sun’

microsystems

Sun Microsystems, Inc. » 2550 Garcia Avenue + Mountain View, CA 94043 « 415-960-1300

Credits and Trademarks

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunStation®, Sun Microsystems®, SunCore®, SunWindows®, DVMA®, and the combination of Sun
with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.
Intel® and Multibus® are registered trademarks of Intel Corporation.
DEC®, PDP®, VT®, and VAX® are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publica-
tion may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or
by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise,
without prior explicit written permission from Sun Microsystems.

INTRO(2) SYSTEM CALLS INTRO(2)

NAME

intro — introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

This section describes all of the system calls. A "(2V)" heading indicates that the system call performs dif-
ferently when called from programs that use the System V libraries (programs compiled using
/usr/5bin/cc). On these pages, both the regular behavior and the System V behavior is described.

Most of these calls have one or more error returns. An error condition is indicated by an otherwise impos-
sible return value. This is almost always —1; the individual descriptions specify the details. Note that a
number of system calls overload the meanings of these error numbers, and that the meanings must be inter-
preted according to the type and circumstances of the call.

As with normal arguments, all return codes and values from functions are of type integer unless otherwise
noted. An error number is also made available in the external variable errno, which is not cleared on suc-
cessful calls. Thus errno should be tested only after an error has occurred.

Each system call description attempts to list all possible error numbers. The following is a complete list of
the errors and their names as given in <errno.h>.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to its
owner or super-user. It is also returned for attempts by ordinary users to do things allowed only to
the super-user.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file should exist but doesn’t, or when one of
the directories in a pathname does not exist.

3 ESRCH No such process
The process or process group whose number was given does not exist, or any such process is
already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch, occurred
during a system call. If execution is resumed after processing the signal, and the system call is not
restarted, it will appear as if the interrupted system call returned this error condition.

5 EIO /O error

Some physical I/O error occurred. This error may in some cases occur on a call following the one
to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not on-line or a disk pack is not loaded on a
drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve .

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with a valid magic number (see a.out(5)).

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a read (respectively, write) request is made to a file
which is open only for writing (respectively, reading).

Sun Release 3.2 Last change: 16 July 1986 1

INTRO(2) SYSTEM CALLS INTRO(2)

10 ECHILD No children
A wait was executed by a process that had no existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system’s process table is full or the user is not allowed to create any
more processes.

12 ENOMEM Not enough memory
During an execve, brk, or sbrk, a program asks for more address space or swap space than the
system is able to supply, or a process size limit would be exceeded. A lack of swap space is nor-
mally a temporary condition; however, a lack of address space is not a temporary condition. The
maximum size of the text, data, and stack segments is a system parameter. Soft limits may be
increased to their corresponding hard limits.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a system call.

15 ENOTBLK Block device required

A file which is not a block device was mentioned where a block device was required, for example,
in mount.

16 EBUSY Device busy
An attempt to mount a file system that was already mounted or an attempt was made to dismount a
file system on which there is an active file (open file, current directory, mounted-on file, or active
text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, for example, link.

18 EXDEV Cross-device link
A hard link to a file on another file system was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device (for example, an attempt to
read a write-only device) or an attempt was made to use a device not configured by the system.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example, in a pathname or as an
argument to chdir.

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
A system call was made with an invalid argument; for example, dismounting a non-mounted file
system, mentioning an unknown signal in sigvec or kill, reading or writing a file for which Iseek
has generated a negative pointer, or some other argument inappropriate for the call. Also set by
math functions, see intro(3).

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
A process tried to have more open files than the system allows a process to have. The customary
configuration limit is 30 per process.

25 ENOTTY Inappropriate ioctl for device
The code used in an ioctl call is not supported by the object that the file descriptor in the call refers
to.

Last change: 16 July 1986 Sun Release 3.2

INTRO(2) SYSTEM CALLS INTRO(2)

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing. Also an
attempt to open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes).

28 ENOSPC No space left on device
A write to an ordinary file, the creation of a directory or symbolic link, or the creation of a direc-
tory entry failed because no more disk blocks are available on the file system, or the allocation of
an inode for a newly created file failed because no more inodes are available on the file system.

29 ESPIPE Illegal seek
An Iseek was issued to a socket or pipe. This error may also be issued for other non-seekable dev-
ices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a file system mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
An attempt was made to write on a pipe or socket for which there is no process to read the data.
This condition normally generates a signal; the error is returned if the signal is caught or ignored.

33 EDOM Math argument

The argument of a function in the math library (as described in section 3M) is out of the domain of
the function.

34 ERANGE Result too large

The value of a function in the math library (as described in section 3M) is unrepresentable within
machine precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on an object in non-blocking
mode (see ioctl(2)).

36 EINPROGRESS Operation now in progress

An operation which takes a long time to complete (such as a connect(2)) was attempted on a non-
blocking object (see ioctl (2)).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in progress.
38 ENOTSOCK Socket operation on non-socket
Self-explanatory.
39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.
40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type requested. For
example, you cannot use the ARPA Internet UDP protocol with type SOCK_STREAM.

42 ENOPROTOOPT Option not supported by protocol
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it exists.

Sun Release 3.2 Last change: 16 July 1986 3

INTRO(2) SYSTEM CALLS INTRO (2)

44 ESOCKTNOSUPPORT Socket type not supported

The support for the socket type has not been configured into the system or no implementation for
it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you shouldn’t
necessarily expect to be able to use PUP Internet addresses with ARPA Internet protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a socket with an address not on this machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer

A connection was forcibly closed by a peer. This normally results from the peer executing a shut-
down(2) call.

55 ENOBUFES No buffer space available

An operation on a socket or pipe was not performed because the system lacked sufficient buffer
space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg request on a
connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because the socket had already been shut down with a pre-
vious shutdown (2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a period of
time. (The timeout period is dependent on the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usually results
from trying to connect to a service which is inactive on the foreign host.

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

4 Last change: 16 July 1986 Sun Release 3.2

INTRO(2) SYSTEM CALLS INTRO (2)

63 ENAMETOOLONG File name too long
A component of 2 pathname exceeded 255 characters, or an entire pathname exceeded 1023 char-
acters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
An attempt was made to remove a directory with entries other than . and .. by performing a rmdir
system call or a rename system call with that directory specified as the target directory.

67 unused
68 unused

69 EDQUOT Disc quota exceeded
A write to an ordinary file, the creation of a directory or symbolic link, or the creation of a direc-
tory entry failed because the user’s quota of disk blocks was exhausted, or the allocation of an
inode for a newly created file failed because the user’s quota of inodes was exhausted.

70 ESTALE Stale NFS file handle
A client referenced a an open file, when the file has been deleted.

71 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a path which already has a remotely
mounted component.

72 unused
73 unused
74 unused

75 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified message
queue; see msgop(2).

76 unused

77 EIDRM Identifier removed
This error is returned to processes that resume execution due to the removal of an identifier from
the IPC system’s name space (see msgctl(2), semctl(2), and shmctl(2)).

DEFINITIONS
Descriptor
An integer assigned by the system when a file is referenced by open(2V), dup(2), or pipe(2) or a socket is
referenced by socket(2) or socketpair(2) which uniquely identifies an access path to that file or socket from
a given process or any of its children.

Directory
A directory is a special type of file which contains entries which are references to other files. Directory
entries are called links. By convention, a directory contains at least two links, . and .., referred to as dot
and dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent directory.

Effective User ID, Effective Group ID, and Access Groups
Access to system resources is governed by three values: the effective user ID, the effective group ID, and
the group access list.

The effective user ID and effective group ID are initially the process’s real user ID and real group ID
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possibly by
one of its ancestors) (see execve(2)).

Sun Release 3.2 Last change: 16 July 1986 5

INTRO(2) SYSTEM CALLS INTRO (2)

The group access list is an additional set of group ID’s used only in determining resource accessibility.
Access checks are performed as described below in ‘‘File Access Permissions”’.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used in determining
whether a process may perform a requested operation on the file (such as opening a file for writing).
Access permissions are established at the time a file is created. They may be changed at some later time
through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed. Directory files
use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different classes of users: the
owner of the file, those users in the file’s group, anyone else. Every file has an independent set of access
permissions for each of these classes. When an access check is made, the system decides if permission
should be granted by checking the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the owner permis-
sions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and either the
process’s effective group ID matches the group ID of the file, or the group ID of the file is in the
process’s group access list, and the group permissions allow the access.

Neither the effective user ID nor effective group ID and group access list of the process match the
corresponding user ID and group ID of the file, but the permissions for ‘‘other users” allow
access.

Otherwise, permission is denied.

File Name
Names consisting of up to 255 characters may be used to name an ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding \O (null) and the ASCII
code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use *, ?, [, or] as part of filenames because of the special meaning
attached to these characters by the shell. See sh(1). Although permitted, it is advisable to avoid the use of
unprintable characters in filenames.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a msgget(2) system call. Each
msqid has a message queue and a data structure associated with it. The data structure is referred to as
msqid_ds and contains the following members:

struct ipc_perm msg_perm; /* operation permission struct */

ushort msg_qnum; /* number of msgs on q */

ushort msg_gbytes; /* max number of bytes on q */
ushort msg_Ispid; /* pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrcv operation */
time t msg_stime; /* last msgsnd time */

time t msg_rtime; /* last msgrcv time */

time t msg_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

msg_perm is an ipc_perm structure that specifies the message operation permission (see below). This
structure includes the following members:

6 Last change: 16 July 1986 Sun Release 3.2

INTRO (2) SYSTEM CALLS INTRO (2)

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; [* group id */

ushort mode; /* r/w permission */

msg_qnum is the number of messages currently on the queue. msg_qgbytes is the maximum number of
bytes allowed on the queue. msg_lIspid is the process id of the last process that performed a msgsnd opera-
tion. msg_lIrpid is the process id of the last process that performed a msgrcv operation. msg_stime is the
time of the last msgsnd operation, msg_rtime is the time of the last msgrcv operation, and msg_ctime is
the time of the last msgctl(2) operation that changed a member of the above structure.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or more of the following are true:
The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.[c]uid in the data structure associated
with msqid and the appropriate bit of the ‘‘user’’ portion (0600) of msg_perm.mode is set.

The effective user ID of the process does not match msg_perm.[c]uid and the effective group ID
of the process matches msg_perm.[c]gid and the appropriate bit of the ‘‘group” portion (060) of
msg_perm.mode is set.

The effective user ID of the process does not match msg_perm.[c]uid and the effective group ID
of the process does not match msg_perm.[c]gid and the appropriate bit of the ‘‘other’’ portion
(06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Parent Process ID
A new process is created by a currently active process (see fork(2)). The parent process ID of a process is
the process ID of its creator.

Path Name and Path Prefix
A pathname is a null-terminated character string starting with an optional slash (/), followed by zero or
more directory names separated by slashes, optionally followed by a filename. The total length of a path-
name must be less than {MAXPATHLEN} (1024) characters.

More precisely, a pathname is a null-terminated character string constructed as follows:

<path-name>::=<file-name> | <path-prefix><file-name> |/
<path-prefix>::=<rtprefix> |/<rtprefix>
<rtprefix>::=<dirname>/ | <rtprefix><dirname>/

where <file-name> is a string of 1 to 255 characters other than the ASCII slash and null, and <dirname> is
a string of 1 to 255 characters (other than the ASCII slash and null) that names a directory.

If a pathname begins with a slash, the search begins at the root directory. Otherwise, the search begins at
the current working directory.

A slash, by itself, names the root directory. A dot (.) names the current working directory.

A null pathname also refers to the current directory. However, this is not true of all UNIX systems. (On
such systems, accidental use of a null pathname in routines that don’t check for it may corrupt the current
working directory.) For portable code, specify the current directory explicitly using ".", rather than "".

Sun Release 3.2 Last change: 16 July 1986 7

INTRO(2) SYSTEM CALLS

INTRO(2)

Process Group ID
Each active process is a member of a process group that is identified by a positive integer called the process
group ID. This is the process ID of the group leader. This grouping permits the signaling of related
processes (see killpg(2)) and the job control mechanisms of csh(1).

Process ID

Each active process in the system is uniquely identified by a positive integer called a process ID. The
range of this ID is from 0 to 30000.

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished from others and
used in implementing accounting facilities. The positive integer corresponding to this distinguished group
is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the equivalent attributes of
the process which created it.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory for the

purpose of resolving path name searches. A process’s root directory need not be the root directory of the
root file system.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated with it. The data structure is referred to as
semid_ds and contains the following members:

struct ipc_permsem perm; /# operation permission struct */
ushort sem_nsems; /+* number of sems in set */
time t sem_otime; /* last operation time */

time t sem_ctime; /# last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

sem_perm is an ipc_perm structure that specifies the semaphore operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /% group id */

ushort mode; /* 1/a permission */

The value of sem_nsems is equal to the number of semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a sem_num. sem_num values run sequentially from O to the
value of sem_nsems minus 1. sem_otime is the time of the last semop(2) operation, and sem_ctime is the
time of the last semctl(2) operation that changed a member of the above structure.

A semaphore is a data structure that contains the following members:

ushort semval; /* semaphore value */

short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

semval is a non-negative integer. sempid is equal to the process ID of the last process that performed a
semaphore operation on this semaphore. semncnt is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become greater than its current value. semzcnt is a count
of the number of processes that are currently suspended awaiting this semaphore’s semval to become zero.

8 Last change: 16 July 1986 Sun Release 3.2

INTRO(2)

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as follows:

00400
00200

00060
00006

Read and Alter permissions on a semid are granted to a process if one or more of the following are true:

SYSTEM CALLS INTRO (2)

Read by user
Alter by user
Read, Alter by group
Read, Alter by others

The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.[c]uid in the data structure associated
with semid and the appropriate bit of the “‘user’’ portion (0600) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.[cluid and the effective group ID
of the process matches sem_perm.[c]gid and the appropriate bit of the “‘group’’ portion (060) of

sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.[c]uid and the effective group ID
of the process does not match sem_perm.[c]lgid and the appropriate bit of the ‘‘other’’ portion
(06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) system call. Each
shmid has a segment of memory (referred to as a shared memory segment) and a data structure associated
with it. The data structure is referred to as shmid_ds and contains the following members:

struct
int
ushort
ushort
short
time t
time t
time t

ipc_permshm_perm; /* operation permission struct */

shm_segsz;
shm_cpid;

shm_lpid;

shm_nattch;
shm_atime;
shm_dtime;
shm_ctime;

/* size of segment */

/* creator pid */

/* pid of last operation */

/* number of current attaches */

/* last attach time */

/* last detach time */

/* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

shm_perm is an ipc_perm structure that specifies the shared memory operation permission (see below).
This structure includes the following members:

ushort
ushort
ushort
ushort
ushort

cuid;
cgid;
uid;
gid;
mode;

/* creator user id */
/* creator group id */
/* user id */

/* group id */

/* r/w permission */

shm_segsz specifies the size of the shared memory segment. shm_cpid is the process id of the process that
created the shared memory identifier. shm_lpid is the process id of the last process that performed a
shmop(2) operation. shm_nattch is the number of processes that currently have this segment attached.
shm_atime is the time of the last shmat operation, shm_dtime is the time of the last shmdt operation, and
shm_ctime is the time of the last shmctl(2) operation that changed one of the members of the above struc-

ture.

Shared Memory Operation Permissions
In the shmop(2) and shmctl (2) system call descriptions, the permission required for an operation is given as
"{token}", where "token" is the type of permission needed interpreted as follows:

Sun Release 3.2

Last change: 16 July 1986 9

INTRO(2) SYSTEM CALLS INTRO(2)

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of the following are true:
The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.[c]uid in the data structure associated
with shmid and the appropriate bit of the ‘‘user’’ portion (0600) of shm_perm.mode is set.

The effective user ID of the process does not match shm_perm.[c]uid and the effective group ID
of the process matches shm_perm.[c]gid and the appropriate bit of the *‘group’ portion (060) of
shm_perm.mode is set.

The effective user ID of the process does not match shm_perm.[c]uid and the effective group ID
of the process does not match shm_perm.[c]gid and the appropriate bit of the ‘‘other’’ portion
(06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Sockets and Address Families
A socket is an endpoint for communication between processes. Each socket has queues for sending and
receiving data.

Sockets are typed according to their communications properties. These properties include whether mes-
sages sent and received at a socket require the name of the partner, whether communication is reliable, the
format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket (2) for more informa-
tion about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols. Each protocol set
supports addresses of a certain format. An Address Family is the set of addresses for a specific group of
protocols. Each socket has an address chosen from the address family in which the socket was created.

Special Processes
The processes with a process ID’s of 0, 1, and 2 are special. Process O is the scheduler. Process 1 is the
initialization process init, and is the ancestor of every other process in the system. It is used to control the
process structure. Process 2 is the paging daemon.

Super-user

A process is recognized as a super-user process and is granted special privileges if its effective user ID is
0.

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive integer called the
tty group ID. This grouping is used to arbitrate between multiple jobs contending for the same terminal

(see csh(l), and tty(4)).

SEE ALSO
intro(3), perror(3)

LIST OF SYSTEM CALLS
Name Appears on Page Description
_exit exit(2) terminate a process
accept accept(2) accept a connection on a socket
access access(2) determine accessibility of file
acct acct(2) turn accounting on or off
adjtime adjtime(2) correct the time to allow synchronization of the system (
async_daemon nfssvc(2) NEFES daemons

10 Last change: 16 July 1986 Sun Release 3.2

INTRO(2)

bind
brk
chdir
chmod
chown
chroot
close
connect
creat
dup
dup2
execve
fchmod
fchown
fentl
flock
fork
fstat
fsync
ftruncate
getdirentries

getdomainname

getdtablesize
getegid
geteuid
getgid
getgroups
gethostid
gethostname
getitimer
getpagesize
getpeername
getpgrp
getpid
getppid
getpriority
getrlimit
getrusage
getsockname
getsockopt
gettimeofday
getuid

ioctl

kill

killpg

link

listen

Iseek

Istat

mkdir
mknod
mmap
mount

Sun Release 3.2

SYSTEM CALLS

bind(2)

brk(2)

chdir(2)
chmod(2)
chown(2)
chroot(2)
close(2)
connetc(2)
creat(2)

dup(2)

dup(2)
execve(2)
chmod(2)
chown(2)
fentl(2)
flock(2)

fork(2)

stat(2)

fsync(2)
truncate(2)
getdirentries(2)
getdomainname(2)
getdtablesize(2)
getgid(2)
getuid(2)
getgid(2)
getgroups(2)
gethostid(2)
gethostname(2)
getitimer(2)
getpagesizename(2)
getpeername(2)
setpgrp(2V)
getpid(2)
getpid(2)
getpriority(2)
getrlimit(2)
getrusage(2)
getsockname(2)
getsockopt(2)
gettimeofday(2)
getuid(2)
ioctl(2)

kill(2)

killpg(2)
link(2)

listen(2)
Iseek(2)

stat(2)
mkdir(2)
mknod(2)
mmap(2)
mount(2)

INTRO(2)

bind a name to a socket

change data segment size

change current working directory

change mode of file

change owner and group of a file

change root directory

delete a descriptor

initiate a connection on a socket

create a new file

duplicate a descriptor

duplicate a descriptor

execute a file

change mode of file

change owner and group of a file

file control

apply or remove an advisory lock on an open file
create a new process

get file status

synchronize a file’s in-core state with that on disk
truncate a file to a specified length

gets directory entries in a filesystem independent format

get name of current domain

get descriptor table size

get group identity

get effective user identity

get group identity

get group access list

get unique identifier of current host
get name of current host

get value of interval timer

get system page size

get name of connected peer

set and/or return the process group of a process
get parent process identification
get process identification

get program scheduling priority
control maximum system resource consumption
get information about resource utilization
get socket name

get options on sockets

get date and time

get user identity

control device

send signal to a process

send signal to a process group
make a hard link to a file

listen for connections on a socket
move read/write pointer

get file status

make a directory file

make a special file

map or unmap pages of memory
mount file system

Last change: 16 July 1986 11

INTRO(2)

12

msgctl
msgget
msgop
msgrcv
msgsnd
munmap
nfssvc
open

pipe
profil
ptrace
quotactl
read
readlink
readv
reboot
recv
recvfrom
recvmsg
rename
rmdir
sbrk
select
semctl
semget
semop
send
sendmsg
sendto
setdomainname
setgroups
sethostname
setitimer
setperp
setpriority
setregid
setreuid
setrlimit
setsockopt
settimeofday
shmat
shmctl
shmdt
shmget
shmop
shutdown
sigblock
sigpause
sigsetmask
sigstack
sigvec
socket
socketpair

SYSTEM CALLS

msgctl(2)
msgget(2)
msgop(2)
msgop(2)
msgop(2)
munmap(2)
nfssvc(2)
open(2V)
pipe(2)
profil(2)
ptrace(2)
quotactl(2)
read(2V)
readlink(2)
read(2V)
reboot(2)
recv(2)
recv(2)
recv(2)
rename(2)
rmdir(2)
brk(2)
select(2)
semctl(2)
semget(2)
semop(2)
send(2)
send(2)
send(2)

getdomainname(2)

getgroups(2)
gethostname(2)
getitimer(2)
setpgrp(2V)
getpriority(2)
setregid(2)
setreuid(2)
getrlimit(2)
getsockopt(2)
gettimeofday(2)
shmop(2)
shmctl(2)
shmop(2)
shmget(2)
shmop(2)
shutdown(2)
sigblock(2)
sigpause(2)
sigsetmask(2)
sigstack(2)
sigvec(2)
socket(2)
socketpair(2)

Last change: 16 July 1986

INTRO (2)

message control operations

get message queue

message operations

message operations

message operations

map or unmap pages of memory

NFS daemons

open or create a file for reading or writing
create an interprocess communication channel
execution time profile

process trace

manipulate disk quotas

read input

read value of a symbolic link

read input

reboot system or halt processor

receive a message from a socket

receive a message from a socket

receive a message from a socket

change the name of a file

remove a directory file

change data segment size

synchronous I/O multiplexing

semaphore control operations

get set of semaphores

semaphore operations

send a message from a socket

send a message from a socket

send a message from a socket

set name of current domain

set group access list

set name of current host

set value of interval timer

set and/or return the process group of a process
set program scheduling priority

set real and effective group IDs

set real and effective user IDs

control maximum system resource consumption
set options on sockets

set date and time

shared memory operations

shared memory control operations

shared memory operations

get shared memory segment

shared memory operations

shut down part of a full-duplex connection
block signals

atomically release blocked signals and wait for interrup
set current signal mask

set and/or get signal stack context
software signal facilities

create an endpoint for communication
create a pair of connected sockets

Sun Release 3.2

INTRO (2)

stat
statfs
swapon
symlink
sync
syscall
tell
truncate
umask
uname
unlink
unmount
utimes
vadvise
vfork
vhangup
wait
wait3
write
writev

Sun Release 3.2

stat(2)
statfs(2)
swapon(2)
symlink(2)
sync(2)
syscall(2)
Iseek(2)
truncate(2)
umask(2)
uname(2V)
unlink(2)
umount(2)
utimes(2)
vadvise(2)
viork(2)
vhangup(2)
wait(2)
wait(2)
write(2V)
write(2V)

SYSTEM CALLS INTRO (2)

get file status

get file system statistics

add a swap device for interleaved paging/swapping
make symbolic link to a file

update super-block

indirect system call

locate read/write pointer

truncate a file to a specified length

set file creation mode mask

get name of current UNIX system

remove directory entry

remove a file system

set file times

give advice to paging system

spawn new process in a virtual memory efficient way
virtually ‘‘hangup’’ the current control terminal
wait for process to terminate or stop

wait for process to terminate or stop

write output

write output

Last change: 16 July 1986 13

ACCEPT(2) SYSTEM CALLS ACCEPT(2)

NAME

accept — accept a connection on a socket
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr *addr;

int *addrlen;

DESCRIPTION

The argument s is a socket that has been created with socket(2), bound to an address with bind(2), and is
listening for connections after a listen(2). Accept extracts the first connection on the queue of pending con-
nections, creates a new socket with the same properties of s and allocates a new file descriptor, ns, for the
socket. If no pending connections are present on the queue, and the socket is not marked as non-blocking,
accept blocks the caller until a connection is present. If the socket is marked non-blocking and no pending
connections are present on the queue, accept returns an error as described below. The accepted socket, zs,
is used to read and write data to and from the socket which connected to this one; it is not used to accept
more connections. The original socket s remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known
to the communications layer. The exact format of the addr parameter is determined by the domain in
which the communication is occurring. The addrlen is a value-result parameter; it should initially contain
the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select (2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE

The call returns —1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket.

ERRORS
The accept will fail if:
EBADF The descriptor is invalid.
ENOTSOCK The descriptor references a file, not a socket.
EOPNOTSUPP The referenced socket is not of type SOCK_STREAM.
EFAULT The addr parameter is not in a writable part of the user address space.

EWOULDBLOCK The socket is marked non-blocking and no connections are present to be accepted.

SEE ALSO

14

bind(2), connect(2), listen(2), select(2), socket(2)

Last change: 16 July 1986 Sun Release 3.2

ACCESS(2) SYSTEM CALLS ACCESS(2)

NAME
access — determine accessibility of file
SYNOPSIS
#include <sys/file.h>
#define R_OK 4 /+test for read permission */
#define W_OK 2 /# test for write permission */
#define X OK 1 /* test for execute (search) permission */
#define F_OK 0 /* test for presence of file */

accessible = access(path, mode)
int accessible;

char *path;

int mode;

DESCRIPTION
path points to a path name naming a file. access checks the named file for accessibility according to mode,
which is an inclusive or of the bits R_OK, W_OK and X OK. Specifying mode as F_ OK (that is, 0) tests
whether the directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying permission, so
this call is useful to set-UID programs.

The owner of a file has permission checked with respect to the owner read, write, and execute mode bits,
members of the file’s group other than the owner have permission checked with respect to the group mode
bits, and all others have permissions checked with respect to the other mode bits.

Notice that only access bits are checked. A directory may be indicated as writable by access, but an
attempt to open it for writing will fail (although files may be created there); a file may look executable, but
execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a —1 value is
returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.

EINVAL path contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The file named by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

EROFS The file named by path is on a read-only file system and write access was requested.

ETXTBSY The file named by path is a pure procedure (shared text) file that is being executed and
write access was requested.

EACCES Permission bits of the file mode do not permit the requested access to the file named by
path.

EFAULT path points outside the process’s allocated address space.

EIO An /O error occurred while reading from or writing to the file system.

Sun Release 3.2 Last change: 5 June 1986 15

ACCESS(2) SYSTEM CALLS ACCESS (2)

SEE ALSO
chmod(2), stat(2)

16 Last change: 5 June 1986 Sun Release 3.2

ACCT(2) SYSTEM CALLS ACCT(2)

NAME

acct — turn accounting on or off

SYNOPSIS

acct(file)
char *file;

DESCRIPTION

NOTES

acct is used to enable or disable the process accounting. If process accounting is enabled, an accounting
record will be written on an accounting file for each process that terminates. Termination can be caused by
one of two things: an exit call or a signal; see exit(2) and sigvec(2). The effective user ID of the calling
process must be super-user to use this call.

name points to a path name naming the accounting file. The accounting file format is given in acct(5).

The accounting routine is enabled if name is non-zero and no errors occur during the system call. It is dis-
abled if name is zero and no errors occur during the system call.

If accounting is already turned on, and a successful acct call is made with a non-zero name, all subsequent
accounting records will be written to the new accounting file.

Accounting is automatically disabled when the file system the accounting file resides on runs out of space;
it is enabled when space once again becomes available.

RETURN VALUE

The value —1 is returned if an error occurs, and external variable errno is set to indicate the cause of the
error. Otherwise the value O is returned.

ERRORS

acct will fail if one of the following is true:

EPERM The caller is not the super-user.

ENOTDIR A component of the path prefix of file is not a directory.
EINVAL Jile contains a character with the high-order bit set.
EINVAL Support for accounting was not configured into the system.
ENAMETOOLONG

The length of a component of file exceeds 255 characters, or the length of file exceeds
1023 characters.

ENOENT The named file does not exist.

EACCES Search permission is denied for a component of the path prefix of file.

EACCES The file referred to by file is not a regular file.

ELOOP Too many symbolic links were encountered in translating the path name.

EROFS The named file resides on a read-only file system.

EFAULT file points outside the process’s allocated address space.

EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO

acct(5), sa(8)

BUGS

No accounting is produced for programs running when a crash occurs. In particular non-terminating pro-
grams are never accounted for.

Sun Release 3.2 Last change: S June 1986 17

ADITIME(2) SYSTEM CALLS ADJTIME (2)

NAME
adjtime — correct the time to allow synchronization of the system clock

SYNOPSIS
#include <sys/time.h>

adjtime(delta, olddelta)
struct timeval *delta;
struct timeval *olddelta;

DESCRIPTION

adjtime adjusts the system’s notion of the current time, as returned by gettimeofday(2), advancing or
retarding it by the amount of time specified in the struct timeval *delta.

The adjustment is effected by speeding up (if *delta is positive) or slowing down (if *delta is negative) the
system’s clock by a fixed percentage, currently 10%. Thus, the time is always a monotonically increasing
function. A time correction from an earlier call to adjtime may not be finished when adjtime is called
again. If olddelta is non-zero, then the structure pointed to will contain, upon return, the number of
microseconds still to be corrected from the earlier call.

The structures pointed to by delta and olddelta are defined in <sys/time.h> as:

struct timeval {
u_long tv_sec; /* seconds since Jan. 1, 1970 #/
long tv_usec; /* and microseconds */
b
If olddelta is a NULL pointer, the corresponding information will not be returned.
This call may be used in time servers that synchronize the clocks of computers in a local area network.

Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

Only the super-user may adjust the time of day.
The adjustment value will be silently rounded to the resolution of the system clock.

RETURN
A 0 return value indicates that the call succeeded. A —1 return value indicates an error occurred, and in this
case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

EFAULT delta or olddelta points outside the process’s allocated address space, or olddelta points
to a region of the process’ allocated address space which is not writable.
EPERM The process’s effective user ID is not that of the super-user.
SEE ALSO
settimeofday(2), date(1)

18 Last change: 16 July 1986 Sun Release 3.2

BIND (2) SYSTEM CALLS BIND (2)

NAME
bind — bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in a name
space (address family) but has no name assigned. bind requests that the name pointed to by name be
assigned to the socket.

NOTES

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller
when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains. Consult the manual entries in sec-
tion 4 for detailed information.

RETURN VALUE
If the bind is successful, a O value is returned. A return value of —1 indicates an error, which is further

specified in the global errno.

ERRORS
The bind call will fail if:
EBADEF S is not a valid descriptor.
ENOTSOCK S is not a socket.
EADDRNOTAVAIL The specified address is not available from the local machine.
EADDRINUSE The specified address is already in use.
EINVAL The socket is already bound to an address.
EACCES The requested address is protected, and the current user has inadequate permission

to access it.

EFAULT The name parameter is not in a valid part of the user address space.
The following errors are specific to binding names in the UNIX domain.
ENOTDIR A component of the path prefix of the path name in name is not a directory.
EINVAL The path name in name contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of the path name in name exceeds 255 characters, or the
length of the path name in name exceeds 1023 characters.

ENOENT A component of the path prefix of the path name in name does not exist.

EACCES Search permission is denied for a component of the path prefix of the path name in
name.

ELOOP Too many symbolic links were encountered in translating the path name in name.

EIO An I/O error occurred while making the directory entry or allocating the inode.

EROFS The inode would reside on a read-only file system.

EISDIR A null path name was specified.

Sun Release 3.2 Last change: 16 July 1986 19

BIND(2) SYSTEM CALLS BIND (2)

SEE ALSO
connect(2), listen(2), socket(2), getsockname(2)

20 Last change: 16 July 1986 Sun Release 3.2

BRK(2) SYSTEM CALLS BRK(2)

NAME
brk, sbrk — change data segment size

SYNOPSIS
#include <sys/types.h>

caddr_t brk(addr)
caddr_t addr;

caddr_t sbrk(incr)
int incr;
DESCRIPTION
Brk
brk sets the system’s idea of the lowest data segment location not used by the program (called the break) to
addr (rounded up to the next multiple of the system’s page size). Locations greater than addr and below
the stack pointer are not in the address space and will thus cause a memory violation if accessed.

Sbrk

In the alternate function sbrk, incr more bytes are added to the program’s data space and a pointer to the
start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by the program
and data storage areas. Ordinarily, therefore, only programs with growing data areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the data segment;
it will not be possible to set the break beyond the rlim_max value returned from a call to getrlimit, e.g.
“‘etext + rlp—rlim_max.”” (See end(3) for the definition of etext.)

RETURN VALUE
Zero is returned if the brk could be set; —1 if the program requests more memory than the system limit.
Sbrk normally returns the current value of the break, but -1 if it could not be set.

ERRORsSbrk will fail and no additional memory will be allocated if one of the following are true:
ENOMEM The limit, as set by setrlimit(2), was exceeded.
ENOMEM The maximum possible size of a data segment (compiled into the system) was exceeded.
ENOMEM Insufficient space existed in the swap area to support the expansion.

SEE ALSO

execve(2), getrlimit(2), malloc(3), end(3)

BUGS
Setting the break may fail due to a temporary lack of swap space. It is not possible to distinguish this from
a failure caused by exceeding the maximum size of the data segment without consulting getrlimit.

Sun Release 3.2 Last change: 26 February 1985 21

CHDIR (2) SYSTEM CALLS CHDIR (2)

NAME
chdir — change current working directory

SYNOPSIS
chdir(path)
char *path;
DESCRIPTION
path points to the path name of a directory. chdir causes this directory to become the current working
directory, the starting point for path names not beginning with /.

In order for a directory to become the current directory, a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set

to indicate the error.

ERRORSchdir will fail and the current working directory will be unchanged if one or more of the following are true:
ENOTDIR A component of the path prefix of path is not a directory.
ENOTDIR The file named by path is not a directory.
EINVAL path contains a byte with the high-order bit set.
ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.
ENOENT The directory referred to by path does not exist.
ELOOP Too many symbolic links were encountered in translating path.
EACCES Search permission is denied for a component of the path prefix of path.
EACCES Search permission is denied for the directory referred to by path.
EFAULT path points outside the process’s allocated address space.
EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO
chroot(2)

22 Last change: 16 July 1986 Sun Release 3.2

CHMOD(2) SYSTEM CALLS CHMOD (2)

NAME
chmod, fchmod — change mode of file
SYNOPSIS
#include /usr/include/sys/stat.h
chmod(path, mode)
char *path;
int mode;
fchmod(fd, mode)
int fd, mode;
DESCRIPTION

The file whose name is given by path or referenced by the descriptor fd has its mode changed to mode.
Modes are constructed by or’ing together some combination of the following:

S_ISUID 04000 set user ID on execution

S_ISGID 02000 set group ID on execution

S_ISVTX 01000 save text image after execution (sticky bit)
S_IREAD 00400 read by owner

S IWRITE 00200 write by owner

S IEXEC 00100 execute (search on directory) by owner

00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

These bit patterns are defined in /usr/include/sys/stat.h.

The effective user ID of the process must match the owner of the file or be super-user to change the mode
of a file.

If the effective user ID of the process is not super-user and the process attempts to set the set group ID bit
on a file owned by a group which is not in its group access list, mode bit 02000 (set group ID on execution)
is cleared.

If an executable file is set up for sharing (this is the default) then mode 01000 (save text image after execu-
tion) prevents the system from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. If the effective user ID of the process is not super-user, this bit is cleared.

If a user other than the super-user writes to a file, the set user ID and set group ID bits are turned off. This
makes the system somewhat more secure by protecting set-user-ID (set-group-ID) files from remaining
set-user-ID (set-group-ID) if they are modified, at the expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set

to indicate the error.
ERRORS

chmod will fail and the file mode will be unchanged if:

ENOTDIR A component of the path prefix of path is not a directory.

EINVAL path contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

EPERM The effective user ID does not match the owner of the file and the effective user ID is

Sun Release 3.2 Last change: 16 July 1986 23

CHMOD(2) SYSTEM CALLS CHMOD (2)

not the super-user.
EINVAL fd refers to a socket, not to a file.
EROFS The file referred to by path resides on a read-only file system.
EFAULT path points outside the process’s allocated address space.
EIO An I/O error occurred while reading from or writing to the file system.
fchmod will fail if:
EBADF The descriptor is not valid.
EROFS The file referred to by fd resides on a read-only file system.
EPERM The effective user ID does not match the owner of the file and the effective user ID is
not the super-user.
EIO An I/O error occurred while reading from or writing to the file system.
FILES
/usr/include/sys/stat.h
SEE ALSO

open(2V), chown(2), stat(2), sticky(8)

24 Last change: 16 July 1986 Sun Release 3.2

CHOWN (2) SYSTEM CALLS CHOWN (2)

NAME

chown, fchown — change owner and group of a file
SYNOPSIS

chown(path, owner, group)

char *path;

int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file that is named by path or referenced by fd has its owner and group changed as specified. Only the
super-user may change the owner of the file, because if users were able to give files away, they could
defeat the file-space accounting procedures. The owner of the file may change the group to a group of
which he is a member; the super-user may change the group arbitrarily.

fchown is particularly useful when used in conjunction with the file locking primitives (see flock(2)).
If owner or group is specified as —1, the corresponding ID of the file is not changed.

If a process whose effective user ID is not super-user successfully changes the group ID of a file, the set-
user-ID and set-group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

If the final component of path is a symbolic link, the ownership and group of the symbolic link is changed,
not the ownership and group of the file or directory to which it points.

RETURN VALUE

Zero is returned if the operation was successful; —1 is returned, and a more specific error code is placed in
the global variable errno, if an error occurs.

ERRORS

chown will fail and the file will be unchanged if:

ENOTDIR A component of the path prefix of path is not a directory.

EINVAL path contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

EPERM The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group ID fo the file and is not in the process’ group
access list, and the effective user ID is not the super-user.

EROFS The file referred to by path resides on a read-only file system.

EFAULT path points outside the process’s allocated address space.

EIO An I/O error occurred while reading from or writing to the file system.

fchown will fail if:

EBADF fd does not refer to a valid descriptor.

EINVAL fd refers to a socket, not a file.

EPERM The user ID specified by ownrer is not the current owner ID of the file, or the group ID

specified by group is not the current group group access list, and the effective user ID is
not the super-user.

Sun Release 3.2 Last change: 16 July 1986 25

CHOWN (2) SYSTEM CALLS CHOWN (2)

EROFS The file referred to by fd resides on a read-only file system.
EIO An IO error occurred while reading from or writing to the file system.
SEE ALSO

chmod(2), flock(2)

26 Last change: 16 July 1986 Sun Release 3.2

CHROOT(2) SYSTEM CALLS CHROOT(2)

NAME

chroot — change root directory
SYNOPSIS

chroot(dirname)

char *dirname;
DESCRIPTION

dirname points to a path name naming a directory. chroot causes this directory to become the root direc-
tory, the starting point for path names beginning with /. The current working directory is unaffected by this
call. This root directory setting is inherited across execve(2) and by all children of this process created
with fork(2) calls.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot be used to
access files outside the subtree rooted at the root directory.

In order for a directory to become the root directory a process must have execute (search) access to the
directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate an error.

ERRORS
chroot will fail and the root directory will be unchanged if one or more of the following are true:

ENOTDIR A component of the path prefix of dirname is not a directory.
ENOTDIR The file referred to by dirname is not a directory.

EINVAL dirname contains a byte with the high-order bit set.
ENAMETOOLONG

The length of a component of dirname exceeds 255 characters, or the length of dirname
exceeds 1023 characters.

ENOENT The directory referred to by dirname does not exist.

EACCES Search permission is denied for a component of the path prefix of dirname.

EACCES Search permission is denied for the directory referred to by dirname.

