolutely sure
that you are compiling the latest version, you can precede make with an
"sees get sees" or an "sees clean" command.

The command for retrieving sees files is specified in the rule for the
. SeeS_GET special target in the default makefile. To suppress automatic
retrieval, simply add an entry for this target with an empty rule to your makefile:

[* Suppress sees retrieval .

. sees GET: 1
make's macro substitution comes in handy when you want to pass parameters to
commands lines within a makefile. Suppose that you sometimes wish to compile
an optimized version of the program program using ce's -0 option. You can
lend this sort of flexibility to your makefile by adding a macro reference, such as
the one below, to the target for functions:

6 With other versions of make automatic sees retrieval was a feature only of certain implicit rules. Also,
unlike earlier versions, make only looks for history (s .) files in the sees subdirectory; history files in the
current directory are ignored.

Revision A of 27 March 1990

There is a reference to the CFLAGS
macro in both the. c and the. c. 0

implicit rules.

The command-line definition must
be a single argument, hence the
quotes in this example.

Command Dependency
Checking and .KEEP_STATE

Chapter 5 - make User's Guide 125

functions: functions.c
cc -sun4 $ (CFLAGS) -0 functions functions.c

The macro reference acts as a placeholder for a value that you define, either in
the make file itself, or as an argument to the make command. If you then supply
make with a definition for the CFLAGS macro, make replaces its references with
the value you have defined.

If a macro is undefined, make expands its references to an empty string.

You can also include macro definitions in the makefile itself. A typical use is to
set CFLAGS to -0, so that make produces optimized object code by default:

CFLAGS= -0
functions: functions.c

cc -sun4 $(CFLAGS) -0 functions functions.c

A macro definition supplied as a command line argument to make overrides
other definitions in the makefile.7 For instance, to compile funct ions for
debugging with dbx or dbxtool, you can define the value of CFLAGS to be -g
on the command line:

To compile a profiling variant for use with gprof, supply both -0 and -pg in
the value for CFLAGS.

A macro reference must include parentheses when the name of the macro is
longer than one character. If the macro name is only one character, the
parentheses can be omitted. You can use curly braces, { and }, instead of
parentheses. For example, '$ x', '$ (X) " and '$ { X } , are equivalent.

In addition to the nonnal dependency checking, you can use the special target
. KEEP_STATE to activate command dependency checking.8 When activated,
make not only checks each target file against its dependency files, it compares
each command line in the rule with those it ran the last time the target was built.
This infonnation is stored in a state file in the working directory.

7 Conditionally defined macros are an exception to this. Refer to Conditional Macro Definitions for details.

8 This feature is not available in earlier versions of make.

Revision A of 27 March 1990

126 Programming Utilities and Libraries

Suppressing or Forcing
Command Dependency
Checking for Selected Lines

The State File

With the makefile:

CFLAGS= -0
.KEEP STATE:

functions: functions.c
cc -sun4 -0 functions functions.c

the following commands work as shown:

This assures you that make compiles a program with the options you want, even
if a different variant is present and otherwise up to date.

The first make run with . KEEP _STATE in effect recompiles all targets.

The KEEP_STATE variable, when imported from the environment, has the same
effect as the . KEEP_STATE target.

To suppress command dependency checking for a given command line, insert a
question mark as the first character after the (TAB l.

Command dependency checking is automatically suppressed for lines containing
the dynamic macro $? This macro stands for the list of dependencies that are
newer than the current target, and can be expected to differ between any two
make runs.9 To force make to perform command dependency checking on a
line containing this macro, prefix the command line with a! character (follow­
ing the (TAB l).

When. KEEP_STATE is in effect, make writes out a state file named
. mak e • s tat e, in the current directory. This file lists all targets that have ever
been processed while. KEEP _STATE has been in effect, along with the rules to
build them, in makefile format. In order to assure that this state file is maintained
consistently, once you have added . KEEP _ STATE to a makefile, we recommend
that you leave it in effect. 10

9 See Implicit Rules and Dynamic Macros for more infonnation.

10 Since this target is ignored in earlier versions of make, it does not introduce any compatibility problems.
Other versions simply treat it as a superfluous target that no targets depend on, with an empty rule and no
dependencies of its own. Since it starts with a dot, it is not used as the starting target.

Revision A of 27 March 1990

Hidden Dependencies and
.KEEP STATE

Chapter 5 - make User's Guide 127

When a C source file contains =11= incl ude directives for interpolating headers,
the target depends just as much on those headers as it does on the sources that
include them. Because such headers may not be listed explicitly as sources in the
compilation command line, they are called hidden dependencies. When
. KEEP_STATE is in effect, make receives a report from the various compilers
and compilation preprocessors indicating which hidden dependency files were
intetpolated for each target.11 It adds this information to the dependency list in
the state file. In subsequent runs, these additional dependencies are processed
just like regular dependencies. This feature maintains the hidden dependency list
for each target automatically; it insures that the dependency list for each target is
always accurate and up to date. It also eliminates the need for the complicated
schemes found in some earlier make files to generate complete dependency lists.

A slight inconvenience can arise the first time make processes a target with hid­
den dependencies, because there is as yet no record of them in the state file. If a
header is missing, and make has no record of it, make won't know that it needs
to retrieve it from sees before compiling the target. So, even though there is an
sees history file, the current version won't be retrieved because it doesn't yet
appear in a dependency list or the state file. So, when the C preprocessor
attempts to interpolate the header, it won't find it; the compilation fails.

Supposing that an =ll=include directive for interpolating the header hidden. h
is added to functions. c, and that the file hidden. h is somehow removed
before the subsequent make run. The results would be:

A simple workaround might be to make sure that the new header is extant before
you run make. Or, if the compilation should fail (and assuming the header is
under SeeS), you could retrieve it from sees manually:

In all future cases, should the header tum up missing, make will know to build
or retrieve it for you, because it will be listed in the state file as a hidden depen­
dency.

11 Also unavailable with earlier versions of make.

Revision A of 27 March 1990

128 Programming Utilities and Libraries

Hidden Dependencies and
. INIT

Displaying Information About
amake Run
There is an exception to this how­
ever. make executes any command
line containing a reference to the
MAKE macro (i.e., $ (MAKE) or
$ {MAKE}), regardless of -no So, it
would be a very bad idea to include
a line like: "$ (MAKE) ; rm -f *"
in your makefile.

Setting an environment variable
named MAKEFLAGS can lead to
complications, since make adds its
value to the list of options. To
prevent puzzling surprises, avoid
setting this variable.

Note that with hidden dependency checking, the $? macro includes the names
of hidden dependency files. This may cause unexpected behavior in existing
makefiles that rely on $? .

The problem with both of these approaches is that the first make in the local
directory may fail due to a random condition in some other (include) directory .
This might entail forcing someone to monitor a (first) build. To avoid this, you
can use the . INIT target to retrieve known hidden dependencies files from
sees. . INIT is a special target that, along with its dependencies, is built at the
start of the make run. To be sure that hidden. h is present, you could add the
following line to your makefile;

[
.INIT: hidden.h]

'---------~

Running make with the -n option displays the commands make is to perfonn,
without executing them. This comes in handy when verifying that the macros in
a makefile are expanded as expected. With the following makefile:

CFLAGS= -0

.KEEP STATE:

functions: main.o data.o
$(LINK.c) -0 functions main.o data.o

make -n displays:

make has some other options that you can use to keep abreast of what it's doing
and why:

-d Displays the criteria by which make detennines that a target is be out­
of-date. Unlike -n, it does process targets, as shown below. This
options also displays the value imported from the environment (null by
default) for the MAKEFLAGS macro, which is described in detail in a
later section.

Revision A of 27 March 1990

Several-f options indicate the con­
catenation of the named makefiles.

Due to its potentially troublesome
side effects, we recommend against
using the -t (touch) option for
make.

clean is the conventional name for
a target that removes derived files.
It is useful when you want to start a
build from scratch.

Chapter 5 - make User's Guide 129

-dd This option displays all dependencies make checks, including any hid­
den dependencies, in vast detail.

-D Displays the text of the makefile as it is read.

-DD Displays the makefile and the default makefile, the state file, and hidden
dependency reports for the current make run.

-f makefile
make uses the named makefile (instead of make file or Makefile).

-p Displays the complete set of macro definitions and target entries.

-p Displays the complete dependency tree for each target encountered.

There is an option that can be used to shortcut make processing, the -t option.
When run with -t, make does not perform the rule for building a target. Instead
it uses touch to alter the modification time for each target that it encounters in
the dependency scan. It also updates the state file to reflect what it built. This
often creates more problems than it supposedly solves, and so we recommend
that you exercise extreme caution if you do use it. Note that if there is no file
corresponding to a target entry touch creates it.

The following is one example of how not to use make -t. Suppose you have a
target named clean that perfonned housekeeping in the directory by removing
target files produced by make:

[
clean: J

rm functions main.o data.o

'-----------'"

If you give the nonsensical command:

you then have to remove the file clean before your housekeeping target can
work once again.

Revision A of 27 March 1990

130 Programming Utilities and Libraries

5.2. Compiling Programs
with make

Compilation Strategies

A Simple Makefile

Figure 5-3

For a complete listing of all make options, refer to make(1) in the SunOS Refer­
ence Manual.

In previous examples you have seen how to compile a simple C program from a
single source file, using both explicit target entries and implicit rules. Most C
programs, however, are compiled from several source files. Many include library
routines, either from one of the standard system libraries or from a user-supplied
library. Although it may be easier to recompile and link a single-source progratn
using a single c c command, it is usually more convenient to compile programs
with multiple sources in stages-first, by compiling each source file into a
separate object (.0) file, and then by linking the object files to form an execut­
able (a . 0 u t) file. This method requires more disk space, but subsequent
(repetitive) recompilations need be performed only on those object files for
which the sources have changed, which saves time.

The makefile below is not all that elegant, but it does the job.

Simple Makefilefor Compiling C Sources: Everything Explicit

* Simple makefile for compiling a program from * two C source files .

. KEEP STATE:

functions: main.o data.o
cc -sun4 -0 -0 functions main.o data.o

main.o: main.c
cc -sun4 -0 -c main.c

data.o: data.c
cc -sun4 -0 -c data.c

clean:
rm functions main.o data.o

In this example, make produces the object files main. 0 and data. 0, and the
executable file functions:

Revision A of 27 March 1990

Using make's Predefined
Macros

Macro names that end in the string
FLAGS are used to pass options to
a related compiler-command macro.
It is good practice to use these
macros for consistency and porta­
bility. It is also good practice to
note the desired default values for
them in the makefile.

The complete list of all predefined
macros is shown in Table 1.2,
below.

Chapter 5 - make User's Guide 131

The next example performs exactly the same function, but demonstrates the use
of make's predefined macros for the indicated compilation commands. Using
predefined macros eliminates the need to edit makefiles when the underlying
compilation environment changes. They also provide access to the CFLAGS
macro (and other FLAGS macros) for supplying compiler options from the com­
mand line. Predefined macros are also used extensively within make's implicit
rules. The predefined macros in the following makefile are listed below .12 They
are generally useful for compiling C programs.

eOMPILE.c The cc command line; composed of the values ofeC,
CFLAGS, CPPFLAGS, and TARGET_ARCH, as follows, along
with the -c option.

COMPILE.c=$(CC) $ (CFLAGS) $ (CPPFLAGS) -target $ (TARGET_ARCH:-%=%) -c

LINK.c

The root of the macro name, COMPILE, is a convention used
to indicate that the macro stands for a compilation command
line (to generate an object, or .0 file). The . c suffix is a
mnemonic device to indicate that the command line applies to
. c (C source) files.

The basic c c command line to link. object files, like
CaMP I LE . e, but without the - c option and with a reference
to the LDFLAGS macro:

LINK.c=$(CC) $ (CFLAGS) $ (CPPFLAGS) $ (LDFLAGS) -target $ (TARGET_ARCH:-%=%)

CC The value ce. (You can redefine the value to be the pathname
of an alternate C compiler.)

CFLAGS Options for the cc command; none by default.

CPPFLAGS Options for epp; none by default.

LDFLAGS Options for the link. editor, ld; none by default.

TARGET ARCH The target-architecture argument to ec for use when cross­
compiling. The default is set by make to the value returned
by the ar ch command. This macro must be defined when
using Sun's optional cross-compilers. Refer to Cross­
Compilation on the Sun Workstation for details.

12 Predefined macros are used more extensively than in earlier versions of make. Not all of the predefined
macros shown here are available with earlier versions.

Revision A of 27 March 1990

132 Programming Utilities and Libraries

Figure 5-4

Using Implicit Rules to
Simplify a Makefile: Suffix
Rules

Figure 5-5

A complete list of suffix rules
appears in Table 3-1 .

Makefilefor Compiling C Sources Using Predefined Macros

* Makefile for compiling two C sources

CFLAGS= -0

.KEEP STATE:

functions: main.o data.o
$(LINK.c) -0 functions main.o data.o

main.o: main.c
$ (COMPILE. c) main.c

data.o: data.c
$ (COMPILE.c) data.c

clean:
rm functions main.o data.o

Since the command lines for compiling main. 0 and data. 0 from their respec­
tive . c files are now functionally equivalent to the . c . 0 suffix rule, their target
entries are, in a sense, redundant; make perfonns the same compilation whether
they appear in the makefile or not. This next version of the makefile eliminates
them, relying on the . c . 0 rule to compile the individual object files.

Makefilefor Compiling C Sources Using Suffix Rules

Makefile for a program from two C sources
using suffix rules.

CFLAGS= -0

.KEEP STATE:

functions: main.o data.o
$(LINK.c) -0 functions main.o data.o

clean:
rm functions main.o data.o

As make processes the dependencies main. 0 and data. 0, it finds no target
entries for them. So, it checks for an appropriate implicit rule to apply. In this
case, make selects the . c . 0 rule for building a . 0 file from a dependency file
that has the same basename and a . c suffix.

Revision A of 27 March 1990

make uses the order of appearance
in the suffixes list to determine
which dependency file and suffix
rule to use. For instance, if there
were both main. c and main. s
files in the directory, make would
use the • c. 0 rule, since . c is
ahead of • s in the list.

Figure 5-6

Like clean, all is a target name
used by convention. It builds "all"
the targets in its dependency list.
Normally, all is the first target;
make and make all are usually
equivalent.

Chapter 5 - make User's Guide 133

First, mak e scans its suffixes list to see if the suffix for the target file appears. In
the case of main . 0, • ° appears in the list. Next, make checks for an suffix rule
to build it with, and a dependency file to build it from. The dependency file has
the same basename as the target, but a different suffix. In this case, while check­
ing the . c. ° rule, make finds a dependency file named main. c, so it uses that
rule.

The suffixes list is a special-function target named. SUFFIXES. The various
suffixes are included in the definition for the SUFFIXES macro; the dependency
list for. SUFFIXES is given as a reference to this macro:

The Standard Suffixes List

SUFFIXES= .0.C .c- .s .s- .S .S- .In .f .f- \
.F .F- .1 .1- .mod .mod- .sym .def .def- .p .p- \
.r.r .y .y- .h .h- .sh .sh- .cps .cps-

.SUFFIXES: $ (SUFFIXES)

The following example shows a makefile for compiling a whole set of executable
programs, each having just one source file. Each executable is to be built from a
source file that has the same basename, and the . c suffix appended. For instance
demo 1 is built from demo 1. c. - -

Makefile for a set of C programs, one source
per program. The source file names have ".c"
appended.

CFLAGS= -0

.KEEP STATE:

all: demo 1 demo 2 demo 3 demo 4 demo_5

In this case, make does not find a suffix match for any of the targets (demo 1
through demo _ 5). So, it treats each as if it had a null suffix. It then searches for
an suffix rule and dependency file with a valid suffix. In the case of demo _ 2, it
would find a file named demo _ 2 . c. Since there is a target entry for a . c rule,
along with a corresponding. c file, make uses that rule to build demo_2 from
demo 2. c.

To prevent ambiguity, when a target with a null suffix has an explicit depen­
dency, make does not build it using a suffix rule. This makefile:

[program: zap
zap:

produces no output:

]

Revision A of 27 March 1990

134 Programming Utilities and Libraries

When to Use Explicit Target
Entries vs. Implicit Rules

Implicit Rules and Dynamic
Macros

Because they aren't explicitly
defined in a makefile, the conven­
tion is to document dynamic macros
with the $-sign prefix attached (in
other words, by showing the macro
reference).

The macro OUTPUT OPTION has
an empty value by default. While
similar to CFLAGS in function, it is
provided as a separate macro
intended for passing an argument to
the -0 compiler option to force
compiler output to a given filename.

[

hermes% make program]
hermes %

'-----------'

Whenever you build a target from multiple dependency files, you must provide
make with an explicit target entry that contains a rule for doing so. When build­
ing a target from a single dependency file, it is often convenient to use an impli­
cit rule.

As the previous examples show, make readily compiles a single source file into a
corresponding object file or executable. However, it has no built-in knowledge
about how to link a list of object files into an executable program. Also, make
only compiles those object files that it encounters in its dependency scan. It
needs a starting point-a target for which each object file in the list (and ulti­
mately, each source file) is a dependency.

So, for a target built from multiple dependency files, make needs an explicit rule
that provides a collating order, along with a dependency list that accounts for its
dependency files.

If each of those dependency files is built from just one source, you can rely on
implicit rules for them.

make maintains a set of macros dynamically, on a target-by-target basis. These
macros are used quite extensively, especially in the definitions of implicit rules.
So, it is important to understand what they mean.

They are:

$ @ The name of the current target.

$? The list of dependencies newer than the target.

$< The name of the dependency file, as if selected by make for use with an
implicit rule.

$ * The basename of the current target (the target name stripped of its suffix).

$ % For libraries, the name of the member being processed. See Building Object
Libraries, below, for more infonnation.

Implicit rules make use of these dynamic macros in order to supply the name of a
target or dependency file to a command line within the rule itself. For instance,
in the . c . 0 rule, shown in the next example.

(~ __ '_C_'_O_: ____ $_(C_O_M_P_I_L_E_'_C_) __ $_< __ $_(_O_U_T_PU_T_-_O_P_T_I_O_N_) ______________ ~]
$ < is replaced by the name of the dependency file (in this case the . c file) for
the current target.

Revision A of 27 March 1990

Dynamic Macro Modifiers

Dynamic Macros and the
Dependency List: Delayed
Macro References

Dependency List Read Twice

Chapter 5 - make User's Guide 135

In the . c rule:

[] .c:
$(LINK.c) $< -0 $@

$ @ is replaced with the name of the current target.

Because values for the $< and $ * macros depend upon both the order of suffixes
in the suffixes list, you may get surprising results when you use them in an expli­
cit target entry. See Suffix Replacement in Macro References for a strictly deter­
ministic method for deriving a filename from a related filename.

Dynamic macros can be modified by including F and D in the reference. If the
target being processed is in the form of a pathname, $ (@F) indicates the
filename part, while $ (@D) indicates the directory part. If there are no / charac­
ters in the target name, then $ (@D) is assigned the dot character (.) as its value.
For example, with the target named /tmp/test, $ (@D) has the value /tmp;
$ (@F) has the value test.

Dynamic macros are assigned while processing any and all targets. They can be
used within the target's rule as is, or in the dependency list by prepending an
additional $ character to the reference. A reference beginning with $ $ is called a
delayed reference to a macro. For instance, the entry:

(x.o y.o z.o: $$@.BAK
cp $@.BAK $@]

could be used to derive x. 0 from x. o. BAK, and so forth for y. 0 and z. o.

This technique works because make reads the dependency list twice, once as part
of its initial reading of the entire makefile, and again as it processes a target's
dependencies. In each pass through the list, it performs macro expansion. Since
the dynamic macros aren't defined in the initial reading, unless references to
them are delayed until the second pass, they are expanded to null strings. The
string $ $ is a reference to the predefined macro '$'. This macro, conveniently
enough, has the value' $ '; when make resolves it in the initial reading, the string
$ $ @ is resolved to $ @. In dependency scan, when the resulting $ @ macro refer­
ence has a value dynamically assigned to it, make resolves the reference to that
value.

Note that make only evaluate the target-name portion of a target entry in the first
pass. A delayed macro reference as a target name will produce incorrect results.
The makefile:

Revision A of 27 March 1990

136 Programming Utilities and Libraries

Rules Evaluated Once

No Transitive Closure for Suffix
Rules

Adding Suffix Rules

Pattern-matching rules, which are
described in the previous section,
are often easier to use than suffix
rules. The procedure for adding
implicit rules is given here for com­
patibility with previous versions of
make.

NONE= none
all: $ (NONE)

$$(NONE) :
@: this target's name isn't 'none'

produces the results shown below.

make evaluates the rule portion of a target entry only once per application of that
command, at the time that the rule is executed. Here again, a delayed reference
to a make macro will produce incorrect results.

There is no transitive closure for suffix rules. If you had a suffix rule for build­
ing, say, a . Y file from a . x file, and another for building a . Z file from a . Y
file, make would not combine their rules to build a . Z file from a . X file. You
must specify the intermediate steps as targets, although their entries may have
null rules:

(
trans.Z: J
trans.Y:

----------""

In this example trans. Z will be built from trans. Y if it exists. Without the
appearance of trans . Y as a target entry, make might fail with a "don't know
how to build" error, since there would be no dependency file to use. The target
entry for trans. Y guarantees that make will attempt to build it when it is out
of date or missing. Since no rule is supplied in the makefile, make will use the
appropriate implicit rule, which in this case would be the . x . Y rule. If
trans. X exists (or can be retrieved from SeeS), make rebuilds both trans. Y
and trans. Z as needed.

Although make supplies you with a number of useful suffix rules, you can also
add new ones of your own. However, pattern-matching rules,13 which are
described in the next section, are to be preferred when adding new implicit rules.
Unless you need to write implicit rules that are compatible with earlier versions
of make, you may safely skip the remainder of this section, which describes the
traditional method of adding implicit rules to makefiles.

Adding a suffix rule is a two-step process. First, you must add the suffixes of
both target and dependency file to the suffixes list by providing them as depen­
dencies to the . SUFFIXES special target. Because dependency lists

13 Not available with earlier versions of make.

Revision A of 27 March 1990

Pattern-Matching Rules: an
Alternative to Suffix Rules

Chapter 5 -make User's Guide 137

accumulate, you can add suffixes to the list simply by adding another entry for
this target, for example:

(.SUFFIXES: .ms .tr

Second, you must add a target entry for the suffix rule:

]

[
.ms.tr: J

traff -t -ms $< > $@

"--------------"

A makefile with these entries can be used to format document source files con­
taining fiS macros (. fiS files) into t r 0 f f output files (. t r files):

Entries in the suffixes list are contained in the SUFFIXES macro. To insert
suffixes at the head of the list, first clear its value by supplying an entry for the
. SUFFIXES target that has no dependencies. This is an exception to the rule
that dependency lists accumulate. You can clear a previous definition for this
target by supplying a target entry with no dependencies and no rule like this:

(~ ___ ._S_U_F_F_I_X_E_S_: __]

You can then add another entry containing the new suffixes, followed by a refer­
ence to the SUFFIXES macro, as shown below.

[.SUFFIXES:
. SUFFIXES: .ms .tr $(SUFFIXES)]

A pattern-matching rule is similar to an implicit rule in function. Pattern­
matching rules are easier to write, and more powerful, because you can specify a
relationship between a target and a dependency based on prefixes (including
pathnames) and suffixes, or both. A pattern-matching rule is a target entry of the
form:

tp%ts: dp%ds
rule

where tp and ts are the optional prefix and suffix in the target name, respectively,
dp and ds are the (optional) prefix and suffix in the dependency name, and % is a
wild card that stands for a basename common to both.

Revision A of 27 March 1990

138 Programming Utilities and Libraries

make checks for pattern-matching
rules ahead of suffix rules. While
this allows you to override the stan­
dard implicit rules. doing so is not
recommended.

make's Default Suffix Rules
and Predefined Macros

Table 5-1

Use

Assembly

Files

C

Files

FORTRAN 77

Files

If there is no rule for building a target, make searches for a pattern-matching
rule, before checking for a suffix rule. Ifmake can use a pattern-matching rule,
it does so.

If the target entry for a pattern-matching rule contains no rule, make processes
the target file as if it had an explicit target entry with no rule; make therefore
searches for a suffix rule, attempts to retrieve a version of the target file from
sees, and finally, treats the target as having a null rule (flagging that target as
updated in the current run).

A pattern-matching rule for formatting a troff source file into a troff output
file looks like:

(
%.tr: %.ms]

___________ t_r_O_f_f_-_t __ -_m_s __ $_<_> __ $_@ ________________________ __

The tables below show the standard set of suffix rules and predefined macros sup­
plied to make in the defaultmakefile, /usr/include/make/default .mk.

make's Standard Suffix Rules

Suffix Rule Name Command Line(s)

.s.o $(COMPILE.s) -0 $@ $<

.s.a $ (COMPILE.s) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

.S.o $(COMPILE.S) -0 $@ $<

.S.a $(COMPILE.S) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

.c $(LINK.c) -0 $@ $< $(LDLIBS)

.c.ln $(LINT.c) $(OUTPUT OPTION) -i $<

.c.o $ (COMPILE. c) $(OUTPUT OPTION) $<

.c.a $(COMPILE.c) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

.f $ (LINK.f) -0 $@ $< $(LDLIBS)

.f.o $ (COMPILE. f) $(OUTPUT OPTION) $<

.f.a $(COMPILE.f) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

.F $(LINK.F) -0 $@ $< $(LDLIBS)

.F.o $ (COMPILE. F) $(OUTPUT OPTION) $<

.F.a $ (COMPILE.F) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

Revision A of 27 March 1990

Chapter 5 - make User's Guide 139

Table 5-1 make's Standard Suffix Rules- Continued

Use Suffix Rule Name Command Line(s)
lex .1 $ (RM) $*.e
Files $ (LEX. 1) $< > $*.e

$ (LINK.e) -0 $@ $*.e $ (LDLIBS)
$ (RM) $*.e

.l.e $ (RM) $@
$ (LEX. 1) $< > $@

.l.ln $ (RM) $*.e
$ (LEX. 1) $< > $*.e
$(LINT.e) -0 $@ -i $*.e
$ (RM) $*.e

.1.0 $ (RM) $*.e
$ (LEX. 1) $< > $*.e
$ (COMPILE. c) -0 $@ $*.e
$ (RM) $*.e

Modula2 . mod $ (COMPILE. mod) -0 $@ -e $@ $<
Files .mod.o $ (COMPILE. mod) -0 $@ $<

.def.sym $ (COMPILE. def) -0 $@ $<
NeWS .eps.h $ (CPS) $ (CPSFLAGS) $*.eps
Pascal .p $ (LINK.p) -0 $@ $< $(LDLIBS)

Files .p.o $ (COMPILE. p) $(OUTPUT OPTION) $<

Rat/or .r $(LINK.r) -0 $@ $< $ (LDLIBS)
Files .r.o $ (COMPILE. r) $ (OUTPUT OPTION) $<

.r.a $(COMPILE.r) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

Shell .sh $(RM) $@
Scripts cat $< >$@

ehmod +x $@
yaee .y $ (YACC.y) $<
Files $(LINK.e) -0 $@ y.tab.e $(LDLIBS)

$ (RM) y.tab.e
.y.e $ (YACC.y) $<

mv y.tab.e $@

·Y·ln $ (YACC.y) $<
$(LINT.e) -0 $@ -i y.tab.e
$(RM) y.tab.e

.y.o $ (YACC.y) $<
$ (COMPILE. c) -0 $@ y.tab.e
$(RM) y.tab.e

Revision A of 27 March 1990

140 Programming Utilities and Libraries

Table 5-2 make's Predefined and Dynamic Macros

Use Macro Default Value

Library AR ar
Archives ARFLAGS rv

Assembler AS as
Commands ASFLAGS

COMPILE.s $(AS) $ (ASFLAGS) $ (TARGET_ARCH)
COMPILE.S $(CC) $ (ASFLAGS) $ (CPPFLAGS) -target $ (TARGET ARCH:-%=%) -c

CCompiler CC cc
Commands CFLAGS

CPPFLAGS
COMPILE.c $ (CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.c $(CC) $ (CFLAGS) $ (CPPFLAGS) $ (LDFLAGS) -target $ (TARGET ARCH:-%=%)

C++ Compiler CCC cc
Commands CCFLAGS

COMPILE.cc $ (CCC) $ (CCFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.cc $ (CCC) $ (CCFLAGS) $ (CPPFLAGS) $ (LDFLAGS) -target $ (TARGET ARCH:-%=%)

FORTRAN 77 FC f77
Compiler FFLAGS
Commands COMPILE.f $(FC) $ (FFLAGS) $ (TARGET_ARCH) -c

LINK.f $(FC) $ (FFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)
COMPILE.F $(FC) $ (FFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.F $(FC) $ (FFLAGS) $ (CPPFLAGS) $ (LDFLAGS) $ (TARGET ARCH)

Link Editor LD Id
Command LDFLAGS

lex LEX lex
Command LFLAGS

LEX.l $ (LEX) $ (LFLAGS) -t

lint LINT lint
Command LINTFLAGS

LINT.c $ (LINT) $ (LINTFLAGS) $ (CPPFLAGS) $ (TARGET ARCH)

Modula2 M2C m2c
Commands M2FLAGS

MODFLAGS
DEFFLAGS
COMPILE. def $ (M2C) $ (M2FLAGS) $ (DEFFLAGS) $ (TARGET_ARCH)
COMPILE .mod $ (M2C) $ (M2FLAGS) $ (MODFLAGS) $ (TARGET ARCH)

NeWS CPS cps
CPSFLAGS

Pascal PC pc
Compiler PFLAGS
Commands COMPILE.p $(PC) $ (PFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

LINK.p $(PC) $ (PFLAGS) $ (CPPFLAGS) $ (LDFLAGS) $ (TARGET ARCH)

Rat/or RFLAGS
Compilation COMPILE.r $(FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET_ARCH) -c
Commands LINK.r $(FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET ARCH) $ (LDFLAGS)

rm
Command

RM rm -f

yacc YACC yacc
Command YF LAG S

YACC.y $ (YACC) $ (YFLAGS)

Suffixes .0 .c .c~ .s .s~ .S .S~ .In . f • f~ .F .F~ .1
List SUFFIXES .l~ .mod .mod~ • sym .def .def~ .p .p~ .r .r~

.y .y- .h .h- .sh .sh- .cps .cps-

sees get .SCCS GET sccs $ (SCCSFLAGS) get $ (SCCSGETFLAGS) $@ -G$@
Command SCCSGETFLAGS -s

Revision A of 27 March 1990

5.3. Building Object
Libraries

Libraries, Members and
Symbols

Library Members and
Dependency Checking

Chapter 5 -make User's Guide 141

An object library is a set of object files contained in an ar library archive.14

Various languages make use of object libraries to store compiled functions of
general utility, such as those in the C library.

ar reads in a set of one or more files to create a library. Each member contains
the text of one file, preceded by a header. The member's header contains infor­
mation from the file's directory entry, including the modification time. This
allows make to treat the library member as a separate entity for dependency
checking.

When you compile a program that uses functions from an object library (specify­
ing the proper library either by filename, or with the -1 option to cc), the link
editor selects and links with the library member that contains a needed symbol.

You can use ranlib to generate a symbol table for a library of object files. Id
requires this table in order to provide random access to symbols within the
library-to locate and link object files in which functions are defined. You can
also use lorder and tsort ahead of time to put members in calling order
within the library. (See lorder(1) for details.) For very large libraries, it is a
good idea to do both.

make recognizes a target or dependency of the fonn

lib.a <member . ..)

as a reference to a library member, or a space-separated list of members. 15 For
example, the following target entry indicates that the library named librpn. a
is built from members named stacks. 0 and fifos. o. The pattern-matching
rule indicates that each member depends on a corresponding object file, and that
object file is built from its corresponding source file using an implicit rule.

librpn.a: librpn.a(stacks.o fifos.o)
ar rv $@ $7
ranlib $@

librpn.a(%.o): %.0
@true

When used with library-member notation, the dynamic macro $? contains the
list of files that are newer than their corresponding members:

14 See ar(1), ar(5), lorder(1), and ranlib(l) in the Commands Reference Manualfor details about
library archive files.

15 Earlier versions make recognize this notation. However, only the first item in a parenthesized list of
members was processed. In this version of make, all members in a parenthesized list are processed.

Revision A of 27 March 1990

142 Programming Utilities and Libraries

Library Member Name-Length
Limit

,PRECIOUS: Preserving
Libraries Against Removal Due
to Interrupts

Libraries and the $ % Dynamic
Macro

5.4. Maintaining Programs
and Libraries With
make

More about Macros

The name of an ar library member cannot exceed 15 characters. If a filename is
longer than that, ar truncates the name of its corresponding member to the first
15 characters. If a library depends upon a member whose corresponding
filename is too long, make attempts to match the name of the member to the first
15 characters of a file in the directory. make uses the first filename that matches
as the file from which to build the member.

Nonnally, if you interrupt make in the middle of a target, the target file is
removed. For individual files this is a good thing, otherwise incomplete files
with brand new modification times might be left in the directory. For libraries,
which consist of several members, the story is different. It is often better to leave
the library intact, even if one of the members is still out of date. This is espe­
cially true for large libraries, especially since a subsequent make run will pick up
where the previous one left off-by processing the object file or member whose
processing was interrupted.

,PRECIOUS is a special target that is used to indicate which files should be
preserved against removal on interrupts; make does not remove targets that are
listed as its dependencies. If you add the line:

(____ ,_P_RE __ C_I_O_U_S_:_l_1_'b_r_p_n_,_a ____________________________________]

to the makefile shown above, run make, and interrupt the processing of
librpn. a, the library is preserved.

The $ % dynamic macro is provided specifically for use with libraries. When a
library member is the target, the member name is assigned to the $ % macro. For
instance, given the target libx. a (demo. a) the value of $% would be
demo.o.

In previous sections you have learned how make can help compile simple pro­
grams and build simple libraries. This section describes some of make's more
advanced features for maintaining complex programs and libraries.

Macro definitions can appear on any line in a makefile; they can be used to
abbreviate long target lists or expressions, or as shorthand to replace long strings
that would otherwise have to be repeated. You can even use macros to derive
lists of object files from a list of source files. Macro names are allocated as the
makefile is read in; the value a particular macro reference takes depends upon the

Revision A of 27 March 1990

Embedded Macro References

The += assignment appends the
indicated string to any previous
value for the macro.

Suffix Replacement in Macro
References

Chapter 5 - make User's Guide 143

most recent value assigned. 16 With the exception of conditional and dynamic
macros, make assigns values in the order the definitions appear.

Macro references can be embedded within other references,17

$(CPPFLAGS$(TARGET_ARCH»

in which case they are expanded from innennost to outermost. With the follow­
ing definitions, make will supply the correct symbol definition for a Sun-3, or a
Sun-4 system.

CPPFLAGS-sun3 = -DSUN3
CPPFLAGS-sun4 = -DSUN4
CPPFLAGS += $(CPPFLAGS$(TARGET_ARCH»

make provides a mechanism for replacing suffixes of words that occur in the
value of the referred-to macro. 18 A reference of the fonn:

$ (macro: old-suffix=new-suffix)

is a suffix replacement macro reference. You can use a such a reference to
express the list of object files in terms of the list of sources:

OBJECTS= $ (SOURCES: .c=.o)

In this case, make replaces all occurrences of the . c suffix in words within the
value with the . 0 suffix. The substitution is not applied to words for that do not
end in the suffix given. The following makefile:

SOURCES= main.c data.c moon
OBJECTS= $ (SOURCES: .c=.o)

all:
@echo $(OBJECTS)

illustrates this very simply:

16 Actually, macro evaluation is a bit more complicated than this. Refer to Passing Parameters to Nested
make Commands for more information.

17 Not supported in previous versions of make.

18 Although conventional suffixes start with dots, a suffix may consist of any string of characters.

Revision A of 27 March 1990

144 Progranuning Utilities and Libraries

Using lint with make

We encourage you to lint your C
programs for easier debugging and
maintenance. lint also checks for
C constructs that are not con­
sidered portable across machine
architectures. It can be a real help
in writing portable C programs.

Linking With System­
Supplied Libraries

lint, the C program verifier,19 is an important tool for forestalling the kinds of
bugs that are most difficult and tedious to track down. These include uninitial­
ized pointers, parameter-count mismatches in function calls, and nonportable
uses of C constructs. As with the clean target, lint is a target name used by
convention; it is usually a good practice to include it in makemes that build C
programs. lint produces output files that have been preprocessed through cpp
and its own first (parsing) pass. These files characteristically end in the . In
suffix,20 and can also be derived from the list of sources through suffix replace­
ment:

[LINTFILES= $(SOURCES:.c=.ln)

A target entry for the lint target might appear as:

lint: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

$ (LINTFILES) :
$ (LINT.c) $@ -i

There is an implicit rule for building each .In me from its corresponding. c
me, so there is no need for target entries for the . In files. As sources change,
the . I n files are updated whenever you run

make lint

Since the LINT. c predefined macro includes a reference to the LINTFLAGS
macro, it is a good idea to specify the lint options to use by default (none in
this case). Since lint entails the use of cpp, it is a good idea to use
CPPFLAGS, rather than CFLAGS for compilation preprocessing options (such as
-I). The LINT. c macro does not include a reference to CFLAGS.

Also, when you run make clean you will want to get rid of any .In mes pro­
duced by this target. It is a simple enough matter to add another such macro
reference to a c I e an target.

The next example shows a makefile that compiles a program that uses the
curses and termlib library packages for screen-oriented cursor motion.

19 See 1 in t - a Program Verifier for C for more information.

20 This is true for the Sun implementation, it may not be true for other versions of 1 in t.

]

Revision A of 27 March 1990

Figure 5-7

Compiling Programs for
Debugging and Profiling

Chapter 5 - make User's Guide 145

Makefile for a C Program With System-Supplied Libraries

* Makefile for a C program with curses and termlib.

CFLAGS= -0

.KEEP STATE:

functions: main.o data.o
$(LINK.c) -0 $@ main.o data.o -lcurses -ltermlib

lint: main.ln data.ln
$(LINT.c) main.ln data.ln

main.ln data.ln:
$(LINT.c) $@ -i

clean:
rm -f functions main.o data.o main.ln data.ln

Since the link editor resolves undefined symbols as they are encountered, it is
nonnally a good idea to place library references at the end of the list of files to
link.

This makefile produces:

Compiling programs for debugging or profiling introduces a new twist to the pro­
cedure, and to the makefile. These variants are produced from the same source
code, but are built with different options to the C compiler. The cc option to
produce object code that is suitable for debugging is -g, and it is important to
omit the -0 option in this case. The cc options that produce code for profiling
are -0 and -pg.

Since the compilation procedure is the same otherwise, you could give make a
definition for CFLAGS on the command line. Since this definition overrides the
definition in the makefile, and . KEEP_STATE assures any command lines
affected by the change are perfonned, the command:

make "CFLAGS= -0 -pg"

produces the following results.

Revision A of 27 March 1990

146 Programming Utilities and Libraries

Conditional Macro Definitions

Each word in target-list may contain
one % pattern; make must know
which targets the definition applies
to, so you can't use a conditional
macro definition to alter a target
name.

Compiling Debugging and
Profiling Variants

Of course, you may not want to memorize these options or type a complicated
command like this, especially when you can put this information in the makefile.
What is needed is a way to tell make how to produce a debugging or profiling
variant, and some instructions in the makefile that tell it how. One way to do this
might be to add two new target entries, one named debug, and the other named
prof ile, with the proper compiler options hard-coded into the command line.

A better way would be to add these targets, but rather than hard-coding their
rules, include instructions to alter the definition of CF LAGS depending upon
which target it starts with. Then, by making each one depend on the existing tar­
get for functions make could simply make use of its rule, along with the
specified options.

Instead of saying

make "CFLAGS= -g"

to compile a variant for debugging, you could say

make debug

The question is, how do you tell make that you want a macro defined one way
for one target (and its dependencies), and another way for a different target?

A conditional macro definition21 is a line of the form:

target-list : = macro = value

which assigns the given value to the indicated macro while make is processing
the target named target-name and its dependencies. The following lines give
CFLAGS an appropriate value for processing each program variant.

[debug := CFLAGS= -g
profile := CFLAGS= -pg -0

Note that when you use a reference to a condition macro in the dependency list
that reference must be delayed (by prepending a second $). Otherwise, make
will expand the reference before the correct value has been assigned. When it
encounters a (possibly) incorrect reference of this sort, make issues a warning.

]

The following makefile produces optimized, debugging, or profiling variants of a
C program, depending on which target you specify (the default is the optimized
variant). Command dependency checking guarantees that the program and its
object files will be recompiled whenever you switch between variants.

21 Not available with previous versions of make.

Revision A of 27 March 1990

Figure 5-8

Debugging and profiling variants
aren't normally considered part of a
finished program.

Chapter 5 - make User's Guide 147

Makefilefor a C Program with Alternate Debugging and Profiling Variants

* Makefile for a C program with alternate * debugging and profiling variants.

CFLAGS= -0

.KEEP STATE:

all debug profile: functions

debug := CFLAGS = -g
profile := CFLAGS = -pg -0

functions: main.o data.o
$(LINK.c) -0 $@ main.o data.o -lcurses -ltermlib

lint: main.ln data.ln
$(LINT.c) main.ln data.ln

clean:
rm -f functions main.o data.o main.ln data.ln

The first target entry specifies three targets, starting with all.

all traditionally appears as the first target in makefiles with alternate starting
targets (or those that process a list of targets). It's dependencies are "all" targets
that go into the final build, whatever that may be. In this case, the final variant is
optimized. The target entry also indicates that debug and profile depend on
functions (the value of $ (PROGRAM)).

The next two lines contain conditional macro definitions for CFLAGS.

Next comes the target entry for functions. When functions is a depen­
dency for debug, it is compiled with the -g option.

The next example applies a similar technique to maintaining a C object library.

Revision A of 27 March 1990

148 Programming Utilities and Libraries

Figure 5-9

Maintaining Separate
Program and Library
Variants

Pattern-Replacement Macro
References

Makefile for a C Library with Alternate Variants

* Makefile for a C library with alternate * variants.

CFLAGS= -0

all debug profile: libpkg.a

.KEEP STATE:

.PRECIOUS: libpkg.a

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

libpkg.a: libpkg.a(calc.o map.o draw.o)
ar rv $@ $?
ranlib $@

libpkg.a(%.o): %.0
@true

lint: calc.ln map.ln draw.ln
$(LINT.c) calc.ln map.In draw.In

clean:
r.m -f Iibpkg.a calc.o map.o draw.o calc.ln \
map.In draw.ln

The previous two examples are adequate when development, debugging and
profiling are done in distinct phases. However they suffer from the drawback
that all object files are recompiled whenever you switch between variants, which
can result in unnecessary delays. The next two examples illustrate how all three
variants can be maintained as separate entities.

To avoid the confusion that might result from having three variants of each
object file in the same directory, you can place the debugging and profiling object
files and executables in subdirectories. However, this requires a technique for
adding the name of the subdirectory as a prefix to each entry in the list of object
files.

A pattern-replacement macro reference is similar in fonn and function to a suffix
replacement reference.22 You can use a pattern-replacement reference to add or
alter a prefix, suffix, or both, to matching words in the value of a macro. A
pattern-replacement reference takes the fonn:

$ (macro:p %s=np %ns)

22 As with pattern-matching rules, pattern-replacement macro references aren't available in earlier versions
of make.

Revision A of 27 March 1990

Chapter 5 - make User's Guide 149

where p is the existing prefix to replace (if any), s is the existing suffix to replace
(if any), np and ns are the new prefix and new suffix, respectively, and % is a wild
card. The pattern replacement is applied to all words in the value that match
'p%s'. For instance:

SOURCES= old main.c old data.c moon - -
OBJECTS= $(SOURCES:old_%.c=new_%.o)

all:
@echo $ (NEW)

produces:

You may use any number of % wild cards in the right-hand (replacement) side of
the equal-sign, as needed. The following replacement:

[NEW OBJS= $(SOURCES:old_%.c=%/%.new) J
"---------
would produce:

[main/main.o data/data.o moon

Please note, however, that pattern-replacement macro references should not
appear in the dependency line of the target entry for a pattern-matching rule.
This produces a conflict, since make cannot tell whether the wild card applies to
the macro, or to the target (or dependency) itself. With the makefile:

OBJECT= .0

x:
x.Z:

@echo correct

%: %.$(OBJECT:%o=%Z)

it looks as if make should attempt to build x from x . z. However, the pattern­
matching rule is not recognized; make cannot detennine which of the % charac­
ters in the dependency line to use in the pattern-matching rule.

]

Revision A of 27 March 1990

150 Programming Utilities and Libraries

Makefile for a Program with
Separate Variants
make performs the rule in the
. INIT target just after the makefile
is read.

The following example shows a makefile for a C program with separately­
maintained variants. First, the . INIT special target, creates the debug and
prof ile subdirectories (if they don't already exist), which will contain the
debugging and profiling object files and executables.

The variant executables are made to depend on the object files listed in the
VARIANTS.o macro. This macro is given the value of OBJECTS by default;
later on it is reassigned using a conditional macro definition, at which time either
the debug/ orprofile/ prefix is added. Executables in the subdirectories
depend on the object files that are built in those same subdirectories.

Next, pattern-matching rules are added to indicate that the object files in both
subdirectories depend upon source (. c) files in the working directory. This is
the key step needed to allow all three variants to be built and maintained from a
single set of source files.

Finally, the clean target has been updated to recursively remove the debug
and prof ile subdirectories and their contents, which should be regarded as
temporary. This is in keeping with the custom that derived files are to be built in
the same directory as their sources, since the subdirectories for the variants are
considered temporary.

Figure 5-10 Makefile/or Separate Debugging and Profiling Program Variants

Simple makefile for maintaining separate debugging and
profiling program variants.

