
•
SunOS User's Guide:
Doing More

• • •
• • • •

• •

Sun Workstation and Sun Microsystems are registered trademarks of Sun
Microsystems, Inc.

Sun View, SunOS, and the combination of Sun with a numeric suffix are trade­
marks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations, and
Sun Microsystems, Inc., disclaims any responsibility for specifying which marks
are owned by which companies or organizations.

Copyright © 1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(I)(ii) of the Rights in
Technical Data and Computer Software clause at DF ARS 52.227-701'3 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,1904,527,2324,745,4074,679,0144,435,792 4,719,5694,550,368 in
addition to foreign patents and applications pending.

Contents

Chapter 1 Securing Your Files ... 1

1.1. The Importance of Security ... 1

1.2. Maintaining Password Security ... 1

Password Aging ... 1

1.3. Locking Your Terminal Screen ... 2

1.4. Controlling Access Permissions .. 2

1.5. Encrypting Files ... 3

Encrypting Witll crypt .. 3

Encrypting Witll de s ... 4

Chapter 2 Other U sers ... 5

2.1. Otller Users .. 5

Users Currently Logged In .. 6

Changing Identity Witll s u ... 6

2.2. Becoming root, tlle Superuser .. 7

Chapter 3 Managing Your Files 9

3.1. Locating Files 9

Looking Up a Command Witll 9

Looking Up a Command's Description

Looking Up Files Witll find ;;~;;~,.;; ... "':.,:,:, .. ,.;;;; .. ; ;,,"",., {::::::::>

Running Commands Witll find ;;;;; ... ;.;;;.:;.; ,"" •.. ;;;;;;:, .. ;":";.,.::<:::::::>

Looking at File Types Witll file ~;;;; ... ;;;:;:;:;:;: •.•. ;; .. ;: ,,; ... ;.

3.2. Looking at Differences Between Files Witll diff " .••.. ,:;:;.; 12

- iii-

Contents - Continued

3.3. Monitor Changes Witll sees ... 13

Putting a File Under sees Control (sees create) 13

Which Files Are Checked Out? (sees info) ... 14

Recovering the Current Version (sees get) ... 15

Checking a File Out (sees edi t) .. 15

Looking at Current Changes (sees diffs) .. 15

Checking a File In (sees delget) ... 15

Backing Out With No Changes (sees unedi t) 16

Looking at tlle File's History (sees prt) .. 16

Comparing Versions (sees seesdiff) ... 16

Restoring a Previous Version (sees get -r) 17

Solving Problems With sees ... 18

3.4. Automating Complicated Tasks With make ... 18

Makefiles ... 19

Running make .. 20

Testing Makefiles .. 21

Defining Macros in the Makefile ... 21

Selecting a Target ... 22

3.5. Managing Disk Storage .. 23

Looking at Disk Usage With df .. 24

Directory Usage and du .. 24

3.6. Making a Tape Archive With t ar .. 25

Looking at the Contents of a Tape Archive ... 26

Extracting Files From a Tape Archive ... 26

Chapter 4 More on the C Shell ... 27

4.1. Command Line Editing (Continued) .. 27

Selecting Words Within Events ... 29

Modifying Selected Words and Events .. 30

4.2. Variable Substitution ... 31

Storing Lists in C Shell Variables ... 31

Processing Lists With foreaeh .. 33

Predefined Variables ... 35

-iv-

Contents - Continued

Environment Variables .. 35

Appendix A C Shell Special Characters .. 37

Appendix B C Shell Scripts ... 45

Pathname Processing Primitives .. 47

Return Codes ... 48

Exit .. 51

Appendix C Bourne Shell Scripts ... 53

Index ... 81

-v-

Tables

Table 2-1 Information Contained in /etc/passwd ... 5

Table C-l Variables Initialized by the Bourne Shell ... 55

Table C-2 Characters With Special Meaning Between Double Quotes 71

Table C-3 Quoting Mechanisms .. 71

Table C-4 SunOS Signals .. 73

-vii-

Figures

Figure 2-1 The / ete/passwd File .. 5

Figure 3-1 Flow of Events With sees-Controlled Files 17

Figure 3-2 Sample Makefile To Put Files Under sees ... 20

Figure 3-3 Sample Makefile for Printing a Document .. 22

Figure 3-4 A Makefile With Independent Procedures ... 23

Figure B-1 A Sample C Shell Script ... 48

-ix-

• ~:~::-•••• O!: .o·~ 0:. 0 0 o':~o;-' •• ".';':' .~ ... :... • 0 ••

Preface

This manual describes some of the more sophisticated features the SunOS™
operating system provides, and how to use them to simplify complicated tasks.
If you have not already done so, you should read SunOS User's Guide: Getting
Started before using this manual.

Chapter 1 provides details about maintaining file security.

Chapter 2 describes commands relating to other users on the system, including
root, the "superuser."

Chapter 3 introduces tools for sophisticated file management.

Chapter 4 continues the discussion of the C shell and its timesaving features
begun in SunOS User's Guide: Getting Started.

Appendices A, B, and C introduce you to writing shell scripts, in both the C shell
and the Bourne shell.

-xi-

1.1. The Importance of
Security

1.2. Maintaining Password
Security

Password Aging

1
Securing Your Files

If you work on a computer linked to a network, many other users could have
access to your files. This is a fine thing when you want your data to be shared or
modifiable by others; but it's problematic when you want to protect the integrity
or confidentiality of your files.

Your system adminstrator has primary responsibility for maintaining the security
of the system. But as a user, you can protect your own machine and files from
unauthorized use, and at the same time allow access to the good guys.

In SunOS User's Guide: Getting Started you learned how to enter and to change
your password. Your password is the first line of defense against unauthorized
use of your workstation. Here are some things to consider when choosing and
using your password:

o Do not select a password that is easily guessable. The name of your spouse,
your hobby, your phone number, your first name, your birthday, the brand of
your automobile, your favorite sport are not good choices for passwords. Do
not use a word in the on-line dictionary, since such words can be tried
automatically.

o Good passwords are at least six characters long, aren't based on personal
information, and have non-alphabetic characters in them.

o Never write your password down on paper. A password that is impossible to
remember is worse than one too easily guessable, because you'll end up
writing it down.

o Don't use the same password for every account you have.

o Do not let anyone watch your fingers as you type your password.
(Remember that passwords do not appear on the terminal screen.)

o Change your password whenever you think it may have been compromised.
Changing it from time to time anyway is not a bad idea.

If your system is using password aging (implemented with options to the
pas swd command), your password may have either a maximum or a maximum
and minimum lifespan. The lifespan of your password is set by your system
adminstrator.

Revision A, of 27 March 1990

2 SunOS User's Guide: Doing More

1.3. Locking Your
Terminal Screen

1.4. Controlling Access
Permissions

When the maturity date (or maximum age) of the password has elapsed, the
login program will require you to change your password. You will see the
message

Your password has expired. Choose a new one.

The system then automatically runs the pa s s wd program and prompts you for a
new password.

If the minimum age of your password has been set for, say, two weeks, and you
try to change your password before that time has elapsed, the system will
respond with the message

Sorry, less than 2 weeks since the last change.

To display aging information on your password, use the -d option to the
pa s s wd command:

The display shows, in order, the date of creation of the current password, the
minimum age, and the maximum age. (This information will be displayed only
if password aging as been implemented.)

For more information on password aging, see System and Network Administra­
tion. Type man passwd to see the on-line man page.

If you're running the Sun View window system, you can lock your terminal
screen against unauthorized access while preserving the state of the Sun View
display.

The lockscreen program clears the workstation screen and then, typically,
provides a moving graphics display to reduce phosphor bum. lockscreen will
require your password before restoring your window display. See the Sun View
User's Guide for more infonnation.

As explained in some detail in SunOS User's Guide: Getting Started, every file
and directory is controlled by a series of access permissions. These permissions
determine who can read, write, and execute your files. Users are broken down
into three categories: the file owner, the owner's group, and everyone else.

Permissions can be changed to suit by using the chmod and umask commands.
File ownership can be changed with the chown command. (Note that chown
requires that you become superuser; see Chapter 2.) Be sure that you've set the
appropriate permissions on your files: do you want your mail files accessible by
anyone? should your group be able to read but not write to some of your work
files? etc.

Revision A, of 27 March 1990

1.5. Encrypting Files

Encrypting With crypt

Chapter 1 - Securing Your Files 3

In particular, make sure your initialization files - . login, . cshrc, . pro­
file, . mailrc, . sunview, . exrc, among others - are owned and writable
only by you. And make sure your home directory is writable only by you.

Finally, note that programs often use the directories /tmp and /var/tmp to
stash temporary files. These directories are readable by everyone - so unless the
files you put there are unreadable, they will be open to everyone.

You can use crypt 1 to encode the contents of confidential files. This command
rolls a key through the text, disguising it. You supply the key, which is used both
to encrypt and decrypt the file. Unfortunately, this method of encryption is
vulnerable to attack: encrypted text can be examined for patterns that will reveal
the key. But the longer the key, the greater the security against such attacks.
However, in practice keys are limited to a maximum of eight characters.

Here's how you would use crypt to make a sensitive file more secure:

You don't need to put a dot before the output file name, but it helps to keep the
file out of sight if an intruder runs 1 s on the directory. Don't call the file some­
thing. crypt, because that makes it obvious how the file was created. It's a
good idea to use chmod to change pennissions to make the encrypted file read­
able and writable only by its owner. Note that in this example the original, unen­
crypted file was removed.

It's important to remember the key. Without it, you can't decrypt the file.

crypt does not prompt you twice for the key; you should type it in carefully­
avoiding typographical errors that would make the text unrecoverable.

You can also use crypt to decode a file:

This will create a new file, called newf ile, containing the unencrypted text you
started out with.

If you want to look at the decoded contents without creating a new file, a com­
mand of the fonn:

1 SunOS encryption facilities are only available to customers within the United States of America.

Revision A, of 27 March 1990

4 SunOS User's Guide: Doing More

Encrypting With de s

If your machine has DES hardware
assist, you won't see the warning
message.

will, after asking for the key, display them on the screen.

You can also use vi to edit the data directly, without creating an intermediary
file. Start vi with the -x option:

vi automatically re-encrypts the file (using the same key) before writing to disk.

You can use the de s command for greatly improved security for sensitive files.
The disadvantage of des encryption is that you can't use vi or another editor to
edit the file. On the other hand, since de s uses different algorithms for encrypt­
ing and decrypting, a file is very secure - unless someone can guess the key.
(It's up to you to ensure that the key is unguessable.)

Here's how to encrypt a file with des:

Don't forget the key! You won't be able to decrypt the data without it.

Here's how to decrypt a file with de s:

If you forget or mistype the key, de s will warn you that decryption failed, and
the resultant output file will be illegible.

Revision A, of 27 March 1990

2.1. Other Users

Figure 2-1

Table 2-1

2
Other Users

From the system's standpoint, every user has a login name, a password, an
identification number, or userid, a group membership, a user's name or other per­
tinent data, a home directory, and a default shell. This information is kept in the
file / etc/passwd. To find out who can log in to your system, look in this file.

The / etc/passwd File

root:OXtYHFnkYou3Y:O:l0:0perator:/:/bin/csh
daemon:*:l:l::/:
uucp:eXsOqzRjUOS8Y:4:8::/var/spool/uucppublic:
cindy:Lu8UBYYbPNEpw:26:20:Cindy Smith:/home/brno/cyndi:/bin/csh
carter:SQxRMoQbqQOHk:612:20:Jamie Carter:/home/brno/carter:/bin/
jimg:1UvG9UKYOuE/A:1131:60:Julie Gomez:/home/brno/jimg:/bin/csh
ben:bAwVM.A6LiXFo:1132:30:Ben Benson:/home/brno/ben:/bin/csh
karla:mceurlTqKdcDQ:1172:30:Karla Caracas:/home/brno/karla:/bin/

Fields corresponding to the above categories are separated by colons, and
described in the following table (using the last line above as a sample entry).

Information Contained in / et c / pa s s wd

Field Sample

login name karla
encrypted password mceur1 TqKdcDQ
user ID number 1172
group ID number 30
commentary Karla Caracas
home directory /home/bmo/karla
login shell Ibinlcsh

The first line of this file contains an entry for root, the operator of the system.
When logged in as root, the operator can access any file or device on the sys­
tem, perform system maintenance, and edit system files such as this. (For more
on root, see Section 2.2.) The next two entries allow for certain networking
functions to be performed, and the subsequent lines correspond to individual
users.

sun
microsystems

5 Revision A, of 27 March 1990

6 SunOS User's Guide: Doing More

Users Currently Logged In

Changing Identity With su

If you are using the Network Information Service (NIS), then a line reading
+: : 0: 0 : : : in / etc/passwd gives login privileges on your machine to any­
one in the NIS domain. To find out more about the NIS , and users with access
over the network, refer to SunOS User's Guide: Getting Started and System and
Network Administration.

For a more complete treatment of /etc/passwd, see the SunOS Reference
Manual or type man 5 passwd.

The system tries to provide equivalent performance to everyone using it. To find
out who is logged in, type who. who shows you the login-name of each user on
the system, the tenninal that person is using, when they logged in, and, if logged
in from a remote machine, the name of that machine. See SunOS User's Guide:
Getting Started for more detailed infonnation about using remote machines.

From time to time, you may want to see what others are doing. The w command
tells you what command is running on each user's terminal. In addition, it shows
you the amount of time since the user last typed something in (idle), the total
CPU time spent by each user so far (JCPU), the CPU time spent by the command
now running (PCPU). To get a detailed list of everyone's processes, use the
command

ps -au

The -a option tells ps to show you infonnation about all processes, not just your
own. The -u option gives a more detailed display that includes the name of the
user who owns the process. The - au option is simply the combination of these
two.2 For information about the remaining columns, refer to ps in the SunOS
Reference Manual.