ELOOP Too many symbolic links were encountered in translating dirname .

EPERM The effective user ID is not super-user.

EFAULT dirname points outside the process’s allocated address space.

EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO

chdir(2)

Sun Release 3.2 Last change: 16 July 1986 27

CLOSE(2) SYSTEM CALLS CLOSE(2)

NAME

close — delete a descriptor

SYNOPSIS

close(d)
intd;

DESCRIPTION

The close call deletes a descriptor from the per-process object reference table. If this is the last reference
to the underlying object, then it will be deactivated. For example, on the last close of a file the current seek
pointer associated with the file is lost; on the last close of a socket(2) associated naming information and
queued data are discarded; on the last close of a file holding an advisory lock the lock is released (see
flock(2) for further information).

A close of all of a process’s descriptors is automatic on exit, but since there is a limit on the number of
active descriptors per process, close is necessary for programs that deal with many descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the same objects as
they did in the parent before the fork. If anew process is then to be run using execve (2), the process would
normally inherit these descriptors. Most of the descriptors can be rearranged with dup2 (2) or deleted with
close before the execve is attempted, but if some of these descriptors will still be needed if the execve fails,
it is necessary to arrange for them to be closed if the execve succeeds. For this reason, the call “‘fentl(d,
F SETFD, 1)’ is provided, which arranges that a descriptor will be closed after a successful execve; the
call ““fentl(d, F_SETFD, 0)’’ restores the default, which is to not close the descriptor.

Close unmaps pages mapped through this file descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and the global
integer variable errno is set to indicate the error.

ERRORS
Close will fail if:
EBADF D is not an active descriptor.
EINTR A read from a slow device was interrupted before any data arrived by the delivery of a
signal.
SEE ALSO

28

accept(2), flock(2), open(2V), pipe(2), socket(2), socketpair(2), execve(2), fentl(2), mmap(2), munmap(2)

Last change: 16 July 1986 Sun Release 3.2

CONNECT(2)

NAME

SYSTEM CALLS CONNECT (2)

connect — initiate a connection on a socket

SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>

connect(s, name, namelen)

int s;

struct sockaddr *name;

int namelen;
DESCRIPTION

The parameter s is a socket. If it is of type SOCK_DGRAM, then this call permanently specifies the peer to
which datagrams are to be sent; if it is of type SOCK_STREAM, then this call attempts to make a connection
to another socket. The other socket is specified by name which is an address in the communications space
of the socket. Each communications space interprets the name parameter in its own way.

RETURN VALUE

If the connection or binding succeeds, then O is returned. Otherwise a —1 is returned, and a more specific
error code is stored in errno.

ERRORS
The call fails if:

EBADF
ENOTSOCK
EADDRNOTAVAIL
EAFNOSUPPORT
EISCONN
ETIMEDOUT
ECONNREFUSED
ENETUNREACH
EADDRINUSE
EFAULT
EWOULDBLOCK

EINTR

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

The specified address is not available on this machine.

Addresses in the specified address family cannot be used with this socket.
The socket is already connected.

Connection establishment timed out without establishing a connection.
The attempt to connect was forcefully rejected.

The network isn’t reachable from this host.

The address is already in use.

The name parameter specifies an area outside the process address space.

The socket is non-blocking and the and the connection cannot be completed
immediately. It is possible to select(2) the socket while it is connecting by select-
ing it for writing.

A read from a slow device was interrupted before any data arrived by the delivery
of a signal.

The following errors are specific to connecting names in the UNIX domain. These errors may not apply in
future versions of the UNIX IPC domain.

ENOTDIR A component of the path prefix of the path name in name is not a directory.
EINVAL The path name in name contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of the path name in name exceeds 255 characters, or the
length of the entire path name in name exceeds 1023 characters.

ENOENT A component of the path prefix of the path name in name does not exist.

ENOENT The socket referred to by the path name in name does not exist.

EACCES Search permission is denied for a component of the path prefix of the path name in
Sun Release 3.2 Last change: 3 April 1986 29

CONNECT (2) SYSTEM CALLS CONNECT (2)

name.
ELOOP Too many symbolic links were encountered in translating the path name in name.
EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO
accept(2), select(2), socket(2), getsockname(2)

30 Last change: 3 April 1986 Sun Release 3.2

CREAT(2) SYSTEM CALLS CREAT(2)

NAME

creat — create a new file

SYNOPSIS

creat(name, mode)
char *name;
int mode;

DESCRIPTION

This interface is made obsolete by

creat creates a new ordinary file or prepares to rewrite an existing file named by the path name pointed to
by name. If the file did not exist, it is given mode mode, as modified by the process’s mode mask (see
umask(2)). Also see chmod(2) for the construction of the mode argument.

If the file exists, its mode and owner remain unchanged, but it is truncated to O length. Otherwise, the file’s
owner ID is set to the effective user ID of the process, the file’s group ID is set to the group ID of the direc-
tory in which the file is created, and the low-order 12 bits of the file mode are set to the value of mode
modified as follows:

All bits set in the process’s file mode creation mask are cleared. See umask(2).
The ‘‘save text image after execution’’ bit of the mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the file is open for writing, even if the mode
does not permit writing. The file pointer is set to the beginning of the file. The file descriptor is set to
remain open across execve system calls. See fcntl(2).

NOTES

The mode given is arbitrary; it need not allow writing. This feature has been used in the past by programs
to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL open mode, or flock(2)
facility.

RETURN VALUE

The value —1 is returned if an error occurs. Otherwise, the call returns a non-negative descriptor which
only permits writing.

ERRORS

creat will fail and the file will not be created or truncated if one of the following occur:
ENOTDIR A component of the path prefix of name is not a directory.
EINVAL name contains a byte with the high-order bit set.

ENAMETOOLONG

The length of a component of rame exceeds 255 characters, or the length of name
exceeds 1023 characters.

ENOENT A component of the path prefix of name does not exist.

ELOOP Too many symbolic links were encountered in translating name.

EACCES Search permission is denied for a component of the path prefix of name.

EACCES The file referred to by rame does not exist and the directory in which it is to be created
is not writable.

EACCES The file referred to by name exists, but it is unwritable.

EISDIR The file referred to by name is a directory.

EMFILE There are already too many files open.

ENFILE The system file table is full.

ENOSPC The directory in which the entry for the new file is being placed cannot be extended

because there is no space left on the file system containing the directory.

Sun Release 3.2 Last change: 16 July 1986 31

CREAT(2)

32

ENOSPC
EDQUOT

EDQUOT

EROFS
ENXIO

ETXTBSY
EIO
EFAULT

SYSTEM CALLS CREAT (2)

There are no free inodes on the file system on which the file is being created.

The directory in which the entry for the new file is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

The user’s quota of inodes on the file system on which the file is being created has been
exhausted.

The file referred to by name resides, or would reside, on a read-only file system.

The file is a character special or block special file, and the associated device does not
exist.

The file is a pure procedure (shared text) file that is being executed.
An I/O error occurred while making the directory entry or allocating the inode.
name points outside the process’s allocated address space.

EOPNOTSUPP The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2V), close(2), chmod(2), fcntl(2), umask(2)

Last change: 16 July 1986 Sun Release 3.2

DUP(2) SYSTEM CALLS DUP(2)

NAME
dup, dup2 — duplicate a descriptor
SYNOPSIS

newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;
DESCRIPTION

dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer index in
the per-process descriptor table. The value must be less than the size of the table, which is returned by
getdtablesize(2). The new descriptor returned by the call, newd, is the lowest numbered descriptor that is
not currently in use by the process.

In the second form of the call, the value of newd desired is specified. If this descriptor is already in use, the
descriptor is first deallocated as if a close (2) call had been done first.

The new descriptor has the following in common with the original:
It refers to the same object that the old descriptor referred to.
It uses the same file pointer as the old descriptor. (i.e., both file descriptors share one file pointer).
It has the same access mode (read, write or read/write) as the old descriptor.

Thus if newd and oldd are duplicate references to an open file, read (2V), write(2V) and Iseek(2) calls all
move a single pointer into the file, and append mode, non-blocking I/O and asynchronous /O options are
shared between the references. If a separate pointer into the file is desired, a different object reference to
the file must be obtained by issuing an additional open(2V) call. The close-on-exec flag on the new file
descriptor is unset.

The new file descriptor is set to remain open across exec system calls. See fcntl(2).

RETURN VALUE
The value —1 is returned if an error occurs in either call. The external variable errno indicates the cause of

the error.
ERRORS
dup and dup?2 fail if:
EBADF Oldd or newd is not a valid active descriptor.
EMFILE Too many descriptors are active.
SEE ALSO

accept(2), open(2), close(2), fcntl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

Sun Release 3.2 Last change: 16 July 1986 33

EXECVE(2) SYSTEM CALLS EXECVE (2)

NAME

execve — execute a file

SYNOPSIS

execve(name, argv, envp)
char *name, *argv[], *envp(];

DESCRIPTION

34

execve transforms the calling process into a new process. The new process is constructed from an ordinary
file, whose name is pointed to by path, called the new process file. This file is either an executable object
file, or a file of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (text) and initialized data pages. Additional pages may be
specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form “‘#! interpreter [arg]’’. When an interpreter file is
execve’d, the system execve ’s the specified interpreter. If the optional arg is specified, it becomes the first
argument to the interpreter, and the name of the originally execve’d file becomes the second argument;
otherwise, the name of the originally execve’d file becomes the first argument. The original argument are
shifted over to become the subsequent arguments. The zeroth argument, normally the name of the
execve’d file, is left unchanged.

There can be no return from a successful execve because the calling core image is lost. This is the mechan-
ism whereby different process images become active.

The argument argv is a null-terminated array of character pointers to null-terminated character strings.
These strings constitute the argument list to be made available to the new process. By convention, at least
one argument must be present in this array, and the first element of this array should be the name of the
executed program (i.e., the last component of name).

The argument envp is also a null-terminated array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command (see
environ(5V)).

Descriptors open in the calling process remain open in the new process, except for those for which the
close-on-exec flag is set (see close(2) and fcntl(2)). Descriptors which remain open are unaffected by
execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their default
values. Blocked signals remain blocked regardless of changes to the signal action. The signal stack is reset
to be undefined (see sigvec(2) for more information).

Each process has a real user ID and group ID and an effective user ID and group ID. The real ID identifies
the person using the system; the effective ID determines their access privileges. Execve changes the effec-
tive user or group ID to the owner or group of the executed file if the file has the ‘“‘set-user-ID’’ or “‘set-
group-ID’* modes. The real user ID and group ID are not affected.

The shared memory segments attached to the calling process will not be attached to the new process (see
shmop (2)).

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)
parent process ID see getppid(2)
process group ID see getpgrp(2)
access groups see getgroups(2)
semadj values seesemop (2)
working directory see chdir(2)
root directory see chroot (2)
control terminal see tty(4)

Last change: 16 July 1986 Sun Release 3.2

EXECVE(2) SYSTEM CALLS EXECVE (2)

trace flag seeptrace(2) request 0)
resource usages see getrusage (2)
interval timers see getitimer(2)
resource limits see getrlimit(2)

file mode mask see umask(2)

signal mask see sigvec(2), sigmask(2)

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the number of elements in argv (the ‘‘arg count’’) and argv is the array of character pointers
to the arguments themselves.

envp is a pointer to an array of strings that constitute the environment of the process. A pointer to this array
is also stored in the global variable ‘‘environ’’. Each string consists of a name, an ‘“=’’, and a null-
terminated value. The array of pointers is terminated by a null pointer. The shell s2(1) passes an environ-
ment entry for each global shell variable defined when the program is called. See environ(5V) for some
conventionally used names.

RETURN VALUE
If execve returns to the calling process an error has occurred; the return value will be ~1 and the global
variable errno will contain an error code.

ERRORS
execve will fail and return to the calling process if one or more of the following are true:

ENOTDIR A component of the path prefix of the new process file is not a directory.
EINVAL name contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of name exceeds 255 characters, or the length of name
exceeds 1023 characters.

ENOENT One or more components of the path prefix of the new process file does not exist.

ENOENT The new process file does not exist.

ELOOP Too many symbolic links were encountered in translating name.

EACCES Search permission is denied for a component of the new process file’s path prefix.

EACCES The new process file is not an ordinary file.

EACCES Execute permission is denied for the new process file.

ENOEXEC The new process file has the appropriate access permission, but has an invalid magic
number in its header.

ETXTBSY The new process file is a pure procedure (shared text) file that is currently open for writ-
ing or reading by some process.

ENOMEM The new process file requires more virtual memory than is allowed by the imposed max-
imum (getrlimit(2)).

[E2BIG] The number of bytes in the new process file’s argument list is larger than the system-
imposed limit. The limit in the system as released is 10240 bytes (NCARGS in
<sys/param.h>).

EFAULT The new process file is not as long as indicated by the size values in its header.

EFAULT Name , argv, or envp point to an illegal address.

EIO An I/O error occurred while reading from the file system.

Sun Release 3.2 Last change: 16 July 1986 35

EXECVE(2) SYSTEM CALLS EXECVE(2)

CAVEATS
If a program is setuid to a non-super-user, but is executed when the real user ID is super-user, then the pro-
gram has some of the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(5V)

36 Last change: 16 July 1986 Sun Release 3.2

EXIT (2) SYSTEM CALLS EXIT (2)

NAME
_exit — terminate a process
SYNOPSIS
_exit(status)
int status;
DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for example, waiting
for output to drain; a process in this state may not be killed, as it is already dying.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD signal, then
it is notified of the calling process’s termination and the low-order eight bits of status are made available to
it; see wait(2).

The parent process ID of all of the calling process’s existing child processes are also set to 1. This means

that the initialization process (see intro(2)) inherits each of these processes as well. Any stopped children
are restarted with a hangup signal (SIGHUP).

Most C programs will call the library routine exit(3) which performs cleanup actions in the standard 1/0
library before calling _exit .

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), wait(2), exit(3)

Sun Release 3.2 Last change: 16 July 1986 37

FCNTL(2) SYSTEM CALLS FCNTL(2)

NAME
fentl — file control

SYNOPSIS
#include <fentl.h>

res = fentl(fd, cmd, arg)

int res;
int fd, cmd, arg;
DESCRIPTION

Fcndl performs a variety of functions on open descriptors. The argument fd is an open descriptor to be

operated on by c¢md as follows:

F DUPFD Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.

References the same object as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both descriptors share the same file status flags).

The close-on-exec flag associated with the new descriptor is set to remain open across
execve (2) system calls.

F_GETFD Get the close-on-exec flag associated with the descriptor fd. If the low-order bit is 0, the
file will remain open across exec, otherwise the file will be closed upon execution of
exec.

F_SETFD Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1 as above).

F_GETFL Get descriptor status flags, see fcntl(5) for their definitions.

F_SETFL Set descriptor status flags, see fcntl(5) for their definitions.

F GETLK Get a description of the first lock which would block the lock specified in the flock struc-
ture pointed to by arg. The information retrieved overwrites the information in the flock
structure, If no lock is found that would prevent this lock from being created, then the
structure is passed back unchanged except for the lock type which will be set to
F_UNLCK.

F SETLK Set or clear an advisory record lock according to the flock structure pointed to by arg.

F_SETLK is used to establish shared (F_RDLCK) and exclusive (F_WRLCK) locks, or
to remove either type of lock (F_ UNLCK). If the specified lock cannot be applied, fcntl
will return with an error value of -1.

F SETLKW This cmd is the same as F_ SETLK except that if a shared or exclusive lock is blocked by
other locks, the requesting process will sleep until the lock may be applied.

F_ GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG signals;
process groups are returned as negative values.

F SETOWN Set the process or process group to receive SIGIO and SIGURG signals; process groups
are specified by supplying arg as negative, otherwise arg is interpreted as a process ID.

The SIGIO facilities are enabled by setting the FASYNC flag with F_SETFL.

NOTES
Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
exclusive access (i.e., processes may still access files without using advisory locks, possibly resulting in
inconsistencies).

38 Last change: 16 July 1986 Sun Release 3.2

FCNTL (2) SYSTEM CALLS FCNTL(2)

The record locking mechanism allows two types of locks: shared locks (F_RDLCK) and exclusive locks
(F_WRLCK). More than one process may hold a shared lock for a particular segment of a file at any given
time, but multiple exclusive, or both shared and exclusive, locks may not exist simultaneously on any seg-
ment.

In order to claim a shared lock, the descriptor must have been opened with read access. The descriptor on
which an exclusive lock is being placed must have been opened with write access.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type with a cmd of F_SETLK or F_SETLKW; the previous lock will be released and the new lock
applied (possibly after other processes have gained and released the lock).

If the ecmd is F SETLKW and the requested lock cannot be claimed immediately (e.g., another process
holds an exclusive lock that partially or completely overlaps the current request) then the calling process
will block until the lock may be acquired. Processes blocked awaiting a lock may be awakened by signals.

Care should be taken to avoid deadlock situations in applications in which multiple processes perform
blocking locks on a set of common records.

The record that is to be locked or unlocked is described by the flock structure, which is defined in <fcntl.h>

as follows:

struct flock {
short 1 type; /*F_RDLCK,F_ WRLCK, or F_UNLCK */
short 1 whence; /* flag to choose starting offset */
long 1 _start; /#* relative offset, in bytes */
long 1 len; /* length, in bytes; O means lock to EOF */
short 1 pid; /* returned with F_GETLK */

b

The flock structure describes the type (I_type), starting offset (I_whence), relative offset (I_start), and size
(I_len) of the segment of the file to be affected. L_whence must be set to 0, 1, or 2 to indicate that the rela-
tive offset will be measured from the start of the file, current position, or end-of-file, respectively. The pro-
cess id field (I_pid) is only used with the F_ GETLK cmd to return the description of a lock held by another
process.

Locks may start and extend beyond the current end-of-file, but may not be negative relative to the begin-
ning of the file. A lock may be set to always extend to the end-of-file by setting { len to zero (0). If such a
lock also has I_whence and [_start set to zero (0), the entire file will be locked. Changmg or unlocking a
segment from the middle of a larger locked segment leaves two smaller segments at either end. Locking a
segment that is already locked by the calling process causes the old lock type to be removed and the new
lock type to take affect. All locks associated with a file for a given process are removed when the file is
closed or the process terminates. Locks are not inherited by the child process in a fork(2) system call.

In order to maintain consistency in the network case, data must not be cached on client machines. For this
reason, file buffering for an NFS file is turned off when the first lock is attempted on the file. Buffering
will remain off as long as the file is open. Programs that do /O buffering in the user address space, how-
ever, may have inconsistent results (the standard I/O package, for instance, is a common source of unex-
pected buffering).

The advisory record locking capabilities of fcntl are implemented throughout the network by the network
lock daemon; see lockd(8C). If the file server crashes and is rebooted, the lock daemon will attempt to
recover all locks that were associated with that server. If a lock cannot be reclaimed, the process that held
the lock will be issued a SIGLOST signal.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:
F_DUPFD A new descriptor.
F GETFD Value of flag (only the low-order bit is defined).
F _GETFL Value of flags.

Sun Release 3.2 Last change: 16 July 1986 39

FCNTL(2)

F_GETOWN

other

SYSTEM CALLS FCNTL(2)

Value of descriptor owner.
Value other than —1.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Fcntl will fail if one or more of the following are true:

EBADF
EMFILE
EINVAL

EFAULT
EINVAL
EBADF

EAGAIN

EINTR

ENOLCK

SEE ALSO
close(2), execve(2), getdtablesize(2), open(2V), sigvec(2), lockf(3), lockd(8C)

BUGS

40

Fd is not a valid open descriptor.
Cmd is F_DUPFD and the maximum allowed number of descriptors are currently open.

Cmd is F_DUPFD and arg is negative or greater than the maximum allowable number
(see getdtablesize(2)).

Cmd is F_GETLK, F_SETLK, or F_SETLKW and arg points to an invalid address.
Cmdis F_GETLK, F_SETLK, or F_SETLKW and the data arg points to is not valid.

Cmd is F_SETLK or F_SETLKW and the process does not have the appropriate read or
write permissions on the file.

Cmd is F_SETLK, the lock type (I_type) is F_ RDLCK (shared lock), and the segment of
the file to be locked already has an exclusive lock held by another process. This error
will also be returned if the lock type is F_ WRLCK (exclusive lock) and another process
already has the segment locked with either a shared or exclusive lock.

Cmd is F_SETLKW and a signal interrupted the process while it was waiting for the
lock to be granted.

Cmdis F_SETLK or F_SETLKW and there are no more file lock entries available.

File locks obtained through the fcntl mechanism do not interact in any way with those acquired via flock(2).
They do, however, work correctly with the exclusive locks claimed by lockf(3).

F _GETLK returns F_ UNLCK if the requesting process holds the specified lock. Thus, there is no way for
a process to determine if it is still holding a specific lock after catching a SIGLOST signal.

In a network environment, the value of /_pid returned by F_GETLK is next to useless.

Last change: 16 July 1986 Sun Release 3.2

FLOCK(2) SYSTEM CALLS FLOCK (2)

NAME

flock — apply or remove an advisory lock on an open file

SYNOPSIS

#include <sys/file.h>

#define LOCK_SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

flock(fd, operation)
int fd, operation;

/* shared lock */

[* exclusive lock */

/* don’t block when locking */
/+ unlock */

R &=

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A lock is
applied by specifying an operation parameter that is the inclusive OR of LOCK_SH or LOCK EX and,
possibly, LOCK _NB. To unlock an existing lock, the operation should be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee
exclusive access (i.e., processes may still access files without using advisory locks, possibly resulting in
inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. More than one pro-
cess may hold a shared lock for a file at any given time, but multiple exclusive, or both shared and
exclusive, locks may not exist simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate
lock type; the previous lock will be released and the new lock applied (possibly after other processes have
gained and released the lock).

Requesting a lock on an object that is already locked normally causes the caller to block until the lock may
be acquired. If LOCK NB is included in operation, then this will not happen; instead the call will fail and
the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or fork(2) do not
result in multiple instances of a lock, but rather multiple references to a single lock. If a process holding a
lock on a file forks and the child explicitly unlocks the file, the parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned on success, —1 on error, with an error code stored in errno.
ERRORS
The flock call fails if:
EWOULDBLOCK The file is locked and the LOCK NB option was specified.
EBADF The argument fd is an invalid descriptor.
EOPNOTSUPP The argument fd refers to an object other than a file.
SEE ALSO

BUGS

open(2V), close(2), dup(2), execve(2), fentl(2), fork(2), lockf(3)

Locks obtained through the flock mechanism are known only within the system on which they were placed.
Thus, multiple clients may successfully acquire exclusive locks on the same remote file. If this behavior is
not explicitly desired, the fcntl(2) or lockf(3) system calls should be used instead; these make use of the ser-
vices of the network lock manager (see lockd(8C)).

Sun Release 3.2 Last change: 16 July 1986 41

FORK (2) SYSTEM CALLS FORK (2)

NAME
fork — create a new process

SYNOPSIS
pid = fork()
int pid;
DESCRIPTION
Fork creates a new process. The new process (child process) is an exact copy of the calling process except
for the following:
The child process has a unique process ID.
The child process has a different parent process ID (that is, the process ID of the parent process).

The child process has its own copy of the parent’s descriptors. These descriptors reference the
same underlying objects, so that, for instance, file pointers in file objects are shared between the
child and the parent, so that an Iseek(2) on a descriptor in the child process can affect a subse-
quent read or write by the parent. This descriptor copying is also used by the shell to establish
standard input and output for newly created processes as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process ID of the
child process to the parent process. Otherwise, a value of —1 is returned to the parent process, no child pro-
cess is created, and the global variable errno is set to indicate the error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes under execution would be
exceeded. This limit is determined when the system is generated.
EAGAIN The system-imposed limit on the total number of processes under execution by a single
user would be exceeded. This limit is determined when the system is generated.
ENOMEM There is insufficient swap space for the new process.
SEE ALSO

execve(2), wait(2)

42 Last change: 16 July 1986 Sun Release 3.2

FSYNC(2) SYSTEM CALLS FSYNC(2)

NAME
fsync — synchronize a file’s in-core state with that on disk
SYNOPSIS
fsync(fd)
int fd;
DESCRIPTION
fsync moves all modified data and attributes of fd to a permanent storage device: all in-core modified copies
of buffers for the associated file have been written to a disk when the call returns. Note that this is different

than sync(2) which schedules disk I/O for all files (as though an fsync had been done on all files) but
returns before the I/O completes.

fsync should be used by programs which require a file to be in a known state; for example, a program
which contains a simple transaction facility might use it to ensure that all modifications to a file or files
caused by a transaction were recorded on disk.

RETURN VALUE
A 0 value is returned on success. A —1 value indicates an error.

ERRORS

The fsync fails if:

EBADF fd is not a valid descriptor.

EINVAL fd refers to a socket, not a file.

EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO

sync(2), sync(8), cron(8)
BUGS
The current implementation of this call is expensive for large files.

Sun Release 3.2 Last change: 16 July 1986 43

GETDIRENTRIES (2) SYSTEM CALLS GETDIRENTRIES (2)

NAME

getdirentries — gets directory entries in a filesystem independent format

SYNOPSIS

#include <sys/dir.h>

cc = getdirentries(fd, buf, nbytes, basep)
int cc, fd;

char *buf;

int nbytes;

long *basep;

DESCRIPTION

getdirentries attempts to put directory entries from the directory referenced by the file descriptor fd into the
buffer pointed to by buf, in a filesystem independent format. Up to nbytes of data will be transferred.
nbytes must be greater than or equal to the block size associated with the file, see stat(2). Sizes less than
this may cause errors on certain filesystems.

The data in the buffer is a series of direct structures each containing the following entries:

unsigned long d_fileno;

unsigned short d_reclen;

unsigned short d_namlen;

char d_name[MAXNAMELEN + 1]; /* see below */

The d_fileno entry is a number which is unique for each distinct file in the filesystem. Files that are linked
by hard links (see link(2)) have the same d_fileno. The d_reclen entry is the length, in bytes, of the direc-
tory record. The d_name entry contains a null terminated file name. The d_namlen entry specifies the
length of the file name. Thus the actual size of d name may vary from 2 to MAXNAMELEN + 1.

The structures are not necessarily tightly packed. The d_reclen entry may be used as an offset from the
beginning of a direct structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position pointer associated
with fd is set to point to the next block of entries. The pointer is not necessarily incremented by the number
of bytes returned by getdirentries. If the value returned is zero, the end of the directory has been reached.
The current position pointer may be set and retrieved by Iseek(2). getdirentries writes the position of the
block read into the location pointed to by basep. It is not safe to set the current position pointer to any
value other than a value previously returned by Iseek(2) or a value previously returned in the location
pointed to by basep or zero.

RETURN VALUE

If successful, the number of bytes actually transferred is returned. Otherwise, a —1 is returned and the glo-
bal variable errno is set to indicate the error.

ERRORS
getdirentries will fail if one or more of the following are true:
EBADF fd is not a valid file descriptor open for reading.
EFAULT Either buf or basep point outside the allocated address space.
EIO An I/O error occurred while reading from or writing to the file system.
EINTR A read from a slow device was interrupted before any data arrived by the delivery of a
signal.
SEE ALSO

44

open(2V), Iseek(2)

Last change: 3 April 1986 Sun Release 3.2

GETDOMAINNAME (2) SYSTEM CALLS GETDOMAINNAME (2)

NAME

getdomainname, setdomainname — get/set name of current domain
SYNOPSIS

getdomainname(name, namelen)

char *name;

int namelen;

setdomainname(name, namelen)
char *name;
int namelen;
DESCRIPTION
Getdomainname returns the name of the domain for the current processor, as previously set by setdomain-

name. The parameter namelen specifies the size of the name array. The returned name is null-terminated
unless insufficient space is provided.

Setdomainname sets the domain of the host machine to be name, which has length namelen. This call is
restricted to the super-user and is normally used only when the system is bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in common to merge.
Each network would be distinguished by having a different domain name. At the current time, only the
yellow pages service makes use of domains.

RETURN VALUE

If the call succeeds a value of O is returned. If the call fails, then a value of —1 is returned and an error
code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

EFAULT The name parameter gave an invalid address.

EPERM The caller was not the super-user. This error only applies to setdomainname.

BUGS
Domain names are limited to 255 characters.

Sun Release 3.2 Last change: 19 August 1985 45

GETDTABLESIZE (2) SYSTEM CALLS GETDTABLESIZE(2)

NAME
getdtablesize — get descriptor table size

SYNOPSIS
nds = getdtablesize()
int nds;

DESCRIPTION
Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots. The entries in
the descriptor table are numbered with small integers starting at 0. The call getdtablesize returns the size of
this table.

SEE ALSO
close(2), dup(2), open(2)

46 Last change: 16 July 1986 Sun Release 3.2

GETGID (2) SYSTEM CALLS GETGID (2)

NAME
getgid, getegid — get group identity

SYNOPSIS
gid = getgid()
int gid;
egid = getegid()
int egid;
DESCRIPTION
Getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.
The effective group ID is more transient, and determines additional access permission during execution of
a "set-group-ID" process, and it is for such processes that getgid is most useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

Sun Release 3.2 Last change: 12 February 1983 47

GETGROUPS (2) SYSTEM CALLS GETGROUPS (2)

NAME
getgroups, setgroups — get or set group access list
SYNOPSIS
#include <sys/param.h>
ngroups = getgroups(gidsetlen, gidset)
int ngroups, gidsetlen, *gidset;
setgroups(ngroups, gidset)
int ngroups, *gidset;
DESCRIPTION
Getgroups
getgroups gets the current group access list of the user process and stores it in the array gidset. The param-
eter gidsetlen indicates the number of entries that may be placed in gidset. getgroups returns the actual
number of entries placed in the gidset array. No more than NGROUPS, as defined in <sys/param.h>, will
ever be returned.
Setgroups
setgroups sets the group access list of the current user process according to the array gidset. The parameter

ngroups indicates the number of entries in the array and must be no more than NGROUPS, as defined in
<sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE
Getgroups
A return value of greater than zero indicates the number of entries placed in the gidset array. A return
value of —1 indicates that an error occurred, and the error code is stored in the global variable errno.

Setgroups
A 0 value is returned on success, —1 on error, with a error code stored in errno.

ERRORS
Either call fails if:

EFAULT The address specified for gidset is outside the process address space.
getgroup fails if:

EINVAL The argument gidsetlen is smaller than the number of groups in the group set.
setgroups fails if:

EPERM The caller is not the super-user.

SEE ALSO
initgroups(3)

48 Last change: 16 July 1986 Sun Release 3.2

GETHOSTID (2) SYSTEM CALLS GETHOSTID (2)

NAME

gethostid — get unique identifier of current host
SYNOPSIS

hostid = gethestid()

long hostid;
DESCRIPTION

Gethostid returns the 32-bit identifier for the current host, which should be unique across all hosts. On the
Sun, this number is taken from the CPU board’s ID PROM.

SEE ALSO
hostid(1)

Sun Release 3.2 Last change: 16 July 1986 49

GETHOSTNAME (2) SYSTEM CALLS GETHOSTNAME (2)

NAME
gethostname, sethostname — get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by sethostname.

The parameter namelen specifies the size of the name array. The returned name is null-terminated unless
insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This call is res-
tricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of O is returned. If the call fails, then a value of —1 is returned and an error
code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

EFAULT The name or namelen parameter gave an invalid address.

EPERM The caller was not the super-user. Note that this error only applies to sethostname .
SEE ALSO

gethostid(2)

BUGS
Host names are limited to 31 characters.

50 Last change: 16 July 1986 Sun Release 3.2

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

NAME
getitimer, setitimer — get/set value of interval timer
SYNOPSIS
#include <sys/time.h>
#define ITTMER_REAL 0 /# real time intervals */
#define ITTMER_VIRTUAL 1 /* virtual time intervals */
#define ITTMER_PROF 2 /* user and system virtual time */

getitimer(which, value)

int which;

struct itimerval *value;
setitimer(which, value, ovalue)
int which;

struct itimerval *value, *ovalue;

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in <sys/time.h>. The getitimer call
returns the current value for the timer specified in which, while the setitimer call sets the value of a timer
(optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it _interval; /* timer interval */
struct timeval it_value; /* current value */
b
If it value is non-zero, it indicates the time to the next timer expiration. If it interval is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. Setting it_value to 0 disables a

timer. Setting it interval to O causes a timer to be disabled after its next expiration (assuming it _value is
non-zero).

Time values smaller than the resolution -f the system clock are rounded up to this resolution.

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this timer
expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process is execut-
ing. A SIGVTALRM signal is delivered when it expires.

The ITIMER PROF timer decrements both in process virtual time and when the system is running on
behalf of the process. It is designed to be used by interpreters in statistically profiling the execution of
interpreted programs. Each time the ITIMER _PROF timer expires, the SIGPROF signal is delivered.
Because this signal may interrupt in-progress system calls, programs using this timer must be prepared to
restart interrupted system calls.

Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time value to
zero, timerisset tests if a time value is non-zero, and timercmp compares two time values (beware that >=
and <= do not work with this macro).

RETURN VALUE

If the calls succeed, a value of 0 is returned. If an error occurs, the value —1 is returned, and a more precise
error code is placed in the global variable errno.

ERRORS

The possible errors are:

EFAULT The value or ovalue parameter specified a bad address.

Sun Release 3.2 Last change: 19 August 1985 51

GETITIMER (2) SYSTEM CALLS GETITIMER (2)

EINVAL A value parameter specified a time which was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

52 Last change: 19 August 1985 Sun Release 3.2

GETPAGESIZE (2) SYSTEM CALLS GETPAGESIZE (2)

NAME
getpagesize — get system page size

SYNOPSIS
pagesize = getpagesize()
int pagesize;
DESCRIPTION
Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many of the
memory management calls.
The page size is a system page size and may not be the same as the underlying hardware page size.

SEE ALSO
sbrk(2), pagesize(1)

Sun Release 3.2 Last change: 29 August 1983 53

GETPEERNAME (2) SYSTEM CALLS GETPEERNAME (2)

NAME

getpeername — get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter should be initial-
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name
returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

EBADF The argument s is not a valid descriptor.
ENOTSOCK The argument s is a file, not a socket.
ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to perform the operation.
EFAULT The name parameter points to memory not in a valid part of the process address space.
SEE ALSO

bind(2), socket(2), getsockname(2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero length name.

54 Last change: 20 August 1985 Sun Release 3.2

GETPID(2) SYSTEM CALLS GETPID (2)

NAME

getpid, getppid — get process identification
SYNOPSIS

pid = getpid()

int pid;

ppid = getppid()

int ppid;
DESCRIPTION

Getpid returns the process ID of the current process. Most often it is used to generate uniquely-named tem-
porary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

Sun Release 3.2 Last change: 16 July 1986 55

GETPRIORITY (2) SYSTEM CALLS GETPRIORITY (2)

NAME

getpriority, setpriority — get/set program scheduling priority

SYNOPSIS

#include <sys/resource.h>
prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which and who is obtained
with the getpriority call and set with the setpriority call. which is one of PRIO_PROCESS, PRIO_PGRP, or
PRIO_USER, and who is interpreted relative to which (a process identifier for PRIO_PROCESS, process
group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value of who denotes the current
process, process group, or user. prio is a value in the range —20 to 20. The default priority is 0; lower
priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the specified
processes. The setpriority call sets the priorities of all of the specified processes to the specified value. If
the specified value is less than —20, a value of —20 is used; if it is greater than 20, a value of 20 is used.
Only the super-user may lower priorities.

RETURN VALUE

Since getpriority can legitimately return the value —1, it is necessary to clear the external variable errno
prior to the call, then check it afterward to determine if a —1 is an error or a legitimate value. The setprior-
ity call returns 0 if there is no error, or —1 if there is.

ERRORS

getpriority and setpriority may return one of the following errors:
ESRCH No process was located using the which and who values specified.
EINVAL which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the following errors returned:

EPERM A process was located, but neither its effective nor real user ID matched the effective
user ID of the caller, and neither the effective nor the real user ID of the process execut-
ing the setpriority was super-user.

EACCES The call to setpriority would have changed a process’ priority to a value lower than its
current value, and the effective user ID of the process executing the call was not that of
the super-user.

SEE ALSO

BUGS

56

nice(1), fork(2), renice(8)

It is not possible for the process executing setpriority() to lower any other process down to its current
priority, without requiring super-user privileges.

Last change: 16 July 1986 Sun Release 3.2

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

NAME

getrlimit, setrlimit — control maximum system resource consumption

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rlp)
int resource;
struct rlimit *rlp;

setrlimit(resource, rlp)
int resource;
struct rlimit *rlp;

DESCRIPTION

Limits on the consumption of system resources by the current process and each process it creates may be
obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:
RLIMIT CPU the maximum amount of cpu time (in seconds) to be used by each process.
RLIMIT FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines how far a
program may extend its break with the sbrk(2) system call.

RLIMIT STACK the maximum size, in bytes, of the stack segment for a process; this defines how far a
program’s stack segment may be extended automatically by the system.

RLIMIT CORE the largest size, in bytes, of a core file that may be created.

RLIMIT RSS the maximum size, in bytes, to which a process’s resident set size may grow. This
imposes a limit on the amount of physical memory to be given to a process; if
memory is tight, the system will prefer to take memory from processes that are
exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and
soft limits on a resource,

struct rlimit {
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */

b

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within the range
from O to rlim_max or (irreversibly) lower rlim_max.

An ““infinite’” value for a limit is defined as RLIM_INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(l).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way:
a brk or sbrk call will fail if the data space limit is reached, or the process will be killed when the stack
limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file /O operation which would create a file that is too large will cause a signal SIGXFSZ to be gen-
erated; this normally terminates the process, but may be caught. When the soft CPU time limit is exceeded,
a signal SIGXCPU is sent to the offending process.

Sun Release 3.2 Last change: 16 July 1986 57

GETRLIMIT (2) SYSTEM CALLS GETRLIMIT (2)

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A return value
of —1 indicates that an error occurred, and an error code is stored in the global location errno.

ERRORS
The possible errors are:
EFAULT The address specified for rip is invalid.
EPERM The limit specified to setrlimit would have raised the maximum limit value, and the
caller is not the super-user.
SEE ALSO

csh(1), quota(2)

BUGS
There should be limit and unlimit commands in sh(1) as well as in csh.

58 Last change: 16 July 1986 Sun Release 3.2

GETRUSAGE (2) SYSTEM CALLS GETRUSAGE (2)

NAME

getrusage — get information about resource utilization
SYNOPSIS

#include <sys/time.h>

#include <sys/resource.h>

getrusage(who, rusage)

int who;

struct rusage *rusage;
DESCRIPTION

getrusage returns information about the resources utilized by the current process, or all its terminated child
processes. The who parameter is one of RUSAGE_SELF or RUSAGE CHILDREN. The buffer to which
rusage points will be filled in with the following structure:

struct rusage {

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

int Tu_Maxrss;

int Tu_iXrss; /* integral shared text memory size */

int ru_idrss; /* integral unshared data size */

int ru_isrss; /* integral unshared stack size */
int ru_minfit; /* page reclaims */

int ru_majflt; [* page faults */

int ru_nswap; /* swaps */

int ru_inblock; /* block input operations */

int ru_oublock; /* block output operations */

int ru_msgsnd; /* messages sent */

int ru_msgrev; /* messages received */

int ru_nsignals; /* signals received */

int Tu_nvcsw; /* voluntary context switches */
int ru_nivcsw; /* involuntary context switches */

b
The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode. Time is given in
seconds:microseconds.

ru_stime the total amount of time spent in the system executing on behalf of the process(es).
Time is given in seconds:microseconds.

fu_maxrss the maximum resident set size utilized. Size is given in pages (the size of a page, in
bytes, is given by the getpagesize (2) system call).