CFLAGS= -0

SOURCES= main.c rest.c
OBJECTS= $ (SOURCES:%.c=$(VARIANT) %.0)
VARIANT=

functions profile debug: $$(OBJECTS)
$(LINK.c) -0 $@ $ (OBJECTS)

debug := VARIANT = .debug/
debug := CFLAGS = -g
profile := VARIANT = .profile/
profile := CFLAGS = -0 -pg

.KEEP STATE:

.INIT: .profile .debug

.profile .debug:
test -d $@ I I mkdir $@

$$ (VARIANT) %.0: %.c
$ (COMPILE.c) $< -0 $@

clean:
rm -r .profile .debug $(OBJECTS)

Revision A of 27 March 1990

Makefile for a Library with
Separate Variants

Chapter 5 - make User's Guide 151

The modifications for separate library variants are quite similar:

Figure 5-11 Makefile for Separate Debugging and Profiling Library Variants

41= Makefile for maintaining separate library
41= variants.
CFLAGS= -0

SOURCES= main.c rest.c
LIBRARY= lib.a
LSOURCES= fnc.c

OBJECTS= $(SOURCES:%.c=$(VARIANT)%.o)
VLIBRARY= $ (LIBRARY:%.a=$(VARIANT)%.a)
LOBJECTS= $(LSOURCES:%.c=$(VARIANT)%.o)
VARIANT=

program profile debug: $$(OBJECTS) $$(VLIBRARY)
$(LINK.c) -0 $@ $ (OBJECTS) $ (VLIBRARY)

lib.a .debug/lib.a .profile/lib.a: $$(LOBJECTS)
ar rv $@ $?
ranlib $@

$$(VLIBRARY) ($$(VARIANT) %.0) : $$(VARIANT)%.o
@true

profile := VARIANT = .profile/
profile := CFLAGS = -0 -pg

debug := VARIANT = .debug/
debug := CFLAGS = -g

KEEP STATE:
.profile .debug:

test -d $@ I I mkdir $@

$$(VARIANT) %.0: %.c
$ (COMPILE.c) $< -0 $@

While an interesting and useful compilation technique, this method for maintain­
ing separate variants is a bit complicated. For clarity's sake it is omitted from
subsequent examples.

Maintaining a Directory of
Header Files

The makefile for maintaining an include directory of headers is really quite
simple. Since headers consist of plain text, all that is needed is a target, all,
that lists them as dependencies. Automatic sees retrieval takes care of the rest.
If you use a macro for the list of headers, this same list can be used in other target
entries.

Revision A of 27 March 1990

152 Programming Utilities and Libraries

Compiling and Linking With
Your Own Libraries

It is not a good idea to have things
pop up all over the file system as a
result of running make.

Nested make Commands

The MAKE macro, which is set to the
value "make" by default, overrides
the -n option. Any command line in
which it is referred to is executed,
even though -n may be in effect.
Since this macro is used to invoke
make, and since the make it invokes
inherits -n from the special
MAKEFLAGS macro, make can trace
a hierarchy of nested make com­
mands with the -n option.

* Makefile for maintaining an include directory.

FILES.h= calc.h map.h draw.h

all: $(FILES.h)

clean:
rm -f $(FILES.h)

When preparing your own library packages, it makes sense to treat each library
as an entity that is separate from its header(s) and the programs that use it.
Separating programs, libraries and headers into distinct directories often makes it
easier to prepare makefiles for each type of module. And, it clarifies the structure
of a software project.

A courteous and necessary convention of make files is that they only build files in
the working directory, or in temporary subdirectories. Unless you are using
make specifically to install files into a specific directory on an agreed-upon file
system, it is regarded as very poor form for a makefile to produce output in
another directory.

Building programs that rely on libraries in other directories adds several new
wrinkles to the makefile. Up until now, everything needed has been in the direc­
tory, or else in one of the standard directories that are presumed to be stable.
This is not true for user-supplied libraries that are part of a project under
development.

Since these libraries aren't built automatically (there is no equivalent to hidden
dependency checking for them), you must supply target entries for them. On the
one hand, you need to assure the libraries you link with are up to date. On the
other, you need to observe the convention that a makefile should only maintain
files in the local directory. In addition, the makefile should not contain infonna­
tion duplicated in another.

The solution is to use a nested mak e command, running in the directory the
library resides in, to rebuild it (according to the target entry in the makefile
there).

* First cut entry for target in another * directory.

.. /lib/libpkg.a:
cd .. /lib $ (MAKE) libpkg.a

The library is specified with a pathname relative to the current directory. In gen­
eral, it is better to use relative pathnames. If the project is moved to a new root
directory or machine, so long as its structure remains the same relative to that
new root directory, all the target entries will still point to the proper files.

Revision A of 27 March 1990

Forcing A Nested make
Command to Run

Figure 5-12

These lines are produced by the
nested make run.

Chapter 5 - make User's Guide 153

Within the nested make command line, the dynamic macro modifiers F and D
come in handy, as does the MAKE predefined macro. If the target being pro­
cessed is in the fonn of a pathname, $ (@ F) indicates the filename part, while
$ (@ D) indicates the directory part. If there are no / characters in the target
name, then $ (@ D) is assigned the dot character (.) as its value.

The target entry can be rewritten as:

:#= Second cut .

.. /lib/libpkg.a:
cd $(@D); $ (MAKE) $(@F)

Because it has no dependencies, this target will only run when the file named
.. /1 ib /1 ibpk g . a is missing. If the file is a library archive protected by
. PRECIOUS, this could be a rare occurrence. The current make invocation nei­
ther knows nor cares about what that file depends on, nor should it. It is the
nested invocation that decides whether and how to rebuild that file. After all, just
because a file is present in the file system doesn't mean that it is up to date. This
means that you have to force the nested make to run, regardless of the file's pres­
ence, by making it depend on another target with a null rule (and no extant file):

Target Entry for a Nested make Command

:#= Reliable target entry for a nested make
:#= command .

.. /lib/libpkg.a: FORCE
cd $(@D); $ (MAKE) $(@F)

FORCE:

In this way, make reliably cd's to the directory .. / lib and builds libpkg . a
if necessary, using instructions from the makefile found in that directory.

The following makefile uses a nested make command to process local libraries
that a program depends on.

Revision A of 27 March 1990

154 Programming Utilities and Libraries

Figure 5-13 Makefilefor C Program With User-Supplied Libraries

Makefile for a C program with user-supplied
libraries and nested make commands.

CFLAGS= -0

.KEEP STATE:

functions: main.o data.o .. /lib/libpkg.a
$(LINK.c) -0 $@ main.o data.o .. /Iib/Iibpkg.a -Icurses -ltermlib

.. /lib/libpkg.a: FORCE
cd $(@D); $ (MAKE) $(@F)

FORCE:

lint: main.ln data.ln
$(LINT.c) main.ln data.ln

clean:
rm -f functions main.o data.o main.In data.ln

The MAKEFLAGS Macro
Do not define MAKEFLAGS in your
makefiles.

Macro Definitions and
Environment Variables:
Passing Parameters to Nested
make Commands

When .. / lib/ libpkg. a is up to date, this makefile produces:

Like the MAKE macro, MAKEFLAGS is also a special case. It contains flags (that
is, single-character options) for the make command. Unlike other FLAGS mac­
ros, the MAKEFLAGS value is a concatenation of flags, without a leading' -'.
For instance the string, eiknp would be a recognized value for MAKEFLAGS,
while, '- f x. mk' or 'macro=val ue' would not.

If the MAKEFLAGS environment variable is set, make runs with the combination
of flags given on the command line and contained in that variable.

The value of MAKEFLAGS is always exported, whether set in the environment or
not, and the options it contains are passed to any nested mak e commands
(whether invoked by $ (MAKE) , make or / usr /bin/make). This insures you
that nested make commands are always passed the options that the parent make
was invoked with.

With the exception ofMAKEFLAGS,23 make imports variables from the environ­
ment and treats them as if they were defined macros. In tum, make propagates

23 and SHELL. The SHELL environment variable is neither imported nor exported in this version of make.
See make(l) in the SunOS Reference Manual, for more infonnation about the SHELL macro.

Revision A of 27 March 1990

Chapter 5 - make User's Guide 155

those environment variables and their values to commands it invokes, including
nested make commands. Macros can also be defined as command line argu­
ments, as well as the makefile. This can lead to name-value conflicts when a
macro is defined in more than one place, and so, make has a fairly complicated
precedence rule for resolving them.

First of all, conditional macro definitions always take effect within the targets
(and their dependencies) for which they are defined.

If make is invoked with a macro-definition argument, that definition takes pre­
cedence over definitions given either within the makefile, or imported from the
environment. (This does not necessarily hold true for nested make commands,
however.) Otherwise, if you define (or redefine) a macro within the makefile, the
most recent definition applies. The latest definition normally overrides the
environment. Lastly, if the macro is defined in the default file and nowhere else,
that value is used.

With nested make commands, definitions made in the makefile normally over­
ride the environment, but only for the makefile in which each definition occurs;
the value of the corresponding environment variable is propagated regardless.
Command-line definitions override both environment and makefile definitions,
but only in the make run for which they are supplied. Although values from the
command line are propagated to nested make commands, they are overridden
both by definitions in the nested makefiles, and by environment variables
imported by the nested make commands.

The -e option behaves more consistently. The environment overrides macro
definitions made in any makefile, and command-line definitions are always used
ahead of definitions in the make file and the environment One drawback to -e is
that it introduces a situation in which information that is not contained in the
makefile can be critical to the success or failure of a build.

To avoid these complications, when you want to pass a specific value to an entire
hierarchy of make commands, run make -e in a subshell with the environment
set properly:

If you want to test out the cases yourself, you can use the following makefiles to
illustrate the various cases.

Revision A of 27 March 1990

156 Programming Utilities and Libraries

'* top.mk

MACRO= "Correct but unexpected."

top:

@echo ,,------------------------------ top"
echo $(MACRO)
@echo "------------------------------,,
$ (MAKE) -f nested.mk

@echo ,,------------------------------ clean"
clean:

rm nested

'* nested.mk

MACRO=nested

nested:

@echo ,,------------------------------ nested"
touch nested
echo $ (MACRO)
$ (MAKE) -f top.mk
$ (MAKE) -f top.mk clean

Table 5-3 Summary of Macro Assignment Order

Without -e With -e in effect

top-level make command:

conditional definitions conditional definitions
make command line make command line
latest makefile definition environment value
environment value latest makefile definition
predefined value, if any predefined value, if any

nested make commands:

conditional definitions conditional definitions
make command line make command line
latest make file definition parent make cmd. line
environment variable environment value
predefined value, if any latest makefile definition
parent make cmd. line predefined value, if any

Revision A of 27 March 1990

Compiling Other Source Files

Compiling and Linking a C
Program with Assembly
Language Routines

ASFLAGS passes options for as to
the . s .0 and • S. 0 implicit rules.

Compiling lex and yacc
Sources

Chapter 5 - make User's Guide 157

The makefile in the next example maintains a program with C source files linked
with assembly language routines.24 There are two varieties of assembly source
files, those that do not contain cpp preprocessor directives, and those that do.
By convention, assembly source files without preprocessor directives have the
. s suffix. Assembly sources that require preprocessing have the . S suffix.

Assembly sources are assembled to fOIm object files in a fashion similar to that
used to compile C sources. The object files can then be linked into a C program.
make has implicit rules for transforming . s and . S files into object files, so a
target entry for a C program with assembly routines need only specify how to
link the object files. You can use the familiar cc command to link object files
produced by the assembler:

CFLAGS= -0
ASFLAGS= -0

.KEEP STATE:

driver: c driver.o s routines.o S routines.o - -
cc -0 driver c driver.o s routines.o S routines.o

Note that the . S files are processed using the c c command, which invokes the C
preprocessor cpp, and invokes the assembler implicitly.

lex and yacc produce C source files as output. Source files for lex end in the
suffix .1, while those for yacc end in . y. When used separately, the compila­
tion process for each is similar to that used to produce programs from C sources
alone. There are implicit rules for compiling the lex or yacc sources into . c
files; from there the files are further processed with the implicit rules for compil­
ing object files from C sources. When these source files contain no #include
statements, there is no need to keep the . c file, which in this simple case serves
as an intennediate file. In this case one could use . 1 . 0 rule, or the . y . 0 rule,
respectively, to produce the object files, and remove the (derived) . c files. For
example, the make file:

CFLAGS= -0
.KEEP STATE:

all: scanner parser
scanner: scanner.o
parser: parser.o

produces the result shown below.

24 Refer to the Assembly Reference Manual for more information about assembly language source files.

Revision A of 27 March 1990

158 Programming Utilities and Libraries

yacc produces output files named
y.tab.c and y.tab.h. If you
want the output files to have the
same basename as the source file,
you must rename them.

Things get to be a bit more complicated when you use lex and yacc in combi­
nation. In order for the object files to work together properly, the C code from
lex must include a header produced by y ac c. So, it may be necessary to
recompile the C source file produced by lex when the yacc source file changes.
In this case, it is better to retain the intennediate (. c) files produced by lex, as
well as the additional. h file that yacc provides, so as to avoid running lex
whenever the yacc source changes.

The following makefile maintains a program built from a lex source, a yacc
source, and a C source file.

CFLAGS= -0
.KEEP STATE:

a2z: c functions.o scanner.O parser.o
cc -0 $@ c functions.o scanner.o parser.o

scanner.C:

parser.c + parser.h: parser.y
yacc -d parser.y
mv y.tab.c parser.c
mv y.tab.h parser.h

Since there is no transitive closure for implicit rules, you must supply a target
entry for scanner. c. This entry bridges the gap between the .1. c implicit
rule and the . c . 0 implicit rule, so that the dependency list for scanner. 0

extends to scanner.1. Since there is no rule in the target entry, scanner. c
is built using the . 1 . c implicit rule.

The next target entry describes how to produce the yacc intennediate files.
Because there is no implicit rule for producing both the header and the C source
file using y a c c - d, a target entry must be supplied that includes a rule for
doing so.

Revision A of 27 March 1990

Specifying Target Groups With
the + Sign

Maintaining Shell Scripts with
make and sees

Running Tests with make

Chapter 5 - make User's Guide 159

In the target entry for parser. c and parser. h, the + sign separating the tar­
get names indicates that the entry is for a target group.25 A target group is a set
of files, all of which are produced when the rule is perfonned. Taken as a group,
the set of files is what comprises the target. Without the + sign, each item listed
would comprise a separate target. With a target group, make checks the
modification dates separately against each target file, but performs the target's
rule only once, if necessary, per make run.

Although a shell script is a plain text file, it must have execute permission to run.
Since sees removes execute permission for files under its control, it is con­
venient to make a distinction between a shell script and it's "source" under
sees. make has an implicit rule for deriving a script from its source. The suffix
for a shell script source file is . s h. Even though the contents of the script and
the . sh file are the same, the script has execute permissions, while the . sh file
does not. make's implicit rule for scripts' 'derives" the script from its source
file, making a copy of the . s h file (retrieving it first, if necessary) and changing
the mode of the resulting script file to allow execution. For example:

Shell scripts often come in handy for running tests, and performing other routine
tasks that are either interactive, or don't require make's dependency checking.
Test suites, in particular, often entail providing a program with specific, repeat­
able input that a program might expect to receive from a terminal.

In the case of a library, a set of programs that exercise its various functions may
be written in C, and then executed in a specific order, with specific inputs from a
script. In the case of a utility program, there may be a set of benchmark pro­
grams that exercise and time its functions. In each of these cases, the commands
to run each test can be incorporated into a shell script for repeatability and easy
maintenance.

Once you have developed a test script that suits your needs, including a target to
run it is easy. Although make's dependency checking may not be needed within
the script itself, you can use it to make sure that the program or library is updated
before running those tests.

In the following target entry for running test~, test depends on the library
named as a dependency to all. If the library is out of date, make rebuilds it and
proceeds with the test. This insures that you always test with an up to date ver­
sion:

'25 Not available with earlier versions of make.

Revision A of 27 March 1990

160 Programming Utilities and Libraries

Escaped References to a Shell
Variable

Shell Command Substitutions

Command Replacement Macro
References

test: all testscript
set -x ; testscript > /tmp/test.\$\$

testscript: testscript.sh test_l test_2 test_3

test 1 test_2 test_3: $$@.c $ (LIBRARY)
$(LINK.c) -0 $@ $< $(LIBRARY) $(SLIBS)

test also depends on testscript, which in tum depends on the three test
programs. This assures that they too are up to date before make initiates the test
procedure. a 11 is built according to its target entry in the makefile;
testscript is built using the . sh implicit rule; and the test programs are
built using the rule in the last target entry, assuming that there is just one source
file for each test program. (The. c implicit rule doesn't apply to these programs,
because they must link. with the proper libraries in addition to their respective . c
files).

The string \ $ \ $ in the rule for t est illustrates how to escape the dollar-sign
from interpretation by make. make passes each $, to the shell, which expands
the $ $ to its process ID. This technique allows each test to write to a unique
temporary filename. The set -x command forces the shell to display the com­
mands it runs on the tenninal, which allows you to see the actual filename con­
taining the results of the specific test.

You can supply shell command substitutions within a rule as in the following
example:

[____ d_O_: _____ @_e_c_h_o __ '_c_a_t __ L_i_s_t_f_i_l_e_' __________________________ ~]
You can even place the backquoted expression in a macro:

DO= 'cat Listfile'
do:

@echo $(DO)

However, you can only use this fonn of command substitution within a rule.

If you supply a shell command as the definition of a macro:

(COMMAND= cat Listfile]
you can use a command replacement macro reference to instruct make to replace
the reference with the output of the command in the macro's value. This fonn of
command substitution can occur anywhere within a makefile:

Revision A of 27 March 1990

Command Replacement Macro
Assignment

5.5. Maintaining Software
Projects

Chapter 5 -make User's Guide 161

[~ ___ :_~_~_O_MMAN ___ =_D_:_:_:_)_:_i_:_:_~_~_~_:_._C_) ______________________________ ~l
This example imports a list of targets from another file, and indicates that each
target depends on a corresponding . c file.

As with shell command substitution, a command replacement reference evaluates
to the standard output of the command. [NEWLINE) characters are converted to
[SPACE) characters. The command is performed whenever the reference is
encountered. The command's standard error is ignored. However, if the com­
mand returns a non-zero exit status, make halts with an error. A workaround for
this is to append the true command to the command line:

COMMAND = cat Listfile ; true

A macro assignment of the fonn

cmd macro: sh = command

assigns the standard output of the indicated command to cmd _macro; for
instance:

COMMAND:sh = cat Listfile

$ (COMMAND) : $$(@:=.c)

is equivalent to the previous example. However, with the assignment form, the
command is only perfonned once per make run. Again, only the standard output
is used, (NEWLINE) characters are converted to (SPACE) characters, and a non­
zero exit status halts make with an error.

Alternate fonns of command replacement macro assignments are:

macro: sh += command
Append command output to the value of macro.

target : = macro: sh = command
Conditionally define macro to be the output of
command when processing target and its dependen­
cies.

target : = macro: sh += command
Conditionally append the output of command to the
value of macro when processing target and its depen­
dencies.

make is especially useful when a software project consists of a system of pro­
grams and libraries. By taking advantage of nested make commands, you can
use it to maintain object files, executables, and libraries in a whole hierarchy of
directories. You can use make in conjunction with sees, to assure that sources
are maintained in a controlled manner, and that programs built from them are

Revision A of 27 March 1990

162 Programming Utilities and Libraries

Organizing A Project for Ease
of Maintenance

consistent. This means that you can provide other programmers with duplicates
of the directory hierarchy for simultaneous development and testing if you wish
(although there are tradeoffs to consider).

You can use make to build the entire project and install final copies of various
modules onto another fi1esystem for integration and distribution.

As mentioned earlier, one good way to organize a project is to segregate each
major piece into its own directory. A project broken out this way usually resides
within a single file-system or directory hierarchy. Header files could reside in
one subdirectory, libraries in another, and programs in still another. Documenta­
tion, such as Reference Pages, may also be kept on hand in another subdirectory.
Suppose that a project is composed of one executable program, one library that
you supply, a set of headers for the library routines, and some documentation, as
shown in the diagram below.

project

1ib inc1ude doc

Makefile Makefile Makefile Makefile
data.c

main.c

sees

calc.c pkgdefs.h project.ms

draw.c pkg.3x

map.c functions. 1

sees sees sees

The makefiles in each subdirectory can be borrowed from examples in earlier
sections, but something more is needed to manage the project as a whole. A
carefully structured makefile in the root directory, the root makefile for the pro­
ject, provides target entries for managing the project as a single entity.

As a project grows, the need for consistent, easy-to-use makefiles also grows.
Macros and target names should have the same meanings no matter which
makefile you are reading. Conditional macro definitions and compilation options
for output variants should be consistent across the entire project.

Where feasible, a template approach to writing makefiles makes sense. This
makes it easy for you keep track of how the project gets built. All you have to do
to add a new type of module is to make a new directory for it, copy an appropri­
ate makefile into that directory, and make a few edits. Of course, you also need
to add the new module to the list of things to build in the root makefile.

Conventions for macro and target names, such as those used in the default
makefile, should be instituted and observed throughout the project. Mnemonic
names mean that although you may not remember the exact function of a target
or value of a macro, you'll know the type of function or value it represents (and
that's usually more valuable when deciphering a makefile anyway).

Revision A of 27 March 1990

Using include Makefiles

Installing Finished Programs
and Libraries

Building the Entire Project

Chapter 5 - make User's Guide 163

One method of simplifying makefiles, while providing a consistent compilation
environment, is to use make's

include filename

directive to read in the contents of a named makefile; if the named file is not
present, make checks for a file by that name in /usr / include/make.

For instance, there is no need to duplicate the pattern-matching rule for process­
ing troff sources in each makefile, when you can include it's target entry,
as shown below.

SQURCES= doc.ms spec.ms

clean: $ (SQURCES)
include .. /pm.rules.mk

Here, make reads in the contents of the .. /pm. rules. mk file, shown here:

#: pm.rules.mk
#:
#: Simple "include" makefile for pattern-matching
#: rules.

%.tr: %.ms
troff -t -ms $< > $@

%.nr: %.ms
nroff -ros $< > $@

When a program is ready to be released for outside testing or general use, you
can use make to install it. Adding a new target and new macro definition to do
so is easy:

DESTDIR= /proto/project/bin

install: functions
-rnkdir $(DESTDIR)
cp functions $ (DESTDIR)

A similar target entry can be used for installing a library, or a set of headers.

From time to time it is necessary to take a snapshot of the sources, and the object
files that they produce. Building an entire project is simply a matter of invoking
make successively in each subdirectory to build and install each module.

The following example shows how to use nested make commands to build a
simple project.

Revision A of 27 March 1990

164 Programming Utilities and Libraries

Maintaining Directory
Hierarchies With Recursive
Makefiles

Recursive Targets

Root makefile for a project.

TARGETS= all debug profile lint clean test install
SUBDIRS= bin include lib doc

$ (TARGETS) :
$ (MAKE) $ (SUBDIRS) TARGET=$@

$ (SUBDIRS) : FORCE
cd $@: $ (MAKE) $ (TARGET)

FORCE:

If you extend your project hierarchy to include more layers:

\ I

~ V
, ,
~

chances are that not only will the makefile in each intennediate directory have to
produce target files, but it will also have to invoke nested make commands for
subdirectories of its own. Files in the current directory can sometimes depend on
files in subdirectories, and their target entries need to depend on their counter­
parts in the subdirectories.

This means that the nested make command for each subdirectory should run
before the command in the local directory does. One way to assure that the com­
mands run in the proper order is to make a separate entry for the nested part, and
another for the local part. If you add these new targets to the dependency list for
the original target, its action will encompass them both.

Targets that encompass equivalent actions in both the local directory and in sub­
directories are referred to as recursive targets.26 A makefile with recursive targets
is referred to as a recursive makefile.

In the case of all, the nested dependency can be named all. nested; the
local dependency, all. local.

26 Strictly speaking, any target that calls make, with its name as an argument, is recursive. However, here
the tenn is reserved for the narrower case of targets that have both nested and local actions. Targets that only
have nested actions are referred to as "nested" targets.

Revision A of 27 March 1990

Recursive install Targets

Chapter 5 - make User's Guide 165

TARGETS= all debug profile lint clean test install
SUBDIRS= bin include lib doc
PROGRAM= functions

all: all.nested all.local

all.nested:
$ (MAKE) $ (SUBDIRS) TARGET=$(TARGET)

$ (SUBDIRS) : FORCE
cd $@i $ (MAKE) $ (TARGET)

all.local: $ (PROGRAM)

FORCE:

Note that the "nested" target invokes make with the all target as an argument,
not all. nested. The nested make must also be recursive, unless it is at the
bottom of the hierarchy. In the makefile for a leaf directory (one with no sub­
directories to descend into), you can simply comment out the rule for the nested
target. This will halt any further descent.

This same principle can be extended to all of the generic targets. The install
target, however, is something of a special case. If the destination is a parallel
directory hierarchy (such as when you are installing completed source code), the
parent directories must be created before the destination subdirectories can be.
This often means that the make install target in the current directory (which
creates the destination directory if needed) must be performed before that in any
subdirectory can succeed. So, install. local must appear ahead of
install. nested in the dependency list for install:27

TARGETS= all debug profile lint clean test install
SUBDIRS= bin include lib doc
PROGRAM= functions

all: all.nested all.local
install: install.local install.nested

all.nested install.nested:
$ (MAKE) $ (SUBDIRS) TARGET=$(@:%.nested=%)

$ (SUBDIRS) : FORCE
cd $@; $ (MAKE) $ (TARGET)

all.local: $ (PROGRAM)
install.local: $ (PROGRAM)

Xl IT the local target depends on files within a subdirectory, this may force make to descend into that
subdirectory twice during a make install run.

Revision A of 27 March 1990

166 Programming Utilities and Libraries

Maintaining A Large Library
as a Hierarchy of Subsidiaries

In general, use of shell filename
wildcards is considered to be bad
form in a makefile. If you do use it,
you need to take steps to insure
that it excludes spurious files by iso­
lating affected files in a temporary
subdirectory.

When maintaining a very large library, it is sometimes easier to break. it up into
smaller, subsidiary libraries, and use make to combine them into a complete
package. Although you cannot combine libraries directly with ar, you can
extract the member files from each subsidiary library, and then archive those files
in another step, as shown below.

A subsidiary library is maintained using a makefile in its own directory, along
with the (object) files it is built from. The makefile for the complete library typi­
cally makes a symbolic link to each subsidiary archive, extracts their contents
into a temporary subdirectory, and archives the resulting files to form the com­
plete package.

The next example updates the subsidiary libraries, creates a temporary directory
in which to extracted the files, and extracts them. It uses the * (shell) wild card
within that temporary directory to generate the collated list of files. While
filename wildcards are generally frowned upon, this use of the wild card is
acceptable because the directory is created afresh whenever the target is built.
This guarantees that it will contain only files extracted during the current make
run.

The example relies on a naming convention for directories. The name of the
directory is taken from the basename of the library it contains. For instance, if
1 ibx . a is a subsidiary library, the directory that contains it is named 1 ibx. It
makes use of suffix replacements in dynamic-macro references to derive the
directory name for each specific subdirectory. (You can verify yourself that this
is necessary.)

It uses a shell for loop to successively extract each library, and a shell com­
mand substitution to collate the object files into proper sequence for linking
(using lorder and tsort) as it archives them into the package. Finally, it
removes the temporary directory and its contents.

Revision A of 27 March 1990

Chapter 5 - make User's Guide 167

* Makefile for collating a library from subsidiaries.

CFLAGS= -0

.KEEP STATE:

.PRECIOUS: libz.a

all: $ (LIBRARY)

libz.a: libx.a liby.a
-rm -rf tmp
-mkdir tmp
set -x ; for i in libx.a liby.a ; \

do (cd tmp ; ar x .. /$$i) ; done
(cd tmp ; rm -f __ .SYMDEF ; ar cr .. /$@ 'larder * I tsort')
-ranlib $@
-rm -rf tmp libx.a liby.a

libx.a liby.a: FORCE
-cd $(@:.a=) ; $ (MAKE) $@
-In -s $(@: .a=)/$@ $@

FORCE:

For the sake of clarity, this example omits support for alternate variants, as well
as the targets for clean, install, and test (lint does not apply since the
source files are in the subdirectories).

The rm -£ __ . SYMDEF command embedded in the collating line prevents a
symbol table in a subsidiary (produced by running ran 1 ib on that library) from
being archived in this library.

Since the nested make commands build the subsidiary libraries before the
currently library is processed, it is a simple matter to extend this makefile to
account for libraries built from both subsidiaries and object files in the current
directory. You need only add the list of object files to the dependency list for the
library, and a command to copy them into the temporary subdirectory for colla­
tion with object files extracted from subsidiary libraries.

Revision A of 27 March 1990

168 Programming Utilities and Libraries

Makefile for collating a library from subsidiaries and local objects.

CFLAGS= -0

.KEEP STATE:

.PRECIOUS: libz.a

all: libz.a

libz.a: libx.a liby.a map.o ca1c.o draw.o
-rm -rf tmp
-mkdir tmp
-cp map.o calc.o draw.o tmp
set -x ; for i in libx.a liby.a ; \
do (cd tmp ; ar x .. /$$i) ; done
(cd tmp ; rm -f __ .SYMDEF ; ar cr .. /$@ 'lorder * I tsort')
-ranlib $@
-rm -rf tmp lix.a liby.a

libx.a liby.a: FORCE
-cd $(@:.a=) ; $ (MAKE) $@
-In -s $(@: .a=)/$@ $@

FORCE:

5.6. Closing Remarks
about make

make has evolved into a powerful and flexible tool for consistently processing
files that stand in a hierarchical relationship to one another. The methods and
examples shown in this manual are intended to provide you with an exposure to
the kinds of problems that lend themselves to solution with make. There is a
large body of folklore about make; strong and varied opinions about its "best"
use abound. This manual does not make the claim that anyone approach or
example is necessarily the best available. Compromises between clarity and
functionality were made in many of the examples.

Also, there is considerable opinion both pro and against makefiles that use mac­
ros extensively. Some experts prefer to tailor makefiles for specific situations.
Others prefer that all makefiles look the same and work the same way.

As procedures become more complicated, so do the makefiles that implement
them. The trick is to know which approach will yield a reasonable makefile that
works in a given situation. The examples are intended to give you a flavor for
common situations, and some fairly straightforward methods to simplify them
using make.

If a template approach is used in a project from the outset, chances are that cus­
tom makefiles that evolve from the templates will be more familiar, and therefore
easier to understand, to integrate, to maintain, and more importantly, to re-use.
After all, the less time you spend tinkering with the makefiles, the more time you
have to develop your program or project.

Revision A of 27 March 1990

6.1. Using 1 int

6
lint - a Program Verifier for C

lint examines C source programs, detecting a number of bugs and obscurities.
lint enforces the type rules ofC more strictly than the C compiler. lint may
also be used to enforce a number of portability restrictions involved in moving
programs between different machines and/or operating systems. Another option
detects a number of wasteful, or error-prone, constructions which nevertheless
are, strictly speaking, legal.

lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function between lint and the C compilers has both historical
and practical rationale. The compilers turn C programs into executable files
rapidly and efficiently. This is possible in part because the compilers do not do
sophisticated type checking, especially between separately compiled programs.
lint takes a more global, leisurely view of the program, looking much more
carefully at the compatibilities.

This document discusses the use of 1 in t, gives an overview of its implementa­
tion, and gives some hints on writing machine-independent C code.

Suppose there are two C source files,filel . c andfile2. c, which are ordinarily
compiled and loaded together. The command:

produces messages describing inconsistencies and inefficiencies in the programs.
lint enforces the typing rules of C more strictly than the C compiler (for both
historical and practical reasons) enforces them. The command:

produces, in addition to the types of messages described above, additional mes­
sages relating to portability of the programs to other operating systems and
machines. As standardization efforts progress, -p may become less useful.
Since many operating system implementations on a variety of hardware plat­
fonns are moving toward confonnance with the System V Interface Definition
(SVID), the X/OPENPortability Guide, and the IEEE Std 1003.1-1988 (POSIX),
the old definitions used by -p are less relevant.

169 Revision A of 27 March 1990

170 Programming Utilities and Libraries

6.2. A Word About
Philosophy

6.3. Unused Variables and
Functions

Replacing the -p by -h produces messages about various error-prone or wasteful
constructions which, strictly speaking, are'not bugs. Saying - hp gets the whole
works.

The next several sections describe the major messages; the document closes with
sections discussing the implementation and giving suggestions for writing port­
able C. There is a summary of lint options in section lint Options.

Many of the facts which lint needs may be impossible to discover. For exam­
ple, whether a given function in a program ever gets called may depend on the
input data. Deciding whether exit is ever called is equivalent to solving the
famous 'halting problem,' which is known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never
mentioned, it can never be called. If a function is mentioned, 1 in t assumes it
can be called; this is not necessarily so, but in practice is quite reasonable.

lint tries to give information with a high degree of relevance. Messages of the
fonn 'xxx might be a bug' are easy to generate, but are acceptable only in propor­
tion to the fraction of real bugs they uncover. If this fraction of real bugs is too
small, the messages lose their credibility and serve merely to clutter up the out­
put, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of mes­
sages which lint produces.

As programs evolve and develop, previously used variables and arguments to
functions may become unused; it is not uncommon for external variables, or even
entire functions, to become unnecessary, and yet not be removed from the source.
These' errors of commission' rarely make working programs fail, but they are a
source of inefficiency, and make programs harder to understand and change.
Moreover, information about such unused variables and functions can occasion­
ally serve to discover bugs; if a function does a necessary job, and is never
called, something is wrong!

lint complains about variables and functions which are defined but not other­
wise mentioned. An exception is variables which are declared through explicit
extern statements but are never referenced; thus the statement:

extern float sin();

will evoke no comment if sin () is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external declarations
might be of some interest; they can be discovered by adding the - x option to the
1 i n t invocation.

Certain styles of programming require many functions to be written with similar
interfaces; frequently, some of the arguments may be unused in many of the
calls. The -v option is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are produced about
unused arguments except for those arguments which are unused and also
declared as register arguments; this can be considered an active (and preventable)
waste of the register resources of the machine.

Revision A of 27 March 1990

6.4. Set/Used Information

6.5. Flow of Control

Chapter 6 -lint - a Program Verifier for C 171

There is one case where infonnation about unused, or undefined, variables is
more distracting than helpful. This is when lint is applied to some, but not all,
files out of a collection which are to be loaded together. In this case, many of the
functions and variables defined may not be used, and, conversely, many func­
tions and variables defined elsewhere may be used. The -u option may be used
to suppress the spurious messages which might otherwise appear.

lin t attempts to detect cases where a variable is used before it is set. This is
very difficult to do well; many algorithms take a good deal of time and space,
and still produce messages about perfectly valid programs. lint detects local
variables (automatic and register storage classes) whose first use appears physi­
cally earlier in the input file than the first assignment to the variable. It assumes
that taking the address of a variable constitutes a 'use,' since the actual use may
occur at any later time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes the algo­
rithm very simple and quick to implement, since the true flow of control need not
be discovered. It does mean that lint can complain about some programs
which are legal, but these programs would probably be considered bad on stylis­
tic grounds (for example, might contain at least two goto's). Because static and
external variables are initialized to 0, no meaningful infonnation can be
discovered about their uses. The algorithm deals correctly, however, with initial­
ized automatic variables, and variables which are used in the expression which
first sets them.

The set/used infonnation also pennits recognition of those local variables which
are set and never used; these fonn a frequent source of inefficiencies, and may
also be symptomatic of bugs.

lint attempts to detect unreachable portions of the programs which it
processes. It complains about unlabeled statements immediately following
goto, break, continue, or return statements. An attempt is made to
detect loops which can never be left at the bottom, detecting the special cases
while (1) and for (; ;) as infinite loops. lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops,
but at best they are bad style, at worst bugs.

lint has an important area of blindness in the flow of control algorithm: it has
no way of detecting functions which are called and never return. Thus, a call to
exi t may cause unreachable code which lint does not detect; the most serious
effects of this are in the detennination of returned function values (see the next
section).

One fonn of unreachable statement that lint does not complain about is a
break statement that cannot be reached - programs generated by yacc, and
especially lex, may have literally hundreds of unreachable break statements.
The -0 option in the C compiler often eliminates the resulting object code
inefficiency. Thus, these unreached statements are of little importance - there is
typically nothing the user can do about them, and the resulting messages would
clutter up the 1 in t output. If these messages are desired, 1 in t can be invoked
with the -b option.

Revision A of 27 March 1990

172 Programming Utilities and Libraries

6.6. Function Values

6.7. Type Checking

Sometimes functions retum values which are never used; sometimes programs
incorrectly use function 'values' which are never retumed. lint addresses this
problem in a number of ways.

Locall y, within a function definition, the appearance of both:

return (expr);

and:

return;

statements results in the message

function na~ contains return (expr) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a)
if (a

return (3);
g ();

Notice that, if a tests false, f () calls g () and then returns with no defined
return value; this triggers a complaint from lint. If g () never returns, the
message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it
also accounts for a substantial fraction of the 'noise' messages produced by
lint.

On a global scale, 1 in t detects cases where a function returns a value, but this
value is sometimes, or always, unused. When the value is always unused, it may
constitute an inefficiency in the function definition. When the value is some­
times unused, it may represent bad style (for example, not testing for error condi­
tions).

The dual problem, using a function value when the function does not return one,
is also detected. This is a serious problem. Amazingly, this bug has been
observed on a couple of occasions in 'working' programs; the desired function
value just happened to have been computed in the function return register!

lint enforces the type checking rules of C more strictly than the compiler does.
The additional checking is in four major areas: across certain binary operators
and implied assignments, at the structure selection operators, between the
definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an implied balancing between types
of the operands. The assignment, conditional (? :), and relational operators have
this property; the argument of a ret urn statement, and expressions used in ini­
tialization also suffer similar conversions. In these operations, char, short,

Revision A of 27 March 1990

6.8. Type Casts

6.9. Nonportable
Character Use

Chapter 6 - lint - a Program Verifier for C 173

int, long, unsigned, float, and double types may be freely intennixed.
The types of pointers must agree exactly, except that arrays of x's can, of course,
be intermixed with pointers to x' s.

The type checking rules also require that, in structure references, the left operand
of the - > be a pointer to structure, the left operand of the ' .' be a structure, and
the right operand of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short,
int, and unsigned. Also, pointers can be matched with the associated arrays.
Aside from this, all actual arguments must agree in type with their declared coun­
terparts.

With enumerations, checks are made that enumeration variables or members are
not mixed with other types, or other enumerations, and that the only operations
applied are =, initialization, ==, !=, and function arguments and return values.

The type casting feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment:

p = 1 ;

where p is a character pointer. lint will quite rightly complain. Now, consider
the assignment

p = (char *)1 i

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. It seems harsh for 1 i n t to continue to complain about
this. On the other hand, if this code is moved to another machine, such code
should be looked at carefully. The -c option controls the printing of comments
about casts. When -c is in effect, casts are treated as though they were assign­
ments subject to complaint; otherwise, all legal casts are passed without com­
ment, no matter how strange the type mixing seems to be.

In some implementations, characters are signed quantities, with a range from
-128 to 127. In other C implementations, characters take on only positive
values. Thus, lint will mark certain comparisons and assignments as being
illegal or nonportable. For example, the fragment:

[
char Ci

if ((c = getchar (» < 0) ...

works on the PDP-II, but will fail on machines where characters always take on
positive values. The real solution is to declare c an integer, since get char ()
is actually returning integer values. In any case, lint will say 'nonportable
character comparison'.

1

Revision A of 27 March 1990

174 Programming Utilities and Libraries

6.10. Assignments of Longs
to Ints

6.11. Strange
Constructions

A similar issue arises with bitfields; when assignments of constant values are
made to bitfields, the field may be too small to hold the value. This is especially
true because on some machines bitfields are considered as signed quantities.
While it may seem unintuitive to consider that a two-bit field declared of type
in t cannot hold the value 3, the problem disappears if the bitfield is declared to
have type unsigned.

Bugs may arise from the assignment of a long to an int, which may lose accu­
racy. This may happen in programs which have been incompletely converted to
use typedefs. When a typedef variable is changed from int to long, the
program can stop working because some intennediate results may be assigned to
int 's, losing accuracy. Since there are a number of legitimate reasons for
assigning longs to in ts, the detection of these assignments is enabled by the -
a option.

lint flags several perfectly legal, but somewhat strange, constructions - it is
hoped that the messages encourage better code quality, clearer style, and may
even point out bugs. The - h option is used to enable these checks. For example,
in the statement:

*p++ ;

the * does nothing; this provokes the message 'null effect' from lint. The pro­
gram fragment:

unsigned x ; if (x < 0) •.•

is clearly somewhat strange; the test will never succeed. Similarly, the test:

if (x > 0) •.•

is equivalent to:

if(x != 0)

which may not be the intended action. lint will say 'degenerate unsigned com­
parison' in these cases. If one says:

if(1 != 0) ...

lint reports 'constant in conditional context', since the comparison of 1 with 0
gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and fonnatting, making such bugs extremely hard to find.
For example, the statements:

if (x& 077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions, and lint encourages this by an appropriate message.

Revision A of 27 March 1990

6.12. Pointer Alignment

6.13. Multiple Uses and
Side Effects

6.14. Implementation

Chapter 6 -lint - a Program Verifier for C 175

Finally, when the -h option is in force lint complains about variables which
are redeclared in inner blocks in a way that conflicts with their use in outer
blocks. This is legal, but is considered to be bad style, usually unnecessary, and
frequently a bug.

Certain pointer assignments may be reasonable on some machines, and illegal on
others, due entirely to alignment restrictions. For example, on the PDP-II, it is
reasonable to assign integer pointers to double pointers, since double-precision
values may begin on any integer boundary. On the Honeywell 6000, double­
precision values must begin on even word boundaries; thus, not all such assign­
ments make sense. 1 i n t tries to detect cases where pointers are assigned to
other pointers, and such alignment problems might arise. The message 'possible
pointer alignment problem' results from this situation whenever either the -p or
- h options are in effect.

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines (like the PDP-II)
in which the stack runs backwards, function arguments will probably be best
evaluated from right-to-Ieft; on machines with a stack running forward, left-to­
right seems most attractive. Function calls embedded as arguments of other
functions mayor may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly comprom­
ised, the C language leaves the order of evaluation of complicated expressions up
to the local compiler, and, in fact, the various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement:

a [i] = b [i ++] ;

will draw the complaint:

warning: i evaluation order undefined

lint consists of two programs and a driver. The first program is a version of
the Portable C Compiler, which is the basis of many C compilers, including
Sun's. This compiler does lexical and syntax analysis on the input text, con­
structs and maintains symbol tables, and builds trees for expressions. Instead of
writing an intermediate file which is passed to a code generator, as the compilers
do, lint produces an intermediate file which consists of lines of ASCII text.
Each line contains an external variable name, an encoding of the context in
which it was seen (use, definition, declaration, etc.), a type specifier, and a source
file name and line number. The information about variables local to a function or
file is collected by accessing the symbol table, and examining the expression
trees.

Revision A of 27 March 1990

176 Programming Utilities and Libraries

6.15. Portability

Comments about local problems are produced as detected. The information
about external names is collected onto an intennediate file. After all the source
files and library descriptions have been collected, the intennediate file is sorted to
bring all infonnation collected about a given external name together. The
second, rather small, program then reads the lines from the intennediate file and
compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options
available to both passes of lint.

Many C programs have been successfully ported to a wide variety of operating
systems, partly as a result of the lint features that increase portability. While
there is no guarantee that a given C program will run unmodified within a dif­
ferent system environment, passing it through lint identifies and eliminates
many potential portability problems.

For instance, uninitialized external variables are treated differently in different
implementations of C. Suppose two files both contain a declaration without ini­
tialization, such as:

int a ;

outside of any function. The loader resolves these declarations, and sets aside
only a single word of storage for a. Under the mM implementations, this is not
feasible, so each such declaration sets aside a word of storage caIled a. When
loading or library editing takes place, this creates fatal conflicts which prevent
the proper operation of the program. lint detects such multiple definitions if it
is invoked with the -p option.

A related difficulty comes from the amount of information retained about exter­
nal names during the loading process. On the SunOS system, externally known
names have seven significant characters, with the upper !lower case distinction
kept. On the IBM systems, there are eight significant characters, but the case dis­
tinction is lost. On GeOS, there are only six characters, of a single case. This
leads to situations where programs run on one system, but encounter loader prob­
lems on others. lint -p maps all external symbols to one case and truncates
them to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the
SunOS system are eight bit ASCII, while they are eight bit EBCDIC on the mM,

and nine bit ASCII on Geos. Moreover, character strings go from high to low bit
positions ('left to right') on Geos and IBM, and low to high ('right to left') on
the PDP-II. This means that code attempting to construct strings out of character
constants, or attempting to use characters as indices into arrays, must be looked
at with great suspicion. lint is of little help here, except to option multi­
character character constants.

Of course, the word sizes are different! This is less troublesome than might be
expected, however. The main problems are likely to arise in shifting or masking.
C now supports a bit-field facility, which can be used to write much of this code

+~t!! Revision A of 27 March 1990

6.16. Shutting 1 int Up

Chapter 6 - lint - a Program Verifier for C 177

in a reasonably portable way. Frequently, portability of such code can be
enhanced by slight rearrangements in coding style. Many of the incompatibili­
ties seem to have the flavor of writing:

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-l1, but fails badly
on GCOS and IBM. If the bit field feature cannot be used, the same effect can be
obtained by writing:

x &= - 077 ;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on
most other machines. To obtain a logical shift on all machines, the left operand
can be typed unsigned. Characters are considered signed integers on the
PDP-I 1 , and unsigned on the other machines. This persistence of the sign bit
may be reasonably considered a bug in the PDP-11 hardware which has infiltrated
itself into the C language. If there were a good way to discover the programs
which would be affected, C could be changed; in any case, 1 int is no help here.

