
Asun®
• microsystems

UNIX Interface Reference Manual

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNIXI32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.

Intel ® and Multibus® are registered trademarks of Intel Corporation.

DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

INTRO(2) SYSTEM CALLS INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.b>

DESCRIPTION
This section describes all of the system calls. A "(2V)" heading indicates that the system call performs dif­
ferently when called from programs that use the System V libraries (programs compiled using
lusr/5binlcc). On these pages, both the regular behavior and the System V behavior is described.

Most of these calls have one or more error returns. An error condition is indicated by an otherwise impos­
sible return value. This is almost always -1; the individual descriptions specify the details. Note that a
number of system calls overload the meanings of these error numbers, and that the meanings must be inter­
preted according to the type and circumstances of the call.

As with normal arguments, all return codes and values from functions are of type integer unless otherwise
noted. An error number is also made available in the external variable errno, which is not cleared on suc­
cessful calls. Thus errno should be tested only after an error has occurred.

Each system call description attempts to list all possible error numbers. The following is a complete list of
the errors and their names as given in <errno.h>.

o Error 0
Unused.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super-user. It is also returned for attempts by ordinary users to do things allowed only to
the super-user.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file should exist but doesn't, or when one of
the directories in a pathname does not exist.

3 ESRCH No such process
The process or process group whose number was given does not exist, or any such process is
already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, and the system call is not
restarted, it will appear as if the interrupted system call returned this error condition.

S EIO I/O error
Some physical I/O error occurred. This error may in some cases occur on a call following the one
to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not on-line or a disk pack is not loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with a valid magic number (see a.out(5)).

9 EBADF Bad file number

Sun Release 3.2

Either a file descriptor refers to no open file, or a read (respectively, write) request is made to a file
which is open only for writing (respectively, reading).

Last change: 16 July 1986 1

INTRO(2) SYSTEM CALLS INTRO(2)

2

10 ECHILD No children
A wait was executed by a process that had no existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the user is not allowed to create any
more processes.

12 ENOMEM Not enough memory
During an exeeve, brk, or sbrk, a program asks for more address space or swap space than the
system is able to supply, or a process size limit would be exceeded. A lack of swap space is nor­
mally a temporary condition; however, a lack of address space is not a temporary condition. The
maximum size of the text, data, and stack segments is a system parameter. Soft limits may be
increased to their corresponding hard limits.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EF AUL T Bad address
The system encountered a hardware fault in attempting to access the arguments of a system call.

15 ENOTBLK Block device required
A file which is not a block device was mentioned where a block device was required, for example,
in mount.

16 EBUSY Device busy
An attempt to mount a file system that was already mounted or an attempt was made to dismount a
file system on which there is an active file (open file, current directory, mounted-on file, or active
text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, for example, link.

18 EXDEV Cross-device link
A hard link to a file on another file system was attempted

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device (for example, an attempt to
read a write-only device) or an attempt was made to use a device not configured by the system.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example, in a patbname or as an
argument to eMir.

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINV AL Invalid argument
A system call was made with an invalid argument; for example, dismounting a non-mounted file
system, mentioning an unknown signal in sigvee or kill, reading or writing a file for which lseek
has generated a negative pointer, or some other argument inappropriate for the call. Also set by
math functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
A process tried to have more open files than the system allows a process to have. The customary
configuration limit is 30 per process.

25 ENOTTY Inappropriate ioctl for device
The code used in an ioetl call is not supported by the object that the file descriptor in the call refers
to.

Last change: 16 July 1986 Sun Release 3.2

INTRO(2) SYSTEM CALLS INTRO(2)

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing. Also an
attempt to open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes).

28 ENOSPC No space left on device
A write to an ordinary file, the creation of a directory or symbolic link, or the creation of a direc­
tory entry failed because no more disk blocks are available on the file system, or the allocation of
an inode for a newly created file failed because no more inodes are available on the file system.

29 ESPIPE Illegal seek
An lseek was issued to a socket or pipe. This error may also be issued for other non-seekable dev­
ices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a file system mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
An attempt was made to write on a pipe or socket for which there is no process to read the data.
This condition normally generates a signal; the error is returned if the signal is caught or ignored.

33 EDOM Math argument
The argument of a function in the math library (as described in section 3M) is out of the domain of
the function.

34 ERANGE Result too large
The value of a function in the math library (as described in section 3M) is unrepresentable within
machine precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on an object in non-blocking
mode (see ioctl(2».

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a conneet(2» was attempted on a non­
blocking object (see ioetl (2».

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory .

39 EDEST ADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type requested. For
example, you cannot use the ARPA Internet UDP protocol with type SOCK_STREAM.

42 ENOPROTOOPT Option not supported by protocol
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it exists.

Sun Release 3.2 Last change: 16 July 1986 3

INTRO(2) SYSTEM CALLS INTRO(2)

4

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no implementation for
it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you shouldn't
necessarily expect to be able to use PUP Internet addresses with ARPA Internet protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTA V AIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This nonnally results from the peer executing a shut­
down(2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked sufficient buffer
space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg request on a
connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down with a pre­
vious shutdown (2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a period of
time. (The timeout period is dependent on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it This usually results
from trying to connect to a service which is inactive on the foreign host

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

Last change: 16 July 1986 S un Release 3.2

INTRO(2) SYSTEM CALLS INTRO(2)

63 ENAMETOOLONG File name too long
A component of a pathname exceeded 255 characters, or an entire pathname exceeded 1023 char­
acters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
An attempt was made to remove a directory with entries other than • and •• by performing a rmdir
system call or a rename system call with that directory specified as the target directory.

67 unused

68 unused

69 EDQUOT Disc quota exceeded
A write to an ordinary file, the creation of a directory or symbolic link, or the creation of a direc­
tory entry failed because the user's quota of disk blocks was exhausted, or the allocation of an
inode for a newly created file failed because the user's quota of inodes was exhausted.

70 ESTALE Stale NFS file handle
A client referenced a an open file, when the file has been deleted.

71 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a path which already has a remotely
mounted component

72 unused

73 unused

74 unused

75 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified message
queue; see msgop(2).

76 unused

77 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal of an identifier from
the IPC system's name space (see msgctl(2), semctl(2), and shmctl(2».

DEFINITIONS
Descriptor

An integer assigned by the system when a file is referenced by open(2V), dup(2), or pipe (2) or a socket is
referenced by socket(2) or socketpair(2) which uniquely identifies an access path to that file or socket from
a given process or any of its children.

Directory
A directory is a special type of file which contains entries which are references to other files. Directory
entries are called links. By convention, a directory contains at least two links, • and •. , referred to as dot
and dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent directory.

Effective User ID, Effective Group ID, and Access Groups
Access to system resources is governed by three values: the effective user ID, the effective group ID, and
the group access list.

The effective user ID and effective group ID are initially the process's real user ID and real group ID
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possibly by
one of its ancestors) (see execve(2».

Sun Release 3.2 Last change: 16 July 1986 5

INTRO(2) SYSTEM CALLS INTRO(2)

6

The group access list is an additional set of group ID's used only in determining resource accessibility.
Access checks are performed as described below in "File Access Permissions" .

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used in determining
whether a process may perform a requested operation on the file (such as opening a file for writing).
Access permissions are established at the time a file is created. They may be changed at some later time
through the chmod (2) call.

File access is broken down according to whether a file may be: read, written, or executed. Directory files
use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes of users: the
owner of the file, those users in the file's group, anyone else. Every file has an independent set of access
permissions for each of these classes. When an access check is made, the system decides if permission
should be granted by checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

The process's effective user ID is that of the super-user.

The process's effective user ID matches the user ID of the owner of the file and the owner permis­
sions allow the access.

The process's effective user ID does not match the user ID of the owner of the file, and either the
process's effective group ID matches the group ID of the file, or the group ID of the file is in the
process's group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process match the
corresponding user ID and group ID of the file, but the permissions for "other users" allow
access.

Otherwise, permission is denied.

File Name
N ames consisting of up to 255 characters may be used to name an ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding \0 (null) and the ASCII
code for I (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, ?, [, or] as part of filenames because of the special meaning
attached to these characters by the shell. See sh(l). Although permitted, it is advisable to avoid the use of
unprintable characters in filenames.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a msgget(2) system call. Each
msqid has a message queue and a data structure associated with it. The data structure is referred to as
msqid _ds and contains the following members:

struct
ushort
ushort
ushort
ushort
time t
time t

time t

ipc yerm msg---.J>erm;
msg_qnum;
msg_qbytes;
msg_Ispid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

/* operation permission struct */
/* number of msgs on q */
/* max number of bytes on q */
/* pid of last msgsnd operation */
/* pid of last msgrcv operation */
/* last msgsnd time */
/* last msgrcv time */
/ * last change time * /
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

msgyerm is an ipc yerm structure that specifies the message operation permission (see below). This
structure includes the following members:

Last change: 16 July 1986 S un Release 3.2

INTRa (2) SYSTEM CALLS INTRO(2)

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id */
ushort mode; 1* rlw permission *1

msg_ qnum is the number of messages currently on the queue. msg_ q bytes is the maximum number of
bytes allowed on the queue. msg_lspid is the process id of the last process that performed a msgsnd opera­
tion. msg_lrpid is the process id of the last process that performed a msgrcv operation. msg_ stime is the
time of the last msgsnd operation, msg_ rtime is the time of the last msgrcv operation, and msg_ ctime is
the time of the last msgctl (2) operation that changed a member of the above structure.

Message Operation Permissions
In the msgop(2) and msgctl (2) system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as follows:

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches msgyerm.[c]uid in the data structure associated
with msqid and the appropriate bit of the "user" portion (0600) of msgyerm.mode is set.

The effective user ID of the process does not match msgyerm.[c]uid and the effective group ID
of the process matches msgyerm.[c]gid and the appropriate bit of the "group" portion (060) of
msgyerm.mode is set.

The effective user ID of the process does not match msgyerm.[c]uid and the effective group ID
of the process does not match msgyerm.[c]gid and the appropriate bit of the "other" portion
(06) of msgyerm.mode is set

Otherwise, the corresponding permissions are denied.

Parent Process ID
A new process is created by a currently active process (see fork (2». The parent process ID of a process is
the process ID of its creator.

Path Name and Path Prefix
A pathname is a null-terminated character string starting with an optional slash (/), followed by zero or
more directory names separated by slashes, optionally followed by a filename. The total length of a path­
name must be less than {MAXPATHLEN} (1024) characters.

More precisely, a pathname is a null-terminated character string constructed as follows:

<path-name>: :=<file-name> I <path-prefix><file-name> II
<path-prefix>:: = <rtprefix> I/<rtprefix>
<rtprefix>::=<dirname>/1 <rtprefix><dirname>1

where <file-name> is a string of 1 to 255 characters other than the ASCII slash and null, and <dirname> is
a string of 1 to 255 characters (other than the ASCn slash and null) that names a directory.

If a pathname begins with a slash, the search begins at the root directory. Otherwise, the search begins at
the current working directory.

A slash, by itself, names the root directory. A dot (.) names the current working directory.

A null pathname also refers to the current directory. However, this is not true of all UNIX systems. (On
such systems, accidental use of a null pathname in routines that don't check for it may corrupt the current
working directory.) For portable code, specify the current directory explicitly using".", rather than ''''.

Sun Release 3.2 Last change: 16 July 1986 7

INTRO(2) SYSTEM CALLS INTRO(2)

8

Process Group ID
Each active process is a member of a process group that is identified by a positive integer called the process
group ID. This is the process 10 of the group leader. This grouping permits the signaling of related
processes (see killpg(2» and the job control mechanisms of csh(I).

ProcessID
Each active process in the system is uniquely identified by a positive integer called a process ID. The
range of this ID is from 0 to 30000.

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished from others and
used in implementing accounting facilities. The positive integer corresponding to this distinguished group
is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the equivalent attributes of
the process which created it.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory for the
purpose of resolving path name searches. A process's root directory need not be the root directory of the
root file system.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated with it. The data structure is referred to as
semid _ ds and contains the following members:

struct
ushort
time t
time t

ipc yerm sem j>eTJIl;

sem_nsems;
sem_otime;
sem_ctime;

/* operation permission struct */
/* number of sems in set */
/* last operation time */
/* last change time */
/* Times measured in secs since *1
/* 00:00:00 GMT, Jan. 1, 1970 */

sem yerm is an ipc yerm structure that specifies the semaphore operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id *1
ushort cgid; /* creator group id *1
ushort uid; /* user id *1
ushort gid; /* group id *1
ushort mode; /* rIa permission *1

The value of sem_osems is equal to the number of semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a sem _ num. sem _num values run sequentially from 0 to the
value of sem _ osems minus 1. sem _ otime is the time of the last semop(2) operation, and sem _ ctime is the
time of the last semctl (2) operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
semzcnt;

1* semaphore value *1
/* pid of last operation *1
1* It awaiting semval > cval *1
1* It awaiting semval = 0 */

semval is a non-negative integer. sempid is equal to the process ID of the last process that performed a
semaphore operation on this semaphore. semnent is a count of the number of processes that are currently
suspended awaiting this semaphore's semval to become greater than its current value. semzeot is a count
of the number of processes that are currently suspended awaiting this semaphore's semval to become zero.

Last change: 16 July 1986 Sun Release 3.2

INTRO(2) SYSTEM CALLS INTRO(2)

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches semyerm.[c]uid in the data structure associated
with semid and the appropriate bit of the "user" portion (0600) of sem yerm.mode is set

The effective user ID of the process does not match semyerm.[c]uid and the effective group ID
of the process matches sem yerm.[c]gid and the appropriate bit of the "group" portion (060) of
semyerm.mode is set.

The effective user ID of the process does not match semyerm.[c]uid and the effective group ID
of the process does not match semyerm.[c]gid and the appropriate bit of the "other" portion
(06) of sem yerm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) system call. Each
shmid has a segment of memory (referred to as a shared memory segment) and a data structure associated
with it. The data structure is referred to as shmid _ds and contains the following members:

struct ipc yerrn shm yenn; /* operation permission struct */
int shm _segsz; /* size of segment */
ushort shm _ cpid; /* creator pid */
ushort shm Jpid; /* pid of last operation */
short shm _ nattch; /* number of current attaches */
time t shm _ atime; /* last attach time */
time t shm _ dtime; /* last detach time */
time t shm _ ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

shm yerm is an ipc yerm structure that specifies the shared memory operation permission (see below).
This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */

shm _segsz specifies the size of the shared memory segment. shm _ cpid is the process id of the process that
created the shared memory identifier. shm Jpid is the process id of the last process that perfonned a
shmop (2) operation. shm _nattch is the number of processes that currently have this segment attached.
shm _ atime is the time of the last shmat operation, shm _ dtirne is the time of the last shmdt operation, and
shm_ctime is the time of the last shmctl(2) operation that changed one of the members of the above struc­
ture.

Shared Memory Operation Permissions
In the shmop(2) and shmctl (2) system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as follows:

Sun Release 3.2 Last change: 16 July 1986 9

INTRO(2) SYSTEM CALLS INTRO(2)

00400
00200
00060
00006

Read by user
Write by user
Read, Write by group
Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shmyerm.[c]uid in the data structure associated
with shmid and the appropriate bit of the "user" portion (0600) of shm yerm.mode is set.

The effective user ID of the process does not match shmj)erm.[c]uid and the effective group ID
of the process matches shmyerm.[c]gid and the appropriate bit of the "group" portion (060) of
shm yerm.mode is set.

The effective user ID of the process does not match shm j)erm.[c]uid and the effective group ID
of the process does not match shmyerm.[c]gid and the appropriate bit of the "other" portion
(06) of shm yerm.mode is set

Otherwise, the corresponding permissions are denied.

Sockets and Address Families
A socket is an endpoint for communication between processes. Each socket has queues for sending and
receiving data.

Sockets are typed according to their communications properties. These properties include whether mes­
sages sent and received at a socket require the name of the partner, whether communication is reliable, the
format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2) for more informa­
tion about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols. Each protocol set
supports addresses of a certain format. An Address Family is the set of addresses for a specific group of
protocols. Each socket has an address chosen from the address family in which the socket was created.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler. Process 1 is the
initialization process init, and is the ancestor of every other process in the system. It is used to control the
process structure. Process 2 is the paging daemon.

Super-user
A process is recognized as a super-user process and is granted special privileges if its effective user ID is
o.

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive integer called the
tty group ID. This grouping is used to arbitrate between multiple jobs contending for the same terminal
(see csh(l), and tty (4».

SEE ALSO
intro(3), perror(3)

LIST OF SYSTEM CALLS

10

Name

exit
accept
access
acct
adjtime
async _daemon

Appears on Page

exit(2)
accept(2)
access(2)
acct(2)
adjtime(2)
nfssvc(2)

Description

terminate a process
accept a connection on a socket
determine accessibility of file
tum accounting on or off
correct the time to allow synchronization of the system (
NFS daemons

Last change: 16 July 1986 Sun Release 3.2

INTRO(2)

bind
brk
chdir
chmod
chown
chroot
close
connect
creat
dup
dup2
execve
fchmod
fchown
fcntl
flock
fork
fstat
fsync
ftruncate
getdirentries
getdomainname
getdtablesize
getegid
geteuid
getgid
getgroups
gethostid
gethostname
getitimer
getpagesize
getpeemame
getpgrp
getpid
getppid
getpriority
getrlimit
getrusage
getsockname
getsockopt
gettimeofday
getuid
ioctl
kill
killpg
link
listen
lseek
lstat
mkdir
mknod
mmap
mount

Sun Release 3.2

SYSTEM CALLS INTRO(2)

bind(2)
brk(2)
chdir(2)
chmod(2)
chown(2)
chroot(2)
close(2)
connetc(2)
creat(2)
dup(2)
dup(2)
execve(2)
chmod(2)
chown(2)
fcntl(2)
flock(2)
fork(2)
stat(2)
fsync(2)
truncate(2)
getdirentries(2)
getdomainname(2)
getdtablesize(2)
getgid(2)
getuid(2)
getgid(2)
getgroups(2)
gethostid(2)
gethostname(2)
getitimer(2)
getpagesizename(2)
getpeemame(2)
setpgrp(2V)
getpid(2)
getpid(2)
getpriority(2)
getrlimit(2)
getrusage(2)
getsockname(2)
getsockopt(2)
gettimeofday(2)
getuid(2)
ioct1(2)
kil1(2)
killpg(2)
link(2)
listen(2)
Iseek(2)
stat(2)
mkdir(2)
mknod(2)
mmap(2)
mount(2)

bind a name to a socket
change data segment size
change current working directory
change mode of file
change owner and group of a file
change root directory
delete a descriptor
initiate a connection on a socket
create a new file
duplicate a descriptor
duplicate a descriptor
execute a file
change mode of file
change owner and group of a file
file control
apply or remove an advisory lock on an open file
create a new process
get file status
synchronize a file's in-core state with that on disk
truncate a file to a specified length
gets directory entries in a filesystem independent format
get name of current domain
get descriptor table size
get group identity
get effective user identity
get group identity
get group access list
get unique identifier of current host
get name of current host
get value of interval timer
get system page size
get name of connected peer
set and/or return the process group of a process
get parent process identification
get process identification
get program scheduling priority
control maximum system resource consumption
get information about resource utilization
get socket name
get options on sockets
get date and time
get user identity
control device
send signal to a process
send signal to a process group
make a hard link to a file
listen for connections on a socket
move read/write pointer
get file status
make a directory file
make a special file
map or unmap pages of memory
mount file system

Last change: 16 July 1986 11

INTRO(2) SYSTEM CALLS INTRO(2)

rnsgctl msgctl(2) message control operations
rnsgget msgget(2) get message queue
rnsgop msgop(2) message operations
rnsgrcv msgop(2) message operations
rnsgsnd msgop(2) message operations
munmap munmap(2) map or unmap pages of memory
nfssvc nfssvc(2) NFSdaemons
open open(2V) open or create a file for reading or writing
pipe pipe(2) create an interprocess communication channel
profil profil(2) execution time profile
ptrace ptrace(2) process trace
quotactl quotactl(2) manipulate disk quotas
read read(2V) read input
readlink readlink(2) read value of a symbolic link
ready read(2V) read input
reboot reboot(2) reboot system or halt processor
recv recv(2) receive a message from a socket
recvfrom recv(2) receive a message from a socket
recvrnsg recv(2) receive a message from a socket
rename rename(2) change the name of a file
rmdir rmdir(2) remove a directory file
sbrk brk(2) change data segment size
select select(2) synchronous I/O multiplexing
semctl semctl(2) semaphore control operations
semget semget(2) get set of semaphores
semop semop(2) semaphore operations
send send(2) send a message from a socket
sendmsg send(2) send a message from a socket
sendto send(2) send a message from a socket
setdomainname getdomainname(2) set name of current domain
setgroups getgroups(2) set group access list
sethostname gethostname(2) set name of current host
setitimer getitimer(2) set value of interval timer
setpgrp setpgrp(2V) set andl or return the process group of a process
setpriority getpriority(2) set program scheduling priority
setregid setregid(2) set real and effective group IDs
setreuid setreuid(2) set real and effective user IDs
setrlimit getrlimit(2) control maximum system resource consumption
setsockopt getsockopt(2) set options on sockets
settimeofday gettimeofday(2) set date and time
shmat shmop(2) shared memory operations
shmctl shmctl(2) shared memory control operations
shmdt shmop(2) shared memory operations
shmget shmget(2) get shared memory segment
shmop shmop(2) shared memory operations
shutdown shutdown(2) shut down part of a full-duplex connection
sigblock sigblock(2) block signals
sigpause sigpause(2) atomically release blocked signals and wait for interrup'
sigsetmask sigsetmask(2) set current signal mask
sigstack sigstack(2) set andlor get signal stack context
sigvec sigvec(2) software signal facilities
socket socket(2) create an endpoint for communication
socketpair socketpair(2) create a pair of connected sockets

12 Last change: 16 July 1986 Sun Release 3.2

INTRO(2) SYSTEM CALLS INTRO(2)

stat stat(2) get file status
statfs statfs(2) get file system statistics
swapon swapon(2) add a swap device for interleaved paging/swapping
symlink syrnlink(2) make symbolic link to a file
sync sync(2) update super-block
syscall syscall(2) indirect system call
tell lseek(2) locate read/write pointer
truncate truncate(2) truncate a file to a specified length
umask umask(2) set file creation mode mask
uname uname(2V) get name of current UNIX system
unlink unlink(2) remove directory entry
unmount umount(2) remove a file system
utimes utimes(2) set file times
vadvise vadvise(2) give advice to paging system
vfork vfork(2) spawn new process in a virtual memory efficient way
vhangup vhangup(2) virtually "hangup" the current control terminal
wait wait(2) wait for process to terminate or stop
wait3 wait(2) wait for process to terminate or stop
write write(2V) write output
writev write(2V) write output

Sun Release 3.2 Last change: 16 July 1986 13

ACCEPT(2) SYSTEM CALLS ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

os = accept(s, addr, addrleo)
iot os, s;
struct sockaddr *addr;
iot *addrleo;

DESCRIPTION
The argument s is a socket that has been created with socket(2), bound to an address with bind(2), and is
listening for connections after a listen(2). Accept extracts the first connection on the queue of pending con­
nections, creates a new socket with the same properties of s and allocates a new file descriptor, ns, for the
socket. If no pending connections are present on the queue, and the socket is not marked as non-blocking,
accept blocks the caller until a connection is present If the socket is marked non-blocking and no pending
connections are present on the queue, accept returns an error as described below. The accepted socket, ns,
is used to read and write data to and from the socket which connected to this one; it is not used to accept
more connections. The original sockets remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of the addr parameter is determined by the domain in
which the communication is occurring. The addrlen is a value-result parameter; it should initially contain
the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select (2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -Ion error. If it succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket

ERRORS
The accept will fail if:

EBADF

ENOTSOCK

EOPNOTSUPP

EFAULT

EWOULDBLOCK

SEE ALSO

The descriptor is invalid.

The descriptor references a file, not a socket

The referenced socket is not of type SOCK_STREAM.

The addr parameter is not in a writable part of the user address space.

The socket is marked non-blocking and no connections are present to be accepted.

bind(2), connect(2), listen(2), select(2), socket(2)

14 Last change: 16 July 1986 Sun Release 3.2

ACCESS (2) SYSTEM CALLS ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
#include <syS/file.h>

#define R OK 4
#define W OK 2
#define X OK 1
#define F OK 0

1* test for read permission *1
1* test for write permission *1
1* test for execute (search) permission *1
1* test for presence of file *1

accessible = access(path, mode)
int accessible;
char *path;
int mode;

DESCRIPTION
path points to a path name naming a file. access checks the named file for accessibility according to mode,
which is an inclusive or of the bits R _OK, W _OK and X_OK. Specifying mode as F _OK (that is, 0) tests
whether the directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying permission, so
this call is useful to set-UID programs.

The owner of a file has permission checked with respect to the owner read, write, and execute mode bits,
members of the file's group other than the owner have permission checked with respect to the group mode
bjts, and all others have permissions checked with respect to the other mode bits.

Notice that only access bits are checked. A directory may be indicated as writable by access, but an
attempt to open it for writing will fail (although files may be created there); a file may look executable, but
execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1 value is
returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a byte with the high-order bit set.

ENAMETOOLONG

ENOENT

EACCES

ELOOP

EROFS

ETXTBSY

EACCES

EFAULT

EIO

Sun Release 3.2

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

The file named by path does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

The file named by path is on a read-only file system and write access was requested.

The file named by path is a pure procedure (shared text) file that is being executed and
write access was requested.

Permission bits of the file mode do not permit the requested access to the file named by
path.

path points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

Last change: 5 June 1986 15

ACCESS (2) SYSTEM CALLS ACCESS (2)

SEE ALSO
chmod(2), stat(2)

16 Last change: 5 June 1986 Sun Release 3.2

ACCT(2) SYSTEM CALLS ACCT(2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct(fiIe)
char *fiIe;

DESCRIPTION

NOTES

acct is used to enable or disable the process accounting. If process accounting is enabled, an accounting
record will be written on an accounting file for each process that terminates. Termination can be caused by
one of two things: an exit call or a signal; see exit(2) and sigvec(2). The effective user ID of the calling
process must be super-user to use this call.

name points to a path name naming the accounting file. The accounting file format is given in acct(5).

The accounting routine is enabled if name is non-zero and no errors occur during the system call. It is dis­
abled if name is zero and no errors occur during the system call.

If accounting is already turned on, and a successful acct call is made with a non-zero name, all subsequent
accounting records will be written to the new accounting file.

Accounting is automatically disabled when the file system the accounting file resides on runs out of space;
it is enabled when space once again becomes available.

RETURN VALUE
The value -1 is returned if an error occurs, and external variable errno is set to indicate the cause of the
error. Otherwise the value 0 is returned.

ERRORS
acct will fail if one of the following is true:

EPERM

ENOTDIR

The caller is not the super-user.

A component of the path prefix of file is not a directory.

EINV AL file contains a character with the high-order bit set.

EINV AL Support for accounting was not configured into the system.

ENAMETOOLONG

ENOENT

EACCES

EACCES

ELooP

EROFS

EFAULT

EIO

The length of a component of file exceeds 255 characters, or the length of file exceeds
1023 characters.

The named file does not exist.

Search permission is denied for a component of the path prefix of file.

The file referred to by file is not a regular file.

Too many symbolic links were encountered in translating the path name.

The named file resides on a read-only file system.

file points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

SEE ALSO

BUGS

acct(5), sa(8)

No accounting is produced for programs running when a crash occurs. In particular non-terminating pro­
grams are never accounted for.

Sun Release 3.2 Last change: 5 June 1986 17

AD1TIME(2) SYSTEM CALLS AD1TIME(2)

NAME
adjtirne - correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

adjtime(delta, olddeJta)
struct timeval *delta;
struct timeval *olddelta;

DESCRIPTION
adjtime adjusts the system's notion of the current time, as returned by gettimeofday(2), advancing or
retarding it by the amount of time specified in the struct timeval *delta.

The adjustment is effected by speeding up (if *delta is positive) or slowing down (if *delta is negative) the
system's clock by a fixed percentage, currently 10%. Thus, the time is always a monotonically increasing
function. A time correction from an earlier call to adjtime may not be finished when adjtime is called
again. If olddelta is non-zero, then the structure pointed to will contain, upon return, the number of
microseconds still to be corrected from the earlier call.

The structures pointed to by delta and olddelta are defined in <sysltime.h> as:

struct timeval {
u_Iong tv_sec;
long tv_usec;

};

1* seconds since Jan. 1, 1970 *1
1* and microseconds *1

If olddelta is a NULL pointer, the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a local area network.
Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

Only the super-user may adjust the time of day.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred, and in this
case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

EFAULT

EPERM

delta or olddelta points outside the process's allocated address space, or olddelta points
to a region of the process' allocated address space which is not writable.

The process's effective user ID is not that of the super-user.

SEE ALSO
settimeofday(2), date(1)

18 Last change: 16 July 1986 S un Release 3.2

BIND(2) SYSTEM CALLS BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
int s;
struct sockaddr *name;
int nameleo;

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in a name
space (address family) but has no name assigned. bind requests that the name pointed to by name be
assigned to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (using unlink(2».

The rules used in name binding vary between communication domains. Consult the manual entries in sec­
tion 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is further
specified in the global errno.

ERRORS
The bind call will fail if:

EBADF

ENOTSOCK

EADDRNOTA V AIL

EADDRINUSE

S is not a valid descriptor.

S is not a socket

The specified address is not available from the local machine.

The specified address is already in use.

The socket is already bound to an address. EINVAL

EACCES The requested address is protected, and the current user has inadequate permission
to access it

EF AUL T The name parameter is not in a valid part of the user address space.

The following errors are specific to binding names in the UNIX domain.

ENOTDIR A component of the path prefix of the path name in name is not a directory.

EINV AL The path name in name contains a character with the high-order bit set.

ENAMETOOLONG

ENOENT

EACCES

ELOOP

EIO

EROFS

EISDIR

Sun Release 3.2

The length of a component of the path name in name exceeds 255 characters, or the
length of the path name in name exceeds 1023 characters.

A component of the path prefix of the path name in name does not exist.

Search permission is denied for a component of the path prefix of the path name in
name.

Too many symbolic links were encountered in translating the path name in name .

An I/O error occurred while making the directory entry or allocating the inode.

The inode would reside on a read-only file system.

A null path name was specified.

Last change: 16 July 1986 19

BIND(2) SYSTEM CALLS BIND (2)

SEE ALSO
connect(2), listen(2), socket(2), getsockname(2)

20 Last change: 16 July 1986 Sun Release 3.2

BRK(2) SYSTEM CALLS BRK(2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
#include <sys/types.h>

eaddr_t brk(addr)
eaddr _ t addr;

eaddr_t sbrk(iner)
int iner;

DESCRIPTION
Brk

brk sets the system's idea of the lowest data segment location not used by the program (called the break) to
addr (rounded up to the next multiple of the system's page size). Locations greater than addr and below
the stack pointer are not in the address space and will thus cause a memory violation if accessed.

Sbrk
In the alternate function sbrk, incr more bytes are added to the program's data space and a pointer to the
start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by the program
and data storage areas. Ordinarily, therefore, only programs with growing data areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the data segment;
it will not be possible to set the break beyond the rlim _ max value returned from a call to getrlimit, e.g.
"etext + rlp~rlim_max." (See end(3) for the definition of etext.)

RETURN VALUE
Zero is returned if the brk could be set; -1 if the program requests more memory than the system limit
Sbrk normally returns the current value of the break, but -1 if it could not be set.

ERRORS
Sbrk will fail and no additional memory will be allocated if one of the following are true:

ENOMEM The limit, as set by setrlimit(2), was exceeded.

ENOMEM

ENOMEM

The maximum possible size of a data segment (compiled into the system) was exceeded.

Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distinguish this from
a failure caused by exceeding the maximum size of the data segment without consulting getrlimit.

Sun Release 3.2 Last change: 26 February 1985 21

CHDIR(2) SYSTEM CALLS CHDIR(2)

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char *path;

DESCRIPTION
path points to the path name of a directory. e hdir causes this directory to become the current working
directory, the starting point for path names not beginning with I.

In order for a directory to become the current directory, a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
eMir will fail and the current working directory will be unchanged if one or more of the following are true:

ENOTDIR

ENOTDIR

A component of the path prefix of path is not a directory.

The file named by path is not a directory.

EINV AL path contains a byte with the high-order bit set

ENAMETOOLONG

ENOENT

ELooP

EACCES
EACCES

EFAULT

EIO

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

The directory referred to by path does not exist.

Too many symbolic links were encountered in translating path.

Search permission is denied for a component of the path prefix of path.

Search permission is denied for the directory referred to by path.

path points outside the process's allocated address space.

An 110 error occurred while reading from or writing to the file system.

SEE ALSO
chroot(2)

22 Last change: 16 July 1986 Sun Release 3.2

CHMOD(2) SYSTEM CALLS CHMOD(2)

NAME
chmod, fchmod - change mode of file

SYNOPSIS
#include lusr/includelsyslstat.h

chmod(path, mode)
char .path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed to mode.
Modes are constructed by or'ing together some combination of the following:

S ISUID
S ISGID
S ISVTX
S IREAD
S IWRITE
S IEXEC

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution (sticky bit)
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

These bit patterns are defined in lusr/include/syslstat.h.

The effective user ID of the process must match the owner of the file or be super-user to change the mode
of a file.

If the effective user ID of the process is not super-user and the process attempts to set the set group ill bit
on a file owned by a group which is not in its group access list, mode bit 02000 (set group ID on execution)
is cleared

If an executable file is set up for sharing (this is the default) then mode 01000 (save text image after execu­
tion) prevents the system from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. If the effective user ID of the process is not super-user, this bit is cleared.

If a user other than the super-user writes to a file, the set user ID and set group ID bits are turned off. This
makes the system somewhat more secure by protecting set-user-ID (set-group-ID) files from remaining
set-user-ID (set-group-ID) if they are modified, at the expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
chmod will fail and the file mode will be unchanged if:

ENOIDIR A component of the path prefix of path is not a directory.

EINV AL path contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

EACCES

ELOOP

EPERM

Sun Release 3.2

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

The effective user ID does not match the owner of the file and the effective user ID is

Last change: 16 July 1986 23

CHMOD(2) SYSTEM CALLS

not the super-user.

EINVAL

EROFS

fd refers to a socket, not to a file.

The file referred to by path resides on a read-only file system.

EFAULT path points outside the process's allocated address space.

EIO An I/O error occurred while reading from or writing to the file system.

fchmod will fail if:

EBADF The descriptor is not valid.

The file referred to by fd resides on a read-only file system.

CHMOD(2)

EROFS

EPERM The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.

EIO An I/O error occurred while reading from or writing to the file system.

FILES
lusr/include/sys/stath

SEE ALSO
open(2V), chown(2), stat(2), sticky(8)

24 Last change: 16 July 1986 Sun Release 3.2

CHOWN(2) SYSTEM CALLS CHOWN(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char *path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file that is named by path or referenced by fd has its owner and group changed as specified. Only the
super-user may change the owner of the file, because if users were able to give files away, they could
defeat the file-space accounting procedures. The owner of the file may change the group to a group of
which he is a member; the super-user may change the group arbitrarily.

fchown is particularly useful when used in conjunction with the file locking primitives (seeflock(2».

If owner or group is specified as -1, the corresponding ill of the file is not changed.

If a process whose effective user ill is not super-user successfully changes the group ill of a file, the set­
user-ID and set-group-ill bits of the file mode, 04000 and 02000 respectively, will be cleared

If the final component of path is a symbolic link, the ownership and group of the symbolic link is changed,
not the ownership and group of the file or directory to which it points.

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned, and a more specific error code is placed in
the global variable errno, if an error occurs.

ERRORS
chown will fail and the file will be unchanged if:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a byte with the high-order bit set

ENAMETOOLONG

ENOENT

EACCES

ELOOP

EPERM

EROFS

EFAULT

EIO

fchown will fail if:

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group ill fo the file and is not in the process' group
access list, and the effective user ID is not the super-user.

The file referred to by path resides on a read-only file system.

path points outside the process's allocated address space.

An 110 error occurred while reading from or writing to the file system.

EBADF fd does not refer to a valid descriptor.

EINVAL

EPERM

Sun Release 3.2

fd refers to a socket, not a file.

The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group group access list, and the effective user ID is
not the super-user.

Last change: 16 July 1986 25

CHOWN(2)

EROFS

EIO

SEE ALSO

SYSTEM CALLS

The file referred to by fd resides on a read-only file system.

An I/O error occurred while reading from or writing to the file system.

chmod(2), fiock(2)

26 Last change: 16 July 1986

CHOWN(2)

Sun Release 3.2

CHROOT(2) SYSTEM CALLS CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
chroot(dirname)
char *dirname;

DESCRIPTION
dirname points to a path name naming a directory. chroot causes this directory to become the root direc­
tory, the starting point for path names beginning with I. The current working directory is unaffected by this
call. This root directory setting is inherited across execve (2) and by all children of this process created
with fork (2) calls.

The effective user ill of the process must be super-user to change the root directory.

The .• entry in the root directory is interpreted to mean the root directory itself. Thus, •. cannot be used to
access files outside the subtree rooted at the root directory.

In order for a directory to become the root directory a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate an error.

ERRORS
chroot will fail and the root directory will be unchanged if one or more of the following are true:

ENOIDIR

ENOIDIR

EINVAL

A component of the path prefix of dirname is not a directory.

The file referred to by dirname is not a directory.

dirname contains a byte with the high-order bit set.

ENAMETOOLONG

ENOENT

EACCES

EACCES

ELooP

EPERM

EFAULT

EIO

SEE ALSO
chdir(2)

Sun Release 3.2

The length of a component of dirname exceeds 255 characters, or the length of dirname
exceeds 1023 characters.

The directory referred to by dirname does not exist.

Search permission is denied for a component of the path prefix of dirname .

Search permission is denied for the directory referred to by dirname .

Too many symbolic links were encountered in translating dirname .

The effective user ID is not super-user.

dirname points outside the process's allocated address space.

An I/O error occurred while reading from or writing to the file system.

Last change: 16 July 1986 27

CLOSE (2) SYSTEM CALLS CLOSE (2)

NAME
close - delete a descriptor

SYNOPSIS
close (d)
int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the last reference
to the underlying object, then it will be deactivated. For example, on the last close of a file the current seek
pointer associated with the file is lost; on the last close of a socket(2) associated naming information and
queued data are discarded; on the last close of a file holding an advisory lock the lock is released (see
flock(2) for further information).

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the number of
active descriptors per process, close is necessary for programs that deal with many descriptors.

When a process forks (see fork (2», all descriptors for the new child process reference the same objects as
they did in the parent before the fork. If a new process is then to be run using execve (2), the process would
normally inherit these descriptors. Most of the descriptors can be rearranged with dup2 (2) or deleted with
close before the execve is attempted, but if some of these descriptors will still be needed if the execve fails,
it is necessary to arrange for them to be closed if the execve succeeds. For this reason, the call "fcnt1(d,
F _SETFD, 1)" is provided, which arranges that a descriptor will be closed after a successful execve; the
call "fcnt1(d, F _SETFD, 0)" restores the default, which is to not close the descriptor.

Close unmaps pages mapped through this file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the global
integer variable errno is set to indicate the error.

ERRORS
Close will fail if:

EBADF

EINTR

SEE ALSO

D is not an active descriptor.

A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

accept(2), llock(2), open(2V), pipe(2), socket(2), socketpair(2), execve(2), fcnt1(2), rnrnap(2), munmap(2)

28 Last change: 16 July 1986 Sun Release 3.2

CONNECT (2) SYSTEM CALLS CONNECT (2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.b>

connect(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK _ DGRAM, then this call permanently specifies the peer to
which datagrarns are to be sent; if it is of type SOCK_STREAM, then this call attempts to make a connection
to another socket The other socket is specified by name which is an address in the communications space
of the socket Each communications space interprets the name parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a more specific
error code is stored in errno.

ERRORS
The call fails if:

EBADF

ENOTSOCK

EADDRNOTA V AIL

EAFNOSUPPORT

EISCONN

ETIMEDOUT

ECONNREFUSED

ENETUNREACH

EADDRINUSE

EFAULT

EWOULDBLOCK

EINTR

s is not a valid descriptor.

s is a descriptor for a file, not a socket

The specified address is not available on this machine.

Addresses in the specified address family cannot be used with this socket

The socket is already connected.

Connection establishment timed out without establishing a connection.

The attempt to connect was forcefully rejected.

The network isn't reachable from this host.

The address is already in use.

The name parameter specifies an area outside the process address space.

The socket is non-blocking and the and the connection cannot be completed
immediately. It is possible to select(2) the socket while it is connecting by select-
ing it for writing.

A read from a slow device was interrupted before any data arrived by the delivery
of a signal.

The following errors are specific to connecting names in the UNIX domain. These errors may not apply in
future versions of the UNIX !PC domain.

ENOTDIR

EINVAL

A component of the path prefix of the path name in name is not a directory.

The path name in name contains a character with the high-order bit set.

ENAMETOOLONG

ENOENT

ENOENT

EACCES

Sun Release 3.2

The length of a component of the path name in name exceeds 255 characters, or the
length of the entire path name in name exceeds 1023 characters.

A component of the path prefix of the path name in name does not exist.

The socket referred to by the path name in name does not exist.

Search permission is denied for a component of the path prefix of the path name in

Last change: 3 April 1986 29

CONNECf(2)

ELOOP

EIO

SEE ALSO

SYSTEM CALLS CONNECf(2)

name.

Too many symbolic links were encountered in translating the path name in name .

An I/O error occurred while reading from or writing to the file system.

accept(2), select(2), socket(2), getsockname(2)

30 Last change: 3 April 1986 Sun Release 3.2

CREAT(2) SYSTEM CALLS CREAT(2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char *name;
int mode;

DESCRIPTION
This interface is made obsolete by

creat creates a new ordinary file or prepares to rewrite an existing file named by the path name pointed to
by name. If the file did not exist, it is given mode mode, as modified by the process's mode mask (see
umask(2». Also see chmod(2) for the construction of the mode argument.

If the file exists, its mode and owner remain unchanged, but it is truncated to 0 length. Otherwise, the file's
owner ID is set to the effective user ID of the process, the file's group ID is set to the group ID of the direc­
tory in which the file is created, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows:

All bits set in the process's file mode creation mask are cleared. See umask(2).

The "save text image after execution" bit of the mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for writing, even if the mode
does not permit writing. The file pointer is set to the beginning of the file. The file descriptor is set to
remain open across execve system calls. See fentZ (2).

NOTES
The mode given is arbitrary; it need not allow writing. This feature has been used in the past by programs
to construct a simple exclusive locking mechanism. It is replaced by the 0_ EXCL open mode, or flock (2)
facility.

RETURN VALUE
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descriptor which
only permits writing.

ERRORS
ereat will fail and the file will not be created or truncated if one of the following occur:

ENOTDIR A component of the path prefix of name is not a directory.

EINV AL name contains a byte with the high-order bit set.

ENAMETOOLONG

ENOENT
ELOOP

EACCES
EACCES

EACCES
EISDIR

EMFILE

ENFILE

ENOSPC

Sun Release 3.2

The length of a component of name exceeds 255 characters, or the length of name
exceeds 1023 characters.

A component of the path prefix of name does not exist

Too many symbolic links were encountered in translating name.

Search permission is denied for a component of the path prefix of name .

The file referred to by name does not exist and the directory in which it is to be created
is not writable.

The file referred to by name exists, but it is unwritable.

The file referred to by name is a directory.

There are already too many files open.

The system file table is full.

The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

Last change: 16 July 1986 31

CREAT(2) SYSTEM CALLS CREAT(2)

ENOSPC

EDQUOT

EDQUOT

EROFS

ENXIO

ETXTBSY

EIO

There are no free inodes on the file system on which the file is being created

The directory in which the entry for the new file is being placed cannot be extended
because the user's quota of disk blocks on the file system containing the directory has
been exhausted.

The user's quota of inodes on the file system on which the file is being created has been
exhausted.

The file referred to by name resides, or would reside, on a read-only file system.

The file is a character special or block special file, and the associated device does not
exist

The file is a pure procedure (shared text) file that is being executed

An I/O error occurred while making the directory entry or allocating the inode.

EFAULT name points outside the process's allocated address space.

EOPNOTSUPP The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2V), close(2), chmod(2), fcntl(2), umask(2)

32 Last change: 16 July 1986 Sun Release 3.2

DUP(2) SYSTEM CALLS DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer index in
the per-process descriptor table. The value must be less than the size of the table, which is returned by
getdtablesize(2). The new descriptor returned by the call, newd, is the lowest numbered descriptor that is
not currently in use by the process.

In the second form of the call, the value of newd desired is specified. If this descriptor is already in use, the
descriptor is first deallocated as if a close (2) call had been done first.

The new descriptor has the following in common with the original:

It refers to the same object that the old descriptor referred to.

It uses the same file pointer as the old descriptor. (i.e., both file descriptors share one file pointer).

It has the same access mode (read, write or read/write) as the old descriptor.

Thus if newd and oldd are duplicate references to an open file, read(2V), write(2V) and lseek(2) calls all
move a single pointer into the file, and append mode, non-blocking I/O and asynchronous I/O options are
shared between the references. If a separate pointer into the file is desired, a different object reference to
the file must be obtained by issuing an additional open (2V) call. The close-on-exec flag on the new file
descriptor is unset.

The new file descriptor is set to remain open across exec system calls. Seefcntl(2).

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indicates the cause of
the error.

ERRORS
dup and dup2 fail if:

EBADF Oldd or newd is not a valid active descriptor.

EMFILE Too many descriptors are active.

SEE ALSO
accept(2), open(2), close(2), fcntl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

Sun Release 3.2 Last change: 16 July 1986 33

EXECVE(2) SYSTEM CALLS EXECVE(2)

NAME
execve - execute a file

SYNOPSIS
execve(nante,argv,envp)
char *name, *argv[], *envp[];

DESCRIPTION

34

execve transforms the calling process into a new process. The new process is constructed from an ordinary
file, whose name is pointed to by path, called the new process file. This file is either an executable object
file, or a file of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (text) and initialized data pages. Additional pages may be
specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form "#! interpreter [arg]". When an interpreter file is
execve 'd, the system execve 's the specified interpreter. If the optional arg is specified, it becomes the first
argument to the interpreter, and the name of the originally execve'd file becomes the second argument;
otherwise, the name of the originally execve 'd file becomes the first argument. The original argument are
shifted over to become the subsequent arguments. The zeroth argument, normally the name of the
execve 'd file, is left unchanged.

There can be no return from a successful execve because the calling core image is lost. This is the mechan­
ism whereby different process images become active.

The argument argv is a null-terminated array of character pointers to null-terminated character strings.
These strings constitute the argument list to be made available to the new process. By convention, at least
one argument must be present in this array, and the first element of this array should be the name of the
executed program (i.e., the last component of name).

The argument envp is also a null-terminated array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command (see
environ (5V».

Descriptors open in the calling process remain open in the new process, except for those for which the
close-on-exec fiag is set (see close (2) and Jcntl (2». Descriptors which remain open are unaffected by
execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their default
values. Blocked signals remain blocked regardless of changes to the signal action. The signal stack is reset
to be undefined (see sigvec(2) for more information).

Each process has a real user ID and group ID and an effective user ID and group ID. The real ID identifies
the person using the system; the effective ID determines their access privileges. Execve changes the effec­
tive user or group ID to the owner or group of the executed file if the file has the "set-user-ID" or "set­
group-ID" modes. The real user ID and group ID are not affected.

The shared memory segments attached to the calling process will not be attached to the new process (see
shmop(2».

Profiling is disabled for the new process; see profil (2).

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)
parent process ID see getppid (2)
process group ID see getpgrp(2)
access groups see getgroups(2)
semadj values seesemop(2)
working directory see chdir(2)
root directory see chroot(2)
control terminal see tty (4)

Last change: 16 July 1986 Sun Release 3.2

EXECVE(2) SYSTEM CALLS EXECVE(2)

trace ft.ag
resource usages
interval timers
resource limits
file mode mask
signal mask

seeptrace(2) request 0)
see getrusage (2)
see getitimer(2)
see getrlimit(2)
see umask (2)
see sigvec(2), sigmask(2)

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the number of elements in argv (the "arg count") and argv is the array of character pointers
to the arguments themselves.

envp is a pointer to an array of strings that constitute the environment of the process. A pointer to this array
is also stored in the global variable "environ". Each string consists of a name, an "=", and a null­
terminated value. The array of pointers is terminated by a null pointer. The shell sh(l) passes an environ­
ment entry for each global shell variable defined when the program is called. See environ(5V) for some
conventionally used names.

RETURN VALUE
If execve returns to the calling process an error has occurred; the return value will be -1 and the global
variable errno will contain an error code.

ERRORS
execve will fail and return to the calling process if one or more of the following are true:

ENOTDIR A component of the path prefix of the new process file is not a directory.

EINV AL name contains a character with the high-order bit set

ENAMETOOLONG

ENOENT

ENOENT

ELooP
EACCES

EACCES

EACCES

ENOEXEC

ETXTBSY

ENOMEM

[E2BIG]

EFAULT

EFAULT

EIO

Sun Release 3.2

The length of a component of name exceeds 255 characters, or the length of name
exceeds 1023 characters.

One or more components of the path prefix of the new process file does not exist.

The new process file does not exist.

Too many symbolic links were encountered in translating name .

Search permission is denied for a component of the new process file's path prefix.

The new process file is not an ordinary file.

Execute permission is denied for the new process file.

The new process file has the appropriate access permission, but has an invalid magic
number in its header.

The new process file is a pure procedure (shared text) file that is currently open for writ­
ing or reading by some process.

The new process file requires more virtual memory than is allowed by the imposed max­
imum (getrlimit(2».

The number of bytes in the new process file's argument list is larger than the system­
imposed limit The limit in the system as released is 10240 bytes (NCARGS in
<syslparam.h>).

The new process file is not as long as indicated by the size values in its header.

Name, argv, or envp point to an illegal address.

An 110 error occurred while reading from the file system.

Last change: 16 July 1986 35

EXECVE(2) SYSTEM CALLS EXECVE(2)

CAVEATS
If a program is setuid to a non-super-user, but is executed when the real user ID is super-user, then the pro­
gram has some of the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(5V)

36 Last change: 16 July 1986 Sun Release 3.2

EXIT (2) SYSTEM CALLS EXIT (2)

NAME
_exit - terminate a process

SYNOPSIS
_ exit(status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for example, waiting
for output to drain; a process in this state may not be killed, as it is already dying.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD signal, then
it is notified of the calling process's termination and the low-order eight bits of status are made available to

it; see wait(2).

The parent process ID of all of the calling process's existing child processes are also set to 1. This means
that the initialization process (see intro (2» inherits each of these processes as well. Any stopped children
are restarted with a hangup signal (SIGHUP).

Most C programs will call the library routine exit(3) which performs cleanup actions in the standard I/O
library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit(3)

Sun Release 3.2 Last change: 16 July 1986 37

FCNTL(2) SYSTEM CALLS FCNTL(2)

NAME
fcntl- file control

SYNOPSIS
#include <fcntl.h>

res = fcntl(fd, cmd, arg)
int res;
int fd, cmd, arg;

DESCRIPTION

NOTES

38

F cntl performs a variety of functions on open descriptors. The argument fd is an open descriptor to be
operated on by cmd as follows:

F DUPFD

F GETFD

F SETFD

F GETFL

F SETFL

F GETLK

F SETLK

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to argo

References the same object as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both descriptors share the same file status flags).

The close-on-exec flag associated with the new descriptor is set to remain open across
execve (2) system calls.

Get the close-on-exec flag associated with the descriptor fd. If the low-order bit is 0, the
file will remain open across exec, otherwise the file will be closed upon execution of
exec.

Set the close-on-exec flag associated withfd to the low order bit of arg (0 or 1 as above).

Get descriptor status flags, see fcntl (5) for their definitions.

Set descriptor status flags, see fcntl (5) for their definitions.

Get a description of the first lock which would block the lock specified in the flock struc­
ture pointed to by arg. The information retrieved overwrites the information in the flock
structure. If no lock is found that would prevent this lock from being created, then the
structure is passed back unchanged except for the lock type which will be set to
F UNLCK.

Set or clear an advisory record lock according to the flock structure pointed to by arg.
F _ SETLK is used to establish shared (F _ RDLCK) and exclusive (F _ WRLCK) locks, or
to remove either type of lock (F _ UNLCK). If the specified lock cannot be applied,fcntl
will return with an error value of -1.

F SETLKW This cmd is the same as F _ SETLK except that if a shared or exclusive lock is blocked by
other locks, the requesting process will sleep until the lock may be applied.

F GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG signals;
process groups are returned as negative values.

F SETOWN Set the process or process group to receive SIGIO and SIGURG signals; process groups
are specified by supplying arg as negative, otherwise arg is interpreted as a process ID.

The SIGIO facilities are enabled by setting the FASYNC flag with F _SETFL.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
exclusive access (i.e., processes may still access files without using advisory locks, possibly resulting in
inconsis tencies).

Last change: 16 July 1986 Sun Release 3.2

FCNTL(2) SYSTEM CALLS FCNTL(2)

The record locking mechanism allows two types of locks: shared locks (F _ RDLCK) and exclusive locks
(F _ WRLCK). More than one process may hold a shared lock for a particular segment of a file at any given
time, but multiple exclusive, or both shared and exclusive, locks may not exist simultaneously on any seg­
ment

In order to claim a shared lock, the descriptor must have been opened with read access. The descriptor on
which an exclusive lock is being placed must have been opened with write access.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type with a cmd of F _ SETLK or F _ SETLKW; the previous lock will be released and the new lock
applied (possibly after other processes have gained and released the lock).

If the cmd is F _ SETLKW and the requested lock cannot be claimed immediately (e.g., another process
holds an exclusive lock that partially or completely overlaps the current request) then the calling process
will block until the lock may be acquired. Processes blocked awaiting a lock may be awakened by signals.

Care should be taken to avoid deadlock situations in applications in which multiple processes perform
blocking locks on a set of common records.

The record that is to be locked or unlocked is described by theflock structure, which is defined in <fcntl.h>
as follows:

struct flock {
short

};

short
long
long
short

I_type;
I_whence;
I_start;
I_len;
l'-pid;

/* F _RDLCK, F _ WRLCK, or F _ UNLCK */
/* flag to choose starting offset */
/* relative offset, in bytes */
/* length, in bytes; ° means lock to EOF */
/* returned with F GETLK */

The flock structure describes the type (I_type), starting offset (I_whence), relative offset (I_start), and size
(I_len) of the segment of the file to be affected. L _whence must be set to 0, 1, or 2 to indicate that the rela­
tive offset will be measured from the start of the file, current position, or end-of-file, respectively. The pro­
cess id field (/yid) is only used with the F _ GETLK cmd to return the description of a lock held by another
process.

Locks may start and extend beyond the current end-of-file, but may not be negative relative to the begin­
ning of the file. A lock may be set to always extend to the end-of-file by setting I_len to zero (0). If such a
lock also has 1_ whence and I_start set to zero (0), the entire file will be locked Changing or unlocking a
segment from the middle of a larger locked segment leaves two smaller segments at either end. Locking a
segment that is already locked by the calling process causes the old lock type to be removed and the new
lock type to take affect All locks associated with a file for a given process are removed when the file is
closed or the process terminates. Locks are not inherited by the child process in afork(2) system call.

In order to maintain consistency in the network case, data must not be cached on client machines. For this
reason, file buffering for an NFS file is turned off when the first lock is attempted on the file. Buffering
will remain off as long as the file is open. Programs that do I/O buffering in the user address space, how­
ever, may have inconsistent results (the standard I/O package, for instance, is a common source of unex­
pected buffering).

The advisory record locking capabilities of fcntl are implemented throughout the network by the network
lock daemon; see lockd(8C). If the file server crashes and is rebooted, the lock daemon will attempt to

recover all locks that were associated with that server. If a lock cannot be reclaimed, the process that held
the lock will be issued a SIGLOST signal.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F DUPFD
F GETFD
F GETFL

Sun Release 3.2

A new descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.

Last change: 16 July 1986 39

FCNTL(2) SYSTEM CALLS FCNTL(2)

F GETOWN Value of descriptor owner.
other Value other than -1.

Otherwise, a value of -1 is renuned and errno is set to indicate the error.

ERRORS
F cntl will fail if one or more of the following are true:

EBADF Fd is not a valid open descriptor.

EMFILE Cmd is F _DUPFD and the maximum allowed number of descriptors are currently open.

EINVAL

EFAULT

EINVAL

EBADF

EAGAIN

EINTR

ENOLCK

Cmd is F _ DUPFD and arg is negative or greater than the maximum allowable number
(see getdtablesize (2».

Cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and arg points to an invalid address.

Cmd is F _ GETLK, F _ SE1LK, or F _ SETLKW and the data arg points to is not valid.

Cmd is F _ SETLK or F _ SETLKW and the process does not have the appropriate read or
write permissions on the file.

Cmd is F _ SETLK, the lock type (/_ type) is F _RDLCK (shared lock), and the segment of
the file to be locked already has an exclusive lock held by another process. This error
will also be returned if the lock type is F _ WRLCK (exclusive lock) and another process
already has the segment locked with either a shared or exclusive lock.

Cmd is F _ SETLKW and a signal interrupted the process while it was waiting for the
lock to be granted.

Cmd is F SETLK or F SETLKW and there are no more file lock entries available. - -
SEE ALSO

BUGS

40

close(2), execve(2), getdtablesize(2), open(2V), sigvec(2), lockf(3), lockd(8C)

File locks obtained through thefcntl mechanism do not interact in any way with those acquired viaflock(2).
They do, however, work correctly with the exclusive locks claimed by lockf(3).

F _ GETLK returns F _ UNLCK if the requesting process holds the specified lock. Thus, there is no way for
a process to determine if it is still holding a specific lock after catching a SIGLOST signal.

In a network environment, the value of lyid returned by F _ GETLK is next to useless.

Last change: 16 July 1986 Sun Release 3.2

FLOCK(2) SYSTEM CALLS FLOCK(2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include <syslfile.h>

#define LOCK SH
#define LOCK EX
#define LOCK NB
#define LOCK UN

f1ock(fd, operation)
int fd, operation;

1
2
4
8

1* shared lock *1
1* exclusive lock *1
1* don't block when locking *1
1* unlock *1

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A lock is
applied by specifying an operation parameter that is the inclusive OR of LOCK_SH or LOCK_EX and,
possibly, LOCK _ NB. To unlock an existing lock, the operation should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
exclusive access (i.e., processes may still access files without using advisory locks, possibly resulting in
inconsistencies) .

The locking mechanism allows two types of locks: shared locks and exclusive locks. More than one pro­
cess may hold a shared lock for a file at any given time, but multiple exclusive, or both shared and
exclusive, locks may not exist simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type; the previous lock will be released and the new lock applied (possibly after other processes have
gained and released the lock).

Requesting a lock on an object that is already locked normally causes the caller to block until the lock may
be acquired. If LOCK _ NB is included in operation, then this will not happen; instead the call will fail and
the error EWOULDBLOCK will be returned

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or fork (2) do not
result in multiple instances of a lock, but rather multiple references to a single lock. If a process holding a
lock on a file forks and the child explicitly unlocks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned on success, -Ion error, with an error code stored in errno.

ERRORS
The flock call fails if:

EWOULDBLOCK The file is locked and the LOCK _ NB option was specified.

EBADF The argumentfd is an invalid descriptor.

EOPNOTSUPP The argumentfd refers to an object other than a file.

SEE ALSO

BUGS

open(2V), close(2), dup(2), execve(2), fcntl(2), fork(2), lockf(3)

Locks obtained through thejlock mechanism are known only within the system on which they were placed.
Thus, multiple clients may successfully acquire exclusive locks on the same remote file. If this behavior is
not explicitly desired, thefcntl(2) or lockf(3) system calls should be used instead; these make use of the ser­
vices of the network lock manager (see lockd(8C».

Sun Release 3.2 Last change: 16 July 1986 41

FORK(2) SYSTEM CALLS FORK (2)

NAME
fork - create a new process

SYNOPSIS
pid = forkO
iot pid;

DESCRIPTION
Fork creates a new process. The new process (child process) is an exact copy of the calling process except
for the following:

The child process has a unique process ID.

The child process has a different parent process ID (that is, the process ID of the parent process).

The child process has its own copy of the parent's descriptors. These descriptors reference the
same underlying objects, so that, for instance, file pointers in file objects are shared between the
child and the parent, so that an Iseek(2) on a descriptor in the child process can affect a subse­
quent read or write by the parent. This descriptor copying is also used by the shell to establish
standard input and output for newly created processes as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process ID of the
child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no child pro­
cess is created, and the global variable errno is set to indicate the error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

EAGAIN

EAGAIN

ENOMEM

SEE ALSO
execve(2), wait(2)

42

The system-imposed limit on the total number of processes under execution would be
exceeded. This limit is determined when the system is generated.

The system-imposed limit on the total number of processes under execution by a single
user would be exceeded This limit is determined when the system is generated.

There is insufficient swap space for the new process.

Last change: 16 July 1986 Sun Release 3.2

FSYNC(2) SYSTEM CALLS

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;

DESCRIPTION

FSYNC(2)

fsync moves all modified data and attributes of fd to a pennanent storage device: all in-core modified copies
of buffers for the associated file have been written to a disk when the call returns. Note that this is different
than sync(2) which schedules disk I/O for all files (as though an fsync had been done on all files) but
returns before the I/O completes.

fsync should be used by programs which require a file to be in a known state; for example, a program
which contains a simple transaction facility might use it to ensure that all modifications to a file or files
caused by a transaction were recorded on disk.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
The fsync fails if:

EBADF fd is not a valid descriptor.

EINV AL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO
sync(2), sync(8), cron(8)

BUGS
The current implementation of this call is expensive for large files.

Sun Release 3.2 Last change: 16 July 1986 43

GETDIRENTRIES (2) SYSTEM CALLS GETDIRENTRIES (2)

NAME
getdirentries - gets directory entries in a filesystem independent format

SYNOPSIS
#include <sys/dir.h>

cc = getdirentries(fd, bur, nbytes, basep)
int cc, rd;
char *bur;
int nbytes;
long *basep;

DESCRIPTION
getdirentries attempts to put directory entries from the directory referenced by the file descriptor fd into the
buffer pointed to by buj', in a filesystem independent format Up to nbytes of data will be transferred.
nbytes must be greater than or equal to the block size associated with the file, see stat(2). Sizes less than
this may cause errors on certain filesystems.

The data in the buffer is a series of direct structures each containing the following entries:

unsigned long d _fileno;
unsigned short d _reelen;
unsigned short d _ namlen;
char d_name[MAXNAMELEN + 1]; /* see below */

The d Jtleno entry is a number which is unique for each distinct file in the filesystem. Files that are linked
by hard links (see link(2» have the same d Jtleno. The d _reclen entry is the length, in bytes, of the direc­
tory record. The d _name entry contains a null terminated file name. The d _ namlen entry specifies the
length of the file name. Thus the actual size of d _name may vary from 2 to MAXNAMELEN + 1.

The structures are not necessarily tightly packed. The d _reclen entry may be used as an offset from the
beginning of a direct structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position pointer associated
withfd is set to point to the next block of entries. The pointer is not necessarily incremented by the number
of bytes returned by getdirentries. If the value returned is zero, the end of the directory has been reached
The current position pointer may be set and retrieved by Iseek(2). getdirentries writes the position of the
block read into the location pointed to by basep. It is not safe to set the current position pointer to any
value other than a value previously returned by Iseek(2) or a value previously returned in the location
pointed to by basep or zero.

RETURN VALUE
If successful, the number of bytes actually transferred is returned. Otherwise, a -1 is returned and the glo­
bal variable errno is set to indicate the error.

ERRORS
getdirentries will fail if one or more of the following are true:

EBADF fd is not a valid file descriptor open for reading.

EFAUL T Either buf or basep point outside the allocated address space.

EIO An I/O error occurred while reading from or writing to the file system.

EINTR A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

SEE ALSO
open(2V), Iseek(2)

44 Last change: 3 April 1986 Sun Release 3.2

GETDOMAINNAME (2) SYSTEM CALLS GETDOMAINNAME (2)

NAME
getdomainname, setdomainnarne - get/set name of current domain

SYNOPSIS
getdomainname(name, namelen)
char *name;
int namelen;

setdomainname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Getdomainname returns the name of the domain for the current processor, as previously set by setdomain­
name. The parameter name len specifies the size of the name array. The returned name is null-terminated
unless insufficient space is provided.

Setdomainname sets the domain of the host machine to be name, which has length name len . This call is
restricted to the super-user and is normally used only when the system is bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in common to merge.
Each network would be distinguished by having a different domain name. At the current time, only the
yellow pages service makes use of domains.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and an error
code is placed in the global location errno.

ERRORS

BUGS

The following errors may be returned by these calls:

EFAULT

EPERM

The name parameter gave an invalid address.

The caller was not the super-user. This error only applies to setdomainname.

Domain names are limited to 255 characters.

Sun Release 3.2 Last change: 19 August 1985 45

GETDT ABLESIZE (2)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nds = getdtablesizeO
int nds;

DESCRIPTION

SYSTEM CALLS GETDTABLESIZE (2)

Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots. The entries in
the descriptor table are numbered with small integers starting at O. The call getdtablesize returns the size of
this table.

SEE ALSO
c1ose(2), dup(2), open(2)

46 Last change: 16 July 1986 Sun Release 3.2

GETGID(2)

NAME
getgid, getegid - get group identity

SYNOPSIS
gid = getgidO
int gid;

egid = getegidO
int egid;

DESCRIPTION

SYSTEM CALLS

Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

GETGID(2)

The effective group ID is more transient, and determines additional access permission during execution of
a "set-group-ID" process, and it is for such processes that getgid is most useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

Sun Release 3.2 Last change: 12 February 1983 47

GETGROUPS (2) SYSTEM CALlS

NAME
getgroups, setgroups - get or set group access list

SYNOPSIS
#include <sys/param.h>

ngroups = getgroups(gidsetJen, gidset)
int ngroups, gidsetJen, *gidset;

setgroups(ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Getgroups

GETGROUPS (2)

getgroups gets the current group access list of the user process and stores it in the array gidset. The param­
eter gidsetlen indicates the number of entries that may be placed in gidset. getgroups returns the actual
number of entries placed in the gidset array. No more than NGROUPS, as defined in <sys/param.h>, will
ever be returned.

Setgroups
setgroups sets the group access list of the current user process according to the array gidset. The parameter
ngroups indicates the number of entries in the array and must be no more than NGROUPS, as defined in
<'sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
Getgroups

A return value of greater than zero indicates the number of entries placed in the gidset array. A return
value of -1 indicates that an error occurred, and the error code is stored in the global variable errno .

Setgroups
A 0 value is returned on success, -Ion error, with a error code stored in errno.

ERRORS
Either call fails if:

EFAULT The address specified for gidset is outside the process address space.

getgroup fails if:

EINV AL The argument gidsetlen is smaller than the number of groups in the group set.

setgroups fails if:

EPERM

SEE ALSO
initgroups(3)

48

The caller is not the super-user.

Last change: 16 July 1986 Sun Release 3.2

GETHOSTID (2) SYSTEM CALLS

NAME
gethostid - get unique identifier of current host

SYNOPSIS
hostid = gethostidO
long hostid;

DESCRIPTION

GETHOSTID (2)

Gethostid returns the 32-bit identifier for the current host, which should be unique across all hosts. On the
Sun, this number is taken from the CPU board's ID PROM.

SEE ALSO
hostid(l)

Sun Release 3.2 Last change: 16 July 1986 49

GETHOSTNAME(2) SYSTEM CALLS GETHOSTNAME (2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by sethostname.
The parameter namelen specifies the size of the name array. The returned name is null-terminated unless
insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This call is res­
tricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and an error
code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

EFAULT The name or name len parameter gave an invalid address.

EPERM The caller was not the super-user. Note that this error only applies to sethostname .

SEE ALSO
gethostid(2)

BUGS
Host names are limited to 31 characters.

50 Last change: 16 July 1986 Sun Release 3.2

GETITIMER (2) SYSTEM CALLS GETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include <sysltime.h>

#define ITIMER REAL
#define ITIMER VIRTUAL
#define ITIMER PROF

getitimer(which, value)
intwhich;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

o
1
2

1* real time intervals *1
1* virtual time intervals *1
1* user and system virtual time *1

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/time.h>. The getitimer call
returns the current value for the timer specified in which, while the setitimer call sets the value of a timer
(optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

If it _value is non-zero, it indicates the time to the next timer expiration. If it _interval is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. Setting it_value to 0 disables a
timer. Setting it_interval to 0 causes a timer to be disabled after its next expiration (assuming it_value is
non-zero).

Time values smaller than the resolution -jf the system clock are rounded up to this resolution.

The ITIMER _REAL timer decrements in real time. A SIGALRM signal is delivered when this timer
expires.

The ITIMER _VIRTUAL timer decrements in process virtual time. It runs only when the process is execut­
ing. A SIGVT ALRM signal is delivered when it expires.

The ITIMER _PROF timer decrements both in process virtual time and when the system is running on
behalf of the process. It is designed to be used by interpreters in statistically profiling the execution of
interpreted programs. Each time the ITIMER _PROF timer expires, the SIGPROF signal is delivered.
Because this signal may interrupt in-progress system calls, programs using this timer must be prepared to
restart interrupted system calls.

Three macros for manipulating time values are defined in <sysltime.h>. Timerclear sets a time value to
zero, timerisset tests if a time value is non-zero, and timercmp compares two time values (beware that >=
and <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a more precise
error code is placed in the global variable errno.

ERRORS
The possible errors are:

EFAULT The value or ovalue parameter specified a bad address.

Sun Release 3.2 Last change: 19 August 1985 51

GETITIMER (2) SYSTEM CALLS GETITIMER(2)

EINVAL A value parameter specified a time which was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

52 Last change: 19 August 1985 Sun Release 3.2

GETP AGESIZE (2)

NAME
getpagesize - get system page size

SYNOPSIS
pagesize = getpagesizeO
int pagesize;

DESCRIPTION

SYSTEM CALLS GETPAGESIZE (2)

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many of the
memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page size.

SEE ALSO
sbrk(2), pagesize(l)

Sun Release 3.2 Last change: 29 August 1983 53

GETPEERNAME(2) SYSTEM CALLS GETPEERNAME(2)

NAME
getpeername - get name of connected peer

SYNOPSIS
getpeername(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter should be initial­
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

ENOBUFS

EFAULT

The argument s is not a valid descriptor.

The argument s is a file, not a socket

The socket is not connected.

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process address space.

SEE ALSO
bind(2), socket(2), getsockname(2)

BUGS
N ames bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero length name.

54 Last change: 20 August 1985 Sun Release 3.2

GETPID(2) SYSTEM CALLS

NAME
getpid, getppid - get process identification

SYNOPSIS
pid = getpid()
int pid;

ppid = getppid()
int ppid;

DESCRIPTION

GETPID(2)

Getpid returns the process ID of the current process. Most often it is used to generate uniquely-named tem­
porary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

S un Release 3.2 Last change: 16 July 1986 55

GETPRIORITY (2) SYSTEM CALLS GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#include <sys/resonrce.h>

prio = getpriority(which, who)
iot prio, which, who;

setpriority(which, who, prio)
iot which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who is obtained
with the get priority call and set with the set priority call. which is one of PRIO _PROCESS, PRIO _ PGRP, or
PRIO _USER, and who is interpreted relative to which (a process identifier for PRIO _PROCESS, process
group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value of who denotes the current
process, process group, or user. prio is a value in the range -20 to 20. The default priority is 0; lower
priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the specified
processes. The setpriority call sets the priorities of all of the specified processes to the specified value. If
the specified value is less than -20, a value of -20 is used; if it is greater than 20, a value of 20 is used.
Only the super-user may lower priorities.

RETURN VALUE
Since get priority can legitimately return the value -1, it is necessary to clear the external variable errno
prior to the call, then check it afterward to determine if a -1 is an error or a legitimate value. The setprior­
ity call returns 0 if there is no error, or -1 if there is.

ERRORS
get priority and setpriority may return one of the following errors:

ESRCH

EINVAL

No process was located using the which and who values specified.

which was not one of PRIO _PROCESS, PRIO _PGRP, or PRIO _USER.

In addition to the errors indicated above, setpriority may fail with one of the following errors returned:

EPERM

EACCES

A process was located, but neither its effective nor real user ID matched the effective
user ID of the caller, and neither the effective nor the real user ID of the process execut­
ing the set priority was super-user.

The call to set priority would have changed a process' priority to a value lower than its
current value, and the effective user ID of the process executing the call was not that of
the super-user.

SEE ALSO

BUGS

56

nice(I), fork(2), renice(8)

It is not possible for the process executing setpriorityO to lower any other process down to its current
priority, without requiring super-user privileges.

Last change: 16 July 1986 Sun Release 3.2

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sysltime.h>
#include <syslresource.h>

getrlimit(resource, rip)
int resource;
struct rlimit *rlp;

setrIimit(resource, rIp)
int resource;
struct rlimit *rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it creates may be
obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT CPU the maximum amount of cpu time (in seconds) to be used by each process.

RLIMIT FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT DATA

RLIMIT STACK

RLIMIT CORE

RLIMIT RSS

the maximum size, in bytes, of the data segment for a process; this defines how far a
program may extend its break with the sbrk(2) system call.

the maximum size, in bytes, of the stack segment for a process; this defines how far a
program's stack segment may be extended automatically by the system.

the largest size, in bytes, of a core file that may be created

the maximum size, in bytes, to which a process's resident set size may grow. This
imposes a limit on the amount of physical memory to be given to a process; if
memory is tight, the system will prefer to take memory from processes that are
exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and
soft limits on a resource,

struct rlimit {
int
int

};

rlim_cur;
rlim_max;

1* current (soft) limit *1
1* hard limit *1

Only the super-user may raise the maximum limits. Other users may only alter rlim _cur within the range
from 0 to rlim _ max or (irreversibly) lower rlim _max.

An "infinite" value for a limit is defined as RLIM _INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way:
a brk or sbrk call will fail if the data space limit is reached, or the process will be killed when the stack
limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file 110 operation which would create a file that is too large will cause a signal SIGXFSZ to be gen­
erated; this nonnally terminates the process, but may be caught. When the soft CPU time limit is exceeded,
a signal SIGXCPU is sent to the offending process.

Sun Release 3.2 Last change: 16 July 1986 57

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT(2)

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A return value
of -1 indicates that an error occurred, and an error code is stored in the global location errno.

ERRORS
The possible errors are:

EFAULT

EPERM

SEE ALSO
csb(1), quota(2)

BUGS

The address specified for rip is invalid.

The limit specified to setrlimit would have raised the maximum limit value, and the
caller is not the super-user.

There should be limit and unlimit commands in sh(l) as well as in csh.

58 Last change: 16 July 1986 Sun Release 3.2

GETRUSAGE(2) SYSTEM CALLS GETRUSAGE(2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#include <sysltime.h>
#include <syslresource.h>

getrusage(who, rusage)
int who;
struct rusage *rusage;

DESCRIPTION
getrusage returns information about the resources utilized by the current process, or all its terminated child
processes. The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN. The buffer to which
rusage points will be filled in with the following structure:

struct rusage {

};

struct timeval ru _ utime;
struct timeval ru _stime;
int ru_maxrss;
int ru_ixrss;
int ru_idrss;
int ru _isrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int ru _ inblock;
int fU _ oublock;
int fU_msgsnd;
int fU_msgrcv;
int fU _ nsignals;
int fU_nvcsw;
int fU_nivcsw;

/* user time used */
/* system time used */

/* integral shared text memory size */
/* integral unshared data size */

/* integral unshared stack size */
/* page reclaims */
/* page faults */
/* swaps */
/* block input operations */
/* block output operations */
/* messages sent */
/* messages received */
/* signals received */
/* voluntary context switches */
/* involuntary context switches */

The fields are interpreted as follows:

ru utime

ru stime

ru maxrss

ru ixrss

ru idrss

ru isrss

ru minflt

Sun Release 3.2

the total amount of time spent executing in user mode. Time is given in
seconds: microseconds.

the total amount of time spent in the system executing on behalf of the process(es).
Time is given in seconds:microseconds.

the maximum resident set size utilized. Size is given in pages (the size of a page, in
bytes, is given by the getpagesize (2) system call).

an "integral" value indicating the amount of memory used by the text segment which
was also shared among other processes. This value is expressed in units of pages *
clock ticks (1 tick = 1/50 second). The value is calculated by summing the number of
shared memory pages in use each time the internal system clock ticks, and then averag­
ing over 1 second intervals.

an integral value of the amount of unshared memory residing in the data segment of a
process. The value is given in pages * clock ticks.

an integral value of the amount of unshared memory residing in the stack segment of a
process. The value is given in pages * clock ticks.

the number of page faults serviced without any 110 activity; here 110 activity is avoided
by "reclaiming" a page frame from the list of pages awaiting reallocation.

Last change: 16 July 1986 59

GETRUSAGE(2) SYSTEM CALLS GETRUSAGE (2)

ru_majflt

ru_nswap

ru inblock

ru outblock

ru_rnsgsnd

ru_rnsgrcv

ru _ nsignals

ru nvcsw

ru nivcsw

the number of page faults serviced which required I/O activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input

the number of times the file system had to perform output

the number of messages sent over sockets.

the number of messages received from sockets.

the number of signals delivered

the number of times a context switch resulted due to a process voluntarily giving up the
processor before its time slice was completed (usually to await availability of a
resource).

the number of times a context switch resulted due to a higher priority process becoming
runnable or because the current process exceeded its time slice.

NOTES
The numbers ru _inblock and ru _outblock account only for real I/O; data supplied by the caching mechan­
ism is charged only to the first process to read or write the data.

ERRORS
getrusage will fail if:

EINVAL

EFAULT

The who parameter is not a valid value.

The address specified by the rusage argument is not in a valid portion of the process's
address space.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process which has not yet terminated.

60 Last change: 16 July 1986 Sun Release 3.2

GETSOCKNAME (2) SYSTEM CALLS GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter should be initial­
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOBUFS

EFAULT

SEE ALSO

The argument s is not a valid descriptor.

The argument s is a file, not a socket

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process address space.

bind(2), socket(2), getpeername(2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero length name.

Sun Release 3.2 Last change: 24 October 1983 61

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

NAME
getsockop~ setsockopt - get and set options on sockets

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

setsockopt(s, level, optname, optval, optJen)
int s, level, optname;
char *optval;
int optleo;

DESCRIPTION
getsockopt and setsockopt manipulate options associated with a socket. Options may exist at multiple pro­
tocollevels; they are always present at the uppermost' 'socket" level.

When manipulating socket options the level at which the option resides and the name of the option must be
specified. To manipulate options at the "socket" level, level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is supplied.
For example, to indicate an option is to be interpreted by the TCP protocol, level should be set to the proto­
col number of TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested option(s) are to be returned. For getsockopt, optlen is
a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be supplied or returned,
optval may be supplied as O.

optname and any specified options are passed un interpreted to the appropriate protocol module for interpre­
tation. The include file <SJslsocket.h> contains definitions for "socket" level options; see socket (2).
Options at other protocol levels vary in format and name, consult the appropriate entries in (4P).

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOPROTOOPT

EFAULT

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The option is unknown.

The address pointed to by optval is not in a valid part of the process address space.
For getsockopt, this error may also be returned if optlen is not in a valid part of the
process address space.

SEE ALSO
socket(2), getprotoent(3N)

62 Last change: 3 April 1986 Sun Release 3.2

GETIIMEOFDA Y (2) SYSTEM CALLS GETTIMEOFDA Y (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sysltime.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is obtained with the get­
timeofday call, and set with the settimeofday call. The time is expressed in seconds and microseconds since
midnight (0 hour), January 1, 1970. The resolution of the system clock is hardware dependent, and the
time may be updated continuously or in "ticks."

The structures pointed to by tp and tzp are defined in < sys/time.h> as:

struct timeval {
long
long

};

struct timezone {

tv_sec;
tv_usec;

/* seconds since Jan. 1, 1970 */
/ * and microseconds * /

int tz _ minuteswest; /* of Greenwich */
int tz _ dsttime; /* type of dst correction to apply */

};

The timezone structure indicates the local time zone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

If tzp is a zero pointer, the timezone information is not returned or set.

Only the super-user may set the time of day or time zone.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred, and in this
case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

EFAULT

EPERM

An argument address referenced invalid memory.

A user other than the super-user attempted to set the time.

SEE ALSO
date(I), adjtime(2), ctime(3)

BUGS
Time is never correct enough to believe the microsecond values. There should a mechanism by which, at
least, local clusters of systems might synchronize their clocks to millisecond granularity.

Sun Release 3.2 Last change: 16 July 1986 63

GETUID(2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
nid = getnidO
int nid;

enid = getenidO
int enid;

DESCRIPTION

SYSTEM CALLS

Getuid returns the real user ill of the current process, geteuid the effective user ID.

GETUID(2)

The real user ill identifies the person who is logged in. The effective user ID gives the process additional
permissions during exeCution of "set-user-ill" mode processes, which use getuid to determine the real­
user-id of the process that invoked them.

SEE ALSO
getgid(2), setreuid(2)

64 Last change: 16 July 1986 Sun Release 3.2

IOCTL(2) SYSTEM CALLS IOCTL(2)

NAME
ioctl- control device

SYNOPSIS
#include <syslioctl.h>

ioctl(d, request, argp)
int d, request;
char *argp;

DESCRIPTION
foeti performs a variety of functions on open descriptors. In particular, many operating characteristics of
character special files (e.g. terminals) may be controlled with ioetl requests. The writeups of various dev­
ices in section 4 discuss how ioetl applies to them.

An ioctl request has encoded in it whether the argument is an "in" parameter or "out" parameter, and the
size of the argument argp in bytes. Macros and defines used in specifying an ioctl request are located in
the file < syslioetl.h> .

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

If no error has occurred (using a STANDARD device driver), a value of 0 is returned.

ERRORS
foeti will fail if one or more of the following are true:

D is not a valid descriptor.

D is not associated with a character special device.

EBADF

ENOTIY

ENOTIY The specified request does not apply to the kind of object that the descriptor d refer­
ences.

EINVAL Request or argp is not valid.

SEE ALSO
execve(2), fcntl(2), mtio(4), tty(4)

Sun Release 3.2 Last change: 16 July 1986 65

KILL(2) SYSTEM CALLS KILL(2)

NAME
kill- send signal to a process

SYNOPSIS
kill(pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of the signals
specified in sigvec(2), or it may be 0, in which case error checking is performed but no signal is actually
sent This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call is restricted
to the super-user. A single exception is the signal SIGCONT, which may always be sent to any descendant
of the current process.

If the process number is 0, the signal is sent to all processes in the sender's process group; this is a variant
of killpg (2).

If the process number is -1 and the user is the super-user, the signal is broadcast universally except to sys­
tem processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion, a value of ° is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

EINVAL

ESRCH

EPERM

Sig is not a valid signal number.

No process can be found corresponding to that specified by pid.

The sending process is not the super-user and its effective user id does not match the
effective user-id of the receiving process.

SEE ALSO
getpid(2), getpgrp(2V), killpg(2), sigvec(2)

66 Last change: 16 July 1986 Sun Release 3.2

KILLPG(2)

NAME
killpg - send signal to a process group

SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTION

SYSTEM CALLS

Killpg sends the signal sig to the process group pgrp. See sigvec (2) for a list of signals.

KILLPG(2)

The sending process and members of the process group must have the same effective user ID, or the sender
must have an effective user ID of super-user. As a single special case the continue signal SIGCONT may
be sent to any process that is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
KiUpg will fail and no signal will be sent if any of the following occur:

EINVAL

ESRCH

EPERM

SEE ALSO

Sig is not a valid signal number.

No process were found in the specified process group.

The sending process is not the super-user and one or more of the target processes has an
effective user ID different from that of the sending process.

kill(2), getpgrp(2V), sigvec(2)

Sun Release 3.2 Last change: 16 July 1986 67

LINK(2) SYSTEM CALLS LINK (2)

NAME
link - make a hard link to a file

SYNOPSIS
link (name 1, name2)
char * name 1, *name2;

DESCRIPTION
name} points to a path name naming an existing file. name2 points to a path name naming a new directory
entry to be created. A hard link to the first file is created; the link has the name pointed to by name2. The
file named by name} must exist

With hard links, both files must be on the same file system. Unless the caller is the super-user, the file
named by name} must not be a directory. Both the old and the new link share equal access and rights to
the underlying object

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
link will fail and no link will be created if one or more of the following are true:

ENOTDIR A component of the path prefix of name} or name2 is not a directory.

EINV AL name} or name2 contains a byte with the high-order bit set.

ENAMETOOLONG

ENOENT

EACCES

EACCES

ELOOP

ENOENT

EEXIST

EPERM

EXDEV

ENOSPC

EDQUOT

EIO

EROFS

EFAULT

The length of a component of name} or name2 exceeds 255 characters, or the length of
name} or name2 exceeds 1023 characters.

A component of the path prefix of name} or name2 does not exist.

Search permission is denied for a component of the path prefix of name} or name2.

The requested link requires writing in a directory for which write permission is denied.

Too many symbolic links were encountered in translating name} or name2.

The file referred to by name} does not exist

The link referred to by name2 does exist

The file named by name} is a directory and the effective user ID is not super-user.

The link named by name2 and the file named by name} are on different file systems.

The directory in which the entry for the new link is being placed cannot be extended
because there is no space left on the file system containing the directory.

The directory in which the entry for the new link is being placed cannot be extended
because the user's quota of disk blocks on the file system containing the directory has
been exhausted.

An I/O error occurred while reading from or writing to the file system to make the direc­
tory entry.

The requested link requires writing in a directory on a read-only file system.

One of the path names specified is outside the process's allocated address space.

SEE ALSO
symlink(2), unlink(2)

68 Last change: 16 July 1986 Sun Release 3.2

LISTEN (2) SYSTEM CALLS

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;

DESCRIPTION

USTEN(2)

To accept connections, a socket is first created with socket(2), a backlog for incoming connections is
specified with listen(2) and then the connections are accepted with accept(2). The listen call applies only
to sockets of type SOCK_STREAM or SOCK _ SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a
connection request arrives with the queue full the client will receive an error with an indication of
ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

EBADF

ENOTSOCK

EOPNOTSUPP

SEE ALSO

The argument s is not a valid descriptor.

The argument s is not a socket

The socket is not of a type that supports the operation listen.

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

Sun Release 3.2 Last change: 27 February 1985 69

LSEEK(2) SYSTEM CALLS LSEEK(2)

NAME
lseek, tell- move read/write pointer

SYNOPSIS
#include <sysifiIe.h>

pos = Iseek(d, offset, whence)
long pos;
intd;
long offset;
intwhence;

DESCRIPTION

NOTES

The descriptor d refers to a file or device open for reading and/or writing. lseek sets the file pointer of d as
follows:

If whence is L _SET, the pointer is set to offset bytes.

If whence is L _INeR, the pointer is set to its current location plus offset.

If whence is L _ XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from beginning of the file
is returned Some devices are incapable of seeking. The value of the pointer associated with such a device
is undefined

The obsolete function tell(fildes) is identical to lseek(fildes, OL,LJNCR).

Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies no physical
space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative (long) integer, the current file pointer value, is returned Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
lseek will fail and the file pointer will remain unchanged if:

EBADF Fildes is not an open file descriptor.

ESPIPE

EINVAL

SEE ALSO
dup(2), open(2V)

70

Fildes is associated with a pipe or a socket

whence is not a proper value.

Last change: 5 June 1986 Sun Release 3.2

MKDIR(2) SYSTEM CALLS MKDIR(2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char *path;
int mode;

DESCRIPTION
mkdir creates a new directory file with name path. The mode of the new file is initialized from mode. The
protection part of the mode is modified by the process's mode mask; see umask(2).

The directory's owner ID is set to the process's effective user ID. The directory's group ID is set to that of
the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set in the
process's file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is stored in
errno.

ERRORS
mkdir will fail and no directory will be created if:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a byte with the high-order bit set.

ENAMETOOLONG

ENOENT

EACCES
ELooP
EROFS

EEXIST

ENOSPC

ENOSPC

ENOSPC

EDQUOT

EDQUOT

EDQUOT

EIO
EFAULT

Sun Release 3.2

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

A component of the path prefix of path does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

The file referred to by path resides on a read-only file system.

The file referred to by path exists.

The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

The new directory cannot be created because there is no space left on the file system
which will contain the directory.

There are no free inodes on the file system on which the file is being created.

The directory in which the entry for the new file is being placed cannot be extended
because the user's quota of disk blocks on the file system containing the directory has
been exhausted.

The new directory cannot be created because the user's quota of disk blocks on the file
system which will contain the directory has been exhausted.

The user's quota of inodes on the file system on which the file is being created has been
exhausted.

An I/O error occurred while reading from or writing to the file system.

Path points outside the process's allocated address space.

Last change: 16 July 1986 71

MKDIR(2) SYSTEM CALLS MKDIR(2)

SEE ALSO
chmod(2), stat(2), rmdir(2), urnask(2)

72 Last change: 16 July 1986 Sun Release 3.2

MKNOD(2) SYSTEM CALLS MKNOD(2)

NAME
mknod - make a special file

SYNOPSIS
#include <sys/stat.h>

mknod(path, mode, dey)
char *path;
int mode, dey;

DESCRIPTION
mknod creates a new file named by the path name pointed to by path. The mode of the new file (including
file type bits) is initialized from mode. The values of the file type bits which are permitted are:

#define S IFCHR
#define S IFBLK
#define S IFREG
#define S IFIFO

0020000
0060000
0100000
0010000

1* character special *1
1* block special *1
1* regular *1
1* FIFO special *1

Values of mode other than those above are undefined and should not be used.

The protection part of the mode is modified by the process's mode mask (see umask(2».

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is set to the
group ID of the parent directory.

If mode indicates a block or character special file, dey is a configuration dependent specification of a char­
acter or block I/O device. If mode does not indicate a block special or character special device, dey is
ignored.

mknod may be invoked only by the super-user for file types other than FIFO special.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
mknod fails and the file mode remains unchanged if:

ENOIDIR A component of the path prefix of path is not a directory.

EINV AL path contains a character with the high-order bit set

ENAMETOOLONG

ENOENT

EACCES

ELOOP

EPERM

EIO

EISDIR

ENOSPC

ENOSPC

EDQUOT

Sun Release 3.2

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

A component of the path prefix of path does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

An attempt was made to create a file of type other than FIFO special and the process's
effective user ID is not super-user.

An I/O error occurred while reading from or writing to the file system.

The specified mode would have created a directory.

The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

There are no free inodes on the file system on which the file is being created.

The directory in which the entry for the new file is being placed cannot be extended

Last change: 16 July 1986 73

MKNOD(2)

EDQUOT

EROFS

EEXIST

EFAULT

SEE ALSO

SYSTEM CALLS MKNOD(2)

because the user's quota of disk blocks on the file system containing the directory has
been exhausted.

The user's quota of inodes on the file system on which the node is being created has
been exhausted.

The file referred to by path resides on a read-only file system.

The file referred to by path exists.

path points outside the process's allocated address space.

chmod(2), stat(2), umask(2)

74 Last change: 16 July 1986 Sun Release 3.2

MMAP(2) SYSTEM CALLS MMAP(2)

NAME
mmap, munmap - map or unmap pages of memory

SYNOPSIS
#include <syslmman.h>
#include <sysltypes.b>

mmap(addr, len, prot, share, fd, off)
caddr_t addr; int len, prot, share, fd; ofT_t ofT;

munmap (addr, len)
caddr_t addr; int len;

DESCRIPTION
Mmap

mmap maps pages of memory from the memory device associated with the file fd into the address space of
the calling process, one page at a time. Pages are mapped from the memory device, beginning at off, and
into the caller's address space, beginning at addr, and continuing for len bytes. fd is a file descriptor
obtained by opening the device from which to map pages. Only character-special devices are currently
supported.

share specifies whether modifications made to mapped-in copies of pages are to be kept "private" or are to
be "shared" with other references. Currently, it must be set to MAP_SHARED.

The parameter prot specifies the read/write accessibility of the mapped pages. The addr and len parame­
ters, and the sum of the current position infd and off parameters, must be multiples of the page size (found
using the getpagesize(2) call). For this reason, local memory space beginning at addr should be allocated
using valloc(2), which supplies a buffer with proper page alignment.

When mapping an area of 128K or more, the kernel releases the swap area associated with it Conse­
quently, when the pages are unmapped, they are marked invalid; the next call to valloc (2) returns the
invalid pages, and any attempt to refer to those pages results in a segmentation violation. To avoid this, do
notfree(2) such large areas; instead, call valloc(2) again without calling free (2).

All pages are automatically unmapped whenfd is closed. Specific pages can be unmapped explicitly using
munmap.

mmap can sometimes be used to install memory-mapped devices without writing a device driver. How­
ever, this does not always work. In particular, devices that are mmap'ed into user space and then accessed
by user programs will see those accesses in user mode. If the device contains registers that must be
accessed in supervisor mode, mmap cannot be used to drive it (See Writing Device Drivers for the Sun
Workstation for more information.)

Munmap
munmap unmaps previously mapped pages starting at addr and continuing for len bytes. Unmapped pages
refer, once again, to private pages within the caller's address space. Pages are initialized to zero, unless len
is greater than or equal to 128K, in which case the pages are marked invalid.

RETURN VALUE
Each call returns 0 on success, -Ion failure.

ERRORS
Both calls fail when:

EINV AL The argument address or length is not a multiple of the page size as returned by
getpagesize (2),or the length is negative.

EINV AL The entire range of pages specified in the call is not part of data space.

In addition mmap fails when:

EINV AL The specified fd does not refer to a character special device which supports mapping (e.g. a
frame buffer).

Sun Release 3.2 Last change: 11 July 1986 75

MMAP(2) SYSTEM CALLS MMAP(2)

EINV AL The specified /d is not open for reading and read access is requested, or not open for writing
when write access is requested.

EINV AL The sharing mode was not specified as MAP_SHARED.

SEE ALSO

BUGS

76

getpagesize(2), munmap(2), close(2)

The kernel may panic when more than 128k of memory has been unmapped with munmap(l) and mmap is
subsequently called with an incorrect length value.

If 128K of memory, or more, is unmapped as a result of closing/d, the resulting invalid pages cannot be
reclaimed within the life of the calling process.

Last change: 11 July 1986 Sun Release 3.2

MOUNT (2) SYSTEM CALLS MOUNT (2)

NAME
mount - mount file system

SYNOPSIS
#include <syslmount.h>

mount(type, dir, flags, data)
int type;
char *dir;
int flags;
caddr _ t data;

DESCRIPTION
mount attaches a file system to a directory. After a successful return, references to directory dir will refer
to the root directory on the newly mounted file system. dir is a pointer to a null-terminated string contain­
ing a path name. dir must exist already, and must be a directory. Its old contents are inaccessible while the
file system is mounted.

mount may be invoked only by the super-user.

The flags argument determines whether the file system can be written on, and if set-uid execution is
allowed. Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

type indicates the type of the filesystem. It must be one of the types defined in mount.h. data is a pointer
to a structure which contains the type specific arguments to mount. Below is a list of the filesystem types
supported and the type specific arguments to each:

MOUNT UFS
S truct ufs _ args {

char *fspec;
};

MOUNT NFS

1* Block special file to mount *1

#include
#include

<llfs/nfs .h>
<lletinetlin.h>

s truct nfs _ args {

};

RETURN VALUE

struct sockaddr in
tbandle t *th;
int flags;
int
int
int

wsize;
rsize;
timeo;

addr; 1 file server address *1
1* File handle to be mounted *1
/* flags */
/* write size in bytes *1
/* read size in bytes *1
/* initial timeout in.l secs *1

int retrans; /* times to retry send *1

mount returns 0 if the action occurred, and -1 if [spec is inaccessible or not an appropriate file, if name
does not exist, if fspec is already mounted, if dir is in use, or if there are already too many file systems
mounted.

ERRORS
mount fails when one of the following occurs:

EPERM

ENOTBLK

ENXIO

EBUSY

Sun Release 3.2

The caller is not the super-user.

fspec is not a block device.

The major device number of fspec is out of range (this indicates no device driver exists
for the associated hardware).

dir is not a directory, or another process currently holds a reference to it

Last change: 16 July 1986 77

MOUNT(2) SYSTEM CALLS MOUNT(2)

EBUSY

EBUSY

EBUSY

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range block
size.

Not enough memory was available to read the cylinder group information for the file
system.

EIO An I/O error occurred while reading the super block or cylinder group information.

ENOTDIR A component of the path prefix infspec or dir is not a directory.

EINV AL The path name of fspec or dir contains a character with the high-order bit set.

ENAMETOOLONG

ENOENT

ENOTDIR

EACCES

EFAULT

ELOOP
EIO

The length of a component of the path name of fspec or dir exceeds 255 characters, or
the length of the entire path name offspec or dir exceeds 1023 characters.

fspec or dir does not exist.

The file named by dir is not a directory.

Search permission is denied for a component of the path prefix of fspec or dir.

fspec or dir points outside the process's allocated address space.

Too many symbolic links were encountered in translating the path name of {spec or dir.

An I/O error occurred while reading from or writing to the file system.

SEE ALSO
unmount(2), mount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

78 Last change: 16 July 1986 Sun Release 3.2

MSGCTL(2) SYSTEM CALLS MSGCTL(2)

NAME
msgctl- message control operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslmsg.h>

iot msgctl (msqid, cmd, bur)
iot msqid, cmd;
struct msqid _ ds * bur;

DESCRIPTION
msgctl provides a variety of message control operations as specified by cmd. The following cmds are
available:

IPC SET

IPC RMID

ERRORS
msgctl will fail if:

EINVAL

EINVAL

EACCES

EPERM

EPERM

EFAULT

RETURN VALUE

Place the current value of each member of the data structure associated with msqid into
the structure pointed to by buf. The contents of this structure are defined in intro(2).
{READ}

Set the value of the following members of the data structure associated with msqid to the
corresponding value found in the structure pointed to by buf:

msgyerm.uid
msgyerm.gid
msgyerm.mode /* only low 9 bits *1
msg_qbytes

This cmd can only be executed by a process that has an effective user ID equal to either
that of super user or to the value of msgyerm.uid in the data structure associated with
msqid. Only super user can raise the value of msg_ qbytes.

Remove the message queue identifier specified by msqid from the system and destroy
the message queue and data structure associated with it This cmd can only be executed
by a process that has an effective user ID equal to either that of super user or to the value
of msgyerm.uid in the data structure associated with msqid.

msqid is not a valid message queue identifier.

cmd is not a valid command.

cmd is equal to IPC_STAT and {READ} operation permission is denied to the calling
process (see intro(2)).

cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the calling process is
not equal to that of super user and it is not equal to the value of msgyerm.uid in the
data structure associated with msqid.

cmd is equal to IPC _SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not equal to that of super
user.

Bufpoints to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2)

Sun Release 3.2 Last change: 29 April 1986 79

MSGGET(2) SYSTEM CALLS MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/msg.h>

iot msgget (key, msgflg)
key_t key;
iot msgflg;

DESCRIPTION
msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see intro(2» are created for
key if one of the following are true:

key is equal to IPC _ PRIV ATE.

key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

msgJlerm.cuid, msgJlerm.uid, msgJlerm.cgid, and msgJlerm.gid are set equal to the effec­
tive user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msgJlerm.mode are set equal to the low-order 9 bits of msgflg.

msg_qoum, msgJspid, msg_lrpid, msg_stime, and msg_rtime are set equal to O.

msg_ ctime is set equal to the current time.

msg_ qbytes is set equal to the system limit.

ERRORS
msgget will fail if one or more of the following are true:

EACCES

ENOENT

ENOSPC

EEXIST

A message queue identifier exists for key, but operation permission (see intro(2») as
specified by the low-order 9 bits of msgflg would not be granted.

A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is
"false" .

A message queue identifier is to be created but the system-imposed limit on the max­
imum number of allowed message queue identifiers system wide would be exceeded.

A message queue identifier exists for key but ((msgflg & IPC_CREAT) & (msgflg &
IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned Oth­
erwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgct1(2), msgop(2)

80 Last change: 29 April 1986 Sun Release 3.2

MSGOP(2) SYSTEM CALLS MSGOP(2)

NAME
msgop, msgsnd, msgrcv - message operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
msgsnd is used to send a message to the queue associated with the message queue identifier specified by
msqid. {WRITE} msgp points to a structure containing the message. This structure is composed of the fol­
lowing members:

long mtype; /* message type */
char mtext[]; /* message text */

mtype is a positive integer that can be used by the receiving process for message selection (see msgrcv
below). mtext is any text of length msgsz bytes. msgsz can range from 0 to a system-imposed maximum.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see intro(2».

The total number of messages on all queues system-wide is equal to the system-imposed limit.

These actions are as follows:

If (msgfig & IPC _NOW AIT) is "true", the message will not be sent and the calling process will
return immediately.

If (msgflg & IPC_NOW AIT) is "false", the calling process will suspend execution until one of the
following occurs:

The condition responsible for the suspension no longer exists, in which case the message
is sent

msqid is removed from the system (see msgctl (2». When this occurs, errno is set equal
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught In this case the message is not
sent and the calling process resumes execution in the manner prescribed in signal(2».

msgsnd will fail and no message will be sent if one or more of the following are true:

EINVAL

EACCES

EINVAL

EAGAIN

EINVAL

Sun Release 3.2

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process (see intro(2».

mtype is less than 1.

The message cannot be sent for one of the reasons cited above and (msgfig &
IPC _NOW AIT) is "true".

msgsz is less than zero or greater than the system-imposed limit.

Last change: 29 April 1986 81

MSGOP(2) SYSTEM CALLS MSGOP(2)

82

EFAULT msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid (see intro (2».

msg_qnum is incremented by 1.

msg_lspid is set equal to the process ID of the calling process.

msg_stime is set equal to the current time.

msgrcv reads a message from the queue associated with the message queue identifier specified by msqid
and places it in the structure pointed to by msgp. {READ} This structure is composed of the following
members:

long mtype; /* message type */
char mtextO; /* message text */

mtype is the received message's type as specified by the sending process. mtext is the text of the message.
msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz bytes if it is larger
than msgsz and (msgflg & MSG _NOERROR) is "true". The truncated part of the message is lost and no
indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the abso­
lute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as
follows:

If (msgflg & IPC _NOW AIT) is "true", the calling process will return immediately with a return
value of -1 and errno set to ENOMSG.

If (msgflg & IPC_NOW AIT) is "false", the calling process will suspend execution until one of the
following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs, errno is set equal to EIDRM, and
a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case a message is not
received and the calling process resumes execution in the manner prescribed in sig­
nal(2».

msgrcv will fail and no message will be received if one or more of the following are true:

EINVAL

EACCES

EINVAL

[E2BIG]

ENOMSG

EFAULT

msqid is not a valid message queue identifier.

Operation permission is denied to the calling process.

msgsz is less than 0.

mtext is greater than msgsz and (msgflg & MSG _ NO ERROR) is "false".

The queue does not contain a message of the desired type and (msgtyp &
IPC_NOWAIT) is "true".

msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid (see intro (2».

msg_qnum is decremented by 1.

Last change: 29 April 1986 Sun Release 3.2

MSGOP(2) SYSTEM CALLS

msg_lrpid is set equal to the process ID of the calling process.

msg_rtime is set equal to the current time.

RETURN VALUES

MSGOP(2)

If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to the calling process
and errno is set to EINTR. If they return due to removal of msqid from the system, a value of -1 is returned
and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of O.

msgrcv returns a value equal to the number of bytes actually placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgct1(2), msgget(2), signal(2).

Sun Release 3.2 Last change: 29 April 1986 83

NFSSYC(2)

NAME
nfssvc, async _daemon - NFS daemons

SYNOPSIS
nfssvc(sock)
int sock;

async _ daemonO

DESCRIPTION

SYSTEM CALLS NFSSYC(2)

Nfssvc starts an NFS daemon listening on socket sock. The socket must be AF _ INET, and
SOCK _ DGRAM (protocol UDP/IP). The system call will return only if the process is killed.

BUGS

Async _daemon implements the NFS daemon that handles asynchronous I/O for an NFS client The system
call never returns.

These two system calls allow kernel processes to have user context.

SEE ALSO
mountd(8)

84 Last change: 17 February 1986 Sun Release 3.2

OPEN (2V) SYSTEM CALLS OPEN(2V)

NAME
open - open or create a file for reading or writing

SYNOPSIS
#include <syS/fiIe.h>

int open(path, flags [, mode])
char *path;
int flags, mode;

DESCRIPTION
path points to the pathname of a file. open opens the named file for reading and/or writing, as specified by
the flags argument, and returns a descriptor for that file. The flags argument may indicate the file is to be
created if it does not already exist (by specifying the 0 _ CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process' umask value (see umask(2». If the
path is a null string, the kernel maps this null pathname to ., the current directory. flags values are con­
structed by ORing flags from the following list (only one of the first three flags below may be used):

o RDONLY Open for reading only.

o WRONLY Open for writing only.

o RDWR Open for reading and writing.

o NDELA Y When opening a FIFO with 0 JU)ONL Y or 0_ WRONL Y set:

If 0 NDELA Y is set:

An open for reading-only will return without delay. An open for writing-only will
return an error if no process currently has the file open for reading.

If 0 NDELA Y is clear:

An open for reading-only will block until a process opens the file for writing. An
open for writing-only will block until a process opens the file for reading.

When opening a file associated with a communication line:

If 0 NDELA Y is set:

The open will return without waiting for carrier. The first time the process
attempts to perform 110 on the open file it will block (not currently implemented).

If 0 NDELA Y is clear:

The open will block until carrier is present.

o APPEND If set, the file pointer will be set to the end of the file prior to each write.

o CREAT If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to the
effective user ID of the process, the group ID of the file is set to the group ID of the direc­
tory in which the file is created, and the low-order 12 bits of the file mode are set to the
value of mode modified as follows (see creat(2»:

o TRUNC

o EXCL

Sun Release 3.2

All bits set in the file mode creation mask of the process are cleared See
umask(2).

The "save text image after execution" bit of the mode is cleared. See chmod(2).

If the file exists, its length is truncated to 0 and the mode and owner are unchanged.

If 0 _ EXCL and 0 _ CREA T are set, open will fail if the file exists. This can be used to
implement a simple exclusive access locking mechanism. If 0_ EXCL is set and the last
component of the pathname is a symbolic link, the open will fail even if the symbolic link
points to a non-existent name.

Last change: 16 July 1986 85

OPEN (2V) SYSTEM CALLS OPEN(2V)

The file pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close (2) and fcntl (2).

There is a system enforced limit on the number of open file descriptors per process, whose value is returned
by the getdtablesize(2) call.

SYSTEM V DESCRIPTION
If the 0 _ NDELA Y flag is set on an open, that flag is set for that file descriptor (see fcntl) and may affect
subsequent reads and writes. See read(2V) and write (2V).

RETURN VALUE
The value -1 is returned if an error occurs, and external variable errno is set to indicate the cause of the
error. Otherwise a non-negative numbered file descriptor for the new open file is returned.

ERRORS

86

Open fails if:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a character with the high-order bit set

ENAMETOOLONG

ENOENT

ENOENT

ELOOP

EACCES

EACCES

EACCES

EISDIR

ENXIO

EMFILE

ENFILE

ENOSPC

ENOSPC

EDQUOT

EDQUOT

EROFS

EROFS

ENXIO

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

o CREAT is not set and the named file does not exist.

A component of the path prefix of path does not exist.

Too many symbolic links were encountered in translating path.

Search permission is denied for a component of the path prefix of path.

The required permissions (for reading and/or writing) are denied for the file named by
path.

The file referred to by path does not exist, 0_ CREAT is specified, and the directory in
which it is to be created does not permit writing.

The named file is a directory, and the arguments specify it is to be opened for writing.

0_ NDELA Y is set, the named file is a FIFO, 0_ WRONL Y is set, and no process has
the file open for reading.

The system limit for open file descriptors per process has already been reached.

The system file table is full.

The file does not exist, 0_ CREAT is specified, and the directory in which the entry for
the new file is being placed cannot be extended because there is no space left on the file
system containing the directory.

The file does not exist, 0 _ CREA T is specified, and there are no free inodes on the file
system on which the file is being created.

The file does not exist, 0 _ CREAT is specified, and the directory in which the entry for
the new file is being placed cannot be extended because the user's quota of disk blocks
on the file system containing the directory has been exhausted.

The file does not exist, 0 _ CREAT is specified, and the user's quota of inodes on the file
system on which the file is being created has been exhausted.

The named file does not exist, 0 _ CREAT is specified, and the file system on which it is
to be created is a read-only file system.

The named file resides on a read-only file system, and the file is to be opened for writing.

The file is a character special or block special file, and the associated device does not

Last change: 16 July 1986 Sun Release 3.2

OPEN (2V) SYSTEM CALLS OPEN(2V)

exist

EINTR A signal was caught during the open system call.

ETXTBSY The file is a pure procedure (shared text) file that is being executed and the open call
requests write access.

EI0 An I/O error occurred while reading from or writing to the file system.

EFAULT path points outside the process's allocated address space.

EEXIST 0_ EXCL and 0_ CREAT were both specified and the file exists.

EOPNOTSUPP An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), lseek(2), read(2V), write(2V), umask(2)

Sun Release 3.2 Last change: 16 July 1986 87

PIPE(2) SYSTEM CALLS PIPE(2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe and returns two file descriptors, fildes [0] and
fildes[I]. jildes[O] is opened for reading and jildes[l] is opened for writing. When the pipe is written
using the des criptor jildes [1] up to 4096 bytes of data are buffered before the writing process is blocked. A
read only file descriptorfildes[O] accesses the data written tofildes[1] on a first-in-first-out (FIFO) basis.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse­
quent/ork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) returns
an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in the system.

A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; -I if an error occurred

ERRORS
The pipe call will fail if:

EMFILE Too many descriptors are active.

ENFILE The system file table is full.

EFAULT The fildes buffer is in an invalid area of the process's address space.

SEE ALSO
sh(I), read(2V), write(2V), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will occur.

88 Last change: 3 April 1986 Sun Release 3.2

PROFIL(2) SYSTEM CALLS PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
profil(bufT, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buffpoints to an area of core whose length (in bytes) is given by buJsiz. Mter this call, the user's program
counter (pc) is examined each clock tick (20 milliseconds); offset is subtracted from it, and the result multi­
plied by scale. If the resulting number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: OxlOOOO gives a
1-1 mapping of pc's to words in buff; Ox8000 maps each pair of instruction words together. Ox2 maps all
instructions onto the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a buJsiz of O.
Profiling is turned off when an execve is executed, but remains on in child and parent both after a Jork.
Profiling is turned off if an update in buff would cause a memory fault

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

Sun Release 3.2 Last change: 16 March 1984 89

PTRACE(2) SYSTEM CALLS PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include <signaI.h>
#include <sys/ptrace.h>
#include <sys/wait.h>

ptrace(request, pid, addr, data [,addr2])
enum ptracereq request;
int pid;
char *addr;
int data;
char *addr2;

DESCRIPTION

90

ptrace provides a means by which a process may control the execution of another process, and examine
and change its core image. Its primary use is for the implementation of breakpoint debugging. There are
five arguments whose interpretation depends on the request argument Generally, pid is the process ill of
the traced process. A process being traced behaves normally until it encounters some signal whether inter­
nally generated like 'illegal instruction' or externally generated like 'interrupt'. See sigvec(2) for the list.
Then the traced process enters a stopped state and the tracing process is notified via wait(2). When the
traced process is in the stopped state, its core image can be examined and modified using ptrace. If
desired, another ptrace request can then cause the traced process either to terminate or to continue, possibly
ignoring the signal.

Note that several different values of the request argument can make ptrace return data values - since -1 is
a possibly legitimate value, to differentiate between -1 as a legitimate value and -1 as an error code, you
should clear the errno global error code before doing a ptrace call, and then check the value of errno after­
wards.

The value of the request argument determines the precise action of the call:

PTRACE TRACEME
This request is the only one used by the traced process; it declares that the process is to be traced by
its parent. All the other arguments are ignored. Peculiar results will ensue if the parent does not
expect to trace the child.

PTRACE_PEEKTEXT,PTRACE_PEEKDATA
The word in the traced process's address space at addr is returned. If the instruction and data spaces
are separate (for example, historically on a PDP-II), request PTRACE _PEEKTEXT indicates instruc­
tion space while PTRACE _PEEKDATA indicates data space. Otherwise, either request may be used,
with equal results. addr must be even, the child must be stopped and the input data and addr2 are
ignored.

PTRACE PEEKUSER
The word of the system's per-process data area corresponding to addr is returned. addr must be a
valid offset within the kernel's per-process data pages. This space contains the registers and other
information about the process; its layout corresponds to the user structure in the system (see
<sys/user.h>).

PTRACE_POKETEXT,PTRACE_~KEDATA

The given data is written at the word in the process's address space corresponding to addr, which
must be even. No useful value is returned. If the instruction and data spaces are separate, request
PTRACE _PEEKTEXT indicates instruction space while PTRACE _PEEKDAT A indicates data space. The
PTRACE_POKETEXT request must be used to write into a process's text space even if the instruction
and data spaces are not separate. Attempts to write in a pure text space fail if another process is exe­
cuting the same file.

PTRACE POKEUSER

Last change: 16 July 1986 Sun Release 3.2

PTRACE(2) SYSTEM CALLS PTRACE(2)

The process's system data is written, as it is read with request PTRACE_PEEKUSER. Only a few loca­
tions can be written in this way: the general registers, the floating point status and registers, and cer­
tain bits of the processor status word.

PTRACE CONT
The data argument is taken as a signal number and the child's execution continues at location addr as
if it had incurred that signal. Normally the signal number will be either 0 to indicate that the signal
that caused the stop should be ignored, or that value fetched out of the process's image indicating
which signal caused the stop. If addr is (int *)1 then execution continues from where it stopped.

PTRACE KILL
The traced process terminates, with the same consequences as exit(2).

PTRACE SINGLESTEP
Execution continues as in request PTRACE _ CONT; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is SIGTRAP. On the Sun,
the T -bit is used and just one instruction is executed. This is part of the mechanism for implementing
breakpoints.

PTRACE ATIACH
Attach to the process identified by the pid argument and begin tracing it. Process pid does not have to
be a child of the requestor, but the requestor must have permission to send process pid a signal and the
effective user IDs of the requesting process and process pid must match.

PTRACE DETACH
Detach the process being traced. Process pid is no longer being traced and continues its execution.
The data argument is taken as a signal number and the process continues at location addr
as if it had incurred that signal.

PTRACE GETREGS
The traced process's registers are returned in a structure pointed to by the addr argument. The regis­
ters include the general purpose registers, the program counter and the program status word. The
'regs' structure defined in <J1Ulchine/reg.h> describes the data that is returned.

PTRACE SETREGS
The traced process's registers are written from a structure pointed to by the addr argument. The regis­
ters include the general purpose registers, the program counter and the program status word. The
'regs' structure defined in <J1Ulchine/reg.h> describes the data that is set.

PTRACE GETFPREGS
(Sun-3 only) The traced process's FPP status is returned in a structure pointed to by the addr argu­
ment. The status includes the 68881 floating point registers and the control, status, and instruction
address registers. The 'fp _status' structure defined in <machine/reg.h> describes the data that is
returned.

PTRACE SETFPREGS
(Sun-3 only) The traced process's FPP status is written from a structure pointed to by the addr argu­
ment. The status includes the 68881 floating point registers and the control, status, and instruction
address registers. The 'fp _status' structure defined in <machine/reg.h> describes the data that is set.

PTRACE GETFPAREGS
(Sun-3 with FPA only) The traced process's FPA registers are returned in a structure pointed to by the
addr argument. The 'fpa _regs' structure defined in <machine/reg.h> describes the data that is
returned.

PTRACE SETFPAREGS
(Sun-3 with FPA only) The traced process's FPA registers are written from a structure pointed to by
the addr argument. The 'fpa_regs' structure defined in <machine/reg.h> describes the data that is
set.

PTRACE_READTEX~PTRACE_READDATA

Sun Release 3.2 Last change: 16 July 1986 91

PTRACE(2) SYSTEM CALLS PTRACE(2)

Read data from the address space of the traced process. If the instruction and data spaces are separate,
request PTRACE _ READTEXT indicates instruction space while PTRACE _ READDAT A indicates data
space. The addr argument is the address within the traced process from where the data is read, the
data argument is the number of bytes to read, and the addr2 argument is the address within the
requesting process where the data is written.

PTRACE _ WRITETEXT, PTRACE _ WRITEDATA
Write data into the address space of the traced process. If the instruction and data spaces are separate,
request PTRACE _ READTEXT indicates instruction space while PTRACE _ READDAT A indicates data
space. The addr argument is the address within the traced process where the data is written, the data
argument is the number of bytes to write, and the addr2 argument is the address within the requesting
process from where the data is read

As indicated, these calls (except for requests PTRACE _ TRACEME and PTRACE _ ATTACH) can be used only
when the subject process has stopped. The wait call is used to determine when a process stops; in such a
case the 'termination' status returned by wait has the value WSTOPPED to indicate a stop rather than
genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subsequent
execve (2) calls. If a traced process calls execve, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

On the Sun, 'word' also means a 32-bit integer.

RETURN VALUE
In general, a 0 value is returned if the call succeeds. Note that this is not always true because requests such
as PTRACE_PEEKTEXT and PTRACE_PEEKDATA return legitimate values. If the call fails then a -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
EIO

ESRCH

ESRCH

EIO

EIO

EPERM

The request code is invalid.

The specified process does not exist

The request requires the process to be one which is traced by the current process and
stopped, but it is not stopped or it is not being traced by the current process.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

92

wait(2), sigvec(2), adb(1)

ptrace is unique and arcane; it should be replaced with a special file which can be opened and read and
written. The control functions could then be implemented with ioctl (2) calls on this file. This would be
simpler to understand and have much higher perfonnance.

The requests PTRACE _ TRACEME thru PTRACE _ SINGLESTEP are standard UNIX ptrace requests. The
requests PTRACE _A IT ACH thru PTRACE _ WRITEDAT A an~ the fifth argument, addr2, are unique to Sun
UNIX.

The request PTRACE _ TRACEME should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use 'illegal instruc­
tion' signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, (see intro(2», can be used to clarify.

It should be possible to stop a process on occurrence of a system call; in this way a completely controlled
environment could be provided.

Last change: 16 July 1986 Sun Release 3.2

QUOTACTL(2) SYSTEM CALLS QUOTACfL(2)

NAME
quotactl- manipulate disk quotas

SYNOPSIS
#include <ufs/quota.h>

quotactl(cmd, special, uid, addr)
int cmd;
char *special;
int uid;
caddr _ t addr;

DESCRIPTION
The quotactl call manipulates disk quotas. The emd parameter indicates a command to be applied to the
user ID uid. Special is a pointer to a null-terminated string containing the path name of the block special
device for the file system being manipulated. The block special device must be mounted. Addr is the
address of an optional, command specific, data structure which is copied in or out of the system. The
interpretation of addr is given with each command below.

Q_QUOTAON
Turn on quotas for a file system. Addr is a pointer to a null terminated string containing the path
name of file containing the quotas for the file system. The quota file must exist; it is normally
created with the quotaeheek(8) program. This call is restricted to the super-user.

Q_QUOTAOFF
Turn off quotas for a file system. This call is restricted to the super-user.

Q_GETQUOTA
Get disk quota limits and current usage for user uid. Addr is a pointer to a struct dqblk structure
(defined in <ufslquota.h». Only the super-user may get the quotas of a user other than himself.

Q_SETQUOTA
Set disk quota limits and current usage for user uid. Addr is a pointer to a struct dqblk structure
(defined in <ufslquota.h». This call is restricted to the super-user.

Q_SETQLIM
Set disk quota limits for user uid. Addr is a pointer to a struct dqblk structure (defined in
<ufslquota.h». This call is restricted to the super-user.

Q_SYNC
Update the on-disk copy of quota usages. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
A quotactl call will fail when one of the following occurs:

EINY AL Cmd is invalid

EPERM The call is privileged and the caller was not the super-user.

EINYAL

ENOTBLK

EFAULT

EINYAL

Sun Release 3.2

The special parameter is not a mounted file system or is a mounted file system without
quotas enabled

The special parameter is not a block device.

An invalid addr is supplied; the associated structure could not be copied in or out of the
kernel.

The addr parameter is being interpreted as the path of a quota file which exists but is
either not a regular file or is not on the file system pointed to by the special parameter.

Last change: 20 August 1985 93

QUOTACTL (2) SYSTEM CALLS QUOTACTL (2)

EUSERS The quota table is full.

SEE ALSO

BUGS

94

quotaon(8), quotacheck(8)

There should be, some way to integrate this call with the resource limit interface provided by setrlimit(2)
and getrlimit(2). Incompatible with Melbourne quotas.

Last change: 20 August 1985 Sun Release 3.2

READ(2V) SYSTEM CALLS READ (2V)

NAME
read, readv - read input

SYNOPSIS
cc = read(d, bur, nbytes)
int cc, d;
char *bur;
int nbytes;

#include <sysltypes.h>
#include <sys/uio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

DESCRIPTION
read attempts to read nbytes of data from the object referenced by the descriptor d into the buffer pointed to
by buf. readv performs the same action, but scatters the input data into the iovcnt buffers specified by the
members of the iov array: iov[O], iov[I], ... , iov[iovcnt-l].

For readv, the iovec structure is defined as

struct iovec {
caddr t iov _base;
int iov _len;

};

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
readv will always fill an area completely before proceeding to the next

On objects capable of seeking, the read starts at a position given by the pointer associated with d (see
Iseek(2». Upon return from read, the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the pointer
associated with such an object is undefined.

Note: For read access to a directory, use readdir(3). function. (Directory access using readdir(3) is no
longer optional.)

Upon successful completion, read and ready retum the number of bytes actually read and placed in the
buffer. The system guarantees to read the number of bytes requested if the descriptor references a normal
file which has that many bytes left before the end-of-file, but in no other case.

If the returned value is 0, then end-of-file has been reached.

When attempting to read from a descriptor associated with an empty pipe, socket, or FIFO:

If 0 _NDELA Y is set, the read will return a -1 and errno will be set to EWOULDBLOCK.

If 0 _NDELA Y is clear, the read will block until data is written to the pipe or the file is no longer
open for writing.

When attempting to read from a descriptor associated with a tty that has no data currently available:

If 0 _NDELA Y is set, the read will return a -1 and errno will be set to EWOULDBLOCK.

If 0 _NDELA Y is clear, the read will block until data becomes available.

IfO_NDELAY is set, and less data are available than are requested by the read or readv, only the data that
are available are returned, and the count indicates how many bytes of data were actually read.

SYSTEM V DESCRIPTION
When an attempt is made to read a descriptor which is in no-delay mode, and there is no data currently
available, read will return a 0 instead of returning a -1 and setting errno to EWOULDBLOCK. Note that this

Sun Release 3.2 Last change: 25 July 1986 95

READ (2V) SYSTEM CALLS READ (2V)

is indistinguishable

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and the global vari­
able errno is set to indicate the error.

ERRORS
read and readv will fail if one or more of the following are true:

EBADF

EISDIR

EFAULT

EIO

EINTR

d is not a valid file descriptor open for reading.

d refers to a directory which is on a file system mounted using the NFS.

buf points outside the allocated address space.

An 110 error occurred while reading from or writing to the file system.

A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

EINV AL The pointer associated with d was negative.

EWOUIDBLOCK

EINVAL

EINVAL

EINVAL

EFAULT

The file was marked for non-blocking 110, and no data were ready to be read. In addi­
tion, readv may return one of the following errors:

[ovent was less than or equal to 0, or greater than 16.

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit integer.

Part of iov points outside the process's allocated address space.

