microsystems

»Ssun

System Services Overview

Part Number: 800-3846-10
Revision A of 27 March, 1990

Trademarks

SunOS™, Sun Workstation®, as well as the word ‘‘Sun’’ followed by a numerical suffix, are trademarks
of Sun Microsystems, Incorporated.

UNIX® and UNIX System V® are trademarks of Bell Laboratories.
PostScript™ is a trademark of Adobe Systems Inc.

All other products or services mentioned in this document are identified by the trademarks or service
marks of their respective companies or organizations.

Legal Notice to Users

Yellow Pages™ is a registered trademark in the United Kingdom, of British Telecommunications plc., and
may also be a trademark of various telephone companies around the world. Sun will be revising future
versions of software and documentation to remove references to the term ‘‘Yellow Pages.”’

Copyright © 1990 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means — graphic, electronic, or mechanical — including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter-
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232 4,745,407
4,679,014 4,435,792 4,719,569 4,550,368 in addition to foreign patents and applications pending.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California. We acknowledge the following individuals and institutions for their role in
its development: The Regents of the University of California, the Electrical Engineering and Computer Sciences
Department at the Berkeley Campus of the University of California, and Other Contributors.

R
R

Contents

Chapter 1 Introduction . 1
L1, OVEIVIEW ...ooooocoeereserecneeesnnsssnenssesinn

1.2. Compatibility and Conformance 1

Chapter 2 The Virtual Memory System ... 3

2.1. Virtual Memory, Address Spaces and Mappingcoeeroine 3

Address SPace LaYOUL ... eeeveemms s resesseesssssssssssssssssssssons 4

Shared Memory 6

2.2. Networking, Heterogeneity and Coherence ... 6

2.3. Memory Management Interfaces 7

Creating and Using Mappings 7

Removing Mappings 11

CaChe CONLIOL ..o eceressssssnse s ssmssss s sssessssen . 1n

Other Mapping Functions 13

Chapter 3 Kernel Interface ...

3.1. Processes and Protection

Host and Process Identifiers .

Creating and Terminating Processes
User and Group Ids

Process Groups and Controlling Terminals

Controlling Terminal .

t ty Parameters

Sessions and Process Groups ..

—iii—

Contents — Continued

3.2.

3.3.

3.4,

3.5.

3.6.

37.

3.8.

Process Groups

Deallocating a Controlling Terminal

Signals ...

Signal Types
Signal Handlers

Sending Signals

Protecting Critical Sections

Signal Stacks

Timers ...

Real Time

Interval Time

Descriptors

The Reference Table

Descriptor Properties

Managing Descriptor References
Multiplexing Requests

Resource Controls

Process Priorities

Resource Utilization

Resource Limitsooooo...........

Memory Locking: mlock () and munlock ()

System Operation Support

Accounting ...

Generic I/O Operations ...

read () and write ()

Input/Output Control

Non-Blocking and Multiplexed Operations
Asynchronous I/O: aread (), awrite () and await ()

File Caches

File System ...

Naming .
Creation and Removal

-1V -

20
20
20
21
22
23
23
24
24
24
25
26
26
27
27
28
29
29
30
30
31
31
32
32
32
33
33

34
34
34
35
35

Contents — Continued

File Creation

Creating References to Devices

File and Device Removal

Reading and Modifying File Attributes

Links and Renaming

Extension and Truncation

Checking Accessibility

..............

File Locking

File and Record Locking: 1ockf ()

Mounting FileSYSIEIMNScccccoooooooeccoeeoeee e s sssssssssseessssssmssnse
DISK QUOLAS ..o e eeeees s sseensee e s s mescesmeesessssssnnnee

3.9. Devices

STIUCTUTEA DEVICES ..o eseeesesssesss e s s seeres e sesssseeres
UNSIUCTUTEA DEVICES ..ot s ses s seesre s et e

3.10. Debugging SUPPOTL ... sseeseess s sssssssasssossosssssssssssssssssssson

Chapter 4 Networking Overview ...
4.1. Socket-Based Interprocess Communications

Interprocess Communication Primitives

Communication Domains ...

Socket Types and Protocols ...

Socket Creation, Naming, and Service Establishment ...

Accepting Connections ...

Making Connections

Sending and Receiving Data

Scatter/Gather and Exchanging Access Rights ...,

Using read () and write () with Sockets

Shutting Down Halves of Full-Duplex Connections ...

Socket and Protocol Options ...

UNIX Domainoeoereeeroeresrenn

Types of SOCKELScccceverorcernen

NaAMINGooooee e
Access Rights Transmission

35
36
37
37
39
40
41
41
42
42
43
43
43
43
44

Contents — Continued

4.2. TLI Communication Facilities

4.3. Network-Based Services
4.4, Standard Server-Based Services

5.2. CLibrary Routines

5.3. Writing Secure Programs

Internet Domain |,

Socket Types and Protocols
Socket Naming

Access Rights Transmission

Raw Access

Modes of Service

Connection-Mode Service

Local Management ...
Connection Establishment

Data Transfer

Connection Release

Connectionless-Mode Service

State Transitions

Chapter § Programmer’s Guide to Security Features
5.1. System Calls

I/O Routines
Process Control

File Attributes ...

User ID and Group ID

Standard I/O

Password Processing

Group Processing

Who’s Running a Program?

Encryption Routines
The des_crypt Library

Password Encryption Routines
User and Group ID

—-—vi—

53
53
53
53
53
53
54
55
55
56
57
57
58
58
58
59

63
63

64
65
66
66
67
68
68
69
69
70
71

Contents — Continued

Set USEr ID PIrOZTAMIS ... iesmsessessssssssssesssessssssssssssssemmesessssssssons 72

Set Group ID PrOZIamS ... oeoeveeeeoes e ssssmmessssssesssos 73
Commands with Shell ESCAPES ... ereeeeemssesesesesneeneeeenn 73

Shell Scripts and Security 73
Guidelines for Secure Programs 73

5.4, Programming as SUPCTUSETccoeeeeeeeeernssosseseoseseonssssssesesen 74
Chapter 6 Native Language Application Support 77
6.1. Introduction 77
Overview 77
Standards-Based Approach 78
Common Data Modeleerereesnnesseessissnnn 78

8-Bit Clean COmMmMANScocvmeeermresssssnsesesssssssssssssssssssssss s s 79

I/O Device SUPPOIL ..o 79
SUNVIEW 1 e s sssssss s ssss s s 79

Native Language Keyboards ... sseseensne 80
Alternate Key Mappings 81

The Compose Key 81
Floating Accent Keys ... 81

LiNE PINEETS ..o s ssssamssnssnssnsesessssosssssssen 82
NEIWOIKIIE ..o eeeeeeveeeeeereeesseessssessossesssessssss s 82

Mailers e 82

File Transfer and Sharing 82
Terminal Emulation 82

Other Networking Services ... 83
MOGECINSoooooeeeeseeecene e sssassse s s sssse s sssssose s sss s esssses s 83

The Announcement (Locale) Mechanism 83

6.2. Using the Internationalized Desktop ... 85
Sharing Data between APPLICALIONS ..o seeeeeeeeeeems oo 85
Sharing Data between 4.1 Host Systems 85
Sharing Data with Other SunOS Operating System Hosts 85

6.3. Creating and Installing a Native Language Environment
(LOCALL) ... eseseeeessass e s s et sssssssesssss sssssssss s ssesssss e 86

—vii—

Contents — Continued

Building a Classification and Conversion Table: chrtbl ...

Building a String Collation Table: colldef

Date and Time Formats

Decimal Units

Monetary Formats

Message Catalogs

Installing a Locale ...

6.4. Developing an Internationalized Application

OVerview ...,

8-Bit Character Support Routines ...

Acquiring the Locale: setlocale() ..
Handling Alphabets and Character Sets ...

Handling Date and Time Formats
Handling Numeric Formats

Handling Monetary Formats

Handling File Names

Sorting, Collation and Conversion ...

Native-Language MESSAZESoummmmmmminmmsasssssesssssssssss st sesessessos

Library Routines for Accessing Message Catalogs

Message Catalogs and the File System
Static and Dynamic Messaging

Other Programming Considerationsooovveeeeeceseseosresemssessasns

Graphical Characters ..o
Printing

Page SIZes ...

Fonts

Handling Multi-Byte Characters

Chapter 7 System V Compatibility Features

7.1. Introduction

Future Directions

System V Enhancements

How the Compatibility Features Work

- viii -

88
88
90
91
94
95
95
95
97
98
98
99
100
101
102
102
103
103
104
104
107
107
107
107
108
108

109
109
109
110
111

Contents — Continued

File-Creation Group ID Semantics 112
Ancillary Libraries ceesnanaana s s ses et e 112

7.2. SVID Compliance . 113
Chapter 8 X/OPEN Compatibility Features ... 119
8.1. Introduction 119
Ancillary Libraries 119

8.2. X/OPEN Conformance 119
Chapter 9 POSIX Conformance 123
.. Conformance with IEEE Standard 1003.1-1988 123

.. Implementation-Defined Features 123
POSIX.1 Section 2, Definitions and General Requirements 123
POSIX.1 Section 3, Process Primitives ... 124
POSIX.1 Section 4, Process Environment - 126
POSIX.1 Section 5, Files and Directories 128
POSIX.1 Section 6, I/O Primitives 131
POSIX.1 Section 7, Device- and Class-Specific Functions ... 132
POSIX.1 Section 8, Language-Specific Services for C ... 135
POSIX.1 Section 9, System Databases 136
POSIX.1 Section 10, Data Interchange Format 137

.. Headers 139
Appendix A ISO Latin 1 Character Set) 143
Appendix B U.S. and European Keyboard Layouts ..., 149

Appendix C Compose Key and Floating Accent Key Sequences 157

Table 4-1
Table 4-2
Table 4-3
Table 4-4

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8

Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8

Table 7-9

Local Management ROULIESooemmemmmmsemmsess s sasenens 56
Connection Establishment Routines ..o 57
Connection Mode Data Transfer ROutinescoooooooveeccecscvevonn. 57
Connection Release ROULINESccveeecenconnneivennssinensesccssnessns 58
8-Bit Dirty COMMANASooooooovorereeoecreieescess e essmessesssssmsssssmssssssssssesssssseee 79
International Date and Time Conventions ..., 89
International Decimal Formatting Conventions ..o 90

International Monetary Formatting Conventions ..o, 91

Internationalized ROULINESocccrmemeereemmsrenerssmssmsimecsscssmmsessisssneee 97
More Sample Monetary Formats 102
Values of the Structure Retuned by localeconv () ... 102
Common International Page SizZesoovoeeevereeeeeeeesisscssssoen 107
SVID Base System OS Service ROULINESooooiermeccnrnssenns 113
SVID Base System General Library Routines 113
SVID Kemel Extension OS Service Routines ... 114

SVID Basic Utilities Extension
SVID Advanced Utilities Extension .
SVID Administered Systems Extension Utili
SVID Software Development Extension

SVID Software Development Extension Addi
Routines ...

SVID Terminal Interface Extension Utilities000. .. 116

xi

Tables — Continued

Table 7-10 SVID Terminal Interface Extension Library Routines 116
Table 7-11 SVID Open Systems Networking Interfaces (TLI) Library

Routines 117
Table 7-12 SVID STREAMS I/O Interface Operating System Service

Routines 117
Table 7-13 SVID Shared Resource Environment (RFS) Utilities ... 117
Table A-1 ISOLAtIN 1 oo eeeveemsessseeesssssessesssenn 143
Table A-2 The ISO 8859 Standard Character Set Family 147
Table C-1 Compose Key Sequences 157

Table C-2 Floating Accent Key Sequences 160

—xii—

S

Figures
Figure 2-1 Traditional UNIX System Address-Space Layout ...
Figure 2-2 Address-space LaAYOULcccoormmerrvsomsmne e sssesessessisssssssssssssen
Figure 4-1 Transport Layer INErface ... sssnsssesees 54
Figure 4-2 Channel Between User and Providercurnnnececnns 55
Figure 4-3 Transport CONNECHONcwveereerooimiveenesesveeseessssssissonsssssss s ssssssee e 56
Figure 6-1 German and French Characters in SunView 1 Desktop 80
Figure 6-2 United Kingdom keyboard 1ayoutmeeeeereremsscisrresresnns 81
Figure 6-3 Structure of a Localization Databaseoeeeen 84

Figure 8-1 System Calls

Figure 8-2 Subroutines and Libraries

Figure 8-3 File Formats .

Figure 8-4 Headers

Figure 8-5 Commands

Figure 8-6 Special Files

Figure B-1 United States

Figure B-2 Belguim/France ...

Figure B-3 Canada ..

Figure B-4 Denmark
Figure B-5 Netherlands .
Figure B-6 Germany
Figure B-7 Italy ...

— Xiit —

Figures — Continued

Figure B-8 Norway

Figure B-9 Portugal

Figure B-10 Spain

Figure B-11 Sweden/Finland
Figure B-12 Switzerland (French)

Figure B-13 Switzerland (German)
Figure B-14 United Kingdom

xiv

152
153
153
154
154
155
155

1.1. Overview

1.2. Compatibility and
Conformance

Introduction

Release 4.1 of the SunOS operating system (hereafter referred to as ‘‘Release
4.1, or “*4.1"") is derived from Berkeley Standard Distribution (BSD) release
4.3, which in turn, was derived form Version 7 of the UNIX operating system
developed at Bell Laboratories. 4.1 also incorporates numerous features from
UNIX System V Release 3, including library routines that are compliant with the
SVID, Issue 2, STREAMS-based communication facilities, RFS, and System V
interprocess communication facilities.

System services are typically made available to an executing program (process)
by means of library routines (function calls). Services provided by the system
kernel are described in the Kernel Interface chapter. Network-based services
and networking concepts are introduced in the Networking Overview chapter.
For a detailed description of the various system abstractions in Release 4.1, refer
to Intro(2) and Intro(3)inthe SunOS Reference Manual.

This manual also describes the architecture of the virtual memory system, in The
Virtual Memory System. Programming security features are outlined in
Programmer’s Guide to Security Features.

An important feature of the SunOS operating system is its compatibility and con-
formance with various emerging standards for the UNIX operating system. This
manual also describes how Release 4.1 complies with these various standards.

@ sun 1 Revision A of 27 March 1990

2 System Services Overview

@ sun Revision A of 27 March 1990

microsystems

2.1. Virtual Memory,
Address Spaces and
Mapping

The Virtual Memory System

Release 4.1 of the SunOS operating system provides a virtual-memory system
with a rich set of memory-management facilities. These facilities, in turn, form a
basis for providing system services such as shared libraries.

Process address spaces are composed of a vector of memory pages, each of which
can be independently mapped and manipulated. Typically, the system presents
mappings that simulate the traditional UNIX process memory environment, but
other views of memory are useful as well.

These memory-management facilities:
o Unify the system’s operations on memory.

o Provide a set of kernel mechanisms powerful and general enough to support
the implementation of fundamental system services without special-purpose
kernel support.

o Maintain consistency with the existing environment, in particular using the
file system as the name space for named virtual-memory objects.

The system’s virtual memory (VM) consists of all available physical memory
resources. Examples include local and remote file systems, processor primary
memory, swap space and other random-access devices. Named objects in the vir-
tual memory are referenced though the file system. However, not all file system
objects are in the virtual memory; devices that the operating system cannot treat
as storage, such as terminal and network device files, are not in the virtual
memory. Some virtual memory objects, such as private process memory and
System V shared memory segments (refer to Programming Utilities and
Libraries), are not named.

A process’s address space is defined by mappings onto objects in the system’s
virtual memory (usually files). Each mapping is constrained to be sized and
aligned with the page boundaries of the system on which the process is execut-
ing. Each page may be mapped (or not) independently. Only process addresses
that are mapped to some system object are valid, for there is no memory associ-
ated with processes themselves—all memory is represented by objects in the
system’s virtual memory.

Each object in the virtual memory has an object address space defined by some
physical storage. A reference to an object address accesses the physical storage

sun 3 Revision A of 27 March 1990

microsystems

4 System Services Overview

Address Space Layout

Figure 2-1

that implements the address within the object. The virtual memory’s associated
physical storage is thus accessed by transforming process addresses to object
addresses, and then to the physical store.

A given process page may map to only one object, although a given object
address may be the subject of many process mappings. An important characteris-
tic of a mapping is that the object to which the mapping is made is not affected
by the mere existence of the mapping. Thus, it cannot, in general, be expected
that an object has an ‘‘awareness’’ of having been mapped, or of which portions
of its address space are accessed by mappings; in particular, the notion of a
‘‘page’’ is not a property of the object. Establishing a mapping to an object sim-
ply provides the potential for a process to access or change the object’s contents.

The establishment of mappings provides an access method that renders an object
directly addressable by a process. Applications may find it advantageous to
access the storage resources they use directly rather than indirectly through
read () and write (). Potential advantages include efficiency (elimination of
unnecessary data copying) and reduced complexity (single-step updates rather
than the read (), modify buffer, write () cycle). The ability to access an
object and have it retain its identity over the course of the access is unique to this
access method, and facilitates the sharing of common code and data.

Traditionally, the address space of a process has consisted of exactly three seg-
ments: one each for write-protected program code (text), a heap of dynamically
allocated storage (data), and the process’s stack. Text is read-only and shared,
while the data and stack segments are private to the process. as follows:

Traditional UNIX System Address-Space Layout

Text

Data

l
!

Stack

Under Release 4.1, a process’s address space is simply a vector of pages, and the
division between different address-space segments is not so clear-cut. Process
text and data spaces are simply groups of pages.! There are often multiple text
and data “segments*, some belonging to specific programs and some belonging

1 For compatibility purposes, the system maintains address ranges that “should” belong to such segments to
support operations such as extending or contracting the data segment’s “break”. These are initialized when a
program is initiated with execve ().

sun Revision A of 27 March 1990

microsystems

Chapter 2 — The Virtual Memory System 5

to code running in shared libraries. An illustration of one possible layout of an
address space is:

Figure 2-2 Address-space Layout

<-- Page 0 left unmapped
text
text ,
data For some execve’ed program
data
<-- Unmapped Area
text 1))
data For Shared Libraries
text
data
data | ||
<-- Other Voids
Iinker
........................... Stack lel[
stack
stack
stack

Release 4.1 system processes still uses text, data, and stack segments, but these
are better thought of as constructs provided by the programming environment
rather than the operating system. As such, it is possible to construct processes
that have multiple segments of each ‘‘type,’’ or of types of arbitrary semantic
value — no longer are programs restricted to being built only from objects the
system was capable of representing directly. For instance, a process’s address
space may contain multiple text and data segments, some belonging to specific
programs and some shared among multiple programs. Text segments from
shared libraries, for example, typically appear in the address spaces of many
processes. A process’s address space is simply a vector of pages, and there is no
necessary division between different address-space segments. Process text and
data spaces are simply groups of pages mapped in ways appropriate to the func-
tion they provide the program.

A process’s address space is usually sparsely populated, with data and text pages
intermingled. The precise mechanics of the management of stack space is
machine-dependent, although by convention, page O is not used. Process address
spaces are often constructed through dynamic linking when a program is
exec’ed. Operations such as exec () and dynamic linking build upon the map-
ping operations described previously. Dynamic linking is described further in
Programming Utilities and Libraries.

While the system may have multiple areas that can be considered ‘‘data’’ seg-
ments, for programming convenience the system maintains operations to operate

@ sun Revision A of 27 March 1990

microsystems

6 System Services Overview

Shared Memory

2.2. Networking,
Heterogeneity and
Coherence

on an area of storage associated with a process’s initial ‘‘heap storage area.”’ A
process can manipulate this area by calling brk () and sbrk ():

caddr_t brk(addr)
caddr_t addr;

caddr_t sbrk(incr):;
int incr;

brk () sets the system’s idea of the lowest data segment location not used by the
caller to addr (rounded up to the next multiple of the system’s page size).

sbrk () , the alternate function, adds incr bytes to the caller’s data space and
returns a pointer to the start of the new data area.

Memory sharing between processes (or even between two areas of the same pro-
cess) occurs whenever mappings are establish that reference the same memory
object. This can occur when two processes map common addresses of a single
file, or when a parent and child share a MAP_ SHARED mapping across a

fork ().

This memory sharing is an implicit form of Interprocess Communication (IPC),
which is turns out to be a highly efficient method for communicating information
between processes. Within this framework, the general form of establishing
common memory for mapping into multiple processes for purposes IPC is to
create a file. However, for compatibility purposes, Release 4.1 also provides the
standard System V shared memory segments, along with messages and sema-
phores. These facilities are described in Programming Ultilities and Libraries.

The VM is designed to fit well with the operating system’s heterogeneous
environment, an environment that makes extensive use of networking to access
file systems which can now be regarded as part of the system’s virtual memory.

Networks are not constrained to consist of similar hardware or to be based upon a
common operating system; in fact, the opposite is encouraged, for such con-
straints create serious barriers to accommodating heterogeneity. While a given
set of processes may apply a set of mechanisms to establish and maintain the pro-
perties of various system objects—properties such as page sizes and the ability of
objects to synchronize their own use—a given operating system should not
impose such mechanisms on the rest of the network.

As it stands, the access-method view of virtual memory maintains the potential
for a given object (say a text file) to be mapped by the operating system’s
memory-management facilities, and also by systems like PC-DOS, for which vir-
tual memory and storage management techniques such as paging are totally
foreign. Such systems can continue to share access to the object, each using and
providing its programs with the access method appropriate to that system. The
unacceptable alternative would be to prohibit access to the object by less capable
systems.

Another consideration arises when applications use an object as a communica-
tions channel, or otherwise attempt to access it simultaneously. In both of these
cases, the object is being shared, and thus the applications must use some

S u n Revision A of 27 March 1990

microsystems

Chapter 2 — The Virtual Memory System 7

2.3. Memory Management
Interfaces

Creating and Using Mappings

4

synchronization mechanism to guarantee the coherence of their transactions with
it. The scope and nature of the synchronization mechanism is best left to the
application to decide. For example, file access on systems that do not support
virtual memory access methods must be indirect, by way of read () and
write (). Applications sharing files on such systems must coordinate their
access using semaphores, file locking or some application-specific protocols.
What is required in an environment where mapping replaces read () and
write () asthe access method is an operation, such as £sync (), that supports
atomic update operations.

The nature and scope of synchronization over shared objects is application-
defined from the outset. If the system attempted to impose any automatic seman-
tics for sharing, it might prohibit other useful forms of mapped access that have
nothing whatsoever to do with communication or sharing. By providing the
mechanism to support coherency, and leaving it to cooperating applications to
apply the mechanism, the needs of applications are met without erecting barriers
to heterogeneity. Note that this design does not prohibit the creation of libraries
that provide coherent abstractions for common application needs. Not all
abstractions on which an application builds need be supplied by the ‘‘operating
system.”’

The applications programmer gains access to the facilities of the VM system
through several sets of system calls. This section summarizes these calls, and
provides examples of their use. For details, see the SunOS Reference Manual.

caddr_t mmap(addr, len, prot, flags, fd, off)
caddr_t addr;

size_t len;

int prot, flags, fd:

off t off;

mmap () establishes a mapping between a process’s address space and an object
in the system’s virtual memory. It is the system’s most fundamental function for
defining the contents of an address space — all other system functions that con-
tribute to the definition of an address space are built from mmap (). The format
of anmmap () callis:

paddr = mmap (addr, len, prot, flags, fd, off):;

mmap () establishes a mapping from the process’s address space at an address
paddr for 1en bytes to the object specified by £d at offset of £ for 1Len bytes.
The value returned by mmap () is an implementation-dependent function of the
parameter addr and the setting of the MAP_FIXED bit of £1ags, as described
below. A successful call to mmap () returns paddr as its result. The address
range [paddr, paddr + len) must be valid for the address space of the
process and the range [off, off + len) must be valid for the virtual
memory object. (The notation [start, end) refers to the interval from
start to end, including start but not including end.) The mapping esta-
blished by mmap () replaces any previous mappings for the process’s pages in
the range [paddr, paddr + len).

S u n Revision A of 27 March 1990

microsystems

8

System Services Overview

The parameter prot determines whether read, execute, write or some combina-
tion of accesses are permitted to the pages being mapped. Specify permissions by
an OR of the f1lags values PROT_READ, PROT_EXECUTE, and
PROT_WRITE. A write access must fail if PROT_WRITE has not been set,
though the behavior of the write can be influenced by setting MAP_PRIVATE in
the £1ags parameter, as described below.

The f£1ags parameter provides other information about the handling of mapped
pages:

o MAP_SHARED and MAP_PRIVATE specify the mapping type, and one of
them must be specified. The mapping type describes the disposition of store
operations made by this process into the address range defined by the map-
ping operation. If MAP SHARED is specified, write references will modify
the mapped object. No further operations on the object are necessary to
effect a change — the act of storing into a MAP_ SHARED mapping is
equivalent to doing a write () system call.