Tu_ixrss an ‘“‘integral’’ value indicating the amount of memory used by the text segment which
was also shared among other processes. This value is expressed in units of pages *
clock ticks (1 tick = 1/50 second). The value is calculated by summing the number of
shared memory pages in use each time the internal system clock ticks, and then averag-
ing over 1 second intervals.

ru_idrss an integral value of the amount of unshared memory residing in the data segment of a
process. The value is given in pages * clock ticks.

ru_isrss an integral value of the amount of unshared memory residing in the stack segment of a
process. The value is given in pages * clock ticks.

ru_minflt the number of page faults serviced without any I/O activity; here /O activity is avoided
by “‘reclaiming’’ a page frame from the list of pages awaiting reallocation.

Sun Release 3.2 Last change: 16 July 1986 59

GETRUSAGE (2) SYSTEM CALLS GETRUSAGE(2)

ru_majfit the number of page faults serviced which required I/O activity.

ru_nswap the number of times a process was ‘‘swapped’’ out of main memory.

ru_inblock the number of times the file system had to perform input.

ru_outblock the number of times the file system had to perform output.

ru_msgsnd the number of messages sent over sockets.

ru_msgrcv the number of messages received from sockets.

ru_nsignals the number of signals delivered.

Tu_NvCsw the number of times a context switch resulted due to a process voluntarily giving up the
processor before its time slice was completed (usually to await availability of a
Tesource).

Tu_Nivcsw the number of times a context switch resulted due to a higher priority process becoming

runnable or because the current process exceeded its time slice.

NOTES
The numbers ru_inblock and ru_outblock account only for real I/O; data supplied by the caching mechan-
ism is charged only to the first process to read or write the data.

ERRORS
getrusage will fail if:
EINVAL The who parameter is not a valid value.
EFAULT The address specified by the rusage argument is not in a valid portion of the process’s
address space.
SEE ALSO

gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process which has not yet terminated.

60 Last change: 16 July 1986 Sun Release 3.2

GETSOCKNAME (2) SYSTEM CALLS GETSOCKNAME (2)

NAME
getsockname — get socket name

SYNOPSIS
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter should be initial-
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name

returned (in bytes).
DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS

The call succeeds unless:

EBADF The argument s is not a valid descriptor.

ENOTSOCK The argument s is a file, not a socket.

ENOBUFS Insufficient resources were available in the system to perform the operation.

EFAULT The name parameter points to memory not in a valid part of the process address space.
SEE ALSO

bind(2), socket(2), getpeername(2)
BUGS
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero length name.

Sun Release 3.2 Last change: 24 October 1983 61

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

NAME

getsockopt, setsockopt — get and set options on sockets

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int optlen;

DESCRIPTION

getsockopt and setsockopt manipulate options associated with a socket. Options may exist at multiple pro-
tocol levels; they are always present at the uppermost *‘socket’’ level.

When manipulating socket options the level at which the option resides and the name of the option must be
specified. To manipulate options at the ‘‘socket’’ level, level is specified as SOL__SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is supplied.
For example, to indicate an option is to be interpreted by the TCP protocol, level should be set to the proto-
col number of TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested option(s) are to be returned. For getsockopt, optlen is
a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on
return to indicate the actual size of the value returned. If no option value is to be supplied or returned,
optval may be supplied as O.

optname and any specified options are passed uninterpreted to the appropriate protocol module for interpre-
tation. The include file <sys/socket.h> contains definitions for ‘‘socket’’ level options; see socket(2).
Options at other protocol levels vary in format and name, consult the appropriate entries in (4P).

RETURN VALUE

A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:
EBADF The argument s is not a valid descriptor.
ENOTSOCK The argument s is a file, not a socket.
ENOPROTOOPT The option is unknown.
EFAULT The address pointed to by optval is not in a valid part of the process address space.
For getsockopt, this error may also be returned if optlen is not in a valid part of the
process address space.
SEE ALSO

62

socket(2), getprotoent(3N)

Last change: 3 April 1986 Sun Release 3.2

GETTIMEOFDAY (2) SYSTEM CALLS GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday — get/set date and time
SYNOPSIS
#include <sys/time.h>
gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;
settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;
DESCRIPTION

The system’s notion of the current Greenwich time and the current time zone is obtained with the get-
timeofday call, and set with the settimeofday call. The time is expressed in seconds and microseconds since
midnight (O hour), January 1, 1970. The resolution of the system clock is hardware dependent, and the
time may be updated continuously or in “‘ticks.”’

The structures pointed to by p and rzp are defined in <sys/time.h> as:
struct timeval {

long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
b
struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /#* type of dst correction to apply */

b
The timezone structure indicates the local time zone (measured in minutes of time westward from

Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

If tzp is a zero pointer, the timezone information is not returned or set.
Only the super-user may set the time of day or time zone.

RETURN
A O return value indicates that the call succeeded. A —1 return value indicates an error occurred, and in this
case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

EFAULT An argument address referenced invalid memory.
EPERM A user other than the super-user attempted to set the time.
SEE ALSO

date(1), adjtime(2), ctime(3)
BUGS

Time is never correct enough to believe the microsecond values. There should a mechanism by which, at
least, local clusters of systems might synchronize their clocks to millisecond granularity.

Sun Release 3.2 Last change: 16 July 1986 63

GETUID (2) SYSTEM CALLS GETUID (2)

NAME
getuid, geteuid — get user identity
SYNOPSIS
uid = getuid()
int uid;
euid = geteuid()
int euid;
DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.
The real user ID identifies the person who is logged in. The effective user ID gives the process additional
permissions during execution of ‘‘set-user-ID’’ mode processes, which use getuid to determine the real-
user-id of the process that invoked them.
SEE ALSO
getgid(2), setreuid(2)

64 Last change: 16 July 1986 Sun Release 3.2

IOCTL(2) SYSTEM CALLS IOCTL.(2)

NAME
ioctl — control device
SYNOPSIS
#include <sys/ioctl.h>
ioctl(d, request, argp)
int d, request;
char *argp;
DESCRIPTION

Ioctl performs a variety of functions on open descriptors. In particular, many operating characteristics of
character special files (e.g. terminals) may be controlled with ioct! requests. The writeups of various dev-
ices in section 4 discuss how ioct! applies to them.

An ioctl request has encoded in it whether the argument is an ‘‘in’’ parameter or ‘‘out’’ parameter, and the

size of the argument argp in bytes. Macros and defines used in specifying an ioctl request are located in
the file <sysfioctl.h>.

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate the error.
If no error has occurred (using a STANDARD device driver), a value of 0 is returned.

ERRORS
Ioctl will fail if one or more of the following are true:

EBADF D is not a valid descriptor.
ENOTTY D is not associated with a character special device.
ENOTTY The specified request does not apply to the kind of object that the descriptor d refer-
ences.
EINVAL Request or argp is not valid.
SEE ALSO

execve(2), fentl(2), mtio(4), tty(4)

Sun Release 3.2 Last change: 16 July 1986 65

KILL (2) SYSTEM CALLS KILL(2)

NAME

kill — send signal to a process

SYNOPSIS

kill(pid, sig)
int pid, sig;

DESCRIPTION

Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of the signals
specified in sigvec(2), or it may be 0, in which case error checking is performed but no signal is actually
sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call is restricted
to the super-user. A single exception is the signal SIGCONT, which may always be sent to any descendant
of the current process.

If the process number is 0, the signal is sent to all processes in the sender’s process group; this is a variant
of killpg (2).

If the process number is —1 and the user is the super-user, the signal is broadcast universally except to sys-
tem processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS

Kill will fail and no signal will be sent if any of the following occur:

EINVAL Sig is not a valid signal number.

ESRCH No process can be found corresponding to that specified by pid.

EPERM The sending process is not the super-user and its effective user id does not match the

effective user-id of the receiving process.

SEE ALSO

66

getpid(2), getpgrp(2V), killpg(2), sigvec(2)

Last change: 16 July 1986 Sun Release 3.2

KILLPG (2) SYSTEM CALLS KILLPG (2)

NAME
killpg — send signal to a process group
SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;
DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.
The sending process and members of the process group must have the same effective user ID, or the sender

must have an effective user ID of super-user. As a single special case the continue signal SIGCONT may
be sent to any process that is a descendant of the current process.

RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise, a value of —1 is returned and the global
variable errno is set to indicate the error.

ERRORS
Killpg will fail and no signal will be sent if any of the following occur:
EINVAL Sig is not a valid signal number.
ESRCH No process were found in the specified process group.
EPERM The sending process is not the super-user and one or more of the target processes has an
effective user ID different from that of the sending process.
SEE ALSO

kill(2), getpgrp(2V), sigvec(2)

Sun Release 3.2 Last change: 16 July 1986 67

LINK (2) SYSTEM CALLS LINK (2)

NAME
link — make a hard link to a file
SYNOPSIS
link(namel, name2)
char *namel, *name2;
DESCRIPTION
namel points to a path name naming an existing file. name2 points to a path name naming a new directory

entry to be created. A hard link to the first file is created; the link has the name pointed to by name2. The
file named by namel must exist.

With hard links, both files must be on the same file system. Unless the caller is the super-user, the file
named by namel must not be a directory. Both the old and the new lirnk share equal access and rights to
the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS
link will fail and no link will be created if one or more of the following are true:
ENOTDIR A component of the path prefix of namel or name2 is not a directory.
EINVAL namel or name2 contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of namel or name2 exceeds 255 characters, or the length of
namel or name2 exceeds 1023 characters.

ENOENT A component of the path prefix of namel or name2 does not exist.

EACCES Search permission is denied for a component of the path prefix of namel or name2.

EACCES The requested link requires writing in a directory for which write permission is denied.

ELOOP Too many symbolic links were encountered in translating name! or name2.

ENOENT The file referred to by namel does not exist.

EEXIST The link referred to by name2 does exist.

EPERM The file named by namel is a directory and the effective user ID is not super-user.

EXDEV The link named by name2 and the file named by namel are on different file systems.

ENOSPC The directory in which the entry for the new link is being placed cannot be extended
because there is no space left on the file system containing the directory.

EDQUOT The directory in which the entry for the new link is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

EIO An I/O error occurred while reading from or writing to the file system to make the direc-
tory entry.

EROFS The requested link requires writing in a directory on a read-only file system.

EFAULT One of the path names specified is outside the process’s allocated address space.

SEE ALSO

symlink(2), unlink(2)

68 Last change: 16 July 1986 Sun Release 3.2

LISTEN (2) SYSTEM CALLS LISTEN (2)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;
DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for incoming connections is

specified with listen(2) and then the connections are accepted with accept(2). The listen call applies only
to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a
connection request arrives with the queue full the client will receive an error with an indication of
ECONNREFUSED.

RETURN VALUE
A O return value indicates success; —1 indicates an error.

ERRORS
The call fails if:

EBADF The argument s is not a valid descriptor.
ENOTSOCK The argument s is not a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen.

SEE ALSO
accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

Sun Release 3.2 Last change: 27 February 1985 69

LSEEK (2) SYSTEM CALLS LSEEK(2)

NAME

Iseek, tell — move read/write pointer
SYNOPSIS

#include <sys/file.h>

pos = Iseek(d, offset, whence)

long pos;

int d;

long offset;

int whence;

DESCRIPTION

The descriptor d refers to a file or device open for reading and/or writing. Iseek sets the file pointer of d as

follows:
If whence is L_SET, the pointer is set to offset bytes.
If whence is L_INCR, the pointer is set to its current location plus offset.
If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes from beginning of the file
is returned. Some devices are incapable of seeking. The value of the pointer associated with such a device
is undefined.

The obsolete function tell(fildes) is identical to Iseek(fildes, OL, L_INCR).

NOTES
Seeking far beyond the end of a file, then writing, creates a gap or ‘‘hole’’, which occupies no physical
space and reads as zeros.

RETURN VALUE

Upon successful completion, a non-negative (long) integer, the current file pointer value, is returned. Oth-
erwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Iseek will fail and the file pointer will remain unchanged if:
EBADF Fildes is not an open file descriptor.
ESPIPE Fildes is associated with a pipe or a socket.
EINVAL whence is not a proper value.

SEE ALSO

dup(2), open(2V)

70 Last change: S June 1986 Sun Release 3.2

MKDIR (2) SYSTEM CALLS MKDIR (2)

NAME
mkdir — make a directory file
SYNOPSIS
mkdir(path, mode)
char *path;
int mode;
DESCRIPTION
mkdir creates a new directory file with name path. The mode of the new file is initialized from mode. The
protection part of the mode is modified by the process’s mode mask; see umask (2).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is set to that of
the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits set in the
process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A —1 return value indicates an error, and an error code is stored in

errno.
ERRORS

mkdir will fail and no directory will be created if:

ENOTDIR A component of the path prefix of path is not a directory.

EINVAL path contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT A component of the path prefix of path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

EROFS The file referred to by path resides on a read-only file system.

EEXIST The file referred to by path exists.

ENOSPC The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

ENOSPC The new directory cannot be created because there is no space left on the file system
which will contain the directory.

ENOSPC There are no free inodes on the file system on which the file is being created.

EDQUOT The directory in which the entry for the new file is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

EDQUOT The new directory cannot be created because the user’s quota of disk blocks on the file
system which will contain the directory has been exhausted.

EDQUOT The user’s quota of inodes on the file system on which the file is being created has been
exhausted.

EIO An J/O error occurred while reading from or writing to the file system.

EFAULT Path points outside the process’s allocated address space.

Sun Release 3.2 Last change: 16 July 1986 71

MKDIR (2) SYSTEM CALLS MKDIR (2)

SEE ALSO
chmod(2), stat(2), rmdir(2), umask(2)

72 Last change: 16 July 1986 Sun Release 3.2

MKNOD (2) SYSTEM CALLS MKNOD (2)

NAME
mknod — make a special file

SYNOPSIS
#include <sys/stat.h>
mknod(path, mode, dev)
char *path;
int mode, dev;
DESCRIPTION

mknod creates a new file named by the path name pointed to by path. The mode of the new file (including
file type bits) is initialized from mode. The values of the file type bits which are permitted are:

#define S_IFCHR 0020000 /* character special */
#define S _IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */

#define S_IFIFO 0010000 /* FIFO special */

Values of mode other than those above are undefined and should not be used.
The protection part of the mode is modified by the process’s mode mask (see umask(2)).

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is set to the
group ID of the parent directory.

If mode indicates a block or character special file, dev is a configuration dependent specification of a char-
acter or block I/O device. If mode does not indicate a block special or character special device, dev is
ignored.

mknod may be invoked only by the super-user for file types other than FIFO special.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS
mknod fails and the file mode remains unchanged if:

ENOTDIR A component of the path prefix of path is not a directory.
EINVAL path contains a character with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT A component of the path prefix of path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

ELOOP Too many symbolic links were encountered in translating path.

EPERM An attempt was made to create a file of type other than FIFO special and the process’s
effective user ID is not super-user.

EIO An /O error occurred while reading from or writing to the file system.

EISDIR The specified mode would have created a directory.

ENOSPC The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

ENOSPC There are no free inodes on the file system on which the file is being created.

EDQUOT The directory in which the entry for the new file is being placed cannot be extended

Sun Release 3.2 Last change: 16 July 1986 73

MKNOD (2) SYSTEM CALLS MKNOD (2)

because the user’s quota of disk blocks on the file system containing the directory has

been exhausted.

EDQUOT The user’s quota of inodes on the file system on which the node is being created has
been exhausted.

EROFS The file referred to by path resides on a read-only file system.

EEXIST The file referred to by path exists.

EFAULT path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat(2), umask(2)

74 Last change: 16 July 1986 Sun Release 3.2

MMAP(2) SYSTEM CALLS MMAP(2)

NAME
mmap, munmap — map or unmap pages of memory

SYNOPSIS
#include <sys/mman.h>
#include <sys/types.h>

mmap(addr, len, prot, share, fd, off)
caddr_t addr; int len, prot, share, fd; off_t off;

munmap (addr, len)
caddr_t addr; int len;

DESCRIPTION
Mmap
mmap maps pages of memory from the memory device associated with the file fd into the address space of
the calling process, one page at a time. Pages are mapped from the memory device, beginning at off, and
into the caller’s address space, beginning at addr, and continuing for len bytes. fd is a file descriptor
obtained by opening the device from which to map pages. Only character-special devices are currently
supported.

share specifies whether modifications made to mapped-in copies of pages are to be kept "private" or are to
be "shared" with other references. Currently, it must be set to MAP_SHARED.

The parameter prot specifies the read/write accessibility of the mapped pages. The addr and len parame-
ters, and the sum of the current position in fd and off parameters, must be multiples of the page size (found
using the getpagesize (2) call). For this reason, local memory space beginning at addr should be allocated
using valloc(2), which supplies a buffer with proper page alignment.

When mapping an area of 128K or more, the kernel releases the swap area associated with it. Conse-
quently, when the pages are unmapped, they are marked invalid; the next call to valloc (2) returns the
invalid pages, and any attempt to refer to those pages results in a segmentation violation. To avoid this, do
not free(2) such large areas; instead, call valloc(2) again without calling free (2).

All pages are automatically unmapped when fd is closed. Specific pages can be unmapped explicitly using
munmap.

mmap can sometimes be used to install memory-mapped devices without writing a device driver. How-
ever, this does not always work. In particular, devices that are mmap’ed into user space and then accessed
by user programs will see those accesses in user mode. If the device contains registers that must be
accessed in supervisor mode, mmap cannot be used to drive it. (See Writing Device Drivers for the Sun
Workstation for more information.)

Munmap
munmap unmaps previously mapped pages starting at addr and continuing for len bytes. Unmapped pages
refer, once again, to private pages within the caller’s address space. Pages are initialized to zero, unless len
is greater than or equal to 128K, in which case the pages are marked invalid.

RETURN VALUE
Each call returns O on success, —1 on failure.

ERRORS
Both calls fail when:

EINVAL The argument address or length is not a multiple of the page size as returned by
getpagesize (2),0r the length is negative.

EINVAL The entire range of pages specified in the call is not part of data space.
In addition mmap fails when:

EINVAL The specified fd does not refer to a character special device which supports mapping (e.g. a
frame buffer).

Sun Release 3.2 Last change: 11 July 1986 75

MMAP(2) SYSTEM CALLS MMAP(2)

EINVAL The specified fd is not open for reading and read access is requested, or not open for writing
when write access is requested.

EINVAL The sharing mode was not specified as MAP_SHARED.

SEE ALSO
getpagesize(2), munmap(2), close(2)

BUGS
The kernel may panic when more than 128k of memory has been unmapped with munmap (1) and mmap is

subsequently called with an incorrect length value.

If 128K of memory, or more, is unmapped as a result of closing fd, the resulting invalid pages cannot be
reclaimed within the life of the calling process.

76 Last change: 11 July 1986 Sun Release 3.2

MOUNT (2) SYSTEM CALLS MOUNT (2)

NAME
mount — mount file system

SYNOPSIS
#include <sys/mount.h>

mount(type, dir, flags, data)
int type;

char *dir;

int flags;

caddr_t data;

DESCRIPTION
mount attaches a file system to a directory. After a successful return, references to directory dir will refer
to the root directory on the newly mounted file system. dir is a pointer to a null-terminated string contain-

ing a path name. dir must exist already, and must be a directory. Its old contents are inaccessible while the
file system is mounted.

mount may be invoked only by the super-user.

The flags argument determines whether the file system can be written on, and if set-uid execution is
allowed. Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

type indicates the type of the filesystem. It must be one of the types defined in mount.h. data is a pointer
to a structure which contains the type specific arguments to mount. Below is a list of the filesystem types
supported and the type specific arguments to each:

MOUNT_UFS
struct ufs_args {
char *fspec; /* Block special file to mount */
b
MOUNT_NFS
#include <nfs/nfs.h>
#include <netinet/in.h>

struct nfs_args {
struct sockaddr_in *addr; /* file server address */

fhandle t =*fh; /* File handle to be mounted */
int flags; /* flags */

int wsize; /* write size in bytes */

int 1size; /* read size in bytes */

int timeo; /* initial timeout in .1 secs */
int retrans; /* times to retry send */

¥
RETURN VALUE

mount returns 0 if the action occurred, and —1 if fspec is inaccessible or not an appropriate file, if name
does not exist, if fspec is already mounted, if dir is in use, or if there are already too many file systems

mounted.
ERRORS
mount fails when one of the following occurs:
EPERM The caller is not the super-user.
ENOTBLK fspec is not a block device.
ENXIO The major device number of fspec is out of range (this indicates no device driver exists
for the associated hardware).
EBUSY dir is not a directory, or another process currently holds a reference to it.

Sun Release 3.2 Last change: 16 July 1986 77

MOUNT((2) SYSTEM CALLS MOUNT (2)

EBUSY No space remains in the mount table.

EBUSY The super block for the file system had a bad magic number or an out of range block
size.

EBUSY Not enough memory was available to read the cylinder group information for the file
system.

EIO An J/O error occurred while reading the super block or cylinder group information.

ENOTDIR A component of the path prefix in fspec or dir is not a directory.

EINVAL The path name of fspec or dir contains a character with the high-order bit set.

ENAMETOOLONG

The length of a component of the path name of fspec or dir exceeds 255 characters, or
the length of the entire path name of fspec or dir exceeds 1023 characters.

ENOENT fspec or dir does not exist.
ENOTDIR The file named by dir is not a directory.
EACCES Search permission is denied for a component of the path prefix of fspec or dir.
EFAULT Jfspec or dir points outside the process’s allocated address space.
ELOOP Too many symbolic links were encountered in translating the path name of fspec or dir.
EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO

unmount(2), mount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

78 Last change: 16 July 1986 Sun Release 3.2

MSGCTL(2)

SYSTEM CALLS MSGCTL(2)

NAME
msgctl — message control operations
SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl (msqid, cmd, buf)

int msqid, cmd;

struct msqid_ds *buf;

DESCRIPTION

msgctl provides a variety of message control operations as specified by cmd. The following cmds are

available:

IPC_STAT Place the current value of each member of the data structure associated with msqid into
the structure pointed to by buf. The contents of this structure are defined in intro(2).
{READ}

IPC_SET Set the value of the following members of the data structure associated with msqid to the
corresponding value found in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /* only low 9 bits */

msg_gbytes
This ¢cmd can only be executed by a process that has an effective user ID equal to either
that of super user or to the value of msg_perm.uid in the data structure associated with
msqid. Only super user can raise the value of msg_gbytes.

IPC_RMID Remove the message queue identifier specified by msqid from the system and destroy
the message queue and data structure associated with it. This cmd can only be executed
by a process that has an effective user ID equal to either that of super user or to the value
of msg_perm.uid in the data structure associated with msgid.

ERRORS

msgctl will fail if;

EINVAL msqid is not a valid message queue identifier.

EINVAL cmd is not a valid command.

EACCES cmd is equal to IPC_STAT and {READ} operation permission is denied to the calling
process (see intro(2)).

EPERM cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the calling process is
not equal to that of super user and it is not equal to the value of msg_perm.uid in the
data structure associated with msqid.

EPERM cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg_qgbytes, and the effective user ID of the calling process is not equal to that of super
user.

EFAULT Buf points to an illegal address.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

SEE ALSO

intro(2), msgget(2), msgop(2)

Sun Release 3.2

Last change: 29 April 1986 79

MSGGET(2) SYSTEM CALLS MSGGET (2)

NAME
msgget — get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data structure (see intro(2)) are created for
key if one of the following are true:

. key is equal to IPC_PRIVATE.

. key does not already have a message queue identifier associated with it, and (msgflg &
IPC_CREAT) is “‘true’’.

Upon creation, the data structure associated with the new message queue identifier is initialized as follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to the effec-
tive user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg.
msg_qnum, msg_lIspid, msg_Irpid, msg_stime, and msg_rtime are set equal to 0.
msg_ctime is set equal to the current time.

msg_gbytes is set equal to the system limit.

ERRORS

msgget will fail if one or more of the following are true:

EACCES A message queue identifier exists for key, but operation permission (see intro(2)) as
specified by the low-order 9 bits of msgflg would not be granted.

ENOENT A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is
“false’’.

ENOSPC A message queue identifier is to be created but the system-imposed limit on the max-
imum number of allowed message queue identifiers system wide would be exceeded.

EEXIST A message queue identifier exists for key but ((msgflg & IPC_CREAT) & (msgflg &

IPC_EXCL)) is “‘true’’.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a message queue identifier, is returned. Oth-
erwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2)

80 Last change: 29 April 1986 Sun Release 3.2

MSGOP(2) SYSTEM CALLS MSGOP (2)

NAME
msgop, msgsnd, msgrcv — message operations
SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgfig;
int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;
DESCRIPTION
msgsnd is used to send a message to the queue associated with the message queue identifier specified by

msgid. {WRITE} msgp points to a structure containing the message. This structure is composed of the fol-
lowing members:

long mtype; /* message type */
char mtext[]; /* message text */

mtype is a positive integer that can be used by the receiving process for message selection (see msgrcv
below). mtext is any text of length msgsz bytes. msgsz can range from O to a system-imposed maximum,

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes (see intro(2)).

The total number of messages on all queues system-wide is equal to the system-imposed limit.
These actions are as follows:

If (msgflg & TPC_NOWAIT) is ‘‘true’’, the message will not be sent and the calling process will
return immediately.

If (msgflg & TPC_NOWAIT) is “‘false”, the calling process will suspend execution until one of the
following occurs:

The condition responsible for the suspension no longer exists, in which case the message
is sent.

msqid is removed from the system (see msgcti(2)). When this occurs, errno is set equal
to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In this case the message is not
sent and the calling process resumes execution in the manner prescribed in signal(2)).

msgsnd will fail and no message will be sent if one or more of the following are true:

EINVAL msqid is not a valid message queue identifier.

EACCES Operation permission is denied to the calling process (see intro(2)).

EINVAL mitype is less than 1.

EAGAIN The message cannot be sent for one of the reasons cited above and (msgflg &

IPC_NOWAIT) is “‘true’’.

EINVAL msgsz is less than zero or greater than the system-imposed limit.

Sun Release 3.2 Last change: 29 April 1986 81

MSGOP(2) SYSTEM CALLS MSGOP(2)

82

EFAULT msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid (see intro (2)).

msg_qnum is incremented by 1.
msg_Ispid is set equal to the process ID of the calling process.
msg_stime is set equal to the current time.

msgrev reads a message from the queue associated with the message queue identifier specified by msgqid
and places it in the structure pointed to by msgp. {READ} This structure is composed of the following
members:

long mtype; /* message type */
char mtext[]; /* message text */

mtype is the received message’s type as specified by the sending process. mtext is the text of the message.
msgsz specifies the size in bytes of mtext. The received message is truncated to msgsz bytes if it is larger
than msgsz and (msgfly & MSG_NOERROR}) is “‘true’’. The truncated part of the message is lost and no
indication of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the abso-
lute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the queue. These are as
follows:

If (msgflg & IPC_NOWAIT) is ‘‘true’’, the calling process will return immediately with a return
value of —1 and errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is ‘‘false’’, the calling process will suspend execution until one of the
following occurs:

A message of the desired type is placed on the queue.

msgqid is removed from the system. When this occurs, errno is set equal to EIDRM, and
a value of —1 is returned.

The calling process receives a signal that is to be caught. In this case a message is not
received and the calling process resumes execution in the manner prescribed in sig-
nal(2)).

msgrev will fail and no message will be received if one or more of the following are true:

EINVAL msqid is not a valid message queue identifier.

EACCES Operation permission is denied to the calling process.

EINVAL msgsz is less than 0.

[E2BIG] mtext is greater than msgsz and (msgflg & MSG_NOERROR) is ‘‘false’’.

ENOMSG The queue does not contain a message of the desired type and (msgtyp &
IPC_NOWAIT) is “‘true’’.

EFAULT msgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure associated
with msqid (see intro (2)).

msg_qnum is decremented by 1.

Last change: 29 April 1986 Sun Release 3.2

MSGOP(2) SYSTEM CALLS MSGOP(2)

msg_lIrpid is set equal to the process ID of the calling process.
msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of —1 is returned to the calling process
and errno is set to EINTR. If they return due to removal of msqid from the system, a value of —1 is returned
and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of 0.

msgrev returns a value equal to the number of bytes actually placed into mtext.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

Sun Release 3.2 Last change: 29 April 1986 83

NESSVC(2) SYSTEM CALLS NFSSVC(2)

NAME
nfssvc, async_daemon — NFS daemons

SYNOPSIS
nfssve(sock)
int sock;

async_daemon()

DESCRIPTION

Nfssve starts an NFS daemon listening on socket sock. The socket must be AF INET, and
SOCK_DGRAM (protocol UDP/IP). The system call will return only if the process is killed.

Async_daemon implements the NFS daemon that handles asynchronous IO for an NFS client. The system
call never returns.

BUGS
These two system calls allow kernel processes to have user context.

SEE ALSO
mountd(8)

84 Last change: 17 February 1986 Sun Release 3.2

OPEN (2V)

NAME

SYSTEM CALLS OPEN (2V)

open — open or create a file for reading or writing

SYNOPSIS

#include <sys/file.h>
int open(path, flags [, mode])

char *path;

int flags, mode;

DESCRIPTION

path points to the pathname of a file. open opens the named file for reading and/or writing, as specified by
the flags argument, and returns a descriptor for that file. The flags argument may indicate the file is to be
created if it does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process’ umask value (see umask(2)). If the
path is a null string, the kernel maps this null pathname to ., the current directory. flags values are con-
structed by ORing flags from the following list (only one of the first three flags below may be used):

O_RDONLY
O_WRONLY
O_RDWR
O_NDELAY

O_APPEND
O_CREAT

O_TRUNC
0_EXCL

Sun Release 3.2

Open for reading only.

Open for writing only.

Open for reading and writing.

When opening a FIFO with O RDONLY or O WRONLY set:
If O_NDELAY is set:

An open for reading-only will return without delay. An open for writing-only will
return an error if no process currently has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until a process opens the file for writing. An
open for writing-only will block until a process opens the file for reading.

When opening a file associated with a communication line:
If O_NDELAY is set:

The open will return without waiting for carrier. The first time the process
attempts to perform I/O on the open file it will block (not currently implemented).

If O_NDELAY is clear:
The open will block until carrier is present.
If set, the file pointer will be set to the end of the file prior to each write.

If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to the
effective user ID of the process, the group ID of the file is set to the group ID of the direc-
tory in which the file is created, and the low-order 12 bits of the file mode are set to the
value of mode modified as follows (see creat(2)):

All bits set in the file mode creation mask of the process are cleared. See
umask(2).

The ‘save text image after execution’’ bit of the mode is cleared. See chmod(2).
If the file exists, its length is truncated to O and the mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the file exists. This can be used to
implement a simple exclusive access locking mechanism. If O_EXCL is set and the last
component of the pathname is a symbolic link, the open will fail even if the symbolic link
points to a non-existent name.

Last change: 16 July 1986 85

OPEN (2V) SYSTEM CALLS OPEN (2V)

The file pointer used to mark the current position within the file is set to the beginning of the file.
The new descriptor is set to remain open across execve system calls; see close(2) and fcntl(2).

There is a system enforced limit on the number of open file descriptors per process, whose value is returned
by the getdtablesize(2) call.

SYSTEM V DESCRIPTION
If the O_NDELAY flag is set on an open, that flag is set for that file descriptor (see fcntl) and may affect
subsequent reads and writes. See read(2V) and write(2V).

RETURN VALUE
The value —1 is returned if an erfor occurs, and external variable errno is set to indicate the cause of the
error. Otherwise a non-negative numbered file descriptor for the new open file is returned.

ERRORS

Open fails if:

ENOTDIR A component of the path prefix of path is not a directory.

EINVAL path contains a character with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT O_CREAT is not set and the named file does not exist.

ENOENT A component of the path prefix of path does not exist.

ELOOP Too many symbolic links were encountered in translating path.

EACCES Search permission is denied for a component of the path prefix of path.

EACCES The required permissions (for reading and/or writing) are denied for the file named by
path.

EACCES The file referred to by path does not exist, O_CREAT is specified, and the directory in
which it is to be created does not permit writing.

EISDIR The named file is a directory, and the arguments specify it is to be opened for writing.

ENXIO O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process has
the file open for reading.

EMFILE The system limit for open file descriptors per process has already been reached.

ENFILE The system file table is full.

ENOSPC The file does not exist, O CREAT is specified, and the directory in which the entry for
the new file is being placed cannot be extended because there is no space left on the file
system containing the directory.

ENOSPC The file does not exist, O CREAT is specified, and there are no free inodes on the file
system on which the file is being created.

EDQUOT The file does not exist, O_CREAT is specified, and the directory in which the entry for
the new file is being placed cannot be extended because the user’s quota of disk blocks
on the file system containing the directory has been exhausted.

EDQUOT The file does not exist, O_CREAT is specified, and the user’s quota of inodes on the file
system on which the file is being created has been exhausted.

EROFS The named file does not exist, O_CREAT is specified, and the file system on which it is
to be created is a read-only file system.

EROFS The named file resides on a read-only file system, and the file is to be opened for writing.

ENXIO The file is a character special or block special file, and the associated device does not

86 Last change: 16 July 1986 Sun Release 3.2

OPEN (2V)

EINTR
ETXTBSY

EIO
EFAULT
EEXIST

SYSTEM CALLS OPEN (2V)

exist.
A signal was caught during the open system call.

The file is a pure procedure (shared text) file that is being executed and the open call
requests write access.

An /O error occurred while reading from or writing to the file system.
path points outside the process’s allocated address space.
O_EXCL and O_CREAT were both specified and the file exists.

EOPNOTSUPP An attempt was made to open a socket (not currently implemented).

SEE ALSO

chmod(2), close(2), dup(2), fcntl(2), Iseek(2), read(2V), write(2V), umask(2)

Sun Release 3.2

Last change: 16 July 1986 87

PIPE(2) SYSTEM CALLS PIPE(2)

NAME
pipe — create an interprocess communication channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe and returns two file descriptors, fildes[0] and
fildes[1]. fildes[0O] is opened for reading and fildes[1] is opened for writing. When the pipe is written
using the descriptor fildes[1] up to 4096 bytes of data are buffered before the writing process is blocked. A
read only file descriptor fildes[0] accesses the data written to fildes[1] on a first-in-first-out (FIFO) basis.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse-
quent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) returns
an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in the system.
A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; —1 if an error occurred.

ERRORS

The pipe call will fail if:

EMFILE Too many descriptors are active.

ENFILE The system file table is full.

EFAULT The fildes buffer is in an invalid area of the process’s address space.
SEE ALSO

sh(1), read(2V), write(2V), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will occur.

88 Last change: 3 April 1986 Sun Release 3.2

PROFIL (2) SYSTEM CALLS PROFIL(2)

NAME
profil — execution time profile

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buyff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user’s program

counter (pc) is examined each clock tick (20 milliseconds); offset is subtracted from it, and the result multi-
plied by scale. If the resulting number corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 0x10000 gives a
1-1 mapping of pc’s to words in buff; 0x8000 maps each pair of instruction words together. 0x2 maps all
instructions onto the beginning of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 0.
Profiling is turned off when an execve is executed, but remains on in child and parent both after a fork.
Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

Sun Release 3.2 Last change: 16 March 1984 89

PTRACE(2) SYSTEM CALLS PTRACE(2)

NAME

ptrace — process trace

SYNOPSIS

#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>

ptrace(request, pid, addr, data [, addr2])
enum ptracereq request;

int pid;

char *addr;

int data;

char *addr2;

DESCRIPTION

90

ptrace provides a means by which a process may control the execution of another process, and examine
and change its core image. Its primary use is for the implementation of breakpoint debugging. There are
five arguments whose interpretation depends on the request argument. Generally, pid is the process ID of
the traced process. A process being traced behaves normally until it encounters some signal whether inter-
nally generated like ‘illegal instruction’ or externally generated like ‘interrupt’. See sigvec(2) for the list.
Then the traced process enters a stopped state and the tracing process is notified via wait(2). When the
traced process is in the stopped state, its core image can be examined and modified using ptrace. If
desired, another ptrace request can then cause the traced process either to terminate or to continue, possibly
ignoring the signal.

Note that several different values of the request argument can make ptrace return data values — since —1 is
a possibly legitimate value, to differentiate between —1 as a legitimate value and -1 as an error code, you
should clear the errno global error code before doing a ptrace call, and then check the value of errno after-
wards.

The value of the request argument determines the precise action of the call:

PTRACE_TRACEME
This request is the only one used by the traced process; it declares that the process is to be traced by
its parent. All the other arguments are ignored. Peculiar results will ensue if the parent does not
expect to trace the child.

PTRACE_PEEKTEXT, PTRACE PEEKDATA
The word in the traced process’s address space at addr is returned. If the instruction and data spaces
are separate (for example, historically on a PDP-11), request PTRACE_PEEKTEXT indicates instruc-
tion space while PTRACE PEEKDATA indicates data space. Otherwise, either request may be used,
with equal results. addr must be even, the child must be stopped and the input data and addr2 are
ignored.

PTRACE_PEEKUSER
The word of the system’s per-process data area corresponding to addr is returned. addr must be a
valid offset within the kernel’s per-process data pages. This space contains the registers and other
information about the process; its layout corresponds to the user structure in the system (see
<sys/user.h>).

PTRACE_POKETEXT, PTRACE POKEDATA
The given data is written at the word in the process’s address space corresponding to addr, which
must be even. No useful value is returned. If the instruction and data spaces are separate, request
PTRACE_PEEKTEXT indicates instruction space while PTRACE_PEEKDATA indicates data space. The
PTRACE_POKETEXT request must be used to write into a process’s text space even if the instruction
and data spaces are not separate. Attempts to write in a pure text space fail if another process is exe-
cuting the same file.

PTRACE_POKEUSER

Last change: 16 July 1986 Sun Release 3.2

PTRACE(2) SYSTEM CALLS PTRACE(2)

The process’s system data is written, as it is read with request PTRACE_PEEKUSER. Only a few loca-
tions can be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

PTRACE_CONT
The data argument is taken as a signal number and the child’s execution continues at location addr as
if it had incurred that signal. Normally the signal number will be either O to indicate that the signal
that caused the stop should be ignored, or that value fetched out of the process’s image indicating
which signal caused the stop. If addr is (int *)1 then execution continues from where it stopped.

PTRACE KILL
The traced process terminates, with the same consequences as exit(2).

PTRACE_SINGLESTEP
Execution continues as in request PTRACE_CONT; however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is SIGTRAP. On the Sun,
the T-bit is used and just one instruction is executed. This is part of the mechanism for implementing
breakpoints.

PTRACE_ATTACH
Attach to the process identified by the pid argument and begin tracing it. Process pid does not have to
be a child of the requestor, but the requestor must have permission to send process pid a signal and the
effective user IDs of the requesting process and process pid must match.

PTRACE_DETACH
Detach the process being traced. Process pid is no longer being traced and continues its execution.

The data argument is taken as a signal number and the process continues at location addr
as if it had incurred that signal.

PTRACE_GETREGS
The traced process’s registers are returned in a structure pointed to by the addr argument. The regis-
ters include the general purpose registers, the program counter and the program status word. The
‘regs’ structure defined in <machine/reg.h> describes the data that is returned.

PTRACE_SETREGS
The traced process’s registers are written from a structure pointed to by the addr argument. The regis-
ters include the general purpose registers, the program counter and the program status word. The
‘regs’ structure defined in <machinelreg.h> describes the data that is set.

PTRACE_GETFPREGS
(Sun-3 only) The traced process’s FPP status is returned in a structure pointed to by the addr argu-
ment. The status includes the 68881 floating point registers and the control, status, and instruction

address registers. The ‘fp_status’ structure defined in <machine/reg.h> describes the data that is
returned.