SEE ALSO
dup(2), fcntl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

96 Last change: 25 July 1986 Sun Release 3.2

READLINK (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = readlink(path, bur, bursiz)
int cc;
char *path, * bur;
int bursiz;

DESCRIPTION

SYSTEM CALLS READLINK (2)

readlink places the contents of the symbolic link name in the buffer buf which has size buJsiz. The con­
tents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error occurs, placing
the error code in the global variable errno.

ERRORS
readlink will fail and the buffer will be unchanged if:

EINV AL path contained a byte with the high-order bit set.

ENAMETooLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

EACCES

ELooP

EINVAL

EIO

EFAULT

SEE ALSO

The named file does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

The named file is not a symbolic link.

An I/O error occurred while reading from or writing to the file system.

path or buf extends outside the process's allocated address space.

stat(2), Istat(2), symlink(2)

Sun Release 3.2 Last change: 5 June 1986 97

REBOOT(2) SYSTEM CALLS REBOOT (2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

reboot(howto)
inthowto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system failures.
Howto is a mask of options passed to the bootstrap program. The system call interface permits only
RB _HALT or RB _AUTOBOOT to be passed to the reboot program; the other flags are used in scripts
stored on the console storage media, or used in manual bootstrap procedures. When none of these options
(e.g. RB _AUTOBOOT) is given, the system is rebooted from file "vmunix" in the root file system of unit
o of a disk chosen in a processor specific way. An automatic consistency check of the disks is then nor­
mally petformed.

The bits of howto are:

RB HALT
the processor is simply halted; no reboot takes place. RB _HALT should be used with caution.

RB ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should be booted.
Normally, the system is booted from the file "vmunix" without asking.

RB SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then multi-user
operations. RB _SINGLE prevents the consistency check, rather simply booting the system with a
single-user shell on the console. RB _SINGLE is interpreted by the init(8) program in the newly
booted system.

Only the super-user may reboot a machine.

RETURN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the global vari­
able e"no.

ERRORS
EPERM

SEE ALSO

The caller is not the super-user.

crash(8S), halt(8), init(8), reboot(8)

98 Last change: 12 February 1983 Sun Release 3.2

RECV(2) SYSTEM CALLS RECV(2)

NAME
recv, recvfrom, recvrnsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, Hags)
int cc, s;
char *buf;
int len, Hags;

cc = recvfrom(s, buf, len, Bags, from, from len)
int cc, s;
char *buf;
int len, Hags;
struct sockaddr *from;
int *fromleo;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

DESCRIPTION
recv, recvfrom, and recvmsg are used to receive messages from a socket

The recv call may be used only on a connected socket (see connect(2», while recvfrom and recvmsg may
be used to receive data on a socket whether it is in a connected state or not

If from is non-zero, the source address of the message is filled in. fromlen is a value-result parameter, ini­
tialized to the size of the buffer associated with from, and modified on return to indicate the actual size of
the address stored there. The length of the message is returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending on the type of socket the message is received
from (see socket(2».

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is
nonblocking (see ioctl (2» in which case a cc of -1 is returned with the external variable ermo set to
EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

The flags argument to a recv call is formed by or'ing one or more of the values,

#define MSG OOB Ox 1 /* process out-of-band data */
#define MSG PEEK Ox2 /* peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parameters. This
structure has the following form, as defined in <sys/socket.h>:

struct msghdr {
caddr t

};

int
struct
int
caddr t
int

msg_name;
msg_ namelen;
iovec *msg_iov;
msgJovlen;
msg_accrights;
msg_ accrightslen;

/* optional address */
/* size of address */
/* scatter/gather array */
/* # elements in msg_iov */
/* access rights sent/received */

Here msg_name and msg_namelen specify the destination address if the socket is unconnected; msg_name
may be given as a null pointer if no names are desired or required. The msg_iov and msg_iovlen describe
the scatter gather locations, as described in read(2V). A buffer to receive any access rights sent along with

Sun Release 3.2 Last change: 16 July 1986 99

RECV(2) SYSTEM CALLS RECV(2)

the message is specified in msg_ accrights, which has length msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred

ERRORS
The calls fail if:

EBADF

ENOTSOCK

EWOULDBLOCK

EINTR

EFAULT

SEE ALSO

The argument s is an invalid descriptor.

The argument s is not a socket

The socket is marked non-blocking and the receive operation would block.

The receive was interrupted by delivery of a signal before any data was available
for the receive.

The data was specified to be received into a non-existent or protected part of the
process address space.

fcnt1(2), read(2V), send(2), select(2), getsockopt(2), socket(2)

100 Last change: 16 July 1986 Sun Release 3.2

RENAME (2) SYSTEM CALLS RENAME (2)

NAME
rename - change the name of a file

SYNOPSIS
rename(from, to)
char *from, *to;

DESCRIPTION
rename renames the link named from as to. If to exists, then it is first removed. Both from and to must be
of the same type (that is, both directories or both non-directories), and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in the middle of
the operation.

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or directory to
which it points.

CAVEAT
The system can deadlock if a loop in the file system graph is present This loop takes the form of an entry
in directory "a", say "alfoo", being a hard link to directory "b", and an entry in directory "b", say
"blbar", being a hard link to directory "a". When such a loop exists and two separate processes attempt
to perform "rename alfoo blbar" and "rename blbar a/foo", respectively, the system may deadlock
attempting to lock both directories for modification. Hard links to directories should be replaced by sym­
bolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global variable errno
indicates the reason for the failure.

ERRORS
rename will fail and neither of the argument files will be affected if any of the following are true:

ENOTDIR A component of the path prefix of either from or to is not a directory.

EINV AL Either from or to contains a byte with the high-order bit set

ENAMETOOLONG

ENOENT

ENOENT

EACCES

EACCES

ELOOP

EXDEV

ENOSPC

EDQUOT

EIO

EROFS

EFAULT

Sun Release 3.2

The length of a component of either from or to exceeds 255 characters, or the length of
eitherfrom or to exceeds 1023 characters.

A component of the path prefix of either from or to does not exist

The file named by from does not exist.

A component of the path prefix of either from or to denies search permission.

The requested rename requires writing in a directory with a mode that denies write per­
mission.

Too many symbolic links were encountered while translating either from or to.

The link named by to and the file named by from are on different logical devices (file
systems).

The directory in which the entry for the new name is being placed cannot be extended
because there is no space left on the file system containing the directory.

The directory in which the entry for the new name is being placed cannot be extended
because the user's quota of disk blocks on the file system containing the directory has
been exhausted.

An I/O error occurred while reading from or writing to the file system.

The requested rename requires writing in a directory on a read-only file system.

Either or both offrom or to point outside the process's allocated address space.

Last change: 16 July 1986 101

RENAME (2) SYSTEM CALLS RENAME (2)

EINV AL from is a parent directory of to, or an attempt is made to rename "." or " .. ".

ENOTEMPTY to is a directory and is not empty.

EBUSY to is a directory and is the mount point for a mounted file system.

SEE ALSO
open(2V)

102 Last change: 16 July 1986 Sun Release 3.2

RMDIR(2) SYSTEM CALLS RMDIR(2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char .path;

DESCRIPTION
rmdir removes a directory file whose name is given by path. The directory must not have any entries other
than "." and " .. ".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored in the global
location errno .

ERRORS
The named file is removed unless one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.

ENOTDIR The file referred to by path is not a directory.

EINV AL path contains a character with the high-order bit set

ENAMETooLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

ELooP

ENOTEMPTY

EACCES

EACCES

EBUSY

EROFS

The directory referred to by path does not exist

Too many symbolic links were encountered in translating path.

The directory referred to by path contains files other than "." and " .. " in it.

Search permission is denied for a component of the path prefix of path.

Write permission is denied for the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system. EIO An I/O
error occurred while reading from or writing to the file system.

The directory to be removed resides on a read-only file system.

EF AUL T path points outside the process's allocated address space.

mkdir(2), unlink(2)

Sun Release 3.2 Last change: 16 July 1986 103

SELECf(2) SYSTEM CALLS SELECf(2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sysltime.h>

nrds = select(width, readrds, writerds, exceptrds, timeout)
int width, *readrds, *writerds, *exceptrds;
struct timeval timeout;

DESCRIPTION
select examines the I/O descriptors specified by the bit masks readfds, writefds, and exceptfds to see if they
are ready for reading, writing, or have an exceptional condition pending, respectively. width is the number
of significant bits in each bit mask that represent a file descriptor. Typically width has the value returned
by getdtablesize (2) for the maximum number of file descriptors or is the constant 32 (number of bits in an
int). File descriptor f is represented by the bit "I«f" in the mask. select returns, in place, a mask of
those descriptors which are ready. The total number of ready descriptors is returned in nfds.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a zero pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be
non-zero, pointing to a zero-valued tirneval structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no descriptors are of interest.

RETURN VALUE
select returns the number of ready descriptors that are contained in the bit masks, or -1 if an error
occurred. If the time limit expires then select returns O.

ERRORS
An error return from select indicates:

EBADF

EINTR

EINVAL

EFAULT

One of the bit masks specified an invalid descriptor.

A signal was delivered before any of the selected events occurred or the time limit
expired.

The specified time limit is unacceptable. One of its components is negative or too large.

One of the pointers given in the call referred to a non-existent portion of the process'
address space.

SEE ALSO
accept(2), connect(2), gettimeofday(2), read(2V), write(2V), recv(2), send(2), getdtablesize(2)

BUGS
The descriptor masks are always modified on return, even if the call returns as the result of the timeout.

104 Last change: 16 July 1986 Sun Release 3.2

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

NAME
semctl- semaphore control operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslsem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

} arg;

DESCRIPTION

val;
struct semid_ds *buf;
ushort *array;

semctl provides a variety of semaphore control operations as specified by cmd.

The following cmd s are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval (see intro(2». {READ}

SETVAL Set the value of semval to arg.val. {ALTER} When this cmd is successfully exe­
cuted, the semadj value corresponding to the specified semaphore in all processes is
cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of semaphores.

GET ALL Place semvals into array pointed to by arg.array. {READ}

SETALL Set semvals according to the array pointed to by arg.array. {ALTER} When this
cmd is successfully executed the semadj values corresponding to each specified
semaphore in all processes are cleared.

The following cmds are also available:

Sun Release 3.2

IPC STAT Place the current value of each member of the data structure associated with semid
into the structure pointed to by arg.buf. The contents of this structure are defined in
intro(2). {READ}

IPC SET Set the value of the following members of the data structure associated with semid
to the corresponding value found in the structure pointed to by arg.buf:
sem yerm.uid
sem yerm.gid
semyerm.mode 1* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to
either that of super-user or to the value of sem yerm.uid in the data structure asso­
ciated with semid.

IPC RMID Remove the semaphore identifier specified by semid from the system and destroy
the set of semaphores and data structure associated with it. This cmd can only be
executed by a process that has an effective user ID equal to either that of super-user
or to the value of sem yerm.uid in the data structure associated with semid.

Last change: 29 April 1986 105

SEMCTL(2) SYSTEM CALLS

ERRORS
semctl will fail if one or more of the following are true:

semid is not a valid semaphore identifier.

semnum is less than zero or greater than sem _ nsems.

cmd is not a valid command.

Operation permission is denied to the calling process (see intro (2».

SEMCTL(2)

EINVAL

EINVAL

EINVAL

EACCES

ERANGE cmd is SETV AL or SET ALL and the value to which semval is to be set is greater than the
system imposed maximum.

EPERM cmd is equal to IPC _ RMID or IPC _SET and the effective user ID of the calling process is
not equal to that of super-user and it is not equal to the value of sem yerm.uid in the
data structure associated with semid.

EFAULT

RETURN VALUE

arg.bufpoints to an illegal address.

Upon successful completion, the value returned depends on cmd as follows:
GETV AL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT
All others

The value of semzcnt.
A value ofO.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

106 Last change: 29 April 1986 Sun Release 3.2

SEMGET(2) SYSTEM CALLS SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslsem.h>

intsemgetO(ey,nsems,senrrfig)
key_tkey;
int nsems, semfig;

DESCRIPTION
semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores (see intro(2»
are created for key if one of the following are true:

key is equal to IPC _ PRIV ATE.

key does not already have a semaphore identifier associated with it, and (semjlg & IPC _ CREAT) is
"true" .

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

Semj>erm.cuid, semj>erm.uid, semj>erm.cgid, and semyerm.gid are set equal to the effec­
tive user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem yerm.mode are set equal to the low-order 9 bits of semJlg .

sem _ nsems is set equal to the value of nsems.

sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

ERRORS
semget will fail if one or more of the following are true:

EINVAL

EACCES

EINVAL

ENOENT

ENOSPC

ENOSPC

EEXIST

RETURN VALUE

nsems is either less than or equal to zero or greater than the system-imposed limit.

A semaphore identifier exists for key, but operation permission (see intro(2» as
specified by the low-order 9 bits of semjlg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the set associated
with it is less than nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semjlg & IPC _ CREAT) is "false".

A semaphore identifier is to be created but the system-imposed limit on the maximum
number of allowed semaphore identifiers system wide would be exceeded.

A semaphore identifier is to be created but the system-imposed limit on the maximum
number of allowed semaphores system wide would be exceeded.

A semaphore identifier exists for key but ((semjlg & IPC_CREAT) and (semjlg &
IPC_EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), semctl(2), semop(2).

Sun Release 3.2 Last change: 29 April 1986 107

SEMOP(2) SYSTEM CALLS SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
intsemid;
struct sembuf **sops;
int nsops;

DESCRIPTION

108

semop is used to automatically perform an array of semaphore operations on the set of semaphores associ­
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore­
operation structures. nsops is the number of such structures in the array. The contents of each structure
includes the following members: -

short sem _ num; 1* semaphore number */
short sem_ op; /* semaphore operation *1
short sem _fig; 1* operation fiags *1

Each semaphore operation specified by sem _ op is performed on the corresponding semaphore specified by
semid and sem num.

sem _ op specifies one of three semaphore operations as follows:

If sem _op is a negative integer, one of the following will occur: {ALTER}

If semval (see intro (2» is greater than or equal to the absolute value of sem _ op, the
absolute value of sem _ op is subtracted from semval. Also, if (sem Jlg & SEM _UNDO) is
, 'true", the absolute value of sem _ op is added to the calling process's semadj value (see
exit (2» for the specified semaphore.

If semval is less than the absolute value of sem_op and (semJlg & IPC_NOWAIT) is
, 'true" , semop will return immediately.

If semval is less than the absolute value of sem _ op and (sem Jig & IPC _NOW AIT) is
"false", semop will increment the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the following conditions occur.

semval becomes greater than or equal to the absolute value of sem _ op. When this
occurs, the value of semncnt associated with the specified semaphore is decremented,
the absolute value of sem _op is subtracted from semval and, if (sem Jlg &
SEM_UNDO) is "true", the absolute value of sem_op is added to the calling process's
semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the system
(see semctl (2». When this occurs, errno is set equal to EIDRM, and a value of -1 is
returned.

Last change: 29 April 1986 Sun Release 3.2

SEMOP(2) SYSTEM CALLS SEMOP(2)

The calling process receives a signal that is to be caught. When this occurs, the value
of semncnt associated with the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to semval and, if (semJig &
SEM_UNDO) is "true", the value of sem_op is subtracted from the calling process's semadj
value for the specified semaphore. {ALTER}

If sem _op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

ERRORS

If semval is not equal to zero and (sem Jig & IPC _NOW AIT) is "true", semop will
return immediately.

If semval is not equal to zero and (sem Jig & IPC _NOW AIT) is "false", semop will
increment the semzcnt associated with the specified semaphore and suspend execution
of the calling process until one of the following occurs:

semval becomes zero, at which time the value of semzcnt associated with the specified
semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the system.
When this occurs, errno is set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value
of semzcnt associated with the specified semaphore is decremented, and the calling pro­
cess resumes execution in the manner prescribed in signal (2).

semop will fail if one or more of the following are true for any of the semaphore operations specified by
sops:

EINVAL

EFBIG

[E2BIG]

EACCES

EAGAIN

ENOSPC

EINVAL

ERANGE

EFAULT

semid is not a valid semaphore identifier.

sem _ num is less than zero or greater than or equal to the number of semaphores in the
set associated with semid.

nsops is greater than the system-imposed maximum.

Operation permission is denied to the calling process (see intro(2».

The operation would result in suspension of the calling process but (sem Jig &
IPC _NOW AIT) is "true".

The limit on the number of individual processes requesting an SEM_UNDO would be
exceeded.

The number of individual semaphores for which the calling process requests a
SEM UNDO would exceed the limit

An operation would cause a semval or semadj value to overflow the system-imposed
limit

sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by
sops is set equal to the process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -1 is returned to the calling process and errno is
set to EINTR. If it returns due to the removal of a semid from the system, a value of -1 is returned and
errno is set to EIDRM.

Sun Release 3.2 Last change: 29 April 1986 109

SEMOP(2) SYSTEM CALLS SEMOP(2)

Upon successful completion, the value of semval at the time of the call for the last operation in the array
pointed to by sops is returned Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semct1(2), semget(2).

110 Last change: 29 April 1986 Sun Release 3.2

SEND(2) SYSTEM CALLS SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, 8ags)
int cc, s;
char *msg;
int len, 8ags;

cc = sendto(s, msg, len, 8ags, to, tolen)
int cc, s;
char *msg;
int len, 8ags;
struct sockaddr *to;
int tolen;

cc = sendmsg(s, msg, 8ags)
int cc, s;
struct msgbdr msg[];
int 8ags;

DESCRIPTION
S is a socket created with socket(2). Send, sendto, and sendmsg are used to transmit a message to another
socket. Send may be used only when the socket is in a connected state, while sendto and sendmsg may be
used at any time.

The address of the target is given by to with tolen specifying its size. The length of the message is given by
len. If the message is too long to pass atomically through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some locally detected
errors.

If no messages space is available at the socket to hold the message to be transmitted, then send normally
blocks, unless the socket has been placed in non-blocking i/o mode. The select(2) call may be used to
determine when it is possible to send more data.

The flags parameter may be set to MSG _ OOB to send "out-of-band" data on sockets which support this
notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

ERRORS
EBADF

ENOTSOCK

EFAULT

EMSGSIZE

EWOULDBLOCK

SEE ALSO
recv(2), socket(2)

Sun Release 3.2

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was specified for a parameter.

The socket requires that message be sent atomically, and the size of the message
to be sent made this impossible.

The socket is marked non-blocking and the requested operation would block.

Last change: 17 February 1986 111

SETPGRP (2V) SYSTEM CALLS SETPGRP(2V)

NAME
setpgrp, getpgrp - set and/or return the process group of a process

SYNOPSIS
se~grp(pid,pgrp)

pgrp = ge~grp(pid)
int pgrp;
int pid;
int pid, pgrp;

SYSTEM V SYNOPSIS
int setpgrp ()

DESCRIPTION
Setpgrp

setpgrp sets the process group of the specified process, (Pid) to the specified pgrp. If pid is zero, then the
call applies to the current (calling) process.

If the effective user ID is not that of the super-user, then the process to be affected must have the same
effective user ID as that of the caller or be a descendant of that process.

Getpgrp
getpgrp returns the process group of the indicated process. If pid is zero, then the call applies to the calling
process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input.
Processes that have the same process group as the terminal run in the foreground and may read from the
terminal, while others block with a signal when they attempt to read.

This call is thus used by programs such as csh(l) to create process groups in implementing job control.
The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the process group of the con­
trol terminal.

RETURN VALUE
setpgrp returns 0 when the operation was successful. If the request failed, -1 is returned and the global
variable errno indicates the reason.

ERRORS
setpgrp fails, and the process group is not altered when one of the following occurs:

ESRCH

EPERM

The requested process does not exist.

The effective user ID of the requested process is different from that of the caller and the
process is not a descendent of the calling process.

SYSTEM V DESCRIPTION
In the System V implementation, setpgrp takes no parameters. It sets the process group of the calling pro­
cess to match its process ID, and returns the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), getuid(2), intro(2), kill(2), signal(2), tty(4)

112 Last change: 1 0 June 1986 Sun Release 3.2

SETREGID (2) SYSTEM CALLS SETREGID (2)

NAME
setregid - set real and effective group IDs

SYNOPSIS
int setregid(rgid, egid)
int rgid, egid;

DESCRIPTION
setregid is used to set the real and effective group IDs of the calling process. If rgid is -1, the real group ID
is not changed; if egid is -1, the effective group ID is not changed. The real and effective group IDs may
be set to different values in the same call.

If the effective user ID of the calling process is super-user, the real group ID and the effective group ID can
be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real group ID can be set to the
saved set-group ID from execve (2), or the effective group ID can either be set to the saved set-group ID or
the real group ID. Note that if a set-OlD process sets its effective group ID to its real group ID, it can still
set its effective group ID back to the saved set-group ID.

In either case, if the real group ID is changed to a particular value (i.e., if rgid is not -1), the saved set­
group ID is set to that same value.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set
to indicate the error.

ERRORS
Setregid will fail and neither of the group IDs will be changed if:

EPERM The calling process' effective user ID is not the super-user and a change other than
changing the real group ID to the saved set-group ID, or changing the effective group ID
to the real group-id or the saved set-group ID, was specified.

SEE ALSO
getgid(2), execve(2), setreuid(2), setgid(3)

Sun Release 3.2 Last change: 30 April 1986 113

SETREUID (2) SYSTEM CALLS SETREUID(2)

NAME
setreuid - set real and effective user IDs

SYNOPSIS
int setreuid(rnid, enid)
int ruid, enid;

DESCRIPTION
setreuid is used to set the real and effective user IDs of the calling process. If ruid is -1, the real user ID is
not changed; if euid is -1, the effective user ID is not changed. The real and effective user IDs may be set
to different values in the same call.

If the effective user ID of the calling process is super-user, the real user ID and the effective user ID can be
set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user ID can be set to the effec­
tive user ID, or the effective user ID can either be set to the saved set-user ID from execve (2) or the real
user ID. Note that if a set-UID process sets its effective user ID to its real user ID, it can still set its effec­
tive user ID back to the saved set-user ID.

In either case, if the real user ID is changed to a particular value (Le., if ruid is not -1), the saved set-user
ID is set to that same value.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
Setreuid will fail and neither of the user IDs will be changed if:

EPERM The calling process' effective user ID is not the super-user and a change other than
changing the real user ID to the effective user ID, or changing the effective user ID to the
real user-id or the saved set-user ID, was specified.

SEE ALSO
getuid(2), execve(2), setregid(2), setuid(3)

114 Last change: 12 February 1983 Sun Release 3.2

SHMCTL(2) SYSTEM CALLS SHMCTL(2)

NAME
shmctl- shared memory control operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslshm.h>

int shmctJ (shmid, cmd, buC)
int shmid, cmd;
struct shmid _ ds * bur;

DESCRIPTION
shmctl provides a variety of shared memory control operations as specified by cmd. The following cmds
are available:

ERRORS

IPC STAT Place the current value of each member of the data structure associated with shmid
into the structure pointed to by buf. The contents of this structure are defined in
intro(2). {READ}

IPC SET Set the value of the following members of the data structure associated with shmid to
the corresponding value found in the structure pointed to by buf:
shm yerrn.uid
shm yerrn.gid
shm yerrn.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to
either that of super-user or to the value of shmyerm.uid in the data structure asso­
ciated with shmid.

IPC RMID Remove the shared memory identifier specified by shmid from the system and des­
troy the shared memory segment and data structure associated with it. This cmd can
only be executed by a process that has an effective user ID equal to either that of
super-user or to the value of shm yerm.uid in the data structure associated with
shmid.

shmctl will fail if one or more of the following are true:

EINVAL

EINVAL

EACCES

EPERM

EFAULT

RETURN VALUE

Shmid is not a valid shared memory identifier.

cmd is not a valid command.

cmd is equal to IPC_STAT and {READ} operation permission is denied to the calling
process (see intro(2».

cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is
not equal to that of super-user and it is not equal to the value of shm yerm.uid in the
data structure associated with shmid.

bufpoints to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO
intro(2), shmget(2), shmop(2).

Sun Release 3.2 Last change: 29 April 1986 115

SHMGET(2) SYSTEM CALLS SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <syS/ipc.h>
#include <sys/shm.h>

iot shmget (key, size, shmflg)
key_t key;
iot size, shmflg;

DESCRIPTION
shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size bytes
(see intro(2» are created for key if one of the following are true:

key is equal to IPC _ PRIV ATE.

key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:

shm yerm.euid, shm yerm.uid, shm yerm.egid, and shm yerm.gid are set equal to the effec­
tive user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm yerm.mode are set equal to the low-order 9 bits of shmflg.
shm _ segsz is set equal to the value of size.

shm_lpid, shm_natteb, shm_atime, and shm_dtime are set equal to O.

shm _ ctime is set equal to the current time.

ERRORS

116

shmget will fail if one or more of the following are true:

EINVAL

EACCES

EINVAL

ENOENT

ENOSPC

ENOMEM

EEXIST

size is less than the system-imposed minimum or greater than the system-imposed max­
imum.

A shared memory identifier exists for key but operation permission (see intro(2» as
specified by the low-order 9 bits of shmflg would not be granted.

A shared memory identifier exists for key but the size of the segment associated with it is
less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmflg & IPC _ CREAT) is
"false" .

A shared memory identifier is to be created but the system-imposed limit on the max­
imum number of allowed shared memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory segment are to be created but
the amount of available physical memory is not sufficient to fill the request

A shared memory identifier exists for key but «shmflg & IPC_CREAT) and (shmflg &
IPC _ EXCL)) is "true".

Last change: 29 April 1986 Sun Release 3.2

SHMGET(2) SYSTEM CALLS SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmct1(2), shmop(2)

Sun Release 3.2 Last change: 29 April 1986 117

SHMOP(2) SYSTEM CALLS SHMOP(2)

NAME
shrnop, shmat, shmdt - shared memory operations

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>
#include <syslshm.h>

char *shmat (shmid, shmaddr, shmHg)
iotshmid;
char *shmaddr
iotshmfig;

iot shmdt (shmaddr)
char *shmaddr

DESCRIPTION
shmat attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process. The segment is attached at the address specified by one of
the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as selected by the
system.

If shmaddr is not equal to zero and (shmjlg & SHM_RND) is "true", the segment is attached at
the address given by (shmaddr - (shmaddr modulus SHMLBA».

If shmaddr is not equal to zero and (shmjlg & SHM_RND) is "false", the segment is attached at
the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is "true" {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.

shmat will fail and not attach the shared memory segment if one or more of the following are true:

EINV AL Shmid is not a valid shared memory identifier.

EACCES Operation permission is denied to the calling process (see intro(2».

ENOMEM

EINVAL

EINVAL

EMFILE

EINVAL

EINVAL

The available data space is not large enough to accommodate the shared memory seg­
ment.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA» is an illegal address.

shmaddr is not equal to zero, (shmjlg & SHM_RND) is "false", and the value of
shmaddr is an illegal address.

The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.

shmdt detaches from the calling process's data segment the shared memory segment
located at the address specified by shmaddr.

shmdt will fail and not detach the shared memory segment if shmaddr'is not the data
segment ~ tart address of a shared memory segment.

RETURN VALUES
Upon successful completion, the return value is as follows:

118 Last change: 29 April 1986 Sun Release 3.2

SHMOP(2) SYSTEM CALLS

shmat returns the data segment start address of the attached shared memory segment.

shmdt returns a value of O.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmct1(2), shmget(2).

Sun Release 3.2 Last change: 29 April 1986

SHMOP(2)

119

SHUTDOWN (2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a full-duplex connection on the socket associated with s to be shut
down. If how is 0, then further receives will be disallowed If how is 1, then further sends will be disal­
lowed. If how is 2, then further sends and receives will be disallowed

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF

ENOTSOCK

ENOTCONN

S is not a valid descriptor.

S is a file, not a socket

The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

BUGS
The how values should be defined constants.

120 Last change: 29 August 1983 Sun Release 3.2

SIGBLOCK (2)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

old mask = sigblock(mask);
int mask;

mask = sigmask(signum)

DESCRIPTION

SYSTEM CALLS SIGBLOCK (2)

Sighlock adds the signals specified in mask to the set of signals currently being blocked from delivery. Sig­
nals are blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the
mask for a given signum. The previous mask is returned, and may be restored using sigsetmask(2).

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed by the
system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2), signal(3)

Sun Release 3.2 Last change: 16 July 1986 121

SIGPAUSE (2) SYSTEM CALLS SIGPAUSE (2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on return the set
of masked signals is restored. Sigmask is usually 0 to indicate that no signals are now to be blocked. Sig­
pause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables modified on the
occurence of the signal are examined to determine that there is no work to be done, and the process pauses
awaiting work by using sigpause with the mask returned by sigblock.

SEE ALSO
sigblock(2), sigvec(2), signa1(3)

122 Last change: 16 July 1986 Sun Release 3.2

SIGSETMASK (2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

sigsetmask(mask) ;
int mask;

mask = sigmask(signum)

DESCRIPTION

SYSTEM CALLS SIGSETMASK (2)

sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signals are blocked
if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the mask for a given sig­
num.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT from being blocked

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
ki11(2), sigvec(2), sigblock(2), sigpause(2), signal(3)

Sun Release 3.2 Last change: 16 July 1986 123

SIGST ACK (2) SYSTEM CALLS SIGSTACK(2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signaI.h>

struct sigstack {
caddr _ t ss _ sp;
int ss _ onstack;
};

sigstack(ss, oss)
struct sigstack *ss, *oss;

DESCRIPTION

NOTES

Sigstack allows users to define an alternate stack on which signals are to be processed. If ss is non-zero, it
specifies a signal stack on which to deliver signals and tells the system if the process is currently executing
on that stack. When a signal's action indicates its handler should execute on the signal stack (specified
with a sigvec(2) call), the system checks to see if the process is currently executing on that stack. If the
process is not currently executing on the signal stack, the system arranges a switch to the signal stack for
the duration of the signal handler's execution. If oss is non-zero, the current signal stack state is returned.

Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack overflows
unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following occurs.

EFAULT Either ss or oss points to memory that is not a valid part of the process address space.

SEE ALSO
sigvec(2), setjmp(3), signal(3)

124 Last change: 20 August 1985 Sun Release 3.2

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#include c:::signaLh>

struct sigvee {
int (*sv_handler)O;
int sv_mask;
int sv _flags;
};

sigvee(sig, vee, ovec)
int sig;
struct sigvee *vec, *ovee;

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt the signal is blocked from further occurrence, the current process con­
text is saved, and a new one is built. A process may specify a handler to which a signal is delivere~ or
specify that a signal is to be blocked or ignored. A process may also specify that a default action is to be
taken by the system when a signal occurs. Normally, signal handlers execute on the current stack of the
process. This may be chang~ on a per-handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their invocation
blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked
from delivery to a process. The signal mask for a process is initialized from that of its parent (normally 0).
It may be changed with a sigblock(2) or sigsetmask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.
If the signal is not currently blocked by the process then it is delivered to the process. When a signal is
delivered, the current state of the process is sav~ a new signal mask is calculated (as described below),
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine
returns normally the process will resume execution in the context from before the signal's delivery. If the
process wishes to resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the process' signal
handler (or until a sigblock or sigsetmask call is made). This mask is formed by taking the current signal
mask, adding the signal to be delivered, and or'ing in the signal mask associated with the handler to be
invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine and mask to

be used when delivering the specified signal. Further, if the SV _ ONST ACK bit is set in sv J.ags, the sys­
tem will deliver the signal to the process on a signal stack, specified with sigstack(2). If ovec is non-zero,
the previous handling information for the signal is returned to the user.

The mask specified in vec is not allowed to block SIGKlLL, SIGSTOP, or SIGCONT. The system
enforces this restriction silently.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (other than A-line or F-line op code)
SIGTRAP 5* trace trap
SIGIOT 6* lOT trap (not generated on Suns)
SIGEMT 7* EMT trap (A-line or F-line op code)
SIGFPE 8* arithmetic exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)

Sun Release 3.2 Last change: 16 July 1986 125

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

126

SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe or other socket with no one to read it
SIGALRM 14 alann clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed
SIGTIIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- I/O is possible on a descriptor (seefentl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28- window changed (see win(4S»
SIGLOST 29* resource lost (see loeled (8C»
SIGUSRI 30 user-defined signal 1
SIGUSR2 31 user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvee call is made, or an exeeve (2) is
performed, except that if the SV _ RESETHAND bit is set in sv Jags, the value of sv _handler for the
caught signal will be set to SIG _ DFL before entering the signal-catching function, unless the signal is
SIGILL or SIGTRAP. If this bit is set, the bit for that signal in the signal mask will not be set; unless the
signal mask associated with that signal blocks that signal, further occurrences of that signal will not be
blocked. The SV _ RESETHAND flag is not available in 4.2BSD, hence it should not be used if backward
compatibility is needed.

The default action for a signal may be reinstated by setting sv _handler to SIG _ DFL; this default is termina­
tion except for signals marked with - or t. Signals marked with - are discarded if the action is SIG _ DFL;
signals marked with t cause the process to stop. If the process is terminated, a ~'core image" will be made
in the current working directory of the receiving process if the signal is one for which an asterisk appears in
the above list and the following conditions are met:

The effective user ID and the real user ID of the receiving process are equal.

The effective group ID and the real group ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the file must be created,
it will have the following properties:

a mode of 0666 modified by the file creation mask (see umask(2»

a file owner ID that is the same as the effective user ID of the receiving process.

a file group ID that is the same as the file group ID of the current directory

If sv _handler is SIG _ IGN the signal is subsequently ignored, and pending instances of the signal
are discarded.

Note: the signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored

If a caught signal occurs during certain system calls, the call is normally restarted. The call can
be forced to terminate prematurely with an EINTR error return by setting the SV _INTERRUPT
bit in sv Jags. The SV _INTERRUPT flag is not available in 4.2BSD, hence it should not be used
if backward compatibility is needed. The affected system calls are read(2V) or write(2V) on a

Last change: 16 July 1986 Sun Release 3.2

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

NOTES

CODES

slow device (such as a terminal or pipe or other socket, but not a file) and during a wait(2).

After afork(2) or vfork(2) the child inherits all signals, the signal mask, the signal stack, and the
restart/interrupt and reset-signal-handler flags.

The e:xecve (2) call resets all caught signals to default action and resets all signals to be caught on
the user stack. Ignored signals remain ignored; the signal mask remains the same; signals that
interrupt system calls continue to do so.

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. Code is a parameter of certain signals that provides additional detail. Scp is
a pointer to the sigcontext structure (defined in <signal.h», used to restore the context from before the sig­
nal.

Programs that must be portable to UNIX systems other than 4.2 BSD should use the signa/(3) interface
instead.

The following defines the codes for signals which produce them. All of these symbols are defined in
<signal.h>:

Hardware condition

Illegal instruction
Privilege violation
Coprocessor protocol error
Trap #n (1 <= n <= 14)

A-line op code
F-line op code

Integer division by zero
CHK or CHK2 instruction
TRAPV or TRAPcc or cpTRAPcc
IEEE floating point compare unordered
IEEE floating point inexact
IEEE floating point division by zero
IEEE floating point underflow
IEEE floating point operand error
IEEE floating point overflow
IEEE floating point signaling NaN

Signal

SIGILL
SIGILL
SIGILL
SIGILL

SIGEMT
SIGEMT

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE

Code

ILL INSTR FAULT - -
ILL PRIVVIO FAULT - -
ILL INSTR FAULT - -
ILL TRAPn FAULT

- -

EMT EMU1010
EMT EMU1111

FPE INTDIV lRAP - -
FPE CHKINST TRAP - -
FPE TRAPV TRAP - -
FPE FLTBSUN lRAP - -
FPE FLTINEX TRAP - -
FPE FLTDIV TRAP - -
FPE FLTUND TRAP - -
FPE FLTOPERR TRAP - -
FPE FLTOVF FAULT - -
FPE FLTNAN TRAP - -

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value indicates an error occurred and errno is set
to indicate the reason.

ERRORS
Sigvec will fail and no new signal handler will be installed if one of the following occurs:

EFAULT

EINVAL

EINVAL

EINVAL

Sun Release 3.2

Either vee or ovec points to memory that is not a valid part of the process address space.

Sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

Last change: 16 July 1986 127

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

SEE ALSO
kill(l), ptrace(2), .kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3), signal(3), tty(4)

128 Last change: 16 July 1986 Sun Release 3.2

SOCKET(2) SYSTEM CALLS SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The at parameter specifies an address format with which addresses specified in later operations using the
socket should be interpreted. These formats are defined in the include file <sys/socket.h>. The currently
understood formats are

AF UNIX
AF INET
AFPUP
AF IMPLINK

(UNIX path names),
(ARPA Internet addresses),
(Xerox PUP-I Internet addresses), and
(IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication. Currently defined types
are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK _ SEQP ACKET
SOCK RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams with an
out-of-band data transmission mechanism. A SOCK_DGRAM socket supports datagrams (connectionless,
unreliable messages of a fixed (typically small) maximum length). SOCK_RAW sockets provide access to
internal network interfaces. The types SOCK_RAW, which is available only to the super-user, and
SOCK _ SEQPACKET and SOCK _ RDM, which are planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket Normally only a single protocol
exists to support a particular socket type using a given address format However, it is possible that many
protocols may exist in which case a particular protocol must be specified in this manner. The protocol
number to use is particular to the "communication domain" in which communication is to take place; see
services(5) and protocols (5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be
in a connected state before any data may be sent or received on it. A connection to another socket is
created with a connect(2) call. Once connected, data may be transferred using read(2V) and write(2V)
calls or some variant of the send (2) and recv (2) calls. When a session has been completed a close (2) may
be performed. Out-of-band data may also be transmitted as described in send(2) and received as described
in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli­
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with -1 returns and with ETIMEDOUT as the specific code in the global variable ermo. The protocols
optionally keep sockets "warm" by forcing transmissions roughly every minute in the absence of other
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit.

Sun Release 3.2 Last change: 7 March 1986 129

SOCKET(2) SYSTEM CALLS SOCKET (2)

SOCK _ DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in
send(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

An JcntZ (2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the file
<.SJslsocket.h> and explained below. Setsockopt and getsockopt(2) are used to set and get options, respec­
tively.

SO DEBUG turn on recording of debugging information
SO REUSEADDR allow local address reuse
SO KEEP ALIVE keep connections alive
SO DONTROUTE do no apply routing on outgoing messages
SO LINGER linger on close if data present
SO DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO REUSEADDR indicates the
rules used in validating addresses supplied in a bind(2) call should allow reuse of local addresses.
SO_KEEP ALIVE enables the periodic transmission of messages on a connected socket. Should the con­
nected party fail to respond to these messages, the connection is considered broken and processes using the
socket are notified via a SIGPIPE signal. SO _ DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address. SO_LINGER and SO _ OONTIJNGER control
the actions taken when unsent messags are queued on socket and a close(2) is performed. If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when SO_LINGER is
requested). If SO _ DONTLINGER is specified and a close is issued, the system will process the close in a
manner which allows the process to continue as quickly as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.

ERRORS
The socket call fails if:

EAFNOSUPPORT

ESOCKTNOSUPPORT

EPROTONOSUPPORT

EMFILE

ENOBUFS

The specified address family is not supported in this version of the system.

The specified socket type is not supported in this address family.

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

SEE ALSO

BUGS

130

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2), select(2),
send(2), shutdown(2), socketpair(2)

Inter-Process Communication Primer in Networking on the Sun Workstation

The use ofkeepalives is a questionable feature for this layer.

Last change: 7 March 1986 Sun Release 3.2

SOCKETP AIR (2) SYSTEM CALLS SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair system call creates an unnamed pair of connected sockets in the specified domain d, of the
specified type and using the optionally specified protocol. The descriptors used in referencing the new
sockets are returned in sv[O] and sv[l]. The two sockets are indistinguishable.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EMFILE

EAFNOSUPPORT
EPROTONOSUPPORT

EOPNOSUPPORT

EFAULT
SEE ALSO

Too many descriptors are in use by this process.

The specified address family is not supported on this machine.

The specified protocol is not supported on this machine.

The specified protocol does not support creation of socket pairs.

The address sv does not specify a valid part of the process address space.

read(2V), write(2V), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

Sun Release 3.2 Last change: 20 August 1985 131

STAT(2) SYSTEM CALLS STAT(2)

NAME
stat, Istat, fstat - get file status

SYNOPSIS
#include <sysltypes.h>
#include <syslstat.h>

stat(path, bul)
char *path;
struct stat * bur;

Istat(path, bul)
char *path;
struct stat * bur;

rstat(rd, bul)
int rd;
struct stat * bur;

DESCRIPTION

132

stat obtains information about the file named by path. Read, write or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be searchable.

Istat is like stat except in the case where the named file is a symbolic link, in which case Istat returns infor­
mation about the link, while stat returns information about the file the link references.

fstat obtains the same information about an open file referenced by the argument descriptor, such as would
be obtained by an open call.

buf is a pointer to a stat structure into which information is placed concerning the file. The contents of the
structure pointed to by buf include the following members:

st atime

st mtime

st ctime

dev t st_dev; 1* device inode resides on */
ino t st_ino; 1* this inode's number */
u short st_mode; 1* protection *1
short st_nlink; 1* number of hard links to the file */
short st_uid; 1* user ID of owner */
short st_gid; 1* group ID of owner */
dey t st_rdev; 1* the device type, for inode that is device */
off t st_size; 1* total size of file, in bytes */
time t st_atime; 1* file last access time *1
time t st_mtime; 1* file last modify time *1
time t st_ctime; 1* file last status change time */
long st_ blksize; 1* optimal blocksize for file system ito ops */
long st_blocks; /* actual number of blocks allocated */

Time when file data was last read or modified. Changed by the following system calls:
mknod(2), utimes(2), read(2V), write (2V), and truncate (2). For reasons of efficiency,
st_ atime is not set when a directory is searched, although this would be more logical.

Time when data was last modified. It is not set by changes of owner, group, link count, or
mode. Changed by the following system calls: mknod(2), utimes(2), write (2V).

Time when file status was last changed. It is set both both by writing and changing the i­
node. Changed by the following system calls: chmod(2) chown(2), link (2), mknod(2),
rename(2), unlink(2), utimes(2), write (2V), truncate (2).

The status information word st mode has bits:
#define S IFMT
#define S IFIFO
#define S IFCHR

0170000
0010000
0020000

1* type of file */
/* fifo special */
/* character special */

Last change: 16 July 1986 Sun Release 3.2

STAT(2) SYSTEM CALLS STAT (2)

#define S IFDIR 0040000 /* directory */
#define S IFBLK 0060000 /* block special */
#define S IFREG 0100000 /* regular file */
#define S IFLNK 0120000 /* symbolic link */
#define S IFSOCK 0140000 /* socket */
#define S ISUID 0004000 /* set user id on execution */
#define S ISGID 0002000 /* set group id on execution */
#define S ISVTX 0001000 /* save swapped text even after use */
#define S IREAD 0000400 /* read permission, owner */
#define S !WRITE 0000200 /* write permission, owner */
#define S IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2».

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
stat and lstat will fail if one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.

ElNV AL path contains a character with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

EACCES

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

EFAULT bufor path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

jstat will fail if one or both of the following are true:

EBADF

EFAULT

EIO

CAVEAT

fd is not a valid open file descriptor.

buf points to an invalid address.

An I/O error occurred while reading from or writing to the file system.

The fields in the stat structure currently marked st _spare1, st _spare2, and st _spare3 are present in prepara­
tion for inode time stamps expanding to 64 bits. This, however, can break certain programs which depend
on the time stamps being contiguous (in calls to utimes(2».

SEE ALSO
chmod(2), chown(2), readlink(2), utimes(2)

Sun Release 3.2 Last change: 16 July 1986 133

STATFS(2) SYSTEM CALLS STATFS(2)

NAME
statfs - get file system statistics

SYNOPSIS
#include <sys/vfs.h>

statfs(path, but)
char *path;
struct statfs * bur;

fstatfs(fd, but)
int rd;
struct statfs * buf;

DESCRIPTION
statfs returns information about a mounted file system. path is the path name of any file within the
mounted filesystem. Bu[is a pointer to a statfs structure defined as follows:

typedef struct {
long val[2];

} fsid_t;

struct statfs {
long
long
long
long
long
long
long
fsid t
long

};

f_type;
f_bsize;
f_blocks;
f_bfree;
f_bavai1;
f_files;
f_ffree;
f_fsid;
f _ spare[7];

/* type of info, zero for now */
/* fundamental file system block size */
/* total blocks in file system */
/* free blocks */
/* free blocks available to non-superuser */
/* total file nodes in file system */
/* free file nodes in fs */
/* file system id *1
/* spare for later */

Fields that are undefined for a particular file system are set to -1. [statfs returns the same information
about an open file referenced by descriptor fd.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, -1 is returned and the global variable
errno is set to indicate the error.

ERRORS

134

statJs fails if one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a character with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT

EACCES

ELOOP

EFAULT

EIO

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Too many symbolic links were encountered in translating path.

buf or path points to an invalid address.

An I/O error occurred while reading from or writing to the file system.

Last change: 16 July 1986 Sun Release 3.2

STATFS(2) SYSTEM CALLS STATFS(2)

fstatfs fails if one or both of the following are true:

EBADF fd is not a valid open file descriptor.

EFAULT bufpoints to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

Sun Release 3.2 Last change: 16 July 1986 135

SWAPON(2) SYSTEM CALLS SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
swapoo(speciaJ)
char *special;

DESCRIPTION
swapon makes the block device special available to the system for allocation for paging and swapping.
The names of potentially available devices are known to the system and defined at system configuration
time. The size of the swap area on special is calculated at the time the device is first made available for
swapping.

SEE ALSO
swapon(8), config(8)

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS

BUGS

136

ENOTDIR A component of the path prefix of special is not a directory.

EINV AL special contains a character with the high-order bit set.

ENAMETooLONG

ENOENT
EACCES
ELooP
EPERM
ENOTBLK
EBUSY
ENODEV

ENXIO

EIO

EFAULT

The length of a component of special exceeds 255 characters, or the length of special
exceeds 1023 characters.

The device referred to by special does not exist.

Search permission is denied for a component of the path prefix of special.

Too many symbolic links were encountered in translating special.

The caller is not the super-user.

The file referred to by special is not a block device.

The device referred to by special has already been made available for swapping.

The device referred to by special was not configured into the system as a swap device.

The major device number of the device referred to by special is out of range (this indi­
cates no device driver exists for the associated hardware).

An I/O error occurred while reading from or writing to the file system or opening the
swap device.

special points outside the process's address space.

There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

Last change: 16 July 1986 Sun Release 3.2

SYMLINK(2) SYSTEM CALLS SYMLINK(2)

NAME
syrnlink - make symbolic link to a file

SYNOPSIS
symlink(namel, name2)
char *namel, *name2;

DESCRIPTION
A symbolic link name2 is created to name} (name2 is the name of the file created, name) is the string used
in creating the symbolic link). Either name may be an arbitrary path name; the files need not be on the
same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in e"no
and a -1 value is returned.

ERRORS
The symbolic link is made unless one or more of the following are true:

ENOTDIR A component of the path prefix of name2 is not a directory.

EINV AL name2 contains a character with the high-order bit set.

ENAMETOOLONG

ENOENT
EACCES

ELooP

EEXIST
EIO
EROFS

ENOSPC

ENOSPC

ENOSPC
EDQUOT

EDQUOT

EDQUOT

EFAULT

SEE ALSO

The length of a component of either name} or name2 exceeds 255 characters, or the
length of either name} or name2 exceeds 1023 characters.

A component of the path prefix of name2 does not exist.

Search permission is denied for a component of the path prefix of name2 .

Too many symbolic links were encountered in translating name2.

The file referred to by name2 already exists.

An I/O error occurred while reading from or writing to the file system.

The file name2 would reside on a read-only file system.

The directory in which the entry for the new symbolic link is being placed cannot be
extended because there is no space left on the file system containing the directory.

The new symbolic link cannot be created because there is no space left on the file system
which will contain the link.

There are no free inodes on the file system on which the file is being created.

The directory in which the entry for the new symbolic link is being placed cannot be
extended because the user's quota of disk blocks on the file system containing the direc­
tory has been exhausted.

The new symbolic link cannot be created becaue the user's quota of disk blocks on the
file system which will contain the link has been exhausted.

The user's quota of incxies on the file system on which the file is being created has been
exhausted.

name} or name2 points outside the process's allocated address space.

link(2), In(l), readlink(2), unlink(2)

Sun Release 3.2 Last change: 16 July 1986 137

SYNC(2)

NAME
sync - update super-block

SYNOPSIS
syncO

DESCRIPTION

SYSTEM CALLS SYNC (2)

Sync causes all information in core memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/O.

Sync should be used by programs that examine a file system, for example fsck. df. etc. Sync is mandatory
before a boot.

SEE ALSO
fsync(2), sync(8), cron(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

138 Last change: 16 July 1986 Sun Release 3.2

SYSCALL(2)

NAME
syscall- indirect system call

SYNOPSIS
#include <syscaU.h>

syscaU(number, arg, •••)

DESCRIPTION

SYSTEM CALLS SYSCALL(2)

syscall petforms the system call whose assembly language interface has the specified number, and argu­
ments arg •••. Symbolic constants for system calls can be found in the header file <syscall.h>.

The register dO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intro(2».

BUGS
There is no way to simulate system calls such as pipe (2), which return values in register dl.

Sun Release 3.2 Last change: 16 July 1986 139

TRUNCATE (2) SYSTEM CALLS TRUNCATE (2)

NAME
truncate, ftruncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
unsigned long length;

ftruncate(fd, length)
int fd;
unsigned long length;

DESCRIPTION
truncate causes the file named by path or referenced by fd to be truncated to at most length bytes in size. If
the file previously was larger than this size, the extra data is lost. With ftruncate, the file must be open for
writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global variable errno
specifies the error.

ERRORS
Truncate succeeds unless:

ENOTDIR A component of the path prefix of path is not a directory.

EINV AL path contains a character with the high-order bit set

ENAMETOOLONG

ENOENT

EACCES

EACCES

ELOOP

EISDIR

EROFS

ETXTBSY

EIO

EFAULT

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Write permission is denied for the file referred to by path.

Too many symbolic links were encountered in translating path.

The file referred to by path is a directory.

The file referred to by path resides on a read-only file system.

The file referred to by path is a pure procedure (shared text) file that is being executed.

An I/O error occurred while reading from or writing to the file system.

path points outside the process's allocated address space.

ftruncate succeeds unless:

EINV AL fd is not a valid descriptor of a file open for writing.

EINV AL fd references a socket, not a file.

EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO
open(2V)

BUGS

140

Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in files which
do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

Last change: 16 July 1986 Sun Release 3.2

UMASK(2)

NAME
umask - set file creation mode mask

SYNOPSIS
oumask = umask(numask)
int oumask, numask;

DESCRIPTION

SYSTEM CALLS UMASK(2)

Umask sets the process's file mode creation mask to numask and returns the previous value of the mask.
The low-order 9 bits of numask are used whenever a file is created, clearing corresponding bits in the file
mode (see chmod(2». This clearing allows each user to restrict the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2V)

Sun Release 3.2 Last change: 20 August 1985 141

UNAME(2V) SYSTEM CALLS UNAME(2V)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION
Note: This system call is only available for use with the System V compatibility libraries. These are

located in the directory /usr/5lib, and are compiled using the System V version of the C compiler,
/usr/5lib/ce.

uname stores information identifying the current UNIX system in the structure pointed to by name .

uname uses the structure defined in <sys/utsname.h> whose members are:

char sysnarne[9];
char nodename[9];
char release [9] ;
char version[9];
char machine[9];

uname returns a null-terminated character string naming the current UNIX system in sysname and
nodename. This name will be the name returned by the gethostname(2) system call, truncated to 8 charac­
ters. release and version further identify the operating system. machine contains a name that identifies the
hardware that the UNIX system is running on.

SEE ALSO
uname(1V)

142 Last change: 16 July 1986 Sun Release 3.2

UNLINK(2) SYSTEM CALLS UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(path)
char *path;

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by path. If this entry was the last
link to the file, and no process has the file open, then all resources associated with the file are reclaimed. If,
however, the file was open in any process, the actual resource reclamation is delayed until it is closed, even
though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
The unlink succeeds unless:

ENOTDIR A component of the path prefix of path is not a directory.

ElNV AL path contains a character with the high-order bit set.

ENAMETOOLONG

ENOENT

EACCES

EACCES

ELooP

EPERM

EBUSY

EIO

EROFS

EFAULT
SEE ALSO

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

The file referred to by path does not exist.

Search permission is denied for a component of the path prefix of path.

Write permission is denied for the directory containing the link to be removed.

Too many symbolic links were encountered in translating path.

The file referred to by path is a directory and the effective user ID of the process is not
the super-user.

The entry to be unlinked is the mount point for a mounted file system.

An 110 error occurred while reading from or writing to the file system.

The file referred to by path resides on a read-only file system.

path points outside the process's allocated address space.

close(2), link(2), rmdir(2)

Sun Release 3.2 Last change: 16 July 1986 143

UNMOUNT(2) SYSTEM CALLS UNMOUNT(2)

NAME
unmount - remove a file system

SYNOPSIS
unmount(name)
char *name;

DESCRIPTION
unmount announces to the system that the directory name is no longer to refer to the root of a mounted file
system. The directory name reverts to its ordinary interpretation.

RETURN VALUE
unmount returns 0 if the action occurred; -1 if if the directory is inaccessible or does not have a mounted
file system, or if there are active files in the mounted file system.

ERRORS
unmount may fail with one of the following errors:

EPERM

ENOTDIR

EINVAL

EBUSY

EINVAL

The caller is not the super-user.

A component of the path prefix of name is not a directory.

name is not the root of a mounted file system.

A process is holding a reference to a file located on the file system.

The path name contains a character with the high-order bit set.

ENAMETooLONG

ENOENT

EACCES

EFAULT

ELooP

EIO

The length of a component of the path name exceeds 255 characters, or the length of the
entire path name exceeds 1023 characters.

name does not exist.

Search permission is denied for a component of the path prefix.

name points outside the process's allocated address space.

Too many symbolic links were encountered in translating the path name.

An I/O error occurred while reading from or writing to the file system.

SEE ALSO
mount(2), mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

144 Last change: 16 July 1986 Sun Release 3.2

UTIMES(2) SYSTEM CALLS UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#include <sys/types.h>

utimes(file, tvp)
char *file;
struct timeval tvp[2];

DESCRIPTION
The utimes call uses the "accessed" and "updated" times in that order from the tvp vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The' 'inode-changed" time of the file is set to
the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
utime will fail if one or more of the following are true:

ENOIDIR A component of the path prefix offile is not a directory.

EINV AL file contained a character with the high-order bit set.

ENAMETOOLONG
The length of a component of file exceeds 255 characters, or the length of file exceeds
1023 characters.

ENOENT

EACCES

ELOOP

EPERM

EIO

EROFS

EFAULT

SEE ALSO
stat(2)

Sun Release 3.2

The file referred to by file does not exist.

Search permission is denied for a component of the path prefix of file.

Too many symbolic links were encountered in translating file .

The process is not super-user and not the owner of the file.

An I/O error occurred while reading from or writing to the file system.

The file system containing the file is mounted read-only.

file or tvp points outside the process's allocated address space.

Last change: 16 July 1986 145

VADVISE(2) SYSTEM CALLS VADVISE(2)

NAME
vadvise - give advice to paging system

SYNOPSIS
#include <sys/vadvise.h>

vadvise(param)
int param;

DESCRIPTION

BUGS

146

Vadvise is used to inform the system that process paging behavior merits special consideration. Parameters
to vadvise are defined in the file <vadvise.h>. Currently, two calls t vadvise are implemented.

The call

vadvise(V A _ANOM);

advises that the paging behavior is not likely to be well handled by the system's default algorithm, since
reference information is collected over macroscopic intervals (e.g. 10-20 seconds) will not serve to indicate
future page references. The system in this case will choose to replace pages with little emphasis placed on
recent usage, and more emphasis on referenceless circular behavior. It is essential that processes which
have very random paging behavior (such as LISP during garbage collection of very large address spaces)
call vadvise, as otherwise the system has great difficulty dealing with their page-consumptive demands.

The call

vadvise(VA_NORM);

restores default paging replacement behavior after a call to

vadvise(V A _ ANOM);

Will go away soon, being replaced by a per-page madvise facility.

Last change: 20 August 1985 Sun Release 3.2

VFORK(2) SYSTEM CALLS VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vforkO
int pid;

DESCRIPTION
vfork can be used to create new processes without fully copying the address space of the old process, which
is horrendously inefficient in a paged environment It is useful when the purpose of fork (2) would have
been to create a new system context for an execve. Vfork differs from fork in that the child borrows the
parent's memory and thread of control until a call to execve(2) or an exit (either by a call to exit(2) or
abnormally.) The parent process is suspended while the child is using its resources.

vfork returns 0 in the child's context and (later) the pid of the child in the parent's context

vfork can normally be used just like fork. It does not work, however, to return while running in the childs
context from the procedure which called vfork since the eventual return from vfork would then return to a
no longer existent stack frame. Be careful, also, to call_exit rather than exit if you can't execve, since exit
will flush and close standard I/O channels, and thereby mess up the parent processes standard I/O data
structures. (Even withfork it is wrong to call exit since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented Users
should not depend on the memory sharing semantics of vfork as it will, in that case, be made synonymous
tofork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are never sent
SIGTTOU or SIGTIIN signals; rather, output or ioctl s are allowed and input attempts result in an end-of-file
indication.

Sun Release 3.2 Last change: 16 July 1986 147

VHANGUP(2) SYSTEM CALLS VHANGUP(2)

NAME
vhangup - virmally Uhangup" the current control terminal

SYNOPSIS
vhangupO

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are given
"clean'" terminals at login, by revoking access of the previous users' processes to the terminal. To effect
this, vhangup searches the system tables for references to the control terminal of the invoking process,
revoking access permissions on each instance of the terminal that it finds. Further attempts to access the
terminal by the affected processes will yield i/o errors (EBADF). Finally, a hang up signal (SIGHUP) is
sent to the process group of the control terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

148 Last change: 16 July 1986 Sun Release 3.2

WAJT(2) SYSTEM CALLS WAJT(2)

NAME
wait, wait3 - wait for process to tenninate or stop

SYNOPSIS
#include <syslwait.h>

pid = wait(status)
int pid;
union wait *status;

pid = wait(O)
int pid;

#include <sysltime.h>
#include <syslresource.h>

pid = wait3(status, options, rusage)
int pid;
union wait *status;
int options;
struct rusage *rusage;

DESCRIPTION

NOTES

wait causes its caller to delay until a signal is received or one of its child processes terminates or stops due
to tracing. If any child has died or stopped due to tracing and this has not been reported via wait, return is
immediate, returning the process ID and exit status of one of those children. If that child had died, it is dis­
carded. If there are no children, return is immediate with the value -1 returned. If there are only running
or stopped but reported children, the calling processes is blocked.

On return from a successful wait call, status is nonzero, and the high byte of status contains the low byte of
the argument to exit supplied by the child process; the low byte of status contains the termination status of
the process. A more precise definition of the status word is given in <sys/wait.h>.

wait3 is an alternate interface that allows both non-blocking status collection and the collection of the
status of children stopped by any means. The status parameter is defined as above. The options parameter
is used to indicate the call should not block if there are no processes that have status to report
(WNOHANG), and/or that children of the current process that are stopped due to a SIGTTIN, SIGITOU,
SIGTSTP, or SIGSTOP signal are eligible to have their status reported as well (WUNTRACED). A ter­
minated child is discarded after it reports status, and a stopped process will not report its status more than
once. If rusage is non-zero, a summary of the resources used by the terminated process and all its children
is returned. (This information is currently not available for stopped processes.)

When the WNOHANG option is specified and no processes have status to report, wait3 returns a pid of O.
The WNOHANG and WUNTRACED options may be combined by or'ing the two values.

See sigvec(2) for a list of termination statuses (signals); 0 status indicates normal termination. A special
status (0177) is returned for a stopped process that has not terminated and can be restarted; see ptrace(2)
and sigvec(2). If the 0200 bit of the termination status is set, a core image of the process was produced by
the system.

If the parent process tenninates without waiting on its children, the initialization process (process ID = 1)
inherits the children.

wait and wait3 are automatically restarted when a process receives a signal while awaiting termination of a
child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ill of the child is returned to the
calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Sun Release 3.2 Last change: 16 July 1986 149

WAIT(2) SYSTEM CALLS WAIT (2)

wait3 returns -1 if there are no children not previously waited for; 0 is returned if WNOHANG is
specified and there are no stopped or exited children.

ERRORS
wait will fail and return immediately if one or more of the following are true:

ECHILD The calling process has no existing unwaited-for child processes.

EF AUL T The status or rusage arguments point to an illegal address.

The call is forced to terminate prematurely due to the arrival of a signal whose.SM SV _INTERRUPT
bit in sv_ftags is set (see sigvec(2». signal(3V), in the System V compatibility library,
sets this bit for any signal it catches.

SEE ALSO
exit(2), getrusage(2)

150 Last change: 16 July 1986 Sun Release 3.2

WRITE(2V) SYSTEM CALLS WRITE(2V)

NAME
write, writev - write output

SYNOPSIS
cc = write(d, bur, nbytes)
int cc, d;
char *bur;
int nbytes;

#include <sysitypes.h>
#include <sysiuio.h>

cc = writev(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

DESCRIPTION
write attempts to write nbytes of data to the object referenced by the descriptor d from the buffer pointed to
by buf. writev performs the same action, but gathers the output data from the iovcnt buffers specified by
the members of the iov array: iov[O], iov[1], ... , iov[iovcnt-l].

For write v , the iovec structure is defined as

struct iovec {
caddr t iov _base;
int iovJen;

};

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. writev will always write a complete area before proceeding to the next.

On objects capable of seeking, the write starts at a position given by the pointer associated with d, see
Iseek(2). Upon return from write, the pointer is incremented by the number of bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of the pointer
associated with such an object is undefined.

If the 0 _APPEND flag of the file status flags is set, the file pointer will be set to the end of the file prior to
each write.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This prevents penetration
of system security by a user who "captures" a writable set-user-id file owned by the super-user.

When using non-blocking I/O on objects that are subject to flow control, such as sockets, pipes (or FIFOs),
or terminals, write and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible. If such an object's buffers are full, so that it
cannot accept any data, then write and writev will return -1 and set errno to EWOULDBLOCK. Otherwise,
they will block until space becomes available.

SYSTEM V DESCRIPTION
A write (but not a writev) on an object that cannot accept any data will return a count of 0, rather than
returning-l and setting errno to EWOULDBLOCK.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a -1 is returned
and the global variable errno is set to indicate the error.

ERRORS
write and writev will fail and the file pointer will remain unchanged if one or more of the following are
true:

EBADF d is not a valid descriptor open for writing.

Sun Release 3.2 Last change: 16 July 1986 151

WRITE (2V) SYSTEM CALLS WRITE(2V)

EPIPE

EFBIG

EFAULT

An attempt is made to write to a pipe that is not open for reading by any process (or to a
socket of type SOCK_STREAM that is connected to a peer socket) Note: an attempted
write of this kind will also cause you to recieve a SIGPIPE signal from the kernel. If
you've not made a special provision to catch or ignore this signal, your process will die.

An attempt was made to write a file that exceeds the process's file size limit or the max­
imum file size.

Part of iov or data to be written to the file points outside the process's allocated address
space.

The call is forced to terminate prematurely due to the arrival of a signal whose.SM SV _ INTERRUPf

EINVAL

ENOSPC

EDQUOT

bit in sv_Bags is set (see sigvec(2». signal(3V), in the System V compatibility library,
sets this bit for any signal it catches.

The pointer associatoo with d was negative.

There is no free space remaining on the file system containing the file.

The user's quota of disk blocks on the file system containing the file has been exhausted.

EIO An I/O error occurred while reading from or writing to the file system.

EWOULDBLOCK
The file was marked for non-blocking 110, and no data could be written immediately.

In addition, writev may return one of the following errors:

EINVAL

EINVAL

EINVAL

Iovcnt was less than or equal to 0, or greater than 16.

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit integer.

SEE ALSO
fcntl(2), Iseek(2), open(2V), pipe(2), select(2)

152 Last change: 16 July 1986 Sun Release 3.2

INTRO(3) C LmRARY FUNCTIONS INTRO(3)

NAME
intra - introduction to library functions

DESCRIPTION

FILES

Section 3 describes library routines. The main C library is Ilibllibe.a, which contains all system call entry
points described in section 2, as well as functions described in several subsections here. The primary func­
tions are described in the main section 3. Functions associated with the "standard 110 library" used by
many C programs are found in section 3S. The main C library also includes Internet network functions,
described in section 3N, and routines providing compatibility with other UNIX systems, described in sec­
tion 3C.

Other sections are:

(3F) This section, for FORTRAN library routines and functions, is contained in the FORTRAN

Pro grammer's Guide.

(3M) The Math Library. C declarations for the types of functions are be obtained from the include file
<math.h>. To use these functions with C programs compile them with the -1m option with ee(l).
They are automatically loaded as needed by the FORTRAN and Pascal compilersj77(1) andpe(l).

(3V) The System V Compatibility Library. System V versions of functions that are not yet merged into
the standard Sun libraries. To use these functions, compile programs with lusrl5binlce , instead of
Ibinlee.

(3X) Various specialized libraries have not been given distinctive captions. Files in which such
libraries are found are named on appropriate pages if they don't appear in the libc library.

llib/libc.a
lusr/lib/libc J>.a
lusrllib/libm.a
lusr/lib/libm J>.a
lusr/lib/libcurses.a
lusr/lib/libdbm.a
lusr/lib/libmp.a
lusr/lib/libtermcap.a
lusr/lib/libtermcap J>.a
lusr/lib/libtermlib
lusr/lib/libtermlib J>.a
lusr/lib/libplot* .a
lusrllib/libresolv.a

C Library «2), (3), (3N) and (3C) routines)
Profiling C library (for gprof(l»
Math Library -1m (see section 3M)
Profiling version of -1m
screen management routines (see curses(3X)
data base management routines (see dbm(3X»
multiple precision math library (see mp(3X»
terminal handling routines (see termcap(3X»
"

(link to lusr/lib/libtermcap.a)
(link to lusr/lib/libtermcap J>.a)
plot routines (see plot (3X»
Internet name server routines (see resolver(3X»

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(I), Id(I), cc(1), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (section 3M) may return conventional values when the function is undefined
for the given arguments or when the value is not representable. In these cases the external variable errno
(see intro(2» is set to the value EDOM (domain error) or ERANGE (range error). The values of EDOM
and ERANGE are defined in the include file <errno.h>.

LIST OF FUNCTIONS
Name

a641
abort
abs
acos
acosh
addmntent

Sun Release 3.2

Appears on Page

a64I(3)
abort(3)
abs(3)
sin(3M)
asinh(3M)
getmntent(3)

Description

convert base-64 ASCII to long
generate a fault
integer absolute value
trigonometric functions
inverse hyperbolic function
get file system descriptor file entry

Last change: 11 June 1986 153

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

alarm alarm(3C) schedule signal after specified time
alloca malloc(3) memory allocator
alphasort scandir(3) scan a directory
asctime ctime(3) convert date and time to ASCII
asin sin(3M) trigonometric functions
asinh asinh(3M) inverse hyperbolic function
assert assert(3) program verification
atan sin(3M) trigonometric functions
atanh asinh(3M) inverse hyperbolic function
atof atof(3) convert ASCn to numbers
atoi atof(3) convert ASCn to numbers
atol atof(3) convert ASCn to numbers
bcmp bstring(3) bit and byte string operations
bcopy bstring(3) bit and byte string operations
bsearch bsearch(3) binary search a sorted table
bzero bstring(3) bit and byte string operations
cabs hypot(3M) Euclidean distance
calloc malloc(3) memory allocator
cbc_crypt des _ crypt(3) fast DES encryption
cbrt sqrt(3M) cube root
ceil floor(3M) ceiling
cfree malloc(3) memory allocator
clearerr ferror(3S) stream status inquiries
clock clock(3C) report CPU time used
closedir directory(3) directory operations
closelog syslog(3) control system log
copysign ieee(3M) copysign remainder exponent manipulations
cos sin(3M) trigonometric functions
cosh sinh(3M) hyperbolic functions
crypt crypt(3) DES encryption
ctermid ctermid(3S) generate filename for terminal
ctime ctime(3) convert date and time to ASCII
cuserid cuserid(3S) get character login name of user
des_crypt des _ crypt(3) fast DES encryption
des _ setparity des _ crypt(3) fast DES encryption
dn_comp resolver(3X) Internet name server routines
dn_expand resolver(3X) Internet name server routines
drand48 drand48(3) generate uniformly distributed pseudo-random numbers
drem ieee(3M) copysign remainder exponent manipulations
dysize ctime(3) convert date and time to ASCII
ecb_crypt des _ crypt(3) fast DES encryption
ecvt ecvt(3) output conversion
edata end(3) last locations in program.
encrypt crypt(3) DES encryption
end end(3) last locations in program
endfsent getfsent(3) get file system descriptor file entry
endgrent getgrent(3) get group file entry
endhostent gethostent(3N) get network host entry
endmntent getmntent(3) get file system descriptor file entry
endnetent getnetent(3N) get network entry
endnetgrent getnetgrent(3N) get network group entry
endprotoent getprotoent(3N) get protocol entry
endpwent getpwent(3) get password file entry

154 Last change: 11 June 1986 Sun Release 3.2

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

endservent getservent(3N) get service entry
environ exec1(3) execute a file
erand48 drand48(3) generate uniformly distributed pseudo-random numbers
erf erf(3M) error functions
ermo perror(3) system error messages
etext end(3) last locations in program
ether ether(3R) monitor traffic on the Ethernet
ether aton ethers(3N) Ethernet address mapping
ether hostton ethers (3N) Ethernet address mapping
ether }ine(3N) ethers Ethernet address mapping
ether ntoa ethers(3N) Ethernet address mapping
ether ntohost ethers(3N) Ethernet address mapping
execl exec1(3) execute a file
exec1e exec1(3) execute a file
exec1p exec1(3) execute a file
execv exec1(3) execute a file
execvp exec1(3) execute a file
exit exit(3) terminate a process after performing cleanup
exp exp(3M) exponential function
fabs floor(3M) absolute value
fclose fc1ose(3S) close or flush a stream
fcvt ecvt(3) output conversion
fdopen fopen(3S) open a stream
feof ferror(3S) stream status inquiries
ferror ferror(3S) stream status inquiries
fflush fc1ose(3S) close or flush a stream
ffs bstring(3) bit and byte string operations
fgetc getc(3S) get character or integer from stream
fgets gets(3S) get a string from a stream
fileno ferror(3S) stream status inquiries
finite ieee(3M) copysign remainder exponent manipulations
floor floor(3M) floor function
fopen fopen(3S) open a stream
fprintf printf(3S) formatted output conversion
fputc putc(3S) put character or word on a stream
fputs puts(3S) put a string on a stream
fread fread(3S) buffered binary input/output
free malloc(3) memory allocator
freopen fopen(3S) open a stream
frexp frexp(3) split into mantissa and exponent
fscanf scanf(3S) formatted input conversion
fseek fseek(3S) reposition a stream
ftell fseek(3S) reposition a stream
ftime time(3C) get date and time
ftok ftok(3) standard interprocess communication package
ftw ftw(3) walk a file tree
fwrite fread(3S) buffered binary input/output
gcvt ecvt(3) output conversion
getc getc(3S) get character or integer from stream
getchar getc(3S) get character or integer from stream
getcwd getcwd(3) get pathname of current working directory
getenv getenv(3) value for environment name
getfsent getfsent(3) get file system descriptor file entry

Sun Release 3.2 Last change: 11 June 1986 155

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

getfsfile getfsent(3) get file system descriptor file entry
getfsspec getfsent(3) get file system descriptor file entry
getfstype getfsent(3) get file system descriptor file entry
getgrent getgrent(3) get group file entry
getgrgid getgrent(3) get group file entry
getgmam getgrent(3) get group file entry
gethostbyaddr gethostent(3N) get network host entry
gethostbyname gethostent(3N) get network host entry
gethostent gethostent(3N) get network host entry
getlogin getlogin(3) get login name
getmntent getmntent(3) get file system descriptor file entry
getnetbyaddr getnetent(3N) get network entry
getnetbyname getnetent(3N) get network entry
getnetent getnetent(3N) get network entry
getnetgrent getnetgrent(3N) get network group entry
getopt getopt(3) get option letter from argv
getpass getpass(3) read a password
getprotobyname getprotoent(3N) get protocol entry
getprotobynumber getprotoent(3N) get protocol entry
getprotoent getprotoent(3N) get protocol entry
getpw getpw(3) get name from uid
getpwent getpwent(3) get password file entry
getpwnam getpwent(3) get password file entry
getpwuid getpwent(3) get password file entry
getrpcbyname getrpcent(3N) get RPC entry
getrpcbynumber getrpcent(3N) get RPC entry
getrpcent getrpcent(3N) get RPC entry
getrpcport getrpcport(3R) get RPC port number
gets gets(3S) get a string from a stream
getservbyname getservent(3N) get service entry
getservbyport getservent(3N) get service entry
getservent getservent(3N) get service entry
getw getc(3S) get character or integer from stream
getwd getwd(3) get current working directory pathname
gmtime ctime(3) convert date and time to ASCII
gsignal signal(3) software signals
gtty stty(3C) set and get terminal state
hasmntopt getmntent(3) get file system descriptor file entry
havedisk rstat(3R) get remote host performance data
hcreate hsearch(3) manage hash search tables
hdestroy hsearch(3) manage hash search tables
hsearch hsearch(3) manage hash search tables
htonl byteorder(3N) convert values between host and network byte order
htons byteorder(3N) convert values between host and network byte order
hypot hypot(3M) Euclidean distance
ieee ieee(3M) copysign remainder exponent manipulations
index string(3) string operations
inet addr inet(3N) Internet address manipulation
inet lnaof inet(3N) Internet address manipulation
inet makeaddr inet(3N) Internet address manipulation
inet netof inet(3N) Internet address manipulation
inet network inet(3N) Internet address manipulation
inet ntoa inet(3N) Internet address manipulation

156 Last change: 11 June 1986 Sun Release 3.2

INTRO(3) C LffiRARY FUNCTIONS INTRO(3)

initgroups initgroups(3) initialize group access list
initstate random(3) better random number generator
innetgr getnetgrent(3N) get network group entry
ins que insque(3) insert/remove element from a queue
isalnum ctype(3) character classification and conversion macros
isalpha ctype(3) character classification and conversion macros
isascii ctype(3) character classification and conversion macros
isatty ttyname(3) find name of a terminal
iscntrl ctype(3) character classification and conversion macros
isdigit ctype(3) character classification and conversion macros
isgraph ctype(3) character classification and conversion macros
isinf isinf(3) test for indeterminate floating point values
islower ctype(3) character classification and conversion macros
isnan isinf(3) test for indeterminate floating point values
isprint ctype(3) character classification and conversion macros
ispunct ctype(3) character classification and conversion macros
isspace ctype(3) character classification and conversion macros
is upper ctype(3) character classification and conversion macros
isxdigit ctype(3) character classification and conversion macros
jO jO(3M) Bessel functions
jl jO(3M) Bessel functions
jn jO(3M) Bessel functions
jrand48 drand48 (3) generate uniformly distributed pseudo-random numbers
164a a641(3) convert long to base-64 ASCII
lcong48 drand48(3) generate uniformly distributed pseudo-random numbers
ldexp frexp(3) split into mantissa and exponent
lfind Isearch(3) linear search and update
Igamma Igamma(3M) log gamma function
localtime ctime(3) convert date and time to ASCII
lockf lockf(3) advisory record locking on files
log exp(3M) exponential functions
loglO exp(3M) exponential functions
10gb ieee(3M) copysign remainder exponent manipulations
longjmp se~mp(3) non-local goto
lrand48 drand48(3) generate uniformly distributed pseudo-random numbers
Isearch Isearch(3) linear search and update
malloc malloc(3) memory allocator
malloc _debug malloc(3) memory allocator
malloc _ verify malloc(3) memory allocator
matherr matherr(3M) math library error-handling function
memalign malloc(3) memory allocator
memccpy memory(3) memory operations
memchr memory(3) memory operations
memcmp memory(3) memory operations
memcpy memory(3) memory operations
memset memory(3) memory operations
mkstemp mktemp(3) make a unique file name
mktemp mktemp(3) make a unique file name
modf frexp(3) split into mantissa and exponent
moncontrol monitor(3) prepare execution profile
monitor monitor(3) prepare execution profile
monstartup monitor(3) prepare execution profile
mrand48 drand48(3) generate uniformly distributed pseudo-random numbers

Sun Release 3.2 Last change: 11 June 1986 157

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

nice nice(3C) set program priority
nlist nlist(3) get entries from name list
nrand48 drand48(3) generate uniformly distributed pseudo-random numbers
ntohl byteorder(3N) convert values between host and network byte order
ntohs byteorder(3N) convert values between host and network byte order
on exit onexit(3) name termination handler
opendir directory(3) directory operations
openlog syslog(3) control system log
optarg getopt(3) get option letter from argv
optind getopt(3) get option letter from argv
pause pause(3C) stop until signal
pelose popen(3S) initiate I/O to/from a process
perror perror(3) system error messages
popen popen(3S) initiate I/O to/from a process
pow exp(3M) exponential functions
printf printf(3S) formatted output conversion
prof prof(3) profile within a function
psignal psignal(3) system signal messages
putc putc(3S) put character or word on a stream
putchar putc(3S) put character or word on a stream
putenv utenv(3) change or add value to environment
putpwent putpwent(3) write password file entry
puts puts(3S) put a string on a stream
putw putc(3S) put character or word on a stream
qsort qsort(3) quicker sort
rand rand(3C) random number generator
random random(3) better random number generator
rcmd rcmd(3N) routines for returning a stream to a remote command
re_comp regex(3) regular expression handler
re exec regex(3) regular expression handler
readdir directory(3) directory operations
realloc malloc(3) memory allocator
regexp regexp(3) regular expression compile and match routines
remque insque(3) insert/remove element from a queue
res init resolver(3X) Internet name server routines
res _ mkquery resolver(3) Internet name server routines
res send resolver(3) Internet name server routines
rewind fseek(3S) reposition a stream
rewinddir directory(3) directory operations
rex rex(3R) remote execution protocol
rexec rexec(3N) return stream to a remote command
rindex string(3) string operations
rint tloor(3M) round to nearest integer
rnusers rnusers(3R) return info about users on remote hosts
rquota rquota(3R) implement quotas on remote hosts
rresvport rcmd(3N) routines for returning a stream to a remote command
rstat rstat(3R) get remote host performance data
roserok rcmd(3N) routines for returning a stream to a remote command
rosers rnusers(3R) return info about users on remote hosts
rwall rwall(3R) write to remote host
scalb ieee(3M) copysign remainder exponent manipulations
scandir scandir(3) scan a directory
scanf scanf(3S) formatted input conversion

158 Last change: 11 June 1986 Sun Release 3.2

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

seed48 drand48 (3) generate uniformly distributed pseudo-random numbers
seekdir directory(3) directory operations
setbuf setbuf(3S) assign buffering to a stream
setbuffer setbuf(3S) assign buffering to a stream
setegid setuid(3) set user and group ID
seteuid setuid(3) set user and group ID
setfsent getfsent(3) get file system descriptor file entry
setgid setuid(3) set user and group ID
setgrent getgrent(3) get group file entry
sethostent gethostent(3N) get network host entry
setjmp setjmp(3) non-local goto
setkey crypt(3) DES encryption
setlinebuf setbuf(3S) assign buffering to a stream
setlinebuf setbuf(3S) assign buffering to a stream
setmntent getmntent(3) get file system descriptor file entry
setnetent getnetent(3N) get network entry
setnetgrent getnetgrent(3N) get network group entry
setprotoent getprotoent(3N) get protocol entry
setpwent getpwent(3) get password file entry
setrgid setuid(3) set user and group ID
setruid setuid(3) set user and group ID
setservent getservent(3N) get service entry
sets tate random(3) better random number generator
setuid setuid(3) set user and group ID
setvbuf setbuf(3S) assign buffering to a stream
siginterrupt siginterrupt(3) allow signals to interrupt system calls
signal signal(3) simplified software signal facilities
sin sin(3M) trigonometric functions
sinh sinh(3M) hyperbolic functions
sleep sleep(3) suspend execution for interval
spray spray(3R) scatter packets to check network
sprintf printf(3S) formatted output conversion
sqrt sqrt(3M) square root
srand rand(3C) random number generator
srand48 drand48(3) generate uniformly distributed pseudo-random numbers
srandom random(3) better random number generator
sscanf scanf(3S) formatted input conversion
ssignal ssignal(3) software signals
stdio intro(3S) standard buffered input/output package
strcat string(3) string operations
strcmp string(3) string operations
strcpy string(3) string operations
strlen string(3) string operations
strncat string(3) string operations
strncmp string(3) string operations
strncpy string(3) string operations
strtod strtod(3) convert string to double-precision number
strtol strtol(3) convert string to integer
stty stty(3C) set and get terminal state
swab swab(3) swap bytes
sys _ errlist perror(3) system error messages
sys_nerr perror(3) system error messages
sys _siglist psignal(3) system signal messages

Sun Release 3.2 Last change: 11 June 1986 159

INTRO(3) C LIBRARY FUNCTIONS INTRO(3)

syslog syslog(3) control system log
system system(3) issue a shell command
tan sin(3M) trigonometric functions
tanh sinh(3M) hyperbolic functions
tdelete tsearch(3) manage binary search trees
telldir directory(3) directory operations
tfind tsearch(3) manage binary search trees
time time(3C) get date and time
times times(3C) get process times
timezone ctime(3) convert date and time to ASCII
tmpfile tmpfile(3S) create a temporary file
tmpnam tmpnam(3S) create a name for a temporary file
toascii ctype(3) character classification and conversion macros
tolower ctype(3) character classification and conversion macros
toupper ctype(3) character classification and conversion macros
tsearch tsearch(3) manage binary search trees
ttyname ttyname(3) find name of a terminal
ttyslot ttyname(3) find name of a terminal
twalk tsearch(3) manage binary search trees
ualarm ualarm(3) schedule signal after microsecond interval
ulimit ulimit(3C) get and set user limits
ungetc ungetc(3S) push character back into input stream
usleep usleep(3S) suspend execution for micorsecond interval
utime utime(3C) set file times
valloc valloc(3) aligned memory allocator
values values(3) machine-dependent values
varargs varargs(3) variable argument list
vfprintf vprintf(3S) print formatted output of a varargs argument list
vlimit vlimit(3C) control maximum system resource consumption
vprintf vprintf(3S) print formatted output of a varargs argument list
vsprintf vprintf(3S) print formatted output of a varargs argument list
vtimes vtimes(3C) get information about resource utilization
yO jO(3M) Bessel functions
yl jO(3M) Bessel functions
yn jO(3M) Bessel functions
yp_all ypclnt(3N) YP client interface routines
yp_bind ypclnt(3N) yP client interface routines
yp_first ypclnt(3N) yP client interface routines
yp _get_ default_domain ypclnt(3N) yP client interface routines
yp_master ypclnt(3N) yP client interface routines
yp_match ypclnt(3N) YP client interface routines
yp_next ypclnt(3N) yP client interface routines
yp_order ypc1nt(3N) YP client interface routines
yp_unbind ypclnt(3N) YP client interface routines
ypclnt ypclnt(3N) YP client interface routines
yperr _string ypclnt(3N) YP client interface routines
yppasswd yppasswd(3R) update user yP password
ypprot_err ypclnt(3N) YP client interface routines

160 Last change: 11 June 1986 Sun Release 3.2

A64L(3) C LffiRARY FUNCTIONS A64L(3)

NAME
a64l, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char *s;

char * 164a (I)
long I;

DESCRIPTION

BUGS

to long integer" These functions are used to maintain numbers stored in base-64 ASCII characters. This is a
notation by which long integers can be represented by up to six characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, I for 1,0 through 9 for 2-11, A through Z for 12-37,
and a through z for 38-63.

A641 takes a pointer to a null-terminated base-64 representation and returns a corresponding long value. If
the string pointed to by s contains more than six characters, a641 will use the first six.

164a takes a long argument and returns a pointer to the corresponding base-64 representation. If the argu­
ment is 0, 164a returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the contents of which are overwritten by each
call.

Sun Release 3.2 Last change: 15 April 1986 161

ABORT(3)

NAME
abort - generate a fault

SYNOPSIS
abortO

DESCRIPTION

C LIBRARY FUNCTIONS ABORT(3)

abort first closes all open files if possible, then causes an lOT signal to be sent to the process. This signal
usually results in termination with a core dump, which may be used for debugging.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case the value returned is
that of the Idll (2) system call.

SEE ALSO
adb(l), signal(3), exit(2), kill(2)

DIAGNOSTICS

162

If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is produced and
the message "abort - core dumped" is written by the shell.

Last change: 15 April 1986 Sun Release 3.2

ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)
int i;

DESCRIPTION

C LIBRARY FUNCTIONS

Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M) for Jabs

BUGS

ABS(3)

Applying the abs function to the most negative integer generates a result which is the most negative
integer. That is, abs(Ox80000000) returns Ox80000000 as a result.

Sun Release 3.2 Last change: 27 August 1983 163

ASSERT(3)

NAME
assert - program verification

SYNOPSIS
#include <assert.h>

assert(expression)

DESCRIPTION

C LmRARY FUNCTIONS ASSERT(3)

Assert is a macro that indicates expression is expected to be true at this point in the program. It causes an
exit(2) with a diagnostic comment on the standard output when expression is false (0). Compiling with the
cc(l) option -DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
, Assertion failed: file fline n.' F is the source file and n the source line number of the assert statement.

164 Last change: 23 August 1983 Sun Release 3.2

BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch «char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a pointer into a
table indicating where a datum may be found. The table must be previously sorted in increasing order
according to a provided comparison function. key points to a datum instance to be sought in the table.
base points to the element at the base of the table. nel is the number of elements in the table. com par is the
name of the comparison function, which is called with two arguments that point to the elements being com­
pared. The function must return an integer less than, equal to, or greater than zero as accordingly the first
argument is to be considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a string and its length. The
table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node, in which case it prints out the
string and its length, or it prints an error message.

Sun Release 3.2

#include <stdio.h>
#include <search.h>

#define T ABSIZE 1000

struct node { /* these are stored in the table */

};

char *string;
int length;

struct node table [TAB SIZE] ; /* table to be searched */

{
structnode*node~tt,node;

int node _ compare(); /* routine to compare 2 nodes */
char stt_space[20]; /* space to read string into */

node.string = str _space;
while (scanf("%stt, node.string) != EOF) {

nodeytr = (struct node *)bsearch«char *)(&node),
(char *)table, T ABSIZE,
sizeof(struct node), node_compare);

if (node ~tr != NULL) {

} else {

}

(void)printf(ttstring = %20s, length = %d\n" ,
node ~tr->string, node ~tr->length);

(void)printf("not found: %s\n", node.string);

Last change: 15 April 1986 165

BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH(3)

NOTES

}
/*

*/
int

}

This routine compares two nodes based on an
alphabetical ordering of the string field.

node _ compare(nodel, node2)
struct node *nodel, *node2;
{

return strcmp(node 1->string, node2->string);
}

The pointers to the key and the element at the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to­
element.

SEE ALSO
hsearch(3), Isearch(3), qsort(3), tsearch(3)

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

166 Last change: 15 Apri11986 Sun Release 3.2

BSTRING(3) C LffiRARY FUNCTIONS BSTRING(3)

NAME
bstring, bcopy, bcmp, bzero, ffs - bit and byte string operations

SYNOPSIS
bcopy(bl, b2, length)
char *bl, *b2;
int length;

bcmp(bl, b2, length)
char *bl, *b2;
int length;

bzero(b, length)
char *b;
int length;

ffs(i)
int i;

DESCRIPTION
The functions beopy, bemp, and bzero operate on variable length strings of bytes. They do not check for
null bytes as the routines in string(3) do.

Beopy copies length bytes from string bl to the string b2. Overlapping strings are handled correctly.

Bemp compares byte string bI against byte string b2, returning zero if they are identical, non-zero other­
wise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string b.

Pfs finds the first bit set in the argument passed it and returns the index of that bit. Bits are numbered start­
ing at 1 from the right. A return value of -1 indicates the value passed is zero.

CAVEAT
The bemp and bcopy routines take parameters backwards from strcmp and strcpy.

Sun Release 3.2 Last change: 7 November 1984 167

CRYPT(3) C LIBRARY FUNCTIONS CRYPT(3)

NAME
crypt, setkey, encrypt - password and data encryption

SYNOPSIS
char * crypt(key , salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, ed8ag)
char *block;

DESCRIPTION
crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, with variations
intended (among other things) to frustrate use of hardware implementations of the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a 2-character string chosen
from the set [a-zA-ZO-9JJ. The salt string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeatedly a constant string. The returned
value points to the encrypted password, in the same alphabet as the salt The first two characters are the
salt itself.

The setke] and encrypt entries provide (rather primitive) access to the DES algorithm. The argument of
setke] is a character array of length 64 containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which is
set into the machine. This is the key that will be used with the above mentioned algorithm to encrypt or
decrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only the characters with
numerical value 0 and 1. The argument array is modified in place to a similar array representing the bits of
the argument after having been subjected to the DES algorithm using the key set by setkey. If edjlag is
zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(l), passwd(5), 10gin(1), getpass(3)

BUGS
The return value points to static data whose content is overwritten by each call.

168 Last change: 15 April 1986 Sun Release 3.2

CTIME(3) C LmRARY FUNCTIONS CTIME(3)

NAME

ctime, localtime, gmtime, asctime, timezone, dysize - convert date and time to Ascn

SYNOPSIS
char *ctime(c1ock)
long *c1ock;

#include <time.h>

struct tm *localtime(c1ock)
long *c1ock;

struct tm *gmtime(c1ock)
long *c1ock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

int dysize(y)
int y;

DESCRIPTION

ctime converts to ASCII a long integer, pointed to by clock, that represents the time in seconds since Jan. 1,
1970,00:00, Greenwich Mean Time. It returns a pointer to a 26-character string of the form:

Sun Sep 1601:03:52 1973\n\0

Each field has a constant width. localtime and gmtime return pointers to structures containing the broken­
down time. localtime corrects for the time zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time UNIX uses. asctime converts a broken-down time to ASCII and returns
a pointer to a 26-character string.

Declarations of all the functions and externals, and the "tm" structure, are in the <time.h> header file.
The structure declaration is:

struct tm {

};

int tm_sec;
int tm_min;
int tm _hour;
int tm _ mday;
int tm_mon;
int tmyear;
int tm _ wday;
int tm _yday;
int tm _isdst;

/* seconds (0 - 59) */
/* minutes (0 - 59) */

/* hours (0 - 23) */
/* day of month (1 - 31) */
/* month of year (0 - 11) */

/* year - 1900 */
/* day of week (Sunday = 0) */

/* day of year (0 - 365) */

tm _isdst is non-zero if Daylight Savings Time is in effect.

When local time is called for, the program consults the system to determine the time zone and whether the
U.S.A., Canadian, Australian, Eastern European, Middle European, or Western European daylight saving
time adjustment is appropriate. The program knows about various peculiarities in time conversion over the
past 10-20 years.

time zone returns the name of the time zone associated with its first argument, which is measured in minutes
westward from Greenwich. If the second argument is 0, the standard name is used, otherwise the Daylight
Savings Time version. If the required name does not appear in a table built into the routine, the difference
from GMT is produced; e.g., in Afghanistan timezone(-(60*4 +30), 0) is appropriate because it is 4:30
ahead of GMT and the string GMT +4:30 is produced.

Sun Release 3.2 Last change: 15 April 1986 169

CTIME(3) C LIBRARY FUNCTIONS CTIME(3)

dysize returns the number of days in the argument year, either 365 or 366.

SEE ALSO
gettimeofday(2), time(3C), getenv(3), environ(5V), ctime(3V)

BUGS
The return values point to static data, whose contents are overwritten by each call.

170 Last change: 15 April 1986 Sun Release 3.2

CTYPE(3) C LIBRARY FUNCTIONS CTYPE(3)

NAME
ctype, isalpha, isupper, is lower, is digit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, is ascii, is graph,
toupper, tolower, toascii - character classification and conversion macros and functions

SYNOPSIS
#include <ctype.h>

isalpha(c)

CHARACTER CLASSIFICATION MACROS
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero
for true, zero for false. isascii is defined on all integer values; the rest are defined only where isascii(c) is
true and on the single non-ASCII value EOP (see stdio(3S».

isalpha(c) c is a letter

isupper(c) c is an upper case letter

islower(c) c is a lower case letter

isdigit(c) c is a digit [0-9].

isxdigit(c) c is a hexadecimal digit [0-9], [A-F], or [a-f].

isalnum(c) c is an alphanumeric character, that is, c is a letter or a digit

isspace(c) c is a space, tab, carriage return, newline, vertical tab, or formfeed

ispunct(c) c is a punctuation character (neither control nor alphanumeric)

isprint(c) c is a printing character, code 040(8) (space) through 0176 (tilde)

iscntrl(c) c is a delete character (0177) or ordinary control character (less than 040).

isascii(c) c is an ASCII character, code less than 0200

isgraph(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde).

CHARACTER CONVERSION MACROS
These macros perform simple conversions on single characters.

toupper(c) converts c to its upper-case equivalent. Note that this only works where c is known to be a
lower-case character to start with (presumably checked via islower).

tolower(c) converts c to its lower-case equivalent. Note that this only works where c is known to be a
upper-case character to start with (presumably checked via isupper).

toascii(c) masks c with the correct value so that c is guaranteed to be an ASCII character in the range 0
thru Ox7f.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the result is undefined.

SEE ALSO
stdio(3S), ascii(7), ctype(3V)

Sun Release 3.2 Last change: 15 April 1986 171

DES_CRYPf(3) C LmRARY FUNCTIONS

NAME
des_crypt, ecb _crypt, cbc _ crypt, des _ setparity - fast DES encryption

SYNOPSIS
#include <des _ crypt.h>

int ecb_crypt(key, data, datalen, mode)
char *key;
char *data;
unsigned datalen;
unsigned mode;

int cbc_crypt(key, data, datalen, mode, ivec)
char *key;
char *data;
unsigned datalen;
unsigned mode;
char *ivec;

void des _ setparity(key)
char *key;

DESCRIPTION
ecb _crypt and cbc _crypt implement the NBS Data Encryption Standard (DES). These routines are faster
and more general purpose than crypt (3). They also are able to utilize DES hardware if it is available.
ecb _crypt encrypts in Electronic Code Book (ECB) mode, which encrypts blocks of data independently.
cbc _crypt encrypts in Cipher Block Chaining (CBC) mode, which chains together successive blocks. CBC
mode protects against insertions, deletions and substitutions of blocks. Also, regularities in the clear text
will not appear in the cipher text.

Here is how to use these routines. The first parameter, lu!y, is the 8-byte encryption key with parity. To set
the key's parity, which for DES is in the low bit of each byte, use des _set parity. The second parameter,
data, contains the data to be encrypted or decrypted. The third parameter, datalen, is the length in bytes of
data, which must be a multiple of 8. The fourth parameter, mode, is formed by or'ing together some things.
For the encryption direction 'or' in either DES_ENCRYPT or DES_DECRYPT. For software versus hardware
encryption, 'or' in either DES_HW or DES_SW. If DES_HW is specified, and there is no hardware, then the
encryption is performed in software and the routine returns DESERR _NOHWDEVICE. For cbc _crypt, the
parameter ivec is the the 8-byte initialization vector for the chaining. It is updated to the next initialization
vector upon return.

DIAGNOSTICS
DESERR NONE

no error.
DES ERR NOHWDEVICE

encryption succeeded, but done in software instead of the requested hardware.
DESERR HWERR

an error occurred in the hardware or driver.
DESERR BADPARAM

bad parameter to routine.

Given a result status stat, the macro DES _FAILED(stat) is false only for the first two statuses.

RESTRICTIONS
These routines are not available for export outside the U.S.

SEE ALSO
crypt(3), des(1)

172 Last change: 28 March 1986 Sun Release 3.2

DIRECTORY (3) C LffiRARY FUNCTIONS DIRECTORY (3)

NAME
directory, opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(filename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long teUdir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

c1osedir(dirp)
DIR *dirp;

DESCRIPTION
opendir opens the directory named by filename and associates a directory stream with it. opendir returns a
pointer to be used to identify the directory stream in subsequent operations. The pointer NULL is returned
if filename cannot be accessed or is not a directory, or if it cannot malloc(3) enough memory to hold the
whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end of the direc­
tory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream. The new position reverts to
the one associated with the directory stream when the telldir operation was performed. Values returned by
telldir are good only for the lifetime of the DIR pointer from which they are derived. If the directory is
closed and then reopened, the telldir value may be invalidated due to undetected directory compaction. It
is safe to use a previous telldir value immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

closedir closes the named directory stream and frees the structure associated with the DIR pointer.

Sample code which searchs a directory for entry "name" is:

SEE ALSO

len = strlen(name);
dirp = opendir(" .");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp»

if (dp->d _ namlen == len && !strcmp(dp->d _name, name» {
closedir(dirp);

}
closedir(dirp);

return FOUND;

return NOT_FOUND;

open(2), close(2), read(2), Iseek(2), getwd(3), dir(5)

Sun Release 3.2 Last change: 17 July 1986 173

DIRECTORY (3) C LIBRARY FUNCTIONS DIRECTORY (3)

NOTES

174

All UNIX programs that examine directories must be converted to use this package in Sun release 3.0 and
beyond. Direct reading of directories is no longer allowed. SH BUGS The new directory format is not
obvious.

Last change: 17 July 1986 Sun Release 3.2

DRAND48(3) C LIBRARY FUNCTIONS DRAND48(3)

NAME

delim$$

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, Icong48 - generate uniformly dis­
tributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedvaI)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3];

void Icong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-known linear congruential algo­
rithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point values uniformly dis­
tributed over the interval $[0.0,-1.0).$

Functions lrand48 and nrand48 return non-negative long integers uniformly distributed over the interval
$[0,-2 sup 31).$

Functions mrand48 andjrand48 return signed long integers uniformly distributed over the interval $[-2 sup
31 ,~sup 31).$

Functions srand48, seed48, and lcong48 are initialization entry points, one of which should be invoked
before either drand48, lrand48, or mrand48 is called. (Although it is not recommended practice, constant
default initializer values will be supplied automatically if drand48, lrand48, or mrand48 is called without a
prior call to an initialization entry point.) Functions erand48, nrand48, andjrand48 do not require an ini­
tialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, $X sub i ,$ according to the linear
congruential formula

X sub{n+1r=-(aX sub n"+"c) sub{roman mod-mr------n>=O.

The parameter $m" = "2 sup 48$; hence 48-bit integer arithmetic is performed. Unless lcong48 has been
invoked, the multiplier value a and the addend value c are given by

a-mark =-roman 5DEECE66D"sub 16-=-roman 273673163155"sub 8
c1ineup =-roman B"sub 16-=-roman 13"sub 8 .

The value returned by any of the functions drand48, erand48, Irand48, nrand48, mrand48, or jrand48 is
computed by first generating the next 48-bit $X sub i$ in the sequence. Then the appropriate number of
bits, according to the type of data item to be returned, are copied from the high-order (leftmost) bits of $X
sub i$ and transfonned into the returned value.

Sun Release 3.2 Last change: 15 April 1986 175

DRAND48(3) C LmRARY FUNCTIONS DRAND48(3)

The functions drand48, lrand48 , and mrand48 store the last 48-bit $X sub i$ generated in an internal
buffer; that is why they must be initialized prior to being invoked The functions erand48, nrand48, and
jrand48 require the calling program to provide storage for the successive $X sub i$ values in the array
specified as an argument when the functions are invoked. That is why these routines do not have to be ini­
tialized; the calling program merely has to place the desired initial value of $X sub i$ into the array and
pass it as an argument By using different arguments, functions erand48, nrand48, and jrand48 allow
separate modules of a large program to generate several independent streams of pseudo-random numbers,
i.e., the sequence of numbers in each stream will not depend upon how many times the routines have been
called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of $X sub i$ to the 32 bits contained in its argu­
ment The low-order 16 bits of$X sub i$ are set to the arbitrary value $roman 330E sub 16.$

The initializer function seed48 sets the value of $X sub i$ to the 48-bit value specified in the argument
array. In addition, the previous value of $X sub i$ is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seed48. This returned pointer, which can just
be ignored if not needed, is useful if a program is to be restarted from a given point at some future time -
use the pointer to get at and store the last $X sub i$ value, and then use this value to reinitialize via seed48
when the program is restarted.

The initialization function lcong48 allows the user to specify the initial $X sub i ,$ the multiplier value Sa,S
and the addend value $c.$ Argument array elements param[O-2] specify $X sub i ,$ param[3-5] specify
the multiplier $a,$ and param[6] specifies the 16-bit addend $c.$ After lcong48 has been called, a subse­
quent call to either srand48 or seed48 will restore the "standard" multiplier and addend values, a and
$c,$ specified on the previous page.

SEE ALSO
rand(3C)

176 Last change: 15 April 1986 Sun Release 3.2

ECVT(3) C LIBRARY FUNCTIONS ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, bul)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer thereto. The
position of the decimal point relative to the beginning of the string is stored indirectly through decpt (nega­
tive means to the left of the returned digits). If the sign of the result is negative. the word pointed to by
sign is non-zero. otherwise it is zero. The low-order digit is rounded.

F cvt is identical to ecvt. except that the correct digit has been rounded for Fortran F-format output of the
number of digits specified by ndigits.

Gcvt converts the value to a null-terminated ASCII string in buf and returns a pointer to buf It attempts to
produce ndigit significant digits in Fortran F format if possible, otherwise E format, ready for printing.
Trailing zeros may be suppressed.

SEE ALSO
isinf(3). printf(3S)

BUGS
The return values point to static data whose content is overwritten by each call.

Sun Release 3.2 Last change: 23 August 1983 177

END(3) C LmRARY FUNCTIONS ENO(3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of etext is the
first address above the program text, edata above the initialized data region, and end above the uninitialized
data region.

When execution begins, the program break (the first location beyond the data) coincides with end, but it is
reset by the routines brk(2), malloc(3), standard input/output (stdio(3S», the profile (-p) option of cc(I),
and so on. Thus, the current value of the program break should be determined by sbrk(O) (see brk(2».

SEE ALSO
brk(2), mal1oc(3)

178 Last change: 15 April 1985 Sun Release 3.2

EXECL(3) C LIBRARY FUNCTIONS EXECL(3)

NAME
execl, exec v , execle, execlp, execvp - execute a file

SYNOPSIS
execl(name, argO, argl, ••• , argn, 0)
char *name, *argO, *argl, •.• , *argn;

execv(name,argv)
char *name, *argv[];

execle(name, argO, argl, •• ., argn, 0, envp)
char *name, *argO, *argl, ••• , *argn, *envp[];

execlp(name, argO, argl, ••• , argn, 0)
char *name, *argO, *argl, ••• , *argn;

execvp(narne,argv)
char *name, *argv[];

extern char **environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to e:xecve (2) for a description of
their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the entry point of the
core image of the file. There can be no return from a successful exec; the calling core image is lost

The name argument is a pointer to the name of the file to be executed. The pointers arg[O], arg[l] ...
address null-terminated strings. Conventionally arg [0] is the name of the file.

Two interfaces are available. execl is useful when a known file with known arguments is being called; the
arguments to execl are the character strings constituting the file and the arguments; the first argument is
conventionally the same as the file name (or its last component). A 0 argument must end the argument list

The e:xecv version is useful when the number of arguments is unknown in advance; the arguments to execv
are the name of the file to be executed and a vector of strings containing the arguments. The last argument
string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
As indicated, argc is conventionally at least one and the first member of the array points to a string contain­
ing the name of the file.

Argv is directly usable in another execv because argv[argc] is O.

Envp is a pointer to an array of strings that constitute the environment of the process. Each string consists
of a name, an "=", and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(1) passes an environment entry for each global shell variable defined when the program is called.
See environ(5V) for some conventionally used names. The C run-time start-off routine places a copy of
envp in the global cell environ, which is used by execv and execl to pass the environment to any subpro­
grams executed by the current program.

E:xeclp and execvp are called with the same arguments as e:xecl and execv, but duplicate the shell's actions
in searching for an executable file in a list of directories. The directory list is obtained from the environ­
ment

Sun Release 3.2 Last change: 27 March 1985 179

EXECL(3) C LIBRARY FUNCTIONS EXECL(3)

FILES
Ibinlsh shell, invoked if command file found by execlp or execvp

SEE ALSO
execve(2), fork(2), environ(5V), csh(I), sh(l)

UNIX Programming in Programming Utilities for the Sun Workstation,

UNIX Interface Overview

DIAGNOSTICS

180

If the file cannot be found, if it is not executable, if it does not start with a valid magic number (see
a.out(5», if maximum memory is exceeded, or if the arguments require too much space, a return consti­
tutes the diagnostic; the return value is -1. Even for the super-user, at least one of the execute-permission
bits must be set for a file to be executed.

Last change: 27 March 1985 Sun Release 3.2

EXIT(3) C LIBRARY FUNCTIONS

NAME
exit - terminate a process after performing cleanup

SYNOPSIS
exit(status)
int status;

DESCRIPTION

EXIT(3)

Exit terminates a process by calling exit(2) after calling any termination handlers named by calls to
on _exit. Normally, this is just the Standard I/O library function _cleanup. Exit never returns.

SEE ALSO
exit(2), intro(3S), on _ exit(3)

Sun Release 3.2 Last change: 21 September 1984 181

FDATE(3F) FORTRAN LIBRARY ROUTINES

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
character*24 string

character*24 function fdateO

DESCRIPTION

FDATE(3P)

fdate returns the current date and time as a 24 character string in the format described under ctime(3). Nei­
ther 'newline' nor NULL will be included.

fdate can be called either as a function or as a subroutine. If called as a function, the calling routine must
define its- type and length. For example:

FILES

character*24 fdate
write(*, *) fdateO

lusrllib/libU77.a

SEE ALSO
ctime(3), time(3F), idate(3F)

182 Last change: 17 July 1986 Sun Release 3.2

FREXP(3) C LIBRARY FUNCTIONS

NAME
frexp, ldexp, modi - floating point analysis and synthesis

SYNOPSIS
double rrexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;
int exp;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

FREXP(3)

Frexp returns the significand of a double value as a double quantity, x, of magnitude less than 1 and stores
an integer n, indirectly through eptr, such that value = x* 2n.

The results are not defined when value is an IEEE infinity or NaN.

ldexp returns the quantity:

value * Zexp.

mod/returns the positive fractional part of value and stores the integer part indirectly through iptr. Thus the
argument value and the returned values mod/ and *iptr would satisfy, in the absence of rounding error,

(* iptr + mod/) == value

and

o <= modf < abs(value).

The results are not defined when value is an IEEE infinity or NaN.

Note that the definition of mod/varies among Unix implementations; avoid modfin portable code.

SEE ALSO
isinf(3)

Sun Release 3.2 Last change: 8 August 1985 183

FrOK(3) C LffiRARY FUNCTIONS FrOK(3)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sysltypes.h>
#include <syslipc.h>

key _ t rtok(patb, id)
char *patb;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key to be used by the msgget(2),
semget(2), and shmget(2) system calls to obtain interprocess communication identifiers. One suggested
method for forming a key is to use the ftok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining portion as a sequence number.
There are many other ways to form keys, but it is necessary for each system to define standards for forming
them. If some standard is not adhered to, it will be possible for unrelated processes to unintentionally inter­
fere with each other's operation. Therefore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across a given system.

ftok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget system
calls. path must be the path name of an existing file that is accessible to the process. id is a character
which uniquely identifies a project. Note thatftok will return the same key for linked files when called with
the same id and that it will return different keys when called with the same file name but different ids .

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS
ftokreturns (key_t) -1 if path does not exist or if it is not accessible to the process.

WARNING

184

If the file whose path is passed to ftok is removed when keys still refer to the file, future calls to ftok with
the same path and id will return an error. If the same file is recreated, thenftok is likely to return a dif­
ferent key than it did the original time it was called.

Last change: 30 April 1986 Sun Release 3.2

FIW(3) C LIBRARY FUNCTIONS FfW(3)

NAME
ftw - walk a file tree

SYNOPSIS
#include <Itw.h>

int ftw (path, In, depth)
char .path;
int (*In) ();
int depth;

DESCRIPTION

ftw recursively descends the directory hierarchy rooted in path. For each object in the hierarchy, ftw calls
fn, passing it a pointer to a null-terminated character string containing the name of the object, a pointer to a
stat structure (see stat(2» containing infonnation about the object, and an integer. Possible values of the
integer, defined in the <ftw.h> header file, are FIW_F for a file, FIW_D for a directory, FIW_DNR for a
directory that cannot be read, and FlW _NS for an object for which stat could not successfully be executed.
If the integer is FIW _ DNR, descendants of that directory will not be processed. If the integer is FTW _NS,
the stat structure will contain garbage. An example of an object that would cause FIW _NS to be passed to
fn would be a file in a directory with read but without execute (search) permission.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation offn returns a nonzero value, or some
error is detected withinftw (such as an I/O error). If the tree is exhausted,ftw returns zero. Iffn returns a
nonzero value, ftw stops its tree traversal and returns whatever value was returned by fn. If ftw detects an
error, it returns -1, and sets the error type in errno.

ftw uses one file descriptor for each level in the tree. The depth argument limits the number of file descrip­
tors so used. If depth is zero or negative, the effect is the same as if it were 1. Depth must not be greater
than the number of file descriptors currently available for use. Ftw will run more quickly if depth is at least
as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3)

Because ftw is recursive, it is possible for it to terminate with a memory fault when applied to very deep file
structures.
It could be made to run faster and use less storage on deep structures at the cost of considerable complex­
ity.
ftw uses malloc(3) to allocate dynamic storage during its operation. Ifftw is forcibly terminated, such as by
longjmp being executed by In or an interrupt routine, Jtw will not have a chance to free that storage, so it
will remain pennanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value at its next invocation.

Sun Release 3.2 Last change: 17 April 1986 185

GETCWD(3) C LIBRARY FUNCTIONS GETCWD(3)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *buf;
iot size;

DESCRIPTION
getcwd returns a pointer to the current directory pathname. The value of size must be at least two greater
than the length of the pathname to be returned.

If bufis a NULL pointer, getcwd will obtain size bytes of space using malloc(3). In this case, the pointer
returned by getcwd may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the output of the pwd(l) command into the
specified string space.

EXAMPLE
char *cwd, *getcwdO;

if «cwd = getcwd«char *)NULL, 64» == NULL) {
perror("pwd");
exit(I);

}
printf("%s\n" , cwd);

SEE ALSO
malloc(3), popen(3S), pwd(l)

DIAGNOSTICS

BUGS

186

Returns NULL with errno set if size is not large enough, or if an error ocurrs in a lower-level function.

Since this function uses popen to create a pipe to the pwd command, it is slower than getwd and gives
poorer error diagnostics. getcwd is provided only for compatibility with other UNIX systems.

Last change: 15 April 1986 Sun Release 3.2

GETENV(3) C LffiRARY FUNCTIONS

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION

GETENV(3)

Getenv searches the environment list (see environ(5V» for a string of the form name=value, and returns a
pointer to the string value if such a string is present, otherwise NULL pointer.

SEE ALSO
environ(5V), execve(2), putenv(3)

Sun Release 3.2 Last change: 187

GETFSENT (3) C LIBRARY FUNCTIONS GETFSENT (3)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry

SYNOPSIS
#include <fstab.h>

struct fstab *getfsentO

struct fstab *getfsspec(spec)
char *spec;

struct fstab *getrsfile(file)
char *file;

struct fstab *getfstype(type)
char *type;

int setrsentO

int endfsentO

DESCRIPTION

FILES

These routines are included for compatibility with 4.2 BSD; they have been superseded by the
getmntent(3) library routines.

getfsent, getfsspec, getfstype,. and getfsfile each return a pointer to an object with the following structure
containing the broken-out fields of a line in the file system description file, <fstab.h>.

struct fstab {
char

};

char
char
int
int

*fs_spec;
*fs_ file;
*fs_type;
fs_freq;
fsyassno;

The fields have meanings described infstab(5).

getfsent reads the next line of the file, opening the file if necessary.

setfsent opens and rewinds the file.

end/sent closes the file.

getfsspec and getfsfile sequentially search from the beginning of the file until a matching special file name
or file system file name is found, or until EOF is encountered. getfstype does likewise, matching on the file
system type field

letclfstab

SEE ALSO
fstab(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
The return value points to static information which is overwritten in each call.

188 Last change: 17 July 1986 Sun Release 3.2

GETGRENT(3) C LmRARY FUNCTIONS GETGRENT (3)

NAME
getgrent, getgrgid, getgmam, setgrent, endgrent, fgetgrent - get group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrentO

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

setgrentO

endgrentO

struct group *fgetgrent(f)
FILE
*f;

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure containing
the broken-out fields of a line in the group file. Each line contains a "group" structure, defined in the
<grp.h> header file.

struct group {
char
char
int
char

};

*gr_name;
*gr ""passwd;
grJid;

The members of this structure are:

gr name The name of the group.
gr yasswd The encrypted password of the group.
gr _gid The numerical group ID.
gr _ mem A null-terminated array of pointers to the individual member names.

Getgrent when first called returns a pointer to the first group structure in the file; thereafter, it returns a
pointer to the next group structure in the file; so, successive calls may be used to search the entire file. Get­
grgid searches from the beginning of the file until a numerical group id matching gid is found and returns a
pointer to the particular structure in which it was found. Getgrnam searches from the beginning of the file
until a group name matching name is found and returns a pointer to the particular structure in which it was
found. IT an end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent may be
called to close the group file when processing is complete.

F getgrent returns a pointer to the next group structure in the stream I, which must refer to an open file in
the same format as the group file letdgroup.

fete/group
fete/yp/ domainname / group.byname
/ete/yp/domainname/group.bygid

SEE ALSO
getlogin(3), getpwent(3), group(5), ypserv(8)

Sun Release 3.2 Last change: 15 May 1986 189

GETGRENT (3) C LmRARY FUNCTIONS GETGRENT (3)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

190

The above routines use <stdio.h>, which causes them to increase the size of programs, not otherwise using
standard 110, more than might be expected.

All information is contained in a static area, so it must be copied if it is to be saved.

Unlike the corresponding routines for passwords (see getwpent(3», which always search the entire file,
these routines start searching from the current file location.

Last change: 15 May 1986 Sun Release 3.2

GE1LOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char * getioginO

DESCRIPTION

C LIBRARY FUNCTIONS GE1LOGIN (3)

getlogin returns a pointer to the login name as found in letc/utmp. It may be used in conjunction with
getpwnam to locate the correct password file entry when the same user ill is shared by several login names.

FILES

If getlogin is called within a process that is not attached to a terminal, or if there is no entry in letc/utmp
for the process's terminal, it returns a NULL pointer. The correct procedure for determining the login
name is to call cuserid, or to call getlogin and, if it fails, to call getpwuid(getuidO).

letc/utmp

SEE ALSO
cuserid(3S), getpwent(3), utmp(5)

DIAGNOSTICS
Returns a NULL pointer if the name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

getlogin does not work for processes running under a ply (for example, emacs shell buffers, or shell tools)
unless the program "fakes" the login name in the letdutmp file.

Sun Release 3.2 Last change: 17 July 1986 191

GETMNTENT (3) C LffiRARY FUNCTIONS GETMNTENT(3)

NAME
getmntent, setmntent, addrnntent, endmntent, hasrnntopt - get file system descriptor file entry

SYNOPSIS
#include <stdio.h>
#include <mntent.h>

FILE *setmntent(filep, type)
char *fiIep;
char *type;

struct mntent * getmntent(6iep)
FILE *fiIep;

int addmntent(filep, mnt)
FILE *fiIep;
struct mntent *mnt;

char *hasmntopt(mnt, opt)
struct mntent *mnt;
char *opt;

int endmntent(fiIep)
FILE *fiIep;

DESCRIPTION

FILES

These routines replace the get/sent routines for accessing the file system description file letc/fstab. They
are also used to access the mounted file system description file letclmtab.

Setmntent opens a file system description file and returns a file pointer which can then be used with
getmntent, addmntent, or endmntent. The type argument is the same as in/open(3). Getmntent reads the
next line fromfilep and returns a pointer to an object with the following structure containing the broken-out
fields of a line in the filesystem description file, <mntent.h>. The fields have meanings described in
/stab(5).

struct mntent {

};

char *mnt_fsname; 1* file system name *1
char *mnt_ dir; 1* file system path prefix *1
char *mnt_ type; 1* 4.2, nfs, swap, or xx *1
char *mnt_ opts; 1* ro, quota, etc. *1
int mnt_ freq; 1* dump frequency, in days *1
int mntyassno; 1* pass number on parallel fsck *1

Addmntent adds the mntent structure mnt to the end of the open filefilep. Note thatfilep has to be opened
for writing if this is to work. Hasmntopt scans the mnt _opts field of the mntent structure mnt for a substring
that matches opt. It returns the address of the substring if a match is found, 0 otherwise. Endmntent closes
the file.

letclfstab
letclmtab

SEE ALSO
fstab(5), getfsent(3)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

192 Last change: 12 March 1985 Sun Release 3.2

GETMNTENT(3) C LffiRARY FUNCTIONS GETMNTENT (3)

BUGS
The returned mntent structure points to static information that is overwritten in each call.

Sun Release 3.2 Last change: 12 March 1985 193

GETOPT(3) C LIBRARY FUNCTIONS GETOPT(3)

NAME
getopt, optarg, optind - get option letter from argument vector

SYNOPSIS
iot getopt(argc, argv, optstring)
iot args;
char **argv;
char *optstriog;

extern char *optarg;
extern int optiod, opterr;

DESCRIPTION
getopt returns the next option letter in argv that matches a letter in optstring. optstring is a string of recog­
nized option letters; if a letter is followed by a colon, the option is expected to have an argument that may
or may not be separated from it by white space. optarg is set to point to the start of the option argument on
return from getopt.

getopt places in optind the argv index of the next argument to be processed. Because optind is external, it
is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns EOF. The
special option - may be used to delimit the end of the options; EOF will be returned, and - will be
skipped.

DIAGNOSTICS
getopt prints an error message on stderr and returns a question mark (?) when it encounters an option letter
not included in optstring. This error message may be disabled by setting opterr to zero.

EXAMPLE

194

The following code fragment shows how one might process the arguments for a command that can take the
mutually exclusive options a and b, and the options f and 0, both of which require arguments:

main(argc, argv)
int argc;
char **argv;
{

int c;
extern int optind;
extern char *optarg;

while «c = getopt(argc, argv, "abf:o:"» != EOF)
switch (c) {
case 'a':

if (bfig)

else

break;
case 'b':

if (aflg)

else

break;
case 'f':

errfig++;

afig++;

errfig++;

bprocO;

Last change: 22 July 1986 Sun Release 3.2

GETOPf(3)

SEE ALSO
getopt(l)

Sun Release 3.2

}

C LIBRARY FUNCTIONS

case '0':

case '?':

infile = optarg;
break;

ofile = optarg;
bufsiza = 512;
break;

errfig++;
}

if (errflg) {

}

fprintf(stderr, ttusage: ... tt);
exit(2);

for (; optind < argc; optind++) {
if (access(argv[optind], 4» {

Last change: 22 July 1986

GETOPT(3)

195

GETPASS(3)

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION

C LmRARY FUNCTIONS GETPASS(3)

getpass reads up to a newline or EOF from the file Idev/tty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most 8 characters. An interrupt will terminate input and send an interrupt
signal to the calling program before returning.

FILES
/dev/tty

SEE ALSO
crypt(3), getpass(3V)

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs not otherwise using
standard 110, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

196 Last change: 15 April 1986 Sun Release 3.2

GETPW(3)

NAME
getpw - get name from uid

SYNOPSIS
getpw(uid, buO
char *buf;

DESCRIPTION

C LIBRARY FUNCTIONS

Getpw is made obsolete by getpwent(3).

GETPW(3)

Getpw searches the password file for the (numerical) uid, and fills in buf with the corresponding line; it
returns non-zero if uid could not be found The line is null-terminated.

FILES
letclpasswd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

Sun Release 3.2 Last change: 17 July 1986 197

GETPWENT (3) C LIBRARY FUNCTIONS GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwentO

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwentO

int endpwentO

struct passwd *fgetpwent(O
FILE *f;

DESCRIPTION

FILES

198

getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure contain­
ing the broken-out fields of a line in the password file. Each line in the file contains a "passwd" structure,
declared in the <pwd.h> header file:

struct passwd {/* see getpwent(3) *1
char *pw _name;
char *pw yasswd;
int pw_uid;
int pw_gid;
int pw _quota;
char *pw _comment;
char *pw _gecos;
char *pw _ dir;
char *pw _shell;

};

struct passwd *getpwent(), *getpwuidO, *getpwnamO;

This structure is declared in <pwd.h> so it is not necessary to redeclare it

The fields pw _quota and pw _comment are unused; the others have meanings described in passwd(5).
When first called, getpwent returns a pointer to the first passwd structure in the file; thereafter, it returns a
pointer to the next passwd structure in the file; so successive calls can be used to search the entire file.
getpwuid searches from the beginning of the file until a numerical user id matching uid is found and returns
a pointer to the particular structure in which it was found. getpwnam searches from the beginning of the
file until a login name matching name is found, and returns a pointer to the particular structure in which it
was found. If an end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches. endpwent may
be called to close the password file when processing is complete.

Igetpwent returns a pointer to the next passwd structure in the stream I, which matches the format of the
password file letdpasswd.

letclpasswd
letclyp/ domainname Ipasswd.byname
letclyp/domainname/passwd.byuid

Last change: 15 April 1986 Sun Release 3.2

GETPWENT (3) C LIBRARY FUNCTIONS GETPWENT (3)

SEE ALSO
getlogin(3), getgrent(3), passwd(5), ypserv(8), getpwent(3V)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not otherwise using
standard 110, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 15 April 1986 199

GETWD(3) C LmRARY FUNCTIONS

NAME
getwd - get current working directory pathname

SYNOPSIS
#include <sys/param.h>

char *getwd(pathname)
char pathname[MAXPATHLEN];

DESCRIPTION

GETWD(3)

Getwd copies the absolute pathname of the current working directory to pathname and returns a pointer to
the result.

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

200 Last change: 25 February 1983 Sun Release 3.2

HSEARCH(3) C LffiRARY FUNCTIONS HSEARCH(3)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a pointer into a
hash table indicating the location at which an entry can be found. item is a structure of type ENTRY
(defined in the <search.h> header file) containing two pointers: item. key points to the comparison key, and
item. data points to any other data to be associated with that key. (Pointers to types other than character
should be cast to pointer-to-character.) action is a member of an enumeration type ACfION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that the item should be inserted
in the table at an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution
is indicated by the return of a NULL pointer. hcreate allocates sufficient space for the table, and must be
called before hsearch is used nel is an estimate of the maximum number of entries that the table will con­
tain. This number may be adjusted upward by the algorithm in order to obtain certain mathematically
favorable circumstances. hdestroy destroys the search table, and may be followed by another call to
hcreate.

hsearch uses open addressing with a multiplicative hash function.