If you know someone else's password, you can temporarily assume that person's
system identity by using the su (superuser) command. A common reason for
doing so is to get access to files that you don't own. Suppose that a colleague has
moved a file into one of your directories that you want to edit:

2 Single-letter options that can be combined like this are sometimes referred to as flags.

Revision A, of 27 March 1990

2.2. Becoming root, the
Superuser

Chapter 2 - Other Users 7

.,:: ::::::

::::::

::::::::,:,

tIT': ':::':::::'::\1::::::::
First, use ep to make a copy of the file. You will own the copy, and can edit it.
To get rid of the version you don't own, switch your userid and delete it:

i !i
ii .j{ Iii; • ••••• ·Ji

::::::::::::::<
:::::.»::< :.:::'>:

To revert to your previous ID, type (Ctrl-D I (or the command exit).

If, after switching userids, you want to find out what your effective login identity
is, type whoami:

The command who am i reveals your original login identity when you use su
to temporarily become someone else.

Note that it is generally considered very bad manners to su into someone else's
identity without explicit pennission and notification. Consult your system
administrator for usage at your site.

Each machine has a superuser, a user who has powers and permissions quite
above and beyond those of ordinary users. This superuser is often known as
root. A person with superuser status can edit files which are off-limits to other
users, such as /ete/passwd (the password file) or /ete/hosts. equiv
(the list of other machines on a network that your machine trusts). root can
also use some restricted commands, such as mount or reboot.

Originally, the UNIX operating system, on which SunOS is based, was designed
for many users to be working on a single, more-or-Iess centralized machine. One
person, the system administrator, was in charge of maintaining, configuring, and
upgrading the system - hence the name superuser.3

3 This is still the setup for people using "time-sharing" machines.

Revision A, of 27 March 1990

8 SunOS User's Guide: Doing More

With a network of independent workstations like Suns, however, each person
may have the ability to become root on his or her own machine. They can take
care of many of the tasks that were formerly the province of the superuser, such
as making connections to printers or mounting remote filesystems. In a worksta­
tion environment, then, a superuser and a system administrator are not neces­
sarily the same thing: a system administrator is now someone who maintains
shared machines and networks.

For example, suppose you are a diskless client of the server chiqui. That
means that you have your own workstation - call it venus - and you keep
your files on the machine ch iqui. You can become superuser on your own
machine. But maintenance and configuration of chiqui is left to your system
administrator. On the other hand, if you are running a stand-alone system (one
with a disk), then you are the system administrator and you become root to
carry out all system administrator tasks.

If you type su with no name, it attempts to switch you to root, also referred to
as the superuser. When you become the superuser, the last character of the
prompt changes from a percent sign (%) to a pound sign (#):

As root, you can kill any process running on your machine. You have read and
write privileges on every file on your machine's disk (or disk partition) and you
can change the ownership of these files.4

To quit being root and return to your own identity, type exit.

You must become root to perform system maintenance tasks such as adding
new users, adding new terminals or printers, etc. Refer to System and Network
Administration for more information on performing these tasks.

4 Files mounted from a remote host belong to that machine. You must be logged in as root on the remote
host to get superuser privileges for files that reside on it. Refer to SunOS User's Guide: Customizing Your
Environment to find out more about remote hosts and mounted file systems.

Revision A, of 27 March 1990

3.1. Locating Files

Looking Up a Command With
whereisand which

Looking Up a Command's
Description With whatis

3
Managing Your Files

The SunOS operating system has good facilities to help you locate files, monitor
changes to important files, and manage your space on the disk.

To locate a file in the file system hierarchy, you may need to know its absolute
pathname. When trying to locate a file, chances are that you are either looking
for the pathname of a particular command, or you are looking for a certain text
file. The operating system provides several ways to locate commands. These are
presented first, followed by methods for locating text files.

To find the pathname of a standard SunOS command, type in whereis fol­
lowed by the command name (whereis also displays the pathname of the man
entry):

You can also use which to look up a command. This is useful when you have
commands that are aliased or when your system contains commands in addition
to the standard set. If the command is an alias, which shows you its definition.
If the command is in a directory listed in your path variable, which displays
its pathname. If there is more than one version of a command in those direc­
tories, which displays the version that the system finds first. This is the same
version that the system performs when you type in the command.

Typing whatis, followed by the name of a command, will give you a brief
description of what that command does:

9 Revision A, of 27 March 1990

10 SunOS User's Guide: Doing More

whatis will not work if your system
administrator has not run the cat­
man command after installing the
system.

Looking Up Files With find Starting with a named directory, find searches for files that meet conditions
you specify. A condition could be that the filename match a certain pattern, that
the file is owned by a certain user (or belong to a certain group), or that the file
has been modified within a certain time frame.

Unlike most SunOS commands, find options are several characters long and
the name of the starting directory must precede them on the command line.

find directory options

Each option describes a criterion for selecting a file. A file must meet all criteria
to be selected. So the more options you apply, the narrower the field becomes.
The -print option indicates that you want the results to be displayed. (As
described later on, you can use find to run commands. You may want find to
omit the display of selected files in that case.)

The -name filename option tells find to select files that match filename. Here
filename is taken to be the rightmost component of a file's full pathname. For
example, the rightmost component of the file /usr / lib/ calendar is
calendar. This portion of a file's name is often called the basename.

To see which files within the current directory and its subdirectories end in s,
type:

Other options include:

-name filename
select files whose rightmost component matches
filename. Surround filename with single quotes ifit
includes filename substitution patterns.

-user userid select files owned by userid. userid can be either a
login name or user ID number.

~~ sun Revision A, of 27 March 1990
.,. microsystems

Running Commands With
find

Looking at File Types With
file

Chapter 3 - Managing Your Files 11

-group group select files belonging to group.

-rot ime n select files that have been modified within n days.

-newer checkfile
select files modified more recently than checkfile.

You can combine options within (escaped) parentheses (\ (... \)) to specify an
order of precedence for criteria. Within escaped parentheses, you can use the -0

flag between options to indicate that find should select files that qualify under
either category, rather than just those files that qualify under both:

You can invert the sense of an option by prepending an escaped exclamation
point. find then selects files for which the option does not apply:

You can also use find to apply commands to the files it selects with the

-exec command' {}' \;

option. This option is terminated with an escaped semicolon (\;). The quoted
braces are replaced with the filenames that find selects.

You can use find to remove automatically temporary work files. If you name
your temporary files consistently, you can use find to seek them out and des­
troy them wherever they lurk.5 For example, if you name your temporary files
junk or dummy, this command will find them and remove them:

find. \(-name junk -0 -name dummy \) -exec r.m ' {}' \;

Sometimes you want to see what sort of data a file contains without having to
look at its contents. In particular, if the file is a compiled program (object-file),
trying to display its contents can produce spectacular and disconcerting results on
your screen. file quickly tells you whether a file contains, for example, plain
text, troff sources, C program sources, executable files, or tape-format
archives. (There are a number of kinds of files; see under file in the SunOS
Reference Manual.)

S For good housekeeping, you may want to get rid of such files on a regular basis without having to think
about it If you put a command like this in your. logout file, then the system will clean up unwanted files for
you whenever you log out You can also use the crontab facility; see SunOS Reference Manual.

Revision A, of27 March 1990

12 SunOS User's Guide: Doing More

3.2. Looking at Differences
Between Files With
diff

It often happens that different people with access to a file make copies of it and
then edit their copies. diff will show you the specific differences between ver­
sions of a file and provide you with an indication of how the contents of one can
be edited to produce the other. The command

diff 1eftfi1e rightfi1e

scans each line in leftfile and right/de looking for differences. When it finds a
line (or lines) that differ, it determines whether the difference is the result of an
addition, a deletion, or a change to the line, and how many lines are affected. It
tells you the respective line number(s) in each file, followed by the relevant text
from each.

If the difference is the result of an addition di f f displays a line of the form

1[,1] xl,r]

where 1 is a line number in leftfile and r is a line number in rightfile.

If the difference is the result of a deletion, di f f uses a d in place of a; if it is
the result of a change on the line, diff uses a c.

The relevant lines from both files immediately follow. Text from leftfile is pre­
ceded by a left angle-bracket «). Text from right/lie is preceded by a right
angle-bracket (>).

This example shows two sample files, followed by their diff output:

Revision A, of 27 March 1990

3.3. Monitor Changes With
sees

Putting a File Under sees
Control (sees create)

For information on changing per­
missions with chmod and umask,
see sunOs User's Guide: Getting
Started.

Chapter 3 - Managing Your Files 13

When you want to protect an ASCII file from accidental deletion, keep track of
changes to it, or allow more than one person to modify it, you can monitor the
file using see s. sec s (or "source code control system") is a utility program
that protects important files by allowing only one person at a time to make
changes, by maintaining a record of those changes, and by rebuilding the current
(or any previous) version upon request.

To put a file under sees control, perform the following steps:

(1) cd to the directory containing the file(s) to be protected. If a subdirectory
named sees is not already present, create it. If you want to allow other
users access to the files, change the permissions of the current directory and
those of the sees subdirectory to 775.6

6 Unless you are sure that you do not want them to have access, it is normally a good idea to change
pennissions of both directories to allow it, at least for other members of your user group.

Revision A, of 27 March 1990

14 SunOS User's Guide: Doing More

History files are also referred to as
"s.files."

When working with files that are
part of a large project, see s 10 key­
words can be important. For more
information about sees as a tool for
managing large programming pro­
jects, refer to Programming Utilities
and Libraries.

Which Files Are Checked
Out? (sees info)

(2) Type in a command of the form:

sees create filename

filename is the name of a file or files to monitor. This is how you would put
all you files under sees:

For each file that you indicate on the command line, sees produces a spe­
cial file called a history file, and puts it in the sees subdirectory. The his­
tory file has a name of the form:

s.filename

and contains a complete record of all lines changed throughout the life of the file.
sees maintains a checksum on all history files, so do not edit them!

sees may respond with the warning:

No id keywords (em7)

This message can safely be ignored when you are auditing your own files.

(3) Remove the backup file(s) that sees leaves behind. These files are created
by sec s as a safety precaution, and are no longer necessary once the
create operation is complete. Names of these backup files begin with a
comma (,).

Once under sec s control, you have to check a file out before you can make
changes to it. Files that aren't checked out through sees have permissions set
to read-only for everyone (444).

To see which files in the working directory are checked out, use the sees info
command. If no files are checked out, sees responds with the message:

Nothing being edited

If there are files checked out, it lists those that are, the current version number of
each, the version number each will have when checked in again, the name of the
user who checked out each, and the date and time of check-out:

esh.1: being edited: 1.4 1.5 sam 85/09/04 16:32:15

Revision A, of 27 March 1990

Recovering the Current
Version (sees get)

Checking a File Out (sees
edit)

Looking at Current Changes
(sees diffs)

Checking a File In (sees
delget)

Chapter 3 - Managing Your Files 15

Because several people may have write access to the directory, it is possible that
a file in the working directory may be deleted accidentally. Files that aren't
under see s control are gone for good once they are removed, but you can easily
restore files under sees from their history files using the sees get command:

sees get filename

If you want to recover the current version of all files in the directory, use the
command:

sees get sees

Only one person at a time can check a file out. This assures you that changes
won't be lost, garbled, or intermixed between the edits of different users.

To check out a file, type in sees edit followed by the file or files you wish to
check out. sees will respond with the current version number, the new version
(delta) number, and the number of lines in the file.

Once checked out, you can edit the file using vi or another editor.

When you check out a file, sees changes the ownership of the file to you, gives
you write permission (owner only), and places a lock file containing your userid,
the version number, and other information in the sees directory.7 When you
check the file back in, the lock file is removed and the permissions are set to read
only, but you retain ownership of the file.

While still checked out, you may want to review the changes you have made so
far. To do so, type:

sees diffs filename

sees responds with standard diff output, using sees's current version as the
"leftfile" and thefilename as the "rightfile." (See Section 3.2.)

When you are done making changes, you can check in the new version of the file
by typing the command:

sees delget filename

delget is a contraction for delta, the command to incorporate a new version
into the history file, and get, the command to recover the newest version (that
you are just now checking in).8

7 The lock file has a name of the fonn: p .filename, and referred to as a "p-file."

8 If sees responds with an error message, it does not perfonn the get action, and you may have to recover

Revision A, of 27 March 1990

16 SunOS User's Guide: Doing More

Backing Out With No
Changes (sees unedit)

Looking at the File's History
(sees prt)

Comparing Versions (s e e s
seesdiff)

When you use del get (or de 1 ta) to check in the file, see s asks you for a line
of comments. These comments are included in the history file, and should briefly
summarize the changes you have made. After adding your comments and press­
ing (Return I, see s responds with the new version number, the number of lines
inserted, deleted, and unchanged, and the total number of lines.

A replaced line shows up as an insertion and deletion.

To check a file back in without any changes, type in:

sees unedit filename

To review a file's history, use the command:

sees prt filename

This command shows you the version number, comment lines, date checked in,
and user responsible for each version of the file:

To compare previous versions of a file, use the command

sees seesdiff -rx.y -rm.n filename

Where x . y and m . n are version numbers to be compared. This command pro­
duces standard di f f output.

files using sees get sees.

+~I!! Revision A, of 27 March 1990

Restoring a Previous Version
(sees get -r)

Figure 3-1

original

src

Chapter 3 - Managing Your Files 17

If you want to back out a version of the file that is already checked in, you must
perform the following steps:

(1) Recover the previous version. You can look up its number using see s
prt filename. To rebuild the previous version, type in a command of the
fonn:

sees get -rx.y filename

where x.y is the desired version number.

(2) Rename the recovered version of the file

mv filename temp

(3) Check the file out with sees edit.

(4) Replace the checked-out version with the old version:

mv temp filename

(5) Check the file back in with sees delget.

To assure that it all worked properly, compare the latest version with the desired
previous version using see sse e s di f f .

The typical flow of events when making changes to a file under see s control is:

Flow of Events With sees-Controlled Files

restored checked out checked in
r-------------,
I I

src (1.1) : arc (1.1) : arc (1.2)
I I L ___________ .J

SeeS/a.arc (version 1.1) (v. 1.2 lines)

--->
... time ...