PTRACE_SETFPREGS
(Sun-3 only) The traced process’s FPP status is written from a structure pointed to by the addr argu-
ment. The status includes the 68881 floating point registers and the control, status, and instruction
address registers. The ‘fp_status’ structure defined in <machine/reg.h> describes the data that is set.
PTRACE_GETFPAREGS
(Sun-3 with FPA only) The traced process’s FPA registers are returned in a structure pointed to by the
addr argument. The ‘fpa_regs’ structure defined in <machine/reg.h> describes the data that is
returned.
PTRACE_SETFPAREGS
(Sun-3 with FPA only) The traced process’s FPA registers are written from a structure pointed to by

the addr argument. The ‘fpa_regs’ structure defined in <machine/reg.h> describes the data that is
set.

PTRACE_READTEXT, PTRACE_READDATA

Sun Release 3.2 Last change: 16 July 1986 91

PTRACE(2) SYSTEM CALLS PTRACE(2)

Read data from the address space of the traced process. If the instruction and data spaces are separate,
request PTRACE_READTEXT indicates instruction space while PTRACE_READDATA indicates data
space. The addr argument is the address within the traced process from where the data is read, the
data argument is the number of bytes to read, and the addr2 argument is the address within the
requesting process where the data is written.

PTRACE_WRITETEXT, PTRACE_WRITEDATA
Write data into the address space of the traced process. If the instruction and data spaces are separate,
request PTRACE READTEXT indicates instruction space while PTRACE READDATA indicates data
space. The addr argument is the address within the traced process where the data is written, the data
argument is the number of bytes to write, and the addr2 argument is the address within the requesting
process from where the data is read.

As indicated, these calls (except for requests PTRACE_TRACEME and PTRACE_ATTACH) can be used only
when the subject process has stopped. The wait call is used to determine when a process stops; in such a
case the ‘termination’ status returned by wait has the value WSTOPPED to indicate a stop rather than
genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subsequent
execve (2) calls. If a traced process calls execve, it will stop before executing the first instruction of the
new image showing signal SIGTRAP.

On the Sun, ‘word’ also means a 32-bit integer.

RETURN VALUE

In general, a 0 value is returned if the call succeeds. Note that this is not always true because requests such
as PTRACE_PEEKTEXT and PTRACE_PEEKDATA return legitimate values. If the call fails then a —1 is
returned and the global variable errno is set to indicate the error.

ERRORS
EIO The request code is invalid.
ESRCH The specified process does not exist.
ESRCH The request requires the process to be one which is traced by the current process and

stopped, but it is not stopped or it is not being traced by the current process.

EIO The given signal number is invalid.
EIO The specified address is out of bounds.
EPERM The specified process cannot be traced.

SEE ALSO
wait(2), sigvec(2), adb(1)

BUGS
ptrace is unique and arcane; it should be replaced with a special file which can be opened and read and
written. The control functions could then be implemented with ioctl(2) calls on this file. This would be
simpler to understand and have much higher performance.
The requests PTRACE TRACEME thru PTRACE_SINGLESTEP are standard UNIX ptrace requests. The
requests PTRACE_ATTACH thru PTRACE_WRITEDATA and the fifth argument, addr2, are unique to Sun
UNIX.
The request PTRACE_TRACEME should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use ‘illegal instruc-
tion’ signals at a very high rate) could be efficiently debugged.
The error indication, -1, is a legitimate function value; errno, (see intro(2)), can be used to clarify.
It should be possible to stop a process on occurrence of a system call; in this way a completely controlled
environment could be provided.

92 Last change: 16 July 1986 Sun Release 3.2

QUOTACTL(2) SYSTEM CALLS QUOTACTL(2)

NAME
quotactl — manipulate disk quotas

SYNOPSIS
#include <ufs/quota.h>

quotactl(cmd, special, uid, addr)
int cmd;
char *special;
int uid;
caddr_t addr;

DESCRIPTION
The quotactl call manipulates disk quotas. The cmd parameter indicates a command to be applied to the
user ID uid. Special is a pointer to a null-terminated string containing the path name of the block special
device for the file system being manipulated. The block special device must be mounted. Addr is the
address of an optional, command specific, data structure which is copied in or out of the system. The
interpretation of addr is given with each command below.

Q_QUOTAON
Turn on quotas for a file system. Addr is a pointer to a null terminated string containing the path

name of file containing the quotas for the file system. The quota file must exist; it is normally
created with the quotacheck(8) program. This call is restricted to the super-user.

Q_QUOTAOFF
Turn off quotas for a file system. This call is restricted to the super-user.

Q_GETQUOTA
Get disk quota limits and current usage for user uid. Addr is a pointer to a struct dqblk structure
{(defined in <ufs/quota.kh>). Only the super-user may get the quotas of a user other than himself.

Q_SETQUOTA
Set disk quota limits and current usage for user uid. Addr is a pointer to a struct dqblk structure
(defined in <ufs/quota.h>). This call is restricted to the super-user.

Q_SETQLIM
Set disk quota limits for user uid. Addr is a pointer to a struct dqblk structure (defined in
<ufs/quota.h>). This call is restricted to the super-user.

Q _SYNC
Update the on-disk copy of quota usages. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set

to indicate the error.
ERRORS

A quotactl call will fail when one of the following occurs:

EINVAL Cmd is invalid.

EPERM The call is privileged and the caller was not the super-user.

EINVAL The special parameter is not a mounted file system or is a mounted file system without
quotas enabled.

ENOTBLK The special parameter is not a block device.

EFAULT An invalid addr is supplied; the associated structure could not be copied in or out of the
kernel.

EINVAL The addr parameter is being interpreted as the path of a quota file which exists but is

either not a regular file or is not on the file system pointed to by the special parameter.

Sun Release 3.2 Last change: 20 August 1985 93

QUOTACTL((2) SYSTEM CALLS QUOTACTL (2)

EUSERS The quota table is full.

SEE ALSO
quotaon(8), quotacheck(8)

BUGS
There should be some way to integrate this call with the resource limit interface provided by setrlimit(2)
and getrlimit(2). Incompatible with Melbourne quotas.

94 Last change: 20 August 1985 Sun Release 3.2

READ(2V) SYSTEM CALLS READ (2V)

NAME

read, readv — read input
SYNOPSIS

cc = read(d, buf, nbytes)

int cc, d;

char *buf;

int nbytes;

#include <sys/types.h>

#include <sys/uio.h>

cc = readv(d, iov, iovcnt)

int cc, d;

struct iovec *iov;

int iovent;
DESCRIPTION

read attempts to read nbytes of data from the object referenced by the descriptor d into the buffer pointed to
by buf. readv performs the same action, but scatters the input data into the iovcnt buffers specified by the
members of the iov array: iov[0], iov[1], ..., iov[iovcnt—1].

For readv, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;

h

Each iovec entry specifies the base address and length of an area in memory where data should be placed.
readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated with d (see
Iseek(2)). Upon return from read, the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the pointer
associated with such an object is undefined.

Note: For read access to a directory, use readdir(3). function. (Directory access using readdir(3) is no
longer optional.)

Upon successful completion, read and readv return the number of bytes actually read and placed in the
buffer. The system guarantees to read the number of bytes requested if the descriptor references a normal
file which has that many bytes left before the end-of-file, but in no other case.

If the returned value is 0, then end-of-file has been reached.
When attempting to read from a descriptor associated with an empty pipe, socket, or FIFO:
If O_NDELAY is set, the read will return a —1 and errno will be set to EWOULDBLOCK.

If O NDELAY is clear, the read will block until data is written to the pipe or the file is no longer
open for writing.

When attempting to read from a descriptor associated with a tty that has no data currently available:
If O NDELAY is set, the read will return a —1 and errno will be set to EWOULDBLOCK.
If O_NDELAY is clear, the read will block until data becomes available.

If O_NDELAY is set, and less data are available than are requested by the read or readv, only the data that
are available are returned, and the count indicates how many bytes of data were actually read.

SYSTEM V DESCRIPTION
When an attempt is made to read a descriptor which is in no-delay mode, and there is no data currently
available, read will return a 0 instead of returning a —1 and setting errno to EWOULDBLOCK. Note that this

Sun Release 3.2 Last change: 25 July 1986 95

READ(2V)

SYSTEM CALLS READ (2V)

is indistinguishable
RETURN VALUE

If successful, the number of bytes actually read is returned. Otherwise, a—1 is returned and the global vari-
able errno is set to indicate the error.

ERRORS
read and readv will fail if one or more of the following are true:

EBADF d is not a valid file descriptor open for reading.

EISDIR d refers to a directory which is on a file system mounted using the NFS.

EFAULT buf points outside the allocated address space.

EIO An I/O error occurred while reaﬂing from or writing to the file system.

EINTR A read from a slow device was interrupted before any data arrived by the delivery of a
signal.

EINVAL The pointer associated with d was negative.

EWOULDBLOCK
The file was marked for non-blocking I/O, and no data were ready to be read. In addi-
tion, readv may return one of the following errors:

EINVAL Tovcent was less than or equal to O, or greater than 16.

EINVAL One of the iov_len values in the iov array was negative.

EINVAL The sum of the iov_len values in the iov array overflowed a 32-bit integer.

EFAULT Part of iov points outside the process’s allocated address space.

SEE ALSO

96

dup(2), fcntl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

Last change: 25 July 1986 Sun Release 3.2

READLINK (2) SYSTEM CALLS READLINK (2)

NAME
readlink — read value of a symbolic link

SYNOPSIS
cc = readlink(path, buf, bufsiz)
int cc;
char *path, *buf;
int bufsiz;
DESCRIPTION
readlink places the contents of the symbolic link name in the buffer buf which has size bufsiz. The con-
tents of the link are not null terminated when returned.
RETURN VALUE

The call returns the count of characters placed in the buffer if it succeeds, or a —1 if an error occurs, placing
the error code in the global variable errno.

ERRORS
readlink will fail and the buffer will be unchanged if:
EINVAL path contained a byte with the high-order bit set.
ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.
ENOENT The named file does not exist.
EACCES Search permission is denied for a component of the path prefix of path.
ELOOP Too many symbolic links were encountered in translating path.
EINVAL The named file is not a symbolic link.
EIO An 1/O error occurred while reading from or writing to the file system.
EFAULT path or buf extends outside the process’s allocated address space.
SEE ALSO

stat(2), Istat(2), symlink(2)

Sun Release 3.2 Last change: S June 1986 97

REBOOT(2) SYSTEM CALLS REBOOT (2)

NAME

reboot — reboot system or halt processor

SYNOPSIS

#include <sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION

Reboot reboots the system, and is invoked automatically in the event of unrecoverable system failures.
Howto is a mask of options passed to the bootstrap program. The system call interface permits only
RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the other flags are used in scripts
stored on the console storage media, or used in manual bootstrap procedures. When none of these options
(e.g. RB_AUTOBOOT) is given, the system is rebooted from file ‘‘vmunix’’ in the root file system of unit
0 of a disk chosen in a processor specific way. An automatic consistency check of the disks is then nor-
mally performed.

The bits of howto are:

RB_HALT
the processor is simply halted; no reboot takes place. RB_HALT should be used with caution.
RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should be booted.
Normally, the system is booted from the file ‘‘vmunix’’ without asking.
RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then multi-user
operations. RB_SINGLE prevents the consistency check, rather simply booting the system with a

single-user shell on the console. RB_SINGLE is interpreted by the init(8) program in the newly
booted system.

Only the super-user may reboot a machine.

RETURN VALUES

If successful, this call never returns. Otherwise, a —1 is returned and an error is returned in the global vari-
able errno.

ERRORS

EPERM The caller is not the super-user.

SEE ALSO

98

crash(8S), halt(8), init(8), reboot(8)

Last change: 12 February 1983 Sun Release 3.2

RECV (2) SYSTEM CALLS RECV (2)

NAME

recv, recvfrom, recvmsg — receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, S;

char *buf;

int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char *buf;

int len, flags;

struct sockaddr *from;

int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;

struct msghdr msg[];

int flags;

DESCRIPTION

recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2)), while recvfrom and recvmsg may
be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. fromlen is a value-result parameter, ini-
tialized to the size of the buffer associated with from, and modified on return to indicate the actual size of
the address stored there. The length of the message is returned in cc. If a message is too long to fit in the

supplied buffer, excess bytes may be discarded depending on the type of socket the message is received
from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is

nonblocking (see ioctl(2)) in which case a cc of —1 is returned with the external variable errno set to
EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The flags argument to a recv call is formed by or’ing one or more of the values,

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parameters. This
structure has the following form, as defined in <sys/socket.h>:

struct msghdr {

caddr t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iovec *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;

b
Here msg_name and msg_namelen specify the destination address if the socket is unconnected; msg_name

may be given as a null pointer if no names are desired or required. The msg_iov and msg_iovlen describe
the scatter gather locations, as described in read(2V). A buffer to receive any access rights sent along with

Sun Release 3.2 Last change: 16 July 1986 99

RECV(2) SYSTEM CALLS RECV (2)

the message is specified in msg_accrights, which has length msg_accrightslen.

RETURN VALUE
These calls return the number of bytes received, or —1 if an error occurred.

ERRORS
The calls fail if:
EBADF The argument s is an invalid descriptor.
ENOTSOCK The argument s is not a socket.
EWOULDBLOCK The socket is marked non-blocking and the receive operation would block.
EINTR The receive was interrupted by delivery of a signal before any data was available
for the receive.
EFAULT The data was specified to be received into a non-existent or protected part of the
process address space.
SEE ALSO

fentl(2), read(2V), send(2), select(2), getsockopt(2), socket(2)

100 Last change: 16 July 1986 Sun Release 3.2

RENAME (2) SYSTEM CALLS RENAME (2)

NAME

rename — change the name of a file

SYNOPSIS

rename(from, to)
char *from, *to;

DESCRIPTION

rename renames the link named from as to. If to exists, then it is first removed. Both from and o must be
of the same type (that is, both directories or both non-directories), and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in the middle of
the operation.

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or directory to
which it points.

CAVEAT

The system can deadlock if a loop in the file system graph is present. This loop takes the form of an entry
in directory ‘‘a’’, say ‘‘a/foo’’, being a hard link to directory ‘‘b’’, and an entry in directory ‘‘b’’, say
‘“b/bar’’, being a hard link to directory ‘“a’’. When such a loop exists and two separate processes attempt
to perform ‘‘rename a/foo b/bar’’ and ‘‘rename b/bar a/foo’’, respectively, the system may deadlock
attempting to lock both directories for modification. Hard links to directories should be replaced by sym-

bolic links by the system administrator.

RETURN VALUE

A 0 value is returned if the operation succeeds, otherwise rename returns —1 and the global variable errno
indicates the reason for the failure.

ERRORS

rename will fail and neither of the argument files will be affected if any of the following are true:
ENOTDIR A component of the path prefix of either from or to is not a directory.
EINVAL Either from or to contains a byte with the high-order bit set.

ENAMETOOLONG
The length of a component of either from or to exceeds 255 characters, or the length of
either from or to exceeds 1023 characters.

ENOENT A component of the path prefix of either from or to does not exist.

ENOENT The file named by from does not exist.

EACCES A component of the path prefix of either from or to denies search permission.

EACCES The requested rename requires writing in a directory with a mode that denies write per-
mission.

ELOOP Too many symbolic links were encountered while translating either from or to.

EXDEV The link named by to and the file named by from are on different logical devices (file
systems).

ENOSPC The directory in which the entry for the new name is being placed cannot be extended
because there is no space left on the file system containing the directory.

EDQUOT The directory in which the entry for the new name is being placed cannot be extended
because the user’s quota of disk blocks on the file system containing the directory has
been exhausted.

EIO An I/O error occurred while reading from or writing to the file system.

EROFS The requested rename requires writing in a directory on a read-only file system.

EFAULT Either or both of from or to point outside the process’s allocated address space.

Sun Release 3.2 Last change: 16 July 1986 101

RENAME (2) SYSTEM CALLS RENAME(2)

EINVAL from is a parent directory of to, or an attempt is made to rename ‘“.”’ or ¢“..”.
ENOTEMPTY tois a directory and is not empty.
EBUSY to is a directory and is the mount point for a mounted file system.
SEE ALSO
open(2V)

102 Last change: 16 July 1986 Sun Release 3.2

RMDIR (2) SYSTEM CALLS RMDIR (2)

NAME
rmdir — remove a directory file
SYNOPSIS
rmdir(path)
char *path;
DESCRIPTION
rmdir removes a directory file whose name is given by path. The directory must not have any entries other
than “.” and L‘..,"
RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a —1 is returned and an error code is stored in the global
location errno.
ERRORS
The named file is removed unless one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.

ENOTDIR The file referred to by path is not a directory.

EINVAL path contains a character with the high-order bit set.

ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The directory referred to by path does not exist.

ELOOP Too many symbolic links were encountered in translating path.

ENOTEMPTY The directory referred to by path contains files other than *“.”’ and “*..”’ in it.

EACCES Search permission is denied for a component of the path prefix of path.

EACCES Write permission is denied for the directory containing the link to be removed.

EBUSY The directory to be removed is the mount point for a mounted file system. EIO An /O
error occurred while reading from or writing to the file system.

EROFS The directory to be removed resides on a read-only file system.

EFAULT path points outside the process’s allocated address space.

mkdir(2), unlink(2)

Sun Release 3.2 Last change: 16 July 1986 103

SELECT(2) SYSTEM CALLS SELECT (2)

NAME

select — synchronous I/O multiplexing

SYNOPSIS

#include <sys/time.h>

nfds = select(width, readfds, writefds, exceptfds, timeout)
int width, *readfds, *writefds, *exceptfds;
struct timeval timeout;

DESCRIPTION

select examines the I/O descriptors specified by the bit masks readfds, writefds, and exceptfds to see if they
are ready for reading, writing, or have an exceptional condition pending, respectively. width is the number
of significant bits in each bit mask that represent a file descriptor. Typically width has the value returned
by getdtablesize (2) for the maximum number of file descriptors or is the constant 32 (number of bits in an
int). File descriptor f is represented by the bit ‘‘1<<f’’ in the mask. select returns, in place, a mask of
those descriptors which are ready. The total number of ready descriptors is returned in nfds.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to complete. If
timeout is a zero pointer, the select blocks indefinitely. To effect a poll, the timeout argument should be
non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as NULL pointers if no descriptors are of interest.

RETURN VALUE

select returns the number of ready descriptors that are contained in the bit masks, or —1 if an error
occurred. If the time limit expires then select returns 0.

ERRORS
An error return from select indicates:
EBADF One of the bit masks specified an invalid descriptor.
EINTR A signal was delivered before any of the selected events occurred or the time limit
expired.
EINVAL The specified time limit is unacceptable. One of its components is negative or too large.
EFAULT One of the pointers given in the call referred to a non-existent portion of the process’
address space.
SEE ALSO
accept(2), connect(2), gettimeofday(2), read(2V), write(2V), recv(2), send(2), getdtablesize(2)
BUGS
The descriptor masks are always modified on return, even if the call returns as the result of the timeout.
104 Last change: 16 July 1986 Sun Release 3.2

SEMCTL(2)

NAME

SYSTEM CALLS SEMCTL (2)

semctl — semaphore control operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

} arg;
DESCRIPTION

val;

struct semid_ds *buf;
ushort *array;

semctl provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid and semnum:

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval (see intro(2)). {READ}

Set the value of semval to arg.val. {ALTER} When this cmd is successfully exe-
cuted, the semadj value corresponding to the specified semaphore in all processes is
cleared.

Return the value of sempid. {READ}
Return the value of semncnt. {READ}

Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in the set of semaphores.

GETALL
SETALL

Place semvals into array pointed to by arg.array. {READ}

Set semvals according to the array pointed to by arg.array. {ALTER} When this
cmd is successfully executed the semadj values corresponding to each specified
semaphore in all processes are cleared.

The following cmds are also available:

Sun Release 3.2

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated with semid
into the structure pointed to by arg.buf. The contents of this structure are defined in
intro(2). {READ}

Set the value of the following members of the data structure associated with semid
to the corresponding value found in the structure pointed to by arg.buf:
sem_perm.uid

sem_perm.gid

sem_perm.mode /* only low 9 bits */

This cmd can only be executed by a process that has an effective user ID equal to
either that of super-user or to the value of sem_perm.uid in the data structure asso-
ciated with semid.

Remove the semaphore identifier specified by semid from the system and destroy
the set of semaphores and data structure associated with it. This cmd can only be
executed by a process that has an effective user ID equal to either that of super-user
or to the value of sem_perm.uid in the data structure associated with semid.

Last change: 29 April 1986 105

SEMCTL(2) SYSTEM CALLS SEMCTL(2)

ERRORS
semctl will fail if one or more of the following are true:
EINVAL semid is not a valid semaphore identifier.
EINVAL semnum is less than zero or greater than sem_nsems.
EINVAL cmd is not a valid command.
EACCES Operation permission is denied to the calling process (see intro(2)).
ERANGE cmd is SETVAL or SETALL and the value to which semval is to be set is greater than the
system imposed maximum.
EPERM cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is

not equal to that of super-user and it is not equal to the value of sem_perm.uid in the
data structure associated with semid.

EFAULT arg.buf points to an illegal address.
RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:
GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.
SEE ALSO

intro(2), semget(2), semop(2).

106 Last change: 29 April 1986 Sun Release 3.2

SEMGET(2) SYSTEM CALLS SEMGET (2)

NAME
semget — get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_tkey;
int nsems, semflg;

DESCRIPTION
semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores (see intro(2))
are created for key if one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated with it, and (semflg & IPC_CREAT) is
[‘mle 2 .

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid are set equal to the effec-
tive user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg.
sem_nsems is set equal to the value of nsems.
sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

ERRORS
semget will fail if one or more of the following are true:

EINVAL nsems is either less than or equal to zero or greater than the system-imposed limit.

EACCES A semaphore identifier exists for key, but operation permission (see intro(2)) as
specified by the low-order 9 bits of semfig would not be granted.

EINVAL A semaphore identifier exists for key, but the number of semaphores in the set associated
with it is less than nsems and nsems is not equal to zero.

ENOENT A semaphore identifier does not exist for key and (semflg & IPC_CREAT) is ‘‘false’’.

ENOSPC A semaphore identifier is to be created but the system-imposed limit on the maximum
number of allowed semaphore identifiers system wide would be exceeded.

ENOSPC A semaphore identifier is to be created but the system-imposed limit on the maximum
number of allowed semaphores system wide would be exceeded.

EEXIST A semaphore identifier exists for key but ((semflg & IPC_CREAT) and (semflg &
IPC_EXCL)) is “‘true”’.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned. Other-
wise, a value of —1 is returned and errrno is set to indicate the error.

SEE ALSO
intro(2), semctl(2), semop(2).

Sun Release 3.2 Last change: 29 April 1986 107

SEMOP(2) SYSTEM CALLS SEMOP(2)

NAME

semop ~ semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

int nsops;

DESCRIPTION

108

semop is used to automatically perform an array of semaphore operations on the set of semaphores associ-
ated with the semaphore identifier specified by semid. sops is a pointer to the array of semaphore-
operation structures. nsops is the number of such structures in the array. The contents of each structure
includes the following members: ‘

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore specified by
semid and sem_num.

sem_op specifies one of three semaphore operations as follows:
If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval (see intro(2)) is greater than or equal to the absolute value of sem_op, the
absolute value of sem_op is subtracted from semval. Also, if (sem_flg & SEM_UNDO) is
“‘true’’, the absolute value of sem_op is added to the calling process’s semadj value (see
exit(2)) for the specified semaphore.

If semval is less than the absolute value of sem_op and (sem_flg & TPC_NOWAIT) is
*‘true’’, semop will return immediately.

If semval is less than the absolute value of sem_op and (sem_flg & IPC_NOWAIT) is
“‘false’’, semop will increment the semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the following conditions occur.

semval becomes greater than or equal to the absolute value of sem_op. When this
occurs, the value of semncnt associated with the specified semaphore is decremented,
the absolute value of sem op is subtracted from semval and, if (sem flg &
SEM_UNDO) is ‘‘true’’, the absolute value of sem_op is added to the calling process’s
semadj value for the specified semaphore.

The semid for which the calling process is awaiting action is removed from the system
(see semctl(2)). When this occurs, errno is set equal to EIDRM, and a value of —1 is
returned.

Last change: 29 April 1986 Sun Release 3.2

SEMOP(2)

SYSTEM CALLS SEMOP(2)

The calling process receives a signal that is to be caught. When this occurs, the value
of semncnt associated with the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in signal(2).

If sem_op is a positive integer, the value of sem op is added to semval and, if (sem flg &
SEM_UNDO) is “‘true’’, the value of sem_op is subtracted from the calling process’s semadj
value for the specified semaphore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

ERRORS

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem fig & IPC_NOWAIT) is “‘true’’, semop will
return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is ‘‘false’’, semop will
increment the semzcnt associated with the specified semaphore and suspend execution
of the calling process until one of the following occurs:

semval becomes zero, at which time the value of semzcnt associated with the specified
semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the system.
When this occurs, errno is set equal to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the value
of semzcnt associated with the specified semaphore is decremented, and the calling pro-
cess resumes execution in the manner prescribed in signal(2).

semop will fail if one or more of the following are true for any of the semaphore operations specified by

sops:
EINVAL
EFBIG

[E2BIG]
EACCES
EAGAIN

ENOSPC

EINVAL

ERANGE

EFAULT

semid is not a valid semaphore identifier.

sem_num is less than zero or greater than or equal to the number of semaphores in the
set associated with semid.

nsops is greater than the system-imposed maximum.
Operation permission is denied to the calling process (see intro(2)).

The operation would result in suspension of the calling process but (sem _flg &
IPC_NOWAIT) is “‘true”’.

The limit on the number of individual processes requesting an SEM_UNDO would be
exceeded.

The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval or semadj value to overflow the system-imposed
limit.
sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed to by
sops is set equal to the process ID of the calling process.

RETURN VALUE

If semop returns due to the receipt of a signal, a value of —1 is returned to the calling process and errno is
set to EINTR. If it returns due to the removal of a semid from the system, a value of —1 is returned and
errno is set to EIDRM.

Sun Release 3.2

Last change: 29 April 1986 109

SEMOP(2) SYSTEM CALLS SEMOP (2)

Upon successful completion, the value of semval at the time of the call for the last operation in the array
pointed to by sops is returned. Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

110 Last change: 29 April 1986 Sun Release 3.2

SEND(2) SYSTEM CALLS SEND(2)

NAME
send, sendto, sendmsg — send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, S;

char *msg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;

struct msghdr msg[];

int flags;

DESCRIPTION

S is a socket created with socket(2). Send, sendto, and sendmsg are used to transmit a message to another

socket. Send may be used only when the socket is in a connected state, while sendto and sendmsg may be
used at any time.

The address of the target is given by to with tolen specifying its size. The length of the message is given by
len. If the message is too long to pass atomically through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of —1 indicate some locally detected
errors.

If no messages space is available at the socket to hold the message to be transmitted, then send normally
blocks, unless the socket has been placed in non-blocking /o mode. The select(2) call may be used to
determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send ‘‘out-of-band’’ data on sockets which support this
notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure,

RETURN VALUE
The call returns the number of characters sent, or —1 if an error occurred.
ERRORS
EBADF An invalid descriptor was specified.
ENOTSOCK The argument s is not a socket.
EFAULT An invalid user space address was specified for a parameter.
EMSGSIZE The socket requires that message be sent atomically, and the size of the message

to be sent made this impossible.
EWOULDBLOCK The socket is marked non-blocking and the requested operation would block.

SEE ALSO
recv(2), socket(2)

Sun Release 3.2 Last change: 17 February 1986 111

SETPGRP(2V) SYSTEM CALLS SETPGRP(2V)

NAME

setpgrp, getpgrp — set and/or return the process group of a process
SYNOPSIS

setpgrp(pid, pgrp)

pgrp = getpgrp(pid)

int pgrp;

int pid;

int pid, pgrp;
SYSTEM V SYNOPSIS

int setpgrp ()
DESCRIPTION

Setpgrp
setpgrp sets the process group of the specified process, (pid) to the specified pgrp. If pid is zero, then the
call applies to the current (calling) process.

If the effective user ID is not that of the super-user, then the process to be affected must have the same
effective user ID as that of the caller or be a descendant of that process.

Getpgrp
getpgrp returns the process group of the indicated process. If pid is zero, then the call applies to the calling
process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input.
Processes that have the same process group as the terminal run in the foreground and may read from the
terminal, while others block with a signal when they attempt to read.

This call is thus used by programs such as csh(1) to create process groups in implementing job control.
The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the process group of the con-
trol terminal.

RETURN VALUE
setpgrp returns 0 when the operation was successful. If the request failed, —1 is returned and the global
variable errno indicates the reason.

ERRORS
setpgrp fails, and the process group is not altered when one of the following occurs:

ESRCH The requested process does not exist.

EPERM The effective user ID of the requested process is different from that of the caller and the
process is not a descendent of the calling process.

SYSTEM V DESCRIPTION
In the System V implementation, setpgrp takes no parameters. It sets the process group of the calling pro-
cess to match its process ID, and returns the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), getuid(2), intro(2), kill(2), signal(2), tty(4)

112 Last change: 10 June 1986 Sun Release 3.2

SETREGID (2) SYSTEM CALLS SETREGID (2)

NAME

setregid — set real and effective group IDs

SYNOPSIS

int setregid(rgid, egid)
int rgid, egid;

DESCRIPTION

setregid is used to set the real and effective group IDs of the calling process. If rgid is —1, the real group ID
is not changed; if egid is —1, the effective group ID is not changed. The real and effective group IDs may
be set to different values in the same call.

If the effective user ID of the calling process is super-user, the real group ID and the effective group ID can
be set to any legal value.

If the effective user ID of the calling process is not super-user, either the real group ID can be set to the
saved set-group ID from execve (2), or the effective group ID can either be set to the saved set-group ID or
the real group ID. Note that if a set-GID process sets its effective group ID to its real group ID, it can still
set its effective group ID back to the saved set-group ID.

In either case, if the real group ID is changed to a particular value (i.e., if rgid is not —1), the saved set-
group ID is set to that same value.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS

Setregid will fail and neither of the group IDs will be changed if:

EPERM The calling process’ effective user ID is not the super-user and a change other than
changing the real group ID to the saved set-group ID, or changing the effective group ID
to the real group-id or the saved set-group ID, was specified.

SEE ALSO

getgid(2), execve(2), setreuid(2), setgid(3)

Sun Release 3.2 Last change: 30 April 1986 113

SETREUID(2) SYSTEM CALLS SETREUID (2)

NAME

setreuid — set real and effective user IDs

SYNOPSIS

int setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION

setreuid is used to set the real and effective user IDs of the calling process. If ruid is —1, the real user ID is
not changed; if euid is —1, the effective user ID is not changed. The real and effective user IDs may be set
to different values in the same call.

If the effective user ID of the calling process is super-user, the real user ID and the effective user ID can be
set to any legal value.

If the effective user ID of the calling process is not super-user, either the real user ID can be set to the effec-
tive user ID, or the effective user ID can either be set to the saved set-user ID from execve(2) or the real
user ID. Note that if a set-UID process sets its effective user ID to its real user ID, it can still set its effec-
tive user ID back to the saved set-user ID.

In either case, if the real user ID is changed to a particular value (i.e., if ruid is not —1), the saved set-user
ID is set to that same value.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS

Setreuid will fail and neither of the user IDs will be changed if:

EPERM The calling process’ effective user ID is not the super-user and a change other than
changing the real user ID to the effective user ID, or changing the effective user ID to the
real user-id or the saved set-user ID, was specified.

SEE ALSO

114

getuid(2), execve(2), setregid(2), setuid(3)

Last change: 12 February 1983 Sun Release 3.2

SHMCTL (2)

NAME

SYSTEM CALLS SHMCTL(2)

shmctl — shared memory control operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION

shmctl provides a variety of shared memory control operations as specified by cmd. The following cmds
are available:

ERRORS

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated with shmid
into the structure pointed to by buf. The contents of this structure are defined in
intro(2). {READ}

Set the value of the following members of the data structure associated with shmid to
the corresponding value found in the structure pointed to by buf:

shm_perm.uid

shm_perm.gid

shm_perm.mode /* only low 9 bits */

This c¢cmd can only be executed by a process that has an effective user ID equal to
either that of super-user or to the value of shm_perm.uid in the data structure asso-
ciated with shmid.

Remove the shared memory identifier specified by shmid from the system and des-
troy the shared memory segment and data structure associated with it. This cmd can
only be executed by a process that has an effective user ID equal to either that of

super-user or to the value of shm_perm.uid in the data structure associated with
shmid.

shmctl will fail if one or more of the following are true:

EINVAL
EINVAL
EACCES

EPERM

EFAULT

RETURN VALUE

Shmid is not a valid shared memory identifier.

cmd is not a valid command.

cmd is equal to IPC_STAT and {READ} operation permission is denied to the calling
process (see intro(2)).

cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the calling process is
not equal to that of super-user and it is not equal to the value of shm_perm.uid in the
data structure associated with shmid.

buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

SEE ALSO

intro(2), shmget(2), shmop(2).

Sun Release 3.2

Last change: 29 April 1986 115

SHMGET (2)

NAME

SYSTEM CALLS SHMGET (2)

shmget — get shared memory segment

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)

key_t key;

int size, shmfig;

DESCRIPTION

shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size bytes
(see intro(2)) are created for key if one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is ‘‘true’’.

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:

shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal to the effec-
tive user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of shmflg.
shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

shm_ctime is set equal to the current time.

ERRORS

shmget will fail if one or more of the following are true:

EINVAL

EACCES

EINVAL

ENOENT

ENOSPC

ENOMEM

EEXIST

116

size is less than the system-imposed minimum or greater than the system-imposed max-
imum.

A shared memory identifier exists for key but operation permission (see intro(2)) as
specified by the low-order 9 bits of shmflg would not be granted.

A shared memory identifier exists for key but the size of the segment associated with it is
less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmfls & IPC_CREAT) is
““false”.

A shared memory identifier is to be created but the system-imposed limit on the max-
imum number of allowed shared memory identifiers system wide would be exceeded.

A shared memory identifier and associated shared memory segment are to be created but
the amount of available physical memory is not sufficient to fill the request.

A shared memory identifier exists for key but ((shmflg & IPC_CREAT) and (shmflg &
IPC_EXCL)) is “‘true”’.

Last change: 29 April 1986 Sun Release 3.2

SHMGET((2) SYSTEM CALLS SHMGET(2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmctl(2), shmop(2)

Sun Release 3.2 Last change: 29 April 1986 117

SHMOP(2)

NAME

SYSTEM CALLS SHMOP(2)

shmop, shmat, shmdt — shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)

int shmid;

char *shmaddr
int shmflg;

int shmmdt (shmaddr)

char *shmaddr

DESCRIPTION

shmat attaches the shared memory segment associated with the shared memory identifier specified by
shmid to the data segment of the calling process. The segment is attached at the address specified by one of
the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as selected by the

system.

If shmaddr is not equal to zero and (shmflg & SHM_RND) is ‘‘true’’, the segment is attached at
the address given by (shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is “‘false’’, the segment is attached at
the address given by shmaddr. '

The segment is attached for reading if (shmflg & SHM_RDONLY) is “‘ttue’’ {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.

shmat will fail and not attach the shared memory segment if one or more of the following are true:

EINVAL
EACCES
ENOMEM

EINVAL

EINVAL

EMFILE

EINVAL

EINVAL

RETURN VALUES
Upon successful completion, the return value is as follows:

118

Shmid is not a valid shared memory identifier.
Operation permission is denied to the calling process (see intro(2)).

The available data space is not large enough to accommodate the shared memory seg-
ment.

shmaddr is not equal to zero, and the value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

shmaddr is not equal to zero, (shmflg & SHM_RND) is “‘false’’, and the value of
shmaddr is an illegal address.

The number of shared memory segments attached to the calling process would exceed
the system-imposed limit.

shmdt detaches from the calling process’s data segment the shared memory segment
located at the address specified by shmaddr.

shmdt will fail and not detach the shared memory segment if shmaddr is not the data
segment ¢ iart address of a shared memory segment.

Last change: 29 April 1986 Sun Release 3.2

SHMOP((2) SYSTEM CALLS SHMOP(2)

shmat returns the data segment start address of the attached shared memory segment.
shmdt returns a value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

Sun Release 3.2 Last change: 29 April 1986 119

SHUTDOWN (2) SYSTEM CALLS SHUTDOWN (2)

NAME
shutdown — shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with s to be shut
down. If how is 0, then further receives will be disallowed. If how is 1, then further sends will be disal-
lowed. If how is 2, then further sends and receives will be disallowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

EBADF S is not a valid descriptor.
ENOTSOCK S is a file, not a socket.
ENOTCONN The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

BUGS
The how values should be defined constants.

120 Last change: 29 August 1983 Sun Release 3.2

SIGBLOCK (2) SYSTEM CALLS SIGBLOCK (2)

NAME
sigblock — block signals

SYNOPSIS
#include <signal.h>
oldmask = sigblock(mask);
int mask;
mask = sigmask(signum)
DESCRIPTION

Sigblock adds the signals specified in mask to the set of signals currently being blocked from delivery. Sig-
nals are blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the
mask for a given signum. The previous mask is returned, and may be restored using sigsermask(2).

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed by the
system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2), signal(3)

Sun Release 3.2 Last change: 16 July 1986 121

SIGPAUSE (2) SYSTEM CALLS SIGPAUSE (2)

NAME
sigpause — atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on retumn the set
of masked signals is restored. Sigmask is usually O to indicate that no signals are now to be blocked. Sig-
pause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables modified on the
occurence of the signal are examined to determine that there is no work to be done, and the process pauses
awaiting work by using sigpause with the mask returned by sigblock.

SEE ALSO
sigblock(2), sigvec(2), signal(3)

122 Last change: 16 July 1986 Sun Release 3.2

SIGSETMASK((2) SYSTEM CALLS SIGSETMASK (2)

NAME

sigsetmask — set current signal mask
SYNOPSIS

#include <signal.h>

sigsetmask(mask);

int mask;

mask = sigmask(signum)
DESCRIPTION

sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signals are blocked
if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the mask for a given sig-

num.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT from being blocked.
RETURN VALUE

The previous set of masked signals is returned.
SEE ALSO

kill(2), sigvec(2), sigblock(2), sigpause(2), signal(3)

Sun Release 3.2 Last change: 16 July 1986 123

SIGSTACK(2) SYSTEM CALLS SIGSTACK(2)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS
#include <signal.h>

struct sigstack {
caddr_t ss_sp;

int ss_onstack;

b

sigstack(ss, 0ss)

struct sigstack *ss, *0ss;

DESCRIPTION
Sigstack allows users to define an alternate stack on which signals are to be processed. If ss is non-zero, it
specifies a signal stack on which to deliver signals and tells the system if the process is currently executing
on that stack. When a signal’s action indicates its handler should execute on the signal stack (specified
with a sigvec(2) call), the system checks to see if the process is currently executing on that stack. If the
process is not currently executing on the signal stack, the system arranges a switch to the signal stack for
the duration of the signal handler’s execution. If oss is non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not ‘‘grown’’ automatically, as is done for the normal stack. If the stack overflows
unpredictable results may occur.