EXAMPLE
The following example will read in strings followed by two numbers and store them in a hash table, dis­
carding duplicates. It will then read in strings and find the matching entry in the hash table and print it out

Sun Release 3.2

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table */
int age, room; /* other than the key. */

};
#define NUM EMPL 5000 /* # of elements in search table */

main()
{

/* space to store strings */
char string_space[NUM _ EMPL*20];
/* space to store employee info */
struct info info _space [NUM _ EMPL];
/* next avail space in string_space */
char *str ytr = string_space;
/* next avail space in info_space */
struct info *info ytr = info_space;
ENTRY item, *foundJtem, *hsearch();
/* name to look for in table */
char name_to _ find[30];
int i = 0;

Last change: 15 April 1986 201

HSEARCH(3)

}

SEE ALSO

C LIBRARY FUNCTIONS

/* create table */
(void) hcreate(NUM _ EMPL);
while (scanf("%s%d%d", str ytr, &info jJtr-> age,

}

&infojJtr->room) != EOF && i++ < NUM_EMPL) {
/* put info in structure, and structure in item */
item.key = str jJtr;
item. data = (char *)info jJtr;
str ytr += strlen(str jJtr) + 1;
infojJtr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item.key = name_to _find;
while (scanf("%s", item.key) != EOF) {

}

if «found Jtem = hsearch(item, FIND» != NULL) {
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n" ,

found _item->key,
«struct info *)found _item->data)->age,
«struct info *)found _item->data)->room);

} else {

}

(void)printf("no such employee %s\n",
name_to _find)

bsearch(3), Isearch(3), malloc(3), string(3), tsearch(3)

DIAGNOSTICS

HSEARCH(3)

Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or the
action is ENTER and the table is full. hcreate returns zero if it cannot allocate sufficient space for the
table.

WARNING
hsearch and hcreate use maUoc (3) to allocate space.

BUGS
Only one hash search table may be active at any given time.

202 Last change: 15 April 1986 Sun Release 3.2

INITGROUPS (3) C LIBRARY FUNCTIONS

NAME
initgroups - initialize group access list

SYNOPSIS
initgroops(name, basegid)
char *name;
int basegid;

DESCRIPTION

INITGROUPS (3)

Initgroups reads through the group file and sets up, using the setgroups(2) call, the group access list
for the user specified in name. The basegid is automatically included in the groups list. Typically
this value is given as the group number from the password file.

FILES
fete/group

SEE ALSO
setgroups(2)

DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these routines,
the group structure will be overwritten in the call to initgroups.

Sun Release 3.2 Last change: 23 August 1983 203

INSQUE(3) C LffiRARY FUNCTIONS

NAME
ins que, remque - insert/remove element from a queue

SYNOPSIS
struct qeJem {

};

struct qeJem *qJorw;
struct qeJem *CL back;
char CL data[];

insque(eJem, pred)
struct qeJem *eJem, *pred;

remque(eJem)
struct qeJem *elem;

DESCRIPTION

INSQUE(3)

insque and remque manipulate queues built from doubly linked lists. Each element in the queue must
be in the form of "struct qelem". insque inserts elem in a queue immediately after pred; remque
removes an entry elem from a queue.

204 Last change: 17 July 1986 Sun Release 3.2

ISINF(3) C LmRARY FUNCTIONS ISINF(3)

NAME
isinf, isnan - test for indeterminate floating -point values

SYNOPSIS
int isinf(value)
double value;

int isnan(value)
double value;

DESCRIPTION
lsin/returns a value of 1 if its value is an IEEE format infinity (two words Ox7ffOOOOO OxOOOOOOOO) or an
IEEE negative infinity, and returns a zero otherwise.

Isnan returns a value of 1 if its value is an IEEE format 'not-a-number' (two words
Ox7ff nnnnn Ox nnnnnnnn) where n is not zero) or its negative, and returns a zero otherwise.

Some library routines such as ecvt(3) do not handle indeterminate floating-point values gracefully. Pros­
pective arguments to such routines should be checked with isinf or isnan before calling these routines.

The Floating-Point Programmer's Guidefor the Sun Workstation gives details for the format of IEEE stan­
dard floating-point.

Sun Release 3.2 ~tchange:8August 1985 205

LOCKF(3) C LIBRARY FUNCTIONS LOCKF(3)

NAME
locld - advisory record locking on files

SYNOPSIS
#include <unistd.h>

#define F ULOCK
#define FLOCK
#define F TLOCK
#define F TEST

lockf(fd, cmd, size)
int fd, cmd;
long size;

o
1
2
3

1* Unlock a previously locked section *1
1* Lock a section for exclusive use *1
1* Test and lock a section (non-blocking) *1
1* Test section for other process' locks *1

DESCRIPTION

NOTES

Lock[may be used to test, apply, or remove an advisory record lock on the file associated with the
open descriptor fd. (See fcntl(2) for more infonnation about advisory record locking.)

A lock is obtained by specifying a cmd parameter of F _LOCK or F _ TLOCK. To unlock an existing
lock, the F _ ULOCK cmd is used F _TEST is used to detect if a lock by another process is present on
the specified segment.

F _LOCK and F _ TLOCK requests differ only by the action taken if the lock may not be immediately
granted. F _ TLOCK will cause the function to return a -1 and set errno to EAGAIN if the section is
already locked by another process. F _LOCK will cause the process to sleep until the lock may be
granted or a signal is caught.

Size is the number of contiguous bytes to be locked or unlocked. The lock starts at the current file
offset in the file and extends forward for a positive size or backward for a negative size (preceeding
but not including the current offset). A segment need not be allocated to the file in order to be
locked; however, a segment may not extend to a negative offset relative to the beginning of the file.
If size is zero, the lock will extend from the current offset through the end-of-file. If such a lock
starts at offset 0, then the entire file will be locked (regardless of future file extensions).

The descriptor fd must have been opened with 0_ WRONL Y or 0 _RDWR permission in order to
establish locks with this function call.

All locks associated with a file for a given process are removed when the file is closed or the process
terminates. Locks are not inherited by the child process in a fork(2) system call.

RETURN VALUE
Zero is returned on success, -Ion error, with an error code stored in errno.

ERRORS
Lock[will fail if one or more of the following are true:

EBADF

EBADF

EAGAIN

EINTR

ENOLCK

F d is not a valid open descriptor.

Cmd is F _LOCK or F _ TLOCK and the process does not have write permission on
the file.

Cmd is F _ TLOCK or F _TEST and the section is already locked by another process.

Cmd is F _LOCK and a signal interrupted the process while it was waiting for the
lock to be granted.

Cmd is F _LOCK, F _ TLOCK, or F _ ULOCK and there are no more file lock entries
available.

SEE ALSO
fcnt1(2), lockd(8C)

206 Last change: 30 April 1986 Sun Release 3.2

LOCKF(3) C LIBRARY FUNCTIONS LOCKF(3)

BUGS
File locks obtained through the lockf mechanism do not interact in any way with those acquired via
flock(2). They do, however, work correctly with the locks claimed by fcntl(2).

Sun Release 3.2 Last change: 30 April 1986 207

LSEARCH(3) C LmRARY FUNCTIONS LSEARCH(3)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char *Isearch «char *)key, (char *)base, nelp, sizeof(*key), com par)
unsigned *nelp;
int (*compar)();

char *lfind «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer into a
table indicating where a datum may be found. If the datum does not occur, it is added at the end of
the table. key points to the datum to be sought in the table. base points to the first element in the
table. nelp points to an integer containing the current number of elements in the table. The integer is
incremented if the datum is added to the table. com par is the name of the comparison function which
the user must supply (strcmp, for example). It is called with two arguments that point to the elements
being compared. The function must return zero if the elements are equal and non-zero otherwise.

lfind is the same as lsearch except that if the datum is not found, it is not added to the table. Instead,
a NULL pointer is returned

The pointers to the key and the element at the base of the table should be of type pointer-to-element,
and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in the ele­
ments in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type pointer-to­
element.

EXAMPLE
This fragment will read in ~ T ABSIZE strings of length ~ ELSIZE and store them in a table, eliminat­
ing duplicates.

#include <stdio.h>
#include <search.h>

#define T ABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < T ABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3), hsearch(3), tsearch(3).

208 Last change: 15 April 1986 Sun Release 3.2

LSEARCH(3) C LffiRARY FUNCTIONS LSEARCH(3)

DIAGNOSTICS
If the searched for datum is found, both lsearch and lfind return a pointer to it. Otherwise, lfind
returns NULL and lsearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

Sun Release 3.2 Last change: 15 April 1986 209

MALLOC(3) C LIBRARY FUNCTIONS MALLOC(3)

NAME
malloc, free, realloc, calloc, cfree, memalign, valloc, alloca, malloc _debug, malloc _ verify - memory
allocator

SYNOPSIS
char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

cfree(ptr)
char *ptr;

char *memalign(alignment, size)
unsigned alignment;
unsigned size;

char *valloc(size)
unsigned size;

char *alloca(size)
int size;

DESCRIPTION

210

These routines provide a general-purpose memory allocation package. They maintain a table of free
blocks for efficient allocation and coalescing of free storage. When there is no suitable space already
free, the allocation routines call sbrk (see brk(2» to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for storage of any type of
object. They return a null pointer if the request cannot be completed (see DIAGNOSTICS).

MaUoe returns a pointer to a block of at least size bytes beginning on a word boundary. A null (0)
pointer is returned if size bytes of memory cannot be allocated.

Free releases a previously allocated block. Its argument is a pointer to a block previously allocated
by maUoe, eaUoe, realloe, valloe, or memalign.

malloe, ealloe, reaUoe, valloc, or memalign.

Realloe changes the size of the block referenced by ptr to size bytes and returns a pointer to the (pos­
sibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes. For
backwards compatibility, realloe accepts a pointer to a block freed since the most recent call to rnal­
loe, ealloe, reaUoe, valloe, or memalign. Note that using realloe with a block freed before the most
recent call to maUoe, ealloe, realloe, valloe, or memalign is an error.

Calloe uses malloe to allocate space for an array of nelem elements of size elsize, initializes the space
to zeros, and returns a pointer to the initialized block. The block can be freed with free or cfree.

Memalign allocates size bytes on a specified alignment boundary, and returns a pointer to the allocated
block. The value of the returned address is guaranteed to be an even multiple of alignment. Note that
the value of alignment must be a power of two, and must be greater than or equal to the size of a
word.

Last change: 2 August 1985 Sun Release 3.2

MALLOC(3) C LIBRARY FUNCTIONS MALLOC(3)

Valloc(size) is equivalent to memalign(getpagesize(), size).

AUoea allocates size bytes of space in the stack frame of the caller, and returns a pointer to the allo­
cated block. This temporary space is automatically freed when the caller returns.

SEE ALSO
"Fast Fits" by C. J. Stephenson, in Proceedings of the ACM 9th Symposium on Operating Systems,
SIGOPS Operating Systems Review, vol. 17, no. 5, October 1983.

Core Wars, in Scientific American, May 1984.

DIAGNOSTICS
MaUoe, ealloc, reaUoe, valloe, and memalign return a null pointer (0) and set errno if arguments are
invalid, or if there is insufficient available memory, or if the heap has been detectably corrupted, e.g.
by storing outside the bounds of a block.

More detailed diagnostics can be made available to programs using maUoe, ealloe, realloe, vaUoe,
memalign, efree, and free, by including a special relocatable object file at link time (see FILES). This
file also provides routines for control of error handling and diagnosis, as defined below. Note that
these routines are not defined in the standard library.

int MaDoc _ debug(Ievel)
int level;

int MaDoc _ verifyO

MaUoe _debug sets the level of error diagnosis and reporting during subsequent calls to maUoe, eaUoe,
realloe, vaUoe, memalign, efree, and free. The value of level is interpreted as follows:

Level 0

Level 1

Malloe, ealloe, realloe, valloe, memalign, efree, and free behave the same as in the
standard library.

MaUoe, eaUoe, realloe, valloc, memalign, efree, and free abort with a message to
stderr if errors are detected in arguments or in the heap. If a bad block is encoun-
tered, its address and size are included in the message.

Level 2 Same as level 1, except that the entire heap is examined on every call to malloe,
ealloe, reaUoe, valloe, memalign, efree, and free.

MaUoe _debug returns the previous error diagnostic level. The default level is 1.

M aUoe _verify attempts to determine if the heap has been corrupted. It scans all blocks in the heap
(both free and allocated) looking for strange addresses or absurd sizes, and also checks for incon­
sistencies in the free space table. MaUoe _verify returns 1 if all checks pass without error, and other­
wise returns O. The checks can take a significant amount of time, so it should not be used indiscrim­
inately.

ERRORS

FILES

BUGS

MaUoe, eaUoe, reaUoe, valloe. memalign. efree, and free will set errno if:

EINVAL

ENOMEM

An invalid argument was given. The value of ptr given to free, cfree. or reaUoe
must be a pointer to a block previously allocated by maUoe, eaUoe, reaUoe, vaUoe,
or memalign. The EINV AL condition also occurs if the heap is found to have been
corrupted. More detailed information may be obtained by enabling range checks
using maUoe _debug.

size bytes of memory could not be allocated.

lusr/libl debug/malloc.o diagnostic versions of mal/oe, free, etc.

Alloea is both machine- and compiler-dependent; its use is discouraged.

Sun Release 3.2 Last change: 2 August 1985 211

MALLOC(3) C LmRARY FUNCTIONS MALLOC(3)

212

Since realloe accepts a pointer to a block freed since the last call to malloe, ealloc, realloe, valloe, or
memalign, a degradation of performance results. The semantics of free should be changed so that the
contents of a previously freed block are undefined.

Last change: 2 August 1985 Sun Release 3.2

MEMORY(3) C LIBRARY FUNCTIONS MEMORY(3)

NAME
memory, memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include <memory.h>

char *memccpy (sl, s2, c, 0)
char *sl, *s2;
iot c, D;

char *memchr (s, c, 0)
char *s;
iot c, 0;

iot memcmp (sl, s2, 0)
char *sl, *s2;
iot 0;

char *memcpy (sl, s2, 0)
char *sl, *s2;
iot 0;

char *memset (s, c, 0)
char *s;
iot c, 0;

DESCRIPTION

NOTE

BUGS

memset These functions operate as efficiently as possible on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not check for the overflow of any
receiving memory area.

memccpy copies characters from memory area s2 into s1, stopping after the first occurrence of charac­
ter c has been copied, or after n characters have been copied, whichever comes first. It returns a
pointer to the character after the copy of c in s1, or a NULL pointer if c was not found in the first n
characters of s2.

memchr returns a pointer to the first occurrence of character c in the first n characters of memory area
s, or a NULL pointer if c does not occur.

memcmp compares its arguments, looking at the first n characters only, and returns an integer less
than, equal to, or greater than 0, according as s1 is lexicographically less than, equal to, or greater
than s2.

memcpy copies n characters from memory area s2 to s1. It returns s1 .

memset sets the first n characters in memory area s to the value of character c. It returns s.

For user convenience, all these functions are declared in the optional <memory.h> header file.

memcmp uses native character comparison, which is signed on some machines and unsigned on other
machines. Thus the sign of the value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations. Thus overlapping moves
may yield surprises.

Sun Release 3.2 Last change: 10 May 1986 213

MKTEMP(3) C LIBRARY FUNCTIONS MKTEMP(3)

NAME
mktemp, mkstemp - make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

mkstemp(template)
char *template;

DESCRIPTION
mktemp creates a unique file name, typically in a temporary filesystem, by replacing template with a
unique file name, and returns the address of template. The string in template should contain a file
name with six trailing Xs; mktemp replaces the Xs with a letter and the current process ID. The letter
will be chosen so that the resulting name does not duplicate an existing file. mkstemp makes the same
replacement to the template but returns a file descriptor for the template file open for reading and writ­
ing. mkstemp avoids the race between testing whether the file exists and opening it for use.

Notes:

• mktemp and mkstemp actually change the template string which you pass; this means that you can­
not use the same template string more than once - you need a fresh template for every unique file
you want to open.

• When mktemp or mkstemp are creating a new unique filename they check for the prior existence of
a file with that name. This means that if you are creating more than one unique filename, it is bad
practice to use the same root template for multiple invocations of mktemp or mkstemp.

SEE ALSO
getpid(2), open(2V), tmpfile(3S), tmpnam(3S).

DIAGNOSTICS

BUGS

214

mkstemp returns an open file descriptor upon success. It returns -1 if no suitable file could be
created

It is possible to run out of letters.

Last change: 15 April 1986 Sun Release 3.2

MONITOR(3) C LIBRARY FUNCTIONS MONITOR(3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
monitor(lowpc, highpc, buffer, bursize, nrunc)
int (*lowpc)O, (*highpc)O;
short bun-er[];

monstartupOowpc, highpc)
int (*lowpc)O, (*highpc)O;

moncontrol(mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc -p ...

automatically includes calls for the prof(1) monitor and includes an initial call to its start-up routine
monstartup with default parameters; monitor need not be called explicitly except to gain fine control
over profil buffer allocation. An executable program created by:

cc -pg ...

automatically includes calls for the gprof(1) monitor.

Monstartup is a high level interface to profil(2). Lowpc and highpc specify the address range that is
to be sampled; the lowest address sampled is that of lowpc and the highest is just below highpc.
Monstartup allocates space using sbrk(2) and passes it to monitor (see below) to record a histogram of
periodically sampled values of the program counter, and of counts of calls of certain functions, in the
buffer. Only calls of functions compiled with the profiling option -p of cc(l) are recorded.

To profile the entire program, it is sufficient to use

extern etextO;

monstartup(Ox8000, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

then prof(l) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either prof(l)
or gprof(1) type profiling. When the program starts, profiling begins. To stop the collection of histo­
gram ticks and call counts use moncontrol(O); to resume the collection of histogram ticks and call
counts use moncontrol(I). This allows the cost of particular operations to be measured. Note that an
output file will be produced upon program exit irregardless of the state of moncontrol.

Monitor is a low level interface to profil(2). Lowpc and highpc are the addresses of two functions;
buffer is the address of a (user supplied) array of bufsize short integers. At most nfunc call counts can
be kept. For the results to be significant, especially where there are small, heavily used routines, it is
suggested that the buffer be no more than a few times smaller than the range of locations sampled
Monitor divides the buffer into space to record the histogram of program counter samples over the
range lowpc to highpc, and space to record call counts of functions compiled with the -p option to
cc(1).

To profile the entire program, it is sufficient to use

extern etextO;

rnonitor(Ox8000, etext, buf, bufsize, nfunc);

Sun Release 3.2 Last change: 19 January 1983 215

MONITOR(3) C LmRARY FUNCTIONS MONITOR(3)

FILES
mon.out

SEE ALSO
cc(1), prof(1), gprof(l), profil(2), sbrk(2)

216 Last change: 19 January 1983 Sun Release 3.2

NLIST(3) C LffiRARY FUNCTIONS NLIST(3)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h:>

nlist(filename, nl)
char *filename;
struct nlist nl[];

DESCRIPTION
nlist examines the name list in the executable file whose name is pointed to by filename, list of values
and puts them in the array of ntist structures pointed to by nl. The name list nl consists of an array
of structures containing names, types and values. The list is terminated with a null name; that is, a
null string is in the name position of the structure. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to O. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file Ivmunix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be read or if does not contain a valid name list

nlist returns -1 upon error.

Sun Release 3.2 Last change: 15 April 1986 217

C LIBRARY FUNCTIONS

NAME
on exit - name tennination handler

SYNOPSIS
int on _ exit(procp, arg)
void (*procp)O;
caddr_t arg;

DESCRIPTION
On_exit names a routine to be called after a program calls exit(3) or returns normally, and before its
process terminates. The routine named is called as

(*procp)(status, arg);
where status is the argument with which exit was called, or zero if main returns. Typically, arg is the
address of an argument vector to (*procp), but may be an integer value. Several calls may be made
to on _exit, specifying several termination handlers. The order in which they are called is the reverse
of that in which they were given to on_exit.

SEE ALSO
exit(3)

DIAGNOSTICS

BUGS

NOTES

218

On_exit returns zero normally, or nonzero if the procedure name could not be stored.

Currently there is a limit of 20 termination handlers, including any invoked implicitly (for example, by
gprof(l) or tcov(l) processing). Calls to on_exit beyond this number will fail.

This call is specific to Sun Unix and should not be used if portability is a concern.

Standard 110 exit processing is always done last.

Last change: 12 October 1984 Sun Release 3.2

PERROR(3) C LIBRARY FUNCTIONS PERROR(3)

NAME
perrof, sys _ errlist, sys _nerr, ermo - system error messages

SYNOPSIS
perror(s)
char *s;

int sys _ nerr;
char *sys_errlist[];

int errno;

DESCRIPTION
perror produces a short error message on the standard error describing the last error encountered dur­
ing a call to a system or library function. The argument string s is printed first, then a colon and a
blank, then the message and a new-line. To be of most use, the argument string should include the
name of the program that incurred the error. The error number is taken from the external variable
errno (see intro(2», which is set when errors occur but not cleared when non-erroneous calls are
made.

To simplify variant formatting of messages, the vector of message strings sys _errlist is provided; errno
can be used as an index in this table to get the message string without the newline. sys _nerr is the
number of messages provided for in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

Sun Release 3.2 Last change: 15 Apri11986 219

PROF(3) C LIBRARY FUNCTIONS PROF(3)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a function entry point. Exe­
cution of the mark will add to a counter for that mark, and program-counter time spent will be
accounted to the immediately preceding mark or to the function if there are no preceding marks within
the active function.

name may be any combination of up to six letters, numbers or underscores. Each name in a single
compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header file <prof.h> is
included. This may be defined by a preprocessor directive as in the synopsis, or by a command line
argument, such as:

cc -p -DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left in the source files containing them
and will be ignored.

EXAMPLE
In this example, marks can be used to determi..pe how much time is spent in each loop. Unless this
example is compiled with MARK defined on the command line, the marks are ignored.
#include <prof.h>

func()
{

}

SEE ALSO

int i, j;

MARK(loop1);
for (i = 0; i < 2000; i++) {

}
MARK(loop2);
for (j = 0; j < 2000; j++) {

}

prof(l), profil(2), monitor(3)

220 Last change: 30 April 1986 Sun Release 3.2

PSIGNAL(3) C LmRARY FUNCTIONS PSIGNAL(3)

NAME
psignal, sys _siglist - system signal messages

SYNOPSIS
psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist[];

DESCRIPTION
P signal produces a short message on the standard error file describing the indicated signal. First the
argument string s is printed, then a colon, then the name of the signal and a new-line. Most usefully,
the argument string is the name of the program which incurred the signal. The signal number should
be from among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys _ siglist is provided;
the signal number can be used as an index in this table to get the signal name without the newline.
The define NSIG defined in <signal.h> is the number of messages provided for in the table; it should
be checked because new signals may be added to the system before they are added to the table.

SEE ALSO
perror(3), signal(3)

Sun Release 3.2 Last change: 26 August 1983 221

PUTENV(3) C LIBRARY FUNCTIONS PUTENV(3)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
string points to a string of the form "name=value." putenv makes the value of the environment vari­
able name equal to value by altering an existing variable or creating a new one. In either case, the
string pointed to by string becomes part of the environment, so altering the string will change the
environment. The space used by string is no longer used once a new string-defining name is passed
to putenv.

DIAGNOSTICS
putenv returns non-zero if it was unable to obtain enough space via malloc for an expanded environ­
ment, otherwise zero.

SEE ALSO
exec(2), getenv(3), malloc(3), environ(7).

WARNINGS

222

putenv manipulates the environment pointed to by environ, and can be used in conjunction with
getenv. However, envp (the third argument to main) is not changed.
This routine uses malloc (3) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then exit the calling
function while string is still part of the environment.

Last change: 15 April 1986 Sun Release 3.2

PUTPWENT (3) C LIBRARY FUNCTIONS

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FILE *f;

DESCRIPTION

PUTPWENT (3)

putpwent is the inverse of getpwent(3). Given a pointer to a passwd structure created by getpwent (or
getpwuid or getpwnam), putpwent writes a line on the stream /, which matches the format of lines in
the password file letdpasswd.

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its operation, otherwise zero.

SEE ALSO
getpwent(3).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs, not otherwise
using standard 110, more than might be expected.

BUGS
This routine is of limited utility, since most password files are maintained as Yellow Pages files, and
cannot be updated with this routine.

Sun Release 3.2 Last change: 15 April 1986 223

QSORT(3) C LmRARY FUNCTIONS QSORT(3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, nel, width, compar)
char *base;
int (*compar)O;

DESCRIPTION

NOTES

qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

base points to the element at the base of the table. nel is the number of elements in the table. com­
par is the name of the comparison function, wh~ch is called with two arguments that point to the ele­
ments being compared~ As the function must -return an integer less than, equal to, or greater than
zero, so must the first argument to be considered be less than, equal to, or greater than the second.

The pointer to the base of the table should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbitrary data may be contained in the ele­
ments in addition to the values being compared.
The order in the output of two items which compare as equal is unpredictable.

SEE ALSO
bsearch(3), Isearch(3), string(3), sort(l)

224 Last change: 15 April 1986 Sun Release 3.2

RANDOM(3) C LIBRARY FUNCTIONS RANDOM(3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing generators

SYNOPSIS
long randomO

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n;

char *setstate(state)
char *state;

DESCRIPTION
random uses a non-linear additive feedback random number generator employing a default table of
size 31 long integers to return successive pseudo-random numbers in the range from 0 to 231_1. The
period of this random number generator is very large, approximately 16x(231_1).

randomlsrandom have (almost) the same calling sequence and initialization properties as rand/srand.
The difference is that rand (3C) produces a much less random sequence - in fact, the low dozen bits
generated by rand go through a cyclic pattern. All the bits generated by random are usable. For
example, "randomO&Ol" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of state
information used is much more than a single word. (Two other routines are provided to deal with
restarting/changing random number generators). Like rand(3C), however, random will by default pro­
duce a sequence of numbers that can be duplicated by calling srandom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used by initstate to decide how sophisticated a random number
generator it should use -- the more state, the better the random numbers will be. (Current "optimal"
values for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will be
rounded down to the nearest known amount. Using less than 8 bytes will cause an error). The seed
for the initialization (which specifies a starting point for the random number sequence, and provides
for restarting at the same point) is also an argument. initstate returns a pointer to the previous state
information array.

Once a state has been initialized, the setstate routine provides for rapid switching between states. set­
state returns a pointer to the previous state array; its argument state array is used for further random
number generation until the next call to initstate or se tstate .

Once a state array has been initialized, it may be restarted at a different point either by calling init­
state (with the desired seed, the state array, and its size) or by calling both setstate (with the state
array) and srandom (with the desired seed). The advantage of calling both setstate and srandom is
that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than 269
,

which should be sufficient for most purposes.

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state
information has been garbled, error messages are printed on the standard error output

SEE ALSO
rand(3C)

Sun Release 3.2 Last change: 22 July 1986 225

RANDOM(3) C LIBRARY FUNCTIONS RANDOM(3)

BUGS
About 2/3 the speed of rand(3C).

226 Last change: 22 July 1986 Sun Release 3.2

REGEX(3) C LIBRARY FUNCTIONS REGEX(3)

NAME
regex, re _ comp, re _exec - regular expression handler

SYNOPSIS
char *re _ comp(s)
char *s;

re_exec(s)
char *s;

DESCRIPTION
Re _comp compiles a string into an internal form suitable for pattern matching. Re _exec checks the
argument string against the last string passed to re _compo

Re _comp returns 0 if the string s was compiled successfully; otherwise a string containing an error
message is returned. If re _comp is passed 0 or a null string, it returns without changing the currently
compiled regular expression.

Re _exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s failed
to match the last compiled regular expression, and -1 if the compiled regular expression was invalid
(indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded newline characters;
they are terminated by nulls. The regular expressions recognized are described in the manual entry
for ed (1), given the above difference.

SEE ALSO
ed(I), ex(I), egrep(I), fgrep(I), grep(l)

DIAGNOSTICS
Re exec returns -1 for an internal error.

Re _ comp returns one of the following strings if an error occurs:

No previous regular expression

Regular expression too long

unmatched \(

missing 1
too many \(\) pairs

unmatched \)

Sun Release 3.2 Last change: 4 March 1983 227

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() .q>eekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *string, *expbuf;

extern char *Iocl, *loc2, *Iocs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines.

The interface to this file is unpleasantly complex. Programs that include this file must have the following
five macros declared before the "#include <regexp.h>" statement These macros are used by the compile
routine.

GETC()

PEEKC()

UNGETC(c)

RETURN (pointer)

Return the value of the next character in the regular expression pattern. Succes­
sive calls to GETC() should return successive characters of the regular expression.

Return the next character in the regular expression. Successive calls to PEEKC()
should return the same character (which should also be the next character returned
byGETC(».

Cause the argument c to be returned by the next call to GETC() (and PEEKC(».
No more that one character of pushback is ever needed and this character is
guaranteed to be the last character read by GETCO. The value of the macro
UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of the argu­
ment pointer is a pointer to the character after the last character of the compiled
regular expression. This is useful to programs that have memory allocation to
manage.

ERRORS
ERROR(val) This is the abnormal return from the compile routine. The argument val is an error

number (see table below for meanings). This call should never return.

228

ERROR
11
16
25
36
41
42
43
44
45

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.

Last change: Sun Release 3.2

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

46 First number exceeds second in \{ \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but is useful for programs that
pass down different pointers to input characters. It is sometimes used in the INIT declaration (see below).
Programs that call functions to input characters or have characters in an external array can pass down a
value of «char *) 0) for this parameter.

The next parameter expbuj is a character pointer. It points to the place where the compiled regular expres­
sion will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expression may be
placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to ERROR(50) is made.

The parameter eoj is the character that marks the end of the regular expression. For example, in an editor
like ed(l), this character would usually a I.

Each program that includes this file must have a #define statement for INIT. This definition will be placed
right after the declaration for the function compile and the opening curly brace (0. It is used for dependent
declarations and initializations. Most often it is used to set a register variable to point the beginning of the
regular expression so that this register variable can be used in the declarations for GETC(), PEEKC() and
UNGETC(). Otherwise it can be used to declare external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarations taken from grep(l).

There are other functions in this file that perform actual regular expression matching, one of which is the
function step. The call to step is as follows:

step(string, expbut)

The first parameter to step is a pointer to a string of characters to be checked for a match. This string
should be null terminated.

The second parameter expbuj is the compiled regular expression that was obtained by a call of the function
compile.

The function step returns non-zero if the given string matches the regular expression, and zero if the
expressions do not match. If there is a match, two external character pointers are set as a side effect to the
call to step. The variable set in step is loel. This is a pointer to the first character that matched the regular
expression. The variable loc2, which is set by the function advance, points to the character after the last
character that matches the regular expression. Thus if the regular expression matches the entire line, loel
will point to the first character of string and loc2 will point to the null at the end of string.

step uses the external variable circf which is set by compile if the regular expression begins with ". If this
is set then step will try to match the regular expression to the beginning of the string only. If more than one
regular expression is to be compiled before the first is executed the value of circf should be saved for each
compiled expression and circf should be set to that saved value before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step is to step
through the string argument and call advance until advance returns non-zero indicating a match or until the
end of string is reached. If one wants to constrain string to the beginning of the line in all cases, step need
not be called; simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression, it will advance its pointer to the
string to be matched as far as possible and will recursively call itself trying to match the rest of the string to
the rest of the regular expression. As long as there is no match, advance will back up along the string until
it finds a match or reaches the point in the string that initially matched the * or \{ \}. It is sometimes desir­
able to stop this backing up before the initial point in the string is reached. If the external character pointer
locs is equal to the point in the string at sometime during the backing up process, advance will break out of

Sun Release 3.2 Last change: 229

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

the loop that backs up and will return zero. This could be used by an editor like ed(l) or sed(l) for substi­
tutions done globally (not just the first occurrence, but the whole line) so, for example, expressions like
sly*lIg do not loop forever.

The additional external variaf.ies sed and nbra are used for special purposes.

EXAMPLES

FILES

BUGS

230

The following is an example of how the regular expression macros and calls could look in a command like
grep(1):

#define INIT register char *sp = instring;
#define GETCO (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

(-sp)
return;
regerr()

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if (step(linebuf, expbut)
succeed();

lusr/include/regexp.h

The handling of eire! is kludgy.

Last change: Sun Release 3.2

SCANDIR(3) C LffiRARY FUNCTIONS SCANDIR(3)

NAME
scandir, alphasort - scan a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/dir .h>

scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelist[]);
int (*select)O;
int (*compar)O;

alphasort(dl, d2)
struct direct **dl, **d2;

DESCRIPTION
Seandir reads the directory dirname and builds an array of pointers to directory entries using mal­
loc(3). The second parameter is a pointer to an array of structure pointers. The third parameter is a
pointer to a routine which is called with a pointer to a directory entry and should return a non zero
value if the directory entry should be included in the array. If this pointer is null, then all the direc­
tory entries will be included. The last argument is a pointer to a routine which is passed to qsort(3)
to sort the completed array. If this pointer is null, the array is not sorted. Alphasort is a routine which
will sort the array alphabetically.

Scandir returns the number of entries in the array and a pointer to the array through the parameter
namelist.

SEE ALSO
directory(3), malloc(3), qsort(3)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if maUoe (3) cannot allocate enough
memory to hold all the data structures.

Sun Release 3.2 Last change: 19 January 1983 231

SETJMP(3) C LIBRARY FUNCTIONS SETJMP(3)

NAME
se~mp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

val = setjmp(env)
jmp _bur env;

longjmp(env, val)
jmp _bur env;

val = _setjmp(env)
jmp _bur env;

_Iongjmp(env, val)
jmp _bur env;

DESCRIPTION

232

Setjmp and longjmp are useful for dealing with errors and interrupts encountered in a low-level sub­
routine of a program.

Setjmp saves its stack environment in env for later use by longjmp. Setjmp also saves the register
environment. If a longjmp call will be made, the routine which called setjmp should not return until
after the longjmp has returned control (see below).

Longjmp restores the environment saved by the last call of setjmp, and then returns in such a way that
execution continues as if the call of setjmp had just returned the value val to the function that invoked
setjmp. The calling function must not itself have returned in the interim, otherwise longjmp will be
returning control to a possibly non-existent environment All memory-bound data have values as of
the time longjmp was called. The machine registers are restored to the values they had at the time
that setjmp was called. But, because the register storage class is only a hint to the C compiler, vari­
ables declared as register variables may not necessarily be assigned to machine registers, so their
values are unpredictable after a longjmp. This is especially a problem for programmers trying to write
machine-independent C routines.

The following code fragment indicates the flow of control of the setjmp and longjmp combination:

. . . function declaration
jmp _ buf my_environment;

... code ...
if (se~mp (my_environment» {

this is the code after the return from longjmp
· .. more code

register variables have unpredictable values
· .. more code

} else {

}

this is the return from setjmp
· .. more code

Do not modify register variables
in this leg of the code
· .. more code

Setjmp and longjmp save and restore the signal mask sigsetmask(2), while _setjmp and _longjmp mani­
pulate only the C stack and registers.

Last change: 17 February 1986 Sun Release 3.2

SETJMP(3) C LIBRARY FUNCTIONS SETJMP(3)

SEE ALSO
sigsetmask(2), sigvec(2), signal(3)

BUGS
Setjmp does not save current notion of whether the process is executing on the signal stack. The
result is that a longjmp to some place on the signal stack leaves the signal stack state incorrect.

longjmp never returns zero in the Sun implementation.

Sun Release 3.2 Last change: 17 February 1986 233

SETUID(3) C LIBRARY FUNCTIONS

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
setnid(nid)
setenid(enid)
setruid(ruid)

setgid(gid)
setegid(egid)
setrgid(rgid)

DESCRIPTION

SETUID(3)

Setuid (setgid) sets both the real and effective user ID (group ID) of the current process to as
specified.

Seteuid (setegid) sets the effective user ID (group ill) of the current process.

Setruid (setrgid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid(2), setregid(2), getuid(2), getgid(2)

DIAGNOSTICS

234

Zero is returned if the user (group) ID is set; -1 is returned otherwise, with the global variable errno
set as for setreuid or setregid

Lastchange: 17 July 1986 Sun Release 3.2

SIGINTERRUPT (3) C LIBRARY FUNCTIONS SIGINTERRUPT (3)

NAME
siginterrupt - allow signals to interrupt system calls

SYNOPSIS
siginterrupt(sig, flag);
int sig, flag;

DESCRIPTION

NOTES

siginterrupt is used to change the system call restart behavior when a system call is interrupted by the
specified signal. If the flag is false (0), then system calls will be restarted if they are interrupted by
the specified signal and no data has been transferred yet. System call restart is the default behavior
on 4.2 BSD, and on Sun UNIX in the 4.2 environment, when the signal (3) routine is used.

If the flag is true (1), then restarting of system calls is disabled. If a system call is interrupted by the
specified signal and no data has been transferred, the system call will return -1 with ermo set to
EINTR. Interrupted system calls that have started transferring data will return the amount of data
actually transferred. System call interrupt is the signal behavior found on older UNIX systems, such
as 4.1 BSD and System V UNIX. It is the default behavior on Sun UNIX in the System V environ­
ment when the signal routine is used; therefore, this routine is useful in that environment only if a sig­
nal that a sigvec (2) specified should restart system calls is to be changed not to restart them.

Note that the new 4.2 BSD signal handling semantics are not altered in any other way. Most notably,
signal handlers always remain installed until explicitly changed by a subsequent sigvec call, and the
signal mask operates as documented in sigvec, unless the SV _ RESETIIAND bit has been used to
specify that the pre-4.2 BSD signal behavior is to be used. Programs may switch between restartable
and interruptible system call operation as often as desired in the execution of a program.

Issuing a siginterrupt(3) call during the execution of a signal handler will cause the new action to take
place on the next signal to be caught.

This library routine uses an extension of the sigvec(2) system call that is not available in 4.2BSD,
hence it should not be used if backward compatibility is needed.

RETURN VALUE
A 0 value indicates that the call succeeded. A -1 value indicates that an invalid signal number has
been supplied.

SEE ALSO
sigvec(2), sigblock(2), sigpause(2), sigsetmask(2).

Sun Release 3.2 Last change: May 15, 1985 235

SIGNAL(3) C LIBRARY FUNCTIONS SIGNAL(3)

NAME
signal - simplified software signal facilities

SYNOPSIS
#include <signal.h>

(*signal(sig, fUDC»O
int (*func)O;

DESCRIPTION

236

signal is a simplified interface to the more general sigvec(2) facility. Programs that use signal in
preference to sigvec are more likely to be portable to all UNIX systems.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop),
by a program error (bus error, etc.), by request of another program (kill), or when a process is stopped
because it wishes to access its control terminal while in the background (see tty (4». Signals are
optionally generated when a process resumes after being stopped, when the status of child processes
changes, or when input is ready at the control terminal. Most signals cause termination of the receiv­
ing process if no action is taken; some signals instead cause the process receiving them to be stopped,
or are simply discarded if the process has not requested otherwise. Except for the SIGKILL and SIG­
STOP signals, the signal call allows signals either to be ignored or to cause an interrupt to a specified
location. The following is a list of all signals with names as in the include file <signal.b>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (other than A-line or F-line op code)
SIGTRAP 5* trace trap
SIGIOT 6* lOT trap (not generated on Suns)
SIGEMT 7* EMT trap (A-line or F-line op code)
SIGFPE 8* arithmetic exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- I/O is possible on a descriptor (see fcntl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28- window changed (see win(4S»
SIGLOST 29* resource lost (see lockd(8C»
SIGUSRI 30 user-defined signal 1
SIGUSR2 31 user-defined signal 2

Last change: 30 April 1986 Sun Release 3.2

SIGNAL(3) C LffiRARY FUNCTIONS SIGNAL(3)

NOTES

CODES

The starred signals in the list above cause a core image if not caught or ignored.

IT June is SIG _ DFL, the default action for signal sig is reinstated; this default is termination (with a
core image for starred signals) except for signals marked with • or t. Signals marked with • are dis­
carded if the action is SIG _ DFL; signals marked with t cause the process to stop. If June is
SIG _ IGN the signal is subsequently ignored and pending instances of the signal are discarded. Other­
wise, when the signal occurs further occurrences of the signal are automatically blocked and June is
called.

A return from the function unblocks the handled signal and continues the process at the point it was
interrupted. Unlike previous signal facilities, the handler June remains installed after a signal has
been delivered.

IT a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call
is automatically restarted. In particular this can occur during a read or write(2V) on a slow device
(such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) value of June for the particular signal.

After a Jork(2) or vjork(2) the child inherits all signals. An execve(2) resets all caught signals to the
default action; ignored signals remain ignored.

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. Code is a parameter of certain signals that provides additional detail.
sep is a pointer to the sigeontext structure (defined in <signal.h». used to restore the context from
before the signal.

The following defines the codes for signals which produce them. All of these symbols are defined in
<signal.h>:

Hardware condition Signal Code

Illegal instruction SIGILL ILL INSTR FAULT - -
Privilege violation SIGILL ILL PRIVVIO FAULT - -
Coprocessor protocol error SIGILL ILL INSTR FAULT - -
Trap #n (l <= n <= 14) SIGILL ILL TRAP FAULT - -

A-line op code SIGEMT EMT EMUI0I0
F-line op code SIGEMT EMT EMU1111

Integer division by zero SIGFPE FPE INTDIV TRAP - -
CHK or CHK2 instruction SIGFPE FPE CHKINST TRAP - -
TRAPVor TRAPcc or cpTRAPcc SIGFPE FPE TRAPV TRAP - -
IEEE floating point compare unordered SIGFPE FPE FLTBSUN TRAP - -
IEEE floating point inexact SIGFPE FPE FLTINEX TRAP - -
IEEE floating point division by zero SIGFPE FPE FLTDIV TRAP - -
IEEE floating point underflow SIGFPE FPE FLTUND TRAP - -
IEEE floating point operand error SIGFPE FPE FLTOPERR TRAP - -
IEEE floating point overflow SIGFPE FPE FLTOVF FAULT - -
IEEE floating point signaling NaN SIGFPE FPE FL TNAN TRAP - -

Sun Release 3.2 Last change: 30 April 1986 237

SIGNAL (3) C LIBRARY FUNCTIONS SIGNAL(3)

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and e"no is set to
indicate the error.

ERRORS
signal will fail and no action will take place if one of the following occur:

EINVAL

EINVAL

EINVAL

sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO

238

kill(I), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3),
tty(4)

Last change: 30 April 1986 Sun Release 3.2

SLEEP(3) C LIBRARY FUNCTIONS SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION
sleep suspends the current process from execution for the number of seconds specified by the argu­
ment The actual suspension time may be up to 1 second less than that requested, because scheduled
wakeups occur at fixed 1-second intervals, and may be an arbitrary amount longer because of other
activity in the system.

sleep is implemented by setting an interval timer and pausing until it expires. The previous state of
this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous
value of the timer, the process sleeps only until the timer would have expired, and the signal which
occurs with the expiration of the timer is sent one second later.

SEE ALSO
setitimer(2), sigpause(2), usleep(3)

Sun Release 3.2 Last change: 17 July 1986 239

SSIGNAL(3) C LmRARY FUNCTIONS SSIGNAL(3)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action»()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
ssignal and gsignal implement a software faci!ity similar to sigfl.a1 (3).

Software signals made available to users are associated with integers in the inclusive range 1 through
15. A call to ssignal associates a procedure, action, with the software signal sig; the software signal,
sig, is raised by a call to gsignal. Raising a software signal causes the action established for that sig­
nal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to be
established. The second argument defines the action; it is either the name of a (user-defined) action
function or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). ssignal returns the
action previously established for that signal type; if no action has been established or the signal
number is illegal, ssignal returns SIG _ DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and the
action function is entered with argument sig. gsignal returns the value returned to it by the
action function.

If the action for sig is SIG_IGN. gsignal returns the value 1 and takes no other action.

If the action for sig is SIG _ DFL. gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig. gsignal returns the value 0
and takes no other action.

SEE ALSO
signal(3)

240 Last change: 30 April 1986 Sun Release 3.2

STRING(3) C LffiRARY FUNCTIONS STRING(3)

NAME
string, strcat, strncat, strcmp, strncmp, strcpy, strncpy, strleo, strchr, strrchr, strpbrk, strspo, strcspo,
strtok, index, rindex - string operations

SYNOPSIS
#include <string.h>

char *strcat (sl, s2)
char *sl, *s2;

char *strncat (sl, s2, n)
char *sl, *s2;
int n;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (sl, s2, n)
char *sl, *s2;
int n;

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy (sl, s2, n)
char *sl, *s2;
int n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s;
int c;

char *strrchr (s, c)
char *s;
int c;

char *strpbrk (sl, s2)
char *sl, *s2;

int strspn (sl, s2)
char *sl, *s2;

int strcspn (sl, s2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, *s2;

#include <string.h>

char *index(s, c)
char *s, C;

char *rindex(s, c)
char *s, c;

DESCRIPTION
These functions operate 00 null-terminated strings. They do not check for overflow of any receiving
string.

Sun Release 3.2 Last change: 19 January 1983 241

STRING(3) C LIBRARY FUNCTIONS STRING(3)

NOTE

strcat appends a copy of string s2 to the end of string s1. strncat appends at most n characters. Each
returns a pointer to the null-terminated result

strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, according
as s1 is lexicographically greater than, equal to, or less than s2. strncmp makes the same comparison
but compares at most n characters.

strcpy copies string s2 to s1, stopping after the null character has been copied. strncpy copies exactly
n characters, truncating or null-padding s2. The result will not be null-terminated if tlte length of s2
is n or more. Each function returns s1 .

strlen returns the number of characters in s, not including the terminating null character.

strchr (strrchr) returns a pointer to the first (last) occurrence of character c in string s, or a NULL
pointer if c does not occur in the string. The null character terminating a string is considered to be
part of the string.

index (rindex) returns a pointer to the first (last) occurrence of character c in string s, or a NULL
pointer if c does not occur in the string. These functions are identical to strchr (strchr) and merely
have different names.

strpbrk returns a pointer to the first occurrence in string s1 of any character from string s2, or a NULL
pointer if no character from s2 exists in s1 .

strspn (strcspn) returns the length of the initial segment of string s1 which consists entirely of charac­
ters from (not from) string s2.

strtok considers the string s1 to consist of a sequence of zero or more text tokens separated by spans
of one or more characters from the separator string s2. The first call (with pointer s1 specified)
returns a pointer to the first character of the first token, and will have written a null character into s1
immediately following the returned token. The function keeps track of its position in the string
between separate calls, so that subsequent calls (which must be made with the first argument a NULL
pointer) will work through the string s1 immediately following that token. In this way subsequent
calls will work through the string s1 until no tokens remain. The separator string s2 may be different
from call to call. When no token remains in s1, a NULL pointer is returned.

For user convenience, all these functions, except for index and rindex, are declared in the optional
<string.h> header file. All these functions, including index and rindex but excluding strchr, strrchr,
strpbrk, strspn, strcspn, and strtok, are declared in the optional <strings.h> include file; the reason for
this is also historical.

WARNINGS

242

strcmp and strncmp use native character comparison, which is signed on the Sun, but may be unsigned
on other machines. Thus the sign of the value returned when one of the characters has its high-order
bit set is implementation-dependent

On the Sun processor, as well as on many other machines, you can NOT use a NULL pointer to indi­
cate a null string. ~ NULL pointer is an error and results in an abort of the program. If you wish to
indicate a null string, you must have a pointer that points to an explicit null string. On some imple­
mentations of the C language on some machines, a NULL pointer, if dereferenced, would yield a null
string; this highly non-portable trick was used in some programs. Programmers using a NULL pointer
to represent an empty string should be aware of this portability issue; even on machines where dere­
ferencing a NULL pointer does not cause an abort of the program, it does not necessarily yield a null
string.

Character movement is performed differently in different implementations. Thus overlapping moves
may yield surprises.

Last change: 19 January 1983 Sun Release 3.2

STRTOD(3} C LIBRARY FUNCTIONS STRTOD(3}

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

DESCRIPTION
strtod returns as a double-precision floating-point number the value represented by the character string
pointed to by str. The string is scanned up to the first unrecognized character.

strtod recognizes an optional string of spaces, then an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E followed by an optional sign or space, followed by
an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is returned in
the location pointed to by ptr. If no number can be formed, *ptr is set to str, and zero is returned.

atof(str) is equivalent to strtod(str, (char **)NUU).

SEE ALSO
ctype(3}, scanf(3S}, strtol(3}.

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is returned (according to the sign of the value), and
errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

Sun Release 3.2 Last change: 30 April 1986 243

STRTOL(3) CLmRARY FUNCTIONS STRTOL(3)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
strtol returns as a long integer the value represented by the character string pointed to by str. The
string is scanned up to the first character inconsistent with the base. Leading Uwhite-space" charac­
ters (as defined by isspace in ctype(3» are ignored.

If the value of ptr is not (char * *)NULL, a pointer to the character tenninating the scan is returned in
the location pointed to by ptr. If no integer can be formed, that location is set to str, and zero is
returned.

If base is positive (and not greater than 36), it is used as the base for conversion. Mter an optional
leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself detennines the base thusly: Mter an optional leading sign a leading
zero indicates octal conversion, and a leading "Ox" or "OX" hexadecimal conversion. Otherwise,
decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an explicit cast

atol(str) is equivalent to strtol(str, (char **)NUIL, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **)NUU, 10).

SEE ALSO
ctype(3), scanf(3S), strtod(3)

BUGS
Overflow conditions are ignored.

244 Last change: 30 April 1986 Sun Release 3.2

SWAB(3)

NAME
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)
char .from, *to;

DESCRIPTION

C LIBRARY FUNCTIONS SWAB (3)

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between high-ender machines (mM 360' s,
MC68000's, etc) and low-ender machines (pDP-ll's and VAX'es).

Nbytes should be even.

The from and to addresses should not overlap in portable programs.

Sun Release 3.2 Last change: 20 March 1984 245

SYSLOG(3) C LIBRARY FUNCTIONS SYSLOG(3)

NAME
syslog, openlog, closelog - control system log

SYNOPSIS
#include <syslog.h>

openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters •••)
char *message;

closelogO

DESCRIPTION
Syslog arranges to write the message onto the system log maintained by syslog(8). The message is
tagged with priority. The message looks like a print/(3S) string except that %m is replaced by the
current error message (collected from errno). A trailing newline is added if needed. This message
will be read by syslog(8) and output to the system console or files as appropriate.

If special processing is needed, openlog can be called to initialize the log file. Parameters are ident
which is prepended to every message, and logstat which is a bit field indicating special status; current
values are:

LOG PID log the process id with each message: useful for identifying instantiations of daemons.

Openlog returns zero on success. If syslog cannot send datagrams to syslog(8), then it writes on
/dev/console instead If Idev/console cannot be written, standard error is used. In either case, it
returns -1.

Close log can be used to close the log file. It is automatically closed on a successful exec system call
(see execve (2».

EXAMPLES
syslog(LOG_SALERT, "who: internal error 23");

openlog("serverftp", LOG _PID);
syslog(LOG _INFO, "Connection from host %d", CallingHost);

SEE ALSO
sy~log(8)

246 Last change: 15 March 1984 Sun Release 3.2

SYSTEM(3)

NAME
system - issue a shell command

SYNOPSIS
system(string)
char *string;

DESCRIPTION

C LIBRARY FUNCTIONS SYSTEM(3)

System causes the string to be given to sh(l) as input as if the string had been typed as a command at
a terminal. The current process waits until the shell has completed, then returns the exit status of the
shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 (may be displayed as "32512") indicates the shell couldn't be executed.

Sun Release 3.2 Last change: 19 January 1983 247

TSEARCH(3) CLffiRARYFUNCTIONS TSEARCH(3)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch «char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind «char *) key, (char **) rootp, com par)
int (*compar)();

char *tdelete «char *) key, (char **) rootp, compar)
int (*compar)();

void twalk «char *) root, action)
void (*action)();

DESCRIPTION
tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees. They are general­
ized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user-supplied routine.
This routine is called with two arguments, the pointers to the elements being compared It returns an
integer less than, equal to, or greater than 0, according to whether the first argument is to be con­
sidered less than, equal to or greater than the second argument. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in addition to the values being
compared

tsearch is used to build and access the tree. key is a pointer to a datum to be accessed or stored If
there is a datum in the tree equal to *key (the value pointed to by key), a pointer to this found datum
is returned. Otherwise, *key is inserted, and a pointer to it returned. Only pointers are copied, so the
calling routine must store the data. rootp points to a variable that points to the root of the tree. A
NULL value for the variable pointed to by rootp denotes an empty tree; in this case, the variable will
be set to point to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. However, if
it is not found, tfind will return a NULL pointer. The arguments for tfind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same as for tsearch. The
variable pointed to by rootp will be changed if the deleted node was the root of the tree. tdelete
returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree to be traversed (Any node in a tree
may be used as the root for a walk below that node.) action is the name of a routine to be invoked
at each node. This routine is, in tum, called with three arguments. The first argument is the address
of the node being visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf} VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third time that the node has been visited (during a
depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to type
pointer-to-character. Similarly, although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE

248

The following code reads in strings and stores structures containing a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in alphabet­
ical order.

Last change: 30 April 1986 Sun Release 3.2

TSEARCH(3)

Sun Release 3.2

C LIBRARY FUNCTIONS

#include <search.h>
#include <stdio.h>

struct node { 1* pointers to these are stored in the tree *1

};

char *string;
int length;

char string_space[10000]; 1* space to store strings *1
struct node nodes[SOO]; 1* nodes to store *1
struct node *root = NULL; 1* this points to the root *1

main()
{

}
1*

*1
int

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_ node{), twalk();
int i = 0, node _ compare();

while (gets(strptr) != NULL && i++ < 500) {
1* set node *1

}

nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
1* put node into the tree *1
(void) tsearch«char *)nodeptr, & root,

node_compare);
1* adjust pointers, so we don't overwrite tree *1
strptr += nodeptr->length + 1;
nodeptr++;

twalk(root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node _ compare(nodel, node2)
struct node *nodel, *node2;
{

}
1*

*1

void

return strcmp(nodel->string, node2->string);

This routine prints out a node, the first time
twalk encounters it

print_ node (node, order, level)
struct node **node;
VISIT order;
int level;
{

if (order == preorder II order == leaf) {

Last change: 30 April 1986

TSEARCH(3)

249

TSEARCH(3) C LIBRARY FUNCTIONS TSEARCH(3)

}
}

(void)printf("string = %20s, length = %d\n",
(*node)->string, (*node)->length);

SEE ALSO
bsearch(3), hsearch(3), Isearch(3).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space available to create a new node.

A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it If not, tfind returns NULL, and
tsearch returns a pointer to the inserted item.

WARNINGS

BUGS

250

The root argument to twalk is one level of indirection less than the rootp arguments to tsearch and
tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are visited. tsearch uses
preorder, postorder and endorder to respectively refer to visting a node before any of its children, after
its left child and before its right, and after both its children. The alternate nomenclature uses preorder,
inorder and postorder to refer to the same visits, which could result in some confusion over the mean­
ing of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

Last change: 30 April 1986 Sun Release 3.2

TTYNAME(3) C LmRARY FUNCTIONS

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname(filedes)

isatty(filedes)

DESCRIPTION

TIYNAME(3)

ttyname returns a pointer to the null-terminated path name of the terminal device associated with file
descriptor filedes.

isatty returns 1 if filedes is associated with a terminal device, 0 otherwise.

FILES
ldev/*

SEE ALSO
ioctl(2), ttys(5)

DIAGNOSTICS
ttyname returns a NULL pointer if filedes does not describe a terminal device in directory /dev.

BUGS
The return value points to static data whose content is overwritten by each call.

Sun Release 3.2 Last change: 22 May 1986 251

TIYSLOT(3) C LffiRARY FUNCTIONS

NAME
tty slot - find the slot in the utmp file of the current process

SYNOPSIS
ttyslotO

DESCRIPTION

TIYSLOT(3)

ttyslot returns the index of the current user's entry in the letdutmp file. This is accomplished by
actually scanning the file letdttys for the name of the terminal associated with the standard input, the
standard output, or the error output (0, 1 or 2).

FILES
letclttys

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the terminal name or if none
of the above file descriptors is associated with a terminal device.

252 Last change: 22 May 1986 Sun Release 3.2

UALARM(3) C LmRARY FUNCTIONS UALARM(3)

NAME
ualarm - schedule signal after interval in microseconds

SYNOPSIS
unsigned ualarm(value, interval)
unsigned value;
unsigned interval;

DESCRIPTION
This is a simplified interface to setitimer(2).

Ualarm causes signal SIGALRM see signal (3), to be sent to the invoking process in a number of
microseconds given by the value argument. Unless caught or ignored, the signal terminates the pro­
cess.

If the interval argument is non-zero, the SIGALRM signal will be sent to the process every interval
microseconds after the timer expires (e.g. after value microseconds have passed). ,
Because of scheduling delays, resumption of execution of when the signal is caught may be delayed
an arbitrary amount The longest specifiable delay time is 2147483647 microseconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
getitimer(2), setitimer(2), sigpause(2), sigvec(2), signal(3), sleep(3), alarm(3), usleep(3)

Sun Release 3.2 Last change: 17 July 1986 253

USLEEP(3) C LmRARY FUNCTIONS USLEEP(3)

NAME
usleep - suspend execution for interval in microseconds

SYNOPSIS
usleep(useconds)
unsigned useconds;

DESCRIPTION
for interval in microseconds" The current process is suspended from execution for the number of
microseconds specified by the argument. The actual suspension time may be an arbitrary amount
longer because of other activity in the system or because of the time spent in processing the call.

The routine is implemented by setting an interval timer and pausing until it occurs. The previous state
of this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previ­
ous timer, the process sleeps only until the signal would have occurred, and the signal is sent a short
time later.

This routine is implemented using setitimer(2); it requires eight system calls each time it is invoked.
A similar but less compatible function can be obtained with a single select(2); it would not restart
after signals, but would not interfere with other uses of setitimer.

SEE ALSO
setitimer(2), getitimer(2), sigpause(2), ualarm(3), sleep(3), alarm(3)

254 Last change: 17 July 1986 Sun Release 3.2

VALUES (3) C LIBRARY FUNCTIONS VALUES (3)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION

FILES

This file contains a set of manifest constants, conditionally defined for particular processor architec­
tures. The model assumed for integers is binary representation (one's or two's complement), where
the sign is represented by the value of the high-order bit.

BITS(type) The number of bits in a specified type (e.g., int).

HIBITS

HIBITL

HIBITI

MAX SHORT

MAXLONG

The value of a short integer with only the high-order bit set (in most imple-
mentations, Ox8000).

The value of a long integer with only the high-order bit set (in most imple­
mentations, Ox80000000).

The value of a regular integer with only the high-order bit set (usually the
same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most implementations,
Ox7FFF == 32767).

The maximum value of a signed long integer (in most implementations,
Ox7FFFFFFF == 2147483647).

MAXINT The maximum value of a signed regular integer (usually the same as MAX­
SHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision floating-point number,
and its natural logarithm.

MAXOOUBLE, LN _ MAXOOUBLE The maximum value of a double-precision floating-point number,
and its natural logarithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single-precision floating-point
number, and its natural logarithm.

MINOOUBLE, LN _ MINDOUBLE The minimum positive value of a double-precision floating-point
number, and its natural logarithm.

FSIGNIF

DSIGNIF

The number of significant bits in the mantissa of a single-precision floating­
point number.

The number of significant bits in the mantissa of a double-precision floating­
point number.

lusr/include/values.h

SEE ALSO
intro(3), intro(3M)

Sun Release 3.2 Last change: 1 May 1986 255

VARARGS(3) C LmRARY FUNCTIONS VARARGS(3)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

function(va _ alist)
va del

va_list pvar;

va _ start(pvar);

f = va_arg(pvar, type);

va _ end(pvar);

DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argument lists.
Routines having variable argument lists (such as printf(3S» but do not use varargs are inherently non­
portable, since different machines use different argument passing conventions.

va _ aUst is used in a function header to declare a variable argument list

va del is a declaration for va alist. No semicolon should follow va del. - - -
va_list is a type defined for the variable used to traverse the list One such variable must always be
declared.

va _ start(pvar) is called to initialize pvar to the beginning of the list.

va _ arg(pvar, type) will return the next argument in the list pointed to by pvar. type is the type to
which the expected argument will be converted when passed as an argument In standard C, argu­
ments that are char or short are converted to int and should be accessed as int, arguments that are
unsigned char or unsigned short are converted to unsigned int and should be accessed as unsigned
int, and arguments that are 80at are converted to double and should be accessed as double. Different
types can be mixed, but it is up to the routine to know what type of argument is expected, since it
cannot be determined at runtime.

va _ end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

va_alist must encompass the entire arguments list This insures that a #define statement can be used
to redefine or expand its value.

The argument list (or its remainder) can be passed to another function using a pointer to a variable of
type va _Iist- in which case a call to va _ arg in the subroutine advances the argument-list pointer with
respect to the caller as well.

EXAMPLE

256

This example is a possible implementation of execl(3).
#include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ... , (char *)0);

*/
execl(va _ alist)
va dcl
{

va_list ap;
char *file;
char *args[MAXARGS];

Last change: 17 July 1986 Sun Release 3.2

VARARGS(3) C LIBRARY FUNCTIONS VARARGS(3)

BUGS

}

int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while «args[argnO++] = va_arg(ap, char *» != (char *)0)

;
va_end(ap);
return execv(file, args);

It is up to the calling routine to specify how many arguments there are, since it is not possible to
determine this from the stack frame. For example, execl is passed a zero pointer to signal the end of
the list. Printf can tell how many arguments are supposed to be there by the format

The macros va _start and va _end may be arbitrarily complex; for example, va _start might contain an
opening brace, which is closed by a matching brace in va_end. Thus, they should only be used where
they could be placed within a single complex statement.

Sun Release 3.2 Last change: 17 July 1986 257

INTRO(3C) COMPATIBILITY ROUTINES INTRO(3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion of libc. They are automatically loaded as
needed by the C compiler cc(1). The link editor searches this library under the "-le" option. Use of these
routines (instead of newer equivalent routines) is encouraged for the sake of program portability. Manual
entries for the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Name Appears on Page Description

alarm alarm(3C) schedule signal after specified time
clock clock(3C) report CPU time used
ftime time(3C) get date and time
gtty stty(3C) set and get terminal state
nice nice(3C) set program priority
pause pause(3C) stop until signal
rand rand(3C) random number generator
srand rand(3C) random number generator
stty stty(3C) set and get terminal state
time time(3C) get date and time
times times (3C) get process times
ulimit ulimit(3C) get and set user limits
utime utime(3C) set file times
vlimit vlimit(3C) control maximum system resource consumption
vtimes vtimes(3C) get information about resource utilization

Sun Release 3.2 Last change: 20 August 1985 259

ALARM(3C) COMPATIBlLITY ROUTINES

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm(seconds)
uns~edseconds;

DESCRIPTION

ALARM(3C)

Alarm causes signal SIGALRM, see sigvec (2), to be sent to the invoking process in a number of seconds
given by the argument Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any alarm
request is canceled. Because of scheduling delays, resumption of execution of when the signal is caught
may be delayed an arbitrary amount The longest specifiable delay time is 2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signal(3), sleep(3), ualarm(3), usleep(3)

260 Last change: 17 July 1986 Sun Release 3.2

CLOCK(3C) COMPATIBILITY ROUTINES CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used since the first call to clock. The time
reported is the sum of the user and system times of the calling process and its terminated child processes
for which it has executed wait(2) or system (3).

The resolution of the clock is 16.667 milliseconds.

SEE ALSO

BUGS

wait(2), system(3), times(3C) times(3V)

The value returned by clock is defined in microseconds for compatibility with systems that have CPU
clocks with much higher resolution. Because of this, the value returned will wrap around after accumulat­
ing only 2147 seconds of CPU time (about 36 minutes).

Sun Release 3.2 Last change: 15 April 1986 261

NICE (3C) COMPATIBILITY ROUTINES NICE(3C)

NAME
nice - change priority of a process

SYNOPSIS
nice(incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor­
mal. Priority 10 is recommended to users who wish to execute long-running programs without undue
impact on system performance.

Negative increments are illegal, except when specified by the super-user. The priority is limited to the
range -20 (most urgent) to 20 (least). Requests for values above or below these limits result in the
scheduling priority being set to the corresponding limit.

The priority of a process is passed to a child process by fork (2). For a privileged process to return to nor­
mal priority from an unknown state, nice should be called successively with arguments -40 (goes to prior­
ity -20 because of truncation), 20 (to get to 0), then 0 (to maintain compatibility with previous versions of
this call).

RETURN VALUE
Upon successful completion, nice returns O. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

ERRORS
The priority is not changed if:

EACCES The value of incr specified was negative, and the effective user ID is not super-user.

SEE ALSO
nice(1), getpriority(2), setpriority(2), fork(2), renice(8)

262 Last change: 22 May 1986 Sun Release 3.2

PAUSE(3C)

NAME
pause - stop until signal

SYNOPSIS
pauseO

DESCRIPTION

COMPATIBILITY ROUTINES PAUSE (3C)

Pause never returns normally. It is used to give up control while waiting for a signal from !dU(2) or an
inteIVal timer, see setitimer(2). Upon termination of a signal handler started during a pause, the pause call
will return.

RETURN VALUE
Always returns -1.

ERRORS
Pause always returns:

EINTR The call was interrupted.

SEE ALSO
kill(2), select(2), sigpause(2)

Sun Release 3.2 Last change: 23 August 1983 263

RAND(3C) COMPATIBILITY ROUTINES RAND(3C)

NAME
rand, srand - simple random number generator

SYNOPSIS
srand(seed)
intseed;

randO

DESCRIYTION

NOTE

rand uses a multiplicative congruential random number generator with period 232 to return successive
pseudo-random numbers in the range from 0 to 231_1.

STand can be called at any time to reset the random-number generator to a random starting point The gen­
erator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired. drand48(3) and random(3) provide much
better, though more elaborate, random-number generators.

SEE ALSO

BUGS

264

drand48(3),random(3), rand(3V)

The low bits of the numbers generated are not very random; use the middle bits. In particular the lowest bit
alternates between 0 and 1.

Lastchange: 17 July 1986 Sun Release 3.2

STTY(3C) CO~ATIB~ITYROUTThffiS

NAME
stty, gtty - set and get terminal state

SYNOPSIS
#include <sgtty.h>

stty(fd, bur)
int fd;
struct sgttyb * buf;

gtty(fd, but)
int fd;
struct sgttyb * buf;

DESCRIPTION
This interface is obsoleted by ioctl(2).

STTY(3C)

Stty sets the state of the terminal associated withfd. Gtty retrieves the state of the terminal associated with
fd. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buO", while the gtty call is "ioct1(fd, TIOCGETP, buO".
See ioctl(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable errno contains the
reason for the failure.

SEE ALSO
ioctl(2), tty(4)

Sun Release 3.2 Last change: 26 August 1983 265

TIME (3C) COMP ATIBll..ITY ROUTINES

NAME
time, ftime - get date and time

SYNOPSIS
timeofday = time(O)

timeofday = time(tloc)
long *tloc;

#include <sysltypes.h>
#include <sysltimeb.h>
ftime(tp)
struct timeb *tp;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloe is nonnull, the return value is also stored in the place to which tloe points.

The ftime entry fills in a structure pointed to by its argument, as defined by <sysltimeb.h>:

struct timeb
{

};

time t time;
unsigned short millitm;
short timezone;
short dstfiag;

TIME (3C)

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise inter­
val, the local time zone (measured in minutes of time westward from Greenwich), and a flag that, if
nonzero, indicates that Daylight Saving time applies locally during the appropriate part of the year.

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), ctime(3)

266 Last change: 1 April 1983 Sun Release 3.2

TIMES(3C)

NAME
times - get process times

SYNOPSIS
#include <sysltypes.h>
#include <sysltimes.h>

times(buffer)
struct tms *buffer;

DESCRIPTION

COMPATIBILITY ROUTINES

This interface is obsoleted by getrnsage(2).

TIMES (3C)

Times returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are in 11HZ seconds, where HZ is 60.

This is the structure returned by times:

struct tms {

};

time t tms _ utime;
time t tms _stime;
time t tms_cutime;
time t tms_cstime;

/* user time */
/* system time */
/ * user time, children * /
/* system time, children */

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(1 V), getrusage(2), wait3(2), time(3C)

Sun Release 3.2 Last change: 3 November 1983 267

ULIMIT(3C) COMPATIBll..ITY ROUTINES ULIMIT(3C)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit(cmd, newlimit)
int cmd;

DESCRIPTION
This function is included for System V compatibility.

This routine provides for control over process limits. The cmd values available are:

1 Get the process's file size limit The limit is in units of 512-byte blocks and is inherited by child
processes. Files of any size can be read.

2 Set the process's file size limit to the value of newlimit. Any process may decrease this limit, but
only a process with an effective user ID of super-user may increase the limit. Ulimit will fail and
the limit will be unchanged if a process with an effective user ID other than the super-user
attempts to increase its file size limit.

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
brk(2), setrlimit(2), write(2V)

268 Last change: 27 February 1985 Sun Release 3.2

UTIME(3C)

NAME
utime - set file times

SYNOPSIS
#include <sys/types.h>

otime(file, timep)
char *file;
time_t timep[2);

DESCRIPTION

COMPATIBILITY ROUTINES UTIME(3C)

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file is set to the
current time.

SEE ALSO
utimes(2), stat(2)

Sun Release 3.2 Last change: 1 April 1983 269

VLIMIT(3C) COMPATIBILITY ROUTINES VLIMIT(3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/vlimit.h>

vlimit(resource, value)

DESCRIPTION
This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually exceed value
on the specified resource. If value is specified as -I, then the current limit is returned and the limit is
unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the super-user
may remove the noraise restriction.

LIM CPU the maximum number of cpu-seconds to be used by each process

LIM FSIZE the largest single file which can be created

LIM DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro-
gram text

LIM _ STACK the maximum size of the automatically-extended stack region

LIM CORE the size of the largest core dump that will be created

LIM MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the program. If
memory is tight, the system will prefer to take memory from processes which are
exceeding their declared LIM _ MAXRSS.

Because this information is stored in the per-process information this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(I).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way;
a break call fails if the data space limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to be gen­
erated, this normally terminates the process, but may be caught. When the cpu time limit is exceeded, a
signal SIGXCPU is sent to the offending process; to allow it time to process the signal it is given 5 seconds
grace by raising the cpu time limit.

SEE ALSO
csh(l)

BUGS

270

If LIM _NORAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and un limit commands in sh(l) as well as in csh.

Last change: 13 June 1983 Sun Release 3.2

VTIM:ES (3C) COMPATIBILITY ROUTINES VTIMES(3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
vtimes(par _ VID, ch _ vm)
struct vtimes *par _ VID, *ch _ vm;

DESCRIPTION
This facility is superseded by getrosage(2).

Vtimes returns accounting information for the current process and for the terminated child processes of the
current process. Either par _vm or ch _vm or both may be 0, in which case only the information for the
pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file
<sys/vtimes.h>:

struct vtirnes {
int vm_utirne; /* user time (*HZ) */
int vrn_stime; /* system time (*HZ) */
/* divide next two by utime+stime to get averages */
unsigned vm _idsrss; /* integral of d+s rss */
unsigned vm _ixrss; /* integral of text rss */
int vm _ maxrss; /* maximum rss */
int vrn _rnajflt; /* major page faults */
int vrn _ rninflt; /* minor page faults */
int vrn _ nswap; /* number of swaps */
int vrn _inblk; /* block reads */
int vm_oublk; /* block writes */

};

The vm _ utime and vm _stime fields give the user and system time respectively in 60ths of a second (or 50ths
if that is the frequency of wall current in your locality.) The vm _ idrss and vm _ixrss measure memory
usage. They are computed by integrating the number of memory pages in use each over cpu time. They
are reported as though computed discretely, adding the current memory usage (in 512 byte pages) each
time the clock ticks. If a process used 5 core pages over 1 cpu-second for its data and stack, then vm _idsrss
would have the value 5*60, where vm_utime+vm_stime would be the 60. Vm_idsrss integrates data and
stack segment usage, while vm _ ixrss integrates text segment usage. Vm _ maxrss reports the maximum
instantaneous sum of the text+<iata+stack core-resident page count.

The vm _ majJlt field gives the number of page faults which resulted in disk activity; the vm _ minflt field
gives the number of page faults incurred in simulation of reference bits; vm _nswap is the number of swaps
which occurred. The number of file system input/output events are reported in vm _inblk and vm _oublk
These numbers account only for real i/o; data supplied by the caching mechanism is charged only to the
first process to read or write the data.

SEE ALSO
getrusage(2), wait3(2)

Sun Release 3.2 Last change: 13 June 1983 271

INTRO(3M) MATHEMATICAL FUNCfIONS INTRO(3M)

NAME
intro - introduction to mathematical library functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
The include file <JDath.h> contains declarations of all the functions in the Math Library libm (described in
Section 3M), as well as various functions in the C Library (Section 3C) that return floating-point values.
Functions in this library are automatically loaded as needed by the Fortran compilerj77(l). The link editor
searches this library under the "-1m" option.

<math.h> also defines the structure and constants used by the matherr(3M) error-handling mechanisms,
including the following constant used as an error-return value:

HUGE The maximum value of a double-precision floating-point number.

The following mathematical constants are defined for user convenience:

M E The base of natural logarithms (e).

M LOG2E

M LOG10E

M LN2

M LN10

The base-2 logarithm of e.

The base-tO logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

M PI The ratio of the circumference of a circle to its diameter. (There are also several
fractions of its reciprocal and its square root.)

The positive square root of 2.

The positive square root of 112.

For the definitions of various machine-dependent "constants," see the description of the <values.b>
header file.

LIST OF FUNCTIONS
Name Appears on Page Description

acos sin(3M) inverse trigonometric functions
acosh asinh(3M) inverse hyperbolic function
asin sin(3M) inverse trigonometric function
asinh asinh(3M) inverse hyperbolic function
atan sin(3M) inverse trigonometric function
atan2 sin(3M) inverse trigonometric function
atanh asinh(3M) inverse hyperbolic function
cabs hypot(3M) complex magnitude
cbrt sqrt(3M) cube root
ceil floor(3M) ceiling function
copysign ieee(3M) copy sign bit
cos sin(3M) trigonometric function
cosh sinh(3M) hyperbolic function
drem ieee(3M) remainder
erf erf(3M) error function
erfc erf(3M) complementary error function
exp exp(3M) exponential function
expml exp(3M) exp(X)-l
fabs floor(3M) absolute value function
finite ieee(3M) test for finite number
floor floor(3M) ftoorfunction

Sun Release 3.2 Last change: 14 March 1986 273

INTRO(3M) MATHEMATICAL FUNCfIONS INTRO(3M)

hypot hypot(3M) Euclidean distance
jO j0(3M) Bessel function
jl j0(3M) Bessel function
jn j0(3M) Bessel function
Igamma Igamma(3M) log gamma function
log exp(3M) natural logarithm
log 10 exp(3M) common logarithm
loglp exp(3M) log(l+X)
10gb ieee(3M) exponent extraction
matherr matherr(3M) math library error-handling routines
pow exp(3M) power x**y
rint fioor(3M) round to nearest integral value
scalb ieee(eM) exponent adjustment
sin sin(3M) trigonometric function
sinh sinh(3M) hyperbolic function
sqrt sqrt(3M) square root
tan sin(3M) trigonometric function
tanh sinh(3M) hyperbolic function
yO j0(3M) Bessel function
yl j0(3M) Bessel function
yn j0(3M) Bessel function

274 Last change: 14 March 1986 Sun Release 3.2

ASINH(3M) MATHEMATICAL FUNCTIONS

NAME
asinh, acosh, atanh - inverse hyperbolic functions

SYNOPSIS
#include <math.h>

double asinh(x)
double x;

double acosh(x)
double X;

double atanh(x)
double X;

DESCRIPTION

ASINH(3M)

These functions compute the designated inverse hyperbolic functions for real arguments. They inherit
much of their (roundoff, etc.) error from loglp. as described in exp(3M).

SEE ALSO
intro(3M), exp(3M)

DIAGNOSTICS
Acosh returns a NaN if the argument is less than 1.

Atanh returns aN aN if the argument has absolute value greater than 1.

Sun Release 3.2 Last change: 14 March 1986 275

ERF(3M)

NAME
elf, erfc - error functions

SYNOPSIS
#include <math.h>

double erf(x)
double x;

double erfc(x)
double x;

DESCRIPTION

MATHEMATICAL FUNCfIONS

Elf(x) returns the error function of x; where erf(x) := (2J.J1t) J~ exp(-t2) dt.

Erfc (x) returns l.O-erf(x).

ERF(3M)

The entry for erfc is provided because of the extreme loss of relative accuracy if erf (x) is called for large x
and the result subtracted from 1. (e.g. for x = 10, 12 places are lost).

SEE ALSO
intro(3M)

276 Last change: 14 March 1986 S un Release 3.2

EXP(3M) MATHEMATICAL FUNCfIONS

NAME
exp, log, log 10, pow - exponential, logarithm, power

SYNOPSIS
#include <math.h>

double exp(x)
double X;

double expml(x)
double X;

double log(x)
double x;

double loglO(x)
double x;

double loglp(x)
double X;

double pow(x, y)
double x, y;

DESCRIPTION
Exp returns the exponential function of x.

ExpmJ returns exp(x)-1 accurately even for tiny x.

Log returns the natural logarithm of x .

LogJO returns the base 10 logarithm.

LogJp returns log(1+x) accurately even for tiny x;

Pow returns :Y!.
SEE ALSO

hypot(3M), sinh(3M), intro(2)

DIAGNOSTICS

EXP(3M)

These functions handle exceptional arguments in the spirit of IEEE standard P7 54 for binary floating point
arithmetic. Log(x) for x < 0, loglO(x) for x < 0, pow(O.O,O.O), pow(infinity,O.O), and pow(1.0,infinity) are
invalid, as is pow(x,y) if x < ° and y is not an integer value or infinite value; in all these cases NaN func­
tion values are returned and errno is set to EooM.

Sun Release 3.2 Last change: 14 March 1986 277

FLOOR(3M) MATHEMATICAL FUNCfIONS

NAME
floor, ceil, fabs, rint - absolute value, floor, ceiling and round-to-nearest functions

SYNOPSIS
#include <math.h>

double ftoor(x)
double X;

double ceil(x)
double X;

double rabs(x)
double X;

double rint(x)
double X;

DESCRIPTION
F abs returns the absolute value I x I.
Floor returns the value of the greatest integer less than or equal to x.

Ceil returns the value of the least integer greater than or equal to x.

FLOOR (3M)

Rint returns the value of the integer nearest x in the direction of the prevailing rounding mode.

SEE ALSO
abs(3)

278 Last change: 14 March 1986 Sun Release 3.2

HYPOT(3M) MATIIEMATICAL FUNCTIONS

NAME
hypot, cabs - Euclidean distance

SYNOPSIS
#include <math.h>

double bypot(x, y)
double x, y;

double cabs(z)
struct {double x, y;} z;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for sqrt

Sun Release 3.2 Last change: 19 January 1983

HYPOT(3M)

279

IEEE(3M) MATIIEMATICALFUNCflONS IEEE (3M)

NAME
ieee, copysign, drern, finite, 10gb, scalb - copysign, remainder, exponent manipulations

SYNOPSIS
#include <matb.h>

double copysign(x,y)
doublex,y;

double drem(x,y)
doublex,y;

int finite(x)
double x;

double logb(x)
double x;

double scalb(x,o)
double x;
into;

DESCRIPTION
These functions are required for, or recommended by the IEEE standard 754 for floating-point arithmetic.

Copysign(x,y) returns x with its sign changed to y's.

Drem(x,y) returns the remainder r := x - n*y where n is the integer nearest the exact value of x/y; more­
over if In - x/yl = 112 then n is even. Consequently the remainder is computed exactly and Irl ~ lyV2. But
drem(x,O) is exceptional; see below under DIAGNOSTICS.

Finite(x) = 1 just when -00 < x < +00,

= ° otherwise (when Ixl = 00 or x is NaN.)

Logb(x) returns x's exponent n, a signed integer converted to double-precision floating-point and so
chosen that 1 :=; IxI/2**n < 2 unless x = ° or (only on machines that conform to IEEE 754) Ixl = 00 or x
lies between ° and the Underflow Threshold; see below under "BUGS".

Scalb(x,n) = x*(2**n) computed, for integer n, without first computing 2**n.

SEE ALSO
floor(3M), intro(3M)

DIAGNOSTICS

280

IEEE 754 defines drem(x,O) and drem(oo,y) to be invalid operations that produce a NaN.

IEEE 754 defines logb(±oo) = +00 and logb(O) = -00, and requires the latter to signal Division-by-Zero.

IEEE 754 currently specifies that logb(denormalized no.) = logb(tiniest normalized no. > 0) but the con­
sensus has changed to the specification in the new proposed IEEE standard p854, namely that logb(x)
satisfy

1 ~ scalb(lxl,-logb(x» < Radix ... = 2 for IEEE 754
for every x except 0, 00 and NaN. Almost every program that assumes 754's specification will work
correctly if 10gb follows 854' s specification instead.

IEEE 754 requires copysign(x,NaN) = ±X but says nothing else about the sign of a NaN - (Not a Number.)

Last change: 14 March 1986 Sun Release 3.2

JO(3M) MA 1HEMA TICAL FUNCfIONS

NAME
jO,jl,jn, yO, yl, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO(x)
double x;

double jl(x)
double X;

double jn(n, x)
double x;
int n;

double yO(x)
double x;

double yl(x)
double X;

double yn(n, x)
double x;
int n;

DESCRIPTION

JO(3M)

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord­
ers.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return a huge negative value and set errno to EDOM.

Sun Release 3.2 Last change: 4 April 1986 281

LGAMMA(3M) MATHEMATICAL FUNCTIONS LGAMMA(3M)

NAME
19amma, gamma - log gamma function

SYNOPSIS
#include <math.h>

double Igamma(x)
double X;

double gamma(x)
double x;

DESCRIPTION
Lgamma

19amma
returns In Ir(x)1 where r(x) = rn tX

-
1 e-t dt

r(x) = J}(r(l-X) sin(1tx»

The external integer signgam returns the sign of r(x) .

for X >0 and
for x < 1.

Gamma
Gamma returns In I r(I x I) I. The sign of r(I x I) is returned in the external integer signgam. The follow­
ing C program might be used to calculate r:

y = gamma(x);
#ifdefvax
if(y> 88.0)
#endif
#ifdefsun
if (y > 706.0)
#endif
errorO;
y = exp(y);
if(signgam)
y=-y;

IDIOSYNCRASIES
Do not use the expression signgam*exp(lgamma(x)) to compute g:= rex). Instead use a program like this
(in C):

19 = 19amma(x); g = signgam*exp(lg);

Only after 19amma has returned can signgam be correct. Note too that r(x) must overflow when x is large
enough, underflow when -x is large enough, and spawn a division by zero when x is a nonpositive integer.

DIAGNOSTICS
For very large arguments over/underflows will occur inside the 19amma routine.

gamma returns a huge value for negative integer arguments.

SEE ALSO
intro(3M)

BUGS

282

gamma should return a positive indication of error.

Only in the UNIX math library for C was the name gamma ever attached to lnr. Elsewhere, for instance in
IBM's FORTRAN library, the name GAMMA belongs to r and the name ALGAMA to lnr in single preci­
sion; in double the names are DGAMMA and DLGAMA. Why should C be different?

Last change: 14 March 1986 Sun Release 3.2

MATHERR(3M) MATHEMATICAL FUNCTIONS MATHERR(3M)

NAME
matherr - math library error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION

NOTE

matherr is invoked by functions in the Math Library when errors are detected. Users may define their own
procedures for handling errors, by including a function named matherr in their programs. matherr must be
of the form described above. When an error occurs, a pointer to the exception structure x will be passed to
the user-supplied matherr function. This structure, which is defined in the <math.h> header file, is as fol­
lows:

struct exception {

};

int type;
char *name;
double argt, arg2, retval;

The element type is an integer describing the type of error that has occurred, from the following list of con­
stants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurred the error. The vari­
ables argl and arg2 are the arguments with which the function was invoked. Retval is set to the default
value that will be returned by the function unless the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message will be printed, and errno will not be set

If matherr is not supplied by the user, the default error-handling procedures, described with the math func­
tions involved, will be invoked upon error. These procedures are also summarized in the table below. In
every case, errno is set to EDOM or ERANGE and the program continues.

In the Sun environment, the facilities provided by matherr are only available when a program is built with
the software floating point library, as there would be a substantial performance penalty imposed by provid­
ing these facilities with the libraries that support various Sun floating point hardware options.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {
case OOMAIN:

/* change sqrt to return sqrt(-argl), not 0 */
if (!strcmp(x->name, "sqrt")) {

x->retval = sqrt(-x->argl);
return (0); /* print message and set ermo */

Sun Release 3.2 Last change: 30 April 1986 283

MATHERR(3M) MATHEMATICAL FUNCfIONS

}

}
case SING:

/* all other domain or sing errors, print message and abort */
fprintf(stderr, "domain error in %s\n", x->narne);
abort();

case PLOSS:

}

/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g) = %g\n" ,

x->name, x->argl, x->retval);
return (1); /* take no other action */

return (0); /* all other errors, execute default procedure */

ERROR HANDLING

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW

e"no EDOM EDOM ERANGE ERANGE

BESSEL: - - - -
yO, yI, yn (arg ~ 0) M,-H - - -
EXP: - - H 0

LOG,LOGlO:

(arg < 0) M,-H - - -
(arg = 0) - M,-H - -

POW: - - ±H 0

neg •• non-int M,O - - -
0 •• non-pos

SQRT: M,O - - -
GAMMA: - M,H H -
HYPOT: - - H -
SINH: - - ±H -
COSH: - - H -
SIN, COS, TAN:- - - - M,O

ASIN, ACOS, ATAN2: M, 0 - - - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EooM error).
H HUGE is returned.

-H -HUGE is returned.
±H HUGE or -HUGE is returned.
o 0 is returned.

284 Last change: 30 April 1986

MATHERR(3M)

TLOSS PLOSS

ERANGE ERANGE

M,O •
- -

- -

- -

- -
- -

- -

- -
- -

- -

- -
- -
•
-

Sun Release 3.2

SIN(3M) MATIIEMATICAL FUNCfIONS

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(y, x)
double x, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments.

Asin returns the arc sin in the range -7tl2 to 7tl2.

Acos returns the arc cosine in the range 0 to 1t.

Atan returns the arc tangent of x in the range -7tl2 to 7tl2.

Atan2 returns the arc tangent of y/x in the range -1t to 1t.

DIAGNOSTICS

SIN(3M)

These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary floating point
arithmetic. When x is infinity in sin(x), cos(x), or tan(x), or when Ixl > 1 in asin(x) or acos(x), the functions
return NaN values and ermo is set to EDOM.

Sun Release 3.2 Last change: 19 December 1985 285

SINH(3M) MATHEMATICAL FUNCfIONS

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH(3M)

These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary floating point
arithmetic. Thus sinh and cosh return infinity on overflow.

286 Last change: 8 August 1985 Sun Release 3.2

SQRT(3M) MATHEMATICAL FUNCTIONS

NAME
sqrt, cbrt - cube root, square root

SYNOPSIS
#include <math.h>

double cbrt(x)
double X;

double sqrt(x)
double X;

DESCRIPTION
Cbrt(x) returns the cube root of x.

Sqrt(x) returns the square root of x.

SEE ALSO
intro(3M)

DIAGNOSTICS
ERROR (due to Roundoff etc.)

Cbrt is accurate to within 0.7 ulps.

SQRT(3M)

Sqrt on a machine that conforms to IEEE 754 is correctly rounded in accordance with the rounding mode in
force; the error is less than half an ulp in the default mode (round-to-nearest). An ulp is one Unit in the
Last Place carried.

Sun Release 3.2 Last change: 14 March 1986 287

INTRO(3N) NETWORK FUNCTIONS IN1RO(3N)

NAME
intro - introduction to network library functions

DESCRIPTION
This section describes functions that are applicable to the DARPA Internet network, which are part of the
standard C library.

LIST OF FUNCTIONS
Name Appears on Page

endhostent gethostent(3N)
endnetent getnetent(3N)
endprotoent getprotoent(3N)
endservent getservent(3N)
gethostbyaddr gethostent(3N)
gethostbyname gethostent(3N)
gethostent gethostent(3N)
getnetbyaddr getnetent(3N)
getnetbyname getnetent(3N)
getnetent getnetent(3N)
getprotobyname getprotoent(3N)
getprotobynumber getprotoent(3N)
getprotoent getprotoent(3N)
getrpcbyname getrpcent(3N)
getrpcbynumber getrpcent(3N)
getrpcent getrpcent(3N)
getservbyname getservent(3N)
getservbyport getservent(3N)
getservent getservent(3N)
htonl byteorder(3N)
htons byteorder(3N)
inet addr inet(3N)
inet lnaof inet(3N)
inet makeaddr inet(3N)
inet netof inet(3N)
inet network inet(3N)
inet ntoa inet(3N)
ntohl byteorder(3N)
ntohs byteorder(3N)
rcmd rcmd(3N)
rexec rexec(3N)
rresvport rcmd(3N)
ruserok rcmd(3N)
sethostent gethostent(3N)
setnetent getnetent(3N)
setprotoent getprotoent(3N)
setservent getservent(3N)
yp _ all ypclnt(3N)
yp _ bind ypclnt(3N)
yp _ first ypclnt(3N)
yp _get_ default_domain
yp _master ypclnt(3N)
yp _ match ypclnt(3N)
yp _next ypclnt(3N)
yp _order ypclnt(3N)

Description

get network host entry
get network entry
get protocol entry
get service entry
get network host entry
get network host entry
get network host entry
get network entry
get network entry
get network entry
get protocol entry
get protocol entry
get protocol entry
get rpc entry
get rpc entry
get rpc entry
get service entry
get service entry
get service entry
convert values between host and network byte order
convert values between host and network byte order
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
Internet address manipulation
convert values between host and network byte order
convert values between host and network byte order
routines for returning a stream to a remote command
return stream to a remote command
routines for returning a stream to a remote command
routines for returning a stream to a remote command
get network host entry
get network entry
get protocol entry
get service entry
yP client interface routines
yP client interface routines
yP client interface routines
ypclnt(3N)YP client interface routines
YP client interface routines
yP client interface routines
YP client interface routines
YP client interface routines

Sun Release 3.2 Last change: 20 August 1985 289

INTRO(3N)

290

yp_unbind
ypclnt
yperr _string
ypprot_err

ypclnt(3N)
ypclnt(3N)
ypclnt(3N)
ypclnt(3N)

NETWORK FUNCTIONS

yP client interface routines
yP client interface routines
yP client interface routines
yP client interface routines

Last change: 20 August 1985

INTRO(3N)

Sun Release 3.2

BYTEORDER(3N) NETWORK FUNCTIONS BYTEORDER(3N)

NAME
byteorder, htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#include <sysltypes.h>
#include <netinetlin.h>

netlong = htonl(hostlong);
u ~ong netlong, hostlong;

netshort = htons(hostshort);
u _short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u _short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte order. On
machines such as the Sun these routines are defined as null macros in the include file <netinetlin.h>.

These routines are most often used in conjunction with Internet addresses and ports as returned by
gethostent(3N) and getservent(3N).

SEE ALSO

BUGS

gethostent(3N), getservent(3N)

The V AX handles bytes backwards from most everyone else in the world. This is not expected to be fixed
in the near future.

Sun Release 3.2 Last change: 4 March 1983 291

ETHERS (3N) NElWORK FUNCTIONS ETHERS(3N)

NAME
ethers, ether _ ntoa, ether _ aton, ether _ ntohost, ether _ hostton, ether_line - Ethernet address mapping opera­
tions

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if ether .h>

char *
ether_ntoa(e)

struct ether _ addr *e;

struct ether addr *
ether _ aton(s)

char *s;

ether _ ntohost(hostname, e)
char * hostname;
struct ether _ addr *e;

ether y.ostton(hostname, e)
char * hostname;
struct ether _ addr *e;

ether Jine(l, e, hostname)
char *1;
struct ether _ addr *e;
char * hostname;

DESCRIPTION

FILES

ether _ ntoa, ether _ aton, ether _ ntohost, ether _ hostton, ether_line

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations or their
corresponding host names, and vice versa.

The function ether _ ntoa converts a 48 bit Ethernet number pointed to by e to its standard ACSII represen­
tation; it returns a pointer to the ASCII string. The representation is of the form: "x:x:x:x:x:x" where x is
a hexadecimal number between 0 and ff. The function ether _ aton converts an ASCII string in the standard
representation back to a 48 bit Ethernet number; the function returns NULL if the string cannot be scanned
successfully.

The function ether _ ntohost maps an Ethernet number (pointed to bye) to its associated hostname. The
string pointed to by hostname must be long enough to hold the hostname and a null character. The function
returns zero upon success and non-zero upon failure. Inversely, the function ether _ hostton maps a host­
name string to its corresponding Ethernet number; the function modifies the Ethernet number pointed to by
e. The function also returns zero upon success and non-zero upon failure.

The function ether _line scans a line (pointed to by I) and sets the hostname and the Ethernet number
(pointed to bye). The string pointed to by hostname must be long enough to hold the hostname and a null
character. The function returns zero upon success and non-zero upon failure. The format of the scanned
line is described by ethers(5).

/ etc/ ethers

SEE ALSO
ethers(5)

(or the yellowpages' maps ethers.byaddr and ethers.byname)

292 Last change: 8 July 1985 Sun Release 3.2

GE1HOSTENT (3N) NETWORK FUNCTIONS GE1HOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNOPSIS
#include <syS/socket.h>
#include <netdb.h>

struct hostent *gethostentO

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent(stayopen)
int stayopen
endhostentO

DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the network host data base, /etc/hosts.

struct hostent {
char *h _name; /* official name of host */

};

char
int
int
char

**h_aliases; /* alias list */
h _ addrtype; /* address type * /
h _length; /* length of address */
h _ addr;/ address *1

The members of this structure are:

h name Official name of the host.

h aliases A zero terminated array of alternate names for the host.

h _ addrtype The type of address being returned; currently always AF _ INET.

h Jength The length, in bytes, of the address.

h addr A pointer to the network address for the host. Host addresses are returned in network byte
order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will not be closed
after each call to gethostent (either directly, or indirectly through one of the other "gethost" calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until a matching host
name or host address is found, or until EOF is encountered. Host addresses are supplied in network order.

letclhosts
/etclypldomainname/hosts.byname
/etclyp/domainname/hosts.byaddr

SEE ALSO
hosts(5), ypserv(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

Sun Release 3.2 Last change: 16 June 1986 293

GETHOSTENT (3N) NETWORK FUNCTIONS GETHOSTENT (3N)

BUGS

294

All information is contained in a static area so it must be copied if it is to be saved. Only the Internet
address format is currently understood.

Last change: 16 June 1986 Sun Release 3.2

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#include <netdb.h>

struct netent * getnetentO

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;
int type;

setnetent(stayopen)
int stayopen;

endnetentO

DESCRIPTION

FILES

getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following structure
containing the broken-out fields of a line in the network data base, letdnetworks.

struct netent {
char *n_name;
char **n _aliases;
int n _ addrtype;
long n_net;

};

The members of this structure are:

1* official name of net *1
1* alias list *1
1* net number type *1
1* net number *1

n name

n aliases

The official name of the network.

A zero terminated list of alternate names for the network.

n _addrtype The type of the network number returned; currently only AF _ INET.

n net The network number. Network numbers are returned in machine byte order.

getnetent reads the next line of the file, opening the file if necessary.

setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getnetent (either directly, or indirectly through one of the other "getnet" calls).

endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a matching net
name or net address and type is found, or until EOP is encountered. Network numbers are supplied in host
order.

letc/networks
letc/ypldomainnamelnetworks.byname
letc/ypi domainname Inetworks .byaddr

SEE ALSO
networks(5), ypserv(8)

DIAGNOSTICS
Null pointer (0) returned on EOP or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved

Sun Release 3.2 Lastchange: 17 July 1986 295

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT (3N)

Only Internet network numbers are currently understood.

296 Last change: 17 July 1986 Sun Release 3.2

GETNETGRENT (3N) NETWORK FUNCTIONS GElNETGRENT (3N)

NAME
getnetgrent, setnetgrent, endnetgrent, innetgr - get network group entry

SYNOPSIS
innetgr(netgroup, machine, user, domain)
char *netgroup, *machine, *user, *domain;

setnetgrent(netgroup)
char *netgroup

endnetgrentO

getnetgrent(machinep, userp, domainp)
char **machinep, **userp, **domainp;

DESCRIPTION

FILES

Inngetgr returns 1 or 0, depending on whether netgroup contains the machine, user, domain triple as a
member. Any of the three strings machine, user, or domain can be NULL, in which case it signifies a wild
card.

Getnetgrent returns the next member of a network group. After the call, machinep will contain a pointer to
a string containing the name of the machine part of the network group member, and similarly for userp and
domainp. If any of machinep, userp or domainp is returned as a NULL pointer, it signifies a wild card.
Getnetgrent will rnalloc space for the name. This space is released when a endnetgrent call is made. Get­
netgrent returns 1 if it succeeding in obtaining another member of the network group, 0 if it has reached the
end of the group.

Setnetgrent establishes the network group from which getnetgrent will obtain members, and also restarts
calls to getnetgrent from the beginning of the list. If the previous setnetgrent call was to a different net­
work group, a endnetgrent call is implied. Endnetgrent frees the space allocated during the getnetgrent
calls.

/ etc/netgroup
letclypldomainlnetgroup
letclypldomainlnetgroup.byuser
letclypl domainlnetgroup.byhost

Sun Release 3.2 Last change: 1 February 1985 297

GETPROTOENT (3N) NETWORK FUNCTIONS GETPROTOENT (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoentO

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen;

endprotoentO

DESCRIPTION

FILES

getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network protocol data base, fetc/protocols.

struct protoent {
char *p _name; /* official name of protocol */
char **p _aliases; /* alias list */
int p yroto; /* protocol number */

};

The members of this structure are:

p _name The official name of the protocol.

p _aliases A zero terminated list of alternate names for the protocol.

p yroto The protocol number.

getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getprotoent (either directly, or indirectly through one of the other "getproto" calls).

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the beginning of the file until a matching
protocol name or protocol number is found, or until EOF is encountered.

/ etc/protocols
/etc/yp/ domainname /protocols. byname
/etc/yp/domainname/protocols.bynumber

SEE ALSO
protocols(S), ypserv(8)

DIAGNOSTICS

BUGS

298

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Only the Internet pro­
tocols are currently understood.

Last change: 17 July 1986 Sun Release 3.2

GETRPCENT (3N) NETWORK FUNCTIONS GETRPCENT (3N)

NAME
getrpcent, getrpcbyname, getrpcbynumber - get RPC entry

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcentO

struct rpcent *getrpcbyname(name)
char *name;

struct rpcent *getrpcbynumber(number)
int number;

setrpcent(stayopen)
int stayopen

endrpcentO

DESCRIPTION

FILES

Getrpcent, getrpcbyname, and getrpcbynumher each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the rpc program number data base, letclrpc.

struct rpcent {
char

};

char
long

*f_name;
**r _aliases;
r_number;

The members of this structure are:

1* name of server for this rpc program *1
1* alias list *1
1* rpc program number *1

r name The name of the server for this rpc program.

r aliases A zero terminated list of alternate names for the rpc program.

f number The rpc program number for this service.

Getrpcent reads the next line of the file, opening the file if necessary.

Setrpcent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getrpcent (either directly, or indirectly through one of the other "getrpc" calls).

Endrpcent closes the file.

Getrpcbyname and getrpcbynumher sequentially search from the beginning of the file until a matching rpc
program name or program number is found, or until EOF is encountered.

letclrpc
1 etclypl domainname Irpc. bynumber

SEE ALSO
rpc(5), ~info(8), ypservices(8)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 26 September 1985 299

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getserventO

structservent * getservbyname(name, proto)
char *name, .proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen;

endserventO

DESCRIPTION

FILES

getservent, getservbyname, and getservbyport each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the network services data base, letc/services.

struct

};

servent {
char
char
int
char

*s_name;
* * s _ aliases;
sJ>Ort;
*syroto;

The members of this structure are:

s name The official name of the service.

1* official name of service *1
1* alias list *1
1* port service resides at *1
1* protocol to use *1

s aliases A zero terminated list of alternate names for the service.

sJ>Ort The port number at which the service resides. Port numbers are returned in network byte order.

s yroto The name of the protocol to use when contacting the service.

getservent reads the next line of the file, opening the file if necessary.

setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getservent (either directly, or indirectly through one of the other "getserv" calls).

endservent closes the file.

getservbyname andgetservbyport sequentially search from the beginning of the file until a matching proto­
col name or port number is found, or until EOF is encountered. If a protocol name is also supplied (non­
NULL), searches must also match the protocol.

1 etc/services
letc/yp/ domainname Iservices.byname

SEE ALSO
getprotoent(3N), services(5), ypserv(8)

DIAGNOSTICS

BUGS

300

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved. Expecting port
numbers to fit in a 32 bit quantity is probably naive.

Last change: 17 July 1986 Sun Release 3.2

INET(3N) NE'IWORK FUNCTIONS INET(3N)

NAME
inet inet_ addr, inet_ network, inet_ makeaddr, inetJnaof, inet_ netof, inet_ ntoa - Internet address manipula­
tion

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinetlin.b>
#include <arpa/inet.h>

unsigned long
inet _ addr(cp)
char *cp;

inet _network(cp)
char *cp;

struct in addr
inet_makeaddr(net, Ina)
int net, Ina;

inet _Inaof(in)
struct in _ addr in;

inet _netof(in)
struct in_addr in;

char *
inet _ ntoa(in)
struct in_addr in;

DESCRIPTION
The routines inet _ addr and inet _network each interpret character strings representing numbers expressed in
the Internet standard"." notation, returning numbers suitable for use as Internet addresses and Internet
network numbers, respectively. The routine inet Jnakeaddr takes an Internet network number and a local
network address and constructs an Internet address from it. The routines inet _ netoJ and inet _lnaoJ break
apart Internet host addresses, returning the network number and local network address part, respectively.

The routine inet _ ntoa returns a pointer to a string in the base 256 notation "d.d.d.d" described below.

All Internet address are returned in network order (bytes ordered from left to right). All network numbers
and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
V aIues specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
four bytes of an Internet address. Note that when an Internet address is viewed as a 32-bit integer quantity
on the VAX the bytes referred to above appear as "d.c.b.a". That is, V AX bytes are ordered from right to
left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the right
most two bytes of the network address. This makes the three part address format convenient for specifying
Class B network addresses as "128.net.host".

Sun Release 3.2 Last change: 27 February 1985 301

INET(3N) NETWORK FUNCTIONS INET(3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the right
most three bytes of the network address. This makes the two part address format convenient for specifying
Class A network addresses as "nethost".

When only one part is given, the value is stored directly in the network address without any byte rearrange­
ment

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal, as specified in
the C language (that is, a leading Ox or OX implies hexadecimal; otherwise, a leading 0 implies octal; other­
wise, the number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(5), networks(5),

DIAGNOSTICS

BUGS

302

The value -1 is returned by inet _ addr and inet _network for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to specify
Class C network addresses in a manner similar to that for Class B and Class A is needed.

The return value from inet _ntoa points to static information which is overwritten in each call.

Last change: 27 February 1985 Sun Release 3.2

RCMD(3N) NETWORK FUNCTIONS RCMD(3N)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rem = rcmd(ahost, ioport, locuser, remuser, cmd, fd2p);
char * *ahost;
u_short ioport;
char *Iocuser, *remuser, *cmd;
iot *fd2p;

s = rresvport(port);
iot *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;
iot superuser;
char *ruser, *Iuser;

DESCRIPTION
Rand is a routine used by the super-user to execute a command on a remote machine using an authentica­
tion scheme based on reserved port numbers. Rresvport is a routine which returns a descriptor to a socket
with an address in the privileged port space. Ruserok is a routine used by servers to authenticate clients
requesting service with rcmd. All three functions are present in the same file and are used by the rshd(8C)
server (among others).

Rand looks up the host *ahost using gethostbyname (3N), returning -1 if the host does not exist. Other­
wise *ahost is set to the standard name of the host and a connection is established to a server residing at the
well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote
command as stdin and stdout. If Jd2p is non-zero, then an auxiliary channel to a control process will be
set up, and a descriptor for it will be placed in *jd2p. The control process will return diagnostic output
from the command (unit 2) on this channel, and will also accept bytes on this channel as being UNIX sig­
nal numbers, to be forwarded to the process group of the command. IfJd2p is 0, then the stderr (unit 2 of
the remote command) will be made the same as the stdout and no provision is made for sending arbitrary
signals to the remote process, although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it This socket is suit­
able for use by rcmd and several other routines. Privileged addresses consist of a port in the range 0 to
1023. Only the super-user is allowed to bind an address of this sort to a socket

Ruserok takes a remote host's name, as returned by a gethostent(3N) routine, two user names and a flag
indicating if the local user's name is the super-user. It then checks the files letclhosts.equiv and, possibly,
.rhosts in the current working directory (normally the local user's home directory) to see if the request for
service is allowed. A 0 is returned if the machine name is listed in the "hosts.equiv" file, or the host and
remote user name are found in the ".rhosts" file; otherwise ruserok returns -1. If the superuser flag is 1, the
checking of the "host.equiv" file is bypassed.

SEE ALSO
rlogin(IC), rsh(IC), rexec(3N), rexecd(8C), rlogind(8C), rshd(8C)

BUGS
There is no way to specify options to the socket call which rcmd makes.

Sun Release 3.2 Last change: 17 March 1982 303

REXEC(3N) NETWORK FUNCTIONS REXEC(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char * *ahost;
u _short inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION
Rexec looks up the host *ahost using gethostbyname(3N), returning -1 if the host does not exist Other­
wise *ahost is set to the standard name of the host If a username and password are both specified, then
these are used to authenticate to the foreign host; otherwise the environment and then the user's .netrc file
in his home directory are searched for appropriate information. If all this fails, the user is prompted for the
information.

The port inport specifies which well-known DARPA Internet port to use for the connection; it will nor­
maIly be the value returned from the call "getservbyname(ltexec", "tcp")" (see getservent(3N». The pro­
tocol for connection is described in detail in rexecd (8C).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote
command as stdin and stdout. If fd2p is non-zero, then a auxiliary channel to a control process will be
setup, and a descriptor for it will be placed in *fd2p. The control process will return diagnostic output
from the command (unit 2) on this channel, and will also accept bytes on this channel as being UNIX sig­
nal numbers, to be forwarded to the process group of the command. Iffd2p is 0, then the stderr (unit 2 of
the remote command) will be made the same as the stdont and no provision is made for sending arbitrary
signals to the remote process, although you may be able to get its attention by using out-of-band data.

SEE ALSO
rcmd(3N), rexecd(8C)

BUGS
There is no way to specify options to the socket call which rexec makes.

304 Last change: 17 March 1982 Sun Release 3.2

RPC(3N) NETWORK FUNCTIONS RPC(3N)

NAME
rpc - library routines for remote procedure calls

DESCRIPTION
These routines allow C programs to make procedure calls on other machines across the network. First, the
client calls a procedure to send a data packet to the server. Upon receipt of the packet, the server calls a
dispatch routine to perform the requested service, and then sends back a reply. Finally, the procedure call
returns to the client.

FUNCTIONS
auth _ destroyO
authnone _ createO
authunix _ createO
authunix _create _ defaultO
callrpcO
clnt _ broadcastO
clnt_ callO
clnt_ destroy 0
clnt_freeresO
clnt~eterrO
clntycreateerrorO
clntyerrnoO
clntyerrorO
clnt_sperrno()
clnt_sperror()
clntraw _ createO
clnttcp _ createO
clntudp _ createO
get_ myaddressO
pmap ~etmapsO
pmap JetportO
pmap _ rmtcallO
pmap_setO
pmap _ unsetO
registerrpcO
rpc _ createerr
svc _ destroyO
svc fds
svc _ freeargsO
svc _getargsO
svc _getcallerO
svc _getreqO
svc _register()
svc_runO
svc _sendreplyO
svc _ unregisterO
svcerr _authO
svcerr _ decode 0
svcerr _ noprocO
svcerr _ noprogO
svcerr yrogversO
svcerr _ systemerrO
svcerr _ weakauthO
svcraw _ createO
svctcp _ createO

Sun Release 3.2

destroy authentication information handle
return RPC authentication handle with no checking
return RPC authentication handle with UNIX permissions
return default UNIX authentication handle
call remote procedure, given [prognum, versnum,procnum]
broadcast remote procedure call everywhere
call remote procedure associated with client handle
destroy client's RPC handle
free data allocated by RPC/XDR system when decoding results
copy error information from client handle to error structure
print message to stderr about why client handle creation failed
print message to stderr corresponing to condition given
print message to stderr about why RPC call failed
print message to a string corresponding to condition given
print message to a string
create toy RPC client for simulation
create RPC client using TCP transport
create RPC client using UDP transport
get the machine's IP address
return list of RPC program-to-port mappings
return port number on which waits supporting service
instructs portmapper to make an RPC call
establish mapping between [prognum,versnum,procnum] and port
destroy mapping between [prognum,versnum,procnum] and port
register procedure with RPC service package
global variable indicating reason why client creation failed
destroy RPC service transport handle
global variable with RPC service file descriptor mask
free data allocated by RPC/XDR system when decoding arguments
decodes the arguments of an RPC request
get the network address of the caller of a procedure
returns when all associated sockets have been serviced
associates prognum and versnum with service dispatch procedure
wait for RPC requests to arrive and call appropriate service
send back results of a remote procedure call
remove mapping of [prognum,versnum] to dispatch routines
called when refusing service because of authentication error
called when service cannot decode its parameters
called when service hasn't implemented the desired procedure
called when program is not registered with RPC package
called when version is not registered with RPC package
called when service detects system error
called when refusing service because of insufficient authentication
creates a toy RPC service transport for testing
creates an RPC service based on TCP transport

Last change: 5 June 1986 305

RPC(3N)

svcudp _ createO
xdr _accepted _replyO
xdr _ authunix yarmsO
xdr _ callhdrO
xdr _ callmsgO
xdr _opaque _ authO
xdrymapO
xdr ymaplist()
xdr _rejected _reply()
xdr _replymsgO
xprt_ registerO
xprt_ unregisterO

SEE ALSO

NETWORK FUNCTIONS

creates an RPC service based on UDP transport
generates RPC-style replies without using RPC package
generates UNIX credentials without using RPC package
generates RPC-style headers without using RPC package
generates RPC-style messages without using RPC package
describes RPC messages, externally
describes parameters for portmap procedures, externally
describes a list of port mappings, externally
generates RPC-style rejections without using RPC package
generates RPC-style replies without using RPC package
registers RPC service transport with RPC package
unregisters RPC service transport from RPC package

Remote Procedure Call Programming Guide, in Networldng on the Sun Workstation.

306 Last change: 5 June 1986

RPC(3N)

Sun Release 3.2

XDR(3N) NETWORK FUNCTIONS

NAME
xdr - library routines for external data representation

DESCRIPTION

XDR(3N)

These routines allow C programmers to describe arbitrary data structures in a machine-independent
fashion. Data for remote procedure calls are transmitted using these routines.

FUNCTIONS
xdr_arrayO
xdr_boolO
xdr_bytesO
xdr _ destroy 0
xdr _ doubleO
xdr_enurnO
xdrJloatO
xdr _getposO
xdr _inlineO
xdr _intO
xdrJongO
xdr_opaqueO
xdr _referenceO
xdr _setpos()
xdr_shortO
xdr _stringO
xdr_uJntO
xdr _u _long 0
xdr _ u _ shortO
xdr_unionO
xdr_voidO
xdr _ wrapstringO
xdrmem _ createO
xdrrec _ createO
xdrrec _ endofrecord()
xdrrec _ eof()
xdrrec _ skiprecordO
xdrstdio _ createO

SEE ALSO

translate arrays to/from external representation
translate Booleans to/from external representation
translate counted byte strings to/from external representation
destroy XDR stream and free associated memory
translate double precision to/from external representation
translate enumerations to/from external representation
translate floating point to/from external representation
return current position in XDR stream
invoke the in-line routines associated with XDR stream
translate integers to/from external representation
translate long integers to/from external representation
translate fixed-size opaque data to/from external representation
chase pointers within structures
change current position in XDR stream
translate short integers to/from external representation
translate null-terminated strings to/from external representation
translate unsigned integers to/from external representation
translate unsigned long integers to/from external representation
translate unsigned short integers to/from external representation
translate discriminated unions to/from external representation
always return one (1)
package RPC routine for XDR routine, or vice-versa
initialize an XDR stream
initialize an XDR stream with record boundaries
mark XDR record stream with an end-of-record
mark XDR record stream with an end-of-file
skip remaining record in XDR record stream
initialize an XDR stream as standard I/O FILE stream

External Data Representation Protocol Specification, in Networking on the Sun Workstation.

Sun Release 3.2 Last change: 22 July 1985 307

YPCLNT(3N) NElWORK FUNCTIONS YPCLNT(3N)

NAME
ypclnt, yp _get_ default_domain, yp _bind, yp _unbind, yp _match, yp _ first, yp _next, yp _all, yp _order,
yp _master, yperr _string, ypprot_ err - yellow pages client interface

SYNOPSIS

308

#include <rpcsvc/ypclnt.h>

yp _ bind(indomain);
char *indomain;

void yp _ unbind(indomain)
char *indomain;

yp Jet_default _ domain(outdomain);
char **outdomain;

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen)
char *indomain;
char *inmap;
char *inkey;
int inkeylen;
char **outval;
int .outvallen;

yp_first(indomain, inmap, outkey, outkeyleo, outval, outvallen)
char *indomain;
char *inmap;
char *.outkey;
iot *outkeylen;
char **outval;
int .outvallen;

yp_next(indomain, inmap, inkey, inkeylen, outkey, outkeylen, outval, outvallen);
char *indomain;
char *inmap;
char *inkey;
int inkeyleo;
char **outkey;
int *outkeyleo;
char **outval;
int *outvallen;

yp _ all(indomain, inmap, incallback);
char *indomain;
char *inmap;
struct ypalt callback incallback;

yp_order(indomain, inmap, outorder);
char *indomain;
char *inmap;
int *outorder;

yp_master(indomain, inmap, outname);
char *indomain;
char *inmap;
char **outname;

char *yperr _string(incode)
int incode;

Last change: 14 September 1985 Sun Release 3.2

YPCLNT(3N)

ypprot_ err (incode)
unsigned iot incode;

DESCRIPTION

NETWORK FUNCTIONS YPCLNT(3N)

This package of functions provides an interface to the yellow pages (YP) network lookup service. The
package can be loaded from the standard library, llibllibc.a. Refer to ypfiles(5) and ypserv(8) for an over­
view of the yellow pages, including the definitions of map and domain , and a description of the various
servers, databases, and commands that comprise the YP.

All input parameters names begin with in. Output parameters begin with out. Output parameters of type
char ** should be addresses of un initialized character pointers. Memory is allocated by the yP client
package using malloc(3), and may be freed if the user code has no continuing need for it. For each outkey
and outval, two extra bytes of memory are allocated at the end that contain NEWLINE and NULL, respec­
tively, but these two bytes are not reflected in outkeylen or outvallen . indomain and inmap strings must be
non-null and null-terminated. String parameters which are accompanied by a count parameter may not be
null, but may point to null strings, with the count parameter indicating this. Counted strings need not be
null-terminated.

All functions in this package of type int return 0 if they succeed, and a failure code (YPERR~) other­
wise. Failure codes are described under DIAGNOSTICS below.

The yP lookup calls require a map name and a domain name, at minimum. It is assumed that the client pro­
cess knows the name of the map of interest Client processes should fetch the node's default domain by
calling ypJet_default_domainO , and use the returned outdomain as the indomain parameter to succes­
sive yP calls.

To use the yP services, the client process must be "bound" to a yP server that serves the appropriate
domain using yp _bind. Binding need not be done explicitly by user code; this is done automatically when­
ever a yP lookup function is called. yp _bind can be called directly for processes that make use of a backup
strategy (e.g., a local file) in cases when yP services are not available.

Each binding allocates (uses up) one client process socket descriptor; each bound domain costs one socket
descriptor. However, multiple requests to the same domain use that same descriptor. yp _ unbind() is avail­
able at the client interface for processes that explicitly manage their socket descriptors while accessing
multiple domains. The call to yp _ unbindO make the domain unbound, and free all per-process and per­
node resources used to bind it

If an RPC failure results upon use of a binding, that domain will be unbound automatically. At that point,
the ypclnt layer will retry forever or until the operation succeeds, provided that ypbind is running, and
either

a) the client process can't bind a server for the proper domain, or

b) RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound ypserv process returns any answer
(success or failure), the ypclnt layer will return control to the user code, either with an error code, or a suc­
cess code and any results.

yp _match returns the value associated with a passed key. This key must be exact; no pattern matching is
available.

yp Jirst returns the first key-value pair from the named map in the named domain.

yp _next() returns the next key-value pair in a named map. The inkey parameter should be the outkey
returned from an initial call to yp yrst() (to get the second key-value pair) or the one returned from the nth
call to yp _next() (to get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the structure of the yP map being process­
ing; there is no relation in retrieval order to either the lexical order within any original (non-YP) data base,
or to any obvious numerical sorting order on the keys, values, or key-value pairs. The only ordering
guarantee made is that if the yp Jtrst() function is called on a particular map, and then the yp _ next()

Sun Release 3.2 Last change: 14 September 1985 309

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

310

function is repeatedly called on the same map at the same server until the call fails with a reason of
YPERR _ NOMORE, every entry in the data base will be seen exactly once. Further, if the same sequence
of operations is performed on the same map at the same server, the entries will be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for the domain to become unbound,
then bound once again (perhaps to a different server) while a client is running. This can cause a break in
one of the enumeration rules; specific entries may be seen twice by the client, or not at all. This approach
protects the client from error messages that would otherwise be returned in the midst of the enumeration.
The next paragraph describes a better solution to enumerating all entries in a map.

yp _ all provides a way to transfer an entire map from server to client in a single request using TCP (rather
than UDP as with other functions in this package). The entire transaction take place as a single RPC
request and response. You can use yp _all just like any other YP procedure, identify the map in the normal
manner, and supply the name of a function which will be called to process each key-value pair within the
map. You return from the call to yp _ all only when the transaction is completed (successfully or unsuccess­
fully), or your I 'foreach" function decides that it doesn't want to see any more key-value pairs.

The third parameter to yp _ all is
struct ypall_ callback *incallback {

int (*foreach)();
char *data;

};

The functionforeach is called

foreach(instatus, inkey, inkeylen, inval, invallen, indata);
int instatus;
char *inkey;
int inkeylen;
char *inval;
int invalllen;
char *indata;

The instatus parameter will hold one of the return status values defined in <rpcsvc/ypyrot .h>­
either YP _TRUE or an error code. (See ypprot _err, below, for a function which converts a yP protocol
error code to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined in the synopsis section above. First, the
memory pointed to by the inkey and inval parameters is private to the yp _all function, and is overwritten
with the arrival of each new key-value pair. It is the responsibility of theforeach function to do something
useful with the contents of that memory, but it does not own the memory itself. Key and value objects
presented to the foreach function look exactly as they do in the server's map - if they were not newline­
terminated or null-terminated in the map, they won't be here either.

The indata parameter is the contents of the incallback->data element passed to yp _ all . The data element
of the callback structure may be used to share state information between theforeach function and the main­
line code. Its use is optional, and no part of the YP client package inspects its contents - cast it to some­
thing useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to indicate that it wants to be called again for
further received key-value pairs, or non-zero to stop the flow of key-value pairs. If foreach returns a non­
zero value, it is not called again; the functional value of yp _ all is then O.

yp _order returns the order number for a map.

yp _master returns the machine name of the master YP server for a map.

yperr _string returns a pointer to an error message string that is null-terminated but contains no period or
newline.

Last change: 14 September 1985 Sun Release 3.2

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT(3N)

ypprot _err takes a yP protocol error code as input, and returns a ypclnt layer error code, which may be
used in turn as an input to yperr _string.

FILES
lusr/includelrpcsvc/ypclnt.h
lusr/include/rpcsvc/yp yroth

SEE ALSO
ypfiles(5), ypserv(8),

DIAGNOSTICS
All integer functions return 0 if the requested operation is successful, or one of the following errors if the
operation fails.

Sun Release 3.2

#define YPERR BADARGS
#define YPERR RPC
#define YPERR DOMAIN
#define YPERR MAP
#define YPERR KEY
#define YPERR YPERR
#define YPERR RESRC
#define YPERR NOMORE
#define YPERR PMAP
#define YPERR YPBIND
#define YPERR YPSERV
#define YPERR NODOM

1 1* args to function are bad *1
2 /* RPC failure - domain has been unbound *1
3 1* can't bind to server on this domain *1
4 /* no such map in server's domain */
5 /* no such key in map */
6 1* internal yp server or client error */
7 /* resource allocation failure */
8 /* no more records in map database */
9 /* can't communicate with portmapper */
10 1* can't communicate with ypbind */
11 /* can't communicate with ypserv */
12 1* local domain name not set */

Last change: 14 September 1985 311

I

INTRO(3R) RPC SERVICES INTRO(3R)

NAME
intro - introduction to RPC service library functions

DESCRIPTION
These functions constitute the RPC service library, librpcsvc. In order to get the link editor to load this
library, use the -lrpcsvc option of cc. Declarations for these functions may be obtained from various
include files <rpcsvcl*.h>.

LIST OF FUNCTIONS
routine

ether
getrpcport
havedisk
rex
rnusers
rquota
rstat
rusers
rwaIl
spray
yppasswd

Sun Release 3.2

on page description

ether(3R) monitor traffic on the Ethernet
getrpcport(3R) get RPC port number
rstat(3R) determine if remote machine has disk
rex(3r) remote execution protocol
rnusers(3R) return number of users on remote machine
rquota(3R) implement quotas on remote machines
rstat(3R) get performance data from remote kernel
rnusers(3R) return information about users on remote machine
rwall(3R) write to specified remote machines
spray(3R) scatter data in order to check the network
yppasswd(3R) update user password in yellow pages

Last change: 10 August 1985 313

ETHER(3R) RPC SERVICES

NAME
ether - monitor traffic on the Ethernet

SYNPOSIS
#include <rpcsvc/ether.h>

RPC INFO
program number:

ETHERPROG

xdr routines:
xdr _ etherstat(xdrs, es)

XDR *xdrs;
struct ethers tat *es;

xdr _ etheraddrs(xdrs, ea)
XDR *xdrs;
struct etheraddrs *ea;

xdr _ etherhtable(xdrs, hm)
XDR *xdrs;
struct etherhmem **hm;

xdr _ etherhmem(xdrs, hm)
XDR *xdrs;
struct etherhmem **hm;

xdr _ etherhbody{xdrs, hm)
XDR *xdrs;
struct etherhmem *hm;

xdr _addrmask(xdrs, am)
XDR *xdrs;
struct addrmask * am;

ETHER(3R)

Xdr _etherhmem processes a single etherhmem structure. Xdr _etherhtable processes an array of
HASHSIZE *struct etherhmems. The **etherhmem field of etheraddrs is actually a hashtable,
that is, it is a pointer to an array of HASHSlZE hmem pointers.

procs:

314

ETHERPROC GETDATA
no args, returns struct ethers tat

ETHERPROC ON
no args or results, puts server in promiscuous mode

ETHERPROC OFF
no args or results, puts server in promiscuous mode

ETHERPROC GETSRCDATA
no args, returns struct etheraddrs with information
about source of packets

ETHERPROC GETDSTDATA
no args, returns struct etheraddrs with information
about destination of packets

ETHERPROC SELECTSRC
takes struct mask as argument, no results
sets a mask for source

ETHERPROC SELECTDST
takes struct mask as argument, no results
sets a mask for dst

ETHERPROC SELECTPROTO
takes struct mask as argument, no results
sets a mask for proto

Last change: 10 August 1985 Sun Release 3.2

ETHER(3R)

versions:

RPC SERVICES

ETHERPROC SELECfLNTH
takes struct mask as argument, no results
sets a mask for lnth

ETHERVERS ORIG

structures:
/*

SEE ALSO

* all ether stat's except SfC, dst addresses
*1
struct ethers tat {

};
/*

struct timeval
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

e_time;
e_bytes;
eyackets;
e_bcast;
e _size[NBUCKETS];
e yroto[NPROTOS];

* member of address hash table
*/

struct etherhmem {
inth_addr;
unsigned h _ cnt;
struct etherhmem *h _nxt;

};
1*
* src, dst address info
*/

struct etheraddrs {

};
1*

struct timeval e _time;
unsigned long e _bytes;
unsigned long e yackets;
unsigned long e _ bcast;
struct etherhmem **e _ addrs;

* for size, a _addr is lowvalue, a_mask is high value
*/

struct addrmask {
int a_addr;
int a_mask; /* 0 means wild card */

};

traffic(lC), etherfind(8C), etherd(8C)

Sun Release 3.2 Last change: 10 August 1985

ETHER (3R)

315

GETRPCPORT (3R)

NAME
getrpcport - get RPC port number

SYNOPSIS

RPC SERVICES

int getrpcport(host, prognum, versnum, proto)
char *host;
iot prognum, versnum, proto;

DESCRIPTION

GETRPCPORT (3R)

Getrpcport returns the port number for version versnum of the RPC program pro gnum running on host and
using protocol proto. It returns 0 if it cannot contact the portmapper, or if prognum is not registered. If
prognum is registered but not with version versnum, it will return that port number.