The above discussion may have made the problem of portability seem bigger
than it in fact is. The issues involved here are rarely subtle or mysterious, at least
to the implementor of the program, although they can involve some work to
straighten out. The most serious bar to the portability of system utilities has been
the inability to mimic essential system functions on the other systems. The ina­
bility to seek to a random character position in a text file, or to establish a pipe
between processes, has involved far more rewriting and debugging than any of
the differences in C compilers. On the other hand, lint has been very helpful
in moving the operating system and associated utility programs to other
machines.

There are occasions when the programmer is smarter than 1 i n t. There may be
valid reasons for 'illegal' type casts, functions with a variable number of argu­
ments, etc. Moreover, as specified above, the flow of control information pro­
duced by 1 in t often has blind spots, causing occasional spurious messages
about perfectly reasonable programs. Thus, some way of communicating with
lint, typically to shut it up, is desirable.

The fonn which this mechanism should take is not at all clear. New keywords
would require current and old compilers to recognize these keywords, if only to
ignore them. This has both philosophical and practical problems. New prepro­
cessor syntax suffers from similar problems.

What was finally done was to make 1 i n t recognize a number of words when
they were embedded in comments. This required minimal preprocessor changes;
the preprocessor just had to agree to pass comments through to its output, instead
of deleting them as had been previously done. Thus, 1 in t directives are invisi­
ble to the compilers, and the effect on systems with the older preprocessors is
merely that the lint directives don't work.

Revision A of 27 March 1990

178 Programming Utilities and Libraries

6.17. Library Declaration
Files

The first directive is concerned with flow of control infonnation; if a particular
place in the program cannot be reached, but this is not apparent to lint, this can
be asserted by placing the directive

/*NOTREACHED*/

just before that spot in the program. The -v option can be turned on for one
function by the directive:

/*ARGSUSED*/

Complaints about variable numbers of arguments in calls to a function can be
turned off by the directive:

/*VARARGS*/

preceding the function definition. In some cases, it is desirable to check the first
several arguments, and leave the later arguments unchecked. This can be done
by following the VARARGS keyword immediately with a digit giving the number
of arguments which should be checked; thus,

/*VARARGS2*/

checks the first two arguments and leaves the others unchecked. Finally, the
directive:

/*LINTLIBRARY*/

at the head of a file identifies this file as a library declaration file; this topic is
worth a section by itself.

lint accepts certain library directives, such as:

-ly

and tests the source files for compatibility with these libraries. This is done by
accessing library description files whose names are constructed from the library
directives. These files all begin with the directive:

/*LINTLIBRARY*/

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to the
function. The VARARGS and ARGSUSED directives can be used to specify
features of the library functions.

lint library files are processed almost exactly like ordinary source files. The
only difference is that functions which are defined in a library file, but not used in
a source file, draw no complaints. lint does not simulate a full library search
algorithm, and complains if the source files contain a redefinition of a library rou­
tine (this is a feature!).

Revision A of 27 March 1990

6.18. Considerations When
Using lint

6.19. lint Options

Chapter 6 - lint - a Program Verifier for C 179

By default, lint checks the routines it is given against a standard library file,
which contains descriptions of the programs which are nonnally loaded when a C
program is run. When the -p option is in effect, another file is checked contain­
ing descriptions of the standard I/O library routines which are expected to be
portable across various machines. The -n option can be used to suppress all
library checking.

lint was a difficult program to write, partially because it is closely connected
with matters of programming style, and partially because users usually don't
notice bugs which cause lint to miss errors which it should have caught. By
contrast, if lint incorrectly complains about something that is correct, the pro­
grammer reports that immediately!

A number of areas remain to be further developed. The checking of structures
and arrays is rather inadequate; size incompatibilities go unchecked, and no
attempt is made to match up structure and union declarations across files. Some
stricter checking of the use of t ypede£ is clearly desirable, but what checking
is appropriate, and how to carry it out, is still to be determined.

lint shares the preprocessor with the C compiler. At some point it may be
appropriate for a special version of the preprocessor to be constructed which
checks for things such as unused macro definitions, macro arguments which have
side effects which are not expanded at all, or are expanded more than once, etc.

The central problem with lint is the packaging of the information which it col­
lects. There are many options which serve only to tum off, or slightly modify,
certain features. There are pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good
one. The compiler concentrates on quickly and accurately turning the program
text into bits which can be run; lint concentrates on issues of portability, style,
and efficiency. lint can afford to be wrong, since incorrectness and over­
conservatism are merely annoying, not fatal. The compiler can be fast since it
knows that lint will cover its flanks. Finally, the programmer can concentrate
at one stage of the programming process solely on the algorithms, data structures,
and correctness of the program, and then later retrofit, with the aid of lint, the
desirable properties of universality and portability.

The lint command currently has the form

The options are

a Report assignments of long to lint or shorter

b Report unreachable break statements

c Complain about questionable casts

h Perform heuristic checks

Revision A of 27 March 1990

180 Programming Utilities and Libraries

n Do not do library checking

p Perfonn portability checks

s Same as h (for historical reasons)

u Don't report unused or undefined externals

v Don't report unused arguments

x Report unused external declarations

Revision A of 27 March 1990

7.1. t irne - Display Time
Used by a Program

7
Perfonnance Analysis

Tools discussed in this chapter cover facilities for timing programs and getting
performance analysis data. Some tools work only with the C programming
language, while others will work on modules written in any language. Perfor­
mance analysis tools provide a variety of levels of analysis from very simple tim­
ing of a command down to a statement-by-statement analysis of a program. You
can select which level of granularity you like depending on the amount of detail
and optimization you wish to perform. Here are the performance analysis tools
available from the simplest to the most detailed:

time A simple command (built in to the C shell) to display the time that a
program takes. The C shell's built in time command display statis­
tics about how a command uses the system resources as well as just
the raw time consumed.

prof

gprof

tcov

Generates a profile for the modules in a program, showing which
modules are using the time.

Generates not only a profile as for prof, but also generates a call
graph showing what modules call which, and which modules are
called by other modules. The call graph can sometimes point out
areas where removing calls can speed up a program.

Generates a detailed statement-by-statement analysis of a C pro­
gram.

Two distinct versions of the time command exist in the Sun system. Here we
discuss the time command that is built in to the C shell. The other time com­
mand is a program (in /bin/time) that you get when you use the Bourne shell.

As a first example, we show the time command being used to display statistics
on the run-time of the index. assist program we've used in other examples
in this manual. In all the examples shown here we direct the output from
index. assist into / dev/null. Here is the simplest example of using
time:

181 Revision A of 27 March 1990

182 Programming Utilities and Libraries

Effects of Optimizer on
Timing

Controlling the display from
the time Command

Now to explain the items in the display from the time command above.

The 13.5u means that this program used 13.5 seconds of user time - time spent
in the application program itself. The 0.8s means that the program spent 0.8
seconds in the system - this is time spent in the operating system kernel on
behalf of the program. The third field is the elapsed or wallclock time for the
application. The percentage figure is the percent of the user and system time as a
fraction of the elapsed time. The rest of the display is of lesser interest just now
and is explained in more detail below.

Just for the sake of interest, let's see what effect the C optimizer has on the run
time of this program - we make the program with the -0 option and see what
happens:

What has happened here? The optimized version takes longer to run! This
demonstration tells us that simple timing is not so simple after all- in a multi­
tasking system there are many other factors that can effect the simple timing.
Note that the user time for the program is actually slightly less - 0.4 seconds
less. But, the system time and the elapsed time are very different. These timings
are affected by the load on the system. If we look at the last field in the time
display, note that in the unoptimized version there were zero page faults, while in
the optimized version there was one page fault. This is an indication that there
was other activity in the system at the time the program was run and this other
activity will adversely affect the elapsed time. There are two rules you can apply
to this situation:

o Run such timing tests on a quiet system late at night. Make sure that 'late at
night' is not midnight when a whole bunch of cron daemons start up.

o Run timing tests several times and take averages.

The time command built into the C shell has the capability of altering the infor­
mation displayed under control of an environment variable. This is not true of
/bin/time -the command you'd have to use if you were using the Bourne
shell. Here is how to set up the time variable to control the time display.

You can control how the C shell times programs by setting the time variable in
your .login or . cshrc file.

The time variable can be supplied with one or two values, such as
set time=30rset time=(3 n%E %P%n).

Setting the time variable via a set command of the fonn:

set t ime=nnn

means that the shell displays a resource-usage summary for any command run­
ning for more than nnn CPU seconds.

Revision A of 27 March 1990

Control Key Letters for the
time Command

Chapter 7 - Performance Analysis 183

The second fonn controls exactly what resources are displayed. The character
string can be any string of text with embedded control key-letters in it. A control
key-letter is a percent sign (%) followed by a single upper-case letter. To print a
percent sign, use two percent signs in a row. Unrecognized key-letters are sim­
ply printed. The control key-letters are:

Table 7-1 Control Key Letters for the time Command

Default Timing Summary

Letter Description

D Average amount of unshared data space used in Kilobytes.
E Elapsed (wallclock) time for the command.
F Page faults.
I Number of block input operations.
K Average amount of unshared stack space used in Kilobytes.
M Maximum real memory used during execution of the process.
o Number of block output operations.
P Total CPU time - U (user) plus S (system) - as a percentage

of E (elapsed) time.
S Number of seconds of CPU time consumed by the kernel on

behalf of the user's process.
U Number of seconds of CPU time devoted to the user's process.
W Number of swaps.
X Average amount of shared memory used in Kilobytes.

The default resource-usage summary is a line of the fonn:

uuu.uu sss.ss ee:ee pp% xxx+dddk iii+oooio mmmpf+www

Table 7-2 Default Timing Summary Chart

Field Description

uuu.u user time (U),
sss.s system time (S),
ee:ee elapsed time (E),
pp percentage of CPU time versus elapsed time (P),
xxx average shared memory in Kilobytes (X),
ddd average unshared data space in Kilobytes (D),
iii and 000 the number of block input and output operations respec­

tively (I and 0),
mmm number of page faults (F)
ww number of swaps (W).

A_ sun Revision A of 27 March 1990
• microsystems

184 Programming Utilities and Libraries

C shell time Command
versus /bin/time

7.2. prof - Generate
Profile of a Program

One final note on the time commands. As mentioned previously, there are two
versions of time: the one built in to the C shell as described above, and the ori­
ginal Bourne shell time command which can be found in /bin/time.

The C shell time command does not time a command which is a component of
a pipeline. This is what happens:

whereas the Bourne shell time command gives completely different results:

After simple timing, a profile of a program displays a finer level of analysis to
assist in optimizing performance. Getting a profile is the next step after simple
timing - more detailed analysis is provided by the call-graph profile and the
code coverage tools described later in this chapter.

Taking the index. assist program from before as an example, let's make the
program compiled for profiling. To compile a program for profiling, you use the
-p option to the C compiler:

Now we can run the index.assist program as before. When a program is profiled,
the results appear in a file called mon . out at the end of the run. Every time you
run the program a new mon. out file is created, overwriting the old version.
You then use the prof command to interpret the results of the profile, as shown
by the example below.

Revision A of 27 March 1990

Interpreting Profile Display

Chapter 7 - Performance Analysis 185

This display points out that most of the program's running time is spent in the
routine that compares character strings to establish the correct place for the index
entries, and that after that, the majority of the time is spent in the _ str len
library routine - to find the length of a character string. If we wish to make any
appreciable improvements to the program we must concentrate our efforts on the
compare_strings function.

Let's interpet the results of the profiling run though. The results appear under
these column headings:

%time cumsecs #call ms/call name

Here's what the columns mean:

% time Percentage of the total run time of the program, that was consumed
by this routine.

c urns e c s A running sum of the number of seconds accounted for by this func­
tion and those listed above it. This infonnation isn't really worth
much - the important data comes from the percentage of total time
and from the time consumed per call.

#call The number of times this routine was called .

• sun Revision A of 27 March 1990
~ microsystems

186 Programming Utilities and Libraries

7.3. gp r 0 f - Generate a
Call Graph Profile

Compiling with the -pg
Option

Output from gpro f

ms/ call How many milliseconds this routine consumed each time it was
called.

name The name of the routine.

Now what advice can we derive from the profile data? Notice that the
compare_strings function consumes nearly 20% of the total time. To
improve the run time of index. assist we must either improve the algorithm
that compare _ str ings uses, or we must cut down the number of calls. Not
obvious from the fiat profile is the information that compare_strings is
heavily recursive - we get that fact from using the call graph profile described
below. In this particular case, improving the algorithm also implies reducing the
number of calls.

While the fiat profile described in the last section can provide valuable data for
performance improvements, sometimes the data obtained is not sufficient to point
out exactly where the improvements can be made. A more detailed analysis can
be obtained by using the call graph profile that displays a list of which modules
are called by other modules, and which modules call other modules. Sometimes,
removing calls altogether can result in performance improvements.

Using the same index. assist program an example, let's make the program
compiled for call-graph profiling. To compile a program for call-graph profiling,
you use the -pg option to the C compiler:

Now we can run the index.assist program as before. When a program is call­
graph profiled, the results appear in a file called gmon . out at the end of the run.
You then use the gprof command to interpret the results of the profile:

The output from gprof is really voluminous - it's usually intended that you
take the summaries away and read them later. The output from gprof consists
of the two major items listed below.

Revision A of 27 March 1990

Interpreting Call Graph

Chapter 7 - Performance Analysis 187

o The 'flat' profile. This is similar to the summary that the prof command
supplies. gprof gives you slightly more infonnation. The output from
gprof contains an explanation of what the various parts of the summary
mean, so you don't need to go look the things up in a manual.

o The full call-graph profile. There are some fragments of the output from the
profiling run just below with some examples cf how to interpret them.

The output from gprof contains an explanation of what the various parts of the
summary mean, so you don't need to go look the things up in a manual.

Here is a fragment of the output from the gprof summary. Most of the output
has been deleted from before and after the fragment. One thing that gprof does
tell you is the granularity of the sampling:

granularity: each sample hit covers 4 byte(s) for 0.14% of 14.74 seconds

index %time

[2] 98.2

[3] 42.6

Then comes part of the call-graph profile itself:

called/total
self descendents called+self

called/total

0.00 14.47 1/1
0.00 14.47 1
0.59 5.70 760/760
0.02 3.16 1/1
0.20 1.91 761/761
0.94 0.06 762/762
0.06 0.62 761/761
0.10 0.46 761/761
0.09 0.23 761/761
0.04 0.23 761/761
0.07 0.00 761/820

10392
0.59 5.70 760/760
0.59 5.70 760+10392
0.53 5.13 11152/11152
0.02 0.01 59/112
0.00 0.00 59/820

10392

parents
name

children

start [1]
main [2]

index

_insert_index_entry
yrint_index [6]

[3]

_get_index_terms [11]
_fgets [13]
_getyage_number [18]
_getyage_type [22]
_skip_start [24]
_get_index_type [26]
_insertyage_entry [34]

_insert_index_entry [3]
main [2]

_insert_index_entry [3]
_compare_entry [4]

free [38] -
_insertyage_entry [34]
_insert_index_entry [3]

Revision A of 27 March 1990

188 Programming Utilities and Libraries

7.4. tcov - Statement­
Level Analysis

Compiling with the -a Option

Noting that there are 761 lines of data in the input file to the index. assist
program, here are some of the things we can determine from the call graph:

D f get s is called 762 times - one more than the number of lines in the input
file. The last call to fgets returns an end-of-file.

D The insert_index_entry function is called 760 times from main­
one less times than the number of lines. Why is this? The first index entry
is inserted 'manually' in the main function when there are no previous
index entries to insert.

D Note that in addition to the 760 times that insert_index_entry is
called from main, insert_index_entry also calls itself the grand total
of 10392 times - insert_index_entry is heavily recursive. Index
entries appear in the input file in unsorted order and are sorted on the fly by
inserting them into a binary tree.

D Note also that compare_entry (which is called from
insert _ index_entry) is called 11152 times, which is equal to
760+10392 times, so there is one call of compare_entry for every time
that insert_index_entry is called. This is as it should be. If there
was a discrepancy in the number of calls, we might suspect some problem in
the program's logic.

D Notice the number of calls to the insert Jage _entry and free ()
functions - insertJage_entry is called 820 times in total: 761 times
from rna i n while the program is building index nodes, and then
insert _page_entry is called 59 times from
insert_index_entry. This indicates that there are 59 index entries
that are duplicated, so their page number entries are linked into a chain with
the index nodes. The duplicate index entries are then freed, hence the 59
calls to free () .

After a certain level of performance enhancements have been made, the profile
data obtained from a program starts to look 'fiat' and the granularity of the data
collection makes further improvements difficult. At this point, you can use a tool
that performs statement-by-statement analysis on a program, showing which
statements are executed and how many times. This facility is called code cover­
age.

Code coverage can also be valuable in identifying areas of 'dead' code - areas
of code that never get executed. Code coverage can also point out areas of code
that are not being tested.

Using the same index. assist program an example, let's make the program
compiled for code coverage. To compile a program for code coverage, you use
the -a option to the C compiler, as shown by the example below.

Revision A of 27 March 1990

Using tcov

Chapter 7 - Performance Analysis 189

For every thing. c file you compile with the -a option, the C compiler generates
a thing. d file - these are used by the code coverage program later in the
analysis.

Now we can run the index.assist program as before. After a program has been
run, you can then run tcov to get the summaries of execution counts for each
statement in the program:

Now, for every thing. c file you specify, teo v uses the thing. d file and gen­
erates a thing. t cov file containing and annotated listing of your code. The list­
ing shows the number of times each source statement was executed. At the end
of each thing. tcov file there is a short summary.

Below is a small fragment of the C code from one of the modules of
index. assist -the module in question is the insert_index_entry
function that's called so recursively.

Revision A of 27 March 1990

190 Programming Utilities and Libraries

struct index_entry *
insert_index_entry(node, entry)

11152 -> struct index_entry
struct index_entry

*node;
*entry;

59 ->

11093 ->

3956 ->
3626 ->

330 ->

7137 ->
6766 ->

371 ->

tcov Summary

int
int

result

result;
level;

compare_entry (node, entry);

if (result == 0) { /* exact match */
/* Place the page entry for the duplicate */
/* into the list of pages for this node */

insert-page_entry(node, entry->page_entry);
free (entry) ;
return(node);

if (result> 0) /* node greater than new entry -- */
/* move to lesser nodes */

else

if (node->lesser != NULL)
insert_index_entry(node->lesser, entry);

else {
node->lesser = entry;
return (node->lesser);

/* node less than new entry -- */
/* move to greater nodes */

if (node->greater != NULL)
insert_index_entry(node->greater, entry);

else {
node->greater = entry;
return (node->greater);

Notice that the insert _ index_entry function is indeed called 11152 times
as we determined in the output from gprof. The numbers to the side of the C
code show how many times each statement was executed.

Below is the summary that t cov placed at the end of build. index. tcov.

Revision A of 27 March 1990

77
55

71.43

Chapter 7 - Performance Analysis 191

TOp 10 Blocks

Line Count

240 21563
241 21563
245 21563
251 21563
250 21400
244 21299
255 20612
257 16805
123 12021
124 11962

Basic blocks in this file
Basic blocks executed
Percent of the file executed

439144
5703.17

Total basic block executions
Average executions per basic block

Revision A of 27 March 1990

192 Programming Utilities and Libraries

Revision A of 27 March 1990

8
m4 - a Macro Processor

m4 is a macro processor whose primary use has been as a front end for Ratfor in
those cases where parameterless macros are not powerful enough. It has also
been used for languages as disparate as C and COBOL. m4 is particularly suited
for higher-level languages like FORTRAN, PL/I and C since macros are specified
in a functional notation.

m4 provides features seldom found even in much larger macro processors,
including

[J arguments

[J condition testing

[J arithmetic capabilities

[J string and substring functions

[J file manipulation

A macro processor is a useful way to enhance a programming language, to make
it more palatable or more readable, or to tailor it to a particular application. The
#def ine statement in C and the analogous define in Ratfor are examples of
the basic facility provided by any macro processor, that is, replacement of text by
other text

The basic operation of m4 is to act as a filter between its input and its output As
the input is read, each alphanumeric "token" (that is, string of letters and digits)
is checked. If it is the name of a macro, then it macro is replaced by the text that
has been assigned to it (defining text), and the resulting string is pushed back
onto the input to be rescanned. Macros may be called with arguments, in which
case the arguments are collected and substituted into the right places in the text
before it is rescanned.

m4 provides a collection of about twenty built-in macros which perform various
useful operations; in addition, the user can define new macros. Built-in macros
and user-defined macros work exactly the same way, except that some of the
built-in macros have side effects on the state of the process.

193 Revision A of 27 March 1990

194 Programming Utilities and Libraries

8.1. Using the m4
Command

8.2. Defining Macros

The basic m4 command line looks like this:

(m4 [filename . .• J

Each argument file is processed in order, if there are no arguments, or if an argu­
ment is '-', the standard input is read at that point. The processed text is written
to the standard output, which may be captured for subsequent processing using
redirection:

]

(m4 [filename .•• J > outputfile J

The primary built-in function ofm4 is define, which is used to define new
macros. The input

de fine (name, value)

defines the string name as value. All subsequent occurrences of name will be
replaced by value, unless name is redefined, or its definition is removed. Note
that name must be alphanumeric, and must begin with a letter, the underscore
character, _ is taken as a letter. The value argument is any text that contains bal­
anced parentheses; it may stretch over multiple lines.

Thus, as a typical example might be:

[~ ___ :_:_f_::_.e_>_(N_:_)_1_0_0_) ______________________________________ ~1
defines N to be 100, and uses this "symbolic constant" in a later if statement.

The left parenthesis must immediately follow the word define, to signal that
define has arguments. If a macro or built-in name is not followed immediately
by '(', it is assumed to have no arguments. This is the situation for N above; it is
actually a macro with no arguments, and thus when it is used there need be no
parenthesis following it.

m4 divides its input into tokens, so a macro name is only recognized as such if it
appears surrounded by non-alphanumerics. For example, in

[~ ___ :_:_f_:~_e __ (N_: __ :_:_:_: ______________________________________ l
the variable NNN is absolutely unrelated to the defined macro N, even though it
contains several N's.

Revision A of 27 March 1990

8.3. Quoting and
Comments

Chapter 8 - m4 - a Macro Processor 195

Macros can be defined in tenns of other macros. For example:

[define(N, 100)
define(M, N)

defines both M and N to be 10 O.

What happens if N is redefined? Or, to say it another way, is M defined as N or as
lOa? In m4, the latter is true. M is translated to 100 as it is scanned, so chang­
ing N does not change M.

This behavior arises because m4 expands macro names into their defining text
immediately. Here, that means that when the string N is seen while the argu­
ments of define are being collected, it is immediately replaced by 10 0; it's
just as if you had said

define (M, 100)

in the first place.

If this isn't what you really want, there are two alternatives. The first, which is
specific to this situation, is to interchange the order of the definitions:

]

[

define(M, N)]

___ d_e_f_i_n_e_(N_, __ 1_0_0_) __________________________________ __

Now M is defined to be the string N, so when you ask for M later, you'll always
get the value of N at that time (because the M will be replaced by N which will be
replaced in tum by its value).

The more general solution is to delay the expansion of the arguments of define
by quoting them. Any text enclosed within the single-quote marks .. and ' is
not expanded immediately, but merely has the quotes stripped off. If you say

[define (N, 100)
define (M, 'N')

the quotes around the N are stripped off as the argument is being collected, but
they have served their pUIpOse, and M is defined as the string N, rather than the
value of the N macro.

The general rule is that m4 always strips off one level of single quotes whenever
it evaluates something. This is true even outside of macros. If you want the
word def ine to appear in the output, you have to quote it in the input, as in

'define' = 1;

]

Revision A of 27 March 1990

196 Programming Utilities and Libraries

As another instance of the same thing, which is a bit more surprising, consider
redefining N:

[~ ___ :_:_:_:_:_:_:N_N_:_2_1:_:_: ___ 1
Perhaps regrettably, the N in the second definition is evaluated as soon as it's
seen; that is, it is replaced by 100, so it's as if you had written

define(100, 200)

While this statement is ignored by m4, since you can only define macros with
names that start with an alphabetical character or underscore, it obviously doesn't
have the effect you wanted. To redefine N, you must delay the evaluation by
quoting it:

define(N, 100)

define ('N', 200)

If the .. and ' characters are not convenient for some reason, the quote and end­
quote characters can be changed with the built-in changequote function. For
instance:

changequote([,])

the left and right brackets the new quote and end-quote characters. You can
restore the original characters with just chanqequote. There are two addi­
tional built-ins related to define. undefine removes the definition of a
macro or built-in:

undefine ('N')

removes the definition of N. (Why are the quotes absolutely necessary?) Built­
ins can be removed with undefine, as in

undefine ('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to detennine if a macro is currently defined.
In particular, m4 pre-defines the name unix.

ifdef actually pennits three arguments; if the name is undefined, the value of
if de f is then the third argument, as in

ifdef('unix', on SunOS, not on SunOS)

Don't forget the quotes around the argument.

Comments in m4 are introduced by the =If (sharp) character. All text from the =If

to the end of the line is taken as a comment and otherwise ignored.

Revision A of 27 March 1990

8.4. Macros with
Arguments

8.5. Arithmetic Built-ins

Chapter 8 - m4 - a Macro Processor 197

So far we have discussed the simplest fonn of macro processing - replacing one
string by another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. Within the replacement text
for a macro (the second argument of its define) any occurrence of $n is
replaced by the nth argument when the macro is actually used. Thus, the macro
bump, defined as

define (bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump (x)

evaluates to

x = x + 1

A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. The macro name itself is $0, although that is less
commonly used. Arguments that are not supplied are replaced by null strings, so
we can define a macro eat which simply concatenates its arguments, like this:

define (cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted (SPACE]'s, I TAB]'s, or I NEWLINE]'s that occur during argu­
ment collection are discarded. All other white space is retained. Thus

define (a, b c)

defines a to be 'b c'.

Arguments are separated by commas, but commas can be nested inside
parentheses. That is, in

define (a, (b, c))

there are only two arguments; the second is literally (b,e). And of course a bare
comma or parenthesis can be inserted by quoting it.

m4 provides two built-in functions for doing arithmetic on integers (only). The
simplest is incr, which increments its numeric argument by 1. Thus to handle
the common programming situation where you want a variable to be defined as
"one more than N", write

define (N, 100)
def ine (N1, 'incr (N) ,)

which defines Nl as one more than the current value of N.

Revision A of 27 March 1990

198 Programming Utilities and Libraries

Table 8-1

8.6. File Manipulation

The more general mechanism for arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers. eval provides the operators (in
decreasing order of precedence), as shown in the table below.

Operators/or the eval Built-In in m4

Operator

unary + and -

** or
* / %
+

add and subtract

exponentiation

Meaning

multiply, divide, and modulus

binary add and subtract

! = < <= > >= equal, not equal, less than, less than or equal,
greater than, greater than or equal

& or &&

or I I

logical not

logical and)

(logical or)

Parentheses may be used to group operations where needed. All the operands of
an expression given to eval must ultimately be numeric. The numeric value of
a true relation (like 1>0) is 1, and false is O. The precision in eval is 32 bits.

As a simple example, suppose we want M to be 2 * *N + 1. Then

define (N, 3)
define(M, 'eval(2**N+l)')

As a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say, just a number); it usually gives the result you
want, and is a good habit to get into.

You can include a new file in the input at any time by the built-in function
include:

include (filename)

inserts the contents offilename in place of the include command. The con­
tents of the file is often a set of definitions. The value of include (that is, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is a fatal error if the file named in include cannot be accessed. To get some
control over this, the alternate fonn sinclude can be used; sinclude
(' 'silent include' ') says nothing and continues if it can't access the file.

Revision A of 27 March 1990

8.7. Running SunOS
Commands

8.S. Conditionals

Chapter 8 - m4 - a Macro Processor 199

It is also possible to divert the output of m4 to temporary files during processing,
and output the collected material upon command. m 4 maintains nine of these
diversions, numbered 1 through 9. If you say

divert (n)

all subsequent output is put onto the end of a temporary file referred to as n.
Diverting to this file is stopped by another di vert command; in particular,
di vert or di vert (0) resumes the nonnal output process.

Diverted text is nonnally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back diver­
sions at any time, that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undi vert with arguments
brings back the selected diversions in the order given. The act of undiverting dis­
cards the diverted stuff, as does diverting into a diversion whose number is not
between 0 and 9 inclusive.

The value of undi vert is not the diverted text. Furthermore, the diverted
material is not rescanned for macros.

The built-in di vnum returns the number of the currently active diversion. This
is zero during nonnal processing.

You can run any SunOS command using the s y s cmd built-in. For example,

syscmd(date)

runs the date command. Normally syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names, the built-in maketernp is provided, with
specifications identical to the system function mktemp: a string of xxxxx in the
argument is replaced by the process ID (Pid) of the current process.

There is a built-in called ifelse which enables you to perfonn arbitrary condi­
tional testing. In its simplest fonn,

ifelse(a, b, c, d)

compares the two strings a and b. If these are identical, ifelse returns the
string c; otherwise it returns d. Thus we might define a macro called compare
which compares two strings and returns "yes" or "no" according to whether
they are the same or different.

define (compare, 'ifelse($l, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

Revision A of 27 March 1990

200 Programming Utilities and Libraries

8.9. String Manipulation

ifelse can actually have any number of arguments, and thus provides a limited
fonn of multi-way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same as
e, the result is f. Otherwise the result is g. If the final argument is omitted, the
result is null, so

ifelse (a, b, c)

is c if a matches b, and null otherwise.

The built-in len returns the length of the string that makes up its argument.
Thus

len (abcdef)

is6,and len((a,b» isS.

The built-in 5ubstr can be used to produce substrings of strings.
substr (s, i, n) returns the substring of s that starts at the ith position
(origin zero), and is n characters long. If n is omitted, the rest of the string is
returned, so

substr('now is the time', 1)

evaluates to

ow is the time

If either i or n is out of range, various sensible things happen.

index (sl, 52) returns the index (position) in sl where the string s2 occurs,
or-l ifit doesn't occur. As with sub5tr, the origin for strings is O.

The built-in trans lit perfonns character transliteration.

translit(s, f, t)

modifies s by replacing any character found in f by the corresponding character
in t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f, characters
which don't have an entry in t are deleted; as a limiting case, if t is not present
at all, characters in f are deleted from 5. So

translit(s, aeiou)

deletes vowels from s.

Revision A of 27 March 1990

8.10. Printing

8.11. Summary of Built·In
m4 Macros

Table 8-2

Chapter 8 - m4 - a Macro Processor 201

There is also a built-in called dnl which deletes all characters that follow it up
to and including the next newline; it is useful mainly for throwing away empty
lines that otherwise tend to clutter up m4 output. For example, if you say

define(N, 100)
define (M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into
the output, where it may not be wanted. If you add dn 1 to each of these lines,
the newlines will disappear.

Another way to achieve this28 is:

divert (-1)

define (...)

divert

The built-in errpr int writes its arguments to the standard error file. Thus you
can say

errprint('fatal error')

dumpdef is a debugging aid which dumps the current definitions of defined
tenns. If there are no arguments, you get everything; otherwise you get the ones
you name as arguments. Don't forget to quote the names!

Summary of Built-In m4 Macros

Built-In

changequote(L, R)

define (name, replacement)

divert (number)

divnum

dnl

28 Thanks to J. E. Weythman.

Description

Change left quote to L, right
quote to R

define name as replacement

Divert output to stream number

Return number of currently
active diversions

Delete up to and including new­
line

Revision A of 27 March 1990

202 Programming Utilities and Libraries

Table 8-2 Summary of Built-In m4 Macros- Continued

Built-In

dumpde f (, name', , name " ...)

errprint (s, s, •••)

eval (numeric expression)

ifdef (' name', true string, false string)

ifelse(a, b, c, d)

include (file)

incr (number)

index (s1, s2)

len (string)

maketernp (. . . xxxxx. . .)

sinclude (file)

substr (string, position, number)

syscrnd (command)

translit (string, from, to)

undefine (' name ')

undi vert (number, number, ...)

Description

Dump specified definitions

Write arguments s to standard
error

Evaluate numeric expression

Return true string if name is
defined, false string if name is
not defined

If a and b are equal, return c,
else return d

Include contents of file

Increment number by 1

Return position in sl where s2
occurs, or -1 if no occurrence

Return length of string

Make a temporary file

Include contents offile -
ignored and continue if file not
found.

Return substring of string start­
ing at position and number char­
acters long

Run command in the system

Transliterate characters in string
from the set specified by from to
the set specified by to

Remove name from the list of
definitions

Append diversion number to the
current diversion

Revision A of 27 March 1990

9
lex - a Lexical Analyzer Generator

lex is a program generator designed for lexical processing of character input
streams. lex accepts a high-level, problem-oriented specification for character
string matching, and produces a program in a general-puIpOse language which
recognizes regular expressions. The regular expressions are specified by the pro­
grammer in the source specifications given to lex. The lex written code recog­
nizes these expressions in an input stream and partitions the input stream into
strings matching the expressions. At the boundaries between strings, program
sections provided by the programmer are executed. The lex source file associ­
ates the regular expressions and the program fragments. As each expression
appears in the input to the program written by lex, the corresponding fragment
is executed.

The programmer supplies the additional code beyond expression matching
needed to complete his tasks, possibly including code written by other genera­
tors. The program that recognizes the expressions is generated in the general­
purpose programming language employed for the programmer's program frag­
ments. Thus, a high-level expression language is provided to write the string
expressions to be matched while the programmer's freedom to write actions is
unimpaired. This avoids forcing the programmer who wishes to use a string
manipulation language for input analysis to write processing programs in the
same and often inappropriate string handling language.

lex source is a table of regular expressions and corresponding program frag­
ments. The table is translated to a program which reads an input stream, copying
it to an output stream and partitioning the input into strings which match the
given expressions. As each such string is recognized the corresponding program
fragment is executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by lex. The program fragments writ­
ten by the programmer are executed in the order in which the corresponding reg­
ular expressions occur in the input stream.

The lexical analysis programs written with lex accept ambiguous specifications
and choose the longest match possible at each input point. If necessary, substan­
tiallookahead is perfonned on the input, but the input stream is then backed up
to the end of the current partition, so that the programmer has general freedom to
manipulate it.

lex is designed to simplify interfacing with yacc, which is described in the
next chapter.

203 Revision A of 27 March 1990

204 Programming Utilities and Libraries

Ie x is not a complete language, but rather a generator representing a new
language feature which can be added to different programming languages, called
'host languages.' Just as general-purpose languages can produce code to run on
different computer hardware, lex can write code in different host languages.
The host language is used for the output code generated by lex and also for the
program fragments added by the programmer. Compatible run-time libraries for
the different host languages are also provided. This makes lex adaptable to dif­
ferent environments and different programmer. Each application may be directed
to the combination of hardware and host language appropriate to the task, the
programmer's background, and the properties of local implementations.

lex turns the programmer's expressions and actions (called source in this
document) into the host general-purpose language; the generated program is
named yylex. The yylex program recognizes expressions in a stream (called
input in this document) and perfonns the specified actions for each expression
as it is detected - see Figure 9-1 below.

Figure 9-1 An overview of lex

lex
Source

Input
Source

--------~~~ lex ~--------~~~ yylex

--------~~~~~------~~~ Ou~ut

For a trivial example, consider a program to delete from the input all blanks or
tabs at the ends of lines.

[~%\tl+$ J
'-------------'"

is all that is required. The program contains a %% delimiter to mark the begin­
ning of the rules, and one rule. This rule contains a regular expression which
matches one or more instances of the characters blank. or tab (written \t forvisi­
bility, in accordance with the C convention) just prior to the end of a line. The
brackets indicate the character class made of blank and tab; the + indicates 'one
or more ... '; and the $ indicates 'end-of-line'. No action is specified, so the pro­
gram generated by lex (yylex) ignores these characters. Everything else is

+~.!l"!! Revision A of 27 March 1990

lex can also be used with a parser
generator to perform the lexical
analysis phase.

Figure 9-2

Chapter 9 - lex - a Lexical Analyzer Generator 205

copied to the output stream. To change any remaining string of blanks or tabs to
a single blank, add another rule:

%%
[\t]+$
[\t]+ printf(" H);

The finite automaton generated for this source scans for both rules at once,
observing at the tennination of the string of blanks or tabs whether or not there is
a newline character, and executing the desired rule action. The first rule matches
all strings of blanks or tabs at the ends of lines, and the second rule all remaining
strings of blanks or tabs.

lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. lex can also be used with a parser generator to per­
fonn the lexical analysis phase; it is particularly easy to interface lex and yacc
lex programs recognize only regular expressions; yacc writes parsers that
accept a large class of context-free grammars, but require a lower-level analyzer
to recognize input tokens. Thus, a combination of lex and yacc is often
appropriate. When used as a preprocessor for a later parser generator, lex is
used to partition the input stream, and the parser generator assigns structure to
the resulting pieces. The flow of control in such a case (which might be the first
half of a compiler, for example) is shown in Figure 9-2. Additional programs,
written by other generators or by hand, can be added easily to programs written
by lex.

lex with yacc

Input

lexical
rules

grammar
rules

parsed
input

yacc programmers will realize that the name yylex is what yacc expects its
lexical analyzer to be named, so that the use of this name by lex simplifies
interfacing.

Revision A of 27 March 1990

206 Programming Utilities and Libraries

9.1. lex Source

lex generates a detenninistic finite automaton from the regular expressions in
the source. The automaton is interpreted, rather than compiled, in order to save
space. The result is still a fast analyzer. In particular, the time taken by a lex
program to recognize and partition an input stream is proportional to the length
of the input. The number of 1 ex rules or the complexity of the rules is not
important in determining speed, unless rules which include forward context
require a significant amount of rescanning. What does increase with the number
and complexity of rules is the size of the finite automaton, and therefore the size
of the program generated by lex.

In the program written by lex, the programmer's fragments (representing the
actions to be performed as each regular expression is found) are gathered as cases
of a switch. The automaton interpreter directs the control flow. Opportunity is
provided for the programmer to insert either declarations or additional statements
in the routine containing the actions, or to add subroutines outside this action
routine.

lex is not limited to source which can be interpreted on the basis of one charac­
ter lookahead. For example, if there are two rules, one looking for ab and
another for abcde£g, and the input stream is abcde£h, lex recognizes ab
and leave the input pointer just before "cd ... " Such backup is more costly than
processing simpler languages.

The general format of Ie x source is:

{definitions }
%%
{rules}
%%
{programmer subroutines}

where the definitions and the programmer subroutines are often omitted. The
second % % is optional, but the first is required to mark the beginning of the rules.
The absolute minimum lex program is thus

(---%_% ---------"]
(no definitions, no rules) which translates into a program which copies the input
to the output unchanged.

In the outline of lex programs shown above, the rules represent the
programmer's control decisions; they are a table, in which the left column con­
tains regular expressions (see section 9.2) and the right column contains actions,
program fragments to be executed when the expressions

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message 'found
keyword INT' whenever it appears. In this example the host procedural language
is C and the C library function print£ () is used to print the string. The end of
the expression is indicated by the first blank or tab character. If the action is

Revision A of 27 March 1990

9.2. 1 e x Regular
Expressions

Operators

Chapter 9 - lex - a Lexical Analyzer Generator 207

merely a single C expression, it can just be given on the right side of the line; if it
is compound, or takes more than a line, it should be enclosed in braces. As a
slightly more useful example, suppose it is desired to change a number of words
from British to American spelling. lex rules such as

colour printf("color");
mechanise printf ("mechanize") ;
petrol printf("gas");

would be a start. These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with this is described later.

The definitions of regular expressions are very similar to those in the editors
ex(1) and vi(l). A regular expression specifies a set of strings to be matched. It
contains text characters (which match the corresponding characters in the strings
being compared) and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text charac­
ters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string as 7 D.

The operator characters are

"\ [] "-7.*+ I () $/ {}%<>

and if they are to be used as text characters, an escape must be used. The quota­
tion mark operator (") indicates that whatever is contained between a pair of
quotes is to be taken as text characters. Thus

xyz"++"

matches the string xyz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"

is the same as the one above. Thus by quoting every non-alphanumeric character
being used as a text character, the programmer can avoid remembering the list
above of current operator characters, and is safe should further extensions to lex
lengthen the list.

An operator character may also be turned into a text character by preceding it
with \ as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use
of the quoting mechanism is to get a blank into an expression; nonnally, as

Revision A of 27 March 1990

208 Programming Utilities and Libraries

Character Classes

Arbitrary Character

explained above, blanks or tabs end a rule. Any blank character not contained
within [] (see below) must be quoted. Several normal C escapes with \ are
recognized: \n is newline, \t is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

Classes of characters can be specified using the operator pair []. The construc­
tion [abc] matches a single character, which may be a, b, or c. Within square
brackets, most operator meanings are ignored. Only three characters are special:
\, -, and The - character indicates ranges. For example,

[a-zO-9<>_]

indicates the character class containing all the lower case letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using­
between any pair of characters which are not both upper case letters, both lower
case letters, or both digits is implementation-dependent and generates a warning
message. For example, [O-z] in Ascn is many more characters than it is in
EBCDIC. If it is desired to include the character - in a character class, it should
be first or last, thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the operator must appear as the first character after the left
bracket; it indicates that the resulting string is to be complemented with respect
to the system's character set. Thus

[.... abc]

matches all characters except a, b, or c, including all special or control charac­
ters; and

[.... a-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes
within character class brackets.

To match almost any character, the operator character

(period) is the class of all characters except newline. Escaping into octal is possi­
ble although non-portable:

[\40-\ 176]

matches all printable characters in the ASCII character set, from octal 40 (blank)
to octal 176 (tilde).

Revision A of 27 March 1990

Optional Expressions

Repeated Expressions

Alternation and Grouping

Context Sensitivity

Chapter 9 - 1 ex - a Lexical Analyzer Generator 209

The operator? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

Repetitions of classes are indicated by the operators * and +.

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z]+

is all strings of lower case letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a
typical expression for recognizing identifiers in computer languages.

The operator I indicates alternation:

(ab I cd)

matches either ab or cd. Note that parentheses are used for grouping, although
they are not necessary on the outside level;

ab I cd

would have sufficed. Parentheses can be used for more complex expressions:

(ab I cd+)? (ef) *
matches such strings as abefef, efefef, cdef, or cddd; but not abc,
abed, or abedef.

lex recognizes a small amount of surrounding context. The two simplest opera­
tors for this are and $. If the first character of an expression is , the expres­
sion is only be matched at the beginning of a line This can never conflict with the
other meaning of ,complementation of character classes, since that only
applies within the [] operators. If the very last character is $, the expression is
only be matched at the end of a line (when immediately followed by newline).

Revision A of 27 March 1990

210 Programming Utilities and Libraries

Repetitions and Definitions

9.3. lex Actions

The latter operator is a special case of the / operator character, which indicates
trailing context. The expression

ab/ed

matches the string ab, but only if itis followed by cd. Thus

ab$

is the same as

ab/\n.

Left context is handled in lex by start conditions as explained in section 9.9-
Left Context-Sensitivity. If a rule is only to be executed when the lex automa­
ton interpreter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered 'being at the begin­
ning of a line' to be start condition ONE, then the operator would be equivalent
to

<ONE>.

Start conditions are explained more fully below.

The operators { } specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digi t and inserts it at that point in the
expression. The definitions are given in the first part of the lex input, before the
rules. In contrast,

a{l,S}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for lex source segments.

When an expression written as above is matched, lex executes the correspond­
ing action. This section describes some features of 1 e x which aid in writing
actions. Note that there is a default action, which consists of copying the input to
the output. This is perfonned on all strings not otherwise matched. Thus the
lex programmer who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
ya c c, this is the nonnal situation. One may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combination which is omitted
from the rules and which appears as input is likely to be printed on the output,
thus calling attention to the gap in the rules.

Revision A of 27 March 1990

Actual Text that Matched

Length of Matched Text

Chapter 9 - 1 ex - a Lexical Analyzer Generator 211

One of the simplest things that can be done is to ignore the input. Specifying a
C null statement, ; as an action does this. A frequent rule is

[\t\n] ;

which ignores the three spacing characters (blank, tab, and newline).

Another easy way to avoid writing actions is the action character I, which indi­
cates that the action to be used for this rule is the action given for the next rule.
The previous example could also have been written

[" "
"\t"
"\n"

with the same result. The quotes around \n and \t are not required.

In more complex actions, the programmer often wants to know the actual text
that matched some expression like [a-z] +. lex leaves this text in an external
character array named yyt ext.
Thus, to print the name found, a rule like

[a-z]+ printf("%s", yytext);

1

prints the string in yytext. The C function printf accepts a format argument
and data to be printed; in this case, the format is 'print string' (% indicating data
conversion, and s indicating string type), and the data are the characters in
yyt e xt. So this just places the matched string on the output. This action is so
common that it may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the characters
found, one might ask why give a rule, like this one, which merely specifies the
default action? Such rules are often required to avoid matching some other rule
which is not desired. For example, if there is a rule which matches read () it
normally matches the instances of read contained in bread or readjust; to
avoid this, a rule of the fonn [a-z] + is needed. This is explained further
below.

Sometimes it is more convenient to know the end of what has been found; hence
lex also provides a count yyleng of the number of characters matched. To
count both the number of words and the number of characters in words in the
input, the programmer might write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in char s the number of characters in the words recognized.
The last character in the string matched can be accessed by

yytext[yyleng-l] .

Revision A of 27 March 1990

212 Programming Utilities and Libraries

yymore and yyless Occasionally, a lex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with this situation. First,
yymore () can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Nonnally, the next input string would
overwrite the current entry in yyt ext. Second, yy Ie s s (n) may be called to
indicate that not all the characters matched by the currently successful expression
are wanted right now. The argument n indicates the number of characters to be
retained in yytext. Further characters previously matched are returned to the
input. This provides the same sort of lookahead offered by the / operator, but in
a different fonn.