Revision A, of 27 March 1990

18 SunOS User's Guide: Doing More

Solving Problems With sees

3.4. Automating
Complicated Tasks
With make

sees is a complicated and verbose utility. There may be times when it responds
with an error message even though things worked properly. Its error messages
are sometimes difficult to interpret If you are not sure that sec s succeeded in
doing what you asked, you can take certain steps to verify whether it has:

Is -1 sees
will show an s.file for each file under sees control.

sees info
will show which files are checked out and to whom.

sees prt filename
will show your comments in the first three lines when you have checked in a
file successfully.

If you attempt to check a file out and you get the message:

ERROR [SCCS/s.filename]: writable 'filename' exists (ge4)

this usually means that someone has the file checked out already . You can verify
this using sees info. If sees info does not list the file as being edited,
then the lock file in the sees directory has been deleted. When this happens
sec s will not allow anyone to check the file either in or out.

To correct this problem, first run sec s di f f s on the file to see if it differs
from the version last checked in. If so, it is a good idea to contact the file's
owner to find out if the changes made should be kept. If so, then copy the file to

a new filename, remove the writable original, and check the file out using sec s
edi t. Then move the new filename back to the original name (overwriting the
checked-out version), and check the new version back in using sees delget.

If the changes need not be saved, you can correct the problem by simply remov­
ing the writable file, restoring the current version using sees get and then
checking it out using sees edit.

Performing complicated tasks - such as producing object code for programs or
formatting large documents - involves processing different files through various
programs at the proper times and in the proper order. This can be a lot to
remember. make simplifies these complications by following a record of the
steps involved, called a make/tie, that you create.

The makefile contains a list of the steps called targets; each target contains a list
of SunOS commands. A target can be qualified by a list of other targets upon
which it depends. One target is said to depend on another if the latter must be
completed before the former can be performed successfully. The latter target is
called a dependency.

For example, an sees subdirectory must be created before you can put files
under sees. And you must put a file under sees with sees create before
you can check that file out. So the command sec s e di t depends in practice
on the commands mkdir sees and sees create for its own success.

make uses the list of targets as a recipe to produce a desired program, document,
or other object file called a target file, or simply target.

Revision A, of 27 March 1990

Makefiles

Chapter 3 - Managing Your Files 19

make performs only those steps that are required to bring the target files up to
date. The makefile lists the various steps involved and how they depend on one
another, and make examines the list to see which target files are outdated.

A target is considered to be outdated when the source file used to produce it has
changed since the target file itself was last produced. make then performs only
those steps required to replace any outdated target files.

make has a facility to perform macro substitution.9 This allows you to abbrevi­
ate long lists and to predefine parameters that often change, so that with a few
simple edits the same procedure can be used to produce other, similar objects.

Like a recipe card, a make file is composed of two sections. The first section is a
list of macro definitions. These are described in detail later on. The second sec­
tion outlines steps in the procedure and their relationships to one another. In
make parlance, each step is called a target.

Each target has a name. If that target's function is to produce an object file of
some sort, then the name of the target should be the same as the name of the file
it produces. If the target performs some sort of housekeeping step, then it can
have any name you like.

A target may also have a list of dependencies associated with it. make uses this
list to determine whether files produced by the target are up to date.

Finally, each target has a list of SunOS commands to perform. When performing
a step, make performs each command in tum, starting a Bourne she1110 for each
command line. 11

The following is an example of a makefile to put the contents of a directory
under sees control. The file consists of just two targets and no macro
definitions:

9 Like an alias, a macro is a string of text that is replaced by its definition, or expansion when encountered in
an input file (or command line).

10 Because it runs a Bourne shell, certain C shell constructs, such as f 0 reach, don't work. Refer to sh in
the Sun OS Reference Manual for more information about the Bourne shell.

11 Since each command line is executed in its own shell, you must use the command-separation character i
and the command-line continuation character \ [Return) to build conunand routines.

Revision A, of 27 March 1990

20 SunOS User's Guide: Doing More

Figure 3-2 Sample Make/tie To Put Files Under sees

Running make

* makefile: for putting files under sees

no macro definitions

target definitions

put.under: sees
* these lines begin with a required tab character
-sees create *
-rm ,*
-sees get sees

sees:
-mkdir sees
-chmod 775 sees .

The targets are put. under and sees. The target put. under depends on the
target sees. If the sees directory is not already present and up to date (direc­
tories always are), make performs the commands listed under sees first.

The format of each target is significant. The name of the target must be followed
by a colon and the list of dependencies, if any. (If this list is longer than one line,
you can split it in two by leaving a backslash (\) at the end of the first line.) The
list of commands immediately follows the target name, and each command line
begins with a CThliJ.

Comments begin with a # and can be placed to the right of commands on any
line (not ending in a backslash). At least one blank line separates target
definitions from one another.

When you prepend a - to a command, make ignores a nonzero (error) return
code from that command. Normally, make halts whenever a command it runs
exits with a nonzero status. Adding the dashes in this case tells make to con­
tinue putting new files under see s control, even though it may encounter older
files already there.

Because make checks for dependencies, you can write makefiles in a top-down
fashion. The step that produces the final output should appear first. Steps that it
depends upon can appear next, followed by steps that they depend on.

When the makefile is ready, simply type in make.

make looks for a file in the working directory named makefile or
Makefile,12 checks for dependencies, beginning with the first target it
encounters, and then performs commands in their proper order:

Revision A, of 27 March 1990

Testing Makefiles

Defining Macros in the
Makefile

Chapter 3 - Managing Your Files 21

The error message

ERROR: directory 'sees' specified as 'i' ...

indicates that sees attempted to create a history file for the directory sees.
Because we used a dash as the first character of the command line, make contin­
ued processing.

Most makefiles take a bit of debugging. To find out what commands make will
perform without actually running them, use the -n option:

In the above makefile, put. under depends upon sees. When you ran make
the first time, the sees directory was created. When you ran make -n subse­
quently, make did not indicate that it would perform that step (since it was up to
date anyway). If you were to remove the sees directory and then run make, it
would perform commands in the sees target once again.

The next example is a makefile used to format and print a document made up of
several source files. With macro substitution, copies of a makefile such as this
can be used for different documents:

12 You can specify the name of some other makefile, using the -f filename option, as in
make -f buildit, where buildit is a different Makefile.

Revision A, of 27 March 1990

22 SunOS User's Guide: Doing More

Figure 3-3

Selecting a Target

Sample Make/tie for Printing a Document

* Makefile: for printing a document

macro definitions

SOURCES - title intro tutorial reference appendix
PRINTER = Plw
MACROS = ms

* target definitions

print: troff.output
lpr -$ (PRINTER) -t troff.output &

troff.output: $(SOURCES)
tbl $(SOURCES) I eqn I troff -t -$(MACROS) > troff.output

A change to the list of sources, the printer, or the macro package can be made in
one place and take effect throughout the makefile. For large and complex pro­
cedures, this is a big advantage.

By placing the traff output in an intennediate file,13 you can avoid having to
refonnat the document every time you want to print a copy. By making print
depend upon the file traff. output, you can be sure that you always get the
latest fonnatted version.

By making troff . output depend on the list of sources (the expansion of the
$ (SOURCE S) macro), you can be sure that when you change anyone of the
sources, make will rebuild traff. output, and the change will be reflected
when you print the document.

You can select any target in the makefile by specifying it as an argument to
make on the command line. If a target does not appear in the list of dependen­
cies for the target you select (or the first target by default), make will not per­
form it. So you can record several independent procedures within the same
makefile. For example, this makefile can be used either to put new source files
under sec s or to print a finished document.

13 troff intennediate output files are not text files. They will produce strange results if you try to look at
them on the screen. and they should not be placed under sees. It would be a good idea to put the source files
under sees instead.

Revision A, of 27 March 1990

Chapter 3 - Managing Your Files 23

Figure 3-4 A Make/tie With Independent Procedures

* Makefile: for printing a document * and putting sources under SCCS

* macro definitions

SOURCES title intro tutorial reference appendix
PRINTER Plw
MACROS rns

* target definitions

print: troff.output
lpr -$ (PRINTER) -t troff.output &

troff.output: $ (SOURCES)
tbl $(SOURCES) I eqn I troff -t -$(MACROS) > troff.output

* ---
put.under: SCCS
* the next three lines begin with a tab

-sees create 'Is I grep -v troff.output'
-rm ,*
-sees get *

SCCS:
mkdir SCCS
chmod 775 SCCS .

3.5. Managing Disk
Storage

Using this makefile, if you type in make (ormake print), you will get the
document (typing make does everything in the makefile). If you type in

make put.under

your sources will be put under sec s.

Space on the disk is a limited resource. Therefore, it's a good idea to keep track
of how much space you use, especially if your system is running with disk quo­
tas. 14

The SunOS operating system provides facilities to monitor your disk usage and
locate big directories that are candidates for housekeeping. Even so, it can be
unwise to delete old files willy-nilly. Since you might not know what gems you
may have locked away there, the system also provides a facility to make tape
archives of important files. Tape archives are especially good for large files that

14 A disk quota is a limit on the amount of space (infonnation) a user is allowed to use on the disk at any
onetime.

Revision A, of 27 March 1990

24 SunOS User's Guide: Doing More

Looking at Disk Usage With
df

Directory Usage and du

you need to keep but don't often use. If you make a tape archive before cleaning
house, you can be sure that you won't lose anything important. You can use df,
du, find, and Is -1 to locate such files, and then you can use tar to move
them onto a tape for storage off-line, as described in the following sections.

df shows you the amount of space used up on each disk that is mounted (directly
accessible) to your system. It is very simple to use, just type

df

to see the capacity of each disk mounted on your system, the amount available,
and the percentage of space already used up:

Filesystems at or above 90 percent of capacity should be cleared of unnecessary
files. You can do this either by moving them to a disk or tape that is less full,
using cp to copy them and rm to remove them. Or you can simply remove them
outright. Of course, you should only perform housekeeping chores on files that
you own.

You can use du to display the usage of a directory and all its subdirectories in
kilobytes; that is, units of 1024 bytes or characters.

du shows you the disk usage in each subdirectory. To get a list of subdirectories
in a filesystem, cd to the pathname associated with that filesystem, and run the
following pipeline:

Revision A, of 27 March 1990

3.6. Making a Tape
Archive With tar

Most options to the tar command
do not take minus signs (-).

Chapter 3 - Managing Your Files 25

<:::

:::::::::::: ::

·······_···;;..· .. ···}·········:!:/f:
::::::<::::'i

1'::'Ui:f .. ,:. :.:.:.:.:::::.:/:</:::::::::::::::::j

:>
: ::::::/.,:::::: ::::::::: .•• <:<: •• : •• : : •• : ::'::::.<:::::' •. ::::.::: .::::.::::.

:::::::::::: ::::::« ::::::: ::::<:::.) H\:'
'::: :::::.:: :::::::):.:·::··:·:::.:::::·.·.·.::n •• ;:.: .••• ::::.n·.}:H: •••. ::::::::: ••. :):\):.:::::::::::

This pipeline, which uses the reverse and numeric options of sort, pinpoints
large directories. Use Is -1 to look at the size (in bytes) and modification
times of files within each directory. Or use find to locate files that exceed a
given size. Old files, or text files over lOOKB, often warrant storage off-line.

To make a tape archive:

(1) Mount (insert) a fresh tape on the tape drive. If you don't know how to do
this, see your system administrator or consult System and Network Adminis­
tration for details.

(2) cd to a directory you wish to archive. If you wish to archive an entire
hierarchy of files, cd to the topmost directory in that hierarchy. tar will
archive the directory and all its subdirectories.

(3) Type the tar command:

tar cvf drive

The c option tells tar to create a new tape archive and overwrite the previ­
ous contents of the tape. The v stands for verbose. tar tells you everything
that it is doing. The f tells tar to put the archive on the file drive (the tape
drive is considered a file). Your system administrator can tell you the name
of a tape drive to use.

Tapes can be reused. If you do not wish to overwrite the previous contents, you
can use r rather than c. With r, tar skips to the end of the previous archive,
and then adds files to the end. If you want to conserve space on the tape, you can
use u.15 With u, tar replaces files whose contents have changed with their
newest version, adds new files onto the end, and leaves untouched files alone.

drive can be a regular file. Since tar output takes up less space than do text
files, a tape archive on disk can provide some space savings and a bit more con­
venience than using an actual tape. For even more space reduction, run the tape

15 The rand u options do not work with quarter-inch cassettes; they work only with half-inch tape drives.
See the mt command for quarter-inch tapes.

Revision A, of 27 March 1990

26 SunOS User's Guide: Doing More

Looking at the Contents of a
Tape Archive

Extracting Files From a Tape
Archive

archive file, or tarfile through compact.16

To examine the contents of a tar tape archive, use the t option:

tar tvf drive

To search for a specific file on the tape, pipe the output of tar t through grep.
(See SunOS User's Guide: Getting Started for a discussion of grep.)

To extract files from a tape archive, cd to the directory in which to place the file,
mount the tape, and then use the tar x option:

tar xvf drive filename

If you omit the filename, tar extracts the contents of the entire tape. If you
specify a a list of filenames, tar extracts the named files.

16 The command uncompact restores the tarfile to its original state, and you can then use tar to retrieve
files from within the tarfile just like you would from a tape drive.

Revision A, of 27 March 1990

4.1. Command Line
Editing (Continued)

A word on the command line that
begins with an exclamation is
referred to as an event designator.
An event designator can stand for a
previous command or selected
words from a previous command
line.

4
More on the C Shell

This chapter continues the discussion of the C shell begun in SunOS User's
Guide.' Getting Started, where many of the basic concepts and commands asso­
ciated with the C shell were introduced. If you have not read that discussion, you
should do so now.

In the sections below, you will broaden your knowledge of command line edit­
ing. You will also learn the rudiments of using variables in the C shell. Com­
mand routines called scripts are introduced in Appendix B.

The SunOS operating system also offers the Bourne shell, which runs faster and
has a simpler syntax for writing scripts. See Appendix C.