On the other hand, if MAP_PRIVATE is specified, an initial write reference to a
page in the mapped area will create a copy of that page and redirect the initial
and successive write references to that copy. This operation is sometimes
referred to as copy-on-write and occurs invisibly to the process causing the store.
Only pages actually modified have copies made in this manner. MAP_ PRIVATE
mappings are used by system functions such as exec(2) when mapping files
containing programs for execution. This permits operations by programs such as
debuggers to modify the ‘‘text’’ (code) of the program without affecting the file
from which the program is obtained. The private copy is not created until the
first write; until then, other users who have the object mapped MAP _SHARED can
change the object. That is, if one user has an object mapped MAP_ PRIVATE and
another user has the same object mapped MAP_ SHARED, and the MAP_ SHARED
user changes the object before the MAP_ PRIVATE user does the first write, then
the changes appear in the MAP_ PRIVATE user’s copy that the system makes on
the first write. If an application desires such isolation, it should use read to
make a copy of the data it wishes to keep isolated.

The mapping type is retained across a fork (). The mapping type only affects
the disposition of stores by the calling process—there is no isolation from
changes made by other processes. If an application desires such isolation, it
should use read () to make a copy of the data it wishes to keep isolated.

o MAP_FIXED informs the system that the value returned by mmap () must
be addr, exactly. The use of MAP_F IXED is discouraged, as it may
prevent an implementation from making the most effective use of system
resources. When MAP_FIXED is not set, the system uses addr as a hint to
arrive at paddr. The paddr so chosen is an area of the address space that
the system deems suitable for a mapping of 1en bytes to the specified
object. An addr value of zero grants the system complete freedom in
selecting paddr, subject to constraints described below. A non-zero value
of addr is taken as a suggestion of a process address near which the map-
ping should be placed. When the system selects a value for paddr, it never
places a mapping at address 0, nor replaces any extant mapping, nor maps

sun Revision A of 27 March 1990

microsystems

Chapter 2 — The Virtual Memory System 9

into areas considered part of the potential data or stack ‘‘segments.’’ The
system strives to choose alignments for mappings that maximize the perfor-
mance of the its hardware resources.

The file descriptor used in ammap () call need not be kept open after the map-
ping is established. If it is closed, the mapping will remain until such time as it
is replaced by another call to mmap () that explicitly specifies the addresses
occupied by this mapping; or until the mapping is removed either by process ter-
mination or a call to munmap (). Although the mapping endures independently
of the existence of a file descriptor, changes to the file can influence accesses to
the mapped area, even if they do not affect the mapping itself. For instance,
should a file be shortened by a call to truncate (), such that the mapping now
‘‘overhangs’’ the end of the file, then accesses to that area of the file that ‘‘does
not exist’’ will result in SIGBUS signals. It is possible to create the mapping in
the first place such that it ‘‘overhangs’’ the end of the file — the only require-
ment when creating a mapping is that the addresses, lengths, and offsets specified
in the operation be possible (i.e., within the range permitted for the object in
question), not that they exist at the time the mapping is created (or subsequently.)

Similarly, if a program accesses an address in a manner inconsistently with how

it has been mapped (for instance, a store operation into a mapping that was esta-
blished with only PROT_READ access), then a SIGSEGV signal will result. SIG-
SEGV signals will also result on any attempt to reference an address not defined
by any mapping.

In general, if a program makes a reference to an address that is inconsistent with
the mapping (or lack of a mapping) established at that address, the system will
respond with a SIGSEGV violation. However, if a program makes a reference to
an address consistent with how the address is mapped, but that address does not
evaluate at the time of the access to allocated storage in the object being mapped,
then the system will respond with a SIGBUS violation. In this manner a pro-
gram (or user) can distinguish between whether it is the mapping or the object
that is inconsistent with the access, and take appropriate remedial action.

Using mmap () to access system memory objects can simplify programs in a
variety of ways. Keeping in mind that mmap ()} can really be viewed as just a
means to access memory objects, it is possible to program using mmap ()} in
many cases where you might program with read () orwrite (). However, it
is important to realize that mmap () canonly be used to gain access to memory
objects — those objects that can be thought of as randomly accessible storage.
Thus, terminals and network connections can not be accessed with mmap ()
because they are not ‘‘memory.”” Magnetic tapes, even though they are memory
devices, can not be accessed with mmap () because storage locations on the tape
can only be addressed sequentially. Some examples of situations that can be
thought of as candidates for use of mmap () over more traditional methods of file
access include:

o Random access operations — either map the entire file into memory or, if
the address space can not accommodate the file or if the file size is variable,
create ‘‘windows’’ of mappings to the object.

@ sun Revision A of 27 March 1990

microsystems

10

System Services Overview

o Efficiency — even in situations where access is sequential, if the object
being accessed can be accessed using mmap (), an efficiency gain may be
obtained by avoiding the copying operations inherent in accesses via
read () orwrite (). For even greater efficiency, you can use mad-
vise () to set the MADV_SEQUENTIAL flag, in which case the system will
free each page after it is passed.

o Structured storage — if the storage being accessed is collected as tables or
data structures, algorithms can be more conveniently written if access to the
file is treated just as though the tables were in memory. Previously, pro-
grams could not simply make storage or table alterations in memory and
save them for access in subsequent runs, however when the addresses of the
table are defined by mappings to a file then changes to the storage are
changes to the file, and are thus automatically recorded in it.

Scattered storage — if a program requires scattered regions of storage, such
as multiple heaps or stack areas, such areas can be defined by mapping
operations during program operation. However, this method is not portable
to systems using the traditional UNIX address-space layout.

The remainder of this section will illustrate some other concepts surrounding
mapping creation and use.

Mapping /dev/zero gives the calling program a block of zero-filled virtual
memory of the size specified in the call to mmap (). /dev/zero is a special
device, that responds to read () as an infinite source of bytes with the value 0,
but when mapped creates an unnamed object to back the mapped region of
memory. The following code fragment demonstrates a use of this to create a
block of scratch storage in a program, at an address of the system’s choosing.

f ™)
/*
* Function to allocate a block of zeroed storage. Parameter
* is the number of bytes desired. The storage is mapped as
* MAP_SHARED, so that if a fork() occurs, the child process
* will be able to access and modify the storage. If we wished
* to cause the child’s modifications (as well as those by the
* parent) to be invisible to the ancestry of processes, we
* would use MAP_ PRIVATE.
*/
caddr_t get_zero_ storage(len)
int len;
{
int £d4;
caddr_t result;
if ((fd = open("/dev/zero", O_RDWR)) == -1)
return ((caddr_t)-1);
result = mmap(0, len, PROT_READ|PROT_ WRITE, MAP_ SHARED, fd, 0);
(void) close(fd);
return (result);
}
\ J
sun Revision A of 27 March 1990

microsystems

Chapter 2 — The Virtual Memory System 11

Removing Mappings

Cache Control

As written, this function permits a hierarchy of processes to use the area of allo-
cated storage as a region of communication for implicit Interprocess Communi-
cation. As noted earlier, System V IPC facilities can be used to accomplish the
same purpose without requiring that the processes be in a parent-child hierarchy.

In some cases, devices or files are only useful when accessed by way of mapping.
An example of this are frame buffer devices used to support bit-mapped displays,
where display management algorithms function best if they can operate randomly
on the addresses of the display directly.

Finally, it is important to remember that mappings can be operated upon at the
granularity of a single page. Even though a mapping operation may define multi-
ple pages of an address space, there is absolutely no restriction that subsequent
operations on those addresses must operate on the same number of pages. For
instance, an mmap () operation defining 10 pages of an address space may be
followed by subsequent munmap () (see below) operations that remove every
other page from the address space, leaving 5 mapped pages each followed by an
unmapped page. Those unmapped pages may subsequently be mapped to dif-
ferent locations in the same or different objects, or the whole range of pages (or
any partition, superset, or subset of the pages) used in other mmap () or other
memory management operations. Further, it must be noted that any mapping
operation that operates on more than a single page can *‘partially succeed’’ in
that some parts of the address range can be affected even though the call retumns a
failure. Thus, an mmap () operation that replaces another mapping, if it fails,
may have deleted the previous mapping and failed to replace it. Similarly, other
operations (unless specifically stated otherwise) may process some pages in the
range successfully before operating on a page where the operation fails.

int munmap (addr, len)
caddr_t addr;
size_t len;

munmap () removes all mappings in the range [addr, addr + len) from
the address space of the calling process. It is not an error to remove mappings
from addresses that do not have them, and any mapping, no matter how it was
established, can be removed with munmap (). munmap () does not in any way
affect the objects that were mapped at those addresses.

The memory management system in Release 4.1 can be thought of as a form of
‘‘cache management,”’ in which a processor’s primary memory is used as a cache
for pages from objects from the system’s virtual memory. Thus, there are a
number of operations that control or interrogate the status of this ‘‘cache,’’ as
described in this section.

int mincore (addr, len, vec)
caddr_ t addr;

size_t len;

char *vec;

mincore () determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). Using the ‘‘cache

S u n Revision A of 27 March 1990

microsystems

12

System Services Overview

concept’’ described earlier, this function can be viewed as an operation that inter-
rogates the status of the cache, and returns an indication of what is currently
resident in the cache. The status is returned as a char-per-page in the character
array referenced by *vec (which the system assumes to be large enough to
encompass all the pages in the address range). Each character contains either a
“1’ (indicating that the page is resident in the system’s primary storage), or a
*“0’’ (indicating that the page is not resident in primary storage.) Other bits in
the character are reserved for possible future expansion — therefore programs
testing residency should test only the least significant bit of each character.

int mlock(addr, len)
caddr_t addr;

size_t len;

int munlock (addr, 1len)
caddr_t addr;

size t len;

mlock () causes the pages referenced by the mapping in the range [addr,
addr + len) to be locked in physical memory. References to those pages
(even through other mappings in this or other processes) will not result in page
faults that require an I/O operation to obtain the data needed to satisfy the refer-
ence. Because this operation ties up physical system resources, and has the
potential to disrupt normal system operation, use of this facility is restricted to
the super-user. The system will not permit more than a configuration-dependent
limit of pages to be locked in memory simultaneously, the call tomlock () will
fail if this limit is exceeded.

munlock () releases the locks on physical pages. Note that if multiple
mlock () calls are made through the same mapping, only a single munlock ()
call will be required to release the locks (in other words, locks on a given map-
ping do not nest.) However, if different mappings to the same pages are pro-
cessed withmlock (), then the pages will not be unlocked until the locks on all
the mappings are released.

Locks are also released when a mapping is removed, either through being
replaced with an mmap () operation or removed explicitly with munmap (). A
lock will be transferred between pages on the ‘‘copy-on-write’’ event associated
with a MAP_PRIVATE mapping, thus locks on an address range that includes
MAP_PRIVATE mappings will be retained transparently along with the copy-
on-write redirection (see mmap () above for a discussion of this redirection.)

int mlockall (flags)
int flags;

int

munlockall()

mlockall () andmunlockall () are similar in purpose and restriction to
mlock () and munlock (), except that they operate on entire address spaces.
mlockall () accepts a flags argument that influences whether the lock is to
affect everything currently in the address space, everything that will be added in
the future, or both. The flags are built as a bit-field of values from the set:

sun Revision A of 27 March 1990

microsystems

Chapter 2 — The Virtual Memory System 13

Other Mapping Functions

MCL_CURRENT Current mappings
MCL_FUTURE Future mappings

munlockall () removes all locks on all pages in the address space, whether
established by mlock () ormlockall().

int msync(addr, len, flags)
caddr_t addr;

size_t len;

int flags;

msync () supports applications that require assertions about the integrity of data
in the storage backing their mapping, either for correctmess or for coherent com-
munications in a distributed environment. msync () causes all modified copies
of pages over the range [addr, addr + len) to be flushed to the objects
mapped by those addresses. In the cache analogy discussed previously,

msynec () is the cache *‘write-back,’’ or flush, operation. It is similar in purpose
to the £sync () operation for files.

msync () optionally invalidates such cache entries so that further references to
the pages cause the system to obtain them from their permanent storage loca-
tions.

The £1lags argument provides a bit-field of values that influences the behavior
of msync (). The bit names and their interpretations are:

MS_SYNC Synchronized write
MS ASYNC Return immediately
MS_INVALIDATE Invalidate caches

MS_SYNC causes msync () to return only after all I/O operations are complete.
MS_ASYNC causes msync () to return immediately once all I/O operations are
scheduled. MS_INVALIDATE causes all cached copies of data from mapped
objects to be invalidated, requiring them to be re-obtained from the object’s
storage upon the next reference.

int
getpagesize ()

getpagesize () retumns the system-dependent size of a memory page. For
portability, applications should not embed any constants specifying the size of a
page, and instead should make use of getpagesize () to obtain that informa-
tion. Note that it is not unusual for page sizes to vary even among implementa-
tions of the same instruction set, increasing the importance of using this function
for portability.

int mprotect (addr, len, prot)
caddr_t addr;

size t len;

int prot;

sun Revision A of 27 March 1990

microsystems

14

System Services Overview

mprotect () has the effect of assigning protection prot to all pages in the
range [addr, addr + len). The protection assigned can not exceed the
permissions allowed on the underlying object. For instance, a read-only mapping
to a file that was opened for read-only access can not be set to be writable with
mprotect () (unless the mapping is of the MAP_PRIVATE type, in which case
the write access is permitted since the writes will modify copies of pages from
the object, and not the object itself.)

int munmap (addr, len)
caddr_t addr;
size_t len:;

munmap () has the effect of removing all pages in the range [addr, addr +
len) from the address space of the calling process.

int

getpagesize ()

getpagesize () retums the system-dependent size of a memory page.

int mincore (addr, len, vec)
caddr_t addr;

size_t len;

char *vec;

mincore () determines the residency of the memory pages in the address space
covered by mappings in the range [addr, addr + len). The statusis
returned as a char-per-page in the character array referenced by *vec (which the
system assumes to be large enough to encompass all the pages in the address
range).

sun Revision A of 27 March 1990

microsystems

3.1. Processes and
Protection

Host and Process Identifiers

Kernel Interface

Each host system has associated with it a 32-bit host ID, and a hosthame of up to
MAXHOSTNAMELEN characters (as defined in <sys/param.h>). The hostname is
accessed and modified with the calls:

e p
int getdomainname (name, namelen)
char *name;

int namelen;

int setdomainname (name, namelen)
char *name;
int namelen;

long gethostid()

int gethostname (name, namelen)
char *name;
int namelen;

int sethostname (name, namelen)

char *name;

int namelen;

\. J

getdomainname () places the name of the domain for the current processor in
the string pointed to by the name parameter. name is null-terminated if space
allows. setdomainname () sets the name of the current processor’s domain
to the string pointed to by name.

On each host runs a set of processes. Each process is largely independent of
other processes, having its own protection domain, address space, timers, and an
independent set of references to system or user implemented objects.

Each process in a host is named by an integer called the process ID (PID). This
number is in the range MAXP ID1- (as defined in <sys/param.h>). A process
can discover its PID with the getpid () routine:

[pid_t getpid()]

On each host this identifier is guaranteed to be unique; in a multi-host environ-

sun 15 Revision A of 27 March 1990

microsystems

16 System Services Overview

Creating and Terminating
Processes

ment, the (hostid, PID) pairs are guaranteed unique.

A new process is usually created by copying that mappings that define the
address space of a parent process, thus making a logical duplicate of the parent.
(See the Virtual Memory System chapter for a description of mapping).

E)id_t fork() J

The fork () call returns twice, once in the parent process, where the PID is the
process identifier of the child, and once in the child process where the PID is 0.

Since execve () (see below) specifies MAP_PRIVATE on all the mappings it
performs, parent and child effectively have copy-on-write access to a single set
of objects. Any MAP SHARED mappings in the parent are also MAP_ SHARED in
the child, providing the opportunity for both parent and child to operate on a
common object. The parent-child relationship induces a hierarchical structure on
the set of processes in the system.

A process may terminate by executing an exit () call:

int exit (status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives
information about any event which caused termination of the child process. A
second call provides a non-blocking interface and may also be used to retrieve
information about resources consumed by the process during its lifetime.

f N\
#include <sys/wait.h>

#include <sys/resource.h>

int wait (statusp)
union wait *statusp:;

int wait3(statusp, options, rusage)
union wait *statusp;

int options;

struct rusage *rusage;

L Y,

The System V-compatible waitpid(2V) routine can be used to obtain informa-
tion about a selected process.

A process can overlay itself with the memory image of another program, passing
the newly created process a set of parameters, using the call:

int execve(path, argv, envp)
char *path, **argv, **envp;

execve () specifies MAP_PRIVATE on the mappings which overlay the old

sun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 17

User and Group Ids

address space. execve () performs this operation by performing the internal
equivalent of an mmap () to the file containing the program. The text and initial-
ized data segments are mapped to the file, and the program’s uninitialized data
and stack areas are mapped to unnamed objects in the system’s virtual memory.
The boundaries of the mappings it establishes are recorded as representing the
traditional “segments” of a UNIX process’s address space.

The text segment is mapped with only PROT _READ and PROT _EXECUTE pro-
tections, so that write references to the text produce segmentation violations.
The data segment is mapped as writable; however any page of initialized data
that does not get written may be shared among all the processes running the pro-
gram.

The specified name must be a file which is in a format recognized by the system,
either a binary executable file or a ASCII file which causes the execution of a
specified interpreter program (usually sh(1) or csh(1)) to process its contents.

Each process in the system has associated with it two user ID’s (UID) a real user
ID (RUID), and an effective user ID (EUID), both non-negative 16 bit integers.
(Note: a user may change his EUID, but this does not change his RUID). Each
process has a real accounting group ID (GID), an effective accounting group ID
(EGID), and a set of access group IDs. Group IDs are non-negative 16 bit
integers. Each process may be in several different access groups, with the max-
imum concurrent number of access groups a system compilation parameter, the
constant NGROUPS in the file <sys/param.h>, guaranteed to be at least 8.

The real and effective user IDs associated with a process are returned by
getuid () and geteuid (), respectively.

()
uid_t getuid()

uid_t geteuid()
\. J

the real and effective accounting group ID by:

' N\
gid t getgid()

gid t getegid{()
\ Y,

and the set of access group IDs is placed in the array pointed to by the gidset
parameter of getgroups () :

#include <sys/param.h>

int getgroups (gidsetlen, gidset)
int gidsetlen;

gid_t gidset[]:;

User and group IDs are assigned at login time using the setreuid (), setre-
gid(), and setgroups () calls:

S ll n Revision A of 27 March 1990

microsystems

18 System Services Overview

Process Groups and
Controlling Terminals

int setreuid(ruid, euid)
int ruid, euid;

int setregid(rgid, egid)

int rgid, egid;

#include <sys/param.h>

int setgroups (ngroups, gidset)

int ngroups;

gid_t gidset[];

. J

The setreuid () call sets both the real and effective user IDs, while the
setregid () call sets both the real and effective accounting group IDs. Unless
the caller is the super-user, the RUID must be equal to either the current real or
effective user ID, and RGID equal to either the current real or effective account-
ing group. The setgroups () call is restricted to the super-user.

Each process in the system is also normally associated with a process group.
The group of processes in a process group is sometimes referred to as a job and
manipulated by high-level system software (such as the shell). The current pro-
cess group of a process is returned by the getpgrp () call:

int getpgrp(pid)
int pid;

The process group associated with a process may be changed using
setpgid():

#include <sys/types.h>

int setpgid (pid, pgid)
pid_t pid, pgid;

Newly created processes are assigned process IDs distinct from all processes and
process groups, and the same process group as their parent. A normal
(unprivileged) process may set its process group equal to its process ID. A
privileged process may set the process group of any process to any value.

When a process is in a specific process group it may receive software interrupts
affecting the group, causing the group to suspend or resume execution or to be
interrupted or terminated. In particular, every system terminal has a process
group and only processes which are in the process group of a terminal may read
from the terminal, allowing arbitration of terminals among several different jobs.
A process can examine the process group of the terminal’s foreground process
using tcgetpgrp():

#include <sys/types.h>

pid_t tcgetpgrp (£d)
int f£d;

sSun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 19

Controlling Terminal

tty Parameters

Sessions and Process Groups

A process may change the process group of any terminal which it can write
using: tcsetpgrp () call:

int tcsetpgrp(fd, pgrp_id)
int fd4;
pid t pgrp_id;

The terminal’s process group may be set to any value. Thus, more than one ter-
minal may be in a process group.

Each process in the system is usually associated with a controlling terminal,
accessible through the file /dev/tty. A newly created process inherits the
controlling terminal of its parent. A process may be in a different process group
than its controlling terminal, in which case the process does not receive software
interrupts affecting the controlling terminal’s process group.

You can arrange for a process to be detached from the controlling terminal using
setsid():

#include <sys/types.h>
pid t setsid()

Refer to UNKNOWN TITLE ABBREVIATION: RELEASE for more information
about setting the controlling terminal for a process group.

Certain functions that relate to the state of the terminal device have been repack-
aged for POSIX conformance and portability. Previous interfaces are still avail-
able by way of ioctl () requests. The new functions are:

Get/set terminal (line) speeds: cfget ispeed(2), cfsetispeed(2),
cfgetospeed(2), and cfsetospeed(?).

Line control functions: t cdrain(2), tcflow(2), and tcflush(2).

Get/set attributes (such as line discipline modes): t cgetattr(2) and
tcsetattr(2).

Get/set tty process group: tcgetpgrp(2), and tcsetpgrp(2).

Release 4.1 incorporates the concept of a session. A session is a grouping of pro-
cess groups just as a process group is a grouping of processes. Sessions are
closely related to controlling terminals; each controlling terminal belongs to a
session. All processes with the same controlling terminal are in the same ses-
sion. A terminal may be the controlling terminal for at most one session.

setsid(2)is a new function that creates a new session with the calling process
as the session leader and only member of that session. Note: a session leader
may not create a new session by calling setsid () asecond time. setsid()
is similar to

sun Revision A of 27 March 1990

microsystems

20 System Services Overview

Process Groups

Deallocating a Controlling
Terminal

3.2. Signals

ioctl (fd, TIOCNOTTY, (char*)O0)

inthat setsid () disassociates the calling process from its controlling terminal,
if any; the TTOCNOTTY ioct1 has been changed to be acall to setsid ().

There is a new version of setpgrp () called setpgid(); setpgid () is
POSIX compliant. Release 4.1 supports both, but the meaning of

setpgrp (mypid, 0) has changed. That particular variation of the system call
has been changed to invoke setsid ().

setpgrp () no longer allows arbitrary values for pgrp. A process is only
allowed to create a new pgrp equal to its PID, or join an existing process group
within its session.

In 4.1, a process must be a session leader in order to acquire a controlling termi-
nal. Since setsid () is new to 4.1, the system has been modified to call it on
the behalf of old binaries. The system makes every effort to arrange that a pro-
cess is a session leader at the appropriate time such that the process will receive a
controlling terminal. For more information refer to UNKNOWN TITLE ABBRE-
VIATION: RELEASE.

The following will all result in the deallocation of the process’s controlling ter-
minal, provided the process is not a session leader:

setpgrp(0, 0);
ioctl (fd, TIOCNOTTY, (char*)O0);
setsid();

The most portable way to get rid of a controlling terminal is to:

if (fork())
exit ();
(void) setsid():;

The fork () is necessary to make sure the process is not a session leader. For
BSD based programs, the setsid () call may be safely replaced by a call to
setpgrp (0, 0). These calls are equivalent on 4.1 and later systems. On ear-
lier systems this will not deallocate the controlling terminal; it does modify pro-
cess state enough that the terminal will be replaced by a different one on the next
attempt to open the terminal.

The system defines a set of signals that may be delivered to a process. Signal
delivery resembles the occurrence of a hardware interrupt: the signal is blocked
from further occurrence, the current process context is saved, and a new one is
built. A process may specify the handler to which a signal is delivered, or
specify that the signal is to be blocked or ignored. A process may also specify
that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be
accompanied by creation of a core image file, containing the current memory
image of the process for use in post-mortem debugging. A process may choose
to have signals delivered on a special stack, so that sophisticated software stack
manipulations are possible.

S u n Revision A of 27 March 1990

microsystems

Chapter 3 — Kemnel Interface 21

Signal Types

All signals have the same priority. If multiple signals are pending simultane-
ously, the order in which they are delivered to a process is implementation
specific. Signal routines execute with the signal that caused their invocation
blocked, but other signals may yet occur. Mechanisms are provided whereby
critical sections of code may protect themselves against the occurrence of
specified signals.

For POSIX compliance, 4.1 includes a new package of signal library routines.
The new functions are: sigaction(2V) sigaddset(2V) sigdelset(2V)
sigemptyset(2V) sigfillset(2V) sigismember(2V)
sigpending(2V) sigprocmask(2V)and .sigsuspend(2V) Another
change for POSIX allows the SIGCONT signal to be blocked. The effect is that
the process is still restarted upon the receipt of a SIGCONT signal but the handler
is not called until the signal is unblocked.