Example: Consider a language which defines a string as a set of characters
between quotation (") marks, and provides that to include a " in a string it must
be preceded by a \. The regular expression which matches that is somewhat
confusing, so that it might be preferable to write:

\"["''']*
if (yytext [yyleng-l] == '\ \')

yymore ();
else

... normal programmer processing

which, when faced with a string such as "abc \ "de f " first matches the five
characters "abc \ ; then the call to yymore () tacks the next part of the string,
"def ,onto the end. Note that the final quote tenninating the string should be
picked up in the code labeled 'nonnal processing' .

The function yyless () might be used to reprocess text in various cir­
cumstances. Consider the problem of resolving (in old-style C) the ambiguity of
'=-a'. Suppose it is desired to treat this as '=- a' but print a message. A rule
might be

=-[a-zA-Z]
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l);
... action for =- ...
}

which prints a message, returns the letter after the operator to the input stream,
and treats the operator as '=-'. Alternatively it might be desired to treat this as
'= -a'. To do this, just return the minus sign as well as the letter to the input:

=-[a-zA-ZJ
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...
}

Revision A of 27 March 1990

Chapter 9 - lex - a Lexical Analyzer Generator 213

perfonns the other interpretation. Note that the expressions for the two cases
might more easily be written:

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not necessary
to recognize the whole identifier to observe the ambiguity. The possibility of
'=-3', however, makes

=-/['" \t\n]

a still better rule.

In addition to these routines, lex also pennits access to the I/O routines it uses.
They are:

1. input () which returns the next input character;

2. output (c) which writes the character c on the output; and

3. unput (c) pushes the character c back onto the input stream to be read
later by input () .

By default these routines are provided as macro definitions, but the programmer
can override them and supply private versions. These routines define the rela­
tionship between external files and internal characters, and must all be retained or
modified consistently. They may be redefined, to transmit input or output to or
from strange places, including other programs or internal memory; but the char­
acter set used must be consistent in all routines; a value of zero returned by
input must mean end of file; and the relationship between unput and input
must be retained or the lex lookahead will not work. lex does not look ahead
at all if it does not have to, but every rule ending in + * ? or $ or containing /
implies lookahead. Lookahead is also necessary to match an expression that is a
prefix of another expression. See section 9.10 for a discussion of the character
set used by lex. The standard lex library imposes a loo-character limit on
backup.

Another lex library routine that the programmer will sometimes want to
redefine is yywrap () which is called whenever lex reaches an end-of-file. If
yywrap returns a 1, lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive from a
new source. In this case, the programmer should provide a yywrap which
arranges for new input and returns O. This instructs 1 ex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end
of a program. Note that it is not possible to write a normal rule which recognizes
end-of-file; the only access to this condition is through yywrap.
In fact, unless a private version of input () is supplied a file containing nulls
cannot be handled, since a value of 0 returned by input is taken to be end-of­
file.

Revision A of 27 March 1990

214 Programming Utilities and Libraries

9.4. Ambiguous Source
Rules

lex can handle ambiguous specifications. When more than one expression can
match the current input, lex chooses as follows:

1. The longest match is preferred.

2. Among rules which matched the same number of characters, the rule given
first is preferred.

Thus, suppose the rules

integer keyword action ...
[a-z]+ identifier action

to be given in that order. If the input is integers, it is taken as an identifier,
because [a-z] + matches 8 characters, while integer matches only 7. !fthe
input is int eger, both rules match 7 characters, and the keyword rule is
selected because it was given first. Anything shorter (for example, int) will not
match the expression integer, and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions
like . * dangerous. For example,

, . *'
might seem a good way of recognizing a string in single quotes. But it is an invi­
tation for the program to read far ahead, looking for a distant single quote.
Presented with the input

'first' quoted string here, 'second' here

the above expression matches

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the fonn

which, on the above input, stops after' fir s t'. The consequences of errors like
this are mitigated by the fact that the. operator does not match newline. Thus
expressions like . * stop on the current line. Don't try to defeat this with expres­
sions like [. \n] + or equivalents; the lex generated program will try to read
the entire input file, causing internal buffer overflows.

Note that lex is nonnally partitioning the input stream, not searching for all pos­
sible matches of each expression. This means that each character is accounted
for once and only once. For example, suppose it is desired to count occurrences
of both she and he in an input text. Some lex rules to do this might be

she
he
\n

s++;
h++;
I

Revision A of 27 March 1990

Chapter 9 - 1 ex - a Lexical Analyzer Generator 215

where the last two rules ignore everything besides he and she. Remember that
'.' does not include newline. Since she includes he, lex will normally not
recognize the instances of he included in she, since once it has passed a she
those characters are gone.

Sometimes the programmer would like to override this choice. The action
REJECT means 'go do the next alternative.' It executes whatever rule was
second choice after the current rule. The position of the input pointer is adjusted
accordingly. Suppose the programmer really wants to count the included
instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

these rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other expres­
sion is then counted. In this example, of course, the programmer could note that
she includes he but not vice versa, and omit the REJECT action on he; in other
cases, however, it would not be possible a priori to tell which input characters
were in both classes.

Consider the two rules

[a[bc]+
a[cd]+

REJECT; }
REJECT; }]

If the input is ab, only the first rule matches, and on ad only the second matches.
The input string aecb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule for four characters and the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digrams overlap, that is the word the
is considered to contain both th and he. Assuming a two-dimensional array
named di gr am to be incremented, the appropriate source is shown below.

Revision A of 27 March 1990

216 Programming Utilities and Libraries

9.5. lex Source Definitions

%%
[a-z] [a-z] {digram [yytext [0]] [yytext[l]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every char­
acter, rather than at every other character.

Remember the fonnat of the lex source:

{ definitions}
%%
{rules}
%%
{programmer routines}

So far only the rules have been described. The programmer needs additional
options, though, to define variables for use in his program and for use by lex.
These can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not inter­
cepted by lex is copied into the generated program. There are three classes of
such things.

1. Any line which is not part of a lex rule or action which begins with a blank
or tab is copied into the lex-generated program. Such source input prior to
the first %% delimiter is external to any function in the code; if it appears
immediately after the first %%, it appears in an appropriate place for
declarations in the function written by 1 ex which contains the actions. This
material must look like program fragments, and should precede the first lex
rule.

As a side effect of the above, lines which begin with a blank or tab, and
which contain a comment, are passed through to the generated program.
This can be used to include comments in either the lex source or the gen­
erated code. The comments should follow the host language convention.

2. Anything included between lines containing only the delimiters % { and %}
is copied out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column 1, or
copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of fonnats, etc., is copied
out after the 1 e x output.

Definitions intended for lex are given before the first %% delimiter. Any line in
this section not contained between % { and %}, and beginning in column 1, is
assumed to define 1 ex substitution strings. The format of such lines is

name translation

and it associates the string given as a translation with the name. The name and

Revision A of 27 March 1990

9.6. Using lex

Chapter 9 - 1 ex - a Lexical Analyzer Generator 217

translation must be separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be invoked by the {name} syntax in
a rule. Using {D} for the digits and {E} for an exponent field, for example,
might abbreviate rules to recognize numbers:

D [0-9]
E [DEde] [-+]? {D}+
%%
{D}+ printf("integer");
{D}+"."{D}*({E})? I
{D}*"."{D}+({E})? I
{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and con­
tain an optional exponent field, but the first requires at least one digit before the
decimal point and the second requires at least one digit after the decimal point.
To correctly handle the problem posed by a FORTRAN expression such as
35 . EQ. I, which does not contain a real number, a context-sensitive rule such as

[O-9]+/"."EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection
of a host language, a character set table, a list of start conditions, or adjustments
to the default size of arrays within lex itself for larger source programs. These
possibilities are discussed below under section 9.11 - Summary of Source For­
mat.

There are two steps in compiling a lex source program. First, the lex source
must be turned into a generated program in the host general-purpose language.
Then this program must be compiled and loaded, usually with a library of lex
subroutines. The generated program is on a file named lex. yy. c. The I/O
library is defined in tenns of the C standard library in section 3 of the SunOS
Reference Manual.

The lex library is accessed by the loader flag -11.
So an appropriate set of commands is:

The resulting program is placed on the usual file a . out for later execution. To
use lex with yacc see below. Although the default lex I/O routines use the C
standard library, the lex automata themselves do not do so; if private versions
of input, output, and unput are given, the library can be avoided. lex has
several options which are described in the 1 e x(1) manual page.

Revision A of 27 March 1990

218 Programming Utilities and Libraries

9.7. lex and yacc

9.8. Examples

If you want to use lex with yacc, note that what lex writes is a program
named yy lex () , the name required by yacc for its analyzer. Normally, the
default main program in the lex library calls this routine, but if yacc is loaded,
and its main program is used, yacc calls yylex () .

In this case each lex rule should end with

return(token);

to return the appropriate token value.

An easy way to get access to yacc's names for tokens is to compile the lex
output file as part of the ya c c output file by placing the line

include "lex.yy.c"

in the last section of yacc input. Supposing the grammar to be named 'good'
and the lexical rules to be named 'better' the command sequence can just be:

The lex and yacc programs can be generated in either order.

As a trivial problem, consider copying an input file while adding 3 to every non­
negative number divisible by 7. Here is a suitable lex source program

%%

[0-9]+
int k;

k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);

to do just that. The rule [0- 9] + recognizes strings of digits; atoi () converts
the digits to binary and stores the result in k.
The operator % (remainder) is used to check whether k is divisible by 7; if it is, it
is incremented by 3 as it is written out. It may be objected that this program will
alter such input items as 4 9 . 63 or X 7. Furthermore, it increments the absolute
value of all negative numbers divisible by 7. To avoid this, just add a few more
rules after the active one, as shown below.

Revision A of 27 March 1990

Chapter 9 - 1 ex - a Lexical Analyzer Generator 219

%%
int k;

-?[O-9]+{
k = atoi(yytext);
printf("%d", k%7

-? [0-9.] + ECHO;

o ? k+3

[A-Za-z] [A-Za-zO-9]+ ECHO;

k) ;

Numerical strings containing a '.' or preceded by a letter are picked up by one of
the last two rules, and not changed. The i f-e 1 s e has been replaced by a C
conditional expression to save space; the fonn a?b: c means 'if a then b else
c' .

For an example of statistics gathering, here is a program which constructs a his­
togram of the lengths of words, where a word is defined as a string of letters.

int lengs[lOO];
%%
[a-z]+ lengs[yyleng]++;

I
\n
%%
1 s.
yywrap ()
{

int i;
printf("Length No. words\n");
for(i=O; i<100; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",i,lengs[i]);

return (1) ;
}

This program accumulates the histogram, while producing no output. At the end
of the input it prints the table. The final statement return (1) ; indicates that
lex is to perfonn wrapup. If yywrap returns zero (false) it implies that further
input is available and the program is to continue reading and processing. To pro­
vide a yywrap that never returns true causes an infinite loop.

As a larger example, here are some parts of a program written by N. L. Schryer
to convert double-precision FORTRAN to single-precision FORTRAN. Because
FORTRAN does not distinguish upper and lower case letters, this routine begins
by defining a set of classes including both cases of each letter:

a
b
c

z

[aA]
ebB]
[cC]

[zZ]

Revision A of 27 March 1990

220 Programming Utilities and Libraries

An additional class recognizes white space:

W [\t]*

The first rule changes double precision to real, or DOUBLE PRECI­
SION to REAL.

{d} to} {u} {b} {I} {e} {W} {p} {r} {e} {c} {i} {s} {i} to} {n}

printf(yytext[O]=='d'? "real" : "REAL");

}

Care is taken throughout this program to preselVe the case (upper or lower) of the
original program. The conditional operator is used to select the proper fonn of
the keyword. The next rule copies continuation card indications to avoid confus­
ing them with constants:

,." ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
'beginning of line, then five blanks, then anything but blank or zero.' Note the
two different meanings of ,.. There follow some rules to change double­
precision constants to ordinary floating constants.

[O-9]+{W} {d} {W} [+-] ?{W} [0-9]+ I
[0-9] +{W}"." {W} {d} {W} [+-]? {W} [0-9] +

"." {W} [0-9] +{W} {d} {W} [+-]? {W} [0-9] +

/* convert constants */
for (p=yytext; *p != 0; p++)

{

if (*p == 'd' I I *p == 'D')

*p=+ 'e'- 'd';
ECHO;
}

After the floating point constant is recognized, it is scanned by the f or loop to
find the letter d or D. The program then adds' e' -' d', which converts it to the
next letter of the alphabet. The modified constant, now single-precision, is writ­
ten out again. There follow a series of names which must be respelled to remove
their initial d. By using the array yytext the same action suffices for all the
names (only a sample of a rather long list is given here).

{d}{s}{i}{n}
{d} {c} to} {s}

{d} {s} {q} {r} {t}

{d} {a} {t} {a} {n}

{d} {f} {I} to} {a} {t} printf("%s",yytext+l) ;

Revision A of 27 March 1990

9.9. Left Context­
Sensitivity

Chapter 9 - 1 ex - a Lexical Analyzer Generator 221

Another list of names must have initial d changed to initial a:

{d} {I} {oJ {g}

{d} {I} {oJ {g}lO

{d} {m} {i} {n}l

{d} {m} {a} {x}l

yytext [0] =+ 'a' - 'd';

ECHO;
}

And one routine must have initial d changed to initial r:

{d}l{m} {a} {c} {hI {yytext [0] =+ ' r' -' d' ;
ECHO;
}

To avoid such names as dsinx being detected as instances of dsin, some final
rules pick up longer words as identifiers and copy some sUlViving characters:

[A-Za-z] [A-Za-zO-9]*
[0-9]+ I
\n I

ECHO;

Note that this program is not complete; it does not deal with the spacing prob­
lems in FOR1RAN or with the use of keywords as identifiers.

Sometimes it is desirable to have several sets of lexical rules to be applied at dif­
ferent times in the input. For example, a compiler preprocessor might distin­
guish preprocessor statements and analyze them differently from ordinary state­
ments. This requires sensitivity to prior context, and there are several ways of
handling such problems. The ,.. operator, for example, is a prior context opera­
tor, recognizing immediately preceding left context just as $ recognizes immedi­
ately following right context. Adjacent left context could be extended, to pro­
duce a facility similar to that for adjacent right context, but it is unlikely to be as
useful, since often the relevant left context appeared some time earlier, such as at
the beginning of a line.

This section describes three means of dealing with different environments: a sim­
ple use of flags, when only a few rules change from one environment to another,
the use of start conditions on rules, and the possibility of making multiple lexical
analyzers all run together. In each case, there are rules which recognize the need
to change the environment in which the following input text is analyzed, and set
some parameter to reflect the change. This may be a flag explicitly tested by the
programmer's action code; such a flag is the simplest way of dealing with the
problem, since lex is not involved at all. It may be more convenient, however,
to have 1 ex remember the flags as initial conditions on the rules. Any rule may
be associated with a start condition. It is only be recognized when lex is in that
start condition. The current start condition may be changed at any time. Finally,

Revision A of 27 March 1990

222 Programming Utilities and Libraries

if the sets of rules for the different environments are very dissimilar, clarity may
be best achieved by writing several distinct lexical analyzers, and switching from
one to another as desired.

Consider the following problem: copy the input to the output, changing the word
mag i c to fir s t on every line which begins with the letter a, changing mag i c
to second on every line which begins with the letter b, and changing magic to
third on every line which begins with the letter c. All other words and all
other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

%%
a

"b
c

\n
magic

int flag;

{flag
, ,

ECHO;} a ;
{flag 'b' ; ECHO;}
{flag

, ,
ECHO;} c ;

{flag 0 ; ECHO; }
{

switch (flag)
{

case ~': printf("first"); break;
case 'b': printf(nsecondn); break;
case 'c': printf(nthirdn); break;
default: ECHO; break;
}

}

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The word Start may be
abbreviated to s or S. The conditions may be referenced at the head of a rule
with the <> brackets:

<namel>expression

is a rule which is only recognized when lex is in the start condition narne1. To
enter a start condition, execute the action statement

BEGIN namel;

which changes the start condition to name 1. To resume the nonnal state,

BEGIN 0;

which resets to the initial condition of the lex automaton interpreter. A rule
may be active in several start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active.

Revision A of 27 March 1990

9.10. Character Set

Figure 9-3

Chapter 9 - 1 ex - a Lexical Analyzer Generator 223

The same example as before can be written:

%START AA BB CC
%%

a {ECHO; BEGIN AA;}
~b {ECHO; BEGIN BB;}
~c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN O;}
<AA>magic
<BB>magic
<CC>magic

printf(nfirst n) ;
printf(nsecondn);
printf (nthird n) ;

where the logic is exactly the same as in the previous method of handling the
problem, but lex does the work rather than the programmer's code.

The programs generated by lex handle character I/O only through the routines
input, output, and unput. Thus the character representation provided in
these routines is accepted by lex and employed to return values in yytext.
For internal use a character is represented as a small integer which, if the stan­
dard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is
represented in the same form as the character constant' a'.
If this interpretation is changed, by providing I/O routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by two lines containing
only'%T'. The table contains lines of the fonn

{integer} {character string}

which indicate the value associated with each character. Thus the next example

Sample character table.

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

maps the lower and upper case letters together into the integers 1 through 26,
newline into 27, + and - into 28 and 29, and the digits into 30 through 39. Note
the escape for newline. If a table is supplied, every character that is to appear

Revision A of 27 March 1990

224 Programming Utilities and Libraries

9.11. Summary of Source
Format

either in the rules or in any valid input must be included in the table. No charac­
ter may be assigned the number 0, and no character may be assigned a bigger
number than the size of the hardware character set.

The general form of a lex source file is:

{definitions}
%%
{rules}
%%
{programmer subroutines}

The definitions section contains a combination of

1. Definitions, in the form 'name space translation' .

2. Included code, in the fonn 'space code'.

3. Included code, in the fonn

[
%{
code
%}

4. Start condition declarations, given in the fonn

%8 namel name2 ...

5. Character set tables, in the fonn

%T
number space character-string

%T

1

Revision A of 27 March 1990

Table 9-1

Table 9-2

Chapter 9 - 1 ex - a Lexical Analyzer Generator 225

6. Changes to internal array sizes, in the fonn

%x nnn

where nnn is a decimal integer representing an array size and x selects the
parameter as follows:

Changing Internal Array Sizes in lex

Letter Parameter

p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the fonn 'expression action' where the action
may be continued on succeeding lines by using braces to delimit it.

Regular expressions in lex use the following operators:

Regular Expression Operators in lex

Operator

x
"x"
\x
[xy]
[x-z]
["'x]

<y>x
x$
x?
x*
x+
xly
(x)

x/y
{xx}
x{m, n}

Meaning

the character "x"
an "x", even if x is an operator
an "x", even if x is an operator
the character x or y
the characters x, y or z
any character but x
any character but newline
an x at the beginning of a line
an x when lex is in start condition y
an x at the end of a line
an optional x
0,1,2, ... instances of x
1,2,3, .~. instances of x
an x or a y
anx
an x but only if followed by y
the translation of xx from the definitions section
m through n occurrences of x

Revision A of 27 March 1990

226 Programming Utilities and Libraries

9.12. Caveats and Bugs There are pathological expressions which produce exponential growth of the
tables when converted to detenninistic automata; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previ­
ous scan. This means that if a rule with trailing context is found, and REJECT is
executed, the programmer must not have used unput to change the characters
forthcoming from the input stream. This is the only restriction on the
programmer's ability to manipulate the not-yet-processed input.

Revision A of 27 March 1990

10
ya c c - Y et Another Compiler­

Compiler

Computer program input generally has some structure; in fact, every computer
program that does input can be thought of as defining an 'input language' which
it accepts. An input language may be as complex as a programming language, or
as simple as a sequence of numbers. Unfortunately, usual input facilities are lim­
ited, difficult to use, and often are lax about checking their inputs for validity.

yacc provides a general tool for describing the input to a computer program.
The yacc programmer specifies the structure of the input, together with code to
be invoked as each item is recognized. ya c c turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of control in the programmer's application
handled by this subroutine.

The input subroutine produced by yacc calls a programmer-supplied routine to
return the next basic input item. Thus, the programmer can specify his input in
terms of individual input characters, or in terms of higher-level constructs such as
names and numbers. The programmer-supplied routine may also handle
idiomatic features such as comment and continuation conventions, which typi­
cally defy easy grammatical specification.

The class of specifications that yacc accepts is a very general one: LALR(1)
grammars with disambiguating rules.

In addition to compilers for C, FORTRAN, APL, Pascal, Ratfor, etc., yacc has
also been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

yacc provides a general tool for imposing structure on the input to a computer
program. The y ac c programmer prepares a specification of the input process;
this includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. yacc then
generates a function to control the input process. This function, called a parser,
calls the programmer-supplied low-level input routine (the lexical analyzer) to
pick up the basic items (called tokens) from the input stream. These tokens are
organized according to the input structure rules, called grammar rules; when one
of these rules has been recognized, then programmer code supplied for this rule,
an action, is invoked; actions have the ability to return values and make use of
the values of other actions.

227 Revision A of 27 March 1990

228 Programming Utilities and Libraries

yacc generates its actions and output subroutines in C. Moreover, many of the
syntactic conventions of yacc follow C.

The heart of the yacc input specification is a collection of grammar rules. Each
rule describes an allowable structure and gives it a name. For example, one
grammar rule might be:

date month_name day
, , , year

Here, date, month_name, day, and year represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma',' is enclosed in single quotes - implying that the comma is to
appear literally in the input. The colon and semicolon merely serve as punctua­
tion in the rule, and have no significance in controlling the input. Thus, with
proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This
routine reads the input stream, recognizing the lower-level structures, and com­
municates these tokens to the parser. For historical reasons, a structure recog­
nized by the lexical analyzer is called a terminal symbol, while the structure
recognized by the parser is called a nonterminal symbol. To avoid confusion, ter­
minal symbols are referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month_name
month_name

'J' 'a' 'n'
'F' 'e' 'b'

'D' , e' , c '

might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a month_name
was seen; in this case, month _name would be a token.

Literal characters such as ' " must also be passed through the lexical analyzer,
and are also considered tokens.

Revision A of 27 March 1990

Chapter 10 - yacc - Yet Another Compiler-Compiler 229

Specification files are very flexible. It is realively easy to add to the above exam­
ple the rule

date month '/' day '/' year

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be 'slipped in' to a working system with
minimal effort and little danger of disrupting existing input.

The input being read may not confonn to the specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan; thus, not
only is the chance of reading and computing with bad input data substantially
reduced, but the bad data can usually be quickly found. Error handling, provided
as part of the input specifications, pennits the reentry of bad data, or the con­
tinuation of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self-contradictory, or they may require a
more powerful recognition mechanism than that available to yacc. The fonner
cases represent design errors; the latter cases can often be corrected by making
the lexical analyzer more powerful, or by rewriting some of the grammar rules.
While yacc cannot handle all possible specifications, its power compares favor­
ably with similar systems; moreover, the constructions which are difficult for
yacc to handle are also frequently difficult for human beings to handle. Some
users have reported that the discipline of fonnulating valid yacc specifications
for their input revealed errors of conception or design early in the program
development.

The next several sections describe the basic process of preparing a yacc
specification; Section 10.1 describes the preparation of grammar rules, Section
10.2 the preparation of the programmer-supplied actions associated with these
rules, and Section 10.3 the preparation of lexical analyzers. Section lOA
describes the operation of the parser. Section 10.5 discusses various reasons why
ya c c may be unable to produce a parser from a specification, and what to do
about it. Section 10.6 describes a simple mechanism for handling operator pre­
cedences in arithmetic expressions. Section 10.7 discusses error detection and
recovery. Section 10.8 discusses the operating environment and special features
of the parsers yacc produces. Section 10.9 gives some suggestions which
should improve the style and efficiency of the specifications. Section 10.10
discusses some advanced topics. Section 10.11 has a brief example, and section
10.12 gives a summary of the yacc input syntax. Section 10.13 gives an exam­
ple using some of the more advanced features of yacc, and, finally, section
10.14 describes mechanisms and syntax no longer actively supported, but pro­
vided for historical continuity with older versions of yacc.

Revision A of 27 March 1990

230 Programming Utilities and Libraries

10.1. Basic Specifications Names refer to either tokens or nontenninal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed in Section 10.3,
it is often desirable to include the lexical analyzer as part of the specification file;
it may be useful to include other programs as well. Thus, every specification file
consists of three sections: the declarations, (grammar) rules, and programs. The
sections are separated by double percent % % marks. The percent % is generally
used in ya c c specifications as an escape character.

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second %% mark may be omitted also; thus, the smallest legal yacc
specification is

[~s J
-----------'"
Spaces (also called blanks), tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols. Comments may appear
wherever a name is legal- they are enclosed in / * . . . * / , as in C and
PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has
the form:

(___ A _____ B_O_V_y _______________________________________ J

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot '.', under­
score '_', and non-initial digits. Upper and lower case letters are distinct. The
names used in the body of a grammar rule may represent tokens or nontenninal
symbols.

Revision A of 27 March 1990

Chapter 10 - yacc - Yet Another Compiler-Compiler 231

A literal consists of a character enclosed in single quotes "'. As in C, the
backslash '\' is an escape character within literals, and all the C escapes are
recognized:

'\n'
'\r'
, \ ' ,

, \ \ '

'\ t '

'\b'
, \f '
'\xxx'

newline
return
single quote '
backslash '\'
tab
backspace
form feed
'xxx, in octal

For a number of technical reasons, the (NUL] character ("D' or 0) should never
be used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar 'I'
can be used to avoid rewriting the left hand side. In addition, the semicolon at
the end of a rule can be dropped before a vertical bar. Thus the grammar rules

[
A B C D

A E F
A G

can be given to yacc as

A B C D

E F

G

It is not necessary that all grammar rules with the same left side appear together
in the grammar rules section, although it makes the input much more readable,
and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty :

1

Names representing tokens must be declared; this is most simply done by writing

%token name 1 name2 . . .

in the declarations section. See Sections 3 , 5, and 6 for much more discussion.
Every name not defined in the declarations section is assumed to represent a non­
terminal symbol. Every nonterminal symbol must appear on the left side of at
least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this

Revision A of 27 March 1990

232 Programming Utilities and Libraries

10.2. Actions

symbol represents the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left hand side of the first
grammar rule in the rules section. It is possible, and in fact desirable, to declare
the start symbol explicitly in the declarations section using the %start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the end­
marker. If the tokens up to, but not including, the endmarker fonn a structure
which matches the start symbol, the parser function returns to its caller after the
endmarker is seen; it accepts the input. If the endmarker is seen in any other
context, it is an error.

It is the job of the programmer-supplied lexical analyzer to return the endmarker
when appropriate - see Section 10.3, below. Usually the endmarker represents
some reasonably obvious I/O status, such as 'end-of-file' or 'end-of-record'.

With each grammar rule, the programmer may associate actions to be perfonned
each time the rule is recognized in the input process. These actions may return
values, and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified by
one or more statements, enclosed in curly braces' {' and '}'. For example,

[A '(' B ')'

{ hello (1, "abc");

and

xxx yyy zzz
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The dollar sign symbol '$' is used as a signal to
y ace in this context.

To return a value, the action nonnally sets the pseudo-variable '$$' to some
value. For example, an action that does nothing but return the value 1 is

$$ = 1;

To obtain the values returned by previous actions and the lexical analyzer, the
action may use the pseudo-variables $1, $2, ... , which refer to the values
returned by the components of the right side of a rule, reading from left to right.
Thus, if the rule is

]

BCD
J

Revision A of 27 March 1990

Chapter lO-yacc - Yet Another Compiler-Compiler 233

for example, then $2 has the value returned by C, and $3 the value returned by
D.

As a more concrete example, consider the rule

(expr , (' expr ')'

The value returned by this rule is usually the value of the expr in parentheses.
This can be indicated by

, (' expr ')' $$ = $2 ;

By default, the value of a rule is the value of $1 (the first element in it). Thus,
grammar rules of the fonn

B

frequently need not have an explicit action.

J

J

J

In the examples above, all the actions came at the end of their rules. Sometimes,
it is desirable to get control before a rule is fully parsed. ya c c penn its an action
to be written in the middle of a rule as well as at the end. This rule is assumed to
return a value, accessible through the usual $ mechanism by the actions to the
right of it. In tum, it may access the values returned by the symbols to its left.
Thus, in the rule

A B
$$ 1;

C
x = $2; y $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not tenninate a rule are actually handled by yacc by manufac­
turing a new nontenninal symbol name, and a new rule matching this name to the
empty string. The interior action is the action triggered off by recognizing this
added rule. yacc actually treats the above example as ifit had been written:

$ACT /* empty */
{ $$ 1;

A B $ACT C
{ x = $2; y $3;

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transfonnations are
applied to it before output is generated. Parse trees are particularly easy to

+~.!!! Revision A of 27 March 1990

234 Programming Utilities and Libraries

10.3. Lexical Analysis

construct, given routines to build and maintain the tree structure desired. For
example, suppose there is a C function node, written so that the call

(node(L, nl, n2 J)
creates a node with label L, and descendants n1 and n2, and returns the index of
the newly created node. The parse tree can be built by supplying actions such as:

[expr expr ' + ' expr
{ $ $ = node (, + " $1 , $ 3);

J
in the specification.

The programmer may define other variables to be used by the actions. Declara­
tions and definitions can appear in the declarations section, enclosed in the marks
'% {' and '%}'. These declarations and definitions have global scope, so they are
known to the action statements and the lexical analyzer. For example,

(
%{ int variable = 0; %} J

"-------------'

could be placed in the declarations section, making variable accessible to all
of the actions. The yacc parser uses only names beginning in 'yy'; the pro­
grammer should avoid such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in Section 10.10.

The programmer must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called yylex (). The function returns an integer,
the token number, representing the kind of token read. If there is a value associ­
ated with that token, it should be assigned to the external variable yy 1 val () .

The parser and the lexical analyzer must agree on these token numbers in order
for communication between them to take place. The numbers may be chosen by
yacc, or chosen by the programmer. In either case, the '# define' mechanism of
C is used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIG I T has been defined in the declara­
tions section of the yacc specification file. The relevant portion of the lexical
analyzer might look like:

Revision A of 27 March 1990

yylex () {

Chapter 10-yacc - Yet Another Compiler-Compiler 235

extern int yylval;
int c;

c = getchar();

switch (c) {

case '0':
case '1':

case '9':
yylval = c-'O';
return (DIGIT);

The intent is to return the token number of DIGIT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIG I T will be
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser, for example, the use of if or while as token
names will almost certainly cause severe difficulties when the lexical analyzer is
compiled. The token name error is reserved for error handling, and should not
be used naively (see Section 10.7).

As mentioned above, the token numbers may be chosen by yacc or by the pro­
grammer. In the default situation, the numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of
the token name or literal in the declarations section can be immediately followed
by a nonnegative integer. This integer is taken to be the token number of the
name or literal. Names and literals not defined by this mechanism retain their
default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative.
This token number cannot be redefined by the programmer, thus, all lexical
analyzers should be prepared to return 0 or negative as a token number upon
reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex program developed
by Mike Lesk8 and described in the previous chapter on lex. These lexical
analyzers are designed to work in close hannony with yacc parsers. The
specifications use regular expressions instead of grammar rules. lex can be
easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and

Revision A of 27 March 1990

236 Programming Utilities and Libraries

10.4. How the Parser
Works

shift Action

reduce Action

whose lexical analyzers must be crafted by hand.

yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more infonnation). The parser itself, however, is relatively simple,
and understanding how it works, while not strictly necessary, will nevertheless
make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by ya c c consists of a finite-state machine with a stack.
The parser can read and remember the next input token (called the lookahead
token). The current state is always the one on the top of the stack. The states of
the finite-state machine are given small integer labels; initially, the machine is in
state 0, the stack contains only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept,
and error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead
token to decide what action should be done; if it needs one, and does not
have one, it calls yylex () to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser decides
on its next action, and carries it out. This may result in states being pushed
onto the stack, or popped off the stack, and in the lookahead token being
processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56 there
may be an action:

(~ __________ I_F _______ Sh_1_'f_t __ 3_4 ____________________________ ~]
which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
the stack), The lookahead token is cleared.

The reduce action keeps the stack from growing without bound. Reduce actions
are appropriate when the parser has seen the right hand side of a grammar rule,
and is prepared to announce that it has seen an instance of the rule, replacing the
right hand side by the left hand side. It may be necessary to consult the looka­
head token to decide whether to reduce, but usually it is not; in fact, the default
action (represented by a '. ') is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, leading to some confusion. The action

(. reduce 18]
refers to grammar rule 18, while the action

Revision A of 27 March 1990

accept and error Actions

Chapter 10 - yacc - Yet Another Compiler-Compiler 237

[IF shift 34]
refers to state 34.

Suppose the rule being reduced is

: x y z]
The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing x, y, and z, and no
longer serve any useful purpose. After popping these states, a state is uncovered
which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perfonn what is
in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing of the left
hand symbol and an ordinary shift of a token, however, so this action is called a
goto action. In particular, the lookahead token is cleared by a shift, and is not
affected by a goto. In any case, the uncovered state contains an entry such as:

[A goto 20

which pushes state 20 onto the stack, and becomes the current state.

In effect, the reduce action 'turns back the clock' in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right hand side of the rule is empty, no states are popped off the stack: the
uncovered state is in fact the current state.

]

The reduce action is also important in the treatment of programmer-supplied
actions and values. When a rule is reduced, the code supplied with the rule is
executed before the stack is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values returned from the lexi­
cal analyzer and the actions. When a shift takes place, the external variable yyl­
val () is copied onto the value stack. After the return from the programmer's
code, the reduction is carried out. When the goto action is done, the external
variable yyval () is copied onto the value stack. The pseudo-variables $1, $2,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the lookahead token is the endmarker, and indi­
cates that the parser has successfully done its job. The error action, on the other
hand, represents a place where the parser can no longer continue parsing accord­
ing to the specification. The input tokens it has seen, together with the lookahead
token, cannot be followed by anything that would result in a legal input. The

+~l!I!! Revision A of 27 March 1990

238 Prograrnrrllng Utilities and Libraries

parser reports an error, and attempts to recover the situation and resume parsing:
the error recovery (as opposed to the detection of error) will be covered in Sec­
tion 10.7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When ya c c is invoked with the -v option, a file called y.output is produced,
with a human-readable description of the parser. The y.output file correspond­
ing to the above grammar (with some statistics stripped off the end) is:

Revision A of 27 March 1990

state 0

state 1

state 2

state 3

state 4

state 5

state 6

Chapter 10 - yacc - Yet Another Compiler-Compiler 239

$accept _rhyme $end

DING shift 3
error

rhyme goto 1
sound goto 2

$accept rhyme_$end

$end accept
error

rhyme sound"'place

DELL shift 5
error

place goto 4

sound

DONG shift
error

rhyme

reduce

place

reduce

sound

reduce

DING_DONG

6

sound place (1)

1

DELL (3) -
3

DING DONG_ (2)

2

Notice that, in addition to the actions for each state, there is a description of the
parsing rules being processed in each state. The _ character is used to indicate
what has been seen, and what is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token, DING,
is read, becoming the lookahead token. The action in state 0 on DING is 'shift
3', so state 3 is pushed onto the stack, and the lookahead token is cleared. State 3
becomes the current state. The next token, DONG, is read, becoming the looka­
head token. The action in state 3 on the token DONG is 'shift 6', so state 6 is
pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3,

Revision A of27 March 1990

240 Programming Utilities and Libraries

10.5. Ambiguity and
Conflicts

and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

[sound DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off the stack, uncovering state 0. Consulting the description of state 0,
looking for a goto on sound,

[sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

]

]

In state 2, the next token, DELL, must be read. The action is 'shift 5', so state 5
is pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead
token is cleared. In state 5, the only action is to reduce by rule 3. This has one
symbol on the right hand side, so one state, 5, is popped off, and state 2 is
uncovered. The goto in state 2 onplace, the left side of rule 3, is state 4. Now,
the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1.
There are two symbols on the right, so the top two states are popped off, uncov­
ering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter
state 1. In state 1, the input is read; the endmarker is obtained, indicated by
'$end' in the y.output file. The action in state 1 when the endmarker is seen is
to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL

DELL, and so on. A few minutes spend with this and other simple examples will
probably be repaid when problems arise in more complicated contexts.

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr expr expr

is a natural way of expressing the fact that one way of fonning an arithmetic
expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not unambiguously specify the way
that all complex inputs should be structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

expr - expr - expr

or as

expr - expr - expr

The first is called left association, the second right association.

yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is given an

Revision A of 27 March 1990

Chapter lO-yacc - Yet Another Compiler-Compiler 241

input such as

expr - expr expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to expr
(the left side of the rule). The parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left-associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

expr - expr expr

It could then apply the rule to the rightmost three symbols, reducing them to expr
and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift / reduce conflict. It may also hap­
pen that the parser has a choice of two legal reductions; this is called a reduce /
reduce conflict. Note that there are never any 'shift/shift' conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a disambi­
guating rule.

ya c c invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar
rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of
shifts. Rule 2 gives the programmer rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided whenever
possible.

Conflicts may arise because of mistakes in input or logic, or because the gram­
mar rules, while consistent, require a more complex parser than yacc can con­
struct. The use of actions within rules can also cause conflicts, if the action must

Revision A of 27 March 1990

242 Programming Utilities and Libraries

be done before the parser can be sure which rule is being recognized. In these
cases, the application of disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, yacc always reports the number of shift/reduce
and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has sug­
gested that this rewriting is somewhat unnatural, and produces slower parsers;
thus, y ace will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an 'if-then-else' construction:

stat IF
IF

, (' cond
, (' cond

')' stat
')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nontenninal symbol describing
conditional (logical) expressions, and stat is a nonterminal symbol describing
statements. The first rule will be called the simple-if rule, and the second the if­
else rule.

These two rules fonn an ambiguous construction, since input of the fonn:

IF (condition-I) IF (condition-2) statement-1 ELSE statement-2

can be structured according to these rules in two ways:

IF condition -1
IF (condition-2 statement -1

ELSE statement-2

or

IF condition -1
IF (condition-2 statement -1
ELSE statement-2

The second interpretation is the one given in most programming languages hav­
ing this construct. Each ELSE is associated with the last preceding 'un-ELSE' d'
IF. In this example, consider the situation where the parser has seen

IF condition -1 IF condition - 2 statement -1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to
get

Revision A of 27 March 1990

IF condition -1 IF

Chapter 10 - yacc - Yet Another Compiler-Compiler 243

IF condition -1 stat

and then read the remaining input,

ELSE statement-2

and reduce

IF condition -1 stat ELSE statement-2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, statement-2 read, and then the right
hand portion of

condition - 2 statement-1 ELSE statement-2

can be reduced by the if-else rule to get

IF condition -1 stat

which can be reduced by the simple-if rule. This leads to the second of the above
groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input sym­
bol, ELSE, and particular inputs already seen, such as

IF condition -1 IF condition - 2 statement -1

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs are
characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat_ (18)
stat_ELSE stat

The first line describes the conflict, giving the state and the input symbol. The
ordinary state description follows, giving the grammar rules active in the state,
and the parser actions. Recall that the underline marks the portion of the gram­
mar rules which has been seen. Thus in the example, in state 23 the parser has
seen input corresponding to

Revision A of 27 March 1990

244 Programming Utilities and Libraries

10.6. Precedence

IF cond stat

and the two grammar rules shown are active at this time. The parser can do two
possible things. If the input symbol is ELSE, it is possible to shift into state 45.
State 45 will have, as part of its description, the line

stat IF cond stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alterna­
tive action, described by , .', is to be done if the input symbol is not mentioned
explicitly in the above actions; thus, in this case, if the input symbol is not ELSE,
the parser reduces by grammar rule 18:

stat IF '(' cond ')' stat

Once again, notice that the numbers following 'shift' commands refer to other
states, while the numbers following 'reduce' commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most states, there will be at most one reduce action
possible in the state, and this will be the default command. Programmers who
encounter unexpected shift/reduce conflicts will probably want to look at the ver­
bose output to decide whether the default actions are appropriate. In really tough
cases, the programmer might need to know more about the behavior and con­
struction of the parser than can be covered here. In this case, one of the theoreti­
cal references cited in Chapter 1 might be consulted.

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with infor­
mation about left or right associativity. It turns out that ambiguous grammars
with appropriate disambiguating rules can be used to create parsers that are faster
and easier to write than parsers constructed from unambiguous grammars. The
basic notion is to write grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a very ambiguous gram­
mar, with many parsing conflicts. As disambiguating rules, the programmer
specifies the precedence, or binding strength, of all the operators, and the associa­
tivity of the binary operators. This information is sufficient to allow yacc to
resolve the parsing conflicts in accordance with these rules, and construct a
parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations sec­
tion. This is done by a series of lines beginning with a yacc keyword: %left,
%right, or %nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
lines are listed in order of increasing precedence or binding strength. Thus,

Revision A of 27 March 1990

Chapter 10 - yacc - Yet Another Compiler-Compiler 245

[%left ' + ' , - ,

%left ' * ' , / ' _____________ J

describes the precedence and associativity of the four arithmetic operators. Plus
and minus are left-associative, and have lower precedence than star and slash,
which are also left-associative. The keyword %r ight is used to describe right­
associative operators, and the keyword %nonassoc is used to describe opera­
tors, like the . LT. operator in FORmAN, that may not associate with them­
selves; thus,

(
A .LT. B .LT. C J

"'-----_____ ---J

is illegal in FORTRAN, and such an operator would be described with the key­
word %nonassoc in yacc. As an example of the behavior of these declara­
tions, the description

%right
%left
%left

%%

expr

, +'
, * ' , / '

expr
expr
expr
expr
expr
NAME

might be used to structure the input

a b c*d - e

as follows:

, = , expr
'+ ' expr
, - ,

expr
, * ' expr
, / ' expr

f*g

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a pre­
cedence. Sometimes a unary operator and a binary operator have the same sym­
bolic representation, but different precedences. An example is unary and binary
'-'; unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multiplication. The key­
word %prec changes the precedence level associated with a particular grammar
rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It
changes the precedence of the grammar rule to become that of the following
token name or literal. For example, to make unary minus have the same pre­
cedence as multiplication the rules might resemble:

Revision A of 27 March 1990

246 Programming Utilities and Libraries

%left
%left

%%

expr

, + '
, * ' , / '

expr
expr
expr
expr
, , -

NAME

' +' expr
, - ,

expr
'* ' expr
' / ' expr

expr %prec ' * '

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by % token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Fonnally, the rules work as fol­
lows:

1. The precedences and associativities are recorded for those tokens and literals
that have them.

2. A precedence and associativity is associated with each grammar rule; it is
the precedence and associativity of the last token or literal in the body of the
rule. If the %prec construction is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and
either the input symbol or the grammar rule has no precedence and associa­
tivity, then the two disambiguating rules given at the beginning of the sec­
tion are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input
character have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the
higher precedence. If the precedences are the same, then the associativity is
used; left-associative implies reduce, right-associative implies shift, and
nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedences may disguise errors in the input grammar; it is a
good idea to be sparing with precedences, and use them in an essentially 'cook­
book' fashion, until some experience has been gained. The y.output file is very
useful in deciding whether the parser is actually doing what was intended.

sun Revision A of 27 March 1990
microsystems

10.7. Error Handling

Chapter 10-yacc - Yet Another Compiler-Compiler 247

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more
useful to continue scanning the input to find further syntax errors. This leads to
the problem of getting the parser 'restarted' after an error. A general class of
algorithms to do this involves discarding a number of tokens from the input
string, and attempting to adjust the parser so that input can continue.

To allow the programmer some control over this process, yacc provides a sim­
ple, but reasonably general, feature. The token name 'error' is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack until it enters a state where the token 'error' is legal. It then behaves as if
the token 'error' were the current lookahead token, and perfonns the action
encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is
detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no mes­
sage is given, and the input token is quietly deleted.

As an example, a rule of the fonn

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement, and
end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt
to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat
easier are rules such as

stat , . ' , error

Here, when there is an error, the parser attempts to skip over the statement, but
will do so by skipping to the next ';'. All tokens after the error and before the
next ';' cannot be shifted, and are discarded. When the ';' is seen, this rule will
be reduced, and any 'cleanup' action associated with it performed.

Another fonn of error rule arises in interactive applications, where it may be
desirable to pennit a line to be reentered after an error. A possible error rule
might be

Revision A of 27 March 1990

248 Programming Utilities and Libraries

input

input

error '\n'
{

printf("Reenter last line: ");
$$ $4;}

input

There is one potential difficulty with this approach; the parser must correctly pro­
cess three input tokens before it admits that it has correctly resynchronized after
the error. If the reentered line contains an error in the first two tokens, the parser
deletes the offending tokens, and gives no message; this is clearly unacceptable.
For this reason, there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better writ­
ten

error ' \n'
{ yyerrok;

input
printf("Reenter last line: ");

$$ $4;

As mentioned above, the token seen immediately after the 'error' symbol is the
input token at which the error was discovered. Sometimes, this is inappropriate;
for example, an error recovery action might take upon itself the job of finding the
correct place to resume input. In this case, the previous lookahead token must be
cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the pro­
grammer, that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex ()
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

stat error
resynch() ;
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effec­
tive recovery of the parser from many errors; moreover, the programmer can get
control to deal with the error actions required by other portions of the program.

Revision A of 27 March 1990

10.S. The yacc
Environment

10.9. Hints for Preparing
Specifications

Chapter 10 - yacc - Yet Another Compiler-Compiler 249

When the programmer inputs a specification to yacc, the output is a file ofC
programs, called y .tab.c on most systems (due to local file system conventions,
the name may differ from installation to installation). yacc produces an
integer-valued function called yyparse (). When yyparse () is called, it in
tum repeatedly calls yylex () - the lexical analyzer supplied by the program­
mer (see Section 10.3) to obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery is possible) yyparse () returns the
value 1, or the lexical analyzer returns the endmarker token and the parser
accepts. In this case, yypar se () returns the value O.