SunOS User's Guide: Getting Started presented several ways of editing a com­
mand line and repeating all or part of a command. There, you learned to substi­
tute one string for another with A oldA new and A oldA new A

: p.

As you have already seen, you can repeat the most recent command by typing
two exclamation points (! !). And you have seen how to specify the last word of
a command with ! $.

There are several other ways to modify a recent command and thus perform a
variety of tasks with just a few keystrokes. For instance, the history mechanism
lets you repeat any command in the history list by typing an exclamation point,
followed by its command line number,

!n

For example:

27 Revision A, of 27 March 1990

28 SunOS User's Guide: Doing More

You can specify the nth command back,

!-n

as in:

You can repeat an event by typing an exclamation point, followed by the first few
characters that match it,

! string

where string is all or part of the command you're repeating

The history mechanism performs the first match it encounters. You may have to
add a few characters to get the desired event. In this example the user wants to
repeat the clear command (to clear the screen):

Because the user typed in too few characters to specify the event precisely, ! c
matched the most recent event beginning with c, namely cpo The observant user
interrupts it with (Ctrl-C I and then types in ! cl to match the desired event:

There is, however, a limit to how many characters you may add to "disambigu­
ate" the command: that limit is the first space. Whatever is typed in after the first
space is interpreted as a further argument.

For example:

Revision A, of 27 March 1990

Selecting Words Within
Events

Chapter 4 - More on the C Shell 29

Sometimes it's easier to match against a string of characters embedded within the
event. To repeat a command in this way, use:

! ?str?

where str is the embedded string to search for. For example:

Suppose that you want to apply several commands to a long list of files and you
don't want to have to retype the list every time. ! * repeats all arguments to the
previous command (all but the first word of the command line). ! A expands to
the first argument.

For example, if the last command was

echo first

! A or ! : A would expand to first. !: n expands to the nth argument (n+l
word). !: $ expands to the last argument of the selected event.

! : 0 expands to the zero argument, which in the SunOS operating system is the
command itself. So, for example, if you type

you can then type:

You can select a specific word from a specific event by appending a word desig­
nator to its event designator. A word designator has the form of a colon, fol­
lowed by a character. : * expands to all arguments in the event.

Let's refer back to the history list we've been using:

Revision A, of 27 March 1990

30 SunOS User's Guide: Doing More

Modifying Selected Words
and Events

:~~b:~ ,~:~!,::~~~;~SPImI::::::::::::<:::
r::']J:o:: ::: :::::::::

::::

Using this list, to mv all files with the suffix . di t into the directory / tmp, you
would type:

You can edit the text of an event or word by appending an event modifier to it. A
modifier starts with a colon, followed by one or more characters that indicate the
actions to perform. : s/ old/ new/ substitutes new for old in the first word
where there is a match for old. When inserted between the colon and the
modifier, a g indicates that the modifier applies to all designated words, not just
the first. So to mv all . dot files into the directory /tmp, you would type:

As you learned in SunOS User's Guide: Getting Started, : p indicates that the
event or word is to be expanded and echoed, but not performed. You can place
several modifiers in an event or word designator. For instance:

mv !?tmp?:*:qs/dot/dit/:p

is echoed as

mv *.dit /tmp

but not performed.

For more information about event designators, word designators, and event
modifiers, refer to Appendix A, C Shell Special Characters.

Revision A, of 27 March 1990

4.2. Variable Substitution

Storing Lists in C Shell
Variables

Chapter 4 - More on the C Shell 31

A variable is a named location in which to store text that you'd like the C shell to
remember for you. You can use the set command to associate a variable name
with a word to remember. A placeholder, composed of a dollar sign ($), fol­
lowed by the name of a variable, is replaced with the contents of that variable by
the C shell. Thus you can use a variable name, preceded by a $, as an abbrevia­
tion for its contents.

To assign a value to a variable, type in a command like:

To display that variable's contents:

Suppose that you are working with files in two directories, each with very long,
and very different pathnames:

/home/sam/sources/gfx/lines/module3
/home/bin/c/gfx/lines/module3

You can abbreviate these pathnames as follows:

set src /home/sam/sources/gfx/lines/module3
set bin = /home/bin/c/gfx/lines/module3

Then, when you want to perform commands on files in these directories, you can
use $ src instead of /home/ sam/ source s / gfx/ lines /module3, and
$bin instead of /home/bin/c/gfx/lines/module3 on the command
line:

The set command with no arguments prints a list of all C shell variables and
their current values. To see the value of a single variable, use a command of the
form:

echo $variable

In addition to single words, you can store a list of words in a C shell variable by
enclosing the list in parentheses when you use the set command. One example
of this is the path variable that you set in your. cshrc file.

Revision A, of 27 March 1990

32 SunGS User's Guide: Doing More

Another might be:

venus% set mdirs = (/home/dakota/kitchen /home/dakota/gym)
venus% 1s $mdirs
/home/dakota/gym:

aerobics basketball

/home/dakota/kitchen:

anchovies
venus%

bagel

cars dance

cabbages doughnuts

Suppose that you just want to list those files in these directories which start with
the letter b:

This failed: Is lists the files starting with bin /home/ dakota/ gym, and all
the files in /home/dakota/kitchen. This is because the /b* got appended
to mdirs as a whole, and not to to each individual part of the variable. So typ­
ing

Is $mdirs/b*

is equivalent to typing

Is /home/dakota/kitchen /home/dakota/gym/b*

(You can operate on each member of a variable list by using the foreach com­
mand, described in the next section.)

You can select a specific word from the list by appending an index to the call17

to the variable as follows:

$var[n]

where var is the name of the variable and n is a number indicating the position of
the word within the list. Using the above example, the word
/home/ dakota/ gym is the second word in the list. So the command:

17 A call to a variable is the string you use to indicate that what you really want is the value it contains, in
this case the name of the variable preceded by a dollar sign.

Revision A, of27 March 1990

Processing Lists With
foreach

A loop is a set of commands to be
repeated successively.

echo $mdirs[2]

displays the value

thome/dakota/gym

You can also specify a range:

Chapter 4 - More on the C Shell 33

But if you enclose a number in the braces that is higher than the count of words
in the variable, you will get an error message. You can use filename substitution
to simplify entering a list. The command:

set man = (/usr/man/{man,cat}?)

yields the following value:

which is a complete list of all the directories containing man page sources and
fonnatted files.

The foreach command provides a means to apply a set of commands succes­
sively for every word in a list. It prompts you for a set of commands, uses an
index variable to store the current word while executing each pass through the
commands, and repeats the list of commands once for each word in the list.

The syntax of the foreach command is:

foreach index (list)

where index is the name of the variable and list is a list of words. After you type
(Return J, foreach prompts for a command with a question mark. It continues
to prompt for commands until you type the command end by itself after the
question mark. This signifies the end of the loop. 18

In a previous example, we tried unsuccessfully to list all the files beginning with
the letter b in the directories contained in the variable $mdirs. foreach
allows you to do this:

Revision A, of 27 March 1990

34 SunOS User's Guide: Doing More

In the next example, * is the filename metacharacter that represents all the files
in a directory, and the -n option to echo is used to put all the output on the
same line:

The result is like using Is, except the files all appear on the same line, with a
comma we specifically provided:

... filel, file2, file3, file4, ...

You can use variable substitution, as well as filename substitution symbols
within the list.19 Using the variable man defined above, the following foreach
loop gives you a count of the source files and then the fonnatted files within each
section of the man pages. As the loop proceeds, the value of the index variable
(written as $dir) changes with each pass:

19 This also works with the set command.

Revision A, of 27 March 1990

Predefined Variables

Environment Variables

Others include
user and USER,
term and TERM,
shell and SHELL, and
path and PATH.

Chapter 4 - More on the C Shell 35

The C shell maintains a set of predefined variables. Some of these, like
noclobber, are used by the C shell to affect the way it behaves. Others keep
track of information that the C shell needs to know about. home, for instance,
keeps a record of your home directory. If you change the value of home, and
then use cd with no argument, the C shell attempts to change directories to that
new value:

The C shell also maintains a set of variables, called environment variables; you
should be familiar with them from reading SunOS User's Guide: Customizing
Your Environment. Environment variables are passed along to any commands or
subshells. They are created and modified using the setenv command, which
has a different syntax than has set:

setenv name value

There is no equal sign between the name of the variable and its value, as there is
with set. And only one word (or string within quotes) can be assigned to an
environment variable.

Environment variables are passed to all commands and programs run from within
the current shell. C shell variables are only effective within the current shell.

Typically, the names of environment variables are given in all capitals. In some
cases, there is a lower-case equivalent used by the C shell.

The environment variable HOME is such a case. When you use the set com­
mand to change the value of the (home) shell variable, the equivalent environ­
ment variable is also changed. When you use setenv to change the environ­
ment variable, however, the value of the home shell variable is not affected:

Revision A, of 27 March 1990

36 SunOS User's Guide: Doing More

To get a list of all environment variables and their current values, use the com­
mand printenv.

sun
microsystems

Revision A, of 27 March 1990

A
C Shell Special Characters

Characters with special meaning to the C shell:

? Single character wild card.

* String wild card, zero or more characters.

Abbreviation for current working directory.

Abbreviation for the parent of the current directory .

Abbreviation for your home directory.

- user Abbreviation for the home directory of user.

[...] Matches any single character listed within the brackets.

[x-y] Matches any character within the range of x andy.

{str, ... } Grouping. Matches each str successively. Filename substitution is
applied to each str before matching occurs. Thus, { x, * y * , ? z * }
matches a filename x, all filenames containing the letter y, and all
filenames having z as the second character. Groups enclosed with
braces can be nested.

& Places the command in the background.

(Ctrl-Z I Stops the foreground job, placing it stopped in the background.

%[n] Brings the current (stopped) job or the specified background job to
the foreground.

%[n] & Continues, in the background, the current or specified stopped job.

> filename

>! filename

Redirects the standard output to filename. Iffilename already exists,
its previous contents are lost. When set, the shell variable
noclobber prevents redirection to existing files or character spe­
cial devices.

Forces the standard output to filename, even when noclobber is
set.

37 Revision A. of 27 March 1990

38 SunOS User's Guide: Doing More

>&filename
Routes diagnostic (standard error) output to filename, along with the
standard output.

>& ! filename
Forces diagnostic and standard output to filename.

» filename
Appends the standard output to filename. When noclobber is set,
the file must already exist.

»! filename
Forces the standard output to filename, even when noclobber is
set. Creates a new file if necessary.

»& filename
Appends the diagnostic as well as standard output to filename. When
noclobber is set, the file must already exist.

»& ! filename
Forces appending of diagnostic and standard output to filename, even
when noclobber is set.

cmd I cmd
Pipe. Uses the standard output of the left-hand cmd as standard input
for the right-hand cmd.

cmd 1& cmd
Uses both standard and diagnostic output of the left-hand cmd as
standard input for the right-hand cmd.

(...) Command grouping. Commands and pipelines surrounded by
parentheses are executed in a subshell and treated as a unit by the
current C shell.

(•..) >& file name

<filename

Redirects the standard output (if any) and the diagnostic output of
the enclosed command(s) to filename. This is especially useful if the
enclosed commands redirect the standard output to a file (thus send­
ing the standard output and the standard error to separate destina­
tions).

Opens filename as the standard input.

cmd «word
Here document. Indicates that a command (typically interactive) is
to accept its commands from the same device or file (usually a script)
as the shell. word is interpreted literally as the end-oj-input mark for
the command. The C shell parses, but does not execute, each text
line between the here document and a line containing word by itself.
After applying command, filename, and variable substitution, the C
shell passes each line on to cmd. To suppress all substitution,
include a \, ", or ' in word.

Revision A, of 27 March 1990

\

\

" "

'command'

Appendix A - C Shell Special Characters 39

Separates commands on one input line.

At the end of a line, escapes the newline character and continues the
command to the next input line.

Escape the special meaning of the character it precedes.

The C shell treats the enclosed text as one word, preventing variable
and history substitution (except !, which can be escaped by \).

The C shell treats the enclosed text as one word, breaking words only
at enclosed newlines.20 History and variable substitution is per­
fonned before escape characters are interpreted.

Replaces the backquoted command or pipeline (including the
backquote marks) with its output. Output is broken into words at
blanks, tabs and newlines, except for the final newline. Unless the
right -hand backquote is followed by a space, the last word of the
substitution is prepended to the following word on the command
line.

Escaped history substitution event designators and word designators (described
below) can be used to indicate command line arguments within an alias
definition.

Substitutes the string r for the string I in the previous command line.
The final ... is required only if history substitution modifiers are
appended.

Begins a history substitution. To escape its special meaning, precede
the ! with a backslash (\). An! is also escaped when followed by
a blank, tab, newline, (or =.

The following designators select an event (command line) from the history list.
Word designators and modifiers can be appended for command-line editing.

! ! The previous command.

! n Command line number n.

! -n Selects the event whose number is n less than the current one.

! str The most recent command beginning with str.

! ?str[?] The most recent command containing str. The closing question
mark is only required when word designators or modifiers are
appended.

! * All arguments from the previous command, but not argument zero
(the command name).

20 An enclosed newline is a carriage return within quotes; i.e., an escaped newline.

Revision A, of 27 March 1990

40 SunGS User's Guide: Doing More

! ... The first argument from the previous command. If, for instance, the
command was echo first, then!'" would expand to first.

! $ The last argument from the previous command.

! : n The nth argument from the previous command.

! , The contents of the current command line typed in so far.

! {str} ... Restrict the event designation to str; text following the brackets is
appended to the last word of the expansion after substitution takes
place.

Word designators can be appended to the history substitution character (! for the
previous event) to a quick substitution, or to an event designator.

: * All arguments, except argument zero.

The first argument .

: $ The last argument.

: n The nth argument.

: % The word matched by most recent !? search.

: x-y Argument x through argument y.

: -y abbreviates : 0 -y.

: x* Argument x through the last argument.

: x- Argument x through the next-to-Iast argument.