RETURN VALUE
Upon successful coinpletion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.
ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following occurs.
EFAULT Either ss or oss points to memory that is not a valid part of the process address space.
SEE ALSO

sigvec(2), setjmp(3), signal(3)

124 Last change: 20 August 1985 Sun Release 3.2

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

NAME
sigvec — software signal facilities

SYNOPSIS
#include <signalh>

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_flags;
b
sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process con-
text is saved, and a new one is built. A process may specify a handler to which a signal is delivered, or
specify that a signal is to be blocked or ignored. A process may also specify that a default action is to be
taken by the system when a signal occurs. Normally, signal handlers execute on the current stack of the
process. This may be changed, on a per-handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their invocation
blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked
from delivery to a process. The signal mask for a process is initialized from that of its parent (normally 0).
It may be changed with a sighlock(2) or sigsetmask (2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for the process.
If the signal is not currently blocked by the process then it is delivered to the process. When a signal is
delivered, the current state of the process is saved, a new signal mask is calculated (as described below),
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine
returns normally the process will resume execution in the context from before the signal’s delivery. If the
process wishes to resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the process’ signal
handler (or until a sighlock or sigsetmask call is made). This mask is formed by taking the current signal
mask, adding the signal to be delivered, and or’ing in the signal mask associated with the handler to be
invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine and mask to
be used when delivering the specified signal. Further, if the SV_ONSTACK bit is set in sv_flags, the sys-
tem will deliver the signal to the process on a signal stack, specified with sigstack(2). If ovec is non-zero,
the previous handling information for the signal is returned to the user.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. The system
enforces this restriction silently.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3% quit

SIGILL 4+ illegal instruction (other than A-line or F-line op code)
SIGTRAP S5+ trace trap

SIGIOT 6+ IOT trap (not generated on Suns)

SIGEMT 7+ EMT trap (A-line or F-line op code)

SIGFPE 8+ arithmetic exception

SIGKILL 9 kill (cannot be caught, blocked, or ignored)

Sun Release 3.2 Last change: 16 July 1986 125

SIGVEC(2) SYSTEM CALLS SIGVEC(2)

126

SIGBUS 10+ bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe or other socket with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16+ urgent condition present on socket

SIGSTOP 171 stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19« continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed

SIGTTIN 21t background read attempted from control terminal
SIGTTOU 22f background write attempted to control terminal
SIGIO 23+ 1/O is possible on a descriptor (see fcntl(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))

SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 28+ window changed (see win(4S))

SIGLOST 29+ resource lost (see lockd(8C))

SIGUSR1 30 user-defined signal 1

SIGUSR2 31 user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an execve (2) is
performed, except that if the SV_RESETHAND bit is set in sv_flags, the value of sv_handler for the
caught signal will be set to SIG_DFL before entering the signal-catching function, unless the signal is
SIGILL or SIGTRAP. If this bit is set, the bit for that signal in the signal mask will not be set; unless the
signal mask associated with that signal blocks that signal, further occurrences of that signal will not be
blocked. The SV_RESETHAND flag is not available in 4.2BSD, hence it should not be used if backward
compatibility is needed.

The default action for a signal may be reinstated by setting sv_handler to SIG_DFL; this default is termina-
tion except for signals marked with « or . Signals marked with « are discarded if the action is SIG_DFL;
signals marked with 1 cause the process to stop. If the process is terminated, a “‘core image’’ will be made
in the current working directory of the receiving process if the signal is one for which an asterisk appears in
the above list and the following conditions are met:

The effective user ID and the real user ID of the receiving process are equal.
The effective group ID and the real group ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the file must be created,
it will have the following properties:

a mode of 0666 modified by the file creation mask (see umask(2))
a file owner ID that is the same as the effective user ID of the receiving process.
a file group ID that is the same as the file group ID of the current directory

If sv_handler is SIG_IGN the signal is subsequently ignored, and pending instances of the signal
are discarded.

Note: the signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

If a caught signal occurs during certain system calls, the call is normally restarted. The call can
be forced to terminate prematurely with an EINTR error return by setting the SV_INTERRUPT
bitin sv_flags. The SV_INTERRUPT flag is not available in 4.2BSD, hence it should not be used
if backward compatibility is needed. The affected system calls are read(2V) or write(2V) on a

Last change: 16 July 1986 Sun Release 3.2

SIGVEC(2) SYSTEM CALLS SIGVEC (2)

NOTES

CODES

slow device (such as a terminal or pipe or other socket, but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal stack, and the
restart/interrupt and reset-signal-handler flags.

The execve (2) call resets all caught signals to default action and resets all signals to be caught on
the user stack. Ignored signals remain ignored; the signal mask remains the same; signals that
interrupt system calls continue to do so.

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. Code is a parameter of certain signals that provides additional detail. Scp is
a pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from before the sig-
nal.

Programs that must be portable to UNIX systems other than 4.2 BSD should use the signal(3) interface
instead.

The following defines the codes for signals which produce them. All of these symbols are defined in
<signal.h>:

Hardware condition Signal Code
Illegal instruction SIGILL ILL_INSTR_FAULT
Privilege violation SIGILL ILL_PRIVVIO FAULT
Coprocessor protocol error SIGILL ILL_INSTR_FAULT
Trap #n (1 <=n <= 14) SIGILL ILL. TRAPr FAULT
A-line op code SIGEMT EMT_EMU1010
F-line op code SIGEMT EMT EMU1111
Integer division by zero SIGFPE FPE_INTDIV_TRAP
CHK or CHK2 instruction SIGFPE FPE_CHKINST TRAP
TRAPY or TRAPcc or cpTRAPcc SIGFPE FPE_TRAPV_TRAP
IEEE floating point compare unordered SIGFPE FPE_FLTBSUN_TRAP
IEEE floating point inexact SIGFPE FPE FLTINEX TRAP
IEEE floating point division by zero SIGFPE FPE_FLTDIV_TRAP
IEEE floating point underflow SIGFPE FPE_FLTUND_TRAP
IEEE floating point operand error SIGFPE FPE_FLTOPERR_TRAP
IEEE floating point overflow SIGFPE FPE FLTOVF FAULT
IEEE floating point signaling NaN SIGFPE FPE_FLTNAN TRAP
RETURN VALUE

A 0 value indicated that the call succeeded. A —1 return value indicates an error occurred and errno is set
to indicate the reason.

ERRORS

Sigvec will fail and no new signal handler will be installed if one of the following occurs:

EFAULT Either vec or ovec points to memory that is not a valid part of the process address space.
EINVAL Sig is not a valid signal number.

EINVAL An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

EINVAL An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

Sun Release 3.2 Last change: 16 July 1986 127

SIGVEC (2) SYSTEM CALLS SIGVEC (2)

SEE ALSO
kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3), signal(3), tty(4)

128 Last change: 16 July 1986 Sun Release 3.2

SOCKET(2) SYSTEM CALLS SOCKET(2)

socket — create an endpoint for communication

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION

Socket creates an endpoint for communication and returns a descriptor.

The af parameter specifies an address format with which addresses specified in later operations using the
socket should be interpreted. These formats are defined in the include file <sys/socket.h>. The currently
understood formats are

AF UNIX (UNIX path names),

AF_INET (ARPA Internet addresses),

AF_PUP (Xerox PUP-I Internet addresses), and
AF IMPLINK (IMP “*host at IMP”’ addresses).

The socket has the indicated type which specifies the semantics of communication. Currently defined types
are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams with an
out-of-band data transmission mechanism. A SOCK_DGRAM socket supports datagrams (connectionless,
unreliable messages of a fixed (typically small) maximum length). SOCK_RAW sockets provide access to
internal network interfaces. The types SOCK_RAW, which is available only to the super-user, and
SOCK_SEQPACKET and SOCK_RDM, which are planned, but not yet implemented, are not described
here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single protocol
exists to support a particular socket type using a given address format. However, it is possible that many
protocols may exist in which case a particular protocol must be specified in this manner. The protocol
number to use is particular to the ‘‘communication domain’’ in which communication is to take place; see
services(5) and protocols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be
in a connected state before any data may be sent or received on it. A connection to another socket is
created with a connect(2) call. Once connected, data may be transferred using read (2V) and write(2V)
calls or some variant of the send(2) and recv(2) calls. When a session has been completed a close (2) may
be performed. Out-of-band data may also be transmitted as described in send(2) and received as described
in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted
within a reasonable length of time, then the connection is considered broken and calls will indicate an error
with —1 returns and with ETIMEDOUT as the specific code in the global variable ermo. The protocols
optionally keep sockets ‘‘warm’’ by forcing transmissions roughly every minute in the absence of other
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit.

Sun Release 3.2 Last change: 7 March 1986 129

SOCKET(2) SYSTEM CALLS SOCKET (2)

SOCK_DGRAM and SOCK RAW sockets allow sending of datagrams to correspondents named in
send(2) calls. Itis also possible to receive datagrams at such a socket with recv(2).

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band
data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the file
<sys/socket.h> and explained below. Setsockopt and getsockopt(2) are used to set and get options, respec-
tively.

SO _DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse
SO_KEEPALIVE keep connections alive

SO _DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present

SO_DONTLINGER do not linger on close

SO _DEBUG enables debugging in the underlying protocol modules. SO REUSEADDR indicates the
rules used in validating addresses supplied in a bind(2) call should allow reuse of local addresses.
SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. Should the con-
nected party fail to respond to these messages, the connection is considered broken and processes using the
socket are notified via a SIGPIPE signal. SO _DONTROUTE indicates that outgoing messages should
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address. SO_LINGER and SO_DONTLINGER control
the actions taken when unsent messags are queued on socket and a close(2) is performed If the socket
promises reliable delivery of data and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt call when SO _LINGER is
requested). If SO_DONTLINGER is specified and a close is issued, the system will process the close in a
manner which allows the process to continue as quickly as possible.

RETURN VALUE

A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the socket.

ERRORS

The socket call fails if:
EAFNOSUPPORT The specified address family is not supported in this version of the system.

ESOCKTNOSUPPORT
The specified socket type is not supported in this address family.

EPROTONOSUPPORT
The specified protocol is not supported.
EMFILE The per-process descriptor table is full.
ENOBUFS No buffer space is available. The socket cannot be created.
SEE ALSO

BUGS

130

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2), select(2),
send(2), shutdown(2), socketpair(2)
Inter-Process Communication Primer in Networking on the Sun Workstation

The use of keepalives is a questionable feature for this layer.

Last change: 7 March 1986 Sun Release 3.2

SOCKETPAIR (2) SYSTEM CALLS SOCKETPAIR (2)

NAME
socketpair — create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION

The socketpair system call creates an unnamed pair of connected sockets in the specified domain d, of the
specified type and using the optionally specified protocol. The descriptors used in referencing the new
sockets are returned in sv[0] and sv[1]. The two sockets are indistinguishable.

DIAGNOSTICS
A 01is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

EMFILE Too many descriptors are in use by this process.

EAFNOSUPPORT The specified address family is not supported on this machine.

EPROTONOSUPPORT
The specified protocol is not supported on this machine.

EOPNOSUPPORT The specified protocol does not support creation of socket pairs.

EFAULT The address sv does not specify a valid part of the process address space.

SEE ALSO
read(2V), write(2V), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

Sun Release 3.2 Last change: 20 August 1985 131

STAT(2)

NAME

stat, Istat, fstat — get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

stat(path, buf)
char *path;
struct stat *buf;
Istat(path, buf)
char *path;
struct stat *buf;
fstat(fd, buf)
int fd;

struct stat *buf;

DESCRIPTION
stat obtains information about the file named by path. Read, write or execute permission of the named file
is not required, but all directories listed in the path name leading to the file must be searchable.

132

SYSTEM CALLS

STAT(2)

Istat is like stat except in the case where the named file is a symbolic link, in which case Istat returns infor-
mation about the link, while stat returns information about the file the link references.

fstat obtains the same information about an open file referenced by the argument descriptor, such as would

be obtained by an open call.

buf is a pointer to a stat structure into which information is placed concerning the file. The contents of the
structure pointed to by buf include the following members:

dev_t
ino_t
u_short
short
short
short
dev t
off t
time t
time t
time t
long
long

st_atime

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st_atime;
st_mtime;
st_ctime;
st_blksize;
st_blocks;

/* device inode resides on */

/* this inode’s number */

/* protection */

/* number of hard links to the file */

/* user ID of owner */

{* group ID of owner */

/* the device type, for inode that is device */
/* total size of file, in bytes */

/* file last access time */

/* file last modify time */

/* file last status change time */

/* optimal blocksize for file system i/0 ops */
/* actual number of blocks allocated */

Time when file data was last read or modified. Changed by the following system calls:

mknod(2), utimes(2), read(2V), write(2V), and truncate(2). For reasons of efficiency,
st_atime is not set when a directory is searched, although this would be more logical.

st_mtime

Time when data was last modified. It is not set by changes of owner, group, link count, or

mode. Changed by the following system calls: mknod(2), utimes(2), write(2V).

st_ctime

Time when file status was last changed. It is set both both by writing and changing the i-

node. Changed by the following system calls: chmod(2) chown(2), link(2), mknod(2),
rename(2), unlink(2), utimes(2), write (2V), truncate (2).

The status information word s¢_mode has bits:

#define S _IFMT
#define S _IFIFO

#define S IFCHR

0170000
0010000
0020000

Last change: 16 July 1986

/* type of file */
/* fifo special */
{* character special */

Sun Release 3.2

STAT(2) SYSTEM CALLS STAT(2)

#define S IFDIR 0040000 /* directory */

#define S_IFBLK 0060000 /* block special */

#define S _IFREG 0100000 /* regular file */

#define S JFLNK 0120000 /* symbolic link */

#define S_IFSOCK 0140000 /* socket */

#define S ISUID 0004000 /* set user id on execution */

#define S_ISGID 0002000 /* set group id on execution */
#define S ISVTX 0001000 /* save swapped text even after use */
#define S_IREAD 0000400 /* read permission, owner */

#define S_IWRITE 0000200 /* write permission, owner */

#define S _IEXEC 0000100 /* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS
stat and Istat will fail if one or more of the following are true:
ENOTDIR A component of the path prefix of path is not a directory.
EINVAL path contains a character with the high-order bit set.

ENAMETOOLONG

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.
ELOOP Too many symbolic links were encountered in translating path.
EFAULT buf or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

fstat will fail if one or both of the following are true:

EBADF Jd is not a valid open file descriptor.

EFAULT buf points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.
CAVEAT

The fields in the stat structure currently marked st_sparel, st_spare2, and st_spare3 are present in prepara-
tion for inode time stamps expanding to 64 bits. This, however, can break certain programs which depend
on the time stamps being contiguous (in calls to utimes(2)).

SEE ALSO
chmod(2), chown(2), readlink(2), utimes(2)

Sun Release 3.2 Last change: 16 July 1986 133

STATFS(2) SYSTEM CALLS STATFS(2)

NAME
statfs — get file system statistics

SYNOPSIS
#include <sys/vfs.h>

statfs(path, buf)
char *path;
struct statfs *buf;

fstatfs(fd, buf)
int fd;
struct statfs *buf;

DESCRIPTION

statfs returns information about a mounted file system. path is the path name of any file within the
mounted filesystem. Bufis a pointer to a staifs structure defined as follows:

typedef struct {
long valf2];
} fsid_¢;

struct statfs {
long f type; /* type of info, zero for now */
long f bsize; /* fundamental file system block size */
long f blocks; /* total blocks in file system */
long f bfree; /* free blocks */
long f bavail; /* free blocks available to non-superuser */
long f files; /* total file nodes in file system */
long f ffree; /* free file nodes in fs */
fsid t £ fsid; 1+ file system id */
long f spare[7]; /* spare for later */
b
Fields that are undefined for a particular file system are set to —1. fstatfs returns the same information
about an open file referenced by descriptor fd.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, —1 is returned and the global variable
errno is set to indicate the error.

ERRORS
statfs fails if one or more of the following are true:

ENOTDIR A component of the path prefix of path is not a directory.
EINVAL path contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.
ELOOP Too many symbolic links were encountered in translating path.
EFAULT buf or path points to an invalid address.

EIO An I/O error occurred while reading from or writing to the file system.

134 Last change: 16 July 1986 Sun Release 3.2

STATEFS(2) SYSTEM CALLS STATFS(2)

fstatfs fails if one or both of the following are true:

EBADF fd is not a valid open file descriptor.
EFAULT buf points to an invalid address.
EIO An I/O error occurred while reading from or writing to the file system
Sun Release 3.2

Last change: 16 July 1986 135

SWAPON((2) SYSTEM CALLS SWAPON (2)

NAME
swapon — add a swap device for interleaved paging/swapping

SYNOPSIS
swapon(special)
char *special;

DESCRIPTION
swapon makes the block device special available to the system for allocation for paging and swapping.
The names of potentially available devices are known to the system and defined at system configuration
time. The size of the swap area on special is calculated at the time the device is first made available for
swapping.

SEE ALSO
swapon(8), config(8)

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate the error.

ERRORS

ENOTDIR A component of the path prefix of special is not a directory.
EINVAL special contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of special exceeds 255 characters, or the length of special
exceeds 1023 characters.

ENOENT The device referred to by special does not exist.

EACCES Search permission is denied for a component of the path prefix of special .

ELOOP Too many symbolic links were encountered in translating special .

EPERM The caller is not the super-user.

ENOTBLK The file referred to by special is not a block device.

EBUSY The device referred to by special has already been made available for swapping.

ENODEV The device referred to by special was not configured into the system as a swap device.

ENXIO The major device number of the device referred to by special is out of range (this indi-
cates no device driver exists for the associated hardware).

EIO An I/O error occurred while reading from or writing to the file system or opening the
swap device.

EFAULT special points outside the process’s address space.

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

136 Last change: 16 July 1986 Sun Release 3.2

SYMLINK (2) SYSTEM CALLS SYMLINK (2)

NAME

symlink — make symbolic link to a file
SYNOPSIS

symlink(namel, name2)

char *namel, *name2;

DESCRIPTION
A symbolic link name2 is created to namel (name? is the name of the file created, namel is the string used
in creating the symbolic link). Either name may be an arbitrary path name; the files need not be on the
same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in errno
and a —1 value is returned.

ERRORS
The symbolic link is made unless one or more of the following are true:

ENOTDIR A component of the path prefix of name2 is not a directory.
EINVAL name?2 contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of either namel or name2 exceeds 255 characters, or the
length of either namel or name2 exceeds 1023 characters.

ENOENT A component of the path prefix of name2 does not exist.

EACCES Search permission is denied for a component of the path prefix of name2 .

ELOOP Too many symbolic links were encountered in translating name2.

EEXIST The file referred to by name2 already exists.

EIO An I/O error occurred while reading from or writing to the file system,

EROFS The file name2 would reside on a read-only file system.

ENOSPC The directory in which the entry for the new symbolic link is being placed cannot be
extended because there is no space left on the file system containing the directory.

ENOSPC The new symbolic link cannot be created because there is no space left on the file system
which will contain the link.

ENOSPC There are no free inodes on the file system on which the file is being created.

EDQUOT The directory in which the entry for the new symbolic link is being placed cannot be

extended because the user’s quota of disk blocks on the file system containing the direc-
tory has been exhausted.

EDQUOT The new symbolic link cannot be created becaue the user’s quota of disk blocks on the
file system which will contain the link has been exhausted.
EDQUOT The user’s quota of inodes on the file system on which the file is being created has been
exhausted.
EFAULT namel or name2 points outside the process’s allocated address space.
SEE ALSO

link(2), In(1), readlink(2), unlink(2)

Sun Release 3.2 Last change: 16 July 1986 137

SYNC(2) SYSTEM CALLS SYNC(2)

NAME

sync — update super-block
SYNOPSIS

sync()
DESCRIPTION

Sync causes all information in core memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/O.

Sync should be used by programs that examine a file system, for example fsck, df, etc. Sync is mandatory
before a boot.

SEE ALSO
fsync(2), sync(8), cron(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

138 Last change: 16 July 1986 Sun Release 3.2

SYSCALL(2) SYSTEM CALLS SYSCALL(2)

NAME

syscall — indirect system call
SYNOPSIS

#include <syscall.h>

syscall(number, arg, ...)

DESCRIPTION

syscall performs the system call whose assembly language interface has the specified number, and argu-
ments arg Symbolic constants for system calls can be found in the header file <syscall.h>.

The register dO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns —1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register d1.

Sun Release 3.2 Last change: 16 July 1986 139

TRUNCATE (2) SYSTEM CALLS TRUNCATE (2)

NAME
truncate, ftruncate — truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char *path;
unsigned long length;
ftruncate(fd, length)
int fd;
unsigned long length;
DESCRIPTION
truncate causes the file named by path or referenced by fd to be truncated to at most length bytes in size. If
the file previously was larger than this size, the extra data is lost. With firuncate, the file must be open for
writing.
RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a —1 is returned, and the global variable errno
specifies the error.
ERRORS
Truncate succeeds unless:

ENOTDIR A component of the path prefix of path is not a directory.
EINVAL path contains a character with the high-order bit set.
ENAMETOOLONG

The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.

ENOENT The file referred to by path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

EACCES Write permission is denied for the file referred to by path.

ELOOP Too many symbolic links were encountered in translating path.

EISDIR The file referred to by path is a directory.

EROFS The file referred to by path resides on a read-only file system.

ETXTBSY The file referred to by path is a pure procedure (shared text) file that is being executed.

EIO An /O error occurred while reading from or writing to the file system.

EFAULT path points outside the process’s allocated address space.

ftruncate succeeds unless:

EINVAL fd is not a valid descriptor of a file open for writing.

EINVAL fd references a socket, not a file.

EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO

open(2V)

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in files which
do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

140 Last change: 16 July 1986 Sun Release 3.2

UMASK (2) SYSTEM CALLS UMASK (2)

NAME
umask — set file creation mode mask
SYNOPSIS
oumask = umask(numask)
int oumask, numask;
DESCRIPTION
Umask sets the process’s file mode creation mask to numask and returns the previous value of the mask.
The low-order 9 bits of numask are used whenever a file is created, clearing corresponding bits in the file
mode (see chmod(2)). This clearing allows each user to restrict the default access to his files.
The value is initially 022 (write access for owner only). The mask is inherited by child processes.
RETURN VALUE
The previous value of the file mode mask is returned by the call.
SEE ALSO
chmod(2), mknod(2), open(2V)

Sun Release 3.2 Last change: 20 August 1985 141

UNAME(2V)

SYSTEM CALLS UNAME(2V)

NAME

uname — get name of current UNIX system
SYNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION

Note: This system call is only available for use with the System V compatibility libraries. These are
located in the directory /usr/5lib, and are compiled using the System V version of the C compiler,
fusri5Slib/cc.

uname stores information identifying the current UNIX system in the structure pointed to by name.

uname uses the structure defined in <sys/utsname.h> whose members are:

char
char
char
char
char

sysname[9];
nodename[9];
release[9];
version[9];
machine[9];

uname returns a null-terminated character string naming the current UNIX system in sysname and
nodename. This name will be the name returned by the gethostname (2) system call, truncated to 8 charac-
ters. release and version further identify the operating system. machine contains a name that identifies the
hardware that the UNIX system is running on.

SEE ALSO
uname(1V)

142

Last change: 16 July 1986 Sun Release 3.2

UNLINK (2) SYSTEM CALLS UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
unlink(path)
char *path;

DESCRIPTION
unlink removes the directory entry named by the path name pointed to by path. If this entry was the last
link to the file, and no process has the file open, then all resources associated with the file are reclaimed. If,
however, the file was open in any process, the actual resource reclamation is delayed until it is closed, even
though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set

to indicate the error.
ERRORS
The unlink succeeds unless:
ENOTDIR A component of the path prefix of path is not a directory.
EINVAL path contains a character with the high-order bit set.
ENAMETOOLONG
The length of a component of path exceeds 255 characters, or the length of path exceeds
1023 characters.
ENOENT The file referred to by path does not exist.
EACCES Search permission is denied for a component of the path prefix of path.
EACCES Write permission is denied for the directory containing the link to be removed.
ELOOP Too many symbolic links were encountered in translating path.
EPERM The file referred to by path is a directory and the effective user ID of the process is not
the super-user.
EBUSY The entry to be unlinked is the mount point for a mounted file system.
EIO An I/O error occurred while reading from or writing to the file system.
EROFS The file referred to by path resides on a read-only file system.
EFAULT path points outside the process’s allocated address space.
SEE ALSO

close(2), link(2), rmdir(2)

Sun Release 3.2 Last change: 16 July 1986 143

UNMOUNT(2) SYSTEM CALLS UNMOUNT (2)

NAME
unmount — remove a file system

SYNOPSIS
unmount(name)
char *name;
DESCRIPTION
unmount announces to the system that the directory name is no longer to refer to the root of a mounted file
system. The directory name reverts to its ordinary interpretation.
RETURN VALUE

unmount returns 0 if the action occurred; —1 if if the directory is inaccessible or does not have a mounted
file system, or if there are active files in the mounted file system.

ERRORS
unmount may fail with one of the following errors:
EPERM The caller is not the super-user.
ENOTDIR A component of the path prefix of name is not a directory.
EINVAL name is not the root of a mounted file system.
EBUSY A process is holding a reference to a file located on the file system.
EINVAL The path name contains a character with the high-order bit set.
ENAMETOOLONG
The length of a component of the path name exceeds 255 characters, or the length of the
entire path name exceeds 1023 characters.
ENOENT name does not exist.
EACCES Search permission is denied for a component of the path prefix.
EFAULT name points outside the process’s allocated address space.
ELOOP Too many symbolic links were encountered in translating the path name.
EIO An I/O error occurred while reading from or writing to the file system.
SEE ALSO

mount(2), mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

144 Last change: 16 July 1986 Sun Release 3.2

UTIMES (2)

NAME

SYSTEM CALLS UTIMES (2)

utimes — set file times

SYNOPSIS

#include <sys/types.h>

utimes(file, tvp)
char #file;

struct timeval tvp[2];

DESCRIPTION

The utimes call uses the ‘‘accessed’’ and ‘‘updated’’ times in that order from the tvp vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The ‘‘inode-changed’’ time of the file is set to

the current time.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

ERRORS

utime will fail if one or more of the following are true:

ENOTDIR A component of the path prefix of file is not a directory.
EINVAL file contained a character with the high-order bit set.
ENAMETOOLONG
The length of a component of file exceeds 255 characters, or the length of file exceeds
1023 characters.
ENOENT The file referred to by file does not exist.
EACCES Search permission is denied for a component of the path prefix of file.
ELOOP Too many symbolic links were encountered in translating file.
EPERM The process is not super-user and not the owner of the file.
EIO An I/O error occurred while reading from or writing to the file system.
EROFS The file system containing the file is mounted read-only.
EFAULT Sile or tvp points outside the process’s allocated address space.
SEE ALSO
stat(2)
Sun Release 3.2 Last change: 16 July 1986 145

VADVISE(2) SYSTEM CALLS VADVISE (2)

NAME
vadvise — give advice to paging system
SYNOPSIS
#include <sys/vadvise.h>
vadvise(param)
int param;

DESCRIPTION

Vadvise is used to inform the system that process paging behavior merits special consideration. Parameters
to vadvise are defined in the file <vadvise.h>. Currently, two calls t vadvise are implemented.

The call
vadvise(VA_ANOM);

advises that the paging behavior is not likely to be well handled by the system’s default algorithm, since
reference information is collected over macroscopic intervals (e.g. 10-20 seconds) will not serve to indicate
future page references. The system in this case will choose to replace pages with little emphasis placed on
recent usage, and more emphasis on referenceless circular behavior. It is essential that processes which
have very random paging behavior (such as LISP during garbage collection of very large address spaces)
call vadvise, as otherwise the system has great difficulty dealing with their page-consumptive demands.

The call
vadvise(VA_NORM);

restores default paging replacement behavior after a call to
vadvise(VA_ANOM);

BUGS
Will go away soon, being replaced by a per-page madvise facility.

146 Last change: 20 August 1985 Sun Release 3.2

VFORK (2) SYSTEM CALLS VFORK (2)

NAME

vfork — spawn new process in a virtual memory efficient way

SYNOPSIS

pid = vfork()
int pid;

DESCRIPTION

vfork can be used to create new processes without fully copying the address space of the old process, which
is horrendously inefficient in a paged environment. It is useful when the purpose of fork(2) would have
been to create a new system context for an execve. Vfork differs from fork in that the child borrows the
parent’s memory and thread of control until a call to execve(2) or an exit (either by a call to exit(2) or
abnormally.) The parent process is suspended while the child is using its resources.

vfork returns O in the child’s context and (later) the pid of the child in the parent’s context.

vfork can normally be used just like fork. It does not work, however, to return while running in the childs
context from the procedure which called vfork since the eventual return from vfork would then return to a
no longer existent stack frame. Be careful, also, to call _exit rather than exit if you can’t execve, since exit
will flush and close standard I/O channels, and thereby mess up the parent processes standard I/O data
structures. (Even with fork it is wrong to call exit since buffered data would then be flushed twice.)

SEE ALSO

fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented. Users
should not depend on the memory sharing semantics of vfork as it will, in that case, be made synonymous
to fork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are never sent
SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result in an end-of-file
indication.

Sun Release 3.2 Last change: 16 July 1986 147

VHANGUP(2) SYSTEM CALLS VHANGUP(2)

NAME
vhangup — virtually ‘‘hangup”’ the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are given
““clean’”’ terminals at login, by revoking access of the previous users’ processes to the terminal. To effect
this, vhangup searches the system tables for references to the control terminal of the invoking process,
revoking access permissions on each instance of the terminal that it finds. Further attempts to access the
terminal by the affected processes will yield i/o errors (EBADF). Finally, a hangup signal (SIGHUP) is
sent to the process group of the control terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

148 Last change: 16 July 1986 Sun Release 3.2

WAIT (2) SYSTEM CALLS WAIT (2)

NAME

wait, wait3 — wait for process to terminate or stop

SYNOPSIS

#include <sys/wait.h>

pid = wait(status)

int pid;

union wait *status;

pid = wait(0)

int pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;

union wait *status;

int options;

struct rusage *rusage;

DESCRIPTION

wait causes its caller to delay until a signal is received or one of its child processes terminates or stops due
to tracing. If any child has died or stopped due to tracing and this has not been reported via wait, return is
immediate, returning the process ID and exit status of one of those children. If that child had died, it is dis-
carded. If there are no children, return is immediate with the value —1 returned. If there are only running
or stopped but reported children, the calling processes is blocked.

On return from a successful wait call, status is nonzero, and the high byte of status contains the low byte of
the argument to exit supplied by the child process; the low byte of status contains the termination status of
the process. A more precise definition of the status word is given in <sys/wait.h>.

wait3 is an alternate interface that allows both non-blocking status collection and the collection of the
status of children stopped by any means. The status parameter is defined as above. The options parameter
is used to indicate the call should not block if there are no processes that have status to report
(WNOHANG), and/or that children of the current process that are stopped due to a SIGTTIN, SIGTTOU,
SIGTSTP, or SIGSTOP signal are eligible to have their status reported as well (WUNTRACED). A ter-
minated child is discarded after it reports status, and a stopped process will not report its status more than
once. If rusage is non-zero, a summary of the resources used by the terminated process and all its children
is returned. (This information is currently not available for stopped processes.)

When the WNOHANG option is specified and no processes have status to report, wait3 returns a pid of 0.
The WNOHANG and WUNTRACED options may be combined by or’ing the two values.

NOTES
See sigvec(2) for a list of termination statuses (signals); O status indicates normal termination. A special
status (0177) is returned for a stopped process that has not terminated and can be restarted; see ptrace(2)
and sigvec(2). If the 0200 bit of the termination status is set, a core image of the process was produced by
the system.
If the parent process terminates without waiting on its children, the initialization process (process ID = 1)
inherits the children.
wait and wait3 are automatically restarted when a process receives a signal while awaiting termination of a
child process.

RETURN VALUE

If wait returns due to a stopped or terminated child process, the process ID of the child is returned to the
calling process. Otherwise, a value of —1 is returned and errno is set to indicate the error.

Sun Release 3.2 Last change: 16 July 1986 149

WAIT(2) SYSTEM CALLS WAIT (2)

wait3 returns —1 if there are no children not previously waited for; O is returned if WNOHANG is
specified and there are no stopped or exited children.

ERRORS
wait will fail and return immediately if one or more of the following are true:
ECHILD The calling process has no existing unwaited-for child processes.
EFAULT The status or rusage arguments point to an illegal address.

The call is forced to terminate prematurely due to the arrival of a signal whose.SM SV_INTERRUPT
bit in sv_flags is set (see sigvec(2)). signal(3V), in the System V compatibility library,
sets this bit for any signal it catches.

SEE ALSO
exit(2), getrusage(2)

150 Last change: 16 July 1986 Sun Release 3.2

WRITE (2V) SYSTEM CALLS WRITE (2V)

NAME
write, writev — write output
SYNOPSIS
cc = write(d, buf, nbytes)
int cc, d;
char *buf;
int nbytes;
#include <sys/types.h>
#include <sys/uio.h>

cc = writev(d, iov, iovcent)
int cc, d;

struct iovec *iov;

int iovent;

DESCRIPTION

write attempts to write nbytes of data to the object referenced by the descriptor d from the buffer pointed to
by buf. writev performs the same action, but gathers the output data from the iovcnt buffers specified by
the members of the iov array: iov([0], iov[1], ..., iov[iovent—1).

For writev, the iovec structure is defined as

struct iovec {
caddr_t iov_base;
int iov_len;

b

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. writev will always write a complete area before proceeding to the next.

On objects capable of seeking, the write starts at a position given by the pointer associated with d, see
Iseek(2). Upon return from write, the pointer is incremented by the number of bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of the pointer
associated with such an object is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to the end of the file prior to
each write.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This prevents penetration
of system security by a user who ‘‘captures’’ a writable set-user-id file owned by the super-user.

‘When using non-blocking I/O on objects that are subject to flow control, such as sockets, pipes (or FIFOs),
or terminals, write and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible. If such an object’s buffers are full, so that it
cannot accept any data, then write and writev will return —1 and set errno to EWOULDBLOCK. Otherwise,
they will block until space becomes available.

SYSTEM V DESCRIPTION
A write (but not a writev) on an object that cannot accept any data will return a count of 0, rather than
returning—1 and setting errno to EWOULDBLOCK.

RETURN VALUE

Upon successful completion the number of bytes actually writen is returned. Otherwise a —~1 is returned
and the global variable errno is set to indicate the error.

ERRORS
write and writev will fail and the file pointer will remain unchanged if one or more of the following are
true:
EBADF d is not a valid descriptor open for writing.

Sun Release 3.2 Last change: 16 July 1986 151

WRITE (2V) SYSTEM CALLS WRITE (2V)

EPIPE An attempt is made to write to a pipe that is not open for reading by any process (or to a
socket of type SOCK_STREAM that is connected to a peer socket.) Note: an attempted
write of this kind will also cause you to recieve a SIGPIPE signal from the kernel. If
you’ve not made a special provision to catch or ignore this signal, your process will die.

EFBIG An attempt was made to write a file that exceeds the process’s file size limit or the max-
imum file size.

EFAULT Part of iov or data to be written to the file points outside the process’s allocated address
space.

The call is forced to terminate prematurely due to the arrival of a signal whose.SM SV_INTERRUPT
bit in sv_flags is set (see sigvec(2)). signal(3V), in the System V compatibility library,
sets this bit for any signal it catches.

EINVAL The pointer associated with d was negative,

ENOSPC There is no free space remaining on the file system containing the file.

EDQUOT The user’s quota of disk blocks on the file system containing the file has been exhausted.
EIO An I/O error occurred while reading from or writing to the file system.
EWOULDBLOCK

The file was marked for non-blocking 10, and no data could be written immediately.
In addition, writev may return one of the following errors:

EINVAL Iovcnt was less than or equal to 0, or greater than 16.

EINVAL One of the iov_len values in the iov array was negative.

EINVAL The sum of the iov_len values in the iov array overflowed a 32-bit integer.
SEE ALSO

fentl(2), Iseek(2), open(2V), pipe(2), select(2)

152 Last change: 16 July 1986 Sun Release 3.2

INTRO(3)

NAME

CLIBRARY FUNCTIONS INTRO(3)

intro — introduction to library functions

DESCRIPTION

Section 3 describes library routines. The main C library is /lib/libc.a, which contains all system call entry
points described in section 2, as well as functions described in several subsections here. The primary func-
tions are described in the main section 3. Functions associated with the ‘‘standard I/O library’’ used by
many C programs are found in section 3S. The main C library also includes Internet network functions,
described in section 3N, and routines providing compatibility with other UNIX systems, described in sec-

tion 3C.

Other sections are:

(3F) This section, for FORTRAN library routines and functions, is contained in the FORTRAN

Programmer’s Guide.

(3M) The Math Library. C declarations for the types of functions are be obtained from the include file
<math.h>. To use these functions with C programs compile them with the —Im option with cc(1).
They are automatically loaded as needed by the FORTRAN and Pascal compilers f77(1) and pc(1).

(3V) The System V Compatibility Library. System V versions of functions that are not yet merged into
the standard Sun libraries. To use these functions, compile programs with /usr/5bin/cc , instead of

/bin/cc.

(3X) Various specialized libraries have not been given distinctive captions. Files in which such
libraries are found are named on appropriate pages if they don’t appear in the libc library.

FILES
Nib/libc.a
fusr/lib/libc_p.a
/ust/lib/libm.a
fusr/lib/libm_p.a
/ust/lib/libcurses.a
fusr/lib/libdbm.a
{usr/lib/libmp.a
/usr/lib/libtermcap.a
{ust/lib/libtermcap_p.a
/usr/lib/libtermlib
/usr/lib/libtermlib_p.a
{ust/lib/libplot*.a
/ust/lib/libresolv.a

SEE ALSO

C Library ((2), (3), (3N) and (3C) routines)
Profiling C library (for gprof(1))

Math Library —Im (see section 3M)

Profiling version of —lm

screen management routines (see curses(3X)
data base management routines (see dbm(3X))
multiple precision math library (see mp(3X))
terminal handling routines (see termcap(3X))
(link to /usr/lib/libtermcap.a)

(link to /usr/lib/libtermcap_p.a)

plot routines (see plot(3X))

Internet name server routines (see resolver (3X))

intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(1), 1d(1), cc(1), £77(1), intro(2)

DIAGNOSTICS

Functions in the math library (section 3M) may return conventional values when the function is undefined
for the given arguments or when the value is not representable. In these cases the external variable errno
(see intro(2)) is set to the value EDOM (domain error) or ERANGE (range error). The values of EDOM
and ERANGE are defined in the include file <errno.h>.