The programmer must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C program, a
program called main must be defined, that eventually calls yypar se (). In
addition, a routine called yyerror () prints a message when a syntax error is
detected.

The programmer must supply these two routines in one form or another. They
can be as simple as the following example, or they can be as complex as needed.

[
and

main () {
return (yyparse());
}

include <stdio.h>

yyerror(s) char *s;
fprintf(stderr, "%s\n", s);
}

1

The argument to yyerror () is a string containing an error message, usually
the string 'syntax error'. The average application will want to do better than this.
Ordinarily, the program should keep track of the input line number, and print it
along with the message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics.

The external integer variable yydebug is normally set to O. If it is set to a
nonzero value, the parser generates a verbose description of its actions, including
a discussion of which input symbols have been read, and what the parser actions
are. Depending on the operating environment, it may be possible to set this vari­
able by using a debugging system.

This section contains miscellaneous hints on preparing efficient, easy to change,
and clear specifications. The individual subsections are more or less indepen­
dent.

Revision A of 27 March 1990

250 Programming Utilities and Libraries

Input Style

Left Recursion

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following style hints owe much to Brian Kernighan.

1. Use all capital letters for token names, all lower case letters for nontenninal
names. This rule comes under the heading of 'knowing who to blame when
things go wrong.'

2. Put grammar rules and actions on separate lines. This allows either to be
changed without an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand side in
only once, and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side, and put
the semicolon on a separate line. This allows new rules to be added easily.

5. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in section 10.11 is written following this style, as are the examples
in the text of this paper (where space pennits). The programmer must make up
his own mind about these stylistic questions; the central problem, however, is to
make the rules visible through the morass of action code.

The algorithm used by the yacc parser encourages so called 'left-recursive'
grammar rules: rules of the fonn

name name rest of rule

These rules frequently arise when writing specifications of sequences and lists:

[
list

and

[
seq

item
list

item

, , ,

seq item

item

1

1
In each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

With right-recursive rules, such as

[

seq item 1
"----_.l._.tem se

q
_---""

the parser would be a bit bigger, and the items would be seen, and reduced, from
right to left. More seriously, an internal stack in the parser would be in danger of
overflowing if a very long sequence were read. Thus, the programmer should use
left recursion wherever reasonable.

Revision A of 27 March 1990

Lexical Tie-ins

Chapter 10 - ya cc - Yet Another Compiler-Compiler 251

It is worth considering whether a sequence with zero elements has any meaning,
and if so, consider writing the sequence specification with an empty rule:

[

seq /* empty */ 1
'-----_seq it_em ____

Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality. However,
conflicts might arise if ya c c is asked to decide which empty sequence it has
seen, when it hasn't seen enough to know!

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks nonnally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program consists
of 0 or more declarations, followed by 0 or more statements. Consider:

% {

% }

%%

prog

decls

stats

int dflag;

other declarations

other rules

decls stats

/* empty */
{ dflag

decls declaration

/* empty */
{

stats statement
dflag

1;

0;

The flag djiag is now 0 when reading statements, and 1 when reading declara­
tions, except for the first token in the first statement. This token must be seen by
the parser before it can tell that the declaration section has ended and the state­
ments have begun. In many cases, this single-token exception does not affect the
lexical scan.

This kind of 'backdoor' approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if not
impossible, to do otherwise.

Revision A of 27 March 1990

252 Programming Utilities and Libraries

Reserved Words

10.10. Advanced Topics

Simulating Error and Accept
in Actions

Accessing Values in Enclosing
Rules.

Some programming languages pennit the programmer to use words like 'if',
which are normally reserved, as label or variable names, provided that such use
does not conflict with the legal use of these names in the programming language.
This is extremely hard to do in the framework of yacc; it is difficult to pass
infonnation to the lexical analyzer telling it 'this instance of if is a keyword,
and that instance is a variable'. The programmer can make a stab at it, using the
mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is
better that the keywords be reserved; that is, be forbidden for use as variable
names. There are powerful stylistic reasons for preferring this, anyway.

This section discusses a number of advanced features of yacc.

The parsing actions of error and accept can be simulated in an action by use of
macros YY ACCEPT and YYERROR. YY ACCEPT makes yypar s e return the
value 0; YYERROR makes the parser behave as if the current input symbol results
in a syntax error, yyerror () is called, and error recovery takes place. These
mechanisms can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

An action may refer to values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a dollar sign fol­
lowed by a digit, but in this case the digit may be 0 or negative. Consider

sent adj noun verb adj noun

adj THE
YOUNG

noun DOG

look at the sentence .

$$
$$

THE;
YOUNG;

{ $$ = DOG;
CRONE

{ if($0 == YOUNG) {
printf("what?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding
token shifted was not YOUNG. Obviously, this is only possible when a great deal
is known about what might precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at times this mechanism
will save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

Revision A of 27 March 1990

Support for Arbitrary Value
Types

Chapter lO-yacc - Yet Another Compiler-Compiler 253

By default, the values returned by actions and the lexical analyzer are integers.
ya c c can also support values of other types, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member names·so
that the resulting parser will be strictly type checked. The yacc value stack (see
Section 10.4) is declared to be a union of the various types of values desired.
The programmer declares the union, and associates a union member name to
each token and nonterminal symbol having a value. When the value is refer­
enced through a $ $ or $ n construction, yacc automatically inserts the appropri­
ate union name, so that no unwanted conversions will take place. In addition,
type-checking commands such as 1 i n t (1) will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way
of defining the union; this must be done by the programmer since other pro­
grams, notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and non­
terminals. Finally, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the programmer includes in the declaration section:

[
%union

body of union
}

This declares the yacc value stack, and the external variables yyl val and
yyval, to have type equal to this union. If yacc was invoked with the -d
option, the union declaration is copied onto the y .tab.h file. Alternatively, the
union may be declared in a header file, and a typedef used to define the variable
YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union {
body of union
} YYSTYPEi

The header file must be included in the declarations section, by use of %{ and
%}.

1

Once YYSTYPE is defined, the union member names must be associated with the
various terminal and nontenninal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, and %nonassoc, the union member name is asso­
ciated with the tokens listed. Thus, saying

[____ %_l_e_f_t __ <_O_p_t_yp __ e_> ___ '_+_' ___ ' __ ' ____________________________ ~J
will tag any reference to values returned by these two tokens with the union
member name optype. Another keyword, %t ype, is used similarly to associate
union member names with nontenninals. Thus, one might say

Revision A of 27 March 1990

254 Programming Utilities and Libraries

10.11. A Simple Example

%{
* include * include

<stdio.h>
<ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT

%left ' I '
%left ' & '

LETTER

(~ ___ %_t_y_p_e ___ <n_O_d_e_t_y_p_e_> ___ e_x_p_r ___ s_t_a_t __________________________ J

There remain a couple of cases where these mechanisms are insufficient. If there
is an action within a rule, the value returned by this action has no a priori type.
Similarly, reference to left-context values (such as $0 - see the previous subsec­
tion) leaves yacc with no easy way of knowing the type. In this case, a type can
be imposed on the reference by inserting a union member name, between < and
>, immediately after the first $. An example of this usage is

rule aaa $<intval>$ 3;} bbb
fun($<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in 10.13. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these
mechanisms. When they are used, there is a fairly strict level of checking. For
example, use of $n or $$ to refer to something with no defined type is diagnosed.
If these facilities are not triggered, the y ace value stack is used to hold in t 's,
as was true historically. This paper is reprinted in this manual.

This example gives the complete ya c c specification for a small desk calculator;
the desk calculator has 26 registers, labeled 'a' through 'z', and accepts arith­
metic expressions made up of the operators +, -, *, I, % (mod operator), & (bit­
wise and), I (bitwise or), and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a reasonable job
of showing how precedences and ambiguities are used, and demonstrating simple
error recovery. The major oversimplifications are that the lexical analysis phase
is much simpler than for most applications, and the output is produced immedi­
ately, line-by-line. Note the way that decimal and octal integers are read in by
the grammar rules; This job is probably better done by the lexical analyzer.

sun Revision A of 27 March 1990
microsystems

Chapter 10 - yacc - Yet Another Compiler-Compiler 255

%left '+'
%left '*' '/' '%'
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list

stat

expr

number

, \n '
/* empty */
list stat
list error , \n '

yyerrok;

expr
printf(n%d\n", $1

LETTER expr
regs[$l] $3;

, (, expr ') ,

{ $$ $2;
expr ' + ' expr

{ $$ $1 + $3;
expr

, - ,
expr

$$ $1 $3;
expr ' * ' expr

{ $$ $1 * $3;
expr ' / ' expr

{ $$ $1 / $3;
expr ' % ' expr

{ $$ $1 % $3;
expr ' & ' expr

{ $$ $1 & $3;
expr ' I ' expr

{ $$ $1 $3;
expr %prec UMINUS

{ $$ $2;
LETTER

$$ regs[$l];
number

DIGIT
$$ = $1; base

number DIGIT
{ $$ base * $1

%% /* start of programs */

yylex ()
{

/* lexical analysis routine */

) ;

($1==0)

+ $2;

/* returns LETTER for lower case letter, yylval=O thru 25 */
/* return DIGIT for digit, yylval=O thru 9 */
/* all other characters are returned immediately */

int c;

while«c getchar(» == ' ') { /* skip blanks */ }

? 8 10;

Revision A of 27 March 1990

256 Programming Utilities and Libraries

if(islower(c»
yylval = c - 'a';
return(LETTER);

if(isdigit(c»
yylval = c - '0';
return(DIGIT);

return (c) ;

/* c is now nonblank */

10.12. yace Input Syntax This section describes the y ace input syntax, as a y ace specification. Context
dependencies, etc., are not considered. Ironically, the yacc input specification
language is most naturally specified as an LR(2} grammar; the sticky part comes
when an identifier is seen in a rule, immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule; otherwise it is a
continuation of the current rule, which just happens to have an action embedded
in it. As implemented, the lexical analyzer looks ahead after seeing an identifier,
and decide whether the next token (skipping blanks, newlines, comments, etc.) is
a colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as IDENTIFIERs,
but never as part of C _ IDENT IF IERs.

%token
%token
%token

/* grammar for the input to yacc */

/* basic entities */
IDENTIFIER /* includes identifiers and literals */
C IDENTIFIER /* identifier (not literal) followed by
NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK
%token LCURL
%token RCURL

/* the %% mark */
/* the %{ mark */
/* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec

tail

defs

defs MARK rules tail

MARK In this action, eat up the rest oj the file
/* empty: the second MARK is optional */

/* empty */
defs def

*/

Revision A of 27 March 1990

def

rword

tag

nlist

nmno

Chapter 10 - yacc - Yet Another Compiler-Compiler 257

START
UNION
LCURL
defs

IDENTIFIER
{ Copy union definition to output
{ Copy C code to output file }

rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
'<' IDENTIFIER '>'

nmno
nlist
nlist

nmno
, , , nmno

RCURL

IDENTIFIER /* NOTE: literal illegal with %type */
IDENTIFIER NUMBER /* NOTE: illegal with %type */

/* rules section */

rules

rule

rbody

act

prec

10.13. An Advanced
Example

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
'I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

, { , Copy action, translate $$, etc.

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec , . ' ,

, } ,

This section gives an example of a grammar using some of the advanced features
discussed in Section 10.10. The desk calculator example in section 10.11 is
modified to provide a desk calculator that does floating point interval arithmetic.
The calculator understands floating point constants, the arithmetic operations +,
-, *, /, unary -, and = (assignment), and has 26 floating point variables, 'a'
through 'z'. Moreover, it also understands intervals, written

Revision A of 27 March 1990

258 Programming Utilities and Libraries

(x , y)

where x is less than or equal to y. There are 26 interval-valued variables 'A'
through 'z' that may also be used. The usage is similar to that in section 10.11
- assignments return no value, and print nothing, while expressions print the
(floating or interval) value.

This example explores a number of interesting features of yacc and C. Intervals
are represented by a structure, consisting of the left and right endpoint values,
stored as double's. This structure is given a type name, INTERVAL, by using
typedef.
The yacc value stack can also contain floating point scalars, and integers (used

to index into the arrays holding the variable values). Notice that this entire stra­
tegy depends strongly on being able to assign structures and unions in C. In fact,
many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division
by an interval containing 0, and an interval presented in the wrong order. In
effect, the error recovery mechanism of yacc is used to throwaway the rest of
the offending line.

In addition to the mixing of types on the value stack, this grammar also demon­
strates an interesting use of syntax to keep track of the type (for example, scalar
or interval) of intennediate expressions. Note that ~ scalar can be automatically
promoted to an interval if the context demands an interval-value. This causes a
large number of conflicts when the grammar is run through yacc: 18
Shift/Reduce and 26 ReducelReduce. The problem can be seen by looking at the
two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval-valued expression in the second
example, but this fact is not known until the ',' is read; by this time, 2.5 is
finished, and the parser cannot go back and change its mind. More generally, it
might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is evaded by having two
rules for each binary interval-valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied automatically.
Despite this evasion, there are still many cases where the conversion may be
applied or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the conflicts will
be resolved in the direction of keeping scalar-valued expressions scalar-valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of
rules needed would increase dramatically, and the conflicts even more dramati­
cally. Thus, while this example is instructive, it is better practice in a more

Revision A of 27 March 1990

%{

include <stdio.h>
include <ctype.h>

Chapter 10 - yacc - Yet Another Compiler-Compiler 259

nonnal programming language environment to keep the type information as part
of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treat­
ment of floating point constants. The C library routine ato! is used to do the
actual conversion from a character string to a double-precision value. If the lexi­
cal analyzer detects an error, it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and thence error recovery.

typedef struct interval
double 10, hi;

INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg [26];
INTERVAL vreg[26];

%}

%start

%union

%token

%token

%type

%type

%left
%left
%left

%%

lines

line

lines

int ivaI:
double dval:
INTERVAL vval;
}

<ivaI> DREGVREG

<dval> CONST

<dval> dexp

<vval> vexp

/* indices into dreg, vreg arrays */

/* floating point constant */

/* expression */

/* interval expression */

/* precedence information about the operators */

, + '
'* ' , / '

UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp , \n'
{ printf ("%15. 8f\n", $1):

vexp , \n'
{ printf (" (%15. 8f

'\n'
%15.8f)\n", $1.10, $1.hi):

DREG
,

= dexp
dreg[$1] $3;

VREG
,

= vexp '\n'
{ vreg [$1] $ 3 ;

error ' \n'
{ yyerrok;

+ sun
microsystems

Revision A of 27 March 1990

260 Programming Utilities and Libraries

dexp

vexp

CONST
DREG

$$ dreg[$l];
dexp , +' dexp

$$ $1 + $3;
dexp

, - , dexp
$$ $1 - $3;

dexp '* ' dexp
{ $$ $1 * $3;

dexp , /' dexp
{ $$ $1 / $3;

- , dexp %prec UMINUS
{ $$ - $2;

, (, dexp ') ,

{ $$ $2;

dexp
$$.hi $$.10 $1;

, (, dexp , " dexp ')'
{

$$.10 $2;
$$.hi $4;
if($$.10 > $$.hi) {

printf("interval out of order\n");
YYERROR;

VREG

vexp '+ ' vexp

dexp '+ ' vexp
{

vexp vexp

dexp vexp

vexp '* ' vexp

dexp '* ' vexp
{

vexp , / ' vexp
{

dexp , /' vexp
{

, - , vexp
{

, (, vexp ') ,

{

~ sun
mlcrosystems

}

$$ vreg[$l];

$$.hi $l.hi + $3.hi;
$$.10 $1.10 + $3.10;

$$.hi $1 + $3.hi;
$$.10 $1 + $3.10;

$$.hi $l.hi - $3.10;
$$.10 $1.10 - $3.hi;

$$.hi $1 $3.10;
$$.10 $1 $3.hi;

$$ vrnul ($1.10, $1.hi, $3) ;

$$ vrnul ($1, $1, $3) ;

if(dcheck($3 YYERROR;
$$ = vdiv($1.10, $1. hi, $3) ;

dcheck($3
vdiv ($1,
UMINUS

YYERROR;
$1, $3); }

if (
$$
%prec
$$.hi = -$2.10; $$.10 -$2.hi;

$$ $2;

Revision A of 27 March 1990

Chapter 10 - yacc - Yet Another Compiler-Compiler 261

%%

define BSZ 50 /* buffer size for floating point numbers */

/* lexical analysis */

yylex () {
register c;

while ((c=getchar(» , ,){ /* skip over blanks */ }

if (isupper(c){

yylval.ival c 'A' :

return (VREG) ;

}

if(islower(c }{

yylval.ival c a :
return (DREG) ;

}

if (isdigit (c I I c==' .') {
/* gobble up digits, points, exponents */

char
int

for(

buf[BSZ+l],
dot 0,

*cp
exp

buf:
0:

(cp-buf) <BSZ ++cp, c=getchar ()){

*cp c:
if(isdigit(c)
if (c) {

continue:

if(dot++ I I exp) return ('.'):
/* will cause syntax error */

continue:

if (c , e') {

if (exp++) return ('e');
/* will cause syntax error */

continue;

/* end of number */
break:
}

*cp '\0':
if((cp-buf) >= BSZ

printf("constant too long: truncated\n");
else ungetc(c, stdin); /* push back last char read */
yylval.dval atof(buf):
return (CONST):
}

return (c);
}

INTERVAL hilo(a, b, c, d double a, b, c, d;
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b
else { v.hi

if(c>d

v.hi
b:

if(c>v.hi

sun
microsystems

a;
v.lo

v.hi

v.lo b;
a;

c;

Revision A of 27 March 1990

262 Programming Utilities and Libraries

if (d<v.lo v.lo d;
}

else
if(d>v.hi v.hi d;
if (c<v.lo v.lo c;
}

return (v) ;
}

INTERVAL vrnul(a, b, v) double a, b; INTERVAL v;
return (hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo) ;
}

dcheck(v INTERVAL v;
if(v.hi >= O. && v.lo <= O.) {

printf("divisor interval contains O.\n");
return (1);
}

return (0) ;
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v;
return (hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo);
}

10.14. Old Features
Supported but not
Encouraged

This section mentions synonyms and features which are supported for historical
continuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes '"'.

2. Literals may be more than one character long. If all the characters are alpha­
betic, numeric, or _, the type number of the literal is defined, just as if the
literal did not have the quotes around it. Otherwise, it is difficult to find the
value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing ajob which must be actually
done by the lexical analyzer.

3. Most places where % is legal, backslash '\' may be used. In particular, \\ is
the same as %%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

= { . • • }

and the curly braces can be dropped if the action is a single C statement.

Revision A of 27 March 1990

Chapter 10 - yacc - Yet Another Compiler-Compiler 263

6. C code between % { and % } used to be permitted at the head of the rules sec­
tion, as well as in the declaration section.

Revision A of 27 March 1990

264 Programming Utilities and Libraries

Revision A of 27 March 1990

Overview

Terminology

11
The curses Library: Screen-Oriented

Cursor Motions

curses is a Library Package for:

o Updating a screen with reasonable optimization,

o Getting input from the terminal in a screen-oriented fashion, and

o Moving the cursor from one point to another, independent of the two previ­
ous functions.

These routines all use the termcap database to describe the capabilities of the
tenninal.

In making available the generalized terminal descriptions in terrncap, much
infonnation was made available to the programmer, but little work was taken out
of one's hands. curses helps the programmer perfonn the required functions,
those of movement optimization and optimal screen updating, without doing any
of the dirty work, and (hopefully) with nearly as much ease as is necessary to
simply print or read things.

The curses package is split into three parts:

1. Screen updating without user input;

2. Screen updating with user input; and

3. Cursor motion optimization.

It is possible to use the motion optimization without using either of the other
two, and screen updating and input can be done without any programmer
knowledge of the motion optimization, or indeed the terrncap database itself.

In this chapter, the tenninology illustrated in the table below is used with reason­
able consistency.

265 Revision A of 27 March 1990

266 Programming Utilities and Libraries

Table 11-1

Cursor Addressing Conventions

Compiling Things

Description of Terms

Term Description

window An internal representation containing an image of what a section
of the tenninal screen may look like at some point in time. This
subsection can either encompass the entire terminal screen, or
any smaller portion down to a single character within that.screen.
Note that the term window is used elsewhere in the Sun system
manuals when describing the window management packages for
driving the bitmapped screens. curses windows bear little, if
any, resemblance to the window system concepts.

terminal Sometimes called terminal screen. The package's idea of what
the tenninal's screen currently looks like, that is, what the user
sees now. This is a special screen:

screen This is a subset of windows which are as large as the terminal
screen, that is, they start at the upper left hand corner and encom­
pass the lower right hand corner. One of these, st ds cr, is
automatically provided for the programmer.

The curses library routines address positions on a screen with the y coordinate
first and the x coordinate second. This follows the convention of most terminals
that address the screen in row, column order. The reader should note this con­
vention.

To use the curses library, it is necessary to have certain types and variables
defined. Therefore, the programmer must have a line:

(~ ___ #_i_n_C_l_U_d_e __ <_c_u_r_s_e_s __ .h_> ___ J

at the top of the program source.29

Also, compilations should have the following form:

tutorial% cc [C-compiler options] filename ... -lcurses -ltermcap

29 The header file <curses. h> needs to include <sgtty. h>, so one should not do so oneself. The
screen package also uses the Standard IJO library, so <curses. h> includes <stdio. h>. It is redundant (but
hannless) to include it again.

Revision A of 27 March 1990

Screen Updating

Naming Conventions

Chapter 11-The curses Library: Screen-Oriented Cursor Motions 267

To update the screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next.
For this purpose, a data type (structure) named window () is defined which
describes a window image to the routines, including its starting position on the
screen (the (y, x) coordinates of the upper left hand comer) and its size. One of
these (called cur scr for current screen) is a screen image of what the tenninal
currently looks like. Another screen (called stdscr, for standard screen) is
provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a
potential image of a portion of the tenninal. It doesn't bear any necessary rela­
tion to what is really on the terminal screen. It is more like an array of characters
on which to make changes.

When one has a window which describes what some part the tenninal should
look like, the routine refresh () (or wrefresh () if the window is not
stdscr) is called. refresh () makes the terminal, in the area covered by the
window, look like that window. Note, therefore, that changing something on a
window does not change the terminal. Actual updates to the tenninal screen are
made only by calling refresh () or wrefresh (). This allows the program­
mer to maintain several different ideas of what a portion of the tenninal screen
should look like. Also, changes can be made to windows in any order, without
regard to motion efficiency. Then, at will, the programmer can effectively say
'make it look like this,' and let the package worry about the best way to do this.

As hinted above, the routines can use several windows, but two are automatically
given: curser, which knows what the tenninallooks like, and stdscr, which
is what the programmer wants the terminal to look like next. The user should
never really access cur scr directly. Changes should be made to the appropri­
ate screen, and then the routine refresh () (or wrefresh ()) should be
called.

Many functions are set up to deal with stdscr as a default screen. For exam­
ple, to add a character to stdscr, one calls addch () with the desired charac­
ter. If a different window is to be used, the routine waddch () (for "window­
specific" addch ()) is provided30. This convention of pre pending function
names with a w when they are to be applied to specific windows is consistent.
The only routines which do not do this are those to which a window must always
be specified.

30 Actually, addch () is really a macro with arguments, as are most of the "functions" which deal with
stdscr as a default.

Revision A of 27 March 1990

268 Programming Utilities and Libraries

To move the current (y, x) coordinates from one point to another, the routines
move () and wmove () are provided. However, it is often desirable to first
move and then perform some I/O operation. To avoid clumsiness, most I/O rou­
tines can be preceded by the prefix mv and the desired (y, x) coordinates then can
be added to the arguments to the function. For example, the calls:

move(y, x);
addch(ch);

can be replaced by

and

mvaddch(y, x, ch);

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x)
coordinates. If such pointers are needed, they are always the first parameters
passed.

11.1. Variables Many variables that describe the terminal environment are available to the pro­
grammer. They are:

Table 11-2 Variables to Describe the Terminal Environment

Type Name Description

WINDOW * curscr current version of the screen (terminal screen).
WINDOW * stdscr standard screen. Most updates are done here.
char * Def_term default terminal type if type cannot be deter-

mined
bool My_term use the terminal specification in Def_ term as

terminal, irrelevant of real terminal type
char * ttytype full name of the current terminal.
int LINES number of lines on the terminal
int eOLS number of columns on the terminal
int ERR error flag returned by routines on a fail.
int OK error flag returned by routines when things go

right.

Revision A of 27 March 1990

11.2. Programming Curses

Starting Up

The Nitty-Gritty
Output

Chapter 11 - The curses Library: Screen-Oriented Cursor Motions 269

There are also several #def ine constants and types which are of general useful­
ness:

reg

bool

TRUE

FALSE

storage class register (for example, reg int i;)

boolean type, actually a char (for example, bool donei t;)

boolean 'true' flag (1).

boolean 'false' flag (0).

This is a description of how to actually use the screen package. In it, we assume
all updating, reading, and so on, is applied to stdscr. All instructions will
work on any window, by changing the function name and parameters as men­
tioned above.

To use the screen package, the routines must know about terminal characteristics,
and the space for curser and stdscr must be allocated. These functions are
perfonned by i ni t s cr (). Since it must allocate space for the windows, it can
overflow core when attempting to do so. On this rather rare occasion,
in its c r () returns ERR. ini t s c r () must always be called before any of
the routines which affect windows are used. If it is not, the program will core
dump as soon as either curscr or stdscr are referenced. However, it is usu­
ally best to wait to call it until after you are sure you will need it, like after
checking for startup errors. Terminal status changing routines like nl () and
cbreak () should be called after ini t scr () .

Now that the screen windows have been allocated, you can set them up for the
run. If you want to, say, allow the window to scroll, use scrollok (). If you
want the cursor to be left after the last change, use 1 ea veok (). If this isn't
done, refresh () moves the cursor to the window's current (y, x) coordinates
after updating it. New windows of your own can be created, too, by using the
functions newwin () and subwin (). del win () gets rid of old windows. If
you wish to change the official size of the tenninal by hand, just set the variables
LINES and eOLS to be what you want, and then call ini tscr () . This is best
done before, but can be done either before or after, the first call to ini tscr () ,
as it always deletes any existing stdscr and/or curser before creating new
ones.

Now that we have set things up, we will want to actually update the tenninal.
The basic functions used to change what appears on a window are addch () and
move (). addch () adds a character at the current (y, x) coordinates, returning
ERR if it would cause the window to illegally scroll, that is, printing a character
in the lower right-hand comer of a terminal which automatically scrolls if scrol­
ling is not allowed. move () changes the current (y, x) coordinates to whatever
you want them to be. It returns ERR if you try to move off the window when
scrolling is not allowed. As mentioned above, you can combine the two into
mvaddch () to do both things in one fell swoop.

Revision A of 27 March 1990

270 Programming Utilities and Libraries

Input

Miscellaneous

Finishing Up

11.3. Cursor Motion
Optimization:
Standing Alone

The other output functions, such as addstr {} and printw {}, all call
addeh {} to add characters to the window.

After you have put on the window what you want there, when you want the por­
tion of the tenninal covered by the window to be made to look like it, you must
call refresh {}. To optimize finding changes, refresh {} assumes that any
part of the window not changed since the last ref re sh {} of that window has
not been changed on the terminal, that is, that you have not refreshed a portion of
the tenninal with an overlapping window. If this is not the case, the routines
touehwin {} ,touehline {} ,and touchoverlap () are provided to make
it look like the entire window has been changed, thus forcing refresh () check
the whole subsection of the tenninal for changes.

If you call wrefresh {} with curser, it will make the screen look like
curser thinks it looks like. This is useful for implementing a command to
redraw the screen in case it get messed up.

Input is essentially a mirror image of output. The complementary function to
addeh () is getch {} which, if echo is set, calls addch () to echo the charac­
ter. Since the screen package needs to know what is on the terminal. at all times,
if characters are to be echoed, the tty must be in raw or cbreak mode. If it is not,
getch {} sets it to be cbreak, reads in the character, and then resets the mode of
the tenninal to what it was before the call.

All sorts of functions exist for maintaining and changing infonnation about the
windows. For the most part, the descriptions in section 5.4. should suffice.

To do certain optimizations, and, on some tenninals, to work at all, some things
must be done before the screen routines start up. These functions are perfonned
in getttmode () and setterm (), which are called by initscr (). To
clean up after the routines, the routine endw in () is provided. It restores tty
modes to what they were when ini t s cr () was first called. Thus, anytime
after the call to initscr, endw in () should be called before exiting.

It is possible to use the cursor optimization functions of this screen package
without the overhead and additional size of the screen updating functions. The
screen updating functions are designed for uses where parts of the screen are
changed, but the overall image remains the same. Certain other programs will
find it difficult to use these functions in this manner without considerable
unnecessary program overhead. For such applications, such as some "crt
hacks' ,31 and optimizing cat(1)-type programs, all that is needed is the motion
optimizations. This, therefore, is a description of what goes on at the lower lev­
els of this screen package. The descriptions assume a certain amount of familiar­
ity with programming problems and some finer points of C. None of it is terribly
difficult, but you should be forewarned.

31 Graphics programs designed to run on character-oriented tenninals.

Revision A of 27 March 1990

Terminal Information

Movement Optimizations, or,
Getting Over Yonder

Chapter 11 - The curses Library: Screen-Oriented Cursor Motions 271

To use a tenninal's features to the best of a program's abilities, you must first
know what they are. The termcap database describes these, but a certain
amount of decoding is necessary, and there are, of course, both efficient and
inefficient ways of reading them in. The algorithm that curses uses is taken
from vi(1) and is efficient. It reads them into a set of variables whose names are
two uppercase letters with some mnemonic value. For example, HO is a string
which moves the cursor to the "home" position32. As there are two types of vari­
abIes involving ttys, there are two routines. The first, get tmode () , sets some
variables based upon the tty modes accessed by gt t Y (2) and s t t y(2). The
second, set term () , does a larger task by reading in the descriptions from the
termcap database. This is the way these routines are used by initscr () :

if (isatty(O» {
gettmode;

else

if (sp=getenv ("TERM"))
setterm (sp) ;

setterm(Def_term) ;
_putS(TI);
_puts(VS);

is at t y () checks to see if file descriptor 0 is a tenninal33. If it is,
gettmode () sets the tenninal description modes from a gtty (2) •

getenv () is then called to get the name of the tenninal, and that value (if there
is one) is passed to setterm () , which reads in the variables from termcap
associated with that terminal. getenv () returns a pointer to a string containing
the name of the tenninal, which we save in the character pointer s p. If
isatty () returns false, the default terminal Def_term is used. The TI and
vs sequences initialize the terminal. yut s () is a macro which uses
tput s () (see termcap(3X» to put out a string. It is these things which
endwin () undoes.

Now that we have all this useful infonnation, it would be nice to do something
with it. The most difficult thing to do properly is motion optimization. When
you consider how many different features various terminals have (tabs, backtabs,
non-destructive space, home sequences, absolute tabs, ...) you can see that
deciding how to get from here to there can be a decidedly non-trivial task.

After using get tmo de () and set term () to get the terminal descriptions, the
function rnvcur () deals with this task. Its usage is simple: you simply tell it
where you are now and where you want to go, as shown below.

32 These names are identical to those variables used in the /etc/termcap database to describe each
capability. See Appendix A for a complete list of those read. and te rmcap(5) for a full description.

33 is a tty () is defined in the default C library function routines. It does a gt t Y (2) on the file descriptor
and checks the return value.

Revision A of 27 March 1990

272 Programming Utilities and Libraries

11.4. Curses Functions

Output Functions
addch () and waddch () -
Add Character to Window

addstr () and waddstr ()
- Add String to Window

(~ ___ m_v_c_u_r_(_O_' __ O_'_L_I_N_E_S_/_2_' __ C_O_L_S_/_2_) __________________________ ~)
would move the cursor from the home position (0, 0) to the middle of the screen.
If you wish to force absolute addressing, you can use the function tgoto ()
from the termcap(3X) routines, or you can tell mvcur () that you are impossi­
bly far away. For example, to absolutely address the lower left hand comer of
the screen from anywhere just claim that you are in the upper right hand comer:

(mvcur(O, eOLS-l, LINES-l, 0))

In the following definitions, "means that the 'function' is really a 4I=define
macro with arguments. This means that it will not show up in stack traces in the
debugger, or, in the case of such functions as addch () , it will show up as its
'w' counterpart. The arguments are given to show the order and type of each.
Their names are not mandatory, just suggestive.

addch(ch)
char Chi

waddch(win, ch)
WINDOW *win;
char Chi

Add the character ch on the window at the current (y, x) co-ordinates. If the
character is a (NEWLINE] (\n ') the line is cleared to the end, and the current
(y, x) co-ordinates are changed to the beginning of the next line if newline map­
ping is on, or to the next line at the same x co-ordinate if it is off. A return (\r')
moves to the beginning of the line on the window. Tabs (\1') are expanded into
spaces in the nonnal tabstop positions of every eight characters. This returns
ERR if it would cause the screen to scroll illegally.

addstr(st)
char *str;

waddstr(win, str)
WINDOW *wini
char *str;

Add the string pointed to by s t r on the window at the current (y, x) co­
ordinates. This returns ERR if it would cause the screen to scroll illegally. In this
case, it puts on as much as it can.

Revision A of 27 March 1990

box () - Draw Box Around
Window

clear () and wclear () -
Reset Window

clearok () - Set Clear Flag

clrtobot () and
wclrtobot () - Clear to
Bottom

clrtoeol () and
wclrtoeol () - Clear to
End of Line

delch () and wdelch () -
Delete Character

Chapter 11-The curses Library: Screen-Oriented Cursor Motions 273

box (win, vert, hor)
WINDOW *win;
char vert, hor;

Draws a box around the window using vert as the character for drawing the
vertical sides, and hor for drawing the horizontal lines. If scrolling is not
allowed, and the window encompasses the lower right-hand comer of the termi­
nal, the comers are left blank to avoid a scroll.

clear ()

wclear(win)
WINDOW *win;

Resets the entire window to blanks. If win is a screen, this sets the clear flag,
which sends a clear-screen sequence on the next refresh () call. This also
moves the current (y, x) co-ordinates to (0, 0).

clearok(scr, boolf)
WINDOW *scr;
bool boolf;

Sets the clear flag for the screen scr. If boolf is TRUE, this forces a clear­
screen to be printed on the next refresh () ,or stop it from doing so ifboolf
is FALSE. This only works on screens, and, unlike clear () , does not alter the
contents of the screen. If s cr is cu r s c r, the next ref res h () call causes a
clear-screen, even if the window passed to refresh () is not a screen.

clrtobot ()

wclrtobot(win)
WINDOW *wini

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This
does not force a clear-screen sequence on the next refresh under any cir­
cumstances. This has no associated mv function.

clrtoeol ()

wclrtoeol(win)
WINDOW *wini

Wipes the window clear from the current (y, x) co-ordinates to the end of the
line. This has no associated mv function.

delch ()

wdelch(win)
WINDOW *wini

Delete the character at the current (y, x) co-ordinates. Each character after it on
the line shifts to the left, and the last character becomes blank.

~~.,!!! Revision A of 27 March 1990

274 Programming Utilities and Libraries

deleteln () and
wdeleteln () - Delete
Current Line

erase and werase () -
Erase Window

flu shok - Control Flushing
of stdout

idlok - Control Use of
Insert/Delete Line

insch () and winsch () -
Insert Character

deleteln ()

wdeleteln(win)
WINDOW *wini

Delete the current line. Every line below the current one moves up, and the bot­
tom line becomes blank. The current (y, x) co-ordinates remains unchanged.

erase ()

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analagous to
clear () ,except that it never causes a clear-screen sequence to be generated on
a refresh (). This has no associated mv function.

flushok(win, boolf)
WINDOW *win;
bool boolf;

Nonnally, refresh () perfonns an fflush () on stdout when it is
finished. fl ushok () allows you to control this. If boolf is TRUE (non-zero),
refresh () perfonns the fflush (); if FALSE, refresh () does not.

idlok(win, boolf)
WINDOW *win;
bool boolf;

Reserved for future use. When implemented, this will signal refresh () as to
whether it is safe to use "insert line" and "delete line" sequences to update a
window.

insch(c)
char C;

winsch(win, c)
WINDOW *win;
char C;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right,
and the last character disappears. This returns ERR if it would cause the screen
to scroll illegally.

Revision A of 27 March 1990

insertln () and
winsertln () - Insert Line

move and wmove () - Move

over lay () - Overlay
Windows

overwrite () - Overwrite
Windows

printw () and wprintw ()
- Print to Window

Chapter 11 - The curses Library: Screen-Oriented Cursor Motions 275

insertln

winsertln(win)
WINDOW *wini

Insert a line above the current one. Every line below the current line is shifted
down, and the bottom line disappears. The current line becomes blank, and the
current (y, x) co-ordinates remains unchanged. This returns ERR if it would
cause the screen to scroll illegally.

move(y, x)
int y, x;

wmove(win, y, x)
WINDOW *win;
int y, Xi

Change the current (y, x) co-ordinates of the window to y, x. This returns ERR if
it would cause the screen to scroll illegally.

overlay (winl, win2)
WINDOW *winl, *win2;

Overlay winl on win2. The contents of winl, insofar as they fit, are placed on
win2 at their starting (y, x) co-ordinates. This is done non-destructively, that is,
blanks on winlleave the contents of the space on win2 untouched.

overwrite (winl, win2)
WINDOW *winl, *win2i

Overwrite winl on win2. The contents of winl, insofar as they fit, are placed
on win2 at their starting (y, x) co-ordinates. This is done destructively, that is,
blanks on winl become blank on win2.

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

Performs apr intf () on the window starting at the current (y, x) co-ordinates.
It uses addstr () to add the string on the window. It is often advisable to use
the field width options ofprintf () to avoid leaving things on the window
from earlier calls. This returns ERR if it would cause the screen to scroll ille­
gally.

Revision A of 27 March 1990

276 Programming Utilities and Libraries

refresh () and
wrefresh () - Synchronize

standout () and
wstandout () - Put
Characters in Standout Mode

Input Functions
crbreak and nocrbreak -
Set or Unset from Cbreak mode

echo () and noecho () -
Tum Echo On or Off

getch () and wgetch () -
Get Character from Tenninal

refresh ()

wrefresh(win)
WINDOW *wini

Synchronize the tenninal screen with the desired window. If the window is not a
screen, only that part covered by it is updated. This returns ERR if it would cause
the screen to scroll illegally. In this case, it updates whatever it can without caus­
ing the scroll.

As a special case, if wrefresh () is called with the window curser, the
screen is cleared and repainted. This is useful for allowing the user to redraw the
screen as needed.

standout ()

wstandout(win)
WINDOW *wini

standend()

wstandend(win)
WINDOW *wini

Start and stop putting characters onto win in standoutO mode. standout ()
causes any characters added to the window to be put in standout mode on the ter­
minal (if it has that capability). standend () stops this. The sequences so and
SE (or us and UE if they are not defined) are used (see Appendix A).

crbreak ()

nocrbreak ()

Set or unset the tenninal to/from cbreak mode. The misnamed macros
crrnode () and nocrmode () are retained for backward compatibility.

echo ()

noecho ()

Sets the tenninal to echo or not echo characters.

getch ()

wgetch(win)
WINDOW *wini

Gets a character from the teffilinal and (if necessary) echos it on the window.
This returns ERR if it would cause the screen to scroll illegally. Otherwise, the
character gotten is returned. If noeeho () has been set, then the window is left
unaltered. In order to retain control of the tenninal, it is necessary to have one of

Revision A of 27 March 1990

getstr () and wgetstr ()
- Get String from Terminal

raw () and noraw () - Tum
Raw Mode On or Off

scanw () and wscanw () -
Read String from Terminal

Miscellaneous Functions

baudrate - Get the
Baudrate

Chapter 11 - The curses Library: Screen-Oriented Cursor Motions 277

noecho () , cbreak () , or rawmode set. If you do not set one, whatever rou­
tine you call to read characters sets cbreak for you, and then resets to the original
mode when finished.

getstr(st)
char *str i

wgetstr(win, str)
WINDOW *wini
char *stri

Get a string through the window and put it in the location pointed to by s t r ,
which is assumed to be large enough to handle it. It sets tty modes if necessary,
and then calls getch () (or wgetch (win)) to get the characters needed to fill
in the string until a I NEWLINE I or EOF is encountered. The (NEWLINE) is
stripped off the string. This returns ERR if it would cause the screen to scroll
illegally.

raw()

noraw ()

Set or unset the terminal to/from raw mode. On version 7 UNIXt systems, this
also turns off NEWLINE mapping (see nl (».

scanw(fmt, argl, arg2, ...)
char *fmti

wscanw(win, fmt, argl, arg2, ...)
WINDOW *wini
char *fmti

Perform a scanf () through the window using frot. It does this using consecu­
tive getch () 's (or wgetch (win) 's). This returns ERR if it would cause the
screen to scroll illegally.

Returns the baud rate of the terminal. This is a system-dependent constant
(defined in the header file <sys/tty. h>, which is included in <curses. h».

t UNIX is a registered trademark of AT&T.

Revision A of 27 March 1990

278 Programming Utilities and Libraries

del win () - Delete a
Window

endwin () - Finish up
Window Routines

erasechar -Get Erase
Character

getcap () - Get Termcap
Capability

get yx () - Get Current
Coordinates

inch () and winch () - Get
Character at Current
Coordinates

ini t s cr () - Initialize
Screen Routines

delwin(win)
WINDOW *win;

Deletes the window from existence. All resources are freed for future use by
calloc (3). If a window has a subwin () allocated window inside of it,
deleting the outer window does not affect the subwindow, even though this does
invalidate it. Therefore, subwindows should be deleted before their outer win­
dows are.

endwin ()

Finish up window routines before exit. This restores the tenninal to the state it
was in before ini t scr () (or get tmode () and set term ()) was called.
endwin () should always be called before exiting. endwin () does not itself
exit - this is especially useful for resetting tty stats when trapping rubouts via
signal (2) .

erasechar ()

Returns the erase character for the tenninal; that is, the character used by the ter­
minal to erase single characters from the input.

char *getcap(str)
char *str;

Return a pointer th the termcap capability described by str (see termcap(5)
for details).

getyx(win, y, x)
WINDOW *win;
int y, x;

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a
macro, not a function, you do not pass the address of y and x.

inch ()

winch (win)
WINDOW *win;

Returns the character at the current (y, x) co-ordinates on the given window.
This does not make any changes to the window. This has no associated mv func­
tion.

initscr ()

Initialize the screen routines. This must be called before any of the screen rou­
tines are used. It initializes the terminal-type data and such, and without it, none
of the routines can operate. If standard input is not a tty, it sets the specifications
to the tenninal whose name is pointed to by Def _term (initialy dumb). If the

Revision A of 27 March 1990

killchar - Get Kill
Character

leaveok () - Set Leave
Cursor Flag

longname () - Get Full
Name of Tenninal

mvwin - Move Home Position
of Window

Chapter 11 - The cur se s Library: Screen-Oriented Cursor Motions 279

boolean My_term is true, Def_term is always used. If the window size values
for rows and columns as returned by the TIOCGWINSZ ioctl (2) request are
non-zero, they are used. Otherwise, sizes are taken from the termcap descrip­
tion.

killchar ()

Returns the terminal's line kill character; that is, the character used to erase an
entire line from input.

leaveok(win, boolf)
WINDOW *wini
bool boolfi

Sets the boolean flag for leaving the cursor after the last change. If boolf is
TRUE, the cursor is left after the last update on the terminal, and the current
(y, x) co-ordinates for win are changed accordingly. If it is FALSE, it is moved
to the current (y, x) co-ordinates. This flag (initially FALSE) retains its value
until changed by the user.

For example, say the current position is (0, 0) and we change the character at
position (5, 10) in the window. After calling refresh () , the cursor is either
moved to position (5, 10) (if the flag is TRUE) or the cursor is left at position
(0,0) (if the flag is FALSE).

longname(termbuf, name)
char *termbuf, *namei

longname(termbuf, name)
char *termbuf, *namei

Fills in name with the long (full) name of the terminal described by the
termcap entry in termbuf. It is generally of little use, but is nice for telling
the user in a readable format what tenninal we think he has. This is available in
the global variable ttytype. termbuf is usually set via the termcap rou­
tine tgetent. fullname is the same as longname () ,except that it gives
the fullest name given in the entry, which can be quite verbose.

mvwin(win, y, x)
WINDOW *wini
int y, Xi

Move the home position of the window win from its current starting coordinates
to y, x. If that would put part or all of the window off the edge of the terminal
screen, mvwin () returns ERR and does not change anything. For subwindows,
mvwin () also returns ERR if you attempt to move it off its main window. If
you move a main window, all subwindows are moved along with it.

Revision A of 27 March 1990

280 Programming Utilities and Libraries

newwin () - Create a New
Window

nl () and nonl () -Tum
Newline Mode On or Off

serollok - Set Scroll Flag
for Window

subwin () - Create a
Subwindow

touchline - Indicate Line
Has Been Changed

WINDOW *
newwin(lines, eols, begin-y, begin_x)
int lines, eols, begin-y, begin_x;

Create anew window with lines lines and eols columns starting at position
begin_y, begin_x. If either lines or eols is 0 (zero), that dimension is
set to (lines - begin_y) or (eols - begin_x) respectively. Thus, to
get a new window of dimensions lines x eol s, use
newwin (0, 0, 0, 0).

nl ()

nonl ()

Set or unset the tenninal to/from nl () mode, that is, start/stop the system from
mapping I RETURN I to I NEWLINE I. If the mapping is not done, ref re s h ()
can do more optimization, so it is recommended, but not required, that it be
turned off.

serollok(win, boolf)
WINDOW *win;
bool boolf;

Set the scroll flag for the given window. Ifboolf is FALSE, scrolling is not
allowed. This is its default setting.