316 Last change: 21 October 1985 Sun Release 3.2

REX(3R)

NAME
rex - remote execution protocol

SYNOPSIS
#include <syS/ioctl.h>
#include <rpcsvc/rex.h>

DESCRIPTION

. RPC SERVICES REX(3R)

This server will execute commands remotely. the working directory and environment of the command can
be specified, and the standard input and output of the command can be arbitrarily redirected. An option is
provided for interactive I/O for programs that expect to be running on terminals. Note that this service is
only provided with the TCP transport.

RPC INFO
program number:

REXPROG

xdr routines:

procs:

int xdr _rex _start(xdrs, start);
XDR*xdrs;
struct rex_start *start;

int xdr _rex _result(xdrs, result);
XDR*xdrs;
struct rex_result *result;

int xdr _ rex _ ttymode(xdrs, mode);
XDR*xdrs;
struct rex _ ttymode *mode;

int xdr_rex_ttysize(xdrs, size);
XDR*xdrs;
struct ttysize *size;

REXPROC START
Takes rex_start structure, starts a command executing,
and returns a rex result structure.

REXPROC WAIT
Takes no arguments, waits for a command to finish executing,
and returns a rex result structure.

REXPROC MODES
Takes a rex _ ttymode structure, and sends the tty modes.

REXPROC WINCH
Takes a ttysize structure, and sends window size information.

versions:
REXVERS ORIO

Original version
structures:

#define REX INTERACTNE
struct rex_start {

Sun Release 3.2

char **rst_cmd;
char *rst_ host;
char *rst_fsname;
char *rst_ dirwithin;
char **rst_ env;
u _short rstyortO;
u _short rstyortl;
u _short rstyort2;

1 /* Interative mode */

/* list of command and args */
/* working directory host name */
/* working directory file system name */
/* working directory within file system */
/* list of environment */
/* port for stdin */
/* port for stdin */
/* port for stdin */

Last change: 21 January 1986 317

REX(3R)

};

struct rex_result {
int rlt_ stat;
char *rlt_ message;

};

struct rex _ ttymode {

};

SEE ALSO

struct sgttyb basic;
struct tchars more;
struct ltchars yetmore;
u _long andmore;

on(1 C), rexd(8C)

RPC SERVICES REX(3R)

/* options - see #defines above */

/* integer status code */
/* string message for human consumption */

/* standard unix tty flags */
/* interrupt, kill characters, etc. */
/* special Berkeley characters */
/* and Berkeley modes */

318 Last change: 21 January 1986 Sun Release 3.2

RNUSERS (3R) RPC SERVICES

NAME
rnusers, rusers - return information about users on remote machines

SYNOPSIS
#include <rpcsvc/rusers.h>

rnusers(host)
char *host

rusers(host, up)
char *host
struct utmpidlearr *up;

DESCRIPTION

RNUSERS (3R)

Rnusers returns the number of users logged on to host (-1 if it cannot determine that number). Rusers fills
the utmpidlearr structure with data about host, and returns 0 if successful. The relevant structures are:

struct utmparr { 1* RUSERSVERS ORIG *1
struct utmp **uta _arr;
int uta cnt

};

struct utmpidle {

};

struct utmp ui_ utmp;
unsigned ui_idle;

struct utmpidlearr { 1* RUSERSVERS IDLE *1

};

RPC INFO

struct utmpidle **uia _ arr;
int uia cnt

program number:
RUSERSPROG

xdr routines:

procs:

Sun Release 3.2

int xdr _ utmp(xdrs, up)
XDR *xdrs;
struct utmp *up;

int xdr _ utmpidle(xdrs, ui);
XDR *xdrs;
struct utmpidle *ui;

int xdr _ utmpptr(xdrs, up);
XDR *xdrs;
struct utmp **up;

int xdr _ utmpidleptr(xdrs, up);
XDR *xdrs;
struct utmpidle **up;

int xdr _ utmparr(xdrs, up);
XDR *xdrs;
struct utmparr *up;

int xdr _ utmpidlearr(xdrs, up);
XDR *xdrs;
struct utmpidlearr *up;

RUSERSPROC_NUM
No arguments, returns number of users as an unsigned long.

Last change: 10 August 1985 319

RNUSERS (3R)

versions:

RPC SERVICES RNUSERS (3R)

RUSERSPROC N~S
No arguments, returns utmparr or utmpidlearr, depending on version number.

RUSERSPROC ALLN~S
No arguments, returns utmparr or utmpidlearr, depending on version number.
Returns listing even for Ulmp entries satisfying nonuser() in utmp.h.

RUSERSVERS ORIO
RUSERSVERS IDLE

structures:

SEE ALSO
rusers(lC)

320 Last change: 10 August 1985 Sun Release 3.2

RQUOTA(3R) RPC SERVICES

NAME
rquota - implement quotas on remote machines

SYNPOSIS
#include <rpcsvc/rquota.h>

RPC INFO
prograrnnumber.

RQUOTAPROG

xdr routines:

procs:

xdr ~etquota _ args(xdrs, gqa);
XDR *xdrs;
struct getquota _args *gqa;

xdr ~etquota _ rslt(xdrs, gqr);
XDR *xdrs;
struct getquota _!SIt *gqr;

xdr _ rquota(xdrs, rq);
XDR *xdrs;
struct rquota *rq;

RQUOTAPROC_GETQUOTA
RQUOTAPROC _ GETACTIVEQUOTA

Arguments of struct getquota _args.
Returns struct getquota _rslt.
Uses UNIX authentication.
Returns quota only on filesystems with quota active.

versions:
RQUOTAVERS_ORIG

structures:
struct getquota _ args {

char *gqa yathp;
int gq a _ uid;

};
/*
* remote quota structure
*/

struct rquota {

};

int r~ bsize;
bool_ t r~ active;
u _long ~ bhardlimit;
u _long r~ bsoftlimit;
u_Iong r~curblocks;
u _long r~ fhardlimit;
u _long ~fsoft1imit;
u_Iong ~curfiles;
u _long ~ btimeleft;
u _long ~ftimeleft;

enum gqr _status {

};

Q_OK = 1,
Q_NOQUOTA = 2,
Q_EPERM=3

/* path to filesystem of interest */
/* inquire about quota for uid */

/* block size for block counts */
/* indicates whether quota is active */
/* absolute limit on disk blks alloc */
/* preferred limit on disk blks */
/* current block count */
/* absolute limit on allocated files */
/* preferred file limit */
/* current # allocated files */
/* time left for excessive disk use */
/* time left for excessive files */

/* quota returned */
/* noquota for uid */
/* no permission to access quota */

Sun Release 3.2 Last change: 10 August 1985

RQUOTA(3R)

321

RQUOTA(3R) RPC SERVICES RQUOTA(3R)

struct getquota _ rsit {
enum gqr _status gqr _status; 1* discriminant *1
struct rquota gqr _rquota; /* valid if status == Q_ OK */

};

SEE ALSO
quota(I), quotact1(2)

322 Last change: 10 August 1985 Sun Release 3.2

RSTAT(3R) RPC SERVICES

NAME
rstat, havedisk - get performance data from remote kernel

SYNOPSIS
#include <rpcsvc/rstat.h>

havedisk(host)
char *host;

rstat(host, statp)
char *host;
struct statstime *statp;

DESCRIPTION

RSTAT(3R)

Havedisk returns 1 if host has a disk, 0 if it does not, and -1 if this cannot be determined. Rstat fills in the
statstime structure for host, and returris 0 if it was successful. The relevant structures are:

struct stats { /* RSTATVERS ORIO */
int cp_time[CPUSTATES];
int dk _ xfer[DK _NDRlVE];
unsigned v ygpgin; /* these are cumulative sum */
unsigned v ygpgout;
unsigned v yswpin;
unsigned v yswpout;
unsigned v _ intr;
int if Jpackets;
int if _ ierrors;
int if _ opackets;
int if _ oeITors;
int if_collisions;

};
struct statsswtch { /* RST ATVERS SWTCH */

int cp _time[CPUSTATES];
int dk _xfer[DK _ NDRlVE];
unsigned v ygpgin; /* these are cumulative sum */
unsigned v ygpgout;
unsigned v yswpin;
unsigned v yswpout;
unsigned v _intr;
int if _ ipackets;
int if _ierrors;
int if _ opackets;
int if _ oeITors;
int if_collisions;
unsigned v _swtch;
long avenrun[3];
struct timeval boottime

};
struct statstime { /* RST A TVERS TIME */

int cp _time[CPUSTATES];
int dk _ xfer[DK _NDRlVE];
unsigned v ygpgin; /* these are cumulative sum */
unsigned v ygpgout;
unsigned v yswpin;
unsigned v yswpout;
unsigned v _ intr;

Sun Release 3.2 Last change: 10 August 1985 323

RSTAT(3R)

};

RPC INFO

int if _ ipackets;
int if _ ierrors;
int if _<>packets;
int if _ oerrors;
int if_collisions;
unsigned v _ swtch;
long avenrun[3];
sttuct timeval boottime;
sttuct timeval curtime;

program number:
RSTATPROG

xdr routines:

procs:

int xdr _stats(xdrs, stat)
XDR *xdrs;
sttuct stats *stat;

int xdr _statsswtch(xdrs, stat)
XDR *xdrs;
sttuct statsswtch *stat;

int xdr _statstime(xdrs, stat)
XDR *xdrs;
sttuct statstime *stat;

int xdr _timeval(xdrs, tv)
XDR *xdrs;
sttuct timeval *tv;

RSTATPROC HAVEDISK

RPC SERVICES

Takes no arguments, returns long which is true if remote host has a disk.

versions:

SEE ALSO

RSTATPROC STATS
Takes no arguments, return struct stats:xxx, depending on version.

RSTATVERS ORIO
RSTATVERS SWTCH
RSTATVERS TIME

perfmeter(1), rup{ 1 C), rstatd(8C)

324 Last change: 10 August 1985

RSTAT(3R)

Sun Release 3.2

RWALL(3R) RPC SERVICES

NAME
rwall- write to specified remote machines

SYNOPSIS
#include <rpcsvc/rwall.h>

rwall(host, msg);
char *host, *msg;

DESCRIPTION
Rwall causes host to print the string msg to all its users. It returns 0 if successful.

RPC INFO
program number:

WALLPROG

procs:
WALLPROC WALL

Takes string as argument (wrapstring), returns no arguments.
Executes wall on remote host with string.

versions:
RSTATVERS ORIG

SEE ALSO
rwall(1), shutdown(8), rwalld(8C)

Sun Release 3.2 Last change: 10 August 1985

RWALL(3R)

325

SPRAY(3R) RPC SERVICES

NAME
spray - scatter data in order to check the network

SYNOPSIS
#include <rpcsvc/spray.h>

RPC INFO
program number:

SPRAYPROG

xdr routines:

procs:

xdr _sprayarr(xdrs, arr);
XDR *xdrs;
struct sprayarr * arr;

xdr _spraycumul(xdrs, cumul);
XDR *xdrs;
sturct spraycumul *cumul;

SPRAYPROC SPRAY
Takes no arguments, returns no value.
Increments a counter in server daemon.

SPRAY(3R)

The server does not return this call, so the caller should have a timeout of O.
SPRA YPROC GET

Takes no arguments, returns struct spraycumul with value of counter and clock.

versions:

SPRA YPROC CLEAR
Takes no arguments and returns no value.
Zeros out counter and clock.

SPRA YVERS ORIG

structures:
struct spraycumul {

};

unsigned counter;
struct timeval clock;

struct sprayarr {
int *data,
int lnth

};

SEE ALSO
spray(8),sprayd(8)

326 Last change: 10 August 1985 Sun Release 3.2

YPPASSWD (3R) RPC SERVICES

NAME
yppasswd - update user password in yellow pages

SYNPOSIS
#include <rpcsvclyppasswd.h>

yppasswd(oldpass, newpw)
char *oldpass
struct passwd *newpw;

DESCRIPTION

YPPASSWD (3R)

If oldpass is indeed the old user password, this routine replaces the password entry with newpw. It returns
o if successful.

RPC INFO
program number:

YPPASSWDPROG

xdr routines:

procs:

xdr ..J>passwd(xdrs, yp)
XDR *xdrs;
struct yppasswd *yp;

xdr yppasswd(xdrs, pw)
XDR *xdrs;
struct passwd *pw;

YPPASSWDPROC UPDATE
Takes struct yppasswd as argument, returns integer.
Same behavior as yppasswd() wrapper.
Uses UNIX authentication.

versions:
YPPASSWDVERS ORIO

structures:
struct yppasswd {

char *oldpass; 1* old (unencrypted) password *1
struct passwd newpw; 1* new pw structure *1

};

SEE ALSO
yppasswd(1), yppasswdd(8C)

Sun Release 3.2 Last change: 10 August 1985 327

I

INTRO(3S) STANDARD I/O LIBRARY INTRO(3S)

NAME
intro, stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level I/O buffering scheme. The in-line macros getc
and putc(3S) handle characters quickly. The macros getchar and putchar, and the higher level routines
/gete, getw, gets,/gets, seanj,/seanj,fread,/pute , putw, puts,/puts, print/,/print/,fwrite all use or act as
if they use gete and pute; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type FILE.
[open(3S) creates certain descriptive data for a stream and returns a pointer to designate the stream in all
further transactions. Normally, there are three open streams with constant pointers declared in the
<stdio.h> include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (-1) is returned upon end-of-file or error by most integer functions that deal with
streams (see the individual descriptions for details).

Any module that uses this package must include the header file of pertinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in sections labeled 3S of this manual are declared in that header file
and need no further declaration. The constants and the following 'functions' are implemented as macros;
redeclaration of these names is perilous: gete, getehar, pute, putehar ,/eo/,/error ,fiieno, and clearerr.

SEE ALSO
open(2V), close(2), Iseek(2), pipe(2), read(2V), write(2V), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S),
fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3S), system(3), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with jopen,
input (output) has been attempted on an output (input) stream, or a FILE pointer designates corrupt or oth­
elWise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line buffer out­
put to a terminal by default and attempts to do this transparently by flushing the output whenever a
read(2V) from the standard input is necessary. This is almost always transparent, but may cause confusion
or malfunctioning of programs which use standard I/O routines but use read(2V) themselves to read from
the standard input

In cases where a large amount of computation is done after printing part of a line on an output terminal, it
is necessary tofflush (see/close(3S» the standard output before going off and computing so that the output
will appear.

The standard buffered functions do not interact well with certain other library and system functions, espe­
cially v/ork.

Sun Release 3.2 Last change: 20 August 1985 329

INTRO(3S) STANDARD 110 LIBRARY INTRO(3S)

LIST OF FUNCTIONS
Name Appears on Page Description

clearerr ferror(3S) stream status inquiries
ctermid ctermid(3S) generate filename for terminal
cuserid cuserid(3S) get character login name of user
fclose fclose(3S) close or flush a stream
fdopen fopen(3S) open a stream
feof ferror(3S) stream status inquiries
ferror ferror(3S) stream status inquiries
fflush fclose(3S) close or flush a stream
fgetc getc(3S) get character or integer from stream
fgets gets(3S) get a string from a stream
fileno ferror(3S) stream status inquiries
fopen fopen(3S) open a stream
fprintf printf(3S) formatted output conversion
fputc putc(3S) put character or word on a stream
fputs puts(3S) put a string on a stream
fread fread(3S) buffered binary input/output
freopen fopen(3S) open a stream
fscanf scanf(3S) formatted input conversion
fseek fseek(3S) reposition a stream
ftell fseek(3S) reposition a stream
fwrite fread(3S) buffered binary input/output
getc getc(3S) get character or integer from stream
getchar getc(3S) get character or integer from stream
gets gets(3S) get a string from a stream
getw getc(3S) get character or integer from stream
pelose popen(3S) initiate 110 to/from a process
popen popen(3S) initiate I/O to/from a process
printf printf(3S) formatted output conversion
putc putc(3S) put character or word on a stream
putchar putc(3S) put character or word on a stream
puts puts(3S) put a string on a stream
putw putc(3S) put character or word on a stream
rewind fseek(3S) reposition a stream
scanf scanf(3S) formatted input conversion
setbuf setbuf(3S) assign buffering to a stream
setbuffer setbuf(3S) assign buffering to a stream
setlinebuf setbuf(3S) assign buffering to a stream
sprintf printf(3S) formatted output conversion
sscanf scanf(3S) formatted input conversion
ungetc ungetc(3S) push character back into input stream
vfprintf vprintf(3S) print formatted varargs output
vprintf vprintf(3S) print formatted varargs output
vsprintf vprintf(3S) print formatted varargs output

330 Last change: 20 August 1985 Sun Release 3.2

CTERMID (3S) STANDARD 110 LIBRARY CTERMID (3S)

NAME
ctermid - generate filename for terminal

SYNOPSIS
#include <stdio.h>
char *ctermid (s)
char *s;

DESCRIPTION

NOTES

ctermid generates the pathname of the controlling terminal for the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of which are overwritten at
the next call to ctermid, and the address of which is returned. Otherwise, s is assumed to point to a charac­
ter array of at least L_ctermid elements; the path name is placed in this array and the value of s is returned.
The constant L ctermid is defined in the <stdio.h> header file.

The difference between ctermid and ttyname(3) is that ttyname must be handed a file descriptor and returns
the actual name of the terminal associated with that file descriptor, while ctermid returns a string (/dev/tty)
that will refer to the terminal if used as a file name. Thus ttyname is useful only if the process already has
at least one file open to a terminal. ctermid is useful largely for making code portable to non-UNIX sys­
tems where the current terminal is referred to by a name other than /dev/tty.

SEE ALSO
ttyname(3)

Sun Release 3.2 Last change: 15 April 1986 331

CUSERID (3S) STANDARD I/O LIBRARY CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
cuserid generates a character-string representation of the login name that the owner of the current process
is logged in under. If s is a NULL pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an array of at least L _ cuserid characters;
the representation is left in this array. The constant L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer, a null char­
acter (*eO) will be placed at s[OJ.

SEE ALSO
getIogin(3), getpwent(3)

332 Last change: 15 April 1986 Sun Release 3.2

FCLOSE(3S) STANDARD I/O LIBRARY FCLOSE(3S)

NAME
fclose, mush - close or ft.ush a stream

SYNOPSIS
#include <stdio.h>

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION
[close causes any buffered data for the named stream to be written out, and the named stream to be closed.
Buffers allocated by the standard inputJoutput system are freed.

[close is performed automatically for all open files upon calling exit(3).

!flush causes any buffered data for the named output stream to be written out. The named stream remains
open.

SEE ALSO
close(2), exit(3), fopen(3S), setbuf(3S)

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to write to a file that has not been
opened for writing) was detected.

Sun Release 3.2 Last change: 15 Apri11986 333

FERROR(3S) STANDARD I10LIBRARY

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

ferror(stream)
FILE *stream;

feof(stream)
FILE *stream;

c1earerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION

FERROR(3S)

fe"or returns non-zero when an error has occurred reading from or writing to the named stream, otherwise
zero. Unless cleared by cleare", the error indication lasts until the stream is closed

NOTE

feof returns non-zero when EOF has previously been detected reading the named input stream, otherwise
zero. Unless cleared by cleare", the end-of-file indication lasts until the stream is closed.

cleare" resets the error indication and EOF indication to zero on the named stream.

fileno returns the integer file descriptor associated with the stream; see open(2V).

All these functions are implemented as macros; they cannot be redeclared

SEE ALSO
fopen(3S), open(2V)

334 Last change: 17 July 1986 Sun Release 3.2

FOPEN (3S) STANDARD I/O LIBRARY FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(fiIename, type)
char *fiIename, *type;

FILE *freopen(fiIename, type, stream)
char *fiIename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
fopen opens the file named by filename and associates a stream with it. [open returns a pointer to be used to
identify the stream in subsequent operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append: open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

[reopen substitutes the named file in place of the open stream. It returns the original value of stream. The
original stream is closed, regardless of whether the open ultimately succeeds.

freopen is typically used to attach the preopened streams associated with stdin, stdout, and stderr to other
files.

[dopen associates a stream with a file descriptor. File descriptors are obtained from calls like open, dup,
creat, or pipe (2), which open files but do not return streams. Streams are necessary input for many of the
Section 3S library routines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening [seek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

SEE ALSO
open(2V), fclose(3S), fseek(3S), fopen(3V)

DIAGNOSTICS

BUGS

[open and[reopen return a NULL pointer on failure.

In order to support the same number of open files as the system does, [open must allocate additional
memory for data structures using cal/oc after 20 files have been opened. This confuses some programs
which use their own memory allocators.

Sun Release 3.2 Last change: 24 April 1986 335

FREAD(3S) STANDARD 110 LIBRARY FREAD(3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr, size, nitems, stream)
FILE *stream;

fwrite(ptr, size, nitems, stream)
FILE *stream;

DESCRIPTION
tread reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It returns the number
of items actually read. tread stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. tread leaves the file pointer in stream, if defined, point­
ing to the byte following the last byte read if there is one. fread does not change the contents of stream.

If the standard output is line-buffered, tread flushes its output before reading from the standard input. This
is also true for the standard error.

fwrite appends at most nitems of data from the block pointed to by ptr to the named output stream. It
returns the number of items actually written. [write stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. fwrite does not change the contents of the block
pointed to by ptr.

The argument size is typically sizeot{*ptr) where the pseudo-function sizeotspecifies the length of an item
pointed to by ptr. If ptr points to a data type other than char it should be cast into a pointer to char.

If size or nitems is non-positive, no characters are read or written and 0 is returned by both tread and
fwrite.

SEE ALSO
read(2V), write(2V), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S), fread(3V)

DIAGNOSTICS
tread and [write return 0 upon end of file or error.

336 Last change: 15 April 1986 Sun Release 3.2

FSEEK(3S) STANDARD I/O LIBRARY FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include <stdio.h>

rseek(stream, offset, ptrname)
FILE *stream;
long offset;

long fteU(stream)
FILE *stream;

rewind(stream)
FILE *stream;

DESCRIPTION
fseek sets the position of the next input or output operation on the stream. The new position is at the signed
distance offset bytes from the beginning, the current position, or the end of the file, according as ptrname
has the value 0, 1, or 2.

rewind(stream) is equivalent tofseek(stream, OL, 0), except that no value is returned

fseek and rewind undo any effects of ungetc (3S).

Mter fseek or rewind, the next operation on a file opened for update may be either input or output.

fteU returns the offset of the current byte relative to the beginning of the file associated with the named
stream.

SEE ALSO
Iseek(2), fopen(3S), ungetc(3S)

DIAGNOSTICS
fseek returns -1 for improper seeks, otherwise zero. An improper seek can be, for example, an fseek done
on a file that has not been opened via fopen; in particular, fseek may not be used on a terminal, or on a file
opened via popen (3S).

WARNING
Although on the UNIX system an offset returned by [tell is measured in bytes, and it is permissible to seek
to positions relative to that offset, portability to non-UNIX systems requires that an offset be used by fseek
directly. Arithmetic may not meaningfully be performed on such an offset, which is not necessarily meas­
ured in bytes.

Sun Release 3.2 Last change: 15 Apri11986 337

GETC(3S) STANDARD I/O LIBRARY GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or integer from stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE *stream;

int getcharO

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character (Le., byte) from the named input stream, as an integer. It also moves the
file pointer, if defined, ahead one character in stream. getchar is defined as getc(stdin). Getc and getchar
are macros.

fgetc behaves like getc, but is a function rather than a macro. fgetc runs more slowly than getc, but it takes
less space per invocation and its name can be passed as an argument to a function.

getw returns the next C int (word) from the named input stream. getw increments the associated file
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from
machine to machine. getw assumes no special alignment in the file.

SEE ALSO
fopen(3S), putc(3S), gets(3S), ferror(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS
These functions return the integer constant EOF at end-of-file or upon an error. The end-of-file condition is
remembered, even on a terminal, and all subsequent attempts to read will return EOF until the condition is
cleared with clearerr(3S). Because EOF is a valid integer,ferror(3S) should be used to detect getw errors.

WARNING

BUGS

338

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of a character
on widening to integer is machine-dependent.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. In par­
ticular, getc(*f++) doesn't work sensibly. Fgetc should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are machine­
dependent, and may not be readable using getw on a different processor.

Last change: 17 July 1986 Sun Release 3.2

GETS (3S) STANDARD I/O LIBRARY GETS (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, D, stream)
char *s;
FILE *stream;

DESCRIPTION
gets reads characters from the standard input stream, stdin, into the array pointed to by s, until a new-line
character is read or an end-of-file condition is encountered. The new-line character is discarded and the
string is terminated with a null character. gets returns its argument

fgets reads characters from the stream into the array pointed to by s, until n-l characters are read, a new­
line character is read and transferred to s, or an end-of-file condition is encountered. The string is then ter­
minated with a null character. fgets returns its first argument

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred to s and a
NULL pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not
been opened for reading, a NULL pointer is returned. Otherwise s is returned.

Sun Release 3.2 Last change: 15 April 1986 339

POPEN(3S) STANDARD I/O LIBRARY POPEN(3S)

NAME
popen, pclose - initiate I/O to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(command, type)
char *command, *'type;,

pclose(stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings containing, respectively, a shell command
line and an I/O mode, either r for reading or w for writing. popen creates a pipe between the calling pro­
cess and the command to be executed The value returned is a stream pointer such that one can write to the
standard input of the command, if the I/O mode is w, by writing to the file stream; and one can read from
the standard output of the command, if the I/O mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated process to terminate
and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter, reading its standard input
(which is also the standard input of the process doing the popen) and providing filtered input on the stream,
and a type w command may be used as an output filter, reading a stream of output written to the stream
process doing the po pen and further filtering it and writing it to its standard output (which is also the stan­
dard input of the process doing the popen).

Popen always calls sh, never csh.

SEE ALSO
pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(l)

DIAGNOSTICS

BUGS

340

popen returns a NULL pointer if files or processes cannot be created, or the shell cannot be accessed.

pclose returns -1 if stream is not associated with a "popen ed" command.

If the original and "popen ed" processes concurrently read or write a common file, neither should use buf­
fered I/O, because the buffering gets all mixed up. Similar problems with an output filter may be fores­
talled by careful buffer flushing, for instance, withfflush; seefclose(3S).

Last change: 15 April 1986 Sun Release 3.2

PRINTF(3S) STANDARD I/O LIBRARY PRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(format [, arg] ...)
char *format;

int fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

char *sprintf(s, format [, arg] ...)
char *s, *format;

#include <varargs.h>
int _ doprnt(format, args, stream)
char *format;
va_list *args;
FILE *stream;

DESCRIPTION
IX string "number conversion" string "number conversion - printf" printfplaces output on the stan­
dard output stream stdout. fprintJ places output on the named output stream. sprintJ places' 'output" , fol­
lowed. by the null character (\0), in consecutive bytes starting at *s; it is the user's responsibility to ensure
that enough storage is available. printf and fprintf return the number of characters transmitted, while
sprintJ returns a pointer to the string. printf and fprintf return an EOF if an output error was encountered.

Each of these functions converts, formats, and prints its arg s under control of the format. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the out­
put stream, and conversion specifications, each of which causes conversion and printing of zero or more
args. The results are undefined if there are insufficient args for the format If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it will be padded on the left (or right, if the left-adjustment
flag '-', described below, has been given) to the field width. If the field width for an s conversion
is preced.ed by a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d, 0, u, x, or X conver­
sions, the number of digits to appear after the decimal point for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision takes the form of a period (.)
followed. by a decimal digit string; a null digit string is treated as zero.

An optional I (ell) specifying that a following d, 0, u, x, or X conversion character applies to a
long integer arg. A I before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or precision must appear before the arg (if any)
to be converted.

Sun Release 3.2 Last change: 16 April 1986 341

PRINTF(3S) STANDARD 110 LIBRARY PRINTF(3S)

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).
blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the result.

This implies that if the blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alternate form." For c, d, s, and u

conversions, the flag has no effect For ° conversion, it increases the precision to force the first
digit of the result to be a zero. For x or X conversion, a non-zero result will have Ox or OX
prefixed to it. For e, E, f, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal, unsigned decimal, or unsigned
hexadecimal notation (x and X), respectively; the letters abcdef are used for x conversion and
the letters ABCDEF for X conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older versions, padding with leading zeroes may
alternatively be specified by prepending a zero to the field width. This does not imply an octal
value for the field width.) The default precision is 1. The result of converting a zero value
with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the style "[-]ddd.ddd" where the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are
printed.

e,E The float or double arg is converted in the style "[-]d.ddde±ddd," where there is one digit
before the decimal point and the number after it is equal to the precision; when the precision is
missing, 6 digits are produced; if the precision is zero, no decimal point appears. The E format
code will produce a number with E instead of e introducing the exponent. The exponent
always contains at least two digits.

g,G The float or double arg is printed in style d, in style f, or in style e, (or in style E in the case of
a G format code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e or E will be used only if the exponent resulting
from the conversion is less than -4 or greater than the precision. Trailing zeroes are removed
from the result; a decimal point appears only if it is followed by a digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as "Infinity" or
"Nan" respectively.

c
s

The character arg is printed.
The arg is taken to be a string (character pointer) and characters from the string are printed
until a null character (\0) is encountered or until the number of characters indicated by the pre-
cision specification is reached. If the precision is missing, it is taken to be infinite, so all char­
acters up to the first null character are printed. A NULL value for arg will yield undefined
results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result Padding takes
place only if the specified field width exceeds the actual width. Characters generated by printj and/printf
are printed as if pute (3S) had been called.

EXAMPLES

342

To print a date and time in the form "Sunday, July 3, 10:02," where weekday and month are pointers to
null-terminated strings:

Last change: 16 April 1986 Sun Release 3.2

PRINTF(3S) STANDARD IJO LIBRARY PRINTF(3S)

NOTE

printf(tt%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

To print 1t to 5 decimal places:

printf("pi = %.5f', 4 * atan(1.0»;

These routines call _ doprnt, which is an implementation-dependent routine. Each uses the variable-length
argument facilities of varargs(3). Although it is possible to use _doprnt to take a list of arguments and
pass them on to a routine like printf, not all implementations have such a routine. We strongly recommend
that you use the routines described in vprintf (3S) instead.

SEE ALSO
putc(3S), scanf(3S), ecvt(3), printf(3V)

BUGS
Very wide fields (>128 characters) fail.

The values "Infinity" and "Nan" cannot be read by scanf(3S).

Sun Release 3.2 Last change: 16 April 1986 343

PUTC(3S) STANDARD I/O LIBRARY PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

putchar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION
pute writes the character e onto the named output stream (at the position where the file pointer, if defined,
is pointing). It returns the character written.

putehar(e) is defined as pute(e, stdout). pute and putehar are macros.

/pute behaves like pute, but is a function rather than a macro. /pute runs more slowly than pute, but it takes
less space per invocation and its name can be passed as an argument to a function.

putw writes the C int (word) w to the output stream (at the position at which the file pointer, if defined, is
pointing). The size of a word is the size of an integer and varies from machine to machine. It returns the
integer written. putw neither assumes nor causes special alignment in the file.

Output streams are by default buffered if the output refers to a file and line-buffered if the output refers to a
terminal. When an output stream is unbuffered, information is queued for writing on the destination file or
terminal as soon as written; when it is buffered, many characters are saved up and written as a block.
When it is line-buffered, each line of output is queued for writing on the destination terminal as soon as the
line is completed (that is, as soon as a new-line character is written or terminal input is requested).
setbuf(3S), setbuffer(3S), or setvbuf(3S) may be used to change the stream's buffering strategy.

SEE ALSO
fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

344

On success, these functions each return the value they have written. On error, these functions return the
constant EOF Because EOF is a valid integer,/error(3S) should be used to detect putw errors.

Because it is implemented as a macro, pute treats a stream argument with side effects improperly. In par­
ticular, putc(c, *f++); doesn't work sensibly. fpute should be used instead.

Errors can occur long after the call to pute .

Because of possible differences in word length and byte ordering, files written using putw are machine­
dependent, and may not be read using getw on a different processor.

Last change: 15 April 1986 Sun Release 3.2

PUTS(3S) STANDARD I/O LIBRARY

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS (3S)

puts writes the null-terminated string pointed to by s, followed by a newline character, to the standard out­
put stream stdout.

fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the tenninal null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that has not been
opened for writing.

SEE ALSO
fopen(3S), putc(3S), printf(3S), ferror(3S), fread(3S)

NOTES
puts appends a newline while fputs does not.

Sun Release 3.2 Last change: April 15 1986 345

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer] . ..)
char *s, *format;

DESCRIPTION

346

scan/reads from the standard input stream stdin. fscanfreads from the named input stream. sscanfreads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control stringformat, described below,
and a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, or new-lines) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing character

*, an optional numerical maximum field width, an optional I (ell) or h indicating the size of the receiv­
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except "[" and "c", white space leading an input
field is ignored.
The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:
% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an unsigned

integer pointer.
o an octal integer is expected; the corresponding argument should be a integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
e,f,g a floating point number is expected; the next field is converted accordingly and stored through the

corresponding argument, which should be a pointer to afloat. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, -, or space, followed
by an integer.

s a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

c a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use % Is. If
a field width is given, the corresponding argument should refer to a character array, and the indi­
cated number of characters is read.

Last change: 16 April 1986 Sun Release 3.2

SCANF(3S) STANDARD I/O LIBRARY SCANF(3S)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumflex (A), when it appears as the first character in the scanset, serves as a complement opera­
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan­
set string. There are some conventions used in the construction of the scanset. A range of charac­
ters may be represented by the construct first-last, thus [0123456789] may be expressed [0--9].
Using this convention, first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char­
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, U, 0, and x may be capitalized or preceded by I or h to indicate that a pointer
to long or to short rather than to int is in the argument list Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather than to float is in the argument list The lor
h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scanfreturns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string. The constant EOF is returned
upon end of input; note that this is different from 0, which means that no conversion was done; if conver­
sion was intended, it was frustrated by an inappropriate character in the input

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; float x; char name[50];
(void) scanf ("%2d%f%*d %[0--9]", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc(3S» will return a.

SEE ALSO
getc(3S), printf(3S) strtod(3), strtol(3), scanf(3V)

DIAGNOSTICS

BUGS

These functions return EOF on end of input, and a short count for missing or illegal data items.

The success of literal matches and suppressed assignments is not directly determinable.

scanf cannot read the strings which print/(3S) generates for IEEE indeterminate floating point values.

scanfprovides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi­
tional C conventions (leading 0 or Ox).

Sun Release 3.2 Last change: 16 April 1986 347

SETBUF(3S) STANDARD I/O LIBRARY SETBUF(3S)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, but)
FILE *stream;
char *buf;

setbuffer(stream, bur, size)
FILE *stream;
char *buf;
int size;

setlinebur(stream)
FILE *stream;

int setvbuf (stream, bur, type, size)
FILE *stream;
char *bur;
int type, size;

DESCRIPTION

348

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is ~countered or input is read from stdin. !flush (see Jclose(3S» may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloe(3) upon
the first getc or pute (3S) on the file. If the standard stream stdout refers to a terminal it is line buffered. If
the standard stream stderr refers to a terminal it is line buffered.

setbuJ can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buJ to be used instead of an automatically allocated buffer. If buJ is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuJ, can be used after a stream has been opened but before it is read or
written. It causes the character array buf whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buJ is the NULL pointer, input/output will be completely unbuf­
fered.

setvbuJ can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values for type (defined in <stdio.h» are:

IOFBF causes input/output to be fully buffered.

IOLBF

IONBF

causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

causes input/output to be completely unbuffered. If buJ is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuJ is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuJ, setbuffer, and setvbuJ, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by usingJreopen (seeJopen(3S».
A file can be changed from block buffered or line buffered to unbuffered by usingJreopen followed by set­
buJ with a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.2

SETBUF(3S) STANDARD 110 LIBRARY SETBUF(3S)

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fc1ose(3S), puts(3S), printf(3S), fread(3S), setbuf(3V)

DIAGNOSTICS

NOTE

If an illegal value for type or size is provided, setvbuJ returns a non-zero value. Otherwise, the value
returned will be zero.

A common source of error is allocating buffer space as an Uautomatic" variable in a code block, and then
failing to close the stream in the same block.

Sun Release 3.2 Last change: 16 April 1986 349

TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile ()

DESCRIPTION

STANDARD I/O LIBRARY TMPFILE (3S)

tmpfile creates a temporary file using a name generated by tmpnam(3S), and returns a corresponding FILE
pointer. If the file cannot be opened, an error message is printed using perror(3), and a NULL pointer is
returned. The file will automatically be deleted when the process using it terminates. The file is opened for
update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3), perror(3), tmpnam(3S)

350 Last change: 30 April 1986 Sun Release 3.2

TMPNAM(3S) STANDARD I/O LIBRARY TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary file.

tmpnam always generates a file name using the path-prefix defined as P _ tmpdir in the <stdio.h> header
file. If s is NULL, tmpnam leaves its result in an internal static area and returns a pointer to that area. The
next call to tmpnam will destroy the contents of the area. If s is not NULL, it is assumed to be the address
of an array of at least L_tmpnam bytes, where L_tmpnam is a constant defined in <stdio.h>; tmpnam
places its result in that array and returns s.

tempnam allows the user to control the choice of a directory. The argument dir points to the name of the
directory in which the file is to be created. If dir is NULL or points to a string which is not a name for an
appropriate directory, the path-prefix defined as P _tmpdir in the <stdio.h> header file is used. If that
directory is not accessible, Itmp will be used as a last resort. This entire sequence can be up-staged by pro­
viding an environment variable TMPDIR in the user's environment, whose value is the name of the desired
temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in their
names. Use the pix argument for this. This argument may be NULL or point to a string of up to five char­
acters to be used as the first few characters of the temporary-file name.

tempnam uses maUoe to get space for the constructed file name, and returns a pointer to this area. Thus,
any pointer value returned from tempnam may serve as an argument to free (see malloc(3». If tempnam
cannot return the expected result for any reason, i.e. maUoe failed, or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only in the sense that they reside
in a directory intended for temporary use, and their names are unique. It is the user's responsibility to use
unlink to remove the file when its use is ended

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3), mktemp(3), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start recycling previously used
names.
Between the time a file name is created and the file is opened, it is possible for some other process to create
a file with the same name. This can never happen if that other process is using these functions or mktemp,
and the file names are chosen so as to render duplication by other means unlikely.

Sun Release 3.2 Last change: 30 April 1986 351

UNGETC(3S) STANDARD I/O LIBRARY UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

ongetc(c, stream)
FILE *stream;

DESCRIPTION
ungetc pushes the character c back onto an input stream. That character will be returned by the next getc
calIon that stream. ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed provided something has been read from the stream and the stream
is actually buffered. In -the case that stream is sidin, one character may be pushed back onto the buffer
without a previous read statement

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Anfseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

352 Last change: 30 April 1986 Sun Release 3.2

VPRINTF (3S) STANDARD I/O LIBRARY

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
va_list ap;

char *vsprintf (s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION

VPRINTF (3S)

vprintj, v[printf, and vsprintj are the same as printj, [printJ, and sprinifrespectively, except that instead of
being called with a variable number of arguments, they are called with an argument list as defined by
varargs(3).

EXAMPLE
The following demonstrates how vfprintf could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like
* error(function_name, format, argt, arg2 ...);
*/

I*V ARARGSO*/
void
error(va _ alist)
1* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

va del
{

}

Sun Release 3.2

va_list args;
char *fmt;

va _start(args);
1* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»;
fmt = va_arg(args, char *);
1* print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
(void)abort();

Last change: 30 Aprilt986 353

VPRINTF (3S)

SEE ALSO
varargs(3)

354

STANDARD liD LIBRARY VPRINTF (3S)

Last change: 30 April 1986 Sun Release 3.2

INTRO(3V) SYSTEM VCOMP ATIBILITY ROUTINES

NAME
intro - introduction to System V functions

SYNOPSIS
lusrlSbinicc

DESCRIPTION

INTRO(3V)

These functions are contained in the System V library, lusrI5libllibc.a. They are automatically linked
when you compile a C program with the C compiler in lusrlSbinicc.

LIST OF FUNCTIONS
Name Appears on Page Description

tolower ctype(3V) character classification and conversion
_toupper ctype(3V) character classification and conversion
asctime ctime(3V) convert date and time to ASCn
assert assert(3V) verify program assertion
ctime ctime(3V) convert date and time to ASCn
curses curses(3V) CRT screen handling and optimization package
endpwent getpwent(3V) get password file entry
fdopen fopen(3V) open a stream
feof ferror(3V) stream status inquiry
ferror ferror(3V) stream status inquiry
fgetc getc(3V) get character or integer from stream
fgetpwent getpwent(3V) get password file entry
fileno ferror(3V) stream status inquiry
fopen fopen(3V) open a stream
fprintf printf(3V) formatted output conversion
fread fread(3V) buffered binary input/output
freopen fopen(3V) open a stream
fscanf scanf(3V) formatted input conversion
fwrite fread(3V) buffered binary input/output
getc getc(3V) get character or integer from stream
getchar getc(3V) get character or integer from stream
getpass getpass(3 V) read a password
getpwent getpwent(3 V) get password file entry
getpwnam getpwent(3 V) get password file entry
getpwuid getpwent(3V) get password file entry
getw getc(3V) get character or integer from stream
gmtime ctime(3V) convert date and time to ASCII
isalnum ctype(3V) character classification and conversion
is alpha ctype(3V) character classification and conversion
isascii ctype(3V) character classification and conversion
iscntrl ctype(3V) character classification and conversion
isdigit ctype(3V) character classification and conversion
isgraph ctype(3V) character classification and conversion
is lower ctype(3V) character classification and conversion
isprint ctype(3V) character classification and conversion
ispunct ctype(3V) character classification and conversion
is space ctype(3V) character classification and conversion
isupper ctype(3V) character classification and conversion
isxdigit ctype(3V) character classification and conversion
localtime ctime(3V) convert date and time to ASCII
nice nice(3V) change priority of a process
printf printf(3V) formatted output conversion

Sun Release 3.2 Last change: 2 May 1986 355

INTRO(3V)

356

rand
scanf
setbuf
setbuffer
setlinebuf
setpwent
setuid
setvbuf
signal
sleep
sprintf
srand
sscanf
times
toascii
tolower
toupper
ttyslot
tzset

SYSTEM V COMPATIBILITY ROUTINES

rand(3V)
scanf(3V)
setbuf(3V)
setbuf(3V)
setbuf(3V)
getpwent(3 V)
setuid(3V)
setbuf(3V)
signal(3V)
sleep(3V)
printf(3V)
rand(3V)
scanf(3V)
times(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ttyslot(3 V)
ctime(3V)

simple random number generator
formatted input conversion
assign buffering to a stream
assign buffering to a stream
assign buffering to a stream
get password file entry
set user ID
assign buffering to a stream
simplified software signal facilities
suspend execution for interval
formatted output conversion
simple random number generator
formatted input conversion
get process and child process times
character classification and conversion
character classification and conversion
character classification and conversion
find the slot in the utmp file of the current process
convert date and time to ASCII

Last change: 2 May 1986

INTRO(3V)

Sun Release 3.2

ASSERT(3V) SYSTEM V COMPATIBILITY ROUTINES ASSERT(3V)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression; System V"

DESCRIPTION
assert is a macro that indicates expression is expected to be true at this point in the program. When it is
executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the name of the source file and nnn the
source line number of the assert statement

Compiling with the cc(l) option -DNDEBUG, or with the preprocessor control statement "#define NDE­
BUG" ahead of the "#include <assert.h>" statement, will stop assertions from being compiled into the
program.

SEE ALSO
cc(1), abort(3)

Sun Release 3.2 Last change: 30 April 1986 357

CTIME(3V) SYSTEM V COMPATIBILITY ROUTINES CTIME(3V)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to ASCII

SYNOPSIS
char *ctime(clock)
long *clock;

#include <time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *c1ock;

char *asctime(tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION

358

crime converts to ASCII a long integer, pointed to by clock, that represents the time in seconds since Jan. 1,
1970, 00:00, Greenwich Mean Time. It returns a pointer to a 26-character string of the fonn:

Sun Sep 1601:03:52 1973\n\0

Each field has a constant width. loealtime and gmtime return pointers to structures containing the time bro­
ken down. localtime corrects for the time zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time UNIX uses. asetime converts the broken-down time to ASCII and
returns a pointer to a 26-character string.

Declarations of all the functions and externals, and the "tm" structure, are in the <time.h> header file.
The structure declaration is:

struct tIn {

};

int tm_sec;
int tm_min;
int tm _hour;
int tm _ mday;
inttm_mon;
int tmyear;
int trn _ wday;
int tm _yday;
int tm }sdst;

/* seconds (0 - 59) */
/* minutes (0 - 59) */

/* hours (0 - 23) */
/* day of month (1 - 31) */
/* month of year (0 - 11) */

/* year - 1900 */
/* day of week (Sunday = 0) */

/* day of year (0 - 365) */

tm _isdst is non-zero if Daylight Savings Time is in effect.

The external long variable time zone contains the difference, in seconds, between GMT and local standard
time (in PST, timezone is 8*60*60); the external variable daylight is non-zero if and only if Daylight Sav­
ings Time conversion should be applied. Its value indicates the type of conversion to apply; it is normally
the value returned by gettimeofday (2) in the tz _dsttime field of the timezone structure. The program knows
about various peculiarities in time conversion over the past 10-20 years.

The external variable tzname is an array of two pointers which contains the names of the current time zone.
The first pointer points to a character string which is the name of the current time zone when Daylight Sav­
ings Time is not in effect; the second one, if Daylight Savings Time conversion should be applied, points to
a character string which is the name of the current time zone when Daylight Savings Time is in effect

Last change: 15 April 1986 Sun Release 3.2

CTIME(3V) SYSTEM V COMPATIBILITY ROUTINES CTIME(3V)

If an environment variable named 1Z is present, asctime uses the contents of the variable to override the
time zone and conversion rule type supplied by the system. The value of 1Z must be a three-letter time
zone name, followed by a signed number representing the difference between local time and Greenwich
Mean Time in hours, followed by an optional three-letter name for a daylight time zone. For example, the
setting for California would be PST8PDT. The effects of setting TZ are thus to change the values of the
external variables timezone, daylight, and tzname. The function tzset sets these external variables from TZ
or, if TZ is not present in the environment, the values supplied by the system. tzset is called by asctime and
may also be called explicitly by the user.

SEE ALSO
gettimeofday(2), time(3C), getenv(3), environ(5V), ctime(3)

BUGS
The return values point to static data, whose contents are overwritten by each call.

Sun Release 3.2 Last change: 15 April 1986 359

CTYPE(3V) SYSTEM V COMPATIBILITY ROUTINES CTYPE(3V)

NAME
ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnurn, isspace, ispunct, isprint, iscntrl, isascii, isgraph,
toupper, tolower, toascii, _toupper, _tolower - character classification and conversion macros and func­
tions

SYNOPSIS
#include <ctype.b>

isaJpba(c)

CHARACTER CLASSIFICATION MACROS
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero
for true, zero for false. isascii is defined on all integer values; the rest are defined only where isascii(c) is
true and on the single non-ASCII value EOF (see stdio(3S».

isaJpba(c) c is a letter

isupper(c) c is an upper case letter

islower(c) c is a lower case letter

isdigit(c) c is a digit [0-9].

isxdigit(c) c is a hexadecimal digit [0-9], [A-F), or [a-f].

isalnum(c) c is an alphanumeric character, that is, c is a letter or a digit

isspace(c) c is a space, tab, carriage return, newline, vertical tab, or formfeed

ispunct(c) c is a punctuation character (neither control nor alphanumeric)

isprint(c) c is a printing character, code 040(8) (space) through 0176 (tilde)

iscntrl(c) c is a delete character (0177) or ordinary control character (less than 040).

isascii(c) c is an ASCII character, code less than 0200

isgrapb(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde).

CHARACTER CONVERSION MACROS AND FUNCTIONS
toupper and to lower are functions, rather than macros, and work correctly on all characters. The macros
_toupper and _to lower are faster than the equivalent functions (toupper and tolower) but only work prop­
erly on a restricted range of characters.

These functions perform simple conversions on single characters.

toupper(c) converts c to its upper-case equivalent. If c is not a lower-case letter, it is returned unchanged.

tolower(c) converts c to its lower-case equivalent. If c is not an upper-case letter, it is returned
unchanged.

toascii(c) masks c with the correct value so that c is guaranteed to be an ASCII character in the range 0
thru Ox7f.

These macros perform simple conversions on single characters.

_toupper(c) converts c to its upper-case equivalent Note that this only works where c is known to be
a lower-case character to start with (presumably checked via islower).

_tolower(c) converts c to its lower-case equivalent. Note that this only works where c is known to be
a upper-case character to start with (presumably checked via isupper).

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the result is undefined

360 Last change: 15 April 1986 Sun Release 3.2

CTYPE(3V) SYSTEM V COMPATIBILITY ROUTINES CTYPE(3V)

SEE ALSO
stdio(3S), ascii(7), ctype(3)

Sun Release 3.2 Last change: 15 April 1986 361

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>
lusr/5binlcc [flags] files -Icurses [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. In order to initial­
ize the routines, the routine initscr() must be called before any of the other routines that deal with windows
and screens are used. The routine endwin() should be called before exiting. To get character-at-a-time
input without echoing, (most interactive, screen oriented-programs want this) after calling initscr() you
should call "nonIO; cbreakO; noechoO; "

The full curses interface permits manipulation of data structures called windows which can be thought of as
two dimensional arrays of characters representing all or part of a CRT screen. A default window called
stdscr is supplied, and others can be created with newwin. Windows are referred to by variables declared
"WINDOW *", the type WINDOW is defined in curses.h to be a C structure. These data structures are
manipulated with functions described below, among which the most basic are move and addch. (More
general versions of these functions are included with names beginning with 'w', allowing you to specify a
window. The routines not beginning with 'w' affect stdscr.) Then refresh is called, telling the routines to
make the user's CRT screen look like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than one window. To invoke
this subset, use -DMINICURSES as a cc option. This level is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses will check for a local terminal
definition before checking in the standard place. For example, if the standard place is lusr/5lib/terminfo,
and TERM is set to "vt100", then normally the compiled file is found in lusrlSlib/terminfo/v/vtlOO. (The
"v" is copied from the first letter of "vt100" to avoid creation of huge directories.) However, if TER­
MINFO is set to lusr/marklmyterms, curses will first check lopusr/marklmyterms/v/vtlOO, and if that
fails, will then check lusrlSlib/terminfo/v/vtlOO. This is useful for developing experimental definitions or
when write permission in lusrlSlib/terminfo is not available.

SEE ALSO
ioctl(2), getenv(3), tty(4), terminfo(5V)

FUNCTIONS

362

Routines listed here may be called when using the full curses. Those marked with an asterisk may be
called when using Mini-Curses.

addch(ch)*

addstr(str)*
attroff(attrs) *
attron(attrs) *
attrset(attrs)*
baudrateO*
beepO*
box(win, vert, hor)

clearO
clearok(win, bf)
clrtobotO
clrtoeolO
cbreakO*

add a character to stdscr
(like putchar) (wraps to next
line at end of line)
calls addch with each character in str
turn off attributes named
turn on attributes named
set current attributes to attrs
current terminal speed
sound beep on terminal
draw a box around edges of win
vert and hor are chars to use for vert.
and hor. edges of box
clear stdscr
clear screen before next redraw of win
clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode

Last change: 30 April 1986 Sun Release 3.2

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES

delay _ output(ms)*
delchO
deletelnO
delwin(win)
doupdateO
echoO*
endwinO*
eraseO
erasecharO
fixtermO
flashO
flushinpO*
getchO*
getstr(str)
gettmodeO
getyx(win, y, x)
has_icO
hasJIO
idlok(win, bi)*
inch 0
initscrO*
insch(c)
insertlnO
intrflush(win, bi)
keypad(win, bi)
killcharO
leaveok(win, flag)

10ngnameO
meta(win, flag)*
move(y, x)*
mvaddch(y, x, ch)
mvaddstr(y, x, str)

insert ms millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throwaway any typeahead
get a char from tty
get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's insert/delete line ifbf!= 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input
return current user's kill character
OK to leave cursor anywhere after refresh if
flag !=O for win, otherwise cursor must be left
at current position.
return verbose name of terminal
allow meta characters on input if flag != 0
move to (y, x) on stdscr
move(y, x) then addch(ch)
similar ...

mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, fmt, args)
mvscanw(y, X, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)

Sun Release 3.2

low level cursor motion
like delch, but move(y, x) first
etc.

Last change: 30 April 1986

CURSES(3V)

363

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

364

create a new pad with given dimensions newpad(nlines, ncols)
newtenn(type, fd) set up new terminal of given type to output on fd
newwin(lines, cols, begin _y, begin_x)

create a new window
nl()* set newline mapping
nocbreakO* unset cbreak mode
nodelay(win, bf) enable nodelay input mode through getch
noechoO* unset echo mode
nonl() * unset newline mapping
norawO* unset raw mode
overlay(winl, win2) overlay winl on win2
overwrite(winl, win2) overwrite winl on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

printw(fmt, argl, arg2, ...)

raw() *
refresh()*
resettermO*
resettyO*
savetermO*
savettyO*
scanw(fmt, argt, arg2, ...)

scroll(win)
scrollok(win, flag)
set_term(new)
setscrreg(t, b)
setterm(type)
setupterm(tenn, filenum, errret)
standendO*
standoutO*
subwin(win, lines, cols, begin _y, begin_x)

touchwin(win)
traceoffO
traceon()
typeahead(fd)
unctrl(ch)*
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)

refresh from pad starting with given upper left
corner of pad with output to given
portion of screen

printf on stdscr
set raw mode
make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value
save current modes as "in curses" state
store current tty flags

scanf through stdscr
scroll win one line
allow tenninal to scroll if flag != 0
now talk to terminal new
set user scrolling region to lines t through b
establish tenninal with given type

clear standout mode attribute
set standout mode attribute

create a subwindow
"change" all of win
turn off debugging trace output
turn on debugging trace output
use file descriptor fd to check typeahead
printable version of ch
add char to win
add string to win
turn off attrs in win
turn on attrs in win
set attrs in win to attrs
clear win
clear to bottom of win
clear to end of line on win

Last change: 30 April 1986 Sun Release 3.2

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES

wdelch(win, c)
wdeleteIn(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsert1n(win)
wrnove(win, y, x)
wnoutrefresh(win)
wprintw(win, fint, argt, arg2, ...)

wrefresh(win)
wscanw(win, fmt, argl, arg2, ...)

wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

TERMINFO LEVEL ROUTINES

delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y, x) in win
insert char into win
insert line into win
set current (y, x) co-ordinates on win
refresh but no screen output

printf on win
make screen look like win

scanf through win
set scrolling region of win
clear standout attribute in win
set standout attribute in win

CURSES (3V)

These routines should be called by programs wishing to deal directly with the tenninfo database. Due to
the low level of this interface, it is discouraged. Initially, setupterm should be called. This will define the
set of terminal dependent variables defined in terminfo(4}. The include files <curses.h> and <term.h>
should be included to get the definitions for these strings, numbers, and flags. Parmeterized strings should
be passed through tparm to instantiate them. All terminfo strings (including the output of tparm) should be
printed with tputs or putp . Before exiting, resetterm should be called to restore the tty modes. (Programs
desiring shell escapes or suspending with control Z can call resetterm before the shell is called and fixterm
after returning from the shell.)
fixtermQ restore tty modes for terminfo use

(called by setup term)

resettermO
setupterm(term, fd, rc)

tparm(str, pI, p2, ... , p9)

tputs(str, affcnt, pule)

putp(str)

vidputs(attrs, putc)

vidattr(atlIS)

Sun Release 3.2

reset tty modes to state before program entry

read in database. Terminal type is the

character string term, all output is to UNIX

System file descriptor Id. A status value is

returned in the integer pointed to by rc: I

is normal. The simplest call would be

setupterm(O, 1,0) which uses all defaults.

instantiate string str with parms Pi.
apply padding info to string str.

affcnt is the number of lines affected,

or 1 if not applicable. Pulc is a
putchar-like function to which the characters

are passed, one at a time.

handy function that calls tputs

(str, 1, putchar)

output the string to put terminal in video

attribute mode attrs, which is any

combination of the attributes listed below.

Chars are passed to putchar-like

function putc.

Like vidputs but outputs through

putchar

Last change: 30 April 1986 365

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

TERM CAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that use termcap. Their parameters are the
same as for termcap. They are emulated using the terminfo database. They may go away at a later date.
tgetent(bp, name) look up tenncap entry for name
tgedlag(id) get boolean entry for id
tgetnum(id) get numeric entry for id
tgetstr(id, area) get string entry for id
tgoto(cap, col, row) apply parms to given cap

ATTRIBUTES
The following video attributes can be passed to the functions attron,attrojJ,attrset.
A STANDOUT
A UNDERLINE
A REVERSE
A BLINK
A DIM
A BOLD
A BLANK
A PROTECT
A ALTCHARSET

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (invisible)
Protected
Alternate character set

FUNCTION KEYS

366

The following function keys might be returned by getch if keypad has been enabled Note that not all of
these are currently supported, due to lack of definitions in terminfo or the terminal not transmitting a unique
code when the key is pressed.
Name Value
KEY BREAK 0401
KEY DOWN 0402
KEY UP 0403
KEY LEFT 0404

KEY RIGHT 0405
KEY HOME 0406
KEY BACKSPACE 0407
KEY FO 0410

Key name

break key (unreliable)
The four arrow keys ...

Home key (upward+left arrow)
backspace (unreliable)

Function keys. Space for 64 is reserved.
KEY_F(n) (KEY _FO+(n» Formula for fn.
KEY DL
KEY IL
KEY DC
KEY Ie
KEY EIC
KEY CLEAR
KEY EOS
KEY EOL
KEY SF
KEY SR
KEY NPAGE
KEY PPAGE
KEY STAB
KEY CTAB
KEY CATAB
KEY ENTER
KEY SRESET
KEY RESET
KEY PRINT
KEY LL

0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

Delete line

Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen

Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page

Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)

soft (partial) reset (unreliable)
reset or hard reset (unreliable)

print or copy
home down or bottom (lower left)

Last change: 30 April 1986 Sun Release 3.2

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

WARNING
The plotting library plot(3X) and the curses library curses(3V) both use the names eras eO and moveO.
The curses versions are macros. If you need both libraries, put the plot(3X) code in a different source file
than the curses(3V) code, and/or #undef moveO and eraseO in the plot(3X) code.

Sun Release 3.2 Last change: 30 April 1986 367

FERROR(3V) SYSTEM V COMPATIBILITY ROUTINES FERROR(3V)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

ferror(stream)
FILE *stream;

feof(stream)
FILE *stream;

clrerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION

NOTE

ferror returns non-zero when an error has occurred reading from or writing to the named stream, otherwise
zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

feof returns non-zero when EOF has previously been detected reading the named input stream, otherwise
zero. Unless cleared by clearerr, the end-of-file indication lasts until the stream is closed; however, opera­
tions which attempt to read from the stream will ignore the current state of the end-of-file indication and
attempt to read from the file descriptor associated with the stream.

clearerr resets the error indication and EOF indication to zero on the named stream.

fileno returns the integer file descriptor associated with the stream; see open (2V).

All these functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2V)

368 Last change: 17 July 1986 Sun Release 3.2

FOPEN(3V) SYSTEM V COMPATIBILITY ROUTINES FOPEN(3V)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
[open opens the file named by filename and associates a stream with it. [open returns a pointer to be used to

identify the stream in subsequent operations.

filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append: open for writing at end of file, or create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

[reopen substitutes the named file in place of the open stream. It returns the original value of stream. The
original stream is closed, regardless of whether the open ultimately succeeds.

[reopen is typically used to attach the preopened streams associated with stdin, stdout, and stderr to other
files.

Jdopen associates a stream with a file descriptor. File descriptors are obtained from calls like open, dup,
creat, or pipe (2), which open files but do not return streams. Streams are necessary input for many of the
Section 3S library routines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening [seek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to overwrite information
already in the file. [seek may be used to reposition the file pointer to any position in the file, but when out­
put is written to the file, the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output. If two separate processes open the
same file for append, each process may write freely to the file without fear of destroying output being writ­
ten by the other. The output from the two processes will be intermixed in the file in the order in which it is
written.

SEE ALSO
open(2), fclose(3S), fseek(3S), fopen(3S)

DIAGNOSTICS
Jopen andJreopen return a NULL pointer on failure.

Sun Release 3.2 Last change: 17 July 1986 369

FOPEN(3V) SYSTEM V COMPATIBILITY ROUTINES FOPEN(3V)

BUGS

370

In order to support the same number of open files as does the system, Jopen must allocate additional
memory for data structures using calloc after 20 files have been opened. This confuses some programs
which use their own memory allocators.

Last change: 17 July 1986 Sun Release 3.2

FREAD(3V) SYSTEM V COMPATIBILITY ROUTINES FREAD(3V)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr, size, nitems, stream)
FILE *stream;

fwrite(ptr, size, nitems, stream)
FILE *stream;

DESCRIPTION
fread reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It returns the number
of items actually read. fread stops appending bytes if an end-of-file or error condition is encountered while
reading stream. or if nitems items have been read. fread leaves the file pointer in stream, if defined, point­
ing to the byte following the last byte read if there is one. fread does not change the contents of stream.

When input is read from any line-buffered stream, output to all line-buffered str:eams is flushed (including
the standard error). Input read from a stream that is not line-buffered does not cause flushing of these
streams.

fwrite appends at most nitems of data from the block pointed to by ptr to the named output stream. It
returns the number of items actually written. fwrite stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. fwrite does not change the contents of the block
pointed to by ptr.

The argument size is typically sizeof{*ptr) where the pseudo-function sizeofspecifies the length of an item
pointed to by ptr. If ptr points to a data type other than char it should be cast into a pointer to char.

If size or nitems is non-positive, no characters are read or written and 0 is returned by both [read and
fwrite.

SEE ALSO
read(2V), write(2V), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S), fread(3S)

DIAGNOSTICS
fread and [write return 0 upon end of file or error.

Sun Release 3.2 Last change: 15 April 1986 371

GETC(3V) SYSTEM V COMPATIBILITY ROUTINES GETC(3V)

NAME
getc, getchar, fgetc, getw - get character or integer from stream

SYNOPSIS
#include <stdio.b>

int getc(stream)
FILE *stream;

int getcbarO

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character (i.e., byte) from the named input stream, as an integer. It also moves the
file pointer, if defined, ahead one character in stream. getchar is defined as getc(stdin). Getc and getchar
are macros.

fgetc behaves like getc, but is a function rather than a macro. fgetc runs more slowly than getc, but it takes
less space per invocation and its name can be passed as an argument to a function.

getw returns the next C int (word) from the named input stream. getw increments the associated file
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from
machine to machine. getw assumes no special alignment in the file.

SEE ALSO
fopen(3S), putc(3S), gets(3S), ferror(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS
These functions return the integer constant EOF at end-of-file or upon an error. Because EOF is a valid
integer,fe"or(3S) should be used to detect getw errors.

WARNING

BUGS

372

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of a character
on widening to integer is machine-dependent

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. In par­
ticular, getc(*f++) doesn't work sensibly. Fgetc should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are machine­
dependent, and may not be readable using getw on a different processor.

Last change: 17 July 1986 Sun Release 3.2

GETPASS(3V)

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION

SYSTEM V COMPATIBILITY ROUTINES GETP ASS (3V)

get pass reads up to a newline or EOF from the file /dev/tty, after prompting with the null-terminated string
prompt and disabling echoing. A pointer is returned to a null-terminated string of at most 8 characters. An
interrupt will terminate input and send an interrupt signal to the calling program before returning. If
/dev/tty cannot be opened, a NULL pointer is returned; the standard input is not read.

FILES
fdevftty

SEE ALSO
crypt(3), getpass(3)

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs not otherwise using
standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

Sun Release 3.2 Last change: 15 April 1986 373

GETPWENT (3V) SYSTEM V COMPATIBILITY ROUTINES GETPWENT (3V)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwentO

struct passwd *getpwoid{uid)
int uid;-

struct passwd *getpwnam(name)
char *name;

int setpwentO

int endpwentO

struct passwd *fgetpwent(f)
FILE *f;

DESCRIPTION

FILES

374

getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure contain­
ing the broken-out fields of a line in the password file. Each line in the file contains a "passwd" structure,
declared in the <pwd.h> header file:

struct passwd { /* see getpwent(3) */
char *pw _name;
char *pw yasswd;
int pw_uid;
int pw_gid;
char *pw _age;
char *pw _comment;
char *pw_gecos;
char *pw _ dir;
char *pw _shell;

};

struct passwd *getpwentO, *getpwuidO, *getpwnamO;

This structure is declared in <pwd.h> so it is not necessary to redeclare it

The field pw _comment is unused; the others have meanings described in passwd(5). When first called,
getpwent returns a pointer to the first passwd structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to search the entire file. Getpwuid searches
from the beginning of the file until a numerical user id matching uid is found and returns a pointer to the
particular structure in which it was found. Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the particular structure in which it was found. If an
end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to setpwenthas the effect of rewinding the password file to allow repeated searches. endpwent may
be called to close the password file when processing is complete.

!getpwent returns a pointer to the next passwd structure in the stream!, which matches the format of the
password file letclpasswd.

The field, pw _age, is used to hold a value for "password aging" on some systems; "password aging" is
not supported on Sun systems. As such, it is effectively not used.

/etclpasswd
/etclyp/domainname/passwd.byname
/etclyp/ domainname /passwd.byuid

Last change: 15 April 1986 Sun Relea"e 3.2

GETPWENT (3V) SYSTEM V COMPATIBILITY ROUTINES GETPWENT(3V)

SEE ALSO
getIogin(3), getgrent(3), passwd(5), ypserv(8), getpwent(3)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not otherwise using
standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 15 April 1986 375

NICE(3V) SYSTEM V COMPATIBILITY ROUTINES NICE(3V)

NAME
nice - change priority of a process

SYNOPSIS
nice(incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor­
mal. Priority 10 is recommended to users who wish to execute long-running programs undue impact on
system performance.

Negative increments are illegal, except when specified by the super-user. The priority is limited to the
range -20 (most urgent) to 19 (least). Requests for values above or below these limits result in the
scheduling priority being set to the corresponding limit.

The priority of a process is passed to a child process by fork (2).

RETURN VALUE
Upon successful completion, nice returns the new scheduling priority. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
The priority is not changed if:

EPERM The value of incr specified was negative, or greater than 40, and the effective user ID is
not super-user.

SEE ALSO
nice(I), getpriority(2), setpriority(2), fork(2), renice(8)

376 Last change: 22 May 1986 Sun Release 3.2

PRINTF(3V) SYSTEM V COMPATIBILITY ROUTINES PRINTF(3V)

NAME
printf, fprintf, sprintf - fonnatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(format [, arg] ...)
char *format;

int fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf(s, format [, arg] ...)
char *s, *format;

#include <varargs.h>
int _ doprnt(format, args, stream)
char *format;
va_list * args;
FILE *stream;

DESCRIPTION
printj places output on the standard output stream stdont. fprintj places output on the named output
stream. sprint/places "output", followed by the null character (\0), in consecutive bytes starting at *s; it
is the user's responsibility to ensure that enough storage is available. print/,fprintj and sprint/return the
number of characters transmitted (excluding the null character in the case of sprint/).

If an output error is encounteredprintj,fprint/and sprint/return EOF.

Each of these functions converts, formats, and prints its args under control of the format. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the out­
put stream, and conversion specifications, each of which causes conversion and printing of zero or more
args. The results are undefined if there are insufficient args for the format If the fonnat is exhausted
while arg s remain, the excess arg S are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it will be padded on the left (or right, if the left-adjustment
flag '-', described below, has been given) to the field width. If the field width for an s conversion
is preceded by a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d, 0, u, x, or X conver­
sions, the number of digits to appear after the decimal point for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string; a null digit string is treated as zero.

An optionall (ell) specifying that a following d, 0, u, x, or X conversion character applies to a
long integer arg. A 1 before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or precision must appear before the arg (if any)
to be converted.

Sun Release 3.2 Last change: 16 April 1986 377

PRINTF(3V) SYSTEM V COMPATIBILITY ROUTINES PRINTF(3V)

The flag characters and their meanings are:
The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+ or -).
blank If the first character of a signed conversion is not a sign, a blank will be prefixed to the result.

This implies that if the blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alternate form." For c, d, S, and u

conversions, the flag has no effect. For ° conversion, it increases the precision to force the first
digit of the result to be a zero. For x or X conversion, a non-zero result will have Ox or OX
prefixed to it. For e, E, f, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal, unsigned decimal, or unsigned
hexadecimal notation (x and X), respectively; the letters abcdef are used for x conversion and
the letters ABCDEF for X conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older versions, padding with leading zeroes may
alternatively be specified by prepending a zero to the field width. This does not imply an octal
value for the field width.) The default precision is 1. The result of converting a zero value
with a precision of zero is a null string.

f The float or double arg is converted to decimal notation in the style "[-]ddd.ddd" where the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are
printed

e,E The float or double arg is converted in the style "[-]d.ddde±ddd," where there is one digit
before the decimal point and the number after it is equal to the precision; when the precision is
missing, 6 digits are produced; if the precision is zero, no decimal point appears. The E format
code will produce a number with E instead of e introducing the exponent. The exponent
always contains at least two digits.

g,G The float or double arg is printed in style d, in style f, or in style e, (or in style E in the case of
a G format code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e or E will be used only if the exponent resulting
from the conversion is less than -4 or greater than the precision. Trailing zeroes are removed
from the result; a decimal point appears only if it is followed by a digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-nurnber) as "Infinity" or
"Nan" respectively.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters from the string are printed

until a null character (\0) is encountered or until the number of characters indicated by the pre­
cision specification is reached. If the precision is missing, it is taken to be infinite, so all char­
acters up to the first null character are printed A NULL value for arg will yield undefined
results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result. Padding takes
place only if the specified field width exceeds the actual width. Characters generated by printf and fprintf
are printed as if putc(3S) had been called.

EXAMPLES

378

To print a date and time in the form "Sunday, July 3, 10:02," where weekday and month are pointers to
null-terminated strings:

Last change: 16 April 1986 Sun Release 3.2

PRINTF(3V) SYSTEM V COMPATIBILITY ROUTINES PRINTF(3V)

NOTE

printf("%s, %s %<1, %d:%.2d", weekday, month, day, hour, min);

To print 1t to 5 decimal places:

printf("pi = %.5f', 4 * atan(1.0»;

These routines call _ doprnt, which is an implementation-dependent routine. Each uses the variable-length
argument facilities of varargs(3). Although it is possible to use _doprnt to take a list of arguments and
pass them on to a routine like printj, not all implementations have such a routine. We strongly recommend
that you use the routines described in vprintj(3S) instead

SEE ALSO
putc(3S), scanf(3V), ecvt(3), printf(3V)

BUGS
Very wide fields (>128 characters) fail.

The values "Infinity" and "Nan" cannot be read by scanf(3V).

Sun Release 3.2 Last change: 16 April 1986 379

RAND (3V) SYSTEM VCOMP ATIBILITY ROUTINES RAND(3V)

NAME
rand, srand - simple random number generator

SYNOPSIS
srand(seed)
int seed;

randO

DESCRIPTION

NOTE

rand uses a multiplicative congruential random number generator with period 232 to return successive
pseudo-random numbers in the range from 0 to is-I.

srand can be called at any time to reset the random-number generator to a random starting point. The gen­
erator is initially seeded with a value of 1.

The spectral properties of rand leave a great deal to be desired. drand48 (3) and random (3) provide much
better, though more elaborate, random-number generators.

SEE ALSO

BUGS

380

drand48(3), random(3), rand(3C)

The low bits of the numbers generated are not very random; use the middle bits. In particular the lowest bit
alternates between 0 and 1.

Last change: 17 July 1986 Sun Release 3.2

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include <stdio.h>

scanf(format [, pointer] . ..)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer] ...)
char *s, *format;

DESCRIPTION
scant reads from the standard input stream stdin. fscanf reads from the named input stream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control string format, described below,
and a set of pointer arguments indicating where the converted input should be stored

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, or new-lines) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.
3. Conversion specifications, consisting of the character %, an optional assignment suppressing character

*, an optional numerical maximum field width, an optional) (ell) or h indicating the size of the receiv­
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted For all descriptors except "[" and "c", white space leading an input
field is ignored.
The conversion character indicates the interpretation of the input field; the corresponding pointer argument
must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following
conversion characters are legal:
% a single % is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an unsigned

integer pointer.
o an octal integer is expected; the corresponding argument should be a integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer pointer.
e,f,g a floating point number is expected; the next field is converted accordingly and stored through the

corresponding argument, which should be a pointer to afloat. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, -, or space, followed
by an integer.

s a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

c a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use % Is. If
a field width is given, the corresponding argument should refer to a character array, and the indi­
cated number of characters is read.

Sun Release 3.2 Last change: 16 April 1986 381

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumflex (A), when it appears as the first character in the scanset, serves as a complement opera­
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan­
set string. There are some conventions used in the construction of the scanset. A range of charac­
ters may be represented by the construct first-last, thus [0123456789] may be expressed [0-9].
Using this convention,first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset. To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char­
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized or preceded by I or h to indicate that a pointer
to long or to short rather than to int is in the argument list Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather than to 80at is in the argument list The I or
h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scanf returns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string. The constant EOF is returned
upon end of input; note that this is different from 0, which means that no conversion was done; if conver­
sion was intended, it was frustrated by an inappropriate character in the input.

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf (" %d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\O. Or:

int i; float x; char name[50];
(void) scanf(,,%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc (3S» will return a.

SEE ALSO
getc(3S), printf(3V) strtod(3), strtol(3), scanf(3S)

DIAGNOSTICS
These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

382 Last change: 16 April 1986 Sun Release 3.2

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

scan/ cannot read the strings which printf(3V) generates for IEEE indeterminate :floating point values.

scan/provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi­
tional C conventions (leading 0 or Ox).

Sun Release 3.2 Last change: 16 April 1986 383

SETBUF(3V) SYSTEM V COMPATIBILITY ROUTINES SETBUF(3V)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <Stdio.h>

setbuf(stream, buO
FILE *stream;
char *buf;

setbuffer(stream, bur, size)
FILE *stream;
char *bur;
int size;

setHnebuf(stream)
FILE *stream;

int setvbur (stream, bur, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

384

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. !flush (seejclose(3S» may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloe(3) upon
the first gete or pute (3S) on the file.

By default, output to a tenninal is line buffered and all other input/output is fully buffered

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buf to be used instead of an automatically allocated buffer. If buj is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuJ, can be used after a stream has been opened but before it is read or
written. It causes the character array but whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buJ is the NULL pointer, input/output will be completely unbuf­
fered.

setvbuf can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values for type (defined in <stdio.h>) are:

IOFBF causes input/output to be fully buffered.

IOLBF

IONBF

causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

causes input/output to be completely unbuffered. If buJis not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuf is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuj, setbuffer, and setvbuJ, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by usingJreopen (seeJopen(3S».
A file can be changed from block buffered or line buffered to unbuffered by usingJreopen followed by set­
buJ with a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.2

SETBUF(3V) SYSTEM V COMPATIBILITY ROUTINES SETBUF(3V)

SEE ALSO
fopen(3V), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3V), fread(3V), setbuf(3S)

DIAGNOSTICS

NOTE

If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the value
returned will be zero.

A common source of error is allocating buffer space as an "automatic" variable in a code block, and then
failing to close the stream in the same block.

Sun Release 3.2 Last change: 16 April 1986 385

SETUID(3V) SYSTEM V COMPATIBILITY ROUTINES SETUID(3V)

NAME
setuid - set user ID

SYNOPSIS
setuid(uid)

DESCRIPTION
setuid is used to set the real user ID and effective user ID of the calling process.

If the effective user ID of the calling process is super-user, the real user ID and effective user ID are set to
uid.

If the effective user ID of the calling process is not super-user, but its real user ID is equal to uid, the effec­
tive user ID is set to uid.

If the effective user ID of the calling process is not super-user, but the saved set-user ID from execve (2) is
equal to uid, the effective user ID is set to uid.

SEE ALSO
setreuid(2), getuid(2)

DIAGNOSTICS

386

Zero is returned if the user ID is set; -1 is returned otherwise, with the global variable errno set as for
setreuid.

Last change: 1 May 1986 Sun Release 3.2

SIGNAL(3V) SYSTEM V COMPATIBILITY ROUTINES SIGNAL(3V)

NAME
signal- simplified software signal facilities

SYNOPSIS
#include <signaI.h>

(*signal(sig, func»O
int (*func)O;

DESCRIPTION
signal is a simplified interface to the more general sigvec(2) facility. Programs that use signal in prefer­
ence to sigvec are more likely to be portable to all UNIX systems.

A signal is generated by some abnonnal event, initiated by a user at a terminal (quit, interrupt, stop), by a
program error (bus error, etc.), by request of another program (kill), or when a process is stopped because it
wishes to access its control terminal while in the background (see tty(4». Signals are optionally generated
when a process resumes after being stopped, when the status of child processes changes, or when input is
ready at the control terminal. Most signals cause termination of the receiving process if no action is taken;
some signals instead cause the process receiving them to be stopped, or are simply discarded if the process
has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows signals
either to be ignored or to cause an interrupt to a specified location. The following is a list of all signals
with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (other than A-line or F-line op code)
SIGTRAP 5* trace trap
SIGIOT 6* lOT trap (not generated on Suns)
SIGEMT 7* EMT trap (A-line or F-line op code)
SIGFPE 8* arithmetic exception
SIGKlLL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed
SIGTIIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- I/O is possible on a descriptor (seefcntl(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»
SIGWINCH 28- window changed (see win(4S»
SIGLOST 29* resource lost (see lockd(8C»
SIGUSRI 30 user-defined signal 1
SIGUSR2 31 user-defined signal 2

Sun Release 3.2 Last change: 21 May 1986 387

SIGNAL(3V) SYSTEM V COMPATIBILITY ROUTINES SIGNAL(3V)

NOTES

CODES

The starred signals in the list above cause a core image if not caught or ignored.

If Junc is SIG DFL, the default action for signal sig is reinstated; this default is termination (with a core
image for starred signals) except for signals marked with • or t. Signals marked with • are discarded if the
action is SIG _ DFL; signals marked with t cause the process to stop. If June is SIG _ IGN the signal is sub­
sequently ignored and pending instances of the signal are discarded. Otherwise, when the signal occurs
Junc is called. The value of June for the caught signal is reset to SIG _ DFL before Junc is called, unless the
signal is SIGILL or SIGTRAP

A return from the function continues the process at the point it was interrupted.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call is
interrupted. In particular this can occur during a read or write(2V) on a slow device (such as a terminal;
but not a file) and during a wait(2). After the signal catching function returns, the interrupted system call
may return a -1 to the calling process with errno set to EINTR.

The value of signal is the previous (or initial) value of June for the particular signal.

After a fork (2) or vfork(2) the child inherits all signals. An exeeve (2) resets all caught signals to the
default action; ignored signals remain ignored

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. Code is a parameter of certain signals that provides additional detail. sep is
a pointer to the sigeontext structure (defined in <signaI.h», used to restore the context from before the sig­
nal.

The following defines the codes for signals which produce them. All of these symbols are defined in
<signal.h>:

Hardware condition

lliegal instruction
Privilege violation
Coprocessor protocol error
Trap #n (1 <= n <= 14)

A-line op code
F-line op code

Integer division by zero
CHK or CHK2 instruction
TRAPV or TRAPcc or cpTRAPcc
IEEE fioating point compare unordered
IEEE fioating point inexact
IEEE fioating point division by zero
IEEE fioating point underfiow
IEEE fioating point operand error
IEEE fioating point overflow
IEEE fioating point signaling NaN

Signal

SIGILL
SIGILL
SIGILL
SIGILL

SIGEMT
SIGEMT

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE

Code

ILL INSTR FAULT - -
ILL PRIVVIO FAULT - -
ILL INSTR FAULT - -
ILL TRAP FAULT - -

EMT EMU1010
EMT EMU1111

FPE INTDIV TRAP - -
FPE CHKINST TRAP - -
FPE TRAPV TRAP - -
FPE FLTBSUN TRAP - -
FPE FLTINEX TRAP - -
FPE FLTDIV TRAP - -
FPE FLTUND TRAP - -
FPE FLTOPERR TRAP - -
FPE FLTOVF FAULT - -
FPE FLTNAN TRAP - -

RETURN VALUE

388

The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set to indicate
the error.

Last change: 21 May 1986 Sun Release 3.2

SIGNAL(3V) SYSTEM V COMPATIBILITY ROUTINES SIGNAL(3V)

ERRORS
signal will fail and no action will take place if one of the following occur:

EINV AL sig is not a valid signal number.

EINV AL An attempt is made to ignore or supply a handler for SIGKllL or SIGSTOP.

EINV AL An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3), tty(4)

Sun Release 3.2 Last change: 21 May 1986 389

SLEEP(3V) SYSTEM V COMPATIBILITY ROUTINES SLEEP(3V)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sJeep(seconds)
unsigned seconds;

DESCRIPTION
sleep suspends the current process from execution for the number of seconds specified by the argument.
The actual suspension time may be less than that requested for two reasons: (1) Because scheduled wake­
ups occur at fixed I-second intervals and (2) because any caught signal will terminate the sleep following
execution of that signal's catching routine. Also, the suspension time may be an arbitrary amount longer
than requested because of other activity in the system. The value returned by sleep will be the "unslept"
amount (the requested time minus the time actually slept) in case the caller had an alarm set to go off ear­
lier than the end of the requested sleep time, or premature arousal due to another caught signal.

sleep is implemented by setting an interval timer and pausing until it expires. The previous state of this
timer is saved and restored If the sleep time exceeds the time to the expiration of the previous value of the
timer, the process sleeps only until the timer would have expired, and the signal which occurs with the
expiration of the timer is sent one second later.

SEE ALSO
setitimer(2), sigpause(2), usleep(3)

390 Lastchange: 17 July 1986 Sun Release 3.2

TIMES (3V) SYSTEM V COMPATIBILITY ROUTINES TIMES (3V)

NAME
times - get process and child process times

SYNOPSIS
#include <sysltypes.h>
#include <sysltimes.h>

long times(bufTer)
struct tms *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are in 11HZ seconds, where HZ is 60.

This is the structure returned by times:

struct tms {

time t tms_utime; 1* user time *1
time t tms _stime; 1* system time */
time t tms _cutime; I * user time, children *1
time t tms_cstime; 1* system time, children *1

};

This information comes from the calling process and each of its terminated child processes for which it has
executed a wait.

tms _utime is the CPU time used while executing instructions in the user space of the calling process.

tms _stime is the CPU time used by the system on behalf of the calling process.

tms _ cutime is the sum of the tms _ utime sand tms _ cutime s of the child processes.

tms _ cstime is the sum of the tms _stime s and tms _ cstime s of the child processes.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths of a second, since an arbitrary
point in the past. This point does not change from one invocation of times to another within the same pro­
cess. If times fails, a -1 is returned and errno is set to indicate the error.

SEE ALSO
time(1 V), getrusage(2), wait3(2), time(3C)

Sun Release 3.2 Last change: 21 May 1986 391

I

TIYSLOT(3V) SYSTEM V COMPATIBILITY ROUTINES

NAME
ttyslot - find the slot in the utmp file of the current process

SYNOPSIS
ttyslotO

DESCRIPTION

TTYSLOT (3V)

ttyslot returns the index of the current user's entry in the letc/utmp file. This is accomplished by actually
scanning the file letclttys for the name of the terminal associated with the standard input, the standard out­
put, or the error output (0, 1 or 2).

FILES
letclttys

DIAGNOSTICS
A value of -1 is returned if an error was encountered while searching for the terminal name or if none of
the above file descriptors is associated with a terminal device.

392 Last change: 22 May 1986 Sun Release 3.2

INTRO(3X) MISCELLANEOUS FUNCTIONS INTRO(3X)

NAME
intro - introduction to other libraries

DESCRIPTION

FILES

This section contains manual pages describing other libraries, which are available only from C. The list
below includes libraries which provide device independent plotting functions, terminal independent screen
management routines for two dimensional non-bitmap display terminals, and functions for managing data
bases with inverted indexes. All functions are located in separate libraries indicated in each manual entry.

lusr/lib/libcurses.a
lusr/lib/libdbm.a
lusrllib/libmp.a
lusrllib/libplot.a
lusrllib/lib300.a
lusrllib/lib300s.a
lusrllib/lib450.a
lusrllib/lib40 14.a
lusrllib/libtermcap.a
lusrllib/libterrncap y.a
lusrllib/libtermlib .a
lusrllib/libtermlib y.a
lusrllib/libresolv.a

screen management routines (see curses(3X»
data base management routines (see dbm(3X»
multiple precision math library (see mp(3X»
plot routines (see plot(3X»

tt

terminal handling routines (seetermcap(3X»

(link to lusr/lib/libtermcap.a)
(link to lusr/lib/libtermcap y.a)
Internet server routines (see resolver(3X»

Sun Release 3.2 Last change: 29 July 1986 393

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES(3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -lcurses -Itermcap [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They keep an
image of the current screen, and the user sets up an image of a new one. Then the refresh() tells the rou­
tines to make the current screen look like the new one. In order to initialize the routines, the routine
initscrO must be called before any of the other routines that deal with windows and screens are used. The
routine endwin() should be called before exiting.

SEE ALSO

394

ioctl(2), getenv(3), tty(4), termcap(5)
Programmer's Reference Manualfor Curses
addch(ch)
addstr(str)
box(win,vert,hor)
cbreakO
clearO
clearok(scr,boolt)
clrtobotO
clrtoeolO
delchO
deletelnO
delwin(win)
echoO
endwinO
eraseO
flusok(win, boolt)
getchO
getcap(name)
getstr(str)
gettmodeO
getyx(win,y,x)
inch 0
initscrO
insch(c)
ins ertIn 0
leaveok(win,boolt)
longname(termbuf,name)
move(y,x)
mvcur(lasty ,lastx,newy ,newx)
newwin(lines,cols,begin _y,begin _x)
nlO
nocbreakO
noecho()
nonl0
norawO
oveday(win 1, win2)
overwrite (win 1, win2)
printw(fmt,arg 1 ,arg2, ...)
raw 0
refreshO

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdser
set clear flag for ser
clear to bottom on stdser
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
set flush-on-refresh flag for win
get a char through stdser
get terminal capability name
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdser
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay winl on win2
overwrite winl on top of win2
printf on stdscr
set raw mode
make current screen look like stdser

Last change: 17 July 1986 Sun Release 3.2

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

resettyO
savettyO
scanw(fmt,argl,arg2, ...)
scroll(win)
scrollok(win,boolt)
setterm(name)
standendO
standout()
subwin(win,lines,cols,begin _y,begin _x)
touchline(win,y ,sx,ex)
touchoverlap(win 1, win2)
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln(win)
wmove(win,y,x)
wprintw(win,fmt,arg 1,arg2, ...)
wrefresh(win)
wscanw(win,fmt,argl,arg2, ...)
wstandend(win)
wstandout(win)

reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
mark line y sx through sy as changed
mark overlap of win} on win2 as changed
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert character into win
insert line into win
set current (y,x) co-ordinates on win
printf on win
make screen look like win
scanf through win
end standout mode on win
start standout mode on win

Sun Release 3.2 Last change: 17 July 1986 395

DBM(3X) MISCELLANEOUS FUNCTIONS DBM(3X)

NAME
dbm, dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNOPSIS
typedef struct {

char *dptr;
int dsize;

} datum;

dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkeyO

datum nextkey(key)
datum key;

dbmcloseO

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very large (a billion
blocks) databases and will access a keyed item in one or two file system accesses. The functions are
obtained with the loader option -Idbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two
files. One file is a directory containing a bit map and has '.dir' as its suffix. The second file contains all
data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files file .dir
and file .pag must exist. (An empty database is created by creating zero-length' .dir' and' .pag' files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by store. A key
(and its associated contents) is deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use of firstkey and nextkey. Firstkey will return the first key in
the database. With any key nextkey will return the next key in the database. This code will traverse the
data base:

for (key = firstkey(); key.dptr != NULL; key = nextkey(key»

A database may be closed by calling dbmclose. You must close a database before opening a new one.

DIAGNOSTICS

BUGS

396

All functions that return an int indicate errors with negative values. A zero return indicates ok. Routines
that return a datum indicate errors with a null (0) dptr.

The' .pag' file will contain holes so that its apparent size is about four times its actual content. Older
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied by
normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

Last change: 20 March 1984 Sun Release 3.2

DBM(3X) MISCElLANEOUS FUNCTIONS DBM(3X)

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
Moreover all key/content pairs that hash together must fit on a single block. Store will return an error in
the event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and TU!xtkey depends on a hashing function, not on anything
interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is risky.

Sun Release 3.2 Last change: 20 March 1984 397

MP(3X) MISCELLANEOUS FUNCTIONS MP(3X)

NAME
mp, itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow, xtom, mtox, mfree - multiple precision
integer arithmetic

SYNOPSIS
#include <mp.h>

madd(a, b, c)
MINT *a, *b, *c;

msub(a, b, c)
MINT *a, *b, *c;

mult(a, b, c)
MINT *a, *b, *c;

mdiv(a, b, q, r)
MINT *a, *b, *q, *r;

min(a)
MINT *a;

mout(a)
MINT *a;

pow(a, b, c, d)
MINT *a, *b, *c, *d;

gcd(a, b, c)
MINT *a, *b, *c;

rpow(a, D, b)
MINT *a, *b;
short D;

msqrt(a, b, r)
MINT *a, *b, *r;

sdiv(a, D, q, r)
MINT *a, *q;
short D, *r;

MINT *itom(D)
short D;

MINT *xtom(s)
char *s;

char *mtox(a)
MINT *a;

void mfree(a)
MINT *a;

DESCRIPTION

398

These routines perform arithmetic on integers of arbitrary length. The integers are stored using the defined
type MINT. Pointers to a MINT should be initialized using the function itom, which sets the initial value to
n. Alternatively, xtom may be used to initialize a MINT from a string of hexadecimal digits. mfree may be
used to release the storage allocated by these routines.

Madd, msub and mult assign to their third arguments the sum, difference, and product, respectively, of their
first two arguments. Mdiv assigns the quotient and remainder, respectively, to its third and fourth argu­
ments. Sdiv is like mdiv except that the divisor is an ordinary integer. Msqrt produces the square root and

Last change: 6 March 1986 Sun Release 3.2

MP(3X) MISCELLANEOUS FUNCTIONS MP(3X)

remainder of its first argument. Rpow calculates a raised to the power b, while pow calculates this reduced
modulo m. Min and mout do decimal input and output. mtox provides the inverse of xtom.

Use the -Imp loader option to obtain access to these functions.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

FILES
lusr/lib/libmp.a

Sun Release 3.2 Last change: 6 March 1986 399

NDBM(3X) MISCELLANEOUS FUNCTIONS NDBM(3X)

NAME
ndbm, dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey,
dbm _error, dbm _ clearerr - data base subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;

} datum;

DBM *dbm_open(file, flags, mode)
char *file;
int flags, mode;

dbm_ close (db)
DBM*db;

datum dbm _fetch(db, key)
DBM*db;
struct key;
datum key;

dbm_store(db, key, content, flags)
DBM*db;
datum key, content;
int flags;

dbm_deJete(db, key)
DBM*db;
datum key;

datum dbm_firstkey(db)
DBM*db;

datum dbm _ nextkey(db)
DBM*db;

datum dbm _ error (db)
DBM *db;

datum dbm_clearerr(db)
DBM *db;

DESCRIPTION

400

These functions maintain key/content pairs in a data base. The functions will handle very large (a billion
blocks) databases and will access a keyed item in one or two file system accesses.

keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two
files. One file is a directory containing a bit map and has '.dir' as its suffix. The second file contains all
data and has '.pag' as its suffix.

Before a database can be accessed, it must be opened by dbm_open. This will open and/or create the files
file.dir andfile.pag depending on the flags parameter (see open (2V».

Once open, the data stored under a key is accessed by dbm Jetch and data is placed under a key by
dbm_store. Thejlags field can be either DBM_INSERTor DBM_REPLACE. DBM_INSERTwill only
insert new entries into the database and will not change an existing entry with the same key.
DBM_REPLACE will replace an existing entry if it has the same key. A key (and its associated contents)
is deleted by dbm _delete. A linear pass through all keys in a database may be made, in an (apparently)
random order, by use of dbm Jtrstkey and dbm _nextkey. dbm Jtrstkey will return the first key in the

Last change: 24 Apri11986 Sun Release 3.2

NDBM(3X) MISCELLANEOUS FUNCTIONS NDBM(3X)

database. dbm _ nextkey will return the next key in the database. This code will traverse the data base:

for (key = dbm_firstkey(db); key.dptr!= NULL; key = dbm_nextkey(db»

dbm_error returns non-zero when an error has occured reading or writing the database. dbm clearerr
Resets the error condition on the named database.

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates ok. Routines
that return a datum indicate errors with a null (0) dptr.

The' .pag' file will contain holes so that its apparent size is about four times its actual content. Older
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied by
normal means (cp, cat, tp, tar, ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 4096 bytes).
Moreover all key/content pairs that hash together must fit on a single block. dbm _store will return an error
in the event that a disk block fills with inseparable data.

dbm _delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by dbm Jtrstkey and dbm _ nextkey depends on a hashing function, not on any­
thing interesting.

Sun Release 3.2 Last change: 24 April 1986 401

PLOT(3X) MISCELLANEOUS FUNCTIONS PLOT(3X)

NAME
plot, openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graphics interface

SYNOPSIS
openplO

eraseO

label(s)
char s[];

line(xl, yl, x2, y2)

circle(x, y, r)

arc (x, y, xO, yO, xl, yl)

move(x, y)

cont(x, y)

point(x, y)

linemod(s)
char s[];

space(xO,yO,xl,yl)

c1oseplO

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for a
description of their effect. Openpl must be used before any of the others to open the device for writing.
Close pi flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the following
Id(l) options:

-Iplot device-independent graphics stream on standard output for plot(IG) filters
-1300 OSI 300 terminal
-1300s GSI 300S terminal
-1450 GSI 450 terminal
-14014 Tektronix 4014 terminal
-Iplotaed

AED 512 color graphics terminal
-lplotbg BBN bitgraph graphics terminal
-Iplotdumb

Dumb terminals without cursor addressing or line printers
-Iplotgigi

DEC Gigi terminals
-lplot2648

Hewlett Packard 2648 graphics terminal
-lplot722I

Hewlett Packard 7221 graphics terminal
-Iplotimagen

Imagen laser printer (default 240 dots-per-inch resolution).

SEE ALSO
plot(5), plot(IG), graph(IG)

402 Lastchange: 17 July 1986 Sun Release 3.2

PLOT (3X)

FILES
lusrllibllibplot.a
I usrllibllib300.a
lusrllibllib300s.a
lusrllibllib450.a
lusrllibllib4014.a
lusrllibllibplotaed.a
lusrllibllibplotbg.a
lusrllibllibplotdumb.a
lusrllibllibplotgigi.a
lusrllibllibplot2648.a
lusrllibllibplot7221.a
lusrllibllibplotimagen.a

Sun Release 3.2

MISCELLANEOUS FUNCTIONS PLOT(3X)

Last change: 17 July 1986 403

TERMCAP(3X) MISCELLANEOUS FUNCTIONS TERMCAP(3X)

NAME

termcap, tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
shortospeed;

tgetent(bp, name)
char *bp, *narne;

tgetnurn(id)
char *id;

tgetfiag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(crn, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)0;

DESCRIPTION

404

These functions extract and use capabilities from the terminal capability data base termcap(5). These are
low level routines; see eurses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the bp buffer, with the current size of the tty (usually a
window). This allows pre-SunWindows programs to run in a window of arbitrary size. Bp should be a
character buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tgetflag, and
tgetstr. Tgetent returns -1 if it cannot open the termcap file, 0 if the tenninal name given does not have an
entry, and 1 if all goes well. It will look in the environment for a TERMCAP variable. If found, and the
value does not begin with a slash, and the terminal type name is the same as the environment string TERM,
the TERMCAP string is used instead of reading the termcap file. If it does begin with a slash, the string is
used as a path name rather than letcltermcap. This can speed up entry into programs that call tgetent, as
well as to help debug new terminal descriptions or to make one for your terminal if you can't write the file
letcltermcap. Note that if the window size changes, the "lines" and "columns"entries in bp are no longer
correct. See the Sunwindows Reference Manual for details regarding [how to handle] this.

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the terminal. Tgetflag
returns 1 if the specified capability is present in the tenninal's entry, 0 if it is not Tgetstr gets the string
value of capability id, placing it in the buffer at area, advancing the area pointer. It decodes the abbrevia­
tions for this field described in termeap(5), except for cursor addressing and padding information. Tgetstr
returns the string pointer if successful. Otherwise it returns zero.

Tgoto returns a cursor addressing string decoded from em to go to column desteol in line destline. It uses
the external variables UP (from the up capability) and Be (if be is given rather than bs) if necessary to
avoid placing \n, AD or A@ in the returned string. (Programs which call tgoto should be sure to turn off the
XTABS bit(s), since tgoto may now output a tab. Note that programs using termcap should in general turn
off XT ABS anyway since some terminals use control I for other functions, such as nondestructive space.)
If a % sequence is given which is not understood, then tgoto returns' 'OOPS" .

Last change: 13 May 1986 Sun Release 3.2

TERMCAP(3X) MISCEllANEOUS FUNCTIONS TERMCAP(3X)

FILES

Tputs decodes the leading padding information of the string cp; affcnt gives the number of lines affected by
the operation, or 1 if this is not applicable, outc is a routine which is called with each character in turn. The
external variable ospeed should contain the encoded output speed of the terminal as described in tty(4).
The external variable PC should contain a pad character to be used (from the pc capability) if a null r@) is
inappropriate.

lusrllib/libtermcap.a -ltermcap library
letc/termcap data base

SEE ALSO
ex(l), curses(3X), tty(4), termcap(5)

Sun Release 3.2 Last change: 13 May 1986 405

INTRa (4) SPECIAL FILES INTRa (4)

NAME
intro - introduction to special files and hardware support

DESCRIPTION
This section describes device interfaces (drivers) in the operating system for disks, tapes, serial communi­
cations, high-speed network communications, and other devices such as mice, frame buffers and windows.
The section is divided into a few subsections:

Sun-specific drivers are grouped in '4S'.

Protocol families are grouped in '4F'.

Protocols and raw interfaces are treated in '4P'.

Network interfaces are grouped in '4N'.

The operating system can be built with or without many of the drivers listed here. For most of them, the
SYNOPSIS section of the manual page gives the syntax of the line to include in a kernel configuration file
if you wish to include the driver in a system. See config (8) for a description of this process.

Several manual pages will contain SYNOPSIS sections specific to the Sun-2 and Sun-3 architectures.
Where a SYNOPSIS section appears without any specific architecture against it, it applies to both the Sun-
2 and Sun-3 architectures. Where a SYNOPSIS section appears with only one specific architecture against
it, it applies only to that specific architecture.

The pages for most drivers also include a DIAGNOSTICS section listing error messages the driver may
produce. These messages appear on the system console, and also in the system error log file
lusrladm/messages.

DEVICES ALWAYS PRESENT
Drivers which are present in every kernel include a driver for the paging device, drum (4); drivers for
accessing physical, virtual, and I/O space, mem(4S); and drivers for the data sink, null(4).

COMMUNICATIONS DEVICES
Communications lines are most often used with the terminal driver described in tty(4). The terminal driver
runs on communications lines provided either by a communications driver such as mti(4S) or zs(4S) or by
a virtual terminal. The virtual terminal may be provided either by the Sun console monitor, cons (4S), or by
a true pseudo-terminal, pty(4), used in applications such as windowing or remote networking.

MAGNETIC TAPE DEVICES
Magnetic tapes all provide the interface described in mtio(4). Tape devices for the Sun include ar(4S),
tm(4S), st(4S), and xt(4S).

DISK DEVICES
Disk controllers provide standard block and raw interfaces, as well as a set of ioctl's defined in dkio(4S),
which support getting and setting disk geometry and partition information. Drivers available for the Sun
include xy(4S), ip(4S), and sd(4S).

PROTOCOL FAMILIES
The operating system supports one or more protocol families for local network communications. The only
complete protocol family in this version of the system is the Internet protocol family; see inet(4F). Each
protocol family provides basic services - packet fragmentation and reassembly, routing, addressing, and
basic transport - to each protocol implementation. A protocol family is normally composed of a number
of protocols, one persocket(2) type. A protocol family is not required to support all socket types.

The primary network support is for the Internet protocol family described in inet(4F). Major protocols in
this family include the Internet Protocol, ip(4P), describing the universal datagram format, the stream
Transmission Control Protocol tcp(4P), the User Datagram Protocol udp(4P), the Address Resolution Pro­
tocol arp(4P), the Internet Control Message Protocol icmp(4P), and the Network Interface Tap nit (4P).
The primary network interface is for the 10 Megabit Ethernet; see ec(4S), ie(4S), and le(4S). A software
loopback interface, 10(4) also exists. General properties of these (and all) network interfaces are described
in if(4N).

Sun Release 3.2 Last change: 25 July 1985 407

INTRO(4) SPECIAL FILES INTRO(4)

The general support in the system for local network routing is described in routing(4N); these facilities
apply to all protocol families.

NUSCELLANEOUSDEVICES
Miscellaneous devices include color frame buffers cg*(4S), monochrome frame buffers bw*(4S), the con­
sole frame buffer Jb(4S), the graphics processor interface gpone(4S), the console mouse mouse(4S), and
the window devices win(4S).

GENERAL IOCTL CALLS
In general, iocd calls relating to a specific device are mentioned with the description for that device. There
are however a bunch of ioctl calls that apply to files in general. These are described here. The form of the
ioctl call for file control is:

#include <syslioctl.h>
ioctl(rd, request, argp)
int rd, request;
int *argp;

FIOCLEX Set set close-on-exec Bag for the file descriptor specified by rd. This flag is also mani­
pulated by the F_SETFD command of fcntl(2). The argp argument is not used in this
call.

FIONCLEX Remove close-on-exec Bag for the file descriptor specified by rd. The argp argument is
not used in this call.

FIONREAD Returns in the long integer whose address is argp the number of immediately readable
characters from whatever the descriptor specified by rd. refers to. This works for files,
pipes, and terminals.

FIONBIO Set or clear non-blocking I/O. If the value pointed to by argp is a 1 (one) the descriptor
is set for non-blocking I/O. If the value pointed to by argp is a 0 (zero) the descriptor is
cleared for non-blocking I/O.

FIOASYNC Set or clear asynchronous I/O. If the value pointed to by argp is a 1 (one) the descriptor
is set for asynchronous I/O. If the value pointed to by argp is a 0 (zero) the descriptor is
cleared for asynchronous I/O.

FIOSETOWN Set the process-group ID that will subsequently receive SIGIO or SIGURG signals for this
descriptor.

FIOGETOWN Get the process-group ID that is receiving SIGIO or SIGURG signals for this descriptor.

SEE ALSO
fcntl(2)

408 Last change: 25 July 1985 Sun Release 3.2

AR(4S) SPECIAL FILES AR(4S)

NAME
ar - Archive 114 inch Streaming Tape Drive

SYNOPSIS - SUN-2
device arO at mbio ? csr Ox200 priority 3
device arl at mbio ? csr Ox208 priority 3

DESCRIPTION

FILES

The Archive tape controller is a Sun 'QIC-II' interface to an Archive streaming tape drive. It provides a
standard tape interface to the device, see mtio (4), with some deficiencies listed under BUGS below.

The maximum blocksize for the raw device is limited only by available memory.

ldev/rar*
ldev/nrar* non-rewinding

SEE ALSO
mtio(4)

DIAGNOSTICS

BUGS

ar*: would not initialize.
"ar*: already open."

The tape can be open by only one process at a time.
ar*: no such drive.
ar*: no cartridge in drive.
ar*: cartridge is write protected.
ar: interrupt from unitialized controller %x.
ar*: many retries, consider retiring this tape.
ar*: %b error at block # %d punted.
ar*: %b error at block I %d.
ar: giving up on Rdy, try again.

The tape cannot reverse direction so the BSF and BSR ioctls are not supported.
The FSR ioctl is not supported.
The system will hang if the tape is removed while running.
When using the raw device, the number of bytes in any given transfer must be a multiple of 512 bytes. If it
is not, the device driver returns an error.
The driver will only write an end of file mark on close if the last operation was a write, without regard for
the mode used when opening the file. This will cause empty files to be deleted on a raw tape copy opera­
tion.

Sun Release 3.2 Last change: 17 April 1986 409

ARP(4P) SPECIAL FILES ARP(4P)

NAME
arp - Address Resolution Protocol

SYNOPSIS
pseudo-device ether

DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and 10Mb/s Ethernet addresses. It is
used by all the 10Mb/s Ethernet interface drivers.

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an address not
in the cache, ARP queues the message which requires the mapping and broadcasts a message on the associ­
ated network requesting the address mapping. If a response is provided, the new mapping is cached and
any pending messages are transmitted. ARP will queue at most one packet while waiting for a mapping
request to be responded to; only the most recently "transmitted" packet is kept

To enable communications with systems which do not use ARP, ioctls are provided to enter and delete
entries in the Internet-to-Ethernet tables. Usage:

#include <syS/ioctl.h>
#include <sys/socket.h>
#include <netlir.h>
struct arpreq arpreq;

ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);

Each ioctl takes the same structure as an argument SIOCSARP sets an ARP entry, SIOCGARP gets an
ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be applied to any socket descriptor s,
but only by the super-user. The arpreq structure contains:

/*
* ARP ioctl request
*/

struct arpreq {

};

struct sockaddr arp ya;
struct sockaddr arp _ ha;
int arp _ flags;

/* arp _flags field values */

/* protocol address */
/* hardware address */
/* flags */

#define ATF COM 2 /* completed entry (arp _ ha valid) */
#define ATF PERM 4 /* permanent entry */
#define ATF PUBL 8 /* publish (respond for other host) */

The address family for the arp ya sockaddr must be AF _ INET; for the arp _ ha sockaddr it must be
AF _ UNSPEC. The only flag bits which may be written are A TF _PERM and A TF _PUBL. A TF _PERM
causes the entry to be permanent if the ioctl call succeeds. The peculiar nature of the ARP tables may cause
the ioctl to fail if more than 4 (permanent) Internet host addresses hash to the same slot ATF _PUBL
specifies that the ARP code should respond to ARP requests for the indicated host coming from other
machines. This allows a Sun to act as an tt ARP servertt which may be useful in convincing an ARP-only
machine to talk to a non-ARP machine.

ARP watches passively for hosts impersonating the local host (that is, a host which responds to an ARP
mapping request for the local host's address).

DIAGNOSTICS

410

duplicate IP address!! sent from ethernet address: %x:%x:%x:%x:%x:%x. ARP has discovered
another host on the local network which responds to mapping requests for its own Internet address.

Last change: 26 July 1985 Sun Release 3.2

ARP(4P) SPECIAL FILES ARP(4P)

SEE ALSO
ec(4S), ie(4S), inet(4F), arp(8C), ifconfig(8C)
An Ethernet Address Resolution Protocol, RFC826, Dave Plummer, MIT (Sun 800-1059-01)

BUGS
ARP packets on the Ethernet use only 42 bytes of data, however, the smallest legal Ethernet packet is 60
bytes (not including CRC). Some systems may not enforce the minimum packet size, others will.

Sun Release 3.2 Last change: 26 July 1985 411

BK(4) SPECIAL FILES BK(4)

NAME
bk -line discipline for machine-machine communication

SYNOPSIS
pseudo-device bk

DESCRIPTION
This line discipline provides a replacement for the tty driver tty(4) when high speed output to and espe­
cially input from another machine is to be transmitted over an asynchronous communications line. The dis­
cipline was designed for use by a (now obsolete) store-and-forward local network running over serial lines.
It may be suitable for uploading of data from microprocessors into the system. If you are going to send
data over asynchronous communications lines at high speed into the system, you must use this discipline,
as the system otherwise may detect high input data rates on terminal lines and disable the lines; in any case
the processing of such data when normal terminal mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#include <sgtty.h>
int Idisc = NETLDISC, fiIdes; •••
ioctl(fiIdes, TIOCSETD, &Idisc);

A typical application program then reads a sequence of lines from the terminal port, checking header and
sequencing information on each line and acknowledging receipt of each line to the sender, who then
transmits another line of data. Typically several hundred bytes of data and a smaller amount of control
information will be received on each handshake.

The old standard teletype discipline can be restored by doing:

Idisc = OTTYDISC;
ioctl(fiIdes, TIOCSETD, &Idisc);

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output data path is
desired, it is necessary to prepare the output line by putting it into RAW mode using ioetl (2). This must be
done before changing the discipline with TIOCSEID, as most ioetl (2) calls are disabled while in network
line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the input path is
only 7 bits wide, with newline the only character terminating an input record Each input record must be
read and acknowledged before the next input is read as the system refuses to accept any new data when
there is a record in the buffer. The buffer is limited in length, but the system guarantees to always be wil­
ling to accept input resulting in 512 data characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee accurate
data transfer.

SEE ALSO
tty(4)

412 Last change: 25 July 1985 Sun Release 3.2

BWONE(4S) SPECIAL FILES

NAME
bwone - Sun-l black and white frame buffer

SYNOPSIS - SUN-2
device bwoneO at mbmem ? csr OxcOOOO priority 3

DESCRIPTION

BWONE(4S)

The bwone interface provides access to Sun-l black and white graphics controller boards. It supports the
FBlOOTYPE ioctl which programs can use to determine the characteristics of the display device; see
jbio(4S).

FILES

bwone also supports the FBIOGPIXRECf ioctl which allows SunWindows to be run on it; seefbio(4S).

Reading or writing to the frame buffer is not allowed - you must use the mmap(2) system call to map the
board into your address space.

Idevlbwone[O-9]

SEE ALSO
mmap(2), tb(4S), tbio(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

The FBVIDEO_ON value returned by the FBIOGVIDEO ioctl may be incorrect Seefbio(4S).

Sun Release 3.2 Last change: 25 July 1986 413

BWTWO(4S) SPECIAL FILES BWTWO(4S)

NAME
bwtwo - Sun-3/Sun-2 black and white frame buffer

SYNOPSIS - SUN-3
device bwtwoO at obmem 1 csr OxffOOOOOO priority 4
device bwtwoO at obmem 2 csr OxlOOOOO priority 4
device bwtwoO at obmem 3 csr OxffOOOOOO priority 4
device bwtwoO at obmem 4 csr OxffOOOOOO

The first synopsis line given above should be used to generate a kernel for a Sun-3/160; the second, for a
Sun-3175M; the third, for a Sun-3/260; and the fourth, for a Sun-3/110.

SYNOPSIS - SUN-2
device bwtwoO at obmem 1 csr Ox700000 priority 4
device bwtwoO at obio 2 csr OxO priority 4

The first synopsis line given above should be used to generate a kemel.far a Sun-2/120 or Sun-2/170; the
second, for a Sun-2/50 or Sun-2/160.

DESCRIPTION

FILES

The bwtwo interface provides access to Sun Monochrome Video Controller boards.

bwtwo supports the FBIOGTYPE ioctl, which may be used to determine the characteristics of the display
device, and the FBIOGPIXRECf ioctl, which allows SunWindows to be run on it (seejbio(4S».

If Bags Oxl is specified, frame buffer write operations are buffered through regular high-speed RAM. This
"copy memory" mode of operation speeds the write operations, but consumes an extra 128K bytes of
memory.

Reading or writing to the frame buffer is not allowed - you must use the mmap (2) system call to map the
board into your address space.

Idevlbwtwo[O-9]

SEE ALSO
rnmap(2), fb(4S), fbio(4S), cgfour(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

The FBVIDEO_ON value returned by the FBIOGVIDEO ioctl may be incorrect Seejbio(4S).

414 Last change: 25 July 1986 Sun Release 3.2

CGFOUR(4S) SPECIAL FILES CGFOUR(4S)

NAME
cgfour - Sun-3 color graphics interface

SYNOPSIS - SUN-3
cgfourO at obmem 4 csr OxffOOOOOO

DESCRIPTION

FILES

The cgfour is the Sun-31l10 color frame buffer, normally supplied with a 19" color, 19" grayscale, or IS"
color 66 Hz non-interlaced color monitor. It provides the standard frame buffer interface as defined in
jbio(4S).

In addition to the ioctls described under fbio (4s), the cgfour interface responds to two cgfour-specific
colormap ioctls, FBIOPUTCMAP and FBIOGEfCMAP. FBIOPUTCMAP returns no information other than
success/failure via the ioctl return value. FBIOGEfCMAP returns its information in the arrays pointed to by
the red, green, and blue members of its tbcmap structure argument; fbcmap is defined in < sun!Jbio.h> as:

struct tbcmap {

};

int
int
unsigned char
unsigned char
unsigned char

index;
count;
*red;
* green;
*blue;

/* first element (0 origin) *1
1* number of elements */
/* red color map elements */
1* green color map elements */
/* blue color map elements */

The driver uses color board vertical-retrace interrupts to load the colormap.

Currently the ioctls FBIOSA TIR and FBIOGA TIR are only supported by the cgfour frame buffer. See
jbio(4S).

/dev/cgfourO

SEE ALSO
mmap(2), tbio(4S)

Sun-3!lxx CPU Board Hardware Engineering Manual

BUGS
The FB VIDEO_ON value returned by the FBIOGVIDEO ioctl may be incorrect. See fbio (4S).

Sun Release 3.2 Last change: 25 July 1986 415

CGONE(4S) SPECIAL FILES CGONE(4S)

NAME
cgone - Sun-l color graphics interface

SYNOPSIS - SUN-l
device cgoneO at mbmem ? csr OxecOOO priority 3

DESCRIPTION

FILES

The cgone interface provides access to the Sun-l color graphics controller board, which is normally sup­
plied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer interface as defined in
fbio(4S).

It supports the FBlOOPIXRECT ioctl which allows SunWindows to be run on it; seejbio(4S)

The hardware consumes 16 kilobytes of Multibus memory space. The board starts at standard addresses
0xE8000 or OxECOOO. The board must be configured for interrupt level 3.

/dev/cgone[O-9]

SEE ALSO
rnrnap(2), tbio(4S)

BUGS
Use of color board vertical-retrace interrupts is not supported.

416 Last change: 16 September 1985 Sun Release 3.2

CGTWO(4S) SPECIAL FILES

NAME
cgtwo - Sun-3/Sun-2 color graphics interface

SYNOPSIS - SUN-3
cgtwoO at vme24d16 ? csr Ox400000

SYNOPSIS - SUN-2
cgtwoO at vme24 ? csr Ox400000

DESCRIPTION

CGTWO(4S)

The cgtwo interface provides access to the Sun-3/Sun-2 color graphics controller board, which is normally
supplied with a 19" 66 Hz non-interlaced color monitor. It provides the standard frame buffer interface as
defined injbio(4S).

The hardware consumes 4 megabytes of VME bus address space. The board starts at standard address
Ox400000. The board must be configured for interrupt level 3.

FILES
Idevlcgtwo[O-9]

SEE ALSO
mmap(2), tbio(4S)

Sun Release 3.2 Last change: 25 July 1986 417

CONSOLE (4S) SPEOAL FILES CONSOLE (4S)

NAME
console - console driver and terminal emulator for the Sun workstation

SYNOPSIS
None; included in standard system.

DESCRIPTION

Cons is an indirect driver for the Sun workstation console, which implements a standard UNIX system ter­
minal. Cons is implemented by calling the PROM resident monitor or other kernel UART drivers (zs(4S» to
perform I/O to and from the current system console, which is either a Sun frame buffer or an RS232 port.

When the Sun window system win(4S) is active, console input is directed through the window system
rather than being read from the hardware console.

An ioctl TIOCCONS can be applied to serial devices other than the console to route output which would
normally appear on the console to the other devices instead. Thus, the window system does a TIOCCONS
on a pseudoterminal to route console output to the pseudoterminal rather than routing output through the
PROM monitor to the screen, since routing output through the PROM monitor destroys the integrity of the
screen. Note however, that when you use TIOCCONS in this way, the console input is routed from the
pseudoterminal as well.

ANSI STANDARD TERMINAL EMULATION

418

The Sun Workstation's PROM monitor provides routines that emulates a standard ANSI X3.64 terminal.

Note that the VT100 also follows the ANSI X3.64 standard but both the Sun and the VT100 have nonstan­
dard extensions to the ANSI X3.64 standard. The Sun terminal emulator and the VT100 are not compatible
in any true sense.

The Sun console displays 34 lines of 80 ASCII characters per line, with scrolling, (x, y) cursor addressabil­
ity, and a number of other control functions.

The Sun console displays a non-blinking block cursor which marks the current line and character position
on the screen. ASCII characters between Ox20 (space) and Ox7E (tilde) inclusive are printing characters -
when one is written to the Sun console (and is not part of an escape sequence), it is displayed at the current
cursor position and the cursor moves one position to the right on the current line. If the cursor is already at
the right edge of the screen, it moves to the first character position on the next line. If the cursor is already
at the right edge of the screen on the bottom line, the Line-feed function is performed (see control-J
below), which scrolls the screen up by one or more lines or wraps around, before moving the cursor to the
first character position on the next line.

Control Sequence Syntax

The Sun console defines a number of control sequences which may occur in its input When such a
sequence is written to the Sun console, it is not displayed on the screen, but effects some control function
as described below, for example, moves the cursor or sets a display mode.

Some of the control sequences consist of a single character. The notation
control-X

for some character X • represents a control character.

Other ANSI control sequences are of the form
ESC [<params> <char>

Spaces are included only for readability; these characters must occur in the given sequence without the
intervening spaces.

ESC represents the ASCII escape character (ESC, control-[, OxlB).
[The next character is a left square bracket '[' (Ox5B).
<params>

are a sequence of zero or more decimal numbers made up of digits between 0 and 9, separated by
semicolons.

<char> represents a function character, which is different for each control sequence.

Last change: 6 June 1986 Sun Release 3.2

CONSOLE (4S) SPEOAL FILES CONSOLE (4S)

Some examples of syntactically valid escape sequences are (again, ESC represent the single ASCII character
'Escape'):

ESC[m
ESC[7m
ESC [33;54H
ESC [123;456;O;;3;B

select graphic rendition with default parameter
select graphic rendition with reverse image
set cursor position
move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted by the Sun console are
ignored Control characters which are not currently interpreted by the Sun console are also ignored.

Each control function requires a specified number of parameters, as noted below. If fewer parameters are
supplied, the remaining parameters default to 1, except as noted in the descriptions below.

If more than the required number of parameters is supplied, only the last n are used, where n is the number
required by that particular command character. Also, parameters which are omitted or set to zero are reset
to the default value of 1 (except as noted below).

Consider, for example, the command character M which requires one parameter. ESC [;M and ESC [OM
and ESC [M and ESC [23; 15 ;32; 1M are all equivalent to ESC [1M and provide a parameter value of 1. Note
that ESC[;5M (interpreted as 'ESC [5M') is not equivalent to ESC [5;M (interpreted as 'ESC [5;IM') which
is ultimately interpreted as 'ESC [1M').

In the syntax descriptions below, parameters are represented as '#' or '#1;#2'.

ANSI Control Functions

The following paragraphs specify the ANSI control functions implemented by the Sun console. Each
description gives:

• the control sequence syntax

• the hex equivalent of control characters where applicable

• the control function name and ANSI or Sun abbreviation (if any).

• description of parameters required, if any

• description of the control function

• for functions which set a mode, the initial setting of the mode. The initial settings can be restored with
the SUNRESET escape sequence.

Control Character Functions

control-G (Ox7) Bell (BEL)
The Sun Workstation Model 100 and l00U is not equipped with an audible bell. It 'rings the bell'
by flashing the entire screen. The Sun-2 models have an audible bell which beeps. The window
system flashes the window.

control-H (Ox8) Backspace (BS)
The cursor moves one position to the left on the current line. If it is already at the left edge of the
screen, nothing happens.

control-I (Ox9) Tab (TAB)
The cursor moves right on the current line to the next tab stop. The tab stops are fixed at every
multiple of 8 columns. If the cursor is already at the right edge of the screen, nothing happens;
otherwise the cursor moves right a minimum of one and a maximum of eight character positions.

control-J (OxA) Line-feed (LF)

Sun Release 3.2

The cursor moves down one line, remaining at the same character position on the line. If the cur­
sor is already at the bottom line, the screen either scrolls up or 'wraps around' depending on the
setting of an internal variable S (initially 1) which can be changed by the ESC[r control sequence.

Last change: 6 June 1986 419

CONSOLE (4S) SPECIAL FILES CONSOLE (4S)

420

If S is greater than zero, the entire screen (including the cursor) is scrolled up by S lines before
executing the Line-feed The top S lines scroll off the screen and are lost. S new blank lines scroll
onto the bottom of the screen. After scrolling, the line-feed is executed by moving the cursor
down one line.

If S is zero, 'wrap-around' mode is entered 'ESC [1 r' exits back to scroll mode. If a linefeed
occurs on the bottom line in wrap mode, the cursor goes to the same character position in the top
line of the screen. When any linefeed occurs, the line that the cursor moves to is cleared. This
means that no scrolling occurs. Wrap-around mode is not implemented in the window system.

The screen scrolls as fast as possible depending on how much data is backed up awaiting printing.
Whenever a scroll must take place and the console is in normal scroll mode ('ESC [1 r'), it scans
the rest of the data awaiting printing to see how many linefeeds occur in it This scan stops when
any control character from the set {VT, FF, SO, SI, OLE, OCl, DC2, DC3, DC4, NAK, SYN,
ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is found. At that point, the screen is scrolled by N
lines (N at least 1) and processing continues. The scanned text is still processed normally to fill in
the newly created lines. This results in much faster scrolling with scrolling as long as no escape
codes or other control characters are intermixed with the text.

See also the discussion of the 'Set scrolling' (ESC [r) control funtion below.

control-K (OxB) Reverse Line-feed
The cursor moves up one line, remaining at the same character position on the line. If the cursor
is already at the top line, nothing happens.

control-L (OxC) Form-feed (FF)
The cursor is postioned to the Home position (upper-left comer) and the entire screen is cleared

control-M (OxD) Return (CR)
The cursor moves to the leftmost character position on the current line.

Escape Sequence Functions

control-[(OxlB) Escape (ESC)
This is the escape character. Escape initiates a multi-character control sequence.

ESC [#@ Insert Character (ICH)
Takes one parameter, # (default 1). Inserts # spaces at the current cursor position. The tail of the
current line starting at the current cursor position inclusive is shifted to the right by # character
positions to make room for the spaces. The rightmost # character positions shift off the line and
are lost The position of the cursor is unchanged

ESC[#A Cursor Up (CUU)
Takes one parameter, # (default 1). Moves the cursor up # lines. If the cursor is fewer than #
lines from the top of the screen, moves the cursor to the topmost line on the screen. The character
position of the cursor on the line is unchanged.