The signals defined by the system fall into one of five classes: hardware condi-
tions, software conditions, input/output notification, process control, or resource
control. The set of signals is defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur dur-
ing execution. Such signals include SIGFPE representing floating point and
other arithmetic exceptions, SIGILL for illegal instruction execution, SIGSEGV
for addresses outside the currently assigned area of memory, and SIGBUS for
accesses that violate memory protection constraints. Other, more cpu-specific
hardware signals exist, such as SIGIOT, SIGEMT, and STGTRAP.

Software signals reflect interrupts generated by user request: SIGINT for the
normal interrupt signal; SIGQUIT for the more powerful quit signal, that nor-
mally causes a core image to be generated; SIGHUP and SIGTERM that cause
graceful process termination, either because a user has “hung up”, or by user or
program request; and STIGKILL, a more powerful termination signal which a
process cannot catch or ignore. Programs may define their own asynchronous
events using SIGUSR1 and SIGUSR2. Other software signals (SIGALRM,
SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is
possible on a descriptor, or when a non-blocking operation completes. A process
may request to receive a SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process
group. The SIGSTOP signal is a powerful stop signal, because it cannot be
caught. Other stop signals SIGTSTP, SIGTTIN, and SIGTTOU are used when
a user request, input request, or output request respectively is the reason for stop-
ping the process. A STGCONT signal is sent to a process when it is continued
from a stopped state. Processes may receive notification with a STGCHLD signal
when a child process changes state, either by stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs
when a process nears its CPU time limit and STIGXFSZ wamns that the limit on
file size creation has been reached.

sun Revision A of 27 March 1990

microsystems

22 System Services Overview

Signal Handlers

NOTE

A process has a handler associated with each signal. The handler controls the
way the signal is delivered. The call:

4 I
#include <signal.h>

struct sigvec {
int (*sv_handler) ();
int sv_mask;
int sv_flags;
}:
int sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

\. v,

assigns interrupt handler address sv_handler to signal sig. Each handler
address specifies either an interrupt routine for the signal, that the signal is to be
ignored, or that a default action (usually process termination) is to occur if the
signal occurs. The constants SIG_IGN and SIG_DFL used as values for
sv_handler cause ignoring or defaulting of a condition.

There are two things that must be done to reset a signal handler from within a
signal handler. Resetting the routine that catches the signal, which

signal(n, SIG_DFL)

does, is only the first. It's also necessary to unblock the blocked signal, which is
done with sigsetmask () or sigblock (). The way to think of signals is as
hardware interrupts. Just resetting the vector for the interrupt is not enough,
you also have to lower the processor priority level.

The sv_mask and sv_onstack values specify the signal mask to be used
when the handler is invoked; it implicitly includes the signal which invoked the
handler. Signal masks include one bit for each signal; the mask for a signal signo
is provided by the macro sigmask(signo), from <signal.h>. sv_flags
specifies whether system calls should be restarted if the signal handler returns
and whether the handler should operate on the normal run-time stack or a special
signal stack (see below). If osv is non-zero, the previous signal vector is
returned. It also specifies whether the signal action is to be reset to SIG_DFL,
and if the signal is to be blocked by setting a bit to the signal mask, when the sig-
nal handler is called. This latter behavior is the default; the former is for back-
ward compatibility with the signal mechanisms of some other versions of the
UNIX system (V7, BSD4.1, System V, etc.).

When a signal condition arises for a process, the signal is added to a set of sig-
nals pending for the process. If the signal is not currently blocked by the process
then it will be delivered. The process of signal delivery adds the signal to be
delivered and those signals specified in the associated signal handler’s sv_mask
to a set of those masked for the process, saves the current process context, and
places the process in the context of the signal handling routine. The call is
arranged so that if the signal handling routine exits normally the signal mask will
be restored and the process will resume execution in the original context. If the

process wishes to resume in a different context, then it must arrange to restore the

sun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 23

Sending Signals

Protecting Critical Sections

signal mask itself.

You can use the sigpending () call to inquire about signals that are pending
and blocked:

#include <signal.h>

int sigpending (set)
sigset_t *set;

The mask of blocked signals is independent of handiers for delays. It delays the
delivery of signals much as a raised hardware interrupt priority level delays
hardware interrupts. Preventing an interrupt from occurring by changing the
handler is analogous to disabling a device from further interrupts.

The signal handling routine sv_handler is called by a C call of the form

(*sv_handler) (signo, code, scp, addr)
int signo, code;

struct sigcontext *scp;

char *addr;

The signo gives the number of the signal that occurred, while code, is a
parameter of certain signals that provides additional detail. The scp parameter
is a pointer to a machine-dependent structure containing the information for res-
toring the context from before the signal. addr is additional address informa-
tion.

A process can send a signal to another process or group of processes with the
calls:

rint kill(pid, sig)
pid_t pid;

int sig;

int killpg(pgrp, siq)

int pgrp, sig:;
Y J

Unless the process sending the signal is privileged, it must have the same effec-
tive user ID as the process receiving the signal.

Signals can also be sent from a terminal device to the process group associated
with the terminal. See kill(1).

To block a section of code against one or more signals, a sigblock () call may
be used to add a set of signals to the existing mask, returning the old mask:

int sigblock (mask)
int mask;

S ll n Revision A of 27 March 1990

microsystems

24 System Services Overview

Signal Stacks

3.3. Timers

Real Time

The old mask can then be restored later with sigsetmask (),

int sigsetmask (mask)
int mask;

The sigblock () call can be used to read the current mask by specifying an
empty mask.

It is possible to check conditions with some signals blocked, and then to pause
waiting for a signal and restoring the mask, by using:

int sigpause (sigmask)
int sigmask;

Applications that maintain complex or fixed size stacks can use the call:
(A
struct sigstack {
char *ss_sp;
int ss_onstack;

}2

int sigstack (ss, oss)
struct sigstack *ss, *oss;
k J

to provide the system with a stack based at ss_ sp for delivery of signals. The
value ss_onstack indicates whether the process is currently on the signal
stack, a notion maintained in software by the system.

When a signal is to be delivered, the system checks whether the process is on a
signal stack. If not, then the process is switched to the signal stack for delivery,
with the return from the signal arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code
from the signal stack that uses a different stack, a sigstack () call should be
used to reset the signal stack.

The system’s notion of the current Greenwich time and the current time zone is
set and returned by the calls:

()

#include <sys/time.h>

int settimeofday(tvp, tzp)
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp)
result struct timeval *tp;
result struct timezone *tzp;

S ll n Revision A of 27 March 1990

microsystems

Chapter 3 — Kemel Interface 25

Interval Time

where the structures are defined in <sys/time.h> as:

()
struct timeval {
long tv_sec; /* seconds since Jan 1,1970 */
long tv_usec; /* and microseconds */

}i
struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */
}bi
\ J

The precision of the system clock is hardware dependent. Earlier versions of the
UNIX system contained only a 1-second resolution version of this call, which
remains as a library routine:

#include <sys/time.h>

time t time(tloc)
time_t *tloc;

returning only the tv_sec field from the gettimeofday () call.

The system provides each process with three interval timers, defined in
<sys/time.h>:

#define ITIMER REAL 0 /* real time intervals */
#define ITIMER VIRTUAL 1 /* virtual time intervals */
#define ITIMER PROF 2 /* user and system virtual time */

The ITIMER REAL timer decrements in real time. It could be used by a library
routine to maintain a wakeup service queue. A STGALRM signal is delivered
when this timer expires.

The ITIMER VIRTUAL timer decrements in process virtual time. It runs only
when the process is executing. A SIGVTALRM signal is delivered when it
expires.

The ITIMER PROF timer decrements both in process virtual time and when the
system is running on behalf of the process. It is designed to be used by processes
to statistically profile their execution. A SIGPROF signal is delivered when it
expires.

A timer value is defined by the it imerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it value; /* current value */
bi

and a timer is set or read by the call:

sun Revision A of 27 March 1990

microsystems

26 System Services Overview

3.4. Descriptors

The Reference Table

— ™)
int getitimer(which, wvalue)

int which;

result struct itimerval *value;

int setitimer(which, value, ovalue)

int which;

struct itimerval *value, *ovalue;

_ J

The third argument to setitimer () specifies an optional structure to receive
the previous contents of the interval timer. A timer can be disabled by specifying
a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of
its clock. This clock resolution can be determined by loading a very small value
into a timer and reading the timer back to see what value resulted.

The alarm() system call of earlier versions of the UNIX system is provided as

a library routine using the ITIMER_REAL timer. The process profiling facilities
of earlier versions of the UNIX system remain because it is not always possible to
guarantee the automatic restart of system calls after receipt of a signal. The pro-
£i1 () call arranges for the kernel to begin gathering execution statistics for a
process:

int profil(buf, bufsize, offset, scale)
char *buf;
int bufsize, offset, scale;

This begins sampling of the program counter, with statistics maintained in the
user-provided buffer.

Each process has access to resources through descriptors. Each descriptor is a
handle allowing the process to reference objects such as files, devices and com-
munications links.

Rather than allowing processes direct access to descriptors, the system introduces
a level of indirection, so that descriptors may be shared between processes. Each
process has a descriptor reference table, containing pointers to the actual
descriptors. The descriptors themselves thus have multiple references, and are
reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned
by the getdtablesize () call:

(int getdtablesize ()]

and guaranteed to be at least 20. The entries in the descriptor reference table are
referred to by small integers; for example if there are 20 slots they are numbered
Oto 19.

sSsun ~ Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 27

Descriptor Properties

Managing Descriptor
References

Each descriptor has a logical set of properties maintained by the system and
defined by its type. Each type supports a set of operations; some operations, such
as reading and writing, are common to several abstractions, while others are
unique. Generic operations applying to many of these types are described in 3.7.
Naming contexts, files and directories are described in 3.8. Section 4.1.
describes communications domains and sockets. Terminals and (structured and
unstructured) devices are described in 3.9.

A duplicate of a descriptor reference may be made by doing

int dup(£d)
int f£d;

returning a copy of descriptor reference £d indistinguishable from the original.
The new £d chosen by the system will be the smallest unused descriptor refer-
ence slot. A copy of a descriptor reference may be made in a specific slot by
doing

int dup2(old, new)
int old, new;

The dup2 () call causes the system to deallocate the descriptor reference
currently occupying slot new, if any, replacing it with a reference to the same
descriptor as old. This deallocation is also performed by:

int close (fd)
int f£d;

For applications that use a large number of open descriptors, the following rou-
tine can be used to count the number of descriptors currently open:

()
#include <sys/stat.h>

static struct stat fdstat;

int count_open_ fds ()
{
int f£d;
int count = 0;
int max fds = getdtablesize():;
for (fd = 0; fd < max fds; fd ++)
if (fstat(fd, & fdstat) == 0)
count ++;
return count;

sun Revision A of 27 March 1990

28 System Services Overview

Multiplexing Requests

Note: Operations are said to be
multiplexed when they are inter-
leaved in real time on the same
device or communications channel.
For example, /O streams A and B
are multiplexed if B begins before A
is completed.

The system provides a standard way to perform synchronous and asynchronous
multiplexing of operations.

Synchronous multiplexing is performed by using the select () call to examine
the state of multiple descriptors simultaneously, and to wait for state changes on
those descriptors. Sets of descriptors of interest are specified as bit masks, as fol-
lows:

(#include <sys/types.h>
#include <sys/time.h>

int select (width, readfds, writefds, exceptfds, timeout)
int width;

fd set *readfds, *writefds, *exceptfds;

struct timeval *timeout;

FD_ZERO (&fdset)
FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET (fd, &fdset)

int f£d;
fs_set fdset;
— J

The select () call examines the descriptors specified by the sets readfss,
writefds and except £ds, replacing the specified bit masks by the subsets
that select true for input, output, and exceptional conditions respectively (width
indicates the number of file descriptors specified by the bit masks). If any
descriptors meet the following criteria, then the number of such descriptors is
returned, and the bit masks are updated.

o A descriptor selects for input if an input oriented operation such as read ()
or receive () is possible, or if a connection request may be accepted (see
Accepting Connections) in section 4.1.1. :

a A descriptor selects for output if an output oriented operation such as
write () or send() is possible, or if an operation that was “in progress”,
such as connection establishment, has completed (see section 3.7.3.

o A descriptor selects for an exceptional condition if a condition that would
cause a SIGURG signal to be generated exists (see section 3.2.1) or other
device-specific events have occurred.

If none of the specified conditions is true, the operation waits for one of the con-
ditions to arise, blocking at most the amount of time specified by t imeout. If
timeout is given as 0, the select () waits indefinitely

Options affecting I/0 on a descriptor may be read and set by the call:

sSsun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 29

3.5. Resource Controls

Process Priorities

#include <fcntl.h>

int fcntl (des, cmd, arg)
int des, cmd, arg:;

/* Interesting values for cmd */

#define F_DUPFD 0 /* Return new descriptor */
#define F_SETFD 1 /* Set close-on-exec flag */
#define F_GETFD 2 /* Setclose-on-exec flag */
#define F_SETFL 3 /* Set descriptor options */
#define F_GETFL 4 /* Set descriptor options */
#define F_SETOWN 5 /* Set descriptor owner (pidipgrp) */
#define F_GETOWN 6 /* Set descriptor owner (pidipgrp) */
\ J

The F_SETFL cmd may be used to set a descriptor in non-blocking I/O mode
and/or enable signaling when /O is possible. F_SETOWN must be used to
specify a process or process group to be signaled when using the latter mode of
operation or when urgent indications arise.

Operations on non-blocking descriptors will either complete immediately, note
an error EFOULDBLOCK, partially complete an input or output operation return-
ing a partial count, or return an error EINPROGRESS noting that the requested
operation is in progress. A descriptor which has signaling enabled will cause the
specified process and/or process group be signaled, with a STGIO for input, out-
put, or in-progress operation complete, or a STGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system
will accept only as much data as there is buffer space for and return; when mak-
ing a connection on a socket, the operation may return indicating that the connec-
tion establishment is “in progress”. The select () facility can be used to
determine when further output is possible on the terminal, or when the connec-
tion establishment attempt is complete.

The system gives CPU scheduling priority to processes that have not used CPU
time recently. This tends to favor interactive processes and processes that exe-
cute only for short periods. It is possible to determine the priority currently
assigned to a process, process group, or the processes of a specified user, or to
alter this priority using the calls:

f p
#include <sys/time.h>
#include <sys/resource.h>

#define PRIO_PROCESS 0 /* process */
#define PRIO_PGRP 1 /* process group */
#define PRIO_USER 2 /* userID */

int getpriority(which, who)
int which, who;

int setpriority(which, who, prio)
int which, who, prio;

sSsun Revision A of 27 March 1990

microsystems

30 System Services Overview

Resource Utilization

Resource Limits

The value returned by getpriority () is in the range —20 to 20. The default
priority is O; lower priorities cause more favorable execution. The getprior-
ity () call returns the highest priority (lowest numerical value) enjoyed by any
of the specified processes. The setpriority () call sets the priorities of all
of the specified processes to the specified value. Only the super-user may lower
priorities.

getrusage () places information about currently consumed resources in a
structure defined in <sys/resource.h>:

()
#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0 /* usage by this process */
#define RUSAGE_CHILDREN -1 /* usage by all children */

getrusage (who, rusage)
int who;
struct rusage *rusage;

struct rusage {
struct timeval ru utime;
struct timeval ru_stime;
long ru_maxrss;

/* user time used */
/* system time used */

#define ru first ru_ixrss

/* XXX:In4.0, all three ru_i?rss fields are combined

* and presented in idrss; ixrss and isrss are zero

*/
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data */
long ru_isrss; /* integral unshared stack */
long ru_minflt; /* pagereclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations * /
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches * /
long ru_nivcsw; /* involuntary */

#define ru last
};
_ J

ru_nivcsw

The who parameter specifies whose resource usage is to be returned. The
resources used by the current process, or by all the terminated children of the
current process may be requested.

The resources of a process for which limits are controlled by the kemel are
defined in <sys/resource.h>, and controlled by the getrlimit () and
setrlimit () calls:

#define RLIMIT CPU 0 /* cputimeinmilliseconds */
#define RLIMIT FSIZE 1 /* maximum file size */
#define RLIMIT_ DATA 2 /* maximum data segment size */
sSun Revision A of 27 March 1990

microsystems

Chapter 3 — Kemnel Interface 31

Memory Locking: mlock ()
and munlock ()

3.6. System Operation
Support

(#define RLIMIT STACK 3 /* maximum stack segment size */
#define RLIMIT CORE 4 /* maximum core file size */
#define RLIMIT_ RSS 5 /* maximum resident set size * /

6

#define RLIM NLIMITS
#define RLIM INFINITY Ox7fffffff

struct rlimit {
int rlim cur; / * current (soft) limit */
int rlim max; /* hard limit */

}:

int getrlimit (resource, rlp)
int resource;
struct rlimit *rlp;

int setrlimit (resource, rlp)
int resource;
struct rlimit *rlp;

L)

Only the super-user can raise the maximum limits. Other users may only alter
rlim cur within the range from 0 to r1im max or (irreversibly) lower
rlim max.

The sysconf(2) interface has been added for POSIX compliance. It allows a
process to query the system about system-dependent information.

The mlock(3) routine locks selected pages in a process’s address space. mun-—
lock() unlocks selected pages:

-
#include <sys/types.h> W

mlock (addr, len)
caddr_t addr; size_t len;

munlock (addr, len)
caddr_t addr; size_t len;

The call:

int swapon (special)
char *special;

specifies a device to be made available for paging and swapping. It can be run
only by a privileged user.

The call:

#include <sys/reboot.h>
reboot (howto, bootargs)
int howto;

char *bootargs;

sun Revision A of 27 March 1990

microsystems

32 System Services Overview

Accounting

3.7. Generic I/O
Operations

read () and write ()

halts or reboots a machine. It too can be run only by a privileged user. The user
may request a reboot by specifying howt o as RB_ AUTOBOOT, or that the
machine be halted with RB_HALT. These constants are defined in
<sys/reboot.h>. bootargs is a list of arguments to supply to the
boot(8S) program.

The system optionally keeps an accounting record in a file for each process that
exits on the system. The format of this record is beyond the scope of this docu-
ment. Accounting may be enabled to a file by doing:

int acct(path)
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes
the accounting file.

All filesystem descriptors support the operations read (), write () and
ioctl (). We describe the basics of these common primitives here, as well as
the sync () and £sync () primitives. Mechanisms whereby normally synchro-
nous operations may occur in a non-blocking or asynchronous fashion are com-
mon to all system-defined abstractions, and are also described here.

The read () and write () system calls can be applied to communications
channels, files, terminals and devices. They have the form:

int read(fd, buf, nbytes)
int fd, nbytes;
result caddr_t buf;

int write(fd, buf, nbytes)

int fd, nbytes:;

caddr_t buf;

_ Y,

The read () call transfers as much data as possible from the object defined by
£d to the buffer at address buf of size nbytes. read () returns the number of
bytes transferred, or —1 if the return occurs before any

data was transferred because of an error or use of non-blocking operations.

The write () call transfers data from the buffer to the object defined by £d.
Depending on the type of £d, it is possible that the write () call will accept
some portion of the provided bytes; in this case the user should resubmit the
other bytes in a later request. Error retums because of interrupted or otherwise
incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using
an array of input/output vector descriptors. The type for the descriptors is
defined in <sys/uio.h> as:

sun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 33

Input/Output Control

Non-Blocking and
Multiplexed Operations

struct iovec {
caddr_t iov_msg; /* base of a component */
int iov_len; /* length of a component */
}:

The calls using an array of descriptors are:

e D
#include <sys/types.h>
#include <sys/uio.h>

int readv(fd, iov, iovcnt)
int fd;

struct iovec *iov;

int iovcnt;

int writev(fd, iov, iovlen)

int fd,

struct iovec *iov;

int iovlen; J

g

Here 1ovlen is the count of elements in the 1ov array. It cannot exceed 16.

Control operations on an object are performed by the 1ioct1 () operation:

ioctl (fd, request, buffer)
int f£d4, request;
caddr_t buffer;

This operation causes the specified request to be performed on the object £d.
The request parameter specifies whether the argument buffer is to be read,
written, read and written, or is not needed, and also the size of the buffer, as well
as the request. Different descriptor types and subtypes within descriptor types
may use distinct ioctl () requests. For example, operations on terminals con-
trol flushing of input and output queues and setting of terminal parameters;
operations on disks cause formatting operations to occur; operations on tapes
control tape positioning.

The names for basic control operations are defined in <sys/ioctl.h>.

A process that wishes to do non-blocking operations on one of its descriptors sets
the descriptor in non-blocking mode as described in section 3.4.4. Thereafter the
read () call will return a specific ENOULDBLOCK error indication if there is no
data to be read (). The process may select () the associated descriptor to
determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either
accept some of the provided data, returning a shorter than normal length, or
return an error indicating that the operation would block. More output can be
performed as soon as @ select () call indicates the object is writable.

sun Revision A of 27 March 1990

microsystems

34 System Services Overview

Asynchronous I/O: aread (),
awrite() and await ()

File Caches

3.8. File System

Naming

Operations other than data input or output may be performed on a descriptor in a
non-blocking fashion. These operations will return with a characteristic error
indicating that they are in progress if they cannot complete immediately. The
descriptor may then be selected for write () to find out when the operation has
been completed. When select () indicates the descriptor is writable, the
operation has completed. Depending on the nature of the descriptor and the
operation, additional activity may be started or the new state may be tested.

Release 4.1 of the SunOS operating system provides the aread(3) awrite(3)
and awai t(3) routines for asynchronous I/O. With these routines, processes that
would otherwise block while waiting for a resource can instead proceed with
other calculations. Refer to Writing Device Drivers for examples of how to use
these routines.

The call:

int fsync(£d)
int £4;

moves all modified data and attributes of the file referenced by £d to a per-
manent storage device. When the £sync () call returns, all in-memory
modified copies of buffers for the associated file have been written to disk. This
call is different from sync ().

The call:

(SYHC () J

schedules input/output to clean all system buffer caches.

The file system abstraction provides access to a hierarchical file system structure.
The file system contains directories (each of which may contain other sub-
directories) as well as files and references to other objects such as devices and
inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system
related information is present in a file. Files may be read and written in a
random-access fashion. The user may read the data in a directory as though it
were an ordinary file to determine the names of the contained files, but only the
system may write into the directories. The file system stores only a small amount
of ownership, protection and usage information with a file.

The file system calls take pathname arguments. These consist of a zero or more
component filenames separated by / characters, where each filename is up to 255
ASCII characters excluding null and “/”.

Each process always has two naming contexts: one for the root directory of the
file system and one for the current working directory. These are used by the sys-
tem in the filename translation process. If a pathname begins with a /, it is

sun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 35

called a full pathname and interpreted relative to the root directory context. If
the pathname does not begin with a / it is called a relative pathname and inter-
preted relative to the current directory context.

The system limits the total length of a pathname to 1024 characters.

% 9

The filename “..” in each directory refers to the parent directory of that directory.
The parent directory of the root of the file system is always that directory.

The calls

chdir (path)
char *path;

chroot (path)
char *path;

change the current working directory and root directory context of a process.
Only the super-user can change the root directory context of a process.

Creation and Removal The file system allows directories, files and special devices, to be created and
removed from the file system.

Directory Creation and A directory is created with the mkdir () system call:
Removal

int mkdir (path, mode)
char *path;
mode_t mode;

where the mode is defined as for files (see below). Note that in Release 4.1,
mkdir () supports both the Berkeley and the System V group ID semantics. If
the set-group-ID bit on a directory is set, objects created within that directory are
assigned the GID of that directory, as with the BSD UNIX system. If the GID bit
of a parent directory is clear, objects created within it are assigned the GID of the
creating process, as in System V.

Directories are removed with the rmdir () system call:

int rmdir (path)
char *path;

A directory must be empty if it is to be deleted.

File Creation Files are created with the open () system call,

#include <fecntl.h>

open (path, flag, mode)
int flag, mode;
char *path;

sun Revision A of 27 March 1990

microsystemns

36 System Services Overview

Creating References to Devices

4

The path parameter specifies the name of the file to be created. The £lag
parameter must include O_CREAT from below to cause the file to be created.
The protection for the new file is specified in mode. The protection for the new
file is specified in mode. Bits for £1lag are defined in <sys/file.h>:

g N
#define O_RDONLY 000 /* open for reading */
#define O WRONLY 001 /* open for writing */
#define O_RDWR 002 /* open for read & write */
#define O_NDELAY 004 /* non-blocking open */
#define O_APPEND 010 /* append on each write */
#define O_CREAT 01000 /* open with file create * /
#define O_TRUNC 02000 /* open withtruncation */
#define O_EXCL 04000 /* error on create if file exists */
\ J

One of O RDONLY, O_WRONLY and O_RDWR should be specified, indicating
what types of operations are desired to be performed on the open file. The opera-
tions will be checked against the user’s access rights to the file before allowing
the open () to succeed. Specifying O APPEND causes writes to automatically
append to the file. The flag O CREAT causes the file to be created if it does not
exist, owned by the current user and the group of the containing directory. The
protection for the new file is specified in mode. The file mode is used as a three
digit octal number. Each digit encodes read access as 4, write access as 2 and
execute access as 1, or’ed together. The 700 bits describe owner access, the 070
bits describe the access rights for processes in the same group as the file, and the
007 bits describe the access rights for other processes.