WINDOW *
subwin(win, lines, eols, begin-y, begin_x)
WINDOW *win;
int lines, eols, begin_y, begin_x;

Create a new window with lines lines and eols columns starting at position
(begin y, begin x) in the middle of the window win. This means that any - -
change made to either window in the area covered by the subwindow is made on
both windows. (begin_y, begin_x) are specified relative to the overall
screen, not the relative (0, 0) of win. If either lines or eols is 0 (zero), that
dimension is set to (LINES - begin_y) or (eOLS - begin_x) respectively.

touehline(win, y, startx, endx)
WINDOW *win;
int y, startx, endx;

This function perfonns a function similar to touehwin () , but on a single line.
It marks the first change for the given line to be startx, ifit is before the
current first change mark, and the last change mark is set to be endx if it is
currently less than endx.

Revision A of 27 March 1990

touchover lap - Indicate
Overlapping Regions Have
Been Changed

touchwin () - Indicate
Window Has Been Changed

unctrl () -Return
Representation of Character

Details
gettmode () - Get tty
Statistics

mvcur () - Move Cursor

scroll () - Scroll Window

savetty () and resetty ()
- Save and Reset tty Flags

Chapter 11-The curses Library: Screen-Oriented Cursor Motions 281

touchoverlap(winl, win2)
WINDOW *win, *win2i

Touch the window win2 in the area which overlaps with winl. If they do not
overlap, no changes are made.

touchwin(win)
WINDOW *wini

Make it appear that the every location on the window has been changed. This is
usually only needed for refreshes with overlapping windows.

unctrl(ch)
char Chi

This is actually a debug function for the library, but it is of general usefulness. It
returns a string which is a representation of ch. Control characters become their
upper-case equivalents preceded by a ,.. (circumflex character). Other letters stay
just as they are.

gettmode ()

Get the tty stats. This is nonnally called by ini tscr () .

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, newx;

Moves the tenninal's cursor from lasty, lastx to newy, newx in an approxi­
mation of optimal fashion.

It is possible to use this optimization without the benefit of the screen routines.
With the screen routines, this should not be called by the user. move () and
refresh () should be used to move the cursor position, so that the routines
know what's going on.

scroll (win)
WINDOW *win;

Scroll the window upward one line. This is nonnally not used by the user.

savetty ()

resetty ()

savetty () saves the current tty characteristic flags. resetty () restores
them to what savetty () stored. These functions are perfonned automatically
by ini tscr () and endwin () .

Revision A of 27 March 1990

282 Programming Utilities and Libraries

setterm () - Set Tenninal
Characteristics

tstp

_putchar ()

11.5. Capabilities from
termcap

Overview

setterm(name)
char *name;

Set the tenninal characteristics to be those of the tenninal named name, getting
the tenninal size from the TIOCGWINSZ ioctl (2) request if that size is non­
zero, and otherwise from the environment. This is nonnally called by
initscr ().

tstp ()

This function saves the current tty state and then puts the process to sleep. When
the process gets restarted, it restores the tty state and then calls
wrefresh (curser) to redraw the screen. The initscr () function sets
the signal SIGTSTP to trap to this routine.

yutchar ()

Put out a character using the putchar () macro. This function is used to out­
put every character that cur se s generates. Thus, it can be redefined by the user
who wants to do non-standard things with the output. It is named with an initial
'_' because it usually should be invisible to the programmer.

Note that the description oftenninals is a difficult business, and we only attempt
to summarize the capabilities here. For a full description see the termcap(5)
manual pages.

Capabilities from termcap are of three kinds: string valued options, numeric
valued options, and boolean options. The string valued options are the most
complicated, since they may include padding infonnation.

Intelligent tenninals often require padding on intelligent operations at high (and
sometimes even low) speed. This is specified by a number before the string in
the capability, and has meaning for the capabilities which have a LP at the front
of their comment. This nonnally is a number of milliseconds to pad the opera­
tion. In the current system which has no true programmable delays, we do this
by sending a sequence of pad characters (nonnally nulls, but can be changed­
specified by PC). In some cases, the pad is better computed as some number of
milliseconds times the number of affected lines (to the bottom of the screen usu­
ally, except when tenninals have insert modes which will shift several lines.)
This is specified as, for example, 12* before the capability, to say 12 mil­
liseconds per affected whatever (currently always line). Capabilities where this
makes sense say' P *'.

Revision A of 27 March 1990

Chapter 11-The curses Library: Screen-Oriented Cursor Motions 283

Variables Set By setterm ()

Table 11-3 Variables Set by setterm ()

Type Name Pad Description

char * AL P* Add new blank Line
bool AM Automatic Margins
char * BC Back Cursor movement
bool BS BackSpace works
char * BT P Back Tab

bool CA Cursor Addressable
char * CD P* Clear to end of Display
char ,.. CE P Clear to End of line
char· CL P* CLear screen
char • CM P Cursor Motion

char· DC p. Delete Character
char· DL p. Delete Line sequence
char • DM Delete Mode (enter)
char· DO DOwn line sequence
char • EO End Delete mode

bool EO can Erase Overstrikes with" ,
char • EI End Insert mode
char * HO HOme cursor
bool HZ HaZeltine - braindamage
char • IC P Insert Character

bool IN Insert-Null blessing
char * 1M enter Insert Mode (IC usually set, too)
char * IP P* Pad after char Inserted using IM+IE
char • LL quick to Last Line, column 0
char· MA ctrl character MAp for cmd mode

bool MI can Move in Insert mode
bool NC No Cr: \r sends \r\n then eats \n
char * NO Non-Destructive space
bool OS OverStrike works
char PC Pad Character

char * SE Standout End (may leave space)
char * SF P Scroll Forwards
char * SO Stand Out begin (may leave space)
char * SR P Scroll in Reverse
char • TA P TAb (not ~I or with padding)

char· TE Terminal address enable Ending sequence
char * TI Terminal address enable Initialization
char * UC Underline a single Character
char • UE Underline Ending sequence
bool UL UnderLining works even though IDS

char * UP UPline
char * US Underline Starting sequence
char * VB Visible Bell
char * VE Visual End sequence
char * VS Visual Start sequence
bool XN a Newline gets eaten after wrap

Revision A of 27 March 1990

284 Programming Utilities and Libraries

Variables Set By
gettmode ()

Table 11-4

11.6. The WINDOW
structure

Names starting with X are reserved for severely nauseous glitches

For pUIpOses of standout () , if SG is not 0, SO is set to NULL, and if UG is not
0, US is set to NULL. If, after this, so is NULL, and US is not, SO is set to be us,
and SE is set to be UE.

Variables Set By gettmode ()

type

bool
bool
bool

name

NONL
GT
UPPERCASE

description

Tenn can't hack linefeeds doing a CR
Gtty indicates Tabs
Tenninal generates only uppercase letters

The WINDOW structure is defined as follows:

/*
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.

*
*
*1

6.1 (Berkeley) 4/24/86";

define WINDOW struct win st

struct _win_st {
short
short
short
short
short
bool
bool
bool
char
short
short
struct win st

} ;

define ENDLINE 001 -
define FULLWIN 002
define SCROLLWIN004 -
define FLUSH
define FULLLINE 020
define IDLINE -
define STANDOUT 0200 -
define NOCHANGE -1

_cury, _curx;
_maxy, _maxx;
_begy, _begx;

flags;
_ch_off;
_clear;

leave;
scroll;

**-y;
*_firstch;
*_lastch;
*_nextp, *_orig;

010

040

+m.!! Revision A of 27 March 1990

Chapter 11 - The curses Library: Screen-Oriented Cursor Motions 285

_cury () 34 and _curx () are the current (y, x) coordinates for the window.
New characters added to the screen are added at this point. _maxy () and
_ maxx () are the maximum values allowed for (_ cury, _ curx). _ begy ()
and _ begx () are the starting (y, x) coordinates on the tenninal for the window,
that is, the window's home. _cury (), _curx () ,_maxy () ,and _maxx ()
are measured relative to L begy, _ begx), not the tenninal's home.

_clear () tells if a clear-screen sequence is to be generated on the next
refresh () call. This is only meaningful for screens. The initial clear-screen
for the first refresh () call is generated by initially setting clear to be TRUE
for curser, which always generates a clear-screen if set, irrelevant of the
dimensions of the window involved. _leave () is TRUE if the current (y, x)
coordinates and the cursor are to be left after the last character changed on the
tenninal, or not moved if there is no change. _ s c roll () is TRUE if scrolling
is allowed.

_y () is a pointer to an array of lines which describe the tenninal. Thus:

_y [i]

is a pointer to the i th line, and

_y [i] [j]

is the jth character on the ith line. _flags () can have one or more values
or'd into it.

For windows that are not subwindows, _or ig is NULL. For subwindows, it
points to the main window to which the window is subsidiary. _nextp is a
pointer in a circularly linked list of all the windows which are subwindows of the
same main window, plus the main window itself.

_firstch and _lastch are malloc () ed arrays which contain the index of
the first and last changed characters on the line. _ ch _ 0 f f is the x offset for the
window in the _fir st ch and _lastch arrays for this window. For main win­
dows, this is always 0; for subwindows it is the difference between the starting
point of the main window and that of the subwindow, so that change markers can
be set relative to the main window. This makes these markers global in scope.

All subwindows share the appropriate portions of _y (), _firstch, _lastch,
and insdel with their main window.

_END LINE says that the end of the line for this window is also the end of a
screen. _ FULLWIN says that this window is a screen. _ SCROLLWIN indicates
that the last character of this screen is at the lower right-hand comer of the tenni­
nal; that is, if a character was put there, the tenninal would scroll. _FULLLINE

says that the width of a line is the same as the width of the tenninal. If _FLUS H

34 All variables not nonnally accessed directly by the user are named with an initial '_' to avoid conflicts
with the user's variables.

Revision A of 21 March 1990

286 Programming Utilities and Libraries

is set, it says that fflush (stdout) should be called at the end of each re­
fresh (). _STANDOUT says that all characters added to the screen are in stan­
dout mode. _ INSDEL is reserved for future use, and is set by idlok () .
_ firstch is set to _ NOCHANGE for lines on which there has been no change
since the last refresh () .

11.7. Example Here is a simple example of how to use the package.

This example (twinkle) is intended to demonstrate the basic structure of a pro­
gram using the screen updating sections of the package.

This is a moderately simple program which prints pretty patterns on the screen
that might even hold your interest for 30 seconds or more. It switches between
patterns of asterisks, putting them on one by one in random order, and then tak­
ing them off in the same fashion.

include
include

/*

<curses.h>
<signal.h>

* the idea for this program was a product
* of the imagination of Kurt Schoens. Not
* responsible for minds lost or stolen.
*/

define
define
define

NCOLS 80
NLINES 24
MAXPATTERNS 4

struct locs
char y, X;

} ;

typedef struct locs LOCS;

LOCS Layout[NCOLS * NLINES]; /* current board layout */

int Pattern, /* current pattern number */
Numstars; /* number of stars in pattern */

main ()

char *getenv();
int die();

srand(getpid(»; /* initialize random sequence */

initscr () ;
signal (SIGINT, die);
noecho();
nonl () ;
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

Revision A of 27 March 1990

Chapter 11 - The cur se s Library: Screen-Oriented Cursor Motions 287

for (i i)

makeboard () i

puton (' *,) ;
puton (' ');

/* make the board setup */
/* put on '*'s */
/* cover up with' 's */

/*
* On program exit, move the cursor to the lower
* left corner by direct addressing, since current
* location is not guaranteed. We lie and say we
* used to be at the upper right corner to guarantee
* absolute addressing.
*/

die ()

/*

signal (SIGINT, SIG_IGN);
mvcur(O, COLS-1, LINES-1, 0);
endwin () ;
exit(O);

* Make the current board setup. It picks a random
* pattern and calls ison() to determine if the
* character is on that pattern or not.
*/

makeboard ()

/*

reg int
reg LOCS

y, x;
*lPi

Pattern = rand() % MAXPATTERNS;
Ip = Layout;
for (y = 0; y < NLINES; y++)

Numstars

for (x = 0; x < NCOLS; x++)
if (ison(y, x»

lp->y = y;
lp++->x = x;

lp - Layout;

* Return TRUE if (y, x) is on the current pattern.
*/

ison(y, x)
reg int y, Xi {

switch (Pattern)
case 0: /* alternating lines */

return! (y & 01);

sun
microsystems

Revision A of 27 March 1990

288 Programming Utilities and Libraries

}

case 1: /* box */
if (x >= LINES && Y >= NeOLS)

return FALSE;
if (y < 3 I I y >= NLINES - 3)

return TRUE;
return

case 2:
return

case 3:
return

(x < 3 I I x >= NeOLS - 3);
/* holy pattern! */

«x + y) & 01);

/* bar across center */
(y>= 9 && Y <= 15);

/ * NOTREACHED * /

puton(ch)
reg char Chi

reg LOeS *lp;
reg int r;
reg LOCS *end;
LOCS temp;

end &Layout[Numstars];
for (lp = Layout; lp < end; lp++)

r = rand() % Numstars;
temp = *lp;
*lp = Layout[r]i
Layout[r] = temp;

for (lp = Layout; lp < end; lp++) {
mvaddch(lp->y, lp->x, ch);
refresh () ;

Revision A of 27 March 1990

12
System V curses and terminfo:

Screen management programs are a common component of many commercial
computer applications. These programs handle input and output at a video
display terminal. A screen program might move a cursor, print a menu, divide a
terminal screen into windows, or draw a display on the screen to help users enter
and retrieve information from a database.

This tutorial explains how to use the System V curses and terminfo
libraries to write screen management programs on a SunOS system. This pack­
age includes a library of C routines, a database of terminals and terminal capabil­
ities, and a set of SunOS system support tools. To start you writing screen
management programs as soon as possible, the tutorial does not attempt to cover
every part of the package. For instance, it covers only the most frequently used
routines and then points you to curses(3V) and terminfo(5V) in the SunOS
Reference Manual for more information.

Because the routines are compiled C functions, you should be familiar with the C
programming language before using curses/terminfo. You should also be
familiar with the C language Standard I/O library.

This chapter has five sections: The Overview describes curses, terminfo,
and the other components of the System V terminal information utilities package.

Working with curses Routines describes the basic routines making up the
curses(3V) library. It covers the routines for writing to a screen, reading from
a screen, and building windows. 35 It also covers routines for more advanced
screen management programs that draw line graphics, use a terminal's soft
labels, and work with more than one terminal at the same time. Many examples
are included to show the effect of using these routines.

Working with terminfo Routines describes the routines in the curses library
that deal directly with the terminfo database to handle certain terminal capa­
bilities, such as programming function keys.

Working with the terminfo Database describes the terminfo database,
related support tools, and their relationship to the cur ses library.

curses Program Examples includes six programs that illustrate various
curses routines.

3S Here the tenn windows refers to a region within a single tenninal screen.

289 Revision A of 27 March 1990

290 Progranuning Utilities and Libraries

12.1. Overview

What is curses? curses(3V) is the library of routines that you use to write screen management
programs on the SunOS system. The routines are C functions and macros; many
of them resemble routines in the standard C library. For example, there's a rou­
tine printw () that behaves like printf(3V), and another named getch ()
that behaves like get c(3V). The automatic teller program at your bank might
use printw () to print its menus and getch () to accept your requests for
withdrawals (or, better yet, deposits). A visual screen editor like the SunOS
screen editor vi(1) might also use these and other curses routines.

The curses library is located in the file /usr / 5lib/ libcurses. a. To
compile a program using routines in this library, you must use the System V
optional /usr/ 5bin/ cc(lV) command, and include the -lcurses on the
command line so that the link editor can locate and load them:

/usr/5bin/cc file.c-lcurses -0 file

The name curses comes from the cursor optimization that this library ofrou­
tines provides. Cursor optimization minimizes the amount a cursor has to move
around a screen to update it. For example, if you had designed a screen editor
program with curses routines and edited the sentence

curses/terminfo is a great package for creating screens.

to read

curses/terminfo is the best package for creating screens.

the program would output only the string 'thebest in place of '.agreat The other
characters would be preserved. Because the amount of data transmitted-the
output-is minimized, cursor optimization is also referred to as output optimiza­
tion.

Cursor optimization takes care of updating the screen in a manner appropriate for
the terminal on which a curses program is run. This means that the curses
library can do what is required to update any of a large number of different tenni­
nal types. It searches the terminfo database (described below) to find the
correct description for a tenninal.

How does cursor optimization help you and those who use your programs? First,
it saves you time in describing in a program how you want to update screens.
Second, it saves a user's time when the screen is updated. Third, it reduces the
load on your system. Fourth, it handles a large variety of tenninals on which
your program might be run.

Here's a simple curses program. It uses some of the basic curses routines to
move a cursor to the middle of a screen and print the character string
BullsEye. Each of these routines is described in the section Working with
curses Routines later in this chapter. For now, just look at their names below
and you will get an idea of what each of them does.

Revision A of 27 March 1990

Figure 12-1

What is terminfo?

A Simple curses Program

#include <curses.h>

main ()
{

initscr();

Chapter 12-System V curses and terminfo: 291

move (LINES/2 - 1, COLS/2 - 4);
addstr(nBulls n);
refresh () ;
addstr(nEye");
refresh();
endwin () ;

terminfo refers to both of the following:

Tenninfo Routines
This is a group of routines within the cur se s library for handling certain
tenninal capabilities. You can use these routines to program function keys
(if your tenninal has programmable keys), or write filters, for example.
Shell programmers, as well as C programmers, can use the terminfo rou­
tines in their programs.

Tenninfo Database
This is a database containing the descriptions of many terminals that can be
used with cur s e s programs. These descriptions specify the capabilities of
a tenninal and the way it performs various operations-for example, how
many lines and columns it has and how its control characters are interpreted.

Each tenninal description in the database is a separate, compiled file. You
use the source code that terminfo(5V) describes to create these files and
the command tic(8V) to compile them.

The compiled files are normally located in the directories
/usr / share/ lib/terminfo/? These directories have single character
names, each of which is the first character in the name of a terminal. For exam­
ple, an entry for a virtual terminal emulator is nonnally located in the file
/usr/share/lib/terminfo/v/virtual.

Revision A of 27 March 1990

292 Programming Utilities and Libraries

Figure 12-2

How curses and terminfo
Work Together

Other Components of the
Terminal Information Utilities
Package

Here is a simple shell script that uses the terminfo database.

A Shell Script Using terminfo Routines

41: Clear the screen and show the 0,0 position.
41:

tput clear
tput cup 0 0 41: or tput home
echo ,,<- this is 0 0"
41:

41: Show the 5,10 position.
41:

tput cup 5 10
echo ,,<- this is 5 10"

A screen management program with curses routines refers to the terminfo
database at run time to obtain the infonnation it needs about the tenninal being
used.

For example, suppose you are using a virtual tenninal emulator to display the
simple "BullsEye" program shown above. To execute properly, the program
needs to know how many lines and columns the tenninal screen has, in order to
print the BullsEye in the middle of it. The description of the ansi tenninal
type in the terminfo database contains these values. All the curses program
needs to know beforehand is the name of the tenninal type. This is generally set
automatically when you log in.

Here is a complete list of the components discussed in this tutorial:

captoinfo(8V)
a tool for converting tenninal deSCriptions developed on earlier releases of
the SunOS system to terminfo descriptions

curses(3V)
the curses library

infocmp(8V)
a tool for printing and comparing compiled tenninal descriptions

tabs(1V)
a tool for setting non-standard tab stops

terminfo(5V)
the System V terminal infonnation database

tic(8V)
a tool for compiling tenninal descriptions for the terminfo database

tput(1V)
a tool for initializing the tab stops on a tenninal and for outputting the value
of a tenninal capability

Revision A of 27 March 1990

12.2. Working with
curses Routines

What Every curses
Program Needs

The Header File <curses. h>

Chapter 12 - System V curses and terminfo: 293

This section describes the basic cur ses routines for creating interactive screen
management programs. It begins by describing the routines and other program
components that every curses program needs to work properly. Then it tells
you how to compile and run a curses program. Finally, it describes the most
frequently used cur s e s routines that

o write output to and read input from a tenninal screen

o control the data output and input - for example, to print output in bold type
or prevent it from echoing (printing back on a screen)

o manipulate multiple screen images (windows)

o draw simple graphics

o manipulate soft labels on a tenninal screen

o send output to and accept input from more than one tenninal.

To illustrate the effect of using these routines, we include simple example pro­
grams as the routines are introduced. We also refer to a group of larger examples
located in the section curses Program Examples in this chapter. These larger
examples are more challenging; some make use of routines not discussed here.

All curses programs need to include the header file <curses. h> and call the
routines ini tscr () , refresh () or similar related routines, and endwin () .

The header file <curses. h> defines several global variables and data struc­
tures and defines several cur s e s routines as macros.

To begin, let's consider the variables and data structures defined. <curses. h>
defines all the parameters used by curses routines. It also defines the integer
variables LINES and eOLS; when a cur se s program is run on a particular ter­
minal, these variables are assigned the vertical and horizontal dimensions of the
tenninal screen, respectively, by the routine initscr () described below. The
header file defines the constants OK and ERR, too. Most curses routines have
return values; the OK value is returned if a routine is properly completed, and the
ERR value if some error occurs.

LINES and COLS are external (global) variables that represent the size of a ter­
minal screen. The environment variables, LINES and COLUMNS, may be set in
a user's shell environment; a cur se s program uses the environment variables to
determine the size of a screen.

For more information about these variables, see The Routines initscr (),
refresh (), and endwin () and More about initscr () and Lines and
Columns, below.

Now let's consider the macro definitions. The <curses. h> header file defines
many curses routines as macros that call (other macros or) curses routines.
The line

#define refresh() wrefresh(stdscr)

shows when refresh is called, it is expanded to call the curses routine

Revision A of27 March 1990

294 Programming Utilities and Libraries

The Routines initscr (),
refresh (), and endwin ()

Figure 12-3

#include <curses.h>

main ()
{

wrefresh (). The latter routine, in tum, calls the two curses routines
wnoutrefresh () and doupdate (). Many other macros also combine two
or three routines together to achieve a particular result.

Macro expansion in curses programs may cause problems with certain sophis­
ticated C features, such as the use of automatic incrementing variables.

One final point about <curses. h>: it automatically includes <stdio. h> and
the <termio. h>, tenninal driver interface file. Including either file again in a
program is redundant, but hannless.

The routines ini tscr () , refresh (), and endwin () initialize a tenninal
screen to an "in curses state," update the contents of the screen, and restore the
tenninal to an "out of curses state," respectively. Use the simple program that
we introduced earlier to learn about each of these routines:

initscr (), refresh (), and endwin () in a Program

initscr(); /* initialize terminal settings and <curses.h>
data structures and variables */

move (LINES/2 - 1, COLS/2 - 4);
addstr ("Bulls") ;
refresh(); /* send output to (update) terminal screen */
addstr ("Eye") ;
refresh();
endwin();

/* send more output to terminal screen */
/* restore all terminal settings */

A curses program usually starts by calling initscr (); the program should
call ini t s cr () only once. Using the environment variable TERM as the sec­
tionHow curses andterminfo Work Together describes, this routine deter­
mines what tenninal is being used. It then initializes all the declared data struc­
tures and other variables from <curses. h>. For example, initscr () would
initialize LINES and eOLS for the sample program on whatever tenninal it was
run. If a virtual tenninal emulator were to be used, this routine would initialize
LINES to 24 and eOLS to 80. Finally, this routine writes error messages to
stderr and exits if errors occur.

During the execution of the program, output and input is handled by routines like
move () and addstr () in the sample program. For example,

move (LINES/2 - 1, COLS/2 - 4);

says to move the cursor to the left of the middle of the screen. Then the line

addstr("Bulls");

says to write the character string Bulls. With a virtual tenninal, these routines
would position the cursor and write the character string at (11,36).

Revision A of 27 March 1990

All curses routines that move the cur­
sor move it from its home position in
the upper left comer of a screen. The
(LINES, eOLS) coordinate at this

position is (0,0) not (1,1). Notice that
the vertical coordinate is given first and
the horizontal second, which is the
opposite of the more common 'x,y'
order of screen (or graph) coordinates.

Compiling a curses
Program

More about initscr () and
Lines and Columns

More about refresh () and
Windows

Chapter 12 - System V curses and terminfo: 295

The -1 in the sample program takes the (0,0) position into account to place the
cursor on the center line of the tenninal screen.

Routines like move () and addstr () do not actually change a physical tenni­
nal screen when they are called. The screen is updated only when refresh ()
is called. Before this, an internal representation of the screen called a window is
updated. This is a very important concept, which we discuss below under More
about refresh () and Windows.

Finally, a curses program ends by calling endwin (). This routine restores
all tenninal settings and positions the cursor at the lower left comer of the screen.

You compile programs that include curses routines as C language programs
using the /usr / Sbin/ cc command, which invokes the C compiler.

The routines are stored in the library /usr / Slib/ libcurses . a. To direct
the link editor to search this library, you must use the -1 option with the cc
command.

The general command line for compiling a cur se s program follows:

/usr/5bin/cc file.c -lcurses -0 file

file. c is the name of the source program; andfile is the resulting executable pro­
gram.

After detennining a tenninal's screen dimensions, ini t scr () sets the vari­
ables LINES and COLS. These variables are set from the terminfo variables
1 ine s and co 1 umn s. These, in tum, are set from the values in the te rmin f 0

database, unless overridden by the window size obtained by the T IOCGWINS Z
ioct1(2) request. If that size is zero, the values of the environment variables
LINES and COLUMNS are used.

As mentioned above, cur se s routines do not update a tenninal until
ref res h () is called. Instead, they write to an internal representation of the
screen called a window. When refresh () is called, the accumulated output is
sent from the window to the current tenninal screen.

A window acts a lot like the buffer used by vi(l). When you invoke vi to edit a
file, the changes you make to the contents of the file are reflected in the buffer.
The changes become part of the penn anent file only when you use the w or Z z
command. Similarly, when you invoke a screen program made up of curses
routines, they change the contents of a window. The changes become part of the
current tenninal screen only when refresh () is called.

<curses. h> supplies a default window named stdscr (standard screen),
which is the size of the current tenninal's screen, for all programs using curses
routines. The header file defines stdscr to be of the type WINDOW*, a pointer
to a C structure which you can think of as a two-dimensional array of characters
representing a tenninal screen. The program always keeps track of what is on the
physical screen, as well as what is in stdscr. When refresh () is called, it
compares the two screen images and sends a stream of characters to the tenninal
that make the current screen look like s t ds cr. A cur s e s program considers

Revision A of 27 March 1990

296 Progranuning Utilities and Libraries

many different ways to do this, taking into account the various capabilities of the
tenninal, and similarities between what is on the screen and what is on the win­
dow. It optimizes output by printing as few characters as is possible. The fol­
lowing figure illustrates what happens when you execute the "BullsEye" curses
program.

You can create other windows and use them instead of stdscr. Windows are
useful for maintaining several different screen images. For example, many data
entry and retrieval applications use two windows: one to control input and output
and one to print error messages that don't mess up the other window.

It is possible to subdivide a screen into many windows, refreshing each one of
them as desired. When windows overlap, the contents of the current screen show
the most recently refreshed window. It is also possible to create a window within
a window; the smaller window is called a subwindow. Assume that you are
designing an application that uses forms, for example, an expense voucher, as a
user interface. You could use subwindows to control access to certain fields on
the fonn.

SQme cur ses routines are designed to work with a special type of window
called a pad. A pad is a window whose size is not restricted by the size of a
screen or associated with a particular part of a screen. You can use a pad when
you have a particularly large window or only need part of the window on the
screen at anyone time. For example, you might use a pad for an application with
a spread sheet.

The illustration below represents what a pad, a subwindow, and some other win­
dows might look like in comparison to a tenninal screen.

Figure 12-4 Multiple Windows and Pads Mapped to a Terminal Screen

teonina! screen

window window

r-- pad

pad

I~I --;r-

~windOW

I window I

Revision A of 27 March 1990

Si~ple Output and Input
OUIput

addch () - Write a single
character to stdscr

Chapter 12 - System V curses and terminfo: 297

The section Building Windows and Pads, later in this chapter, describes the rou­
tines you use to create and use them.

The routines that curses provides for writing to stdscr are similar to those
provided by the stdio(3V) library for writing to a file. They let you:

o write a character at a time - addc h ()

o write a string - addstr ()

o format a string from a variety of input arguments - printw ()

o move a cursor or move a cursor and print character(s) - move () ,
mvaddch(),mvaddstr(),rnvprintw()

o clear a screen or a part of it - clear () , erase () , clrtoeol () , -
clrtobot ()

Following are descriptions and examples of these routines.

The curses library provides its own set of output and input functions. You
should not use other I/O routines or system calls, like read(2) and wri te(2), in
a curses program. They may cause undesirable results when you run the pro­
gram.

#include <curses.h>
int addch(ch)
chtype ch;

addch () is a macro that writes a single character to stdscr. The character is
of the type chtype, which is defined in <curses. h>. chtype contains both
data and attributes (see Output Attributes in this chapter for information about
attributes); when working with variables of this type, make sure you declare them
as chtype, and not as the underlying data type (for example, short) of
chtype. This will ensure future compatibility.

addch () does some character translations. For example, it maps the
(NEWLINE I character to a c1ear-to-end-of-line, and moves the cursor to the next
line. It maps the I TAB I character to an appropriate number of blanks. It maps
other control characters to the appropriate ' ... X' notation.

addch () normally returns OK. The only time addch () returns ERR is after
adding a character to the lower right-hand comer of a window that does not
scroll.

Revision A of 27 March 1990

298 Programming Utilities and Libraries

addstr () - write a string of
characters to stdscr

printw () - fonnatted
printing on stdscr

Example:

#include <curses.h>

main ()
{

produces:

initscr();
addch('a');
refresh () ;
endwin();

Also see the show program under curses Example Programs later in this
chapter.

#include <curses.h>

int addstr (str)
char *str;

addstr () is a macro that follows the same translation rules as addch () ; it
calls addch () to write each character. addstr () returns OK on success and
ERR on error.

For an example, refer to the "BullsEye" program, above.

#include <curses.h>

int printw(fmt [,arg ...])
char *fmt

Like printf, printw () takes a format string and a variable number of argu­
ments. Like addstr (), printw () calls addch () to write the string.
printw () returns OK on success and ERR on error.

Revision A of 27 March 1990

*include <curses.h>

main ()
{

Chapter 12 - System V curses and terminfo: 299

Example:

char* title
int no = 0;

"Not specified";

initscr();
printw("%s is not in stock.\n", title);
printw("Please ask the cashier to order %d for you.\n", no);
refresh();
endwin();

move () - position the cursor
for stdscr

produces:

c:::::::: B::::::::':::::::::::::::::::::::::::::':'

;;~:~
\:>

iIi

>
::: ~~ il ~> :::::

.:;) ::, ::;}~:{<>
:: .. i·.· •••••• i · ••••• · •••••••••••••.. i •••••••••••••••

::!:':! ::::::::::
>:: ::::: nn).

};:::: '}
:::: '}{

.i ·~i ii ;$.;:;:/:::,

ill
::,:

I::::::::::::::

iinclude <curses.h>

int move (y, x);

int y, Xi

<//
:::::

t::
::}

move () positions the cursor for stdscr at the given row y and the given
column x.

Notice that move () takes the y coordinate before the x coordinate. The upper
left-hand coordinates for stdscr are (0,0), the lower right-hand (LINES - 1,
eOLS -1). See the section initscr (), refresh (), and endwin () for
more infonnation.

move () returns OK on success and ERR on error. Trying to move to a screen
position of less than (0,0) or more than (LINES - 1, eOLS - 1) causes an error.

Revision A of 27 March 1990

300 Programming Utilities and Libraries

#include <curses.h>

main ()
{

initscr () ;

Example:

addstr(nCursor should be here --> if move() works.");
printw(n\n\n\nPress <CR> to end test.");
move(O,25);
refresh();
getch(); /* Gets <CR>; discussed below. */
endwin () ;

rnvaddch - move and print a
character

rnvaddstr - move and print a
string

produces:

After you press I RETURN I, the screen looks like:

See the scatter program under curses Program Examples in this chapter
for another example.

#include <curses.h>

int mvaddch(y, x, ch

rnvaddch () is a macro that moves the cursor to a given position and prints a
character.

#include <curses.h>

int mvaddstr(y, x, str)

rnvaddstr () is a macro that moves the cursor to a given position and prints a
string of characters.

Revision A of 27 March 1990

mvpr in t w - move and print a
fonnatted string

clear () and erase () -
clear the screen

clrtoeol () and
clrtobot () - partial screen
clears

#include <curses.h>

main ()
{

initscr();

Chapter 12 - System V curses and terrninfo: 301

#include <curses.h>

int mvprintw (y, x, fmt [, arg] ...)

mvpr intw () is a macro that moves the cursor to a given position and prints a
fonnatted string. of using move () .

#include <curses.h>

int clear ()
int erase ()

clear () and erase () are macros that convert stdscr to all blanks.
clear () assumes that the screen may have garbage that it doesn't know about;
it first calls erase () and then clearok () , which clears the physical screen
completely on the next call to refresh (). initscr () automatically calls
clear ().

clear () always returns OK; erase () returns no useful value.

#include <curses.h>

int clrtoeol ()
int clrtobot ()

clrtoeol () and clrtobot () are macros that clear a portion of the screen.
clrtoeol () changes the remainder of a line to all blanks. clrtobot ()
changes the remainder of a screen to all blanks. Both start with the current cur­
sor position inclusive.

Neither returns any useful value.

Example:

addstr(nPress <CR> to delete from here to the end of the line and on.n);
addstr(n\nDelete this too.\nAnd this.");
move(O,30);
refresh() ;
getch();
clrtobot();
refresh() ;
endwin();

Revision A of 27 March 1990

302 Programming Utilities and Libraries

Input

getch () - read a single
character from the current
tenninal

produces:

Notice the two calls to refresh () : one to send the full screen of text to a ter­
minal, the other to clear from the position indicated to the bottom of a screen.

Here's what the screen looks like when you press I RETURN I:

See the show and two programs under curses Example Programs for exam­
pIes of clrtoeol () .

curses routines for reading from the current tenninal are similar to those pro­
vided by the stdio(3V) library for reading from a file. They let you

o read a character at a time - getch ()

o read a (NEWLINE I-tenninated string - getstr ()

o parse input, converting and assigning selected data to an argument list -
scanw ()

The primary routine is get ch () , which processes a single input character and
then returns that character. This routine is like the C library routine
getchar () (3V) except that it makes several tenninal- or system-dependent
options available that are not possible with getchar (). For example, you can
use getch () with the curses routine keypad (), which allows a curses
program to intetpret extra keys on a user's tenninal, such as arrow keys, function
keys, and other special keys that transmit escape sequences, and treat them as just
another key.

#include <curses.h>

int getch ()

getch () is a macro that returns the value of the character or ERR on 'end of
file' , receipt of signals, or non-blocking read with no input.

See the discussions about echo () , noecho () , cbreak () , nocbreak () ,
raw () , no raw () , halfdelay () , nodelay () , and keypad () below.

Revision A of 27 March 1990

#include <curses.h>

main ()
{

int Chi

initscr () ;
cbreak();

Chapter 12-System V curses and terminfo: 303

Example:

/* Explained later in the section "Input Options" */
addstr("Press any character: ");
refresh() ;
ch = getch () ;
printw("\n\n\nThe character entered was a '%c' .\n", ch);
refresh() ;
endwin () ;

getstr () - read character
string into a buffer

The first refresh () sends the addstr () character string from stdscr to
the tenninal:

Then assume that a w is typed at the keyboard. getch () accepts the character
and assigns it to ch. Finally, the second refresh () is called:

For another example of getch (), see the show program under curses Exam­
ple Programs.

#include <curses.h>

int getstr(str)
char *str;

getstr () is a macro that calls getch () to read a string of characters into a
buffer, until a (RETURN), (NEWLINE), or (ENTER I key is received from
stdscr. getstr () does not check for buffer overflow.

getstr () returns ERR if getch () returns ERR; otherwise it returns OK.

See the discussions about echo () , noecho () , cbreak () , nocbreak () ,
raw () , noraw () , halfdelay () , nodelay () , and keypad () below.

Revision A of 27 March 1990

304 Programming Utilities and Libraries

*include <curses.h>

main ()
{

char str[256];

initscr();

Example:

cbreak () ; /* Explained later in the section "Input Options" */
addstr("Enter a character string terminated by <CR>:\n\n");
refresh ()
getstr(str) ;
printw("\n\n\nThe string entered was \n'%s'\n", str);
refresh () ;
endwin();

scanw () - fonnatted input
conversion

If you enter the string 'I enjoy learning about the SunOS system', the final screen
(after entering I RETURN J) would appear as:

*include <curses.h>

int scanw(fmt [, arg ...])
char *fmt;

Like scanf(3V), scanw () uses a format string to convert input words and
assign them to a variable number of arguments. 5 c an w () returns the same
values as 5 canf () .

See scanf(3V) for more infonnation.

Revision A of 27 March 1990

#include <curses.h>

main ()
{

char string[lOO];
float number;

initscrO;

Chapter 12 - System V curses and terminfo: 305

Example:

cbreak(); /* Explained later in the */
echo(); /* section "Input Options" */
addstr("Enter a number and a string separated by a comma: ");
refresh();
scanw("%f,%s",&number,string);
clear();
printw("The string was \"%s\" and the number was %f.",string,number);
refresh();
endwin () ;

Controlling Output and Input
Output Attributes

Notice the two calls to refresh (). The first call updates the screen with the
character string passed to addstr () , the second with the string returned from
scanw (). Also notice the call to clear (). Assume you entered the follow­
ing when prompted: 2, twin. After running this program, your terminal screen
would appear, as follows:

When we talked about addch () , we said that it writes a single character of the
type chtype to stdscr. chtype has two parts: a part with infonnation about
the character itself, and another part with information about a set of attributes
associated with the character. These attributes allow a character to be printed in
reverse video, bold, underlined, and so on.

stdscr always has a set of current attributes that it associates with each charac­
ter as it is written. However, using the routine attrset () and the related
curses routines described below, you can change the current attributes. Below
is a list of the attributes and what they mean.

Revision A of 27 March 1990

306 Programming Utilities and Libraries

Not all terminals are capable of
displaying all attributes. If a particu­
lar terminal cannot display a
requested attribute, a curses pro­
gram attempts to find a substitute attri­
bute. If none is possible, the attribute is
ignored.

Bit Masks

A BLINK
A BOLD
A DIM
A REVERSE

blinking
extra bright or bold
half bright
reverse video

A STANDOUT
A UNDERLINE
A ALTCHARSET

a tenninal's best highlighting mode
underlining
alternate character set

(See the section Drawing Lines and Other Graphics, below, for more infonna­
tion about these attributes.)

To use these attributes, you must pass them as arguments to attrset () and
related routines; they can also be OR'ed with the bitwise OR (I) to addch () .

Let's consider a use of one of these attributes. To display a word in bold, use the
following code:

printw("A word in H);
attrset (A_BOLD) ;
printw("boldface");
attrset(O);
printw(" really stands Qut.\n");
refresh();

Attributes can be turned on singly, such as attrset (A_BOLD) in the example,
or in combination. To tum on blinking bold text, for example, you would use
attrset (A_BLINK I A_BOLD). Individual attributes can be turned on and
off with the curses routines attron () and attroff () without affecting
other attributes. at t r s et (0) turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to make text attract
the attention of a user. The particular hardware attribute used for standout is the
most visually pleasing attribute a tenninal has. Standout is typically imple­
mented as reverse video or bold. Many programs don't really need a specific
attribute, such as bold or reverse video, but instead just need to highlight some
text. For such applications, the A_STANDOUT attribute is recommended. Two
convenient functions, standout () and standend () can be used to turn on
and off this attribute. standend () , in fact, turns off all attributes.

In addition to the attributes listed above, there are two bit masks called
A CHARTEXT and A ATTRIBUTES. You can use these bit masks with the - -
curses function inch () and the C logical AND (&) operator to extract the
character or attributes of a position on a tenninal screen. See the discussion of
inch () for more infonnation.

Following are descriptions of attrset () and the other curses routines that
you can use to manipulate attributes.

Revision A of 27 March 1990

attron () ,attrset (), and
attroff () - set or modify
attributes

standout () and
standend () - highlight
with preferred attribute

Bells, Whistles, and Flashing
Lights

#include <curses.h>

int attron(attrs)
chtype attrsi

int attrset(attrs
chtype attrsi

int attroff(attrs
chtype attrsi

Chapter 12 - System V curses and terminfo: 307

at t ron () turns on the requested attribute at t r s in addition to any that are
currently on. Attrs is of the type chtype and is defined in <curses. h>.

at t r set () turns on the requested attributes at t r s instead of any that are
currently turned on.

attroff () turns off the requested attributes, attrs, if they are on.

Attributes may be combined using the bitwise OR (I).

All return OK.

Example:
See the highlight program under curses Example Programs, below.

#include <curses.h>

int standout ()
int standend ()

standout () turns on the preferred highlighting attribute, A STANDOUT, for
the current tenninal. This routine is equivalent to attron (A_STANDOUT).

standend () turns off all attributes. This routine is equivalent to
attrset (0) .

Both always return OK.

Example:
See the highlight program under curses Example Programs, below.

Occasionally, you may want to get a user's attention. Two curses
routines were designed to help you do this. They let you ring the tenninal' s bell

and flash its screen.

f las h () flashes the screen if possible, and otherwise rings the bell. Flashing
the screen is intended as a bell replacement, and is particularly useful if the bell
bothers someone within ear shot of the user. The routine beep () can be called
when an audible bell is desired. (If for some reason the tenninal is unable to
beep, but able to flash, a call to beep () will flash the screen.)

Revision A of 27 March 1990

308 Programming Utilities and Libraries

beep () and flash () - ring
bell or flash screen

Input Options

#include <curses.h>

int flash ()
int beep ()

flash () tries to flash the tenninal screen, if possible, otherwise it tries to ring
the tenninal bell.

beep () tries to ring the terminal bell, if possible, and, if not, tries to flash the
tenninal screen.

Neither returns any useful value.

The SunGS system does a considerable amount of processing on input before an
application ever sees a character; amongst other things, it:

a echoes (prints back) characters to a tenninal as they are typed

a interprets an erase character, typically I DELE1E I and a line kill character,
typically
I CTRL-U I (control-U)

a interprets a (CTRL-D I as end-of-file (BOp) character.

a interprets interrupt and quit characters

a strips the character's parity bit

a translates I RETURN I characters to I NEWLINE Is.
Because a curses program maintains total control over the screen, curses
turns off echoing; it does the echoing itself. For an interactive screen, you may
not want the system to process characters in the standard way. Some curses
routines, noecho () and cbreak () , for example, have been designed so that
you can alter the standard character processing. Using these routines in an appli­
cation controls how input is interpreted.

Every curses program accepting input should set some input options so that
when the program starts running, the tenninal on which it runs will be in
cbreak () , raw () , nocbreak () , or noraw () mode. Although the
curses program starts up in echo () mode, as shown below, none of the other
modes are guaranteed.

The combination of noecho () and cbreak () is most common in interactive
screen management programs. Suppose, for instance, that you don't want the
characters sent to your application program to be echoed wherever the cursor
currently happens to be; instead, you want them echoed at the bottom of the
screen. The curses routine noecho () is designed for this purpose. How­
ever, when noecho () turns off echoing, nonnal erase and kill processing is still
on. Using the routine cbreak () causes these characters to be uninterpreted.

Revision A of 27 March 1990

Chapter 12 - System V curses and terminfo: 309

Figure 12-5 Input Option Settingsjor curses Programs

Input Characters
Options Interpreted Uninterpreted

Nonnal interrupt, quit
'out of curses stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Nonnal echoing All else
curses 'start up (simulated) undefined.
state'

cbreak () interrupt, quit erase, kill
and echo () stripping EOF

echoing

cbreak () interrupt, quit echoing
and no echo () stripping erase, kill

EOF

nocbreak () break, quit echoing
and noecho () stripping

erase, kill
EOF

nocbreak () See cauti)n below.
and echo ()

nl () <CR> to <NL>

non 1 () <CR> to <NL>

raw () break, quit
(instead of stripping
cbreak (»

Do not use the combination nocbreak () and noecho (). If you use it in a
program and also use getch () , the program will go in and out of cbreak ()
mode to get each character. Depending on the state of the tennina! driver when
each character is typed, the program may produce undesirable output.

In addition to the routines noted above, you can use the curses routines
noraw (), halfdelay () , and nodelay () to control input. These routines
are described in cur ses(3V).

Revision A of 27 March 1990

310 Programming Utilities and Libraries

echo () and noecho () -
tum echoing on and off

cbreak () and nocbreak ()
- tum "break for each
character" on or off

Building Windows and Pads

Window Output and Input

*include <curses.h>

int echo()
int noecho ()

echo () turns on echoing of characters by curses as they are read in. This is
the initial setting.

noecho () turns off the echoing.

Neither returns any useful value.

curses programs may not run properly if you tum on echoing with noc­
break (). After you turn echoing off, you can still echo characters with
addch ().

Examples:
See the editor and show programs under curses Program Examples,
below.

*include < curses.h >
int cbreak ()
int nocbreak ()

cbreak () turns on 'break for each character' processing. A program gets each
character as soon as it is typed, but the erase, line kill, and (CTRL-D) characters
are not interpreted.

nocbreak () returns to normal 'line at a time' processing. This is typically the
initial setting.

Neither returns any useful value.

A curses program may not run properly if cbreak () is turned on and off
within the same program or if the combination nocbreak () and echo () is
used.

Example:
See the editor and show programs under curses Program Examples.

The section above entitled More about refresh () and Windows explained
what windows and pads are and why you might want to use them. This section
describes the cur se s routines you use to manipulate and create windows and
pads.