LIST OF FUNCTIONS
Name

a64l

abort

abs

acos
acosh
addmntent

Sun Release 3.2

Appears on Page Description

a641(3) convert base-64 ASCII to long
abort(3) generate a fault

abs(3) integer absolute value

sin(3M) trigonometric functions

asinh(3M) inverse hyperbolic function
getmntent(3) get file system descriptor file entry

Last change: 11 June 1986 153

INTRO(3)

154

alarm
alloca
alphasort
asctime
asin

asinh
assert

atan

atanh

atof

atoi

atol

bcmp
bcopy
bsearch
bzero

cabs
calloc
cbe_crypt
cbrt

ceil

cfree
clearerr
clock
closedir
closelog
copysign
cos

cosh

crypt
ctermid
ctime
cuserid
des_crypt
des_setparity
dn_comp
dn_expand
drand48
drem
dysize
ecb_crypt
ecvt

edata
encrypt
end
endfsent
endgrent
endhostent
endmntent
endnetent
endnetgrent
endprotoent
endpwent

C LIBRARY FUNCTIONS
alarm(3C) schedule signal after specified time
malioc(3) memory allocator
scandir(3) scan a directory
ctime(3) convert date and time to ASCIH
sin(3M) trigonometric functions
asinh(3M) inverse hyperbolic function
assert(3) program verification
sin(3M) trigonometric functions
asinh(3M) inverse hyperbolic function
atof(3) convert ASCII to numbers
atof(3) convert ASCII to numbers
atof(3) convert ASCI to numbers
bstring(3) bit and byte string operations
bstring(3) bit and byte string operations
bsearch(3) binary search a sorted table
bstring(3) bit and byte string operations
hypot(3M) Euclidean distance
malloc(3) memory allocator
des_crypt(3) fast DES encryption
sqrt(3M) cube root
floor(3M) ceiling
malloc(3) memory allocator
ferror(3S) stream status inquiries
clock(3C) report CPU time used
directory(3) directory operations
syslog(3) control system log
ieee(3M) copysign remainder exponent manipulations
sin(3M) trigonometric functions
sinh(3M) hyperbolic functions
crypt(3) DES encryption
ctermid(3S) generate filename for terminal
ctime(3) convert date and time to ASCII
cuserid(3S) get character login name of user
des_crypt(3) fast DES encryption
des_crypt(3) fast DES encryption
resolver(3X) Internet name server routines
resolver(3X) Internet name server routines
drand48(3) generate uniformly distributed pseudo-random numbers
ieee(3M) copysign remainder exponent manipulations
ctime(3) convert date and time to ASCIIL
des_crypt(3) fast DES encryption
ecvt(3) output conversion
end(3) last locations in program,
crypt(3) DES encryption
end(3) last locations in program
getfsent(3) get file system descriptor file entry
getgrent(3) get group file entry
gethostent(3N) get network host entry
getmntent(3) get file system descriptor file entry
getnetent(3N) get network entry
getnetgrent(3N) get network group entry
getprotoent(3N) get protocol entry
getpwent(3) get password file entry

Last change: 11 June 1986

INTRO(3)

Sun Release 3.2

INTRO(3) CLIBRARY FUNCTIONS INTRO (3)

endservent getservent(3N) get service entry

environ execl(3) execute a file

erand48 drand48(3) generate uniformly distributed pseudo-random numbers
erf erf(3M) error functions

errno perror(3) System error messages

etext end(3) last locations in program

ether ether(3R) monitor traffic on the Ethernet
ether_aton ethers(3N) Ethernet address mapping
ether_hostton ethers(3N) Ethernet address mapping
ether_line(3N) ethers Ethernet address mapping

ether ntoa ethers(3N) Ethernet address mapping
ether_ntohost ethers(3N) Ethernet address mapping

execl execl(3) execute a file

execle execl(3) execute a file

execlp execl(3) execute a file

execv execl(3) execute a file

execvp execl(3) execute a file

exit exit(3) terminate a process after performing cleanup
exp exp(3M) exponential function

fabs floor(3M) absolute value

fclose fclose(3S) close or flush a stream

fevt ecvt(3) output conversion

fdopen fopen(3S) open a stream

feof ferror(3S) stream status inquiries

ferror ferror(3S) stream status inquiries

fflush fclose(3S) close or flush a stream

ffs bstring(3) bit and byte string operations

fgetc getc(3S) get character or integer from stream
fgets gets(3S) get a string from a stream

fileno ferror(3S) stream status inquiries

finite ieee(3M) copysign remainder exponent manipulations
floor floor(3M) floor function

fopen fopen(3S) open a stream

fprintf printf(3S) formatted output conversion

fputc putc(3S) put character or word on a stream
fputs puts(3S) put a string on a stream

fread fread(3S) buffered binary input/output

free malloc(3) memory allocator

freopen fopen(3S) open a stream

frexp frexp(3) split into mantissa and exponent
fscanf scanf(3S) formatted input conversion

fseek fseek(3S) reposition a stream

ftell fseek(3S) reposition a stream

ftime time(3C) get date and time

ftok ftok(3) standard interprocess communication package
ftw ftw(3) walk a file tree

fwrite fread(3S) buffered binary input/output

gevt ecvt(3) output conversion

getc getc(3S) get character or integer from stream
getchar getc(3S) get character or integer from stream
getcwd getcwd(3) get pathname of current working directory
getenv getenv(3) value for environment name
getfsent getfsent(3) get file system descriptor file entry

Sun Release 3.2 Last change: 11 June 1986 155

INTRO(3)

156

getfsfile
getfsspec
getfstype
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlogin
getmntent
getnetbyaddr
getnetbyname
getnetent
getnetgrent
getopt

getpass
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
getrpcbyname
getrpcbynumber
getrpcent
getrpcport
gets
getservbyname
getservbyport
getservent
getw

getwd

gmtime
gsignal

gty
hasmntopt
havedisk
hcreate
hdestroy
hsearch

htonl

htons

hypot

ieee

index
inet_addr
inet_Inaof
inet_makeaddr
inet_netof
inet_network
inet ntoa

Last change: 11 June 1986

CLIBRARY FUNCTIONS INTRO(3)
getfsent(3) get file system descriptor file entry
getfsent(3) get file system descriptor file entry
getfsent(3) get file system descriptor file entry
getgrent(3) get group file entry
getgrent(3) get group file entry
getgrent(3) get group file entry
gethostent(3N) get network host entry
gethostent(3N) get network host entry
gethostent(3N) get network host entry
getlogin(3) get login name
getmntent(3) get file system descriptor file entry
getnetent(3N) get network entry
getnetent(3N) get network entry
getnetent(3N) get network entry
getnetgrent(3N) get network group entry
getopt(3) get option letter from argv
getpass(3) read a password
getprotoent(3N) get protocol entry
getprotoent(3N) get protocol entry
getprotoent(3N) get protocol entry
getpw(3) get name from uid
-getpwent(3) get password file entry
getpwent(3) get password file entry
getpwent(3) get password file entry
getrpcent(3N) get RPC entry
getrpcent(3N) get RPC entry
getrpcent(3N) get RPC entry
getrpcport(3R) get RPC port number
gets(3S) get a string from a stream
getservent(3N) get service entry
getservent(3N) get service entry
getservent(3N) get service entry
getc(3S) get character or integer from stream
getwd(3) get current working directory pathname
ctime(3) convert date and time to ASCII
signal(3) software signals
stty(3C) set and get terminal state
getmntent(3) get file system descriptor file entry
rstat(3R) get remote host performance data
hsearch(3) manage hash search tables
hsearch(3) manage hash search tables
hsearch(3) manage hash search tables
byteorder(3N) convert values between host and network byte order
byteorder(3N) convert values between host and network byte order
hypot(3M) Euclidean distance
ieee(3M) copysign remainder exponent manipulations
string(3) string operations
inet(3N) Internet address manipulation
inet(3N) Internet address manipulation
inet(3N) Internet address manipulation
inet(3N) Internet address manipulation
inet(3N) Internet address manipulation
inet(3N) Internet address manipulation

Sun Release 3.2

INTRO(3)

initgroups
initstate
innetgr
insque
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
isinf
islower
isnan
isprint
ispunct
isspace
isupper
isxdigit
jo

j1

jn
jrand48
164a
Icong48
Idexp
Ifind
Igamma
localtime
lockf

log

log10
logb
longjmp
Irand48
Isearch
malloc
malloc_debug
malloc_verify
matherr
memalign
memccpy
memchr
memcmp
memcpy
memset
mkstemp
mktemp
modf
moncontrol
monitor
monstartup
mrand48

Sun Release 3.2

CLIBRARY FUNCTIONS INTRO(3)

initgroups(3) initialize group access list
random(3) better random number generator
getnetgrent(3N) get network group entry

insque(3) insert/remove element from a queue

ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ttyname(3) find name of a terminal

ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
isinf(3) test for indeterminate floating point values
ctype(3) character classification and conversion macros
isinf(3) test for indeterminate floating point values
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
jO(3M) Bessel functions
jO(3M) Bessel functions
jO(3M) Bessel functions

drand48(3) generate uniformly distributed pseudo-random numbers
a641(3) convert long to base-64 ASCII

drand48(3) generate uniformly distributed pseudo-random numbers
frexp(3) split into mantissa and exponent

Isearch(3) linear search and update

lgamma(3M) log gamma function

ctime(3) convert date and time to ASCII

lockf(3) advisory record locking on files

exp(3M) exponential functions

exp(3M) exponential functions

ieee(3M) copysign remainder exponent manipulations
sejmp(3) non-local goto

drand48(3) generate uniformly distributed pseudo-random numbers
Isearch(3) linear search and update

malloc(3) memory allocator

malloc(3) memory allocator

malloc(3) memory allocator

matherr(3M) math library error-handling function
malloc(3) memory allocator

memory(3) memory operations

memory(3) memory operations

memory(3) memory operations

memory(3) memory operations

memory(3) memory operations

mktemp(3) make a unique file name
mktemp(3) make a unique file name
frexp(3) split into mantissa and exponent

monitor(3) prepare execution profile

monitor(3) prepare execution profile
monitor(3) prepare execution profile

drand48(3) generate uniformly distributed pseudo-random numbers

Last change: 11 June 1986 157

INTRO(3)

158

nice
nlist
nrand48
ntohl
ntohs
on_exit
opendir
openlog
optarg
optind
pause
pclose
perror
popen
pow
printf
prof
psignal
putc
putchar
putenv
putpwent
puts
putw
gsort
rand
random
rcmd
re_comp
re_exec
readdir
realloc
regexp
remque
res_init
res_mkquery
res_send
rewind
rewinddir
rex
rexec
rindex
rint
rnusers
rquota
rresvport
rstat
ruserok
rusers
rwall
scalb
scandir
scanf

CLIBRARY FUNCTIONS INTRO(3)
nice(3C) set program priority
nlist(3) get entries from name list
drand48(3) generate uniformly distributed pseudo-random numbers
byteorder(3N) convert values between host and network byte order
byteorder(3N) convert values between host and network byte order
onexit(3) name termination handler
directory(3) directory operations
syslog(3) control system log
getopt(3) get option letter from argy
getopt(3) get option letter from argv
pause(3C) stop until signal
popen(3S) initiate I/O to/from a process
perror(3) System error messages
popen(3S) initiate /O to/from a process
exp(3M) exponential functions
printf(3S) formatted output conversion
prof(3) profile within a function
psignal(3) system signal messages
putc(3S) put character or word on a stream
putc(3S) put character or word on a stream
utenv(3) change or add value to environment
putpwent(3) write password file entry
puts(3S) put a string on a stream
putc(3S) put character or word on a stream
gsort(3) quicker sort
rand(3C) random number generator
random(3) better random number generator
rcmd(3N) routines for returning a stream to a remote command
regex(3) regular expression handler
regex(3) regular expression handler
directory(3) directory operations
malloc(3) memory allocator
regexp(3) regular expression compile and match routines
insque(3) insert/remove element from a queue
resolver(3X) Internet name server routines
resolver(3) Internet name server routines
resolver(3) Internet name server routines
fseek(3S) reposition a stream
directory(3) directory operations
rex(3R) remote execution protocol
rexec(3N) return stream to a remote command
string(3) string operations
floor(3M) round to nearest integer
musers(3R) return info about users on remote hosts
rquota(3R) implement quotas on remote hosts
rcmd(3N) routines for returning a stream to a remote command
rstat(3R) get remote host performance data
rcmd(3N) routines for returning a stream to a remote command
rnusers(3R) return info about users on remote hosts
rwall(3R) write to remote host
ieee(3M) copysign remainder exponent manipulations
scandir(3) scan a directory
scanf(3S) formatted input conversion

Last change: 11 June 1986

Sun Release 3.2

INTRO(3)

seed48
seekdir
setbuf
setbuffer
setegid
seteuid
setfsent
setgid
setgrent
sethostent
setjmp
setkey
setlinebuf
setlinebuf
setmntent
setnetent
setnetgrent
setprotoent
setpwent
setrgid
setruid
setservent
setstate
setuid
setvbuf
siginterrupt
signal

sin

sinh

sleep
spray
sprintf
sqrt
srand
srand48
srandom
sscanf
ssignal
stdio
strcat
strcmp
strcpy
strlen
strncat
strncmp
strncpy
strtod
strtol

stty

swab
sys_ertlist
Sys_nerr
sys_siglist

Sun Release 3.2

C LIBRARY FUNCTIONS INTRO(3)
drand48(3) generate uniformly distributed pseudo-random numbers
directory(3) directory operations
setbuf(3S) assign buffering to a stream
setbuf(3S) assign buffering to a stream
setuid(3) set user and group ID
setuid(3) set user and group ID
getfsent(3) get file system descriptor file entry
setuid(3) set user and group ID
getgrent(3) get group file entry
gethostent(3N) get network host entry
setjmp(3) non-local goto
crypt(3) DES encryption
setbuf(3S) assign buffering to a stream
setbuf(3S) assign buffering to a stream
getmntent(3) get file system descriptor file entry
getnetent(3N) get network entry
getnetgrent(3N) get network group entry
getprotoent(3N) get protocol entry
getpwent(3) get password file entry
setuid(3) set user and group ID
setuid(3) set user and group ID
getservent(3N) get service entry
random(3) better random number generator
setuid(3) set user and group ID
setbuf(3S) assign buffering to a stream
siginterrupt(3) allow signals to interrupt system calls
signal(3) simplified software signal facilities
sin(3M) trigonometric functions
sinh(3M) hyperbolic functions
sleep(3) suspend execution for interval
spray(3R) scatter packets to check network
printf(3S) formatted output conversion
sqrt(3M) square root
rand(3C) random number generator
drand48(3) generate uniformly distributed pseudo-random numbers
random(3) better random number generator
scanf(3S) formatted input conversion
ssignal(3) software signals
intro(3S) standard buffered input/output package
string(3) string operations
string(3) string operations
string(3) string operations
string(3) string operations
string(3) string operations
string(3) string operations
string(3) string operations
strtod(3) convert string to double-precision number
strtol(3) convert string to integer
stty(3C) set and get terminal state
swab(3) swap bytes
perror(3) system error messages
perror(3) system error messages
psignal(3) system signal messages

Last change: 11 June 1986 159

INTRO(3)

160

syslog
system
tan
tanh
tdelete
telldir
tfind
time
times
timezone
tmpfile
tmpnam
toascii
tolower
toupper
tsearch
ttyname
ttyslot
twalk
ualarm
ulimit
ungetc
usleep
utime
valloc
values
varargs
viprintf
vlimit
vprintf
vsprintf
vtimes
y0

yp_get_default_domain
yp_master

yp_match

yp_next

yp_order

yp_unbind

ypcint

yperr_string

yppasswd

ypprot_err

C LIBRARY FUNCTIONS INTRO (3)
syslog(3) control system log
system(3) issue a shell command
sin(3M) trigonometric functions
sinh(3M) hyperbolic functions
tsearch(3) manage binary search trees
directory(3) directory operations
tsearch(3) manage binary search trees
time(3C) get date and time
times(3C) get process times
ctime(3) convert date and time to ASCII
tmpfile(3S) create a temporary file
tmpnam(3S) create a name for a temporary file
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
ctype(3) character classification and conversion macros
tsearch(3) manage binary search trees
ttyname(3) find name of a terminal
ttyname(3) find name of a terminal
tsearch(3) manage binary search trees
ualarm(3) schedule signal after microsecond interval
ulimit(3C) get and set user limits
ungetc(3S) push character back into input stream
usleep(3S) suspend execution for micorsecond interval
utime(3C) set file times
valloc(3) aligned memory allocator
values(3) machine-dependent values
varargs(3) variable argument list
vprintf(3S) print formatted output of a varargs argument list
v1limit(3C) control maximum system resource consumption
vprintf(3S) print formatted output of a varargs argument list
vprintf(3S) print formatted output of a varargs argument list
vtimes(3C) get information about resource utilization
jO(3M) Bessel functions
joO(3M) Bessel functions
jO(3M) Bessel functions
ypelnt(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypclnt(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypcint(3N) YP client interface routines
ypclnt(3N) YP client interface routines
ypclnt(3N) YP client interface routines
yppasswd(3R) update user YP password
ypcint(3N) YP client interface routines

Last change: 11 June 1986

Sun Release 3.2

A64L(3) CLIBRARY FUNCTIONS A64L (3)

NAME
a64l, 164a — convert between long integer and base-64 ASCII string
SYNOPSIS
long a64l (s)
char *s;
char *164a ()
long 1;
DESCRIPTION :
to long integer" These functions are used to maintain numbers stored in base-64 ASCII characters. This is a

notation by which long integers can be represented by up to six characters; each character represents a
“‘digit’’ in a radix-64 notation.

The characters used to represent ‘‘digits’’ are . for 0, / for 1, 0 through 9 for 2—11, A through Z for 12-37,
and a through z for 38—-63.

A641 takes a pointer to a null-terminated base-64 representation and returns a corresponding long value. If
the string pointed to by s contains more than six characters, a64] will use the first six.

l64a takes a long argument and returns a pointer to the corresponding base-64 representation. If the argu-
ment is 0, /64a returns a pointer to a null string.
BUGS

The value returned by /64a is a pointer into a static buffer, the contents of which are overwritten by each
call.

Sun Release 3.2 Last change: 15 April 1986 161

ABORT(3) C LIBRARY FUNCTIONS ABORT (3)

NAME
abort — generate a fault

SYNOPSIS
abort()

DESCRIPTION
abort first closes all open files if possible, then causes an IOT signal to be sent to the process. This signal
usually results in termination with a core dump, which may be used for debugging.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case the value returned is
that of the kill (2) system call.

SEE ALSO
adb(1), signal(3), exit(2), kill(2)

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is produced and
the message ‘‘abort — core dumped’’ is written by the shell.

162 Last change: 15 April 1986 Sun Release 3.2

ABS(3) C LIBRARY FUNCTIONS ABS(3)

NAME
abs — integer absolute value

SYNOPSIS
abs(i)
int i;
DESCRIPTION
Abs returns the absolute value of its integer operand.
SEE ALSO
floor(3M) for fabs
BUGS

Applying the abs function to the most negative integer generates a result which is the most negative
integer. That is, abs(0x80000000) returns 0x80000000 as a result.

Sun Release 3.2 Last change: 27 August 1983 163

ASSERT(3) CLIBRARY FUNCTIONS ASSERT(3)

NAME
assert — program verification

' SYNOPSIS
#include <assert.h>
assert(expression)

DESCRIPTION
Assert is a macro that indicates expression is expected to be true at this point in the program. It causes an
exit(2) with a diagnostic comment on the standard output when expression is false (0). Compiling with the
cc(1) option -DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
‘Assertion failed: file fline n." F is the source file and n the source line number of the assert statement.

164 Last change: 23 August 1983 Sun Release 3.2

BSEARCH(3) CLIBRARY FUNCTIONS BSEARCH(3)

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch ((char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION

bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a pointer into a
table indicating where a datum may be found. The table must be previously sorted in increasing order
according to a provided comparison function. key points to a datum instance to be sought in the table.
base points to the element at the base of the table. nel is the number of elements in the table. compar is the
name of the comparison function, which is called with two arguments that point to the elements being com-
pared. The function must return an integer less than, equal to, or greater than zero as accordingly the first
argument is to be considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a string and its length. The
table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node in which case it prints out the
string and its length, or it prints an error message.

#include <stdio.h>
#include <search.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

b

struct node table[TABSIZE]; /* table to be searched */

{
struct node *node_ptr, node;

int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%s", node.string) != EOF) {
node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d\n",
node ptr—>string, node ptr—>length);
}else {
(void)printf("not found: %s\n", node.string);

}

Sun Release 3.2 Last change: 15 April 1986 165

BSEARCH(3) C LIBRARY FUNCTIONS BSEARCH (3)

}

}

/%
This routine compares two nodes based on an
alphabetical ordering of the string field.

*/

int

node_compare(nodel, node2)
struct node *nodel, *node2;

{
}

return strcmp(node 1->string, node2->string);

NOTES
The pointers to the key and the element at the base of the table should be of type pointer-to-element, and
cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be contained in the elements
in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to-
element.

SEE ALSO
hsearch(3), Isearch(3), qsort(3), tsearch(3)

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

166 Last change: 15 April 1986 Sun Release 3.2

BSTRING(3) CLIBRARY FUNCTIONS BSTRING (3)

NAME
bstring, bcopy, bcmp, bzero, ffs — bit and byte string operations
SYNOPSIS
beopy(b1, b2, length)
char *bl, *b2;
int length;
bemp (b1, b2, length)
char *b1, *b2;
int length;
bzero(b, length)
char *b;
int length;
ffs(i)
int i;
DESCRIPTION

The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do not check for
null bytes as the routines in string(3) do.

Bcopy copies length bytes from string b1 to the string b2. Overlapping strings are handled correctly.

Bemp compares byte string b] against byte string b2, returning zero if they are identical, non-zero other-
wise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string b.

Ffs finds the first bit set in the argument passed it and returns the index of that bit. Bits are numbered start-
ing at 1 from the right. A return value of —1 indicates the value passed is zero.

CAVEAT
The bemp and beopy routines take parameters backwards from stremp and strepy.

Sun Release 3.2 Last change: 7 November 1984 167

CRYPT(3) CLIBRARY FUNCTIONS CRYPT(3)

NAME

crypt, setkey, encrypt — password and data encryption

SYNOPSIS

char *crypt(key, salt)
char *key, *salt;

setkey(key)
char *key;

encrypt(block, edflag)
char *block;

DESCRIPTION

crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, with variations
intended (among other things) to frustrate use of hardware implementations of the DES for key search.

The first argument to crypt is normally a user’s typed password. The second is a 2-character string chosen
from the set [a-zA-Z0-9./]. The salt string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeatedly a constant string. The returned
value points to the encrypted password, in the same alphabet as the salt. The first two characters are the
salt itself.

The setkey and encrypt entries provide (rather primitive) access to the DES algorithm. The argument of
setkey is a character array of length 64 containing only the characters with numerical value O and 1. If this
string is divided into groups of 8, the low-order bit in each group is ignored; this gives a 56-bit key which is
set into the machine. This is the key that will be used with the above mentioned algorithm to encrypt or
decrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only the characters with
numerical value O and 1. The argument array is modified in place to a similar array representing the bits of
the argument after having been subjected to the DES algorithm using the key set by setkey. If edflag is
zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

168

passwd(1), passwd(5), login(1), getpass(3)

The return value points to static data whose content is overwritten by each call.

Last change: 15 April 1986 Sun Release 3.2

CTIME (3) CLIBRARY FUNCTIONS CTIME (3)

NAME
ctime, localtime, gmtime, asctime, timezone, dysize — convert date and time to ASCII
SYNOPSIS

char *ctime(clock)
long *clock;

#include <time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)
int dysize(y)
inty;
DESCRIPTION
ctime converts to ASCII a long integer, pointed to by clock, that represents the time in seconds since Jan. 1,
1970, 00:00, Greenwich Mean Time. It returns a pointer to a 26-character string of the form:
Sun Sep 16 01:03:52 1973\n\0

Each field has a constant width. localtime and gmtime return pointers to structures containing the broken-
down time. localtime corrects for the time zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time UNIX uses. asctime converts a broken-down time to ASCII and returns
a pointer to a 26-character string.

Declarations of all the functions and externals, and the ‘‘tm’’ structure, are in the <time.h> header file.
The structure declaration is:

struct tm {
int tm_sec; /* seconds (0 - 59) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year — 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst;

b

tm_isdst is non-zero if Daylight Savings Time is in effect.

When local time is called for, the program consults the system to determine the time zone and whether the
U.S.A,, Canadian, Australian, Eastern European, Middle European, or Western European daylight saving
time adjustment is appropriate. The program knows about various peculiarities in time conversion over the
past 10-20 years.

timezone returns the name of the time zone associated with its first argument, which is measured in minutes
westward from Greenwich. If the second argument is O, the standard name is used, otherwise the Daylight
Savings Time version. If the required name does not appear in a table built into the routine, the difference
from GMT is produced; e.g., in Afghanistan timezone(—(60+4+30), 0) is appropriate because it is 4:30
ahead of GMT and the string GMT+4:30 is produced.

Sun Release 3.2 Last change: 15 April 1986 169

CTIME(3) C LIBRARY FUNCTIONS CTIME (3)

dysize returns the number of days in the argument year, either 365 or 366.

SEE ALSO
gettimeofday(2), time(3C), getenv(3), environ(5V), ctime(3V)

BUGS
The return values point to static data, whose contents are overwritten by each call.

170 Last change: 15 April 1986 Sun Release 3.2

CTYPE(3) CLIBRARY FUNCTIONS CTYPE(3)

NAME

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii, isgraph,
toupper, tolower, toascii — character classification and conversion macros and functions

SYNOPSIS
#include <ctype.h>

isalpha(c)

CHARACTER CLASSIFICATION MACROS
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero
for true, zero for false. isascii is defined on all integer values; the rest are defined only where isascii(c) is
true and on the single non-ASCII value EOF (see stdio(3S)).

isalpha(c) c is aletter

isupper(c) c is an upper case letter

islower(c) c is a lower case letter

isdigit(c) ¢ is a digit [0-9].

isxdigit(c) c is a hexadecimal digit [0-9], [A-F], or [a-f].

isalnum(c) c is an alphanumeric character, that is, c is a letter or a digit

isspace(c) c is a space, tab, carriage return, newline, vertical tab, or formfeed
ispunct(c) c is a punctuation character (neither control nor alphanumeric)

isprint(c) c is a printing character, code 040(8) (space) through 0176 (tilde)
iscntrl(c) c is a delete character (0177) or ordinary control character (less than 040).
isascii(c) ¢ is an ASCII character, code less than 0200

isgraph(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde).

CHARACTER CONVERSION MACROS
These macros perform simple conversions on single characters.

toupper(c) converts c to its upper-case equivalent. Note that this only works where c¢ is known to be a
lower-case character to start with (presumably checked via islower).

tolower(c) converts c to its lower-case equivalent. Note that this only works where ¢ is known to be a
upper-case character to start with (presumably checked via isupper).

toascii(c) masks c with the correct value so that ¢ is guaranteed to be an ASCII character in the range O

thru Ox7f.
DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the result is undefined.
SEE ALSO

stdio(3S), ascii(7), ctype(3V)

Sun Release 3.2 Last change: 15 April 1986 171

DES_CRYPT(3) CLIBRARY FUNCTIONS DES_CRYPT(3)

NAME

des_crypt, ecb_crypt, cbc_crypt, des_setparity — fast DES encryption

SYNOPSIS

#include <des_crypt.h>

int ecb_crypt(key, data, datalen, mode)
char *key;

char *data;

unsigned datalen;

unsigned mode;

int cbc_crypt(key, data, datalen, mode, ivec)
char *key;

char *data;

unsigned datalen;

unsigned mode;

char *ivec;

void des_setparity(key)
char *key;

DESCRIPTION

ecb_crypt and cbc_crypt implement the NBS Data Encryption Standard (DES). These routines are faster
and more general purpose than crypt(3). They also are able to utilize DES hardware if it is available.
ecb_crypt encrypts in Electronic Code Book (ECB) mode, which encrypts blocks of data independently.
cbe_crypt encrypts in Cipher Block Chaining (CBC) mode, which chains together successive blocks. CBC
mode protects against insertions, deletions and substitutions of blocks. Also, regularities in the clear text
will not appear in the cipher text.

Here is how to use these routines. The first parameter, key, is the 8-byte encryption key with parity. To set
the key’s parity, which for DES is in the low bit of each byte, use des_setparity. The second parameter,
data, contains the data to be encrypted or decrypted. The third parameter, datalen, is the length in bytes of
data, which must be a multiple of 8. The fourth parameter, mode, is formed by or’ing together some things.
For the encryption direction "or’ in either DES_ENCRYPT or DES_DECRYPT. For software versus hardware
encryption, ’or’ in either DES_HW or DES_SW. If DES_HW is specified, and there is no hardware, then the
encryption is performed in software and the routine returns DESERR_NOHWDEVICE. For cbc_crypt, the
parameter ivec is the the 8-byte initialization vector for the chaining. It is updated to the next initialization
vector upon return.

DIAGNOSTICS

DESERR_NONE
no error.
DESERR_NOHWDEVICE
encryption succeeded, but done in software instead of the requested hardware.
DESERR_HWERR
an error occurred in the hardware or driver.
DESERR_BADPARAM
bad parameter to routine.

Given a result status stat, the macro DES_FAILED(star) is false only for the first two statuses.

RESTRICTIONS

These routines are not available for export outside the U.S.

SEE ALSO

172

crypt(3), des(1)

Last change: 28 March 1986 Sun Release 3.2

DIRECTORY (3) CLIBRARY FUNCTIONS DIRECTORY (3)

NAME
directory, opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations
SYNOPSIS

#include <sys/types.h>
#include <sys/dir.h>

DIR *opendir(filename)
char #*filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR #*dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

closedir(dirp)
DIR #*dirp;
DESCRIPTION
opendir opens the directory named by filename and associates a directory stream with it. opendir returns a
pointer to be used to identify the directory stream in subsequent operations. The pointer NULL is returned

if filename cannot be accessed or is not a directory, or if it cannot malloc (3) enough memory to hold the
whole thing.

readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end of the direc-
tory or detecting an invalid seekdir operation.

telldir returns the current location associated with the named directory stream.

seekdir sets the position of the next readdir operation on the directory stream. The new position reverts to
the one associated with the directory stream when the telldir operation was performed. Values returned by
telldir are good only for the lifetime of the DIR pointer from which they are derived. If the directory is
closed and then reopened, the telldir value may be invalidated due to undetected directory compaction. It
is safe to use a previous telldir value immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.
closedir closes the named directory stream and frees the structure associated with the DIR pointer.
Sample code which searchs a directory for entry ‘‘name’’ is:

len = strlen(name);
dirp = opendir(".");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp})
if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(dirp);
return FOUND;
}
closedir(dirp);
return NOT_FOUND;

SEE ALSO
open(2), close(2), read(2), Iseek(2), getwd(3), dir(5)

Sun Release 3.2 Last change: 17 July 1986 173

DIRECTORY (3) CLIBRARY FUNCTIONS DIRECTORY (3)

NOTES
All UNIX programs that examine directories must be converted to use this package in Sun release 3.0 and
beyond. Direct reading of directories is no longer allowed. SH BUGS The new directory format is not
obvious.

174 Last change: 17 July 1986 Sun Release 3.2

DRANDA48 (3) CLIBRARY FUNCTIONS DRANDA48(3)

NAME

delim $$

drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, Icong48 — generate uniformly dis-
tributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v{3];

void lcong48 (param)
unsigned short param[7];

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-known linear congruential algo-
rithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point values uniformly dis-
tributed over the interval $[0.0,71.0).$

Functions lrand48 and nrand48 return non-negative long integers uniformly distributed over the interval
$00,2 sup 31).%

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the interval $[-2 sup
31,2sup31)$

Functions srand48, seed48, and Icong48 are initialization entry points, one of which should be invoked
before either drand48, lrand48, or mrand48 is called. (Although it is not recommended practice, constant
default initializer values will be supplied automatically if drand48, Irand48, or mrand48 is called without a
prior call to an initialization entry point.) Functions erand48, nrand48, and jrand48 do not require an ini-
tialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, $X sub i ,$ according to the linear
congruential formula

X sub{n+1}"="(aX sub n"+"c) sub{roman mod™m}"""""n>=0.

~

The parameter $m"="2 sup 48%; hence 48-bit integer arithmetic is performed. Unless lcong48 has been
invoked, the multiplier value a and the addend value c are given by

a’mark ="roman SDEECE66D"sub 16™="roman 273673163155 sub 8
¢’lineup ="roman B*sub 16"="roman 13"sub § .

The value returned by any of the functions drand48, erand48, lrand48, nrand48, mrand48, or jrand48 is
computed by first generating the next 48-bit $X sub i$ in the sequence. Then the appropriate number of
bits, according to the type of data item to be returned, are copied from the high-order (leftmost) bits of $X
sub i$ and transformed into the returned value.

Sun Release 3.2 Last change: 15 April 1986 175

DRAND48 (3) C LIBRARY FUNCTIONS DRAND48 (3)

The functions drand48, lrand48, and mrand48 store the last 48-bit $X sub i$ generated in an internal
buffer; that is why they must be initialized prior to being invoked. The functions erand48, nrand48, and
jrand48 require the calling program to provide storage for the successive $X sub i$ values in the array
specified as an argument when the functions are invoked. That is why these routines do not have to be ini-
tialized; the calling program merely has to place the desired initial value of $X sub i$ into the array and
pass it as an argument. By using different arguments, functions erand48, nrand48, and jrand48 allow
separate modules of a large program to generate several independent streams of pseudo-random numbers,
i.e., the sequence of numbers in each stream will not depend upon how many times the routines have been
called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of $X sub i$ to the 32 bits contained in its argu-
ment. The low-order 16 bits of $X sub i$ are set to the arbitrary value $roman 330E sub 16 .$

The initializer function seed48 sets the value of $X sub i$ to the 48-bit value specified in the argument
array. In addition, the previous value of $X sub i$ is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seed48. This returned pointer, which can just
be ignored if not needed, is useful if a program is to be restarted from a given point at some future time —
use the pointer to get at and store the last $X sub i$ value, and then use this value to reinitialize via seed48
when the program is restarted.

The initialization function lcong48 allows the user to specify the initial $X sub i ,$ the multiplier value $a,$
and the addend value $c.$ Argument array elements param[0-2] specify $X sub i ,$ param[3-5] specify
the multiplier $a,$ and param/[6] specifies the 16-bit addend $c.$ After Icong48 has been called, a subse-
quent call to either srand48 or seed48 will restore the ‘‘standard’’ multiplier and addend values, a and
$¢,$ specified on the previous page.

SEE ALSO

176

rand(3C)

Last change: 15 April 1986 Sun Release 3.2

ECVT(3) CLIBRARY FUNCTIONS ECVT(3)

NAME
ecvt, fcvt, gcvt — output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer thereto. The
position of the decimal point relative to the beginning of the string is stored indirectly through decpt (nega-
tive means to the left of the returned digits). If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero. The low-order digit is rounded.

Fevt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format output of the
number of digits specified by ndigits.

Gcevt converts the value to a null-terminated ASCII string in buf and returns a pointer to buf. It attempts to
produce ndigit significant digits in Fortran F format if possible, otherwise E format, ready for printing.
Trailing zeros may be suppressed.

SEE ALSO
isinf(3), printf(3S)

BUGS
The return values point to static data whose content is overwritten by each call.

Sun Release 3.2 Last change: 23 August 1983 177

END(3) CLIBRARY FUNCTIONS END(3)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of etext is the
first address above the program text, edata above the initialized data region, and end above the uninitialized
data region.

‘When execution begins, the program break (the first location beyond the data) coincides with end, but it is
reset by the routines brk(2), malloc (3), standard input/output (stdio(3S)), the profile (—p) option of cc(1),
and so on. Thus, the current value of the program break should be determined by sbrk(0) (see brk(2)).

SEE ALSO
brk(2), malloc(3)

178 Last change: 15 April 1985 Sun Release 3.2

EXECL(3) CLIBRARY FUNCTIONS EXECL(3)

NAME
execl, execv, execle, execlp, execvp — execute a file

SYNOPSIS
execl(name, arg0, argl, ..., argn, 0)
char *name, *arg0, *argl, ..., *argn;

execv(name, argv)
char *name, *argv]|];

execle(name, arg0, argl, ..., argn, 0, envp)
char *name, *arg0, *argl, ..., *argn, *envp| 1;

execlp(name, arg0, argl, ..., argn, 0)
char *name, *arg0, *argl, ..., *argn;

execvp(name, argv)
char *name, *argv| 1;

extern char **environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to execve (2) for a description of
their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the entry point of the
core image of the file. There can be no return from a successful exec; the calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers arg[0], arg[l] ...
address null-terminated strings. Conventionally arg[0] is the name of the file.

Two interfaces are available. execl is useful when a known file with known arguments is being called; the
arguments to execl are the character strings constituting the file and the arguments; the first argument is
conventionally the same as the file name (or its last component). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the arguments to execv
are the name of the file to be executed and a vector of strings containing the arguments. The last argument
string must be followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
As indicated, argc is conventionally at least one and the first member of the array points to a string contain-
ing the name of the file.

Argv is directly usable in another execv because argviargc] is 0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each string consists
of a name, an ‘‘="’, and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(1) passes an environment entry for each global shell variable defined when the program is called.
See environ(5V) for some conventionally used names. The C run-time start-off routine places a copy of
envp in the global cell environ, which is used by execv and execl to pass the environment to any subpro-

grams executed by the current program.

Execlp and execvp are called with the same arguments as execl and execv, but duplicate the shell’s actions
in searching for an executable file in a list of directories. The directory list is obtained from the environ-
ment.

Sun Release 3.2 Last change: 27 March 1985 179

EXECL(3) CLIBRARY FUNCTIONS EXECL (3)

FILES
/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
execve(2), fork(2), environ(5V), csh(1), sh(1)

UNIX Programming in Programming Ulilities for the Sun Workstation,
UNIX Interface Overview

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid magic number (see
a.out(5)), if maximum memory is exceeded, or if the arguments require too much space, a return consti-
tutes the diagnostic; the return value is —1. Even for the super-user, at least one of the execute-permission
bits must be set for a file to be executed.

180 Last change: 27 March 1985 Sun Release 3.2

EXIT(3) CLIBRARY FUNCTIONS EXIT(3)

NAME
exit — terminate a process after performing cleanup
SYNOPSIS
exit(status)
int status;
DESCRIPTION
Exit terminates a process by calling exit(2) after calling any termination handlers named by calls to
on_exit. Normally, this is just the Standard I/O library function _cleanup. Exit never returns.

SEE ALSO
exit(2), intro(3S), on_exit(3)

Sun Release 3.2 Last change: 21 September 1984 181

FDATE (3F) FORTRAN LIBRARY ROUTINES FDATE (3F)

NAME
fdate — return date and time in an ASCII string
SYNOPSIS

subroutine fdate (string)
character*24 string

character#*24 function fdate()
DESCRIPTION

fdate returns the current date and time as a 24 character string in the format described under ctime(3). Nei-
ther ‘newline’ nor NULL will be included.

fdate can be called either as a function or as a subroutine. If called as a function, the calling routine must
define its type and length. For example:

character*24 fdate
write(*,*) fdate()

FILES
/usr/lib/libU77.a
SEE ALSO
ctime(3), time(3F), idate(3F)

182

Last change: 17 July 1986 Sun Release 3.2

FREXP(3) C LIBRARY FUNCTIONS FREXP(3)

NAME
frexp, ldexp, modf — floating point analysis and synthesis

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

int exp;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

Frexp returns the significand of a double value as a double quantity, x, of magnitude less than 1 and stores
an integer n, indirectly through eptr, such that value = x*2".

The results are not defined when value is an IEEE infinity or NaN.
ldexp returns the quantity:
value x 2°%P

modf returns the positive fractional part of value and stores the integer part indirectly through iptr. Thus the
argument value and the returned values modf and *iptr would satisfy, in the absence of rounding error,

(*iptr + modf) == value
and
0 <= modf < abs(value).
The results are not defined when value is an IEEE infinity or NaN.
Note that the definition of modf varies among Unix implementations; avoid modf in portable code.

SEE ALSO
isinf(3)

Sun Release 3.2 Last change: 8 August 1985 183

FTOK (3) CLIBRARY FUNCTIONS FTOK (3)

NAME

ftok — standard interprocess communication package

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
key _t ftok(path, id)
char *path;

char id;

DESCRIPTION

All interprocess communication facilities require the user to supply a key to be used by the msgget(2),
semget (2), and shmget(2) system calls to obtain interprocess communication identifiers. One suggested
method for forming a key is to use the ftok subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the remaining portion as a sequence number.
There are many other ways to form keys, but it is necessary for each system to define standards for forming
them. If some standard is not adhered to, it will be possible for unrelated processes to unintentionally inter-
fere with each other’s operation. Therefore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across a given system.

Sftok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget system
calls. path must be the path name of an existing file that is accessible to the process. id is a character
which uniquely identifies a project. Note that ftok will return the same key for linked files when called with
the same id and that it will return different keys when called with the same file name but different ids.

SEE ALSO

intro(2), msgget(2), semget(2), shmget(2)

DIAGNOSTICS

Jtok returns (key_t) —1 if path does not exist or if it is not accessible to the process.

WARNING

184

If the file whose path is passed to fiok is removed when keys still refer to the file, future calls to fiok with
the same path and id will return an error. If the same file is recreated, then ftok is likely to return a dif-
ferent key than it did the original time it was called.