If the open specifies to create the file with O _EXCL and the file already exists,
then the open () will fail without affecting the file in any way. This provides a
simple exclusive access facility. If the file exists but is a symbolic link, the open
will fail regardless of the existence of the file specified by the link.

The file system allows entries which reference peripheral devices. Peripherals
are distinguished as block or character devices according by their ability to sup-
port block-oriented operations. Devices are identified by their major and minor
device numbers. The major device number determines the kind of peripheral it
is, while the minor device number indicates one of possibly many peripherals of
that kind. Structured devices have all operations performed interally in
“block’’ quantities while unstructured devices often have a number of special
ioctl () operations, and may have input and output performed in varying units.
The mknod () call creates special entries:

int mknod(path, mode, dev)
char *path;
int mode, dev;

where mode is formed from the object type and access permissions. The param-
eter dev is a configuration dependent parameter used to identify specific charac-
ter or block 1/O devices.

S ll n Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 37

File and Device Removal

Reading and Modifying File
Attributes

A new interface to mknod (), mkfifo () has been provided for POSIX compli-
ance. mkfifo () creates a named pipe.

A reference to a file or special device may be removed with the unlink () call,

int unlink(path)
char *path;

The caller must have write access to the directory in which the file is located for
this call to be successful.

Detailed information about the attributes of a file system may be obtained with
the calls:

e N
#include <sys/vfs.h>

int statfs{(path, buf)
char *path;
struct statfs *buf;

int fstatfs(fd, buf)

int fd;

struct statfs *buf;

\. J

The stat £s structure includes the file system type, file system block size, total
blocks in the file system, free blocks, free blocks available to non-super-user,
total file nodes in the file system, free file nodes in the file system, and the file
system ID.

Directory entries can be obtained in a filesystem-independent format by using the
getdents () call:

4 N\
#include <sys/types.h>
#include <sys/dirent.h>

int getdents(fd, buf, nbytes)

int f£d;

char *buf;

int nbytes;

4 _J

Detailed information about the attributes of a file may be obtained with the calls:
F N
#include <sys/types.h>
#include <sys/stat.h>

int stat (path, stb)
char *path;

struct stat *stb;
fstat (£d, stb)

int fd4;
struct stat *stb;

sun Revision A of 27 March 1990

microsystems

38

System Services Overview

The stat structure includes the file type, protection, ownership, access times,
size, and a count of hard links. If the file is a symbolic link, then the status of the
link itself (rather than the file the link references) may be found using the

lstat () call:

int 1lstat (path, stb)
char *path;
result struct stat *stb;

Newly created files are assigned the UID of the process that created them and the
GID of the directory in which they are created. The ownership of a file may be
changed by either of the calls

()

#include <sys/types.h>

int chown(path, owner, group)
char *path;

uid_t owner;

gid_t group;

int fchown(fd, owner, group)
int fd;

uid_t owner;

gid_t group:;

In addition to ownership, each file has three levels of access protection associated
with it. These levels are owner relative, group relative, and global (all users and
groups). Each level of access has separate indicators for read permission, write
permission, and execute permission. The protection bits associated with a file
may be set by either of the calls:

(3
#include <sys/types.h>

#include <sys/stat.h>

int chmod(path, mode)
char *path;
mode_t mode;

int fchmod (fd, mode)
int £d, mode;
\. J

where mode is a value indicating the new protection of the file as listed above in
the File Creation section.

Three additional bits exist: the 04000 ‘‘set-user-ID’’ bit can be set on an execut-
able file to cause the EUID of a process which executes the file to be set to the
owner of that file; the 02000 bit has a similar effect on the EGID. The 01000 bit
causes an image of an executable program to be saved longer than would other-
wise be normal; this ‘‘sticky’’ bit is a hint to the system that a program is heavily
used.

S u n Revision A of 27 March 1990

Chapter 3 — Kernel Interface 39

Finally, the access and modify times on a file may be set by the call:

#include <sys/types.h>

int utimes(file, tvp)
char *file;
struct timeval *tvp;

This is particularly useful when moving files between media, to preserve rela-
tionships between the times the file was modified.

Links and Renaming Links allow multiple names for a file to exist.

Two types of links exist, hard links and symbolic (sometimes called “soft”) links.
A hard link is a reference counting mechanism that allows a file to have multiple
names within the same file system. Symbolic links cause string substitution dur-
ing the pathname interpretation process. Unlike hard links, symbolic links can
exist independently of the file being linked to.

Hard links and symbolic links have different properties. A hard link insures the
target file will always be accessible, even after its original directory entry is
removed; no such guarantee exists for a symbolic link. Symbolic links can span
file systems boundaries.

The following calls create a new link, named path2, to pathl:

int link(pathl, path2)
char *pathl, *path2;

int symlink (pathl, path2)
char *pathl, *path2;

The unlink () primitive may be used to remove either type of link.

If a file is a symbolic link, the ‘‘value’’ of the link may be read with the
readlink () call,

int readlink(path, buf, bufsiz)
char *path, *buf;
int bufsiz;

This call retumns, in bu £, the null-terminated string substituted into pathnames
passing through path.

Atomic renaming of file system resident objects is possible with the rename ()
call:

int rename (oldname, newname)
char *oldname, *newname;

where both o ldname and newname must be in the same file system. If
newname exists and is a directory, then it must be empty.

sun Revision A of 27 March 1990

microsystemns

40 System Services Overview

Extension and Truncation

Two new interfaces for file system queries have been provided for POSIX compli-
ance. pathconf (2) and fpathconf () answer questions about the named
file and/or the underlying file system. These routines always return properly with
4.1 and later UFS file systems. NFS® file systems that are served by a server
recognizing mount protocol version 2 can also provide this information for the
NFS files. The NFS file system must be mounted with the posix option.

Files are created with zero length and may be extended simply by writing or
appending to them. While a file is open the system maintains a pointer into the
file indicating the current location in the file associated with the descriptor. This
pointer may be moved about in the file in a random access fashion. To set the
current offset into a file, the 1seek () call may be used,

-
#include <sys/types.h> W
tinclude <sys/unistd.h>

off t lseek(fd, offset, whence)

int £d;

off t offset;

int whence;

\ J

where whence is given in <sys/file .h> as one of,
e N
#define L SET 0 /* set absolute file offset */

#define L INCR 1 / * set file offset relative to current position */
L#def ine L _XTND 2 /* set offset relative to end-of-file */

The call:

[lseek(fd, 0, L_INCR)]

returns the current offset into the file.

Files may have ‘‘holes’’ in them. Holes are void areas in the linear extent of the
file where data has never been written. These may be created by seeking to a
location in a file past the current end-of-file and writing. Holes are treated by the
system as zero-valued bytes.

A file may be truncated (or extended) with either of the calls:
7 N
int truncate(path, length)
char *path;

off t length;

int ftruncate(fd, length)

int f£d;

off t length;

4 J

The truncate () and ftruncate () system calls set the length of a file. If
the newly specified length is shorter than the file’s current length, the file is

sun Revision A of 27 March 1990

microsystems

Chapter 3 — Kernel Interface 41

Checking Accessibility

File Locking

shortened. However, if the new length is longer, the file’s size is increased to the
desired length. When writing a file exclusively through mapped access, trun-
cate () and ftruncate () are the only alternatives to MAP_ RENAME opera-
tions for growing a file.

A process running with different real and effective user ids may interrogate the
accessibility of a file to the real user by using the access () call:

int access(path, mode)
char *path;
int mode;

Here mode is constructed by taking the logical OR of the following bits, defined
in<sys/file.h>:

#define F_OK
#define X OK
#define W_OK
#define R_OK

/* file exists */

/* file is executable */
/* file is writable */
/* fleisreadable */

S NP o

The presence or absence of advisory locks does not affect the result of
access ().

The file system provides basic facilities that allow cooperating processes to syn-
chronize their access to shared files. A process may place an advisory read ()
orwrite () lock on a file, so that other cooperating processes may avoid
interfering with the process’ access. This simple mechanism provides locking
with file granularity. The system does not force processes to obey locks placed
by £lock () ; they are of an advisory nature only. Locks placed by £lock ()
are only visible to processes running on the local processor.

Locking is performed after an open () call by applying the £1ock () primitive:

flock(fd, operation)
int £d, operation;

where the operation parameter is formed from bits defined in
<sys/file.h>:

#define LOCK SH 1 /* sharedlock */

#define LOCK EX 2 /* exclusive lock */
#define LOCK _NB 4 /* don’t block when locking */
#define LOCK UN 8 /* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If
an object is currently locked by another process when a £lock () call is made,
the caller will be blocked until the current lock owner releases the lock; this may
be avoided by including LOCK_NB in the operation parameter. Specifying

sSsun Revision A of 27 March 1990

microsystems

42 System Services Overview

File and Record Locking:
lockf ()

Mounting Filesystems

LOCK_UN removes all locks associated with the descriptor. Advisory locks held
by a process are automatically deleted when the process terminates.

The 1ock£(3) routine allows you to lock a specified record (set of contiguous
bytes), or an entire file. The file must be write-accessible by the process. Locks
placed by Lock £ () are visible to any process running on any processor with
access to the file:

#include <unistd.h>

int lockf(fd, cmd, size)
int fd, cmd;
long size;

The cmd argument can be one of:

#define F_ULOCK 0 /* Unlock a previously locked section */
#define F_LOCK 1 /* Lock a section for exclusive use */

#define F_TLOCK 2 /* Test and lock a section (non-blocking)
#define F_TEST 3 /* Test section for other process’ locks

The size argument indicates the number of bytes in the segment to lock; the
segment starts at the current offset within the file. If size is zero, Lock£ ()
places a lock on the segment from the current offset through the end of the file
(soacall to lockf () immediately after an open () would lock the entire file).

The call:

int mount (type, dir, flags, data)
char *type, *dir;

int flags;

caddr_t data;

extends the UNIX name space. The mount () call specifies a block device
type containing a UNIX file system to be made available starting at dir. If
flags is set then the file system is read-only; writes to the file system will not
be permitted and access times will not be updated when files are referenced.
data is a pointer to a structure which contains the type specific arguments to
mount.

The call:

unmount (dir)
char *dir;

unmounts the file system mounted on dir. umount () call will succeed only if
the file system is not currently being used.

sun Revision A of 27 March 1990

microsystems

Chapter 3 — Kemnel Interface 43

Disk Quotas

3.9. Devices

Structured Devices

Unstructured Devices

As an optional facility, each file system may be requested to impose limits on a
user’s disk usage. Two quantities are limited: the total amount of disk space
which a user may allocate in a file system and the total number of files a user
may create in a file system. Quotas are expressed as hard limits and soft limits.
A hard limit is always imposed; if a user would exceed a hard limit, the operation
which caused the resource request will fail. A soft limit results in the user
receiving a warning message, but with allocation succeeding. Facilities are pro-
vided to turn soft limits into hard limits if a user has exceeded a soft limit for an
unreasonable period of time.

To manipulate disk quotas on a file system the quotactl () call is used:

a8)
#include <ufs/quota.h>

int quotactl(cmd, special, uid, addr)
int cmd, uid;
char *special;
caddr_t addr;
\. J

where cmd indicates a command to be applied to the UID. special is a pointer
to a null-terminated string containing the path name of the block special device
for the file system being manipulated. The block special device must be
mounted. addr is the address of an optional, command specific, data structure
which is copied in or out of the system. The interpretation of addr is given with
each command.

The system uses a collection of device drivers to access attached peripherals.
Such devices are generally grouped into two classes: structured devices on which
block-oriented input/output operations occur (basically disks and tapes), and
unstructured devices (anything else).

Structured devices include disk and tape drives, and are accessed through a sys-
tem buffer-caching mechanism, which permits them to be accessed as ordinary
files, by means of random-access reads and writes.

The mount (8) command in the system allows a structured device containing a
file system volume to be accessed through the operating system.

Tape drives also typically provide a structured interface, although this is rarely
used.

Unstructured devices are those devices which do not support a randomly
accessed block structure.

Communications lines, raster plotters, normal magnetic tape access (in large or
variable size blocks), and access to disk drives permitting large block transfers
and special operations like disk formatting and labeling all use unstructured dev-
ice interfaces.

Much more information about device drivers can be found in Writing Device
Drivers.

S u n Revision A of 27 March 1990

microsystems

44 System Services Overview

3.10. Debugging Support ptrace () provides a means by which a process may control the execution of
another process, and examine and change its memory image. Its primary use is
for the implementation of breakpoint debugging.

#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>

ptrace (request, pid, addr, data, addr2)
enum ptracereq request;

int pid, data;

char *addr, *addr2;

\)

There are five arguments whose interpretation depends on the request argu-
ment. Generally, pid is the PID of the traced process. A process being traced
behaves normally until it encounters some signal whether internally generated
like “*illegal instruction’’ or externally generated like “interrupt.”’ See
sigvec (2) forthe list. Then the traced process enters a stopped state and the
tracing process is notified via wait (2). When the traced process is in the
stopped state, its memory image can be examined and modified using

ptrace (). If desired, another ptrace () request can then cause the traced
process either to terminate or to continue, possibly ignoring the signal.

Note that several different values of the request argument can make
ptrace () retumn data values — since —1 is a possibly legitimate value, to dif-
ferentiate between —1 as a legitimate value and —1 as an error code, you should
clear the errno global error code before doing a ptrace () call, and then
check the value of errno afterwards.

The value of the request argument determines the precise action of the call:

PTRACE_TRACEME
This request is the only one used by the traced process; it declares that the
process is to be traced by its parent. All the other arguments are ignored.
Peculiar results will ensue if the parent does not expect to trace the child.

PTRACE_PEEKTEXT, PTRACE_ PEEKDATA
The word in the traced process’s address space at addr is returned. addr
must be even (except on Sun386i machines), the child must be stopped and
the input data and addr2 are ignored.

PTRACE_PEEKUSER
The word of the system’s per-process data area corresponding to addr is
returned. addr must be a valid offset within the kemel’s per-process data
structures. This space contains the registers and other information about the
process; its layout corresponds to the user structure in the system.

PTRACE_PCKETEXT, PTRACE_POKEDATA
The given data is written at the word in the process’s address space
corresponding to addr, which must be even (except on Sun386i machines).
No useful value is returned. If the instruction and data spaces are separate
request PTRACE PEEKTEXT indicates instruction space while

@?@ sun Revision A of 27 March 1990

% microsystems

Chapter 3 — Kernel Interface 45

PTRACE_PEEKDATA indicates data space. The PTRACE POKETEXT
request must be used to write into a process’s text space even if the instruc-
tion and data spaces are not separate.

PTRACE_POKEUSER
The process’s system data is written, as it is read with request
PTRACE_PEEKUSER. Only a few locations can be written in this way: the
general registers, the floating point status and registers, and certain bits of
the processor status word.

PTRACE_CONT
The data argument is taken as a signal number and the child’s execution
continues at location addr as if it had incurred that signal. Normally the
signal number will be either 0 to indicate that the signal that caused the stop
should be ignored, or that value fetched out of the process’s image indicating
which signal caused the stop. If addr is (int *)1 then execution continues
from where it stopped.

PTRACE_KILL
The traced process terminates.

PTRACE SINGLESTEP
Execution continues as in request PTRACE _CONT; however, as soon as pos-
sible after execution of at least one instruction, execution stops again. The
signal number from the stop is SIGTRAP. On Sun machines the T-bit is
used and just one instruction is executed.

PTRACE ATTACH
Attach to the process identified by the pid argument and begin tracing it.
Process pid does not have to be a child of the requester, but the requester
must have permission to send process pid a signal and the effective userids
of the requesting process and process pid must match.

PTRACE DETACH
Detach the process being traced. Process pid is no longer being traced and
continues its execution. The data argument is taken as a signal number
and the process continues at location addr as if it had incurred that signal.

PTRACE_GETREGS
The traced process’s registers are retumed in a structure pointed to by the
addr argument. The registers include the general purpose registers, the
program counter and the program status word. The ‘regs’ structure defined
in <machine/reg.h> describes the data that is returned.

PTRACE_SETREGS
The traced process’s registers are written from a structure pointed to by the
addr argument. The registers include the general purpose registers, the
program counter and the program status word. The ‘regs’ structure defined
in <machine/reg.h> describes the data that is set.

PTRACE READTEXT, PTRACE READDATA
Read data from the address space of the traced process. If the instruction
and data spaces are separate, request PTRACE _READTEXT indicates

sun Revision A of 27 March 1990

microsystems

46 System Services Overview

instruction space while PTRACE_READDATA indicates data space. The
addr argument is the address within the traced process from where the data
is read, the data argument is the number of bytes to read, and the addr2
argument is the address within the requesting process where the data is writ-
ten.

PTRACE_WRITETEXT, PTRACE WRITEDATA
Write data into the address space of the traced process. If the instruction and
data spaces are separate, request PTRACE_READTEXT indicates instruction
space while PTRACE_READDATA indicates data space. The addr argu-
ment is the address within the traced process where the data is written, the
data argument is the number of bytes to write, and the addr2 argument is
the address within the requesting process from where the data is read.

As indicated, these calls (except for requests PTRACE_TRACEME and
PTRACE_ATTACH) can be used only when the subject process has stopped. The
wait () callis used to determine when a process stops; in such a case the ‘ter-
mination’ status retumed by wait has the value WSTOPPED to indicate a stop
rather than genuine termination.

To forestall possible fraud, pt race () inhibits the set-user-ID and set-group-ID
facilities on subsequent execve (2) calls. If a traced process calls execve (),
it will stop before executing the first instruction of the new image showing signal
SIGTRAP.

sun Revision A of 27 March 1990

microsystems

4.1. Socket-Based
Interprocess
Communications

Interprocess Communication
Primitives

Communication Domains

Socket Types and Protocols

Networking Overview

This chapter provides an overview of the socket-based and Transport Layer
Interface-based Interprocess Communication (IPC) facilities, along with the
Internet and RPC-based network services in Release 4.1 of the SunOS operating
system.

This chapter introduces the socket-based interprocess communications facilities
that the SunOS operating system has adapted from BSD. Much more detail about
these facilities can be found in part three of Network Programming. For an intro-
duction to the networking facilities which Sun has added to its system in the
time since socket-based IPC was developed, see the Network Services section of
this same Network Programming manual. (These facilities include the Network
File System, the Remote Procedure Call mechanisms, and the External Data
Representation standard). For detailed information about AT&T-style STREAMS,
see STREAMS Programming.

The system provides access to an extensible set of communication domains. A
communication domain is identified by a manifest constant defined in the file
<sys/socket .h>. Important standard domains supported by the system are
the UNIX domain, AF_UNIX, for communication within the system, and the
“internet” domain for communication with the DARPA Internet protocol family,
AF_INET. Other domains can be added to the system.

Within a domain, communication takes place between endpoints known as sock-
ets. Each socket has the potential to exchange information with other sockets of
an appropriate type within the domain.

Each socket has an associated abstract type, which describes the semantics of
communication using that socket. Properties such as reliability, ordering, and
prevention of duplication of messages are determined by the type. The basic set
of socket types is defined in <sys/socket .h>:

Sun 47 Revision A of 27 March 1990

microsystems

48 System Services Overview

Socket Creation, Naming, and
Service Establishment

—
(/ * Standard socket types */
#define SOCK_DGRAM 1 /* datagram */
#define SOCK_STREAM 2 /* virtual circuit */
#define SOCK_RAW 3 /* rawsocket */
#define SOCK_RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packets */
. J

The SOCK_DGRAM type models the semantics of datagrams in network commun-
ication: messages may be lost or duplicated and may arrive out-of-order. A
datagram socket may send messages to and receive messages from multiple
peers. The SOCK_RDM type models the semantics of reliable datagrams: mes-
sages arrive unduplicated and in-order, the sender is notified if messages are lost.
The send () and receive () operations (described below) generate
reliable/unreliable datagrams. The SOCK_STREAM type models connection-
based virtual circuits: two-way byte streams with no record boundaries. Connec-
tion setup is required before data communication may begin. The
SOCK_SEQPACKET type models a connection-based, full-duplex, reliable,
sequenced packet exchange; the sender is notified if messages are lost, and mes-
sages are never duplicated or presented out-of-order. Users of the last two
abstractions may use the facilities for out-of-band transmission to send out-of-
band data.

SOCK_RAW is used for unprocessed access to internal network layers and inter-
faces; it has no specific semantics.

Other socket types can be defined.

Each socket may have a concrete protocol associated with it. This protocol is
used within the domain to provide the semantics required by the socket type.

Not all socket types are supported by each domain; support depends on the
existence and the implementation of a suitable protocol within the domain. For
example, within the “internet” domain, the SOCK_DGRAM type may be imple-
mented by the UDP user datagram protocol, and the SOCK_STREAM type may be
implemented by the TCP transmission control protocol, while no standard proto-
cols to provide SOCK_RDM or SOCK_SEQPACKET sockets exist.

Sockets may be connected or unconnected. Anunconnected socket descriptor is
obtained by the socket () call:

s = socket (domain, type, protocol):;
result int s;
int domain, type, protocol;

The socket domain and type are as described above, and are specified using the
definitions from <sys/socket .h>. The protocol may be given as 0, meaning
any suitable protocol. One of several possible protocols may be selected using
identifiers obtained from a library routine, getprotobyname ().

An unconnected socket descriptor of a connection-oriented type may yield a con-
nected socket descriptor in one of two ways: ¢ither by actively connecting to

sun Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 49

Accepting Connections

another socket, or by becoming associated with a name in the communications
domain and accepting a connection from another socket. Datagram sockets need
not establish connections before use.

To accept connections or to receive datagrams, a socket must first have a binding
to a name (or address) within the communications domain. Such a binding may
be established by abind () call:

bind(s, name, namelen);
int s, namelen;
struct sockaddr *name;

Datagram sockets may have default bindings established when first sending data
if not explicitly bound earlier. In either case, a socket’s bound name may be
retrieved with a get sockname () call:

~
getsockname (s, name, namelen);
int s;
result struct sockaddr *name;
result int *namelen;
J
while the peer’s name can be retrieved with getpeername () :
—

getpeername (s, name, namelen);
int s;
result struct sockaddr *name;
result int *namelen;

Domains may support sockets with several names.

Once a binding is made to a connection-oriented socket, it is possible to
listen () for connections:

listen(s, backlog):
int s, backlog;

The backlog specifies the maximum count of connections that can be simultane-
ously queued awaiting acceptance.

An accept () call:

t = accept (s, name, anamelen);
result int t, *anamelen;
int s;
result struct sockaddr *name;

returns a descriptor for a new, connected, socket from the queue of pending con-
nections on 5. If no new connections are queued for acceptance, the call will wait
for a connection unless non-blocking I/O has been enabled.

sun Revision A of 27 March 1990

microsystems

50 System Services Overview

Making Connections An active connection to a named socket is made by the connect () call:

connect (s, name, namelen);
int s, namelen;
struct sockaddr *name;

Although datagram sockets do not establish connections, the connect () call
may be used with such sockets to create an association with the foreign address.
The address is recorded for use in future send () calls, which then need not sup-
ply destination addresses. Datagrams will be received only from that peer, and
asynchronous error reports may be received.

It is also possible to create connected pairs of sockets without using the domain’s
name space to rendezvous; this is done with the socketpair () call?:

socketpair (domain, type, protocol, sv);
int domain, type, protocol;
result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept ()
and connect ().

The call

pipe (pv) ;
result int pv(2];

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv [0] only
writable and pv [1] only readable.