The routines that you use to send output to and get input from windows and pads
are similar to those you use with stdscr. The only difference is that you have
to give the name of the window to receive the action. Generally, these functions
have names fonned by putting the letter w at the beginning of the name of a
stdscr routine and adding the window name as the first parameter. For exam­
ple, addch (, c') would become waddch (my win , , c ') if you
wanted to write the character c to the window my win. Here's a
list of the window (or w) versions of the output routines discussed in Getting
Simple Output and Input.

Revision A of 27 March 1990

The Routines
wnoutrefresh () and
doupdate ()

Chapter 12 - System V curses and terminfo: 311

waddch(win, ch)
mvwaddch(win, y, x, ch)
waddstr(win, str)
mvwaddstr(win, y, x, str)
wprintw (win, fmt [, arg ...])
mvwprintw(win, y, x, fmt [, arg ...])
wmove(win, y, x)
wclear (win) and werase (win)
wclrtoeol (win) and wclrtobot (win)
wrefresh ()

You can see from their declarations that these routines differ from the versions
that manipulate stdscr only in their names and the addition of a win argument
Notice that the routines whose names begin with mvw take the win argument
before the y, x coordinates, which is contrary to what the names imply. See
curses(3V) for more infonnation about these routines, or the versions of the
input routines getch, getstr () ,and so on that you should use with win­
dows.

All w routines can be used with pads except for wrefresh () and
wnoutrefresh (). In place of these two routines, you have to use
prefresh () and pnoutrefresh () with pads.

If you recall from the earlier discussion about ref res h () , we said that it sends
the output from stdscr to the tenninal screen. We also said that it was a macro
that expands to wrefresh (stdscr) (see What Every curses Program
Needs and More about refresh () and Windows).

The wrefresh () routine is used to send the contents of a window (stdscr or
one that you create) to a screen; it calls the routines wnoutrefresh () and
doupdate (). Similarly, prefresh () sends the contents of a pad to a screen
by calling pnoutrefresh () and doupdate () .

Using wnoutrefresh () -or pnoutrefresh () (this discussion will be
limited to the fonner routine for simplicity)-and doupdate (), you can update
tenninal screens with more efficiency than using wrefresh () by itself.
wrefresh () works by first calling wnoutrefresh () ,which copies the
named window to a data structure referred to as the virtual screen. The virtual
screen contains what a program intends to display at a terminal. After calling
wnoutrefresh (), wrefresh () then calls doupdate (), which compares
the virtual screen to the physical screen and does the actual update. If you want
to output several windows at once, calling wrefresh () will result in alternat­
ing calls to wnoutrefresh () and doupdate () ,causing several bursts of
output to a screen. However, by calling wnoutrefresh () for each window
and then doupdate () only once, you can minimize the total number of charac­
ters transmitted and the processor time used. The sample program below uses
only one doupdate () .

Revision A of 27 March 1990

312 Programming Utilities and Libraries

New Windows

newwin () - open and return
a pointer to new window

iinelude <eurses.h>

main ()
{

WINDOW *wl, *w2;

initser () ;
wl = newwin(2,6,O,3);
w2 = newwin(1,4,5,4);
waddstr(wl, "Bulls");
wnoutrefresh(wl);
waddstr(w2, "Eye");
wnoutrefresh(w2);
doupdate();
endwin () ;

Notice from the sample that you declare a new window at the beginning of a
curses program. Thelines

wl newwin(2,6,O,3);
w2 newwin(1,4,5,4);

declare two windows named wI and w2 with the routine newwin () according
to certain specifications.

Following are descriptions of the routines newwin () and subwin () , which
you use to create new windows. For infonnation about creating new pads with
newpad () and subpad (), see curses(3V).

*inelude <curses.h>

WINDOW *newwin(nlines, neols, begin-y, begin_x)
int nlines, neols, begin-y, begin_x;

newwin () returns a pointer to a new window with a new data area. The vari­
ables nlines and ncols give the size of the new window. begin_yand
begin _x give the screen coordinates from (0,0) of the upper left comer of the
window as it is refreshed to the current screen.

Example:
See the window program under curses Program Examples.

Revision A of 27 March 1990

subwin ()

#include <curses.h>

main ()
{

WINDOW *sub;

initser () ;

Chapter 12-System. V curses and terminfo: 313

#include <eurses.h>

WINDOW *subwin(orig, nlines, neols, begin-y, begin_x)
WINDOW *orig;
int nlines, neols, begin-y, begin_x;

subw in () returns a new window that points to a section of another window,
orig. nlines and ncols give the size of the new subwindow. begin_y
and begin _x give the screen coordinates of the upper left comer of the window
as it is refreshed to the current screen.

Subwindows and original windows can accidentally overwrite one another.

Subwindows of subwindows are not allowed.

Example:

box(stdscr,'w','w'); /* See the curses(3V) manual page for box() */
mvwaddstr(stdscr,7,10, ,,------- this is 10,10");
mvwaddch(stdscr,8,10,' I');
mvwaddch(stdser,9,lO,'v');
sub = subwin(stdscr,10,20,10,10);
box(sub,'s','s');
wnoutrefresh(stdscr);
wrefresh (sub) ;
endwin () ;

Using Advanced curses
Features

This program prints a border of wS around the stdscr (the sides of your tenni­
nal screen) and a border of s characters around the subwindow sub when it is
run.

Knowing how to use the basic curses routines to get output and input and to
work with windows, you can design screen management programs that meet the
needs of many users. The cur s e s library, however, has routines that let you do
more in a program than handle I/O and multiple windows. The following few
pages briefly describe some of these routines and what they can help you do--­
namely, draw simple graphics, use a tenninal's soft labels, and work with more
than one terminal in a single eur s e s program.

You should be comfortable using the routines previously discussed in this
chapter and the other routines for I/O and window manipulation discussed on the
curses(3V) manual page before you try to use the advanced eurses features.

Revision A of 27 March 1990

314 Programming Utilities and Libraries

Routines for Drawing Lines and
Other Graphics

Many tenninals have an alternate character set for drawing simple graphics (or
glyphs, or graphic symbols). You can use this character set in curses pro­
grams. curses use the same names for glyphs as the VT100 line drawing char­
acter set.

To use the alternate character set in a curses program, pass a set of variables
whose names begin with ACS_ to the curses routine waddch () or a related
routine. For example, ACS _ ULCORNER is the variable for the upper left corner
glyph. If a tenninal has a line drawing character for this glyph,
ACS_ULCORNER's value is the terminal's character for that glyph, ORed (I)
with the bit-mask A _ ALTCHARSET. If no line-drawing character is available for
that glyph, a standard ASCII character that approximates the glyph is stored in its
place. For example, the default character for ACS_HLINE, a horizontal line, is a
- (minus sign). When a close approximation is not available, a + (Plus sign) is
used. All the standard ACS_ names and their defaults are listed in curses(3V).

Part of an example program that uses line drawing characters follows. The
example uses the curses routine box () to draw a box around a menu on a
screen. box () uses the line drawing characters by default or when I (the pipe)
and - are chosen. (See cur se s(3V).) Up and down more indicators are drawn
on the box border (using ACS _ UARROW and ACS _DARROW) if the menu con­
tained within the box continues above or below the screen:

box (menuwin, ACS_VLINE, ACS_HLINE)i

/* output the up/down arrows */
wmove(menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS_HLINE)i

/*output down arrow or horizontal line */
if (morebelow)

waddch(menuwin, ACS_DARROW)i
else

waddch(menuwin, ACS_HLINE)i

Here's another example. Because a default down arrow (like the lowercase letter
v) isn't very discernible on a screen with many lowercase characters on it, you
can change it to an uppercase v.

if (! (ACS_DARROW & A_ALTCHARSET»
ACS DARROW = 'V';

Revision A of 27 March 1990

Routines for Using Soft Labels

Chapter 12 - System V curses and terminfo: 315

Another feature available on most tenninals is a set of soft labels across the bot­
tom of their screens. A tenninal's soft labels are usually matched with a set of
hard function keys on the keyboard. There are usually eight of these labels, each
of which is usually eight characters wide and one or two lines high.

The curses library has routines that provide a unifonn model of eight soft
labels on the screen. If a terminal does not have soft labels, the bottom line of its
screen is converted into a soft label area. It is not necessary for the keyboard to
have hard function keys to match the soft labels for a curses program to make
use of them.

Let's briefly discuss most of the curses routines needed to use soft labels:
slk_init () , slk_set () , slk_refresh () and slk_noutrefresh (),
slk_clear, and slk_restore.

When you use soft labels in a curses program, you have to call the routine
slk_int () before initscr (). This sets an internal flag for initscr () to
look at that says to use the soft labels. If initscr () discovers that there are
fewer than eight soft labels on the screen, that they are smaller than eight charac­
ters in size, or that there is no way to program them, then it will remove a line
from the bottom of stdscr to use for the soft labels. The size of stdscr and
the LINES variable will be reduced by 1 to reflect this change. A properly writ­
ten program, one that is written to use the LINES and eOLS variables, will con­
tinue to run as if the line had never existed on the screen.

s 1 k _ in it () takes a single argument. It detennines how the labels are
grouped on the screen should a line get removed from stdscr. The choices are
between a 3-2-3 arrangement, and a 4-4 arrangement. The curses routines
adjust the width and placement of the labels to maintain the pattern. The widest
label generated is eight characters.

The routine slk set () takes three arguments, the label number (1-8), the
string to go on the label (up to eight characters), and the justification within the
label (0 = left-justified, 1 = centered, and 2 = right-justified).

The routine slk_noutrefresh () is comparable to wnoutrefresh () in
that it copies the label infonnation onto the internal screen image, but it does not
cause the screen to be updated. Since a wrefre sh () commonly follows,
slk_noutrefresh () is the function that is most commonly used to output
the labels.

Just as wrefresh () is equivalent to a wnoutrefresh () followed by a
doupdate () ,so too the function slk_refresh () is equivalent to a
slk_noutrefresh () followed by a doupdate () .

To prevent the soft labels from getting in the way of a shell escape,
slk _ clear () may be called before doing the endwin (). This clears the soft
labels off the screen and does a doupdate (). The function
s 1 k _ re s tor e () may be used to restore them to the screen. See the
curses(3V) manual page for more information about the routines for using soft
labels.

Revision A of 27 March 1990

316 Programming Utilities and Libraries

Working with More than One
Terminal

A cur se s program can produce output on more than one terminal at the same
time. This is useful for single process programs that access a common database,
such as multi-player games.

Writing programs that output to multiple terminals is a difficult business, and the
curses library does not solve all the problems you might encounter. For
instance, the programs-not the library routines-must determine the filename
and terminal-type of each terminal. The standard method, checking TERM in the
environment, does not work, because each process can only examine its own
environment.

Another problem you might face is that of multiple programs reading from one
tty line. This situation produces a race condition and should be avoided. How­
ever, a program trying to take over another terminal cannot just shut off whatever
program is currently running on its line. (Usually, security reasons would also
make this inappropriate. But, for some applications, such as an inter-terminal
communication program, or a program that takes over unused terminal lines, it
would be appropriate.) A typical solution to this problem requires each user
logged in on a line to run a program that notifies a master program that the user is
interested in joining the master program and tells it the notification program's
process ID, the name of the tty line, and the type of terminal being used. Then
the program goes to sleep until the master program finishes. When done, the
master program wakes up the notification program and all programs exit.

A curses program handles multiple terminals by always having a current ter­
minal. All function calls always affect the current terminal. The master program
should set up each terminal, saving a reference to the terminals in its own vari­
ables. When it wishes to affect a terminal, it should set the current terminal as
desired, and then call ordinary cur ses routines.

References to terminals in a curses program have the type SCREEN*. A new
terminal is initialized by calling newterm (type, outfd, in/d). newterm ()
returns a screen reference to the terminal being set up. type is a character string,
naming the kind of terminal being used. out/d is a stdio(3V) file pointer
(F ILE*) used for output to the terminal and in/d a file pointer for input from the
terminal. This call replaces the nonnal call to initscr () ,which calls
newterm(getenv("TERM"), stdout, stdin).

To change the current terminal, call set _ term (sp) where sp is the screen refer­
ence to be made current. set_term () returns a reference to the previous ter­
minal.

It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newterm ().
Options such as cbreak () and noecho () must be set separately for each ter­
minal. The functions endwin () and refresh () must be called separately
for each terminal. The figure below shows a typical scenario to output a message
to several terminals.

Revision A of 27 March 1990

Figure 12-6

12.3. Working with
terminfo Routines

terminfo routines should not be used
directly, except in the circwnstances
noted at right; the equivalent curses
routines protect your program from the
idiosyncracies of physical terminals.
When you use the terminfo routines,
you must deal with them yourself.
Also, these low-level routines may
change, rendering programs that rely on
them obsolete.

What Every terminfo
Program Needs

Figure 12-7

Chapter 12- System V curses and terminfo: 317

Sending a Message to Several Terminals

for (i=O; i<nter.m; i++)
{

set_ter.m(terms[i]);
mvaddstr(O, 0, "Important message");
refresh () ;

See the two program under curses Program Examples for a more complete
example.

Some programs need to use lower-level routines than those offered by the
curses routines. For such programs, the terminfo routines are offered.
They do not manage your tenninal screen, but rather, give you access to strings
and capabilities which you can use yourself to manipulate the tenninal.

There are three circumstances when it is proper to use terminfo routines
directly. The first is when you need only some screen management capabilities,
for example, making text standout on a screen. The second is when writing a
filter. A typical filter does one transformation on an input stream without clear­
ing the screen or addressing the cursor. If this transformation is tenninal depen­
dent and clearing the screen is inappropriate, use of the t e rmi n f 0 routines is
worthwhile. The third is when you are writing a special-purpose tool that sends a
special string to the terminal, such as programming a function key, setting tab
stops, sending output to a printer port, or dealing with the status line.

Otherwise, you are discouraged from using these routines: the higher level
cur s e s routines make your program more portable to other SunOS systems,
and to a wider class of terminals.

A terminfo program typically includes the header files and routines shown
below:

Typical Framework of a terminfo Program

*include <curses.h>
*include <term.h>

setupterm((char*) 0, 1, (int*) 0);

putp(clear_screen) ;

reset_shell_mode() ;
exit (0) ;

Revision A of 27 March 1990

318 Programming Utilities and Libraries

Compiling and Running a
terminfo Program

An Example terminfo
Program

/*

The header files <curses. h> and <term. h> are required because they con­
tain the definitions of the strings, numbers, and flags used by the terminfo
routines. setupterm () takes care of initialization. Passing this routine the
values (char*) 0, 1, and (int*) 0 invokes reasonable defaults. If set up­
term () can't figure out what kind oftenninal you are on, it prints an error mes­
sage and exits. reset_sheIl_mode () perfonns functions similar to
endwin () and should be called before a terminfo program exits.

A global variable like clear_screen is defined by the call to setup-
term (). It can be output using the terminfo routines putp () or tputs () ,
which gives a user more control. This string should not be directly output to the
tenninal using the C library routine printf(3V), because it contains padding
infonnation. A program that directly outputs strings will fail on tenninals that
require padding or that use the xo n / xo f f flow control protocol.

At the terminfo level, the higher level routines like addch () and getch ()
are not available. It is up to you to output whatever is needed. For a list of capa­
bilities and a description of what they do, see terminfo(5V); see curses(3V)
for a list of all the terminfo routines.

The general command line for compiling, and the guidelines for running a pro­
gram with terminfo routines are the same as those for compiling any other
curses program.

The example program, termhl, shows a simple use ofterminfo routines. It
is a version of the highlight program (see curses Program Examples) that
does not use the higher level curses routines. termhl can be used as a filter.
It includes the strings to enter bold and underline mode and to tum off all attri­
butes.

* A terminfo level version of the highlight program.

*/

#include <curses.h>
#include <terrn.h>

int ulmode = 0;

main (argc, argv)
int argc;
char **argv;

FILE *fd;
int c, c2;
int out ch () ;

if (argc > 2)
{

/* Currently underlining */

fprintf(stderr, "Usage: terrnhl [file]\n");
exit(l);

Revision A of 27 March 1990

Chapter 12 - System V curses and terminfo: 319

/*

if (argc == 2)
{

fd = fopen(argv[l], "r");
if (fd == NULL)

else

perror(argv[l]);
exit(2);

fd = stdin;

setupterm((char*) 0, 1, (int*) 0);

for (;;)
{

c = getc(fd);
if (c == EOF)
break;
if (c '\')

c2 = getc(fd);
switch (c2)
{

case 'B':
tputs(enter_bold_mode, 1, outch);
continue;
case 'U':
tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;
case 'N':
tputs(exit_attribute mode, 1, outch);
ulmode = 0;
continue;

putch (c) ;
putch(c2);

else
putch(c);

fclose(fd);
fflush(stdout);
resetterm () ;
exit(O);

* This function is like putchar, but it checks for underlining.
*/

putch(c)
int c;

outch(c);
if (ulmode && underline_char)

sun
microsystems

Revision A of 27 March 1990

320 Programming Utilities and Libraries

outch (' \b');
tputs(underline_char, 1, outch);

/*
* Outchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*/

outch (c)
int c;

putchar(c);

Let's discuss the use of the function tputs (cap, af/cnt, outc) in this program
to gain some insight into the terminfo routines. tputs () applies padding
infonnation. Some terminals have the capability to delay output. Their terminal
descriptions in the terminfo database probably contain strings like $<20>,
which means to pad for 20 milliseconds (see the following section Specifying
Capabilities). tputs generates enough pad characters to delay for the appropri­
ate time.

tput () has three parameters. The first parameter is the string capability to be
output.

The second is the number of lines affected by the capability. Some capabilities
may require padding that depends on the number of lines affected. For example,
insert _line may have to copy all lines below the current line, and may
require time proportional to the number of lines copied. By convention affcnt is
1 if no lines are affected. The value 1 is used, rather than 0, for safety, since
affcnt is multiplied by the amount of time per item, and anything multiplied by 0
is O.

The third parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always calls putchar.
For these programs, the routine put p (cap) is a convenient abbreviation.
termhl could be simplified by using putp ().

Now to understand why you should use the curses level routines instead of
terminfo level routines whenever possible, note the special check for the
underline_char capability in this sample program. Some terminals, rather
than having a code to start underlining and a code to stop underlining, have a
code to underline the current character. termhl keeps track of the current
mode, and if the current character is supposed to be underlined, outputs
under 1 ine _char, if necessary. Low level details such as this are precisely
why the curses level is recommended over the tenninfo level. curses takes
care of tenninals with different methods of underlining and other terminal func­
tions. Programs at the terminfo level must handle such details themselves.

terrnhl was written to illustrate a typical use of the terminfo routines. It is
more complex than it need be in order to illustrate some properties of t er­
minfo programs. The routine vidattr (see curses(3V)) could have been

Revision A of 27 March 1990

12.4. Working with the
terminfo Database

Writing Terminal
Descriptions

Naming the Tenninal

Chapter 12 - System V curses and terminfo: 321

used instead of directly outputting enter_bold_mode,
enter_underline_mode, and exit_attribute_mode. In fact, the pro­
gram would be more robust if it did, since there are several ways to change video
attribute modes.

The terminfo database describes the many tenninals with which curses pro­
grams, as well as some SunOS system tools, like viet), can be used. Each ter­
minal description is a compiled file containing the names that the tenninal is
known by and a group of comma-separated fields describing the actions and
capabilities of the tenninal. This section describes the terminfo database,
related support tools, and their relationship to the cur ses library.

Descriptions of many popular tenninals are already provided in the terminfo
database. However, it is possible that you'll want to run a cur ses program on a
tenninal for which there is no existing deSCription. In this case, you'll have to
build the description.

The general procedure for building a tenninal description is as follows:

1. Give the known names of the tenninal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

5. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small parts
of the description and test them as you go along. These tests can expose
deficiencies in the ability to describe the tenninal. Also, modifying an existing
description of a similar terminal can make the building task easier.

The name of a terminal is the first information given in a terminfo terminal
description. This string of names, assuming there is more than one name, is
separated by vertical bars (I). The first name given should be the most common
abbreviation for the tenninal. The last name given is typically a verbose entry
that fully identifies the terminal by make and model. The long name or "ver­
bose" is typically the manufacturer's fonnal name for the tenninal. Names
between the first and last entries are known synonyms for the terminal name. All
but the verbose name should be typed in lowercase letters and contain no blanks.
Naturally, the fonnal name is entered as closely as possible to the manufacturer's
name.

Here is the name string from the description for a virtual tenninal.

virtualIVIRTUALlcbunixlcb-unixlcb-unix virtual terminal,

Notice that the first name is the most commonly used abbreviation and the last is
the long name. Also notice the comma at the end of the name string.

Revision A of 27 March 1990

322 Programming Utilities and Libraries

Learning About the Capabilities

Specifying Capabilities

For a curses program to run on any
given terminal, its description in the
terminf 0 database must include, at
least, the capabilities to move a cursor
in all four directions and to clear the
screen.

Here's the name string for a fictitious tenninal, myterm:

mytermlmytmlminelfancylterminallMy FANCY Terminal,

Terminal names should follow common naming conventions. These conventions
start with a root name, like virtual or my term, for example. Possible
hardware modes or user preferences should be shown by adding a hyphen and a
'mode indicator' at the end of the name. For example, the 'wide mode' (which is
shown by a -w) version of our fictitious tenninal would be described as
myterm-w. terminfo(5V) describes mode indicators in greater detail.

After you complete the string of tenninal names for your description, you have to
learn about the terminal's capabilities so that you can properly describe them. To
learn about the capabilities your tenninal has, you should do the following:

See the owner's manual for your terminal. It should have information about the
capabilities available and the character strings that make up the sequence
transmitted from the keyboard for each capability.

Test the keys on your terminal to see what they transmit, if this infonnation is
not available in the manual. You can test the keys in one of the following wayss,
type:

stty -echo; cat -vu

followed by the keys you want to test. To return to the shell and restore echo,
type:

stty echo

Note that stty echo is not displayed on the tenninal screen.

Once you know the capabilities of your tenninal' you have to provide them in
your terminal description. Capability entries consist of a list of comma-separated
fields containing the abbreviated terminfo name and, in some cases, the
tenninal's value for each capability. For example, bel is the abbreviated name
for the beeping or ringing capability. On most terminals, a (CTRL-G I is the
instruction that produces a beeping sound. Therefore, the beeping capability
would be shown in the tenninal description as bel="G,.

The list of capabilities may continue across input lines as long as the continua­
tion lines start with a White-space character, or consist of a comment. Comments
can be included within the description by putting a # at the beginning of the line.

The terminfo(5V) manual page has a complete list of the capabilities you can
use in a terminal description.

A terminal's character sequence (value) for a capability can be a keyed operation
(like (CI RL-G I), a numeric value, or a parameter string containing the sequence
of operations required to achieve the particular capability. In a tenninal descrip­
tion, certain characters are used after the capability name to show what type of
character sequence is required. Explanations of these characters are given below.

Revision A of 27 March 1990

Chapter 12 - System V curses and terrninfo: 323

This shows that a numeric value is to follow. This character follows a capa­
bility that needs a number as a value. For example, the number of columns
is defined as col s# 8 0, .

This shows that the capability value is the character string that follows. This
string instructs the terminal how to act and may actually be a sequence of
commands. There are certain characters used in the instruction strings that
have special meanings. These special characters follow:

This shows a control character is to be used. For example, the beeping
sound is produced by a CTRL-G. This would be shown as "'G.

\ E \ e These characters followed by another character show an escape
instruction. An entry of \EC would transmit to the terminal as
(ESC-C.)

\ n These characters provide a (NEWLINE I character sequence.

\ 1 These characters provide a (LlNEFEED I character sequence.

\ r These characters provide a (RETURN] character sequence.

\ t These characters provide a ITA[) character sequence.

\b These characters provide a I BACKSPACE I character sequence.

\ f These characters provide a I FORMFEED] character sequence.

\ s These characters provide a (SPACE I character sequence.

\ nnn This is a character whose three-digit octal is nnn (nnn can be from
one to three digits).

$<n> These symbols are used to show a delay in milliseconds. The
desired length of delay is enclosed inside the brackets. The amount
of delay may be a whole number, a numeric value to one decimal
place (tenths), or either form followed by an asterisk (*). The *
shows that the delay is to be proportional to the number of lines
affected by the operation. For example, a 20-millisecond delay per
line would appear as $<20*>. See the terminfo(5V) manual
page for more information about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the terminal
ignores this particular field. This is done by placing a period (.) in front of the
abbreviated name for the capability. For example, if you would like to comment
out the beeping capability, the description entry would appear as

With this background information about specifying capabilities, let's add the
capability string to our description of myt erm. We'll consider basic capabili­
ties, screen-oriented capabilities, keyboard-entered capabilities, and parameter
string capabilities.

Revision A of 27 March 1990

324 Programming Utilities and Libraries

Basic Capabilities

Screen-Oriented Capabilities

Some capabilities common to most terminals are bells, columns, lines on the
screen, and overstriking of characters, if necessary. Suppose our fictitious tenni­
nal has these and a few other capabilities, as listed below. Note that the list gives
the abbreviated terminfo name for each capability in the parentheses follow­
ing the capability description:

D An automatic wrap around to the beginning of the next line whenever the
cursor reaches the right-hand margin (am).

o The ability to produce a beeping sound. The instruction required to produce
the beeping sound is A G (be 1).

o An 80-column wide screen (co 1 s).

o A 30-line long screen (lines).

o Use ofxon/xoffprotocol (xon).

By combining the name string with the capability descriptions that we now have,
we get the following general terminfo database entry:

mytermlmytmlminelfancylterminallMy FANCY terminal,
am, bel=AG, cols#80, lines#30, xon,

Screen-oriented capabilities manipulate the contents of a screen. Our example
tenninal my term has the following screen-oriented capabilities. Again, the
abbreviated command associated with the given capability is shown in
parentheses.

o A I RETURN) is a (CTRL-M) (cr).

o A cursor up one line motion is a I CTRL-K) (cuul).

o A cursor down one line motion is a (CTRL-J I (cudl).

o Moving the cursor to the left one space is a (CTRL-H) (cubl).

o Moving the cursor to the right one space is a I CTRL-L) (cufl).

o Entering reverse video mode is an (ESCAPE-D) (smso).

o Exiting reverse video mode is an (ESCAPE-Z) (rmso).

o A clear to the end of a line sequence is an (ESCAPE-K] and should have a
3-millisecond delay (el).

A terminal scrolls when receiving a (NEWLINE I at the bottom of a page (ind).

The revised terminal description for my term including these screen-oriented
capabilities follows:

my term I mytm Imine I fancy I terminal IMy FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, cuul=AK, cudl=AJ, cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Revision A of 27 March 1990

Keyboard -Entered Capabilities

Parameter String Capabilities

Chapter 12- System V curses and terminfo: 325

Keyboard-entered capabilities are sequences generated when a key is typed on a
tenninal keyboard. Most tenninals have, at least, a few special keys on their key­
board, such as arrow keys and the backspace key. Our example tenninal has
several of these keys whose sequences are, as follows:

o The backspace key generates a I CTRL-H) (kbs).

o The up arrow key generates an (ESCAPE-[A I (kcuul).

o The down arrow key generates an I ESCAPE-r B I (kcudl).

o The right arrow key generates an (ESCAPE-[C I (kcufl).

o The left arrow key generates an I ESCAPE-[D I (kcubl).

The home key generates an (ESCAPE-[H) (khome).

Adding this new information to our database entry for mytenn produces:

mytermlmytmlminelfancylterminallMy FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, cuul=AK, cudl=AJ, cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=AH, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,

Parameter string capabilities are capabilities that can take parameters, such as
those used to position a cursor on a screen, or to tum on a combination of video
modes. To address a cursor, the cup capability is used and is passed two param­
eters: the row and column to address. String capabilities, such as cup and set
attributes (sgr) capabilities, are passed arguments in a terminfo program by
the t p arm () routine.

The arguments to string capabilities are manipulated with special % sequences
similar to those found in a call to printf(3V). In addition, many of the
features found on a simple stack-based RPN calculator are available. cup, as
noted above, takes two arguments: the row and column. sgr, takes nine argu­
ments, one for each of the nine video attributes. See terminfo(5V) for the list
and order of the attributes and further examples of s gr .

Our fancy tenninal' s cursor position sequence requires a row and column to be
output as numbers separated by a semicolon, preceded by (ESCAPE-[I and fol­
lowed with H. The coordinate numbers are I-based rather than O-based. Thus, to
move to row 5, column 18, from (0,0), the sequence ;r "ESCAPE- [6 would be
output.

Integer arguments are pushed onto the stack with a %p sequence followed by the
argument number, such as %p2 to push the second argument. A shorthand
sequence to increment the first two arguments is '% i '. To output the top number
on the stack as a decimal, a %d sequence is used, exactly as in printf.

Revision A of 27 March 1990

326 Programming Utilities and Libraries

Compiling the Description

Ourtenninal's cup sequence is built up as follows:

cup= Meaning
\E[output ESCAPE- [
%i increment the two arguments

%pl push the 1st argument (the row) onto the stack
%d output the row as a decimal
, output a semi -colon

%p2 push the 2nd argument (the column) onto the stack
%d output the column as a decimal
H output the trailing letter

or

cup=\E[%i%pl%d;%p2%dH,

Adding this new information to our database entry for mytenn produces:

my term I mytm Imine I fancy I terminal IMy FANCY Terminal,
am, bel=AG, cols#80, lines#30, xon,
cr=AM, cuul=AK, cudl=AJ, cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=AH, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,
cup=\E[%i%pl%d;%p2%dH,

See terminfo(5V) for more information about parameter string capabilities.

The terminfo database entries are compiled using tic, the terminfo com­
piler command. This compiler translates terminfo source entries into the
compiled fonnat used by the terminfo and curses routines.

The source file for the source file is usually suffixed with . t i. For example, the
description of my term would be in a source file named my term. ti. The com­
piled description of mytenn would usually be placed in
/usr/share/lib/terminfo/m/myterm, since the first letter in the
description entry is m. Links would also be made to synonyms of my term, for
example, to / f/ fancy. !fthe environment variable TERMINFO were set to a
directory and exported before the entry was compiled, the compiled entry would
be placed in the TERMINFO directory. All programs using the entry would then
look in the new directory for the description file if TERMINFO were set, before
looking in the default /usr / share/ lib/terminfo. The general format for
the tic command is:

tic [-v] [-c] sourcefile

Revision A of 27 March 1990

Testing the Description

Comparing or Printing
t e rmi n f 0 Descriptions

Chapter 12 - System V curses and terminfo: 327

With the -v, verbose option, the compiler traces its actions and prints messages
regarding its progress. The -c option checks for errors. t ic(8V) compiles only
one file at a time. The following command line shows how to compile the ter­
minfo source file for my term.

tic -v myterm. ti

Refer to t ic(8V) for more information.

Let's consider ways to test a terminal description. First, you can test it by setting
the environment variable TERM INFO to the path name of the directory contain­
ing the description. If programs run the same on the new terminal as they did on
the older known terminals, then the new description is functional.

Or, you can use the tput(l V) command. This command outputs a string or an
integer according to the type of capability being described. If the capability is a
Boolean expression, then tput sets the exit code (0 for TRUE, 1 for FALSE) and
produces no output. The general format for the tput command is as follows:

tput [-Ttype] capname

The type of terminal you are requesting information about is identified with the
-Ttype option. Usually, this option is not necessary because the default terminal
name is taken from the environment variable TERM. The capname field is used
to show what capability to output from the terminfo database.

The following command line shows how to output the "clear screen" character
sequence for the terminal being used:

tput clear

The following command line shows how to output the number of columns for the
terminal being used:

tput cols

tput(8V) contains more information on the usage and possible messages associ­
ated with this command.

Sometime you may want to compare two terminal descriptions or quickly look at
a description without going to the terminfo source directory. The
infocmp(8V) command was designed to help you with both of these tasks.
Compare two deSCriptions of the same terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO=/tmp/old tic oldvirtual.ti
TERMINFO=/tmp/new tic newvirtual.ti
infocmp -A /tmp/old -B /tmp/new -d virtual virtual

compares the old and new v irt ual entries.

Revision A of 27 March 1990

328 Programming Utilities and Libraries

Converting a termcap
Description to a terminfo
Description

12.5. curses Program
Examples

The editor Program

To print out the terminfo source for the virtual, type:

infocmp -I virtual

The terminfo database is an alternative to the termcap database. Because
of the many programs and processes that have been written with and for the
termcap database, it is not feasible to do a complete conversion from
termcap to terminfo. Since converting between the two requires experience
with both, all entries into the databases should be handled with extreme caution.
These files are important to the operation of your tenninal.

The captoinfo(8V) command converts termcap(5) descriptions to
terminfo(5V) descriptions. When a file is passed to captoinfo, it looks for
termcap descriptions and writes the equivalent terminfo descriptions on the
standard output. For example,

captoinfo /etc/ter.mcap

converts the file /etc/termcap to terminfo source, preserving comments
and other extraneous infonnation within the file. The command line

captoinfo

looks up the current tenninal in the termcap database, as specified by the
TERM and TERMCAP environment variables and converts it to terminfo.

To convert a terminfo description into a termcap entry, use infocmp -c.

lf you have been using cursor optimization programs with the -1 termcap or
-1 term1ib option in the /usr / Sbin/ cc command line, those programs
should still be functional.

The following examples demonstrate uses of curses routines.

This program illustrates how to use curses routines to write a screen editor.
For simplicity, editor keeps the buffer in stds cr; obviously, a real screen
editor would have a separate data structure for the buffer. This program has
many other simplifications: no provision is made for files of any length other
than the size of the screen, for lines longer than the width of the screen, or for
control characters in the file.

Several points about this program are worth making. First, it uses the move () ,
mvaddstr () , flash (), wnoutrefresh () and clrtoeol () routines.
These routines are all discussed in this chapter under Working with curses
Routines.

Second, it also uses some cur se s routines that we have not discussed. For
example, the function to write out a file uses the mvinch () routine, which
returns a character in a window at a given position. The data structure used to
write out a file does not keep track of the number of characters in a line or the

Revision A of 27 March 1990

Since not all terminals have arrow
keys, your curses programs will
work with more terminals if there is an
AScrr character associated with each
special key.

Chapter 12 - System V curses and terminfo: 329

number of lines in the file, so trailing blanks are eliminated when the file is writ­
ten. The program also uses the insch () , delch () , insertln () , and
deleteln () routines. These functions insert and delete a character or line.
See curses(3V) for more information about these routines.

Third, the editor command intetpreter accepts special keys, as well as ASCII
characters. On one hand, new users find an editor that handles special keys easier
to learn about. For example, it's easier for new users to use the arrow keys to
move a cursor than it is to memorize that the letter h means left, j means down, k
means up, and I means right. On the other hand, experienced users usually like
having the ASCII characters to avoid moving their hands from the home row
position to use special keys.

Fourth, the (CTRL-L) command illustrates a feature most programs using
curses routines should have. Often some program beyond the control of the
routines writes something to the screen (for instance, a broadcast message) or
some line noise affects the screen so much that the routines cannot keep track of
it. A user invoking editor can type [CTRL-L), causing the screen to be cleared
and redrawn with a call to wrefresh (curser) .

Finally, another important point is that the input command is terminated by
[CTRL-D I, not the [ESCAPE I key. It is very tempting to use (ESCAPE I as a
command, since it is one of the few special keys available on all keyboards.
([RETURN I and [BREAK I are the only others.) However, using escape as a
separate key introduces an ambiguity. Most tenninals use sequences of charac­
ters beginning with escape (i.e., escape sequences) to control the terminal, and
have special keys that send escape sequences to the computer. If a computer
receives an escape from a tenninal, it cannot tell whether the user depressed the
[ESCAPE) key or whether a special key was pressed.

editor and other curses programs handle the ambiguity by setting a timer.
If another character is received during this time, and if that character might be
the beginning of a special key, the program reads more input until either a full
special key is read, the time out is reached, or a character is received that could
not have been generated by a special key. While this strategy works most of the
time, it is not foolproof. It is possible for the user to press I ESCAPE I, then to
type another key quickly, which causes the curses program to think a special
key has been pressed. Also, a pause occurs until the escape can be passed to the
user program, resulting in a slower response to the [ESCAPE I key.

Many existing programs use [ESCAPE I as a fundamental command, which can­
not be changed without infuriating a large class of users. These programs cannot
make use of special keys without dealing with this ambiguity, and at best must
resort to a time-out solution. The moral is clear: when designing your curses
programs, avoid the [ESCAPE I key.

Revision A of 27 March 1990

330 Programming Utilities and Libraries

edi tor - a Sample Program Listing

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.
*/

#include <stdio.h>
#include <curses.h>

#define CTRL (c) «c) & 037}

main (argc, argv}
int argc;
char **argv;

extern void perror(}, exit(};
int i, n, 1;
int c;
int line = 0;
FILE *fd;

if (argc != 2)
{

fprintf (stderr, "Usage: %s file\n", argv [0]) ;

exit (1) ;

fd fopen(argv[1], "r"};
if (fd == NULL)

perror(argv[1]};
exit(2};

initscr () ;
cbreak(};
nonl () ;
noecho () ;
idlok(stdscr, TRUE};
keypad (stdscr, TRUE};

/* Read in the file */
while «c = getc(fd)} != EOF}

if (c == ' \n')
line++;

if (line> LINES - 2)
break;

addch(c};

fclose(fd};

move(O,O};
refresh(};
edit () ;

sun
microsystems

Revision A of 27 March 1990

Chapter 12 - System V curses and terminfo: 331

/* Write out the file */
fd = fopen(argv[l], "w");
for (1 = 0; 1 < LINES - 1; 1++)

n = len(l);
for (i = 0; i < n; i++)

putc(mvinch(l, i) & A_CHARTEXT, fd);
putc (' \n', fd);

fclose(fd);

endwin () ;
exit (0) ;

len (lineno)
int lineno;

int linelen = COLS - 1;

while (linelen >= 0 && mvinch(lineno, linelen) ")
linelen--;

return linelen + 1;

/* Global value of current cursor position */
int row, col;

edit ()
{

int c;

for (;;)

move (row, col);
refresh();
c = getch () ;

/* Editor commands */
switch (c)
{

/* hjkl and arrow keys: move cursor
* in direction indicated */

case ' h' :
case KEY LEFT:

if (col > 0)
col--;

else
flash ();

break;

case ' j' :
case KEY DOWN:

if (row < LINES - 1)
row++;

else
flash () ;

break;

case ' k' :
case KEY UP:

+ sun
microsystems

Revision A of 27 March 1990

332 Programming Utilities and Libraries

/*

if (row> 0)
row--;

else
flash();

break;

case '1':
case KEY RIGHT:

if (col < COLS - 1)
col++;

else
flash ();

break;

/* i: enter input mode */
case KEY IC:
case'i':

input ();
break;

/* x: delete current character */
case KEY DC:
case 'x':

delch ();
break;

/* 0: open up a new line and enter input mode */
case KEY IL:
case '0':

move (++row, colO);
insertln () ;
input ();
break;

/* d: delete current line */
case KEY DL:
case 'd':

deleteln();
break;

/* AL: redraw screen */
case KEY CLEAR:
ca se CTRL (, L') :

wrefresh(curscr);
break;

/* w: write and quit */
case ' w' :

return;

/* q: quit without writing */
case ' q' :

endwin () ;
exit (2) ;

default:
flash ();
break;

sun
microsystems

Revision A of 27 March 1990

* Insert mode: accept characters and insert them.
* End with AD or EIC

*/
input ()
{

int c;

standout () ;
mvaddstr(LINES - 1, COLS - 20, "INPUT MODE");
standend () ;
move (row, col);
refresh();
for (;;)

c = getch();
if (c == CTRL('D') I I c == KEY_EIC)

break;
insch(c);
move (row, ++col);
refresh();

move (LINES - 1, COLS - 20);
clrtoeol () ;
move (row, col);
refresh();

Chapter 12 - System V curses and terminfo: 333

The highlight Program This program illustrates a use of the routine at tr set (). highlight reads a
text file and uses embedded escape sequences to control attributes. \ U turns on
underlining, \ B turns on bold, and \ N restores the default output attributes.

Note the first call to scrollok () , a routine that we have not previously dis­
cussed (see cur ses(3V». This routine allows the terminal to scroll if the file is
longer than one screen. When an attempt is made to draw past the bottom of the
screen, scrollok () automatically scrolls the terminal up a line and calls
refresh ().

/*
* highlight: a program to turn \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <stdio.h>
#include <curses.h>

main (argc, argv)
int argc;
char **argv;

FILE *fd;
int c, c2;
void exit(), perror();

if (argc != 2)

Revision A of 27 March 1990

334 Programming Utilities and Libraries

fprintf(stderr, "Usage: highlight file\n");
exit (1) ;

fd fopen(argv[l], "rn);

if (fd == NULL)

perror(argv[1]);
exit (2);

initscr () ;
scrollok(stdscr, TRUE);
nonl () ;
while {(c = getc(fd» != EOF)

if (c == ' \ \')
{

else

fclose(fd);
refresh ();
endwin () ;
exit (0);

c2 = getc(fd);
switch (c2)
{

case 'B':
attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset (0) ;
continue;

addch (c);
addch(c2);

addch (c);

Revision A of 27 March 1990

Chapter 12 - System V curses and terminfo: 335

The scatter Program This program takes the first LINES - 1 lines of characters from the standard
input and displays the characters on a tenninal screen in a random order. For this
program to work properly, the input file should not contain tabs or non-printing
characters.

/*
* The scatter program.
*/

#include
#include

<curses.h>
<sys/types.h>

extern time_t time();

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS]; /* Screen Array */
int T[MAXLINES] [MAXCOLS]; /* Tag Array - Keeps track of *

main ()
{

* the number of characters *
* printed and their positions. */

register int row = O,col 0;
register int c;
int char count = 0;
time_t t;
void exit(), srand();

initscr () ;
for (row = O;row < MAXLINES;row++)

for (col = O;col < MAXCOLS;col++)
s [row] [col] =' ';

col = row = 0;
/* Read screen in */
while «c=getchar(» != EOF && row < LINES) {

if (c ! = ' \n')

else

time(&t);

/* Place char in screen array */
s[row] [col++] = c;
if(c !=' ')

char_count++;

col = 0;
row++;

/* Seed the random number generator */
srand ((unsigned) t) ;

while (char_count)

row = rand() % LINES;
col = (rand() » 2) % COLS;
if (T[row] [col] != 1 && s[row] [col] != ' ')

sun
microsystems

Revision A of 27 March 1990

336 Programming Utilities and Libraries

endwin () ;
exit(O);

move (row, col);
addch(s[row] [col]);
T[row] [col] = 1;
char_count--;
refresh 0 ;

The s how Program show pages through a file, showing one screen of its contents each time you
depress the space bar. The program calls cbreak () so that you can depress the
space bar without having to hit return; it calls noecho () to prevent the space
from echoing on the screen. The nonl () routine, which we have not previously
discussed, is called to enable more cursor optimization. The idlok () routine,
which we also have not discussed, is called to allow insert and delete line. (See
curses(3V) for more infonnation about these routines). Also notice that
clrtoeol () and clrtobot () are called.

By creating an input file for show made up of screen-sized (about 24 lines)
pages, each varying slightly from the previous page, nearly any exercise for a
curses () program can be created. This type of input file is called a show
script.

#include <curses.h>
#include <signal.h>

main (argc, argv)
int argc;
char *argv [] ;

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(}, exit();

if (argc != 2)

fprintf(stderr, "usage: %s file\n", argv[O]);
exit(I);

if «fd=fopen(argv[I], "r")} == NULL)
{

perror(argv[I]};
exit (2);

signal (SIGINT, done);

initscr () ;
noecho();
cbreak () ;
nonl () ;

Revision A of 27 March 1990

Chapter 12 - System V curses and terminfo: 337

idlok(stdscr, TRUE};

while(1}
{

move(O,O};
for (line 0; line < LINES; line++}

if (!fgets(linebuf, sizeof linebuf, fd)}

clrtobot () ;
done {} ;

move (line, O);
printw{"%s", linebuf};

refresh ();
if (getch () , q')

done () ;

void done {}
{

move{LINES - 1, O};
clrtoeol {} ;
refresh(};
endwin () ;
exit (0) ;

The two Program

#include <curses.h>
#include <signal.h>

SCREEN *me, *you;
SCREEN *set_term{};

FILE *fd, *fdyou;
char linebuf[512];

main (argc, argv)
int argc;
char **argv;

This program pages through a file, writing one page to the terminal from which
the program is invoked and the next page to the terminal named on the command
line. It then waits for a space to be typed on either terminal and writes the next
page to the terminal at which the space is typed.

two is just a simple example ofa two-terminal curses program. It does not
handle notification; instead, it requires the name and type of the second terminal
on the command line. As written, the command "sleep 100000" must be
typed at the second terminal to put it to sleep while the program runs, and the
user of the first terminal must have both read and write permission on the second
terminal.

void done(), exit{};
unsigned sleep{);

Revision A of 27 March 1990

338 Programming Utilities and Libraries

char *getenv () :
int c:

if (argc != 4)
{

fprintf(stderr, "Usage: two othertty otherttytype inputfile\n"):
exit(l):

fd = fopen (argv[3], "r"):
fdyou = fopen(argv[l], "w+"):
signal (SIGINT, done): /* die gracefully */

me = newterm (getenv ("TERM"), stdout, stdin):
you = newterm(argv[2], fdyou, fdyou):

/* initialize my tty */
/* Initialize the other terminal */

set_terrn(me): /* Set modes for my terminal */
noecho(): /* turn off tty echo */
cbreak (): /* enter cbreak mode */
nonl () ; /* Allow linefeed */
nodelay(stdscr, TRUE) : /* No hang on input */

set_term (you) : /* Set modes for other terminal */
noecho():
cbreak ():
non 1 () :
nodelay(stdscr,TRUE):

/* Dump first screen full on my terminal */
durnpyage (me):

/* Dump second screen full on the other terminal */
durnpyage(you):

for (::) /* for each screen full */

set_term(me):
c = getch () :
if (c == , q')

done () :
/* wait for user to read it */

if (c == , ')
dumpyage (me):

set_term (you) :
c = getch () :
if (c == ' q')
done () :

/* wait for user to read it */

if (c == , ')
dumpyage (you) :
sleep(l):

dumpyage (term)
SCREEN *term:

int line:

set_term(term):
move (0, 0):
for (line = 0: line < LINES - I: line++) {

if (fgets(linebuf, sizeof linebuf, fd)
clrtobot () :
done () ;
}

sun
microsystems

NULL) {

Revision A of 27 March 1990

/*

mvaddstr(line, 0, linebuf);

standout () ;
mvprintw(LINES - 1, 0, t1--More-- t1);
standend () ;
refresh () ; /* sync screen */

Chapter 12 - System V curses and terminfo: 339

* Clean up and exit.
*/

void done ()
{

/* Clean up first terminal */
set_term(you);
move(LINES - 1,0); /* to lower left corner */

clrtoeol () ;
refresh();
endwin ();

/* clear bottom line */
/* flush out everything */
/* curses cleanup */

/* Clean up second terminal */
set_term(me);
move(LINES - 1,0); /* to lower left corner */
clrtoeol(); /* clear bottom line */
refresh(); /* flush out everything */
endwin(); /* curses cleanup */
exit (0) ;

The window Program This example program demonstrates the use of multiple windows. The main
display is kept in stdscr. When you want to put something other than what is
in stdscr on the physical tenninal screen temporarily, a new window is created
covering part of the screen. A call to wrefresh () for that window causes it to
be written over the stdscr image on the tenninal screen. Calling refresh ()
on stdscr results in the original window being redrawn on the screen. Note
the calls to the touchwin () routine (which we have not discussed - see
curses(3V» that occur before writing out a window over an existing window
on the terminal screen. This routine prevents screen optimization in a curses
program. If you have trouble refreshing a new window that overlaps an old win­
dow, it may be necessary to call touchwin () for the new window to get it
completely written out.