ESC [#B Cursor Down (CUD)
Takes one parameter, # (default 1). Moves the cursor down # lines. If the cursor is fewer than #
lines from the bottom of the screen, move the cursor to the last line on the screen. The character
position of the cursor on the line is unchanged.

ESC [#C Cursor Forward (CUP)
Takes one parameter, # (default 1). Moves the cursor to the right by # character positions on the
current line. If the cursor is fewer than # positions from the right edge of the screen, moves the
cursor to the rightmost position on the current line.

ESC [#0 Cursor Backward (CUB)
Takes one parameter, # (default 1). Moves the cursor to the left by # character positions on the
current line. If the cursor is fewer than # positions from the left edge of the screen, moves the

Last change: 6 June 1986 Sun Release 3.2

CONSOLE (4S) SPECIAL FILES CONSOLE (4S)

cursor to the leftmost position on the current line.

ESC [#E Cursor Next Line (CNL)
Takes one parameter, # (default 1). Positions the cursor at the leftmost character position on the
#-th line below the current line. If the current line is less than # lines from the bottom of the
screen, postions the cursor at the leftmost character position on the bottom line.

ESC [#I;#2f Horizontal And Vertical Position (HVP)
or

ESC [#1 ;#2H Cursor Position (CUP)
Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the #2-th character position
on the #1-th line. Character positions are numbered from 1 at the left edge of the screen; line
positions are numbered from 1 at the top of the screen. Hence, if both parameters are omitted, the
default action moves the cursor to the home position (upper left corner). If only one parameter is
supplied, the cursor moves to column 1 of the specified line.

ESC[J Erase in Display (ED)
Takes no parameters. Erases from the current cursor position inclusive to the end of the screen.
In other words, erases from the current cursor position inclusive to the end of the current line and
all lines below the current line. The cursor position is unchanged.

ESC [K Erase in Line (EL)
Takes no parameters. Erases from the current cursor position inclusive to the end of the current
line. The cursor position is unchanged.

ESC [#L Insert Line (IL)
Takes one parameter, # (default 1). Makes room for # new lines starting at the current line by
scrolling down by # lines the portion of the screen from the current line inclusive to the bottom.
The # new lines at the cursor are filled with spaces; the bottom # lines shift off the bottom of the
screen and are lost. The position of the cursor on the screen is unchanged.

ESC [#M Delete Line (DL)
Takes one parameter, # (default 1). Deletes # lines beginning with the current line. The portion
of the screen from the current line inclusive to the bottom is scrolled upward by # lines. The #
new lines scrolling onto the bottom of the screen are filled with spaces; the # old lines beginning at
the cursor line are deleted. The position of the cursor on the screen is unchanged.

ESC [#P Delete Character (OCR)
Takes one parameter, # (default 1). Deletes # characters starting with the current cursor position.
Shifts to the left by # character positions the tail of the current line from the current cursor posi­
tion inclusive to the end of the line. Blanks are shifted into the rightmost # character positions.
The position of the cursor on the screen is unchanged.

ESC [#m Select Graphic Rendition (SGR)
Takes one parameter, # (default 0). Note that, unlike most escape sequences, the parameter
defaults to zero if omitted. Invokes the graphic rendition specified by the parameter. All follow­
ing printing characters in the data stream are rendered according to the parameter until the next
occurrence of this escape sequence in the data stream. Currently only two graphic renditions are
defined:

o Normal rendition.

7 Negative (reverse) image.

Negative image displays characters as white-on-black if the screen mode is currently black-on
white, and vice-versa. Any non-zero value of # is currently equivalent to 7 and selects the nega­
tive image rendition.

ESC [p Black On White (SUNBOW)

Sun Release 3.2

Takes no parameters. Sets the screen mode to black-on-white. If the screen mode is already
black-an-white, has no effect. In this mode spaces display as solid white, other characters as

Last change: 6 June 1986 421

CONSOLE (4S) SPECIAL FILES CONSOLE (4S)

black-on-white. The cursor is a solid black block. Characters displayed in negative image rendi­
tion (see 'Select Graphic Rendition' above) is white-on-black in this mode. This is the initial set­
ting of the screen mode on reset

ESC[q White On Black (SUNWOB)
Takes no parameters. Sets the screen mode to white-on-black. If the screen mode is already
white-on-black, has no effect. In this mode spaces display as solid black, other characters as
white-on-black. The cursor is a solid white block. Characters displayed in negative image rendi­
tion (see 'Select Graphic Rendition' above) is black-on-white in this mode. The initial setting of
the screen mode on reset is the alternative mode, black on white.

ESC [#r Set scrolling (SUNSCRL)
Takes one parameter, # (default 0). Sets to # an internal register which determines how many lines
the screen scrolls up when a line-feed function is performed with the cursor on the bottom line. A
parameter of 2 or 3 introduces a small amount of 'jump' when a scroll occurs. A parameter of 34
clears the screen rather than scrolling. The initial setting is 1 on reset

A parameter of zero initiates 'wrap mode' instead of scrolling. In wrap mode, if a linefeed occurs
on the bottom line, the cursor goes to the same character position in the top line of the screen.
When any linefeed occurs, the line that the cursor moves to is cleared. This means that no scrol­
ling ever occurs. 'ESC [1 r' exits back to scroll mode.

For more information, see the description of the Line-feed (control-J) control function above.

ESC [s Reset terminal emulator (SUNRESEn
Takes no parameters. Resets all modes to default, restores current font from PROM. Screen and
cursor position are unchanged.

4014 TERMINAL EMULATION

FILES

The PROM monitor for Sun models l00U and 150U provides the Sun Workstation with the capability to
emulate a subset of the Tektronix 4014 terminal. This feature does not exist in Sun-2 PROMs and will be
removed from models l00U and 150U in future Sun releases. Tektool(l) provides Tektronix 4014 terminal
emulation and should be used instead of relying on the capabilities of the PROM monitor.

/dev/console
/dev/ttya alternate console (serial port)

SEE ALSO

BUGS

422

kb(4S), tty(4), zs(4S), tektool(l)

ANSI Standard X3.64, 'Additional Controls for Use with ASCII', Secretariat CBEMA, 1828 L St., N.W.,
Washington, D.C. 20036.

TIOCCONS should be restricted to the owner of /dev/console.

Last change: 6 June 1986 Sun Release 3.2

DES(4S) SPECIAL FILES DES (4S)

NAME
des - DES encryption chip interface

SYNOPSIS - SUN-3
desO at obio ? csr OxlcOOOO

#include <sysldes.h>

SYNOPSIS - SUN-2
desO at virtual? csr Oxee1800

#include <sysldes.h>

DESCRIPTION

FILES

The des driver provides a high level interface to the AmZ8068 Data Ciphering Processor, a hardware
implementation of the NBS Data Encryption Standard

The high level interface provided by this driver is hardware independent and could be shared by future
drivers in other systems.

The interface allows access to two modes of the DES algorithm: Electronic Code Book (ECB) and Cipher
Block Chaining (CBC). All access to the DES driver is through ioctl (2) calls rather than through reads and
writes; all encryption is done in-place in the user's buffers. The ioctls provided are:

DESIOCBLOCK
This call encrypts/decrypts an entire buffer of data, whose address and length are passed in the
struct desparams addressed by the argument The length must be a multiple of 8 bytes.

DESIOCQUICK

/dev/des

This call encrypts/decrypts a small amount of data quickly. The data is limited to
DES _ QUICKLEN bytes, and must be a multiple of 8 bytes. Rather than being addresses, the data
is passed directly in the struct desparams argument

SEE ALSO
des _ crypt(3), des(1)

Federal Information Processing Standards Publication 46

AmZ8068 DCP Product Description, Advanced Micro Devices

Sun Release 3.2 Last change: 27 March 1986 423

DKIO(4S)

NAME
dkio - generic disk control operations

DESCRIPTION

SPEOAL FILES DKIO(4S)

All Sun disk drivers support a set of ioctl's for disk formatting and labelling operations. Basic to these
ioctl's are the definitions in <sun/dkio.h>:

424

/*
* Structures and definitions for disk io control commands
*/

/* Disk identification */
struct dk _ info {

int dkt ct1r; /* controller address */
short dkt unit;
short dki _ ctype;
short dkt flags;

};
/* controller types */
#define DKC UNKNOWN
#define DKC SMD2180
#define DKC DSD5215
#define DKC XY450
#define DKC ACB4000
#define DKC MD21

/* flags */

o
1
5
6
7
8

/* unit (slave) address */
/* controller type */
/* flags */

#define DKI BAD144 OxOI
#define DKI MAPTRK Ox02
#define DKI FM'ITRK Ox04
#define DKI FMTVOL Ox08

/* use DEC std 144 bad sector fwding */
/* controller does track mapping */
/* formats only full track at a time */
/* formats only full volume at a time */

/* Definition of a disk's geometry */
struct dk _georn {

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

};

dkg_ncyl;
dkg_acyl;
dkg_bcyl;
dkg_nhead;
dkg_hhead;
dkg_nsect;
dkg_intrlv;
dkg~apl;
dkg_gap2;
dkg_apc;
dkg_ extra[9];

/* disk io control commands */

/* # of data cylinders */
/* # of alternate cylinders */
/* cyl offset (for fixed head area) */
/* # of heads */
/* head offset (for Larks, etc.) */
/* # of sectors per track */
/* interleave factor */
/* gap 1 size */
/* gap 2 size */
/* alternates per cyl (SCSI only) */
/* for compatible expansion */

#define DKIOCGGEOM _ IOR(d, 2, struct dk _geom) /* Get geometry */
#define DKIOCSGEOM _ IOW(d, 3, struct dk _geom) /* Set geometry */
#define DKIOCGPART _IOR(d, 4, struct dk_map)/* Get partition info */
#define DKIOCSPART _IOW(d,5,structdk_map) /*Setpartitioninfo*/
#define DKIOCINFO _IOR(d, 8, struct dk _info) /* Get info */

Last change: 25 July 1986 Sun Release 3.2

DKIO(4S) SPECIAL FILES DKIO(4S)

The DKIOCGINFO ioctl returns a dk info structure which tells the kind of the controller and attributes
about how bad-block processing is done on the controller. The DKIOCGPART and DKIOCSPART get
and set the controller's current notion of the partition table for the disk (without changing the partition table
on the disk itselt), while the DKIOCGGEOM and DKIOCSGEOM ioctl's do similar things for the per­
drive geometry information.

SEE ALSO
iP(4S), sd(4S), xy(4S)

Sun Release 3.2 Last change: 25 July 1986 425

DRUM (4) SPECIAL FILES DRUM(4)

NAME
drum - paging device

SYNOPSIS
None; included with standard system.

DESCRIPTION

FILES

BUGS

426

This file refers to the paging device in use by the system. This may actually be a subdevice of one of the
disk drivers, but in a system with paging interleaved across multiple disk drives it provides an indirect
driver for the multiple drives.

/dev/drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only occur every
.5Mbytes or so, and since the system never allocates blocks across the boundary, this is usually not a prob­
lem.

Last change: 25 July 1985 Sun Release 3.2

EC(4S) SPECIAL FILES EC(4S)

NAME
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS - SUN-2
device ecO at mbmem ? csr OxeOOOO priority 3
device eel at mbmem ? csr Oxe2000 priority 3

DESCRIPTION
The ec interface provides access to a 10 Mb/s Ethernet network through a 3COM controller. For a general
description of network interfaces see if(4N).

The hardware consumes 8 kilobytes of Multibus memory space. This memory is used for internal buffer­
ing by the board. The board starts at standard addresses OxEOOOO or OxE2000. The board must be
configured for interrupt level 3.

The interface software implements an exponential backoff algorithm when notified of a collision on the
cable.

The interface handles the Internet protocol family, with the interface address maintained in Internet format.
The Address Resolution Protocol arp(4P) is used to map 32-bit Internet addresses used in inet(4F) to the
48-bit addresses used on the Ethernet

DIAGNOSTICS
ec%d: Ethernet jammed. After 16 failed transmissions and backoffs using the exponential backoff algo­
rithm, the packet was dropped.

ec%d: can't handle af%d. The interface was handed a message with addresses formatted in an unsuit­
able address family; the packet was dropped.

SEE ALSO
arp(4P), if(4N), inet(4F)

BUGS
The interface hardware is not capable of talking to itself, making diagnosis more difficult.

Sun Release 3.2 Last change: 16 September 1985 427

FB(4S) SPECIAL FILES FB(4S)

NAME
tb - driver for Sun console frame buffer

SYNOPSIS
None; included in standard system.

DESCRIPTION

FILES

The fb driver provides indirect access to a Sun graphics controller board. It is an indirect driver for the Sun
workstation console's frame buffer. At boot time, the workstation's frame buffer device is determined
from information from the Monitor Proms and set to be the one that fb will indirect to. The device driver
for the console's frame buffer must be configured into the kernel so that this indirect driver can access it.

The idea behind this driver is that user programs can open a known device, query its characteristics and
access it in a device dependent way, depending on the type. Fb redirects open(2V), close(2), ioctl(2), and
mmap(2) calls to the real frame buffer. All of the Sun frame buffers support the same general interface;
see {bio (4S)

ldev/tb

SEE ALSO
tbio(4S), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), gpone(4S)

428 Last change: 20 September 1985 Sun Release 3.2

FBIO(4S) SPECIAL FILES FBIO(4S)

NAME
tbio - general properties of frame buffers

DESCRIPTION

All of the Sun frame buffers support the same general interface. Each responds to a FBIOGTYPE ioctl
which returns information in a structure defined in <sunlfbio.h>:

struct tbtype{
int tb_type; /* as defined below */
int tb_height; /* in pixels */
int tb_width; /* in pixels */
int tb_depth; /* bits per pixel */
int tb_cmsize; /* size of color map (entries) */
int tb_size; /* total size in bytes */

};

#define FBTYPE SUN1BW 0
#define FBTYPE SUN1COLOR 1
#define FBTYPE SUN2BW 2
#define FBTYPE SUN2COLOR 3
#define FBTYPE SUN2GP 4

Each device has an FBTYPE which is used by higher-level software to determine how to perform raster-op
and other functions. Each device is used by opening it, doing a FBIOGTYPE ioctl to see which frame buffer
type is present, and thereby selecting the appropriate device-management routines.

Full-fledged frame buffers (that is, those that run SunWindows) implement an FBIOGPIXRECT ioctl, which
returns a pixrect This call is made only from inside the kernel. The returned pixrect is used by win(4S)
for cursor tracking and colonnap loading.

FBIOSVIDEO and FBIOGVIDEO are general-purpose ioctls for controlling possible video features of frame
buffers. They are defined in <sunlfbio.h> . These ioctls either set or return the value of a flags integer. At
this point, only the FBVIDEO _ON option is available, controlled by FBIOSVIDEO. FBIOGVIDEO returns this
current video state.

The FBIOSATTR and FBIOGATTR ioctls allow access to special features of newer frame buffers. They use
the following structures as defined in <sunlfbio.h>:

Sun Release 3.2

#define FB A TIR NDEVSPECIFIC 8
4

1* no. of device specific values */
1* no. of emulation types *1

- -
#define FB A TIR NEMUTYPES - -

struct tbsattr {
int flags; 1* misc flags *1

#define FB_ATIR_AUTOINIT 1 1* emulation auto init flag *1
#define FB_ATIR_DEVSPECIFIC 2 1* dev. specific stuff valid flag *1

int emu_type; 1* emulation type (-1 if unused) *1
int dev _specific[FB _ ATTR _NDEVSPECIFIC];I* catchall *1

};

struct tbgattr {
int real_type; 1* real device type *1
int owner; 1* PID of owner, 0 if myself *1
struct fbtype tbtype; 1* tbtype info for real device *1
struct tbsattr sattr; 1* see above *1
int emu_types [FB _A TTR _NEMUTYPES]; 1* possible emulations *1

1* (-1 if unused) *1
};

Last change: 7 July 1986 429

FBIO(4S) SPEGAL FILES FBIO(4S)

SEE ALSO

BUGS

430

mmap(2), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), cgfour(4S), gpone(4S), fb(4S), win(4S)

FBIOSATIR and FBIOGAITR are only supported by the cgfour(4S) frame buffer.

The FBVIDEO_ON flag my be incorrect for the bwone(4S), bwtwo(4S), and cgfour(4S) frame buffers since
the drivers for these devices do not test the hardware, but simply report the last state stored by FBIOSVI­
DEO. The stored state and actual hardware state can get out of sync for several reasons: (1) processes hav­
ing the same bwone frame buffer mapped can directly enable or disable the video, unknown to the driver;
(2) IdevlbwtwoO and IdevlcgfourO on a cgfour CPU refer to the same frame buffer hardware; the video state
of IdevlbwtwoO may change, unknown to the cgfour driver; (3) if the hardware is not the default frame
buffer ldev/fb, the hardware's initial state is "video off', unknown to the driver.

Last change: 7 July 1986 Sun Release 3.2

GPONE(4S) SPECIAL FILES GPONE(4S)

NAME
gpone - Sun-3/Sun-2 graphics processor

SYNOPSIS - SUN-3
device gponeO at vme24d16? csr

SYNOPSIS - SUN-2
device gponeO at vme24 ? csr

DESCRIPTION
The gpone interface provides access to the optional Graphics Processor Board (GP).

The hardware consumes 64 kilobytes of VME bus address space. The GP board starts at standard address
Ox210000 and must be configured for interrupt level 3.

GPIOCTL
The graphics processor responds to a number of ioctl calls as described here. One of the calls uses a
gpltbinfo structure that looks like this:

struct gpltbinfo {

};

int
int
int
int
caddr t
int

The ioctl call looks like this:
ioctl(file, request, argp)
int file, request;

tb _ vrneaddr;
tb _ hwwidth;
tb _ hwheight;
addrdelta;
tbJopaddr;
tbunit;

/* physical color board address */
/* tb board width */
/* tb board height *1
1* phys addr diff between tb and gp *1
/* cg2 va thru kernelmap */
/* tb unit to use for a,b,c,d *1

argp is defined differently for each GP ioctl request and is specified in the descriptions below.

The following ioctI commands provide for transferring data between the graphics processor and color
boards and processes.

GPlIO PUT INFO
Passes information about the frame buffer into driver. argp points to a struct gpltbinfo which is
passed to the driver.

GPlIO GET STATIC BLOCK - - -
Hands out a static block from the GP. argp points to an int which is returned from the driver.

GPlIO FREE STATIC BLOCK - - -
Frees a static block from the GP. argp points to an int which is passed to the driver.

GPlIO GET GBUFFER STATE - - -
Checks to see if there is a buffer present on the GP. argp points to an int which is returned from
the driver.

GPlIO CHK GP - -
Restarts the GP if necessary. argp points to an int which is passed to the driver.

GPlIO GET RESTART COUNT - - -
Returns the number of restarts of a GP since power on. Needed to differentiate SIGXCPU calls in
user processes. argp points to an int which is returned from the driver.

GPlIO REDIRECT DEVFB - -
Configures Idevlfb to talk to a graphics processor device. argp points to an int which is passed to
the driver.

GPlIO _GET _ REQDEV
Returns the requested minor device. argp points to a dey _ t which is returned from the driver.

Sun Release 3.2 Last change: 20 September 1985 431

GPONE(4S) SPECIAL FILES GPONE(4S)

FILES

GPlIO GET TRUMINORDEV
Returns the true minor device. argp points to a char which is returned from the driver.

The graphics processor driver also responds to the FBIOGTYPE, ioctl which a program can use to inquire as
to the characteristics of the display device, the FBIOGINFO, ioctI for passing generic information, and the
FBIOGPIXRECf ioctl so that SunWindows can run on it. SeeJbio(4S).

ldevl gpone[O-3] [abed]
/usrlincludelsunlgpio.h
lusrlincludelpixreetl(gplemds.h,gplreg.h,gplvar.h}

SEE ALSO
tbio(4S), mmap(2), gpconfig(8)
Hardware Reference Manual for the Sun Graphics Processor (Sun 800-1190-01)
Software Interface Manual for the Sun Graphics Processor (Sun 800-1571-01)

DIAGNOSTICS
The Graphics Processor has been restarted. You may see display garbage as a result.

432 Last change: 20 September 1985 Sun Release 3.2

ICMP(4P) SPEOAL FILES ICMP(4P)

NAME
icmp - Internet Control Message Protocol

SYNOPSIS
None; included automatically with inet(4F).

DESCRIPTION
The Internet Control Message Protocol, ICMP, is used by gateways and destination hosts which process
datagrams to communicate errors in datagram-processing to source hosts. The datagram level of Internet is
discussed in ip(4P). ICMP uses the basic support of IP as if it were a higher level protocol; however,
ICMP is actually an integral part of IP. ICMP messages are sent in several situations; for example: when a
datagram cannot reach its destination, when the gateway does not have the buffering capacity to forward a
datagram, and when the gateway can direct the host to send traffic on a shorter route.

The Internet protocol is not designed to be absolutely reliable. The purpose of these control messages is to
provide feedback about problems in the communication environment, not to make IP reliable. There are
still no guarantees that a datagram will be delivered or that a control message will be returned. Some
datagrams may still be undelivered without any report of their loss. The higher level protocols which use
IP must implement their own reliability mechanisms if reliable communication is required.

The ICMP messages typically report errors in the processing of datagrams; for fragmented datagrams,
ICMP messages are sent only about errors in handling fragment 0 of the datagram. To avoid the infinite
regress of messages about messages etc., no ICMP messages are sent about ICMP messages. ICMP may
however be sent in response to ICMP messages (for example, ECHOREPL V). There are eleven types of
ICMP packets which can be received by the system. They are defined in this excerpt from
<netinetlip _icmp.h>, which also defines the values of some additional codes specifying the cause of certain
errors.

/*
* Definition of type and code field values
*/
#define ICMP ECHOREPLY 0 /* echo reply */
#define ICMP _ UNREACH 3 /* dest unreachable, codes: */
#define ICMP UNREACH NET 0 /* bad net */ - -
#define ICMP UNREACH HOST 1 /* bad host */ - -
#define ICMP UNREACH PROTOCOL 2 /* bad protocol */ - -
#define ICMP UNREACH PORT 3 1* bad port */ - -
#define ICMP UNREACH NEEDFRAG 4 /* IP _ DF caused drop */ - -
#define ICMP UNREACH SRCF AIL 5 1* src route failed *1 - -
#define ICMP _ SOURCEQUENCH 4 /* packet lost, slow down */
#define ICMP REDIRECf 5 1* shorter route, codes: */
#define ICMP REDIRECT NET 0 /* for network */ - -
#define ICMP REDIRECT HOST 1 1* for host */ - -
#define ICMP REDIRECT TOSNET 2 /* for tos and net */ - -
#define ICMP REDIRECT TOSHOST 3 /* for tos and host */ - -
#defineICMP EClIO 8 /* echo service */
#define ICMP TIMXCEED 11 1* time exceeded, code: *1
#define ICMP TIMXCEED INTRANS 0 1* tt1==O in transit */ - -
#define ICMP TIMXCEED REASS 1 1* tt1==O in reass */ - -
#define ICMP PARAMPROB 12 /* ip header bad */
#defineICMP TSTAMP 13 /* timestamp request */
#define ICMP TST AMPREPL Y 14 /* timestamp reply */
#defineICMP_IREQ 15 /* information request */
#define ICMP _ IREQREPLY 16 /* information reply */

Sun Release 3.2 Last change: 25 July 1985 433

ICMP(4P) SPECIAL FILES ICMP(4P)

Arriving ECHO and TSTAMP packets cause the system to generate ECHOREPLY and TSTAMPREPLY
packets. IREQ packets are not yet processed by the system, and are discarded. UNREACH, SOURCE­
QUENCH, TIMXCEED and P ARAMPROB packets are processed internally by the protocols implemented
in the system, or reflected to the user if a raw socket is being used; see ip(4P). REDIRECT, ECHORE­
PLY, TSTAMPREPLY and IREQREPLY are also reflected to users of raw sockets. In addition,
REDIRECT messages cause the kernel routing tables to be updated; see routing(4N).

SEE ALSO

BUGS

434

inet(4F), ip(4P)

Internet Control Message Protocol, RFC792, J. Postel, USC-lSI (Sun 800-1064-01)

IREQ messages are not processed properly: the address fields are not set

Messages which are source routed are not sent back using inverted source routes, but rather go back
through the normal routing mechanisms.

Last change: 25 July 1985 Sun Release 3.2

IE (4S) SPECIAL FILES IE(4S)

NAME
ie - Intel 10 Mb/s Ethernet interface

SYNOPSIS - SUN-3
device ieO at obio ? csr OxcOOOO priority 3
device iel at vme24dl6 ? csr OxSSOOO priority 3 vector ieintr Ox75

SYNOPSIS - SUN-2
device ieO at obio 2 csr Ox7fOSOO priority 3
device ieO at mbmem ? csr OxS8000 priority 3
device iel at mbmem ? csr OxScOOO flags 2 priority 3
device iel at vme24 ? csr Ox88000 priority 3 vector ieintr Ox75

DESCRIPTION
The ie interface provides access to a 10 Mb/s Ethernet network through the Intel 82586 controller chip.
For a general description of network interfaces see if(4N).

In the synopsis-Sun-3 lines above, the first line specifies the first, CPU board-resident, Intel Ethernet
interface; the second line specifies a second Intel interface present on a Sun Ethernet board

In the synopsis-Sun-2 lines above, the first line specifies the first Intel Ethernet controller on a Sun-2/50
or Sun-2/160; the second line specifies the first Intel Ethernet controller on a Sun-2/120 or Sun-2/170.

DIAGNOSTICS
There are too many driver messages to list them all individually here. Some of the more common mes­
sages and their meanings follow.

ie%d: Ethernet jammed
Network activity has become so intense that sixteen successive transmission attempts failed, caus­
ing the 82586 to give up on the current packet Another possible cause of this message is a noise
source somewhere in the network, such as a loose transceiver connection.

ie%d: no carrier
The 82586 has lost input to its carrier detect pin while trying to transmit a packet, causing the
packet to be dropped. Possible causes include an open circuit somewhere in the network and
noise on the carrier detect line from the transceiver.

ie%d: lost interrupt: resetting
The driver and 82586 chip have lost synchronization with each other. The driver recovers by
resetting itself and the chip.

ie%d: iebark reset
The 82586 failed to complete a watchdog timeout command in the alloted time. The driver recov­
ers by resetting itself and the chip.

ie%d: WARNING: requeueing
The driver has run out of resources while getting a packet ready to transmit. The packet is put
back on the output queue for retransmission after more resources become available.

ie%d: panic: scb overwritten

Sun Release 3.2

The driver has discovered that memory that should remain unchanged after initialization has
become corrupted This error usually is a symptom of a bad 82586 chip.

Last change: 23 July 1986 435

IF(4N) SPECIAL FILES IF(4N)

NAME
if - general properties of network interfaces

DESCRIPTION

436

Each network interface in a system corresponds to a path through which messages may be sent and
received. A network interface usually has a hardware device associated with it, though certain intetfaces
such as the loopback interface, 10 (4), do nol

At boot time each interface which has underlying hardware support makes itself known to the system dur­
ing the autoconfiguration process. Once the interface has acquired its address it is expected to install a
routing table entry so that messages may be routed through it. Most interfaces require some part of their
address specified with an SIOCSIFADDR ioctl before they will allow traffic to flow through them. On
interfaces where the network-link layer address mapping is static, only the network number is taken from
the ioctl; the remainder is found in a hardware specific manner. On interfaces which provide dynamic
network-link layer address mapping facilities (for example, 10Mb/s Ethemets using arp(4P),), the entire
address specified in the ioctl is used.

The following ioctl calls may be used to manipulate network interfaces. Unless specified otherwise, the
request takes an ifreq structure as its parameter. This structure has the form

stnuct ifneq {
char ifr_name[16]; /* name of interface (e.g. "ecOIt

) */
union {

stnuct
stnuct
short

} ifrJfru;
#define ifr addr
#define ifr dstaddr
#define ifr_flags
};

SIOCSIFADDR

sockaddr ifru _ addr;
sockaddr ifru _ dstaddr;
ifru _flags;

ifr ifru.ifru addr /* address */ - -
ifr Jfru.ifru _ dstaddr /* other end of p-to-p link */
ifr _ifru.ifru _flags /* flags */

Set interface address. Following the address assignment, the "initialization" routine for the inter-
face is called

SIOCGIFADDR
Get intetface address.

SIOCSIFDST ADDR
Set point to point address for interface.

SIOCGIFDST ADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently routing packets
through the interface are notified

SIOCGIFFLAGS
Get intetface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an ifconf structure (see below) as a value-result
parameter. The ifc _len field should be initially set to the size of the buffer pointed to by ifc _buf. On
return it will contain the length, in bytes, of the configuration list.
/*
* Stnucture used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).

Last change: 25 July 1985 Sun Release 3.2

IF(4N)

SEE ALSO

*/
struct

SPECIAL FILES

ifconf {
int ifc _len; 1* size of associated buffer */
union {

caddr _ t ifcu _ buf;
sttuct ifreq *ifcu _req;

} ifc_ifcu;
#define ifc buf ifc ifcu.ifcu buf /* buffer address */ - - -
#define ifc _req ifc _ifcu.ifcu _ req 1* array of structures returned */
};

arp(4P), ec(4S), 10(4)

Sun Release 3.2 Last change: 25 July 1985

IF(4N)

437

INET(4F) SPECIAL FILES INET(4F)

NAME
inet - Internet protocol family

SYNOPSIS
options INET

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the Internet Protocol (IP) transport
layer, and using the Internet address format. The Internet family provides protocol support for the
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the SOCK_RAW interface provides
access to the IP protocol.

ADDRESSING

438

Internet addresses are four byte quantities, stored in network standard format (on the V AX these are word
and byte reversed; on the Sun they are not reversed). The include file <netinetlin.h> defines the Internet
address as a discriminated union.

Sockets in the Internet protocol family use the following addressing structure:
struct sockaddr}n {

short sin_family;
u short sin .J>Ort;
struct in _addr sin _ addr;
char sin _ zero [8] ;

};

(Library routines to return and manipulate structures of this form are in section 3N of the manual; see
intro(3N) and the other section 3 entries mentioned under SEE ALSO below). Each socket has a local
address which may be specified in this form, which can be established with bind(2); the getsockname(2)
call returns this address. Each socket also may be bound to a peer socket with an address specified in this
form; this peer address can be specified in a connect(2) call, or transiently with a single message in a
sendto or sendmsg call; see send(2). The peer address of a socket is returned by the getpeername(2) call.

The sin _ addr field of the socket address specifies the Internet address of the machine on which the socket is
located. A special value may be specified or returned for this field, sin_addr.s_addr==INADDR_ANY.
This address is a "wildcard" and matches any of the legal internet addresses on the local machine. This
address is useful when a process neither knows (nor cares) what the local Internet address is, and even
more useful for server processes which wish to service all requests of the current machine. Since a
machine can have several addresses (one per hardware network interface), specifying a single address
would restrict access to the service to those clients which specified the address of that interface. By speci­
fying INADDR_ANY, the server can arrange to service clients from all interfaces.

When a socket address is bound, the networking system checks for an interface with the address specified
on the current machine (unless, of course, a wildcard address is specified), and returns an error EAD­
DRNOT A V AIL if no such interface is found.

The local port address specified in a bind(2) call is restricted to be greater than IPPORT _RESERVED
(=1024, in <netinetlin.h» unless the creating process is running as the super-user, providing a space of
protected port numbers. The local port address is also required to not be in use in order for it to be
assigned. This is checked by looking for another socket of the same type which has the same local address
and local port number. If such a socket already exists, you will not be able to create another socket at the
same address, and will instead get the error EADDRINUSE. If the local port address is specified as 0, then
the system picks a unique port address not less than IPPORT _RESERVED and assigns it to the port A
unique local port address is also picked for a socket which is not bound but which is used with connect(2)
or sendto(2); this allows tcp(4P) connections to be made by simply doing socket(2) and then connect(2) in
the case where the local port address is not significant; it is defaulted by the system. Similarly if you are
sending datagrarns with udp(4P) and do not care which port they come from, you can just do socket(2) and
sendto (2) and let the system pick a port number.

Last change: 16 September 1985 Sun Release 3.2

INET(4F) SPECIAL FILES INET(4F)

Let us say that two sockets are incompatible if they have the same port number, are not conected to other
sockets, and do not have different local host addresses. (It is possible to have two sockets with the same
port number and different local host addresses because a machine may have several local addresses from
its different network interfaces.) The Internet system does not allow such incompatible sockets to exist on
a single machine. Consider a socket which has a specific local host and local port number on the current
machine. If another process tries to create a socket with a wildcard local host address and the same port
number then that request will be denied. For connection based sockets this prevents these two sockets from
attempting to connect to the same foreign host/socket, and thereby causing great havoc. For connectionless
sockets this prevents the dilemma which would result from trying to determine who to deliver an incoming
datagram to (since more than one socket could match an address given on a datagram). The same restric­
tion applies if the wildcard socket exists first (If both sockets are wildcard, then the normal restrictions on
duplicate addresses apply.)

A socket option SO _ REUSEADDR exists to allow incompatible sockets to be created. This option is
needed to implement the File Transfer Protocol (FTP) which requires that a connection be made from an
existing port number (the port number of its primary connection) to a different port number on the same
remote host The danger here is that the user would attempt to connect this second port to the same remote
host/port that the primary connection was using. In using SO _ REUSEADDR the user is pledging not to do
this, since this will cause the first connection to abort.

When a connect(2) is done, the Internet system first checks that the socket is not already connected. If
does not allow connections to port number 0 on another host, nor does it allow connections to a wildcard
host (sin_addr.s_addr==INADDR_ANY); attempts to do this yield EADDRINUSE. If the socket from
which the connection is being made currently has a wildcard local address (either because it was bound to a
specific port with a wildcard address, or was never subjected to bind(2», then the system picks a local
Internet address for the socket from the set of addresses of interfaces on the local machine. If there is an
interface on the local machine on the same network as the machine being connected to, then that address is
used. Otherwise, the "first" local network interface is used (this is the one that prints out first in "netstat
_i"; see netstat(8». Although it is not supposed to matter which interface address is used, in practice it
would probably be better to select the address of the interface through which the packets are to be routed.
This is not currently done (as it would involve a fair amount of additional overhead for datagram transmis­
sion).

PROTOCOLS
The Internet protocol family supported by the operating system is comprised of the Internet Datagram Pro­
tocol (IP) ip(4P), Address Resolution Protocol (ARP) arp(4P), Internet Control Message Protocol (lCMP)
icmp(4P), Transmission Control Protocol (TCP) tcp(4P), and User Datagram Protocol (UDP) udp(4P).

TCP is used to support the SOCK_STREAM abstraction while UDP is used to support the
SOCK _ DGRAM abstraction. A raw interface to IP is available by creating an Internet socket of type
SOCK_RAW; see ip(4P). The ICMP message protocol is most often used by the kernel to handle and
report errors in protocol processing; it is, however, accessible to user programs. The ARP protocol is used
to translate 32-bit Internet host numbers into the 48-bit addresses needed for an Ethernet

SEE ALSO
intro(3N), by teorder(3N) , gethostent(3N), getnetent(3N), getprotoent(3N), getservent(3N), inet(3N),
arp(4P), tcp(4P), udp(4P), ip(4P)
Internet Protocol Transition Workbook, Network Information Center, SRI (Sun 800-1056-01)
Internet Protocol Implementation Guide, Network Information Center, SRI (Sun 800-1055-01)
A 4.2BSD Interprocess Communication Primer

Sun Release 3.2 Last change: 16 September 1985 439

IP(4P) SPECIAL FILES IP(4P)

NAME
ip - Internet Protocol

SYNOPSIS
None; included by default with inet(4F).

DESCRIPTION

440

The Internet Protocol is designed for use in interconnected systems of packet-switched computer communi­
cation networks. It provides for transmitting blocks of data called "datagrarns" from sources to destina­
tions, where sources and destinations are hosts identified by fixed-length addresses. It also provides for
fragmentation and reassembly of long datagrams, if necessary, for transmission through "small packet"
networks.

IP is specifically limited in scope. There are no mechanisms to augment end-to-end data reliability, flow
control, sequencing, or other services commonly found in host-to-host protocols. IP can capitalize on the
services of its supporting networks to provide various types and qualities of service.

IP is called on by host-to-host protocols, including tcp(4P) a reliable stream protocol, udp(4P) a socket­
socket datagram protocol, and nd(4P) the network disk protocol. Other protocols may be layered on top of
IP using the raw protocol facilities described here to receive and send datagrams with a specific IP protocol
number. The IP protocol calls on local network drivers to carry the internet datagram to the next gateway
or destination host.

When a datagram arrives at a UNIX system host, the system performs a checksum on the header of the
datagram. If this fails, or if the datagram is unreasonably short or the header length specified in the
datagram is not within range, then the datagram is dropped. Checksumming of Internet datagrams may be
disabled for debugging purposes by patching the kernel variable ipcksum to have the value O.

Next the system scans the IP options of the datagram. Options allowing for source routing (see
routing(4N» and also the collection of time stamps as a packet follows a particular route (for network
monitoring and statistics gathering purposes) are handled; 'other options are ignored. Processing of source
routing options may result in an UNREACH icmp(4P) message because the source routed host is not acces­
sible.

After processing the options, IP checks to see if the current machine is the destination for the datagram. If
not, then IP attempts to forward the datagram to the proper host Before forwarding the datagram, IP decre­
ments the time to live field of the datagram by IPTfLDEC seconds (currently 5 from <netinetlip.h», and
discards the datagram if its lifetime has expired, sending an ICMP TIMXCEED error packet back to the
source host. Similarly if the attempt to forward the datagram fails, then ICMP messages indicating an
unreachable network, datagram too large, unreachable port (datagram would have required broadcasting on
the target interface, and IP does not allow directed broadcasts), lack of buffer space (reflected as a source
quench), or unreachable host Note however, in accordance with the ICMP protocol specification, leMP
messages are returned only for the first fragment of fragmented datagrams.

It is possible to disable the forwarding of datagrams by a host by patching the kernel variable ipforwarding
to have value O.

If a packet arrives and is destined for this machine, then IP must check to see if other fragments of the same
datagram are being held. If this datagram is complete, then any previous fragments of it are discarded. If
this is only a fragment of a datagram, it may yield a complete set of pieces for the datagram, in which case
IP constructs the complete datagram and continues processing with that. If there is yet no complete set of
pieces for this datagram, then all data thus far received is held (but only one copy of each data byte from
the datagram) in hopes that the rest of the pieces of the fragmented datagram will arrive and we will be
able to proceed. We allow IPFRAGTIL (currently 15 in <netinetlip.h» seconds for all the fragments of a
datagram to arrive, and discard partial fragments then if the datagram has not yet been completely assem­
bled.

When we have a complete input datagram it is passed out to the appropriate protocol's input routine: either
tcp(4P), udp(4P), nd(4P), icmp(4P) or a user process through a raw IP socket as described below.

Last change: 25 July 1985 Sun Release 3.2

IP(4P) SPECIAL FILES IP(4P)

Datagrarns are output by the system-implemented protocols tcp(4P), udp(4P), nd(4P), and icmp(4P); as
well as by packet forwarding operations and user processes through raw IP sockets. Output packets are
normally subjected to routing as described in routing(4N). However, special processes such as the routing
daemon routed(8C) occasionally use the so _ OONTROUTE socket option to make packets avoid the routing
tables and go directly to the network interface with the network number which the packet is addressed to.
This may be used to test the ability of the hardware to transmit and receive packets even when we believe
that the hardware is broken and have therefore deleted it from the routing tables.

If there is no route to a destination address or if the so _DONTROUTE option is given and there is no inter­
face on the network specified by the destination address, then the IP output routine returns a ENEfUN­
REACH error. (This and the other IP output errors are reflected back to user processes through the various
protocols, which individually describe how errors are reported.)

In the (hopefully normal) case where there is a suitable route or network interface, the destination address
is checked to see if it specifies a broadcast (address INADDR_ANY; see inet(4F»; if it does, and the
hardware interface does not support broadcasts, then an EADDRNOT A VAIL is returned; if the caller is not
the super-user then a EACCESS error will be returned. IP also does not allow broadcast messages to be frag­
mented, returning a EMSGSIZE error in this case.

If the datagram passes all these tests, and is small enough to be sent in one chunk, then the system calls the
output routine for the particular hardware interface to transmit the packet. The interface may give an error
indication, which is reflected to IP output's caller; see the documentation for the specific interface for a
description of errors it may encounter. If a datagram is to be fragmented, it may have the IP _DF (don't
fragment) flag set (although currently this can happen only for forwarded datagrams). If it does, then the
datagram will be rejected (and result in an ICMP error datagram). If the system runs out of buffer space in
fragmenting a datagram then a ENOBUFS error will be returned.

IP provides a space of 255 protocols. The known protocols are defined in <netinetlin.h>. The ICMP, TCP,
UDP and ND protocols are processed internally by the system; others may be accessed through a raw socket
by doing:

s = socket(AF_INET, SOCK_RAW, IPPROTO_xxx);

Datagrams sent from this socket will have the current host's address and the specified protocol number; the
raw IP driver will construct an appropriate header. When IP datagrams are received for this protocol they
are queued on the raw socket where they may be read with recvfrom; the source IP address is reflected in
the received address.

SEE ALSO

BUGS

send(2), recv(2), inet(4F)

Internet Protocol, RFC791, USC-lSI (Sun 800-1063-01)

One should be able to send and receive IP options.

Raw sockets should receive ICMP error packets relating to the protocol; currently such packets are simply
discarded.

Sun Release 3.2 Last change: 25 July 1985 441

IP(4S) SPECIAL FILES IP(4S)

NAME
ip - Disk driver for Interphase 2180 SMD Disk Controller

SYNOPSIS - SUN-2
controller ipcO at mbio ? csr Ox040 priority 2
controller ipcl at mbio ? csr Ox044 priority 2
disk ipO at ipcO driveO
disk ip 1 at ipcO drivel
disk ip2 at ipcl driveO
disk ip3 at ipcl drivel

DESCRIPTION
Special files ip* refer to disk devices controlled by an Interphase SMD 2180 disk controller.

The standard ip device names begin with the letters' 'ip", followed by the drive unit number, followed by a
letter from the series a - h to name one of the eight partitions on the drive. For example, /dev/ipl c refers to
partition c on the second drive controlled by the Interphase controller.

The device names provide the binding into the minor device numbers for the driver software. Files with
minor device numbers 0 through 7 refer to the eight partitions (a - h) of unit 0; files with device numbers 8
through 15 refer to the eight partitions of drive 1, and so on.

The block files access the disk via the system's normal buffering mechanism, and may be read and written
without regard to physical disk records. There is also a 'raw' interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call results in exactly one
110 operation and therefore raw 110 is considerably more effficient when many words are transmitted.
Raw files conventionally have a leading "r" -/dev/ripOc, for instance.

In raw 110, counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should specify a
multiple of 512 bytes.

DISK SUPPORT

FILES

This driver handles all SMD drives by reading a label from sector 0 of the drive which describes the disk
geometry and partitioning.

The ip?a partition is normally used for the root file system on a disk, the ip?b partition as a paging area, and
the ip?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is normally
the ip?g partition.

/dev/ip[0-7][a-h] block files
/dev/rip[0-7][a-h] raw files

SEE ALSO
dkio(4S), xy(4S)

DIAGNOSTICS

442

ipn: SMD-2180
When booting tells the controller type.

ipn : initialization failed
Because the controller didn't respond; perhaps another device is at the address the system
expected an Interphase controller at

ipn : error n reading label on head n
Error reading drive geometry/partition table information.

ipn : Corrupt label on head n
The geometry/partition label checksum was incorrect

ipn : Misplaced label on head n
A disk label was copied to the wrong head on the disk; shoudn't happen.

Last change: 18 September 1985 Sun Release 3.2

IP(4S)

BUGS

ipn : Unsupported phys partition # n
This indicates a bad label.

ipn : unit not online

ipn c: cmd how (msg) blk n

SPECIAL FILES IP(4S)

A command such as read, write, or format encountered a error condition (how): either it/ailed, the
unit was restored, or an operation was retry'ed. The msg is derived from the error number given
by the controller, indicating a condition such as "drive not ready", "sector not found" or "disk
write protected" .

In raw 110 read and write(2V) truncate file offsets to 512-byte block boundaries, and write scribbles on the
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and Iseek(2)
should always deal in 512-byte multiples.

Sun Release 3.2 Last change: 18 September 1985 443

KB(4S) SPECIAL FILES KB(4S)

NAME
kb, kbd - Sun keyboard

SYNOPSIS
pseudo-device kbnumber

DESCRIPTION

444

kb provides access to the Sun workstation keyboard and its translation tables. Definitions for altering key­
board translation, and reading events from the keyboard, are in <sundevlkbio.b> and <sundev/kbd.b>.
number specifies the maximum number of keyboards supported by the system. In addition, the kernel
recognizes tht! special keyboard device /dev/kbd; it is a synonym for the system keyboard, which is physi­
cally attached to the system console. This keyboard's keystrokes are normally treated as input to the
/dev/console device.

The UNIX kernel recognizes which keys have been typed using a set of tables for each known type of key­
board. Each translation table is an array of 128 bytes (unsigned characters). If a character value is less than
Ox80, it is treated as an ASCII character (perhaps with the MET A· bit included). Higher values indicate spe­
cial characters that invoke more complicated actions.

Keyboard Translation State
The call KIOCTRANS controls the presence of keyboard translation, for which the following values are
defined:

#define TR NONE 0
#define TR ASCn 1
#define TR EVENT 2
#define TR UNTRANS EVENT 3 - -

intx;
err = ioct1(fd, KIOCTRANS, &x);

When x is TR _NONE, keyboard translation is turned off and up/down key codes are reported. Specifying
x as TR_ASCII causes ASCII to be reported. Specifying x as TR_EVENT causes Firm_events to be
reported (see below). Specifying x as TR _ UNTRANS _EVENT gives unencoded keyboard values for all
input events within the window system.

Keyboard Translation-Table Entries
The call KIOCSETKEY changes a keyboard translation table entry, using the kiockey struct:

struct kiockey {
int kio _ tablemask;

#define KIOCABORTI
#define KIOCABORT2

-1
-2

u char kio _station;
u char kio_entry;

1* Translation table (one of: 0, CAPSMASK,
SHIFTMASK, CTRLMASK, UPMASK) *1

1* Special "mask": abortl keystation *1
1* Special "mask": abort2 key station *1
1* Physical keyboard key station (0-127) */
1* Translation table station's entry *1

char kio _string[10]; 1* Value for STRING entries (null terminated) *1
};

struct kiockey key;
err = ioct1(fd, KIOCSETKEY, &key);

To alter a keyboard translation-table entry, set kio _tablemask table's kio _station to kio _entry. Copy
kio _string to the string table if kio _entry is between STRING and STRING+15. This call may return
EINV AL if there are invalid arguments.

There are a couple special values of kio _tablemask that affect the two step "break to the prom monitor"
sequence. The usual sequence is SETUP-a or Ll-a. If kio _tablemask is KIOCABORTI then the value of
kio _station is set to be the first keystation in the sequence. If kio _tablemask is KIOCABORT2 then the
value of kio _station is set to be the second keystation in the sequence.

Last change: 25 June 1986 Sun Release 3.2

KB(4S) SPECIAL FILES

The call KIOCGETKEY detennines the current value of a keyboard translation table entry:

struct kiockey key;
err = ioctl(fd, KIOCGETKEY, &key);

KB(4S)

Get Ido _tablemask table's Ido _station to kio _entry. Get Ido _string from string table if kio _entry is between
STRING and STRING+ 15. This call may return EINV AL if there are invalid arguments.

Keyboard Type
The call KIOCTYPE returns the type of the keyboard:

#define KB KLUNK Oxoo /* Micro Switch 103SD32-2 */
#define KB VT100 OxOl /* Keytronics VT100 compatible */
#define KB SUN2 Ox02 /* Sun-2 custom keyboard */
#define KB SUN3 Ox03 /* Sun-3 custom keyboard */
#define KB ASCII OxOF /* ASCII terminal masquerading as kbd */

intx;
err = ioctl(fd, KIOCTYPE, &x);

When x is -1, the keyboard type is unknown.

Reading From The Keyboard
Normally, keystrokes are discarded, except for those typed at the system keyboard; those are translated and
treated as input on the system console device Idev/console. In order to read keystrokes directly, the call
KIOCSDIRECT must be used to set the keyboard to "direct input" mode. In this mode, keystrokes are
translated and queued to be read by a process that has opened a keyboard device:

inton = 1;
err = ioctl(fd, KIOCSDIRECT, &on);

The KIOCSDIRECT call turns "direct input" mode on or off, depending on whether the variable pointed
to by its argument has the value 1 or O. The call KIOCGDIRECT sets the variable pointed to by its argu­
ment to the current state of this mode:

int direct_state;
err = ioctl(fd, KIOCGDIRECT, &direct_state);

When the keyboard device is closed, "direct mode" is turned off.

Keyboard Commands
The call KIOCCMD sends a command to the keyboard:

/*
* Commands to the Sun-2 keyboard.
*/

#define KBD CMD RESET - -
#define KBD CMD BELL - -
#define KBD _ CMD _ NOB ELL

/*

OxOl
Ox02
Ox03

/* Reset keyboard as if power-up */
/* Tum on the bell */
/* Tum off the bell */

* Commands to the Sun-3 keyboard. KBD _ CMD _BELL & KBD _ CMD _ NOBELL work

Sun Release 3.2

* as well.
*/

#define KBD CMD CLICK - -
#define KBD CMD NOCLICK - -

int x;
err = ioctl(fd, KIOCCMD, &x);

OxOA
OxOB

/* Tum on the click annunciator */
/* Tum off the click annunciator */

Last change: 25 June 1986 445

KB(4S) SPECIAL FILES KB(4S)

446

Inappropriate commands for particular keyboard types are ignored Since there is no reliable way to get
the state of the bell or click (because we can't query the keyboard, and also because a process could do
writes to the appropriate serial driver - thus going around this ioetl) we don't provide an equivalent ioetl
to query its state.

Shift Masks
When shift keys are pressed or locked, a different translation table is used to translate keyboard actions.
The shift mask indicates which translation table to use. Since there may be more than one bit in in the shift
mask at any given time, they are prioritized as follows:

UPMASK OxOO80

CTRLMASK OxOO30

SHIFTMASK OxOOOE

CAPSMASK OxOOOI

"Key Up" translation table.

"Controlled" translation table.

"Shifted" translation table.

"Caps Lock" translation table.

(No shift keys pressed or locked) "Unshifted" translation table.

That is: if the event corresponds to a key-up, use the "Key Up" table. If the CTRL is down, use the
"Controlled" table, and so on.

Special-Entry Values
Special-entry values are classified according to the value of the high-order bits (with the exception of ALT,
which is defined as Ox6). The high-order value for each class is defined as a constant, as shown in the list
below. The value of the low-order bits, when added to this constant, distinguishes between keys within
each class:

SHIFTKEYS Ox80

BUCKYBITS Ox90

FUNNYOxAO

A shift key. The value of the particular shift key is added to determine which shift
mask to apply:

CAPSLOCK 0 "Caps Lock" key.

SHIFILOCK 1

LEFfSHIFT2

RIGHTSHIFf 3

LEFfCTRL4

RIGHTCTRL5

"Shift Lock" key.

Left-hand "Shift" key.

Right-hand "Shift" key.

Left-hand (or only) "Control" key.

Right-hand "Control" key.

Used to toggle mode-key-up/down status without altering the value of an accom­
panying ASCII character. (The actual bit-position value, minus 7, is added.)

METABIT 0 The "Meta" key was pressed along with the key. This is
the only user-accessible bucky bit.

SYSTEMBIT 1 The "System" key was pressed. This is a place holder to
indicate which key is the system-abort key.

Performs various functions depending on the value of the low 4 bits:

NOPOxAO

OOPSOxAI

HOLEOxA2

NOSCROLL OxA3

CTRLSOxA4

CTRLQOxAS

RESETOxA6

Does nothing.

Exists, but is undefined.

There is no key in this position on the keyboard, and the
position-code should not be used.

Alternately sends AS and "Q.

Sends "S and toggles NOS CROLL key.

Sends AQ and toggles NOSCROLL key.

Keyboard reset.

Last change: 25 June 1986 Sun Release 3.2

KB (4S)

STRING OxBO - OxBF

ERROROxA7

IDLEOxA8

OxA9-0xAF

SPECIAL FILES

The keyboard driver detected an internal error.

The keyboard is idle (no keys down).

Reserved for nonparameterized functions.

KB(4S)

The low-order bits index a table of strings. Each null-terminated string is returned
character by character. The maximum length is defined as:

KTAB STRLEN 10

Individual string numbers are defined as:
HOMEARROW OxOO
UPARROWOxOl
DOWNARROW Ox02
LEFTARROW Ox03
RIGHTARROW Ox04
String numbers 5 - F are available for custom entries.

Function Key Groups
In the following groups, the low-order bits indicate the function key number within the group:

LE~C OxCO
RIGHTFUNC OxDO
TOPFUNC OxEO
BOTTOMFUNC OxFO
LF(n) (LEFTFUNC+(n)-I)
RF(n) (RIGHTFUNC+(n)-I)
TF(n) (TOPFUNC+(n)-1)
BF(n) (BOTTOMFUNC+(n)-I)

There are 64 keys reserved for function keys. The actual positions may not be on leftJrightJtop/bottom of
the keyboard, although they usually are.

Normally, when a function key is pressed, the following escape sequence is sent:
<ESC>[0 9z

where <ESC> is a single escape character and "0 ... 9" indicates the decimal representation of the
function-key value.

INDEX STRUCTURES
There is a hierarchy of structures for accessing keyboard translation data. The array key tables contains
pointers to the translation data for each of the known keyboard types:

struct keyboard * key tab les[] = {

&keyindex _ ms,
&keyindex _ vt,
&keyindex _ s2,
&keyindex _ s3,

};
Each keyboard type is described by a struct keyboard that contains pointers to the five translation-tables
("Unshifted" , "Shifted", "Caps Locked" "Controlled", and "Key Up") associated with that type, plus bit­
masks that indicate what state can persist with no keys pressed, and the key-pair used as the abort sequence
for the system.

An array keystringtab contains the strings sent by various keys, and can be accessed by any translation:

Sun Release 3.2 Last change: 25 June 1986 447

KB(4S) SPECIAL FILES

#define kstescinit(c) {'\033', '[', 'c', '\O'}
char keystringtab[16][KT AB _ STRLEN] = {

kstescinit(H), /* home */
kstescinit(A), /* up */
kstescinit(B), /* down */
kstescinit(D), /* left */
kstescinit(C), /* right */

};

Index Structure for the Sun-3 Keyboard
static struct keyboard keyindex _s3 = {

&keytab _s3 _lc,
&keytab _ s3 _ uc,
&keytab _ s3 _ cI,
&keytab _ s3 _ ct,
&keytab _s3 _up,
OxOOOO,
OxOOOO,
OxOl,Ox4d,
CAPSMASK,

};

Index Structure for the Sun-2 Keyboard
static struct keyboard key index _s2 = {

&keytab _82 _lc,

};

&keytab _ s2 _ uc,
&keytab _ 82_ cI,
&keytab _ s2 _ ct,
&keytab _82_ up,
CAPSMASK,
OxOOOO,
OxOl,Ox4d,
OxOOOO,

/* Shift bits that stay on with idle keyboard */
/* Bucky bits that stay on with idle keyboard */
/* Abort sequence LI-A */
/* Shift bits that toggle on down event */

/* Shift bits that stay on with idle keyboard *1
/* Bucky bits that stay on with idle keyboard */
/* Abort sequence LI-A */
/* Shift bits that toggle on down event */

Index Structure for the Micro Switch l03SD32-2 Keyboard
static struct keyboard keyindex _ ms = {

&keytab _ rns _lc,

};

&keytab _ rns _ uc,
&keytab _ rns _ cI,
&keytab _ rns _ ct,
&keytab _ rns _up,
CILSMASK,
OxOOOO,
OxOl,Ox4d,
OxOOOO,

/* Shift bits that stay on with idle keyboard */
/* Bucky bits that stay on with idle keyboard */
/* Abort sequence LI-A */
/* Shift bits that toggle on down event */

KB(4S)

448 Last change: 25 June 1986 Sun Release 3.2

KB(4S) SPECIAL FILES

Index Structure for the VT100-Style Keyboard
static struct keyboard keyindex _ vt = {

&keytab _ vt_lc,

};

&keytab _ vt_ uc,
&keytab _ vt_ cl,
&keytab _ vt_ ct,
&keytab _ vt_ up,
CAPSMASK+CTLSMASK,
OxOOOO,
OxOl,Ox3b,
OxOOOO,

/* Shift keys that stay on with idle keyboard */
/* Bucky bits that stay on with idle keyboard */
/* Abort sequence SETUP-A */
/* Shift bits that toggle on down event */

DEFAULT TRANSLATION TABLES
Sun-3 Keyboard

Unshifted

Key Value KC)'Va,," KC)' Va,," Key Value KC)'Value KC)'Value KC)' Value

()() HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(I) 06 TF(2)
SYSTEMBIT

08 TF(3) 09 HOLE OA TF(4) OB HOLE OC TF(5) 00 HOLE OE TF(6)
10 TF(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(I) 16 RF(2)
18 HOLE 19 LF(3) lA LF(4) 1B HOLE lC HOLE 10 c('[') IE '1'
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9'
28 '-' 29 '=' 2A .. , 2B '\b' 2C HOLE 20 RF(4) 2E RF(5)
30 HOLE 31 LF(5) 32 HOLE 33 LF(6) 34 HOLE 35 '\t' 36 'q'
38 'e' 39 'r' 3A't' 3B 'y' 3C 'u' 3D 'j' 3E '0'
40'[' 41 ']' 42 Ox7F 43 HOLE 45 RF(7) 45 STRING+ 46 RF(9)

UPARROW
48 LF(7) 49 LF(8) 4A LF(40) 4B HOLE 4C SHlFTKEYS+ 4D 'a' 4E's'

LEFfCfR.L
50 'f' 51 'g' 52 'h' 53 'j' 54 'k' 55 '1' 56 ,., ,
58 '\' 59 '\r' 5A HOLE 5B STRING+ 5C RF(ll) 50 STRING+ 5E HOLE

LEFTARROW RIGillARROW
60 LF(IS) 61 LF(10) 62 HOLE 63 SHIFfKEYS+ 64 'z' 65 'x' 66 'c'

LEFTSHIFf

KB(4S)

Key Value

07 HOLE

OF HOLE
17 RF(3)
IF '2'
27 '0'
2F RF(6)
37 'w'
3F 'p'
47 HOLE

4F'd'

57 '\"
SF LF(9)

67 'v'

68 'b' 69 'n' 6A'm' 6B ',' 6C 'o'
6D '"

6E SHIFTKEYS+ 6F '\n'
RIGHfSlllFT

70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 SHIFTKEYS+
DOWNARROW CAPSLOCK

78 BUCKYBITS+ 79 " 7 A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE
METABIT METABIT

Sun Release 3.2 Last change: 25 June 1986 449

KB(4S) SPEOAL FILES KB(4S)

Sun-3 Keyboard
Shifted

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE 05 TF(I) 06 TF(2) 07 HOLE
SYSTEMBIT

08 1F(3) 09 HOLE OA TF(4) OB HOLE OC TF(5) OD HOLE OE TF(6) OF HOLE
10 1F(7) 11 TF(8} 12 TF(9) 13 ALT 14 HOLE 15 RF(I) 16 RF(2) 17 RF(3)
18 HOLE 19 LF(3} lA LF(4) IB HOLE lC HOLE 10 e('['} IE '!' IF '@'

20 'J' 21 '$' 22 'f;\;' 23 ,., 24 '&' 2S '.' 26'(' 27 ')'
28 '_' 29 '+' 2A ,-, 2B '\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF(6)
30 HOLE 31 LF(5} 32 HOLE 33 LF(6) 34 HOLE 35 '\t' 36 'Q' 37 'W'
38 'E' 39 'R' 3A'T' 3B 'Y' 3C 'U' 3D 'I' 3E 'a' 3F 'P'
40 '{' 41 '}' 42 Ox7F 43 HOLE 44 RF(7} 45 STRINO+ 46 RF(9) 47 HOLE

UPARROW
48 LF(7) 49 LF(8} 4A HOLE 4B HOLE 4C SIllFfKEYS+ 4D 'A' 4E'S' 4F'D'

LEFTCfRL
50 'F' 51 '0' 52 'H' 53 'J' 54 'K' 55 'L' 56 ':' 57 ''''
58 'I' 59 '\r' 5A HOLE 5B STRING+ SC RF(U) SD STRINO+ 5E HOLE 5F LF(9)

LEFfARROW RIOHr ARROW
60 LF(15) 61 LF(10) 62 HOLE 63 SIDFrKEYS+ 64 'Z' 65 'X' 66 'C' 67 'V'

LEFfSIDFT
68 'B' 69 'N' 6A'M' 6B '<' 6C '>' 6D '7' 6E SHIFTKEYS+ 6F '\n'

RIGIITSIDFT
70 RF(13) 71 STRlNO+ 72 RF(lS) 73 HOLE 74 HOLE 75 HOLE 76 HOLE n SIDFTKEY

DOWNARROW CAPSLOO
78 BUCKYBITS+ 79 " 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE

METABIT METABIT

Caps Locked

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 LF(2) 04 HOLE OS TF(I) 06 TF(2) 07 HOLE
SYSTEMBIT

08 1F(3) 09 HOLE OA TF(4) OB HOLE OC TF(5) OD HOLE OE TF(6) OF HOLE
10 1F(7) 11 TF(8) 12 TF(9) 13 ALT 14 HOLE 15 RF(l) 16 RF(2) 17 RF(3)
18 HOLE 19 LF(3} 1A LF(4) IB HOLE IC HOLE 10 e('[') IE 'I' IF '2'
20 '3' 21 '4' 22 'S' 23 '6' 24 '7' 25 '8' 26 '9' 27 '0'
28 '-' 29 '=' 2A , .. 2B '\b' 2C HOLE 2D RF(4) 2E RF(5} 2F RF(6)
30 HOLE 31 LF(S} 32 HOLE 33 LF(6) 34 HOLE 35 '\t' 36 'Q' 37 'W'
38 'E' 39 'R' 3A'T' 3B 'V' 3C 'U' 3D 'I' 3E '0' 3F 'P'
40 '[' 41 'J' 42 Ox7F 43 HOLE 44 RF(7) 4S STRINO+ 46 RF(9} 47 HOLE

UPARROW
48 LF(7) 49 LF(8) 4A HOLE 4B HOLE 4C SIllFfKEYS+ 4D 'A' 4E'S' 4F'D'

LEFTCfRL
50 'F' Sl '0' 52 'H' S3 'J' S4 'K' 55 'L' S6 ';' S7 '\"
S8 '\' S9 '\r' 5A HOLE SB STRING+ SC RF(ll) 5D STRINO+ 5E HOLE SF LF(9)

LEFfARROW RIOHr ARROW
60 LF(IS) 61 LF(10) 62 HOLE 63 SIDFrKEYS+ 64 'Z' 6S 'X' 66 'C' 67 'V'

LEFfSIDFT
68 'B' 69 'N' 6A'M' 6B ',' 6C '.' 6D '" 6E SIllFTKEYS+ 6F '\n'

RIOIITSIDFT
70 RF(13) 71 STRlNG+ 72 RF(IS) 73 HOLE 74 HOLE 7S HOLE 76 HOLE n SIDFTKEY

DOWNARROW CAPSLOO
78 BUCKYBITS+ 79 " 7 A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE

METABIT METABIT

450 Last change: 25 June 1986 Sun Release 3.2

KB (4S) SPECIAL FILES KB(4S)

Sun-3 Keyboard
Controlled

Key Value

00 HOLE

08 1F(3)
10 1F(7)
18 HOLE
20 '3'
28 eC')
30 HOLE
38 e('e')
40 e('[')

48 LF(7)

50 e('f')
58 e('\')

60 LF(15)

Key Value

01 BUCKYBITS+
SYSTEMBIT

09 HOLE
11 TF(8)
19 LF(3)
21 '4'
29 '='
31 LF(5)
39 e('l')

41 e(,l')

49 LF(8)

51 e('g')
59 '\r'

61 LF(10)

Key Value

02 HOLE

OA 1F(4)
12 TF(9)
lA LF(4)
22 '5'
2A e('~')
32 HOLE
3A c('t')
42 Ox7F

4A HOLE

52 e('h')
SA HOLE

62 HOLE

KeyValIU

03 LF(2)

OB HOLE
13 ALT
IB HOLE
23 e('~')

2B '\b'
33 LF(6)
3B c('y')
43 HOLE

Key ValIU

04 HOLE

oc TF(5)
14 HOLE
lC HOLE
24 '7'
2C HOLE
34 HOLE
3C c('u')
44 RF(7)

Key Value

05 TF(I)

00 HOLE
15 RF(I)
10 c('[')
25 '8'
20 RF(4)
35 '\t'
30 c('i')
45 STRING+

UPARROW

KeyValIU

06 TF(2)

OE TF(6)
16 RF(2)
IE 'I'
26 '9'
2E RF(5)
36 c('q')
3E c('o')
46 RF(9)

4B HOLE 4C SHIFfKEYS+ 40 c('a')
LEfTCfRL

4E e('s')

53 e('j') 54 c('k')
5B STRING+ 5C RF(11)

LEfTARROW
63 SHIFfKEYS+ 64 c('z')

LEfTSHIFf

55 c('}') 56 ';'
50 STRING+ 5E HOLE

RIGHTARROW
65 c('x') 66 c('c')

Key ValIU

CY7 HOLE

OF HOLE
17 RF(3)
IF e('@')
27 '0'
2F RF(6)
37 e('w')
3F e('p')
47 HOLE

4F e('d')

57 '\"
SF LF(9)

67 c('v')

68 e('b') 69 e('n') 6A c('rn') 6B ',' 6C '.' 60 eL') 6E SHIFTKEYS+ 6F '\n'
RIGHfSHIFT

70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE
DOWNARROW

78 BUCKYBITS+ 79 e(' ') 7 A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR
MET ABIT MET ABIT

Key Up

Key Value

00 HOLE

08 OOPS
10 OOPS
18 HOLE
20 Nap
28 Nap
30 HOLE
38 Nap
40 Nap
48 OOPS

50 Nap
58 Nap
60 OOPS

Key Value Key ValIU

01 BUCKYBITS+ 02 HOLE
SYSTEMBIT

09 HOLE
11 OOPS
19 OOPS
21 Nap
29 Nap
31 OOPS
39 Nap
41 Nap
49 OOPS

51 Nap
59 Nap
61 OOPS

OA OOPS
12 OOPS
lA OOPS
22 Nap
2A Nap
32 HOLE
3A Nap
42 NOP
4A HOLE

52 NOP
SA HOLE
62 HOLE

Key ValIU

03 OOPS

OB HOLE
13 OOPS
IB HOLE
23 Nap
2B Nap
33 OOPS
3B Nap
43 HOLE
4B HOLE

53 Nap

Key Value

04 HOLE

oc OOPS
14 HOLE
lC HOLE
24 Nap
2C HOLE

Key Value Key Value

05 OOPS 06 OOPS

00 HOLE OE OOPS
15 OOPS 16 OOPS
10 Nap IE Nap
25 Nap 26 Nap
2D OOPS 2E OOPS

34 HOLE 3S Nap 36 Nap
3C Nap 30 Nap 3E Nap
44 OOPS 45 OOPS 46 Nap
4C SHIFfKEYS+ 40 Nap 4E Nap

LEFTCTRL
54 Nap 55 Nap

5B OOPS 5C OOPS 50 Nap
65 Nap

56 Nap
5E HOlE
66 Nap 63 SIDFTKEYS+ 64 Nap

LEFTSIDFf

77 SHIFfKEYS+
CAPSLOCK.

7F IDLE

Key Value

07 HOLE

OF HOLE
17 NOP
IF NOP
27 NOP
2F NOP
37 NOP
3F NOP
47 HOLE
4F NOP

57 NOP
SF OOPS
67 NOP

68 Nap 69 Nap 6A NOP 6B Nap 6C Nap 60 Nap 6E SHIFTKEYS+ 6F NOP

70 OOPS 71 OOPS
78 BUCKYBITS+ 79 Nap

METABIT

Sun Release 3.2

72 Nap 73 HOLE
7A BUCKYBITS+ 7B HOLE

METABIT

Last change: 25 June 1986

74 HOLE
7C HOLE

RIGHTSHIFT
75 HOLE 76 HOlE
70 HOLE 7E HOlE

77 NOP
7F RESET

451

KB(4S) SPECIAL FILES KB(4S)

Sun-2 Keyboard
Unshifted

452

KeyVabu

00 HOLE

08 TF(3)
10 TF(7)
18 HOLE
20 '3'
28 '-'
30 HOLE
38 'e'
40 '['

Key Value

01 BUCKYBITS+
SYSTEMBIT

09 TF(12)
11 TF(8)
19 LF(3)
21 '4'
29 '='
31 LF(S)
39 'r'
41 ']'

Key Value

02 LF(II)

OA TF(4)
12 TF(9)
lA LF(4)
22 '5'
2A >c,

32 LF(13)
3A 't'
42 Ox1F

Key Value

03 LF(2)

OB 1F(13)
13 1F(1O)
IB LF(12)
23 '6'
2B '\b'
33 LF(6)
3B 'y'
43 HOLE

Key Value

04 HOLE

OC TF(S)
14 HOLE
IC HOLE
24 '7'
2C HOLE
34 HOLE
3C 'u'
44 RF(7)

Key Value

os TF(I)

OJ) TF(14)
15 RF(I)
ID e('[')
2S '8'
2D RF(4)
35 '\t'
3D'i'
45 S1R1NO+

UPARROW

Key Value

06 TF(2)

OE TF(6)
16 RF(2)
IE 'I'
26 '9'
2E RF(S)
36 'q'
3E '0'
46 RF(9)

Key Vall

07 TF(

OF TF(
17 RF(
IF '2'
27 '0'
2F RF(
37 'w'
3F 'p'
47 HOl

48 LF(7) 49 LF(8) 4A LF(14) 4B HOLE 4C SHIFTKEYS+ 4D 'a'
LEFfCfRL

4E 's' 4F 'd'

50 'f'
58 '\'

60 LF(15)

68 'b'

51 'g'
59 '\r'

61 LF(10)

69 'n'

52 'h'
5A HOlE

62 HOlE

6A'm'

53 'j' 54 'k'
SB STRINO+ 5C RF(ll)

U:FfARROW
63 SHIFfKEYS+ 64 'z'

U:FfSHIFf
6B" 6C "

70 RF(13) 71 STRINO+ 72 RF(IS) 73 HOLE 74 HOLE
DOWNARROW

70 BUCKYBITS+ 71
METABIT

Shifted

KeyVabu

00 HOLE

08 TF(3)
10 TF(7)
18 HOLE
20 'I'
28 '_'
30 HOLE
38 'E'
40 '('

Key Value

01 BUCKYBITS+
SYSTEMBIT

00 TF(12)
11 TF(8)
19 LF(3)
21 '$'
29 '+'
31 LF(S)
39 'R'
41 '}'

72 BUCKYBITS+ 73 HOLE
METABIT

Key Value

02 LF(ll)

OA TF(4)
12 TF(9)
IA LF(4)
22 '%'

32 LF(13)
3A'T'
42 Ox1F

Key Value

03 LF(2)

OB 1F(13)
13 TF(lO)
IB LF(12)
23
2B '\b'
33 LF(6)
3B 'Y'
43 HOLE

74 HOLE

Key Value

04 HOLE

OC TF(S)
14 HOLE
IC HOLE
24 '&'
2C HOLE
34 HOLE
3C 'U'
44 RF(7)

55 '}' 56 ';' 57 '\~'

SF LF(I 50 S1R1NO+ SE HOLE
RIOIIT ARROW

6S 'x' 66 'c' 67 'v'

6D 'I'

75 HOLE

75 HOLE

Key Value

os TF(I)

OD TF(14)
15 RF(I)
ID c('[')
2S '.'
2D RF(4)
35 '\t'
3D 'I'
45 S1R1NO+

UPARROW

6E SHIFrKEYS+ 6F '\n'
RIOlITSHIFT

76 HOLE 77 HOl

76 ERROR

Key Value

06 TF(2)

OE TF(6)
16 RF(2)
IE '!'
26'('
2E RF(S)
36 'Q'
3E '0'
46 RF(9)

77 IDL

Key Vall

07 TF(

OF TF(
17 RF(
IF '@'

27 ')'
2F RF(
37 'W'
3F 'P'
47 HO

48 LF(7) 49 LF(8) 4A LF(14) 4B HOLE 4C SHIFTKEYS+ 4D 'A'
LEFfcrRL

4E 'S' 4F'D'

50 'F
58 'I'

60 LF(IS)

68 'B'

51 '0'
59 '\r'

61 LF(lO)

69 'N'

52 'H'
5A HOlE

62 HOlE

6A'M'

53 'J' 54 'K'
SB STRINO+ 5C RF(ll)

U:FfARROW
63 SHIFrKEYS+ 64 'Z'

U:FfSHIFf

6B '<' 6C '>'

70 RF(13) 71 STRINO+ 72 RF(15) 73 HOLE 74 HOLE

DOWNARROW
78 BUCKYBITS+ 79 7A BUCKYBITS+ 7B HOLE 7C HOLE

METABIT METABIT

Last change: 25 June 1986

SS 'L' 56 '.' 57
50 S1R1NO+ SE HOLE SF LF~

RIOIIT ARROW
6S 'X' 66 'C' 67 'V'

6D '7'

75 HOU:

7D HOrn

6E SHIFTKEYS+ 6F '\n'
RIGIITSHIFT

76 HOLE 77 HO

7E ERROR 1F IDI

Sun Release 3.2

KB(4S) SPECIAL FILES KB(4S)

Sun-2 Keyboard
Caps Locked

Key Value Key ValUil Key ValUil Key ValUil Key ValUil Key Va,," Key Value Key Value

00 HOLE 01 BUCKYBITS+ 02 LF(I1) 03 U(2) 04 HOLE OS TF(I) 06 TF(2) 07 1F(II)
SYSTEMBIT

08 TF(3) 09 TF(12) OA TF(4) OB 1F(13) OC TF(5) OD TF(14) OE TF(6) OF 1F(IS)
10 TF(7) 11 TF(8) 12 TF(9) 13 1F(10) 14 HOLE 15 RF(I) 16 RF(2) 17 RF(3)
18 HOLE 19 LF(3) lA LF(4) IB U(12) lC HOLE 10 c('[') IE 'I' IF '2'
20 '3' 21 '4' 22 '5' 23 '6' 24 '7' 25 '8' 26 '9' 27 '0'
28 ' , 29 ' , 2A .. , 2B ,\b' 2C HOLE 2D RF(4) 2E RF(5) 2F RF(6)
30 HOLE 31 LF(5) 32 LF(13) 33 U(6) 34 HOLE 35 '\t' 36 'Q' 37 'W'
38 'E' 39 'R' 3A 'T' 3B 'Y' 3C 'u' 3D 'I' 3E 'a' 3F 'p'

40 '[' 41 ']' 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF(9) 47 HOLE
UPARROW

48 LF(7) 49 LF(8) 4A LF(14) 4B HOLE 4C SHIFrKEYS+ 4D 'A' 4E 's' 4F 'D'
LEFTCfRL

50 'F' 51 'G' 52 'H' 53 'J' 54 'K' 55 'L' 56 '.' 57 '\" ,
58 '\' 59 '\t' SA HOLE 5B STRING+ 5C RF(II) 50 STRING+ SE HOLE SF LF(9)

lEFfARROW RIGlIT ARROW
60 LF(15) 61 LF(10) 62 HOLE 63 SHIFTKEYS+ 64 'z' 65 'X' 66 'c' 67 'V'

lEFfSHIFf
68 'B' 69 'N' 6A'M' 6B , 6C 6D ',' 6E SHIFTKEYS+ 6F '\n'

RIGHfSlllFT
70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE

DOWNARROW
78 BUCKYBITS+ 79 7A BUCKYBITS+ 7B HOLE 7C HOLE 7D HOLE 7E ERROR 7F IDLE

METABIT METABIT

Controlled

KeyValue KeyValUil KeyValue KeyValUil Key ValUil KeyValue Key Value KeyValue

00 HOLE 01 BUCKYBITS+ 02 LF(U) 03 LF(2) 04 HOLE 05 TF(I) 06 1F(2) 07 TF(U)
081F(3) 09 TF(12) OA 1F(4) OB TF(13) OC TF(5) ODTF(14) OE 1F(6) OFTF(15)
10 TF(7) I11F(8) 12 TF(9) 13 TF(10) 14 HOLE 15 RF(I) 16 RF(2) 17 RF(3)
18 HOLE 19 LF(3) lA LF(4) 1B LF(12) lC HOLE 1Oc('[') IE 'I' IF c('@')
20 '3' 21 '4' 22 '5' 23 C(,A,) 24 '7' 25 '8' 26 '9' 27 '0'
28 c('_') 29 '=' 2AC(,A') 2B '\b' 2C HOLE 2DRF(4) 2E RF(5) 2FRF(6)
30 HOLE 31 LF(5) 32 LF(13) 33 LF(6) 34 HOLE 35 '\t' 36 c('q') 37 c('w')
38 c('c') 39 c('r') 3A c('t') 3B c('y') 3C c('u') 3Dc('j') 3E c('o') 3Fc('p')
40 c('[') 41 c(']') 42 Ox7F 43 HOLE 44 RF(7) 45 STRING+ 46 RF(9) 47 HOLE

UPARROW
48 LF(7) 49 LF(8) 4ALF(14) 4BHOLE 4C SHlFfKEYS+ 4D c('a') 4E c('s') 4Fc('d')

LEFfCTRL
50 c('f) 51 c('g') 52 c('h') 53 c('j') 54 c('k') 55 c('l') 56 '.' 57 Y' ,
58 c('\') 59 '\T' 5AHOLE 5B STRING+ 5C RF(ll) 5DSTRING+ 5E HOLE 5FLF(9)

LEFfARROW RIGIITARROW
6OLF(15) 61 LF(10) 62 HOLE 63 SIDFTKEYS+ 64 c('z') 65 c('x') 66 c('c') 67 c('v')

LEFfSIDFf
68 c('b') 69 c('n') 6A c('rn') 6B ',' 6C 6D c('_') 6E SHIFTKEYS+ 6F "n'

RIGIITSillFf
70 RF(13) 71 STRING+ 72 RF(15) 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE

DOWNARROW
78 BUCKYBITS+ 79 c(' ') 7A BUCKYBITS+ 7B HOLE 7C HOLE 7DHOLE 7E ERROR 7FIDLE

METABIT METABIT

Sun Release 3.2 Last change: 25 June 1986 453

KB(4S)

Sun-2 Keyboard
Key Up

Key Value Key Value

SPECIAL FILES KB(4S)

Key Value Key Value Key Valj

00 HOLE 01 B UCKYB ITS + 02 OOPS
SYSTEMBIT

03 OOPS 04 HOLE 05 OOPS 06 OOPS 07 00]

08 OOPS
10 OOPS
18 HOLE
20 Nap
28 Nap
30 HOLE
38 NOP
40 NOP
48 OOPS

09 OOPS OA OOPS OB OOPS
13 OOPS
IB OOPS
23 Nap
2B Nap
33 OOPS
3B Nap
43 HOLE
4B HOLE

oc OOPS
14 HOLE
lC HOLE
24 NOP
2C HOLE
34 HOLE

OD OOPS OE OOPS
15 OOPS 16 OOPS

OF 00]
17 NO]
IF NO]
27 NO]
2F NO]
37 NO]
3F NO]
47 HO]
4F NO]

50 Nap
58 NOP
60 OOPS

68 NOP

70 OOPS

11 OOPS
19 OOPS
21 NOP
29 NOP
31 OOPS
39 NOP
41 NOP
49 OOPS

51 Nap
59 Nap
61 OOPS

69 NOP

71 OOPS
78 BUCKYBITS+ 79 NOP

METABIT

Micro Switch l03SD32-2 Keyboard
Unshifted

454

Key Value

00 HOLE

08 TF(4)
10 TF(12)
18 HOLE

20 '3'
28 ' ,

30 HOLE

38 'e'
40 '{'
48 STRING+

LEFI'ARROW
50 'f'
58 'I'
60 STRING+

DOWNARROW
68 'v'

70 NOP
78 HOLE

Key Value

01 BUCKYBITS+
SYSTEMBIT

09 TF(5)
11 TF(13)
19 LF(4)

21 '4'
29
31 LF(7)

39 'r'
41 '}'
49 STRING+

HOMEARROW
51 'g'
59 '\r'

61 LF(15)

69 'b'

71 Ox7F
79 HOLE

12 OOPS
lA OOPS
22 Nap
2A Nap
32 OOPS
3A Nap
42 Nap
4A OOPS

52 Nap
5A HOLE
62 HOLE

6A NOP

72 Nap

1D Nap IE Nap
25 Nap 26 Nap
2D OOPS 2E OOPS
35 NOP 36 Nap

3C NOP 3D NOP 3E Nap
44 OOPS 45 OOPS 46 Nap
4C SHIFrKEYS+ 4D NOP 4e Nap

LEFfCfRL
53 Nap 54 Nap
5B OOPS 5C OOPS
63 SIllFfKEYS+ 64 Nap

LEFfSIllFf

55 Nap 56 Nap
5D NOP 5E HOLE
65 NOP 66 Nap

57 NO]
5F 00]
67 NO]

6B Nap 6C NOP 6D NOP 6E SHIFfKEYS+ 6F NO]
RIGlITSIITFf

73 HOLE 75 HOLE 76 HOlE 77 HOI
7 A BUCKYBITS+ 7B HOLE

METABIT

74 HOLE
7C HOLE 7D HOLE 7E HOlE 7F RES

Key Value Key Value Key Value

02 LF(2) 03 LF(3) 04 HOLE 05 TF(I) 06 TF(2) 07 TF(3)

OA TF(6)
12 TF(14)
lA "f'

OB TF(7) OC TF(8)
13 c('[') 14 HOLE
IB LF(6) IC HOLE

OD TF(9) OE TF(IO) OF TF(ll)
15 RF(I) 16 '+' 17' ,
1D SHIFTKEYS+ IE '1' IF '2'

22 '5'
2A
32 STRING+

UPARROW
3A 't'
42
4A STRING+

RIGlIT ARROW
52 'h'
5A HOLE
62 HOLE

6A 'n'

23 '6'
2B "b'

24 '7'
2C HOLE

33 LF(9) 34 HOLE

CAPSLOCK
25 '8'
2D '7'
35 "t'

3B 'y' 3C 'u' 3D 'i'
43 HOLE 44 '4' 45 '5'
4B HOLE 4C SHIFI'KEYS+ 4D 'a'

SIllFfLOCK
53 'j' 54 'k' 55 'I'
5B 'I' 5C '2' 5D '3'
63 HOLE 64 SHIFI'KEYS+ 65 'z'

LEFfSIITFf
6B 'm' 6C 6D ..

72 '0' 73 Nap 74' , 75 HOLE
7 A SHIFfKEYS+ 7B 7C SHIFI'KEYS+ 7D HOLE

LEFfCTRL RIGlITCTRL

Last change: 25 June 1986

26 '9'
2E 'S'
36 'q'

3E '0'
46 '6'
4E 's'

56 '.'

27 '0'
2F '9'
37 'w'

3F 'p'
47 HOLE
4F 'd'

57 '.'
SE HOLE SF NOSCROU
66 'x' 67 'c'

6E 'I' 6F SHIFrKEY
RIGlITSIlll

76 HOLE 77 HOLE
7E HOLE 7F IDLE

Sun Release 3.2

KB (4S)

Micro Switch l03SD32·2 Keyboard
Shifted

SPECIAL FILES KB(4S)

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value

00 HOLE

08 TF(4)
10 TF(12)
18 HOLE

20 '#'

28 =
30 HOLE

38 'E'
40 T
48 STRlNO+

LEFfARROW
50 'F'

58 '"
60 STRINO+

DOWNARROW
68 'V'

70 Nap
78 HOLE

Caps Locked

Key Value

00 HOLE

08 TF(4)
10 TF(12)
18 HOLE

20 '3'
28 "
30 HOLE

38 'E'
40 '{'
48 STRINO+

LEFfARROW
50 'F'
58 'I'
60 STRINO+

DOWNARROW
68 'V'

70 Nap
78 HOLE

Sun Release 3.2

01 BUCKYBITS 02 LF(2) 03 LF(3) 04 HOrn 05 TF(I) 06 TF(2) 07 TF(3)
SYSTEMBIT

09 TF(5)
11 TF(13)
19 LF(4)

21 '$'
29
31 LF(7)

39 'R'
41 T
49 STRING+

HOMEARROW
51 '0'
S9 '\r'
61 LF(15)

69 'B'

71 Ox7F
79 HOLE

Key Value

01 BUCKYBITS+
SYSTEMBIT

09 TF(S)
11 TF(13)
19 LF(4)

21 '4'
29
31 LF(7)

39 'R'
41 T
49 STRING+

HOMEARROW
51 '0'
59 '\r'
61 LF(15)

69 'B'

71 Ox7F
79 HOLE

OA TF(6)
12 TF(14)
lA '\f'

22 'SiI'
2A '@'
32 STRING+

UPARROW
3A 'T'
42
4A STRING+

RIOHfARROW
52 'H'
SA HOLE
62 HOLE

6A 'N'

72 '0'
7A SHlFfKEYS+

RIGHfSHIFT

Key Value

02 LF(2)

OA TF(6)
12 TF(14)
lA "f'

22 'S'
2A
32 STRING+

UPARROW
3A 'r
42 -
4A STRING+

RIGHfARROW
52 'H'
SA HOLE
62 HOLE

6A 'N'

OB TF(7) oc TF(8)
13 e('[') 14 HOrn
1B LF(6) lC HOrn

OD TF(9) OE TF(lO) OF TF(ll)
15 RF(I) 16 '+' 17-
ID SHIFTKEYS+ IE '!' IF

23 '&' 24 ',"
2B "b' 2C HOrn
33 LF(9) 34 HOrn

CAPSLOCK
25 '('
2D '7'
35 "t'

3B 'Y' 3C 'U' 3D 'I'
43 HOLE 44 '4' 45 '5'
4B HOLE 4C SHIFTKEYS+ 4D 'A'

SHIFTLOCK
53 'J' 54 'K' 55 'V
5B 'I' 5C '2' 5D '3'
63 HOLE 64 SHIFTKEYS+ 65 'Z'

LEFfSIllFT
6B 'M'

73 Nap
7B

6C '<' 6D '>'

74 " 75 HOLE
7C SHIFTKEYS+ 7D HOLE

LEFfCTRL

Key Value Key Value Key Value

03 LF(3) 04 HOLE 05 TF(I)

26 ')'
2E '8'
36 'Q'

3E 'a'
46 '6'
4E 'S'

56 '+'

27 '0'
2F '9'
37 'W'

3F 'P'
47 HOLE
4F 'D'

S7 '.'
SE HOLE SF NOSCROLL
66 'X' 67 'C'

6E '1' 6F SHIFTKEYS+
RIOHfSHIFT

76 HOLE 77 HOLE
7E HOLE 7F IDLE

Key Value Key Value

06 TF(2) 07 TF(3)

OB TF(7) oc TF(8)
13 ee[') 14 HOrn
IB LF(6) IC HOLE

OD TF(9) OE TF(10) OF TF(ll)
15 RF(I) 16 '+' 17-
1D SHIFTKEYS+ IE 'I' IF '2'

23 '6' 24 '7'
2B "b' 2C HOrn
33 LF(9) 34 HOLE

CAPSLOCK
25 '8'
2D '7'
35 "t'

3B 'Y' 3C 'U' 3D 'I'
43 HOrn 44 '4' 45 '5'
4B HOLE 4C SHIFTKEYS+ 4D 'A'

SHIF1LOCK
53 'J' 54 'K' 55 'L'
5B 'I' 5C '2' SD '3'
63 HOLE 64 SHIFIKEYS+ 65 'Z'

LEFfSHlFT
6B 'M' 6C " 6D "

26 '9'
2E '8'
36 'Q'

3E 'a'
46 '6'
4E 'S'

27 '0'
2F '9'
37 'W'

3F 'P'
47 HOLE
4F 'D'

56 ';' 57 '.'
SE HOLE SF NOSCROLL
66 'X' 67 'C'

6E '/'

72 '0' 73 NOP 74' , 75 HOLE

6F SlllFfKEYS+
RIOHfSHIFf

76 HOLE 77 HOLE
7 A SIllFfKEYS+ 7B 7C SHIFIKEYS 7D HOLE 7E HOLE 7F IDLE

LEFfCTRL RIOHTCTRL

Last change: 25 June 1986 455

KB(4S) SPECIAL FILES KB(4S)

Micro Switch l03SD32-2 Keyboard
Controlled

456

Key Value

00 HOLE 01 BUCKYBITS+
SYSTEMBIT

09 TF(S)
11 TF(03)

Key Value Key Value Key V tIlue

02 LF(2) 03 LF(3) 04 HOLE

Key Value

05 TF(I)

00 TF(9)
15 RF(O)

Key Value Key Value

06 1F(2) en TF(3)

OE 1F(10) OF TF(ll)
16 OOPS 17 OOPS

08 TF(4)
10 TF(02)
18 HOLE 19 LF(4)

OA TF(6)
12 TF(04)
lA '\f'

OB TF(7) OC TF(8)
13 cC[') 14 HOLE
IB LF(6) lC HOLE 10 SHIFfKEYS+ IE OOPS IF OOPS

20 OOPS
28 OOPS
30 HOLE

38 c('E')
40 c('[')
48 STRING+

21 OOPS
29 c('·')
31 LF(7)

39 c('R')
41 c(']')
49 STRING+

22 OOPS
2A cC@')
32 STRING+

UPARROW
3A cCT)
42 c('_')
4A STRING+

23 OOPS 24 OOPS
2B '\b' 2C HOLE
33 F(9) 34 HOLE

CAPSLOCK
2S OOPS
20 OOPS
35 ,\t'

3B cCY') 3C cC'U') 30 c('I')
43 HOrn 44 OOPS 45 OOPS
4B HOrn 4C SHIFTKEYS+ 40 cCA')

26 OOPS 27 OOPS
2E OOPS 2F OOPS
36 CI'RLQ 37 c('W')

3E e('O') 3F cC'P')
46 OOPS 47 HOll
4E CfRLS 4F cC'o')

LEFfARROW
50 c('P')

HOMEARROW
51 c('G')

RIGIIT ARROW
52 cCH')

SHIFfLOCK
53 c('l') 54 c('K') 55 c('L') 56 OOPS 51 OOPS

58 c('\')
60 STRING+

DOWNARROW
68 c('V')

70 NOP
78 HOLE

Key Up

59 '\r'
61 LF(15)

69 c('B')

71 Ox7F
79 HOLE

Key V tIlue Key Value

5A HOLE
62 HOLE

6A cCN')

72 OOPS
7 A SHIFTKEYS+

LEFfCfRL

58 OOPS 5C OOPS SO OOPS
63 Horn 64 SHIFTKEYS+ 65 cCZ')

LEFfSHIFT
6B c('M') 6C OOPS 6D OOPS

73 NOP
7B '\0'

74 OOPS 75 HOLE
7C SHIFTKEYS+ 7D HOLE

RIGIITCIRL

Key Value Key Vahu Key Value Key Value

SE HOLE SF NOSCROl
66 e('X') 67 c('C')

6E OOPS 6F SHIFTKF
RIGlITSH

76 HOLE 77 HOLE
7E HOLE 7F IDLE

Key Value Key V tIlue

00 HOLE 01 BUCKYBITS+ 02 OOPS 03 OOPS 04 HOrn 05 OOPS 06 OOPS 07 OOPS

08 OOPS
10 OOPS
18 HOLE

SYSTEMBIT
09 OOPS
11 OOPS
19 OOPS

20 NOP 21 NOP
28 NOP 29 NOP
30 HOLE 31 OOPS
38 NOP 39 NOP
40 NOP 41 NOP
48 NOP 49 NOP

50 NOP 51 NOP
58 NOP 59 NOP
60 NOP 61 OOPS

68 NOP 69 NOP

70 NOP 71 NOP
78 HOLE 79 HOLE

OA OOPS
12 OOPS
lA NOP

OB OOPS
13 NOP
IB OOPS

oc OOPS
14 HOrn
lC HOrn

00 OOPS OE OOPS OF OOPS
17 NOP
IF NOP

15 OOPS 16 NOP
10 SHIFfKEYS+ IE NOP

22 NOP
2A NOP
32 NOP
3A NOP
42 NOP
4A NOP

52 NOP
5A HOLE
62 HOLE

6A NOP

72 NOP

23 NOP 24 NOP
2B NOP 2C HOrn
33 OOPS 34 HOrn
3B NOP 3C NOP

CAPSLOCK
2S NOP
2D NOP
35 NOP
30 NOP

43 HOll 44 NOP 45 NOP
4B HOll 4C SHIFTKEYS+ 40 NOP

SHIFILOCK
53 NOP 54 NOP 55 NOP
58 NOP SC NOP SO NOP
63 HOll 64 SHIFTKEYS+ 65 NOP

LEFfSHIFT
6B NOP 6C NOP 6D NOP

73 NOP
7 A SHIFTKEYS+ 7B NOP

LEFfCTRL

74 NOP 75 HOLE
7C SHIFTKEYS+ 7D HOLE

RIGlITCfRL

Last change: 25 June 1986

26 Nap 27 Nap
2E NOP 2F NOP
36 NOP 37 NOP
3E NOP 3F NOP
46 NOP 47 HOLE
4E NOP 4F NOP

56 NOP 57 NOP
SE HOLE SF Nap
66 NOP 67 NOP

6E NOP 6F SHIFTK.E
RIGIITSH

76 HOLE 77 HOLE
7E HOLE 7F RESET

Sun Release 3.2

KB(4S)

VT100-Style Keyboard
Unshifted

Key Value

00 HOLE

08 HOLE

10 TF(2)
18 'S'
20

28 'q'
30 '0'
38 ','

40 'h'
48 'I'

50 'c'
58 SHIFrKEYS+

RIGlITSIllFf
60 HOLE
68 HOLE
70 HOLE
78 HOLE

Shifted

Key Value

SPECIAL FILES

Key Value Key Value Key Value

01 BUCKYBITS+ 02 HOU: 03 HOLE
SYSTEMBIT

09 HOLE

11 TF(3)
19 '6'
21 e('H')

OA SlRING+ OB STRING+
UPARROW DOWNARROW

12 TF(4) 13 e('[')
1A '7' IB '8'
22 BUCKYBITS+ 23 '7'

METABIT
29 'w' 2A 'e' 2B 'r'
31 'p' 32 '[' 33 'J'
39 SHIFTKEYS+ 3A SHIFlKEYS+ 3B 'a'

UFTCTRL CAPSLOCK
41 'j'
49 '2'

Sl 'v'
59 '\n'

61 HOLE
69 HOLE
71 HOLE
79 HOLE

Key Value

42 'k'
4A '3'

52 'b'
5A '0'

62
6A HOU:
72 HOU:
7A HOU:

Key Value

43 'I'
4B NOP

S3 'n'
sa HOLE

63 HOLE
6B HOLE
73 HOLE
7B HOLE

Key Value

Key Value Key Value

04 HOLE OS HOLE

OC STRING+ 00 STRING+
LEFfARROW RIGHfARROW

14 'I' 15 '2'
1C '9' 10 '0'
24 '8' 25 '9'

2C 't'
34 Ox7F
3C 's'

2D 'y'
35 '4'
3D 'd'

KB(4S)

Key Value Key Value

06 HOLE 07 HOLE

OE HOLE OF TF(l)

16 '3'
IE "
26 "

2E 'u'
36 '5'
3E 'f'

17 '4'
IF "
27 '\t'

2F 'j'

37 '6'
3F 'g'

44 ';' 4S '\" 46 '\r' 47 '\'
4F 'x' 4C NOSCROIL 40 SHIFfKEYS+ 4E 'z'

54 'm'
5C

64 HOLE
6C HOLE
74 HOLE
7C HOLE

Key Value

LEFfSIllFf
55 "
5D '\r'

65 HOLE
6D HOLE
7S HOLE
7D HOLE

Key Value

56 " 57 '/'
SE HOLE 5F HOLE

66 HOLE 67 HOLE
6E HOLE 6F HOLE
76 HOLE 77 HOLE
7E HOLE 7F IDLE

Key V mue Key Value

00 HOLE 01 BUCKYBITS+ 02 HOLE
SYSTEMBIT

03 HOLE 04 HOLE 05 HOLE 06 HOLE 07 HOLE

08 HOLE

10 TF(2)
18 '%'
20

28 'Q'
30 '0'
38 ','

09 HOLE OA SlRING+
UPARROW

12 TF(4)

OB STRING+ OC SlRING+ OD STRING+
DOWNARROW LEFfARROW RIGHfARROW

11 TF(3) 13 e('[') 14 '!' 15 '@'
19
21 eCH')

lA '&;' IB '.'
22 BUCKYBITS+ 23 '7'

METABIT
29 'W' 2A 'E' 2B 'R'
31 'P' 32 '{' 33 '}'
39 SHIFTKEYS+ 3A SHIFfK.EYS+ 3B 'A'

LEFrCTRL CAPSLOCK

IC '('
24 '8'

2C 'T'
34 Ox7F
3C 'S'

10 ')'
25 '9'

2D 'Y'
35 '4'
3D '0'

OE HOLE OF TF(l)

16 '#'
IE -
26

2E 'U'
36 '5'
3E 'P'

17 '$'

IF '+'
27 '\t'

2F 'I'
37 '6'
3F 'G'

40 'H'
48 'I'

41 'J'
49 '2'

42 'K'
4A '3'

43 'L'
4B NOP

44 '.' 45 46 '\r' 47 'I'
4F 'X'

50 'C' Sl 'V'
58 SHIFTKEYS+ S9 '\n'

RIGHfSIllFf
60 HOLE 61 HOLE
68 HOLE 69 HOLE
70 HOLE 71 HOLE
78 HOLE 79 HOLE

Sun Release 3.2

52 'B'
SA '0'

62
6A HOLE
72 HOLE
7A HOLE

53 'N'
sa HOLE

63 HOLE
6B HOLE
73 HOLE
7B HOLE

Last change: 25 June 1986

4C NOSCROIL 4D SHIFTKEYS+ 4E 'Z'

54 'M'
sc ..

64 HOLE
6C HOLE
74 HOLE
7C HOLE

LEFfSIllFf
55 '<'
50 '\r'

65 HOLE
6D HOLE
75 HOLE
7D HOLE

56 '>' 57 '1'
SE HOLE 5F HOLE

66 HOLE 67 HOLE
6E HOLE 6F HOLE
76 HOLE 77 HOLE
7E HOLE 7F IDLE

457

KB (4S)

VT100-Style Keyboard
Caps Locked

Key Value

00 HOLE

08 HOLE

10 TF(2)
18 '5'
20

28 'Q'
30 '0'
38 ,

SPECIAL FILES

Key VallU Key Value

01 BUCKYBITS+ 02 HOLE
SYSTEMBIT

09 HOLE

11 TF(3)
19 '6'

OA STRING+
UPARROW

12 TF(4)
lA '7'

Key VallU Key Value Key Value

03 HOLE 04 HOLE 05 HOLE

OB STRING+ OC STRINO+ OD STRING+
DOWNARROW LEFfARROW RIGIITARROW

13 e('[') 14 '1' 15 '2'
IB '8' lC '9' ID '0'

21 eCH') 22 BUCKYBITS+ 23 '7'
METABIT

24 '8' 25 '9'

29 'w' 2A 'E' 2B 'R'
31 'P' 32 '[' 33 ']'
39 SHIFfKEYS+ 3A SlllFTKEYS+ 3B 'A'

LEFrCfRL CAPSLOCK

2C 'T'
34 Ox7F
3C 's'

2D 'Y'
35 '4'
3D 'D'

K.B (4S)

Key ValU4! Key V Q

06 HOLE 07 H<

OE HOLE OF TI

16 '3'
IE "
26 "

2E 'u'
36 '5'
3E 'F'

17 '4'
IF ,.

27 '\f

2F 'I'
37 '6'
3F '0

40 'H'
48 '1'

41 'J'
49 '2'

42 'K'
4A '3'

43 'L'
4B NOP

44 ';' 45 '\" 46 ,\r' 47 '\'
4F 'X

458

50 'c' 51 'V'
58 SHIFTKEYS+ 59 '\n'

RlGIITSHIFf
60 HOLE 61 HOLE
68 HOLE
70 HOLE
78 HOLE

Controlled

Key ValIU

69 HOLE
71 HOLE
79 HOLE

Key Value

52 'B'
5A '0'

62
6A HOlE
72 HOLE
7A HOLE

Key Value

00 HOLE 01 BUCKYBITS+ 02 HOLE
SYSTEMBIT

08 HOLE

10 TF(2)
18 '5'
20 c('"')

28 CTRLQ
30 c('O')
38 ','

40 c('H')
48 '1'

09 HOLE

11 TF(3)
19 e('"')

21 e('H')

29 e('W')
31 e('P')
39 SHIFfKEYS+

LEFfCTRL
41 e('l')
49 '2'

50 c('C') 51 e('V')
58 SHIFTKEYS+ 59 '\n'

RlGIITSHIFf
60 HOLE
68 HOLE
70 HOLE
78 HOLE

61 HOLE
69 HOLE
71 HOLE
79 HOLE

OA STRING+
UPARROW

12 TF(4)
lA '7'
22 BUCKYBITS+

METABIT
2A e('E')
32 e('[')
3A SlllFTKEYS+

CAPSLOCK
42 e('K')
4A '3'

52 c('B')
5A '0'

62 c(")
6A HOLE
72 HOLE
7A HOLE

53 'N'
5B HOLE

63 HOLE
6B HOLE
73 HOLE
7B HOLE

Key VallU

03 HOLE

OB STRING+
DOWNARROW

13 c('[')
IB '8'
23 '7'

2B c('R')
33 c('J')
3B c(' A')

43 c('L')
4B NOP

53 cCN')
5B HOLE

63 HOLE
6B HOLE
73 HOLE
7B HOLE

Last change: 25 June 1986

4C NOS CROlL 4D SlllFTKEYS+ 4E 'z'

54 'M'
5C "

64 HOLE
6C HOlE
74 HOLE
7C HOLE

Key Value

04 HOLE

OC STRlNO+
LEFrARROW

14 '1'
lC '9'
24 '8'

2C c('T')
34 Ox7F
3C CTRLS

44 '.'
4C NOSCROIL

54 c('M')
5C

64 HOLE
6C HOLE
74 HOLE
7C HOLE

LEFfSHIFf
55 ','
50 '\r'

65 HOLE
6D HOLE
75 HOLE
1D HOLE

Key Value

05 HOLE

OD STRING+
RIGIITARROW

15 c('@')
ID '0'
25 '9'

2D c('Y')
35 '4'
3D cCD')

45
4D SHlFl'KEYS+

LEFfSHIFT
55 ','
50 HOLE

65 HOLE
6D HOLE
75 HOLE
1D HOLE

56 " 57'1'
SE HOLE 5F H(

66 HOLE 67 H(
6E HOLE 6F H(

76 HOLE n H(

7E HOLE 1F ID

Key ValU4! Key Va

06 HOLE 07 H(

OE HOLE OF TI

16 '3' 17 '4'
IE e('_') IF '
26" 27 '\f

2E c('U') 2F c('
36 '5' 37 '6'
3E c('F') 3F c('

46 '\r' 47 c('
4E c('Z') 4F c('

56 " 57 c('
SE HOLE 5F He

66 HOLE 67 He
6E HOLE 6F He
76 HOLE n m
7E HOLE 7F II:

Sun Release 3.2

KB (4S) SPECIAL FILES KB (4S)

VT100-Style Keyboard
Key Up

Key Value Key Value Key Value Key Value Key Value Key Value Key Value Key Value

00 HOLE 01 BUCKYBITS+ 02 HOLE 03 HOLE 04 HOLE 05 HOLE 06 HOLE 07 HOLE
SYSTEMBIT

08 HOLE 09 HOLE OA NOP OB NOP oc NOP OD NOP OE HOLE OF OOPS
10 OOPS 11 OOPS 12 OOPS 13 NOP 14 NOP 15 NOP 16 NOP 17 NOP
18 NOP 19 NOP lA NOP 1B NOP lC NOP 1D NOP IE NOP IF NOP
20 NOP 21 NOP 22 BUCKYBITS+ 23 NOP 24 NOP 25 NOP 26 NOP 27 NOP

METABIT
28 NOP 29 NOP 2A NOP 2B NOP 2C NOP 2D NOP 2E NOP 2F NOP
30 NOP 31 NOP 32 NOP 33 NOP 34 NOP 35 NOP 36 NOP 37 NOP
38 NOP 39 SHIFfKEYS+ 3A SHIFfKEYS+ 3B NOP 3C NOP 3D NOP 3E NOP 3F NOP

LEFTCfRL CAPSLOCK
40 NOP 41 NOP 42 NOP 43 NOP 44 NOP 45 NOP 46 NOP 47 NOP
48 NOP 49 NOP 4A NOP 4B NOP 4C NOP 4D SHlFfKEYS+ 4E NOP 4F NOP

LEFfSHIFf
50 NOP 51 NOP 52 NOP 53 NOP 54 NOP 55 NOP 56 NOP 57 NOP
58 SHIFfKEYS+ 59 NOP SA NOP 5B HOLE 5C NOP 5D NOP 5E HOLE SF HOLE

RIGHfSHIFf
60 HOLE 61 HOLE 62 NOP 63 HOLE 64 HOLE 65 HOLE 66 HOLE 67 HOLE
68 HOLE 69 HOLE 6A HOLE 6B HOLE 6C HOLE 6D HOLE 6E HOLE 6F HOLE
70 HOLE 71 HOLE 72 HOLE 73 HOLE 74 HOLE 75 HOLE 76 HOLE 77 HOLE
78 HOLE 79 HOLE 7A HOLE 7B HOLE 7C HOLE 7D HOLE 7E HOLE 7F RESET

FILES
ldevlkbd

SEE ALSO
setkeys(l), c1ick(l)

The SunView System Programmer's Guide - Appendix: Writing a Virtual User Input Device Driver
(describes Firm _event format)

Sun Release 3.2 Last change: 25 June 1986 459

LE(4S) SPECIAL FILES LE(4S)

NAME
Ie - Sun-3/50 10 Mb/s Ethernet interface

SYNOPSIS
device leO at obio ? csr

DESCRIPTION
The Ie interface provides access to a 10 Mb/s Ethernet network through a Sun-3 controller using the AMD
LANCE (Local Area Network Controller for Ethernet) Am7990 chip. For a general description of network
interfaces see if(4N).

The synopsis line above specifies the first and only Ethernet controller on a Sun-3/50.

DIAGNOSTICS

460

le%d: transmitter frozen -- resetting A bug in the LANCE chip has caused the chip's transmitter section
to stop. The driver has detected this condition and reinitialized the chip.

le%d: out of mbufs: output packet dropped The driver has run out of memory to use to buffer packets
on output The packet being transmitted at the time of occurrence is lost This error is usually symp­
tomatic of trouble elsewhere in the kernel.

le%d: stray transmitter interrupt The LANCE chip has signalled that it completed transmitting a packet
but the driver has sent no such packet

le%d: LANCE Rev C/D Extra Byte(s) bug; Packet dropped The LANCE chip's internal silo pointers
have become misaligned. This error arises from a chip bug.

le%d: trailer error An incoming packet claimed to have a trailing header but did not.

Ie % d: runt packet An incoming packet's size was below the Ethernet minimum transmission size.

le%d: Receive buffer error - BUFF bit set in rmd This error "should never happen," as it occurs only
in conjunction with a LANCE feature that the driver does not use.

le%d: Received packet with STP bit in rmd cleared This error "should never happen," as it occurs
only in conjunction with a LANCE feature that the driver does not use.

le%d: Received packet with ENP bit in rmd cleared This error "should never happen," as it occurs
only in conjunction with a LANCE feature that the driver does not use.

le%d: Transmit buffer error - BUFF bit set in tmd Excessive bus contention has prevented the LANCE
chip from gathering packet contents quickly enough to sustain the packet's transmission over the Ethernet
The affected packet is lost.

le%d: Transmit late collision - Net problem? A packet collision has occurred after the channel's slot
time has elapsed. This error usually indicates faulty hardware elsewhere on the net.

le%d: No carrier - transceiver cable problem? The LANCE chip has lost input to its carrier detect pin
while trying to transmit a packet

le%d: Transmit retried more than 16 times - net jammed Network activity has become so intense that
sixteen successive transmission attempts failed, causing the LANCE chip to give up on the current packet

le%d: missed packet The driver has dropped an incoming packet because it had no buffer space for it.

le%d: Babble error - sent a packet longer than the maximum length While transmitting a packet, the
LANCE chip has noticed that the packet's length exceeds the maximum allowed for Ethernet. This error
indicates a kernel bug.

le%d: Memory Error! Ethernet chip memory access timed out The LANCE chip timed out while try­
ing to acquire the bus for a DVMA transfer.

le%d: Reception stopped Because of some other error, the receive section of the LANCE chip shut down
and had to be restarted.

Last change: 18 September 1985 Sun Release 3.2

LE(4S) SPECIAL FILES LE(4S)

le%d: Transmission stopped Because of some other error, the transmit section of the LANCE chip shut
down and had to be restarted.

Sun Release 3.2 Last change: 18 September 1985 461

LO(4N) SPECIAL FILES LO(4N)

NAME
10 - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop device is a software loopback network interface; see if(4N) for a general description of network
interfaces.

The loop interface is used for performance analysis and software testing, and to provide guaranteed access
to Internet protocols on machines with no local network interfaces. A typical application is the comsat(8C)
server which accepts notification of mail delivery through a particular port on the loopback interface.

By default, the loopback interface is accessible at Internet address 127.0.0.1 (non-standard); this address
may be changed with the SIOCSIF ADDR ioctl.

DIAGNOSTICS
lo%d: can't handle af%d. The interface was handed a message with addresses formatted in an unsuitable
address family; the packet was dropped.

SEE ALSO

BUGS

462

if(4N), inet(4F)

It should handle all address and protocol families. An approved network address should be reserved for
this interface.

Last change: 26 July 1985 Sun Release 3.2

MEM(4S) SPECIAL FILES MEM(4S)

NAME
mem, kmem, vmel6d16, vme24dl6, vme32dl6, vmel6d32, vme24d32, vme32d32, mbmem, mbio, - main
memory and bus I/O space

SYNOPSIS
None; included with standard system.

DESCRIPTION
These devices are special files that map memory and bus I/O space. They may be read, written, seek' ed
and (except for kmem) mmap(2)'ed.

Mem is a special file that is an image of the physical memory of the computer. It may be used, for exam­
ple, to examine (and even to patch) the system.

Kmem is a special file that is an image of the kernel virtual memory of the system.

vme16d16 (also known as vme16) is a special file that is an image ofVMEbus 16-bit addresses with 16-bit
data Vme16 address space extends from 0 to 64K.

vme24d16 (also known as vme24) is a special file that is an image of VMEbus 24-bit addresses with 16-bit
data. Vme24 address space extends from 0 to 16 Megabytes. The VME 16-bit address space overlaps the
top 64K of the 24-bit address space.

SUN-3 VMEBUS ONLY
vme32d16 is a special file that is an image of VMEbus 32-bit addresses with 16-bit data.

vme16d32 is a special file that is an image of VMEbus 16-bit addresses with 32-bit data.

vme24d32 is a special file that is an image of VMEbus 24-bit addresses with 32-bit data.

vme32d32 (also known as vme32) is a special file that is an image of VMEbus 32-bit addresses with 32-bit
data. Vme32 address space extends from 0 to 4 Giggabytes. The VME 24-bit address space overlaps the
top 16 Megabytes of the 32-bit address space.

vme * type special files can only be accessed in VME based systems.

SUN-2 MULTIBUS ONLY

FILES

Mbmem is a special file that is an image of the Multibus memory of the system. Multibus memory is in the
range from 0 to 1 Megabyte. Mbmem can only be accessed in Multibus based systems.

Mbio is a special file that is an image of the Multibus I/O space. Multibus I/O space extends from 0 to
64K. Mbio can only be accessed in Multibus based systems.

When reading and writing mbmem and mbio odd counts or offsets cause byte accesses and even counts and
offsets cause word accesses.

/dev/mem
/dev/kmem
/dev/mbmem
/dev/mbio
/dev/vmel6d16
/dev/vme16
/dev/vme24d16
/dev/vme24
/dev/vme32d16
/dev/vmel6d32
/ dev/vme24d32
/dev/vme32d32
/dev/vme32

Sun Release 3.2 Last change: 18 September 1985 463

MOUSE (4S) SPECIAL FILES MOUSE(4S)

NAME
mouse - Sun mouse

SYNOPSIS
pseudo-device ms3

DESCRIPTION

FILES

The mouse interface provides access to the Sun Workstation mouse.

The mouse incorporates a microprocessor which generates a byte-stream protocol encoding mouse
motions.

Each mouse sample in the byte stream consists of three bytes: the first byte gives the button state with
value Ox871-but, where but is the low three bits giving the mouse buttons, where a 0 (zero) bit means that a
button is pressed, and a 1 (one) bit means a button- is not pressed. Thus if the left button is down the value
of this sample is Ox83, while if the right button is down the byte is Ox86.

The next two bytes of each sample give the x and y delta's of this sample as signed bytes. The mouse uses
a lower-left coordinate system, so moves to the right on the screen yield positive x values and moves down
the screen yield negative y values.

The beginning of a sample is identifiable because the delta's are constrained to not have values in the range
Ox80-0x87.

The mouse can be used as a device that emits Firm _events as specified by the protocol of a Virtual User
Input Device. It understands VUIDSFORMAT, VUIDGFORMAT, VUIDSADDR and VUIDGADDR
ioctls (see reference below).

/dev/mouse

SEE ALSO
win(4S)

The SunView System Programmer's Guide

464 Last change: 18 December 1985 Sun Release 3.2

MTI(4S) SPECIAL FILES MTI(4S)

NAME
mti - Systech MTI-80011600 multi-terminal interface

SYNOPSIS - SUN-3
device mtiO at vme16d16 ? csr Ox620 flags OxfffT priority 4 vector mtiintr Ox88
device mtil at vme16d16 ? csr Ox640 flags OxfffT priority 4 vector mtiintr Ox89
device mti2 at vme16d16 ? csr Ox660 flags OxfffT priority 4 vector mtiintr Ox8a
device mti3 at vme16d16 ? csr Ox680 flags OxfffT priority 4 vector mtiintr Ox8b

SYNOPSIS - SUN-2
device mtiO at mbio ? csr Ox620 8ags OxfffT priority 4
device mtil at mbio? csr Ox640 8ags OxfffT priority 4
device mti2 at mbio ? csr Ox660 8ags OxfffT priority 4
device mti3 at mbio ? csr Ox680 8ags OxmT priority 4
device mtiO at vme16 ? csr Ox620 flags OxfffT priority 4 vector mtiintr Ox88
device mtil at vme16 ? csr Ox640 flags OxfffT priority 4 vector mtiintr Ox89
device mti2 at vme16 ? csr Ox660 flags OxfffT priority 4 vector mtiintr Ox8a
device mti3 at vme16? csr Ox680 flags OxfffT priority 4 vector mtiintr Ox8b

DESCRIPTION
The Systech MTI card provides 8 (MTI-800) or 16 (MTI-I600) serial communication lines with modem
control. Each line behaves as described in tty (4). Input and output for each line may independently be set
to run at any of 16 speeds; see tty(4) for the encoding.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be
treated as hard-wired with carrier always present Thus specifying "flags OxOOO4" in the specification of
mtiO would cause line tty02 to be treated in this way.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a
special feature, controlled by the minor device number, has been added. Minor device numbers in the
range 0 - 127 correspond directly to the normal tty lines and are named tty*. Minor device numbers in the
range 128 - 256 correspond to the same physical lines as those above (i.e. the same line as the minor dev­
ice number minus 128) and are (conventionally) named cua*. The cua lines are special in that they can be
opened even when there is no carrier on the line. Once a cua line is opened, the corresponding tty line can
not be opened until the cua line is closed. Also, if the tty line has been opened successfully (usually only
when carrier is recognized on the modern) the corresponding cua line can not be opened This allows a
modern to be attached to IdevlttyOO (usually renamed to IdevlttydO) and used for dialin (by enabling the line
for login in letclttys) and also used for dialout (by tip(IC) or uucp(IC» as IdevlcuaO when no one is logged
in on the line. Note that the bit in the flags word in the config file (see above) must be zero for this line.

WIRING

FILES

The Systech requires the CTS modern control signal to operate. If the device does not supply CTS then
RTS should be jumpered to CTS at the distribution panel (short pins 4 to 5). Also, the CD (carrier detect)
line does not work properly. When connecting a modern, the modem's CD line should be wired to DSR,
which the software will treat as carrier detect.

Idev/ttyO[O-9a-f] hardwired tty lines
Idev/ttyd[O-9a-f] dialin tty lines
Idev/cua[O-9a-f] dialout tty lines

SEE ALSO
tty (4), zs(4S)

DIAGNOSTICS
Most of these diagnostics "should never happen" and their occurrence usually indicates problems else­
where in the system.

mtin ,n : silo overflow.
More than 512 characters have been received by the mti hardware without being read by the

Sun Release 3.2 Last change: 17 April 1986 465

MTI(4S) SPECIAL FILES

466

software. Extremely unlikely to occur.

mtin : error n .
The mti returned the indicated error code. See the mti manual.

mtin : DMA output error.
The rnti encountered an error while trying to do DMA output.

mtin : impossible response n .
The mti returned an error it couldn't understand.

Last change: 17 April 1986

MTI(4S)

Sun Release 3.2

MTIO(4) SPECIAL FILES MTIO(4)

NAME
mtio - UNIX system magnetic tape interface

SYNOPSIS
#include <syslioctl.h>
#include <syslmtio.h>

DESCRIPTION
The files mtO, ... , mt15 refer to the UNIX system magnetic tape drives, which read and write magnetic tape
in 2048 byte blocks (the 2048 is actually BLKDEV _IOSIZE in <sys/param.h». The following description
applies to any of the transport/controller pairs. The files mtO, ... , mt3 and mt8, ... , mtll are rewound when
closed; the others are not When a nine track tape file, open for writing or just written, is closed, two end­
of-files are written; if the tape is not to be rewound it is positioned with the head between the two tape­
marks. When a 114" tape file, (due to a bug, only if) just written, is closed, only one end of file mark is
written because of the inability to overwrite data on a 114" tape; see below.

114" tapes are not able to back up and always write fixed sized blocks. Since they cannot back up, they
cannot support backward space file and backward space record. Since they always write fixed sized
blocks, the size of transfers using the raw interface (see below) must be a multiple of the underlying block­
size, usually 512 bytes.

114" tapes also have an unusual tape format. They have parallel tracks, but only record information on one
track at a time, switching to another track near the physical end of the medium. They erase all the tracks at
once while writing the first track. Therefore, they cannot, in general, overwrite previously written data. If
the old data were not on the first track, it would not be erased before being overwritten, and the result
would be unreadable.

The mt files discussed above are useful when it you want to access the tape in a way compatible with ordi­
nary files. When using foreign tapes, and especially when reading or writing long records, the 'raw' inter­
face is appropriate. The associated files are named rmlO, ... , rmt15, but the same minor-device considera­
tions as for the regular files still apply. Each read or write call reads or writes the next record on the tape.
In the write case the record has the same length as the buffer given. During a read, the record size is
passed back as the number of bytes read, provided it is no greater than the buffer size. In raw tape I/O
seeks are ignored. A zero byte count is returned when a tape mark is read, but another read will fetch the
first record of the new tape file.

A number of additional ioctl operations are available on raw magnetic tape. The following definitions are
from <sys/mtio.h>:

/*
* Strucrures and definitions for mag tape I/O control commands
*/

/* strucrure for MTIOCTOP - mag tape op command *1
struct mtop {

short mt_ op;
daddr _ t mt _count;

};

/ * operations * /
#define M1WEOF
#define MTFSF 1
#define MTBSF 2
#define M1FSR 3
#define MTBSR4
#define MlREW
#define MTOFFL
#define MTNOP

Sun Release 3.2

o

5
6
7

1* operations defined below *1
1* how many of them */

1* write an end-of-file record */
/* forward space file *1
/* backward space file */
1* forward space record *1
/* backward space record */

1* rewind */
/* rewind and put the drive offline */
/* no operation, sets status only *1

Last change: 26 July 1985 467

MTIO(4) SPECIAL FILES

FILES

#define MTRE1EN
#define MTERASE

8
9

1* retension the tape *1
1* erase the entire tape *1

1* structure for MTIOCGET - mag tape get status command *1

struct mtget {
short mt_ type; 1* type of magtape device *1
1* the following two registers are grossly device dependent *1
short mt_dsreg; 1* "drive status" register *1
short mt_ erreg; 1* "error" register *1
1* end device-dependent registers *1
short mt_ resid; 1* residual count *1
1* the following two are not yet implemented *1
daddr _t mt_ fileno; 1* file number of current position *1
daddr _ t mt_ blkno; 1* block number of current position *1
1* end not yet implemented *1

};

1*
* Constants for mt_type byte
*1
#define MT ISTS
#define MT ISHT
#define MT ISTM
#define MT ISMT
#define MT ISUT
#define MT ISCPC
#define MT ISAR
#define MT ISSC
#define MT ISXY

OxOI
Ox02
Ox03
Ox04
Ox05
Ox06
Ox07
Ox08
Ox09

1* mag tape io control commands *1

1* vax: unibus ts-II *1
1* vax: massbus tu77, etc *1
1* vax: unibus tm-II *1
1* vax: massbus tu78 *1
1* vax: unibus gcr *1
1* sun: Multibus tapemaster *1
1* sun: Multibus archive *1
1* sun: SCSI archive *1
1* sun: Xylogics 472 *1

#define MTIOCTOP _IOW(m, I, structmtop) 1* do a mag tape op *1
#define MTIOCGET _IOR(m, 2, struct mtget) 1* get tape status *1

#ifndef KERNEL
#define DEFTAPE
#endif

ldev/mt*
ldev/rmt*
ldev/rar*

"/dev/rmt12"

SEE ALSO
mt(I), tar(1), ar(4S), tm(4S), st(4S), xt(4S)

468 Last change: 26 July 1985

MTIO(4)

Sun Release 3.2

ND(4P) SPECIAL FILES ND(4P)

NAME
nd - network disk driver

SYNOPSIS
pseudo-device nd

DESCRIPTION
The network disk device, Idevlnd*, allows a client workstation to perform disk I/O operations on a server
system over the network. To the client system, this device looks like any normal disk driver: it allows
read/write operations at a given block number and byte count. Note that this provides a network disk block
access service rather than a network file access service.

Typically the client system will have no disks at all. In this case IdevlndO contains the client's root file sys­
tem (including lusr files), and ndl is used as a paging area. Client access to these devices is converted to
net disk protocol requests and sent to the server system over the network. The server receives the request,
performs the actual disk 110, and sends a response back to the client.

The server contains a table which lists the net address of each of his clients and the server disk partition
which corresponds to each client unit number (ndO,I, ...). This table resides in the server kernel in a struc­
ture owned by the nd device. The table is initialized by running the program letc!nd with text file
letc!nd.local as its input. letclnd then issues ioctl(2) functions to load the table into the kernel.

In addition to the read/write units Idevlnd*, there are public read-only units which are named ldevlndp*.
The correspondence to server partitions is specified by the letclnd.local text file, in a similar manner to the
private partitions. The public units can be used to provide shared access to binaries or libraries (tbin,
lusrlbin, lusrlucb, lusrllib) so that each diskless client does not have to consume space in his private parti­
tions for these files. This is done by providing a public file system at the server (IdevlndpO) which is
mounted on Ipub of each diskless client The clients then use symbolic links to read the public files: Ibin ->
Ipublbin, lusrlucb -> Ipublusrlucb. One requirement in this case is that the server (who has read/write
access to this file system) should not perform write activity with any public filesystem. This is because
each client is locally cacheing blocks, and may get out of sync with the physical disk image. In certain
cases, the client will detect an inconsistency and panic.