: , The contents of the current command line typed in so far.

The following modifiers can be used in any sequence to modify a selected event
or word. A colon is required to separate modifier(s) from event or word designa­
tors.

[:]p Prints the new command but does not execute it.

[:]h Removes a trailing patbname component, leaving the head.

[:]t Removes all leading patbname components, leaving the tail.

[:]r Removes a filename extension (.xxx).

[:]e Removes all but the extension.

[:]s/I/r/ Substitutes r for 1. 1 is a literal string, not a regular expression.
Any character may be used as the delimiter in place of /. The char­
acter & in the right hand side is replaced by the left hand string. A
null 1 uses the previous string either from a 1 or from a? event
search.

[:]& Repeats the previous substitution.

[:]q Quotes the substituted words, preventing further substitutions.

~~ sun Revision A, of 27 March 1990
~ microsystems

[:]x

:qm ...

Appendix A - C Shell Special Characters 41

Like : q, but breaks words at blanks, tabs and newlines.

Global prefix. When prefixed any of the above modifiers, m, the
modifier(s) apply to all words in the specified event. Normally, each
word must be modified separately.

After the input line is aliased and parsed, and before each command is executed,
the C shell performs variable substitution on words that start with an unescaped
$, according to the list below. A $ is escaped by preceding it with a backslash
(\), or when followed by a blank, tab, or end-of-line.

Shell variables have names consisting of up to 20 letters, digits and underscore
characters, starting with a letter.

Environment variables can be expanded but not modified.

$var Is replaced with the value ofvar.

$ { var} . .. The brackets indicate that the enclosed string is the variable name.
The value of the named variable is prepended to the text that follows
on the command line.

$ {var [selector] }
Select words from within var. selector can be one of:

n a number.

x - y two numbers separated by a - to specify a range.

x - Word x through the last word.

- y The first word through word y.

* all words in the value.

$var the value of another variable, in which case variable sub­
stitution is applied to the selector first, and then to the
entire word.

$'var The number of words in the variable.

$ { 'var} Same as $ 4fvar

$ 0 The name of the file from which command input is being read. An
error occurs if the name is not known.

$n The nth word in the argument list; equivalent to $argv [n] •

${ n} Same as $n.

$* All words in the argument list; equivalent to $argv [*] .

$?var

$ { ?var} replaced with 1 if var is set, or 0 if not.

$? 0 replaced with 1 if the current input filename is known, 0, otherwise.

$$ replaced with the process ID (PID) of the (parent) shell.

~~ sun Revision A, of 27 March 1990
~ microsystems

42 SunOS User's Guide: Doing More

$< replaced with text taken from the standard input, with no further
interpretation. Used to read from the keyboard in a C shell script.

The modifiers [:]h, [:]t, [:]r, [:]q, and [:]x can be applied to the substitutions
above. See "Modifiers" under "History Substitution," above, for a description.

If braces { ... } appear in the variable substitution, modifiers must be enclosed
within them.

The current implementation allows only one modifier within each variable sub­
stitution.

The following variable substitutions can not be modified: $?, $$, and $<.

Expressions appear within the ,exit, if, and while builtin commands.;

Null or missing terms are interpreted as o.
Results of all expressions are strings that represent decimal numbers. Results of
logical expressions are 1 (for true) or 0 (for false).

(...)

==

!=

=

<

<=

>

>=

I I

&&

{ ... }

Parentheses indicate grouping of operators and tenns within an
expression, overriding the standard precedence of operators.

True if the string on the left is equal to the string on the right (after
all substitutions are performed).

True if the string on the left is not equal to the string on the right.

True if the string on the left is matched by the pattern on the right.

True if the string on the left is not matched by the pattern on the
right.

True if the number on the left is less than the number on the right.

True if the number on the left is less than or equal to the number on
the right.

True if the number on the left is greater than the number on the right.

True if the number on the left is greater than or equal to the number
on the right.

Logical or connective.

Logical and connective.

Command successful. True if the command surrounded by brackets
exits with status code o.

An operator of the form

flag filename
is true if the attribute flag applies to filename, with respect to the
current user. flag can be one of:

-r read access

Revision A, of 27 March 1990

Appendix A - C Shell Special Characters 43

-w write access

-x execute access

-e existence

-0 ownership

-z zero size

-f plain file

-d directory

! Jlag true ifJlag does not apply.

If the file does not exist, or is inaccessible, then all inquiries yield
false as a result.

+ Addition.

Subtraction.

* Multiplication.

/ Division.

% Remainder after division.

Ostr A string with a leading zero is interpreted as an octal numeral.

« Bitwise shift left operator.

» Bitwise shift right operator.

Bitwise or operator.

Bitwise exclusive or operator.

, Bitwise and operator.

Revision A, of 27 March 1990

NOTE

C Shell Invocation

C shell scripts do not serve the
same function as make, which is
useful for consistently performing a
set of operations on related files.
While scripts can be written to do
this, the C shell is more general in
scope. Scripts do not check for
dependencies, for instance. But
there are many things that you can
do with scripts, such as prompting
for input from the terminal, that are
not practical using make.

Command-Line Arguments in
Scripts

B
C Shell Scripts

You can put a sequence of SunOS commands in a file called a script. By using
the source filename command, or by setting the execute permissions and typ­
ing in the filename as if it were a command, you can tell the C shell to read and
perform commands in the file.

We recommend that you use the Bourne shellfor writing shell scripts. The
Bourne shell has a simpler command syntax, faster execution time, and provides
better security. Refer to Appendix C for information about writing Bourne shell
scripts.

This appendix outlines features that you can use when writing scripts for the C
shell.

When a script is invoked by name, the system looks at the very first line of the
file to decide how to run it:

o If the first line of the script starts with a =#= ! , followed by the name of a pro­
gram, the system uses that program to perform commands in the script.

o If the first line starts with a =#= (hash sign), the system uses the C shell to run
the script.

o If the first line does not start with a =#= (hash sign), the system uses the
Bourne shell to run the script

To run a script with no C shell startup processing, the first line should be of the
form:

#! csh -f script

To pass command-line arguments as parameters to a script, type its name, fol­
lowed by any arguments you wish. The C shell places words following the name
in the variable argv, the arguments list. Command-line arguments are treated
as words contained in this variable, or you can use the equivalent variables: $1
through $ n where n is the number of arguments in the list.

45 Revision A, of 27 March 1990

46 SunOS U serf s Guide: Doing More

Variables in Scripts A number of notations are available for accessing words in variables, and other
variable attributes. The notation:

$?name

expands to 1 if a named variable exists (using the set command) or to 0 other­
wise:

All other forms of reference to undefined variables cause errors.

The notation

$:/I=name

expands to the count of words in the variable name:

There is a special C shell variable, $ $, which represents the process number of
the shell itself. Why would you want a variable like this? Because the shell's
process number is unique on the system, you can use it as part of a file's name if
you want to create unique temporary files from inside the shell. Part of your
script might create a file called / tmp • $ $, for example; this file will not be con­
fused with any other that might already exist.

The redirection characters:

$<

indicate that a line is to be read from the terminal. To write out the prompt ye s
or no? without a newline and then read the answer into the variable a:

echo -n "yes or no?"
set a= ($<)

In this case $ 41= a would be 0 if either a blank line or (Ctrl-D I were typed in
response.

A minor difference between $n and $argv [n] is that $argv [n] yields an
error if n is larger than the word count $ 4I=argv, while $n never yields a
subscript-out-of-range error. This is for compatibility with older shells.

Revision A, of 27 March 1990

Expressions

File Enquiries

Path name Processing
Primitives

Appendix B - C Shell Scripts 47

It is never an error to give a sub range of the form var [n-]. If there are less than
n words in the given variable, then no words are selected.

A range of the form var [m-n] likewise returns a value without an error, even
when m exceeds the number of words, provided that n is in range.

All of the arithmetic operations of the C language are available in the C shell
with the same precedence that they have in C. These operations are useful for
evaluating expressions in branches and loops. The operations == and ! = com­
pare strings, and the operators & & and I I implement the logical and and or
operations, respectively. The operators = - and ! - are similar to == and ! =,
allowing for pattern matching as with filename substitution.

The expression:

-e filename

returns 1 if the file exists and 0 otherwise. Similar primitives provide other tests:

-r returns 1 if read-access is allowed for the user running the script.

-w returns 1 if write-access is allowed for the user.

-x returns 1 if execute-access is allowed.

-0 returns 1 if the user owns the file.

- z returns 1 if the file has zero length.

-f returns 1 if a plain file.

-d returns 1 if a directory.

There are also primitives to apply to pathnames to strip off unneeded com­
ponents:

: t (tail) removes all but the rightmost component (or basename) of the path­
name.

: r (root) removes suffixes beginning with a dot (.).

: e (end) removes prefixes ending with a dot.

: h (head) removes the last component, leaving the pathname of the directory in
which the file resides.

Here's an example of how these apply to a file:

If you had a file called /usr/ include/ sys/types. h, then : t would
remove all but types. h; : r would leave you with
/usr / include/ sys/types; : e would leave you with just h; and : h
would give you /usr / include/ sys.

Revision A, of 27 March 1990

48 SunGS User's Guide: Doing More

Return Codes

Sample C Shell Script

Figure B-1

Basic Control Structures: if
and foreach

It is possible to test whether a command terminates normally by using a primitive
of the form { command }, which returns 1 if the command exits normally (with
exit status 0), or a if the command terminates abnormally (with a nonzero return
code).

If more detailed information about the status of a command is required, it can be
executed and the variable s tat us examined in the next command. Since every
command returns a value to status, you must save values of interest on the
very next line of the script:

set checkpoint=$status

where checkpoint is a suitable variable name.

The following script, copyc, copies files named as arguments into a backup
directory:

A Sample C Shell Script

* * copyc copies files named on the command line * to the directory -/backup if they differ from the files * already in -/backup

* set noglob
foreach i ($argv)

end

if ($i !- *.c) continue * not a .c file so do nothing

if (! -r -/backup/$i:t) then
echo $i:t not in backup ... not cp\'ed
continue

endif

cmp -s $i -/backup/$i:t # to set $status

if ($status != 0) then

endif

echo new backup of $i
cp $i -/backup/$i:t

This script uses the foreach command, which causes the C shell to execute the
commands between it and the corresponding end with the named variable taking
on each of the values given between (and). The named variable - in this case
i-is set to successive words in the list. Within this loop you can use the
break command to stop executing the loop and continue to terminate one
iteration and begin the next. After the f oreach loop, the iteration variable (i
in this case) has the value it had during the last iteration.

The variable noglob is set to prevent filename expansion from being performed
on members of argv. This is a good idea, in general, if the arguments to a C
shell script are filenames that have already been expanded or if the arguments

Revision A, of 27 March 1990

Introducing Comments With #

Other C Shell Control
Structures

Appendix B - C Shell Scripts 49

may contain filename expansion metacharacters. It is also possible to quote each
use of a $ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the fonn:

if (expression) then
command

endif

The placement of the keywords here is not flexible. The word then must appear
on the same line as if, when used with a block of commands.

The C shell does not accept the fonnats:

if (expression)
then

or

if expression) then command endif

For individual conditional commands, the C shell has another fonn of the if
statement:

if (expression) command

which can also be written as

if (expression) \
command

The newline is escaped here for the sake of appearance. The command must not
invol ve I, & or ; and must not be another control command. The final \ must
immediately precede the end-of-line. This is the only fonn of the if command
that can be used within an alias definition.

The more general if statement also admits a sequence of else-if pairs fol­
lowed by a single else and an endif.

if (expression) then
commands

else if (expression then
commands

else
commands

endif

The # character introduces a C shell comment in a script (but not from the termi­
nal), and the C shell ignores all subsequent characters the line.

The C shell also has the control structures while and switch, which are
similar to those in C.

Revision A. of 27 March 1990

50 SunOS User's Guide: Doing More

Here Documents

while (expression
commands

end

and

switch word

case str 1:
commands
breaksw

case str n:
commands
breaksw

default:
commands
breaksw

endsw

See the csh man page for details. C programmers should note that breaksw
exits from a switch, while break exits a while or foreach loop.

Finally, csh allows a goto statement, with labels looking as they do in C, that
is:

loop:
commands
goto loop

A here document is a special notation used to pass instruction along to com­
mands that normally run interactively. The here document begins with a < <eot
and ends with a line containing eot by itself. eot can be any string.

Here is a script that runs ed to delete leading blanks from every line in each file
in the argument list. In this case, the eot string is "woof':

* deb lank -- remove leading blanks
foreach i ($argv)
ed - $i « 'woof'
1,$s/'"[]*//
w
q
'woof'
end

(The brackets in the script contain a tab and a space.)

The notation« ' woof' means that the standard input for the ed command is
the text in the C shell script file up to the next line consisting of exactly
, woof' . The fact that the woof is enclosed in quote characters prevents the C

Revision A, of 27 March 1990

Catching Interrupts With
onintr

Exit

Appendix B - C Shell Scripts 51

shell from substituting variables on the intervening lines. In general, the C shell
uses the word following « to tenninate the text to be given to the command. If
any part of the word following the «is quoted, these substitutions are not per­
formed. In this case, since the form 1, $ was used in the editor script, you
needed to ensure that the $ is not variable-substituted. You can also ensure this
by preceding the $ here with a \, for instance:

1,\$3/"[]*//

but quoting the woof terminator is a more reliable way of achieving the same
effect.

If your script creates temporary files, you can use onintr to catch interrupts, so
that the script can delete them before halting.

onintr label

where label is a label in your program that is followed by your housekeeping
commands. If the C shell receives an interrupt, it performs a goto label, and
executes those commands.

You can also use the exit command (which is built in to the C shell) to ter­
minate the script. If you wish to exit with a nonzero status, do the following:

exit (status)

where status is the status you want to exit with.

Revision A, of 27 March 1990

Bourne shell scripts do not serve
the same function as make, which is
useful for consistently performing a
set of operations on related files.
While scripts can be written to do
this, the Bourne shell is more gen­
eral in scope. Scripts do not check
for dependencies, for instance. But
there are many things that you can
do with scripts, such as prompting
for input from the terminal, that are
not practical using make.