Sending and Receiving Data Messages may be sent to a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc;
int s, len, flags, tolen;
caddr_t buf, to;

if the socket is not connected or:

cc = send(s, buf, len, flags):
result int cc;
int s, len, flags;
caddr_t buf;

if the socket is connected. The corresponding receive primitives are:

2 This release supports socketpair () creation only in the “unix” communication domain.

sun Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 51

Scatter/Gather and Exchanging
Access Rights

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr):
result int *fromlenaddr;
result int msglen;
int s, len, flags;
result caddr_t buf, from;

and

msglen = recv(s, buf, len, flags):;
result int msglen;
int s, len, flags;
result caddr_t buf;

In the unconnected case, the parameters to and tolen specify the destination or
source of the message, while the from parameter stores the source of the mes-
sage, and *fromlenaddr initially gives the size of the from buffer and is updated
to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of
length len bytes, starting at address buf. The flags specify peeking at a message
without reading it or sending or receiving high-priority out-of-band messages, as
follows:

#define MSG PEEK 0xl /* peek atincoming message */
#define MSG _OOB 0x2 /* process out-of-band data */

It is possible to scatter and gather data and to exchange access rights with mes-
sages. When either of these operations is involved, the number of parameters to
the call becomes large. Thus the system defines a message header structure, in
<sys/socket . h>, which is used to contain the parameters to the calls:

4)
struct msghdr ({
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iov *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr t msg accrights; /* access rights sent/received * /
int msg_accrightslen; /* size of msg_accrights */
}i
N)

Here msg_name and msg_namelen specify the source or destination address if the
socket is unconnected; msg_name may be given as a null pointer if no names are
desired or required. The msg_iov and msg_iovlen describe the scatter/gather
locations, as described in section 3.7.1. Access rights to be sent along with the
message are specified in msg_accrights, which has length msg_accrightslen. In
the “unix” domain these are an array of integer descriptors, taken from the send-
ing process and duplicated in the receiver.

sun Revision A of 27 March 1990

microsystems

52 System Services Overview

Using read () and
write () with Sockets

Shutting Down Halves of Full-
Duplex Connections

Socket and Protocol Options

@

This structure is used in the operations sendmsg () and recvmsg ()} :
[)
sendmsg (s, msg, flags):;

int s, flags;

struct msghdr *msg;

msglen = recvmsg(s, msg, flags);
result int msglen;
int s, flags:;
result struct msghdr *msg;

The normal read () and write () calls may be applied to connected sockets
and translated into send () and receive () calls from or to a single area of
memory and discarding any rights received. A process may operate on a virtual
circuit socket, a terminal or a file with blocking or non-blocking input/output
operations without distinguishing the descriptor type.

A process that has a full-duplex socket such as a virtual circuit and no longer
wishes to read from or write to this socket can give the call:

shutdown (s, direction);
int s, direction;

where direction is O to not read further, 1 to not write further, or 2 to completely
shut the connection down. If the underlying protocol supports unidirectional or
bidirectional shutdown, this indication will be passed to the peer. For example, a
shutdown for writing might produce an end-of-file condition at the remote end.

Sockets, and their underlying communication protocols, may support options.
These options may be used to manipulate implementation specific or protocol-
specific facilities. The getsockopt () and setsockopt () calls are used to
control options:

getsockopt (s, level, optname, optval, optlen):;
int s, level, optname;
result caddr_t optval;
result int *optlen;

setsockopt (s, level, optname, optval, optlen):;
int s, level, optname; caddr_t optval; int optlen;
. Y,

The option optname is interpreted at the indicated protocol level for socket s. If a
value is specified with optval and optlen, it is interpreted by the software operat-
ing at the specified level. The level SOL_SOCKET is reserved to indicate options
maintained by the socket facilities. Other level values indicate a particular proto-
col which is to act on the option request; these values are normally interpreted as
a “protocol number”.

sSsun Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 53

UNIX Domain

Types of Sockets

Naming

Access Rights Transmission

Internet Domain

Socket Types and Protocols

Socket Naming

Access Rights Transmission

Raw Access

4.2. TLI Communication
Facilities

This section describes briefly the properties of the UNIX communications
domain.

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facili-
ties, while SOCK_DGRAM provides datagrams — unreliable message-style com-
munications.

Socket names are strings and the current implementation of the UNIX domain
embeds bound sockets in the file system name space; this is a side effect of the
implementation.

The ability to pass descriptors with messages in this domain allows migration of
service within the system and allows user processes to be used in building system
facilities.

This section describes briefly how the Internet domain is mapped to the model
described in this section. More information will be found in the Networking
Implementation Notes section of Network Programming.

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the
UDP protocol. Each is layered atop the transport-level Internet Protocol (IP).
The Internet Control Message Protocol is implemented atop/beside IP and is
accessible via a raw socket.

Sockets in the Internet domain have names composed of the 32 bit intemet
address, and a 16 bit port number. Options may be used to provide IP source
routing or security options. The 32-bit address is composed of network and host
parts; the network part is variable in size and is frequency encoded. The host
part may optionally be interpreted as a subnet field plus the host on subnet; this is
enabled by setting a network address mask at boot time.

No access rights transmission facilities are provided in the Internet domain.

The Internet domain allows the super-user access to the raw facilities of IP.
These interfaces are modeled as SOCK_RAW sockets. Each raw socket is associ-
ated with one IP protocol number, and receives all traffic received for that proto-
col. This allows administrative and debugging functions to occur, and enables
user-level implementations of special-purpose protocols such as inter-gateway
routing protocols.

This section gives an overview of the Transport Layer Interface, which supports
the transfer of data between two processes in a manner compatible with System
V Release 3.

TLI uses an architecture similar to that of sockets as described above. Communi-
cation takes place between a transport provider, and a transport user.

An example of a transport provider is the TLI-based TCP transport protocol. A
transport user may be a networking application or session-layer protocol.

S u n Revision A of 27 March 1990

microsystems

54 System Services Overview

Modes of Service

Figure 4-1

Transport Layer Interface

transport
user

.............. l.................. teteeesesetenne TransponLayerInterface

service events
and indications

/

transport
provider

The transport user accesses the service by issuing the appropriate requests. One
example is a request to transfer data over a connection. Similarly, the provider
notifies the user of various events, such as the arrival of data on a connection.

TLI provides two modes of service, connection-mode and connectionless-mode.

Connection-mode is circuit-oriented and enables data to be transmitted over an
established connection in a reliable, sequenced manner (akin to TCP over sock-
ets). Connection-mode also provides an identification mechanism that avoids the
overhead of address resolution and transmission during the data transfer phase.
This service is attractive for applications that require relatively long-lived,
datastream-oriented interactions.

Connectionless-mode, in contrast, is message-oriented and supports data transfer
in self-contained units with no logical relationship required among multiple units
(akin to UDP). This service requires only a preexisting association between the
peer users involved, which determines the characteristics of the data to be
transmitted. All the information required to deliver a unit of data (for example,
the destination address) is presented to the transport provider, together with the
data to be transmitted, in one service access (which need not relate to any other
service access). Each unit of data transmitted is entirely self-contained.

Connectionless-mode service is attractive for applications that:
o involve short-term request/response interactions

o exhibit a high level of redundancy

o are dynamically reconfigurable

o do not require guaranteed, in-sequence delivery of data

S u n Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 55

Connection-Mode Service

Local Management

Figure 4-2

Connection-mode transport service is characterized by four phases:

o local management

o connection establishment

o data transfer, and

o connection release.

The local management phase defines local operations between a transport user
and a transport provider. For example, a user must establish a channel of com-
munication with the transport provider, as illustrated below. Each channel

between a transport user and transport provider is a unique endpoint of communi-
cation, and will be called the transport endpoint.

The t_open(3N) routine enables a user to choose a particular transport provider
that will supply the connection-mode services, and establishes the transport end-

point.

Channel Between User and Provider

transport
user

(_L transport endpoint

... Transpon Layer

transport
provider

Another necessary local function for each user is to establish an identity with the
transport provider. Each user is identified by a transport address. More accu-
rately, a transport address is associated with each transport endpoint, and one
user process may manage several transport endpoints. In connection-mode ser-
vice, one user requests a connection to another user by specifying that user’s
address. The structure of a transport address is defined by the address space of
the transport provider. An address may be as simple as a random character string
(for example, ‘‘file_server’’), or as complex as an encoded bit pattern that
specifies all information needed to route data through a network. Each transport
provider defines its own mechanism for identifying users. Addresses may be
assigned to each transport endpoint by t _bind(3N)

sun Revision A of 27 March 1990

microsystems

56 System Services Overview

Table 4-1

Connection Establishment

Figure 4-3

4

Local Management Routines

Routine Description
t_alloc() Allocates TLI data structures.
t_bind() Binds a transport address to a transport endpoint.
t_close() Closes a transport endpoint.
t_error() Prints an error message.
t free() Frees structures allocated using t_alloc ().

t_getinfo ()

Returns a set of parameters associated with a
particular transport provider.

t getstate()

Returns the state of a transport endpoint.

t look () Returns the current event on a transport endpoint.

t_open() Establishes a transport endpoint connected to a
chosen transport provider.

t_optmgmt () Negotiates protocol-specific options with the
transport provider.

t_sync () Synchronizes a transport endpoint with the
transport provider.

t_unbind () Unbinds a transport address from a transport

endpoint.

In addition to t_open () and t_bind (), several routines are available to sup-
port local operations. The table below summarizes the TLI local management
routines.

The connection establishment phase enables two users to create a connection, or
virtual circuit, between them, as shown below.

Transport Connection
user 1 user 2
... Transpon Layer
f’———-—— Transport Connection
transport provider
S ll n Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 57

Data Transfer

Connection Release

Table 4-2

Table 4-3

This phase is illustrated by a client-server relationship between two transport
users. One user, the server, typically advertises some service to a group of users,
and then listens for requests from those users. As each client requires the service,
it attempts to connect itself to the server using the server’s advertised transport
address. The t _connect(3N) routine initiates the connect request. One argu-
ment to t_connect (), the transport address, identifies the server the client
wishes to access. The server is notified of each incoming request using
t_listen(3N)and may call t_accept(3N) to accept the client’s request for
access to the service. If the request is accepted, the transport connection is esta-
blished.

The next table summarizes all routines available for establishing a transport con-
nection.

Connection Establishment Routines

Routine Description

t_accept () Accepts a request for a transport connection.

t_connect () Establishes a connection with the transport
user at a specified destination.

t_listen() Retrieves an indication of a connect request
from another transport user.

t_rcvconnect () Completes connection establishment if
t_connect () was called in asynchronous
mode.

The data transfer phase enables users to transfer data in both directions over an
established connection. Two routines, t snd(3N) and t _rcv(3N) send and
receive data over this connection. All data sent by a user is guaranteed to be
delivered to the user on the other end of the connection in the order in which it
was sent. The table below summarizes the connection mode data transfer rou-
tines.

Connection Mode Data Transfer Routines

Routine Description
t_rev() Retrieves data that has arrived over a transport
connection.
t_snd() Send data over an established transport connection.

The connection release phase provides a mechanism for breaking an established
connection. When you decide that the conversation should terminate, you can
request that the provider release the transport connection. TLI supports two types
of connection release. The first is an abortive release, which directs the transport
provider to release the connection immediately. Any previously sent data that
has not yet reached the other transport user may be discarded by the transport
provider. The t_snddis(3N) routine initiates this abortive disconnect, and
t_rcvdis(3N) processes the incoming indication of an abortive disconnect.

S ll n Revision A of 27 March 1990

microsystems

58 System Services Overview

Table 4-4

Connectionless-Mode Service

State Transitions

4.3. Network-Based
Services

4

All transport providers must support the abortive release procedure. In addition,
some transport providers may also support an orderly release facility that enables
users to terminate communication gracefully with no data loss. The functions
t_sndrel(3N) and _rcvrel(3N) support this capability, as shown below.

Connection Release Routines

Routine Description
t_rcvdis() Returns an indication of an aborted connection,
including a reason code and user data.
t_rcvrel() Returns an indication that the remote user has
requested an orderly release of a connection.
t_snddis() Aborts a connection or rejects a connect request.
t_sndrel() Requests the orderly release of a connection.

The connectionless-mode transport service is characterized by two phases: local
management and data transfer. The local management phase defines the same
local operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes called
datagrams) to the specified peer user. Each data unit must be accompanied by
the transport address of the destination user. Two routines, t _sndudata(3N)
and t_rcvudata(3N). support this message-based data transfer facility. The
table below summarizes all routines associated with connectionless-mode data
transfer.

Routine Description
t_rcvudata () Retrieves a message sent by another transport user.
t_rcvuderr() Retrieves error information associated with a pre-
viously sent message.
t_sndudata() Sends a message to the specified destination user.

In addition to library routines that provide transport services to users TLI also
provides state transition rules that define the sequence in which the transport rou-
tines may be invoked. These transition rules take the form of state tables, which
are explained in detail in Network Programming. TLI state tables define the legal
sequence of library calls based on state information and the handling of events.
These events include user-generated library calls, as well as provider-generated
event indications.

For more information about TLI-based communication, refer to Network Pro-
gramming.

Release 4.1 is considerably more sophisticated than the first versions of the UNIX
system. This is true not only in terms of programming environments and tools,
though 4.1 does include many networking features from 4.3 BSD and virtually all
System V Release 3 networking facilities. Release 4.1 is oriented, at a fundamen-
tal level, to networks of closely linked machines. It is structurally a network sys-
tem, and is designed to evolve with the evolution of computer network

sun Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 59

NOTE

4.4, Standard Server-Based
Services

technology.

Derived from networking features in 4.2 BSD, network services were imple-
mented with special-purpose daemons (server processes) working in close
cooperation with the kernel, rather than in the kernel itself. Release 4.1 contin-
ues this line of development. Its network services, from the Network File System
(NFS) and Remote Execution Facility (REX) to its network name service
serviceypname are built upon a server-based architecture.

‘When a network service is added to the system, it is added by means of a server
process which is executed on all machines providing the service. Each server
then communicates with the kernel or with its peers on other machines as neces-
sary. Sun servers do differ in one very significant way from those which were
inherited from BSD, they are usually based on Sun’s Remote Procedure Call
(RPC) mechanism. As a consequence, they automatically benefit from the
features provided by RPC and the External Data Representation (XDR), protocol,
including the data portability provided by XDR and the modularity of RPC’s
authentication system.

There are a number of benefits to a server-based approach to the provision of net-
work services:

o The kernel itself remains more manageable in size and complexity, and more
clearly delimited in function. Its job is to implement the virtual machine on
the system that hosts it. It does not negotiate with other machines for the
non-local resources that it needs.

o When network services are implemented as independent server processes,
they are easily tuned and controlled.

o They can be invoked only when needed (see inetd(8)) and thus consume
no run-time resources when not in use. And they are easily updated to
accommodate protocol and transport changes. Indeed, when such changes
are made, multiple versions of the same server can be run simultaneously,
thus allowing development to proceed without rendering old applications
obsolete.

The overall effect is thus an extensible environment in which new network ser-
vices can be easily added to the system by building upon XDR, RPC, network
communications and other services. Network services, then, are analogous to
commands: anyone can add one to effectively extend the system.

See the Network Services section of Network Programming for more information
about the fundamental network services.

Networking functions contained within the kermel include the network and tran-
sport levels of the system networking support, the network device drivers, the IP
and TCP protocol code and the NFS itself. Other network services are provided
by server processes:

/usr/etc/biod
Block I/O daemon. Used by an NFS client to handle read-ahead and write-
behind for blocks in the buffer cache.

sun Revision A of 27 March 1990

microsystems

60

System Services Overview

/usr/etc/bootparams
NFS boot daemon. Provides the information that diskless clients need for
booting. If the yp name service isn’t available, it consults the boot -
params database, /etc/bootparams.

/usr/etc/in.comsat
Listens to a non-standard UDP socket used for incoming mail notification, as
enabled by the bi f£ program.

/usr/etc/rpc.etherd
etherd collects, summarizes and reports statistics on packet traffic for a
given network interface.

/usr/etc/in. fingexrd
in. fingerd provides support for the ARPA-standard finger command,
which displays information about the current users of a given machine.

/usr/etc/in. ftpd
File Transfer Protocol daemon. This is the ARPA standard file transfer pro-
tocol.

/usr/etc/inetd
Opens sockets for all the servers listed in /etc/inetd. conf, and then
starts them up when requests are made on them.

/usr/etc/keyserv
The DES authentication daemon. Stores secret keys and controls access to
them. keyserv will not talk to anything but a local root process.

/usr/etc/rpc.lockd
The network lock manager daemon. Provides System V compatible
advisory file and record locking for both local and NFS mounted files.

/usr/etc/rpc.mountd
NSF mount daemon. Handles mount requests for files systems exported over
the NFS.

/usr/etc/in.named
named is the Internet domain name server.

/usr/etc/nfsd
Network File System daemon. The real work is done in the kernel by way of
a magic system call that never returns.

/usr/etc/portmap
Demultiplexes UDPs for Remote Procedure Calls, converting RPC program
numbers to DARPA protocol port numbers.

/usr/etc/rarpd
rarpd is a daemon that responds to Reverse-ARP requests.

/usr/etc/rpc.rexd
rexd is the RPC server that controls remote program execution.

/usr/etc/in.rexecd
rexecd is the server for the rexec () routine. It provides remote

sun Revision A of 27 March 1990

microsystems

Chapter 4 — Networking Overview 61

execution facilities with authentication based on user names and passwords.

/usr/etc/in.rlogind
Remote Login daemon.

/usr/etc/rmt
Remote magnetic tape access. Used by the remote dump and restore pro-
grams to manipulate a tape driver over the network.

/usr/etc/in.routed
Routing table update daemon. Uses a non-standard UDP protocol to update
kemel routing tables.

/usr/etc/rpc. rquotad
rquotad returns quotas for a user of a local file system which is mounted
by a remote machine over the NFS. The results are used by quota to
display remote file systems user quotas.

/usr/etc/in.rshd
Remote shell daemon. Non-standard TCP protocol to allow remote execu-
tion with authentication based on privileged port numbers.

/usr/etc/rpc.rusersd
Remote user daemon. Necessary to support the ruser s command.

/usr/etc/rpc.rwalld
Remote write-to-all daemon. Handles rwall and shutdown requests.

/usr/etc/in.rwhod
Remote who daemon. Generates broadcasts periodically about the status of
logged-in users, and listens to the broadcasts of other servers on the local
network and maintains the database that is printed by rwho. Not used much
in the Sun environment since the protocol involves lots of broadcast packets.

/usr/lib/sendmail
Provides mail transport through the Simple Mail Transfer Protocol (SMTP).

/usr/etc/xpc.sprayd
Spray daemon. Used by the spray command for network diagnosis.

/usr/etc/rpc.rstatd
Remote status daemon. The primary purposes for this server are returning
kemel performance statistics for perfmeter, and responding to requests
from rup.

/usr/etc/in.syslog
Reads a datagram (UDP) socket and logs information it receives according to
a configuration file.

/usr/etc/in.talkd
Listens on a UDP port, and negotiates talk TCP connections. This protocol
doesn’t even work between Vaxes and Suns.

/usr/etc/in.telnetd
The ARPA-standard remote terminal service.

sun Revision A of 27 March 1990

microsystems

62

System Services Overview

/usr/etc/t£sd
Translucent file-system daecmon. Provides copy-on-write access to a private
overlay of a read-only file system. Refer to ADMIN for details.

/usr/etc/in.tftpd
Trivial file transfer protocol daemon. Can be used for simple, non-
authenticated file transfers. Also used to load boot files.

/usr/etc/in.timed
The ARPA-standard time service. Note that this service only provides the
system time to clients who request it, and is not a full network synchroniza-
tion service.

/usr/etc/in.tnamed
The tnamed daemon supports the old obsolete DARPA Name Server Proto-
col.

/usr/etc/ypbind
ypbind remembers information that lets client processes on a single host
communicate with some ypserv process. It must run on every machine
which has yp name service client processes.

/usr/etc/rpc.yppasswdd
Runs on yp name service masters only. Supports password change requests
for the yp name service password database.

/usr/etc/ypserv
Runs on all yp name service servers. The ypserv daemon’s primary func-
tion is to look up information in the local yp name service database.

/usr/etc/rpc.ipallocd
(Sun386i only). The rpc.ipallocd daemon maps Ethemet addresses to
IP addresses, allocating temporary IP addresses when necessary.

/usr/etc/rpc.pnpd
(Sun386i only). The rpc.pnpd daemon configures new systems onto a
Sun386i network, and distributes configuration information for systems
already on the network. It also provides configuration RPC calls for diskless
clients.

sun Revision A of 27 March 1990

microsystems

5.1. System Calls

T/O Routines

creat ()

open ()

read()

Programmer’s Guide to Security
Features

This chapter is for system programmers interested in writing secure programs for
the Release 4.1 of the SunOS operating system. The first section below discusses
system calls from a security standpoint, and the second section discusses C
library routines from this standpoint. The remaining sections give practical
advice on writing secure C programs.

System calls provide entry points into the operating system kemel. When a pro-
gram makes a system call, the kernel itself services the request. When a program
calls a library routine, it’s just like calling a function defined in the program,
except the function is defined in a system library. Library routines may or may
not employ system calls. System calls are documented in Section 2 of the SunOS
Reference Manual, library routines are documented in Section 3 of that manual.

There are four basic 1/O operations: creating a file, opening a file, reading, and
writing. Descriptions follow:

This call creates a new file, or recreates an old file zero-length. It takes two argu-
ments indicating the file’s name and its mode:

(creat(“/tmp/data", 0644) ; J

creat retumns a valid file descriptor, or —1 if there was an error. The process
must have write and execute permission for the directory where the file is being
created. The file’s owner and group are set to the effective user ID and group ID.
The file’s permissions are set according to the second argument, modified by the
default file creation mask umask.

This call opens a file for reading and writing, or both. It takes two or three argu-
ments indicating the file’s name, the input/output combination, and the mode (as
above). open () retumns a valid file descriptor, or —1 if the process doesn’t have
proper access permissions. Once a process opens a file, changing permissions on
that file and its containing directories does not affect the original access permis-
sions.

This call reads data from a file previously opened by open (), which deals with
all access permissions.

sun 63 Revision A of 27 March 1990

microsystems

64 System Services Overview

Process Control

File Attributes

write()

fork ()

exec* ()

signal{()

umask ()

chmod ()

chown ()

This call writes data to a file previously opened by open (), which deals with all
access permissions.

There are three basic process control operations: forking a new process, overlay-
ing this process with an executable image, and signaling a process.

This call creates a new process (the child) that is an exact copy of the calling pro-
cess (the parent). All processes on the system are created this way. Here are
some security considerations:

o The child inherits the real and effective user and group IDs.
o The child inherits the default file mode creation mask, umask.
o All open files are passed to the child.

These calls copy an executable program into the space occupied by the calling
process.t Generally this is done after forking a new process, so as not to destroy
the parent. All programs on the system are executed this way. Here are some
security considerations:

o The real and effective user and group IDs are normally inherited by an exe-
cuted program.

o However, the effective user ID (or group ID) is set to the owner (group) of
the executed program, if the program has the set user ID (set group ID) bit
turned on.

o The new program inherits the default file mode creation mask, umask.

o All open files (except those with the close-on-exec flag) are passed to the
new program.

This call provides an exception and interrupt handling facility. It takes two argu-
ments: the number (or name) of a signal, and the action to take when that signal
occurs. If the action is SIG_IGN, the signal is ignored; if it is SIG_DFL, the
signal is handled in the default manner; if it is the name of a function, that func-
tion gets executed on receipt of signal. The lockscreen program ignores
most signals, for example, so that it can’t be stopped or killed by an unfriendly
user. Many programs trap interrupts so they can delete temporary files.

Three system calls affect the permissions and ownership/group of a file. Two
more system calls return the accessibility and attribute status of a file.

This call sets the default file creation mask for the calling process and all its chil-
dren. It takes one argument, just as with the uma sk command.

This call changes the permission modes of a file or directory. It takes two argu-
ments: the file name and the numeric mode, as with the chmod command.

This call changes both the owner and the group of a specified file. It takes three
arguments: the file name, the numeric user ID, and the group number. In this

t Actually only execve () is a system call; the others — execl (),execv (), execle (), execlp (),
execvp () —arelibrary routines.

sun Revision A of 27 March 1990

microsystems

Chapter 5 — Programmer’s Guide to Security Features 65

access ()

stat ()

User ID and Group ID

getuid()

getgid ()

geteuid ()

sense it is a combination of the chown and chgrp commands. Note that the
chown () system call turns off both setuid and setgid permission, for secu-
rity reasons. This is so these permissions do not get given out by mistake.

This call determines the accessibility of a file. It takes two arguments: the name
of the file in question, and the type of access to be tested (specified as an integer
between 0 and 7).

the file exists

it is executable

it is writable

writable and executable

it is readable

readable and executable

readable and writable

readable, writable, and executable

oY Ul W N RO

These numbers are exactly the same as the modes for chmod(1). Note that
access () uses real (instead of effective) user ID and group ID to determine
accessibility. This property makes it useful inside setuid and setgid pro-
grams, which alter only the effective user and group IDs.

This call returns the attribute status of a file. It takes two arguments: the name of
the file in question, and the address of a stat structure, defined in
<sys/stat.h>, This status structure contains the following information,
among other things:

st_dev ID of the device containing the file
st_ino i-node number of the file
st_mode type and permission mode
st_nlink number of links

st_uid user ID of the file’s owner
st_gid group ID of the file’s group
st_size size of the file in bytes

st_atime last access time (read)

st_mtime last modification time (write)

st _ctime last status change (to i-node)

Note that the -1 option of the 1s command prints the modification time, not the
atime or ctime.

A set of system calls permits C programs to get and set both real and effective
user and group IDs.

This call returns the real user ID of a process. Programs may employ this call
inside setuid programs to determine which user has really invoked a program.

This call returns the real group ID of a process. Programs may employ this call
inside setgid programs to determine the original group of the invoker.

This call returns the effective user ID of a process. Programs that should have
the setuid permission bit turned on can employ this call to verify that they are
in fact running setuid. Also, programs can employ this call to determine if

sun Revision A of 27 March 1990

microsystems

66 System Services Overview

getegid()

setreuid ()

setgroups ()

5.2. C Library Routines

Standard I/O

fopen ()

Reading

Writing

system()

popen ()

they are running setuid to some other user than the one who invoked it.