Last change: 30 April 1986 Sun Release 3.2

FTW (3) CLIBRARY FUNCTIONS FTW (3)

NAME

ftw — walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*fn) ();

int depth;

DESCRIPTION

Jftw recursively descends the directory hierarchy rooted in path. For each object in the hierarchy, fiw calls
fn, passing it a pointer to a null-terminated character string containing the name of the object, a pointer to a
stat structure (see stat(2)) containing information about the object, and an integer. Possible values of the
integer, defined in the <ftw.h> header file, are FTW_F for a file, FTW_D for a directory, FTW_DNR for a
directory that cannot be read, and FTW_NS for an object for which stat could not successfully be executed.
If the integer is FTW_DNR, descendants of that directory will not be processed. If the integer is FTW_NS,
the stat structure will contain garbage. An example of an object that would cause FTW_NS to be passed to
fn would be a file in a directory with read but without execute (search) permission.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero value, or some
error is detected within fiw (such as an I/O error). If the tree is exhausted, fiw returns zero. If fn returns a
nonzero value, ftw stops its tree traversal and returns whatever value was returned by fn. If fiw detects an
error, it returns —1, and sets the error type in errno.

ftw uses one file descriptor for each level in the tree. The depth argument limits the number of file descrip-
tors so used. If depth is zero or negative, the effect is the same as if it were 1. Depth must not be greater
than the number of file descriptors currently available for use. Frw will run more quickly if depth is at least
as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3)

Because ftw is recursive, it is possible for it to terminate with a memory fault when applied to very deep file
structures.

It could be made to run faster and use less storage on deep structures at the cost of considerable complex-
ity.

ftw uses malloc(3) to allocate dynamic storage during its operation. If fiw is forcibly terminated, such as by
longjmp being executed by fn or an interrupt routine, fiw will not have a chance to free that storage, so it
will remain permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value at its next invocation.

Sun Release 3.2 Last change: 17 April 1986 185

GETCWD (3) CLIBRARY FUNCTIONS GETCWD (3)

NAME

getcwd — get pathname of current working directory
SYNOPSIS

char *getcwd (buf, size)

char *buf;

int size;
DESCRIPTION

getcwd returns a pointer to the current directory pathname. The value of size must be at least two greater
than the length of the pathname to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using malloc(3). In this case, the pointer
returned by getcwd may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the output of the pwd(1l) command into the
specified string space.

EXAMPLE
char *cwd, *getcwd();

if ((cwd = getcwd((char *)NULL, 64)) == NULL) {

perror(“‘pwd’’);
exit(1);

}
printf(‘‘%s\n’’, cwd);
SEE ALSO
malloc(3), popen(3S), pwd(1)
DIAGNOSTICS
Returns NULL with errrno set if size is not large enough, or if an error ocurrs in a lower-level function.
BUGS

Since this function uses popen to create a pipe to the pwd command, it is slower than getwd and gives
poorer error diagnostics. getcwd is provided only for compatibility with other UNIX systems.

186 Last change: 15 April 1986 Sun Release 3.2

GETENV (3) C LIBRARY FUNCTIONS GETENV (3)

NAME
getenv — return value for environment name
SYNOPSIS
char *getenv(name)
char *name;
DESCRIPTION
Getenv searches the environment list (see environ(5V)) for a string of the form name=value, and returns a
pointer to the string value if such a string is present, otherwise NULL pointer.

SEE ALSO
environ(5V), execve(2), putenv(3)

Sun Release 3.2 Last change: 187

GETFSENT(3) CLIBRARY FUNCTIONS GETFSENT(3)

NAME

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent — get file system descriptor file entry

SYNOPSIS

#include <fstab.h>
struct fstab *getfsent()

struct fstab *getfsspec(spec)
char #spec;

struct fstab *getfsfile(file)
char *file;

struct fstab *getfstype(type)
char *type;

int setfsent()
int endfsent()

DESCRIPTION

These routines are included for compatibility with 4.2 BSD; they have been superseded by the
getmntent(3) library routines.

getfsent, getfsspec, getfstype, and getfsfile each return a pointer to an object with the following structure
containing the broken-out fields of a line in the file system description file, <fstab.h>.

struct fstab {

char *fs spec;
char +fs file;
char *fs type;
int fs_freq;
int fs_passno;

b
The fields have meanings described in fstab(S).
getfsent reads the next line of the file, opening the file if necessary.
setfsent opens and rewinds the file.
endfsent closes the file.

getfsspec and getfsfile sequentially search from the beginning of the file until a matching special file name
or file system file name is found, or until EOF is encountered. getfstype does likewise, matching on the file
system type field.

FILES
/etc/fstab
SEE ALSO
fstab(5)
DIAGNOSTICS
Null pointer (0) returned on EOF or error.
BUGS
The return value points to static information which is overwritten in each call.
188 Last change: 17 July 1986 Sun Release 3.2

GETGRENT (3) CLIBRARY FUNCTIONS GETGRENT (3)

NAME

getgrent, getgrgid, getgmam, setgrent, endgrent, fgetgrent — get group file entry

SYNOPSIS

#include <grp.h>

struct group *getgrent()
struct group *getgrgid(gid)

int gid;

struct group *getgrnam(name)
char *name;

setgrent()

endgrent()

struct group *fgetgrent(f)
FILE
*f

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure containing
the broken-out fields of a line in the group file. Each line contains a ‘‘group’ structure, defined in the
<grp.h> header file.

struct group {
char *gr name;
char *gr passwd;
int gr_gid;
char *¥gr mem;
b
The members of this structure are:

gr name The name of the group.

gr_passwd The encrypted password of the group.

gr gid The numerical group ID.

gr_mem A null-terminated array of pointers to the individual member names.

Getgrent when first called returns a pointer to the first group structure in the file; thereafter, it returns a
pointer to the next group structure in the file; so, successive calls may be used to search the entire file. Get-
grgid searches from the beginning of the file until a numerical group id matching gid is found and returns a
pointer to the particular structure in which it was found. Getgrnam searches from the beginning of the file
until a group name matching name is found and returns a pointer to the particular structure in which it was
found. If an end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent may be
called to close the group file when processing is complete.

Fgetgrent returns a pointer to the next group structure in the stream f, which must refer to an open file in
the same format as the group file /etc/group.

/etc/group
letc/yp/domainname/group.byname
/etc/yp/domainname/group.bygid

SEE ALSO

getlogin(3), getpwent(3), group(5), ypserv(8)

Sun Release 3.2 Last change: 15 May 1986 189

GETGRENT(3) C LIBRARY FUNCTIONS GETGRENT (3)

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not otherwise using
standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Unlike the corresponding routines for passwords (see getwpent(3)), which always search the entire file,
these routines start searching from the current file location.

190 Last change: 15 May 1986 Sun Release 3.2

GETLOGIN (3) CLIBRARY FUNCTIONS GETLOGIN (3)

NAME
getlogin — get login name
SYNOPSIS
char *getlogin()
DESCRIPTION
getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunction with
getpwnam 1o locate the correct password file entry when the same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, or if there is no entry in /etc/utmp
for the process’s terminal, it returns a NULL pointer. The correct procedure for determining the login
name is to call cuserid, or to call getlogin and, if it fails, to call getpwuid(getuid()).

FILES
/etc/utmp

SEE ALSO
cuserid(3S), getpwent(3), utmp(5)

DIAGNOSTICS
Returns a NULL pointer if the name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

getlogin does not work for processes running under a pty (for example, emacs shell buffers, or shell tools)
unless the program ‘‘fakes’’ the login name in the /etc/utmp file.

Sun Release 3.2 Last change: 17 July 1986 191

GETMNTENT (3) CLIBRARY FUNCTIONS GETMNTENT (3)

NAME

getmntent, setmntent, addmntent, endmntent, hasmntopt — get file system descriptor file entry

SYNOPSIS

#include <stdio.h>
#finclude <mntent.h>

FILE *setmntent(filep, type)
char #*filep;
char *type;

struct mntent *getmntent(filep)
FILE +*filep;

int addmntent(filep, milt)
FILE #filep;
struct mntent *mnt;

char *+hasmntopt(mnt, opt)

struct mntent *mnt;
char *opt;

int endmntent(filep)
FILE +filep;

DESCRIPTION

FILES

These routines replace the getfsent routines for accessing the file system description file /etc/fstab. They
are also used to access the mounted file system description file /etc/mtab.

Setmntent opens a file system description file and returns a file pointer which can then be used with
getmntent, addmntent, or endmntent. The type argument is the same as in fopen(3). Getmntent reads the
next line from filep and returns a pointer to an object with the following structure containing the broken-out
fields of a line in the filesystem description file, <mntent.h>. The fields have meanings described in
[stab(5).

struct mntent {
char *mnt_fsname; /# file system name */
char *mnt_dir; /* file system path prefix */
char *mnt _type; /* 4.2, nfs, swap, or xx */
char *mnt opts; /*ro, quota, etc. */
int mnt freq; /* dump frequency, in days */
int mnt_passno; /* pass number on parallel fsck */

b

Addmntent adds the mntent structure mnt to the end of the open file filep. Note that filep has to be opened
for writing if this is to work. Hasmntopt scans the mnt_opts field of the mntent structure mnt for a substring
that matches opt. It returns the address of the substring if a match is found, O otherwise. Endmntent closes
the file.

fetc/fstab
fetc/mtab

SEE ALSO

fstab(5), getfsent(3)

DIAGNOSTICS

192

Null pointer (0) returned on EOF or error.

Last change: 12 March 1985 Sun Release 3.2

GETMNTENT (3) CLIBRARY FUNCTIONS GETMNTENT (3)

BUGS
The returned mntent structure points to static information that is overwritten in each call.

Sun Release 3.2 Last change: 12 March 1985 193

GETOPT (3) CLIBRARY FUNCTIONS GETOPT (3)

NAME
getopt, optarg, optind — get option letter from argument vector

SYNOPSIS
int getopt(argc, argv, optstring)
int args;
char **argv;
char *optstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
getopt returns the next option letter in argv that matches a letter in optstring. optstring is a string of recog-
nized option letters; if a letter is followed by a colon, the option is expected to have an argument that may
or may not be separated from it by white space. optarg is set to point to the start of the option argument on
return from getopt.

getopt places in optind the argv index of the next argument to be processed. Because optind is external, it
is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns EOF. The
special option — may be used to delimit the end of the options; EOF will be returned, and — will be
skipped.

DIAGNOSTICS
getopt prints an error message on stderr and returns a question mark (?) when it encounters an option letter
not included in optstring. This error message may be disabled by setting opterr to zero.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can take the
mutually exclusive options a and b, and the options f and o, both of which require arguments:

main(argc, argv)

int argc;

char **argv;

{ .
ntc;
extern int optind;
extern char *optarg;

while ((c = getopt(argc, argv, "abf:0:")) != EOF)

switch (¢) {
case 'a’:
if (bflg)
errflg++;
else
aflg++;
break;
case 'b’:
if (aflg)
errflg++;
else
bproc();
break;
case 'f’:

194 Last change: 22 July 1986 Sun Release 3.2

GETOPT (3) C LIBRARY FUNCTIONS GETOPT (3)

infile = optarg;
break;
case '0’:
ofile = optarg;
bufsiza = 512;
break;
case’?:
errflg++;
}
if (errflg) {
fprintf(stderr, "usage: ... ");
exit(2);
1
for (; optind < argc; optind++) {
if (access(argv[optind], 4)) {

SEE ALSO
getopt(1)

Sun Release 3.2 Last change: 22 July 1986 195

GETPASS(3) CLIBRARY FUNCTIONS GETPASS (3)

NAME
getpass — read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION
getpass reads up to a newline or EOF from the file /dev/tty, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most 8 characters. An interrupt will terminate input and send an interrupt
signal to the calling program before returning.

FILES
/devitty
SEE ALSO
crypt(3), getpass(3V)
WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs not otherwise using
standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

196 Last change: 15 April 1986 Sun Release 3.2

GETPW (3) CLIBRARY FUNCTIONS GETPW (3)

NAME
getpw — get name from uid

SYNOPSIS
getpw(uid, buf)
char *buf;

DESCRIPTION
Getpw is made obsolete by getpwent(3).

Getpw searches the password file for the (numerical) uid, and fills in buf with the corresponding line; it
returns non-zero if uid could not be found. The line is null-terminated.

FILES
fetc/passwd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

Sun Release 3.2 Last change: 17 July 1986 197

GETPWENT (3) C LIBRARY FUNCTIONS GETPWENT (3)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent — get password file entry

SYNOPSIS

#include <pwd.h>

struct passwd *getpwent()

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwent()

int endpwent()

struct passwd *fgetpwent(f)
FILE *f;

DESCRIPTION

FILES

198

getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure contain-
ing the broken-out fields of a line in the password file. Each line in the file contains a ‘‘passwd’> structure,
declared in the <pwd.h> header file:

struct passwd { /* see getpwent(3) */
char *pw_name;
char *pw_passwd;

int pw_uid;
int pw_gid;
int pw_quota;

char *pw_comment;
char *DW_gecos;
char *pw_dir;

char *pw_shell;

b

struct passwd *getpwent(), *getpwuid(), *getpwnam();
This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The fields pw_quota and pw_comment are unused; the others have meanings described in passwd(S).
When first called, getpwent returns a pointer to the first passwd structure in the file; thereafter, it returns a
pointer to the next passwd structure in the file; so successive calls can be used to search the entire file.
getpwuid searches from the beginning of the file until a numerical user id matching uid is found and returns
a pointer to the particular structure in which it was found. getpwnam searches from the beginning of the
file until a login name matching name is found, and returns a pointer to the particular structure in which it
was found. If an end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches. endpwent may
be called to close the password file when processing is complete.

fgetpwent returns a pointer to the next passwd structure in the stream f, which matches the format of the
password file /etc/passwd.

letc/passwd
letc/lyp/ldomainname/passwd.byname
/etc/yp/domainname/passwd.byuid

Last change: 15 April 1986 Sun Release 3.2

GETPWENT (3) CLIBRARY FUNCTIONS GETPWENT (3)

SEE ALSO

getlogin(3), getgrent(3), passwd(5), ypserv(8), getpwent(3V)
DIAGNOSTICS

A NULL pointer is returned on EOF or error.
WARNING

The above routines use <stdio.h>, which causes them to increase the size of programs, not otherwise using
standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 15 April 1986 199

GETWD (3) CLIBRARY FUNCTIONS GETWD(3)

NAME
getwd — get current working directory pathname

SYNOPSIS
#include <sys/param.h>

char *getwd(pathname)
char pathname[MAXPATHLEN]J;

DESCRIPTION
Getwd copies the absolute pathname of the current working directory to pathname and returns a pointer to
the result.

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

200 Last change: 25 February 1983 Sun Release 3.2

HSEARCH(3) C LIBRARY FUNCTIONS HSEARCH (3)

NAME
hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY =*hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a pointer into a
hash table indicating the location at which an entry can be found. item is a structure of type ENTRY
(defined in the <search.h> header file) containing two pointers: item.key points to the comparison key, and
item.data points to any other data to be associated with that key. (Pointers to types other than character
should be cast to pointer-to-character.) action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that the item should be inserted
in the table at an appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution
is indicated by the return of a NULL pointer. hcreate allocates sufficient space for the table, and must be
called before hsearch is used. nel is an estimate of the maximum number of entries that the table will con-
tain, This number may be adjusted upward by the algorithm in order to obtain certain mathematically
favorable circumstances. hdestroy destroys the search table, and may be followed by another call to
hcreate .

NOTES
hsearch uses open addressing with a multiplicative hash function.
EXAMPLE

The following example will read in strings followed by two numbers and store them in a hash table, dis-
carding duplicates. It will then read in strings and find the matching entry in the hash table and print it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table */
int age, room; /* other than the key. */

b

#define NUM_EMPL 5000 /# # of elements in search table */

main()

{

/* space to store strings */

char string_space[NUM_EMPL#*20];
/* space to store employee info */
struct info info_space[NUM_EMPL];
/* next avail space in string_space */
char *str_ptr = string_space;

/* next avail space in info_space */
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();
/* name to look for in table */

char name_to_find[30];

inti=0;

Sun Release 3.2 Last change: 15 April 1986 201

HSEARCH (3) C LIBRARY FUNCTIONS HSEARCH (3)

/* create table */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr—>age,
&info_ptr—>room) != EOF && i++ < NUM_EMPL) {
/* put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info ptr;
str_ptr += strlen(str_ptr) + 1;
info ptr++;
/* put item into table */
(void) hsearch(item, ENTER);
}

/* access table */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {
if ((found_item = hsearch(item, FIND)) != NULL) {
/* if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",
found item—>key,
((struct info *)found_item—>data)—>age,
((struct info *)found_item—>data)—>room);
} else {
(void)printf("no such employee %s\n",
name_to_find)

}
}
}
SEE ALSO
bsearch(3), Isearch(3), malloc(3), string(3), tsearch(3)
DIAGNOSTICS

Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or the
action is ENTER and the table is full. Acreate returns zero if it cannot allocate sufficient space for the
table.

WARNING
hsearch and hcreate use malloc(3) to allocate space.

BUGS
Only one hash search table may be active at any given time.

202 Last change: 15 April 1986 Sun Release 3.2

INITGROUPS (3) CLIBRARY FUNCTIONS INITGROUPS (3)

NAME

initgroups — initialize group access list
SYNOPSIS

initgroups(name, basegid)

char *name;

int basegid;
DESCRIPTION

Initgroups reads through the group file and sets up, using the setgroups(2) call, the group access list
for the user specified in name. The basegid is automatically included in the groups list. Typically
this value is given as the group number from the password file.

FILES
{etc/group
SEE ALSO
setgroups(2)
DIAGNOSTICS
Initgroups returns —1 if it was not invoked by the super-user.
BUGS

Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these routines,
the group structure will be overwritten in the call to initgroups.

Sun Release 3.2 Last change: 23 August 1983 203

INSQUE(3) CLIBRARY FUNCTIONS

NAME
insque, remque — insert/remove element from a queue

SYNOPSIS
struct gelem {
struct qelem *q_forw;
struct qelem *q_back;
char g_data[];
¥

insque(elem, pred)
struct gelem *elem, *pred;

remque(elem)
struct gelem *elem;

DESCRIPTION

INSQUE(3)

insque and remque manipulate queues built from doubly linked lists. Each element in the queue must
be in the form of ‘‘struct qelem’’. insque inserts elem in a queue immediately after pred; remque

removes an entry elem from a queue.

204 Last change: 17 July 1986

Sun Release 3.2

ISINF(3) CLIBRARY FUNCTIONS ISINF (3)

NAME

isinf, isnan — test for indeterminate floating-point values

SYNOPSIS

int isinf(value)
double value;

int isnan(value)
double value;

DESCRIPTION

Isinf returns a value of 1 if its value is an IEEE format infinity (two words 0x7ff00000 0x00000000) or an
IEEE negative infinity, and returns a zero otherwise.

Isnan returns a value of 1 if its value is an IEEE format ‘not-a-number’ (two words
0x7{f nnnnn Ox nnnnnnnr) where n is not zero) or its negative, and returns a zero otherwise.

Some library routines such as ecvt(3) do not handle indeterminate floating-point values gracefully. Pros-
pective arguments to such routines should be checked with isinf or isnan before calling these routines.

The Floating-Point Programmer’ s Guide for the Sun Workstation gives details for the format of IEEE stan-
dard floating-point.

Sun Release 3.2 Last change: 8 August 1985 205

LOCKF(3) CLIBRARY FUNCTIONS LOCKF(3)

NAME

lockf — advisory record locking on files

SYNOPSIS

#include <unistd.h>

#idefine F_ULOCK
#define F_LOCK
#define F_ TLOCK
#define F_TEST

lockf(fd, cmd, size)
int fd, cmd;
long size;

/+ Unlock a previously locked section */

/* Lock a section for exclusive use */

/* Test and lock a section (non-blocking) */
/+ Test section for other process® locks */

LY=o

DESCRIPTION

NOTES

Lockf may be used to test, apply, or remove an advisory record lock on the file associated with the
open descriptor fd. (See fcntl(2) for more information about advisory record locking.)

A lock is obtained by specifying a cmd parameter of F LOCK or F TLOCK. To unlock an existing
lock, the F ULOCK cmd is used. F_TEST is used to detect if a2 lock by another process is present on
the specified segment.

F LOCK and F_TLOCK requests differ only by the action taken if the lock may not be immediately
granted. F_TLOCK will cause the function to return a -1 and set errno to EAGAIN if the section is
already locked by another process. F_LOCK will cause the process to sleep until the lock may be
granted or a signal is caught.

Size is the number of contiguous bytes to be locked or unlocked. The lock starts at the current file
offset in the file and extends forward for a positive size or backward for a negative size (preceeding
but not including the current offset). A segment need not be allocated to the file in order to be
locked; however, a segment may not extend to a negative offset relative to the beginning of the file.
If size is zero, the lock will extend from the current offset through the end-of-file. If such a lock
starts at offset 0, then the entire file will be locked (regardless of future file extensions).

The descriptor fd must have been opened with O_WRONLY or O_RDWR permission in order to
establish locks with this function call.

All locks associated with a file for a given process are removed when the file is closed or the process
terminates. Locks are not inherited by the child process in a fork(2) system call.

RETURN VALUE

Zero is returned on success, —1 on error, with an error code stored in errno.

ERRORS
Lockf will fail if one or more of the following are true:
EBADF Fd is not a valid open descriptor.
EBADF Cmd is F_ LOCK or F_TLOCK and the process does not have write permission on
the file.
EAGAIN Cmd is F_ TLOCK or F_TEST and the section is already locked by another process.
EINTR Cmd is F_ LOCK and a signal interrupted the process while it was waiting for the
lock to be granted.
ENOLCK Cmd is F_LOCK, F_TLOCK, or F_ ULOCK and there are no more file lock entries
available.
SEE ALSO

206

fentl(2), lockd(8C)

Last change: 30 April 1986 Sun Release 3.2

LOCKF(3) CLIBRARY FUNCTIONS LOCKF(3)

BUGS
File locks obtained through the lockf mechanism do not interact in any way with those acquired via
flock(2). They do, however, work correctly with the locks claimed by fentl(2).

Sun Release 3.2 Last change: 30 April 1986 207

LSEARCH(3) CLIBRARY FUNCTIONS LSEARCH(3)

NAME

Isearch, Ifind — linear search and update

SYNOPSIS

#include <stdio.h>
#include <search.h>

char *Isearch ((char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

char #Ifind ((char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION

NOTES

Isearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer into a
table indicating where a datum may be found. If the datum does not occur, it is added at the end of
the table. key points to the datum to be sought in the table. base points to the first element in the
table. nelp points to an integer containing the current number of elements in the table. The integer is
incremented if the datum is added to the table. compar is the name of the comparison function which
the user must supply (strcmp, for example). It is called with two arguments that point to the elements
being compared. The function must return zero if the elements are equal and non-zero otherwise.

Ifind is the same as Isearch except that if the datum is not found, it is not added to the table. Instead,
a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be of type pointer-to-element,
and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data may be contained in the ele-
ments in addition to the values being compared.

Although declared as type pointer-to-character, the value returned should be cast into type pointer-to-
element.

EXAMPLE

This fragment will read in < TABSIZE strings of length < ELSIZE and store them in a table, eliminat-
ing duplicates.

ftinclude <stdio.h>
#include <search.h>

f#tdefine TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) Isearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO

208

bsearch(3), hsearch(3), tsearch(3).

Last change: 15 April 1986 Sun Release 3.2

LSEARCH(3) CLIBRARY FUNCTIONS LSEARCH(3)

DIAGNOSTICS
If the searched for datum is found, both Isearch and Ilfind return a pointer to it. Otherwise, lfind
returns NULL and Isearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

Sun Release 3.2 Last change: 15 April 1986 209

MALLOC(3) CLIBRARY FUNCTIONS MALLOC(3)

NAME

malloc, free, realloc, calloc, cfree, memalign, valloc, alloca, malloc_debug, malloc_verify — memory
allocator

SYNOPSIS

char *malloc(size)
unsigned size;

free(ptr)

char *ptr;

char *realloc(ptr, size)
char *ptr;

unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

cfree(ptr)

char *ptr;

char *memalign(alignment, size)
unsigned alignment;

unsigned size;

char *valloc(size)

unsigned size;

char *alloca(size)
int size;

DESCRIPTION

210

These routines provide a general-purpose memory allocation package. They maintain a table of free
blocks for efficient allocation and coalescing of free storage. When there is no suitable space already
free, the allocation routines call sbrk (see brk(2)) to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for storage of any type of
object. They return a null pointer if the request cannot be completed (see DIAGNOSTICS).

Malloc returns a pointer to a block of at least size bytes beginning on a word boundary. A null (0)
pointer is returned if size bytes of memory cannot be allocated.

Free releases a previously allocated block. Its argument is a pointer to a block previously allocated
by malloc, calloc, realloc, valloc, or memalign.

malloc, calloc, realloc, valloc, or memalign.

Realloc changes the size of the block referenced by pitr to size bytes and returns a pointer to the (pos-
sibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes. For
backwards compatibility, realloc accepts a pointer to a block freed since the most recent call to mal-
loc, calloc, realloc, valloc, or memalign. Note that using realloc with a block freed before the most
recent call to malloc, calloc, realloc, valloc, or memalign is an error.

Calloc uses malloc to allocate space for an array of nelem elements of size elsize, initializes the space
to zeros, and returns a pointer to the initialized block. The block can be freed with free or cfree.

Memalign allocates size bytes on a specified alignment boundary, and returns a pointer to the allocated
block. The value of the returned address is guaranteed to be an even multiple of alignment. Note that
the value of alignment must be a power of two, and must be greater than or equal to the size of a
word.

Last change: 2 August 1985 Sun Release 3.2

MALLOC(3) CLIBRARY FUNCTIONS MALLOC(3)

Valloc(size) is equivalent to memalign(getpagesize(), size).

Alloca allocates size bytes of space in the stack frame of the caller, and returns a pointer to the allo-
cated block. This temporary space is automatically freed when the caller returns.

SEE ALSO

"Fast Fits" by C. J. Stephenson, in Proceedings of the ACM 9th Symposium on Operating Systems,
SIGOPS Operating Systems Review, vol. 17, no. 5, October 1983.

Core Wars, in Scientific American, May 1984.

DIAGNOSTICS

Malloc, calloc, realloc, valloc, and memalign return a null pointer (0) and set errno if arguments are
invalid, or if there is insufficient available memory, or if the heap has been detectably corrupted, e.g.
by storing outside the bounds of a block.

More detailed diagnostics can be made available to programs using malloc, calloc, realloc, valloc,
memalign, cfree, and free, by including a special relocatable object file at link time (see FILES). This
file also provides routines for control of error handling and diagnosis, as defined below. Note that
these routines are not defined in the standard library.

int malloc_debug(level)
int level;

int malloc_verify()

Malloc_debug sets the level of error diagnosis and reporting during subsequent calls to malloc, calloc,
realloc, valloc, memalign, cfree, and free. The value of level is interpreted as follows:

Level 0 Malloc, calloc, realloc, valloc, memalign, cfree, and free behave the same as in the
standard library.

Level 1 Malloc, calloc, realloc, valloc, memalign, cfree, and free abort with a message to
stderr if errors are detected in arguments or in the heap. If a bad block is encoun-
tered, its address and size are included in the message.

Level 2 Same as level 1, except that the entire heap is examined on every call to malloc,
calloc, realloc, valloc, memalign, cfree, and free.

Malloc_debug returns the previous error diagnostic level. The default level is 1.

Malloc_verify attempts to determine if the heap has been corrupted. It scans all blocks in the heap
(both free and allocated) looking for strange addresses or absurd sizes, and also checks for incon-
sistencies in the free space table. Malloc_verify returns 1 if all checks pass without error, and other-
wise retums 0. The checks can take a significant amount of time, so it should not be used indiscrim-
inately.

ERRORS

FILES

BUGS

Malloc, calloc, realloc, valloc, memalign, cfree, and free will set errno if:

EINVAL An invalid argument was given. The value of ptr given to free, cfree, or realloc
must be a pointer to a block previously allocated by malloc, calloc, realloc, valloc,
or memalign. The EINVAL condition also occurs if the heap is found to have been
corrupted. More detailed information may be obtained by enabling range checks
using malloc_debug.

ENOMEM size bytes of memory could not be allocated.

/usr/lib/debug/malloc.o diagnostic versions of malloc, free, etc.

Alloca is both machine- and compiler-dependent; its use is discouraged.

Sun Release 3.2 Last change: 2 August 1985 211

MALLOC(3) CLIBRARY FUNCTIONS MALLOC(3)

Since realloc accepts a pointer to a block freed since the last call to malloc, calloc, realloc, valloc, or
memalign, a degradation of performance results. The semantics of free should be changed so that the
contents of a previously freed block are undefined.

212 Last change: 2 August 1985 Sun Release 3.2

MEMORY (3) CLIBRARY FUNCTIONS MEMORY (3)

NAME
memory, memccpy, memchr, memcmp, memcpy, memset — memory operations
SYNOPSIS
#include <memory.h>
char *memccpy (sl, s2, ¢, n)
char *sl, *s2;
int ¢, n;
char *memchr (s, ¢, n)
char #*s;
int c, n;
int memcmp (s1, s2, n)
char #*sl, *s2;
int n;
char *memcpy (s1, s2, n)
char #*sl, *s2;
int n;
char *memset (s, ¢, n)
char #*s;
int ¢, n;
DESCRIPTION

memset These functions operate as efficiently as possible on memory areas (arrays of characters
bounded by a count, not terminated by a null character). They do not check for the overflow of any
receiving memory area.

memccpy copies characters from memory area s2 into sl, stopping after the first occurrence of charac-
ter ¢ has been copied, or after n characters have been copied, whichever comes first. It returns a

pointer to the character after the copy of ¢ in sI, or a NULL pointer if ¢ was not found in the first n
characters of s2.

memchr returns a pointer to the first occurrence of character ¢ in the first n characters of memory area
s, or a NULL pointer if ¢ does not occur.

memcmp compares its arguments, looking at the first n characters only, and returns an integer less
than, equal to, or greater than O, according as s/ is lexicographically less than, equal to, or greater
than s2.

memcpy copies n characters from memory area s2 to sI. It returns s/.

memset sets the first n characters in memory area s to the value of character ¢. It returns s.
NOTE

For user convenience, all these functions are declared in the optional <memory.h> header file.
BUGS

memcmp uses native character comparison, which is signed on some machines and unsigned on other
machines. Thus the sign of the value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations. Thus overlapping moves
may yield surprises.

Sun Release 3.2 Last change: 10 May 1986 213

MKTEMP(3) CLIBRARY FUNCTIONS MKTEMP (3)

NAME
mktemp, mkstemp — make a unique file name

SYNOPSIS
char *mktemp(template)
char *template;

mkstemp(template)
char *template;

DESCRIPTION
mktemp creates a unique file name, typically in a temporary filesystem, by replacing template with a
unique file name, and returns the address of template. The string in template should contain a file
name with six trailing Xs; mktemp replaces the Xs with a letter and the current process ID. The letter
will be chosen so that the resulting name does not duplicate an existing file. mkstemp makes the same
replacement to the template but returns a file descriptor for the template file open for reading and writ-
ing. mkstemp avoids the race between testing whether the file exists and opening it for use.

Notes:

e mktemp and mkstemp actually change the template string which you pass; this means that you can-
not use the same template string more than once — you need a fresh template for every unique file
you want to open.

» When mktemp or mkstemp are creating a new unique filename they check for the prior existence of
a file with that name. This means that if you are creating more than one unique filename, it is bad
practice to use the same root template for multiple invocations of mktemp or mkstemp .
SEE ALSO
getpid(2), open(2V), tmpfile(3S), tmpnam(3S).

DIAGNOSTICS
mkstemp rteturns an open file descriptor upon success. It returns -1 if no suitable file could be
created.

BUGS

It is possible to run out of letters.

214 Last change: 15 April 1986 Sun Release 3.2

MONITOR (3) CLIBRARY FUNCTIONS MONITOR (3)

NAME
monitor, monstartup, moncontrol — prepare execution profile

SYNOPSIS
monitor(lowpc, highpe, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)Q;
short buffer[];
monstartup(lowpc, highpc)
int (*lowpc)Q, (*highpc)(Q;
moncontrol(mode)
DESCRIPTION
There are two different forms of monitoring available: An executable program created by:
cC—Pp...
automatically includes calls for the prof(1) monitor and includes an initial call to its start-up routine
monstartup with default parameters; monitor need not be called explicitly except to gain fine control
over profil buffer allocation. An executable program created by:
cC—pg. ..
automatically includes calls for the gprof(1) monitor.
Monstartup is a high level interface to profil(2). Lowpc and highpc specify the address range that is
to be sampled; the lowest address sampled is that of lowpc and the highest is just below highpc.
Monstartup allocates space using sbrk(2) and passes it to monitor (see below) to record a histogram of

periodically sampled values of the program counter, and of counts of calls of certain functions, in the
buffer. Only calls of functions compiled with the profiling option —p of cc(1) are recorded.

To profile the entire program, it is sufficient to use
extern etext();

;n-o;lstartup(OxSOOO, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use
monitor(0);

then prof(1) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either prof(1)
or gprof(1) type profiling. When the program starts, profiling begins. To stop the collection of histo-
gram ticks and call counts use moncontrol(0); to resume the collection of histogram ticks and call
counts use moncontrol(1). This allows the cost of particular operations to be measured. Note that an
output file will be produced upon program exit irregardless of the state of moncontrol.

Monitor is a low level interface to profil(2). Lowpc and highpc are the addresses of two functions;
buffer is the address of a (user supplied) array of bufsize short integers. At most nfunc call counts can
be kept. For the results to be significant, especially where there are small, heavily used routines, it is
suggested that the buffer be no more than a few times smaller than the range of locations sampled.
Monitor divides the buffer into space to record the histogram of program counter samples over the
range lowpc to highpc, and space to record call counts of functions compiled with the —p option to
cc(l).

To profile the entire program, it is sufficient to use
extern etext();

monitor(0x8000, etext, buf, bufsize, nfunc);

Sun Release 3.2 Last change: 19 January 1983 215

MONITOR (3) CLIBRARY FUNCTIONS MONITOR (3)

FILES
mon.out

SEE ALSO
cc(1), prof(1), gprof(1), profil(2), sbrk(2)

216 Last change: 19 January 1983 Sun Release 3.2

NLIST(3) CLIBRARY FUNCTIONS NLIST(3)

NAME
nlist — get entries from name list

SYNOPSIS
#include <nlist.h>

nlist(filename, nl)

char *filename;

struct nlist nl[];
DESCRIPTION

nlist examines the name list in the executable file whose name is pointed to by filename, list of values
and puts them in the array of nlist structures pointed to by nl. The name list nl consists of an array
of structures containing names, types and values. The list is terminated with a null name; that is, a
null string is in the name position of the structure. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to 0. See a.out(5) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /vmunix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to O if the file cannot be read or if does not contain a valid name list.

nlist returns —1 upon error.

Sun Release 3.2 Last change: 15 April 1986 217

ON_EXIT (3) C LIBRARY FUNCTIONS ON_EXIT(3)

NAME
on_exit — name termination handler

SYNOPSIS
int on_exit(procp, arg)
void (*procp)();
caddr_t arg;
DESCRIPTION
On_exit names a routine to be called after a program calls exit(3) or returns normally, and before its
process terminates. The routine named is called as
(*procp)(status, arg);
where status is the argument with which exit was called, or zero if main returns. Typically, arg is the
address of an argument vector to (*procp), but may be an integer value. Several calls may be made
to on_exit, specifying several termination handlers. The order in which they are called is the reverse
of that in which they were given to on_exit.
SEE ALSO
exit(3)
DIAGNOSTICS
On_exit returns zero normally, or nonzero if the procedure name could not be stored.

BUGS
Currently there is a limit of 20 termination handlers, including any invoked implicitly (for example, by
gprof(1) or tcov(1) processing). Calls to on_exit beyond this number will fail.

NOTES
This call is specific to Sun Unix and should not be used if portability is a concern.

Standard I/O exit processing is always done last.

218 Last change: 12 October 1984 Sun Release 3.2

PERROR (3) CLIBRARY FUNCTIONS PERROR (3)

NAME

perror, sys_errlist, sys_nerr, errno — system error messages
SYNOPSIS

perror(s)

char #s;

int sys_nerr;

char *sys_errlist[];

int errno;

DESCRIPTION
perror produces a short error message on the standard error describing the last error encountered dur-
ing a call to a system or library function. The argument string s is printed first, then a colon and a
blank, then the message and a new-line. To be of most use, the argument string should include the
name of the program that incurred the error. The error number is taken from the external variable

errno (see intro(2)), which is set when errors occur but not cleared when non-erroneous calls are
made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided; errno
can be used as an index in this table to get the message string without the newline. sys nerr is the
number of messages provided for in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2), psignal(3)

Sun Release 3.2 Last change: 15 April 1986 219

PROF(3) CLIBRARY FUNCTIONS PROF(3)

NAME

prof — profile within a function
SYNOPSIS

#define MARK

#include <prof.h>
void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the same as a function entry point. Exe-
cution of the mark will add to a counter for that mark, and program-counter time spent will be
accounted to the immediately preceding mark or to the function if there are no preceding marks within
the active function.

name may be any combination of up to six letters, numbers or underscores. Each name in a single
compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header file <prof.h> is
included. This may be defined by a preprocessor directive as in the synopsis, or by a command line
argument, such as:

cc —p —DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left in the source files containing them
and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is spent in each loop. Unless this

example is compiled with MARK defined on the command line, the marks are ignored.
#include <prof.h>

func()

{
int i, j;
MARK (loop1);
for (i = 0; i < 2000; i++) {
}
MARK((loop2);
for (j = 0; j < 2000; j++) {
}

}

SEE ALSO

prof(1), profil(2), monitor(3)

220 Last change: 30 April 1986 Sun Release 3.2

PSIGNAL(3) CLIBRARY FUNCTIONS PSIGNAL(3)

NAME
psignal, sys_siglist — system signal messages

SYNOPSIS
psignal(sig, s)
unsigned sig;
char +s;
char *sys_siglist[];

DESCRIPTION
Psignal produces a short message on the standard error file describing the indicated signal. First the
argument string s is printed, then a colon, then the name of the signal and a new-line. Most usefully,
the argument string is the name of the program which incurred the signal. The signal number should
be from among those found in <signal.h>.
To simplify variant formatting of signal names, the vector of message strings sys_siglist is provided;
the signal number can be used as an index in this table to get the signal name without the newline.

The define NSIG defined in <signal.h> is the number of messages provided for in the table; it should
be checked because new signals may be added to the system before they are added to the table.

SEE ALSO
perror(3), signal(3)

Sun Release 3.2 Last change: 26 August 1983 221

PUTENV (3) CLIBRARY FUNCTIONS PUTENV (3)

NAME
putenv — change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
string points to a string of the form ‘‘name=value.”” putenv makes the value of the environment vari-
able name equal to value by altering an existing variable or creating a new one. In either case, the
string pointed to by string becomes part of the environment, so altering the string will change the
environment. The space used by string is no longer used once a new string-defining name is passed
to putenv.

DIAGNOSTICS
putenv returns non-zero if it was unable to obtain enough space via malloc for an expanded environ-
ment, otherwise zero.

SEE ALSO
exec(2), getenv(3), malloc(3), environ(7).

WARNINGS
putenv manipulates the environment pointed to by environ, and can be used in conjunction with
getenv. However, envp (the third argument to main) is not changed.
This routine uses malloc(3) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then exit the calling
function while string is still part of the environment.

222 Last change: 15 April 1986 Sun Release 3.2

PUTPWENT (3) CLIBRARY FUNCTIONS PUTPWENT (3)

NAME
putpwent — write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p, f)
struct passwd *p;
FILE *f;
DESCRIPTION
putpwent is the inverse of getpwent(3). Given a pointer to a passwd structure created by getpwent (or
getpwuid or getpwnam), putpwent writes a line on the stream f, which matches the format of lines in
the password file /etc/passwd.
DIAGNOSTICS
putpwent teturns non-zero if an error was detected during its operation, otherwise zero.
SEE ALSO
getpwent(3).
WARNING

The above routine uses <stdio.h>, which causes it to increase the size of programs, not otherwise
using standard I/O, more than might be expected.