NOTE

Bourne Shell Variables

c
Bourne Shell Scripts

You can use the Bourne shell to perform a set of SunOS commands contained in
a file called a script.

To run a Bourne shell script (for which you have execute permission), type in its
filename as if it were a command. When you do, the system looks at the very
first line of the file to decide which shell should run the script:

o If the first line does not start with a =#: (hash sign), the system uses the
Bourne shell to run the script.

o If the first line starts with a =#: (hash sign) and is not followed by a ! (excla­
mation mark), the system uses the C shell to run the script.

o Finally, if the first line of the shell script starts with a =#:! combination and is
followed immediately by a name, the system looks for a program of that
name to run the shell script. If you supply arguments on the command line,
these are passed along to variables in the Bourne shell called arguments.
The first argument after the name of the script is placed in variable 1. The
second is placed in variable 2, and so forth.

You can often simplify testing of Bourne shell scripts (or commands to run within
them) by using the Bourne shell interactively. To do so, type in the command
/bin/ sh, and enter commands as described in this chapter. Use (Ctrl-D I to
exit and return to the C shell. Most of the examples below make use of the
Bourne shell interactively, as well as within scripts.

The Bourne shell provides string-valued variables. Variable names begin with a
letter and consist of letters, digits, and underscores. You may assign values to
variables by writing the variables name, an equal sign, and a value (with no
spaces between). For example:

assigns values to the variables user, box and acct. To set a variable to the null
string, you can say:

The value of a variable is substituted by preceding its name with $ - for

53 Revision A, of 27 March 1990

54 SunOS User's Guide: Doing More

Bourne Shell Initial Variables

example:

You can use variables to provide abbreviations for strings that are used fre­
quently throughout a script. A script containing the following lines

[~~~horne/fred/bin ,mv pgm $b

moves the file pgm from the current directory to the directory
/home/ fred/bin. A more general notation is available for parameter (or
variable) substitution, as in:

[echo ${user)

which is equivalent to

[eChO $user

and is used when the parameter name is followed immediately by a letter or
digit:

[

tmp=/tmP/Ps
,ps >${tmp}a

directs the output of p s to the file / tmp / p sa.

Variables can be concatenated onto each other. If the variable x is set to hello,
then $x. foo will be equal to hello. foo.

Except for $?, the variables defined in table C-l are set initially by the Bourne
shell. $? is set after executing each command.

1

)

)

]

Revision A, of 27 March 1990

Appendix C - Bourne Shell Scripts 55

Table C-l Variables Initialized by the Bourne Shell

Variables With Special
Meaning to the Bourne Shell

The file. profile in your home
directory is the setup file for the
Bourne shell - equivalent to the
combination of the. cshrc and
. login files for the C shell.

Variable Explanation

$? The exit status (return code) of the last command executed, as a
decimal string. Most commands return a zero exit status if they
complete successfully, otherwise a non-zero exit status is returned.

$ # The number of arguments (in decimal).
$ $ The process number of this shell (in decimal). Since process

numbers are unique among all existing processes, this string is fre­
quently used to generate unique temporary filenames. For example,
tmp . $ $ will not be confused with any other file.

$! The process number of the last process run in the background (in
decimal).

$- The current Bourne shell flags, such as -x and -v.

Some variables have a special meaning to the Bourne shell; avoid them in gen­
eral use.

$MAIL When the Bourne shell is used interactively, it looks at the file
specified by this variable before it issues a prompt. If the specified file
has been modified since it was last looked at, the Bourne shell prints
the message you have mail before prompting for the next command.
This variable is typically set in the file. profile in your home direc­
tory. For example:

MAIL=/var/spool/mail/fred

$HOME Your home directory; this variable is also typically set in . profile.

$PATH A list of directories that contain commands (the search path). Each
time the Bourne shell executes a command, a list of directories is
searched for an executable file by that name. If PAT H is not set, then
the current directory, /bin, and /usr /bin are searched by default.
$PATH consists of directory names separated by :. For example,

PATH=/home/fred/bin:/bin:/usr/bin:

specifies that /home/ fred/bin, /bin, and /usr /bin are to be
searched in that order, followed by the current directory (the null string
after the last: in the example above; a dot (.) is equivalent to the null
string). This allows you to have your own private commands accessi­
ble independently of the current directory. If the command name starts
with a / , then this directory search is not used.

$ P S 1 The primary Bourne shell prompt string, by default, $.

$ P S 2 The Bourne shell prompt when further input is needed, by default, >.

$ IFS The set of characters to be interpreted as blanks (field separators) when
parsing command lines .

• sun Revision A, of 27 March 1990 -~ microsystems

56 SunOS User's Guide: Doing More

The test Command

Alternative Form of the te st
Command: [...]

Although the test command is not part of the Bourne shell, scripts frequently
use it. te st can be used to check on the status of files, to compare strings and
algebraic expressions, and to perfonn integer calculations. For instance:

test -f file

returns zero exit status if file exists and non-zero exit status otherwise. In general
test evaluates a predicate and returns the result as its exit status. Here is the
list of things you can test for.

-bfile

-cfile

-dfile

-f file

-g file

-hfile

-kfile

-1 string

-n string

-r file

-s file

-t [fildes]

-w file

-x file

-z string

string-l

true if file exists and is a block special device.

true if file exists and is a character special device.

true if file exists exists and is a directory.

true if file exists and is not a directory.

true if file exists and is setgid.

true if file exists and is a symbolic link.

true if file exists and its sticky bit is set.

the length of string.

true if the length of string is nonzero.

true if file exists and is readable.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number isfildes (1 by
default) is associated with a terminal device.

true if file exists and is writable.

true if file exists and is executable.

true if the length of string is zero.

string-2
true if the strings string-l and string-2 are equal.

string-l ! = string-2

string

nl -eq n2

true if the strings string-l and string-2 are not equal.

true if string is not the null string.

true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, or -Ie may be used in place
of -eq, where ne means "not equal", -ge means "greater than
or equal to", -It means "less than," and so on.

You can also call test by surrounding the expression to be tested with brackets
([]). (The left bracket is a command name, the right bracket is a argument sig­
nifying the end of the expression.) The left bracket must be followed by a blank,
and the right bracket must be preceded by one. This form is most often used with
the if command described later on.

Revision A, of 27 March 1990

Getting Started: A Simple
Script

Control Flow in the Bourne
Shell: for

General Form of the for Loop

Appendix C - Bourne Shell Scripts 57

Here is a very simple Bourne shell script to look up names in a list of names and
telephone numbers contained in a file called names .list. Let's call the
lookup script name:

This is about as simple as you can get. Let's run the name script looking for
people called Ted:

Later on, we will show a more sophisticated version of name and expand on this
script to demonstrate other features of the Bourne shell.

A frequent use of Bourne shell script is to loop through the arguments ($1,
$ 2 , ...) executing commands once for each argument. Here's an expanded
version of the name script from above. The original version of name can only
look for one person's name. Now we want to expand it to look for more than one
name at a time. Let's look at the new version:

Here we set a variable called person to the value of each argument, one at a
time, then we callout the value of person in the grep command. Now we can
look for more than one name at a time:

The for loop notation is recognized by the Bourne shell and has the general
form

for name in wi w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or

Revision A, of 27 March 1990

58 SunOS User's Guide: Doing More

Control Flow in the Bourne
Shell: case

tenninated by a newline or semicolon. Furthennore, reserved words like do and
done are only recognized following a newline or semicolon. name is a variable
that is set to the words w 1 w2 ... in tum each time the command-list following
do is executed. If in wl w2 ... is omitted, then the loop is executed once for
each argument; that is, in $* is assumed.

An example of the use of the f or loop is the create command whose text is

for i; do >$i; done

(Remember that cat > filename creates a file where none exists.)21 The com­
mand:

ensures that two empty files alpha and beta exist and are empty. Use the nota­
tion >file on its own to create or clear the contents of a file. Notice also that a
semicolon (or newline) is required before done.

The case notation provides a multi-way branch. For example, suppose you
wrote a script called append that contained the following lines:

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
*) echo 'usage: append [from] to' ;;

esac

esac, you may have noticed, is case backwards.

When called with one argument as

$ * is the string "1" and the standard input is copied onto the end of file usin~ the
cat command. To append the contents offilel ontofile2, say:

~:
:::::::::::: .'::::::::::"'" :::::: <::: ::>

•••••••••••••••••••••••••••••••••••

:}: ::,::::,:::::::::<: .. /"",:,:::",: ::,,::::,::
I::~ 1;;' 1;;::::::::1;:;;1;: :~f

:,:,: :::::,:,:,:

•••
::::::: ,:.:::::!:!:::\:: ••• :

{:
::::::<: <

U:.: t> in •• ::::.
.:: :::!::::.: .::::: >!./ :::::::::::

>::::.··c:.:::· : ... : :::::::
::.:.:, ,:::::::.:::::.::: .. ::::.: :.::::::::::::: z::::: ':::::::: .<:

If the number of arguments supplied to append is other than 1 or 2, a message is
displayed indicating proper usage.

The general form of the case command is:

21 In fact. in the Bourne shell. you don't need cat; typing> filentJl'fll! by itself creates a file.

Revision A, of 27 March 1990

A word of caution: no check is
made to ensure that only one pat­
tern matches the case argument.
The first match found defines the
set of commands to be executed.
In the example, the commands fol­
lowing the second * are never exe­
cuted.

Matching Multiple Patterns in
One Case

AppendixC - Bourne Shell Scripts 59

case word in
pattern-l) command-list-l;;
pattern-2) command-list-2;;

esac

The Bourne shell attempts to match word with each pattern, in the order in which
the patterns appear. If a match is found the associated command-list is executed,
and execution of the case is complete. Since * is the pattern that matches any
string, you can use it for the default case.

case $=11= in
*)
*)

esac
i ;

Another example of the use of the case construction is to distinguish between
different forms of an argument. The following example is a fragment of a cc (C
compiler) command:

for i
do case $i in

-[ocs]) ... ;;

done

-*) echo 'unknown flag $i' ;;
* . c) /1 ib / c 0 $ i . .. ;;
*) echo 'unexpected argument $i' ;;
esac

What does this do? It checks for the options (or flags) - 0, - c, or - s; if it gets
some other flag, it reports it as unknown. It checks to see if it gets a file ending
in . c and processes it when it does; if it gets anything else it reports an unex­
pected argument.

To allow the same commands to be associated with more than one pattern the
ca se command provides for alternative patterns separated by a ' I '. For exam­
ple:

case $i in
-xl-y)

esac

is equivalent to

case $i in
- [xy])

esac

The usual quoting conventions apply, so that

case $i in
\?)

will match the character ? .

Revision A, of 27 March 1990

60 SunOS User's Guide: Doing More

Here Documents in the Bourne
Shell

The name Command Using
Here Document

Sometimes a shell script requires data. Instead of having the data in some file
somewhere in the system, the data can be included as part of the shell script.
Such a collection of data is called a here document - the data (document) is
right here in the shell script. One advantage of a here document is that shell
parameters can be substituted in the document as the shell is reading the data.

The general form of a here document is like this:

lines of shell commands

command-name «end-marker
lines of data
belonging to the
here document

end-marker

more lines of shell commands

Let's revisit the name script discussed in earlier sections. Instead of having the
names and numbers in one file and the shell script in another file, you can keep
both the script and the list in the same file - that is, in the script. Here's another
version of the name command:

In this example the Bourne shell takes the lines between «woof and woof as
the standard input for grep. The string woo f is arbitrary, the document being
terminated by a line that consists of the string following «.

Now you'll notice that in this version of name we're back to being able to only
look up one name at a time. We could combine the multiple-name version with
the here-document version:

Revision A, of27 March 1990

Parameter Substitution in Here
Documents

Appendix C - Bourne Shell Scripts 61

The problem with this approach is that the shell reads up the list of names every
time around the for loop. This could become excruciatingly slow. In a later
section we show another version of name using temporary files for faster perfor­
mance.

Parameters are substituted in the here document before it is made available to
whatever command as illustrated by the following script, called edg (ed glo­
bally).

ed $3 «woof
g/$1/s//$2/g
w
woof

Then the command line:

is equivalent to the command:

and changes all occurrences of string1 infile to string2. You can prevent substi­
tution by using \ to quote the special character $ as in

ed $3 «woof
1,\$s/$1/$2/g
w
woof

This version of edg is equivalent to the first except that ed displays a ? if
there are no occurrences of the string $1. Quoting the terminating string
prevents substitution entirely within a here document, for example:

]

Revision A, of 27 March 1990

62 SunOS User's Guide: Doing More

Control Flow in the Bourne
Shell: while

Control Flow in the Bourne
Shell: if

grep $i «\-#

-#

In this case the shell does not try to replace the 41= with anything.

The document is presented without modification to grep. If parameter substitu­
tion is not required in a here document, this latter fonn is more efficient.

The actions of the for loop and the case branch are detennined by data avail­
able to the Bourne shell. Also provided are a while or until loop and an
if then else branch whose actions are detennined by the exit status
returned by commands. A while loop has the general fonn

while command-list-l
do command-list-2
done

The value tested by the while command is the exit status of the last simple
command following while. Each time round the loop command-list-l is exe­
cuted; if a zero exit status is returned then command-list-2 is executed; otherwise,
the loop tenninates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do ...
done

shift is a Bourne shell command that renames the arguments $2, $3,
. . . as $1, $ 2 , ... and discards $1.

Another kind of use for the while/until loop is to wait until some external
event occurs and then run some commands. In an until loop the tennination
condition is reversed. For example,

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before
trying again. Presumably another process will eventually create the file.

A general conditional branch of the fonn

if command-list
then command-list
e 1 s e command-list
fi

is also available to test the value returned by the last simple command following

Revision A, of 27 March 1990

Appendix C - Bourne Shell Scripts 63

if.