One last type of unit is provided for use by the server. These are called local units and are named
ldevlndl*. The Sun physical disk sector 0 label only provides a limited number of partitions per physical
disk (eight). Since this number is small and these partitions have somewhat fixed meanings, the nd driver
itself has a subpartitioning capability built-in. This allows the large server physical disk partition (e.g.
IdevlxyOg) to be broken up into any number of diskless client partitions. Of course on the client side these
would be referenced as IdevlndO,l, ... ; but the server needs to reference these client partitions from time to
time, to do mkjs(8) and fsck(8) for example. The Idevlndl* entries allow the server 'local' access to his
subpartitions without causing any net activity. The actual local unit number to client unit number
correspondence is again recorded in the letc!nd.local text file.

The nd device driver is the same on both the client and server sides. There are no user level processes
associated with either side, thus the latency and transfer rates are close to maximal.

The minor device and ioctl encoding used is given in file <sunlndio.h>. The low six bits of the minor
number are the unit number. The Ox40 bit indicates a public unit; the Ox80 bit indicates a local unit

INITIALIZATION
No special initialization is required on the client side; he finds the server by broadcasting the initial
request. Upon getting a response, he locks onto that server address.

At the server, the nd(8C) command initializes the network disk service by issuing ioctl's to the kernel.

ERRORS
Generally physical disk 110 errors detected at the server are returned to the client for action. If the server is
down or unaccessable, the client will see the console message:

nd: file server not responding: still trying.
The client continues (forever) making his request until he gets positive acknowledgement from the server.

Sun Release 3.2 Last change: 26 July 1985 469

ND(4P) SPECIAL FILES ND(4P)

This means the server can crash or power down and come back up without any special action required of
the user at the client machine. It also means the process performing the I/O to nd will block, insensitive to
signals, since the process is sleeping inside the kernel at PRIBIO.

PROTOCOL AND DRIVER INTERNALS

470

The protocol packet is defined in <sunlndio.h> and also included below:

/*
* 'nd' protocol packet format
*/

struct ndpack {
struct ip np _ip;/* ip header, proto IPPROTO _ND */

};

/*

u char np _ op; /* operation code, see below *1
u char np_min; /* minor device *1
char np_error; /* b error */
char
long
long
long
long
long
long

np _ ver; /* version number *1
np _seq; /* sequence number *1
np_blkno; /* b_blkno, disk block number *1
np _ beount; /* b _ bcount, byte count *1
np _ resid; /* b _resid, residual byte count *1
np _ caddr; /* current byte offset of this packet *1
np _ ccount; 1* current byte count of this packet *1

/* data follows */

* np _ oe operation codes.
*/

#define NDOPREAD 1
#define NDOPWRITE 2
#define NDOPERROR 3
#define NDOPCODE 7
#define NDOPW AIT 010
#define NDOPOONE 020

1*
* misc protocol defines.
*/

/* read */
1* write *1
/* error */
1* op code mask *1
1* waiting for DONE or next request */
/* operation done *1

#define NDMAXDATA 1024 1* max data per packet *1
#define NDMAXIO 63* 1024 1* max np _ bcount *1

IP datagrams were chosen instead of UDP datagrams because only the IP header is checksummed, not the
entire packet as in UDP. Also the kernel level interface to the IP layer is simpler. The min, blkno, and
bcount fields are copied directly from the client's strategy request. The sequence number field seq is incre­
mented on each new client request and is matched with incoming server responses. The server essentially
echos the request header in his responses, altering certain fields. The caddr and ccount fields show the
current byte address and count of the data in this packet, or the data expected to be sent by the other side.

The protocol is very simple and driven entirely from the client side. As soon as the client ndstrategy rou­
tine is called, the request is sent to the server; this allows disk sorting to occur at the server as soon as pos­
sible. Transactions which send data (client writes on the client side, client reads on the server side) can
only send a set number of packets of NDMAXDAT A bytes each, before waiting for an acknowledgement.
The defaults are currently set at 6 packets of lK bytes each; the NDIOCETHER ioctl allows setting this
value on the server side. This allows the normal 4K byte case to occur with just one 'transaction'. The
NDOPW AIT bit is set in the op field by the sender to indicate he will send no more until acknowledged (or
requested) by the other side. The NDOPOONE bit is set by the server side to indicate the request operation
has completed; for both the read and write cases this means the requested disk I/O has actually occured.

Last change: 26 July 1985 Sun Release 3.2

ND(4P) SPECIAL FILES ND(4P)

Requests received by the server are entered on an active list which is timed out and discarded if not com­
pleted within NDXTIMER seconds. Requests received by the server allocate a bcount size buffer to
minimize buffer copying. Contiguous DMA disk I/O thus occurs in the same size chunks it would if
requested from a local physical disk.

BOOTSTRAP
The Sun workstation has PROM code to perform a net boot using this driver. Usually, the boot files are
obtained from public device ° (/dev/ndpO) on the server with which the client is registered; this allows
multiple servers to exist on the same net (even running different releases of kernel and boot software). If
the station you are booting is not registered on any of the servers, you will have to specify the hex Internet
host number of the server in a boot command string like: 'bec(O,5,O)vmunix'.

This booting performs exactly the same steps involved in a real disk boot:

1) User types 'b' to PROM monitor.

2) PROM loads blocks 1 thru 15 of /dev/ndpO (bootnd).

3) bootnd loads /boot.

4) / boot loads /vmunix.

SEE ALSO

BUGS

ioctl(2), nd(8C)

The operations described in dkio (4) are not supported.

The local host's disk buffer cache is not used by network disk access. This means that if either a local host
or a remote host is writing, the changes will be visible at random based on the cache hit frequency on the
local host. Use sync on the server to force the data out to disk. If both the local and remote hosts are writ­
ing to the same filesystem, one machine's changes can be randomly lost, based again on cache hit and
deferred write timings.

If an RIO remote file system is mounted R/W by mistake, it is impossible to umount it.

Sun Release 3.2 Last change: 26 July 1985 471

NFS(4P) SPECIAL FILES NFS(4P)

NAME
nfs, NFS - network file system

SYNOPSIS
optionsNFS

DESCRIPTION
The Network File System, or NFS, allows a client workstation to perform transparent file access over the
network. Using it, a client workstation can operate on files that reside on a variety of servers, server archi­
tectures and across a variety of operating systems. Client file access calls are converted to NFS protocol
requests, and are sent to the server system over the network. The server receives the request, performs the
actual file system operation, and sends a response back to the client.

The Nework File System operates in a stateless fashion using remote procedure (RPC) calls built on top of
external data representation (XDR) protocol. These protocols are documented in Networking on the Sun
Workstation. The RPC protocol provides for version and authentication parameters to be exchanged for
security over the network.

A server can grant access to a specific filesystem to certain clients by adding an entry for that filesystem to
the server's fetc/exports file.

A client gains access to that filesystem with the mount(2) system call, which requests a file handle for the
filesystem itself. Once the filesystem is mounted by the client, the server issues a file handle to the client
for each file (or directory) the client accesses. If the file is somehow removed on the server side, the file
handle becomes stale (dissociated with a known file).

A server may also be a client with respect to filesystems it has mounted over the network, but its clients
cannot gain access to those filesystems. Instead, the client must mount a filesystem directly from the server
on which it resides.

The user ID and group ID mappings must be the same between client and server. However, the server
maps uid 0 (the super-user) to uid -2 before performing access checks for a client. This inhibits super-user
privileges on remote filesystems.

NFS-related routines and structure definitions are described in the NFS Protocol Spec. in Networking on
the Sun Workstation.

ERRORS
Generally physical disk 110 errors detected at the server are returned to the client for action. If the server is
down or inaccessable, the client will see the console message:

NFS: file server not responding: still trying.
The client continues (forever) to resend the request until it receives an acknowledgement from the server.
This means the server can crash or power down, and come back up, without any special action required by
the client. It also means the client process requesting the 110 will block and remain insensitive to signals,
sleeping inside the kernel at PRIBIO.

SEE ALSO
exports(5), fstab(5), mntent(5), mount (2), mount(8), nfsd(8)

472 Last change: 9 July 1986 Sun Release 3.2

NIT (4P) SPEOAL FILES NIT (4P)

NAME
nit - Network Interface Tap Protocol

SYNOPSIS
options NIT

DESCRIPTION
nit is a provisional protocol familty which runs on top of the kernel raw socket code and provides the
superuser with a tee connection into a specified network interface. For example, it provides the unpro­
cessed packet read and write capability on the Ethernet interface ie(4S).

nit uses two structures to communicate information, the nit _ioc structure, which contains the ioctl informa­
tion used to set parameter values; and the nit_hdr structure, which contains per packet statistics and is
prepended to every delivered packet When setting parameters, values that are otherwise impossible mean
"don't change".

nit collects incoming packets into chunks to reduce the per packet overhead. The chunks are returned by
read(2V) and recv(2) system calls. Outgoing packets are not buffered. The ioctl value nioc _chunksize
sets the size of the incoming chunk. Nioc _bufalign and nioc _bufoffset control packet placement within
buffers. The (nit) header for each packet in a buffer starts nioc _bufoffset bytes past some multiple of
nioc _bufalign bytes from the beginning. The packet itself appears immediately beyond the header. nit also
limits the amount of buffer space consumed. To change the default, set nioc _ bufspace.

nit performs packet filtering and data selection on incoming packets. The data selection criterion is the
length of the initial portion of the data packet to return to the user. The filtering criteria are packet destina­
tion and packet type. The filtering and data selection criteria are set via nioc _snaplen, nioc Jlags, and
nioc _ typetomatch. The choices for destination are either normal or promiscuous. Normal destination
filtering considers only those packets that are normally received by the machine running nit (both host
specific and broadcast packets). Promiscuous destination filtering considers every packet visible on the
network; this can place a large demand on the processor if there are many packets to receive. The packets
are further filtered on type, an interface specific quantity. For the Ethernet interfaces, the type field is the
packet type from the Ethernet header. See <netinetlif_ether.h>.

Outgoing packets are not (yet) handled in a general way, since there is no one address family which says
"send the packet as is", where the data portion of the packet contains a complete packet to be transmitted
without further processing. Therefore, in general, you can't send arbitrary packets. For the Ethernet, how­
ever, the address family AF _ UNSPEC is defined so that the remaining 14 bytes of the sockaddr correspond
the the first 14 bytes of the outgoing packet, which are the (6 byte) destination address, the (6 byte) source
address (possibly overridden), and the (2 byte) type. See struct ether_header in <netinetlif_ether.c>.
Therefore, for Ethernet in particular, it is possible to transmit an arbitrary packet. In the example which
follows, rarp _ write accepts an arbitrary packet and performs the interface specific manipulations required
to transmit that packet

The following definitions are taken from <netlnit.h>.

Sun Release 3.2

tdefine NITIFSIZ 10 /* size of ifname in sockaddr */
tdefine NITBUFSIZ 1024 /* buffers are rounded up to a

* mUltiple of this size (MCLBYTES) */
struct sockaddr_nit {

u short snit_family;
caddr t snit_cookie; /* link to filtering */
char snit_ifname[NITIFSIZ]; /* interface name (eg, ieO) */

} ;

/* Header preceeding each packet returned to user */
struct nit_hdr {

int nh_state; /* state of tap -- see below */
struct timeval nh_timestamp; /* time of arriving packet */
int nh_wirelen; /* length (with header) off wire */

Last change: 21 November 1985 473

NIT (4P) SPECIAL FILES NIT (4P)

} ;

union
int
int
int
int

nh_un;

info;
datalen;
dropped;
seqno;

/* generic information */
/* length of saved packet portion */
/* number of dropped matched packets */
/* sequence number */

#define nh info
#define nh datalen
#define nh_dropped
#define nh_seqno

nh un. info
nh un.datalen
nh_un.dropped
nh_un. seqno

/* Ioctl parameter block */
struct nit_ioc {

int
int
u int
int
int
int

nioc_bufspace;
nioc_chunksize;
nioc_typetomatch;
nioc_snaplen;
nioc_bufalign;
nioc_bufoffset;

/* total buffer space to use */
/* size of chunks to send */

struct timeval nioc_timeout;
int nioc_flags;

/* magic type with which to match
/* length of packet portion to sna
/* packet header alignment mUltipl
/* packet header alignment offset
/* delay after packet before drain
/* see below */

} ;

#define NT NOTYPES ((u_int) 0) /* match no packet types */
#define NT ALLTYPES ((u_int) -1) /* match all packet types */

#define NF PROMISC Ox01 /* enter promiscuous mode */
#define NF TIMEOUT Ox02 /* timeout value valid */
#define NF BUSY Ox04 /* buffer is busy (has data)

/*
* States for the packet capture portion of nit,
* some of which are passed to the user.
*/

#define NIT_QUIET 0 /* inactive */
#define NIT CATCH 1 /* capturing packets */
#define NIT NOMBUF 2 /* discarding out of mbufs */

*/

#define NIT NOCLUSTER 3 /* discarding -- out of mclusters */
#define NIT NOSPACE 4
/* Pseudo-states returned in
#define NIT_SEQNO 5

/* discarding -- would exceed bufspace *
information packets */

/* sequence number of chunk */

To use nit:

474

o Include definitions and declare needed variables, for example
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/nit.h>
#include <net/if.h>

struct sockaddr nit snit;
struct nit ioc nioc;

Last change: 21 November 1985 Sun Release 3.2

NIT (4P) SPECIAL FILES

o Create a socket with the call
s = socket(AF_NIT, SOCK_RAW, NITPROTO_RAW);

o Bind it to an interface with a code fragment like
snit.snit_family = AF_NIT;

NIT (4P)

strncpy(snit.snit_ifname, "ieO", sizeof (snit.snit ifname»;
bind(s, (struct sockaddr *) &snit, sizeof (snit»;

o To establish the operating modes, issue an ioctl; for example
bzero(&nioc, sizeof(nioc»;
nioc.nioc_bufspace = NITBUFSIZ;
nioc.nioc_chunksize = NITBUFSIZ;
nioc.nioc_typetomatch = NT_ALLTYPES;
nioc.nioc_snaplen = 32767;
nioc.nioc_flags = NF_TIMEOUT;
nioc.nioc_timeout.tv_usec = 200;
if (ioctl (if_fd, SIOCSNIT, &nioc) ! = 0) {

perror("nit ioctl");
exit(2);

o To receive packets, issue reads (or recvs). To transmit packets, issue writes (or sends). For exam­
ple, the following routine will transmit an arbitrary packet (including address information) on the Eth­
ernet. Note that the Ethernet addresses and type are provided in the incoming buffer buj, and must be
moved into the sockaddr destination address to satisfy the kernel.

rarp_write(fd, buf, len)
int fd, len;
char *buf;

struct sockaddr sa;
int offset = sizeof(sa.sa_data);
int result;

sa.sa_family = AF_UNSPEC;
bcopy(buf, sa. sa_data, offset);
result = sendto(fd, buf+offset, len-offset,

0, &sa, sizeof(sa»;
return (result+offset);

SEE ALSO

BUGS

bind(2), config(8), ec(4S), ie(4S), if(4N), ioctl(2), read(2V), recv(2), send(2), socket(2), write(2V).

Network Implementation in Networking on the Sun Workstation.

This protocol is provisional, and is subject to change.

Buffering is limited to 32767 bytes.

Interface ioctl's may have different semantics on a nit socket.

nit is unable to see outgoing transmissions on some interfaces.

The selection criteria is very simplistic. Therefore, many packets may be passed to the user program, espe­
cially in promiscuous mode.

Sun Release 3.2 Last change: 21 November 1985 475

NULL(4)

NAME
null - data sink

SYNOPSIS

SPECIAL FILES

None; included with standard system.

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return an end-of-file indication.

FILES
/dev/null

476 Last change: 17 August 1983

NULL(4)

Sun Release 3.2

PTY(4) SPECIAL FILES PTY(4)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The pty driver provides support for a pair of devices collectively known as a pseudo-terminal. The two
devices comprising a pseudo-terminal are known as a master and a slave. The slave device provides an
interface identical to that described in tty(4), but instead of having a hardware interface such as the Zilog
chip and associated hardware used by zs(4S) supporting the terminal functions, the functions of the termi­
nal are implemented by another process manipulating the master side of the pseudo-terminal.

The master and the slave sides of the pseudo-terminal are tightly connected. Any data written on the mas­
ter device is given to the slave device as input, as though it had been received from a hardware interface.
Any data written on the slave terminal can be read from the master device (rather than being transmitted
from a UART).

In configuring, if no optional "count" is given in the specification, 16 pseudo terminal pairs are
configured.

A few special ioctl's are provided on the control-side devices of pseudo-terminals to provide the func­
tionality needed by applications programs to emulate real hardware interfaces:

TIOCSTOP
Stops output to a terminal (that is, like typing "S). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing "Q). Takes no parameter.

There are also two independent modes which can be used by applications programs:

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a nonzero
parameter and disabled by specifying (by reference) a zero parameter. When applied to the mas­
ter side of a pseudo terminal, each subsequent read from the terminal will return data written on
the slave part of the pseudo terminal preceded by a zero byte (symbolically defined as
TIOCPKT _DATA), or a single byte reflecting control status information. In the latter case, the
byte is an inclusive-or of zero or more of the bits:

TIOCPKT FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT FLUSHWRITE
whenever the write queue for the terminal is flushed

TIOCPKT STOP
whenever output to the terminal is stopped a la "S.

TIOCPKT START
whenever output to the terminal is restarted.

TIOCPKT DOSTOP
whenever t_stope is "s and t_starlc is "Q.

TIOCPKT NOSTOP
whenever the start and stop characters are not "srQ.

This mode is used by rlogin(1C) and rlogind(8C) to implement a remote-echoed, locally "srQ
flow-controlled remote login with proper back-flushing of output when interrupts occur; it can be
used by other similar programs.

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of TIOCPKT. This mode causes

Sun Release 3.2 Last change: 26 July 1985 477

PTY(4)

FILES

BUGS

478

SPECIAL FILES PTY(4)

input to the pseudo terminal to be flow controlled and not input edited (regardless of the terminal
mode). Each write to the control terminal produces a record boundary for the process reading the
terminal. In normal usage, a write of data is like the data typed as a line on the terminal; a write of
o bytes is like typing an end-of-file character. TIOCREMOTE can be used when doing remote
line editing in a window manager, or whenever flow controlled input is required.

Idev/pty[p-r][O-9a-f]
I dev/tty[p-r] [0-9a-f]

master pseudo terminals
slave pseudo terminals

It is apparently not possible to send an EOT by writing zero bytes in TIOCREMOTE mode.

Last change: 26 July 1985 Sun Release 3.2

ROUTING (4N) SPECIAL FILES ROUTING (4N)

NAME
routing - system supporting for local network packet routing

DESCRIPTION
The network facilities provided general packet routing, leaving routing table maintenance to applications
processes.

A simple set of data structures comprise a "routing table" used in selecting the appropriate network inter­
face when transmitting packets. This table contains a single entry for each route to a specific network or
host. A user process, the routing daemon, maintains this data base with the aid of two socket specific
ioetl(2) commands, SIOCADDRT and SIOCDELRT. The commands allow the addition and deletion of a
single routing table entry, respectively. Routing table manipulations may only be carried out by super-user.

A routing table entry has the following form, as defined in <net/route.h >:

rt_hash;
struct rtentry {

uJong
struct
struct
short
short

sockaddr rt_ dst;
sockaddr rt_gateway;
rtJlags;

};

rtyefcnt;
u_Iong rt_use;
struct ifnet *rt_ifp;

with rt Jlags defined from:
#define RTF UP
#define RTF GATEWAY
#define RTF HOST

Ox1
Ox2
Ox4

/* route usable */
/* destination is a gateway */
/* host entry (net otherwise) */

Routing table entries come in three flavors: for a specific host, for all hosts on a specific network, for any
destination not matched by entries of the first two types (a wildcard route). When the system is booted,
each network interface autoconfigured installs a routing table entry when it wishes to have packets sent
through it. Normally the interface specifies the route through it is a "direct" connection to the destination
host or network. If the route is direct, the transport layer of a protocol family usually requests the packet
be sent to the same host specified in the packet. Otherwise, the interface may be requested to address the
packet to an entity different from the eventual recipient (i.e. the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use, or interface
fields; these are filled in by the routing routines. If a route is in use when it is deleted (rt _refent is non­
zero), the resources associated with it will not be reclaimed until all references to it are removed.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if requested to delete
a non-existant entry, or ENOBUFS if insufficient resources were available to install a new route.

User processes read the routing tables through the /dev/kmem device.

The rt _use field contains the number of packets sent along the route. This value is used to select among
multiple routes to the same destination. When multiple routes to the same destination exist, the least used
route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are used only
when the system fails to find a route to the destination host and network. The combination of wildcard
routes and routing redirects can provide an economical mechanism for routing traffic.

SEE ALSO
route(8C), routed(8C)

Sun Release 3.2 Last change: 26 July 1985 479

SD(4S) SPECIAL FILES SD(4S)

NAME
sd - Disk driver for SCSI Disk Controllers

SYNOPSIS - SUN-3
controller seO at vme24d16 ? csr Ox200000 priority 2 vector scintr Ox40
controller siO at vme24d16 ? csr Ox200000 priority 2 vector siintr Ox40
controller siO at obio ? csr Ox140000 priority 2
disk sdO at seO drive 0 flags 0
disk sdl at seO drive I flags 0
disk sdO at siO drive 0 flags 0
disk sdl at siO drive I flags 0
disk sd2 at seO drive 8 flags 0
disk sd2 at siO drive 8 flags 0

The first two controller lines above specify the first SCSI host adapter on a Sun-3/160. The third con­
troller line above specifies the first and only SCSI host adapter on a Sun-3/50. The first four disk lines
specify the first and second disk drives on the first SCSI controller in a system. The last two disk lines
specify the first disk drive on the second SCSI controller in a system.

The drive value is calculated using the formula:
8 * target + unit

where target is the SCSI target (controller number on host adapter), and unit is the SCSI logical unit

SYNOPSIS - SUN-2
controller seO at mbmem ? csr Ox80000 priority 2
controller sel at mbmem ? csr Ox84000 priority 2
controller seO at vme24 ? csr Ox200000 priority 2 vector scintr Ox40
disk sdO at scO drive 0 flags 0
disk sdl at scO drive I flags 0
disk sd2 at sel drive 0 flags 0
disk sd3 at sel drive I flags 0

The first two controller lines above specify the first and second SCSI host adapters on a Sun-21120 or Sun-
21170. The third controller line above specifies the first host adapter on a Sun-21160. The four disk lines
specify the first and second disk drives on the first and second SCSI controllers in a system (where each
SCSI controller is on a different host adapter).

The drive value is calculated as described above.

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive O. The standard device
names begin with "sd" followed by the drive number and then a letter a-h for partitions 0-7 respectively.
The character? stands here for a drive number in the range 0-7.

The block-files access the disk using the system's normal buffering mechanism and may be read and writ­
ten without regard to physical disk records. There is also a 'raw' interface that provides for direct
transmission between the disk and the user's read or write buffer. A single read or write call usually results
in one 110 operation; therefore raw 110 is considerably more efficient when many words are transmitted.
The names of the raw files conventionally begin with an extra 'r.'

In raw 110, requests to the SCSI disk must have an offset on a 512 byte boundary, and their length must be a
multiple of 512 bytes or the driver will return an error (EINV AL). Likewise seek calls should specify a
multiple of 512 bytes.

DISK SUPPORT

480

This driver handles all ST-506 and ESDI drives (assuming the correct controller is installed), by reading a
label from sector 0 of the drive which describes the disk geometry and partitioning.

Last change: 25 July 1986 Sun Release 3.2

SD(4S)

FILES

SPECIAL FILES SO(4S)

The sd?a partition is normally used for the root file system on a disk, the sd?b partition as a paging area,
and the sd?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor­
mally the sd?g partition.

/dev/sd[O-7] [a-h] block files
/dev/rsd[O-7][a-h] raw files

SEE ALSO
dkio(4S)
Adaptec ACB 4000 and 5000 Series Disk Controllers OEM Manual
Emulex MD21 SCSI Disk Controller Programmer Reference Manual

DIAGNOSTICS
sd%d%c: cmd how (msg) starting blk %d, blk %d (abs blk %d).

Sun Release 3.2

A command such as read or write encountered a error condition (how): either it failed, the unit
was restored, or an operation was retry' ed. The msg is derived from the error number given by
the controller, indicating a condition such as "drive not ready" or "sector not found". The start­
ing blk is the first sector of the erroneous command, relative to the beginning of the partition
involved. The blk is the sector in error, again relative to the beginning of the partition involved.
The abs blk is the absolute block number of the sector in error.

Last change: 25 July 1986 481

ST(4S) SPECIAL FILES ST(4S)

NAME
st - Driver for Sysgen SC 4000 (Archive) and the Emulex MT-02 Tape Controller

SYNOPSIS - SUN-3
controller scO at vme24d16 ? csr Ox200000 priority 2 vector scintr Ox40
controller siO at vme24d16 ? csr Ox200000 priority 2 vector siintr Ox40
controller siO at obio ? csr Ox140000 priority 2
tape stO at scO drive 32 Bags 1
tape stO at siO drive 32 Bags 1
tape st1 at scO drive 40 Bags 1
tape stl at siO drive 40 Bags 1

The first two controller lines above specify the first SCSI controller on a Sun-3/160. The third controller
line above specifies the first and only SCSI controller on a Sun-3/50. The four tape lines specify the first
and second tape drives on the first SCSI controller in a system.

The drive value is calculated using the formula:
8 * target + unit

where target is the SCSI target, and unit is the SCSI logical unit.

SYNOPSIS - SUN-2
controller scO at mbmem ? csr Ox80000 priority 2
controller scO at vme24 ? csr Ox200000 priority 2 vector scintr Ox40
controller sc1 at mbmem ? csr Ox84000 priority 2
tape stO at scO drive 32 Bags 1
tape stO at scl drive 32 Bags 1
tape stl at scO drive 40 Bags 1
tape stl at sc1 drive 40 Bags 1

The first two controller lines above specify the first and second SCSI controllers on a Sun-2/120 or Sun-
21170. The third controller line specifies the first controller on a Sun-2II60. The four tape lines specify
the first and second tape drives on the first and second SCSI controllers in a system.

The drive value is calculated as described above.

DESCRIPTION

FILES

The Sysgen tape controller is a SCSI bus interface to an Archive streaming tape drive. It provides a stan­
dard tape interface to the device, see mtio(4), with some deficiencies listed under BUGS below. To utilize
the QIC 24 format, access the logical device that is eight more than the default physical (QIC 11) device
(that is, rstO = QIC 11, rst8 = QIC 24).

/dev/rst[O-3]
/dev/rst[8-11]
/dev/nrst[O-3]
/dev/nrst[8-11]

QIC 11 Format
QIC 24 Format
non-rewinding QIC 11 Format
non-rewinding QIC 24 Format

SEE ALSO
mtio(4)

Sysgen SC4000 Intelligent Tape Controller Product Specification

DIAGNOSTICS

482

st*: tape not online.
st*: no cartridge in drive.
st*: cartridge is write protected.
st*: format change failed.
st*: device not supported.

Last change: 21 May 1986 Sun Release 3.2

ST(4S)

BUGS

SPECIAL FILES

The tape cannot reverse direction so the BSF and BSR ioctls are not supported.

The FSR ioctl is not supported.

ST(4S)

Most disk I/O over the SCSI bus is prevented when the tape is in use. This is because the controller does
not free the bus while the tape is in motion (even during rewind).

When using the raw device, the number of bytes in any given transfer must be a multiple of 512. If it is
not, the device driver returns an error.

The driver will only write an end of file mark on close if the last operation was a write, without regard for
the mode used when opening the file. This will cause empty files to be deleted on a raw tape copy opera­
tion.

Some older systems may not support the QIC 24 device, and may complain (or exhibit erratic behavior)
when the user attempts a QIC 24 device access.

Sun Release 3.2 Last change: 21 May 1986 483

TCP(4P) SPECIAL FILES TCP(4P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
None; included automatically with inet(4F).

DESCRIPTION

484

TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarchy of proto­
cols which support multi-network applications. TCP provides for reliable inter-process communication
between pairs of processes in host computers attached to distinct but interconnected computer communica­
tion networks. Very few assumptions are made as to the reliability of the communication protocols below
TCP layer. TCP assumes it can obtain a simple, potentially unreliable datagram service from the lower
level protocols. In principle, TCP should be able to operate above a wide spectrum of communication sys­
tems ranging from hard-wired connections to packet-switched or circuit switched networks.

TCP fits into a layered protocol architecture just above the basic Internet Protocol (IP) described in ip(4P)
which provides a way for TCP to send and receive variable-length segments of information enclosed in
Internet datagram "envelopes." The Internet datagram provides a means for addressing source and desti­
nation TCPs in different networks, deals with any fragmentation or reassembly of the TCP segments
required to achieve transport and delivery through multiple netwokrs and interconnecting gateways, and
has the ability to carry information on the precedence, security classification and compartmentalization of
the TCP segments (although this is not currently implemented under the UNIX system.)

An application process interfaces to TCP through the socket(2) abstraction and the related calles bind(2),
listen(2), accept(2), connect(2), send(2) and recv(2}. The primary purpose of TCP is to provide a reliable
bidirectional virtual circuit service between pairs of processes. In general, the TCP's decide when to block
and forward data at their own convenience. In the UNIX system implementation, it is assumed that any
buffering of data is done at the user level, and the TCP's transmit available data as soon as possible to their
remote peer. They do this and always set the PUSH bit indicating that the transferred data should be made
available to the user process at the remote end as soon as practicable.

To provide reliable data TCP must recover from data that is damaged, lost, duplicated, or delivered out of
order by the underlying internet communications system. This is achieved by assigning a sequence number
to each byte of data transmitted and requiring a positive acknowledgement from the receiving TCP. If the
ACK is not received within an (adaptively determined) timeout interval, the data is retransmitted. At the
receiver, the sequence numbers are used to correctly order segments that may be received out of order and
to eliminate duplicates. Damage is handled by adding a checksum to each segment transmitted, checking it
at the receiver, and discarding damaged segments. As long as the TCP's continue to function properly and
the internet system does not become disjoint, no tranmission errors will affect the correct delivery of data,
as TCP recovers from communications errors.

TCP provides flow control over the transmitted data. The receiving TCP is allowed to specify the amount
of data which may be sent by the sender, by returning a window with every acknowledgement indicating a
range of acceptable sequence numbers beyond the last segment successfully received. The window indi­
cates an allowed number of bytes that the sender may transmit before receiving further permission.

TCP extends the standard 32-bit Internet host addresses with a 16-bit port number space; the combined
addresses are available at the UNIX system process level in the standard sockaddr _in format described in
inet(4F}.

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets initiate connections to
passive sockets. By default TCP sockets are created active; to create a passive socket the listen(2} system
call must be used after binding the socket to an address with the bind (2) system call. Only passive sockets
may use the accept(2) call to accept incoming connections. Only active sockets may use the connect(2}
call to initiate connections.

Passive sockets may "underspecify" their location to match incoming connection requests from multiple
networks. This technique, termed "wildcard addressing", allows a single server to provide service to
clients on multiple networks. To create a socket which listens on all networks, the Internet address

Last change: 26 July 1985 Sun Release 3.2

TCP(4P) SPECIAL FILES TCP(4P)

INADDR _ANY must be bound. The TCP port may still be specified at this time; if the port is not specified
the system will assign one. Once a connection has been established the socket's address is fixed by the
peer entity's location. The address assigned the socket is the address associated with the network interface
through which packets are being transmitted and received. Normally this address corresponds to the peer
entity's network. See inet(4F) for a complete description of addressing in the Internet family.

A TCP connection is created at the server end by doing a socket(2), a bind(2) to establish the address of the
socket, a listen (2) to cause connection queueing, and then an accept (2) which returns the descriptor for the
socket. A client connects to the server by doing a socket (2) and then a connect(2). Data may then be sent
from server to client and back using read (2V) and write (2V).

TCP implements a very weak out-of-band mechanism, which may be invoked using the out-of-band provi­
sions of send (2). This mechanism allows setting an urgent pointer in the data stream; it is reflected to the
TCP user by making the byte after the urgent pointer available as out-of-band data and providing a
SIOCA TMARK ioctl which returns an integer indicating whether the stream is at the urgent mark. The
system never returns data across the urgent mark in a single read. Thus, when a SIGURG signal is
received indicating the presence of out-of-band data, and the out-of-band data indicates that the data to the
mark should be flushed (as in remote terminal processing), it suffices to loop, checking whether you are at
the out-of-band mark, and reading data while you are not at the mark.

SEE ALSO

BUGS

inet(4F), ip(4P)

It should be possible to send and receive TCP options.

The system always tries to negotiates the maximum TCP segment size to be 1024 bytes. This can result in
poor performance if an intervening network performs excessive fragmentation.

SIOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark. for the socket queue, and so
that it can be changed from 2048 bytes to be larger or smaller, have been defined (in <sys/ioctl.h» but not
implemented.

Sun Release 3.2 Last change: 26 July 1985 485

TERMIO(4V) SPECIAL FILES TERMIO(4V)

NAME
termio - general terminal interface

SYNOPSIS
None; included by default.

DESCRIPTION

486

This sectiorrdescribes the special file /dev/tty and the terminal drivers used for interactive I/O by devices
such as zs(4S), cons(4S), and pty(4).

Opening a Terminal File
When a terminal file is opened, it normally causes the process to wait until a connection is established. In
practice, users' programs seldom open these files; they are opened by init (8) and become a user's standard
input, output, and error files.

The Controlling Terminal
A terminal may belong to a process, in which case it is known as its controlling terminal. This controlling
terminal may have a distinguished process group associated with it which plays a special role in handling
QUIT and INT (interrupt) signals, as discussed below. The controlling tenninal is inherited by a child pro­
cess during afork(2).

If a process that has no controlling terminal opens a terminal file, then the device or pseudo-device associ­
ated with that terminal file becomes the controlling terminal for the process; the terminal's distinguished
process group is set to that of the process.

The file /dev/tty is, for each process, a synonym for its controlling terminal. This is useful for programs
that wish to be sure of writing messages on the terminal directly, no matter how output has been redirected.
It can also be used for programs that demand a filename for output when typed output is desired and it is
tiresome to find out which terminal is currently in use.

Implementation Restrictions
Due to restrictions imposed by the current terminal driver, some features are not fully supported:

1. Certain terminal driver features are always enabled, except when the driver is in "RAW mode" .
If the character size is 8 bits, no parity is specified, no output processing is selected (i.e., either
OPOST is on or none of OLCUC, ONLCR, or any of the delays are selected), and no input process is
selected (as with BRKINT, IGNPAR, INPCK, ISTRIP, ICRNL, IUCLC, and IXON are all off in the
c _iflag word and ISIG, ICANON, and XCASE are all off in the c _lflag word), the driver is in "RAW
mode". If a terminal port is being used for transferring binary data (such as when uucp(l) or
some microcomputer data transfer program like KERMIT is using the port), it is usually in ' 'RAW
mode". If it is being used to give a user interactive access to the computer, it is usually not in
"RAW mode".

BRKINT and IGNPAR are disabled only in "RAW mode"; if they are to be disabled, the other
modes listed must also be disabled. The WERASE, REPRINT, DISCARD, and LNEXT characters
are also disabled only in raw mode.

2. IUCLC, OLCUC, and XCASE must either all be on or all be off, and ICRNL and ONLCR must either
both be on or both be off.

3. The MIN and TIME values supported by other implementations can be set, but this has no effect on
the terminal driver. The driver behaves as if MIN were 1 and TIME were O.

4. Character sizes CS5 and CS6 may not be selected; size CS7 may only be selected when PARENB
is set, and size CS8 may only be selected when PARENB is not set. Furthermore, if size CS8 is
selected, unless OPOST is not set, it only applies to input, not output.

5. IGNBRK, PARMRK, INLCR, IGNCR, ONOCR, OFILL, OFDEL and ECHONL are treated as if they
were always not set. CREAD and ECHOK are treated as if they were always set.

6. The TCSETAW call will flush any pending input, just as TCSET AF does. TCSBRK will also flush
any pending input.

Last change: Sun Release 3.2

TERMIO(4V) SPECIAL FILES TERMIO(4V)

7. The EOF character may not be escaped with a backslash (\) (unless XCASE is set; see below).

8. If XCASE is set, a backslash (\) followed by any character other than a letter or one of the special
characters listed in the description of XCASE will be read as the character; the backslash will not
be read This includes the special characters ERASE, WERASE, KIlL, REPRINT, EOF, NEWLINE
(the ASCII NL character), EOL, and DISCARD.

Reading Characters
A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are only lost when the system's character-input
buffers become completely full (which is rare), or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some program. Currently, this limit is 256 char­
acters. When the input limit is reached, if the terminal port is in ' 'RAW mode' , , all the saved characters are
thrown away without notice. Otherwise, any further input is discarded and an ASCII BEL character is
echoed.

Two general kinds of input processing are available, determined by whether the terminal device file is in
canonical mode or non-canonical mode (see ICANON in the Local Modes section).

Canonical Mode Input Processing
In canonical mode, terminal input is processed in units of lines. A line is delimited by a NL (ASCII LF) char­
acter, an end-of-file (ASCII EOT) character, or an end-of-line character. This means that a program
attempting to read will be suspended until an entire line has been typed. Also, no matter how many charac­
ters are requested in the read call, at most one line will be returned. It is not, however, necessary to read a
whole line at once; any number of characters can be requested in a read, even one, without losing informa­
tion.

Erase and kill processing is normally done during input. The ERASE character (by default, the character
DEL) erases the last character typed. The WERASE character (the character AW) erases the last "word"
typed (but not any preceding spaces or tabs). A "word" is defined as a sequence of nonblank characters,
with tabs counted as blanks. Neither ERASE nor WERASE will erase beyond the beginning of the line. The
KILL character (by default, the character AU) kills (deletes) the entire input line, and optionally produces a
NL character. These special characters operate on a keystroke basis, independently of any backspacing or
tabbing that may have been done.

The REPRINT character (the character "R) prints a NL followed by all characters which have not been read.
Reprinting also occurs automatically if characters which would normally be erased from the screen are
fouled by program output. The characters are reprinted as if they were being echoed; as a consequence, if
ECHO is not set, they are not printed.

The ERASE and KILL characters may be entered literally by preceding them with the escape character (\).
In this case the escape character is not read. The ERASE and KILL characters may be changed by such
commands as stty(l), and tset(l).

Noncanonical Mode Input Processing
In non-canonical mode, input characters are not assembled into lines, and erase and kill processing does
not occur. Characters are read as soon as they are typed.

Writing Characters
When one or more characters are written, they are transmitted to the terminal as soon as previously-written
characters have finished typing. Input characters are echoed as they are typed, if echoing has been enabled.
If a process produces characters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue has drained down to some threshold, the program is resumed.

Special Characters
Certain characters have special functions on input and/or output. These functions and their default charac­
ter values are summarized as follows:

INTR (Control-C or ASCII ETX) generates a SIGINT signal which is sent to all processes in the dis­
tinguished process group associated with the terminal. Normally, each such process is forced

Sun Release 3.2 Last change: 487

TERMIO(4V) SPECIAL FILES TERMIO(4V)

488

to terminate, but arrangements may be made either to ignore the signal or to receive a trap to
an agreed-upon location; see sigvec (2).

QUIT (Control-I or ASCII FS) generates a SIGQUIT signal which is sent to all processes in the dis­
tinguished process group associated with the terminal. Its treatment is identical to the inter­
rupt signal except that, unless a receiving process has made other arrangements, it will not
only be terminated but a core image file (called core) will be created in the current working
directory.

ERASE (Rubout or ASCII DEL) erases the preceding character. It will not erase beyond the start of a
line, as delimited by a NL, EOF, or EOL character.

WERASE CW or ASCII ETB) erases the preceding "word". It will not erase beyond the start of a line,
as delimited by a NL, EOF, or EOL character.

KILL CU or ASCII NAK) deletes the entire line, as delimited by a NL, EOF, or EOL character.

REPRINT CR or ASCII DC2) reprints all characters which have not been read, preceded by a NL.

EOF CD or ASCII EaT) may be used to generate an end-of-file from a terminal. When received, all
the characters waiting to be read are immediately passed to the program, without waiting for a
NL, and the EOF is discarded. Thus, if there are no characters waiting, which is to say the EOF
occurred at the beginning of a line, zero characters will be passed back, which is the standard
end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or escaped.

EOL (Off by default) is an additional line delimiter, like NL. It is not normally used.

SUSP CZ or ASCII EM) is used by the job control facility to change the current job to return to the
controlling job. It generates a SIGTSTP signal, which stops all processes in the terminal's pro­
cess group.

DSUSP CV or ASCII SUB) is used by the job control facility to change the current job to return to the
controlling job. It generates a SIGTSTP signal as SUSP does, but the signal is sent when a pro­
gram attempts to read the DSUSP character, rather than when it is typed.

STOP CS or ASCII DC3) can be used to temporarily suspend output It is useful with CRT terminals
to prevent output from disappearing before it can be read While output is suspended, STOP
characters are ignored and not read.

START CQ or ASCII DCI) is used to resume output which has been suspended by a STOP character.
While output is not suspended, START characters are ignored and not read The start/stop
characters can not be changed or escaped.

DISCARD CO or ASCII SI) causes subsequent output to be discarded until another DISCARD character is
typed, more input arrives, or the condition is cleared by a program.

LNEXT CV or ASCII SYN) causes the special meaning of the next character to be ignored; this works
for all the special characters mentioned above. This allows characters to be input that would
otherwise get interpreted by the system (such as KILL, or QUIT).

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be changed to suit individual tastes.
The ERASE and KILL characters may be escaped by a preceding \ character, in which case no special func­
tion is done. Any of the special characters may be preceded by the LNEXT character, in which case no spe­
cial function is done.

When in ' 'RAW mode" , none of the special characters perform any special function.

Modem Disconnect
When the carrier signal from the data-set drops, a SIGHUP signal is sent to all processes in the dis­
tinguished process group associated with this terminal. Unless other arrangements have been made, this
signal causes the processes to terminate. If SIGHUP is ignored or caught, any subsequent read returns with
an end-of-file indication. Thus, programs that read a terminal and test for end-of-file can terminate

Last change: Sun Release 3.2

TERMIO(4V) SPECIAL FILES TERMIO(4V)

appropriately when hung up on.

ioctl Calls
Several ioctl(2) system calls apply to terminal files. The primary calls use the following structure, defined
in <termio.h>:

#define NCC 8
struct termio {

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_Iflag; /* local modes */
char cJine; /* line discipline */
unsigned char c_cc[NCC]; /* control chars */

};

The special control characters are defined by the array c _cc. The relative positions and initial values for
each function are as follows:

o VINTR ETX
1 VQUIT FS
2 VERASE DEL
3 VKILL NAK
4 VEOF EOT
5 VEOL (disabled)
6 reserved
7 reserved

Input Modes
The c _iflag field describes the basic terminal input control:

BRKlNT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
INPCK 0000020 Enable input parity check.
ISfRIP 0000040 Strip character.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If BRKINT is set, the break condition will generate an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and parity errors are ignored. A framing or parity
error which is not ignored is read as the ASCII NUL character (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is disabled.
This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7 -bits, otherwise all eight bits are processed.

If ICRNL is set, a received CR character is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding lower-case
character. Note: if this bit is set, the OLCUC bit in the C _oJlag word and the XCASE bit in the c _lflag word
must also be set

If IXON is set, start/stop output control is enabled. A received STOP character will suspend output and a
received START character will restart output. All start/stop characters are not read, but merely perform
flow control functions. If IXANY is set, any input character, will restart output which has been suspended.

Sun Release 3.2 Last change: 489

TERMIO(4V) SPECIAL FILES TERMIO(4V)

490

If IXOFF is set, the system will transmit a STOP character when the input queue is nearly full, and a START
character when enough input has been read that the input queue is nearly empty again.

The initial input control value is undefined.

Output Modes
The C _oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
ONLRET 0000040 NL performs CR function.
NLDL Y 0000400 Select
NL
delays:

NLO 0
NLI 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0
CRI 0001000
CR2 0002000
CR3 0003000

TABDLY 0014000 Select horizontal-tab delays
TABO 0 or tab expansion:
TAB I 0004000
TAB 2 0010000
TAB3 0014000 Expand tabs to spaces.

BSDLY 0020000 Select backspace delays:
BSO 0
BSI 0020000

VfDLY 0040000 Select vertical-tab delays:
VfO 0
Vfl 0040000

FFDLY 0100000 Select form-feed delays:
FFO 0
FFI 0100000

If oposr is set, output characters are post-processed as indicated by the remaining flags, otherwise charac­
ters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case character.
Note: if this bit is set, the IUCLC bit in the c _iflag word and the XCASE bit in the c _lflag word must also be
set

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If ONLRET is set, the NL char­
acter is assumed to do the carriage-return function; the column pointer will be set to 0 and the delays
specified for CR will be used. Otherwise the NL character is assumed to do just the line-feed function; the
column pointer will remain unchanged. The column pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer­
tain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

NEWLINE
delay lasts about 0.10 seconds. IfONLRET is set, the carriage-return delays are used instead of the NL
delays.

Last change: Sun Release 3.2

TERMIO(4V) SPECIAL FILES TERMIO(4V)

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.08 seconds, and
type 3 is about 0.16 seconds.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is not supported. Type 3
specifies that tabs are to be expanded into spaces.

Backspace delay is not supported.

The actual delays depend on line speed and system load.

The initial output control value is undefined.

Control Modes
The c _ cflag field describes the hardware control of the terminal:

CBAUD
BO
B50
B75
BllO
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
EXTA
EXTB

CSIZE

CS7
CS8

CSTOPB

PARENB
PARODD

HUPCL
CLOCAL

0000017 Baud rate:
o Hang up
0000001 50 baud
0000002 75 baud
0000003 110 baud
0000004 134.5 baud
0000005 150 baud
0000006 200 baud
0000007 300 baud
0000010 600 baud
0000011 1200 baud
0000012 1800 baud
0000013 2400 baud
0000014 4800 baud
00000 15 9600 baud
0000016 19200 baud
0000017 External B
0000060 Character size:
0000040 7 bits
0000060 8 bits
0000100 Send two stop bits, else one.
0000400 Parity enable.
0001000 Odd parity, else even.
0002000 Hang up on last close.
0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connection. If BO is
specified, the data-terminal-ready signal will not be asserted. Normally, this will disconnect the line. For
any particular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception. This size does not
include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one stop bit. For example,
at 110 baud, two stop bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each character. If
parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity is used. The only com­
binations that are supported are CS7 with PARENB and CS8 without PARENB.

If HUPCL is set, the line will be disconnected when the last process with the line open closes it or ter­
minates. That is, the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem control. Otherwise
modem control is assumed.

Sun Release 3.2 Last change: 491

TERMIO(4V) SPECIAL FILES TERMIO(4V)

492

The initial hardware control value after open is undefined.

Local Modes

The c _lflag field of the argument structure is used by the line discipline to control terminal functions. The
basic line discipline provides the following:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upperllower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
NOFLSH 0000200 Disable flush after interrupt or quit

If ISIG is set, each input character is checked against the special control characters INTR, QUIT, SUSP, and
DSUSP. If an input character matches one of these control characters, the function associated with that
character is performed. If ISIG is not set, no checking is done. Thus these special input functions are pos­
sible only if ISIG is set. These functions may be disabled individually by changing the value of the control
character to an unlikely or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions, and the
assembly of input characters into lines delimited by NL, EOF, and EOL. If ICANON is not set, read requests
are satisfied directly from the input queue. A read will be satisfied as soon as one character is received; the
values of MIN and TIME are ignored.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with a \
character, and is output preceded by a \ character. In this mode, the following escape sequences are gen­
erated on output and accepted on input:

for: use:
\,
\!
\A

{ \(
} \)

Any other character, when preceded on input by \, will be read as itself, and the \ will not be read. This
means a \ must be entered as \\. For example, A is input as \a, \n as \\n, and \N as \\\n. Note: if this bit is
set, the IUCLC bit in the c _iflag word and the OLCUC bit in the c _oflag word must also be set.

If ECHO is set, characters are echoed as received. If ECHO is not set, input characters are not echoed.

When ICANON is set, the following echo functions are possible. If ECHO and ECHOE are set, the erase
character is echoed as a sequence of ASCII BS SP BS, which will clear the last character from a CRT screen.
If the baud rate is greater than 1200 baud, the kill character is echoed as a sequence of ASCII BS SP BS,
which will clear all the characters on the current line from a CRT screen; otherwise, it is echoed as itself (if
it is a control character, it will be echoed as described below) followed by an NL character. If ECHOE is
not set, the erase character is echoed by printing the character being erased; erased characters are echoed
between a backslash (\) and a slash (I). The NL character is always echoed after the kill character to
emphasize that the line will be deleted. Note that an escape character preceding the erase or kill character
removes any special function.

Non-printing (control) characters are normally echoed as AX, where X is the character given by adding 100
octal to the control character's code (so that the character with octal code 1 is echoed as A A), and the ASCII
DEL character, with code 177 octal, is echoed as A? In "RAW mode", control characters and DEL are
echoed as themselves.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR, QUIT, and
SUSP characters will not be done.

Last change: Sun Release 3.2

TERMIO(4V) SPECIAL FILES TERMIO(4V)

FILES

The initial line-discipline control value is undefined.

The primary ioctl (2) system calls have the form:

ioctl (fildes, cOmmLlnd, arg)
struct termio *arg;

The commands using this form are:

TCGETA

TCSETA

TCSETAW

Get the parameters associated with the terminal and store in the termio structure
referenced by arg.

Set the parameters associated with the terminal from the structure referred to by arg.
The change is immediate.

TCSETAF Wait for the output to drain, then flush the input queue and set the new parameters.
This form should be used when changing parameters that will affect output.

Additional ioctl (2) calls have the form:

ioctl (fildes, command, arg)
iot arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for 0.25
seconds).

TCXONC

TCFLSH

Note: this call will flush any pending input.

Start/stop control. If arg is 0, suspend output; if 1, restart suspended output.

If arg is 0, flush the input queue; if 1, flush the output queue; if 2, ftush both the
input and output queues.

ldev/tty*

SEE ALSO
stty(1 V), tset(1), fork(2), ioct1(2), setpgrp(2V), signal(2).

Sun Release 3.2 Last change: 493

TM(4S) SPECIAL FILES TM(4S)

NAME
tm - tapernaster 112 inch tape drive

SYNOPSIS - SUN-3
controller tmO at vmel6d16 ? csr OxaO priority 3 vector tmintr Ox60
controller tml at vmel6d16 ? csr Oxa2 priority 3 vector tmintr Ox61
tape mtO at tmO drive 0 Bags 1
tape mtO at tm1 drive 0 Bags 1

SYNOPSIS - SUN-2
controller tmO at mbio ? csr OxaO priority 3
controller tmO at vmel6 ? csr OxaO priority 3 vector tmintr Ox60
controller tml at mbio ? csr Oxa2 priority 3
controller tml at vmel6 ? csr Oxa2 priority 3 vector tmintr Ox61
tape mtO at tmO drive 0 Bags 1
tape mtO at tm1 drive 0 Bags 1

DESCRIPTION
The Tapernaster tape controller controls Pertec-interface 112" tape drives such as the CDC Keystone, pro­
viding a standard tape interface to the device, see mtio(4).

SEE ALSO
mt(1), tar(I), ar(4S)

DIAGNOSTICS

BUGS

494

tmn: no response from ctlr.
tmn : error n during config.
mm : not online.
mm: no write ring.
tmgo: gate wasn't open. Controller lost synch.
tmintr: can't clear interrupts.
tmn: stray interrupts.
mm : hard error bn=n er=%x.
mm : lost interrupt.

The Tapemaster controller does not provide for byte-swapping and the resultant system overhead prevents
streaming transports from streaming.

If a non-data error is encountered on non-raw tape, it refuses to do anything more until closed.

The system should remember which controlling terminal has the tape drive open and write error messages
to that terminal rather than on the console.

Last change: 17 April 1986 Sun Release 3.2

TTY(4) SPECIAL FILES TTY(4)

NAME
tty - general terminal interface

SYNOPSIS
None; included by default.

DESCRIPTION
This section describes the special file Idev/tty and the terminal drivers used for conversational computing
by devices such as zs(4S), cons(4S), and pty(4).

Line disciplines.

The system provides different line disciplines for controlling communications lines. In this version of the
system there are three disciplines available:

old The old (standard) terminal driver. This is used when using the standard shell sh(l) and for com­
patibility with Version 7 UNIX systems.

new A newer terminal driver, with features for job control; this must be used when using csh(1).

net A line discipline used for networking and loading data into the system over communications
lines. It allows high speed input at very low overhead, and is described in bk(4).

Line discipline switching is accomplished with the TIOCSETD ioctl:

int Idisc ::: LDISC;
ioctl(r, TIOCSETD, &Idisc);

where LOISC is OTTYDISC for the standard tty driver, NTTYDISC for the new driver and NETI.DISC
for the networking discipline. The standard (currently old) tty line discipline is 0 by convention. The
current line discipline can be obtained with the TIOCGETD ioctl. Pending input is discarded when the line
discipline is changed.

All of the low-speed asynchronous communications ports can use any of the available line disciplines, no
matter what hardware is involved. The remainder of this section discusses the "old" and "new" discip­
lines.

Opening a terminal device file.

When a terminal file is opened, it causes the process to wait until a connection is established. In practice,
user programs seldom open these files; they are opened by init(8) and become a user's standard input, out­
put, and error files.

The controlling terminal.

A terminal may belong to a process as its controlling terminal, and may have a distinguished process group
associated with it. This distinguished process group plays a special role in handling quit and interrupt sig­
nals, as discussed below.

If a process which has no controlling terminal opens a terminal file, then the terminal associated with that
terminal file becomes the controlling terminal for that process, and the terminal's distinguished process
group is set to the process group of that process. The control terminal is thereafter inherited by a child pro­
cess during ajork(2), even if the control terminal is closed.

The file Idev/tty is, in each process, a synonym for that process' controlling terminal. It is useful for pro­
grams that wish to be sure of writing messages on the terminal no matter how output has been redirected.
It can also be used for programs that demand a file name for output, when typed output is desired and it is
tiresome to find out which terminal is currently in use.

A process can remove the association it has with its controlling terminal by opening the file Idev/tty and
issuing a

ioctl(r, TIOCNOTTY, 0);

Sun Release 3.2 Last change: 3 June 1986 495

TTY(4) SPECIAL FILES TIY(4)

496

This is often desirable in server processes.

Process groups.

Command processors such as esh(l) can arbitrate the terminal between different jobs by placing related
jobs in a single process group and associating this process group with the terminal. A terminal's associated
process group may be set using the TIOCSPGRP ioetl (2):

ioctl(flldes, TIOCSPGRP, &pgrp);

or examined using TIOCGPGRP, which returns the current process group in pgrp. The new terminal
driver aids in this arbitration by restricting access to the terminal by processes which are not in the current
process group; see Job access control below.

Modes.

The terminal line disciplines have three major modes, characterized by the amount of processing on the
input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is done. The
edited line is made available when it is completed by a newline or when the t _ brke character,
normally an EOT (control-D, hereafter AD), is entered. A carriage return is usually made
synonymous with newline in this mode, and replaced with a newline whenever it is typed. All
line discipline functions (input editing, interrupt generation, output processing such as delay
generation and tab expansion, etc.) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making the input
character available to the user program as it is typed. Flow control, literal-next and interrupt
processing are still done in this mode. Output processing is done.

RAW This mode eliminates all input processing and makes all input characters available as they are
typed; no output processing is done either.

The style of input processing can also be very different when the terminal is put in non-blocking I/O mode;
see the FNDELA Y flag as described in fentl (2). In this case a read (2V) from the control terminal will
never block, but rather return an error indication (EWOULDBLOCK) if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is present To enable this mode the
FASYNC flag should be set usingfentl(2).

Input editing.

A UNIX system terminal ordinarily operates in full-duplex mode. Characters may be typed at any time,
even while output is occurring, and are only lost when the system's character input buffers become com­
pletely choked, which is rare, or when the user has accumulated the maximum allowed number of input
characters that have not yet been read by some program. Currently this limit is 256 characters. In RAW
mode, the terminal driver throws away all input and output without notice when the limit is reached. In
CBREAK or cooked mode it refuses to accept any further input and, if in the new line discipline, rings the
terminal bell.

Input characters are normally accepted in either even or odd parity with the parity bit being stripped off
before the character is given to the program. By clearing either the EVEN or ODD bit in the fiags word it
is possible to have input characters with that parity discarded (see the Summary below.)

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioetl, which takes,
as its third argument, the address of a character. The system pretends that this character was typed on the
argument terminal, which must be the control terminal except for the super-user (this call is not in standard
Version 7 UNIX systems).

Input characters are normally echoed by putting them in an output queue as they arrive. This may be dis­
abled by clearing the ECHO bit in the fiags word using the stty(3C) call or the TIOCSETN or TIOCSETP
ioetls (see the Summary below).

Last change: 3 June 1986 Sun Release 3.2

TTY(4) SPECIAL FILES TIY(4)

In cooked mode, terminal input is processed in units of lines. A program attempting to read will normally
be suspended until an entire line has been received (but see the description of SIGTIIN in Job access con­
trol and of FIONREAD in Summary, both below.) No matter how many characters are requested in the
read call, at most one line will be returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing information.

During input, line editing is normally done, with the DELETE character logically erasing the last character
typed and a AU (control-U) logically erasing the entire current input line. These characters never erase
beyond the beginning of the current input line or an AD. These characters may be entered literally by
preceding them with '\ '; the '\ ' will normally be erased when the character is typed

The line disciplines normally treat either a carriage return or a newline character as terminating an input
line, replacing the return with a newline and echoing a return and a line feed If the CRMOD bit is cleared
in the local mode word then the processing for carriage return is disabled, and it is simply echoed as a
return, and does not terminate cooked mode input.

In the new line discipline there is a literal-next character AV which can be typed in both cooked and
CBREAK mode preceding any character to prevent its special meaning. This is to be preferred to the use
of '\ ' escaping erase and kill characters, but '\ ' is retained with its old function in the new line discipline.

The new terminal line discipline also provides two other editing characters in normal mode. The word­
erase character, normally AW, erases the preceding word, but not any spaces before it. For the purposes of
"W, a word is defined as a sequence of non-blank characters, with tabs counted as blanks. Finally, the
reprint character, normally "R, retypes the pending input beginning on a new line. Retyping occurs
automatically in cooked mode if characters which would normally be erased from the screen are fouled by
program output.

Input echoing and redisplay

The terminal driver has several modes (not present in standard UNIX Version 7 systems) for handling the
echoing of terminal input, controlled by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA bit is normally set in the local
mode word Characters which are logically erased are then printed out backwards preceded by '\' and fol­
lowed by 'I' in this mode.

CRT terminals. When a CRT terminal is in use, the LCRTBS bit is normally set in the local mode word.
The terminal line discipline then echoes the proper number of backspace characters when input is erased to
reposition the cursor. If the input has become fouled due to interspersed asynchronous output, the input is
automatically retyped.

Erasing characters from a CRT. When a CRT terminal is in use, the LCRTERA bit may be set to cause
input to be erased from the screen with a "backspace-space-backspace" sequence when character or word
deleting sequences are used A LCRTKIL bit may be set as well, causing the input to be erased in this
manner on line kill sequences as well.

Echoing of control characters. If the LCfLECH bit is set in the local state word, then non-printing (con­
trol) characters are normally echoed as AX (for some X) rather than being echoed unmodified; delete is
echoed as A?

The normal modes for use on CRT terminals are speed dependent At speeds less than 1200 baud, the
LCRTERA and LCRTKIL processing is painfully slow, so stty(l) normally just sets LCRTBS and
LCfLECH; at speeds of 1200 baud or greater all of these bits are normally set. The stty(l) command sum­
marizes these option settings and the use of the new terminal line discipline as "newcrt."

Output processing.

When one or more characters are written, they are actually transmitted to the terminal as soon as
previously-written characters have finished typing. (As noted above, input characters are normally echoed
by putting them in the output queue as they arrive.) When a process produces characters more rapidly than
they can be typed, it will be suspended when its output queue exceeds some limit When the queue has

Sun Release 3.2 Last change: 3 June 1986 497

TTY(4)

498

SPECIAL FILES TIY(4)

drained down to some threshold the program is resumed. Even parity is normally generated on output.
The EOT character is not transmitted in cooked mode to prevent terminals that respond to it from hanging
up; programs using RAW or CBREAK mode should be careful.

The terminal line disciplines provide necessary processing for cooked and CBREAK mode output includ­
ing delay generation for certain special characters and parity generation. Delays are available after back­
spaces AH, form feeds AL, carriage returns AM, tabs "'I and newlines AJ. The line disciplines will also option­
ally expand tabs into spaces, where the tab stops are assumed to be set every eight columns, and optionally
convert newlines to carriage returns followed by newline. These functions are controlled by bits in the tty
flags word; see Summary below.

The terminal line disciplines provide for mapping between upper and lower case on terminals lacking
lower case, and for other special processing on deficient terminals.

Finally, in the new terminal line discipline, there is an output flush character, normally "'0, which sets the
LFLUSHO bit in the local mode word, causing subsequent output to be flushed until it is cleared by a pro­
gram or more input is typed. This character has effect in both cooked and CBREAK modes and causes
pending input to be retyped if there is any pending input. An ioetl to flush the characters in the input or
output queues, TIOCFLUSH, is also available.

Upper case terminals and Hazeltines

If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the corresponding
lower-case letter. The upper-case letter may be generated by preceding it by '\'. Upper case letters are
preceded by a '\ ' when output. In addition, the following escape sequences can be generated on output and
accepted on input

b { }
use \' \! \A \(\)

To deal with Hazeltine terminals, which do not understand that - has been made into an ASCII character,
the L TILDE bit may be set in the local mode word; in this case the character - will be replaced with the
character' on output.

Flow control.

There are two characters (the stop character, normally AS, and the start character, normally "'Q) which cause
output to be suspended and resumed respectively. Extra stop characters typed when output is already
stopped have no effect, unless the start and stop characters are made the same, in which case output
resumes.

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the system pro­
duces a stop character (default "'S) when the input queue is in danger of overflowing, and a start character
(default AQ) when the input has drained sufficiently. This mode is useful when the terminal is actually
another machine that obeys the conventions.

Line control and breaks.

There are several ioctl calls available to control the state of the terminal line. The TIOCSBRK ioetl will set
the break bit in the hardware interface causing a break condition to exist; this can be cleared (usually after
a delay with sleep(3» by TIOCCBRK. Break conditions in the input are reflected as a null character in
RAW mode or as the interrupt character in cooked or CBREAK mode. The TIOCCDTR ioctl will clear
the data terminal ready condition; it can be set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up his terminal) a
SIGHUP hangup signal is sent to the processes in the distinguished process group of the terminal; this usu­
ally causes them to terminate (the SIGHUP can be suppressed by setting the LNOHANG bit in the local
state word of the driver.) Access to the terminal by other processes is then normally revoked, so any
further reads will fail, and programs that read a terminal and test for end-of-file on their input will ter­
minate appropriately.

Last change: 3 June 1986 Sun Release 3.2

TTY(4) SPECIAL FILES TIY(4)

When using an ACU it is possible to ask that the phone line be hung up on the last close with the
TIOCHPCL ioetl; this is normally done on the outgoing line.

Interrupt characters.

There are several characters that generate interrupts in cooked and CBREAK mode; all are sent to the
processes in the control group of the terminal, as if a TIOCGPGRP ioetl were done to get the process group
and then a killpg(2) system call were done, except that these characters also flush pending input and output
when typed at a terminal (a la TIOCFLUSR). The characters shown here are the defaults; the field names
in the structures (given below) are also shown. The characters may be changed.

"C t_intrc (ETX) generates a SIGINT signal. This is the normal way to stop a process which is no
longer interesting, or to regain control in an interactive program.

"\ t_quitc (FS) generates a SIGQUIT signal. This is used to cause a program to terminate and pro­
duce a core image, if possible, in the file core in the current directory.

"z t_suspc (EM) generates a SIGTSTP signal, which is used to suspend the current process group.

"Y t_dsuspc (SUB) generates a SIGTSTP signal as "z does, but the signal is sent when a program
attempts to read the "Y, rather than when it is typed.

Job access control.

When using the new terminal line discipline, if a process which is not in the distinguished process group of
its control terminal attempts to read from that terminal its process group is sent a SIGTTIN signal. This
signal normally causes the members of that process group to stop. If, however, the process is ignoring
SIGTTIN, has SIGTTIN blocked, or is in the middle of process creation using vfork(2», the read will
return -1 and set errno to £10.

When using the new terminal line discipline with the L TOSTOP bit set in the local modes, a process is
prohibited from writing on its control terminal if it is not in the distinguished process group for that termi­
nal. Processes which are holding or ignoring SIGTTOU signals or which are in the middle of a vfork(2)
are excepted and allowed to produce output

Summary of modes.

Unfortunately, due to the evolution of the terminal drivers and line disciplines, there are 4 different struc­
tures which contain various portions of the driver and line discipline data The first of these (sgttyb) con­
tains that part of the information largely common between Version 6 and Version 7 UNIX systems. The
second contains additional control characters added in Version 7. The third is a word of local state added
in 4BSD, and the fourth is another structure of special characters added for the new line discipline. In the
future a single structure may be made available to programs which need to access all this information; most
programs need not concern themselves with all this state.

Basic modes: sgtty.

The basic ioetls use the structure defined in <sgtty.h>:

struct sgttyb {
char

};

char
char
char
short

sg_ispeed;
sg_ospeed;
sg_erase;
sg_kill;
sg_f1ags;

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according to the fol­
lowing table, which corresponds to the DEC DR-II interface. If other hardware is used, impossible speed
changes are ignored. Symbolic values in the table are as defined in <syslttydev.h>.

Sun Release 3.2 Last change: 3 June 1986 499

TTY(4)

500

SPECIAL FILES TTY (4)

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
BII0 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 19200 baud
EXTB 15 External B

Code conversion and line control required for IBM 2741's (134.5 baud) must be implemented by the user's
program. The half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied; full­
duplex 212 datasets work fine.

The sg_erase and sg-,dll fields of the argument structure specify the erase and kill characters respectively.
(Defaults are DELETE and AU.)

The sgJlags field of the argument structure contains several bits that determine the system's treatment of
the terminal:

ALlDELAY 0177400 Delay algorithm selection
BSDELA Y 0100000 Select backspace delays (not implemented):
BSO 0
BSI 0100000
VTDELAY 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFI 0040000
CRDELA Y 0030000 Select carriage-return delays:
CRO 0
CR 1 00 1 0000
CR2 0020000
CR3 0030000
TBDELA Y 0006000 Select tab delays:
TABO 0
TAB 1 0002000
T AB2 0004000
XT ABS 0006000
NLDELAY 0001400 Select new-line delays:
NLO 0
NLI 0000400
NL2 0001000
NL3 0001400
EVENP 0000200 Even parity allowed on input and generated on output
ODDP 0000100 Odd parity allowed on input and generated on output
RAW 0000040 Raw mode: wake up on all characters, 8-bit interface
CRMOD 0000020 Map CR into LF; output LF as CR-LF
ECHO 0000010 Echo (full duplex)
LCASE 0000004 Map upper case to lower on input and lower to upper on output
CBREAK. 0000002 Return each character as soon as typed

Last change: 3 June 1986 Sun Release 3.2

TTY(4) SPECIAL FILES TIY(4)

TANDEM 0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer­
tain characters are sent to the terminal. In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but might be used for Terminet 3OO's.

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay type 2
lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is suitable for the
concept-loo and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37's. Type 2 is
useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is O.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model 37. Type 3,
called XT ABS, is not a delay at all but causes tabs to be replaced by the appropriate number of spaces on
output.

Input characters with the wrong parity, as determined by bits 200 and 100, are ignored in cooked and
CBREAK. mode.

RAW disables all processing save output flushing with LFLUSHO; full 8 bits of input are given as soon as
it is available; all 8 bits are passed on output. A break condition in the input is reported as a null character.
If the input queue overflows in raw mode all data in the input and output queues are discarded; this applies
to both the new and the old line disciplines.

CRMOD causes input carriage returns to be turned into new-lines, and output and echoed new-lines to be
output as a carriage return followed by a line feed.

CBREAK. is a sort of half-cooked (rare?) mode. Programs can read each character as soon as typed,
instead of waiting for a full line; all processing is done except the input editing: character and word erase
and line kill, input reprint, and the special treatment of \ and EOT are disabled.

TANDEM mode causes the system to produce a "stop" character (default AS) whenever the input queue is
in danger of overflowing, and a "start" character (default "Q) when the input queue has drained
sufficiently. It is useful for flow control when the 'terminal' is really another computer which understands
the conventions.

Note: The same "stop" and "start" characters are used for both directions of flow control; the t_stope
character is accepted on input as the character that stops output and is produced on output as the character
to stop input, and the t _starte character is accepted on input as the character that restarts output and is pro­
duced on output as the character to restart input.

Basic ioctls

A large number of ioetl (2) calls apply to terminals. Some have the general form:

#include <sgtty.h>

ioctl(flldes, code, arg)
struct sgUyb * arg;

The applicable codes are:

TIOCGETP

TIOCSETP

TIOCSETN

Fetch the basic parameters associated with the terminal, and store in the pointed-to
sgttyb structure.

Set the parameters according to the pointed-to sgttyb structure. The interface delays
until output is quiescent, then throws away any unread characters, before changing the
modes.

Set the parameters like TIOCSETP but do not delay or flush input. Input is not
preserved, however, when changing to or from RAW.

Sun Release 3.2 Last change: 3 June 1986 501

TTY(4) SPECIAL FILES 1TY(4)

502

With the following codes arg is ignored.

TIOCEXCL

TIOCNXCL

TIOCHPCL

Set "exclusive-use" mode: no further opens are permitted until the file has been closed.

Turn off "exclusive-use" mode.

When the file is closed for the last time, hang up the terminal. This is useful when the
line is associated with an ACU used to place outgoing calls.

With the following codes arg is a pointer to an into

TIOCGETD

TIOCSETD

TIOCFLUSH

arg is a pointer to an int into which is placed the current line discipline number.

arg is a pointer to an int whose value becomes the current line discipline number.

If the int pointed to by arg has a zero value, all characters waiting in input or output
queues are flushed. Otherwise, the value of the int is treated as the logical OR of the
FREAD and FWRITE defined in <syslfile.h>; if the FREAD bit is set, all characters
waiting in input queues are flushed, and if the FWRITE bit is set, all characters waiting
in output queues are flushed.

The remaining calls are not available in vanilla Version 7 UNIX systems. In cases where arguments are
required, they are described; arg should otherwise be given as O.

TIOCSTI

TIOCSBRK

TIOCCBRK

TIOCSDTR

TIOCCDTR

TIOCSTOP

TIOCSTART

TIOCGPGRP

TIOCSPGRP

TIOCOUTQ

FIONREAD

Tchars

the argument points to a character which the system pretends had been typed on the ter­
minal.

the break bit is set in the terminal.

the break bit is cleared.

data terminal ready is set

data terminal ready is cleared.

output is stopped as if the "stop" character had been typed.

output is restarted as if the "start" character had been typed.

arg is a pointer to an int into which is placed the process group ID of the process group
for which this terminal is the control terminal.

arg is a pointer to an int (typically a process ID); the process group whose process group
ID is the value of this int becomes the process group for which this terminal is the con­
trol terminal.

returns in the int pointed to by arg the number of characters queued up to be output to
the terminal.

returns in the int pointed to by arg the number of immediately readable characters from
the argument unit. This works for files, pipes, and terminals.

The second structure associated with each terminal specifies characters that are special in both the old and
new terminal interfaces: The following structure is defined in <sysiioctl.h>, which is automatically
included by <sgtty.h>:

struct tchars {
char

};

char
char
char
char
char

t_intrc;
t_quitc;
t_startc;
t_stope;
t_eorc;
t_hrkc;

1* interrupt *1
1* quit *1
1* start output *1
1* stop output *1
1* end-or-file *1
1* input delimiter (like nl) *1

Last change: 3 June 1986 Sun Release 3.2

TIY(4) SPECIAL FILES TIY(4)

The default values for these characters are "C, "\, "Q, "S, "D, and '\377'. A character value of '\377' elim­
inates the effect of that character. The ,_brkc character, by default '\377', acts like a new-line in that it ter­
minates a 'line,' is echoed, and is passed to the program. The 'stop' and 'start' characters may be the
same, to produce a toggle effect. It is probably counterproductive to make other special characters (includ­
ing erase and kill) identical. The applicable ioell calls are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode

The third structure associated with each terminal is a local mode word. The bits of the local mode word
are:

LCRTBS 000001 Backspace on erase rather than echoing erase
LPRTERA 000002 Printing terminal erase mode
LCRTERA 000004 Erase character echoes as backspace-space-backspace
LTILDE 000010 Convert - to' on output (for Hazeltine terminals)
LLITOUT 000040 Suppress output translations
LTOSTOP 000100 Send SIGTTOU for background output
LFLUSHO 000200 Output is being flushed
LNOHANG 000400 Don't send hangup when carrier drops

001000 Unimplemented.
LCRTKIL 002000 BS-space-BS erase entire line on line kill
LP ASS8 004000 Pass all 8 bits through on input, in any mode
LCTLECH 010000 Echo input control chars as AX, delete as "1
LPENDIN 020000 Retype pending input at next read or input character
LDECCTQ 040000 Only "Q restarts output after "S, like DEC systems
LNOFLSH 100000 Inhibit flushing of pending 110 when an interrupt character is typed.

The applicable ioell functions are:

TIOCLBIS

TIOCLBIC

arg is a pointer to an int whose value is a mask containing the bits to be set in the local
mode word.

arg is a pointer to an int whose value is a mask containing the bits to be cleared in the
local mode word.

TIOCLSET arg is a pointer to an int whose value is stored in the local mode word.

TIOCLGET arg is a pointer to an int into which the current local mode word is placed.

Local special chars

The final structure associated with each terminal is the ltehars structure which defines control characters
for the new line discipline. Its structure is:

struct ltchars {
char
char
char
char
char
char

};

t_suspc;
t_dsuspc;
t_rprntc;
t_ftushc;
t_werasc;
t_lnextc;

1* stop process signal *1
1* delayed stop process signal *1
1* reprint line *1
1* ftush output (toggles) *1
1* word erase *1
1* literal next character *1

The default values for these characters are "z, AY, "R, "0, AW, and "V. A value of '\377' disables the char­
acter.

Sun Release 3.2 Last change: 3 June 1986 503

ITY(4) SPEQAL FILES TIY(4)

FILES

The applicable ioetl functions are:

TIOCSLTC arg is a pointer to an ltehars structure which defines the new local special characters.

TIOCGLTC arg is a pointer to an ltehars structure into which is placed the current set of local special

/dev/tty
/dev/tty*
/dev/console

characters.

SEE ALSO

BUGS

504

csh(l), stty(l), ioct1(2), sigvec(2), stty(3C), getty(8), init(8)

Half-duplex tenninals are not supported.

Processes that are not invoked with a control terminal, but open a dialout line can hang indefinitely. Once
the dialout line is opened, it becomes the control terminal. Should the process then open Idev/tty, it will
hang because Idev/tty resolves to the corresponding dialin line. The process will wait for the dialin
sequence to complete, even though the line is already connected.

Last change: 3 June 1986 Sun Release 3.2

UDP(4P) SPECIAL FILES UDP(4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
None; comes automatically with inet(4F).

DESCRIPTION

The User Datagram Protocol (UDP) is defined to make available a datagram mode of packet switched com­
puter comrnunicaton in the environment of an interconnected set of computer networks. The protocol
assumes that the Internet Protocol (JP) as described in ip(4P) is used as the underlying protocol.

The protocol provides a procedure for application programs to send messages to other programs with a
minimum of protocol mechanism. The protocol is transaction oriented, and delivery and duplicate protec­
tion are not guaranteed. Applications requiring ordered reliable delivery of streams of data should use the
Transmission Control Protocol (TCP) as described in tcp(4P).

The UNIX system implementation of UDP makes it available as a socket of type SOCK _ DGRAM. UDP
sockets are normally used in a connectionless fashion, with the sendto and recvfrom calls described in
send(2) and recv (2).

A UDP socket is created with a socket (2) call:

s = socket(AF_INET, SOCK_DGRAM, 0);

The socket initially has no address associated with it, and may be given an address with a bind(2) call as
described in inet(4F). If no bind call is done, then the address assignment procedure described in inet(4F)
is repeated as each datagram is sent.

When datagrams are sent the system encapsulates the user supplied data with UDP and IP headers. Unless
the invoker is the super-user datagrams which would become broadcast packets on the network to which
they are addressed are not allowed. Unless the socket has had a SO _ DONTROUTE option enabled (see
socket(2)) the outgoing datagram is routed through the routing tables as described in routing(4N). If there
is insufficient system buffer space to temporarily hold the datagram while it is being trasmitted, the sendto
may result in a ENOBUFS error. Other errors (ENETUNREACH, EADDRNOT A V AIL, EACCES,
EMSGSIZE) may be generated by icmp(4P) or by the network interfaces themselves, and are reflected
back in the send call.

As each UDP datagram arrives at a host the system strips out the IP options and checksums the data field,
discarding the datagram if the checksum indicates that the datagram has been damaged. If no socket exists
for the datagram to be sent to then an ICMP error is returned to the originating socket If a socket exists for
this datagram to be sent to, then we will append the datagram and the address from which it came to a
queue associated with the datagram socket. This queue has limited capacity (2048 bytes of datagrams) and
arriving datagrams which will not fit within its high-water capacity are silently discarded.

UDP processes ICMP errors reflected to it by icmp(4P). QUENCH errors are ignored (this is well con­
sidered a bug); UNREACH, TIMXCEED and P ARAMPROB errors cause the socket to be disconnected
from its peer if it was bound to a peer using bind(2) so that subsequent attempts to send datagrams via that
socket will give an error indication.

The UDP datagram protocol differs from IP datagrams in that it adds a checksum over the data bytes and
contains a 16-bit socket address on each machine rather than just the 32-bit machine address; UDP
datagrams are addressed to sockets; IP packets are addressed to hosts.

SEE ALSO

BUGS

recv(2), send(2), inet(4F)

"User Datagram Protocol," RFC768, John Postel, USC-lSI (Sun 800-1054-01)

SIOCSHIWAT and SIOCGHIWAT ioctl's to set and get the high water mark for the socket queue, and so
that it can be changed from 2048 bytes to be larger or smaller, have been defined (in <sys/ioctl.h» but not
implemented.

Sun Release 3.2 Last change: 26 July 1985 505

UDP(4P) SPECIAL FILES UDP(4P)

Something sensible should be done with QUENCH errors if the socket is bound to a peer socket.

506 Last change: 26 July 1985 Sun Release 3.2

VP(4S) SPECIAL FILES VP(4S)

NAME
vp - Ikon 10071-5 Versatec parallel printer interrace

SYNOPSIS - SUN-2
device vpO at mbio ? csr

DESCRIPTION

FILES

BUGS

This Sun interface to the Versatec printer/plotter is supported by the Ikon parallel interrace board, a word
DMA device, which is output only.

The Versatec is nonnally handled by the line printer spooling system and should not be accessed by the
user directly.

Opening the device ld.ev/vpO may yield one of two errors: ENXIO indicates that the device is already in
use; EIO indicates that the device is offline.

The printer operates in either print or plot mode. To set the printer into plot mode you should include
<vcmd.h> and use the ioctl(2) call

ioct1(f, VSETST ATE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, ° };
When going back into print mode from plot mode you normally eject paper by sending it an EOT after put­
ting into print mode:

/dev/vpO

int prtmd[] = { VPRINT, 0, O};

fflush(vp);
f = fileno (vp);
ioctl(f, VSETSTATE, prtmd);
write(f, "\04", 1);

If you use the standard i/o library on the Versatec, be sure to explicitly set a buffer using setbuf, since the
library will not use buffered output by default, and will run very slowly.

Writes must start on even byte boundaries and be an even number of bytes in length.

Sun Release 3.2 Last change: 16 September 1985 507

VPC(4S) SPECIAL FILES VPC(4S)

NAME
vpc - Systech VPC-2200 Versatec printer/plotter and Centronics printer interface

SYNOPSIS - SUN-2
device vpcO at mbio ? csr Ox480 priority 2
device vpcl at mbio? csr Ox500 priority 2

DESCRIPTION

FILES

BUGS

508

This Sun interface to the Versatec printer/plotter and to Centronics printers is supported by the Systech
parallel interface board, an output-only byte-wide DMA device. The device has one channel for Versatec
devices and one channel for Centronics devices, with an optional long lines interface for Versatec devices.

Devices attached to this interface are normally handled by the line printer spooling system and should not
be accessed by the user directly.

Opening the device ldev/vpO or /devllpO may yield one of two errors: ENXIO indicates that the device is
already in use; EIO indicates that the device is offline.

The Versatec printer/plotter operates in either print or plot mode. To set the printer into plot mode you
should include <vcmd.h> and use the ioctl (2) call:

ioct1(f, VSETSTATE, plotmd);

where plotmd is defined to be

int plotmd[] = { VPLOT, 0, 0 };

When going back into print mode from plot mode you normally eject paper by sending it an EOT after put­
ting into print mode:

/dev/vpO
/dev/lpO

int prtmd[] = { VPRINT, 0, 0 };

ffiush(vpc);
f = fileno(vpc);
ioct1(f, VSETST A TE, prtmd);
write(f, "\04", 1);

If you use the standard I/O library on the Versatec, be sure to explicitly set a buffer using setbuf, since the
library will not use buffered output by default, and will run very slowly.

Last change: 16 September 1985 Sun Release 3.2

WIN (4S) SPECIAL FILES WIN(4S)

NAME
win - Sun window system

SYNOPSIS
pseudo-device winnumber
pseudo-device dtopnumber

DESCRIPTION

FILES

The win pseudo-device accesses the system drivers supporting the Sun window system. number, in the
device description line above, indicates the maximum number of windows supported by the system.
number is set to 128 in the GENERIC system configuration file used to generate the kernel used in Sun sys­
tems as they are shipped. The dtop pseudo-device line indicates the number of separate "desktops"
(frame buffers) that can be actively running the Sun window system at once. In the GENERIC file, this
number is set to 4.

Each window in the system is represented by a !dev/win* device. The windows are organized as a tree
with windows being subwindows of their parents, and covering/covered by their siblings. Each window
has a position in the tree, a position on a display screen, an input queue, and information telling what parts
of it are exposed.

The window driver multiplexes keyboard and mouse input among the several windows, tracks the mouse
with a cursor on the screen, provides each window access to information about what parts of it are exposed,
and notifies the manager process for a window when the exposed area of the window changes so that the
window may repair its display.

Full information on the window system functions is given in the Programmer's Reference Manual for
SunWindows.

/ dev/win[0-9]
/dev/win[0-9] [0-9]

SEE ALSO
Programmer's Reference Manualfor SunWindows

Sun Release 3.2 Last change: 26 July 1985 509

XT(4S) SPECIAL FILES XT(4S)

NAME
xt - Xylogics 472112 inch tape controller

SYNOPSIS - SUN-3
controller ncO at vme16d16 ? csr Oxee60 priority 3 vector xtintr Ox64
controller xtcl at vme16d16? csr Oxee68 priority 3 vector xtintr Ox65
tape xtO at ncO drive 0 8ags 1
tape xU at ncl drive 0 8ags 1

SYNOPSIS - SUN-2
controller xtcO at mbio ? csr Oxee60 priority 3
controller xtcO at vme16 ? csr Oxee60 priority 3 vector xtintr Ox64
controller xtcl at mbio ? csr Oxee68 priority 3
controller ncl at vme16 ? csr Oxee68 priority 3 vector xtintr Ox65
tape xtO at xtcO drive 0 8ags 1
tape xU at xtcl drive 0 8ags 1

DESCRIPTION
The Xylogics 472 tape controller controls Pertec-interface 112" tape drives such as the CDC Keystone III,
providing a standard tape interface to the device, see mtio(4). This controller is used to support high speed
or high density drives, which are not supported effectively by the older TapeMaster controller (tm(4».

The flags field is used to control remote density select operation: a 0 specifies no remote density selection is
to be attempted, a 1 specifies that the Pertec density-select line is used to toggle between high and low den­
sity; a 2 specifies that the Pertc speed-select line is used to toggle between high and low density. The
default is 1, which is appropriate for the CDC Keystone III (92185) and the Telex 9250. In no case will the
controller select among more than 2 densities.

SEE ALSO
mt(I), tar(l), tm(4), mtio(4)

510 Last change: 17 April 1986 Sun Release 3.2

XY(4S) SPECIAL FILES XY(4S)

NAME
xy - Disk driver for Xylogics SMD Disk Controllers

SYNOPSIS - SUN·3
controller xycO at vme16d16 ? csr Oxee40 priority 2 vector xyintr Ox48
controller xycl at vme16d16 ? csr Oxee48 priority 2 vector xyintr Ox49
disk xyO at xycO drive 0
disk xyl at xycO drive 1
disk xy2 at xycl drive 0
disk xy3 at xycl drive 1

The two controller lines given in the synopsis sections above specify the first and second Xylogics 450
SMD disk controller in a Sun system.

SYNOPSIS - SUN·2
controller xycO at vme16 ? csr Oxee40 priority 2 vector xyintr Ox48
controller xycl at vme16 ? csr Oxee48 priority 2 vector xyintr Ox49
controller xycO at mbio? csr Oxee40 priority 2
controller xycl at mbio ? csr Oxee48 priority 2
disk xyO at xycO drive 0
disk xyl at xycO drive 1
disk xy2 at xycl drive 0
disk xy3 at xycl drive 1

The first two controller lines specify the first and second Xylogics 450 SMD disk controllers in a Sun-
2/160 VMEbus based system. The third and fourth controller lines specify the first and second Xylogics
450 SMD disk controllers in a Sun-2/120 or a Sun-2/170 Multibus based system.

DESCRIPTION
Files with minor device numbers a through 7 refer to various portions of drive 0; minor devices 8 through
15 refer to drive 1, and so on. The standard device names begin with 'xy' followed by the drive number
and then a letter a-h for partitions 0-7 respectively. The character ? stands here for a drive number in the
range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a "raw" interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call usually results in only
one I/O operation; therefore raw I/O is considerably more efficient when many words are transmitted. The
names of the raw files conventionally begin with an extra 'r'.

In raw 110 counts should be a multiple of 512 bytes (a disk sector). Likewise seek(2) calls should specify a
multiple of 512 bytes.

If flags Oxl is specified, the overlapped seeks feature for that drive is turned off. Note that to be effective,
the flag must be set on all drives for a specific controller. This action is necessary for controllers with older
firmware, which have bugs preventing overlapped seeks from working properly.

DISK SUPPORT

FILES

This driver handles all SMD drives by reading a label from sector 0 of the drive which describes the disk
geometry and partitioning.

The xy?a partition is normally used for the root file system on a disk, the xy?b partition as a paging area,
and the xy?c partition for pack-pack copying (it normally maps the entire disk). The rest of the disk is nor­
mally the xy?g partition.

/dev/xy[O-7J[a-h]
/dev/rxy[O-7][a-h]

block files
raw files

Sun Release 3.2 Last change: 30 July 1986 511

XY(4S) SPECIAL FILES XY(4S)

SEE ALSO
dkio(4S)

Xylogics Model 450 Peripheral Processor SMD Disk Subsystem Maintenance and Reference Manual (Sun
800-1025-01)

DIAGNOSTICS

BUGS

512

xycn: self test error
Self test error in controller, see the Maintenance and Reference Manual.

xycn: WARNING: n bit addresses
The controller is strapped incorrectly. Sun systems use 20-bit addresses for Multibus based sys­
terns and 24-bit addresses for VMEbus based systems. See the subsection on the Xylogics con­
troller in the appropriate Sun Hardware installation Manual for your machine(s) for instructions
on how to set the jumpers on the 450.

xyn: unable to read bad sector info
The bad sector forwarding information for the disk could not be read.

xyn and xyn are of same type (n) with different geometries.
The 450 does not support mixing the drive types found on these units on a single controller.

xyn: initialization failed
The drive could not be successfully initialized.

xyn: unable to read label
The drive geometry/partition table information could not be read.

xyn: Corrupt label
The geometry/partition label checksum was incorrect

xyn:oftline
A drive ready status is no longer detected, so the unit has been logically removed from the system.
H the drive ready status is restored, the unit will automatically come back online the next time it is
accessed.

xync: cmd how (msg) blk #n abs blk #n
A command such as read or write encountered an error condition (how): either it/ailed, the con­
troller was reset, the unit was restored, or an operation was retry' ed. The msg is derived from the
error number given by the controller, indicating a condition such as "drive not ready", "sector not
found" or "disk write protected". The hlk # is the sector in error relative to the beginning of the
partition involved. The abs blk # is the absolute block number of the sector in error. Some fields
of the error message may be missing since the information is not always available.

In raw ItO read(2) and write(2) truncate file offsets to 512-byte block boundaries, and write(2) scribbles
on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2), write(2)
and Iseek(2) should always deal in 512-byte multiples.

Older revisions of the firmware do not properly support overlapped seeks. This will only affect systems
with multiple disks on a single controller. If a large number of "zero sector count" errors appear, you
should use the flags field to disable overlapped seeks.

Last change: 30 July 1986 Sun Release 3.2

ZS(4S) SPECIAL FILES ZS(4S)

NAME
zs - zilog 8530 SCC serial comunications driver

SYNOPSIS - SUN-3
device zsO at obio ? csr Ox20000 8ags 3 priority 3
device zsl at obio ? csr OxOOOOO 8ags Oxl03 priority 3

SYNOPSIS - SUN-2
device zsO at virtual? csr Oxeec800 Bags 3 priority 3
device zsl at virtual? csr OxeecOOO Bags Oxl03 priority 3
device zs2 at mbmem ? csr Ox80800 8ags 3 priority 3
device zs3 at mbmem ? csr Ox81000 8ags 3 priority 3
device zs4 at mbmem ? csr Ox84800 8ags 3 priority 3
device zs5 at mbmem ? csr Ox85000 8ags 3 priority 3

DESCRIPTION

FILES

The Zilog 8530 provides 2 serial communication ports with full modem control in asynchronous mode.
Each port behaves as described in tty(4). Input and output for each line may independently be set to run at
any of 16 speeds; see tty(4) for the encoding.

Of the synopsis lines above, the line for zsO specifies the serial 110 ports provided by the CPU board, the
line for zsl specifies the Video Board ports (which are used for keyboard and mouse), the lines for zs2 and
zs3 specify the first and second ports on the first SCSI board in a system, and those for zs4 and zs5 specify
the first and second ports provided by the second SCSI board in a system, respectively.

Bit i of flags may be specified to say that a line is not properly connected, and that the line i should be
treated as hard-wired with carrier always present. Thus specifying "flags Ox2" in the specification of zsO
would cause line ttyb to be treated in this way.

To allow a single tty line to be connected to a modem and used for both incoming and outgoing calls, a
special feature, controlled by the minor device number, has been added. Minor device numbers in the
range 0 - 127 correspond directly to the normal tty lines and are named tty * . Minor device numbers in the
range 128 - 256 correspond to the same physical lines as those above (i.e. the same line as the minor dev­
ice number minus 128) and are (conventionally) named cua*. The cua lines are special in that they can be
opened even when there is no carrier on the line. Once a cua line is opened, the corresponding tty line can
not be opened until the cua line is closed. Also, if the tty line has been opened successfully (usually only
when carrier is recognized on the modem) the corresponding cua line can not be opened This allows a
modem to be attached to Idevlttya (usually renamed to IdevluydO) and used for dialin (by enabling the line
for login in letc!ttys) and also used for dialout (by tip(IC) or uucp(IC» as IdevlcuaO when no one is logged
in on the line. Note that the bit in the flags word in the config file (see above) must be zero for this line.

ldev/tty[a, b, sO-s3]
Idev/ttyd[O-9, a-f]
Idev/cua[0-9, a-f]

SEE ALSO
tty(4)

DIAGNOSTICS
zsn c : silo overflow.

The character input silo overflowed before it could be serviced.

Sun Release 3.2 Last change: 16 September 1985 513

I

INTRO(5) FILE FORMATS

NAME
file formats formats of files used by various programs

DESCRIPTION
This section describes formats of files used by various programs.

a.out aout(5) assembler and link editor output format
acct acct(5) execution accounting file
addresses aliases (5) addresses and mailing lists for sendmail(8)
aliases aliases (5) addresses and mailing lists for sendmail(8)
ar ar(5) archive (library) file format
core core(5) format of memory image file
cpio cpio(5) format of cpio archive
crontab crontab(5) table of times to run periodic jobs
directory dir(5) format of directories
dump dump(5) incremental dump format
dumpdates dump(5) incremental dump format
environment environ(5V) user (process) environment
ethers ethers (5) Ethernet address to hostname database or yP domain
exports exports(5) NFS file systems being exported
fcnd fcntl(5) file control options
fs fs(5) format of file system volume
fspec fspec(5) format specification in text files
fstab mntent(5) static information about filesystems
ftpusers ftpusers(5) list of users prohibited by ftp
gettytab gettytab(5) simplified terminal configuration data base
group group(5) local host's group file
hosts hosts(5) host name data base or YP domain
hosts.equiv hosts.equiv(5) list of trusted hosts
inode fs(5) format of file system index node
lastlog usracct(5) login records
magic magic(5) file command's magic number file
mntent mntent(5) static information about filesystems
mtab mtab(5) currently mounted file system table
netgroup netgroup(5) list of network groups
networks networks(5) network name data base or yP domain
passwd passwd(5) password file or YP domain
phones phones (5) remote host phone number data base
plot plot(5) graphics interface
printcap printcap(5) printer capability data base
protocols protocols (5) protocol name data base or yP domain
rasterfile rasterfile(5) Sun's file format for raster images
remote remote(5) remote host description file
resolver resolver(5) configuration file for name server routines
rmtab rmtab(5) local file system mount statistics
rpc rpc(5) rpc program number data base
scccsfile sccsfile(5) format of sccs(1) history file
servers servers (5) Internet server data base
services services(5) service name data base or YP domain
statrnon statmon(5) statd directory and file structures
tar tar(5) tape archive file format
term term(5) term.inal driving tables for nroff

Sun Release 3.2 Last change: 30 July 1986

INTRO(5)

515

INTRO(5)

516

termcap
tp
ttys
tty type
types
utmp
uuencode
vfont
vgrindefs
wtmp
ypfiles

termcap(5)
tp(5)
ttys(5)
ttytype(5)
types(5)
usracct(5)
uuencode(5)
vfont(5)
vgrindefs(5)
usracct(5)
ypfiles(5)

FILE FORMATS

terminal capability data base
DEC/mag tape formats
terminal initialization data
data base of terminal types by port
primitive system data types
login records
format of an encoded uuencode file
font formats
vgrind's language definition data base
login records
the yellowpages database and directory structure

Last change: 30 July 1986

INTRO(5)

Sun Release 3.2

A.OUT(5) FILE FORMATS A.OUT(5)

NAME
a.out - assembler and link editor output format

SYNOPSIS
#include <a.out.h> #include <stab.h> #include <nlist.h>

DESCRIPTION
A.out is the output format of the assembler as(1) and the link editor ld(l). The link editor makes a.out
executable files if there were no errors and no unresolved external references. Layout information as given
in the include file for the Sun system is:

/*
* Header prepended to each a.out file.
*/
struct exec {

unsigned short
unsigned short
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

};

#define M 68010 1
#define M 68020 2

#define OMAGIC 0407
#define NMAGIC 0410
#define ZMAGIC 0413

#define PAGSIZ Ox2000
#define SEGSIZ Ox20000

/*

a _ machtype;
a_magic;
a_text;
a_data;
a_bss;
a_syms;
a_entry;
a_trsize;
a_drsize;

/* machine type */
/* magic number */
/* size of text segment */
/* size of initialized data */
/* size of uninitialized data */
/* size of symbol table */
/* entry point */
/* size of text relocation */
/* size of data relocation */

/* runs on either MC68010 or MC68020 */
/* runs only on MC68020 */

/* magic number for old impure fonnat */
/ * magic number for read-only text * /
/* magic number for demand load format */

/* page size - same for Sun-2 and Sun-3 */
1* segment size - same for Sun-2 and Sun-3 *1

* The following macros take exec structures as arguments. N _ BADMAG(x) returns
* 0 if the file has a reasonable magic number.
*/
#define N _ BADMAG(x) \

«(x).a_magic)!=OMAGIC && «x).a_magic)!=NMAGIC && «x).a_magic)!=ZMAGIC)

/*
* Offsets to text I symbols I strings.
*/
#define N _ TXTOFF(x) \

«x).a _magic==ZMAGIC ? 0 : sizeof (struct exec»
#define N SYMOFF(x) \

- (N_TXTOFF(x) + (x).a_text+(x).a_data + (x).a_trsize+(x).a_drsize)
#define N _ STROFF(x) \

(N_SYMOFF(x) + (x).a_syms)
/*
* Macros which take exec structures as arguments and tell where the
* various pieces will be loaded.

Sun Release 3.2 Last change: 29 April 1986 517

A.OUT(5) FILE FORMATS A.OUT(5)

518

*/
#define
#define

N _ TXTADDR(x) PAGSIZ
N _ DAT ADDR(x) \
«(x).a_magic==OMAGIC)? (N_TXTADDR(x)+(x).a_text) \
: (SEGSIZ+«N_TXTADDR(x)+(x).a_text-l) & -(SEGSIZ-l»»

#define N_BSSADDR(x) (N_DATADDR(x)+(x).a_data)

The a.out file has five sections: a header, the program text and data, relocation information, a symbol table
and a string table (in that order). In the header the sizes of each section are given in bytes. The last three
sections may be absent if the program was loaded with the '-s' option of ld or if the symbols and relocation
have been removed by strip(l).

The machine type in the header indicates the type of hardware on which the object code may be executed.
Sun-2 code may be executed on Sun-3 systems, but not vice versa. Program files predating release 3.0 are
recognized by a machine type of O.

If the magic number in the header is OMAGIC (0407), it means that this is a non-sharable text which is not
to be write-protected, so the data segment is immediately contiguous with the text segment. This is rarely
used If the magic number is NMAGIC (0410) or ZMAGIC (0413), the data segment begins at the first seg­
ment boundary following the text segment, and the text segment is not writable by the program; other
processes executing the same file will share the text segment. For ZMAGIC format, the text and data sizes
must both be multiples of the page size, and the pages of the file will be brought into the running image as
needed, and not pre-loaded as with the other formats. This is suitable for large programs and is the default
format produced by ld(l). The macros N_TXTADDR, N_DATADDR, and N_BSSADDR give the memory
addresses at which the text, data, and bss segments, respectively, will be loaded.

In the ZMAGIC format, the size of the header is included in the size of the text section; in other formats, it
is not.

When an a.out file is executed, three logical segments are set up: the text segment, the data segment (with
uninitialized data, which starts off as all 0, following initialized data), and a stack. For the ZMAGIC format,
the header is loaded with the text segment; for other formats it is not.

Program execution begins at the address given by the value of the a-entry field. In all file types other than
XMAGIC, the is the same as N _TXT ADDR(x). In ZMAGIC files it is N _TXT ADDR + sizeof(struct
exec).

The stack starts at the highest possible location in the memory image, and grows downwards. The stack is
automatically extended as required. The data segment is extended as requested by brk(2) or sbrk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table and string
table in that order. The text begins at the beginning of the file for ZMAGIC format or just after the header
for the other formats. The N _ TXTOFF macro returns this absolute file position when given the name of an
exec structure as argument. The data segment is contiguous with the text and immediately followed by the
text relocation and then the data relocation information. The symbol table follows all this; its position is
computed by the N_SYMOFF macro. Finally, the string table immediately follows the symbol table at a
position which can be gotten easily using N _ STROFF. The first 4 bytes of the string table are not used for
string storage, but rather contain the size of the string table; this size includes the 4 bytes; thus, the
minimum string table size is 4.

RELOCATION

The value of a byte in the text or data which is not a portion of a reference to an undefined external symbol
is exactly that value which will appear in memory when the file is executed. If a byte in the text or data
involves a reference to an undefined external symbol, as indicated by the relocation information, then the
value stored in the file is an offset from the associated external symbol. When the file is processed by the
link editor and the external symbol becomes defined, the value of the symbol is added to the bytes in the
file.

Last change: 29 April 1986 Sun Release 3.2

A.OUT(5) FILE FORMATS A.OUT(5)

If relocation information is present, it amounts to eight bytes per relocatable datum as in the following
structure:

1*
* Format of a relocation datum.
*/
struct relocation_info {

};

int
unsigned

r _address; 1* address which is relocated */
r_symbolnum:24,1* local symbol ordinal *1
r ycrel: 1, 1* was relocated pc relative already *1
rJength:2, 1* O=byte, l=word, 2=long *1
r _extern: 1, 1 * does not include value of sym referenced *1
:4; 1* nothing, yet */

There is no relocation information if a_trsize+a_drsize==O. If r _extern is 0, then r _symbolnum is actually
a n _type for the relocation (that is, N _TEXT meaning relative to segment text origin.)

SYMBOL TABLE

The layout of a symbol table entry and the principal flag values that distinguish symbol types are given in
the include file as follows:

1*
* Format of a symbol table entry.
*/
struct nlist {

};
#define

1*

union {

}n_un;
unsigned char
char
short
unsigned

n hash

* Simple values for n _type.
*1
#define N UNDF
#define N ABS
#define N TEXT
#define N DATA
#define N BSS
#define N COMM
#define NFN

#define NEXT
#define N TYPE

/*

char
long

n_type;
n_other;
n_desc;
n_value;

n desc

OxO
Ox2
Ox4
Ox6
Ox8
Ox12
Oxlf

01
Ox1e

1* for use when in-memory *1
1* index into file string table *1

1* type flag, that is, N _TEXT etc; see below */

1* see <stab.h> *1
/* value of this symbol (or adb offset) */

1* used internally by ld *1

1* undefined *1
1* absolute */
1* text *1
1* data *1
1* bss *1
1* common (internal to ld) */
/* file name symbol */

/* external bit, or' ed in *1
1* mask for all the type bits *1

* Other permanent symbol table entries have some of the N _ STAB bits set
* These are given in <stab.h>
*/

Sun Release 3.2 Last change: 29 April 1986 519

A.OUT(5) FILE FORMATS A.OUT(5)

#define N STAB OxeO 1* if any of these bits set, don't discard *1

In the a.out file a symbol's n_un.n_strx. field gives an index into the string table. A n_strx value of 0 indi­
cates that no name is associated with a particular symbol table entry. The field n _ un.n _name can be used
to refer to the symbol name only if the program sets this up using n _ strx and appropriate data from the
string table. Because of the union in the nlist declaration, it is impossible in C to statically initialize such a
structure. If this must be done (as when using nlist(3» the file <nlist.h> should be included, rather that
<a.out.h>; this contains the declaration without the union.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is interpreted by the
loader ld as the name of a common region whose size is indicated by the value of the symbol.

SEE ALSO
adb(l), as(l), cc(lV), dbx(l), ld(l), nm(1), pc(l), strip(l)

520 Last change: 29 April 1986 Sun Release 3.2

ACCT(5)

NAME
acct - execution accounting file

S1"NOPSIS
#include <syslacct.h>

DESCRIPTION

FILE FORMATS ACCT(5)

The acct(2) system call makes entries in an accounting file for each process that terminates. The account­
ing file is a sequence of entries whose layout, as defined by the include file is:

/* @(#)acct.h 1.186/07/07 SMI; from UCB 6.1 83/07/29*/

/*
* Accounting structures;
* these use a comp _ t type which is a 3 bits base 8
* exponent, 13 bit fraction "floating point" number.
*/

typedef u _short comp _ t;

struct acct
{

char ac_comm[10];
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time t ac_btime;
short ac_uid;
short ac_gid;
short ac_mem;
comp_t ac_io;
dev t ac_tty;
char ac_flag;

};

#define AFORK 0001
#define ASU 0002
#define ACOMP AT 0004
#define ACORE 0010
#define AXSIG 0020

#ifdef KERNEL
#ifdef SYSACCT
struct acct
struct vnode
#else
#define acctO
#endif
#endif

acctbuf;
*acctp;

/* Accounting command name */
/* Accounting user time */
/* Accounting system time */
/* Accounting elapsed time */
/* Beginning time */
/* Accounting user ID */
/* Accounting group ID */
/* average memory usage */
/* number of disk 10 blocks */
/* control typewriter */
/* Accounting flag */

/* has executed fork, but no exec */
/* used super-user privileges */
/* used compatibility mode */
/* dumped core */
/* killed by a signal */

If the process does an execve (2), the first 10 characters of the filename appear in ac _ comm. The accounting
flag contains bits indicating whether execve (2) was ever accomplished, and whether the process ever had
super-user privileges.

SEE ALSO
acct(2), execve(2), sa(8)

Sun Release 3.2 Last change: 15 January 1983 521

ALIASES(5) FILE FORMATS ALIASES (5)

NAME
aliases, addresses, forward - addresses and aliases for sendmail(8)

SYNOPSIS
I etc/passwd
lusrllib/aliases
lusrllib/aliases.dir
lusrllib/aliases.pag
-I.forward

DESCRIPTION
These files contain mail addresses or aliases recognized by sendmail (8):

/etc!passwd Mail addresses (usemames) of local users.

/usr/lib/aliases Local aliases in ASCII format. This file can be edited to add, update, or delete mail
aliases for the local host

/usr/liblaliases.{dir,pagj

-/forward

The aliasing information from /usrllib/a/iases, in binary, dbm(3X) format for use by
sendmail(8). The program newaliases(8), which is invoked automatically by send­
mail (8), maintains these files.

Addresses to which a user's mail is forwarded (see Automatic Forwarding, below).

In addition, the Yellow Pages aliases map mail. aliases contains addresses and aliases available for use
across the network.

ADDRESSES

522

As distributed, sendmail (8) supports the following types of addresses:

Local usemames. These are listed in the local host's /etc/passwd file.

Local filenames. When mailed to an absolute pathname, a message can be appeneded to a file.

Commands. If the first character of the address is a vertical bar, (I), sendmail (8) pipes the message
to the standard input of the command the bar precedes.

DARPA-standard mail addresses of the form:

name@domain

If domain does not contain any dots (.), then it is interpreted as the name of a host in the current
domain. Otherwise, the message is passed to a mailhost that determines how to get to the specified
domain. Domains are divided into subdomains separated by dots, with the top-level domain on the
right Top-level domains include:

.COM Comrnerical organizations .

. EDU Educational organizations .

. GOV Government organizations .

. MIL Military organizations.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named "jsmachine" at Podunk University.

uucp(IC) addresses of the form:

... [host!)host!username

These are sometimes mistakenly referred to as "Usenet" addresses. uucp(lC) provides links to
numerous sites throughout the world for the remote copying of files.

Last change: 16 July 1986 Sun Release 3.2

ALIASES(S) FILE FORMATS ALIASES(5)

Other site-specific forms of addressing can be added by customizing the sendmail configuration file. See
the sendmail(8), and Sendmail Installation and Operation in System Administration/or the Sun Worksta­
tion for details. Standard addresses are recommended.

ALIASES
Local Aliases

lusrlliblaliases is formatted as a series of lines of the form

name: address [, address]

name is the name of the alias or alias group, and address is the address of a recipient in the group. Aliases
can be nested. That is, an address can be the name of another alias group. Lines beginning with white
space are treated as continuation lines for the preceding alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner-aliasname: address

directs error-messages resulting from mail to alias-name to address, instead of back to the person who sent
the message.

An alias of the form:

aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname alias. This allows a
private list to be maintained separately from the aliases file.

YP Domain Aliases
Normally, the aliases file on the master yP server is used for the mail. aliases yP map, which can be made
available to every yP client Thus, the lusrlliblaliases* files on the various hosts in a network will one day
be obsolete. Domain-wide aliases should ultimately into usemames on specific hosts. For example, if the
following were in the domain-wide alias file:

jsmith:js@jsmachine

then any yP client could just mail to "jsmith" and not have to remember the machine and llser name for
John Smith. If a yP alias does not resolve to an address with a specific host, then the name of the yP

domain is used. There should be an alias of the domain name for a host in this case. For example, the
alias:

jsmith:root

sends mail on a yP client to "root@podunk-u" if the name of the YP domain is "podunk-u".

Automatic Forwarding
When an alias (or address) is resolved to a the name of a user on the local host, sendmail checks for a for­
ward file in that user's home directory. This file can contain one or more addresses or aliases as described
above; each recipient is sent a copy of the mail destined for the original user.

Care must be taken to avoid creating addressing loops in the forward file. When forwarding mail between
machines, be sure that the destination machine does not return the mail to the sender through the operation
of any yP aliases. Otherwise, copies of the message may "bounce." Usually, the solution is to change the
yP alias to direct mail to the proper destination.

A backslash before a usemame inhibits further aliasing. For instance, to invoke the vacation(l) program,
user js creates a forward file that contains the line:

\js, "I/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the vacation(l) program.

Sun Release 3.2 Last change: 16 July 1986 523

ALIASES(5) FILE FORMATS ALIASES (5)

SEE ALSO

BUGS

524

newaliases(8), dbm(3X), sendrnail(8), uucp(1 C), vacation(1)

System Administration for the Sun Workstation

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 characters. Nested
aliases can be used to circumvent this limit.

Last change: 16 July 1986 Sun Release 3.2

AR(5) FILE FORMATS AR(5)

NAME
ar - archive (library) file format

SYNOPSIS
#include <ar .h>

DESCRIPTION

The archive command ar combines several files into one. Archives are used mainly as libraries to be
searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each preceded by a
file header. The magic number and header layout as described in the include file are:

1* @(#)ar.h 1.1 86/07/07 SMI; from UeB 4.1 83/05/03*1

#define ARMAG "karch>\n"
#define SARMAG 8

#define ARFMAG "'\n"

struct ar _ hdr {
char
char
char
char
char
char
char

};

ar _ name[16];
ar _ date[12];
ar_uid[6];
arJid[6];
ar _ mode[8];
ar _size[10];
ar _fmag[2];

The name is a blank-padded string. The ar Jmag field contains ARFMAG to help verify the presence of a
header. The other fields are left-adjusted, blank-padded numbers. They are decimal except for ar _mode,
which is octal. The date is the modification date of the file at the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if necessary. Neverthe­
less the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files, the archive
itself is printable.

SEE ALSO

BUGS

ar(l), ld(l), nm(l)

File names lose trailing blanks. Most software dealing with archives takes even an included blank as a
name terminator.

Sun Release 3.2 Last change: 15 January 1983 525

CORE(5) FILE FORMATS CORE(5)

NAME
core - format of memory image file

SYNOPSIS
#include <sys/core.b>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various errors occur.
See sigvec(2) for the list of reasons; the most common are memory violations, illegal instructions, bus
errors, and user-generated quit signals. The memory image is called 'core' and is written in the process's
working directory (provided it can be; normal access controls apply).

The maximum size of a core file is limited by setrlimit(2). Files which would be larger than the limit are
not created.

Set-user-id programs do not produce core files when they terminate as this would be a security loophole.

The core file consists of a core structure defined in the <sys/core.h> file. The core structure includes the
registers, the floating point status, the program's header, the size of the text, data, and stack segments, the
name of the program and the number of the signal that terminated the process. The program's header is
described by the exec structure defined in the <sys/exec.h> file.

The remainder of the core file consists first of the data pages and then the stack pages of the process image.
The amount of data space image in the core file is given (in bytes) by the c _dsize member of the core struc­
ture. The amount of stack image in the core file is given (in bytes) by the c _ssize member of the core
structure.

SEE ALSO
adb(I), dbx(I), sigvec(2), setrlirnit(2)

526 Last change: 11 September 1985 Sun Release 3.2

CPIO(5) FILE FORMATS CPIO(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The old format header structure, when the -c option of cpio is not used, is:

struct {

}Hdr;

short

ushort

short

h_magic,
h_dev;
h_ino,
h_mode,
h_uid,
h_gid;
h_nlink,
h_rdev,
h _ mtime[2],
h _namesize,
h _ filesize[2];

char h _ name[h _ namesize rounded to a word];

The byte order here is that of the machine on which the tape was written. If the tape is being read on a
machine with a different byte order, you have to use swab(3) after reading the header. You can determine
what byte order the tape was written with by examining the h _magic field; if it is equal to 0143561 (octal),
which is the standard magic number 070707 (octal) with the bytes swapped, the tape was written in a byte
order opposite to that of the machine on which it is being read. If you are producing a tape to be read on a
machine with the opposite byte order to that of the machine on which it is being produced, you can use
swap before writing the header.

When the -c option is used, the header information is described by the statement below:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% 1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.hjno, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Hdr.h_mtime, &Hdr.h_namesize, &Hdr.h_filesize, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h Jtlesize, respectively. The contents of
each file is recorded in an element of the array of varying length structures, archive, together with other
items describing the file. Every instance of h_magic contains the constant 070707 (octal). The items
h _ dev through h -"'time have meanings explained in stat(2). The length of the null-terminated path name
h _name, including the null byte, is given by h _name size .

The last record of the archive always contains the name TRAILER!!!. Special files, directories, and the
trailer, are recorded with h Jtlesize equal to zero. Symbolic links are recorded similarly to regular files,
with the "contents" of the file being the name of the file the symbolic link points to.

SEE ALSO
cpio(I), find(I), stat(2)

Sun Release 3.2 Last change: 8 February 1983 527

CRONTAB(5) FILE FORMATS CRONTAB(5)

NAME
crontab - table of times to run periodic jobs

SYNOPSIS
lusrlIib/crontab

DESCRIPTION

FILES

The letderon utility is a permanent process, started by letclre.loeal, that wakes up once every minute.
letcleron consults the file lusrlliblerontab to find out what tasks are to be done, and at what time.

Each line in lusrllibl erontab consists of six fields, separated by spaces or tabs, as follows:

1. minutes field, which can have values in the range 0 through 59.

2. hours field, which can have values in the range 0 through 23.

3. day of the month, in the range 1 through 31.

4. month of the year, in the range 1 through 12.

5. day of the week, in the range 1 through 7. Monday is day 1 in this scheme of things.

6. (the remainder of the line) is the command to be run. A percent character in this field is
translated to a new-line character. Only the first line (up to a % or end of line) of the command
field is executed by the Shell. The other lines are made available to the command as standard
input.

Any of fields 1 through 5 can be a list of values separated by commas. A field can be a pair of numbers
separated by a hyphen, indicating that the job is to be done for all the times in the specified range. If a field
is an asterisk character (*) it means that the job is done for all possible values of the field.

/usrllib/crontab

SEE ALSO
cron(8), rc(8)

EXAMPLE

528

o 0 • * * calendar -
15 0 •• • fete/sa -s >/dev/null
154 * • • find lusr/preserve -mtime +7 -a -exec rm -f {} ;
404* •• find I-name '#.' -atime +3 -exec rm -f {} ;
0,15,30,45 •••• /etc/atrun
0,10,20,30,40,50 • * • • /etc/dmesg - »/usr/admlmessages
5 4 • * * sh /etc/newsyslog

The calendar command run at minute 0 of hour 0 (midnight) of every day. The letelsa command runs at
15 minutes after midnight every day. The two find commands run at 15 minutes past four and at 40
minutes past fOUf, respectively, every day of the year. The atrun command (which processes shell scripts
users have set up with at) runs every 15 minutes. The /etcldmesg command appends kernel messages to
the lusr/admlmessages file every ten minutes, and finally, the lusrladmlsyslog script runs at five minutes
after four every day.

Last change: 6 November 1984 Sun Release 3.2

DIR(5) FILE FORMATS DIR(5)

NAME
dir - format of directories

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory and direc­
tories must be read using the getdirentries(2) system call or the directory(3) library routines. The fact that
a file is a directory is indicated by a bit in the flag word of its i-node entry; see fs(5).

A directory consists of some number of blocks of DIRBLKSIZ bytes, where DIRBLKSIZ is chosen such that
it can be transferred to disk in a single atomic operation (512 bytes on most machines):

#ifdef KERNEL
#define DIRBLKSIZ DEV BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

Each DIRBLKSIZ byte block contains some number of directory entry structures, which are of variable
length. Each directory entry has a struct direct at the front of it, containing its inode number, the length of
the entry, and the length of the name contained in the entry. These are followed by the name padded to a
4-byte boundary with null bytes. All names are guaranteed null terminated. The maximum length of a
name in a directory is MAXNAMLEN.

The macro DIRSIZ(dp) gives the amount of space required to represent a directory entry. Free space in a
directory is represented by entries that have:

dp->d_reclen > DIRSIZ(dp)

All DIRBLKSIZ bytes in a directory block are claimed by the directory entries. This usually results in the
last entry in a directory having a large dp->d _reclen. When entries are deleted from a directory, the space
is returned to the previous entry in the same directory block by increasing its dp->d _reelen. If the first
entry of a directory block is free, then its dp->d Jno is set to O. Entries other than the first in a directory do
not normally have dp->d _ioo set to O.

The DIRSIZ macro gives the minimum record length which will hold the directory entry. This requires the
amount of space in struct direct without the d _name field, plus enough space for the name with a terminat­
ing null byte (dp->d_oamleo+l), rounded up to a 4-byte boundary.

#undef DIRSIZ
#define DIRSIZ(dp) «sizeof (struct direct) - (MAXNAMLEN+1» + «(dp)-><tnamlen+1 + 3) &- 3))
struct direct {

u_Iong d_ino;
short d _reclen;
short d _ namlen;
char d_name[MAXNAMLEN + 1];
1* typically shorter *1

};

struct _ dirdesc {
int dd_fd;
long dd}oc;
long dd _size;
char dd _ buf[DIRBLKSIZ];

};

Sun Release 3.2 Last change: 24 July 1986 529

DIR(5) FILE FORMATS DIR(5)

By convention, the first two entries in each directory are for '.' and' •• '. The first is an entry for the direc­
tory itself. The second is for the parent directory. The meaning of ' •• ' is modified for the root directory of
the master file system ("I"), for which' •• ' has the same meaning as '.'.

SEE ALSO
fs(5), readdir(3)

530 Last change: 24 July 1986 Sun Release 3.2

DUMP(5) FILE FORMATS

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#include <sys/types.h>
#include <syS/inode.h>
#include <dumprestor .h>

DESCRIPTION
Tapes used by dump and restore (8) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

DUMP(5)

The format of the header record and of the first record of each description as given in the include file
<dumprestor.h> is:

#define NTREC
#define MLEN 16
#define MSIZ 4096

#define TS TAPE
#define TS !NODE
#define TS BITS
#define TS ADDR
#define TS END
#define TS CLRI
#define MAGIC
#define CHECKSUM

struct spcl {
int
time t
time t
int
daddr t
ino t
int
int
struct
int
char

} spcl;

struct idates {
char
char
time t

};

10

1
2
3
4
5
6
(int) 60011
(int) 84446

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c}number;
c_magic;
c _checksum;
dinode
c_count;
c _addr[BSIZE];

id _ name[16];
id_incno;
id_ddate;

#define DUMPOUTFMT"%-16s %c %s"

#define DUMPINFMT "%16s %c %["'\n]\n"

1* for printf *1
1* name, incno, ctime(date) *1
1* inverse for scanf *1

Sun Release 3.2 Last change: 15 January 1983 531

DUMP(5) FILE FORMATS DUMP(5)

FILES

NTREC is the default number of 1024 byte records in a physical tape block, changeable by the b option to
dump. MLEN is the number of bits in a bit map word. MSIZ is the number of bit map words.

The TS _ entries are used in the c _type field to indicate what sort of header this is. The types and their
meanings are as follows:

TS TAPE
TS INODE

TS BITS
TS ADDR
TS END
TS CLRI

Tape volume label
A file or directory follows. The c _ dinode field is a copy of the disk inode and contains bits
telling what sort of file this is.
A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord of a file description. See c _ addr below.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes that were empty on the
file system when dumped.

MAGIC
CHECKSUM

All header records have this number in c _1TIilgic.
Header records checksum to this value.

The fields of the header structure are as follows:

c_type
c date
cddate
c volume
c_tapea
c inumber
c_magic
c checksum
c dinode
c count
c addr

The type of the header.
The date the dump was taken.
The date the file system was dumped from.
The current volume number of the dump.
The current number of this (1 024-byte) record.
The number of the inode being dumped if this is of type TS _ INODE.
This contains the value MAGIC above, truncated as needed.
This contains whatever value is needed to make the record sum to CHECKSUM.
This is a copy of the inode as it appears on the file system; see fs(5).
The count of characters in c addr.
An array of characters describing the blocks of the dumped file. A character is zero if the
block associated with that character was not present on the file system, otherwise the char-
acter is non-zero. If the block was not present on the file system, no block was dumped;
the block will be restored as a hole in the file. If there is not sufficient space in this record
to describe all of the blocks in a file, TS _ ADDR records will be scattered through the file,
each one picking up where the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends with a
TS _END record and then the tapemark.

The structure idates describes an entry in the file letcldumpdates where dump history is kept. The fields of
the structure are:

id name
id incno
id ddate

The dumped file system is '/devlid _nam'.
The level number of the dump tape; see dump(8).
The date of the incremental dump in system format see types(5).

letc/dumpdates

SEE ALSO
dump(8), restore(8), fs(5), types(5)

BUGS
Should more explicitly describe format of dumpdates file.

532 Last change: 15 January 1983 Sun Release 3.2

ENVIRON (5V) FILE FORMATS ENVIRON (5V)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the 'environment' is made available by execve(2) when a process begins. By
convention these strings have the form 'name = value '. The following names are used by various com­
mands:

PATH

HOME

TERM

SHELL

TERMCAP

EXINIT

USER
LOGNAME

The sequence of directory prefixes that sh, time, nice(l), etc., apply in searching for a file
known by an incomplete path name. The prefixes are separated by colons (:). The
login(l) process sets PATH=:/usr/ucb:lbin:/usrlbin.

The name of the user's login directory, set by login(1) from the password file /etc!passwd
(see passwd(5).

The kind of terminal for which output is to be prepared. This information is used by com­
mands, such as nroff or plot(1G), which may exploit special terminal capabilities. See
letc!termcap (termcap(5» for a list of terminal types.

The file name of the user's login shell.

The string describing the terminal in TERM, or the name of the termcap file, see
termcap (3),termcap (5),

A startup list of commands read by ex(1), edit(1), and vi(l).

The login name of the user.

Further names may be placed in the environment by the export command and 'name=value' arguments in
sh(1), or by the setenv command if you use csh(1). Arguments may also be placed in the environment at
the point of an execve(2). It is unwise to conflict with certain sh(1) variables that are frequently exported
by .profile files: MAIL, PSI, PS2, IFS.

SYSTEM V DESCRIPTION
The description of the variable TERM CAP does not apply to the System V environment.

TZ Time zone information. The format is xxx n lZl where xxx is standard local time zone abbreviation,
n is the difference in hours from GMT, and lZZ is the abbreviation for the daylight-saving local
time zone, if any; for example, EST 5 EDT.

SEE ALSO
csh(l), ex(l), login(l), sh(1), getenv(3), execve(2), system(3), termcap(3X), termcap(5)

Sun Release 3.2 Last change: 1 May 1986 533

ETHERS (5) FILE FORMATS ETHERS (5)

NAME
ethers - Ethernet address to hostname database or YP domain

DESCRIPTION

FILES

The ethers file contains information regarding the known (48 bit) Ethernet addresses of hosts on the Inter­
net. For each host on an Ethernet, a single line should be present with the following information:

Ethernet address
official host name

Items are s~parated by any number of blanks and/or tabs. A 'I' indicates the beginning of a comment
extending to the end of line.