This call returns the effective group ID of a process. Programs that should have
the setgid permission bit turned on can employ this call to verify that they are
in fact running setgid. Also, programs can employ this call to determine if
they are running setgid to some other group than that of the invoker.

This call sets either the real or the effective user ID, or both. It takes two argu-
ments: the real user ID, and the effective user ID. When either argument is -1,
that value is not changed. If the effective user ID of the calling process is:

o Super-user, both real and effective user IDs can be set to any legal value.

o Not super-user, the real user ID can be set to the effective user ID, or the
effective user ID can be set to the real user ID or to the saved set-user ID
from execve(2).

Programs can toggle between real and effective user IDs by exchanging them,
using this system call or the seteuid () library routine.

This call, which is restricted to the super-user, sets the group access list of the
current process. It takes two arguments: the number of groups, and a pointer to
an array of integers specifying numeric group IDs.

Library routines are system services that offer programs the advantage of con-
venience and reliability. Many library routines make use of system calls, dis-
cussed above. The C library is documented in section 3 of the reference manual,
while system calls are documented in section 2.

The Standard I/O Library is the most commonly used set of routines for reading
and writing files.

This call opens a file for reading or writing, or both. It creates a file if necessary.
Security considerations are the same as those for open ().

The fread (), fgetc(),getc(), fgets(),gets (), fscanf (), and
scanf () routines read information from a file opened by fopen (), or from
standard input. Once a file stream is open for reading, it remains readable even if
its access permissions change.

The fwrite (), fputc (), putc (), fputs (), fprintf (), and

print£ () routines write information to a file opened by fopen (), or to stan-
dard output. Once a file stream is open for writing, it remains writable even if its
access permissions change.

This call runs /usr/bin/sh to execute the command specified as its argument.
Try to avoid making this call inside a setuid root program, as the invoked
shell has super-user permission.

This call invokes the command specified as its argument using fork () and
exec (), then creates a pipe to the new process using pipe (). Be extremely
careful when making this call inside a setuid root program, as the spawned
process has super-user permission.

sSun Revision A of 27 March 1990

microsystems

Chapter 5 — Programmer’s Guide to Security Features 67

Password Processing

getpass ()

getpwnam()

getpwuid ()

getpwent ()

putpwent ()

4

Several library routines are available for reading system password files and for
dealing with passwords typed at the terminal.

This call prints its argument (a prompt) on the terminal, turns off echoing, then
reads a password typed at the terminal, up to eight characters long. It returns a
pointer to the password string. This routine is often used in conjunction with
crypt () to obtain an encrypted password.

Given a login name, this call returns a pointer to a pas swd structure, filled with
the corresponding password file entry. This structure is defined in <pwd.h> and
looks like this:

(N
struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
int pw_gquota;
char *pw_comment ;
char *pw_gecos;
char *pw_dir;
char *pw_shell;
}i
|)

On C2 secure systems, the pw_passwd field does not contain an encrypted
password, but rather an indication that the encrypted password resides some-
where else.

Given a numeric user ID, this call retums a pointer to a passwd structure, filled
with the corresponding password file entry.

This call is used for sequential processing of the password file. Initially it opens
the file and retumns the first entry. Thereafter it returns the following entry. The
related setpwent () call rewinds the password file, and the endpwent () call
closes the password file.

This call is used to change or extend the /et c/passwd file. Here are the steps
involved in this process:

1. Create a unique temporary file such as /etc/pw$$ where the$ $represents

2. Link the temporary file to the conventional temporary file /etc/ptmp. If
the link fails, remove the unique temporary file and exit; somebody else is
modifying the password file.

3. Read from /etc/passwd with successive calls to getpwent (), and
write to /et ¢/ptmp with successive calls to putpwent (), making
changes as necessary.

4. Move /etc/passwd to a backup file such as /etc/opasswd.
Link /etc/ptmp to /etc/passwd.
6. Unlink the two temporary files, /etc/ptmp and /etc/pwSS.

sun Revision A of 27 March 1990

microsystems

68 System Services Overview

Group Processing

getgrnam{()

getgrgid()

getgrent ()

Who’s Running a Program?

getlogin ()

4

At this point no library routines are available for dealing gracefully with the
/etc/security/passwd.adjunct file on C2 secure systems. Fortunately
there should be little reason to tamper with this file anyway. Because password
entries for most users are stored in the YP Name Service, the putpwent () rou-
tine is of limited utility, in any case.

A set of routines is available to deal with the /etc/group file, analogous to
the routines just described.

Given a group name, this call returns a pointer to a group structure, filled with
the corresponding group file entry. This structure is defined in <grp.h>.

Given a numeric group ID, this call retums a pointer to a group structure, filled
with the corresponding group file entry.

This call is used for sequential processing of the group file. Initially it opens the
file and returns the first entry. Thereafter it returns the following entry. The
related setgrent () call rewinds the group file, and the endgrent () call
closes the group file. In a defeat of symmetry, there exists no putgrent ()
library routine.

The most reliable method of determining who is running a program is to employ
getuid () along with getpwuid (). The first call returns the real user ID,
which gets handed to the second call so it can look up the user’s login name.

(
#include <pwd.h> W

struct passwd *pwent;

pwent = getpwuid(getuid());
printf ("User name is %s\n", pwent->pw_name);
\ y,

There are other methods of determining a user’s identity, but they aren’t as reli-
able as the code above.

This call is supposed to return a pointer to the name of the user logged into a ter-
minal. The routine examines standard input, output, and error (in order), in case
they are redirected. The first associated with a terminal produces a terminal
name, which is used to find an associated user name in /et c/utmp. If a pro-
cess was run by at, it has no associated terminal, so get login () returns a
null pointer. Unfortunately getlogin () can be fooled by changing the termi-
nal associated with standard input, for example with this Bourne shell command:

[$ program 0> /dev/tty07]

This would cause a getlogin () call inside program to return the name of
the user logged into /dev/tty07. As aconsequence, the use of getlo-
gin () is discouraged.

sun Revision A of 27 March 1990

microsystems

Chapter 5 — Programmer’s Guide to Security Features 69

Encryption Routines

NOTE

The des_crypt Library

des_setparity()

ecb_crypt ()

cbc_crypt ()

These encryption routines are only available in the U.S.A. by way of the Domestic
Encryption Kit.

In 1977, the National Bureau of Standards announced an encryption method *‘for
use in [unclassified applications on] Federal ADP systems and networks,’” called
DES (Data Encryption Standard). This encryption method uses a 56-bit key to
perturb 8 bytes of data at a time. Because the key was shortened from 128 bits
(as recommended by IBM) to 56 bits, DES can be attacked by brute force — trying
all possible keys — but the computation required takes a long time even on a
supercomputer. As a consequence, DES is relatively secure, because it costs so
much to break.

Release 4.1 libraries offer a set of routines implementing DES, using hardware if
it is available, which can be used to encrypt and decrypt sensitive data. In addi-
tion, there is an older set of routines used mainly for encrypting passwords,
employing a modified DES that has not been implemented in hardware. These
routines are used for password encryption to prevent hardware assistance for
breaking into the system.

This DES encryption library is faster and more general purpose than the older
encryption routines based on encrypt (). Furthermore, the des_crypt
library employs DES hardware when it is available. Programs using the newer
library must include <des_crypt .h>. Two flavors of encryption are avail-
able: Electronic Code Book (ECB) mode, which encrypts blocks of data indepen-
dently, and Cipher Block Chaining (CBC) mode, which chains together succes-
sive blocks. The second mode is more secure, because it protects against inser-
tions, deletions, and substitutions, and also because regularities in clear text do
not appear in cipher text.

This routine should be called first to set the parity of the 8-byte encryption key.
This call takes a single argument: a character pointer, whose contents get
modified. Note that in DES, the parity bit is the low bit (not the high bit) of each

byte.

This routine implements Electronic Code Book mode. It takes four arguments:
the encryption key discussed above, a character pointer to the data involved, an
unsigned integer indicating the data’s length, and an unsigned integer indicating
the mode of operation. Flags are ORed into the mode as necessary:
DES_ENCRYPT means to encrypt, DES DECRYPT means to decrypt, and
DES_HW means to use DES hardware if available. The ecb_crypt () routine
returns an integer status code.

This routine implements Cipher Block Chaining mode. It takes five arguments:
the encryption key discussed above, a character pointer to the data involved, an
unsigned integer indicating the data’s length, an unsigned integer indicating the
mode of operation, and a character pointer to an 8-byte initialization vector for
chaining. At first the initialization vector should be zeroed out, but afterwards it
gets updated to the next initialization vector on each call. Flags are ORed into
the mode as necessary: DES_ENCRYPT means to encrypt, DES_DECRYPT

sun Revision A of 27 March 1990

microsystems

70 System Services Overview

Password Encryption Routines

setkey ()

encrypt ()

crypt ()

means to decrypt, and DES__HW means to use DES hardware if available. The
cbc_crypt () routine returns an integer status code.

Note that these library routines are used by the des command, discussed in the
previous chapter.

The older and slower DES encryption routines based on encrypt () are used
primarily for encrypting passwords. The password encryption routine crypt ()
involves a ‘“‘salt’’ used to perturb the encrypting algorithm, so that DES chips
cannot be used to assist in cracking login passwords. Furthermore, this routine
calls encrypt () sixteen times to eat up CPU cycles. If a cryptanalyst wanted
to search the key space for miniscules — trying all possible 8-letter combinations
of lowercase letters — it would take about 3000 years on a Sun-3. Allowing for
combinations of uppercase letters and digits as well, it would take much longer.
That’s why guessing a password is a more efficient way to break security than
searching the key space.

Given a 64-byte character array of ones and zeros (8 bytes worth of text), this
routine creates the 56-bit DES encryption key, which is used by the following
routine to encrypt or decrypt text.

This routine encrypts or decrypts a 64-byte character array of ones and zeros
specified as the first argument (8 bytes worth of text), according to whether the
second argument is zero (meaning encrypt) or one (meaning decrypt).

This call is used to encrypt an 8-letter password, usually obtained from get -
pass (), presented above. This call takes two arguments: a character pointer to
the typed password (the key), and a character pointer to a two-letter salt for per-
turbing the algorithm. The salt string may be longer, but only the first two char-
acters are relevant. First crypt () hands the key to setkey (), and then calls
encrypt () repeatedly. Finally crypt () retums a pointer to the encrypted
password. Here’s how crypt () is typically used in a C program:

e)
#include <pwd.h>

char *username, *p, *passwd, *getpass(), *crypt():;
struct passwd *pwd;

if ((pwd = getpwnam(username)) == NULL) {
fprintf (stderr, "No such user name.\n");
exit(1l);

}

p = getpass("password:");

passwd = crypt (p, pwd->pw_passwd) ;

if (strcmp(passwd, pwd->pw _passwd)) {
fprintf (stderr, "Incorrect password.\n");
exit (2);

. J

Note: the crypt () library routine should not be confused with the crypt shell
command, which uses a much less sophisticated encoding algorithm, one that can

sun Revision A of 27 March 1990

microsystems

Chapter 5 — Programmer’s Guide to Security Features 71

User and Group ID

setuid ()

seteuid ()

setruid ()

setgid ()

setegid ()

setrgid()

5.3. Writing Secure

Programs

%

be broken by brute force in several hours of CPU time. Users seeking a higher
level of security can always use the more secure de s shell command, however.

These library routines allow programs to set user and group ID, both real and
effective. The first routine behaves differently if compiled with the System V
compatibility library rather than with the standard C library.

This call sets both the real and effective user ID of the current process to the
specified numeric user ID. The super-user may set real and effective user IDs to
any value; other users may set them only if the argument is the real or effective
user ID.

‘When programs are compiled using the System V compatibility library, this call
sets the real user ID and/or the effective user ID to the specified numeric user ID.
The super-user may set both the real and effective user IDs to any value. Other
users may set only the effective user ID, and only if the specified argument is the
same as the real user ID, or if the argument is the same as the saved set-user ID
from exec (). This arrangement permits toggling between real and effective
user IDs.

This call sets the effective user ID of the current process to the specified numeric
user ID. The super-user may sct the effective user ID to any value; other users
may set it only if the argument is the real user ID.

This call sets the real user ID of the current process to the specified numeric user
ID. The super-user may set the real user ID to any value; other users may set it
only if the argument is the effective user ID.

This call sets both the real and effective group ID of the current process to the
specified numeric group ID. The super-user may set real and effective group IDs
to any value; other users may set them only if the argument is the real or effec-
tive group ID.

This call sets the effective group ID of the current process to the specified
numeric group ID. The super-user may set the effective group ID to any value;
other users may set it only if the argument is the real group ID.

This call sets the real group ID of the current process to the specified numeric
group ID. The super-user may set the real group ID to any value; other users
may set it only if the argument is the effective group ID.

When you’re trying to write secure C programs, there are two important guide-
lines you should follow:

1. Make sure that temporary files created by the program don’t contain sensi-
tive information that isn’t encrypted. When in doubt, store data in memory.
Also, verify that temporary files are readable and writable only by the owner.
It’s always a good idea to call umask (077) at the beginning of a program.
Also, it’s best to create temporary files in private directories that are writable
only by the owner. However, if you must use /tmp, get your system
administrator to set its mode to 2777 (set group ID) so that files in it may be
deleted only by their owner.

sun Revision A of 27 March 1990

microsystems

72 System Services Overview

Set User ID Programs

2. Make sure that any command the program runs — whether with exec (),
system(), or popen () —is the command that should be run, and not a
Trojan horse. This is especially important if your program is setuid or
setgid, in which case programs should always reset the user ID before
running any commands.

Let’s look at some ways a program can be fooled into running a Trojan horse. In
this innocent-looking function call, the vi command invoked is the first one in
the search path. If a user copied /usr/bin/csh to $HOME /bin/vi, and had
$HOME /bin as the first element of PATH, the program would actually invoke
that user’s private copy of the C shell, not the vi command:

(system(“vi"); J

This is because system () inherits the PATH environment from the program,
which inherits it from the user’s login shell. The logical way to avoid this poten-
tial problem, it seems, would be to specify the full path name:

[system(“/usr/bin/vi"); J

This can be circumvented as well. All a clever user has to do is move the pur-
loined C shell $SHOME /bin/vi to $HOME/bin/bin, write a shell script
named vi in the current directory, and modify the shell and environment vari-
able IFS (input field separator) to slash. In this case, system () thinks the
command above means to run $HOME /bin/bin with the argument vi. The
logical way to avoid this further problem is to set IF'S before invoking the com-
mand:

(system("IFS=' \t\n’; export IFS; /bin/vi");]

That looks pretty cluttered, but is nearly impossible to crack. A further problem
arises if the command is to be invoked with argument. Clever users could put
command separators such as ampersand or semicolon into the argument list, fol-
lowed by invocations of /usr/bin/csh or something similar. In setuid
root programs, that C shell would also run setuid root, giving the cracker
full access to the system. The only solution to this potential problem is to parse
arguments before passing them to a program.

Any programs you write that are setuid must reset the user ID before invoking
any commands. Here’s the easiest way to do this:

' A
int saveid;

saveid = geteuid();

setuid(getuid());

system("/usr/bin/ed");

setuid(saveid) ;

\ J

For this to work properly, you must use the System V compatibility library by

sun Revision A of 27 March 1990

rmicrosystems

Chapter 5 — Programmer’s Guide to Security Features 73

Set Group ID Programs

Commands with Shell Escapes

Shell Scripts and Security

Guidelines for Secure
Programs

@

compiling with /usr/5bin/cc instead of /usr/bin/cc. Without the Sys-
tem V compatibility library, it is impossible to set the effective user ID back to
what it was when a setuid program was first invoked.

The same cautions apply to programs that set group ID, as to programs that set
user ID. Any programs you write that are set gid must reset the group ID
before invoking any commands. Here’s the easiest way to do this:

4 B
int saveid;

saveid = getegid();

setgid(getgid());

system("/usr/bin/ed");

setgid(saveid) ;

. J

To work properly this also requires the System V compatibility library, so use
/usr/5bin/cc to compile.

Be wary of commands that allow shell escapes, such asmail, write, dc,
edit, ex, vi, ed, sed, awk, troff, and perhaps others. Make especially
sure that programs never call these commands while in setuid or setgid
mode. See the examples above.

The same caveats apply to shell scripts as to C programs. Whenever a shell
script involves sensitive data or affects system security, you should be careful to
set the input field separators and the search path before proceeding with the guts
of the script:

IFS=" "1

"
PATH=/bin:/usr/bin
export IFS PATH

setuid or setgid, shell scripts are potential security risks for the user or
group, and should be avoided if possible (or restricted in scope to a particular file
system using).chroot(8) When such scripts are used, it is even more important
to set IF'S and PATH before proceeding.

Shell scripts that are setuid to root should never be used.

Here are some guidelines for writing secure setuid and setgid programs.
1. Don’t do it unless absolutely necessary.

2. Set the group ID rather than the user ID. It’s best to create a new special-
purpose group, but if that’s impossible, don’t use a system group. When you
use an existing group, remember that you may be compromising files that
belong to other users in the group.

3. Don’texec () any commands. Remember that the library calls sys-
tem () and popen () call some form of exec ().

sSsun Revision A of 27 March 1990

microsystems

74 System Services Overview

5.4. Programming as
Superuser

4, Ifyou must exec () acommand, set the effective group ID to the real
group ID first with setgid (getgid()).

5. Ifyou can’t reset the effective group ID, set the IFS when calling sys-
tem () orpopen (), and invoke a command using its full pathname.

6. Don’t pass user-specified arguments to system() or popen (). If you
must, check user-specified arguments for special shell characters.

7. If you have a large program that must execute a lot of other programs, don’t
make it set gid — write a smaller, simpler setgid program and execute it
from the large program.

8. If you must set user ID instead of group ID, remember that all of the above
also applies to setuid permission.

9. Don’t make a program set user ID to root. Pick another login, or better yet
create another login, but don’t use root.

Here are some guidelines for installing setuid and setgid programs.

1. Make sure a setuid or setgid command is not writable by group or oth-
ers. Never set the mode to anything less restrictive than 4755 (for setuid
commands) or 2755 (for set gid commands).

2. Better yet, set the modes to 4111 (for setuid commands) or 2111 (for
setgid commands) so that snoopers can’t run the strings command on
the binary to search for security holes.

3. Be wary of programs that come from unknown sources. Search through the
code for calls to exec (), ,system() and popen (). If a program is sup-
posed to be installed setuid or setgid, read the source code closely.
Never install such a program unless you get source code.

4. Pay close attention when installing new software. Some make/install
procedures create setuid and setgid programs indiscriminately. Pro-
grams should never employ root privileges merely to change the owner or
group of a file, since this can be done without being super-user. Check for
commands that may create setuid files, such as these:

cp su /tmp/su
cp /usr/bin/csh /tmp/su

This section describes considerations for programs to be run only by root, and
for programs that absolutely must be made setuid root.

Some system calls are restricted to processes whose effective user ID is root.
Also, many routines presented earlier in this chapter behave differently when
called by the super-user than when called by an ordinary user. Furthermore, the
system does not perform permission checks if the user is root. The super-user
is always allowed access. For example, open () does not check the permissions
of a file when called by root — it simply opens the file. This lack of checking
makes being super-user very dangerous.

S u n Revision A of 27 March 1990

microsystems

Chapter 5 — Programmer’s Guide to Security Features 75

setuid()

setgid()

chown ()

chroot ()

mknod ()

%

Commands run by the super-user are root processes (except for a non-root
setuid program, which has the effective user ID of the program’s owner).
Furthermore, setuid root programs, and commands executed from within
one, are also root processes.

When called from a root process, this call sets both the effective and the real
user ID, rather than just the effective user ID. This is allowed so that users can
log in to the system. After the system boots up, the init process spawns a
getty process for each terminal; when getty reads a login name, it calls
login to read and validate the password. Since all three processes run as
root, login is able to set the real and effective user IDs for a user’s shell.
Once a process loses root permission, it can’t get it back. Thus programs
should get privileged operations out of the way before calling setuid ().

When called from a root process, this call sets both the effective and the real
group ID. Unlike setuid (), which only sets the user ID to a valid number,
setgid () setthe group ID to any integer, whether or not that value is associ-
ated with a group.

When run by a root process, this routine does not remove setuid or setgid
permission. When run by a non-root process, however, such permissions are
removed.

This system call changes a process’ idea of where the root directory is. After this
call, a process cannot change directory above the new root, and all path searches
begin at the new root directory. This call is useful for setting up restricted
environments. Obviously, only root processes are allowed to perform this
operation.

This system call is used to create special files, such as device drivers. Aside from
FIFOs (named pipes), only root can run this call successfully. Most programs
never use this call because special files can be created with the administrative
command /etc/mknod.

Security considerations for the system calls mount () and umount () are
described in the chapter on system administration.

S u n Revision A of 27 March 1990

microsystems

76 System Services Overview

é%?y $ un Revision A of 27 March 1990

icrosystems

6.1. Introduction

Overview

Native Language Application Support

Sun’s native language application support features allow developers to create
applications that are readily portable between various native languages. Users
and developers both benefit when applications can be installed without change
between locales having different languages and customs.

Portability between native languages can substantially reduce a user’s difficulties
when configuring applications for different locales. It also allows for intema-
tional distribution of standard applications, while simplifying the problems of
training and support. While the language representation may change, the
program’s internal operations do not. This portability is also referred to as inter-
nationalization.

Portability across languages greatly simplifies the process of adapting versions of
an application to fit local markets. This adaptation process is also referred to as
localization.

Release 4.1 of the SunOS operating system provides support for developing and
executing applications that operate in native languages whose characters are
included in the ISO 8859/1 (ISO Latin 1) character set. These include most major
European languages, such as: Danish, Dutch, English, Finnish, French, German,
Italian, Norwegian, Portuguese, Spanish and Swedish.

Readers interested in Asian language environments should refer to the Japanese
Language Environment Product Description, Part Number 800-3148-10.

The native language application support features in Release 4.1 are an integral
part of the operating system’s command and programmatic interface. They
€ncompass:

o A common data model based on the ISO Latin 1 code set (with added sup-
port for multi-byte characters).

o Commands that operate cleanly on that model (8-bit clean commands).

o I/O device support for ISO Latin 1 characters, including native-language
keyboards, a compose key to produce composite characters not found on a
given keyboard, on-screen fonts, and (optionally) printer support.

o A standard announcement mechanism that allows users to select or change
language environments (locales) when using native-language applications.
When provided, users may select a native language environment base for a

sun 7 Revision A of 27 March 1990

microsysterms

78 System Services Overview

Standards-Based Approach

Common Data Model

given host, or they may choose different locales for different applications on
the same system. The base locale supplied with 4.1 is the ‘‘C’’ environ-
ment, as described in Volume 3 of the X/OPEN Programmer’ s Guide, Issue
2; (XPG2); 4.1 provides facilities for developing and installing other locales.

o Programming support, including 8-bit clean library routines, routines that
make use of language-specific character collation orders, conversion
schemes, and format conventions, and routines that produce language-
specific (diagnostic) messages.

The traditional approach of many computer vendors has been to adopt
proprietary solutions for international applications. However, those solutions
would only operate on a particular vendor’s installed base. By contrast, the
standard-based internationalization features in Release 4.1 support portability
across differing native language environments as well as different vendor plat-
forms.

The approach used in Release 4.1 is compatible with the internationalization rou-
tines described in the ANSI X3.159-1989 C language standard. It is based on the
NLS system described in XPG2. Since 4.1 conforms to XPG2, and also includes
the ANSI C intemationalization routines, XPG3-compliant applications can
readily be ported to 4.1.

4.1 also conforms to the IEEE Standard 1003.1 (POSIX.1). For more information
about X/OPEN compatibility and POSIX conformance, refer to the chapters,
X/OPEN Compatibility Features and POSIX Conformance, respectively, in this
manual.

Prior to Release 4.1, the SunOS operating system did not support a common
method for representing characters in the various European languages. Applica-
tions that required the use of characters other than those in the 7-bit US ASCII
character set (see ascii(7)) were forced to provide proprietary (non-standard)
methods to represent and operate on them. Thus, text produced by one interna-
tionalized application might well be unusable by another, and would almost cer-
tainly be unusable with system commands and library routines based on the 94
characters allowed with 7-bit ASCII.

The ISO Latin 1 character set uses 8 bits to represent each character, allowing for
188 characters. It is compatible with 7-bit ASCII in that the encodings for the
printable ASCII characters are the same (8th bit set to 0). For purposes of text
representation, ISO Latin 1 can be thought of as a superset of ASCII. For a listing
of this character set, refer to Appendix A, ISO Latin 1 Character Set.