We can illustrate a very simple use of the if command by expanding on our
name script from before. The relevant change is in the first few lines (remember
that -It means less than):

The change here is the if command - the original version of the script didn't
check that the user supplied any parameters at all. This version checks the
number of parameters ($ #) using the t est command and displays a usage mes­
sage if there are no parameters to remind the user of the correct way to use the
script.

We mentioned earlier that the test command can also be written as [. Here is
the first couple of lines of the name script above rewritten in that way:

The if command may also be used in conjunction with the test command to
test for the existence of a file as in

Revision A, of 27 March 1990

64 SunOS User's Guide: Doing More

elif: Multiple-Test Version
of if

if test -f file
then process file
else do something else
fi

Here is an example of the t est command in action. This is an extract from the
diff 3 shell script:

The relevant line is number 8, which reads

if test $# = 3 -a -f $1 -a -f $2 -a -f $3

This says that if the number of parameters ($ 41=) is equal to 3 and all three param­
eters are files, the script can continue; otherwise, the script displays an error mes­
sage and stops. (The -a is a logical and operator; it joins statements just like
the word and.)

A multiple-test if command of the form

if ...
then
else if

then
else if

fi
fi

fi

may be written using an extension of the if notation:

Revision A, of 27 March 1990

Command Grouping

Debugging Bourne Shell Scripts

Appendix C - Bourne Shell Scripts 65

if condition-l
then actions-l
elif condition-2
then actions-2
eli f condition-3

fi

The sequence

if command-l
then command-2
fi

may be written this way (the & & is a logical and):

command-l & & command-2

This means that command-2 will be executed only if command-l succeeds.

Conversely,

command-l I I command-2

executes command-2 only if command-l fails (the I I is a logical or). In each
case the value returned is that of the last simple command executed.

Commands may be grouped in two ways,

{command-list ; }

and

(command-list

In the first, command-list is simply executed. (The semi-colon is necessary to
indicate the end of command-list.) The second fonn executes command-list as a
separate process. For example,

executes rm junk in the directory x without changing the current directory of
the invoking shell.

The commands

have the same effect but leave the invoking shell in the directory x.

The Bourne shell provides two tracing mechanisms to help in debugging shell
scripts. The first is invoked within a script as

Revision A, of 27 March 1990

66 SunOS User's Guide: Doing More

set -v

(v for verbose) and displays lines of the script as they are read. It is useful to
help isolate syntax errors. It may be invoked within a script, or when the script is
run, by saying

where proc is the name of a Bourne shell script. This flag may be used in con­
junction with the - n flag, which prevents execution of subsequent commands.
-n serves as a breakpoint, allowing you to stop a script at a convenient point in
the debugging, instead of having the whole script execute. Note that saying
set -n at a terminal will render the terminal useless until an end-of-file is
typed.

The command

set -x

produces an execution trace. Following parameter substitution, each command is
displayed as it is executed. The -v and -x flags are similar; -x puts a + sign
in front of the line shown being executed and it only displays executing lines, not
control lines. This means that a for or while loop line will be displayed
with -v but not with -x. The following shows the difference:

Notice how, in the second example, one and two are substituted in for $ i. Both
flags may be turned off by saying

set -

Revision A, of 27 March 1990

Keyword Parameters in the
Bourne Shell

Parameter Transmission in the
Bourne shell

Appendix C - Bourne Shell Scripts 67

and the current setting of the Bourne shell flags is available as $ -.

Bourne shell variables may be given values by assignment or when a shell script
is invoked. An argument to a Bourne shell script of the form name=value that
precedes the command name causes value to be assigned to name before execu­
tion of the script begins. The value of name in the invoking shell is not affected.
For examplet

executes command with user set to fred. The -k flag causes arguments of
the form name=value to be interpreted in this way anywhere in the argument list.
Such names are sometimes called keyword parameters. If any arguments remain t

they are available as arguments $1, $ 2 ,

You can also use the set command to set arguments from within a script. For
example,

set - *
sets $1 to the first filename in the current directory, $ 2 to the next t and so on.
Note that the first argument (-) ensures correct treatment when the first filename
begins with a - .

When a Bourne shell script is called t both arguments and keyword parameters
may be supplied with the call. Keyword parameters are also made available
implicitly to a Bourne shell script by specifying in advance that such parameters
are to be exported. For example t

export user box

marks the variables user and box for export to scripts. When a shell script is
called, copies are made of all exported variables for use within the invoked
script. For example:

Modification of such variables within the script does not affect the values in the
calling shell. (It is generally true of a Bourne shell script that it may not modify
the state of its caller without explicit request on the part of the caller. Shared file
descriptors are an exception to this rule.)

Names whose values are intended to remain constant may be declared readonly.
The fonn of this command is the same as that of the export commandt

readonly name ...

Revision A, of 27 March 1990

68 SunOS User's Guide: Doing More

Parameter Substitution in the
Bourne Shell

Subsequent attempts to set readonly variables are illegal.

If a Bourne shell parameter is not set, the null string is substituted for it. For
example, if the variable d is not set

or

will echo nothing. A default string may be given as in

which will echo the value of the variable d if it is set and '.' otherwise. The
default string is evaluated using the usual quoting conventions so that

will echo * if the variable d is not set. Similarly

will echo the value of d if it is set and the value (if any) of $1 otherwise. A vari­
able may be assigned a default value using the notation

echo $ {d=. }

which substitutes the same string as

echo $ {d-. }

and if d was not previously set then it is now set to the string '.' . The notation
${ ... = ... } is not available for arguments.

echo ${d?message}

echoes the value of the variable d if it has one; otherwise, the Bourne shell prints
message, if the shell is interactive, and stops executing the script. If message is
absent, then a standard message is printed. A Bourne shell script that requires
some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the Bourne shell and does nothing once
its arguments have been evaluated. If any of the variables user, acct or
bin are not set and the shell is not interactive, the shell stops executing the
script.

Revision A, of 27 March 1990

Command Substitution in the
Bourne Shell

Evaluation and Quoting in the
Bourne Shell

Appendix C - Bourne Shell Scripts 69

In a similar way, you can substitute the standard output from a command as the
value of a parameter. The command pwd displays on its standard output the
name of the current directory. For example, if the current directory is
/home/ fred/bin then the command

d='pwd'

is equivalent to

d=/horne/fred/bin

The entire string between backquotes. C ... ") is taken as the command to be exe­
cuted and is replaced with the output from the command. The command is writ­
ten using the usual quoting conventions except that a ' must be escaped using a
\ . For example,

is 'echo "$1'"

is equivalent to

is $1

Command substitution occurs in all contexts where parameter substitution occurs
(including here documents) and the treatment of the resulting text is the same in
both cases. This mechanism allows use of string processing commands within
Bourne shell scripts. An example of such a command is basename, which
removes a specified suffix and the patbname's prefix from a string. For example,

basenarne /horne/fred/main.c .c

displays the string main. The following fragment from a cc command illus­
trates its use:

case $A in

*.c) B='basenarne $A .c'

esac

that sets B to the part of $A with the patbname and suffix . c stripped.

Here are some composite examples.

o for i in 'is -t'; do
The variable i is set to the names of files in time order, most recent
first.

o set 'date'; echo $6 $2 $3, $4
will print, for instance, 1977 Nov 1, 23: 59: 59

The Bourne shell is a macro processor that provides parameter substitution, com­
mand substitution, and filename generation for the arguments to commands.
This section discusses the order in which these evaluations occur and the effects
of the various quoting mechanisms.

Comlnands are parsed initially according to the grammar given in the "Gram­
mar" section. Before a command is executed, the following substitutions occur.

Revision A, of 27 March 1990

70 SunOS User's Guide: Doing More

o Parameter substitution, such as $user

o Command substitution, such as 'pwd ..

Only one evaluation of a variable occurs. For example, if the value of the
variable y is hello, so that

echo $y

yields hello, and we set the variable x to $y, then

echo $X

yields $y and not hello.

o B lank interpretation

Following the above substitutions, the resulting characters are broken into
non-blank words (blank interpretation). For this purpose "blanks" are the
characters of the string $IFS. By default, this string consists of blank, tab,
and newline. The null string is not regarded as a word unless it is quoted.
For example,

echo "

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to
the null string with null=" .

o Filename generation

Each word is then scanned for the file pattern characters * , ?, and [. . .],
and an alphabetical list of filenames is generated to replace the word. Each
such filename is a separate argument.

The evaluations just described also occur in the list of words associated with a
for loop. Only parameter and command substitution occurs in the word used
for a cas e branch.

As well as the quoting mechanisms described earlier using and '.. . " a third
quoting mechanism is provided using double quotes. Within double quotes,
parameter and command substitution occur, but filename generation and the
interpretation of blanks does not. The following characters have special mean­
ings within double quotes and may be quoted using \.

Revision A, of 27 March 1990

Table C-2

Table C-3

Appendix C - Bourne Shell Scripts 71

Characters With Special Meaning Between Double Quotes

Character

$

"
\

For example,

echo "$x"

Meaning

parameter substitution
command substitution
ends the quoted string
quotes the special characters $.. " \

passes the value of the variable x as a single argument to echo. Similarly,

echo "$*"

passes the argument as a single argument and is equivalent to

echo "$1 $2 ... "

The notation $ @ is the same as $ * except when it is quoted.

echo "$@"

passes the arguments, unevaluated, to echo and is equivalent to

echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the Bourne shell meta­
characters that are evaluated.

Quoting Mechanisms

Quoting
M etacharacter

Character

\ $ * "
n n n n n t
y n n t n n

" y y n y t n

Where t=terminator, y=interpreted, and n=not interpreted

In cases where more than one evaluation of a string is required, use the built-in
command eval. For example, if the variable X has the value $y and y has the
value pqr, then

eval echo $X

echoes the string pqr.

In general, the eval command evaluates its arguments (as do all commands)
and treats the result as input to the Bourne shell. The input is read and the

Revision A, of 27 March 1990

72 SunOS User's Guide: Doing More

Error Handling in the Bourne
Shell

resulting command(s) are executed. For example,

wg='eval wholgrep'
$wg fred

is equivalent to

wholgrep fred

In this example, eval is required since there is no interpretation ofmetacharac­
ters, such as I, following substitution.

The treatment of errors detected by the Bourne shell depends on the type of error
and on whether the Bourne shell is being used interactively. A Bourne shell
invoked with the -i flag is deemed to be interactive.

Execution of a command (see also "Command Execution") may fail for any of
the following reasons.

o Input/output redirection may fail, for example, if a file does not exist or can­
not be created.

o The command itself does not exist or cannot be executed.

o The command tenninates abnormally, for example, with a "bus error" or
"memory fault." See Table C-4 for a complete list of SunOS signals.

o The command tenninates normally but returns a non-zero exit status.

In all of these cases the Bourne shell goes on to execute the next command.
Except for the last case, the Bourne shell displays an error message. All remain­
ing errors cause the Bourne shell to exit from a command script. An interactive
Bourne shell will return to read another command from the terminal. Such errors
include the following:

o Syntax errors, such as if .. . then . . . done

o A signal such as an interrupt. The Bourne shell waits for the current com­
mand, if any, to finish execution and then either exits or returns to the termi­
nal.

o Failure of any of the built-in commands such as cd.

The Bourne shell flag -e terminates the Bourne shell if any error is detected.

Revision A, of 27 March 1990

Table C-4

Notes on the Signals

Appendix. C - Bourne Shell Scripts 73

SunOS Signals

*

Signal Sig1Ul1 Notes Description
Name Number

SIGHOP 1 hangup
SIGINT 2 interrupt
SIGQOIT 3 * quit
SIGILL 4 * illegal instruction
SIGTRAP 5 * trace trap

SIGABRT 6 * used by abort
SIGEMT 7 * EMT instruction
SIGFPE 8 * floating point exception
SIGKILL 9 kill - cannot be caught, blocked, or ignored
SIGBOS 10 * bus error

SIGSEGV 11 * segmentation violation
SIGSYS 12 * bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alann clock
SIGTERM 15 software tennination signal from kill

SIGURG 16 urgent condition on 10 channel
SIGSTOP 17 t stop - cannot be caught, blocked, or ignored
SIGTSTP 18 t stop signal from tty
SIGCONT 19 • continue after a stop - cannot be blocked
SIGCHLD 20 • to parent on child stop or exit

SIGTTIN 21 t background read attempted from control terminal
SIGTTOO 22 t background write attempted from control terminal
SIGIO 23 input/output possible signal *
SIGXCPO 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit

SIGVTALRM 26 virtual time alann
SIGPROF 27 profiling time alann
SIGWINCH 28 • window changed
SIGLOST 29 resource lost

These signals normally create a memory image of the terminated process
("core dumped").

• These signals are discarded if the signal action is SIG_DFL.

t These signals normally stop the process.

The Bourne shell itself ignores quit, which is the only external signal that can
cause a dump. The signals in this list of potential interest to Bourne shell pro­
grams are 1,2, 3, 14, and 15.

Revision A, of 27 March 1990

74 SunOS User's Guide: Doing More

Fault Handling in the Bourne
Shell

Bourne shell scripts normally terminate when an interrupt is received from the
terminal. The trap command is used if some cleaning up is required, such as
removing temporary files. For example,

trap 'r.m /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received it exe­
cutes the commands

rm /tmp/ps$$; exit

exi t is another built-in command that terminates execution of a Bourne shell
script. If exi t is not specified, the Bourne shell will resume executing the script
at the place where it was interrupted.