The standard form for Ethernet addresses is "x:x:x:x:x:x" where x is a hexadecimal number between 0 and
ff, representing one byte. The address bytes are always in network order. Host names may contain any
printable character other than a space, tab, newline, or comment character. It is intended that host names in
the ethers file correspond to the host names in the hosts(5) file.

The ether lineO routine from the Ethernet address manipulation library, ethers(3N) may be used to scan
lines of th~ ethers file.

/ etc/ethers

SEE ALSO
ethers(3N), hosts(5)

534 Last change: 7 July 1985 Sun Release 3.2

EXPORTS (5) FILE FORMATS EXPORTS (5)

NAME
exports - NFS file systems being exported

SYNOPSIS
/etc/exports

DESCRIPTION
The file fetclexports describes the file systems which are being exported to nfs clients. It is created by the
system administrator using a text editor and processed by the mount request daemon mountd(8C) each time
a mount request is received.

The file consists of a list of file systems and the netgroup(5) or machine names allowed to remote mount
each file system. The file system names are left justified and followed by a list of names separated by
white space. The names will be looked up in fetclnetgroup and then in fetclhosts. A file system name with
no name list following means export to everyone. A '#' anywhere in the file indicates a comment extend­
ing to the end of the line it appears on. Lines beginning with white space are continuation lines.

EXAMPLE
/usr clients
/usr/local

* export to my clients * export to the world
/usr2 phoenix sun sundae # export to only these machines

FILES
/ etc! exports

SEE ALSO
mountd(8C)

Sun Release 3.2 Last change: 17 February 1986 535

FCNTL(5)

NAME
fcntl- file control options

SYNOPSIS
#include <rcntth>

DESCRIPTION

FILE FORMATS FCNTL(5)

The Icntl (2) function provides for control over open files. This include file describes requests and argu­
ments to Icntl and open (2V) as shown below:

/* @(#)fcntl.h 1.283/12108 SMI; from UCB 4.283/09/25

/*
* Flag values accessible to open(2V) and fcntl(2)
* (The first three can only be set by open)
*1

#define 0 RDONL Y 0
#define 0 WRONL Y 1
#define 0 RDWR 2
#define 0 NDELA Y FNDELAY /* Non-blocking I/O */

*/

#define 0 APPEND FAPPEND /* append (writes guaranteed at the end) */

#ifndef F DUPFD
/* fcntl(2) requests */
#define F DUPFD
#define F GElFD
#define F SElFD
#define F GETFL
#define F SETFL
#define F GETOWN 5
#define F SETOWN 6

o /* Duplicate fildes */
1 1* Get fildes flags *1
2 1* Set fildes flags *1
3 1* Get file flags */
4 1* Set file flags *1
1* Get owner */
1* Set owner *1

/* flags for F _ GETFL, F _ SETFL-- copied from <sys/file.h> */
#define FNDELA Y 00004 /* non-blocking reads */
#define F APPEND 00010 1* append on each write *1
#define FASYNC 00100 1* signal pgrp when data ready */
#endif

SEE ALSO
fcntl(2), open(2V)

536 Last change: 1 September 1983 Sun Release 3.2

FS(5) FILE FORMATS FS(5)

NAME
fs, inode - format of file system volume

SYNOPSIS
#include <sysltypes.h>
#include <syslfilsys.h>
#include <syslinode.h>

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance) has a common format for certain vital
information. Every such volume is divided into a certain number of blocks. The block size is a parameter
of the file system. Sectors 0 to 15 on a file system are used to contain primary and secondary bootstrapping
programs.

The actual file system begins at sector 16 with the super block. The layout of the super block as defined by
the include file <syslfs.h> is:

#define FS MAGIC Ox011954
struct fs {

struct fs *fs Jink;
struct fs *fs _rlink;
daddr_t fs_sblkno;
daddr _ t fs _ cblkno;
daddr _ t fs Jblkno;
daddr_t fs_dblkno;
long fs _ cgoffset;
long fs _ cgmask;
time _ t fs _time;
long fs_size;
long fs _ dsize;
long fs_ncg;
long fs _ bsize;
long fs _ fsize;
long fs_frag;

/* linked list of file systems */
/* used for incore super blocks */
/* addr of super-block in filesys */
/* offset of cyl-block in filesys */
/* offset of inode-blocks in filesys */
/* offset of first data after cg */
/* cylinder group offset in cylinder */
/* used to calc mod fs ntrak */
/* last time written */
/* number of blocks in fs */

/* number of data blocks in fs */
/* number of cylinder groups */

/* size of basic blocks in fs */
/* size of frag blocks in fs */
/* number of frags in a block in fs */

/* these are configuration parameters */
long fs _ minfree; /* minimum percentage of free blocks */
long fs _rotdelay; /* num of ms for optimal next block */
long fs _ rps; /* disk revolutions per second */

/* these fields can be computed from the others */
long fs _ bmask; /* "blkoff" calc of blk offsets */
long fs _fmask; /* "fragoff' calc of frag offsets */
long fs _ bshift; / * "lb limo" calc of logical b lkno * /
long fs _fshift; /* "numfrags" calc number of frags */

/* these are configuration parameters */
long fs _ maxcontig; /* max number of contiguous blks */
long fs _maxbpg; /* max number of blks per cyl group */

/* these fields can be computed from the others */
long fs _ fragshift; /* block to frag shift */
long fs _fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs _ sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs _ csshift; /* csum block number */
long fs _ nindir; /* value of NINDIR */
long fs_inopb; /* value ofINOPB */
long fs _ nspf; /* value of NSPF */
long fs_optim; /* optimization preference, see below */

Sun Release 3.2 Last change: 3 April 1983 537

FS(5)

538

FILE FORMATS FS(5)

long fs_sparecon[3]; /* reserved for future constants */
/* a unique id for this filesystem (currently unused and un maintained) */

long fs_id[2]; /* file system id */
/* sizes determined by number of cylinder groups and their sizes */

daddr _ t fs _ csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */

/* these fields should be derived from the hardware */
long fs _ntrak; /* tracks per cylinder */
long fs _ nsect; /* sectors per track */
long fs_spc; /* sectors per cylinder */

/* this comes from the disk driver partitioning */
long fs _ ncyl; /* cylinders in file system */

/* these fields can be computed from the others */
long fs _ cpg; /* cylinders per group */
long fs }pg; /* inodes per group */
long fs _ fpg; /* blocks per group * fs _ frag */

/* this data must be re-computed after crashes */
struct csum fs _ cstota1; /* cylinder summary information */

/* these fields are cleared at mount time */
char fs _fmod; /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs _ronly; /* mounted read-only flag */
char fs _flags; /* currently unused flag */
char fs _fsmnt[MAXMNTLEN]; /* name mounted on */

/* these fields retain the current block allocation info */
long fs_cgrotor; /* last cg searched */
struct csum *fs_csp[MAXCSBUFS];I* list offs_cs info buffers */
long fs _ cpc; /* cyl per cycle in postbl */
short fs~stbl[MAXCPG][NRPOS];I* head of blocks for each rotation */
long fs_magic; /* magic number */
u_char fs_rotbl[1]; /* list of blocks for each rotation */

/* actually longer */
};

Each disk drive contains some number of file systems. A file system consists of a number of cylinder
groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in tum describes the cylinder groups. The super-block
is critical data and is replicated in each cylinder group to protect against catastrophic loss. This is done at
file system creation time and the critical super-block data does not change, so the copies need not be refer­
enced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'blocks' . File system blocks of at most
size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is addressable; these pieces
may be DEV _ BSIZE, or some multiple of a DEV _ BSIZE unit

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last data block
of a small file is allocated as only as many fragments of a large block as are necessary. The file system for­
mat retains only a single pointer to such a fragment, which is a piece of a single large block that has been
divided. The size of such a fragment is determinable from information in the inode, using the "blksize(fs,
ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block availability, aligned
fragments are examined.

Last change: 3 April 1983 Sun Release 3.2

FS(5) FILE FORMATS FS(5)

The root inode is the root of the file system. Inode 0 can't be used for normal purposes and historically bad
blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer used for this purpose, however
numerous dump tapes make this assumption, so we are stuck with it). The lost+found directory is given
the next available inode when it is initially created by mkfs.

fs _ minfree gives the minimum acceptable percentage of file system blocks which may be free. If the freelist
drops below this level only the super-user may continue to allocate blocks. This may be set to 0 if no
reserve of free blocks is deemed necessary, however severe performance degradations will be observed if
the file system is run at greater than 90% full; thus the default value of fs _ minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a loading of 90%
comes with a fragmentation of 4, thus the default fragment size is a fourth of the block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different rotational
positions, so that sequential blocks can be laid out with minimum rotational latency. NRPOS is the number
of rotational positions which are distinguished. With NRPOS 8 the resolution of the summary information
is 2ms for a typical 3600 rpm drive.

fs _rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the same
cylinder. It is used in determining the rotationally optimal layout for disk blocks within a file; the default
value for fs _rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI bytes of
disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the structure simpler
by having the only a single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create files of
size 2"32 with only two levels of indirection. MINBSlZE must be big enough to hold a cylinder group
block, thus changes to (struct cg) must keep its size within MINBSlZE. MAXCPG is limited only to
dimension an array in (struct cg); it can be made larger as long as that structure's size remains within the
bounds dictated by MINBSlZE. Note that super blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained infs Jsmnt. MAXMNTLEN defines the
amount of space allocated in the super block for this name. The limit on the amount of summary informa­
tion per file system is defined by MAXCSBUFS. It is currently parameterized for a maximum of two mil­
lion cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's data
blocks. These blocks are read in fromfs _csaddr (size fs _ cssize) in addition to the super block.

N.B.: sizeof (struct csum) must be a power of two in order for the "fs _ cs" macro to work.

Super block for afile system: MAXBPC bounds the size of the rotational layout tables and is limited by the
fact that the super block is of size SBSIZE. The size of these tables is inversely proportional to the block
size of the file system. The size of the tables is increased when sector sizes are not powers of two, as this
increases the number of cylinders included before the rotational pattern repeats (fs _cpc). The size of the
rotational layout tables is derived from the number of bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact that cylinder
groups are at most one block. The size of the free block table is derived from the size of blocks and the
number of remaining bytes in the cylinder group structure (struct cg).

[node: The inode is the focus of all file activity in the UNIX file system. There is a unique inode allocated
for each active file, each current directory, each mounted-on file, text file, and the root. An inode is
'named' by its device/i-number pair. For further information, see the include file < sys/inode.h>.

Sun Release 3.2 Last change: 3 April 1983 539

FSPEC(5) FILE FORMATS FSPEC(5)

NAME
fspec - format specification in text files

DESCRIPTION

540

It is sometimes convenient to maintain text files on the UNIX system with non-standard tabs, (Le., tabs
which are not set at every eighth column). Such files must generally be converted to a standard format, fre­
quently by replacing all tabs with the appropriate number of spaces, before they can be processed by UNIX
system commands. A format specification occurring in the first line of a text file specifies how tabs are to
be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded by the
brackets <: and :>. Each parameter consists of a keyletter, possibly followed immediately by a value. The
following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. tabs must be one of the following:

1. a list of column numbers separated by commas, indicating tabs set at the specified
columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of n columns;

3. a - followed by the name of a £'canned" tab specification.

Standard tabs are specified by t-8, or equivalently, tl,9,17,2S,etc. The canned tabs which are
recognized are as follows:

a 1,10,16,36,72
Assembler, IBM S/370, first format

a2 1,10,16,40,72
Assembler, IBM S/370, second format

c 1,8,12,16,20,55
COBOL, normal format

c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first typed character
corresponds to card column 7, one space gets you to column 8, and a tab reaches column
12. Files using this tab setup should include a format specification as follows:

<:t-c2 m6 s66 d:>

c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than c2. This is the
recommended format for COBOL. The appropriate format specification is:

<:t-c3 m6 s66 d:>

r 1,7,11,15,19,23
FORTRAN

P 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PUI

s 1,10,55
SNOBOL

u 1,12,20,44
UNIVAC 1100 Assembler

ssize The s parameter specifies a maximum line size. The value of size must be an integer.
Size checking is performed after tabs have been expanded, but before the margin is
prepended.

Last change: 15 April 1986 Sun Release 3.2

FSPEC(5) FILE FORMATS FSPEC(5)

mmargin
The m parameter specifies a number of spaces to be prepended to each line. The value of
margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the format
specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to pre-
vail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mO. If the s parameter is not
specified, no size checking is performed. If the first line of a file does not contain a format specification,
the above defaults are assumed for the entire file. The following is an example of a line containing a for­
mat specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not necessary to code the d parameter.

Several UNIX system commands correctly interpret the format specification for a file. Among them is
newform(l) which may be used to convert files to a standard format acceptable to other UNIX system com­
mands.

SEE ALSO
newform(l)

Sun Release 3.2 Last change: 15 April 1986 541

FTPUSERS (5)

NAME
ftpusers -list of users prohibited by ftp

SYNOPSIS
lusr letc/ftpusers

DESCRIPTION

FILE FORMATS FrPUSERS (5)

Ftpusers contains a list of users who cannot access this system using theftp{l) program. Ftpusers contains
one user name per line.

SEE ALSO
ftp(lC), ftpd{8C)

542 Last change: 23 October 1984 Sun Release 3.2

GETTYTAB(5) FILE FORMATS GETTYTAB (5)

NAME
gettytab - terminal configuration data base

SYNOPSIS
t etc! getty tab

DESCRIPTION
Getty tab is a simplified version of the termcap(5) data base used to describe terminal lines. The initial ter­
minallogin process getty(8) accesses the getty tab file each time it starts, allowing simpler reconfiguration
of terminal characteristics. Each entry in the data base is used to describe one class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other classes. (That is,
the default entry is read, then the entry for the class required is used to override particular settings.)

CAPABILITIES
Refer to termcap(5) for a description of the file layout. The default column below lists defaults obtained if
there is no entry in the table obtained, nor one in the special default table.

Name Type Default Description

ap bool false terminal uses any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb bool false use crt backspace mode
cd num 0 carriage-return delay
ce bool false use crt erase algorithm
ck bool false use crt kill algorithm
cl str NULL screen clear sequence
co bool false console - add \n after login prompt
ds str "Y delayed suspend character
ec bool false leave echo OFF

ep bool false terminal uses even parity
er str "'? erase character
et str "D end of text (EOP) character
ev str NULL initial enviroment
fO num unused tty mode flags to write messages
f1 num unused tty mode flags to read login name
f2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
fl str "0 output flush character
hc bool false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht bool false terminal has real tabs
ig bool false ignore garbage characters in login name
im str NULL initial (banner) message
in str "C interrupt character
is Dum unused input speed
k1 str "U kill character
Ie bool false terminal has lower case
1m str login: login prompt
In str "V "literal next" character
10 str tbin/login program to exec when name obtained
nd num 0 newline (line-feed) delay
nl bool false terminal has (or might have) a newline character
nx str default next table (for auto speed selection)

Sun Release 3.2 Last change: 24 October 1984 543

GEITYTAB(5) FILE FORMATS GETIYTAB (5)

544

op bool false terminal uses odd parity
os num unused output speed
pc str \0 pad character
pe bool false use printer (hard copy) erase algorithm
pf num 0 delay between first prompt and following flush (seconds)
ps bool false line connected to a MICOM port selector
qu str '\ quit character
rp str AR line retype character
rw bool false do NOT use raw for input, use cbreak
sp num 0 line speed (input and output)
su str 'Z suspend character
tc str none table continuation
td num 0 tab delay
to num 0 timeout (seconds)
tt str NULL terminal type (for enviroment)
ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case only
we str AW word erase character
xc bool false do NOT echo control chars as AX
xf str AS XOFF (stop output) character
xn str AQ XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is entered.
Specifying an input or output speed overrides line speed for stated direction only.

Terminal modes to be used for the output of the message, for input of the login name, and to leave the ter­
minal set as upon completion, are derived from the Boolean flags specified. If the derivation should prove
inadequate, any (or all) of these three may be overriden with one of the ro, fi, or f2 numeric specifications,
which can be used to specify (usually in octal, with a leading '0') the exact values of the flags. Local (new
tty) flags are set in the top 16 bits of this (32 bit) value.

Should getty receive a null character (presumed to indicate a line break) it will restart using the table indi­
cated by the ox entry. If there is none, it will re-use its original table.

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be used.
Should greater certainty be desired, delays with values 0, 1,2, and 3 are interpreted as choosing that partic­
ular delay algorithm from the driver.

The cI screen clear string may be preceded by a (decimal) number of milliseconds of delay required (a la
termcap). This delay is simulated by repeated use of the pad character pc.

The initial message, and login message, im and 1m may include the character sequence % h to obtain the
hostname. (%% obtains a single '%' character.) The hostname is normally obtained from the system, but
may be set by the hn table entry. In either case it may be edited with he. The he string is a sequence of
characters, each character that is neither '@' nor '#' is copied into the final hostname. A '@' in the he
string, causes one character from the real hostname to be copied to the final hostname. A '#' in the he
string, causes the next character of the real hostname to be skipped. Surplus '@' and '#' characters are
ignored

When getty execs the login process, given in the 10 string (usually "/bin/login"), it will have set the enviro­
ment to include the terminal type, as indicated by the tt string (if it exists). The ev string, can be used to
enter additional data into the environment. It is a list of comma separated strings, each of which will
presumably be of the form name=va[ue.

If a non-zero timeout is specified, with to, then getty will exit within the indicated number of seconds,
either having received a login name and passed control to login, or having received an alarm signal, and
exited. This may be useful to hangup dial in lines.

Last change: 24 October 1984 Sun Release 3.2

GETIYTAB(5) FILE FORMATS GETTYTAB(5)

Output from getty is even parity unless op is specified. Op may be specified with ap to allow any parity on
input, but generate odd parity output. Note: this only applies while getty is being run, terminal driver limi­
tations prevent a more complete implementation. Getty does not check parity of input characters in RAW
mode.

FILES
I etc! getty tab

SEE ALSO
termcap(5), getty(8).

Sun Release 3.2 Last change: 24 October 1984 545

GROUP(5) FILE FORMATS GROUP(5)

NAME
group - group file

SYNOPSIS
fetc/group

DESCRIPTION
Group contains for each group the following information:

• group name

• encrypted password

• numerical group ID

• a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated from the next by a new­
line. If the password field is null, no password is demanded.

This file resides in the fetc directory. Because of the encrypted passwords, it can and does have general
read permission and can be used, for example, to map numerical group ID's to names.

A group file can have a line beginning with a plus (+), which means to incorporate entries from the yellow
pages. There are two styles of + entries: All by itself, + means to insert the entire contents of the yellow
pages group file at that point; +name means to insert the entry (if any) for name from the yellow pages at
that point If a + entry has a non-null password or group member field, the contents of that field will
overide what is contained in the yellow pages. The numerical group ID field cannot be overridden.

EXAMPLE

FILES

+myproject:::bill, steve
+:

If these entries appear at the end of a group file, then the group myproject will have members bill andsteve,
and the password and group ID of the yellow pages entry for the group myproject. All the groups listed in
the yellow pages will be pulled in and placed after the entry for myproject.

fetc/group fetc/yp/group

SEE ALSO
setgroups(2), initgroups(3), crypt(3), passwd(1), passwd(5)

BUGS
The passwd (1) command won't change group passwords.

546 Last change: 1 February 1985 Sun Release 3.2

HOSTS(5) FILE FORMATS HOSTS (5)

NAME
hosts - host name data base

SYNOPSIS
letclhosts

DESCRIPTION
The hosts file contains information regarding the known hosts on the DARPA Internet. For each host a sin­
gle line should be present with the following information:

Internet address
official host name
aliases

Items are separated by any number of blanks and/or tab characters. A '#' indicates the beginning of a com­
ment; characters up to the end of the line are not interpreted by routines which search the file. This file is
normally created from the official host data base maintained at the Network Information Control Center
(NIC), though local changes may be required to bring it up to date regarding unofficial aliases and/or unk­
nown hosts.

Network addresses are specified in the conventional '.' notation using the inet_addrO routine from the
Internet address manipulation library, inet(3N). Host names may contain any printable character other than
a field delimiter, newline, or comment character.

EXAMPLE
Here is a typical line from the fetclhosts file:

192.9.1.20 gaia # Alison Shanks

FILES
fete/hosts

SEE ALSO
gethostent(3N)

Sun Release 3.2 Last change: 28 August 1985 547

HOSTS.EQUN (5) FILE FORMATS HOSTS.EQUIV (5)

NAME
hosts.equiv - list of trusted hosts

DESCRIPTION

FILES

Hosts.equiv resides in directory lete and contains a list of trusted hosts. When an rlogin(l) or rsh(l)
request from such a host is made, and the initiator of the request is in letc/passwd, then no further validity
checking is done. That is, rlogin does not prompt for a password, and rsh completes successfully. So a
remote user is "equivalenced" to a local user with the same user ID when the remote user is in
hosts.equiv.

The format of hosts.equiv is a list of names, as in this example:

hostl
host2
+@groupl
-@group2

A line consisting of a simple host name means that anyone logging in from that host is trusted. A line con­
sisting of +@group means that all hosts in that network group are trusted. A line consisting of -@group
means that hosts in that group are not trusted. Programs scan hosts.equiv linearly, and stop at the first hit
(either positive for hostname and +@ entries, or negative for -@ entries). A line consisting of a single +
means that everyone is trusted.

The .rhosts file has the same format as hosts.equiv. When user XXX executes rio gin or rsh, the .rhosts file
from XXX's home directory is conceptually concatenated onto the end of hosts.equiv for permission check­
ing. However, -@ entries are not sticky. If a user is excluded by a minus entry from hosts.equiv but
included in .rhosts, then that user is considered trusted. In the special case when the user is root, then only
the I.rhosts file is checked.

It is also possible to have two entries (separated by a single space) on a line of these files. In this case, if
the remote host is equivalenced by the first entry, then the user named by the second entry is allowed to log
in as anyone, that is, specify any name to the -I flag (provided that name is in the letc/passwd file, of
course). Thus

sundown john

allows john to log in from sundown as anyone. The usual usage would be to put this entry in the .rhosts file
in the home directory for bill . Then john may log in as bill when coming from sundown. The second entry
may be a netgroup, thus

+@groupl +@group2

allows any user in group2 coming from a host in groupJ to log in as anyone.

letclhosts.equiv

SEE ALSO
rlogin(l), rsb(l), netgroup(5)

548 Last change: 1 February 1985 Sun Release 3.2

MAGIC (5) FILE FORMATS MAGIC(5)

NAME
magic - file command's magic number file

DESCRIPTION

BUGS

The file (I) command identifies the type of a file using, among other tests, a test for whether the file begins
with a certain magic number. The file fetc/magic specifies what magic numbers are to be tested for, what
message to print if a particular magic number is found, and additional information to extract from the file.

Each line of the file specifies a test to be performed. A test compares the data starting at a particular offset
in the file with a I-byte, 2-byte, or 4-byte numeric value or a string. If the test succeeds, a message is
printed. The line consists of the following fields:

offset

type

A number specifying the offset, in bytes, into the file of the data which is to be tested.

The type of the data to be tested. The possible values are:

byte A one-byte value.

short A two-byte value.

long A four-byte value.

string A string of bytes.

The types byte, short, and long may optionally be followed by a mask specifier of the form
&number. If a mask specifier is given, the value is AND'ed with the number before any com­
parisons are done. The number is specified in C form; e.g. 13 is decimal, 013 is octal, and Ox13
is hexadecimal.

test The value to be compared with the value from the file. If the type is numeric, this value is
specified in C form; if it is a string, it is specified as a C string with the usual escapes permitted
(e.g. \n for new-line).

Numeric values may be preceded by a character indicating the operation to be performed. It
may be =, to specify that the value from the file must equal the specified value, <, to specify that
the value from the file must be less than the specified value, >, to specify that the value from the
file must be greater than the specified value, or x to specify that any value will match. If the
character is omitted, it is assumed to be =.
For string values, the byte string from the file must match the specified byte string; the byte
string from the file which is matched is the same length as the specified byte string.

message The message to be printed if the comparison succeeds. If the string contains a print/(3S) format
specification, the value from the file (with any specified masking performed) is printed using the
message as the format string.

Some file formats contain additional information which is to be printed along with the file type. A line
which begins with the character> indicates additional tests and messages to be printed. If the test on the
line preceding the first line with a > succeeds, the tests specified in all the subsequent lines beginning with
> are performed, and the messages printed if the tests succeed. The next line which does not begin with a
> terminates this.

There should be more than one level of subtests, with the level indicated by the number of> at the begin­
ning of the line.

SEE ALSO
file(I)

Sun Release 3.2 Last change: 11 April 1986 549

MNTENT(5) FILE FORMATS MNTENT(5)

NAME
mntent, fstab - static information about filesystems

SYNOPSIS
#include <mntent.h>

DESCRIPTION

550

The file letc!Jstab describes the file systems and swapping partitions used by the local machine. It is
created by the system administrator using a text editor and processed by commands which mount,
unmount, check consistency of, dump and restore file systems, and by the system in providing swap space.

It consists of a number of lines of the form:

fsname dir type opts freq passno

an example of which would be:

Idev/xyOa 1 4.2 rw,noquota 1 2

The entries in this file are accessed using the routines in getmntent(3), which returns a structure of the fol­
lowing form:

struct mntent {

};

char *mnt_fsname;
char *mnt_ dir;
char *mnt_ type;
char *mnt_ opts;
int mnt_freq;
int mntyassno;

1* file system name *1
1* file system path prefix *1
1* 4.2, nfs, swap, or ignore *1
1* ro, quota, etc. *1
1* dump frequency, in days *1
1* pass number on parallel fsck *1

There is one entry per line in the file, and the fields are separated by white space. A 'I' as the first non­
white character indicates a comment.

The mnt _opts field consists of a string of comma seperated options. Some of the options are common to all
filesystem types, others only make sense for a single filesystem type. See mount(8) for a more complete
description of the options available.

The mnt _type field determines how the mnt Jsname, and mnt _opts fields will be interpreted. Below is a list
of the file system types currently supported and the way each of them interprets these fields.

4.2

NFS

SWAP

mnt fsname Must be a block special device.

Valid opts are: ro, rw, suid, nosuid, quota, noquota.

mnt fsname The path on the server of the directory to be served.

Valid opts are: ro, rw, suid, nosuid, hard, soft, bg, fg, retry, rsize, wsize, timeo,
retrans, port, intr.

mnt fsname Must be a block special device swap partition.

mnt_ opts Ignored.

If the mnt _type is specified as "ignore" the entry is ignored. This is useful to show disk partitions which
are currently not used

The field mnt Jreq indicates how often each partition should be dumped by the dump (8) command (and
triggers that commands w option which tells which file systems should be dumped). Most systems set the
mnt Jreq field to 1 indicating that the file systems are dumped each day.

Last change: 19 May 1986 S un Release 3.2

MNTENT(5) FILE FORMATS MNTENT(5)

FILES

The final field mnt yassno is used by the disk consistency check program fsck (8) to allow overlapped
checking of file systems during a reboot All file systems with mnt yassno of 1 are first checked simul­
taneosly, then all file systems with mnt "'passno of 2, and so on. It is usual to make the mnt yassno of the
root file system have the value 1 and then check one file system on each available disk drive in each subse­
quent pass to the exhaustion of file system partitions.

tetcl/stab is only read by programs, and not written; it is the duty of the system administrator to properly
create and maintain this file. The order of records in letcl/stab is important because fsck, mount, and
umount process the file sequentially; file systems must appear after file systems they are mounted within.

tetclfstab

SEE ALSO
fsck(8), getrnntent(3), mount(8), quotacheck(8), quotaon(8), umount(8)

Sun Release 3.2 Last change: 19 May 1986 551

MTAB(5)

NAME
mtab - mounted file system table

SYNOPSIS
letclmtab

#include <mntent.h>

DESCRIPTION

FILE FORMATS MTAB(5)

Mtab resides in the fetc directory, and contains a table of filesystems currently mounted by the mount com­
mand. Umount removes entries from this file.

FILES

The file contains a line of information for each mounted filesystem, structurally identical to the contents of
letc/fstab, described infstab(5). There are a number oflines of the form:

fsname dir type opts freq passno

for example:

Idev/xyOa 14.2 rw,noquota 1 2

The file is accessed by programs using getmntent(3), and by the system administrator using a text editor.

letc/mtab

SEE ALSO
getmntent(3), fstab(5), mount(8)

552 Last change: 28 August 1985 Sun Release 3.2

NETGROUP(5) FILE FORMATS NETGROUP(5)

NAME
netgroup - list of network groups

DESCRIPTION

FILES

Netgroup defines network wide groups, used for permission checking when doing remote mounts, remote
logins, and remote shells. For remote mounts, the information in netgroup is used to classify machines; for
remote logins and remote shells, it is used to classify users. Each line of the netgroup file defines a group
and has the format

groupname member! rnember2

where memberi is either another group name, or a triple:

(hostname, usemame, domainname)

Any of three fields can be empty, in which case it signifies a wild card. Thus

universal (,,)

defines a group to which everyone belongs. Field names that begin with something other than a letter, digit
or underscore (such as "-") work in precisely the opposite fashion. For example, consider the following
entries:

justmachines
justpeople

(analytica, -,sun)
(-,babbage,sun)

The machine analytica belongs to the group justmachines in the domain sun, but no users belong to it.
Similarly, the user babbage belongs to the group just people in the domain sun, but no machines belong to
it

Network groups are contained in the yellow pages, and are accessed through these files:

letc/yp/domainname/netgroup.dir
letc/yp/domainname/netgroup.pag
letc/yp/domainname/netgroup.byuser.dir
letc/yp/domainname/netgroup.byuser.pag
letc/yp/domainname/netgroup.byhostdir
letc/yp/domainname/netgroup.byhostpag

These files can be created from letclnetgroup using makedbm(8).

/etclnetgroup
/etclypl domainname/netgroup.dir
/etclypl domainnamelnetgroup.pag
/etclypl domainnamelnetgroup.byuser .dir
/etclypldomainname/netgroup.byuser.pag
/etclypl domainnamelnetgroup.byhost.dir
/etclypl domainname/netgroup.byhost.pag

SEE ALSO
getnetgrent(3), exportfs(8), makedbm(8), ypserv(8)

Sun Release 3.2 Last change: 1 February 1985 553

NETRC(5) FILE FORMATS NETRC(5)

NAME
netrc - .netrc file for ftp(l) remote login data

DESCRIPTION
The .netrc file contains data for logging in to a remote host over the network for file transfers by ftp(I).
This file resides in the user's home directory on the machine initiating the file transfer. It's permissions
should be set to disallow read access by group and others (see chmod(1 V».

Each line of the .netrc file defines options for a specific remote host. A line in the .netrc file can be either a
machine line or a default line. The default line indicates a remote host to use as the default destination,
and must be the first line in the .netrc file if present. The machine lines contain login information for each
remote host to which files can be transferred.

default default-machine-name
machine machine-name options

Fields on each line are separated by SPACE or TAB characters.

The options for a machine line are:
Option Parameter

login
password
command
write
force
quiet

name
password
command
yeslno
yeslno
yeslno

Default

localname
(none)
(none)
yes
no
no

Description

login name for remote machine
password for remote login name
default command to be executed
write to user if possible
always prompt for login name and password
Hike the -q option

EXAMPLE
rnahine ray login demo password mypassword

allows an autologin to the machine "ray" using the login name "demo" with password "mypassword".

FILES
-I.netrc

SEE ALSO
ftp(l), ftpd(8)

554 Last change: 28 May 1986 Sun Release 3.2

NETWORKS (5) FILE FORMATS NETWORKS (5)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which comprise the DARPA Inter­
net. For each network a single line should be present with the following information:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file. This file
is normally created from the official network data base maintained at the Network Information Control
Center (NIC), though local changes may be required to bring it up to date regarding unofficial aliases
and/or unknown networks.

Network number may be specified in the conventional "." notation using the inet _networkO routine from
the Internet address manipulation library, inet(3N). Network names may contain any printable character
other than a field delimiter, newline, or comment character.

fete/networks

SEE ALSO
getnetent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be available for
fast access.

Sun Release 3.2 Last change: 15 January 1983 555

PASSWD(5) FILE FORMATS PASSWD(5)

NAME
passwd - password file

SYNOPSIS
/ etc/passwd

DESCRIPTION
The passwd file contains for each user the following information:

name User's login name - contains no upper case characters and must not be greater than eight
characters long.

password encrypted password

numerical user ID
This is the user's ID in the system and it must be unique.

numerical group ID
This is the number of the group that the user belongs to.

user's real name
In some versions of UNIX, this field also contains the user's office, extension, home phone,
and so on. For historical reasons this field is called the Geos field

initial working directory
The directory that the user is positioned in when they log in - this is known as the 'home'
directory.

shell program to use as Shell when the user logs in.

The user's real name field may contain' &', meaning insert the login name.

The password file is an ASCII file. Each field within each user's entry is separated from the next by a
colon. Each user is separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, Ibinlsh is used.

The passwd file can also have line beginning with a plus (+), which means to incorporate entries from the
yellow pages. There are three styles of + entries: all by itself, + means to insert the entire contents of the
yellow pages password file at that point; +name means to insert the entry (if any) for name from the yellow
pages at that point; +@name means to insert the entries for all members of the network group name at that
point. If a + entry has a non-null password, directory, gecos, or shell field, they will overide what is con­
tained in the yellow pages. The numerical user ID and group ID fields cannot be overridden.

EXAMPLE

556

Here is a sample letclpasswd file:

root:q.mJzTnu8icF.:O:10:God:/:/bin/csh
tut:6k/7KCFRPNVXg:508:10:Bill Tuthill:/usr2/tut:/bin/csh
+john:
+@documentation:no-login:
+:::Guest

In this example, there are specific entries for users root lut, in case the yellow pages are out of order. The
user will have his password entry in the yellow pages incorporated without change; anyone in the netgroup
documentation will have their password field disabled, and anyone else will be able to log in with their
usual password, shell, and home directory, but with a gecos field of Guest.

The password file resides in the letc directory. Because of the encrypted passwords, it has general read
permission and can be used, for example, to map numerical user ID's to names.

Appropriate precautions must be taken to lock the letclpasswd file against simultaneous changes if it is to
be edited with a text editor; vipw(8) does the necessary locking.

Last change: 1 February 1985 Sun Release 3.2

PASSWD(5)

FILES
/etclpasswd

SEE ALSO

FILE FORMATS

getpwent(3), login(l), crypt(3), passwd(l), group(5), vipw(8), adduser(8)

Sun Release 3.2 Last change: 1 February 1985

PASSWD(5)

557

PHONES (5) FILE FORMATS PHONES (5)

NAME
phones - remote host phone number data base

SYNOPSIS
letc/phones

DESCRIPTION

FILES

The file fetc/phones contains the system-wide private phone numbers for the tip(IC) program. fetc/phones
is normally unreadable, and so may contain privileged information. The format of fetc/phones is a series of
lines of the form: <system-name>[\t]*<phone-number>. The system name is one of those defined in the
remote(5) file and the phone number is constructed from [0123456789-=*%]. The '=' and '*' characters
are indicators to the auto call units to pause and wait for a second dial tone (when going through an
exchange). The '=' is required by the DF02-AC and the '*' is required by the BIZCOMP 1030.

Comment lines are lines containing a 'I' sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line in the file contains the same
system name tip (1 C) will attempt to dial each one in tum, until it establishes a connection.

fetc/phones

SEE ALSO
tip(1 C), remote(5)

558 Last change: 13 February 1985 Sun Release 3.2

PLOT(5) FILE FORMATS PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X), and are interpreted for various devices
by commands described in plot(1G). A graphics file is a stream of plotting instructions. Each instruction
consists of an ASCII letter usually followed by bytes of binary information. The instructions are executed
in order. A point is designated by four bytes representing the x and y values; each value is a signed integer.
The last designated point in an I, m, D, or p instruction becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in plot(3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four bytes. See plot(lG).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point given by the following four
bytes.

t label: Place the following ASCII string so that its first character falls on the current point The string is
terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last four give the
end point of a circular arc. The least significant coordinate of the end point is used only to determine
the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing further lines. The styles
are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only in plot 4014 andplot
ver.

s space: The next four bytes give the lower left comer of the plotting area; the following four give the
upper right comer. The plot will be magnified or reduced to fit the device as closely as possible.

SEE ALSO

Space settings that exactly fill the plotting area with unity scaling appear below for devices supported
by the filters of plot(lG). The upper limit is just outside the plotting area. In every case the plotting
area is taken to be square; points outside may be displayable on devices whose face isn't square.

4014
ver
300,300s
450

space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);
space(O, 0,4096,4096);
space(O, 0,4096,4096);

plot(lG), plot(3X), graph(1G)

Sun Release 3.2 Last change: 15 January 1983 559

PRINTCAP (5) FILE FORMATS PRINTCAP(5)

NAME
printcap - printer capability data base

SYNOPSIS
/ etclprintcap

DESCRIPTION
Printcap is a simplified version of the termcap(5) data base for describing printers. The spooling system
accesses the printcap file every time it is used., allowing dynamic addition and deletion of printers. Each
entry in the data base describes one printer. This data base may not be substituted for, as is possible for
termcap, because it may allow accounting to be bypassed.

The default printer is normally lp, though the environment variable PRINTER may be used to override this.
Each spooling utility supports a -Pprinter option to explicitly name a destination printer.

Refer to the Line Printer Spooler Manual in the Sun System Administration Manual for a discussion of how
to set up the database for a given printer.

Each entry in the printcap file describes a printer, and is a line consisting of a number of fields separated by
':' characters. The first entry for each printer gives the names which are known for the printer, separated
by 'I' characters. The first name is conventionally a number. The second name given is the most common
abbreviation for the printer, and the last name given should be a long name fully identifying the printer.
The second name should contain no blanks; the last name may well contain blanks for readability. Entries
may continue onto multiple lines by giving a \ as the last character of a line, and empty fields may be
included for readability.

Capabilities in printcap are all introduced by two-character codes, and are of three types:

Boolean capabilities indicate that the printer has some particular feature. Boolean capabilities are sim­
ply written between the ':' characters, and are indicated by the word 'boo!' in the type column
of the capabilities table below.

Numeric capabilities supply information such as baud-rates, number of lines per page, and so on.
Numeric capabilities are indicated by the word 'num' in the type column of the capabilities
table below. Numeric capabilities are given by the two-character capability code followed by
the 'I' character, followed by the numeric value. For example: :br#1200: is a numeric entry
stating that this printer should run at 1200 baud.

String capabilities give a sequence which can be used to perform particular printer operations such as
cursor motion. String valued capabilities are indicated by the word 'str' in the type column of
the capabilities table below. String valued capabilities are given by the two-character capabil­
ity code followed by an '=' sign and then a string ending at the next following ':'. For exam­
ple, :rp=spinwriter: is a sample entry stating that the remote printer is named 'spinwriter'.

CAPABILITIES
Name Type Default Description

af str NULL name of accounting file
br num none if lp is a tty, set the baud rate (ioctl call)
cf str NULL cifplot data filter
df str NULL TeX data filter (DVI format)
du str 0 User ID of user' daemon' .
fc num 0 if lp is a tty, clear flag bits (sgtty .h)
ff str "\f' string to send for a form feed
fo bool false print a form feed when device is opened
fs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot (3X) format)
ic bool false driver supports (non standard) ioctI

call for indenting printout
if str NULL name of text filter which does accounting

560 Last change: 9 July 1985 Sun Release 3.2

PRINTCAP (5) FILE FORMATS PRINTCAP (5)

If str ' '/dev/console" error logging file name
10 str "lock" name of lock file
Ip str "/dev/lp" device name to open for output
mc num 0 maximum number of copies
mx num 1000 maximum file size (in BUFSIZ blocks), zero = unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroff data filter (device independent troff)
of str NULL name of output filtering program
pI num 66 page length (in lines)
pw num 132 page width (in characters)
px num 0 page width in pixels (horizontal)
py num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files
rm str NULL machine name for remote printer
rp str "lp" remote printer name argument
rs bool false restrict remote users to those with local accounts
rw bool false open printer device read/write instead of read-only
sb bool false short banner (one line only)
sc bool false suppress multiple copies
sd str " /usr/spool/lpd" spool directory
sf bool false suppress form feeds
sh bool false suppress printing of burst page header
st str "status" status file name
tf str NULL troff data filter (cat phototypesetter)
tr str NULL trailer string to print when queue empties
vf str NULL raster image filter
xc num 0 if lp is a tty, clear local mode bits (tty (4»
xs num 0 like 'xc' but set bits

Error messages sent to the console have a carriage return and a line feed appended to the~ rather than just
a line feed.

If the local line printer driver supports indentation, the daemon must understand how to invoke it.

Note that the 'fs', 'fc', 'xs', and 'xc' fields are flag masks rather than flag values. Certain default device
flags are set when the device is opened by the lineprinter daemon if the device is a tty. The flags indicated
in the 'fc' field are then cleared; the flags in the 'fs' field are then set (or vice-versa, depending on the order
of 'fc#nnnn' and 'fs#nnnn' in the /etc/printcap file). For example, to set exactly the flags 06300 in the 'fs'
field, do:

:fc#0177777 :fs#06300:

The same process applies to the 'xc' and 'xs' fields.

SEE ALSO
termcap(5), Ipc(8), Ipd(8), pac(8), lpr(l), Ipq(l), Iprm(1)
The Line Printer Spooler Manual in the Sun System Administration Manual.

Sun Release 3.2 Last change: 9 July 1985 561

PROTOCOLS (5) FILE FORMATS PROTOCOLS (5)

NAME
protocols - protocol name data base

SYNOPSIS
letclprotocols

DESCRIPTION
The protocols file contains information regarding the known protocols used in the DARPA Internet. For
each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or comment char­
acter.

EXAMPLE
The following example is taken from the Sun UNIX system.

Internet (IP) protocols

ip
icmp
ggp
tcp
pup
udp

FILES
/etc/protocols

SEE ALSO
getprotoent(3N)

BUGS

0
1
2
6
12
17

IP # internet protocol, pseudo protocol number
ICMP # internet control message protocol
GGP # gateway-gateway protocol
TCP # transmission control protocol
PUP # P ARC universal packet protocol
UDP # user datagram protocol

A name server should be used instead of a static file. A binary indexed file format should be available for
fast access.

562 Last change: 13 December 1983 Sun Release 3.2

RASTERFILE (5) FILE FORMATS RASTERFILE (5)

NAME
rasterfile - Sun's file format for raster images

SYNOPSIS
#include <rasterfile.h>

DESCRIPTION

FILES

A rasterfile is composed of three parts: first, a header containing 8 integers; second, a (possibly empty) set
of colormap values; and third, the pixel image, stored a line at a time, in increasing y order. The image is
layed out in the file as in a memory pixrect. Each line of the image is rounded up to the nearest 16 bits.

The header is defined by the following structure:

struct rasterfile {
int ras _magic;

};

int
int
int
int
int
int
int

ras_width;
ras _height;
ras_depth;
ras _length;
ras_type;
ras _ maptype;
ras _ maplength;

The ras _magic field always contains the following constant:

#define RAS MAGIC Ox59a66a95

The ras _width, ras _ height, and ras _depth fields contain the image's width and height in pixels, and its
depth in bits per pixel, respectively. The depth is either 1 or 8, corresponding to standard frame buffer
depths. The ras _length field contains the length in bytes of the image data. For an unencoded image, this
number is computable from the ras _width, ras _height, and ras _depth fields, but for an encoded image it
must be explicitly stored in order to be available without decoding the image itself. Note that the length of
the header and of the (possibly empty) colormap values are not included in the value of the ras _length
field; it is only the image data length. For historical reasons, files of type RT _OW will usually have a 0 in
the ras _length field, and software expecting to encounter such files should be prepared to compute the
actual image data length if needed. The ras _ maptype and ras _ maplength fields contain the type and length
in bytes of the colormap values, respectively. If ras _ maptype is not RMT _NONE and the ras _ maplength is
not 0, then the colormap values are the ras _ maplength bytes immediately after the header. These values
are either uninterpreted bytes (usually with the ras _ maptype set to RMT _RAW) or the equal length red,
green and blue vectors, in that order (when the ras _ maptype is RMT _ EQUAL _ RGB). In the latter case, the
ras _ maplength must be three times the size in bytes of anyone of the vectors.

lusr/include/rasterfile.h

SEE ALSO
Programmer's Reference Manual/or SunWindows

Sun Release 3.2 Last change: 14 October 1985 563

REMOTE(5) FILE FORMATS REMOTE (5)

NAME
remote - remote host description file

SYNOPSIS
letc/remote

DESCRIPTION
The systems known by tip(IC) and their attributes are stored in an ASCII file which is structured somewhat
like the termcap(5) file. Each line in the file provides a description for a single system. Fields are
separated by a colon (':'). Lines ending in a \ character with an immediately following newline are contin­
ued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a system, the names
are separated by vertical bars. After the name of the system comes the fields of the description. A field
name followed by an '=' sign indicates a string value follows. A field name followed by a 'I' sign indi­
cates a following numeric value.

Entries named 'tip*' and 'cu*' are used as default entries by tip, and the cu interface to tip, as follows.
When tip is invoked with only a phone number, it looks for an entry of the form 'tip3()()', where 300 is the
baud rate with which the connection is to be made. When the cu interface is used, entries of the fonn
'cu300' are used.

CAPABILITIES

564

Capabilities are either strings (str), numbers (num), or boolean ft.ags (bool). A string capability is specified
by capability=value; for example, 'dv=/devlharris'. A numeric capability is specified by capability #Value ;
for example, 'xa#99'. A boolean capability is specified by simply listing the capability.

at (str) Auto call unit type.

br (num) The baud rate used in establishing a connection to the remote host. This is a decimal
number. The default baud rate is 300 baud.

em (str) An initial connection message to be sent to the remote host. For example, if a host is reached
through port selector, this might be set to the appropriate sequence required to switch to the host.

eo (str) Call unit if making a phone call. Default is the same as the 'dv' field.

di (str) Disconnect message sent to the host when a disconnect is requested by the user.

do (bool) This host is on a dial-up line.

dv (str) UNIX device(s) to open to establish a connection. If this file refers to a terminal line, tip(IC)
attempts to perform an exclusive open on the device to insure only one user at a time has access to
the port.

el (str) Characters marking an end-of-line. The default is NULL. Tip only recognizes ,-, escapes after
one of the characters in 'el', or after a carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (bool) The host uses half-duplex communication, local echo should be performed.

ie (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a file, this string is
sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of 'even', 'odd',
'none', 'zero' (always set bit 8 to zero), 'one' (always set bit 8 to I). The default is 'none'.

pn (str) Telephone number(s) for this host. If the telephone number field contains an @ sign, tip
searches the fetc/phones file for a list of telephone numbers - see phones(5). A % sign in the
telephone number indicates a 5-second delay for the Ventel Modem.

te (str) Indicates that the list of capabilities is continued in the named description. This is used pri­
marily to share common capability information.

Last change: 13 February 1985 Sun Release 3.2

REMOTE(5) FILE FORMATS

Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv=/dev/cuaO:el= "D"U"C"S"Q"O@:du:at=ventel:ie=#$%:oe="D:br#12oo:

arpavaxlax:\
:pn= 7654321 %:tc=UNIX-1200

FILES
letc/remote

SEE ALSO
tip(IC), phones(5)

Sun Release 3.2 Last change: 13 February 1985

REMOTE (5)

565

RESOLVER (5) FILE FORMATS RESOLVER (5)

NAME
resolver - configuration file for name server routines

DESCRIPTION

FILES

The resolver configuration file contains information that is read by the resolver routines the first time they
are invoked in a process. The file is designed to be human readable and contains a list of name-value pairs
that provide various types of resolver information.

The different configuration options are:

nameserver
followed by the Internet address (in dot notation) of a name server that the resolver should query.
At least one name server should be listed. Up to MAXNS (currently 3) name servers may be
listed, in that case the resolver library queries tries them in the order listed (The algorithm used is
to try a name server, and if the query times out, try the next, until out of name servers, then repeat
trying all the name servers until a maximum number of retries are made).

domain followed by a domain name, that is the default domain to append to names that do not have a dot
in them. This defaults to the domain set by the domainname(l) command.

address followed by an Internet address (in dot notation) of any preferred networks. The list of addresses
returned by the resolver will be sorted to put any addresses on this network before any others.

The name value pair must appear on a single line, and the keyword (e.g. nameserver) must start the line.
The value follows the keyword, separated by white space.

/ etclresolv . con!

SEE ALSO
domainname(l), gethostent(3N), named(8C)

566 Last change: 5 May 1986 Sun Release 3.2

RMTAB(S) FILE FORMATS RMTAB(5)

NAME
rmtab - local file system mount statistics

DESCRIPTION

FILES

Rmtab resides in directory lete and contains a record of all clients that have done remote mounts of file sys­
tems from this machine. Whenever a remote mount is done, an entry is made in the rmtab file of the
machine serving up that file system. Umount removes entries, if of a remotely mounted file system.
Umount -a broadcasts to all servers, and informs them that they should remove all entries from rmtab
created by the sender of the broadcast message. By placing a umount -a command in leteITe.boot, rmtab
tables can be purged of entries made by a crashed host, which upon rebooting did not remount the same file
systems it had before. The table is a series of lines of the form

hostname:directory

This table is used only to preserve information between crashes, and is read only by mountd(8) when it
starts up. Mountd keeps an in-core table, which it uses to handle requests from programs like
showmount(1) and shutdown (8).

letc/rmtab

SEE ALSO
showmount(1), mountd(8), mount(8), umount(8), shutdown(8)

BUGS
Although the rmtab table is close to the truth, it is not always 100% accurate.

Sun Release 3.2 Last change: 1 February 1985 567

RPC(5) FILE FORMATS RPC(5)

NAME
rpc - rpc program number data base

SYNOPSIS
letc/rpc

DESCRIPTION

FILES

The rpc file contains user readable names that can be used in place of rpc program numbers. Each line has
the following information:

name of server for the rpc program
rpc program number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file.

Here is an example of the letc!rpc file from the Sun UNIX System.

rpc 1.7 86/04/24

portmapper 100000 portmap sunrpc
rstatd 100001 rstat rup perfmeter
fUsersd 100002 fUsers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 ethers tat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
3270_ mapper 100013
rje_mapper 100014
selection svc 100015 selnsvc
database svc 100016
rexd 100017 rex
alis 100018
sched 100019
llockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024

fetc/rpc

SEE ALSO
getrpcent(3N)

568 Last change: 26 September 1985 Sun Release 3.2

SeeSFILE (5) FILE FORMATS sees FILE (5)

NAME
sccsfile - format of sees file

DESCRIPTION
An sees file is an Asell file. It consists of six logical parts: the checksum, the delta table (contains infor­
mation about each delta), user names (contains login names andlor numerical group IDs of users who may
add deltas), flags (contains definitions of internal keywords), comments (contains arbitrary descriptive
information about the file), and the body (contains the actual text lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASeII SOH (start of heading) character (octal
001). This character is hereafter referred to as the control character and will be represented graphically as
@. Any line described below which is not depicted as beginning with the control character is prevented
from beginning with the control charader.

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of the line is:

@bDDDDD

The value of the checksum is the sum of all characters, except those of the first line. The @b pro­
vides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD!DDDDD!DDDDD
@d <type> <SCCS ID> yr!mo/da hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD •••
@xDDDDD ...
@gDDDDD •••
@m <MR number>

@c <comments> ••.

@e

The first line (@s) contains the number of lines inserted/deleted/unchanged respectively. The
second line (@d) contains the type of the delta (currently, normal: D, and removed: R), the sees
10 of the delta, the date and time of creation of the delta, the login name corresponding to the real
user 10 at the time the delta was created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and ignored,
respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c lines con­
tain comments associated with the delta.

The @e line ends the delta table entry.

User names

Sun Release 3.2 Last change: 15 March 1983 569

SCCSFILE (5)

Flags

FILE FORMATS SCCSFILE (5)

The list of login names and/or numerical group IDs of users who may add deltas to the file,
separated by new-lines. The lines containing these login names and/or numerical group IDs are
surrounded by the bracketing lines @u and @U. An empty list allows anyone to make a delta

Keywords used internally (see admin(l) for more information on their use). Each flag line takes
the form:

@f<flag> <optional text>

The following flags are defined:
@ft <type of program>
@fv <program name>
@fi
@fb
@fm <module name>
@ff <floor>
@f c <ceiling>
@f d <default-sid>
@fn
@fj
@fl <lock-releases>
@fq <user defined>

The t flag defines the replacement for the identification keyword. The v Bag controls prompting
for MR numbers in addition to comments; if the optional text is present it defines an MR number
validity checking program. The i Bag controls the warning/error aspect of the "No id keywords"
message. When the i flag is not present, this message is only a warning; when the i flag is present,
this message will cause a "fatal" error (the file will not be gotten, or the delta will not be made).
When the b flag is present the -b key letter may be used on the get command to cause a branch in
the delta tree. The m flag defines the first choice for the replacement text of the sccsfile.5
identification keyword. The f flag defines the "floor" release; the release below which no deltas
may be added. The c flag defines the "ceiling" release; the release above which no deltas may be
added. The d Bag defines the default SID to be used when none is specified on a get command.
The n flag causes delta to insert a "null" delta (a delta that applies no changes) in those releases
that are skipped when a delta is made in a new release (for example, when delta 5.1 is made after
delta 2.7, releases 3 and 4 are skipped). The absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow concurrent edits of the same base SID. The I
Bag defines a list of releases that are locked against editing (get(l) with the -e keyletter). The q
flag defines the replacement for the identification keyword.

Comments

Body

570

Arbitrary text surrounded by the bracketing lines @t and @T. The comments section typically
will contain a description of the file's purpose.

The body consists of text lines and control lines. Text lines don't begin with the control character,
control lines do. There are three kinds of control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for the control line.

Last change: 15 March 1983 Sun Release 3.2

SCCSFll.E (5) FILE FORMATS SCCSFILE (5)

SEE ALSO
admin(I), delta(I), get(I), prs(I).

Sun Release 3.2 Last change: 15 March 1983 571

SERVERS(5) FILE FORMATS SERVERS (5)

NAME
servers - inet server data base

DESCRIPTION
The servers file contains the list of servers that inetd(8) operates. For each server a single line should be
present with the following information:

name of server
protocol
server location

If the server is rpc based, then the name field should be rpc, and following the server location are two addi­
tional fields, one with the rpc program number, the second with either a version number or a range of ver­
sion numbers.

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines which search the file.

The name of the server should be the official service name as contained in services(5). The protocol entry
is either udp or tcp. The server location is the full path name of the server program.

EXAMPLE
The following example is taken from the Sun UNIX system.

tcp tcp lusr/etc/in.tcpd
telnet tcp lusr/etc/in.telnetd
shell tcp letclin.rshd
login tcp I etc/in.rlogind
exec tcp lusr/etc/in.rexecd
tcp udp lusr/etc/in.ttcpd
syslog udp lusr/etc/in.syslog
comsat udp lusr/etc/in.comsat
talk udp lusr/etc/in.talkd
time tcp lusr/etc/in.timed
rpc udp lusr/etc/rpc.rstatd 100001 1-2
rpc udp lusr/etc/rpc.rusersd 100002 1
rpc udp lusr/etc/rpc.rwalld 100008 1
rpc udp lusr/etc/rpc.mountd 100005 1

FILES
I etc/servers

SEE ALSO
services(5), inetd(8)

BUGS
Because of a limitation on the number of open files, this file must contain fewer than 27 lines.

572 Last change: 28 August 1985 Sun Release 3.2

SERVlCES(5) FILE FORMATS SERVICES (5)

NAME
services - service name data base

SYNOPSIS
I etc/services

DESCRIPTION
The services file contains information regarding the known services available in the DARPA Internet For
each service a single line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and protocol name
are considered a single item; a "I" is used to separate the port and protocol (for instance, "5121tcp"). A
"#" indicates the beginning of a comment; characters up to the end of the line are not interpreted by rou­
tines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or comment char­
acter.

EXAMPLE
Here is an example of the letc/services file from the Sun UNIX System.

@(#)services 1.7 86/02128 SMI

Network services, Internet style
This file is never consulted when the yellow pages are running

echo
discard
systat
daytime
netstat
ftp-data
ftp
telnet
smtp
time
time
name
whois
domain
domain
hostnarnes
sunrpc
sunrpc

20/tcp

101ltcp

Host specific functions

tftp
rje
finger
link
supdup

Sun Release 3.2

7/udp
9/udp
111tcp
13/tcp
15/tcp

211tcp
23/tcp
25/tcp
37/tcp
37/udp
421udp
43/tcp
53/udp
53/tcp

1111udp
Ill1tcp

69/udp
77/tcp
79/tcp
87/tcp
951tcp

hostname

Last change: 13 December 1983

sink null

mail
timserver
timserver
nameserver
nicname# usually to sri-nic

usually to sri-nie

ttylink

573

SERVICES (5)

csnet-ns
uucp-patb
untp
ntp
ingreslock

105/tcp
117/tcp

1524/tcp

UNIX specific services

FILES

exec
login
shell
printer
courier
biff
who
syslog
talk
route
new-rwho
rmonitor
monitor

I etc/services

SEE ALSO
getservent(3N)

BUGS

550/udp
560/udp

FILE FORMATS

119/tcp
123/tcp

5121tcp
513/tcp
514/tcp
5151tcp
530/tcp
5121udp
513/udp
514/udp
517/udp
520/udp

561/udp

new-who
rmonitord

SERVICES (5)

usenet

cmd# no passwords used
spooler# experimental
rpc# experimental
comsat
whod

router routed
experimental
experimental
experimental

A name server should be used instead of a static file. A binary indexed file format should be available for
fast access.

574 Last change: 13 December 1983 Sun Release 3.2

STATMON(5) FILE FORMATS

NAME
statmon, current, backup, state - statd directory and file structures

SYNOPSIS
letc/statmon/current letc/statmonlbackup, letclstatmon/state

DESCRIPTION

STATMON(5)

letclstatmonlcurrent and letclstatmonlbackup are directories generated by statd. Each entry in
letclstatmonlcurrent represents the name of the machine to be monitored by the statd daemon. Each entry
in letclstatmonlbackup represents the name of the machine to be notified by the statd daemon upon its
recovery.

letclstatmonlstate is a file generated by staId to record its version number. This version number is incre­
mented each time a crash or recovery takes place.

SEE ALSO
statd(8C), lockd(8C)

Sun Release 3.2 Last change: 16 July 1986 575

TAR(5) FILE FORMATS TAR(5)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for transportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is represented
by a header block which describes the file, followed by zero or more blocks which give the contents of the
file. At the end of the tape are two blocks filled with binary zeros, as an end-of-file indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n is set by the b
keyletter on the tar(l) command line - default is 20 blocks) is written with a single system call; on nine­
track tapes, the result of this write is a single tape. record. The last group is always written at the full size,
so blocks after the two zero blocks contain random data. On reading, the specified or default group size is
used for the first read, but if that read returns less than a full tape block, the reduced block size is used for
further reads, unless the B key letter is used.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy [TBLOCK] ;
struct header {

} dbuf;

char name[NAMSIZ];
char mode[8];
char uid[8];.
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linldlag;
char linkname[NAMSIZ];

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCll. Each field (of
width w) contains w-2 digits, a space, and a null, except size and mtime, which do not contain the trailing
null. Name is the name of the file, as specified on the tar command line. Files dumped because they were
in a directory which was named in the command line have the directory name as prefix and !filename as
suffix. Mode is the file mode, with the top bit masked off. Uid and gid are the user and group numbers
which own the file. Size is the size of the file in bytes. Links and symbolic links are dumped with this field
specified as zero. Mtime is the modification time of the file at the time it was dumped. Chksum is a
decimal ASCll value which represents the sum of all the bytes in the header block. When calculating the
checksum, the chksum field is treated as if it were all blanks. Linkflag is ASCII '0' if the file is "normal"
or a special file, ASCII' l' if it is an hard link, and ASCII '2' if it is a symbolic link. The name linked-to, if
any, is in linkname, with a trailing null. Unused fields of the header are binary zeros (and are included in
the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second and subsequent
times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved, but not the file it was linked
to, an error message is printed and the tape must be manually re-scanned to retrieve the linked-to file.

The encoding of the header is designed to be portable across machines.

SEE ALSO
tar(l)

576 Last change: 15 January 1983 Sun Release 3.2

TAR(5) FILE FORMATS TAR(5)

BUGS
Names or linknames longer than NAMSIZ produce error reports and cannot be dumped.

Sun Release 3.2 Last change: 15 January 1983 577

TERM(5) FILE FORMATS TERM(5)

NAME
term - terminal driving tables for nroff

SYNOPSIS
lusr/lib/term/tabname

DESCRIPTION

578

Nroff(l) uses driving tables to customize its output for various types of output devices, such as tenninals,
line printers, daisy-wheel printers, or special output filter programs. These driving tables are written as C
programs, compiled, and installed in the directory lusrlliblterm. The name of the output device is specified
with the - T option of nroff. The structure of the tenninal table is as follows:

#define

sttuct {

} t;

INCH

int bset;
int breset;
intHor;
int Vert;
int Newline;
intChar;
intErn;
int Halfiine;
intAdj;

240

char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *fir;
char *bdon;
char * bdoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
char *zzz;

The meanings of the various fields are as follows:

bset bits to set in the sg...flags field of the sgtty structure before output; see tty(4).

breset bits to reset in the sgJlags field of the sgtty structure after output; see tty(4).

Hor horizontal resolution in fractions of an inch.

Vert vertical resolution in fractions of an inch.

Newline space moved by a newline (linefeed) character in fractions of an inch.

Char quantum of character sizes, in fractions of an inch. (that is, a character is a multiple of Char
units wide)

Em size of an em in fractions of an inch.

Haljiine space moved by a half-linefeed (or half-reverse-linefeed) character in fractions of an inch.

Last change: 16 June 1986 Sun Release 3.2

TERM(5) FILE FORMATS TERM(5)

FILES

Adj quantum of white space, in fractions of an inch. (that is, white spaces are a multiple of Adj
units wide)

twinit

twrest

twnl

hlr

hlf

fir

bdon

bdoff

ploton

plotoff

up

down

right

left

code tab

Note: if this is less than the size of the space character (in units of Char; see below for how the
sizes of characters are defined), nroff will output fractional spaces using plot mode. Also, if
the -e switch to nroff is used, Adj is set equal to Hor by nroff.

set of characters used to initialize the terminal in a mode suitable for nroff.

set of characters used to restore the terminal to normal mode.

set of characters used to move down one line.

set of characters used to move up one-half line.

set of characters used to move down one-half line.

set of characters used to move up one line.

set of characters used to turn on hardware boldface mode, if any.

set of characters used to turn off hardware boldface mode, if any.

set of characters used to turn on hardware plot mode (for Diablo type mechanisms), if any.

set of characters used to turn off hardware plot mode (for Diablo type mechanisms), if any.

set of characters used to move up one resolution unit (Vert) in plot mode, if any.

set of characters used to move down one resolution unit (Vert) in plot mode, if any.

set of characters used to move right one resolution unit (Hor) in plot mode, if any.

set of characters used to move left one resolution unit (Hor) in plot mode, if any.

definition of characters needed to print an nroff character on the terminal. The first byte is the
number of character units (Char) needed to hold the character; that is, "\(}() 1 " is one unit wide,
"\002" is two units wide, etc. The high-order bit (0200) is on if the character is to be under­
lined in underline mode (.ul). The rest of the bytes are the characters used to produce the char­
acter in question. If the character has the sign (0200) bit on, it is a code to move the terminal
in plot mode. It is encoded as:

0100 bit on vertical motion.

0100 bit off

040 bit on

040 bit off

037 bits

horizontal motion.

negative (up or left) motion.

positive (down or right) motion.

number of such motions to make.

zzz a zero terminator at the end.

All quantities which are in units of fractions of an inch should be expressed as INCH*numldenom, where
num and denom are respectively the numerator and denominator of the fraction; that is, 1148 of an inch
would be written as "INCHl48, , .

If any sequence of characters does not pertain to the output device, that sequence should be given as a null
string.

lusrllibltermltabname

lusrllibltermlREADME

SEE ALSO

driving tables

list of terminals supported by nroff(1)

nroff(1)

Sun Release 3.2 Last change: 16 June 1986 579

TERM(5V) FILE FORMATS lERM(5V)

NAME
term - format of compiled term file

SYNOPSIS
term

DESCRIPTION

580

Compiled terminfo descriptions are placed under the directory lusrlSlib/terminfo. In order to avoid a
linear search of a huge UNIX system directory, a two-level scheme is used: lusrl5liblterminfolc!name where
name is the name of the terminal, and c is the first character of name. Thus, act4 can be found in the file
lusrlSlib/terminfo/alact4. Synonyms for the same terminal are implemented by multiple links to the same
compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or more bit byte is assumed,
but no assumptions about byte ordering or sign extension are made.

The compiled file is created with the tic program, and read by the routine setupterm. Both of these pieces
of software are part of curses(3V). The file is divided into six parts: the header, terminal names, boolean
flags, numbers, strings, and string table.

The header section begins the file. This section contains six short integers in the format described below.
These integers are (1) the magic number (octal 0432); (2) the size, in bytes, of the names section; (3) the
number of bytes in the boolean section; (4) the number of short integers in the numbers section; (5) the
number of offsets (short integers) in the strings section; (6) the size, in bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits. (Thus, the value represented is 256*second+first)
The value -1 is represented by 0377, 0377, other negative value are illegal. The -1 generally means that a
capability is missing from this terminal. Note that this format corresponds to the hardware of the V AX and
PDP-II. Machines where this does not correspond to the hardware read the integers as two bytes and com­
pute the result

The terminal names section comes next. It contains the first line of the terminfo description, listing the
various names for the terminal, separated by the 'I' character. The section is terminated with an ASCII NUL
character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is present or absent.
The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be inserted, if necessary, to ensure
that the number section begins on an even byte. All short integers are aligned on a short word boundary.

The numbers section is similar to the flags section. Each capability takes up two bytes, and is stored as a
short integer. If the value represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the format above. A
value of -1 means the capability is missing. Otherwise, the value is taken as an offset from the beginning
of the string table. Special characters in "X or \c notation are stored in their interpreted form, not the print­
ing representation. Padding information $<nn> and parameter information %x are stored intact in uninter­
preted form.

The final section is the string table. It contains all the values of string capabilities referenced in the string
section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are actually present in the
file. Either the database may have been updated since setupterm has been recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recompiled more recently than the database
was updated (resulting in missing entries). The routine setupterm must be prepared for both possibilities­
this is why the numbers and sizes are included. Also, new capabilities must always be added at the end of
the lists of boolean, number, and string capabilities.

Last change: 1 May 1986 Sun Release 3.2

TERM(5V) FILE FORMATS TERM(5V)

As an example, an octal dump of the description for the Microtenn ACT 4 is included:

microtermlact41microterm act iv,
cr="M, cud1="J, ind="J, bel="G, am, cub1="H,
ed="_, el="", clear="L, cup="T%p1%c%p2%c,
cols#80, lines#24, cuf1="X, cuu1="Z, home="],

000 032 001 \0 025 \0 \b \0 212 \0 \0 m i c r

020 0 t e r m I a c t 4 m i c r 0

040 t e r m a c t i v \0 \0 001 \0 \0

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377 377 377

120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0

140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0

160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377

200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377

540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0

560 024 % P 1 % c % P 2 % c \0 \n \0 035 \0

600 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 128
bytes.

FILES
lusr/5Iib/terminfol*l* compiled terminal capability data base

SEE ALSO
curses(3V), terminfo(5V).

Sun Release 3.2 Last change: 1 May 1986 581

TERMCAP(5) FILE FORMATS TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
letcltermcap

DESCRIPTION
Termcap is a data base describing terminals, used, for example, by vi(l) and curses(3X). Terminals are
described in termcap by giving a set of capabilities which they have, and by describing how operations are
performed. Padding requirements and initialization sequences are included in termcap.

Each entry in the termcap file describes a terminal, and is a line consisting of a number of fields separated
by':' characters. The first entry for each terminal gives the names which are known for the terminal,
separated by 'I' characters. The first name is always 2 characters long and is used by older version 6 sys­
tems which store the terminal type in a 16 bit word in a systemwide data base. The second name given is
the most common abbreviation for the terminal, and the last name given should be a long name fully identi­
fying the terminal. The second name should contain no blanks; the last name may well contain blanks for
readability. Entries may continue onto multiple lines by giving a \ as the last character of a line, and empty
fields may be included for readability.

Capabilities in termcap are all introduced by two-character codes, and are of three types:
Boolean capabilities indicate that the terminal has some particular feature. Boolean capabilities are

simply written between the ':' characters, and are indicated by the word 'bool' in the type
column of the capabilities table below.

Numeric capabilities supply information such as the size of the terminal or the size of particular delays.
Numeric capabilities are indicated by the word 'num' in the type column of the capabilities
table below. Numeric capabilities are given by the two-character capability code followed by
the 'I' character and then the numeric value. For example: :co#80: is a numeric entry stat­
ing that this terminal has 80 columns.

String capabilities give a sequence which can be used to perform particular terminal operations such
as cursor motion. String valued capabilities are indicated by the word 'str' in the type column
of the capabilities table below. String valued capabilities are given by the two-character capa­
bility code followed by an '=' sign and then a string ending at the next following ':'. For
example, :ce=I6\EAS: is a sample entry for clear to end-of-line.

CAPABILITIES
(P)
(P*)

indicates padding may be specified
indicates that padding may be based on the number of lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AU
bl str Audible bell character
bs bool Terminal can backspace with AU
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (p) Like em but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default AM)

582 Last change: 26 September 1984 Sun Release 3.2

TERMCAP(5) FILE FORMATS TERMCAP(5)

cs str (P) Change scrolling region (vt100), like cm
ct str Clear all tab stops
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
de str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num N umber of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ":ei=:" if ie
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default "L)
hc bool Hardcopy terminal
hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 112 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give ":im=:" if ie
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by horne key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
Ie str Move cursor left one place
Ii num Number of lines on screen or page
11 str Last line, first column (if no em)
ma str Arrow key map, used by vi version 2 only
mb str Turn on blinking
md str Enter bold (extra-bright) mode
me str Turn off all attributes, normal mode
mh str Enter dim (half-bright) mode
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
mr str Enter reverse mode
InS bool Safe to move while in standout and underline mode

Sun Release 3.2 Last change: 26 September 1984 583

TERMCAP(5) FILE FORMATS TERMCAP(5)

584

mu str Memory unlock (tum off memory lock).
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
rf str Reset file, like if but for reset (1)
rs str Reset string, like is but for reset (1)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
st str Set a tab in all rows, current column
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines even though it doesn't overstrike
up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
vs str Sequence to start open/visual mode
vt num Virtual terminal number (CBIUNIX)
xb bool Beehive (f1=escape, f2=ctrl C)
xn bool A newline is ignored after a wrap (Concept)
xr bool Return acts like ee \r \n (Delta Data)
xs bool Standout not erased by writing over it (HP 264?)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following example describes the wyse terminal entry.

wvlwyse-vplwyselWyse 50 in ADDS Viewpoint emulation mode with "enhance" on:
:am:cr= AM:do= AJ:nl= AJ: bl= AG:if=/usrnib/tabsetiwyse-adds: :le= AH: bs:li#24:co#80:cm=EY%+ %+
:cd=Ek:ce=EK:nd= AF: :up= AZ:cl= AL:ll= A A:kl=AU:kr= AF:kd= AJ :ku= AZ:kh= A A:
:pt:so=AN:se=AO:us=AN:ue=AO: :dl=El:al=EM:im=Eq:ei=Er:dc=EW:
:is=E' 72E'9

A
OEr:rs=E' 72E '9A

OEr:

Types of Capabilities

Capabilities in termcap are of three types: Boolean capabilities which indicate that the terminal has some
particular feature, numeric capabilities giving the size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be used to perform particular terminal operations. All
capabilities have two letter codes.

Boolean capabilities are introduced simply by stating the two-character capability code in the field
between ':' characters. For instance, the fact that the Concept has "automatic margins" (that
is, an automatic return and linefeed when the end of a line is reached) is indicated by the capa­
bilityam. Hence the description of the Concept includes am.

Last change: 26 September 1984 Sun Release 3.2

TERMCAP(5) FILE FORMATS TERMCAP(5)

Numeric capabilities are followed by the character 'I' and then the value. Thus co which indicates the
number of columns the terminal has gives the value '80' for the Concept

String valued capabilities, such as ce (clear to end of line sequence) are given by the two character
code, an '=', and then a string ending at the next following ':'. A delay in milliseconds may
appear after the '=' in such a capability, and padding characters are supplied by the editor after
the remainder of the string is sent to provide this delay. The delay can be either a integer, for
instance, '20', or an integer followed by an '*', that is, '3*'. A '*' indicates that the padding
required is proportional to the number of lines affected by the operation, and the amount given
is the per-affected-unit padding required. When a '*' is specified, it is sometimes useful to
give a delay of the form '3.5' to specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding
of characters there. A \E maps to an ESCAPE character, AX maps to a control-x for any
appropriate x, and the sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a \, and the characters A
and \ may be given as \A and \ \. If it is necessary to place a : in a capability it must be escaped
in octal as \072. If it is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termcap use C strings, and strip the high bits of
the output very late so that a \200 comes out as a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a terminal
description is by imitating the description of a similar terminal in termcap and to build up a description gra­
dually, using partial descriptions with ex to check that they are correct. Be aware that a very unusual termi­
nal may expose deficiencies in the ability of the termcap file to describe it or bugs in ex. To easily test a
new terminal description you can set the environment variable TERMCAP to a pathname of a file contain­
ing the description you are working on and the editor will look there rather than in letcltermcap.
TERMCAP can also be set to the termcap entry itself to avoid reading the file when starting up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability. If the terminal
is a CRT, then the number of lines on the screen is given by the Ii capability. If the terminal wraps around
to the beginning of the next line when it reaches the right margin, then it should have the am capability. If
the terminal can clear its screen, then this is given by the cI string capability. If the terminal can backspace,
then it should have the bs capability, unless a backspace is accomplished by a character other than AU (ugh)
in which case you should give this character as the bc string capability. If it overstrikes (rather than clear­
ing a position when a character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in termcap are undefined at the left
and top edges of a CRT terminal. The editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding off the bottom of the screen will cause
the screen to scroll up, and the am capability tells whether the cursor sticks at the right edge of the screen.
If the terminal has switch selectable automatic margins, the termcap file usually assumes that this is on, that
is,am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33 teletype is
described as

t31331 tty33:co#72:os

while the Lear Siegler ADM-3 is described as

cll adm3131lsi adm3:am:bs:cl= AZ:li#24:co#80

Cursor addressing

Sun Release 3.2 Last change: 26 September 1984 585

TERMCAP(5) FILE FORMATS TERMCAP(5)

586

Cursor addressing in the terminal is described by a em string capability, with print/(3S) like escapes %x in
it These substitute to encodings of the current line or column position, while other characters are passed
through unchanged. If the em string is thought of as being a function, then its arguments are the line and
then the column to which motion is desired, and the % encodings have the following meanings:

%d as in print/, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x
%>xy
%r
%i
%%
%n
%B
%0

adds x to value, then %.
if value > x adds y, no output
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (l6*(xlI0» + (x%10), no output
Reverse coding (x-2*(x%16», no output (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&aI2c03Y padded for 6
milliseconds. Note that the order of the rows and columns is inverted here, and that the row and column
are printed as two digits. Thus its em capability is "cm=6\E&%r%2c%2Y". The Microterm ACf-IV needs
the current row and column sent preceded by a "T, with the row and column simply encoded in binary,
"cm="T%.%.". Terminals which use "%." need to be able to backspace the cursor (bs or be), and to
move the cursor up one line on the screen (up introduced below). This is necessary because it is not
always safe to transmit \t, \n "D and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cm=\E=%+ %+".

Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the current position
unchanged, then this sequence should be given as nd (non-destructive space). If it can move the cursor up
a line on the screen in the same column, this should be given as up. If the terminal has no cursor address­
ing capability, but can home the cursor (to very upper left corner of screen) then this can be given as ho;
similarly a fast way of getting to the lower left hand corner can be given as II; this may involve going up
with up from the home position, but the editor will never do this itself (unless II does) because it makes no
assumption about the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this
should be given as ceo If the terminal can clear from the current position to the end of the display, then this
should be given as cd. The editor only uses ed from the first column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given as al; this
is done only from the first position of a line. The cursor must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then this should be given as dl; this is done only from
the first position on the line to be deleted. If the terminal can scroll the screen backwards, then this can be
given as sb, but just al suffices. If the terminal can retain display memory above then the da capability
should be given; if display memory can be retained below then db should be given. These let the editor
understand that deleting a line on the screen may bring non-blank lines up from below or that scrolling
back with sb may bring down non-blank lines.

Insert/delete eharacter

Last change: 26 September 1984 Sun Release 3.2

TERMCAP(5) FILE FORMATS TERMCAP(5)

There are two basic kinds of intelligent terminals with respect to insert/delete character which can be
described using termcap. The most common insert/delete character operations affect only the characters on
the current line and shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the screen, shift­
ing upon an insert or delete only to an untyped blank on the screen which is either eliminated, or expanded
to two untyped blanks. You can find out which kind of terminal you have by clearing the screen and then
typing text separated by cursor motions. Type "abc def" using local cursor motions (not spaces)
between the "abc" and the "def'. Then position the cursor before the "abc" and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off the end,
then your terminal does not distinguish between blanks and untyped positions. If the "abc" shifts over to
the "def" which then move together around the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability in, which stands for "insert null". If your
terminal does something different and unusual then you may have to modify the editor to get it to use the
insert mode your terminal defines. We have seen no terminals which have an insert mode not not falling
into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a simple
sequence to open a blank position on the current line. Give as im the sequence to get into insert mode, or
give it an empty value if your terminal uses a sequence to insert a blank position. Give as ei the sequence
to leave insert mode (give this, with an empty value also if you gave im so). Now give as ic any sequence
needed to be sent just before sending the character to be inserted. Most terminals with a true insert mode
will not give ie, terminals which send a sequence to open a screen position should give it here. (Insert
mode is preferable to the sequence to open a position on the screen if your terminal has both.) If post insert
padding is needed, give this as a number of milliseconds in ip (a string option). Any other sequence which
may need to be sent after an insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the same line (for
example, if there is a tab after the insertion position). If your terminal allows motion while in insert mode
you can give the capability mi to speed up inserting in this case. Omitting mi will affect only speed.
Some terminals (notably Datamedia's) must not have mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and dc to delete a
single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se respectively.
If there are several flavors of standout mode (such as inverse video, blinking, or underlining - half bright is
not usually an acceptable "standout" mode unless the terminal is in inverse video mode constantly) the
preferred mode is inverse video by itself. If the code to change into or out of standout mode leaves one or
even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then sg should be given to tell
how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If they leave blank
spaces on the screen, set ug. If the terminal has a code to underline the current character and move the cur­
sor one space to the right, such as the Microterm Mime, this can be given as uc. (If the underline code
does not move the cursor to the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a new line or
the cursor is addressed. Programs using standout mode should exit standout mode before moving the cur­
sor or sending a new line.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement) then this
can be given as vb; it must not move the cursor. If the terminal should be placed in a different mode dur­
ing open and visual modes of ex. this can be given as vs and ve, sent at the start and end of these modes
respectively. These can be used to change, for example, from a underline to a block cursor and back.

Sun Release 3.2 Last change: 26 September 1984 587

TERMCAP(5) FILE FORMATS TERMCAP(5)

588

If the terminal needs to be in a special mode when running a program that addresses the cursor, the codes
to enter and exit this mode can be given as ti and teo This arises, for example, from terminals like the Con­
cept with more than one page of memory. If the terminal has only memory relative cursor addressing and
not screen relative cursor addressing, a one screen-sized window must be fixed into the terminal for cursor
addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even though it
does not overstrike, then you should give the capability ul. If overstrikes are erasable with a blank, then
this should be indicated by giving eo.

ANSI terminals have modes for the character highlighting. Dim characters may be generated in dim mode,
entered by mh; reverse video characters in reverse mode, entered by mr; bold characters in bold mode,
entered by md; and normal mode characters restored by turning off all attributes with me.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can be given.
Note that it is not possible to handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or not transmit, give these
codes as ks and ke. Otherwise the keypad is assumed to always transmit. The codes sent by the left arrow,
right arrow, up arrow, down arrow, and home keys can be given as kl, kr, ku, kd, and kh respectively. If
there are function keys such as fO, fI, ... , f9, the codes they send can be given as kO, kl, ••• , k9. If these
keys have labels other than the default fO through f9, the labels can be given as 10, 11, ••• ,19. If there are
other keys that transmit the same code as the terminal expects for the corresponding function, such as clear
screen, the termcap 2 letter codes can be given in the ko capability, for example, ":ko=c1,ll,sf,sb:", which
says that the terminal has clear, home down, scroll down, and scroll up keys that transmit the same thing as
the cl, 11, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals which have single character arrow keys. It is
obsolete but still in use in version 2 of vi, which must be run on some minicomputers due to memory limi­
tations. This field is redundant with kl, kr, ku, kd, and kh. It consists of groups of two characters. In each
group, the first character is what an arrow key sends, the second character is the corresponding vi com­
mand. These commands are h for kl, j for kd, k for ku, I for kr, and H for kh. For example, the mime
would be :ma="Kj"ZkAXI: indicating arrow keys left CH), down CK), up CZ), and right CX). (There is no
home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than AI to tab, then this can
be given as tao

Hazeltine terminals, which don't allow ,-, characters to be printed should indicate hz. Datamedia termi­
nals, which echo carriage-return linefeed for carriage return and then ignore a following linefeed should
indicate nco Early Concept terminals, which ignore a linefeed immediately after an am wrap, should indi­
cate xn. If an erase-eol is required to get rid of standout (instead of merely writing on top of it), xs should
be given. Teleray terminals, where tabs tum all characters moved over to blanks, should indicate xt. Other
specific terminal problems may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file containing
long initialization strings. These strings are expected to properly clear and then set the tabs on the terminal,
if the terminal has settable tabs. If both are given, is will be printed before if. This is useful where if is
lusrllibltabsetlstd but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability tc can be given with the name of the similar terminal. This capability must be
last and the combined length of the two entries must not exceed 1024. Since termlib routines search the
entry from left to right, and since the tc capability is replaced by the corresponding entry, the capabilities

Last change: 26 September 1984 Sun Release 3.2

TERMCAP(5) FILE FORMATS TERMCAP(5)

FILES

given at the left override the ones in the similar terminal. A capability can be canceled with xx@ where xx
is the capability. For example, the entry

hn 12621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different modes for a terminal, or for different user prefer­
ences.

letc/termcap file containing terminal descriptions

SEE ALSO

BUGS

ex(l), curses(3X), termcap(3X), tset(l), vi(l), ul(l), more(l)

Ex allows only 256 characters for string capabilities, and the routines in termcap(3X) do not check for
overflow of this buffer. The total length of a single entry (excluding only escaped newlines) may not
exceed 1024.

The rna, VS, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

Sun Release 3.2 Last change: 26 September 1984 589

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/5lib/terminfo/*1 *

DESCRIPTION
terminfo is a data base describing terminals, used by curses(3V). Terminals are described in terminfo by
giving a set of capabilities which they have, and by describing how operations are performed. Padding
requirements and initialization sequences are included in terminfo.

Entries in terminfo consist of a number of ',' separated fields. White space after each ',' is ignored. The
first entry for each terminal gives the names which are known for the terminal, separated by 'I' characters.
The first name given is the most common abbreviation for the terminal, the last name given should be a
long name fully identifying the terminal, and all others are understood as synonyms for the terminal name.
All names but the last should be in lower case and contain no blanks; the last name may well contain upper
case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conventions. The
particular piece of hardware making up the terminal should have a root name chosen, thus "hp2621".
This name should not contain hyphens, except that synonyms may be chosen that do not conflict with other
names. Modes that the hardware can be in, or user preferences, should be indicated by appending a hyphen
and an indicator of the mode. Thus, a VT100 in 132 column mode would be vt1oo-w. The following
suffixes should be used where possible:

Suffix
-w
-am
-nam
-n
-na
-np
-rv

Meaning
Wide mode (more than 80 columns)
With auto. margins (usually default)
Without automatic margins
N umber of lines on the screen
No arrow keys (leave them in local)
N umber of pages of memory
Reverse video

Example
vt1oo-w
vt100-am
vtloo-nam
aaa-60
cloo-na
cloo-4p
cloo-rv

CAPABILITIES

590

The variable is the name by which the programmer (at the terminfo level) accesses the capability. The cap­
name is the short name used in the text of the database, and is used by a person updating the database. The
Lcode is the two letter internal code used in the compiled database, and always corresponds to the old
termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been adopted to keep
them short and to allow the tabs in the source file caps to line up nicely. Whenever possible, names are
chosen to be the same as or similar to the ANSI X3.64-1979 standard. Semantics are also intended to
match those of the specification.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm with parms as given (#1).

(*) indicates that padding may be based on the number of lines affected

(#.) indicates the ith parameter.
I

Variable Cap- I. Description
Booleans name Code

auto _left_margin, bw bw cubl wraps from column 0 to last
column

auto _ right_margin, am am Terminal has automatic margins

beehive ~litch, xsb xb Beehive (fl=escape, f2=ctrl C)

ceol_standout_glitch, xhp xs Standout not erased by overwriting
(hp)

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

eat_newline Jlitch, xenl xn newline ignored after 80 cols
(Concept)

erase _overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g., dialup,

switch).
hard_copy, hc hc Hardcopy terminal
has_meta _key, km km Has a meta key (shift, sets parity

bit)
has_status _line, hs hs Has extra "status line"
insert _null_glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the

screen
memory_below, db db Display may be retained below the

screen
move_insert _mode, mir mi Safe to move while in insert mode
move _standout_mode, msgr ms Safe to move in standout modes
over _strike, os os Terminal overstrikes

status_line_esc _ok, eslok es Escape can be used on the status line
teleray _glitch, xt xt Tabs ruin, magic so char (feleray

1061)

tilde ...8litch, hz hz Hazeltine; can not print -'s

transparent_underline, ul ul underline character overstrikes
xon_xoff, xon xo Terminal uses xonlxoff handshaking

Numbers:
columns, cols co Number of columns in a line
init_tabs, it it Tabs initially every # spaces
lines, lines li Number of lines on screen or page
lines_of _memory, 1m 1m Lines of memory if> lines. 0 means

varies
magic_cookie _glitch, xmc sg Number of blank chars left by smso or

rmso
padding_baud _rate, pb pb Lowest baud where crlnl padding is

needed

virtuat terminal, vt vt Virtual terminal number (UNIX system)
width _status_line, wsl ws No. columns in status line

Strings:
back_tab, cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriage_return, cr cr Carriage return (P*)
change_scroll Jegion, csr cs change to lines #1 through #2 (VT100)

(PG)

clear _ all_tabs, tbc ct Clear all tab stops (P)
clear _ screen, clear el Clear screen and home cursor (p*)
elr_eol, el ce Clear to end of line (P)

clr_eos, ed cd Clear to end of display (p*)
column_address, hpa ch Set cursor column (PG)

command _character, cmdch CC Term. settable cmd char in prototype

cursor_address, cup cm Screen reI. cursor motion row #1
col #2 (PG)

cursor_down, cudl do Down one line

cursor jlome, home ho Home cursor (if no cup)

Sun Release 3.2 Last change: 30 April 1986 591

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

cursor Jnvisible, civis vi Make cursor invisible
cursor Jeft, cubl Ie Move cursor left one space
cursor _ mem _address, mrcup CM Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal (undo vs/vi)
cursor_right, cun nd Non-destructive space (cursor right)
cursor_to Jl, 11 11 Last line, first column (if no cup)
cursor_up, cuul up Up line (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P*)
delete Jine, dll dl Delete line (P*)
dis _status _line, dsl ds Disable status line
down _half_line, hd hd Half-line down (forward ll21inefeed)
enter _ alt_ charset_ mode, smacs as Start alternate character set (P)
enter_blink_mode, blink mb Tum on blinking
enter_bold_mode, bold md Tum on bold (extra bright) mode
enter _ ca _mode, smcup ti String to begin programs that use cup
enter_delete_mode, smdc dm Delete mode (enter)

enter_dim _mode, dim mh Tum on half-bright mode
enter_insert _mode, smir im Insert mode (enter);

enter -protected_mode, prot mp Tum on protected mode
enter _reverse_mode, rev mr Tum on reverse video mode

enter_secure _mode, invis mk Tum on blank mode (chars invisible)
enter _standout_mode, smso so Begin stand out mode
enter _underline_mode, smul us Start underscore mode
erase chars ech ec Erase #1 characters (PG)

exit_ alt_ charset_ mode, rmacs ae End alternate character set (P)

exit_ attribute_mode, sgrO me Tum off all attributes
exit_ ca _mode, rmcup te String to end programs that use cup
exit_delete_mode, rmdc ed End delete mode

exit_insert _mode, rmir ei End insert mode

exit_ standout_mode, rmso se End stand out mode

exit_underline _mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)

form_feed, ff ff Hardcopy terminal page eject (P*)

from_status _line, fsl fs Return from status line

init_lstring, isl il Terminal initialization string

init_ 2string, is2 i2 Terminal initialization string

init_ 3 string, is3 i3 Terminal initialization string

init_file, if if Name of file containing is
insert_character, ichl ic Insert character (P)

insert Jine, ill al Add new blank line (P*)
insert -padding, ip ip Insert pad after character inserted

(P*)
key_backspace, kbs kb Sent by backspace key

key_catab, ktbc ka Sent by clear-alI-tabs key

key_clear, kclr kC Sent by clear screen or erase key

key_ctab, kctab kt Sent by clear-tab key

key_de, kdchl kO Sent by delete character key

key_dl, kdll kL Sent by delete line key

key_down, kcudl kd Sent by terminal down arrow key

key_eic, krmir kM Sent by rmir or smir in insert mode

key_eol, kel kE Sent by clear-to-end-of-line key

key_eos, ked kS Sent by clear-to-end-of-screen key

592 Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

key_to, kID kO Sent by function key to
key_fl, kfl kl Sent by function key fl
key_flO, kfl0 ka Sent by function key fl 0
key_t2, kt2 k2 Sent by function key 12
key_f3, kf3 k3 Sent by function key f3
key_f4, kf4 k4 Sent by function key f4
key_f5, kf5 k5 Sent by function key f5
key_f6, kf6 k6 Sent by function key f6
key_fl, kf7 k7 Sent by function key fl
key_fB, kf8 k8 Sent by function key fB
key_f9, kf9 k9 Sent by function key 19
key_home, khome kh Sent by home key
key_ic, kichl kI Sent by ins char/enter ins mode key
key_iI, kill kA Sent by insert line
key_left, kcubl kl Sent by terminal left arrow key
key_lI, kll kH Sent by home-down key

key_npage, knp kN Sent by next-page key
keyypage, kpp kP Sent by previous-page key
key_right, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key_sr, kri kR Sent by scroll-backward/up key

key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypad_local, rmkx ke Out of "keypad transmit" mode
keypad _ xmit, smkx ks Put terminal in "keypad transmit" mode

lab_to, Ito 10 Labels on function key to if not fO
lab_fl, lfl 11 Labels on function key fl if not f1
lab_flO, IflO la Labels on function key flO if not fl 0
lab_t2, 112 12 Labels on function key 12 if not f2
lab_f3, 1f3 13 Labels on function key f3 if not f3
lab_f4, lf4 14 Labels on function key f4 if not f4
lab_f5, lf5 15 Labels on function key f5 if not f5

lab_f6, lf6 16 Labels on function key f6 if not f6
lab_fl, Ifl 17 Labels on function key fl if not n
lab_fB, IfB 18 Labels on function key fB if not f8
lab_f9, 119 19 Labels on function key 19 if not f9

meta_on, smm mm Tum on "meta mode" (8th bit)

meta_off, rmm mo Tum off "meta mode"

newline, nel nw Newline (behaves like cr followed

by 10
pad_char, pad pc Pad character (rather than nUll)

parm_dch, dch OC Delete #1 chars (PG*)

parm _delete Jine, dl DL Delete #1 lines (PG*)

parm _down_cursor, cud DO Move cursor down #1 lines (pG*)

parm_ich, ich Ie Insert #1 blank chars (PG*)

parm _index, indn SF Scroll forward #1 lines (PG)

parm)nsert _line, i1 AL Add #1 new blank lines (PG*)

parm _left_cursor, cub LE Move cursor left #1 spaces (PG)

parm _ right_cursor, cuf RI Move cursor right #1 spaces (PG*)
parm _ rindex, rin SR Scroll backward #1 lines (PO)

parm _up_cursor, cuu UP Move cursor up #1 lines (PG*)

pkey_key, pfkey pk Prog functkey #1 to type string #2

pkey _local, pfloc pI Prog funct key #1 to execute string #2

Sun Release 3.2 Last change: 30 April 1986 593

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

594

pkey_xmit, pfx px Prog funct key #1 to xmit string #2
print_screen, mcO ps Print contents of the screen
pm off, mc4 pf Tum off the printer
pm_on, mc5 po Tum on the printer
repeat_char, rep rp Repeat char #1 #2 times. (PG*)
reset_1 string, rs1 r1 Reset terminal completely to sane modes.
reset_ 2string, rs2 r2 Reset terminal completely to sane modes.
reset _ 3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute

(set row) (pG)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scrollJeverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current column
set_window, wind wi Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to_status _line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move past it
up_half _line, hu hu Half-line up (reverse 1/2 linefeed)
inityrog, iprog iP Path name of program for init
key_aI, ka1 KI Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_c1, kc1 K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
pm_Don, mc5p pO Tum on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept 100, is among the more complex entries in the terminfo
file as of this writing.

conceptlOO I clOO I concept I cl04 I clOO-4p I concept 100,

am, bel=~G, blank=\EH, blink=\EC, clear=~L$<2*>, cnorm=\Ew,

cols#80, cr=~M$<9>, cubl=~H, cudl=~J, cufl=\E=,

cup=\Ea%pl%' '%+%c%p2%' '%+%c,

cuul=\E;, cvvis=\EW, db, dchl=\E~A$<l6*>, dim=\EE, dll=\E~B$<3*>,

ed=\E~C$<16*>, el=\E~U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>,

ill=\E~R$<3*>, in, ind=~J, .ind=~J$<9>, ip=$<16*>,

is2=\EU\Ef\E7\ES\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs=~h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;,

kfl=\ES, kf2=\E6, kf3=\E7, khome=\E?,

lines#24, mir, pbt9600, prot=\EI, rep=\Er%pl%c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,

rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\200,

smcup=\EU\Ev 8p\Ep\r, smir=\E~P, smkx=\EX, smso=\EE\ED,

smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the beginning of each line except the
first. Comments may be included on lines beginning with "#". Capabilities in terminfo are of three types:
Boolean capabilities which indicate that the terminal has some particular feature, numeric capabilities giv­
ing the size of the terminal or the size of particular delays, and string capabilities, which give a sequence

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS

which can be used to perform particular terminal operations.

Types of Capabilities

TERMINFO (5V)

All capabilities have names. For instance, the fact that the Concept has automatic margins (i.e., an
automatic return and linefeed when the end of a line is reached) is indicated by the capability am. Hence
the description of the Concept includes am. Numeric capabilities are followed by the character 'I' and
then the value. Thus cols, which indicates the number of columns the terminal has, gives the value '80' for
the Concept

Finally, string valued capabilities, such as el (clear to end of line sequence) are given by the two-character
code, an '=', and then a string ending at the next following ','. A delay in milliseconds may appear any­
where in such a capability, enclosed in $< .. > brackets, as in el=\EK$<3>, and padding characters are sup­
plied by tputs to provide this delay. The delay can be either a number, e.g., '20', or a number followed by
an '*', i.e., '3*'. A '*' indicates that the padding required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit padding required (In the case of insert charac­
ter, the factor is still the number of lines affected. This is always one unless the terminal has xenl and the
software uses it) When a '*' is specified, it is sometimes useful to give a delay of the form '3.5' to specify
a delay per unit to tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for easy encoding of charac­
ters there. Both \E and \e map to an ESCAPE character, AX maps to a control-x for any appropriate x, and
the sequences \n \I \r \t \b \f \s give a newline, linefeed, return, tab, backspace, formfeed, and space. Other
escapes include \ A for A, \\ for \, \, for comma, \: for :, and \0 for null. (\0 will produce \200, which does not
terminate a string but behaves as a null character on most terminals.) Finally, characters may be given as
three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a period before the capability
name. For example, see the second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a terminal
description is by imitating the description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with some curses -based application to check that they are correct Be
aware that a very unusual terminal may expose deficiencies in the ability of the terminfo file to describe it
or bugs in the application. To easily test a new tenninal description you can set the environment variable
TERMINFO to a pathname of a directory containing the compiled description you are working on and pro­
grams will look there rather than in lusrlSlib/terminfo. To get the padding for insert line right (if the ter­
minal manufacturer did not document it) a severe test is to insert 16 lines into the middle of a full screen at
9600 baud. If the terminal messes up, more padding is usually needed. A similar test can be used for insert
character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric capability. If the termi­
nal is a CRT, then the number of lines on the screen is given by the lines capability. If the terminal wraps
around to the beginning of the next line when it reaches the right margin, then it should have the am capa­
bility. If the terminal can clear its screen, leaving the cursor in the home position, then this is given by the
clear string capability. If the terminal overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability. If the terminal is a printing terminal, with no soft copy
unit, give it both he and os. (os applies to storage scope terminals, such as Tektronix 4010 series, as well as
hard copy and APL terminals.) If there is a code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be carriage return, control M.) If there is a code to produce an audible
signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that capability should be
given as cubl. Similarly, codes to move to the right, up, and down should be given as cnO,.cuul, and
cudl. These local cursor motions should not alter the text they pass over, for example, you would not nor­
mally use 'cuO= ' because the space would erase the character moved over.

Sun Release 3.2 Last change: 30 April 1986 595

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

596

A very important point here is that the local cursor motions encoded in terminfo are undefined at the left
and top edges of a CRT terminal. Programs should never attempt to backspace around the left edge, unless
bw is given, and never attempt to go up locally off the top. In order to scroll text up, a program will go to
the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen and sends the ri (reverse index)
string. The strings ind and ri are undefined when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same semantics as ind
and ri except that they take one parameter, and scroll that many lines. They are also undefined except at
the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is output, but this
does not necessarily apply to a cun from the last column. The only local motion which is defined from the
left edge is if bw is given, then a cub! from the left edge will move to the right edge of the previous row.
If bw is not given, the effect is undefined This is useful for drawing a box around the edge of the screen,
for example. If the terminal has switch selectable automatic margins, the terminfo file usually assumes that
this is on; i.e., am. If the terminal has a command which moves to the first column of the next line, that
command can be given as nel (newline). It does not matter if the command clears the remainder of the
current line, so if the terminal has no cr and If it may still be possible to craft a worldng nel out of one or
both of them.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33 teletype is
described as

33 I tty33 I tty I model 33 teletype,
bel-A G, eols'72, er=AM, eudl=AJ, he, ind=AJ, os,

while the Lear Siegler ADM-3 is described as

adm3 I 3 I lsi adm3,
am, bel=AG, elear=AZ, eols'SO, er=AM, eubl=AH, eudl=AJ,
ind=AJ, linest24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are described by a parameterized
string capability, with printf(3S) like escapes %x in it For example, to address the cursor, the cup capa­
bility is given, using two parameters: the row and column to address to. (Rows and columns are numbered
from zero and refer to the physical screen visible to the user, not to any unseen memory.) If the terminal
has memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it Typically a sequence will
push one of the parameters onto the stack and then print it in some format Often more complex operations
are necessary.

The % encodings have the following meanings:

%% outputs '%'
%d print popO as in printf
%2d print popO like %2d
%3d print popO like %3d
%02d
%03d as in printf

%c print popO gives %c

90s print popO gives %s

%p[1-9] push ith parm
%P[a-z] set variable [a-z] to popO
%g[a-z] get variable [a-z] and push it
%'c' char constant c

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS

%{nn} integer constant nn

%+%-%* %I%m

arithmetic (%m is mod): push(popO op popO)
%& %1 %A bit operations: push(popO op popO)

%= %> %< logical operations: push(pop() op popO)
%! %- unary operations push(op popO)

%i add I to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;

if-then-else, %e elsepart is optional.

else-if's are possible ala Algol 68:

%? c1 %t b l %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;

ci are conditions, bi are bodies.

TERMINFO (5V)

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5 one would
use "%gx%{5}%-tl.

Consider the HP 2645, which, to get to row 3 and column 12, needs to be sent \E&aI2c03Y padded for 6
milliseconds. Note that the order of the rows and columns is inverted here, and that the row and column
are printed as two digits. Thus its cup capability is "cup=6\E&%p2%2dc%pl %2dY".

The Microterm ACT-IV needs the current row and column sent preceded by a AT, with the row and column
simply encoded in binary, "cup=AT%pl %c%p2%c". Terminals which use "%c" need to be able to back­
space the cursor (cubl), and to move the cursor up one line on the screen (cuul). This is necessary
because it is not always safe to transmit \0 AD and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that tabs are never expanded, so \t is safe to send.
This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cup=\E=%pl%' '%+%c%p2%' '%+%c". After sending '\E=', this pushes the first parameter, pushes the
ASCII value for a space (32), adds them (pushing the sum on the stack in place of the two previous values)
and outputs that value as a character. Then the same is done for the second parameter. More complex
arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as single parameter capa­
bilities bpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these are shorter
than the more general two parameter sequence (as with the hp2645) and can be used in preference to cup.
If there are parameterized local motions (e.g., move n spaces to the right) these can be given as cud, cub,
cuf, and cuu with a single parameter indicating how many spaces to move. These are primarily useful if
the terminal does not have cup, such as the Tektronix 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left comer of screen) then this can be given
as home; similarly a fast way of getting to the lower left-hand comer can be given as 11; this may involve
going up with cuul from the home position, but a program should never do this itself (unless II does)
because it can make no assumption about the effect of moving up from the home position. Note that the
home position is the same as addressing to (0,0): to the top left comer of the screen, not of memory. (Thus,
the \EH sequence on HP terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this
should be given as el. If the terminal can clear from the current position to the end of the display, then this
should be given as ed. Ed is only defined from the first column of a line. (Thus, it can be simulated by a
request to delete a large number of lines, if a true ed is not available.)

Sun Release 3.2 Last change: 30 April 1986 597

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

598

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given as ill;
this is done only from the first position of a line. The cursor must then appear on the newly blank line. If
the terminal can delete the line which the cursor is on, then this should be given as dl1; this is done only
from the first position on the line to be deleted. Versions of ill and dll which take a single parameter and
insert or delete that many lines can be given as it and dl. If the terminal has a settable scrolling region (like
the VT1()() the command to set this can be described with the csr capability, which takes two parameters:
the top and bottom lines of the scrolling region. The cursor position is, alas, undefined after using this
command It is possible to get the effect of insert or delete line using this command - the sc and rc (save
and restore cursor) commands are also useful. Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true inserti delete line, and is often faster even on termi­
nals with those features.

If the terminal has the ability to define a window as part of memory, which all commands affect, it should
be given as the parameterized string wind. The four parameters are the starting and ending lines in
memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if display memory
can be retained below, then db should be given. These indicate that deleting a line or scrolling may bring
non-blank lines up from below or that scrolling back with ri may bring down non-blank lines.

InsertlDelete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character which can be
described using terminfo. The most common insert/delete character operations affect only the characters on
the current line and shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the screen, shift­
ing upon an insert or delete only to an untyped blank on the screen which is either eliminated, or expanded
to two untyped blanks. You can determine the kind of terminal you have by clearing the screen and then
typing text separated by cursor motions. Type "abc def' using local cursor motions (not spaces)
between the "abc" and the "def'. Then position the cursor before the "abc" and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off the end,
then your terminal does not distinguish between blanks and untyped positions. If the "abc" shifts over to
the "def' which then move together around the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability in, which stands for' 'insert null". While
these are two logically separate attributes (one line vs. multiline insert mode, and special treatment of
untyped spaces) we have seen no terminals whose insert mode cannot be described with the single attri­
bute.

Terminfo can describe both terminals which have an insert mode, and terminals which send a simple
sequence to open a blank: position on the current line. Give as smir the sequence to get into insert mode.
Give as rmir the sequence to leave insert mode. Now give as ichl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert mode will not give ichl; ter­
minals which send a sequence to open a screen position should give it here. (If your terminal has both,
insert mode is usually preferable to ichl. Do not give both unless the terminal actually requires both to be
used in combination.) If post insert padding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence which may need to be sent after an insert of a single character may also be
given in ip. If your terminal needs both to be placed into an 'insert mode' and a special code to precede
each inserted character, then both smir/rmir and ichl can be given, and both will be used. The ich capa­
bility, with one parameter, n, will repeat the effects of ichl n times.

It is occasionally necessary to move around while in insert mode to delete characters on the same line (e.g.,
if there is a tab after the insertion position). If your terminal allows motion while in insert mode you can
give the capability mir to speed up inserting in this case. Omitting mir will affect only speed. Some ter­
minals (notably Datamedia's) must not have mir because of the way their insert mode works.

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

Finally, you can specify deb! to delete a single character, deh with one parameter, n, to delete n charac­
ters, and delete mode by giving smde and rmde to enter and exit delete mode (any mode the terminal
needs to be placed in for deb! to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor) can be
given as eeh with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented in a number of dif­
ferent ways. You should choose one display form as standout mode, representing a good, high contrast,
easy-on-the-eyes, format for highlighting error messages and other attention getters. (If you have a choice,
reverse video plus half-bright is good, or reverse video alone.) The sequences to enter and exit standout
mode are given as smso and rmso, respectively. If the code to change into or out of standout mode leaves
one or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc should be given
to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If the termi­
nal has a code to underline the current character and move the cursor one space to the right, such as the
Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or extra bright)
dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rev (reverse video) sgrO (turn
off all attribute modes) smacs (enter alternate character set mode) and rmaes (exit alternate character set
mode). Turning on any of these modes singly mayor may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set attributes),
taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attribute is on or off. The 9
parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate character
set Not all modes need be supported by sgr, only those for which corresponding separate attribute com­
mands exist.

Terminals with the "magic cookie" glitch (xme) deposit special "cookies" when they receive mode­
setting sequences, which affect the display algorithm rather than having extra bits for each character.
Some terminals, such as the HP 2621, automatically leave standout mode when they move to a new line or
the cursor is addressed. Programs using standout mode should exit standout mode before moving the cur­
sor or sending a newline, unless the msgr capability, asserting that it is safe to move in standout mode, is
present

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement) then this
can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to make, for
example, a non-blinking underline into an easier to find block or blinking underline) give this sequence as
evvis. If there is a way to make the cursor completely invisible, give that as civis. The capability enorm
should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities, the codes
to enter and exit this mode can be given as smeup and rmcup. This arises, for example, from terminals
like the Concept with more than one page of memory. If the terminal has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window must be fixed into the ter­
minal for cursor addressing to work properly. This is also used for the Tektronix 4025, where smcup sets
the command character to be the one used by terminfo.

If your terminal correctly generates underlined characters (with no special codes needed) even though it
does not overstrike, then you should give the capability ul. If overstrikes are erasable with a blank, then
this should be indicated by giving eo.

Keypad

Sun Release 3.2 Last change: 30 April 1986 599

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

600

IT the terminal has a keypad that transmits codes when the keys are pressed, this information can be given.
Note that it is not possible to handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or not transmit, give these
codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit. The codes sent by the left
arrow, right arrow, up arrow, down arrow, and home keys can be given as keubl, keun, keuul, kendI,
and khome respectively. If there are function keys such as fO, fl, ... , flO, the codes they send can be given
as kfO, kn, ••• , kno. IT these keys have labels other than the default fO through flO, the labels can be given
as 1fO, In, .•• , InO. The codes transmitted by certain other special keys can be given: kll (horne down), kbs
(backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen or erase key),
kdehl (delete character), kdll (delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear
to end of screen), kichl (insert character or enter insert mode), kill (insert line), Imp (next page), kpp
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop in this column).
In addition, if the keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys can
be given as kal, ka3, kb2, kel, and kc3. These keys are useful when the effects of a 3 by 3 directional pad
are needed.

Tabs and Initialization

IT the terminal has hardware tabs, the command to advance to the next tab stop can be given as ht (usually
control I). A "backtab" command which moves leftward to the next tab stop can be given as cbt. By con­
vention, if the teletype modes indicate that tabs are being expanded by the computer rather than being sent
to the terminal, programs should not use ht or cbt even if they are present, since the user may not have the
tab stops properly set If the terminal has hardware tabs which are initially set every n spaces when the ter­
minal is powered up, the numeric parameter it is given, showing the number of spaces the tabs are set to.
This is normally used by the tset command to determine whether to set the mode for hardware tab expan­
sion, and whether to set the tab stops. If the terminal has tab stops that can be saved in nonvolatile
memory, the terrninfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog, the path name of a
program to be run to initialize the terminal, and if, the name of a file containing long initialization strings.
These strings are expected to set the terminal into modes consistent with the rest of the terrninfo descrip­
tion. They are normally sent to the terminal, by the tset program, each time the user logs in. They will be
printed in the following order: isl; is2; setting tabs using tbc and hts; if; running the program iprog; and
finally is3. Most initialization is done with is2. Special terminal modes can be set up without duplicating
strings by putting the common sequences in is2 and special cases in isl and is3. A pair of sequences that
does a harder reset from a totally unknown state can be analogously given as rsl, rs2, rf, and rs3, analo­
gous to is2 and if. These strings are output by the reset program, which is used when the terminal gets into
a wedged state. Commands are normally placed in rs2 and rf only if they produce annoying effects on the
screen and are not necessary when logging in. For example, the command to set the VT100 into 80-
column mode would normally be part of is2, but it causes an annoying glitch of the screen and is not nor­
mally needed since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they can be given as tbe (clear all tab stops) and hts (set a
tab stop in the current column of every row). If a more complex sequence is needed to set the tabs than can
be described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily needed by hard copy termi­
nals, and are used by the tset program to set teletype modes appropriately. Delays embedded in the capa­
bilities er, ind, cubl, ff, and tab will cause the appropriate delay bits to be set in the teletype driver. If pb
(padding baud rate) is given, these values can be ignored at baud rates below the value ofpb.

Miscellaneous

IT the terminal requires other than a null (zero) character as a pad, then this can be given as pad. Only the
first character of the pad string is used.

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

If the terminal has an extra "status line" that is not normally used by software, this fact can be indicated.
If the status line is viewed as an extra line below the bottom line, into which one can cursor address nor­
mally (such as the Heathkit H19's 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling
region), the capability bs should be given. Special strings to go to the beginning of the status line and to
return from the status line can be given as tsl and fsl. (fsl must leave the cursor position in the same place
it was before tsl. If necessary, the sc and re strings can be included in tsl and fsl to get this effect.) The
parameter tsl takes one parameter, which is the column number of the status line the cursor is to be moved
to. If escape sequences and other special commands, such as tab, work while in the status line, the flag
eslok can be given. A string which turns off the status line (or otherwise erases its contents) should be
given as dsl. If the terminal has commands to save and restore the position of the cursor, give them as sc
and re. The status line is normally assumed to be the same width as the rest of the screen, e.g., cols. If the
status line is a different width (possibly because the terminal does not allow an entire line to be loaded) the
width, in columns, can be indicated with the numeric parameter WSI.

If the terminal can move up or down half a line, this can be indicated with bu (half-line up) and bd (half­
line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a hardcopy
terminal can eject to the next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to save time transmitting a large
number of identical characters) this can be indicated with the parameterized string rep. The first parameter
is the character to be repeated and the second is the number of times to repeat it Thus, tparm(repeat_ char,
'x', 10) is the same as 'xxxxxxxxxx'.

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with
emdeh. A prototype command character is chosen which is used in all capabilities. This character is given
in the emdeh capability to identify it. The following convention is supported on some UNIX systems: The
environment is to be searched for a CC variable, and if found, all occurrences of the prototype character
are replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup,
patch, and network, should include the go (generic) capability so that programs can complain that they do
not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding information should still be
included so that routines can make better decisions about costs, but actual pad characters will not be
transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted,
this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it will
usually be cleared. If strings exist to tum this "meta mode" on and off, they can be given as smm and
rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of memory
can be indicated with 1m. A value of Im#O indicates that the number of lines is not fixed, but that there is
still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the terminal number can be
given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as meO: print
the contents of the screen, mc4: tum off the printer, and me5: tum on the printer. When the printer is on,
all text sent to the terminal will be sent to the printer. It is undefined whether the text is also displayed on
the terminal screen when the printer is on. A variation mc5p takes one parameter, and leaves the printer on
for as many characters as the value of the parameter, then turns the printer off. The parameter should not
exceed 255. All text, including me4, is transparently passed to the printer while an me5p is in effect.

Strings to program function keys can be given as pf'key, pftoc, and pfx. Each of these strings takes two
parameters: the function key number to program (from 0 to 10) and the string to program it with. Function
key numbers out of this range may program undefined keys in a terminal dependent manner. The

Sun Release 3.2 Last change: 30 April 1986 601

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

FILES

difference between the capabilities is that plkey causes pressing the given key to be the same as the user
typing the given string; pfJoc causes the string to be executed by the terminal in local; and prx causes the
string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow ,-, characters to be displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and VT100, should
indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xbp should be
given.

Teleray terminals, where tabs tum all characters moved over to blanks, should indicate xt (destructive
tabs). This glitch is also taken to mean that it is not possible to position the cursor on top of a "magic
cookie", that to erase standout mode it is instead necessary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or control C characters, has xsb,
indicating that the f1 key is used for escape and f2 for control C. (Only certain Superbees have this prob­
lem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more capabilities of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability use can be given with the name of the similar terminal. The capabilities given
before use override those in the terminal type invoked by use. A capability can be cancelled by placing
xx@ to the left of the capability definition, where xx is the capability. For example, the entry

2621-nl, smkx@, rrnkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not tum on the func­
tion key labels when in visual mode. This is useful for different modes for a terminal, or for different user
preferences.

lusr/5Iib/terminfol?l*

SEE ALSO

files containing terminal descriptions

curses(3V), printf(3S)

602 Last change: 30 April 1986 Sun Release 3.2

TERMINFO (SV) FILE FORMATS TERMINFO (SV)

NAME
terminfo - terminal capability data base

SYNOPSIS
lusrISlib/terminfo/*l*

DESCRIPTION
terminfo is a data base describing terminals, used by curses(3V). Terminals are described in terminfo by
giving a set of capabilities which they have, and by describing how operations are performed. Padding
requirements and initialization sequences are included in terminfo.

Entries in terminfo consist of a number of ',' separated fields. White space after each',' is ignored. The
first entry for each terminal gives the names which are known for the tenninal, separated by 'I' characters.
The first name given is the most common abbreviation for the terminal, the last name given should be a
long name fully identifying the terminal, and all others are understood as synonyms for the terminal name.
All names but the last should be in lower case and contain no blanks; the last name may well contain upper
case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conventions. The
particular piece of hardware making up the terminal should have a root name chosen, thus "hp2621".
This name should not contain hyphens, except that synonyms may be chosen that do not conflict with other
names. Modes that the hardware can be in, or user preferences, should be indicated by appending a hyphen
and an indicator of the mode. Thus, a VT100 in 132 column mode would be vt100-w. The following
suffixes should be used where possible:

Suffix
-w
-am
-nam
-n
-na
-np
-rv

CAPABILITIES

Meaning
Wide mode (more than 80 columns)
With auto. margins (usually default)
Without automatic margins
N umber of lines on the screen
No arrow keys (leave them in local)
N umber of pages of memory
Reverse video

Example
vt100-w
vt100-am
vt1 OO-n am
aaa-60
cloo-na
cloo-4p
cloo-rv

The variable is the name by which the programmer (at the terminfo level) accesses the capability. The cap­
name is the short name used in the text of the database, and is used by a person updating the database. The
i.code is the two letter internal code used in the compiled database, and always corresponds to the old
termcap capability name.

Capability names have no hard length limit, but an informal limit of S characters has been adopted to keep
them short and to allow the tabs in the source file caps to line up nicely. Whenever possible, names are
chosen to be the same as or similar to the ANSI X3.64-1979 standard. Semantics are also intended to
match those of the specification.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm with parms as given (#i).

(*) indicates that padding may be based on the number of lines affected

(#.) indicates the ith parameter.
l

Variable Cap- I. Descrip tion
Booleans name Code

auto Jeft_ margin, bw bw cub I wraps from column 0 to last
column

auto _ right_margin, am am Terminal has automatic margins

beehive -Blitch, xsb xb Beehive (fl =escape, f2=ctrl C)

ceol_ standout_glitch, xhp xs Standout not erased by overwriting
(hp)

Sun Release 3.2 Last change: 30 April 1986 603

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

eat _newline_glitch, xenl xn newline ignored after 80 cols
(Concept)

erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g., dialup,

switch).
hard_copy, hc hc Hardcopy terminal
has_meta _key, km km Has a meta key (shift, sets parity

bit)
has _status_line, hs hs Has extra "status line"
insert _null_glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the

screen
memory_below, db db Display may be retained below the

screen
move_insert _mode, mir mi Safe to move while in insert mode
move _standout_mode, msgr ms Safe to move in standout modes
over_strike, os os Terminal overstrikes
status Jine _ esc _ok, eslok es Escape can be used on the status line
teleray _glitch, xt xt Tabs ruin, magic so char (feleray

1061)

tilde ~litch, hz hz Hazeltine; can not print -'s

transparent_underline, ul ul underline character overstrikes
xon_xoff, xon xo Terminal uses xonlxoff handshaking

Numbers:
columns, cols co Number of columns in a line
init_tabs, it it Tabs initially every # spaces
lines, lines li Number of lines on screen or page
lines_of _memory, 1m 1m Lines of memory if> lines. 0 means

varies
magic_cookie _glitch, xmc sg Number of blank chars left by smso or

rmso
padding_baud _rate, pb pb Lowest baud where cr/nl padding is

needed
virtual_ terminal, vt vt Virtual terminal number (UNIX system)
width _status_line, wsl ws No. columns in status line

Strings:
back_tab, cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)

carriage_return, cr cr Carriage return (P*)

change _ scrollJegion, csr cs change to lines #1 through #2 (VT100)
(pG)

clear _ all_tabs, the ct Clear all tab stops (P)
clear_screen, clear cl Clear screen and home cursor (P*)
clr _eol, el ce Clear to end of line (P)

clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)

command_character, cmdch CC Term. settable cmd char in prototype
cursor_address, cup cm Screen reI. cursor motion row #1

col #2 (PG)
cursor_down, cud! do Down one line
cursor_home, home ho Home cursor (if no cup)

604 Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

cursor }nvisible, civis vi Make cuz:sor invisible
cursor }eft, cubl Ie Move cursor left one space
cursor _ mem _address, mrcup CM Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal (undo vslvi)
cursor_right, cufl nd Non-destructive space (cursor right)
cursor_to }l, 11 11 Last line, first column (if no cup)
cursor_up, cuu! up Upline (cursor up)
cursor_visible, cvvis vs Make cursor very visible
delete_character, dch! dc Delete character (P*)
delete _line, dll dl Delete line (P*)
dis _status_line, dsl ds Disable status line
down _ halCline, hd hd Half-line down (forward 1121inefeed)
enter _ alt_ charset_ mode, smacs as Start alternate character set (P)
enter_blink_mode, blink mb Tum on blinking
enter_bold_mode, bold md Tum on bold (extra bright) mode
enter _ ca _mode, smcup ti String to begin programs that use cup
enter_delete_mode, smdc dm Delete mode (enter)
enter_dim _mode, dim mh Tum on half-bright mode
enter_insert _mode, smir im Insert mode (enter);
enter yrotected _mode, prot mp Tum on protected mode
enter_reverse _mode, rev mr Tum on reverse video mode
enter_secure _mode, invis mk Tum on blank mode (chars invisible)
enter _standout_mode, smso so Begin stand out mode
enter_underline _mode, smul us Start underscore mode
erase chars ech ec Erase #1 characters (PG)
exit_ alt _ charset_ mode, rmacs ae End alternate character set (P)
exit_ attribute _ mode, sgrO me Tum off all attributes
exit_ ca _mode, rmcup te String to end programs that use cup
exit_delete_mode, rmdc ed End delete mode
exit_insert _mode, rmir ei End insert mode
exit_standout_ mode, rmso se End stand out mode
exit_underline _mode, rmul ue End underscore mode
flash _screen, flash vb Visible bell (may not move cursor)
form_feed, ff ff Hardcopy terminal page eject (P*)
from_status _line, fsl fs Return from status line
init_lstring, isl il Terminal initialization string
init_ 2string, is2 i2 Terminal initialization string
init_ 3 string, is3 i3 Terminal initialization string
init_file, if if N arne of file containing is
insert_character, ich! ic Insert character (P)

insert_line, ill al Add new blank line (p*)
insert yadding, ip ip Insert pad after character inserted

(p*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key

key_ctab, kctab kt Sent by clear-tab key

key_de, kdchl kD Sent by delete character key
key_dl, kdll kL Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key

key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key

Sun Release 3.2 Last change: 30 April 1986 605

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

key_to, kID kO Sent by function key fO
key_fl, kfl kl Sent by function key f1
key_flO, kflO ka Sent by function key f1 0
key_12, kf2 k2 Sent by function key 12
key_O, kt3 k3 Sent by function key 1'3
key_f4, kf4 k4 Sent by function key f4
key_f5, kf5 k5 Sent by function key f5
key_f6, kf6 k6 Sent by function key f6
key_fl, kf7 k7 Sent by function key fl
key_fB, kf8 k8 Sent by function key fB
key_f9, kf9 k9 Sent by function key 19
key_home, khome kh Sent by home key
key_ic, nchl kI Sent by ins char/enter ins mode key
key_il, kill kA Sent by insert line
key_left, kcubl kl Sent by terminal left arrow key
key_lI, kll kH Sent by home-down key
key_npage, knp kN Sent by next-page key
keYJ>page, kpp kP Sent by previous-page key
key_right, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key_sr, kri kR Sent by scroll-backward/up key
key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypad }ocal, rmkx ke Out of "keypad transmit" mode
keypad _ xmit, smkx ks Put terminal in "keypad transmit" mode
lab_fO, lfO 10 Labels on function key fo if not to
lab_fl, Ifl 11 Labels on function key fl if not fl
lab_flO, IflO la Labels on function key fl 0 if not f1 0
lab_12, 112 12 Labels on function key 12 if not 12
lab_O, 11'3 13 Labels on function key 1'3 if not °
lab_f4, If4 14 Labels on function key f4 if not f4
lab_f5, If5 15 Labels on function key f5 if not f5
lab_f6, If6 16 Labels on function key f6 if not f6
lab_fl, Ifl 17 Labels on function key f7 if not fl
lab_fB, IfB 18 Labels on function key fB if not f8
lab_f9, 119 19 Labels on function key 19 if not 19
meta_on, smm mm Tum on "meta mode" (8th bit)
meta_off, rmm rno Tum off "meta mode"
newline, nel nw Newline (behaves like cr followed

by If)
pad_char, pad pc Pad character (rather than nUll)
parm_dch, dch DC Delete #1 chars (PG*)
parm delete line, dl - - DL Delete #1 lines (PG*)
parm down cursor, cud DO Move cursor down #1 lines (PO*)
parm_ich, ich Ie Insert #1 blank chars (pG*)
parm _index, indn SF Scroll forward #1 lines (pG)

parm _insert }ine, il AL Add #1 new blank lines (PG*)
parm left cursor, cub LE Move cursor left #1 spaces (PG)
parm _ right_cursor, cuf RI Move cursor right #1 spaces (PG*)
parm _ rindex, rin SR Scroll backward #1 lines (PG)

parm _up_cursor, cuu UP Move cursor up #1 lines (pG*)
pkey_key, pfkey pk Prog funct key #1 to type string #2
pkey}ocal, pfioc pI Prog funct key #1 to execute string #2

606 Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

pkey_xmit. pfx px Prog funct key #1 to xmit string #2
print_screen, mcO ps Print contents of the screen
prtr off, mc4 pf Tum off the printer
prtr_on, mc5 po Tum on the printer
repeat_char, rep rp Repeat char #1 #2 times. (PG*)
reset_1 string, rs1 r1 Reset terminal completely to sane modes.
reset_2string, rs2 r2 Reset terminal completely to sane modes.
reset_3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute

(set row) (PG)
save _cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current column
set_window, wind wi Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to _status_line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move past it
up _half }ine, hu hu Half-line up (reverse 1I2linefeed)
initj'>rog, iprog iP Path name of program for init
key_aI, ka1 KI Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_el, kcl K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
prtr_non, mc5p pO Tum on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept 100, is among the more complex entries in the terminfo
file as of this writing.

concept100 I c100 I concept I c104 I c100-4p I concept 100,

am, bel=~G, blank=\EH, blink=\EC, clear=~L$<2.>, cnorm=\Ew,

cols#80, cr=AM$<9>, cub1=~H, cud1=~J, cuf1=\E=,

cup=\Ea%p1%' '%+%c%p2%' '%+%c,

cuu1=\E;, cvvis=\EW, db, dchl=\E~A$<16*>, dim=\EE, dl1=\E~B$<3*>,

ed=\E~C$<16.>, el=\E~U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>,

il1=\E~R$<3.>, in, ind=~J, . ind=~J$<9>, ip=$<16*>,

is2=\EU\Ef\E7\ES\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs=~h, kcub1=\E>, kcud1=\E<, kcufl=\E=, kcuu1=\E;,

kf1=\ES, kf2=\E6, kf3=\E7, khome=\E?,

lines#24, mir, pb#9600, prot=\EI, rep=\Er%pl%c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,

rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\200,

smcup=\EU\Ev 8p\Ep\r, smir=\E~P, smkx=\EX, smso=\EE\ED,

smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the beginning of each line except the
first. Comments may be included on lines beginning with "#". Capabilities in terminfo are of three types:
Boolean capabilities which indicate that the terminal has some particular feature, numeric capabilities giv­
ing the size of the terminal or the size of particular delays, and string capabilities, which give a sequence

Sun Release 3.2 Last change: 30 April 1986 flJ7

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

608

which can be used to perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has automatic margins (i.e., an
automatic return and linefeed when the end of a line is reached) is indicated by the capability am. Hence
the description of the Concept includes am. Numeric capabilities are followed by the character 'I' and
then the value. Thus cols, which indicates the number of columns the terminal has, gives the value '80' for
the Concept

Finally, string valued capabilities, such as el (clear to end of line sequence) are given by the two-character
code, an '=', and then a string ending at the next following ','. A delay in milliseconds may appear any­
where in such a capability, enclosed in $< .. > brackets, as in el=\EK$<3>, and padding characters are sup­
plied by tputs to provide this delay. The delay can be either a number, e.g., '20', or a number followed by
an '*', i.e., '3*'. A '*' indicates that the padding required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit padding required (In the case of insert charac­
ter, the factor is still the number of lines affected. This is always one unless the terminal has xenl and the
software uses it) When a '*' is specified, it is sometimes useful to give a delay of the form '3.5' to specify
a delay per unit to tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for easy encoding of charac­
ters there. Both \E and \e map to an ESCAPE character, AX maps to a control-x for any appropriate x, and
the sequences \n \I \r \t \b \f \s give a newline, linefeed, return, tab, backspace, formfeed, and space. Other
escapes include \ A for A, \\ for \, \, for comma, \: for :, and \0 for null. (\0 will produce \200, which does not
terminate a string but behaves as a null character on most terminals.) Finally, characters may be given as
three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a period before the capability
name. For example, see the second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a terminal
description is by imitating the description of a similar terminal in terminfo and to build up a description
gradually, using partial descriptions with some curses-based application to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the terminfo file to describe it
or bugs in the application. To easily test a new terminal description you can set the environment variable
TERMINFO to a pathname of a directory containing the compiled description you are working on and pro­
grams will look there rather than in lusrlSlib/terrninfo. To get the padding for insert line right (if the ter­
minal manufacturer did not document it) a severe test is to insert 16 lines into the middle of a full screen at
9600 baud. If the terminal messes up, more padding is usually needed A similar test can be used for insert
character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric capability. If the termi­
nal is a CRT, then the number of lines on the screen is given by the lines capability. If the terminal wraps
around to the beginning of the next line when it reaches the right margin, then it should have the am capa­
bility. If the terminal can clear its screen, leaving the cursor in the home position, then this is given by the
clear string capability. If the terminal overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability. If the terminal is a printing terminal, with no soft copy
unit, give it both he and os. (os applies to storage scope terminals, such as Tektronix 4010 series, as well as
hard copy and APL terminals.) If there is a code to move the cursor to the left edge of the current row,
give this as cr. (Normally this will be carriage return, control M.) If there is a code to produce an audible
signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that capability should be
given as cubl. Similarly, codes to move to the right, up, and down should be given as cun, cuul, and
cudl. These local cursor motions should not alter the text they pass over, for example, you would not nor­
mally use 'cun= ' because the space would erase the character moved over.