The ability to represent the characters of many languages using this common
character set allows applications operating in different native languages to com-
municate with each other.

sun Revision A of 27 March 1990

Chapter 6 — Native Language Application Support 79

8-Bit Clean Commands

I/O Device Support
SunView 1

Table 6-1

To support the notion of a native-language application environment, a number of
commands used to process user input (text) have been modified to support 8-bit
characters. Prior to 4.1, many system commands were ‘‘8-bit dirty,”” meaning
that they interpreted ASCII control characters (those with the eighth bit set to 1)
in specialized ways. Some simply masked off the eighth bit, while others used it
as a flag of some sort.

Other than those listed in the table below, all commands in 4.1 can be regarded
as 8-bit clean. That is, they either support 8-bit character data, or are not con-
cemed with processing text.

8-Bit Dirty Commands
8-Bit Dirty Commands

adb cpp keylogin man rusers users
addbib ctags keylogout newgrp rwho w
as cxref lex nroff sdb who
awk dbx lint passwd spell whoami
catman dbxtool login refer strings whois
cc deroff logname rlogin su yacc
cflow dis mé rmail troff
1'Supports 8-bit characters in strings and comments.

The screen fonts provided with SunOS 4.1 can display the entire range of ISO
Latin 1 characters.

SunView 1.8, bundled with Release 4.1 handles the input, editing and screen
display of native language characters. All the SunView based desktop tools,
suchasmailtool, textedit, commandtool and others, provide full native
language support, allowing users the full power of the SunView desktop for use
with their native language.

sun Revision A of 27 March 1990
microsystems

80 System Services Overview

Figure 6-1 German and French Characters in SunView 1 Desktop

Und er macht ein verstandlich System daraus;
Mit seinen Nachtmitzen und Schlafrockfetzen

MWMMWN ‘L’“‘V’Nﬁ RWNNRWNJ‘ A%WMV&WAM% mmm“
. i Shoness boagae 1ty i ler STt]

S ——TCE—
SOLEILS COUCHANTS
Victor Hugo

Le soleil, a travers leurs ombres, brille encor;

Tantdt fait, & 1°egal des larges dbmes d’or,
Luire le toit d’une chaumiére;

Ou dispute aux brouillards les vagues horizons;

Ou decoupe, en tombant sur les sombres gazons,
Comme de grands lacs de lumiére

Native Language Keyboards In 4.1, the Type 4 keyboard generates ISO Latin 1 characters. Sun also provides
Type 4 keyboards with key layouts for use in a number of countries, including;:
Belgium, Canada, Denmark, Germany, Italy, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland (French), Switzerland (German), the United King-
dom, and the U.S.A.

Each native-language keyboard supplies the proper layout and key encodings for
a specific country’s language. For instance, here is the layout for the United
Kingdom native-language keyboard:

@ sun Revision A of 27 March 1990

Chapter 6 — Native Language Application Support 81

Figure 6-2

Alternate Key Mappings

The Compose Key

Floating Accent Keys

United Kingdom keyboard layout

Appendix B shows the layouts for keyboards that are currently available.

At boot time, the system executes the 1oadkeys command which configures
the key-to-character-code mappings for the keyboard. The user may run load-
keys at any time to update the key mappings (when switching keyboards, for
instance). Applications that read from the keyboard directly, that is, without
translation, must perform their own key mappings. For more information about
key mappings, refer to the SunView System Programmer’ s Guide.

It is also possible to generate alternate key mappings for specific uses. Existing
key mappings can be found in the directory /usr/share/lib/keytables,
which can be copied and modified using a text editor. The new key mapping
thus created can be installed and brought up automatically by placing the com-
mand

loadkeys keymap

inthe user’s . login or .profile. Referto loadkeys(8), kb(4M), and
keytables(S) for details.

Characters that do not appear in the layout of a given keyboard may still be
entered by way of the key. Such characters are typically composite
characters that include diacritical marks. To indicate a composite character, first
press the key. Next, press the key for the desired diacritical mark, and
then the key for the desired alphabetical character, or vice versa. For a complete
listing of composite key sequences, refer to Appendix C, Compose Key and
Floating Accent Key Sequences.

On some keyboards, certain keys appear with an empty box ((J) undemeath the
diacritical mark. These are referred to as floating accent keys. When used, they
allow you to type in a composite character without using the key. The
floating accent key must be typed first, followed by the key for the character to
be accented.

sun Revision A of 27 March 1990

82 System Services Overview

Line Printers

Networking

Mailers

File Transfer and Sharing

Terminal Emulation

4.1 support for native language printing includes:

o Transmission of 8-bit characters by 1pr. The serial line must also be 8-bit
clean, and printer must support the ISO Latin 1 character set for printing to
take place. Otherwise, the output must be filtered before printing can take
place.

o PostScripti-based printing using TranScript®, an optional software package
that provides PostScript-based printing on Sun’s LaserWriter® printer pro-
ducts.

The TCP/IP and UDP protocols provide 8-bit clean datapaths for interprocess and
network communication, but this is no guarantee that applications using these
protocols will not interpret the 8th bit. The RPC-based services provided with
release 4.1 are 8-bit clean. Internet-protocol services in 4.1 are also 8-bit clean.
They will handle 8-bit code sets in addition to ISO Latin 1, provided that those
code sets also incorporate the encodings for printable ASCII characters.

The electronic mail applications, /usr/bin/mail and /usr/ucb/mail
(Mail), can handle 8-bit text. However, they are not designed to transfer binary
data that does not conform to the text model; files that do not include (Return)
characters within a normal line-length range, or that are not null-terminated, may
not get through.

The mail message-delivery serverin4.1, sendmail, can also handle 8-bit text.
However, not all implementations of sendmail are 8-bit clean. Versions
released prior to 4.0, or those supplied with other operating systems, are known
to strip the 8-th bit from text included in messages.

Since NFS does not interpret the file’s content, text files with 8-bit characters can
be shared across systems. Also, in 4.1, pathnames can contain 8-bit characters.
However, servers running releases prior to 4.0 may have difficulty with these
filenames.

uucp(1) can handle 8-bit text, but not binaries (unless they are encoded using
uuencode(1)).

When used in binary mode, £tp can transfer 8-bit text files with no problems.
There may be problems when trying to transfer 8-bit text using £tp in ASCII
mode.

When used with a serial line operating in 8-bit, noparity mode, t ip can pass 8-
bit characters to a terminal capable of displaying them. telnet is officially a
7-bit protocol, however it too has been rendered 8-bit clean in 4.1.

2 }PostScript™ is a trademark of Adobe Systems Incorporated.

sun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 83

Other Networking Services

Modems

The Announcement (Locale)
Mechanism

4

comsat the server for the mail notifier bif £ is 8-bit clean, as are £ingex(1),
and talk(l).

rsh(1), the remote shell, is 8-bit clean, as is rlogin, but will only function as
such if the remote host is also running an 8-bit clean shell.

When used with 8-bit data, modems should be set to 8-bit noparity mode.

The key concept for application programs is that of a program’s locale. The
locale is an explicit model and definition of a native-language environment. The
notion of a locale is explicitly defined and included in the library definitions of
the proposed ANSI C Language standard.

A program’s locale defines items such as its code set (typically a subset of ISO
Latin 1), date and time formatting conventions, monetary and decimal formatting
conventions, and collation order.

The locale consists of a number of categories for which there are language-
dependent formatting or other specifications.

In Release 4.1, these categories take the form of subdirectories in the
localization-database file hierarchy. The set of files corresponding to a given
locale (represented by a file in each category’s subdirectory) is referred to as a
localization.

The localization subdirectories are as follows:

LC_CTYPE
For controlling the behavior of character-handling routines and multi-
byte character functions.

LC_TIME
Date-time formats.

LC_MONETARY
Monetary formats.

LC_NUMERIC
Numeric formats and decimal-point characters.

LC_COLLATE
Character (case) conversions and string collation tables.

LC_MESSAGES
Message catalogs.

LANGINFO
Used by n1_langinfo () to display information about the locale.

sun Revision A of 27 March 1990
microsystemns

84

System Services Overview

Figure 6-3

Structure of a Localization Database

LANGINFO LC CTYPE LC_MONETARY LC_TIME
LC COLLATE LC_MESSAGES LC_NUMERIC
C C C C
default default default default
. En_GB En_GB
. iso_8859 1 En_US En_US

/usr/share/lib/locale

Each of these directories has a corresponding environment variable of the same
name. A specification for each category can be obtained or altered by calling
setlocale () and specifying the category and value. For example:

setlocale (LC_NUMERIC, “En_GB");
sets the format for numeric values to that for Great Britain.

In addition to identifying the code set, the LC_CTYPE can be used to indicate the
user’s overall native-language environment. In other words, in the absence of a
specific call to setlocale for a given category, the system can be instructed to
use the value of LC_CTYPE for all categories.

When called as shown:
setlocale(LC_ALL, "")

setlocale () attempts to use the filename indicated in the LC_CTYPE vari-
able for each category. If LC_CTYPE is empty or invalid (no corresponding
file), setlocale () tries the value of the LANG, environment variable, and
then that of LC_DEFAULT. If none of these apply, setlocale () uses the
default file in each directory. This file is typically a symbolic link to another
file within the subdirectory. The standard default in 4.1 is the ‘‘C’’ locale.

In accordance with the proposed POSIX 1003.1 standard and XPG2, 4.1 also pro-
vides the LANG and NLSPATH environment variables to announce the run-time
locale requirements, and to indicate the directory search path for message cata-
logs, respectively.

The environment variable LANG can be used to identify the locale. However, the
value for LC_CTYPE takes precedence over LANG. A recognized value for
LANG takes the following form, which specifies the native language, and further
qualifies it if necessary with territory and codeset specifications:

language[territory[.codeset]]

which is used to name the locale information file in each localization category.

S u n Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 85

6.2. Using the
Internationalized
Desktop

Sharing Data between
Applications

Sharing Data between 4.1
Host Systems

In practice, the territory and codeset fields are unnecessary with the default
environments shipped with 4.1. In 4.1 this syntax is not used to select supersets
of an individual language. Instead the programmer should use the individual
categories mentioned above, with the same territory.codeset structure as neces-

sary.

The NLSPATH (environment) variable determines the search path for the locali-
zation database(s). The default value for NLSPATH is
/usr/share/lib/locale.

Using LC_CTYPE to switch display locales does not affect keyboard input.
Thus, if you had French and German locales available for your application, used
a German keyboard, and switched locales from German to French, the keyboard
would still transmit the labeled German characters. To enter French characters,
you would either have to use the key, or switch physical keyboards
and issue a Lloadkeys command. (Or, if so inclined, you could set the dip
switches inside the keyboard, but the key caps would then be inaccurate.)

Many existing 3rd-party applications are based on the 7-bit ASCII codeset. Since
applications that do not perform an explicit setlocale () call operate with the
*“C’” environment, they will operate in the 4.1 without problems. However, they
may have difficulty with 8-bit character input from files or devices. Other appli-
cations may use different codesets. To deal with the limitations of such applica-
tions, consider:

o Does the application use a different codeset?

If so, then, it may be possible to create a filter to map text between the appli-
cation and the system, or between applications.

o Does the application use the ISO Latin 1 codeset?

If not, then long in the long-term it should be changed to do so. In the short
term, you may be able to generate a character classification table for the
existing code set (such as the IBM PC international codeset).

o Can the application use 4.1 functionality? By default, the window system
and screen fonts assume the codeset to be ISO Latin 1. To use another you
would have to supply appropriate fonts and a new character classification
table. But note that, aside from editors, system utilities do not ordinarily
destroy data contained in files, they simply misinterpret it.

Applications that use ISO Latin 1 as their code set will operate cleanly under 4.1.
Since 4.1 is 8-bit clean, applications based on other codesets should also operate
on their own files without problems. However, attempts to mix and match files
may have unexpected results.

Data sharing and interprocess communication between host systems running
Release 4.1 is completely transparent.

S u n Revision A of 27 March 1990

microsystems

86 System Services Overview

Sharing Data with Other
SunOS Operating System
Hosts

6.3. Creating and Installing
a Native Language
Environment (Locale)

Building a Classification and
Conversion Table: chrtbl

When attempting to share data between 4.1 hosts and host systems running ear-
lier versions of the operating system (or other operating systems such as UNIX
System V or BSD):

o 4.1 Host as File Server, with Non-4.1 Client

In this configuration, you cannot assume that the applications running on the
client are 8-bit clean. Thus, 8-bit text files used by the client may create
problems. If the client is running 4.0, the Bourne shell is 8-bit clean. How-
ever, most utilities are not.

o 4.1 Client, Non-4.1 Server

In this configuration, the file-access capabilities of the server allow 8-bit text
files to be accessed by client applications. However, utility programs run-
ning on the server itself may have trouble with 8-bit text. If the server is
running 4.0, 8-bit characters in filenames are allowed. This may not be true
for other systems.

Now that you’ve been introduced to the native language support features, it is
time to discuss how to create a locale. Creating a locale involves:

o Selecting a name for the new locale

o Creating and installing a character classification and conversion table, and a
string collation table

o Creating and installing formats for dates and times, monetary values, and
numeric values

o Creating a database for native-languages messages for use by an application.

These topics are discussed in the following sections.

The chrtb1(8) command is used to create a table that contains the character
classification and case conversion tables for a code set. chrtbl takes as input a
specification file, and produces a classification and conversion data file that is in
proper format for use within the LC_CTYPE localization category.

The input file for the ISO Latin 1 code set is shown below. Note that characters
are specified by their hexadecimal (or octal) values. The - character is used to
indicate a range of values, while \ is used to continue across input lines. Lines
that begin with a # are treated as comments. The relationship between lower and
upper case letters is expressed as bracketed ordered pairs, with the first element
being lower-case.

sun Revision A of 27 March 1990

Chapter 6 — Native Language Application Support 87

(# ISO Latin 1 Code Set definition w

chrclass iso_8859 1

model euc 1,1,1

isupper 0x41-0x5a 0xc0-0xd6 0xd8-Oxde

islower 0x61-0x7a Oxdf Oxe0-0xf6é O0xf8-Oxff

isdigit 0x30-0x39

isspace 0x20 0x09-0x0d Oxa0

ispunct 0x21-0x2f 0x3a-0x40 Ox5b-0x60 O0x7b-0x7e \
Oxal-0xbf 0xd7 Oxf7

iscntrl 0x0-0x1f Ox7f

isblank 0x20 0xaOl

isxdigit 0x30-0x39 0x61-0x66 0x41-0x46

ul <0x41 O0x61> <0x42 0x62> <0x43 0x63> <0x44 0x64>
<0x45 0x65> <0x46 0x66> <0x47 0x67> <0x48 0x68>
<0x49 0x69> <0x4a 0x6a> <0x4b Ox6b> <0x4c 0x6c>
<0x4d 0x6d> <0x4de Ox6b6e> <Ox4f Ox6f> <0x50 0x70>
<0x51 0x71> <0x52 0x72> <0x53 0x73> <0x54 0x74>
<0x55 0x75> <0x56 0x76> <0x57 0x77> <0x58 0x78>
<0x59 0x79> <0x5a 0x7a> <0xc0 0xe0> <0xcl Oxel>
<0xc2 Oxe2> <0xc3 0xe3> <0xcd4d Oxed> <0xc5 Oxe5>
<0xc6 Oxe6> <0xc7 Oxe7> <0xc8& 0Oxe8> <0xc9 0xe9>
<0Oxca Oxea> <0xcb Oxeb> <0xcc 0Oxec> <0xcd Oxed>
<0xce Oxee> <0xcf Oxef> <0xd0 0xf0> <0xdl Oxfl>
<0xd2 0xf2> <0xd3 0xf3> <0xd4 0xf4> <0xd5 Oxf5>
<0xd6 0xf6> <0xd8 Oxf8> <0xd9 0xf9> <0Oxda Oxfa>
<0xdb Oxfb> <0xdc Oxfc> <0xdd O0xfd> <0xde Oxfe>

_ J

VA A A A A A A O A A e

The chrclass heading gives the name of the code set. The value for this head-
ing isused by chrtbl as the basename for the output file. The optional mode 1
heading gives a description of the rules for a particular codeset. These rules will
affect the way in which the multi-byte functions defined in mblen(3) operate. If
the model field is selected and has the correct syntax it will crate another output
file with a filename based on the chrclass heading, with a . ci suffix added.
If the model heading is not used then it is assumed that the code-set being
defined is a single byte codeset. The ul heading indicates that the upper-to-
lower case mappings follow. The other headings indicate which characters are to
be recognized by the various character-classification routines.

To compile the classification table, use a command of the form:

and then install the table in the LC_CTYPE directory of the locale database, as
described under Installing a Locale, below.

It is possible to make variants of a classification table by making small adjust-
ments to an ISO code-set definition. This may be to show small differences of
operation in differing countries. For example if you wished to make the French
version of 8859/1 invalidate upper case accented letters, this could be achieved
by editing the basic 8859/1 table, marking them as invalid and creating a new

sun Revision A of 27 March 1990

microsystems

88 System Services Overview

Building a String Collation
Table: colldef(8)

character set table for a French locale.

It should be noted that some issues of conversion are only handled by the colla-
tion facility. The conversions allowed by this table are only single byte to single
byte. For example this table will not support the conversion of the German §
character to the string "ss".

The colldef command is used to create string collation tables used by a code
set. colldef reads its standard input, and produces a collation table that is in
proper format for use within the LC_COLLATE localization category.

When comparing sequences (strings) of characters, a pair of words might collate
differently in different languages. The strxfrm () and strcoll () library
routines allow programs to use the locale-specific collation tables for sorting
strings.

A sample input file for colldef is shown below.

(" 3
#
A sample collation specification
#

order \x20;A;a;B;b; (C,c);ch;D;d; (E, \xc8, \xc9, \xca);£f;...;z

substitute "\xdf" with "ss"
substitute "\xc6" with "AE"
substitute "\xe6" with "ae"

The order line gives specifies the sort order for single characters. Semicolons
are used to separates primary collating elements. So, in this ordering, the string
Apple would be sorted ahead of the string apple. Parentheses are used to
indicate a secondary sorting, that is, groups of characters that are to be collated
together in the absence of a distinguishing character to follow. Thus ‘Ca’ comes
before ‘ca’ (as it would without the brackets), but ca comes before ‘Ce’.
(which it wouldn’t without the brackets)

The substitution lines define substitution rules. These are generally used
during sorting, so strings such as the following:

schlof
schloss

(in this example) will collate together.

To compile the collating table, use a command of the form:

and then install the compiled table in the LC_COLLATE directory of the locale
database.

sun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support

89

Date and Time Formats

Table 6-2

Different cultures and nations use a variety of conventions to record the date and
time. The following table illustrates the wide variety of conventions in use

around the world.

The strftime(3) function can be used to display the date and time in the

desired format.

International Date and Time Conventions

Language Convention Examples
Danish dd/mm/yy 13/08/89
Finnish dd.mm.yyyy | 13.08.1989
French dd/mm/yy 13/08/89
German dd.mm.yy 13.08.89
Italian dd.mm.yy 13.08.89
Norwegian dd.mm.yy 13.08.89
Spanish dd-mm-yy 13-08-89
Swedish yyyy-mm-dd | 1989-08-13
United Kingdom | dd/mm/yy 13/08/89
United States mm-dd-yy 08-13-89
French Canadian | yyyy-mm-dd | 1989-08-13
English Canadian | yyyy-mm-dd | 1989-08-13

The simplest way to create a date and time table for the LC_TIME category is to
follow the format given in the file:
/usr/share/lib/locale/LC_TIME/C:

-
Jan

Feb

Mar

Dec
January
February
March
December
Sun

Mon

Sat
Sunday
Monday

Saturday
$H:%M: %S
sm/%d/ %y

AM
PM

.

%A, %B %e, %Y

%a %b %e $T %Z %Y

sun

microsvstams

Revision A of 27 March 1990

90

System Services Overview

Decimal Units

Table 6-3

The first twelve lines indicate the short forms of the months of the year. The fol-
lowing twelve give the long forms. The next seven give the short form of the
days of the week. The following seven give the long forms. The next lines give
various date and time formats using the field descriptors described in
ctime(3V):

$H:%M:%S Short form of local time

sm/%$d/ Sy Short form of local date

%a %b %e %T %Z %Y Local short form for date and time.
AM ante meridiem notation

PM post meridiem notation

%A, %B %e, %Y local long form for date and time

The text of these last lines can be altered as to punctuation, order and content
according to local custom.

Once the new date and time format file has been completed, you can install the
file in the LC_TIME directory of the locale database.

There are a variety of formatting conventions for decimal units as well, as the
following table shows:

International Decimal Formatting Conventions

Language Examples
Danish 1.234.567,89
Finnish 1.234.567,89
French 1.234.567,89
German 1234 567,89
Italian 1.234.567,89
Norwegian 1.234.567,89
Spanish 1.234.567,89
Swedish 1.234.567,89
United Kingdom 1,234,567.89
United States 1,234,567.89
French Canadian 1234 567,89
English Canadian 1234 567,89

You can use the £scanf () (refer to scan£(3C)) routine to accept input of
decimal amounts. £scanf () has been enhanced in 4.1 to accommodate dif-

ferent input formats. Currently scanf () will not understand the space as a valid
input separator, but the space can be used on output (German uses both modes).

To create a numeric format specification for the LC_NUMERIC category, follow
the format given in the file
/usr/share/lib/locale/LC_NUMERIC/En_US:

sun

mictosystems

Revision A of 27 March 1990

Chapter 6 — Native Language Application Support

91

Monetary Formats

Table 6-4

The first line of this file contains the radix character. The second line contains

the thousands-separator, and the third line gives the number of digits for group-

ing purposes. If the last two lines are empty, grouping (by thousands) is not

done.

Once the numeric format file has been completed, you can install it in the

LC_NUMERIC directory of the locale database.

There are many different formats for monetary figures, as the table below illus-

trates.

International Monetary Formatting Conventions

Language Unit of Currency Example
Danish Kroner(kr) kr.1.234,56
Finnish Markka(mk) 1.234 mk
French Franc(F) F1.234,56
German Deutschemark(DM) 1,234.56DM
Italian Lira(L) 1L1.234,56
Norwegian Krone(kr) kr 1.234,56
Spanish Peseta(Pts) 1.234,56Pts
Swedish Krona(Kr) 1234 .56KR
United Kingdom{ | Pound(#) #1,234.56
United States Dollar($) $1,234.56
English Canadian | Dollar($) $1 234.56
French Canadian Dollar($) 1 234.56%

¥ The symbol # represents the pound-sterling symbol

The localeconv(3) function is used to obtain currency formats. It uses the
formatting conventions of the current locale to set the components of an object

with type struct lconv to the appropriate values, and retumns a pointer to the

filled-in object.

sun

microsvstems

Revision A of 27 March 1990

92

System Services Overview

To create a currency format specification for the LC_MONETARY category, fol-
low the format given in the file
/usr/share/lib/locale/LC_MONETARY/En_US:

s A
USDO
$

o+ W

ORI BN

\)

This file consists of exactly fifteen lines, each of which contains specific informa-
tion about the monetary format:

Line 1. International Currency Symbol (string)
This is the currency symbol for the locale. The first three characters contain
the alphabetical code for the symbol as specified in ISO 4217, Codes for the
Representation of Currency and Funds. The fourth character, which must
also be the last character on the line, is the character used to separate the
currency symbol from the monetary quantity. For example:

ITL.

would be the correct specification for Italy. ITL refers to the standard code
for the currency, and the period separates the code from the amount. Thus,
the string TTL . 123, 000 would represent 123,000 Lire.

Line 2. Local Currency Symbol (string)
This is the local version of the currency symbol, such as the $ dollar-sign
used in the United States.

Line 3. Monetary Decimal Point (string)
This is the radix character used to format monetary quantities. It separates
the unit quantity from the decimal fraction parts. If this is empty, it means
by default the decimal parts are not printed (such as in Italy, where fractions
of Lire are not printed).

Line 4. Monetary Thousands Separator (string)
This is the string used to separate digits that are grouped together. It is usu-
ally a comma or period, and most often groups together thousands units (3
digits). If this line is blank, no grouping character is used.

Line 5. Monetary Grouping Specification (string)
This line gives the size of a group of digits. It is often used only for

sSsun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 93

separation after the thousands digit, but may be use in higher groupings as
well. For example:

\3 separates after thousands digit only: 7654,321
3\3 separates after each group of 3 digits: 7,654,321

If this line is empty, no grouping is done.

Line 6. The Positive Sign (string)
The symbol used to represent a positive value. It is normally empty, but
may sometimes contain a symbol such as the plus sign (+). If this line is
empty, no positive sign is required.

Line 7. The Negative Sign (string)
The symbol used to represent a negative value. Usually set to the minus sign
).

Line 8. International Fractional Digits Count (character)
This is the integer number of digits required after the decimal point in the

international monetary representation. This does not affect the local
representation. For instance, the value 2 would produce:

NLG 1.234.56

for Dutch Guilders. If this line is empty, fractional digits are not
represented.

Line 9. Local Fractional Digits Count (character)
This is the integer number of digits required after the decimal point in the
local monetary representation. The value 3 would produce:

$1,234.560

for U.S. Dollars (obviously not the standard presentation form in this case).
If this line is empty, fractional digits are not represented.