SunOS signals can be handled in one of three ways. They can be ignored, in
which case the signal is never sent to the process. They can be caught, in which
case the process must decide what action to take when the signal is received.
Lastly, they can be left to cause termination of the process without its having to
take any further action. If a signal is being ignored, on entry to the Bourne shell
script, for example, by invoking it in the background (see "Command Execu­
tion"), then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the name command.
You'll recall that the version of the name command shown using a here docu­
ment would only look for one name at a time and that if we modified it to look
for multiple names, the here document would be read every time around the for
loop. Here is a version that copies the here document into a temporary file. The
name of the temporary file is derived from the name and process ID of this com­
mand. When the script terminates, the trap is called to remove the temporary
file. Let's take a look at this version of the name command (note that script
creates a temporary file using $ 0 for the command name and $ $ for its PID):

#! /bin/sh -u
if [$# -It 1]; then

echo Usage: name person
exit 1

fi
junk=/tmp/$O.$$
trap "rm -f $junk; exit" 0 1 2 15
cat > $junk «woof
Ted Applehead teda@seeds
Bernice Barns

more names

David Smiter
Ben Tortcake
Dave von Noknock
woof
for person

boat@carib

acme@nadir
tort@icky
dave@dove

do grep -i $person $junk
done

7534
7441

7435
7258
7296

Revision A, of 27 March 1990

The scan Script

Appendix C - Bourne Shell Scripts 75

The trap command appears before the creation of the temporary file; otherwise
it would be possible for the process to die without removing the file.

Since there is no signal 0 in SunOS, the Bourne shell uses it to indicate the com­
mands to be executed on exit from the Bourne shell script.

A script may, itself, elect to ignore signals by specifying the null string as the
argument to trap. The following fragment is taken from the nohup command:

trap " 1 2 3 15

which causes both the script and the invoked commands to ignore the hangup,
interrupt, and kill signals.

Traps may be reset by saying:

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the
current values of traps may be obtained by writing:

trap

The scan script shown below is an example of the use of trap where there is
no exit in the t rap command. scan takes each directory in the current direc­
tory, prompts with its name, and then executes commands typed at the terminal
until an end-of-file or an interrupt is received. Interrupts are ignored while exe­
cuting the requested commands but cause termination when scan is waiting for
input.

d='pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap : 2; eval $x; done

read is a built-in command that reads one line from the standard input and
places the result in the variable which is its argument. read returns a non-zero
exit status if either an end-of-file is read or an interrupt is received.

Here is an example of the s can command in action:

Revision A, of 27 March 1990

76 SunGS User's Guide: Doing More

Command Execution in the
Bourne Shell

To run a command (other than a built-in), the Bourne shell first creates a new
process using the fork system call. The execution environment for the command
includes input, output, and the states of signals, and is established in the child
process before the command is executed. The built-in command exec is used in
the rare cases when no fork is required and simply replaces the Bourne shell with
a new command. For example, a simple version of the nohup command looks
like:

trap " 1 2 3 15
exec $*

The trap turns off the specified signals so that they are ignored by subsequently
created commands, and exec replaces the shell by the command specified.

Revision A, of 27 March 1990

Afile descriptor is a number assigned
to a file when the file is opened for
reading and/or writing. File descriptors
0,1, and 2 refer to the standard input,
standard output, and standard error
(error messages) respectively.

Appendix C - Bourne Shell Scripts 77

Most fonns of input/output redirection have already been described. In the fol­
lowing, word is only subject to parameter and command substitution. No
filename generation or blank interpretation takes place so that, for example,

echo ... >*.c

writes its output into a file whose name is * . c. Input/output specifications are
evaluated left to right as they appear in the command.

> word

»word

<word

« word

>& digit

<& digit

<&­

>&-

The standard output (file descriptor 1) is sent to the file word,
which is created if it does not already exist.

The standard output is sent to file word. If the file exists, then out­
put is appended (by seeking to the end); otherwise, the file is
created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of Bourne shell input
that follow, up to but not including a line consisting only of word.
If word is quoted, then no interpretation of the document occurs.
If word is not quoted, then parameter and command substitution
occur, and \ is used to quote the characters \ $.. and the first
character of word. In the latter case, newlines quoted with
backslashes are ignored (cf quoted strings).

The file descriptor digit is duplicated using the system call dup (2)
and the result is used as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit, in which case the file descriptor
created is that specified by the digit instead of the default 0 or 1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to file .

. .. 2>&1

runs a command with its standard output and message output merged. (Strictly
speaking file descriptor 2 is created by duplicating file descriptor 1 but the effect
is usually to merge the two streams.)

The environment for a command run in the background, such as

list *.c I lpr &

is modified in two ways. First, the default standard input for such a command is
the empty file / dev /null. This prevents two processes (the shell and the
command), which are running in parallel, from trying to read the same input.
Chaos would ensue if this were not the case. For example,

Revision A, of 27 March 1990

78 SunOS User's Guide: Doing More

Calling the Bourne Shell

Bourne Shell Grammar

would allow both the editor and the shell to read from the same input at the same
time.

The other modification to the environment of a background command is to turn
off the QUIT and INTERRUPT signals so that the command ignores them. This
allows these signals to be used at the terminal without causing background com­
mands to terminate. For this reason, the SunOS convention for a signal is that if
it is set to I (ignored), then it is never changed, even for a short time. Note that
the Bourne shell command trap has no effect for an ignored signal.

The Bourne shell interprets the following flags when it is called. If the first char­
acter of argument zero is a minus-that is, the command itself starts with a
minus-then commands are read from the file . prof ile.

-c string
If the - c flag is present, commands are read from string.

- 5 If the - 5 flag is present or if no arguments remain, commands are read from
the standard input. Bourne shell output is written to file descriptor 2.

- i If the - i flag is present or if the Bourne shell input and output are attached
to a tenninal (as determined by gtty), then this Bourne shell is interactive.
In this case TERMINATE is ignored (so that kill 0 does not kill an
interactive Bourne shell), and INTERRUPT is caught and ignored (so that
wai t is interruptable). In all cases, the shell ignores QUIT.

Commands are parsed initially according to the following grammar.

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list}
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor & & pipeline
andor I I pipeline

Revision A, of 27 March 1990

Bourne Shell Metacharacters
and Reserved Words

Syntactic

&&

I I

;

&

command-list: andor
command-list ;
command-list &

command-list ; andor
command-list & andor

input-output: > file
< file
» word
« word

file: word
& digit
& -

case-part: pattern) command-list ;;

pattern: word
pattern I word

Appendix C - Bourne Shell Scripts 79

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters. digits or underscores starting with a letter

digit: 012 345 6 7 8 9

pipe symbol

"andf' symbol

"orf' symbol

command separator

case delimiter

background commands

command grouping

< input redirection

< < input from a here document

> output creation

> > output append

Revision A. of 27 March 1990

80 SunOS User's Guide: Doing More

Patterns

Substitution

Quoting

Reserved Words

* match any character(s) including none

? match any single character

[. . .]

match any of the enclosed characters

$ { ... }
substitute shell variable

substitute command output

\ quote the next character

quote the enclosed characters except for'

" "
quote the enclosed characters except for $... \ "

if then else elif fi
case
for
{ }

read

in esac
while until do done

Revision A, of 27 March 1990

Index

Special Characters
! ! event designator, 27
! $ event designator, 27
! * argument designator, 29
+ n event designator, 28
! : n argument designator, 29
! ? st r? event designator, 29
! '" argument designator, 29
! n event designator, 27
! s t r in g event designator, 28
: $ argument designator, 29
: * argument designator, 29
: '" argument designator, 29
: 0 argument designator, 29
: g event modifier, 30
: p event modifier, 30
: s/old/new/ event modifier, 30

A
argument designators

C shell, 29

B
basename, 10,47
Bourne shell

command substitution, 69
evaluation, 69 thru 72
executing commands, 76 thru 78
fault handling, 74 thru 76
here documents, 60 thru 62
keyword parameters, 67
metacharacters, 79
parameter substitution, 68
quoting, 69 thru 72
reserved words, 80
script, debugging, 66
scripts, 53 thru 80
test command, using with, 56
variables, 53 thru 55

Bourne shell commands
case, 58 thru 59
do, 58,62
done, 58, 62
elif,64
else, 62
esac,58
fi,62

- 81-

Bourne shell commands, continued
for, 57 thru 58
grouping, 65
if, 62 thru 65
in, 58
shift, 62
then, 62
trap, 74 thru 76
until,62
while, 62

Bourne shell parameters
export, 67
readonly,67

c
C shell

argument designators, 29
environment variables, 35
event designators, 27
history mechanism, 27
path variable, 9
predefined variables, 35
scripts, 27, 45 thru 51
special characters, 37 thru 43
variable substitution, 31
word designators, 29

case command in Bourne shell, 58 thru 59
cd command

and the home variable, 35
changing password, 2
chesstool command, 9
chmod command

security,2
chown command

security, 2
command

cd,35
chesstool,9
df,24
diff,12
du,24
file, 11
find, 10
make, 18
make -n,21
passwd, 1,2
printenv,36
ps -au,6

Index - Continued

command, continued
running with find, 11
sces, 13 thru 18
set,31
setenv,35
su,6
tar, 25
whatis,9
whereis,9
who, 6
whoami,7

command execution in Bourne shell, 76 thru 78
command line editing, 27
command repetition, 27
command substitution in Bourne shell, 69
comments, and makefiles, 20
comparing files with diff, 12
compound commands in Bourne shell, 65
control flow in Bourne shell

case, 58 thru 59
do, 58,62
done, 58, 62
elif,64
else, 62
esae,58
fi,62
for, 57 thru 58
if, 62 thru 65
in, 58
shift, 62
then, 62
trap, 74 thru 76
until,62
while, 62

crypt command, 3

D
debugging Bourne shell script, 66
dependencies, and make, 19
des command, 4
describe a command: whatis,9
df command, 24
di f f command, 12
directories

disk usage, 24
disk usage

percentage used, 24
specific directories, 24

disk, managing space, 23
do command in Bourne shell, 58, 62
done command in Bourne shell, 58, 62
du command, 24

E
editing encrypted files, 4
elif command in Bourne shell, 64
else command in Bourne shell, 62
encrypting files, 3
environment variables in C shell, 35
esac command in Bourne shell, 58
/etc/passwd, 5

evaluation in Bourne shell, 69 thru 72
event designators

C shell, 27
event designators, in history substitution, 27
event modifiers, 30
executing commands in Bourne shell, 76 thru 78
expansion

of macro, 19
exporting parameters in the Bourne shell, 67

F
fault handling in Bourne shell, 74 thru 76
f i command in Bourne shell, 62
file

and disk storage, 23
and root privileges, 8
basename, 47
comparing with diff,12
encrypting, 3
/ ete/passwd, 5
extracting from tape, 26
makefile,19
making tape archives, 25
monitor with sees, 13
rightmost component, 10,47

file command, 11
file security, 1 thru 4
find command, 10
for command in Bourne shell, 57 thru 58

G
grouping commands in Bourne shell, 65

H
here documents, 60 thru 62
history mechaniism

C shell, 27
home C shell predefined variable, 35
HOME environment variable, 35

I
if command in Bourne shell, 62 thru 65
in command in Bourne shell, 58
interpretation

quick substitution, 27
variable substitution, 31

K
keyword parameters in the Bourne shell, 67
kill command

and root privileges, 8

L
locating a command with whieh,9
locating a file with find,10
lockscreen command

security,2

-82-

M
macro substitution, and make, 21
make command, 18

-n option, 21
and command status, 20
and dependencies, 19
specifying a target on the command line, 21

makefile, 19
and comments, 20

p
parameter substitution in Bourne shell, 68
parameters

exporting in the Bourne shell, 67
read-only in the Bourne shell, 67

passwd command, 1,2
passwd file, see /etc/passwd
password

aging, 1
changing, 2
security, 1

password file, 5
path variable, 9
pattern matching

and history SUbstitution, 28
permissions

security,2
printenv command, 36
privileges as root, 8
ps command

-au option, 6

Q
quick substitution (command line editing), 27
quoting in Bourne shell, 69 thru 72

R
read-only parameters in the Bourne shell, 67
return code

and make, 20
root

and system maintenance, 8
quitting, 8

S
sees, 13 thru 18
scripts

Bourne shell, 53 thru 80
C shell, 27,45 thru 51

security, 1 thru 4
crypt command, 3
des command, 4
encrypting files, 3
lockscreen command, 2
permissions, 2

seeing differences between files with diff, 12
selecting files by category with find, 10
set command, 31

and environment variables, 35
setenv command, 35

and set, 35

-83-

setenv command, continued
and shell variables, 35

shell
variable substitution, 31

shift command in Bourne shell, 62
su command, 6
substituting commands in Bourne shell, 69
substituting parameters in Bourne shell, 68
substitution

history
macro: make, 21
quick (command line editing), 27
variable, 31

superuser, 6
and root privileges, 8
and the kill command, 8

system maintenance and root, 8

T
tape archives, 25
tar command, 25
targets, and make, 19
test command

used with Bourne shell, 56
then command in Bourne shell, 62
trap command in Bourne shell, 74 thru 76

U
uma sk command

security,2
unt il command in Bourne shell, 62
userid,changing,6
users

list of, 5
root, 5
who command, 6

v
variables

and the C shell, 31
environment, 35
home, 35
path, 9
predefined in the C shell, 35

variables in the Bourne shell, 53 thru 55
vi editor

-x option, 4

w
w command, 6
whatis command, 9
whereis command, 9
which command, 9
while command in Bourne shell, 62
who command, 6
who ami command, 7
word designators

C shell, 29

Index - Continued

Systems for Open ComputingTM

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415960-1300
TLX 37-29639

For U.S. Sales Office
locations call:
800 821-4643
In CA: 800 821-4642

European Headquarters
Sun Microsystems Europe, Inc.
Bagshot Manor, Green Lane
Bagshot, Surrey GU19 5NL
England
027651440
TLX 859017

Australia: (02) 413 2666
Canada: 416 477-6745
France: (1) 40948000

Germany: (089) 95094-0
Hong Kong: 8525-8651688
Italy: (39) 6056337
Japan: (03) 221-7021
Korea: 2-7802255
New Zealand: (04) 499 2344
Nordic Countries: +46 (0)8 7647810
PRC: 1-8315568
Singapore: 224 3388
Spain: (1) 2532003
Switzerland: (1) 8289555
The Netherlands: 033 501234

Taiwan: 2-7213257
UK: 0276 62111

Europe, Middle East, and Africa,
call European Headquarters:
027651440

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

Part Number: 800-3833-10
Revision A, of March 27,1990

A sun
• microsystems