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

A very important point here is that the local cursor motions encoded in terminfo are undefined at the left
and top edges of a CRT terminal. Programs should never attempt to backspace around the left edge, unless
bw is given, and never attempt to go up locally off the top. In order to scroll text up, a program will go to
the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri (reverse index)
string. The strings ind and ri are undefined when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same semantics as ind
and ri except that they take one parameter, and scroll that many lines. They are also undefined except at
the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is output, but this
does not necessarily apply to a cufi from the last column. The only local motion which is defined from the
left edge is if bw is given, then a cub! from the left edge will move to the right edge of the previous row.
If bw is not given, the effect is undefined This is useful for drawing a box around the edge of the screen,
for example. If the terminal has switch selectable automatic margins, the terminfo file usually assumes that
this is on; i.e., am. If the terminal has a command which moves to the first column of the next line, that
command can be given as nel (newline). It does not matter if the command clears the remainder of the
current line, so if the terminal has no cr and If it may still be possible to craft a working nel out of one or
both of them.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33 teletype is
described as

33 I tty33 I tty I model 33 teletype,
bel=AG, eols*72, er=AM, eudl=AJ, he, ind=AJ, as,

while the Lear Siegler ADM-3 is described as

adm3 I 3 I lsi adm3,
am, bel=AG, elear=AZ, eo1s*80, er~AM, eubl-AH, eudl=AJ,
ind=AJ, lines*24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are described by a parameterized
string capability, with print/(3S) like escapes %x in it For example, to address the cursor, the cup capa­
bility is given, using two parameters: the row and column to address to. (Rows and columns are numbered
from zero and refer to the physical screen visible to the user, not to any unseen memory.) If the terminal
has memory relative cursor addressing, that can be indicated by rnrcup.

The parameter mechanism uses a stack and special % codes to manipulate it Typically a sequence will
push one of the parameters onto the stack and then print it in some format Often more complex operations
are necessary.

The % encodings have the following meanings:

%% outputs '%'

%d print popO as in printf

%2d print popO like %2d

%3d print popO like %3d

%02d

%03d as in printf

%c print popO gives %c

%s print popO gives %s

%p[1-9] push ith parm

%P[a-z] set variable [a-z] to popO

%g[a-z] get variable [a-z] and push it

%'c' char constant c

Sun Release 3.2 Last change: 30 April 1986 609

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

610

%{nn}

%+%-%* %/%m

%&%1%"

integer constant nn

arithmetic (%m is mod): push(popO op popO)

bit operations: push(popO op popO)
logical operations: push(popO op popO)
unary operations push(op popO)

add 1 to first two parms (for ANSI terminals)

%1 expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%1cl %tbl %ec2 %tb2 %ec3 %tb3 %ec4 %tb4 %e%;

ci are conditions, bi are bodies.

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5 one would
use rt%gx%{5}%_It.

Consider the HP 2645, which, to get to row 3 and column 12, needs to be sent \E&aI2c03Y padded for 6
milliseconds. Note that the order of the rows and columns is inverted here, and that the row and column
are printed as two digits. Thus its cup capability is "cup=6\E&%p2%2dc%pl %2dY" .

The Microterm ACf -IV needs the current row and column sent preceded by a AT, with the row and column
simply encoded in binary, "cup=AT%pl %c%p2%c". Terminals which use "%c" need to be able to back­
space the cursor (cubl), and to move the cursor up one line on the screen (cuul). This is necessary
because it is not always safe to transmit \n AD and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that tabs are never expanded, so \t is safe to send
This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cup=\E=%pl%' '%+%c%p2%' '%+%c". After sending '\E=', this pushes the first parameter, pushes the
ASCII value for a space (32), adds them (pushing the sum on the stack in place of the two previous values)
and outputs that value as a character. Then the same is done for the second parameter. More complex
arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as single parameter capa­
bilities bpa (horizontal position absolute) and vpa (vertical position absolute). Sometimes these are shorter
than the more general two parameter sequence (as with the hp2645) and can be used in preference to cup.
If there are parameterized local motions (e.g., move n spaces to the right) these can be given as cud, cub,
cuf, and cuu with a single parameter indicating how many spaces to move. These are primarily useful if
the terminal does not have cup, such as the Tektronix 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left comer of screen) then this can be given
as bome; similarly a fast way of getting to the lower left-hand comer can be given as II; this may involve
going up with cuul from the home position, but a program should never do this itself (unless n does)
because it can make no assumption about the effect of moving up from the home position. Note that the
home position is the same as addressing to (0,0): to the top left corner of the screen, not of memory. (Thus,
the \EH sequence on HP terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this
should be given as el. If the terminal can clear from the current position to the end of the display, then this
should be given as ed. Ed is only defined from the first column of a line. (Thus, it can be simulated by a
request to delete a large number of lines, if a true ed is not available.)

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given as ill;
this is done only from the first position of a line. The cursor must then appear on the newly blank line. If
the terminal can delete the line which the cursor is on, then this should be given as dl1; this is done only
from the first position on the line to be deleted. Versions of ill and dll which take a single parameter and
insert or delete that many lines can be given as iI and dl. If the terminal has a settable scrolling region (like
the VT100) the command to set this can be described with the csr capability, which takes two parameters:
the top and bottom lines of the scrolling region. The cursor position is, alas, undefined after using this
command It is possible to get the effect of insert or delete line using this command - the sc and rc (save
and restore cursor) commands are also useful. Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true insert/delete line, and is often faster even on termi­
nals with those features.

If the terminal has the ability to define a window as part of memory, which all commands affect, it should
be given as the parameterized string wind. The four parameters are the starting and ending lines in
memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if display memory
can be retained below, then db should be given. These indicate that deleting a line or scrolling may bring
non-blank lines up from below or that scrolling back with ri may bring down non-blank lines.

InsertlDelete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character which can be
described using termin/o. The most common insert/delete character operations affect only the characters on
the current line and shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the screen, shift­
ing upon an insert or delete only to an untyped blank on the screen which is either eliminated, or expanded
to two untyped blanks. You can determine the kind of terminal you have by clearing the screen and then
typing text separated by cursor motions. Type "abc def' using local cursor motions (not spaces)
between the "abc" and the "def'. Then position the cursor before the "abc" and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off the end,
then your terminal does not distinguish between blanks and untyped positions. If the "abc" shifts over to
the "def' which then move together around the end of the current line and onto the next as you insert, you
have the second type of terminal, and should give the capability in, which stands for' 'insert null". While
these are two logically separate attributes (one line vs. multiline insert mode, and special treatment of
untyped spaces) we have seen no terminals whose insert mode cannot be described with the single attri­
bute.

Terminfo can describe both terminals which have an insert mode, and terminals which send a simple
sequence to open a blank position on the current line. Give as smir the sequence to get into insert mode.
Give as rmir the sequence to leave insert mode. Now give as ichl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a true insert mode will not give ichl; ter­
minals which send a sequence to open a screen position should give it here. (If your terminal has both,
insert mode is usually preferable to ichl. Do not give both unless the terminal actually requires both to be
used in combination.) If post insert padding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence which may need to be sent after an insert of a single character may also be
given in ip. If your terminal needs both to be placed into an 'insert mode' and a special code to precede
each inserted character, then both smir/rmir and ich 1 can be given, and both will be used. The ich capa­
bility, with one parameter, n, will repeat the effects of ichl n times.

It is occasionally necessary to move around while in insert mode to delete characters on the same line (e.g.,
if there is a tab after the insertion position). If your terminal allows motion while in insert mode you can
give the capability mir to speed up inserting in this case. Omitting mir will affect only speed. Some ter­
minals (notably Datamedia's) must not have mir because of the way their insert mode works.

Sun Release 3.2 Last change: 30 April 1986 611

TERMINFO (5V) FllEFORMATS TERMINFO (5V)

612

Finally, you can specify dehl to delete a single character, deh with one parameter, n, to delete n charac­
ters, and delete mode by giving smde and rmde to enter and exit delete mode (any mode the terminal
needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor) can be
given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented in a number of dif­
ferent ways. You should choose one display form as standout mode, representing a good, high contrast,
easy-on-the-eyes, format for highlighting error messages and other attention getters. (If you have a choice,
reverse video plus half-bright is good, or reverse video alone.) The sequences to enter and exit standout
mode are given as smso and rmso, respectively. If the code to change into or out of standout mode leaves
one or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then xme should be given
to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If the termi­
nal has a code to underline the current character and move the cursor one space to the right, such as the
Microterm Mime, this can be given as DC.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or extra bright)
dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rev (reverse video) sgrO (turn
off all attribute modes) smacs (enter alternate character set mode) and rmaes (exit alternate character set
mode). Turning on any of these modes singly mayor may not tum off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set attributes),
taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attribute is on or off. The 9
parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, alternate character
set. Not all modes need be supported by sgr, only those for which corresponding separate attribute com­
mands exist.

Terminals with the "magic cookie" glitch (xmc) deposit special "cookies" when they receive mode­
setting sequences, which affect the display algorithm rather than having extra bits for each character.
Some terminals, such as the HP 2621, automatically leave standout mode when they move to a new line or
the cursor is addressed. Programs using standout mode should exit standout mode before moving the cur­
sor or sending a newline, unless the msgr capability, asserting that it is safe to move in standout mode, is
present

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement) then this
can be given as Bash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to make, for
example, a non-blinking underline into an easier to find block or blinking underline) give this sequence as
evvis. If there is a way to make the cursor completely invisible, give that as civis. The capability enorm
should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities, the codes
to enter and exit this mode can be given as smcup and rmeup. This arises, for example, from terminals
like the Concept with more than one page of memory. If the terminal has only memory relative cursor
addressing and not screen relative cursor addressing, a one screen-sized window must be fixed into the ter­
minal for cursor addressing to work properly. This is also used for the Tektronix 4025, where smeup sets
the command character to be the one used by terminfo.

If your terminal correctly generates underlined characters (with no special codes needed) even though it
does not overstrike, then you should give the capability ul. If overstrikes are erasable with a blank, then
this should be indicated by giving eo.

Keypad

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

If the terminal has a keypad that transmits codes when the keys are pressed, this information can be given.
Note that it is not possible to handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or not transmit, give these
codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit. The codes sent by the left
arrow, right arrow, up arrow, down arrow, and home keys can be given as keubl, keun, keuul, keudl,
and khome respectively. If there are function keys such as fO, fl, ... , flO, the codes they send can be given
as kfO, kn, ••• , kno. If these keys have labels other than the default to through flO, the labels can be given
as lfO, Ifi, .•. , mo. The codes transmitted by certain other special keys can be given: kll (horne down), kbs
(backspace), ktbe (clear all tabs), kctab (clear the tab stop in this column), kelr (clear screen or erase key),
kdehl (delete character), kdll (delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear
to end of screen), kiehl (insert character or enter insert mode), kill (insert line), knp (next page), kpp
(previous page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop in this column).
In addition, if the keypad has a 3 by 3 array of keys including the four arrow keys, the other five keys can
be given as kal, ka3, kb2, kel, and ke3. These keys are useful when the effects of a 3 by 3 directional pad
are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as ht (usually
control I). A "backtab" command which moves leftward to the next tab stop can be given as ebt. By con­
vention, if the teletype modes indicate that tabs are being expanded by the computer rather than being sent
to the terminal, programs should not use ht or ebt even if they are present, since the user may not have the
tab stops properly set If the terminal has hardware tabs which are initially set every n spaces when the ter­
minal is powered up, the numeric parameter it is given, showing the number of spaces the tabs are set to.
This is normally used by the tset command to determine whether to set the mode for hardware tab expan­
sion, and whether to set the tab stops. If the terminal has tab stops that can be saved in nonvolatile
memory, the terminfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog, the path name of a
program to be run to initialize the terminal, and if, the name of a file containing long initialization strings.
These strings are expected to set the terminal into modes consistent with the rest of the terrninfo descrip­
tion. They are normally sent to the terminal, by the tset program, each time the user logs in. They will be
printed in the following order: isl; is2; setting tabs using tbe and hts; if; running the program iprog; and
finally is3. Most initialization is done with is2. Special terminal modes can be set up without duplicating
strings by putting the common sequences in is2 and special cases in isl and is3. A pair of sequences that
does a harder reset from a totally unknown state can be analogously given as rsl, rs2, rf, and rs3, analo­
gous to is2 and if. These strings are output by the reset program, which is used when the terminal gets into
a wedged state. Commands are normally placed in rs2 and rf only if they produce annoying effects on the
screen and are not necessary when logging in. For example, the command to set the VT100 into 80-
column mode would normally be part of is2, but it causes an annoying glitch of the screen and is not nor­
mally needed since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they can be given as tbe (clear all tab stops) and hts (set a
tab stop in the current column of every row). If a more complex sequence is needed to set the tabs than can
be described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily needed by hard copy termi­
nals, and are used by the tset program to set teletype modes appropriately. Delays embedded in the capa­
bilities cr, ind, eubl, ff, and tab will cause the appropriate delay bits to be set in the teletype driver. If pb
(padding baud rate) is given, these values can be ignored at baud rates below the value ofpb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad. Only the
first character of the pad string is used.

Sun Release 3.2 Last change: 30 April 1986 613

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

614

If the terminal has an extra "status line" that is not normally used by software, this fact can be indicated.
If the status line is viewed as an extra line below the bottom line, into which one can cursor address nor­
mally (such as the Heathkit H19's 25th line, or the 24th line of a VT100 which is set to a 23-line scrolling
region), the capability hs should be given. Special strings to go to the beginning of the status line and to
return from the status line can be given as tsl and fsl. (fsl must leave the cursor position in the same place
it was before tsl. If necessary, the sc and rc strings can be included in tsl and fsl to get this effect.) The
parameter tsl takes one parameter, which is the column number of the status line the cursor is to be moved
to. If escape sequences and other special commands, such as tab, work while in the status line, the flag
eslok can be given. A string which turns off the status line (or otherwise erases its contents) should be
given as dsl. If the terminal has commands to save and restore the position of the cursor, give them as sc
and rc. The status line is normally assumed to be the same width as the rest of the screen, e.g., cols. If the
status line is a different width (possibly because the terminal does not allow an entire line to be loaded) the
width, in columns, can be indicated with the numeric parameter wsl.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and hd (half­
line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a hardcopy
terminal can eject to the next page (form feed), give this as IT (usually control L).

If there is a command to repeat a given character a given number of times (to save time transmitting a large
number of identical characters) this can be indicated with the parameterized string rep. The first parameter
is the character to be repeated and the second is the number of times to repeat it. Thus, tparm(repeat_ char,
'x', 10) is the same as 'xxxxxxxxxx' .

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with
cmdch. A prototype command character is chosen which is used in all capabilities. This character is given
in the cmdch capability to identify it. The following convention is supported on some UNIX systems: The
environment is to be searched for a CC variable, and if found, all occurrences of the prototype character
are replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup,
patch, and network, should include the gn (generic) capability so that programs can complain that they do
not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give XOD. Padding information should still be
included so that routines can make better decisions about costs, but actual pad characters will not be
transmitted.

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted,
this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it will
usually be cleared If strings exist to tum this "meta mode" on and off, they can be given as smm and
rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of memory
can be indicated with 1m. A value of Im#O indicates that the number of lines is not fixed, but that there is
still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the terminal number can be
given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as meO: print
the contents of the screen, mc4: turn off the printer, and mcS: tum on the printer. When the printer is on,
all text sent to the terminal will be sent to the printer. It is undefined whether the text is also displayed on
the terminal screen when the printer is on. A variation mcSp takes one parameter, and leaves the printer on
for as many characters as the value of the parameter, then turns the printer off. The parameter should not
exceed 255. All text, including mc4, is transparently passed to the printer while an mcSp is in effect.

Strings to program function keys can be given as pf'key, pfioc, and pfx. Each of these strings takes two
parameters: the function key number to program (from 0 to 10) and the string to program it with. Function
key numbers out of this range may program undefined keys in a terminal dependent manner. The

Last change: 30 April 1986 Sun Release 3.2

TERMINFO (5V) FILE FORMATS TERMINFO (5V)

FILES

difference between the capabilities is that pfkey causes pressing the given key to be the same as the user
typing the given string; pfloc causes the string to be executed by the terminal in local; and prx causes the
string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow ,-, characters to be displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and VT100, should
indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xhp should be
given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (destructive
tabs). This glitch is also taken to mean that it is not possible to position the cursor on top of a "magic
cookie", that to erase standout mode it is instead necessary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or control C characters, has xsb,
indicating that the f1 key is used for escape and f2 for control C. (Only certain Superbees have this prob­
lem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more capabilities of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability use can be given with the name of the similar terminal. The capabilities given
before use override those in the terminal type invoked by use. A capability can be cancelled by placing
xx@ to the left of the capability definition, where xx is the capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not turn on the func­
tion key labels when in visual mode. This is useful for different modes for a terminal, or for different user
preferences.

lusr/5lib/terminfo/?l*

SEE ALSO

files containing terminal descriptions

curses(3V), printf(3S)

Sun Release 3.2 Last change: 30 April 1986 615

TP(5) FILE FORMATS TP(5)

NAME
tp - DEC/mag tape forrhats

DESCRIPTION
Tp dumps files to and extracts files from DEC tape and magtape. The formats of these tapes are the same
except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape. There are 192
(resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has the following
format

struct {
char pathname[32];
unsigned short mode;
char uid;
char gid;
char unusedl;
char size [3];
long modtime;
unsigned short tapeaddr;
char unused2[16];
unsigned short checksum;

};

The path name entry is the path name of the file when put on the tape. If the pathname starts with a zero
word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode, uid, gid, size and time
modified are the same as described under i-nodes (see file systemfs(5». The tape address is the tape block
number of the start of the contents of the file. Every file starts on a block boundary. The file occupies
(size+511)/512 blocks of continuous tape. The checksum entry has a value such that the sum of the 32
words of the directory entry is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
fs(5)

BUGS
The pathname, uid, gid, and size fields are too small.

616 Last change: 18 June 1983 Sun Release 3.2

ITYS(5) FILE FORMATS TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the init program and specifies which terminal special files are to have a process
created for them so that people can log in. There is one line in the ttys file per special file associated with a
terminal.

The first character of a line in the ttys file is either '0' or '1'. If the first character on the line is a '0', the
init program ignores that line. If the first character on the line is a '1', the init program creates a login pro­
cess for that line.

The second character on each line is used as an argument to getty(8), which performs such tasks as baud­
rate recognition, reading the login name, and calling login. For normal lines, the second character is '0';
other characters can be used, for example, with hard-wired terminals where speed recognition is unneces­
sary or which have special characteristics. The remainder of the line is the terminal's entry in the device
directory,/dev.

Getty uses the second character in the ttys file to look up the characteristics of the terminal in the
letclgettytab file. Consult the getty tab (5) manual page for an explanation of the layout of Ie tclge tty tab .

letc/ttys

SEE ALSO
init(8), getty(8), login(I), gettytab(5)

Sun Release 3.2 Last change: 28 October 1983 617

TTYTYPE(5) FILE FORMATS

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/ etc/ttytype

DESCRIPTION

TTYTYPE(5)

Tty type is a database containing, for each tty port on the system, the kind of terminal that is attached to it.
There is one line per port, containing the terminal kind (as a name listed in termcap (5», a space, and the
name of the tty, minus /dev/.

This information is read by tset(1) and by login(1) to initialize the TERM variable at login time.

SEE ALSO
tset(1), login(1)

BUGS
Some lines are merely known as "dialup" or "plugboard".

618 Last change: 25 October 1979 Sun Release 3.2

TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sysltypes.h>

DESCRIPTION

FILE FORMATS TYPES (5)

The data types defined in the include file are used in UNIX system code; some data of these types are
accessible to user code:

1* @(#)types.h 1.286/08/01 SMI; from UeB 4.1183/07/01*1

1*
* Basic system types and major/minor device constructing/busting macros.
*1

#ifndef TYPES - -
#define TYPES - -

#ifndef KERNEL
#include<sys/sysmacros.h>
#else
#include" . Jh/sysrnacros.h"
#endif

u_char;
u_short;
uJnt;
uJong;

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short
typedef unsigned int

ushort;l* System V compatibility *1
uint;l* System V compatibility */

#ifdefvax
typedef struct
typedef struct

int
} label_t;
#endif
#ifdef mc68000
typedef struct
typedef struct

int
} label_t;
#endif
typedef struct
typedef long
typedef char *
typedef u _long
typedef long
typedef int
typedef long
typedef short
typedef int
typedef long

typedef struct

Sun Release 3.2

yhysadr { int r[1]; } *physadr;
label_t{
val[14];

yhysadr { shortr[1]; } *physadr;
label_t{
val[13];

_quad { long val[2]; } quad;
daddr_t;
caddr_t;
ino_t;
swblk_t;
size_t;
time_t;
dev_t;
off_t;
key_t;

Last change: 1 April 1983 619

TYPES (5) FILE FORMATS TYPES (5)

#endif

The form daddr _t is used for disk addresses, seefs(5). Times are encoded in seconds since 00:00:00 GMT,
January 1, 1970. The major and minor parts of a device code specify kind and unit number of a device and
are installation-dependent. Offsets are measured in bytes from the beginning of a file. The label_t vari­
ables are used to save the processor state while another process is running.

SEE ALSO
fs(5), time(3C), Iseek(2), adb(l)

620 Last change: 1 April 1983 Sun Release 3.2

UTMP(5) FILE FORMATS UTMP(5)

NAME
utmp, wtmp, lastlog, usracct - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION

FILES

The utmp file records information about who is currently using the system. The file is a sequence of entries
with the following structure declared in the include file:

1* @(#)utmp.h 1.1 86/07/07 SMI; from UeB 4.2 83/05/22

1*
* Structure of utmp and wtmp files.

* * Assuming the number 8 is unwise.
*1
sttuct utmp {

char 1* tty name *1
1* user id *1 char

char
long

ut_Iine[8];
ut_ name[8];
ut_host[16]; 1* host name, if remote *1

1* time on *1
};

1*
* This is a utmp entry that does not correspond to a genuine user
*1

*1

#define nonuser(ut) «ut).ut_host[O] == 0 && strncmp«ut).ut_Iine, "tty", 3) == 0 && «ut).ut_line[3] ==

This structure gives the name of the special file associated with the user's terminal, the user's login name,
and the time of the login in the form of time (3C).

The wtmp file records alliogins and logouts. A null user name indicates a logout on the associated termi­
nal. Furthermore, the terminal name ,-, indicates that the system was rebooted at the indicated time; the
adjacent pair of entries with terminal names' I' and 'r indicate the system-maintained time just before and
just after a date command has changed the system's idea of the time.

wimp is maintained by login(l) and init(8). Neither of these programs creates the file, so if it is removed,
record-keeping is turned off. It is summarized by ac(8).

lusrladm/wtmp is appened to whenever a user logs in or out, and should be truncated periodically.

The lastlog file records the most recent login-date for every user logged in. When reporting (and updating)
the most recent login date, login(l) performs an to a byte-offset in lusrladmllastlog corresponding to the
userid. Because the count of userids may be high, whereas the number actual users may be small within a
network environment, the bulk of this file may never be allocated by the file system even though an offset
may appear to be quite large. Although Is may show it to be large, chances are that this file need not trun­
cated. du(1 V) will report the correct (smaller) amount of space actually allocated to it.

The usracct file keeps login records in an older format.

letclutmp
lusr/admlwtmp
lusr/admllastlog
lusr/admlusracct

SEE ALSO
login(1), init(8), who(I), ac(8)

Sun Release 3.2 Last change: 4 April 1986 621

UUENCODE (5) FTI.E FORMATS UUENCODE(5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(1 C) consist of a header line, followed by a number of body lines, and a trailer
line. Uudecode will ignore any lines preceding the header or following the trailer. Lines preceding a
header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters "begin ". The word begin is followed by a
mode (in octal), and a string which names the remote file. Spaces separate the three items in the header
line.

The body consists of a number of lines, each at most 62 characters long (including the trailing newline).
These consist of a character count, followed by encoded characters, followed by a newline. The character
count is a single printing character, and represents an integer, the number of bytes the rest of the line
represents. Such integers are always in the range from 0 to 63 and can be determined by subtracting the
character space (octa140) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to make the
characters printing. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of 3,
this fact can be determined by the value of the count on the last line. Extra garbage will be included to
make the character count a multiple of 4. The body is terminated by a line with a count of zero. This line
consists of one ASCII space.

The trailer line consists of "end" on a line by itself.

SEE ALSO
uuencode(lC), uudecode(lC), uusend(lC), uucp(lC), mail(l)

622 Last change: 1 June 1980 Sun Release 3.2

VFONT(5) FILE FORMATS VFONT(5)

NAME
vfont - font formats

SYNOPSIS
#include <vfont.h>

DESCRIPTION

FILES

The fonts used by the window system and printer/plotters have the following format. Each font is in a file,
which contains a header, an array of character description structures, and an array of bytes containing the
bit maps for the characters. The header has the following format:

struct header {
short magic;
unsigned short size;
short maxx;
short maxy;
short xtend;

};
#define VFONT MAGIC

1* Magic number VFONT _MAGIC *1
1* Total # bytes of bitmaps *1
1* Maximum horizontal glyph size *1
1* Maximum vertical glyph size */
1* (unused) *1

0436

Maxx and maxy are intended to be the maximum horizontal and vertical size of any glyph in the font, in
raster lines. (A glyph is just a printed representation of a character, in a particular size and font.) The size
is the total size of the bit maps for the characters in bytes. The xtend field is not currently used.

After the header is an array of NUM _DISPATCH structures, one for each of the possible characters in the
font Each element of the array has the form:

struct dispatch {
unsigned short addr;
short nbytes;
char up, down, left, right;
short width;

};
#define NUM DISPATCH

/* &(glyph) - &(start of bitmaps) *1
1* # bytes of glyphs (0 if no glyph) */
/* Widths from baseline point *1
1* Logical width, used by troff *1

256

The nbytes field is nonzero for characters which actually exist. For such characters, the addr field is an
offset into the bit maps to where the character's bit map begins. The up, down, left, and right fields are
offsets from the base point of the glyph to the edges of the rectangle which the bit map represents. (The
imaginary "base point" is a point which is vertically on the "base line" of the glyph (the bottom line of a
glyph which doesn't have a descender) and horizontally near the left edge of the glyph; often 3 or so pixels
past the left edge.) The bit map contains up+down rows of data for the character, each of which has
left + right columns (bits). Each row is rounded up to a number of bytes. The width field represents the log­
ical width of the glyph in bits, and shows the horizontal displacement to the base point of the next glyph.

/usrllib/vfontl*
lusrllib/fonts/fixedwidthfonts/*

SEE ALSO

BUGS

troff(I), pti(l), vfontinfo(l), vswap(l)

A machine-independent font format should be defined. The shorts in the above structures contain different
bit patterns depending whether the font file is for use on a Vax or a Sun. The vswap program must be used
to convert one to the other.

Sun Release 3.2 Last change: 28 February 1985 623

VGRINDEFS (5) FILE FORMATS VGRINDEFS (5)

NAME
vgrindefs - vgrind's language definition data base

SYNOPSIS
/usrllib/vgrindefs

DESCRIPTION

624

Vgrindefs contains all language definitions for vgrind. The data base is very similar to termcap(5). Capa­
bilities in v grindefs are of two types: Boolean capabilities which indicate that the language has some partic­
ular feature and string capabilities which give a regular expression or keyword list. Entries may continue
onto multiple lines by giving a \ as the last character of a line. Lines starting with # are comments.

Capabilities
The following table names and describes each capability.

Name Type Description
ab str Regular expression for the start of an alternate form comment
ae str Regular expression for the end of an alternate form comment
bb str Regular expression for the start of a block
be str Regular expression for the end of a lexical block
cb str Regular expression for the start of a comment
ce str Regular expression for the end of a comment
id str String giving characters other than letters and digits that may legally occur in identifiers

(default '_')
kw str A list of keywords separated by spaces
lb str Regular expression for the start of a character constant
Ie str Regular expression for the end of a character constant
oc bool Present means upper and lower case are equivalent
pb str Regular expression for start of a procedure
pI bool Procedure definitions are constrained to the lexical level matched by the 'px' capability
px str A match for this regular expression indicates that procedure definitions may occur at the next

lexical level. Useful for lisp-like languages in which procedure definitions occur as subex­
pressions of defuns.

sb str Regular expression for the start of a string
se str Regular expression for the end of a string
tc str Use the named entry as a continuation of this one
t1 bool Present means procedures are only defined at the top lexical level

Regular Expressions
Vgrindefs uses regular expressions similar to those of ex(l) and lex(l). The characters '''', '$', ':', and '\'
are reserved characters and must be 'quoted' with a preceding \ if they are to be included as normal charac­
ters. The metasymbols and their meanings are:

$ The end of a line

The beginning of a line

\d A delimiter (space, tab, newline, start of line)
\a Matches any string of symbols (like'. *' in lex)

\p Matches any identifier. In a procedure definition (the 'pb' capability) the string that matches this
symbol is used as the procedure name.

o Grouping

I Alternation
? Last item is optional
\e Preceding any string means that the string will not match an input string if the input string is pre­

ceded by an escape character (\). This is typically used for languages (like C) that can include the
string delimiter in a string by escaping it.

Last change: 14 March 1986 Sun Release 3.2

VGRINDEFS (5) FILE FORMATS VGRINDEFS (5)

Unlike other regular expressions in the system, these match words and not characters. Hence something
like '(tramp I steamer)flies?' would match 'tramp', 'steamer', 'trampflies', or 'steamerfties'. Contrary to
some forms of regular expressions, vgrindef alternation binds very tightly. Grouping parentheses are likely
to be necessary in expressions involving alternation.

Keyword List
The keyword list is just a list of keywords in the language separated by spaces. If the 'oc' boolean is
specified, indicating that upper and lower case are equivalent, then all the keywords should be specified in
lower case.

EXAMPLE
The following entry, which describes the C language, is typical of a language entry.

C I c I the C programming language:\
:pb= ,\d?*?\d?\p\d??):bb={:be= }:cb=I*:ce=*/:sb=":se=\e":\
:lb=' :le=\e' :t1:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned while #define\
#else #endif #if #ifdef #ifndef #include #undef # define else endit\
if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C language could be
specified to vgrind(1) as 'c' or 'C'.

FILES
lusr/lib/vgrindefs file containing terminal descriptions

SEE ALSO
vgrind(1), troff(1)

Sun Release 3.2 Last change: 14 March 1986 625

YPFILES(5) FILE FORMATS YPFILES(5)

NAME
ypfiles - the yellowpages database and directory structure

DESCRIPTION
The yellow pages (YP) network lookup service uses a database of dbm files in the directory hierarchy at
letclyp. A dbm database consists of two files, created by calls to the dbm(3X) library package. One has the
filename extension .pag and the other has the filename extension .dir. For instance, the database named
hosts.byname, is implemented by the pair of files hosts.byname.pag and hosts.byname.dir. A dbm database
served by the yP is called a yP map. A yP domain is a named set of YP maps. Each yP domain is imple­
mented as a subdirectory of letclyp containing the map. Any number of yP domains can exist. Each may
contain any number of maps.

No maps are required by the yP lookup service itself, although they may be required for the normal opera­
tion of other parts of the system. There is no list of maps which yP serves - if the map exists in a given
domain, and a client asks about it, the yP will serve it For a map to be accessible consistently, it must
exist on all yP servers that serve the domain. To provide data consistency between the replicated maps, an
entry to run ypxfr periodically should be made in lusrlliblcrontab on each server. More information on this
topic is in ypxfr(8).

yP maps should contain two distinguished key-value pairs. The first is the key yP _LAST_MODIFIED,
having as a value a ten-character ASCII order number. The order number should be the UNIX time in
seconds when the map was built. The second key is YP _MASTER_NAME, with the name of the yP mas­
ter server as a value. makedbm generates both key-value pairs automatically. A map that does not contain
both key-value pairs can be served by the YP, but the ypserv process will not be able to return values for
"Get order number" or "Get master name" requests. In addition, values of these two keys are used by ypxfr
when it transfers a map from a master yP server to a slave. If ypxfr cannot figure out where to get the map,
or if it is unable to determine whether the local copy is more recent than the copy at the master, you must
set extra command line switches when you run it

yP maps must be generated and modified only at the master server. They are copied to the slaves using
ypxfr(8) to avoid potential byte-ordering problems among YP servers running on machines with different
architectures, and to minimize the amount of disk space required for the dbm files. The YP database can be
initially set up for both masters and slaves by using ypinit(8).

After the server databases are set up, it is probable that the contents of some maps will change. In general,
some ASCII source version of the database exists on the master, and it is changed with a standard text edi­
tor. The update is incorporated into the yP map and is propagated from the master to the slaves by running
letclyplMakefile . All Sun-supplied maps have entries in letclyplMakefile .. if you add a yP map, edit the
this file to support the new map. The makefile uses makedbm to generate the yP map on the master, and
yppush to propagate the changed map to the slaves. yppush is a client of the map ypservers , which lists all
the yP servers. For more information on this topic, see yppush(8).

SEE ALSO
makedbm(8), ypinit(8), ypmake(8), ypxfr(8), yppush(8), yppoll(8), ypserv(8), rpcinfo(8),

626 Last change: 1 Aug 1985 Sun Release 3.2

Index

Special Characters
_ tolower - convert character to lower-case, System V, 360
_ toupper - convert character to upper-case, System V, 360

1
112-inch tape drive

tm - tapemaster, 494
xt - Xylogics 472, 510

114-inch tape drive
ar - Archive 1I4-inch Streaming Tape Drive, 409
st - Sysgen SC 4000 (Archive) Tape Drive, 482 thru 483

10 Mb/s 3Com Ethernet interface - ec,427
10 Mb/s Sun Ethernet interface - ie, 435
10 Mb/s Sun-3/50 Ethernet interface - Ie, 460 thru 461

2
2180 SMD Disk driver - ip, 442 thru 443

3
3Com 10 Mb/s Ethernet interface - ec, 427

4
450 SMD Disk driver- xy, 511 thru 512
472 1I2-inch tape drive - xt,510

8
8530 SCC serial comunications driver - z s, 513

A
a. out - assembler and link editor output, 517
a641 - convert long integer to base-64 Ascn, 161
abort - generate fault, 162
abs - integer absolute value, 163
absolute value - abs, 163
absolute value function - fabs, 278
accept - connection on socket, 14
access, 15
access times of file, change- utimes, 145
accounting

process accounting, turn on or off - acct, 17
accounting file - acct, 521
acct

acct - execution accounting file, 521
acct - process accounting on or off, 17

acos - trigonometric arccosine, 286

-627-

acosh - inverse hyperbolic function, 275
Adaptec ST-506 disk driver- sd, 480 thru 481
add password file entry - putpwent, 223
add route ioctl- SIOCADDRT, 479
addmntent - get filesystem descriptor file entry, 192
adjtime - adjust time, 18
advise paging system - vadvise, 146
alarm- schedule signal, 260
aliases - sendmail aliases file, 522
alloca - allocate on stack, 211
allocate aligned memory - rnemalign, 210
allocate aligned memory - valloc,211
allocate memory - calloc, 210
allocate memory - malloc, 210
allocate on stack - alloca,211
alphasort - sort directory, 231
ANSI standard terminal emulation, 418 Ihru 422
ANSI terminal emulation - console, 418 thru 422
ar - Archive 1I4-inch Streaming Tape Drive, 409
a r - archive file format, 525
arc -plot arc, 402
archive file format - ar,525
argumentlists, varying length - varargs, 256
arp - Address Resolution Protocol, 410 tmu 411
arp ioctl

SIOCDARP - delete arp entry, 410
SIOCGARP - get arp entry, 410
SIOCSARP - set arp entry, 410

ASCII
string to double - strtod, 243
string to long integer - strtol,
to float - atof, 243
to integer - atoi, 244
to long - atol,244

ASCII to Ethernet address - ethe:t~ato.n,292
asctime - date and time conversiott,169
asctime -date and time conversion/SyStem V, 358
asin - trigonometric arcsine, 286
asinh - inverse hyperbolic function, 275
assembler output - a. out, 517
assert -program verification, 164
assert - program verification" 357
assign buffering to stream

setbuf - assign buffering, System V, 384
setbuf - assign buffering, 348

Index - Continued

assign buffering to stream, continued
setbuffer - assign buffering, System V, 384
setbuffer - assign buffering, 348
setlinebuf - assign buffering, System V, 384
setline"1uf - assign buffering, 348
set vbuf - assign buffering, System V, 384
set vbuf - assign buffering, 348

assign to memory characters, 213
asyne _daemon, 84
at OOB mark? ioetl- SIOCATMARK, 485
atan - trigonometric arctangent, 286
atan2 - trigonometric arctangent, 286
atanh - inverse hyperbolic function, 275
atof - ASCn to fioat, 243
atoi - ASCn to integer, 244
atol - ASCn to long, 244
attributes of file fstat,132
attributes of file lstat, 132
attributes of file stat, 132

B
bemp - compare byte strings, 167
beopy - copy byte strings, 167
Bessel functions

jO,281
jl,281
jn,281
yO,281
yl,281
yn,281

binary 110, buffered
f read - read from stream, 336
fread-read from stream, System V, 371
frwite - write to stream, 336
frwite - write to stream, System V, 371

binary search of sorted table - bseareh, 165
binary tree routines, 248
bind, 19
bit clear local mode bits ioetl- TIOCLBIC, 503
bit set local mode bits ioetl- TIOCLBIS, 503
bit string functions - ff s, 167
bk - machine-machine communication line discipline, 412
bk ioetl's

TIOCGETD - get line discipline, 412
TIOCSETD - set line discipline, 412

block signals, 121
blocked signals, release - sigpause, 122
both real and effective group ID, set - setg id, 234
both real and effective group ID, set, System V - setgid, 386
both real and effective user 10, set - setuid, 234
both real and effective user ID, set, System V - setuid, 386
brk -set data segment break, 21
bseareh - binary search of a sorted table, 165
buffered binary 110

f read - read from stream, 336
f read - read from stream, System V, 371
frwite-write to stream, 336
frwite-write to stream, System V, 371

buffered 110 library functions, introduction to, 329
buffering

buffering, continued

-628-

assign to stream - setbuf, 348
assign to stream, System V - setbuf, 384
assign to stream- setbuffer,348
assign to stream, System V - setbuffer, 384
assign to stream- setlinebuf,348
assign to stream, System V - setlinebuf, 384
assign to stream - set vbuf, 348
assign to stream, System V - setvbuf,384

bwone - Sun-1 black and white frame buffer, 413
bwtwo - Sun-3/Sun-2 black and white frame buffer, 414
byte order, functions to convert between host and network, 291
byte string functions

bemp, 167
beopy, 167
bzero, 167

bzero - zero byte strings, 167

c
C library functions, introduction to, 153 thru 160
eabs - Euclidean distance, 279
ealloe - allocate memory, 210
ebrt - cbuare root function, 288
eei 1 - ceiling of, 278
efree - free memory, 210
egfour - Sun-3 color graphics interface, 415
egone - Sun-1 color graphics interface, 416
egtwo - Sun-3/Sun-2 color graphics interface, 417
change

current working directory, 22
data segment size - sbrk,21
file access times - utimes, 145
file mode - ehmod, 23
file name - rename, 101
owner and group of file - ehown, 25
root directory - ehroot, 27

change translation table entry ioetl- KIOCSETKEY, 444
character

get from stdin - getehar, 338
get from stdin, System V - getehar, 372
get from stream - fgete, 338
get from stream, System V - fgete, 372
get from stream- gete, 338
get from stream, System V - gete, 372
push back to stream - ungete, 352
put to stdin - putehar,344
put to stream- fpute,344
put to stream- pute,344

character classification
isalnum, 171
isalpha,l71
isaseii, 171
isentrl,l71
isdigit,l71
isgraph, 171
islower, 171
isprint, 171
ispunet, 171
isspaee,l71
isupper, 171
isxdigit, 171

character classification, System V

character classification, System V, continued
i salnum, 360
isalpha,360
isascii,360
iscntrl,360
isdigit,360
isgraph,360
islower, 360
i sprint, 360
ispunct, 360
isspace, 360
isupper, 360
isxdigit,360

character conversion
toascii,171
tolower, 171
toupper, 171

character conversion, System V
tolower, 360

- toupper, 360
toascii,360
tolower, 360
toupper, 360

chdir,22
check buffer state ioctl - GPIIO _GET _ GBUFFER _STATE,

431
check heap - malloc _verify, 211
chmod, 23
chown,25
chroot - change root directory, 27
circle -plotcircle, 402
clear break bit ioctl- TIOCCBRK, 502
clear DTR ioctl- TIOCCDTR, 502
clear user table ioctl - NDIOCCLEAR, 471
clearerr -clear error on stream, 334
clearerr - clear error on stream, Sysem V, 368
clock,261
close, 28
close directory stream - closedir, 173
close stream- fclose, 333
closedir - close directory stream, 173
closelog -close system log file, 246
closepl - close plot device, 402
color graphics interface

cgfour - Sun-3 color graphics interface, 415
cgone - Sun-l color graphics interface, 416
cgt wo - Sun-3/Sun-2 color graphics interface, 417

command
return stream to remote - rcmd, 303
return stream to remote - rexec, 304

compare
byte strings - bcmp, 167
memory characters - memcmp,213
strings - strcmp, 241
strings - strncmp, 241

compatibility library functions, introduction to, 259
compile regular expression - re _ comp, 227
concatenate strings

strcat, 241
strncat, 241

connect, 29

connected peer, get name of, 54
connection

accept on socket - accept, 14
listen for on socket - listen, 69

Index - Continued

console -console driver/terminal emulator, 418 thru 422
console I/O ioctl, TIOCCONS, 418
cont - continue line, 402
control devices - ioctl,65
control resource consumption - v I imi t, 270
control system log

close system log - closelog, 246
start system log - openlog,246
write to system log - syslog, 246

control terminal, hangup - vhangup, 148
convert

functions to between host and network byte order, 291
host to network long - htonl, 291
host to network short- htons, 291
network to host long - ntohl,291
network to host short- ntohs, 291

convert base-64 AScn to long integer- 164a, 161
convert character

to ASCII - toascii, 171
to ASCII, System V - toascii,360
to lower-case - tolower, 171
to lower-case, System V - tolower, 360
to lower-case, System V - tolower, 360
to upper-case - toupper, 171
to upper-case, System V - toupper, 360
to upper-case, System V - toupper,360

convert long integer to base-64 AScn - 164a, 161
convert numbers to strings

-629-

ecvt,177
fcvt, 177
fprintf,341
gcvt, 177
printf,341
sprintf, 341

convert numbers to strings, System V
fprintf,377
printf,377
sprintf,377

convert strings to numbers
atof,243
atoi,244
atol,244
fscanf,346
scanf,346
sscanf,346
strtod, 243
strtol,244

convert strings to numbers, System V
fscanf,381
scanf,381
sscanf,381

convert time and date
asctime, 169
ctime, 169
dysize, 170
gmtime, 169
local time, 169
t imezone, 169

Index - Continued

convert time and date, System V
asctime, 358

copy

ctime, 358
gmtime, 358
local time, 358

byte strings - bcopy, 167
memory character fields - memcpy, 213
memory character strings - memccpy, 213
strings - strcpy,241
strings - strncpy, 241

copy si gn - IEEE floating-point function, 280
co re - memory image file format, 526
co s - trigonometric cosine, 286
cosh - hyperbolic cosine, 287
cpio - cpio archive format, 527
creat,31
create

file - open, 85
hash table - hcrea te, 201
interprocess communication channel- pipe, 88
interprocess communication endpoint - socket, 129
name for temporary file - tmpnam, 351
pair of connected sockets - socketpair, 131
special file, 73
symbolic link - symlink, 137
unique file name - mktemp, 214

create directory, 71
create new process, 42
crontab - periodic jobs table, 528
crypt - encryption, 168
ctermid - generate filename for terminal, 331
ct ime - date and time conversion, 169
ct ime - date and time conversion, System V, 358
current directory

change,22
get pathname - getwd, 200

current host, get identifier of - gethostid, 49
current working directory - getcwd, 186
curses functions, System V, 362
cuserid-get user name, 332

D
daemons

network file system, 84
data segment size, change - sbrk,21
data types - types, 619
database functions - dbm

dbminit, 396
delete, 396
fetch,396
firstkey,396
nextkey, 396
store, 396

database functions - n dbm
dbm clearerr, 400
dbm-close, 400
dbm - delete, 400
dbm-err, 400
dbm - error, 400
dbm= fetch, 400

database functions - ndbm, continued
dbm_firstkey, 400
dbm_nextkey,400
dbm _open, 400
dbm _store, 400

database library
-ldbmoption to cc,396
ndbm,400

date and time
get- time, 266
get- gettimeofday,63
get- ftime, 266
set- settimeofday,63

date and time conversion
asctime, 169
ctime, 169
dysize, 170
gmtime, 169
local time, 169
timezone, 169

date and time conversion, System V
asctime, 358
ctime, 358
gmtime, 358
local time, 358

date and time display - fdate, 182
dbm _ clearerr - clear ndbm database error condition, 400
dbm _close - close ndbm routine, 400
dbm _delete - remove data from ndbm database, 400
dbm _err - ndbm database routine, 400

-630-

dbm _error - return ndbm database error condition, 400
dbm _ f et ch - fetch ndbm database data, 400
dbm_firstkey - access ndbm database, 400
dbm _ nextkey - access ndbm database, 400
dbm _open - open ndbm database, 400
dbm _store - add data to ndbm database, 400
dbmin it - open database, 396
debugging memory management, 211 thru. 212

malloc _debug - set debug level, 211
malloc _verify - verify heap, 211

debugging support- assert, 164
debugging support, System V - assert, 357
delete

directory - rmdir,103
directory entry - unlink, 143

delete arp entry ioctl- SIOCDARP, 410
delete datum and key - delete, 396
delete descriptor, 28
delete - delete datum and key, 396
delete route ioctl- SIOCDELRT, 479
demount file system - unmount, 144
des - DES encryption chip interface, 423
descriptors

close, 28
delete, 28
dup, 33
dup2,33
fcntl,38
flock, 41
getdtablesize,46
lockf,206

descriptors, continued
select, 104

DESIOCBLOCK - process block, 423
DESIOCQUICK - process quickly, 423
destroy hash table - hdestroy, 201
device controls - ioctl, 65
devices, introduction to, 407 thru 408
di r - directory format, 529
directory

change current, 22
change root - chroot, 27
delete- rmdir, 103
erase - rmdir, 103
get entries, 44
make, 71
remove - rmdir, 103
scan, 231

directory operations
closedir, 173
opendir, 173
readdir, 173
rewinddir, 173
seekdir, 173
telldir, 173

disk driver
sd - Adaptec ST-506, 480 thru 481
ip - Interphase, 442 thru 443
s i-Sun SCSI, 480 thru 481
xy - Xylogics, 511 thru 512

disk quotas - quotactl,93
dkio - disk control operations, 424 thru 425
DKI OCGGEOM - get disk: geometry, 425
DKIOCGPART - get disk partition info, 425
DKIOCINFO - get disk info, 425
DKI OCSGEOM - set disk geometry, 425
DKIOCSPART - set disk partition info, 425
domain

get name of current - getdomainname, 45
set name of current - setdomainname, 45

drand48 - generate uniformly distributed random numbers, 175
drem - IEEE floating-point function, 280
drum - paging device, 426
dump - incremental dump format, 531
dup, 33
dup2,33
duplicate descriptor, 33
dysize - date and time conversion, 170

E
E2BI G error number, 1
EACCES error number, 2
EADDRINUSE error number, 4
EADDRNOTAVAIL error number, 4
EAFNOSUPPORT error number, 4
EAGAIN error number, 2
EALREADY error number, 3
EBADF error number, 1
EBUSY error number, 2
ec - 3Com 10 Mb/s Ethernet interface, 427
ECHILD error number, 2

ECONNABORTED error number, 4
ECONNREFUSED error number, 4
ECONNRESET error number, 4
ecvt - convert number to ASCII, 177
eda ta - end of program data, 178
EDESTADDRREQ error number, 3
EDOM error number, 3
EDQUOT error number, 5
EEXIST error number, 2
EFAULT error number, 2
EFBIG error number, 3
effective group ID

get, 47
set, 113

effective group ID, set - setegid, 234

Index - Continued

effective group ID, set, System V - setegid, 386
effective user ID

-631-

get, 64
set- setreuid, 114

effective user ID, set - seteuid, 234
effective user ID, set, System V - seteuid, 386
EHOSTDOWN error number, 5
EHOSTUNREACH error number, 5
EIDRM error number, 5
EINPROGRESS error number, 3
EINTR error number, 1
EINVAL error number, 2
EIO error number, 1
EISCONN error number, 4
EISDIR error number, 2
ELOOP error number, 4
EMF I LE error number, 2
EMLINK error number, 3
EMSGS I ZE error number, 3
ENAMETOOLONG error number, 5
encrypt - encryption, 168
encryption

crypt, 168
encrypt, 168
setkey, 168

encryption chip - des, 423
end - end of program, 178
end locations in program, 178
endfsent - get file system descriptor file entry, 188
endgrent - get group file entry, 189
endhostent - get network host entry, 293
endmntent - get filesystem descriptor file entry, 192
endnetent - get network entry, 295
endnetgrent - get network group entry, 297
endprotoent - get protocol entry, 298
endpwent - get password file entry, 198
endpwent - get password file entry, System V, 374
endrpcent - get RPC entry, 299
endservent - get service entry, 300
ENETDOWN error number, 4
ENETRESET error number, 4
ENETUNREACH error number, 4
ENFILE error number, 2
ENOBUFS error number, 4

Index - Continued

ENODEV error number, 2
ENOENT error number, 1
ENOEXEC error number, 1
ENOMEM error number, 2
ENOMSG error number, 5
ENOPROTOOPT error number, 3
ENOSPC error number, 3
ENOTBLK error number, 2
ENOTCONN error number, 4
ENoTDIRerrornumber, 2
ENOTEMPTYerrornum~,5

ENOTSOCK error number, 3
ENOTTY error number, 2
enquire stream status

clearerr - clear error on stream, 334
clearerr - clear error on stream, Sysem V, 368
feof - enquire EOF on stream, 334
f eo f - enquire EOF on stream, Sysem V, 368
ferror - inquire error on stream, 334
ferror - inquire error on stream, Sysem V, 368
f ilene - get stream descriptor number, 334
fileno - get stream descriptor number, Sysem V, 368

environ - user environment, 533
environ - execute file, 179
environment

get value- getenv, 187
set value - putenv,222

ENXIO error number, 1
EOPNOT SUPP error number, 4
EPERM error number, 1
EPFNOSUPPORTerrornumb~,4

EP IPE error number, 3
EPROTONOSUPPORT error number, 3
EPROTOTYPE error number, 3
erand48 - generate uniformly distributed random numbers, 175
ERANGE error number, 3
erase

directory- rmdir, 103
directory entry - unlink,143

erase - start new plot frame, 402
EREMOTE error number, 5
erf - error functions, 276
erfc - error functions, 276
EROFS error number, 3
errno - system error messages, 219
error messages, 219
ESHUTDOWN error numb~, 4
ESOCKTNOSUPPORT error number, 4
ESPIPE error number, 3
ESRCH error number, 1
ESTALE error number, 5
etext - end of program text, 178
Ethernet address mapping, 292
Ethernet address to ASCII - ether_ntoa, 292
Ethernet address to hostname - ether _ ntohost, 292
Ethernet controller

ec - 10 Mb/s 3Com Eth~et interface, 427
ie - Sun Ethernet in~ace, 435
Ie - 10 Mb/s LANCE Ethernet interface, 460 thru 461

-632-

ethers file - Ethernet addresses, 534
ETlMEDOUT error number, 4
ETXTBSY error number, 3
Euclidean distance functions

cabs, 279
hypot, 279

EWOULDBLOCK error number, 3
EXDEV error number, 2
execl-execute file, 179
execle - execute file, 179
execlp - execute file, 179
execute file, 34, 179

environ, 179
execl,179
execle, 179
execlp, 179
execv, 179
execvp, 179

execute regular expression - re _exec, 227
execution

suspend for interval, 239, 390
suspend for interval in microseconds, 254

execution accounting file - acct, 521
execution profile, prepare- monitor, 215
execv - execute file, 179
execve,34
execvp - execute file, 179
exit, 37
exi t - terminate process, 181
exp - exponential function, 277
exponent and mantissa, split into - f rexp, 183
exponential function - exp, 277
external data representation routines, 307

F
fabs - absolute value, 278
fb - Sun console frame buffer driver, 428
fbio - frame buff~s general properties, 429 thru 430
fchmod, 23
fchown,25
fclose - close stream, 333
fcntl- file control system call, 38
fcntl- file control options, 536
f cvt - convert numb~ to ASCII, 177
fdate - return date and time in ASCII format, 182
fdopen - associate descriptor, 335
fdopen - associate descriptor, System V, 369
feof - enquire EOF on stream, 334
feof - enquire EOF on stream, Sysem V, 368
ferror - inquire error on stream, 334
ferror - inquire error on stream, Sysem V, 368
fetch - retrieve datum under key, 396
fflush - flush stream, 333
f f s - find first one bit, 167
fgetc - get character from stream, 338
fgetc - get character from stream, System V, 372
fgetgrent - get group file entry, 189
fgetpwent - get password file entry, 198
fgetpwent - get password file entry, System V, 374

fget s - get string from stream, 339
file

ftw -traverse file tree, 185
create new, 31
create temporary name - tmpnam, 351
determine accessibility of, 15
execute, 34
make hard link to, 68
synchronize state - fsync,43

file attributes
fstat,132
lstat, 132
stat, 132

file control
options header file - fcntl,536
system call- fcntl,38

file formats, 515
file position, move - I seek, 70
file system

access, 15
chdir,22
chmod, 23
chown,25
create file - open, 85
delete directory entry - unlink, 143
delete directory - rmdir, 103
unrnount - demount file syste~ 144
erase directory entry - unlink, 143
erase directory - rmdir,l03
fchmod, 23
fehown,25
format- fs,537
ftruncate, 140
get file descriptor entry, 188
getdirentries,44
link, 68
Iseek,70
mkdir,7l
mknod, 73
mntent - static information, 550
mount, 77
mounted table - mtab, 552
open, 85
quotaetl- disk quotas, 93
readlink, 97
remove directory entry - unlink, 143
remove directory - rmdir, 103
rename file - rename, 101
statistics - fstatfs, 134
statistics - statfs,134
symlink, 137
tell, 70
truncate, 140
umask,141
unmount - demount file system, 144
utimes - set file times, 145

file times, set - u time, 269
filename, change - rename, 101
fileno - get stream descriptor number, 334
fileno - get stream descriptor number, Sysem V, 368
files used by programs

/ete/dumpdates - dump record, 532
/ et e / ethe r s - host ethernet map, 534

-633 -

Index - Continued

files used by programs, continued
/ et c/ export s -list of filesystems accessible to clients,

535
/etc/fstab - table offilesystems to mount at boot, 551
/ etc/ gettytab - terminal characteristics for getty,

545
/ et c / group -local group file, 546
/ete/hosts. equiv-listoftrusted clients, 548, 553
/etc/hosts-hostIDmap, 547
/ etc/mtab - table of mounted filesystems, 552
/etc/netgroup -network groups, 553
/etc/networks -DARPA Internet known networks, 555
/ et c/ pa s swd - password file, 557
/ etc/phones - remote host phone numbers for tip, 558
/ etc/protocols - DARPA Internet known protocols,

562
/etc/remote -remote host description file for tip, 565
/ et e / re so 1 v . con f - configuration file for name server,

566
/ ete/rmtab -list of hosts with local filesystems mounted,

567
/ et e / se rver s -list of Internet server processes, 572
/ etc/termcap - terminal capabilities file, 589
/etc/ttys -listofterminals to start at boot, 617
/ ete/utmp -login accounting, 621
/ etc/yp/ domain/netgroup* -list of network groups

for yP domain, 553
/ etc/yp/ group - group yP map, 546
/usr / 5lib/terminfo - directory of Sytem V terminal-

description files, 602, 615
/usr/adm/lastlog-Iogin accounting, 621
/usr/adm/usraect -login accounting, 621
/usr / adm/wtmp -login accounting, 621
Ius r / lib/ erontab - table of timed events, 528
/usr/lib/fonts/fixedwidthfonts -directory of

fixed width (screen) font files, 623
/usr/lib/term-directory of nroff terminal-support

files, 579
/usr/lib/vgrindefs - vgrind code formatting

specUfications,625
- / . netrc - ftpremote login data, 554

filesystem descriptor, get file entry, 192
find

first key in dbm database - firstkey, 396
first one bit - ff s, 167
name of terminal- ttyname, 251
next key in dbm database - nextkey, 396

f ini te - IEEE floating-point function, 280
FIOASYNC - set/clear async 110, 408
F IOCLEX - set close-on-exec flag for fd, 408
FIOGETOWN - get file owner, 408
FIONBIO - set/clear non-blocking 110, 408
F IONCLEX - remove close-on-exec flag, 408
FIONREAD - get # bytes to read, 408
FIOSETOWN - set file owner, 408
firstkey-find first key, 396
floating point

isinf - test infinite value, 205
i snan - test not a number, 205

flock,41
floor - floor of, 278
flush buffers ioctl- TIOCFLUSH, 502

Index - Continued

flush stream- fflush,333
fopen - open stream, 335
fopen -open stream, Sysem V, 369
fork a new process - fork, 42
format of memory image file - co re, 526
formatted input conversion

fscanf - convert from stream, 346
fscanf - convert from stream, System Y, 381
s canf - convert from stdin, 346
s canf - convert from stdin, System Y, 381
s scanf - convert from string, 346
sscanf - convert from string, System Y, 381

. forward - mail forwarding file, 522
fprintf - formatted output conversion, 341
fprintf - format to stream, System Y, 377
fputc -put character on stream, 344
fput s - put string to stream, 345
frame buffer

bwone - Sun-l black and white frame buffer, 413
bwtwo - Sun-3/Sun-2 black and white frame buffer, 414

fread-read from stream, 336
fread - read from stream, System V, 371
free - free memory, 210
free memory - cfree, 210
free memory - free, 210
free static block ioctl- GP1IO_FREE STATIC BLOCK,

431
freopen - reopen stream, 335
freopen - reopen stream, System Y, 369
frexp - split into mantissa and exponent, 183
fs - file system format, 537
f s canf - convert from stream, 346
fscanf - convert from stream, System Y, 381
fseek - seek on stream, 337
f s pe c text file tabstop specifications, 540
fstat - obtain file attributes, 132
fstatf s - obtain file system statistics, 134
fsync - synchronize disk file with core image, 43
ftell- get stream position, 337
ft ime - get date and time, 266
ftok - interprocess communication routine, 184
ftp -remote login data - . netrc file, 554
ftpusers - ftp prohibited users list, 542
ftruncate, 140
ftw -traverse file tree, 185
full-duplex connection, shut down - shutdown, 120
fwrite -write to stream, 336
fwrite - write to stream, System Y, 371

G
gamma -log gamma, 282
gather write - wri tev, 151
gcd - multiple precision GCD, 398
gcvt - convert number to ASCII, 177
generate

fault - abort, 162
generate random numbers

initstate, 225
rand, 264

-634-

generate random numbers, continued
random, 225
setstate, 225
srand, 264
srandom, 225
drand48, 175
erand48,175
jrand48,175
lcong48, 175
lrand48,175
mrand48, 175
nrand48,175
seed48, 175
srand48, 175

generate random numbers, System V
rand,380
srand, 380

generic disk control operations - dkio, 424 thru 425
generic operations

get

gather write - writev, 151
ioctl,65
read, 95
scatter read - readv, 95
write, 151

arp entry ioctl- SIOCGARP, 410
character from stream - fgetc, 338
character from stream - getc, 338
console 110 ioctl- TIOCCONS, 418
count of bytes to read ioct 1 - F IONREAD, 408
current working directory pathname - get wd, 200
date and time - ft ime, 266
date and time - time, 266
disk geometry ioctl- DKIOCGGEOM, 425
disk info ioctl- DKIOCINFO, 425
disk partition info ioctl- DKIOCGPART,425
entries from name list - nlist, 217
environment value - getenv, 187
file owner ioctl- FIOGETOWN,408
file system descriptor file entry, 188
high water mark ioctl- SIOCGHIWAT,485
ifnet address ioctl- SIOCGIFADDR, 436
ifnet flags ioctl- SIOCGIFFLAGS, 436
ifnet list ioctl- SIOCGIFCONF,436
info on resource usage - vtimes, 271
line discipline ioctl- TIOCGETD, 412, 495, 502
local mode bits ioctl- TIOCLGET,503
local special chars ioctl- TIOCGLTC,504
login name - getlogin, 191
low water mark ioctl- SIOCGLOWAT,485
network entry - getnetent, 295
network group entry - getnetgrent, 297
network host entry - gethostent, 293
network service entry - getservent,3oo
number of characters in output queue ioctl-

TIOCOUTQ,502
options on sockets - getsockopt,62
p-p address ioctl- SIOCGIFDSTADDR, 436
parameters - gtty ioctl- TIOCGETP, 501
parent process identification - getppid, 55
pathname of current working directory - getcwd, 186
position of stream - ftell,337
process domain name - getdomainname, 45

get, continued
process group oftty ioctl- TIOCGPGRP, 502
process identification - getpid, 55
process times - times, 267
protocol entry - getprotoent, 298
requested minor device ioctl- GPIIO GET REQDEV,

431 - -

restart count ioctl- GPl IO GET RESTART COUNT,
431 - - -

RPC program entry - getrpcent, 299
scheduling priority - getpriority,56
signal stack context - sigstack, 124
special characters ioctl- TIOCGETC, 503
static block ioctl- GP1IO GET STATIC BLOCK,

431 - - -

string from stdin - get s, 339
string from stream- fgets, 339
tape status ioctl- MTIOCGET,468
terminal state - gt t y, 265
true minor device ioctl-

GP1IO GET TRUMINORDE~432
user limits - ullmi t-:-268
word from stream - getw, 338

get character from stream, System V - fgetc, 372
get character from stream, System V - getc, 372
get date and time, 63
get file system descriptor file entry

addmntent, 192
endmntent, 192
getmntent, 192
hasmntopt, 192
setmntent, 192

get group :file entry
endgrent, 189
fgetgrent, 189
getgrent, 189
getgrgid, 189
getgrnam, 189
setgrent, 189

get high water mark ioctl - SIOCGHIWAT,506
get keyboard "direct input" state ioctl- KIOCGDIRECT,

445
get keyboard translation ioctl- KIOCGTRANS,444
get keyboard type ioctl - KIOCTYPE, 445
get low water mark ioctl- SIOCGLOWAT,506
get option letter from argument vector - get opt, 194
get password file entry

endpwent, 198
fgetpwent, 198
getpwent, 198
getpwnam, 198
getpwuid, 198
setpwent, 198

get password file entry, System V
endpwent, 374
fgetpwent, 374
getpwent, 374
getpwnam, 374
getpwuid, 374
setpwent, 374

get process times, System V - times, 391
get translation table entry ioctl- KIOCGETKEY,445

-635-

Index - ConJinued

get user name - cuserid, 332
get word from stream, System V - getw, 372
getc - get character from stream, 338
getc - get character from stream, System V, 372
getchar - get character from stdin, 338
getchar - get character from stdin, System V, 372
getcwd - get pathname of current directory, 186
getdirentries,44
getdomainname - get process domain, 45
getdtablesi ze, 46
getegid - get effective group ID, 47
getenv - get value from environment, 187
geteuid - get effective user ID, 64
getfsent - get file system descriptor file entry, 188
getfsfile - get file system descriptor file entry, 188
getfsspec - get file system descriptor file entry, 188
getfstype - get file system descriptor file entry, 188
getgid - get group ID, 47
getgrent - get group file entry, 189
getgrgid - get group file entry, 189
getgrnam- get group file entry, 189
get groups, 48
gethostbyaddr - get network host entry, 293
gethostbyname - get network host entry, 293
gethostent - get network host entry, 293
gethost id, 49
gethostname, 50
getitimer,51
getlogin - get login name, 191
getmntent - get filesystem descriptor file entry, 192
getnetbyaddr - get network entry, 295
getnetbyname - get network entry, 295
getnetent - get network entry, 295
getnetgrent - get network group entry, 297
getopt - get option letter, 194
getpagesize,53
getpass -read password, 196
get pass -read password, System V, 373
get peername, 54
getpgrp,112
getpid,55
getppid, 55
getpriori ty, 56
getprotobynumber- get protocol entry, 298
getprotoent - get protocol entry, 298
get pw - get name from uid, 197
getpwent - get password :file entry, 198
getpwent - get password file entry, System V, 374
get pwnam - get password file entry, 198
getpwnam- get password file entry, System V, 374
get pwui d - get password file entry, 198
getpwuid - get password file entry, System V, 374
getrlimit,57
getrpcbyname - get RPC entry, 299
getrpcbynumber- getRPC entry, 299
getrpcent - get RPC entry, 299
getrpcport - get RPC port number, 316
getrusage, 59

Index - Continued

get s - get string from stdin, 339
get servbyname - get service entry, 300
get servbyport - get service entry, 300
getservent - get service entry, 300
getsockname,61
getsockopt, 62
gettimeofday,63
gettytab -terminal configuration data base, 543
getuid - get user ID, 64
get w - get word from stream, 338
getw - get word from stream, System V, 372
getwd - get current working directory pathname, 200
gmtime - date and time conversion, 169
gmtime - date and time conversion, System V, 358
GP1IO_CHK_GP -restartGP, 431
GP 1 I 0_ FREE _ STATI C _BLOCK - free static block, 431
GP 1 I 0_ GET _ GBUFFER _STATE - check buffer state, 431
GP 1 I 0_ GET _ REQDEV - get requested minor device, 431
GP1IO_GET_RESTART_COUNT- get restart count, 431
GP1IO_GET_STATIC_BLocK-getstatic block, 431
GP1IO_GET_TRUMINORDEV - get true minor device, 432
GP 1 I 0_ PUT_INFO - pass framebuffer info, 431
GP1IO_REDIRECT_DEVFB-reconfigure fb, 431
gpone - graphics processor interface, 431 Imu 432
graphics interface

arc, 402
circle, 402
clo sepl, 402
cont, 402
erase, 402
label,402
line, 402
I inemod, 402
move,402
openpl,402
point, 402
space, 402

graphics interface files - plot, 559
graphics processor interface - gpone, 431 thru 432
group access list

initialize - initgroups, 203
group entry, network - getnetgrent, 297
group - group file format, 546
group file entry - getgrent, 189
group ID

get, 47
get effective, 47
set real and effective, 113

groups access list, get- getgroups,48
groups access list, set - setgroups, 48
gt t Y - get terminal state, 265

H
halt processor, 98
hang up on last close ioctl- TIOCHPCL, 499, 502
hangup, control terminal- vhangup, 148
hard link to file - link, 68
hardware support, introduction to, 407 Imu 408
hash table search routine - hsearch,201

-636-

hasmntopt - get filesystem descriptor file entry, 192
havedisk - disk inquiry of remote kernel, 323
hcreate -create hash table, 201
hdestroy - destroy hash table, 201
host

functions to convert to network byte order, 291
get identifier of, 49
get network entry - gethostent, 293
get/set name - gethostname,50
phone numbers file - phones, 558

hostname to Ethernet address - ether_hostton, 292
hosts - host name data base, 547
hosts. equi v - trusted hosts list, 548
hsearch - hash table search routine, 201
htonl - convert network to host long, 291
htons - convert host to network short, 291
hyperbolic functions

cosh, 287
sinh,287
tanh,287

hypot - Euclidean distance, 279

I
110, buffered binary

f read - read from stream, 336
f read - read from stream, System V, 371
frwite - write to stream, 336
frwite - write to stream, System V, 371

i cmp - Internet Control Message Protocol, 433 Imu 434
identifier of current host, get - gethostid, 49
ie - Sun 10 Mbls Ethernet interface, 435
if - network interface general properties, 436 thru 437
Ikon 10071-5 printer interface - vp,507
incremental dump format - dump, 531
indeterminate floating point values, test for - isinf,205
index - find character in string, 241
index memory characters - memchr, 213
index strings - index, 241
index strings - rindex,241
indirect system call, 139
inet - Internet protocol family, 438 thru. 439
inet server database - servers, 572
inet _ addr - Internet address manipulation, 301
inet_Inaof - Internet address manipulation, 301
inet _ makeaddr - Internet address manipulation, 301
inet_netof - Internet address manipulation, 301
inet _network - Internet address manipulation, 301
inet _ntoa - Internet address manipulation, 301
ini tgroups - initialize group access list, 203
initialize group access list - ini tgroups, 203
initiate

connection on socket - connect, 29
110 tolfrom process - popen, 340

ini tstate - random number routines, 225
innetgr - get network group entry, 297
input conversion

f scanf - convert from stream, 346
f scanf - convert from stream, System V, 381
s canf - convert from stdin, 346
s canf - convert from stdin, System V, 381

input conversion, continued
s scanf - convert from string, 346
sscanf - convert from string, System V, 381

input stream, push character back to - ungetc, 352
inquire stream status

clearerr -clear error on stream, 334
clearerr - clear error on stream, Sysem V, 368
feof - enquire EOF on stream, 334
feof - enquire EOF on stream, Sysem V, 368
ferror - inquire error on stream, 334
ferror - inquire error on stream, Sysem V, 368
fileno - get stream descriptor number, 334
f ileno - get stream descriptor number, Sysem V, 368

insert element in queue - insque,204
insque - insert element in queue, 204
integer absolute value - abs, 163
Internet

control message protocol- icmp, 433 thru 434
protocol family - inet, 438 thru 439
Protocol- i p, 440 thru 441
to Ethernet address resolution - arp, 410 thru 411
Transmission Control Protocol- tcp, 484, 485
User Datagram Protocol- udp, 505, 506

Internet address manipulation functions, 301
Interphase SMD Disk driver - i p, 442 thru 443
interprocess communication

accept connection - accept, 14
bind, 19
connect, 29
ftok, 184
getsockname,61
getsockopt,62
listen, 69
pipe, 88
recv,99
recvfrom, 99
recvmsg,99
send, 111
sendmsg, 111
sendto,l11
set sockopt, 62
shutdown, 120
socket, 129
socketpair, 131

interrupts, release blocked signals - sigpause, 122
interval timers

clock,261
get, 51
set, 51
timerclear - macro, 51
timercmp - macro, 51
timerisset - macro, 51

introduction
C library functions, 153 thru 160
compatibility library functions, 259
devices, 407 thru 408
file formats, 515
hardware support, 407 thru 408
mathematical library functions, 273
miscellaneous library functions, 393
network library functions, 289
RPC library functions, 313
special files, 407 thru 408

Index - Continued

introduction, continued
standard 110 library functions, 329
system calls, 1 thru 10
system error numbers, 1 thru 5
System V library functions, 355

ioctl,65
ioctl's for des chip

DES IOCBLOCK - process block, 423
DESIOCQUICK - process quickly, 423

ioctls for disks

-637-

DKI OCGGEOM - get disk geometry, 425
DKIOCGPART - get disk partition info, 425
DKI OCINFO - get disk info, 425
DKI OCSGEOM - set disk geometry, 425
DKIOCSPART - set disk partition info, 425

ioctl's for files
FIOASYNC - set/clear async 110, 408
F IOCLEX - set close-on-exec for fd, 408
FIOGETOWN get owner, 408
FIONBIO - set/clear non-blocking 110, 408
FIONCLEX - remove close-on-exec flag, 408
FIONREAD - get # bytes to read, 408
FIOSETOWN - set owner, 408

ioctl's for graphics processor
GP1IO_CHK_GP -restartGP, 431
GP1IO _FREE_STATIC _BLOCK - free static block, 431
GP1IO GET GBUFFER STATE-check buffer state 431
GP1IO == GET==REQDEV -= get requested minor device, 431
GP 1 10_ GET_RES TART_COUNT - get restart count, 431
GP1IO_GET_STATIC_BLOCK- get static block, 431
GP1IO _GET _ TRUMINORDEV - get true minor device, 432
GPl 10 _PUT_INFO - pass framebuffer info, 431
GP1IO _REDIRECT _DEVFB - reconfigure fb, 431

ioctl's for keyboards
KIOCCMD - send a keyboard command, 445
KIOCGDIRECT - get keyboard "direct input" state, 445
KIOCGETKEY - get translation table entry, 445
KIOCGTRANS - get keyboard translation, 444
KIOCSDIRECT - set keyboard "direct input" state, 445
KIOCSETKEY - change translation table entry, 444
KIOCTRANS - set keyboard translation, 444
KIOCTYPE - get keyboard type, 445

ioctl's for network disks
NDIOCCLEAR - clear user table, 471
NDIOCETHER - set ether address, 471
NDIOCSAT - server at ipaddress, 471
ND I OCSOFF - server off, 471
NDI OCSON - server on, 471
NDI OCUSER - set user parameters, 471
ND I OCVER - version number, 471

ioctl's for sockets
SIOCADDRT - add route, 479
SIOCATMARK - at OOB mark?,485
SIOCDARP - delete arp entry, 410
SIOCDELRT - delete route, 479
SIOCGARP - get arp entry, 410
SIOCGHIWAT - get high water mark, 485, 506
SIOCGIFADDR - get ifnet address, 436
S I OCG IFCONF - get ifnet list, 436
SIOCGIFDSTADDR - get p-p address, 436
S I OCG IFFLAGS - get ifnet flags, 436
SIOCGLOWAT - get low water mark, 485,506
SIOCSARP - set arp entry, 410

Index - Continued

ioctl's for sockets, conti1UU!d
SIOCSHIWAT - set high water mark, 485, 506
SIOCSIFADDR - set ifnet address, 436
SIOCSIFDSTADDR- set p-p address, 436
S I OCS IFFLAGS - set ifnet flags, 436
SIOCSLOWAT - set low water mark, 485,506

ioctl's for tapes
MTI OCGET - get tape status, 468
MTIOCTOP - tape operation, 467

ioctl's for terminals
TIOCCBRK - clear break bit, 502
TIOCCDTR - clear DTR, 502
TIOCCONS - get console 110, 418
TIOCEXCL - set exclusive use of tty, 502
TIOCFLUSH - flush buffers, 502
TIOCGETC - get special characters, 503
TIOCGETD - get line discipline, 412, 495, 502
TIOCGETP - get parameters - gtty, 501
TIOCGLTC - get local special chars, 504
TIOCGPGRP - get process group of tty, 502
TIOCHPCL - hang up on last close, 499, 502
TIOCLBIC - bit clear local mode bits, 503
T IOCLBI S - bit set local mode bits, 503
T IOCLGET - get local mode bits, 503
TIOCLSET - set local mode bits, 503
TIOCNOTTY - void tty association, 495
T IOCNXCL - remove exclusive use of tty, 502
TIOCOUTQ - get number of characters in output queue, 502
T IOCPKT - set/clear packet mode (pty), 477
T IOCREMOTE - remote input editing, 477
T IOCSBRK - set break bit, 502
TIOCSDTR - set DTR, 502
T IOCSETC - set special characters, 503
TIOCSETD - set line discipline, 412, 495,502
TIOCSETN - set parameters, 501
TIOCSETP - set parameters - gtty, 501
TIOCSLTC - set local special chars, 504
T IOCSPGRP - set process group of tty, 502
TIOCSTART - start output (like control-Q), 477, 502
TIOCSTI - simulate terminal input, 502
TIOCSTOP - stop output (like control-S), 477, 502

IP raw sockets, 441
ip - Internet Protocol, 440 thru 441
i p - Interphase SMD Disk driver, 442 thru 443
isalnum- is character alphanumeric, 171
isalnum- is character alphanumeric, System V, 360
isalpha - is character letter, 171
isalpha - is character letter, System V, 360
isascii - is character ASCII, 171
isascii - is character ASCII, System V, 360
i sat ty - test if device is terminal, 251
iscntrl- is character control, 171
iscntrl- is character control, System V, 360
isdigi t - is character digit, 171
isdigi t - is character digit, System V, 360
isgraph - is character graphic, 171
isgraph - is character graphic, System V, 360
isinf - test infinite value, 205
islower - is character lower-case, 171
islower - is character lower-case, System V, 360
isnan - test not a number, 205
isprint - is character printable, 171

-638-

isprint -is character printable, System V, 360
i spun ct - is character punctuation, 171
ispunct - is character punctuation, System V, 360
is spa ce - is character whitespace, 171
isspace - is character whitespace, System V, 360
issue shell command - system, 247
i supper - is character upper-case, 171
i supper - is character upper-case, System V, 360
isxdigit - is character hex digit, 171
isxdigit - is character hex digit, System V, 360
i tom - integer to multiple precision, 398

J
j a - Bessel function, 281
j 1 - Bessel function, 281
j n - Bessel function, 281
j rand4 8 - generate uniformly distributed random numbers, 175

K
kb - Sun keyboard
kbd - Sun keyboard
kill - send signal to process, 66
killpg - send signal to process group, 67
KIOCCMD - send a keyboard command, 445
KIOCGDlRECT - get keyboard' 'direct input" state, 445
KIOCGETKEY - get translation table entry, 445
KIOCGTRANS - get keyboard translation, 444
KIOCSDlRECT - set keyboard "direct input" state, 445
KIOCSETKEY - change translation table entry, 444
KIOCTRANS - set keyboard translation, 444
KIOCTYPE - get keyboard type, 445
kmem - kernel memory space, 463

L
164a - convert base-64 AScn, 161
label - plot label, 402
LANCE 10 Mb/s Ethernet interface - Ie, 460 thru 461
last locations in program, 178
lastlog -login records, 621
lcong48 - generate uniformly distributed random numbers, 175
Idexp - split into mantissa and exponent, 183
Ie - Sun-3/50 10 Mb/s Ethernet interface, 460 thru 461
1 find -linear search routine, 208
library file format - ar, 525
library functions

introduction to C, 153 thru 160
introduction to compatibility, 259
introduction to mathematical, 273
introduction to miscellaneous, 393
introduction to network, 289
introduction to RPC, 313
introduction to standard I/O, 329
introduction to System V, 355

limits
get for user - ul imi t, 268
set for user - ulimi t, 268

line discipline - bk,412
line discipline ioctl's

TIOCGETD - get line discipline, 412

line discipline ioctl's, continued
TIOCSETD - set line discipline, 412

line - plot line, 402
line to Ethernet address - ether_line, 292
linear search and update routine - 1 search, 208
linear search routine - lfind, 208
linemod - set line style, 402
link,68

make symbolic, 137
read value of symbolic, 97

link editor output - a. out, 517
listen, 69
10 - software loopback network interface, 462
local time - date and time conversion, 169
localtime - date and time conversion, 358
lock

file - flock,41
record- fcntl, 38, 206

lockf,206
log -natural logarithm, 277
log gamma function - gamma, 282
loglO -logarithm, base 10, 277
logarithm, base 10 - loglO, 277
logarithm, natural- log, 277
10gb -IEEE floating-point function, 280

environ", 533
login name, get - getlogin, 191
login records

1astlog file, 621
utmp file, 621
wtmp file, 621

longjmp - non-local goto, 232
lrand48 - generate uniformly distributed random numbers, 175
1 sea rch -linear search and update routine, 208
1 seek - move file position, 70
1 sta t - obtain file attributes, 132

M
machine-dependent values - value s, 255
machine-machine communication line discipline - bk,4l2
madd - multiple precision add, 398
magic file - file command's magic numbers table, 549
magnetic tape ioctl's

MTIOCGET - get tape status, 468
MTIOCTOP - tape operation, 467

make
special file, 73

make directory, 71
make hard link to file, 68
malloc - allocate memory, 210
ma 11 oc _debug - set debug level, 211
malloc_verify-verifyheap, 211
manipulate Internet addresses, 301
mantissa and exponent, split into - frexp, 183
map memory pages - mmap,75
mask, set current signal- sigsetmask, 123
mathematical functions

acos, 286

-639-

mathematical functions, continued
asin, 286
atan, 286
atan2,286
cabs, 279
cei 1 - ceiling of, 278
cos, 286
cosh,287
exp - exponential, 277
fabs - absolute value, 278
floor - floor of, 278
gamma, 282
hypot, 279
jO,28l
j 1,281
jn,281
log - natural logarithm, 277
10g10 -logarithm, base 10,277
pow - raise to power, 277
sin, 286
sinh,287
tan, 286
tanh,287
yO,281
y1,281
yn,281

Index - Continued

mathematical library functions, introduction to, 273
matherr - math library error-handline routine, 283
mbio - Multibus 110 space, 463
mbmem - Multibus memory space, 463
mdi v - multiple precision divide, 398
mem - main memory space, 463
memalign - allocate aligned memory, 210
memccpy - copy memory character strings, 213
memchr - index memory characters, 213
memcmp compare memory characters, 213
memcpy copy memory character fields, 213
memory allocation debugging, 211 thru 212
memory image file format - core, 526
memory images

krnem - kernel memory space, 463
mbio - Multibus 110 space, 463
mbmem - Multibus memory space, 463
rnem - main memory space, 463
virtual-virtual address space, 463
vrne 16 - VMEbus 16-bit space, 463
vrne 16 d16 - VMEbus address space, 463
vrne16d32 - VMEbus address space, 463
vrne 24 - VMEbus 24-bit space, 463
vme 24 d16 - VMEbus address space, 463
vme 24 d3 2 - VMEbus address space, 463
vme 3 2 d16 - VMEbus address space, 463
vrne 3 2 d3 2 - VMEbus address space, 463

memory management, 210 thru 212
alloca - allocate on stack, 211
brk - set data segment break, 21
calloc - allocate memory, 210
cfree - free memory, 210
free - free memory, 210
getpagesize,53
malloc - allocate memory, 210
malloc _debug - set debug level, 211

Index - Continued

memory management, continued
malloe _veri fy - verify heap, 211
memalign - allocate aligned memory, 210
rnmap,75
realloe - reallocate memory, 210
sbrk - change data segment size, 21
valloe - allocate aligned memory, 211

memory management debugging, 211 thru 212
memory operations, 213
memset assign to memory characters, 213
message

receive from socket - reev,99
send from socket - send, 111

message control operations
msgetl,79
msgget,80
msgsnd, 81

messages
system error, 219
system signal, 221

mf ree - release multiple precision storage, 398
min - multiple precision decimal input, 398
miscellaneous library functions, introduction to, 393
mkdir, 71
mknod, 73
mktemp - make unique file name, 214
mmap, 75
mntent - file system static information, 550
modf - split into mantissa and exponent, 183
moneontrol - make execution profile, 215
moni tor - make execution profile, 215
monitor traffic on the Ethernet, 314
monochrome frame buffer - bwone, 413
monochrome frame buffer- bwtwo, 414
monstartup - make execution profile, 215
mount, 77
mounted file system table - mtab, 552
mouse - Sun mouse, 464
mout - multiple precision decimal output, 398
move file position - 1 seek, 70
move - move current point, 402
mrand48 - generate uniformly distributed random numbers, 175
msgetl,79
msgget,80
msgsnd, 81
msqrt - multiple precision exponential, 398
msub - multiple precision subtract, 398
mtab - mounted file system table, 552
mti - Systech MTI-800/1600 multi-terminal interface, 465 thru

466
mtio - UNIX magnetic tape interface, 467 thru 468
MT IOCGET - get tape status, 468
MT IOCTOP - tape operation, 467
mtox - multiple precision to hexadecimal string, 398
mul t - multiple precision multiply, 398
multiple precision integer arithmetic

ged, 398
itom, 398
madd, 398
mdiv, 398

-640-

multiple precision integer arithmetic, continued
mfree, 398
min, 398
mout, 398
msqrt, 398
msub, 398
mtox, 398
mult, 398
pow, 398
rpow, 398
sdiv, 398
xtom, 398

N
name list, get entries from - n 1 i st, 217
name of terminal, find - ttyname,25l
name termination handler - on _ exi t, 218
natural logarithm - log, 277
nd - network disk driver, 469 thru 471
NDI OCCLEAR - clear user table, 471
NDIOCETHER - set ether address, 471
NDIOCSAT - server atipaddress, 471
NDIOCSOFF - server off, 471
NDIOCSON - server on, 471
NDIOCUSER - set user parameters, 471
NDIOCVER - version number, 471
netgroup - network groups list, 553
. netre - ftp remote login data file, 554
network byte order

function to convert to host, 291
network disk ioctl's

NDIOCCLEAR - clear user table, 471
NDI OCETHER - set ether address, 471
NDIOCSAT - server atipaddress, 471
NDIOCSOFF - server off, 471
NDIOCSON - server on, 471
NDIOCUSER- set user parameters, 471
ND I OCVER - version number, 471

network entry, get - getnetent, 295
network file system daemons, 84
network group entry

get, 297
network host entry, get - gethostent, 293
network interface ioctl's

SIOCGIFADDR - get ifnet address, 436
SIOCGIFCONF - get ifnetlist, 436
SIOCGIFDSTADDR-getp-p address, 436
SIOCGIFFLAGS - get ifnet flags, 436
SIOCSIFADDR- set ifnet address, 436
SIOCSIFDSTADDR- set p-p address, 436
SIOCSIFFLAGS - set ifnet flags, 436

network interface tap protocol- nit, 473 thru 475
network library functions, introduction to, 289
network loopback interface - 10,462
network packet routing device - routing, 479
network service entry, get- getservent,300
network services status monitor files, 575
networks -network name data base, 555
nextkey -find next key, 396
NFS exported file systems - exports, 535
NFS, network file system protocol, 472

nfssvc,84
nice - change priority of a process, 262
nice - change priority of a process, System V, 376
ni t - network interface tap protocol, 473 thru 475
nlist - get entries from name list, 217
non-local goto

non-local goto - longjmp,232
non-local goto - setjrnp, 232

nrand48 - generate uniformly distributed random numbers 175
ntohl- convert network to host long, 291 '
ntohs - convert host to network short, 291
null - null device, 476
null-terminated strings

compare - s trcmp, 241
compare - strncmp, 241
concatenate - strcat, 241
concatenate - strncat, 241
copy- strcpy,241
copy- strncpy,241
index - index, 241
index - rindex,241
reverse index - rindex, 241

numbers, convert to strings - ecvt, 177

o
on _ exi t - name termination handler, 218
open, 85
open database - dbrnini t, 396
open directory stream- opendir, 173
open stream - fopen, 335
open stream, System V - f open, 369
opendir - open directory stream, 173
openlog - initialize system log file, 246
openpl - open plot device, 402
optarg - get option letter, 194
optind - get option letter, 194
option letter, get from argument vector - getopt, 194
options on sockets

get, 62
set, 62

output conversion
fprintf - convert to stream, 341
fprintf - convert to stream, System V, 377
printf - convert to stdout, 341
printf - convert to stdout, System V, 377
sprintf - convert to string, 341
sprintf - convert to string, System V, 377

p
packet routing device - routing, 479
packet routing ioctl's

SIOCADDRT - add route, 479
SIOCDELRT - delete route, 479

page size, get- getpagesize,53
paging device - swapon, 136,426
paging system, advise - vadvise, 146
parent process identification, get - getppid, 55
pass framebufferinfo ioctl- GP1IO PUT INFO 431
passwd - password file, 556 - - '
password

-641-

password, continued
read - getpass, 196
read, System V - getpass,373

password file
add entry- putpwent,223
get entry - endpwent, 198
get entry, System V - endpwent, 374
get entry - fgetpwent, 198

Index Continued

get entry, System V - fget pwent, 374
get entry - getpwent, 198
get entry, System V - getpwent, 374
get entry - getpwnam, 198
get entry, System V - getpwnam, 374
get entry - getpwuid, 198
get entry, System V - getpwuid, 374
get entry - setpwent, 198
get entry, System V - setpwent, 374

pause - stop until signal, 263
pclose - close stream to process, 340
peer name, get - get peername, 54
periodic jobs table - crontab, 528
perror - system error messages, 219
phone s - remote host phone numbers, 558
pipe, 88
plot - graphics interface files, 559
point - plot point, 402
popen - open stream to process, 340
position of directory stream - telldir, 173
pow - raise to power, 277, 398
power function - pow, 277
prepare execution profile

moncontrol- make execution profile, 215
monitor - make execution profile, 215
monstartup - make execution profile, 215

primitive system data types - types, 619
print cap - printer capability data base, 560
printer interface

vp - Ikon 10071-5 Versatec parallel printer interface, 507
vpc - Systech VPC-2200 Versatec/Centronics interface 508

printf - formatted output conversion, 341 '
print f - format to stdout, System V, 377
priority

get, 56
set, 56

priority of process - nice, 262
priority of process, System V - nice, 376
process

and child process times, System V - times, 391
create, 42
get identification - getpid, 55
get times - times, 267
initiate 110 to/from, 340
priority - nice, 262
priority, System V - nice, 376
send signal to - kill,66
software signals - sigvec, 125 thru 127
terminate, 37
terminate and cleanup - exit, 181

process block ioctl- DES I OCBLOCK, 423
process group

get- getpgrp,112

Index - Continued

process group, continued
send signal to - killpg,67
set - setpgrp, 112

process quicldy ioctl- DESIOCQUICK, 423
process tracing - ptrace
processes and protection

execve,34
exit, 37
fork, 42
get domainname,45
getegid, 47
geteuid, 64
getgid,47
getgroups,48
gethostid, 49
gethostname,50
getpgrp, 112
getpid, 55
getppid, 55
getuid, 64
ptrace, 90 thru 92
setdomainname,45
setgroups,48
sethostname,50
setpgrp, 112
setregid, 113
setreuid, 114
vfork, 147
vhangup, 148
wait, 149
wait3, 149

prof -profile within a function, 220
profil,89
profile, execution - monitor, 215
prof,220
program verification - as sert, 164
program verification, System V - assert, 357
protocol entry

get, 298
protocols - protocol name data base, 562
ps ignal - system signal messages, 221
ptrace, 90 thru 92
pt y - pseudo terminal driver, 477 thru 478
push character back to input stream - ungetc, 352
put character to stdout - putchar,344
put character to stream - fput c, 344
put character to stream - putc, 344
put string to stdout- puts, 345
put string to stream - fput s, 345
put word to stream - putw,344
putc - put character on stream, 344
putchar - put character on stdout, 344
putenv - set environment value, 222
putpwent - add password file entry, 223
pu t s - put string to stdout, 345
putw - put word on stream, 344

Q
qsort - quicker sort, 224
queue

insert element in - insque, 204

queue, continued
remove element from - remque, 204

quicker sort - qsort, 224
quotactl- disk quotas, 93

R
rand - generate random numbers, 264
rand - generate random numbers, System V, 380
random - generate random number, 225
random number generator

-642-

drand48,175
erand48,175
initstate, 225
j rand4 8, 175
lcong48, 175
lrand48, 175
mrand48, 175
n rand4 8, 175
rand, 264
random, 225
seed48, 175
setstate, 225
srand, 264
srand48,175
s random, 225

random number generator, System V
rand, 380
srand, 380

rasterfile, 563
raw IP sockets, 441
rcmd - execute command remotely, 303
re comp - compile regular expression, 227
re = exec - execute regular expression, 227
read, 95
read directory stream - readdir, 173
read formatted

f scanf - convert from stream, 346
f scanf - convert from stream, System V, 381
s canf - convert from stdin, 346
s canf - convert from stdin, System V, 381
s scanf - convert from string, 346
s scanf - convert from string, System V, 381

read from stream - fread, 336
read from stream, System V - fread, 371
read password - getpass, 196
read password, System V - getpas s, 373
read scattered - readv, 95
read/write pointer, move - 1 seek, 70
readdir - read directory stream, 173
readlink, 97
real group ID

set, 113
real group ID, set - setrgid, 234
real group ID, set, System V - setrgid, 386
real user 10

get- getuid, 64
set- setreuid, 114

real user 10, set - setruid,234
real user 10, set, System V - setruid, 386
realloc -reallocate memory, 210
reallocate memory - realloc, 210

reboot - halt processor, 98
receive message from socket, 99
reconfigure fb ioctl- GP1IO_REDlRECT_DEVFB, 431
recv - receive message from socket, 99
recvfrom, 99
recvmsg,99
regexp - regular expression compile and match routines, 228
regular expressions

compile -re comp, 227
execute - r;-_ exec, 227

release blocked signals - sigpause, 122
remote command, return stream to - rcmd, 303
remote command, return stream to - rexec,304
remote execution protocol - rex, 317
remote - remote host descriptions, 564
remote host

number of users - rusers, 319
phone numbers - phones, 558

remote input editing ioctl- TIOCREMOTE, 477
remote kernel performance, 323
remote procedure calls, 305
remote users, number of - rnusers, 319
remove

close-on-exec flag ioctl- FIONCLEX, 408
directory - rmdir,103
directory entry - unlink,143
element from queue - remque, 204
exclusive use of tty ioctl- TIOCNXCL, 502
file system - unmount, 144

remque - remove element from queue, 204
rename file - rename, 101
reopen stream - freopen, 335
reopen stream, System V - freopen, 369
reposition stream

fseek, 337
ftell, 337
rewind, 337

resol ver file - name server initialization info, 566
resource consumption, control- vlimi t, 270
resource control

getrlimit, 57
getrusage,59
setrlimit, 57

resource controls
getpriority,56
setpriori ty, 56

resource usage, get information about - vt ime s, 271
resource utilization, get information about - getrusage,59
restartGP ioctl- GP1IO_CHK_GP, 431
restart output ioctl - TIOCSTART,502
retrieve datum under key - f et ch, 396
return stream to remote command - rcmd, 303
return stream to remote command - rexe c, 304
return to saved environment - longjmp, 232
reverse index strings - rindex, 241
rewind directory stream- rewinddir, 173
rewind - rewind stream, 337
rewind stream - rewind, 337
rewinddir-rewind directory stream, 173
rexec - return stream to remote command, 304

r in dex - find character in string, 241
rmdir - remove directory, 103

Index - COn1inued

rmt ab - remote mounted file system table, 567
root directory, change - chroot,27
routing -local network packet routing, 479
routing ioctl's

SIOCADDRT - add route, 479
SIOCDELRT - delete route, 479

RPC routines, 305
RPC library functions, introduction to, 313
RPC program entry, get- getrpcent, 299
rpc - rpc name data base, 568
rpow - multiple precision exponential, 398
rresvport - get privileged socket, 303
r st at - performance data from remote kernel, 323
ruserok - authenticate user, 303
rwall - write to specified remote machines, 325

S
save stack environment - set j mp, 232
sbrk - change data segment size, 21
scalb - IEEE floating-point function, 280
scan directory - alphasort, 231
scan directory - scandir, 231
scandir - scan directory, 231
s canf - convert from stdin, 346
s canf - convert from stdin, System V, 381
scatter read - readv,95
sccsfile - sees file format, 569
schedule signal in microsecond precision- ualarm, 253, 260
scheduling priority

get, 56
set, 56

sd - Adaptec ST-506 Disk driver, 480 thru 481
sdi v - multiple precision divide, 398
search functions

- 643-

bsearch binary search, 165
hsearch - hash table search, 201
1 search -linear search and update, 208

seed48 - generate uniformly distributed random numbers, 175
seek in directory stream- seekdir, 173
seek on stream - fseek,337
seekdir - seek in directory stream, 173
select, 104
semaphore

control- semctl, 105
get set of - semget, 107
operations - semop, 108

s emct 1 - semaphore controls, 105
semget - get semaphore set, 107
semop - semaphore operations, 108
send

message from socket- send, 111
signal to process - kill, 66
signal to process group - killpg,67

send a keyboard command ioctl- KIOCCMD,445
send mail aliases file - aliases, 522
sendmail aliases file - . forward, 522
sendmsg - send message over socket, 111

Index - Continued

sendto - send message to socket, 111
PAGE,513
server at ipaddress ioctl- NDIOCSAT,471
server off ioctl - NDIOCSOFF,471
serveron ioctl- NDIOCSON,471
servers - inet server database, 572
service entry, get- getservent,3oo
inet server database - services, 573
set

arp entry ioctl- SIOCSARP, 410
break bit ioctl- TIOCSBRK, 502
close-on-exec for fd ioctl- FIOCLEX, 408
current signal mask- sigsetmask,123
date and time- gettimeofday,63
disk geometry ioctl- DKIOCSGEOM, 425
disk partition info ioctl - DKIOCSPART,425
DTR ioctl- TIOCSDTR, 502
envrronmentvmue- putenv,222
ether address ioctl- NDIOCETHER, 471
file creation mode mask- umask,141
file owner ioctl- FIOSETOWN,408
file times - ut ime, 269
high water mark ioctl- SIOCSHIWAT,485
ifnet address ioctl- SIOCSIFADDR, 436
ifnet flags ioctl- SIOCSIFFLAGS, 436
line discipline ioctl- TIOCSETD,412
low water mark ioctl- SIOCSLOWAT, 485
network group entry - setnetgrent, 297
network service entry - get servent, 300
p-p address ioctl- SIOCSIFDSTADDR, 436
process domain name - setdomainname,45
RPC program entry - setrpcent, 299
setpriority",56
signmstackcontext- sigstack, 124
terminal state - st t y, 265
user limits - ul imi t, 268
user mask - umask, 141
user parameters ioctl- NDIOCUSER, 471

set exclusive use of tty ioctl- TIOCEXCL, 502
set high water mark ioctl- SIOCSHIWAT,506
set keyboard "direct input" state ioctl- KIOCSDIRECT,

445
set keyboard translation ioctl- KIOCTRANS, 444
set line discipline ioctl- TIOCSETD, 495,502
set local mode bits ioctl- TIOCLSET,503
set local special chars ioctl- TIOCSLTC,504
set low water mark ioctl - SIOCSLOWAT,506
set options sockets, 62
set parameters - gtty ioctl- TIOCSETP, 501
set parameters ioctl- TIOCSETN,501
set process group oftty ioctl- TIOCSPGRP,502
set special characters ioctl- TIOCSETC, 503
seUclear

async 110 ioctl- FIOASYNC, 408
non-blocking 1/0 ioctl - FIONBIO, 408
packet mode (Pty) ioctl- TIOCPKT,477

setbuf - assign buffering, 348
setbuf - assign buffering, System V, 384
setbuffer - assign buffering, 348
setbuffer - assign buffering, System V, 384
setdomainname - set process domain, 45

-644-

setegid - set effective group ID, 234
setegid-seteffectivegroup ID, System V, 386
seteuid - set effective user ID, 234
seteuid - set effective user ID, System V, 386
setfsent - get file system descriptor file entry, 188
setgid- set group ID, 234
setgid - set group ID, System V, 386
setgrent - get group file entry, 189
setgroups, 48
sethostent - get network host entry, 293
sethostname,50
setitimer,51
set jmp - save stack environment, 232
set jmp - non-Iocm gom, 232
setkey - encryption, 168
setlinebuf - assign buffering, 348
setlinebuf - assign buffering, System V, 384
setmntent - get filesystem descriptor file entry, 192
setnetent - get network entry, 295
setnetgrent - get network group entry, 297
setpgrp,112
setpriority,56
setprotoent - get protocol entry, 298
setpwent - get password file entry, 198
setpwent - get password file entry, System V, 374
setregid, 113
setreuid, 114
setrgid - set real group ID, 234
setrgid-setrealgroup ID, System V, 386
setrlimit,57
setrpcent - get RPC entry, 299
set ruid - set real user ID, 234
setruid-setreal userlD, System V, 386
setservent - get service entry, 300
setsockopt,62
setstate - random number routines, 225
settimeofday,63
set uid - set user ID, 234
set uid - set user ID, System V, 386
setvbuf - assign buffering, 348
setvbuf - assign buffering, System V, 384
shared memory

control-shmctl,115
get segment -shmget, 116
operation -shmop, 118

shell command, issuing - system, 247
shmctl- shared memory control, 115
shmget - get shared memory segment, 116
shmop - get shared memory operations, 118
shutdown, 120
si - Sun SCSI Disk driver, 480 thru 481
sigblock,121
siginterrupt - interrupt system calls with software signal,

235
signal

schedule in microsecond precision - ualarm, 253, 260
stop until- pause, 263

signal- software signals, 236, 240

signal - software signals, System V, 387
signal messages

psignal, 221
sys siglist, 221

signals -
kill,66
k~llpg - send to process group, 67
s l.gblock, 121
sigpause,l22
sigsetmask,123
sigstack - signal stack context, 124
s igvec, 125 thru 127

sigpause, 122
sigsetmask, 123
sigstack - signal stack context, 124
sigvec - software signals, 125 thru 127
simulate terminal input ioctl- TIOCSTI, 502
sin - trigonometric sine, 286
sinh - hyperbolic sine, 287
SIOCADDRT - add route, 479
SIOCATMARK - at OOB mark?,485
S I OCDARP - delete arp entry, 410
SIOCDELRT - delete route, 479
SIOCGARP - get arp entry, 410
SIOCGHIWAT - get high water mark, 485,506
SIOCGIFADDR - get ifnet address, 436
S10CGIFCONF - get ifnet list, 436
S10CGIFDSTADDR - get p-p address, 436
S10CGIFFLAGS - get ifnet flags, 436
S I OCGLOWAT - get low water mark, 485, 506
S10CSARP - set arp entry, 410
S10CSHIWAT - set high water mark, 485,506
S10CSIFADDR- set ifnet address, 436
S10CSIFDSTADDR - set p-p address, 436
S1 OCSIFFLAGS - set ifnet flags, 436
S10CSLOWAT - set low water mark, 485,506
sleep - suspend execution, 239, 390
SMD disk controller

ip - Interphase 2180, 442 Ihru 443
xy - Xylogics 450, 511 thru 512

socket, 129
socket operations

async daemon, 84
bind, 19
connect, 29
get peername, 54
getsockname,6l
get sockopt, 62
listen, 69
nfssvc,84
recv,99
recvf rom, 99
recvmsg,99
send, 111
sendmsg, 111
sendto,111
setsockopt, 62
shutdown, 120
socket, 129
socketpair, 131

socket operations, accept connection

-645-

Index Continued

socketoperations,acceptconnection,cont~
accept, 14

socket options
get, 62
set, 62

socketpair create connected socket pair, 131
sockets, raw IP, 441
interrupt system calls with software signal- siginterrupt,

235,236,240
software signal- signal, System V, 387
software signals - sigvec PAGE END, 127
software signals - sigvec PAGE START, 125
sort quicker - qsort,224
space - specify plot space, 402
spawn process, 147
special file

make, 73
special files, introduction to, 407 Ihru 408
specify paging/swapping device - swapon, 136
split into mantissa and exponent - frexp, 183
spray - scatter data to check network, 326
sprintf -formatted output conversion, 341
sprintf -format to string, System V, 377
sqrt - square root function, 288
srand - generate random numbers, 264
srand - generate random numbers, System V, 380
srandom - generate random number, 225
sscanf - convert from string, 346
sscanf - convert from string, System V, 381
st - Sysgen SC 4000 (Archive) Tape Driver, 482 Ihru 483
standard 110 library functions, introduction to, 329
start output (like control-Q) ioctl- TIOCSTART,477
stat - obtain file attributes, 132
state of terminal

get- gtty, 265
set- stty, 265

statf 5 - obtain file system statistics, 134
static file system information - mntent, 550
statistics

of file system - fstatfs,134
of file system - statfs,l34
profil,89

status monitor files for netowrk services 575
stdin '

get character - get char, 338
get character, System V - get char, 372
get string from - get s, 339
input conversion - scanf, 346
input conversion, System V - scanf,381

stdout
output conversion, System V - printf,377
put character to - putchar, 344

sticky bit - chmod, 23
stop output (like control-S) ioctl- T10CSTOP 477
stop output ioctl- TIOCSTOP,502 '
stop processor, 98
stop until signal- pause, 263
storage allocation, 210 Ihru 212

alloca - allocate on stack, 211
calloc - allocate memory, 210

Index - Continued

storage allocation, continued
cfree - free memory, 210
free - free memory, 210
malloe - allocate memory, 210
malloe_debug- set debug level, 211
malloe _verify - verify heap, 211
memalign - allocate aligned memory, 210
realloe - reallocate memory, 210
valloe - allocate aligned memory, 211

storage management, 210 Ihr" 212
storage management debugging, 211 Ihr" 212
store datum under key - store, 396
store - store datum under key, 396
strcat - concatenate strings, 241
index - find character in string, 241
strcmp - compare strings, 241
strcpy - copy strings, 241
stream

fopen-open stream, System V, 369
assign buffering - setbuf,348
assign buffering, System V - setbuf, 384
assign buffering - setbuffer, 348
assign buffering, System V - setbuffer,384
assign buffering - setlinebuf,348
assign buffering, System V - setlinebuf,384
assign buffering - setvbuf,348
assign buffering, System V - setvbuf, 384
associate descriptor - fdopen, 335
associate descriptor, System V - fdopen, 369
close- felose, 333
flush- fflush,333
fprintf - format to stream, System V, 377
read from stream, System V - fread, 371
write to stream, System V - fwrite, 371
get character - fgetc, 338
get character, System V - fgetc, 372
get character - gete, 338
get character, System V - gete, 372
get character - getehar, 338
get character, System V - get char, 372
get position of - ftell, 337
get string from- fgets, 339
get word - getw, 338
get word, System V - getw, 372
input conversion - scanf, 346
input conversion, System V - seanf,381
open - f open, 335
output conversion, System V - printf, 377
printf - format to stdout, System V, 377
push character back to - ungetc, 352
put character to - fputc,344
put character to - putc, 344
put string to - puts, 345
put string to - fput s, 345
put word to - putw,344
read from stream - fread, 336
reopen - f reopen, 335
reopen, System V - freopen, 369
reposition - rewind, 337
return to remote command - remd, 303
return to remote command - rexec, 304
rewind - rewind, 337
write to stream- fwrite, 336

-646-

stream, continued
seek - f seek, 337
sprintf - format to string, System V, 377

stream status enquiries
clearerr - clear error on stream, 334
clearerr - clear error on stream, Sysem V, 368
feof - enquire EOF on stream, 334
feof - enquire EOF on stream, Sysem V, 368
ferror - inquire error on stream, 334
ferror - inquire error on stream, Sysem V, 368
fileno - get stream descriptor number, 334
fileno - get stream descriptor number, Sysem V, 368

stream, formatted output
fprintf -format to stream, System V, 377
printf - format to stdout, System V, 377
sprintf - format to string, System V, 377

streaming 1I4-inch tape drive - ar, 409
string

number conversion - scanf, 346
number conversion, System V - printf, 377, 381

string operations
compare - stremp, 241
compare - strnemp,241
concatenate- streat, 241
concatenate - strncat, 241
convert from numbers - ecvt, 177
copy- strepy,241
copy- strncpy, 241
get from stdin - get s, 339
get from stream - fgets, 339
index - nndex, 241
put to stdout - put s, 345
put to stream - fput s, 345
reverse index - rindex, 241
reverse index - rindex, 241

strlen - get length of string, 241
strneat -concatenate strings, 241
strnemp -compare strings, 241
strnepy - copy strings, 241
rindex - find character in string, 241
strtod - ASCII string to double, 243
strtol- ASCII string to long integer, 244
st t y - set terminal state, 265
Sun 10 Mb/s Ethernet interface - ie, 435
Sun mouse device - mouse, 464
Sun SCSI disk driver - s i, 480 Ihr" 481
Sun-3/50 10 Mb/s Ethernet interface - Ie, 460 thru 461
super block, update - sync, 138
suspend execution - sleep, 239,390
suspend execution for interval in microseconds - usleep, 254
swab - swap bytes, 245
swap bytes - swab, 245
swapon - specify paging device, 136
swapping device - swapon,136
symbolic link

create, 137
read value of, 97

symlink, 137
sync - update super block, 138
synchronize file state - f sync, 43
synchronous 110 multiplexing, 104

sy s _ errlist - system error messages, 219
sys_nerr - system error messages, 219
sys_siglist - system signal messages, 221
syscall, 139
Sysgen SC 4000 (Archive) Tape Driver - st, 482 thru 483
sy slog - write message to system log, 246
Systech VPC-2200 interface - vpc, 508
system calls, introduction to, 1 thru 10
system data types - types, 619
system error messages

errno - system error messages, 219
perror - system error messages, 219
sys_errlist - system error messages, 219
sys _nerr - system error messages, 219

system error numbers, introduction to, 1 thru 5
sy stem - issue shell command, 247
system log, contro1- syslog, 246
system operation support

mount, 77
process accounting - acct, 17
reboot, 98
swapon - specify paging device, 136
sync, 138
vadvi se, 146

system page size, get - getpagesize,53
system resource consumption

control- vlimit, 270
system signal messages

psignal, 221
sys_siglist, 221

System V library functions, introduction to, 355
System V library, system call versions

open, 85
read, 95
setpgrp,112
uname, 142
write, 151

T
tabstop specifications in text files - f spec, 540
tan - trigonometric tangent, 286
tanh - hyperbolic tangent, 287
tap protocol for network - nit, 473 thru 475
tape drive, 112-inch

tm - tapemaster, 494
xt - Xylogics 472,510

tape drive, 1I4-inch
ar - Archive 114-inch Streaming Tape Drive, 409
Sysgen SC 4000 (Archive) Tape Driver - st, 482 thru 483

tape interface - mtio, 467 thru 468
tape operation ioctl- MTIOCTOP, 467
tapemaster 112-inch tape drive - tm, 494
tar - tape archive file format, 576
tcp - Internet Transmission Control Protocol, 484 thru 485
TCP ioctl's

SIOCATMARK - at OOB mark?, 485
SIOCGHIWAT - get high water mark, 485,506
SIOCGLOWAT - get low water mark, 485,506
SIOCSHIWAT - set high water mark, 485,506
SIOCSLOWAT - set low water mark, 485, 506

tdelete - delete binary tree node, 248

tell,70
telldir - position of directory stream, 173
temporary file

create name for - tmpnam, 351

Index - Continued

term - terminal driving tables, 578
termcap - terminal capability data base, 582
terminal

configuration data base - gettytab,543
find name of - ttyname, 251

terminal description, 486
terminal emulation, ANSI, 418 thru 422
terminal emulator- console, 418 thru 422
terminal independent operations

-647-

tgetent, 404
tgetf lag, 404
tgetnum, 404
tgetstr,404
tgoto,404
tputs,404

terminal interface - tty, 495 thru 504
terminal state

get- gtty, 265
set- stty, 265

terminal types - ttytype,618
terminate process, 37, 181
terminate program - abort, 162
termination handler, name - on_exit, 218
terminfo - System V terminal capability data base, 590, 603
termio - terminal description, 486
test for indeterminate floating values

isinf - test infinite value, 205
i snan - test not a number, 205

tfind - search binary tree, 248
tgetent - get entry for terminal, 404
tgetflag - get Boolean cabability, 404
tgetnum - get numeric cabability, 404
tgetstr - get string cabability, 404
tgoto - go to position, 404
time

adjust- adjtime,18
time and date

get - time, 266
get - gettimeof day, 63
get - ft ime, 266
set- settimeof day, 63

time and date conversion
asctime, 169
ctime, 169
dysize, 170
gmtime, 169
local time, 169
timezone, 169

time and date conversion, System V
asctime, 358
ctime, 358
gmtime, 358
local time, 358

time - get date and time, 266
timed event jobs table - crontab,528
timerclear-macro,51
timercmp - macro, 51

Index - Continued

timerisset -macro, 51
times - get process times, 267
times - get process and child process times, System V, 391
time zone - date and time conversion, 169
timing and statistics

clock, 261
getitimer,51
gettimeofday,63
profil,89
setitimer,51
settimeofday,63
timerclear-macro,51
timercmp-macro,51
timeris set - macro, 51

TIOCCBRK - clear break bit, 502
TI OCCDTR - clear DTR, 502
TIOCCONS - get console 110, 418
TIOCEXCL - set exclusive use of tty, 502
TIOCFLUSH -flush buffers, 502
TIOCGETC - get special characters, 503
TIOCGETD - get line discipline, 412, 495, 502
TIOCGETP - get parameters - gtty, 501
TIOCGLTC - get local special chars, 504
TIOCGPGRP - get process group of tty, 502
TI OCHPCL - hang up on last close, 499, 502
TIOCLBIC - bit clear local mode bits, 503
TI OCLBIS- bit set local mode bits, 503
T I OCLGET - get local mode bits, 503
TIOCLSET - set local mode bits, 503
TIOCNOTTY - void tty association, 495
TIOCNXCL - remove exclusive use of tty, 502
T I OCOUTQ - get number of characters in output queue, 502
TIOCPKT - seUclear packet mode (pty), 477
T I OCREMOTE - remote input editing, 477
TIOCSBRK - set break bit, 502
TIOCSDTR-setDTR,502
TIOCSETC - set special characters, 503
TIOCSETD - set line discipline, 412, 495, 502
TIOCSETN - set parameters, 501
TIOCSETP - set parameters - gtty, 501
T I OCSLTC - set local special chars, 504
T I OCSPGRP - set process group of tty, 502
TIOCSTART -restart output, 502
TIOCSTART - start output (like control-Q), 477
TIOCSTI - simulate terminal input, 502
TIOCSTOP - stop output, 502
TIOCSTOP -stop output (like control-S), 477
tm - tapemaster 112-inch tape drive, 494
tmpf ile - create temporary file, 350
tmpnam - make temporary file name, 351
toascii - convert character to ASCII, System Y, 360
toascii - convert character to ASCII, 171
tolower - convert character to lower-case, System V, 360
tolower - convert character to lower-case, 171
toupper - convert character to upper-case, System V, 360
toupper - convert character to upper-case, 171
tp - DEC/mag tape formats, 616
t put s - decode padding information, 404
trace process - ptrace, 90 thru 92

-648-

trigonometric functions, 286
acos,286
asin,286
atan,286
atan2,286
cos, 286
sin, 286
tan, 286

truncate, 140
trusted hosts list- hosts .equiv, 548, 553
t search - build and search binary tree, 248
tty - general terminal interface, 495 thnl504

t t yname - find terminal name, 251
tty s - terminal initialization data, 617
tty slot - get utmp slot number, 252
ttyslot - get utmp slot number, System V, 392
ttytype -connected terminal types, 618
twalk - traverse binary tree, 248
types -primitive system data types, 619

U
ualarm - schedule signal in microsecond precision, 253
udp - Internet User Datagram Protocol, 505 thru 506
ulimi t - get and set user limits, 268
umask,141
uname - get system name, 142
unget c - push character back to stream, 352
unique file name

create - mktemp, 214
UNIX magnetic tape interface - mtio, 467 thru 468
unl ink - remove directory entry, 143
unmount - demount file system, 144
update super block - sync, 138
user ID

get, 64
set real and effective - setreuid, 114

user limits
get- ulimit, 268
set- ulimit, 268

user mask, set- umask,141
user name, get- cuserid, 332
usleep - suspend execution, 254
usracct -login records, 621
utime - set file times, 269
utimes - set file times, 145
u tmp - login records, 621
uuencode - UUCP encoded file format, 622

V
va _ arg - next argument in variable list, 256
va _ dcl- variable argument declarations, 256
va_end - finish variable argument list, 256
va_list -variable argument declarations, 256
va_start - initialize varargs, 256
vadvi se - advise paging system, 146
valloc - allocate aligned memory, 211
val ue s - machine-dependent values, 255
varargs -variable argument list, 256
variable argument list, - varargs, 256

verify heap - malloc_verify,211
version number ioctl- NDIOCVER, 471
vfont - font formats, 623
vfork,147
vfprintf - format and print variable argument list, 353
vgrindef s - vgrind language definitions, 624
vhangup, 148
virtual- virtual address space, 463
v I imi t - control consumption, 270
vme 16 - VMEbus 16-bit space, 463
vme16d16 - VMEbus address space, 463
vme16d32 - VMEbus address space, 463
vme24 - VMEbus 24-bit space, 463
vme24d16 - VMEbus address space, 463
vme24d32 - VMEbus address space, 463
vme32d16 - VMEbus address space, 463
vme32d32 - VMEbus address space, 463
void tty association ioctl- TIOCNOTTY, 495
vp - Ikon 10071-5 Versatec parallel printer interface, 507
vpc -Systech VPC-2200 Versatec/Centronics interface, 508
vprintf - format and print variable argument list, 353
vsprintf - format and print variable argument list, 353
vt imes - resource use information, 271

W
wait, 149
wait3, 149
win -Sun window system, 509
word

get from stream - getw, 338
get from stream, System V - getw, 372
put to stream - put w, 344

working directory
change, 22
get pathname - get wd, 200

write, 151
write formatted

fprintf - convert to stream, System V, 377
printf - convert to stdout, System V, 377
sprintf - convert to string, System V, 377

write gathered - writev, 151
write to stream- fwrite, 336
write to stream, System V - fwri te, 371
wtmp -login records, 621

X
XDR routines, 307
xt - Xylogics 472 112-inch tape drive, 510
xtom - hexadecimal string to multiple precision, 398
xy - Xylogics SMD Disk driver, 511 thru 512
Xylogics 472 ll2-inch tape drive - xt,510
Xylogics SMD Disk driver- xy, 511 thru 512

y
yO - Bessel function, 281
yl - Bessel function, 281
yellow pages client interface, 309
yn - Bessel function, 281
yp_all - yellow pages client interface, 309

-649-

Index - Continued

yp _bind - yellow pages client interface, 309
yp _ fir s t - yellow pages client interface, 309
yp _get _ defaul t _domain - yellow pages client interface,

309
yp _master - yellow pages client interface, 309
yp _mat ch - yellow pages client interface, 309
yp _next - yellow pages client interface, 309
yp _order - yellow pages client interface, 309
yp _unbind - yellow pages client interface, 309
yperr_string -yellow pages client interface, 309
ypfiles -yellowpages database and directory, 626
yppasswd - update yP password entry, 327
ypprot_err - yellow pages client interface,

309

z
zero byte strings - bzero, 167
zs zilog 8530 see serial comunications

driver, 513

Revision History

Version Date Comments

A 23 February 1983 First edition of this manual under the
title System Interface Manual for the
Sun Workstation.

B 15 April 1983 Second edition of this manual with
corrections to numerous manual pages.

C 1 August 1983 Third edition of this manual with
corrections to numerous manual pages.
Added a glossary of system calls and
system error responses.

D 1 November 1983 Fourth edition of this manual with
numerous corrections. Corrected
numerous incorrect cross-references.
Added a System Interface Overview and
the Interprocess Communication
Primer.

E 7 January 1984 Fifth edition of this manual with
numerous corrections.

F 15 May 1985 Sixth edition with numerous corrections.
The Interprocess Communication
Primer made a part of the ma.l111a1,
Networking on the Sun Wor!iStClHon~
Made page numberingcol1tiguol.ls
throughout, and replaced·the Permuted
Index with a conveIltioIlalone.

..

Revision History - Continued

-Continued

Version Date Comments

G 1 January 1986 Fonnerly the System Interface Manual
for the Sun Workstation, this seventh
edition contains many corrections to
manual pages. The fonner section
entitled System Interface Overview is
now a separate manual entitled UNIX
Interface Overview. The index has been

upgraded to refer to ioctl's and system error
numbers.

H 15 October 1986 Eighth (draft) edition, for Sun 3.2
Release. Includes numerous additions
for System V compatibility, and updates
from U.C. Berkeley 4.3 BSD, as well as
numerous corrections to manual pages.

Notes

Notes