Line 10. Position of Currency Symbol when Positive (character)
This is a boolean value that indicates whether the currency symbol comes to
the left or right of a positive (nonnegative) value. Any (or Y, £, or T)
means that the symbol appears to the left, an n (or N, £, or F), to the right. If
this line is empty, it is taken as £.

Line 11. Space Separation of Currency Symbol for Positive Values (character)
If this line contains an y (or Y, t, or T), the currency symbol is separated by
a space from the positive monetary value. Otherwise the symbol is not
separated from the value.

Line 12. Position of Currency Symbol when Negative (character)
This is a boolean value that indicates whether the currency symbol comes to
the left or right of a negative value. A y (or Y, t, or T), means that the sym-
bol appears to the left, an n (or N, £, or F), to the right. If this line is empty,
it is taken as 0.

Line 13. Space Separation of Currency Symbol for Negative Values (character)
If this line contains a y, (or Y, t, or T), the currency symbol is separated by
a space from the negative monetary value. Otherwise the symbol is not

@ .§.!:!c.!:.! Revision A of 27 March 1990

94 System Services Overview

Message Catalogs

A

separated from the value.

Line 14. Position of Positive Sign (character)
This is a numeric value in the range 0-4, representing the position of the
positive sign with respect to the monetary value, as follows:

0 Parentheses surround the currency symbol

The sign string precedes the quantity and currency symbol
The sign string succeeds the quantity and currency symbol
The sign string immediately precedes the currency symbol
The sign string immediately succeeds the currency symbol

=W N

Line 15. Position of Negative Sign (character)
This is a numeric value in the range 0-4, representing the position of the
positive sign with respect to the monetary value, as follows:

0 Parentheses surround the currency symbol

The sign string precedes the quantity and currency symbol
The sign string succeeds the quantity and currency symbol
The sign string immediately precedes the currency symbol
The sign string immediately succeeds the currency symbol

S W NP

Message catalogs are files of message strings, separated from an application, with
an indexed internal structure. They are accessed by file name. The gencat(1)
utility is used to create a message catalog from the message text source file.

Individual messages are indexed by msg_id within the catalog. Optionally,
message catalogs can also be divided into one or more sets of message, which are
indexed by set_id. Given these identifiers, accessing the appropriate message
is a simple table lookup.

Unlike the other categories in the locale database, the LC_MESSAGES directory
contains subdirectories for each locale. Each individual message catalogue typi-
cally resides within each subdirectory associated with every available locale
(language) of messages for an application.

To build a message catalog for a given application and locale, first extract the
message strings from the source file. With this release of SunOS, there are no
tools supplied to automate this process.

The 4.1 C library allows you to make reference to a message string through the
functions catgets(3) and catopen(3). In addition 4.1 supplies the get -
text(3), and textdomain(3) functions for the same purpose. Both sets of
functions perform the same tasks, although it is not recommended to mix both
sets of calls in the same application.

For an X/OPEN compliant application, run the source message file through gen-
cat(1). This will produce a binary message file in the current working directory
that can later be moved to the correct installation directory.

If the message text is built for use with gettext (), you may use the
installtxt(1) to build it, and as with gencat you can copy the binary into
the locale database for run-time loading.

sun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 95

Installing a Locale

6.4. Developing an
Internationalized
Application

Overview

Once the various files for the desired categories have been created, you can
install them in the default locale database (directory tree), provided that you can
become the super-user on the system. The pathname for this location is:
/usr/share/lib/locale

If you wish to install a per-workstation private version of the same database, you
may install the files under:

/etc/locale

Which is always searched first by the setlocale () function.

Creating internationalized application programs is not difficult, but it does
require knowledge of some specific programming techniques. If the need for
internationalization is considered in the application’s design, the development
process can be quite straightforward. Techniques for dealing with the various
categories governed by the current locale are described in this section.

Programmers building intemationalized applications may also be interested in
several other references. The Draft Proposed National Standard for Information
Systems—Programming Language C explains the entire C language interface,
and is available from the:

X3 Secretariat

Computer and Business Equipment Manufacturers Association
311 First Street, N.W., Suite 500

Washington, DC 20001.

The X/OPEN Portability Guide volumes 2 and 3, explains the X/OPEN require-
ments for internationalization; it is written by the X/OPEN Company, Ltd. and is
printed and published by:

Prentice Hall
Englewood Cliffs, NJ 07632

Note that the C compiler does not support 8-bit characters in object names (that
is, names of routines, variables, and so forth), although it does allow you to ini-
tialize 8-bit data in strings. Certain 8-bit characters are treated specially by cpp,
and so their use is not recommended in names of defined constants.

This section discusses the following considerations when designing an applica-
tion, and provides short programming examples of the best ways to structure
software.

o Acquiring the native-language environment using setlocale ()
o Handling of alternate alphabets and character sets

o Date and Time Formats

o Numeric Formats

o Monetary Formats

o File Names

@ sun Revision A of 27 March 1990

96

System Services Overview

8-Bit Character Support
Routines

Table 6-5

o Sorting and Collation Orders

o Native Language Messages

o Other Considerations

Release 4.1 provides the following library routines for 8-bit character support.

Internationalized Routines

Internationalized Routines

Routine

Description

Locale
localdtconv ()
localeconv ()
setlocale ()

Returns date and time format for locale
Returns numeric and monetary formats
Set locale or locale category

Date/Time
strftime ()
strptime ()

Convert date and time to string
Convert string to date and time

isalnum()
isalpha()
isascii()
iscntrl ()
isdigit ()
isgraph ()
islower ()
isprint ()
ispunct ()
isspace()
isupper ()
isxdigit ()
toascii()
tolower ()
toupper ()

Character Handling

Character classifications

Character conversions

String Handling

atof ()

ecvt ()

fcvt ()

gevt ()

rege xp(3)T
strcoll ()
strtod ()
strxfrm()

Convert string to number
Convert number to string

Regular-expression routines
Collate two strings

Convert string to number
Transform string

Formatted Output
fprintf ()
printf ()
sprintf ()
nl fprintf ()

Print formatted string

Print formatted string (XPG2 version)

sun

microsystems

Revision A of 27 March 1990

Chapter 6 — Native Language Application Support 97

Table 6-5

Acquiring the Locale:
setlocale()

Internationalized Routines— Continued

Internationalized Routines
Routine Description

nl printf ()
nl sprintf ()

Formatted Input
scanf () Accept formatted input
fscanf ()
sscanf ()
nl scanf () Accept formatted input (XPG2 version)
nl fscanf ()
nl sscanf ()

Messaging
catgets () X/Open Messaging function
catgetmsg () X/Open Messaging function
catopen() X/Open Messaging function
catclose() X/Open Messaging function
gettext () Messaging function
textdomain () Messaging function
nl langinfo() Print native-language database info

Multi-Byte CharactersfF
mblen () Get length of multi-byte string
mbtowc () Multi-byte to wide character
wctomb () Wide character to multi-byte character
mbstowcs () Multi-byte string to wide character string
wcstombs () Wide character string to multi-byte string
T regexp(3) routines are 8-bit clean only. They do not handle
POSIX regular expressions.
*These routines support a number of multi-byte code sets, including:
EUC, ISO 2022, and XEROX XCCS.®.

The SunView 1 input and display routines also support 8-bit characters.

To conform with the ANSI C language standard, all processes are initialized to
use the *‘C’’ (ASCII) native-language environment. Therefore, a program must
make an explicit call to setlocale () in order to use the locale specified in its
environment. A call of the form:

setlocale (LC_ALL, "");
is typically used to set all locale categories to those in the environment.

Applications may allow users to modify one or more locale categories, or to
switch locales entirely, by calling setlocale ().

n Revision A of 27 March 1990

98 System Services Overview

Handling Alphabets and
Character Sets

Handling Date and Time
Formats

Internationalized applications eliminate codeset dependencies. Self-developed
programming techniques that introduce dependencies on the ASCII codeset must
be converted to a more portable form for an application to successfully handle
varying code sets. For instance, the example below shows a hard-coded test
based on ASCII, which should be replaced with isprint (), one of the standard
character-range test routines listed above. This program will fail to correctly
recognize some ISO Latin 1 characters that are printable when run in a locale
other than “‘C.”’

/* Poor practice: Codeset Assumed to Be ASCII */
main ()
{
int ¢;
if (c<=037| |ec>=0177)
printf ("This character cannot be printed\n");
else
printf ("This character is %c\n",c):

As mentioned earlier, strftime () canbe used to display the date and time in

whatever form the current locale specifies. strftime (), strptime(), and

localdtconv, are other functions that handle locale-dependent time formats

(see ctime(3V). The synopsis of strftime () is:

- z
#include <time.h>

size_t strftime(s, maxsize, format, timeptr);
char *s;

size_t maxsize;

char *format;

struct tm *timeptr;

where s is a pointer to a string in which to store the formatted time, maxsize is
the maximum number of bytes that will be placed in s, format is a string giv-
ing the format to display, and t imeptr is a pointer to a tm struct as returned by
localtime ().

For example, the function below displays the time correctly in a number of dif-
ferent locales:

sun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 99

Handling Numeric Formats
scanf ()

#include <time.h>
$include <sys/types.h>
#include <locale.h>

#define MAXLEN 80

int strftime(); /*Returns date/time according to locale */
char buff [MAXLEN];

struct tm *timeptr;

time_t clock;

int count;

main ()
{
setlocale (LC_TIME,"");
clock = time(0);
timeptr = localtime (&clock);
count=strftime (buff, MAXLEN, "$x %X", timeptr);
printf ("Todays Date/Time Is: %s\n",buff);

It is possible to use the scanf style functions to input data based on language
dependent grammar, or order (see scanf(3V)). The trick here is to be able to
vary the format string without the need to change the (hard-coded) argument lists
in your program code. The format string can be extracted and can be defined in a
locale dependent manner.

int fscanf (stream, format [, pointer]...)
FILE *stream;
char *format;

fscanf () reads input from the stream pointed to by st ream; the string
pointed to by format specifies the admissible input sequences and an (optional)
order in which they are to be converted for assignment, for example, the call:

char input_string[40] = "dirty water";
char adjective[20], noun{20];

sscanf (input_string,"%1$s%2$%s",adjective,noun);

would place "dirty” in the string ad jective, and "water" in the string noun
Now, in German it may be required to reverse the noun and adjective, in which
case we would only have to change the (possibly extracted) string in the above
example, as follows:

sscanf (input_string, "%2$s%1$8s",adjective,noun);

S ll n Revision A of 27 March 1990

microsvsterns

100 System Services Overview

*/

struct lconv {

* Numeric and monetary conversion

localeconv localeconv () retums a pointer to the 1conv structure, which contains data
for formatting numeric and monetary amounts. This can be useful in conjunction
with conversion routines such as atof (), for converting input strings into
actual numeric values.
The components of the 1 conv structure are given in <locale.h> as shown:
-
/*

information.

char *decimal_point; /* decimal point character */

char *thousands_sep; /* thousands separator character */

char *grouping; /* grouping of digits */

char *int_curr symbol; /* international currency symbol */

char *currency symbol; /* local currency symbol */

char *mon_decimal point; /* monetary decimal point character */

char *mon_thousands_sep; /* monetary thousands separator */

char *mon_grouping; /* monetary grouping of digits */

char *positive_sign; /* monetary credit symbol */

char *negative_sign; /* monetary debit symbol */

char int_frac_digits; /* intl monetary number of fractional digits */

char frac_digits; /* monetary number of fractional digits */

char p_cs_precedes; /* true if currency symbol precedes credit */

char p_sep_by_ space; /* true if space separates c.s. from credit */

char n_cs_precedes; /* true if currency symbol precedes debit */

char n_sep_by space; /* true if space separates c.s. from debit */

char p_sign_posn; /* position of sign for credit */

char n_sign_posn; /* position of sign for debit */

L }i
J
Alternative input routines are also provided. The scanf () and sscanf ()
functions can be used to read from the standard input stream, or from a
character string, respectively. For compatibility with XPG2, the routines
nl scanf (),nl_sscanf() and nl_fscanf () are also provided. How-
ever their use is not recommended since their functionality has been completely
subsumed by the scanf () routines as specified in XPG3.
printf () It is possible to use the print f style functions to output data based on language

dependent grammar, or order (see scanf(3V)). The trick here (as with

scanf ())is to be able to vary the format string without the need to change the
(hard-coded) argument lists in your program code. The format string can be
extracted and can be defined in a locale dependent manner.

int fprintf (stream, format [, pointer]...)
FILE *stream;
char *format;

fprintf () writes output to the stream pointed to by st ream; the format
string specifies how subsequent arguments are converted for output. For instance
in American usage:

Revision A of 27 March 1990

Chapter 6 — Native Language Application Support 101

Handling Monetary Formats

Table 6-6

fprintf (stream, "%s, $s %d, $d:%.2d\n", day, month, date, hour, minute) ;
might produce:

Sunday, July 3,10:02

Whereas for German usage, the format string could be replaced:

fprintf (stream, "%18s, %3$d.%2S$s,%48d:%5$.2d\n",
day, month, date, hour, minute);

to produce:

Sonntag, 3.Juli,10:02

Alternative output routines are also provided. The printf () and sprintf ()
functions can be used to output to the standard output stream, or to a character
string, respectively. For compatibility with XPG2, the routines n1_printf (),
nl sprintf () and nl_fprintf () are also provided. However, since their
functionality has been subsumed by the print £ () family in XPG3, their use is
not recommended.

The table below illustrates the rules that might be used by three countries. The
table that follows shows respective values for the structure that would returned
by localeconv (), once the appropriate locales have been created and
installed. {

More Sample Monetary Formats

Country Positive Negative Intemational
Format Format Format
Italy L.1.234 -L.1.234 ITL.1.234
Netherlands | F 1.234,56 F -1.234,56 NLG 1.234,56
Norway krl.234,56 krl.234,56- NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

2 §These locales are not supplied in Release 4.1.

y U Revision A of 27 March 1990

102 System Services Overview

Table 6-7

Handling File Names

Sorting, Collation and
Conversion

Values of the Structure Returned by localeconv ()

. Nether- Switzer-
Field Tualy lands Norway land
int curr symbol "ITL." | "NLG " | "NOK ". "CHF "
currency symbol "L." npn "krv "SFrs."
mon_decimal point nn nou wou won
mon_thousands_sep wn wow won won
mon_grouping "\ 3© 3w "\ 3 m\ 3"
positive_sign un wn nn)
negative_sign won n_n non non
int_frac digits 0 2 2 2

frac digits

p_cs_precedes

p_sep by space

n_cs_precedes

n sep by space
p_sign posn
n_sign_posn

Blelolr|ol+-]lo
PN N SR T T S TN
N |lolRolE]N
NviFRlolrlolr]N

There are no currently accepted international standard routines to control the
input of formatted monetary information. Programmers should use
localeconv () in conjunction with fscanf () or read () to construct their
own input routines. Similarly, there are no currently accepted international stan-
dard routines to control the output of formatted monetary information. Program-
mers should use the 1ocaleconv () and fprintf () to construct their own.

Release 4.1 allows for any ISO 8859/1 character to be a valid character within a
file name except for the backslash (\), SPACE, slash / and NULL characters. It is
assumed the normal conventions for filenames will be applied to (e.g. The .c
suffixes).

The correct sorting of an alphabetic list, or collation across European languages
is a much more difficult problem than it appears at first glance. Many factors
affect collation order.

Often, accented characters and unaccented characters should sort alike. Upper
case and lower case characters should sort alike. Accented characters usually fol-
low unaccented characters. However, there are many exceptions to this rule.
Some accented characters sort as a unique letter; some double characters sort as a
single character. Many more complex rules apply.

SunOS provides two functions for string comparison: strcoll () and
strxfrm(). Both of these reference the collation information in the program’s
language locale, (category LC_COLLATE). The collation sequence table in the
locale can, in turn, be accessed or initialized from the command line with the
colldef and chartbl commands. SunOS 4.1 provides no collation tables by

sun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 103

Native-Language Messages

Library Routines for Accessing
Message Catalogs

default in the standard software distribution. Developers requiring collation
tables must construct their own.

The strcoll () function compares the string pointed to by its first argument
with the string pointed to by its second, interpreted with respect to the
LC_COLLATE category of the current locale. The sign of a non-zero value
returned is determined by the relative ordering within the current collating
sequence of the first pair of characters which differ.

The strxfrm(sl,s2,n) function transforms the string pointed to by s2 and
places the resulting function into the array pointed to by s1. The transformation
is such that two transformed strings can be ordered by strcmp () .

Release 4.1 provides several altemative solutions to the problem of how to create
message structures which can be easily written, translated, and correctly
accessed at run-time depending upon the locale of the program. Messages are
stored in message catalogs, files containing messages which are indexed and
accessible by msg_id.

Because the contents of the message catalog are separate from the application’s
code, a message catalog for the current locale can be selected or altered at run-
time without altering the code itself.

Message catalogs are opened by calling the routine catopen (), which locates
the identified message catalog accord to the search and naming rules in the
environment variable NLSPATH. To illustrate:

#include <nl_types.h>

nl_catd catd = catopen("catalog_name",0);

will return a catalog descriptor, n1_catd which is then used in calls to cat -
gets () to identify the message catalog. Message catalogs are closed with the
routine catclose ().

The routine catgets () uses a message identifier, msg_id, to extract from the
numbered message set identified by set_id, within the catalog referred to the
by the catalog identifier, catd:

char *catgets(catd,set_id,msg_id, string);

The small program below illustrates the use of all the routines. It retrieves the
first message of the second set of catalog messages in the file catalog name.
If the call fails, the program displays the string: ‘Not successful text’.

sun Revision A of 27 March 1990

microsystems

104 System Services Overview

Message Catalogs and the File
System

Static and Dynamic Messaging

#include<stdio.h>
#include <nl_types.h>
#include <locale.h>

#define SET_NUMBER 2
#define MESSAGE NUMBER 1

main ()
{
nl_catd catd;

setlocale (LC_MESSAGES,"");

catd = catopen ("catalog_name",0});

printf("%s\n",catgets(catd,SET_NUMBER,MESSAGE_NUMBER,
"default text"));

catclose(catd);

There are no standard conventions for the location and naming of message cata-
logs; these are left to the application. In general, applications might choose
either to locate message catalogs within a subtree corresponding to the supported
language, /application_name/$SLANG/ * . cat, or to consolidate all message
catalogs in one sub-directory, /application_name/catalogs/*.cat.

The environmental variable, NLSPATH allows this flexibility, Its use is as fol-
lows:

NLSPATH = /appl_ lib/%L/%N.cat:/nlslib/%N/3%L

A substitution field is introduced by %, with $L substituting for the current value
of LANG, and %N, substituting for the value of the name parameter used in the
call to catopen (). catopen () searches first in
/appl_1ib/$LANG/cat_name.cat, and thenin
/nlslib/cat_name/$LANG for the message catalog.

Generally, the use of NLSPATH is discouraged, as it leads to the users having
uncertain knowledge of the location of the message catalog at run-time. It is pre-
ferred practice to use the default location for messages in
/usr/share/lib/locale/LC_MESSAGES/locale/name In this case, col-
lision of message catalogs should be determined by the application installation
script.

Assuming that the programmer uses the message retrieval facility as described in
the previous section, it is still important to understand how best to define strings
in the original form so that they can be easily translated at a later stage. The
examples in this section do not contain references to catgets () (These are
only removed for readability), however it is assumed that in the real case these
calls would be surrounding the string literal itself.

Application writers can take two approaches to message creation, either static
messaging or dynamic messaging. Static message usage involves pre-formatted
messages which are selected from a message catalog and printed without re-
ordering by the application. Dynamic message creation also selects messages

sun Revision A of 27 March 1990
microsystems

Chapter 6 — Native Language Application Support 105

from a message catalog, but orders and assemble messages at run-time instead of
statically presenting them. 4.1 provides C language routines for both strategies.

The advantage of static messaging is its simplicity. A single message is selected
from the catalog and is sent directly to the output stream. However, with static
messaging, care must be taken to avoid splitting a message across printf{) state-
ments. Otherwise the message will be difficult to translate. This is illustrated
below:

/* Poor practice: Do Not Split Messages */
printf ("This sentence may be difficult to translate ");
printf ("because it spans multiple printf statements.\n");

Better practice is to place entire sentences within a single print f () statement,
as shown below:

/* Good practice: 1 Message Per Sentence */
P 9
printf ("This sentence is easy to translate \
because it is included with one printf statement.\n");

Another problem that can arise is when a print £ () statement could result in
more than one sentence when executed. The illustration below demonstrates a
message that would not be translatable.

/* Poor practice: Mixing Multiple Sentences */
printf ("%- Insufficient resources to%s %d%s resource$%s - %s",

func, (alloc_flg ? " allocate" : "reserve"),
count, (request_ flg ? " sufficient" : ""),
(count == 1 2?2 "" : "s"), "Request failed.");

One solution is to split the message into separate print statements, one per variant
of the message, and to have an implicit switch statement that selects the correct
version at run-time.

Dynamic messaging can be used when the exact content or order of a message is
not known until run-time. Unless done carefully, this approach can cause trans-
lation problems. If the positional dependence of keywords is hard-coded into the
program, the program itself must also be changed for the message to be success-
fully translated. Obviously, this defeats the purpose of message catalogs.

The solution is a set of routines which enables proper dynamic message creation
by allowing the calculation of string arguments to be performed in position-
independent manner. The need for this will now be illustrated.

/* Poor practice: Position Dependent Keywording */
printf ("Unable to %s the %s\n",
(lock_flg?"lock":"find"), (type_flg?"page": "record"));

S ll n Revision A of 27 March 1990

microsystems

106

System Services Overview

This program could alternatively execute in English as either:

Unable to lock that page.
Unable find that record.

However, the program’s message could not be translated into the equivalent Ger-
man,

"Das Programm kann die Seite nicht sperren.™
and
"Das Programm kann der Rekord nicht finden."

because the German conventions for word order require that the program’s key-
words be reversed.

Release 4.1 solves this with functions which support dynamic message ordering:
printf (), fprintf (), sprintf (), scanf (), £scanf (), and
sscanf ().

These functions make the position of the argument independent of the underlying
input string. Position within the string is declared by an extension to the conver-
sion character . The sequence

%n$

where n is a decimal digit, is substituted for the conversion character. Conver-
sions are subsequently applied to the nth argument in the argument list, rather
than to the next unused argument. In the example above, the format string would
contain the new positional arguments:

printf ("The program cannot %1$s %2$s\n",
(lockflg?"lock": "find"), (type_flg?"page": "record"));

The English message catalog becomes:

"Unable %1$s %2S$s"
"lock"

"find"

"the page"

"the record"”

While the German message catalog becomes:

"Das Programm kann %2$s nicht %1$s"
"sperren"

"finder"

"das Seite"

"der Rekord"

The routines n1_printf(),nl fprintf(),nl sprintf (),

nl scanf (),nl fscanf(),andnl_sscanf () are also provided for
XPG2 compatibility, but since their functionality has been subsumed by the
printf () family in XPG3, the use of the n1_* variants is not recommended.

sun Revision A of 27 March 1990

microsystems

Chapter 6 — Native Language Application Support 107

Other Programming
Considerations
Graphical Characters

Printing

Page Sizes

Table 6-8

4

Finally, remember to allow messages to have variable lengths. Applications
should not make assumptions about the space required to express a message.
Messages originally written in English will often expand in length when
translated into foreign languages. However, applications should also plan for
messages which become shorter under translation as well.

Messages using parameters should be carefully considered; it may be necessary
to re-position the parameter within the message to allow for differences in trans-
lation.

Graphical characters such as & and ! are subject to widely differing interpreta-
tions and should be avoided. However, the % percentage symbol is widely under-
stood.

Using menu selections or making choices with cursor position is a useful tech-
nique for making application programs independent of the locale in which the
application runs. Choosing items by typing the first letter works less well.

Manufacturers of printers have lagged the manufacturers of computer systems in
the incorporation of standard codesets within their products. Application pro-
grams should beware of printer-specific codesets which may not translate directly
from the ISO 8859/1 codeset used in SunOS. Applications expecting to
encounter such printers should define structures which contain the printer specific
codesets and specifically translate files to be printed.

SunOS minimizes these problems by providing 8-bit clean datapaths within 1pr
and by also using the ISO 8859/1 codeset within the TranScript unbundled
software product which drives Sun LaserWriter printers.

The dimensions of the standard paper stocks used around the world varies
widely, as shown below. Intemationalized applications should not make assump-
tions about the pagesizes available to them. Release 4.1 provides no support for
tracking the page size to be written by an application; this is the responsibility of
the application program itself.

Common International Page Sizes

Paper Size Name Measurements(Inches)
Letter g.5" X 11"
Legal 8.5" X 14"

A4 8.34" X 11.78"

JIS B4 10.20" X 14.43"
JIS BS 7.23" X 10.20"

The standard paper trays distribut<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>