#include <curses.h>

WINDOW *cmdwin;

main ()

int i, c;
char buf [120];
void exit () ;

initscr () ;
non I () ;
noecho();

sun Revision A of 27 March 1990
microsystems

340 Programming Utilities and Libraries

cbreak();

cmdwin = newwin(3, eOLS, 0, 0);/* top 3 lines */
for (i = 0; i < LINES; i++)

mvprintw(i, 0, "This is line %d of stdscr", i);

for (;;)

refresh();
c = getch ();
switch (c)

case 'c': /* Enter command from keyboard */
werase (cmdwin) ;
wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, 0);
for (i = 0; i < eOLS; i++)

waddch(cmdwin, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf);
touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.
*/

case' q' :
endwin();
exit(O);

Revision A of 27 March 1990

A.I. New Features

Default Makefile

The State File. make. state

Hidden Dependency Checking

Command Dependency
Checking

Automatic Retrieval of sees
Files
Tilde Ru1es Superceded

A
make Enhancements Summary

make's implicit rules and macro definitions are no longer hard-coded within the
program itself. They are now contained in the defau1t makefile
/ usr / include/make/ def aul t . mk. make reads this file automatically,
unless there is a file in the local directory named defaul t. mk. When you use
a local de fa u It. mk file, you must add a directive to include the standard
defaul t . mk file to get the standard implicit rules and predefined macros.

make also reads a state file, .make. state in the directory. When the
special-function target . KEEP_STATE is used in the makefile, make writes out
a cumulative report for each target containing a list of hidden dependencies (as
reported by compilation processors such as cpp), and the most recent rule used
to build each target. The state file is very similar in fonnat to an ordinary
makefile.

When activated by the presence of the . KEEP_STATE target, make uses infor­
mation reported from cc, cpp, f77, ld, make, pc and other compilation com­
mands, and perfonns a dependency check against any header files (or in some
cases, libraries) that are incorporated into the target file. These "hidden" depen­
dency files do not appear in the dependency list, and often do not reside in the
local directory.

When . KEEP _STATE is in effect, if any command line used to build a target
changes between make runs (either as a result of editing the makefile or because
of a different macro expansion), the target is treated as if it were out of date;
make rebuilds it (even ifit is newer that the files it depends on).

This version of make automatically runs sccs get, as appropriate, when there
is no rule to build a target file. A tilde appended to a suffix in the suffixes list
indicates that s c c s extraction is appropriate for dependency file. There are no
longer special versions of implicit rules that include commands to extract current
versions of sccs files.

sun 341 Revision A of 27 March 1990
microsystems

342 Programming Utilities and Libraries

sees History Files

Pattern-Matching Rules:
More Convenient than Suffix
Rules

To inhibit or alter the procedure for automatic extraction of the current sec s
version, redefine the . sees _GET special-function target. An empty rule for this
target inhibits automatic extraction entirely.

This version of make does not search the current directory for sees history (s.)
files. These files must now reside in an sees subdirectory for make's automatic
version retrieval.

Pattern-matching rules have been added to simplify the process of adding new
implicit rules of your own design. A target entry of the fonn:

tp %ts: dp %ds
rule

defines a pattern-matching rule for building a target from a related dependency
file. tp is the target's prefix; ts, its suffix. dp is the dependency's prefix; ds, its
suffix. The % symbol is a wild card that matches a contiguous string of zero or
more characters appearing in both the target and the dependency filename. For
example, the following target entry defines a pattern-matching rule for building a
trof f output file, with a name ending in . tr from a file that uses the -ms
macro package ending in . ms:

% .tr: % .ms
troff -t -ms $< > $@

With this entry in the makefile, the command:

make doc.tr

produces:

Using that same entry, if there is a file named doc 2 . ms the command:

make doc2.tr

produces:

An explicit target entry overrides any pattern-matching rule that might apply to a
target. Pattern-matching rules, in tum, normally override implicit rules. An
exception to this is when the pattern matching rule has no commands in the rule
portion of its target entry. In this case, make continues the search for a rule to
build the target, and using as its dependency the file that matched the (depen­
dency) pattern.

Revision A of 27 March 1990

Pattern Replacement Macro
References

Appendix A - make Enhancements Summary 343

As with suffix rules and pattern-matching rules, pattern replacement macro refer­
ences has been added to provide a more general method for altering the values of
words in a specific macro reference than that already provided by suffix replace­
ment in macro references. A pattern-replacement macro reference takes the
fonn:

$ (macro :p%s=np%ns)

where p is an existing prefix (if any), s is an existing suffix (if any), np and ns are
the new prefix and suffix, respectively, and % is a wild card character matching a
string of zero or more characters within a word. The prefix and suffix replace­
ments are applied to all words in the macro value that match the existing pattern.
Among other things, this feature is useful for prefixing the name of a subdirec­
tory to each item in a list of files. For instance, the following makefile:

SOURCES= x.c y.c z.c
SUBFILES.o= $(SOURCES:%.c=subdir/%.o)

all:
@echo $ (SUBFILES.o)

produces:

You may use any number of % wild cards in the right-hand (replacement) side of
the equal-sign, as needed. The following replacement:

[NEW OBJS= $(SOURCES:%.c=%/%.o)]
would produce:

[~_x/x_.o_y/_y.o_z/_z.o ____________ ~]
Please note, however, that pattern-replacement macro references

Please note that pattem-replacement macro references should not appear on the
dependency line of a pattern-matching rule's target entry. This produces unex­
pected results. With the makefile:

OBJECT= .0

x:
%: %.$ (OBJECT:%o=%Z)

cp $< $@

Revision A of 27 March 1990

344 Programming Utilities and Libraries

New Options

Support for C++ and
Modula-2

Naming Scheme for
Predefined Macros

it looks as if make should attempt to build a target named, x from a file named
x. z. However, the pattern-matching rule is not recognized; make cannot deter­
mine which of the % characters in the dependency line apply to the pattern­
matching rule, and which apply to the macro reference. Consequently, the target
entry for x . Z is never reached. To avoid problems like this, you can use an
intennediate macro on another line:

OBJECT= .0

ZMAC= $(OBJECT:%o=%Z)

x:
%: %$ (ZMAC)

cp $< $@

There are a number of new options:

-d Display dependency-check results for each target processed. Displays all
dependencies that are newer, or indicates that the target was built as the
result of a command dependency.

-dd The same function as -d had in earlier versions of make. Displays a great
deal of output about all details of the make run, including internal states,
etc.

-D Display the text of the makefile as it is read.

-DD Display the text of the makefile, and of the default makefile being used.

-p Print macro definitions and target entries.

-p Report all dependencies for targets without rebuilding them.

This version of make contains predefined macros for compiling C++ programs.
It also contains predefined macros and implicit rules for compiling Modula-2.

The naming scheme for predefined macros has been rationalized, and the implicit
rules have been rewritten to reflect the new scheme. The macros and implicit
rules are upward compatible with existing makefiles.

For example, there is now a macro called SUFFIXES, that contains the default
entries for the suffixes list; the target entry for the default suffixes list looks like:

. SUFFIXES: $ (SUFFIXES)

If you want to insert new suffixes at the head of the list, you can do so quite sim­
ply as follows:

.SUFFIXES:

. SUFFIXES: .ms .tr $(SUFFIXES)

Other examples include the macros for standard compilations commands:

LINK.c Standard c c command line for producing executable files.

Revision A of 27 March 1990

New Special-Purpose Targets
The. KEEP STATE target should
not be remOVed once it has been
used in a make run.

New Implicit Rule for lint

Macro Processing Changes

Macros: Definition,
Substitution, and Suffix
Replacement

Patterns in Conditional Macros

Appendix A - make Enhancements Summary 345

COMP ILE . c Standard cc command line for producing object files.

. KEEP STATE When included in a make file, this target enables hidden depen­
dency and command dependency checking. In addition, make
updates the state file . rna k e . S tat e after each run.

. INI T and . DONE

. FAILED

These targets can be used to supply commands to perform at
the beginning and end, respectively, of each make run.

The commands supplied are performed when make fails .

Implicit rules have been added to support incremental verification with lint.

A macro's value can now be of virtually any length. Whereas in earlier versions
only trailing white space was stripped from a macro's value, this version strips
off both leading and trailing white space characters.

New Append Operator: +=
This operator appends a I SPACE), followed by a word or
words, onto the existing value of the macro.

Conditional Macro Definitions: : =

This operator indicates a conditional (targetwise) macro
definition. A makefile entry of the form:

target : = macro = value

indicates that macro takes the indicated value while process­
ing target and its dependencies.

make recognizes the % wild card pattern in the target portion of a conditional
macro definition. For instance:

profile_% := CFLAGS += -pg

would modify the CFLAGS macro for all targets having the 'prof ile _' prefix.
Pattern replacements can be used within the value of a conditional definition.
For instance:

profile_% := OBJECTS = $(SOURCES:%.c=profile_%.o)

will apply the prof ile _ prefix and .0 suffix to the basename of every. c file
in the SOURCES list (value).

Suffix Replacement Precedence
Substring replacement now takes place following expansion of
the macro being referred to. Previous versions of make
applied the substitution first, with results that were counterin­
tuitive.

Nested Macro References
make now expands inner references before parsing the outer

Revision A of 27 March 1990

346 Programming Utilities and Libraries

Shell Command Output in
Macros

Improved ar Library Support
Lists of Members

Handling of ar's Name Length
Limitation

Target Groups

reference. So, a nested reference as in this example:

CFLAGS-g = -I .. /include
OPTION = -g
$(CFLAGS$(OPTION»

now yields the value -I .. / include, rather than a null
value, as it would have in previous versions.

Cross-Compilation Macros
The predefined macros HOST_ARCH, HOST_MACH,
TARGET_ARCH, and TARGET_MACH are available for use in
cross-compilations. By default, the arch macros are set to the
value returned by the ar ch command; the mach macros are
set to the value returned by mach.

A definition of the form:

MACRO: sh = command

sets the value of MACRO to the standard output of the indicated command,
[NEWLINE I characters being replaced with [SPACE I characters. The command
is performed just once, when the definition is read. Standard error output is
ignored, and make halts with an error if the command returns a non-zero exit
status.

A macro reference of the form:

$ (MACRO: sh)

expands to the output of the command-line stored in the value of MACRO, when­
ever the reference is evaluated. (NEWLINE I characters are replaced with
(SPACE) characters, standard error output is ignored, and mak e halts with an
error if the command returns a non-zero exit status.

make automatically updates an ar-format library member from a file having the
same name as the member. Also, make now supports lists of members as depen­
dency names of the form:

lih.a: /ih.a (member member . ..)

make now copes with the IS-character member-name length limitation in ar. It
now recognizes a member name that matches the first 15 characters of a filename
as the member corresponding to the file.

It is now possible to specify that a rule produces a set of target files. A + sign
between target names in the target entry indicates that the named targets
comprise a group. The target group's rule is performed once, at most, in a make
invocation.

Revision A of 27 March 1990

A.2. Incompatibilities with
Previous Versions of
make

New Meaning for -d Option

Dynamic Macros

Tilde Rules not Supported

Appendix A-make Enhancements Summary 347

The -d option now reports the reason why a target is considered out of date.

Although the dynamic macros $ < and $ * were documented being assigned only
for implicit rules and the . DEFAULT target, in some cases they actually were
assigned for explicit target entries. The assignment action is now documented
properly.

The actual value assigned to each of these macros is derived by the same pro­
cedure used within implicit rules (this hasn't changed). This can lead to unex­
pected results when they are used in explicit target entries.

Even if you supply explicit dependencies, make doesn't use them to derive
values for these macros. Instead, it searches for an appropriate implicit rule and
dependency file. For instance, if you have the explicit target entry:

test: test.f
@echo $<

and the files: test. c and test. f, you might expect that $< would be
assigned the value test. f. This is not the case. It is assigned test. c,
because . c is ahead of . f in the suffixes list:

For explicit entries, we recommend a strictly deterministic method for deriving a
dependency name using macro references and suffix replacements. For example,
you could use: $ @ • f instead of $ < to derive the dependency name. To derive
the basename of a . 0 target file, you could use the suffix replacement macro
reference: $ (@ : • 0=) instead of $ *.
When hidden dependency checking is in effect, the $? dynamic macro's value
includes the names of hidden dependencies, such as header files. This can lead to
failed compilations when using a target entry such as:

[x: x.c
$(LINK.c) -0 $@ $?

and the file x . c 41= inc 1 u de's header files. The workaround is to replace '$? '
with '$ @ • <' .

This version of make does not support tilde suffix rules for version retrieval
under sees. This may create problems when older makefiles redefine tilde rules
to perform special steps when version retrieval under sees is required.

]

slIn Revision A of 27 March 1990
microsystems

348 Programming Utilities and Libraries

Target Names Beginning with
. / Treated as Local
Filenames

When make encounters a target name beginning with ' . /', it strips those lead­
ing characters. For instance, the target named:

./filename:

is intetpreted as if it were written:

filename:

This can result in endless loop conditions when used in a recursive target. To
avoid this, rewrite the target relative to ' .. " the parent directory:

.. /dir/filename

sun Revision A of 27 March 1990
microsystems

Index

Special Characters
,file, SCCS comma-file, 94

A
a. out, 2
access control for editing, sces, 93
actions

inyacc, 232
in lex, 210 thru 214

addch () , 272
adding suffix rules in make, 136
addstr () , 272
admin, sccs subcommand, Ill, 112
advanced features, System V curses, 313 thru 317
agt_trap (), 45
ambiguity

in lex, 214
in yacc, 240

application programs and shared libraries, 2
arg, 72
ARGS USED -lint control, 178
assertion checking with ld's -assert option, 5
associativity in yacc

%left,244
%nonassoc,244
%right, 244

atomic updates to semaphores, 68
attach shared memory, shma t () , 87

B
basic

capabilities, terminfo, 324
basic specifications for yacc, 230

baudrate (), 277
bells and whistles, System V curses, 307
binding

and common data, 5
and file dependencies, 7
and linkage table updates at run-time, 11
and uninitialized commons, 11
and version numbers of shared libraries, 8
at run-time, 11
mode options for libraries, 4
of executable at run-time, 2
PIC with non-PIC, 5
semantics and shared libraries, 6

-349-

box (), 273
building

a better shared library, 13 thru 15
a data definition (. sa) file, 13
a shared library, simple case, 12
a shared object . so file, 12
an entire project with make, 163
libraries with make, 141
PIC components, 9
shared-library applications, 2

built-in m4 macros
changequote, 196
define, 194
divert, 199
divnum, 199
dnl,201
dumpdef, 201
errprint, 201
eval,198
ifdef,196
ifelse, 199
include, 198
incr, 197
index, 200
len, 200
mktemp, 199
sincl ude, 198
substr,200
syscmd, 199
translit,200
undefine, 196
undi vert, 199

c
C language tools
C language tools, lint­
call graph profile - gprof,
capabilities, terminal, l.~.LUL.J...ll.J;.\J~""""":.:

CATCHALL, 45
cdc, s cc s subcommand, 101
changequote built-in m4 macro,
check in, then check out file for editing,
checking, dependency, in make, 119, 115
clear () , 273
clearok () , 273
clrtobot (), 273
clrtoeol (), 273

Index Continued

cmd, 60, 72, 84
code coverage - tcov, 188 thru 191
comb, sees subcommand, 104
command

dependency checking in make, 125
comments in m4, 196
common data, and binding with PIC, 5
communication

System V IPC
communication, System V IPC, see IPC
compare versions, sees sccsdiff,101
compatible and incompatible versions of shared library, 8
compiler generators

lex lexical generator, 203 thru 226
compiler-compiler, yacc, 227 thru 263
compiling

a terminfo program, 318
System V cur se s programs, 295
the terminal description, terminfo, 326

compiling alternate library variants in make, 148
complex compilations and make, 142
conditional macro definitions in make, 146
configuring System V IPC facilities, 54
conflicts inyaec, 241

disambiguating rules, 241
precedence, 244
"reduce/reduce" conflicts, 241
shift/reduce conflicts, 241

consistency control, 115
control

editing access to source files, SCCS, 93
message queue structure, 58
message queue, msgctl (), 60
place a file under SCCS, 93
semaphore set, 68
semaphore, s emet 1 (), 72
shared memory segment, shmct 1 () , 84

control functions
flushok,274
idlok,274

converting the terminal description, captoinfo, terminfo,
328

copied vs. shared program text, 2
copy-on-write and shared libraries, 9
crbreak,276
create, sees subcommand, 94

an sees history file, 93, 94
reports, sees prs, 102

create, sees subcommand, 93
creating a delta, 96
crmode () macro, compatibility, 276
crt 0 () module and shared libraries, 10
ertO: no /usr/lib/ld.so, 15
current screen, 267
curses library

and terminfo database, 289 thru 340
System V curses advanced features, 313 thru 317
System V curses and terminfo related, 292
System V cur se s bells and whistles, 307
System V curses example programs, 328 Ihru 340

curses library, continued
System V curses functions, 293
System V curses I/O control, 305
System V curses input options, 308
System V curses library overview, 290
System V curses output attrubutes, 305
System V curses program requirements, 293
System V curses screen initialization functions, 294
System V curses terminal I/O, 297
System V curses windows and pads, 310 thru 313

cv_broadcast(),41
ev_notify (), 41
ev_wait (),41

data
D

common, 5
initialized, 5
interface description file for shared libraries, 12

data keywords, 113, 102
-de and -dp ld options: shared libraries, 5
default makefile, 118
• DEFAULT - special target in make, 122
deferred resolution of text symbols, 2
define built-in m4 macro, 194
defining macros in make, 125
definition of lex source, 216 thru 217
definitions assertion for ld, 5
delayed macro references in make, 135
delch () , 273
deledi t, sees subcommand, 98
delete

pending changes, sees unedi t, 98
deleteln () , 274
delta

check in a file under sees, 96, 94
combining, 104
creating, 96
creating a new release, 107
display commentary, sees prt, 101
display entire history, 102
excluding from working copy, 104
fix commentary, 103
ID: SID, 95
remove, 103
update commentary, sees cdc, 101
vs. version, 95

delta, sees subcommand, 96,94
del win (), 278
dependency

checking in make, 115
checking in make" " PAGE MAJOR, 119
file, 115

descriptions, terminal, terminfo, 321
detach shared memory, shmdt () , 87
detail functions, 281 thru 282

-350-

putehar () , 282
get tmode () , 281
mvcur (), 281
resetty (), 281
savetty (), 281

detail functions, continued
scroll (), 281
set term () , 282
tstp, 282

diff,97
diffs and the -e option for diff, 97
diffs, sees subcommand, 97
disambiguating rules in yaee, 241
display

the terminal description, infoemp, terminfo, 327
di vert built-in m4 macro, 199
di vnum built-in m4 macro, 199
dlelose (), 11
dlerror (), 11
dlopen (), 11
dlsym (), 11
dnl built-in m4 macro, 201
Don't know how to make 'target'., 122
dumpdef built-in m4 macro, 201
dynamic binding option for Id: -Bdynamie,4, 10

link editing, 2
dynamic macros

and implicit rules in make, 134
and modifiers in make, 135

E
echo (), 276
edit

check out a file for editing from sees, 96
edit, sees subcommand, 96,94,104, 107
editing

controlling access to source files, sees, 93
linking executables, 2

endwin (), 278
enhancements to make, 341
entry points, and binding with PIC, 5
erase, 274
eraseehar, 278
errors

interpreting sees messages, 111
errprint built-in m4 macro, 201
escapedNEWLlNE, and make, 118
eval built-in m4 macro, 198
examples

of lex, 218 thru 221
testing with make, 159

exe_notify (), 45
exe_on_exit (), 45
exe_raise,45
exceptions, 42

in a programming language, 46
executable

incomplete, 2

F
features in make, new, 341
FIFO,53
file

. sa file, 12

. so file, 2

-351-

Index - Continued

file, continued

files
System V curses header, 293

/usr/inelude/make/default.mk,118
administering sees, 111 thru 112
binary, and sees, 105
check editing status of, sees info,l00
check in under sees, 96, 94
check in, then check out for editing, sec s del edi t, 98
check out for editing from sees, 96, 94
combining sees deltas, 104
comma-file, sees, 94
compare versions, sees seesdiff, 101
create an sees history, 93
data definition (. sa), 13
delete pending changes, sces unedit,98
dependency, in make, 116
display entire sees history, 102
duplicate source directories with sees, 106
excluding deltas from sees working copy, 104
fix sees delta or commentary, 103
get most recent SID, 100
get selected version, 98
get version by date, 98
get working copy, 97
get working copy under sees, 94
locking sources with sees, 93
mapping, and mmap (), 1,9
naming retrieved working copy, 98
parameters for sees history files, 111
presumed static by make, 116
remove sees delta, 103
restoring a corrupted sees history file, 112
retrieving writable working copy from sees, 98, 103
review pending changes, sees diffs,97
review sees commentary, 95
s . file, 94
s .file, create an, 93
sees histories as true source files, 106
SeeS-file, 94
state files and file locking, 53
target, in mak e, 116
temporary sees files, 107
validating sees history files, 112
x .file, sees, 107
z .file, sees, 107

fix, sees subcommand, 103
flock (), 53
flushok,274
force processing of target in make, 122
functions

get

details, 281 thru 282
input, 276 thru 277
miscellaneous, 277 thru 281
output, 272 thru 276
screen initialization, System V curses, 294
System V curses, 293, 295 thru 317
terminfo, 317

G

access to a file for editing under sees, 96, 94
message queue, msgget () , 59

Index - Continued

get, continued
most recent SID, 100
selected version of a file, 98
semaphore, semget (), 70
shared memory segment, shmget () , 82
version of a file by date under sees, 98
working copy of a file, 97
working copy of a file under sees, 94

get, sccs subcommand, 97, 94, 98, 100, 102, 103
GETALL,72
getcap (), 278
getch () ,276
GETNCNT,72
GETPID,72
getstr (), 277
gettmode (), 281
GET VAL, 72
get yx () , 278
GETZCNT,72
global offset table, 10
gprof - call graph, 186 thru 188

H
header file, System V curses, 293
headers

as hidden dependencies in make, 127
maintaining a directory of, in make, 151

help, sccs subcommand, 111
hidden dependency

and missing file problem in make, 127
checking in make, 127

history file
create, 93, 94

I
ID keywords, 112, 99
idlok,274
ifdef built-in m4 macro, 196
ifelse built-in m4 macro, 199
. IGNORE - special target in make, 123
ignored exit status of commands in make, 123
implicit rules vs. explicit target entries in make, 134
implicit rules, in make, 118
improved library support in make, 346
inch (), 278
include built-in m4 macro, 198
incompatibilities with older versions, make, 347 thru 348
incompatible versions of shared library, 8
incomplete executable, 2
incr built-in m4 macro, 197
index built-in m4 macro, 200
info, sccs subcommand, 100
infocmp viewing the terminfo terminal description, 327
information package components, terminal, System V, 292
. INIT - special target, perform rule initially, 150
initialization functions, screen, System V curses, 294
initialized data

and binding with PIC, 5
archive for shared library, . sa file, 12

initscr (), 278, 279

input functions, 276 thru 277
crbreak, 276
echo (), 276
getch (), 276
getstr (), 277
nocrbreak, 276
noecho () ,276
noraw () , 277
raw (), 277
scanw (), 277
wgetch () , 276
wgetstr (), 277
wscanw (), 277

insch (), 274
insertln () , 275
installing finished programs and libraries with make, 163
interface

data description file for shared libraries, 12
interpreting sees error messages, 111
IPC

creation flags, System V, 55
facilities in SunOS, 53
FIFO, 53
file I/O and pipes, 53
key arguments, System V, 55
message header, 58
message queue, 57
message queue control structure, 58
messages, 56 thru 67
named pipes, 53
permissions for System V facilities, 54
removing System V facilities, 54
semaphore set, 68
semaphores, 67 thru 81
shared memory, 81 thru 91
shared memory segment, 81
shared memory segment structure, 81
state files and file locking, 53
system calls, System V, 55
System V, 54 thru 91

IPC_CREAT,56
IPC EXCL,56
IPC:=NOWAIT, 63, 68, 77, 78
ipc yerm, 54, 69, 82
IPC_PRIVATE,56
IPC_RMID, 61, 72,84
IPC _SET, 60, 72,84
IPC _STAT, 60, 72, 84
IPCMESSAGE,54
IPCSEMAPHORE,54
IPCSHMEM,54

K
• KEEP_STATE - special target in make, 125
key t,55
keyh;ard-entered capabilities, terminfo, 325
keywords

-352-

data, 113, 102
ID, 112,99

L
language tools

lint - check e programs, 169 thru 180
yacc compiler-compiler, 227 thru 263

Id,2
-1,3
vs. 1 d. so, link editors, 2

Id. so dynamic link editor, 10, 11
Id. so. cache corrupted, 16
Id.so: libnwne.so.~jor not found, 16
LD_LIBRARY_PATH,3,5
Id_need,l1
Idconf ig, 15
learning about terminal capabilities, terminfo, 322
leaveok () , 279
left

associativity in yacc, 240
context-sensitivity in lex, 221 thru 223

len built-in m4 macro, 200
level number, in SID, 95
lex

actions, 210 thru 214
character set, 223 thru 224
examples, 218 thru 221
left context-sensitivity, 221 thru 223
regular expressions, 207 thru 210
source definitions, 216 thru 217
source fonnat, 206
source fonnat summary, 224 thru 225
usage, 217
with yacc, 218

lex regular expressions
arbitrary character, 208
character classes, 208
context sensitivity, 209
operators, 207
optional expressions, 209
repeated expressions, 209
repetitions and definition, 210

lexical analysis for yacc, 234
libraries

supplying to Id, 3
libraries, building with make, 141
library

overview of System V curses, 290
support, improved in make, 346

library functions
System V curses, 293, 295 thru 317
terminfo, 317

Lightweight Processes, 17
agents, 29
asynchronous interrupts, 29
asynchrony, 17
big example, 47
condition variables, monitors, 40
coroutines, 21
critical sections, 39
custom schedulers, 22
definition, 17
example, 19
examples of agents, 36
exception handling example, 46

-353-

Lightweight Processes, continued
exceptions, 44
exit handlers, 45
functionality, 17
intelligent servers, 28
introduction, 17
library, 17
message paradigm, 30
message queues, 26
messages, 25, 26
messages vs. monitors, 25
monitor-based programs, 40
monitors, 25
monitors and conditions, 39
monitors vs. interrupt masking, 40
monitors, enforcing discipline, 41
monitors, nested, 42
pods, 18
primitives, 17
reentrant monitors, 42
rendezvous semantics, 26
scheduling, 18
special context switching, 23
stack issues, 20
synchronous traps, 45
system calls, 30
threads of control, 18

link,15
link editing, overview for shared libraries, 2
link editor

-Bstatie and -Bdynamic options, 4
-de and -dp options, 5
debuggers, 6
dynamic, 11
dynamic binding, 4
-n and -N options, 4
static, 10
static binding, 4

linkeditors, Id and Id. so, 2
linkage tables, 9
linking objects and static libraries, 2

Index - Continued

linking with system-supplied libraries in make, 144
lint

and make, 144
controls, 177 thru 178
library directives, 178 thru 179
options, 179 thru 180

lint - e program checker, 169 thru 180
LINTLIBRARY -lint control, 178
LINTLIBRARY -lint library directives, 178
loekf (), 53
locking

versions of files with sees, 93
locking, and state files, 53
longjrnp (), 17,42,44
longnarne () , 279
LWP, 17
lwp_cheekstkset(),20
lwp_create (), 18
lwp_ctxinit (), 24
lwp_ctxset (), 24
lwp_datastk (), 32

Index - Continued

lwp_destroy 0,41
Iwp_Iibcset (), 24
lwp_newstk 0,19
Iwp_reschedO, 22
lwp_resume (), 22
lwp_setpri (), 22
Iwp_setstkcache(),19
Iwp_stkcswset(),20
lwp_suspend (), 22
lwpyield (), 21

M
m4 built-in macros

changequote, 196
define, 194
divert, 199
divnum, 199
dnl,201
dumpdef, 201
errprint, 201
eval,198
ifdef,196
ifelse, 199
include, 198
incr, 197
index, 200
len, 200
mktemp, 199
sinclude, 198
substr,2oo
syscmd, 199
transli t, 200
undefine, 196
undivert, 199

m4 macro processor, 193 thru 202
macro

processing changes for make, 345
references in make, 124

maintaining
software projects, organization issues, and make, 161
subsidiary libraries with make, 166

maintaining programs with make, 115 thru 168
make

-t (touch) option, warning against use, 129
alternate targets, 120
and • make. state, 126
and lint, 144
make, 106, 115
and special characters, 117
and the Bourne shell, 117
and unknown targets, 122
assumes static source files, 116
command line options described, 128
compatibility, 115
default target, 117
depend replaced by hidden dependency checking, 127
dependency checking, 119, 115
dependency file, 115
escaped NEWLINE, 118
forced processing and null rules, 122
general purpose use, 115
implicit rules, 118

make, continued
incompatibilities with older versions, 347 thru 348
new featmes in, 341
null rules and forced processing, 122
passing command-line parameters in, 124
pattern-matching rules, 118
precedence of macro values in nested commands, 154
rule for target, 116
suffix rules, 118
target entries not scanned, 120
target entry format, 116
targets and dependencies, 116
vs. shell scripts, 115

makefile, 115
and sees, 117
default file, 118
searched for in working directory, 117
vs. Makefile, 117

MAKEFLAGS macro in make, 154
memory and file mapping: mmap () , 1,9
message

header, 58
queue, 57
queue control structure, 58

messages, 54, 56 thru 67
errors from sees, 111

metacharacters (shell) in make rules, 117
miscellaneous curses ftmctions, 277 thru 281

baudrate, 277
delwin (), 278
endwin () ,278
erasechar, 278
get cap () , 278
getyx (), 278
inch (), 278
initscr (), 278
killchar, 279
leaveok (), 279
longname () , 279
newwin () , 280
nl (), 280
nonl (), 280
nvwin (), 279
scrollok,280
subwin () , 280
touchline, 280
touchoverlap, 281
touchwin (), 281
unctrl (), 281
winch (), 278

mktemp built-in m4 macro, 199
mmap (), 1
mon_destroy (), 41
MONITOR () , 41
move, 275
MSG _NOERROR, 63
msg_ recv () , 26
msg_ reply () , 26
msg send (), 26
msg-;t I () , 60, 56
msgflg, 59, 63
msgget () , 59, 56

-354-

MSGMNI,59
msgp,63
msgrcv () , 63, 57
msgsnd (), 63, 57
msgsz,63
msgtyp,64
msqid, 58, 60, 63
mvcur (), 281

N
-n and -N ld options, and shared libraries, 4
name, terminal, terminfo, 321
named pipes, 53
nested make commands, described, 152
new

features in make, 341, 348
special targets for make, 345

NEWLINE, 277
newwin (), 280
nl (), 280
No Id Keywords (cm7),99
nocrbreak,276
nocrmode () macro, compatibility, 276
noecho () , 276
non-blocking I/O library, 30, 31
noninteractive tasks and make, 115
nonl (), 280
noraw (), 277
NOTREACHED - lint control, 178
nsems, 70
nsops,77
nvwin (), 279

o
O_CREAT,53
O_EXCL,53
operate on semaphores, semop () , 77
options

lint, 179, 180
make, 128

output functions, curses, 272 thru 276
addch () , 272
addstr (), 272
box (), 273
clear () , 273
clearok () , 273
clrtobot () , 273
clrtoeol () , 273
delch (), 273
deleteln () , 274
erase, 274
insch (), 274
insertln () , 275
move, 275
overlay (), 275
overwri te () , 275
printw (), 275
refresh (), 276
standend () , 276
standout () , 276

-355-

output functions, curses, continued
waddch (), 272
waddstr () , 272
wclear () , 273
wcl rtobot () , 273
wclrtoeol (), 273
wdelch () , 273
wdeleteln () , 274
werase () , 274
winsch (), 274
winsertln (), 275
wmove () , 275
wprintw () , 275
wrefresh () , 276
wstandend (), 276
wstandout (), 276

overlay (), 275
overwri te () , 275
OWNER/CREATOR,73

p

Index - ConJinued

pads and windows, System V curses, 310 thru 313
parameter string capabilities, terminfo, 325
parser generator, yacc, 227 thru 263
passing command-line arguments to make, 124
pattern

matching rules in make, 137
replacement macro references in make, 148

pattern-matching rules for troff, example of how to write, 163
pattern-matching rules in make, 118
performance

and shared libraries, 7
performance analysis, 181 thru 191

gprof - call graph, 186 thru 188
prof - profile, 184 thru 186
tcov - code coverage, 188 thru 191
time - time used, 181 thru 184

pennissions
System V IPC facilities, 54

PIC
binding with non-PIC, 5
position-independent code, 2

pipe
named, 53

pod_setmaxpri (), 19,21
position-independent code, 2
precedence in yacc, 244
predefined macros

and their peculiarities in make, 128
using, in make, 131

preparing yacc specifications, 249 thru 252
printw (), 275
prof - profile, 184 thru 186
program

compiling a System V curses, 295
maintenance with make, 115 thru 168
requirements, terminfo, 317
requirements, System V curses, 293

program requirements, terminf 0,321
programming tools

lint - check C programs, 169 thru 180

Index - Continued

programming tools, continued
yaec compiler-compiler, 227 thru 263

prs, sces subcommand, 102
prt, sces subcommand, 101
prt, prt subcommand, 95
pure-text assertion for ld, 5, 12
yutchar () , 282

Q
quoting in m4, 195 thru 196

R
ranlib,13
raw (), 277
receive message, msgrev () , 63
recursive

makefiles and directory hierarchies in make, 164
targets, as distinct from nested make commands, 164

"reduce/reduce" conflicts in yacc, 241
refresh (), 276
regular expressions in lex, 207 thru 210
relative reduction, 11
release number, in SID, 95
removing

System V IPe facilities, 54
repetitive tasks and make, 115
requirements, program, terminfo, 317, 321
requirements, program, System V curses, 293
resetty (), 281
resolution of text symbols, deferred, 2
resolving symbols at compile- and run-time, 10
retrieve copies, sees, 93
retrieving current file versions from sees, in make, 124
reversing operations for semaphores, 68
review pending changes, sccs diffs,97
right association in yaee, 240
rmdel, secs subcommand, 103
rule, in a target entry for make, 116
run-time binding of executable, 2
running

a terminfo program, 318
tests with make, 159

s
s . file, 94

create an, 93
. sa file, 12
savetty (), 281
scanw (), 277
sees, 93

administering s . files, 111 thru 112
and binary files, 105
and make, 106
and makefile, 117
and the sc c s command, 93 thru 107
branches
create a history file, 93
data keywords, 113, 102
deltaID,95
delta vs. version, 95

sees, continued
duplicate source directories, 106
history file parameters, 111
history files as true source files, 106
ID keywords, 112, 99
restoring a corrupted history file, 112
s .file, 93
temporary files, 107
utility commands, 113
validating history files, 112
vs. make, 115
x .file, 107
z .file, 107

sccs create, 93
sees history files, not searched for in current directory by make,

342
SeeS-file, 94
sces

admin, 111
admin -Z, 112
basic subcommands, 94
cdc, 101
eomb,l04
command, 93 thru 107
create, 94
deledit,98
del ta, 96, 94
diffs,97
di f f s and the -c option for di f f, 97
edit, 96,94
edit -r,107
edit -x, 104
fix, 103
get,97,94
get -c,98
get -G, 98, 100
get -k, 98, 103
get -m, 102
get -r,98
help, 111
info, 100
prs, 102
prt, 101,95
rrndel,103
secsdiff,101
unedit,98
val,112

sees subdirectory, 93
seesdiff, sees subcommand, 101
screen, 265

current, 267
initialization functions, System V curses, 294
oriented capabilities, terminf 0, 324
standard, 267
updating, 267

scroll (), 281
serollok,280
se~op, 67
sernyerm, 69
SEM _UNDO, 68, 78
semaphores, 54, 67 thru 81

atomic updates, 68

-356-

semaphores, continued
operations on, semop () , 77
reversing operations and SEM _UNDO, 68
set structure, 68
simultaneous updates are arbitrary, 68
undo structure, 68

sembuf,77
semetl () , 72, 67
semflg,70
semget () , 70, 67
semid, 70,77
SEMMNI,70
SEMMNS,70
SEMMSL,67
semnum, 72
semop (), 67
semop (), 77
SEMOPM, 77
send message, msgsnd () , 63
SETALL,72
setjmp (), 45
setterm (), 282
setuid programs and shared libraries, 8
SETVAL,72
shared libraries, 1

and application programs, 2
and run-time file dependencies, 7
and setuid programs, 8
and system performance, 7
assembler, 10
assertion checking with ld,5
binding semantics, 6
building a shared library, 12 thru 15
building the . so file, 12
building the data definition . sa file, 13
C compiler, 9
compatible and incompatible versions, 8
components should be PIC, 9
ertO (), 10
data description file, 12
-de and -dp ld options, 5
definitions, 2
dynamic link editor, ld. so, 10
dynamic vs. static link editing, 2
impact on debuggers, 6
and ldeonf ig, 15
and ld binding options, 4
memory sharing, 9
-N and -n ld options, 4
PIC and non-PIC, 5
position-independent code, 2
problems and hints, 15
programmatic interface for dynamic binding, 11
supplied in SunOS, 6
tips on building a library, 13 thru 15
version control, 8

shared library, defined, 2
shared memory, 54, 81 thru 91
shared memory segment, 81
shared object, defined, 2
shared vs. copied program text, 2

-357-

shell
scripts vs. make, 115
special characters and make, 117
variables, references in make, 160

SHELL environment variable, and make, 154
shift/reduce conflicts in yaec, 241
SHM _LOCK, 84
shmyerm,82
SHM_RDONLy,87
SHM_RND,87
SHM _UNLOCK, 84
shmaddr,87
shmat () , 87, 81
SHMAX,83
shmetl (), 84,81
shmdt (), 87, 81
shmflg, 82, 87
shmget () , 82, 81
shmid, 82, 81, 84, 87
SHMIN,83
SHMMAX,83
SHMMIN,83
SHMMNI,83
SID, SCCS delta ID, 95
silent execution of commands by make, 122
. SILENT - special target in make, 123
sinelude built-in m4 macro, 198
. so file, 2
sockets, 54
sops, 77
source

definitions in lex, 216 thru 217
files must be static for make, 116

source code control system, 93

Index - Continued

spaces, leading, common error in make rules, 116
specifying terminal capabilities, terminfo, 322
standard screen, 267
standend () , 276
standout () , 276
state file and file locking, 53
statement analysis - teov, 188 thru 191
static

binding option for ld: -Bstatie,4
link editing, 2

structure
message queue control, 58
semaphore set, 68
shared memory segment, 81
undo, for semaphores, 68

substr built-in m4 macro, 200
subwin () , 280
suffix

replacement macro references in make, 143
rules in make, 118
rules used within makefiles in make, 132

suffixes list, in make, 133
summary

1 ex source format, 224 thru 225

SunOS

Index - Continued

SunOS, continued
System V curses library and terminfo databse, 289 thru

340
supplying libraries to 1 d, 3
suppressing automatic sees retrieval in make, 124
symbolic reduction, 10
symbols

deferred resolution, 2
syscmd built-in m4 macro, 199
system and utility support for shared libraries, 9
System V

basic terminfo capabilities, 324
compiling curses programs, 295
compiling and running a terminfo program, 318
compiling the terminfo terminal description, 326
configuring IPC facilities, 54
converting the terminfo terminal description, cap-

toinfo, 328
curses library and terminfo databse
curses example programs, 328 thru 340
using cu r s e s functions, 293
curses library overview, 290
curses library and terminfo databse, 289 thru 340
displaying the terminfo terminal description, infocmp,

327
IPC facilities, 54 thru 91
IPC permissions, 54
IPC system calls, key arguments, creation flags, 55
keyboard-entered terminfo capabilities, 325
learning about terminfo terminal capabilities, 322
message header, 58
message queue, 57
message queue control structure, 58
messages, 56 thru 67
parameter string terminfo capabilities, 325
removing IPC facilities, 54
screen oriented t erminf ° capabilities, 324
semaphore set, 68
semaphore set structure, 68
semaphores, 67 thru 81
shared memory, 81 thru 91
shared memory segment, 81
shared memory segment structure, 81
specifying terminfo capabilities, 322
terminal information package components, 292
terminal name, terminfo, 321
terminfo database and curses library, 289 thru 340
terminfo database overview, 291
terminfo library functions, 317
terminfo program requirements, 317
testing the terminfo terminal description, 327
undo structure for semaphores, 68
using the terminfo database, 321
viewing the terminfo terminal description, infocmp, 327
writing terminfo terminal descriptions, 321

T
target

alternate starting, for make, 120
and dependencies in make, 116
default target for make, 117
entries not encountered by make, 120
entry format for rna k e, 116

target, continued
forced processing in make, 122
rules that produce no file, 116
unknown, handling by make, 122

tcov - code coverage, 188 thru 191
temporary files for SCCS, 107
termcap, 282 thru 284
terminal, 265

capabilities, terminfo, 322
descriptions, terminfo, 321
information package components, System V, 292
name, terminfo, 321
screen, 265
testing the description, terminfo, 327

terminfo
and System V curses, related, 292
basic capabilities, 324
compiling and running a terminfo program, 318
compiling the terminal description, 326
converting the terminal description, captoinfo, 328
database and System V curses library, 289 thru 340
displaying the terminal description, infocmp, 327
keyboard-entered capabilities, 325
learning about capabilities, 322
library functions, 317
library overview, 291
naming a terminal, 321
parameter string capabilities, 325
program requirements, 317
screen oriented capabilities, 324
specifying capabilities, 322
testing the terminal description, 327
using the terminfo database, 321
viewing the terminal description, infocmp, 327
writing terminfo descriptions, 321

text, 1
deferred resolution of symbols, 2

time - time used, 181 thru 184
TLI,54
touchline, 280
touchoverlap, 281
touchwin (), 281
transitive closure, none for suffix rules in make, 136
translit built-in m4 macro, 200
tstp, 282

U
unctrl (), 281
undefine built-in m4 macro, 196
undi vert built-in m4 macro, 199
undo structure for semaphores, 68
unedi t, sccs subcommand, 98
updates, atomic for semaphores, 68
updating screen, 267
using

curses, 266
lex, 217

/usr/include/make/default.mk,118
/usr/lib/ld.so,2

-358-

V
val, sees subcommand, 112
VARARGS - lint control, 178
VARARGS2 -lint control, 178
variant object files and programs from the same sources in make,

146
version

sees delta ID, 95
vs. delta, in sees, 95

version control
and shared libraries, 8

version number
of shared library, 8

viewing the terminal description, infocmp, terminfo, 327

W
waddch () , 272
waddstr (), 272
wclear () , 273
wclrtobot () , 273
wclrtoeol (), 273
wdelch (), 273
wdeleteln () , 274
werase () , 274
wgetch (), 276
wget st r () , 277
what, 100
winch () ,278
window, 265, 267
window structure, 284 thru 286

begx, 285
:=begy, 285

clear () , 285
-curx, 285
:=cury, 284
_flags, 286

leave, 285
- maxx, 285
:=maxy, 285

scroll () , 285
=y,285

windows and pads, System V curses, 310 thru 313
winsch (), 274
winsertln () , 275
wmove () , 275
wprintw (), 275
wrefresh (), 276
wscanw (), 277
wstandend () , 276
wstandout () , 276

X
x.file, 107
xstr (1),14

y
yacc

"reduce/reduce" conflicts, 241
actions, 232
basic specifications, 230

-359-

yac c, continued
conflicts, 241
disambiguating rules, 241
left association, 240
lexical analysis, 234
precedence,244,245
yacc, 249, 252
right association, 240
shift/reduce conflicts, 241

yacc associativity
%left,244
%nonassoc, 244
%right,244

z
z .file, 107

Index Continued

Notes

Notes

Notes

Notes

Notes