BUGS

This routine is of limited utility, since most password files are maintained as Yellow Pages files, and
cannot be updated with this routine.

Sun Release 3.2 Last change: 15 April 1986 223

QSORT(3) C LIBRARY FUNCTIONS QSORT (3)

NAME

gsort — quicker sort

SYNOPSIS

gsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION

NOTES

gsort is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

base points to the element at the base of the table. nel is the number of elements in the table. com-
par is the name of the comparison function, which is called with two arguments that point to the ele-
ments being compared: As the function must return an integer less than, equal to, or greater than
zero, so must the first argument to be considered be less than, equal to, or greater than the second.

The pointer to the base of the table should be of type pointer-to-element, and cast to type pointer-to-
character.

The comparison function need not compare every byte, so arbitrary data may be contained in the ele-
ments in addition to the values being compared.

The order in the output of two items which compare as equal is unpredictable.

SEE ALSO

224

bsearch(3), Isearch(3), string(3), sort(1)

Last change: 15 April 1986 Sun Release 3.2

RANDOM (3) CLIBRARY FUNCTIONS RANDOM (3)

NAME
random, srandom, initstate, setstate — better random number generator; routines for changing generators

SYNOPSIS
long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;

char *state;

int n;

char #*setstate(state)

char *state;

DESCRIPTION
random uses a non-linear additive feedback random number generator employing a default table of
size 31 long integers to return successive pseudo-random numbers in the range from 0 to 2’_1. The
period of this random number generator is very large, approximately 16><(231—1).

randomisrandom have (almost) the same calling sequence and initialization properties as rand/srand.
The difference is that rand(3C) produces a much less random sequence — in fact, the low dozen bits
generated by rand go through a cyclic pattern. All the bits generated by random are usable. For
example, ‘‘random()&01’’ will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of state
information used is much more than a single word. (Two other routines are provided to deal with
restarting/changing random number generators). Like rand(3C), however, random will by default pro-
duce a sequence of numbers that can be duplicated by calling srandom with I as the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used by initstate to decide how sophisticated a random number
generator it should use -- the more state, the better the random numbers will be. (Current "optimal"
values for the amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will be
rounded down to the nearest known amount. Using less than 8 bytes will cause an error). The seed
for the initialization (which specifies a starting point for the random number sequence, and provides
for restarting at the same point) is also an argument. initstate returns a pointer to the previous state
information array.

Once a state has been initialized, the setstate routine provides for rapid switching between states. set-
state returns a pointer to the previous state array; its argument state array is used for further random
number generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by calling init-
state (with the desired seed, the state array, and its size) or by calling both setstate (with the state
array) and srandom (with the desired seed). The advantage of calling both setstate and srandom is
that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than 2%,
which should be sufficient for most purposes.

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand(3C)

Sun Release 3.2 Last change: 22 July 1986 225

RANDOM ((3) CLIBRARY FUNCTIONS RANDOM (3)

BUGS
About 2/3 the speed of rand(3C).

226 Last change: 22 July 1986 Sun Release 3.2

REGEX (3) CLIBRARY FUNCTIONS REGEX(3)

NAME
regex, re_comp, re_exec — regular expression handler

SYNOPSIS
char *re_comp(s)
char *s;

re_exec(s)
char *s;
DESCRIPTION

Re_comp compiles a string into an internal form suitable for pattern matching. Re_exec checks the
argument string against the last string passed to re_comp.

Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an error

message is returned. If re_comp is passed O or a null string, it returns without changing the currently
compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s failed
to match the last compiled regular expression, and -1 if the compiled regular expression was invalid
(indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded newline characters;
they are terminated by nulls. The regular expressions recognized are described in the manual entry
for ed(1), given the above difference.

SEE ALSO

ed(1), ex(1), egrep(1), fgrep(1), grep(1)
DIAGNOSTICS

Re_exec retums -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:
No previous regular expression

Regular expression too long

unmatched \(

missing |

too many \(\) pairs

unmatched \)

Sun Release 3.2 Last change: 4 March 1983 227

REGEXP(3)

NAME

C LIBRARY FUNCTIONS REGEXP (3)

regexp — regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peekc code>

#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int eof;

int step (string, expbuf)

char *string, *expbuf;

extern char *locl, *loc2, *locs;

extern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching routines.

The interface to this file is unpleasantly complex. Programs that include this file must have the following
five macros declared before the ‘‘#include <regexp.h>"’ statement. These macros are used by the compile

routine.
GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERRORS

228

ERROR(val)

ERROR
11
16
25
36
41
42
43
44
45

Return the value of the next character in the regular expression pattern. Succes-
sive calls to GETC() should return successive characters of the regular expression.

Return the next character in the regular expression. Successive calls to PEEKC()
should return the same character (which should also be the next character returned
by GETC()).

Cause the argument ¢ to be returned by the next call to GETC() (and PEEKC()).
No more that one character of pushback is ever needed and this character is
guaranteed to be the last character read by GETC(). The value of the macro
UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of the argu-
ment pointer is a pointer to the character after the last character of the compiled
regular expression. This is useful to programs that have memory allocation to
manage.

This is the abnormal return from the compile routine. The argument val is an error
number (see table below for meanings). This call should never return.

MEANING

Range endpoint too large.

Bad number.

““\digit’’ out of range.

Illegal or missing delimiter.

No remembered search string.

\(}) imbalance.

Too many \(.

More than 2 numbers given in \{ \}.
} expected after \.

Last change: Sun Release 3.2

REGEXP(3) C LIBRARY FUNCTIONS REGEXP(3)

46 First number exceeds second in \{ \}.
49 []imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but is useful for programs that
pass down different pointers to input characters. It is sometimes used in the INIT declaration (see below).
Programs that call functions to input characters or have characters in an external array can pass down a
value of ((char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place where the compiled regular expres-
sion will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expression may be
placed. If the compiled expression cannot fit in (endbuf—expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character that marks the end of the regular expression. For example, in an editor
like ed(1), this character would usually a /.

Each program that includes this file must have a #define statement for INIT. This definition will be placed
right after the declaration for the function compile and the opening curly brace ({). It is used for dependent
declarations and initializations. Most often it is used to set a register variable to point the beginning of the
regular expression so that this register variable can be used in the declarations for GETC(), PEEKC() and
UNGETC(). Otherwise it can be used to declare external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarations taken from grep(1).

There are other functions in this file that perform actual regular expression matching, one of which is the
function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This string
should be null terminated.

The second parameter expbuf is the compiled regular expression that was obtained by a call of the function
compile.

The function step returns non-zero if the given string matches the regular expression, and zero if the
expressions do not match. If there is a match, two extemal character pointers are set as a side effect to the
call to step. The variable set in step is locl. This is a pointer to the first character that matched the regular
expression. The variable loc2, which is set by the function advance, points to the character after the last
character that matches the regular expression. Thus if the regular expression matches the entire line, loc]
will point to the first character of string and loc2 will point to the null at the end of string.

step uses the external variable circf which is set by compile if the regular expression begins with ~, If this
is set then step will try to match the regular expression to the beginning of the string only. If more than one
regular expression is to be compiled before the first is executed the value of circf should be saved for each
compiled expression and circf should be set to that saved value before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step is to step
through the string argument and call advance until advance returns non-zero indicating a match or until the
end of string is reached. If one wants to constrain string to the beginning of the line in all cases, step need
not be called; simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression, it will advance its pointer to the
string to be matched as far as possible and will recursively call itself trying to match the rest of the string to
the rest of the regular expression. As long as there is no match, advance will back up along the string until
it finds a match or reaches the point in the string that initially matched the * or \{ \}. It is sometimes desir-
able to stop this backing up before the initial point in the string is reached. If the external character pointer
locs is equal to the point in the string at sometime during the backing up process, advance will break out of

Sun Release 3.2 Last change: 229

REGEXP(3) CLIBRARY FUNCTIONS

REGEXP(3)

the loop that backs up and will return zero. This could be used by an editor like ed(1) or sed(1) for substi-
tutions done globally (not just the first occurrence, but the whole line) so, for example, expressions like

s/y*//g do not loop forever.

The additional external variat.ies sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls could look in a command like

FILES

BUGS

230

grep(1):

#define INIT register char *sp = instring;
#define GETC() (*sp++)

#define PEEKC() (*sp)

#define UNGETC(c) (—sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>
(void) compile(*argv, expbuf, &expbuf[ESIZE], \0");

if (step(linebuf, expbuf))
succeed();

{usr/include/regexp.h

The handling of circf is kludgy.

Last change:

Sun Release 3.2

SCANDIR (3) CLIBRARY FUNCTIONS SCANDIR (3)

NAME
scandir, alphasort — scan a directory

SYNOPSIS

#include <sys/types.h>
#include <sys/dir.h>

scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelist[]);
int (*select)();
int (*compar)();
alphasort(d1, d2)
struct direct *#*d1, **d2;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries using mal-
loc(3). The second parameter is a pointer to an array of structure pointers. The third parameter is a
pointer to a routine which is called with a pointer to a directory entry and should return a non zero
value if the directory entry should be included in the array. If this pointer is null, then all the direc-
tory entries will be included. The last argument is a pointer to a routine which is passed to gsort(3)

to sort the completed array. If this pointer is null, the array is not sorted. Alphasort is a routine which
will sort the array alphabetically.

Scandir returns the number of entries in the array and a pointer to the array through the parameter
namelist.

SEE ALSO
directory(3), malloc(3), gsort(3)
DIAGNOSTICS

Returns —1 if the directory cannot be opened for reading or if malloc(3) cannot allocate enough
memory to hold all the data structures.

Sun Release 3.2 Last change: 19 January 1983 231

SETIMP(3) CLIBRARY FUNCTIONS SETIMP(3)

NAME

setjmp, longjmp — non-local goto

SYNOPSIS

#include <setjmp.h>

val = setjmp(env)
jmp_buf env;
longjmp(env, val)
jmp_buf env;

val = _setjmp(env)
jmp_buf env;
_longjmp(env, val)
jmp_buf env;

DESCRIPTION

232

Setjmp and longjmp are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setjmp saves its stack environment in env for later use by longjmp. Setjmp also saves the register
environment. If a longjmp call will be made, the routine which called setjmp should not return until
after the longjmp has returned control (see below).

Longjmp restores the environment saved by the last call of setjmp, and then returns in such a way that
execution continues as if the call of setjmp had just returned the value val to the function that invoked
setimp. The calling function must not itself have returned in the interim, otherwise longjmp will be
returning control to a possibly non-existent environment. All memory-bound data have values as of
the time longjmp was called. The machine registers are restored to the values they had at the time
that setjmp was called. But, because the register storage class is only a hint to the C compiler, vari-
ables declared as register variables may not necessarily be assigned to machine registers, so their
values are unpredictable after a longjmp. This is especially a problem for programmers trying to write
machine-independent C routines.

The following code fragment indicates the flow of control of the setjmp and longjmp combination:

. . . function declaration
jmp_buf my_environment;

...code ...
if (setjmp (my_environment)) {
this is the code after the return from longimp
...morecode....
register variables have unpredictable values
...Mmorecode....
}else {
this is the return from setjmp
...morecode
Do not modify register variables
in this leg of the code
...Mmorecode

}

Setjmp and longjmp save and restore the signal mask sigsermask(2), while _setjmp and _longjmp mani-
pulate only the C stack and registers.

Last change: 17 February 1986 Sun Release 3.2

SETIMP(3) C LIBRARY FUNCTIONS SETIMP(3)

SEE ALSO
sigsetmask(2), sigvec(2), signal(3)

BUGS
Setjmp does not save current notion of whether the process is executing on the signal stack. The
result is that a longjmp to some place on the signal stack leaves the signal stack state incorrect.

longjmp never returns zero in the Sun implementation.

Sun Release 3.2 Last change: 17 February 1986 233

SETUID(3) C LIBRARY FUNCTIONS SETUID (3)

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid — set user and group ID

SYNOPSIS
setuid (uid)
seteuid(euid)
setruid(ruid)
setgid(gid)
setegid(egid)
setrgid(rgid)
DESCRIPTION
Setuid (setgid) sets both the real and effective user ID (group ID) of the current process to as
specified.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.
Setruid (setrgid) sets the real user ID (group ID) of the current process.
These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid(2), setregid(2), getuid(2), getgid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; —1 is returned otherwise, with the global variable errno
set as for setreuid or setregid.

234 Last change: 17 July 1986 Sun Release 3.2

SIGINTERRUPT (3) CLIBRARY FUNCTIONS SIGINTERRUPT (3)

NAME
siginterrupt — allow signals to interrupt system calls

SYNOPSIS
siginterrupt(sig, flag);
int sig, flag;

DESCRIPTION

siginterrupt is used to change the system call restart behavior when a system call is interrupted by the
specified signal. If the flag is false (0), then system calls will be restarted if they are interrupted by
the specified signal and no data has been transferred yet. System call restart is the default behavior
on 4.2 BSD, and on Sun UNIX in the 4.2 environment, when the signal (3) routine is used.

If the flag is true (1), then restarting of system calls is disabled. If a system call is interrupted by the
specified signal and no data has been transferred, the system call will return -1 with ermo set to
EINTR. Interrupted system calls that have started transferring data will return the amount of data
actually transferred. System call interrupt is the signal behavior found on older UNIX systems, such
as 4.1 BSD and System V UNIX. It is the default behavior on Sun UNIX in the System V environ-
ment when the signal routine is used; therefore, this routine is useful in that environment only if a sig-
nal that a sigvec (2) specified should restart system calls is to be changed not to restart them.

Note that the new 4.2 BSD signal handling semantics are not altered in any other way. Most notably,
signal handlers always remain installed until explicitly changed by a subsequent sigvec call, and the
signal mask operates as documented in sigvec, unless the SV_RESETHAND bit has been used to
specify that the pre-4.2 BSD signal behavior is to be used. Programs may switch between restartable
and interruptible system call operation as often as desired in the execution of a program.

Issuing a siginterrupt(3) call during the execution of a signal handler will cause the new action to take
place on the next signal to be caught.

NOTES

This library routine uses an extension of the sigvec(2) system call that is not available in 4.2BSD,
hence it should not be used if backward compatibility is needed.

RETURN VALUE

A 0 value indicates that the call succeeded. A -1 value indicates that an invalid signal number has
been supplied.

SEE ALSO
sigvec(2), sigblock(2), sigpause(2), sigsetmask(2).

Sun Release 3.2 Last change: May 15, 1985 235

SIGNAL (3) CLIBRARY FUNCTIONS SIGNAL (3)

NAME

signal — simplified software signal facilities

SYNOPSIS

#include <signal.h>

(*signal(sig, func))()
int (*func)();

DESCRIPTION

236

signal is a simplified interface to the more general sigvec(2) facility. Programs that use signal in
preference to sigvec are more likely to be portable to all UNIX systems.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop),
by a program error (bus error, etc.), by request of another program (kill), or when a process is stopped
because it wishes to access its control terminal while in the background (see #y(4)). Signals are
optionally generated when a process resumes after being stopped, when the status of child processes
changes, or when input is ready at the control terminal. Most signals cause termination of the receiv-
ing process if no action is taken; some signals instead cause the process receiving them to be stopped,
or are simply discarded if the process has not requested otherwise. Except for the SIGKILL and SIG-
STOP signals, the signal call allows signals either to be ignored or to cause an interrupt to a specified
location. The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3% quit

SIGILL 4= illegal instruction (other than A-line or F-line op code)
SIGTRAP 5* trace trap

SIGIOT 6+ IOT trap (not generated on Suns)

SIGEMT 7+« EMT trap (A-line or F-line op code)

SIGFPE 8* arithmetic exception

SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10+ bus error

SIGSEGV 11+ segmentation violation

SIGSYS 12+ bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket
SIGSTOP 171 stop (cannot be caught, blocked, or ignored)
SIGTSTP 181 stop signal generated from keyboard
SIGCONT 19+ continue after stop (cannot be blocked)
SIGCHLD 20« child status has changed

SIGTTIN 211 background read attempted from control terminal
SIGTTOU 221 background write attempted to control terminal
SIGIO 23+ 1/O is possible on a descriptor (see fentl(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 28« window changed (see win(4S))

SIGLOST 29+ resource lost (see lockd(8C))

SIGUSR1 30 user-defined signal 1

SIGUSR2 31 user-defined signal 2

Last change: 30 April 1986 Sun Release 3.2

SIGNAL (3) CLIBRARY FUNCTIONS SIGNAL (3)

NOTES

CODES

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG DFL, the default action for signal sig is reinstated; this default is termination (with a
core image for starred signals) except for signals marked with « or f. Signals marked with = are dis-
carded if the action is SIG DFL; signals marked with t cause the process to stop. If func is
SIG_IGN the signal is subsequently ignored and pending instances of the signal are discarded. Other-

wise, when the signal occurs further occurrences of the signal are automatically blocked and func is
called.

A return from the function unblocks the handled signal and continues the process at the point it was
interrupted. Unlike previous signal facilities, the handler func remains installed after a signal has
been delivered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call
is automatically restarted. In particular this can occur during a read or write(2V) on a slow device
(such as a terminal; but not a file) and during a wair(2).

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. An execve(2) resets all caught signals to the
default action; ignored signals remain ignored.

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number. Code is a parameter of certain signals that provides additional detail.

scp is a pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from
before the signal.

The following defines the codes for signals which produce them. All of these symbols are defined in
<signal.h>:

Hardware condition Signal Code
Hllegal instruction SIGILL ILL_INSTR_FAULT
Privilege violation SIGILL ILL_PRIVVIO FAULT
Coprocessor protocol error SIGILL ILL INSTR FAULT
Trap #n (1 <= n <= 14) SIGILL ILL_TRAP_FAULT
A-line op code SIGEMT EMT EMU1010
F-line op code SIGEMT EMT EMUI111
Integer division by zero SIGFPE FPE_INTDIV_TRAP
CHK or CHK2 instruction SIGFPE FPE_CHKINST TRAP
TRAPV or TRAPcc or cpTRAPcc SIGFPE FPE_TRAPV_TRAP
IEEE floating point compare unordered SIGFPE FPE_FLTBSUN_TRAP
IEEE floating point inexact SIGFPE FPE_FLTINEX TRAP
IEEE floating point division by zero SIGFPE FPE_FLTDIV_TRAP
IEEE floating point underflow SIGFPE FPE FLTUND_ TRAP
IEEE floating point operand error SIGFPE FPE_FLTOPERR_TRAP
IEEE floating point overflow SIGFPE FPE_FLTOVF FAULT
IEEE floating point signaling NalN SIGFPE FPE FLTNAN_TRAP

Sun Release 3.2 Last change: 30 April 1986 237

SIGNAL (3) CLIBRARY FUNCTIONS SIGNAL (3)

RETURN VALUE
The previous action is returned on a successful call. Otherwise, —1 is returned and errno is set to
indicate the error.

ERRORS
signal will fail and no action will take place if one of the following occur:
EINVAL sig is not a valid signal number.
EINVAL An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
EINVAL An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(1), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3),
tty(4)

238 Last change: 30 April 1986 Sun Release 3.2

SLEEP(3) CLIBRARY FUNCTIONS SLEEP(3)

NAME
sleep — suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPTION
sleep suspends the current process from execution for the number of seconds specified by the argu-
ment. The actual suspension time may be up to 1 second less than that requested, because scheduled
wakeups occur at fixed 1-second intervals, and may be an arbitrary amount longer because of other
activity in the system.
sleep is implemented by setting an interval timer and pausing until it expires. The previous state of
this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous
value of the timer, the process sleeps only until the timer would have expired, and the signal which
occurs with the expiration of the timer is sent one second later.

SEE ALSO
setitimer(2), sigpause(2), usleep(3)

Sun Release 3.2 Last change: 17 July 1986 239

SSIGNAL(3) CLIBRARY FUNCTIONS SSIGNAL (3)

NAME
ssignal, gsignal — software signals
SYNOPSIS
#include <signal.h>
int (+ssignal (sig, action))()
int sig, (*action)();
int gsignal (sig)
int sig;
DESCRIPTION
ssignal and gsignal implement a software facility similar to signal(3).

Software signals made available to users are associated with integers in the inclusive range 1 through
15. A call to ssignal associates a procedure, action, with the software signal sig; the software signal,
sig, is raised by a call to gsigral. Raising a software signal causes the action established for that sig-
nal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to be
established. The second argument defines the action; it is either the name of a (user-defined) action
Sfunction or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). ssignal returns the
action previously established for that signal type; if no action has been established or the signal
number is illegal, ssignal returns SIG_DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and the
action function is entered with argument sig. gsignal returns the value returned to it by the
action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other action.
If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value 0
and takes no other action.

SEE ALSO
signal(3)

240 Last change: 30 April 1986 Sun Release 3.2

STRING(3) CLIBRARY FUNCTIONS STRING (3)

NAME
string, strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strespn,
strtok, index, rindex — string operations

SYNOPSIS
#include <string.h>

char *strcat (sl, s2)
char *sl, *s2;

char *strncat (s1, s2, n)
char *s1, *s2;

int n;

int stremp (s, s2)
char *sl, *s2;

int strncmp (sl, s2, n)
char *sl, *s2;

int n;

char *strcpy (s1, s2)
char *sl, *s2;

char sstrncpy (s1, s2, n)
char #*sl, *s2;

int n;

int strlen (s)

char *s;

char *strchr (s, ¢)
char *s;

int c¢;

char *strrchr (s, ¢)
char #s;

int c;

char *strpbrk (s1, s2)
char *sl, *s2;

int strspn (s1, s2)
char *sl, *s2;

int strcspn (s1, s2)
char *sl, *s2;

char =*strtok (sl, s2)
char *sl, *s2;

#include <string.h>

char *index(s, ¢)
char #s, c;

char *rindex(s, ¢)
char *s, c;

DESCRIPTION

These functions operate on null-terminated strings. They do not check for overflow of any receiving
string.

Sun Release 3.2 Last change: 19 January 1983 241

STRING (3) CLIBRARY FUNCTIONS STRING(3)

NOTE

strcat appends a copy of string s2 to the end of string sI. strncat appends at most n characters. Each
returns a pointer to the null-terminated result.

strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, according
as sl is lexicographically greater than, equal to, or less than s2. strncmp makes the same comparison
but compares at most ~ characters.

strcpy copies string s2 to sI, stopping after the null character has been copied. strncpy copies exactly
n characters, truncating or null-padding s2. The result will not be null-terminated if the length of s2
is n or more. Each function returns sI.

strlen returns the number of characters in s, not including the terminating null character.

strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢ in string s, or a NULL
pointer if ¢ does not occur in the string. The null character terminating a string is considered to be
part of the string.

index (rindex) returns a pointer to the first (last) occurrence of character ¢ in string s, or a NULL
pointer if ¢ does not occur in the string. These functions are identical to strchr (strchr) and merely
have different names.

strpbrk returns a pointer to the first occurrence in string s/ of any character from string s2, or a NULL
pointer if no character from s2 exists in sI.

strspn (strcspn) returns the length of the initial segment of string sI which consists entirely of charac-
ters from (not from) string s2.

strtok considers the string s/ to consist of a sequence of zero or more text tokens separated by spans
of one or more characters from the separator string s2. The first call (with pointer sI specified)
returns a pointer to the first character of the first token, and will have written a null character into s/
immediately following the returned token. The function keeps track of its position in the string
between separate calls, so that subsequent calls (which must be made with the first argument a NULL
pointer) will work through the string s/ immediately following that token. In this way subsequent
calls will work through the string s/ until no tokens remain. The separator string s2 may be different
from call to call. When no token remains in s/, a NULL pointer is returned.

For user convenience, all these functions, except for index and rindex, are declared in the optional
<string.h> header file. All these functions, including index and rindex but excluding strchr, strrchr,
strpbrk, strspn, strcspn, and strtok, are declared in the optional <strings.h> include file; the reason for
this is also historical.

WARNINGS

242

strcmp and strncmp use native character comparison, which is signed on the Sun, but may be unsigned
on other machines. Thus the sign of the value returned when one of the characters has its high-order
bit set is implementation-dependent.

On the Sun processor, as well as on many other machines, you can NOT use a NULL pointer to indi-
cate a null string. A NULL pointer is an error and results in an abort of the program. If you wish to
indicate a null string, you must have a pointer that points to an explicit null string. On some imple-
mentations of the C language on some machines, a NULL pointer, if dereferenced, would yield a null
string; this highly non-portable trick was used in some programs. Programmers using a NULL pointer
to represent an empty string should be aware of this portability issue; even on machines where dere-
ferencing a NULL pointer does not cause an abort of the program, it does not necessarily yield a null
string.

Character movement is performed differently in different implementations. Thus overlapping moves
may yield surprises.

Last change: 19 January 1983 Sun Release 3.2

STRTOD (3) CLIBRARY FUNCTIONS STRTOD(3)

NAME

strtod, atof — convert string to double-precision number
SYNOPSIS

double strtod (str, ptr)

char #str, **ptr;

double atof (str)
char #str;
DESCRIPTION
strtod returns as a double-precision floating-point number the value represented by the character string
pointed to by str. The string is scanned up to the first unrecognized character.

strtod recognizes an optional string of spaces, then an optional sign, then a string of digits optionally

containing a decimal point, then an optional e or E followed by an optional sign or space, followed by
an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is returned in
the location pointed to by ptr. If no number can be formed, *ptr is set to str, and zero is returned.
atof(str) is equivalent to strtod(str, (char **)NULL).

SEE ALSO
ctype(3), scanf(3S), strtol(3).
DIAGNOSTICS

If the correct value would cause overflow, +HUGE is returned (according to the sign of the value), and
errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

Sun Release 3.2 Last change: 30 April 1986 243

STRTOL(3) CLIBRARY FUNCTIONS STRTOL(3)

NAME
strtol, atol, atoi — convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;
long atol (str)
char *str;
int atoi (str)
char *str;

DESCRIPTION
strtol returns as a long integer the value represented by the character string pointed to by str. The
string is scanned up to the first character inconsistent with the base. Leading ‘‘white-space’’ charac-
ters (as defined by isspace in ctype(3)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is returned in
the location pointed to by prr. If no integer can be formed, that location is set to str, and zero is
returned.

If base is positive (and not greater than 36), it is used as the base for conversion. After an optional
leading sign, leading zeros are ignored, and “‘Ox’’ or ‘““0X’’ is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional leading sign a leading
zero indicates octal conversion, and a leading ‘‘Ox’’ or ““0X’’ hexadecimal conversion. Otherwise,
decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an explicit cast.
atol(str) is equivalent to strtol(str, (char **)NULL, 10).
Atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
ctype(3), scanf(3S), strtod(3)

BUGS
Overflow conditions are ignored.

244 Last change: 30 April 1986 Sun Release 3.2

SWAB(3) C LIBRARY FUNCTIONS SWAB(3)

NAME
swab — swap bytes

SYNOPSIS
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by fo, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between high-ender machines (IBM 360’s,
MC68000’s, etc) and low-ender machines (PDP-11’s and VAX’es).

Nbytes should be even.
The from and to addresses should not overlap in portable programs.

Sun Release 3.2 Last change: 20 March 1984 245

SYSLOG(3) C LIBRARY FUNCTIONS SYSLOG (3)

NAME

syslog, openlog, closelog — control system log

SYNOPSIS

#include <syslog.h>

openlog(ident, logstat)
char *ident;

syslog(priority, message, parameters ...)
char *message;

closelog()

DESCRIPTION

Syslog arranges to write the message onto the system log maintained by syslog(8). The message is
tagged with priority. The message looks like a printf(3S) string except that %m is replaced by the
current error message (collected from errno). A trailing newline is added if needed. This message
will be read by syslog(8) and output to the system console or files as appropriate.

If special processing is needed, openlog can be called to initialize the log file. Parameters are ident
which is prepended to every message, and logstat which is a bit field indicating special status; current
values are:

LOG_PID log the process id with each message: useful for identifying instantiations of daemons.

Openlog returns zero on success. If syslog cannot send datagrams to syslog(8), then it writes on
/deviconsole instead. If /deviconsole cannot be written, standard error is used. In either case, it
returns -1.

Closelog can be used to close the log file. It is automatically closed on a successful exec system call
(see execve (2)).

EXAMPLES

syslog(LOG_SALERT, "who: internal error 23");

openlog("serverftp”, LOG_PID);
syslog(LOG_INFO, "Connection from host %d", CallingHost);

SEE ALSO

246

syslog(8)

Last change: 15 March 1984 Sun Release 3.2

SYSTEM(3) C LIBRARY FUNCTIONS SYSTEM (3)

NAME
system — issue a shell command

SYNOPSIS
system(string)
char *string;

DESCRIPTION

System causes the string to be given to sh(1) as input as if the string had been typed as a command at
a terminal. The current process waits until the shell has completed, then returns the exit status of the
shell.

SEE ALSO
popen(3S), execve(2), wait(2)

DIAGNOSTICS
Exit status 127 (may be displayed as "32512") indicates the shell couldn’t be executed.

Sun Release 3.2 Last change: 19 January 1983 247

TSEARCH(3) CLIBRARY FUNCTIONS TSEARCH (3)

NAME
tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch ((char *) key, (char **) rootp, compar)
int (*compar)();

char #*tfind ((char *) key, (char #*) rootp, compar)
int (*compar)();

char *tdelete ((char *) key, (char **) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();

DESCRIPTION

tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees. They are general-
ized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user-supplied routine.
This routine is called with two arguments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than O, according to whether the first argument is to be con-
sidered less than, equal to or greater than the second argument. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in addition to the values being
compared.

tsearch is used to build and access the tree. key is a pointer to a datum to be accessed or stored. If
there is a datum in the tree equal to *key (the value pointed to by key), a pointer to this found datum
is returned. Otherwise, *key is inserted, and a pointer to it returned. Only pointers are copied, so the
calling routine must store the data. rootp points to a variable that points to the root of the tree. A
NULL value for the variable pointed to by rootp denotes an empty tree; in this case, the variable will
be set to point to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. However, if
it is not found, tfind will return a NULL pointer. The arguments for ffind are the same as for tsearch.

tdelete deletes a node from a binary search tree. The arguments are the same as for zsearch. The
variable pointed to by roofp will be changed if the deleted node was the root of the tree. tdelete
returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree to be traversed. (Any node in a tree
may be used as the root for a walk below that node.) action is the name of a routine to be invoked
at each node. This routine is, in turn, called with three arguments. The first argument is the address
of the node being visited. The second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf } VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third time that the node has been visited (during a
depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The third argument is the
level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to type
pointer-to-character. Similarly, although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in alphabet-
ical order.

248 Last change: 30 April 1986 Sun Release 3.2

TSEARCH(3) CLIBRARY FUNCTIONS TSEARCH (3)

ftinclude <search.h>
#tinclude <stdio.h>

struct node { /* pointers to these are stored in the tree */
char *string;
int length;

b

char string_space[10000]; /* space to store strings */

struct node nodes[500]; /* nodes to store */

struct node *root = NULL; /* this points to the root */

main()

{

char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node compare();

while (gets(strptr) != NULL && i++ < 500) {
/* set node */
nodeptr—>string = strptr;
nodeptr—>length = strlen(strptr);
/* put node into the tree */
(void) tsearch((char *)nodeptr, &root,
node_compare);
/* adjust pointers, so we don’t overwrite tree */
strptr += nodeptr—>length + 1;

nodeptr++;
}
twalk(root, print_node);
}
/%
This routine compares two nodes, based on an
alphabetical ordering of the string field.
*/
int

node_compare(nodel, node2)
struct node *nodel, *node2;

{
return strcmp(nodel—>string, node2—>string);
}
[*
This routine prints out a node, the first time
twalk encounters it.
*/
void

print_node(node, order, level)
struct node *#*node;

VISIT order;

int level;

{

if (order == preorder || order == leaf) {

Sun Release 3.2 Last change: 30 April 1986 249

TSEARCH(3) CLIBRARY FUNCTIONS TSEARCH (3)

(void)printf("string = %20s, length = %d\n",
(*node)—>string, (*node)—>length);

}
}
SEE ALSO
bsearch(3), hsearch(3), 1search(3).
DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it. If not, ffind returns NULL, and
tsearch returns a pointer to the inserted item.

WARNINGS

The root argument to twalk is one level of indirection less than the rootp arguments to tsearch and
tdelete.

There are two nomenclatures used to refer to the order in which tree nodes are visited. tsearch uses
preorder, postorder and endorder to respectively refer to visting a node before any of its children, after
its left child and before its right, and after both its children. The alternate nomenclature uses preorder,
inorder and postorder to refer to the same visits, which could result in some confusion over the mean-
ing of postorder.

BUGS
If the calling function alters the pointer to the root, results are unpredictable.

250 Last change: 30 April 1986 Sun Release 3.2

TTYNAME (3) CLIBRARY FUNCTIONS TTYNAME (3)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char *ttyname(filedes)
isatty(filedes)

DESCRIPTION
ttyname returns a pointer to the null-terminated path name of the terminal device associated with file
descriptor filedes.
isatty retumns 1 if filedes is associated with a terminal device, O otherwise.
FILES
/dev/*
SEE ALSO
ioctl(2), ttys(5)
DIAGNOSTICS
ttyname returns a NULL pointer if filedes does not describe a terminal device in directory /dev.

BUGS
The return value points to static data whose content is overwritten by each call.

Sun Release 3.2 Last change: 22 May 1986 251

TTYSLOT(3) CLIBRARY FUNCTIONS TTYSLOT (3)

NAME
ttyslot — find the slot in the utmp file of the current process

SYNOPSIS
ttyslot()
DESCRIPTION
ttyslot returns the index of the current user’s entry in the /etc/utmp file. This is accomplished by

actually scanning the file /etc/ttys for the name of the terminal associated with the standard input, the
standard output, or the error output (0, 1 or 2).

FILES
fetc/ttys

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the terminal name or if none
of the above file descriptors is associated with a terminal device.

252 Last change: 22 May 1986 Sun Release 3.2

UALARM(3) CLIBRARY FUNCTIONS UALARM(3)

NAME
ualarm — schedule signal after interval in microseconds
SYNOPSIS

unsigned ualarm(value, interval)
unsigned value;
unsigned interval;

DESCRIPTION
This is a simplified interface to setitimer(2).

Ualarm causes signal SIGALRM see signal(3), to be sent to the invoking process in a number of

microseconds given by the value argument. Unless caught or ignored, the signal terminates the pro-
cess.

If the interval argument is non-zero, the SIGALRM signal will be sent to the process every interval
microseconds after the timer expires (e.g. after value microseconds have passed).

Because of scheduling delays, resumption of execution of when the signal is caught may be delayed
an arbitrary amount. The longest specifiable delay time is 2147483647 microseconds.

The return value is the amount of time previously remaining in the alarm clock.
SEE ALSO
getitimer(2), setitimer(2), sigpause(2), sigvec(2), signal(3), sleep(3), alarm(3), usleep(3)

Sun Release 3.2 Last change: 17 July 1986 253

USLEEP(3) C LIBRARY FUNCTIONS USLEEP(3)

NAME
usleep — suspend execution for interval in microseconds

SYNOPSIS
usleep(useconds)
unsigned useconds;

DESCRIPTION
for interval in microseconds” The current process is suspended from execution for the number of
microseconds specified by the argument. The actual suspension time may be an arbitrary amount
longer because of other activity in the system or because of the time spent in processing the call.

The routine is implemented by setting an interval timer and pausing until it occurs. The previous state
of this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previ-
ous timer, the process sleeps only until the signal would have occurred, and the signal is sent a short
time later.

This routine is implemented using setitimer(2); it requires eight system calls each time it is invoked.
A similar but less compatible function can be obtained with a single select(2); it would not restart
after signals, but would not interfere with other uses of setitimer.

SEE ALSO
setitimer(2), getitimer(2), sigpause(2), ualarm(3), sleep(3), alarm(3)

254 Last change: 17 July 1986 Sun Release 3.2

VALUES (3)

NAME

C LIBRARY FUNCTIONS VALUES (3)

values — machine-dependent values

SYNOPSIS

#include <values.h>

DESCRIPTION

This file contains a set of manifest constants, conditionally defined for particular processor architec-
tures. The model assumed for integers is binary representation (one’s or two’s complement), where
the sign is represented by the value of the high-order bit.

BITS(type) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order bit set (in most imple-
mentations, 0x8000).

HIBITL The value of a long integer with only the high-order bit set (in most imple-
mentations, 0x80000000).

HIBITI The value of a regular integer with only the high-order bit set (usually the
same as HIBITS or HIBITL).

MAXSHORT The maximum value of a signed short integer (in most implementations,
Ox7FFF = 32767).

MAXLONG The maximum value of a signed long integer (in most implementations,
Ox7FFFFFFF = 2147483647).

MAXINT The maximum value of a signed regular integer (usually the same as MAX-
SHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision floating-point number,

and its natural logarithm.

MAXDOUBLE, LN MAXDOUBLE The maximum value of a double-precision floating-point number,

and its natural logarithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single-precision floating-point

number, and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-precision floating-point

FSIGNIF
DSIGNIF
FILES

fusr/include/values.h

SEE ALSO
intro(3), intro(3M)

Sun Release 3.2

number, and its natural logarithm.

The number of significant bits in the mantissa of a single-precision floating-
point number.

The number of significant bits in the mantissa of a double-precision floating-
point number.

Last change: 1 May 1986 255

VARARGS(3) CLIBRARY FUNCTIONS VARARGS(3)

NAME

varargs — handle variable argument list

SYNOPSIS

#include <varargs.h>

function(va_alist)
va_dcl

va_list pvar;
va_start(pvar),

f = va_arg(pvar, type);
va_end(pvar);

DESCRIPTION

This set of macros provides a means of writing portable procedures that accept variable argument lists.
Routines having variable argument lists (such as printf(3S)) but do not use varargs are inherently non-
portable, since different machines use different argument passing conventions.

va_alist is used in a function header to declare a variable argument list.
va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list. One such variable must always be
declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_arg(pvar, type) will return the next argument in the list pointed to by pvar. type is the type to
which the expected argument will be converted when passed as an argument. In standard C, argu-
ments that are char or short are converted to int and should be accessed as int, arguments that are
unsigned char or unsigned short are converted to unsigned int and should be accessed as umsigned
int, and arguments that are float are converted to double and should be accessed as double. Different

types can be mixed, but it is up to the routine to know what type of argument is expected, since it
cannot be determined at runtime.

va_end(pvar) is used to finish up.
Multiple traversals, each bracketed by va_start ... va_end, are possible.

va_alist must encompass the entire arguments list. This insures that a #define statement can be used
to redefine or expand its value.

The argument list (or its remainder) can be passed to another function using a pointer to a variable of
type va_list— in which case a call to va_arg in the subroutine advances the argument-list pointer with
respect to the caller as well.

EXAMPLE

256

This example is a possible implementation of exec!(3).
#include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ..., (char *)0);

*/
execl(va_alist)
va_dcl
{

va_list ap;

char *file;

char *argsfMAXARGS];

Last change: 17 July 1986 Sun Release 3.2

VARARGS (3) CLIBRARY FUNCTIONS VARARGS (3)

int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args{argno++] = va_arg(ap, char *)) != (char *)0)

.

9
va_end(ap);
return execv(file, args);

BUGS
It is up to the calling routine to specify how many arguments there are, since it is not possible to
determine this from the stack frame. For example, execl is passed a zero pointer to signal the end of
the list. Printf can tell how many arguments are supposed to be there by the format.

The macros va_start and va_end may be arbitrarily complex; for example, va_start might contain an
opening brace, which is closed by a matching brace in va_end. Thus, they should only be used where
they could be placed within a single complex statement.

Sun Release 3.2 Last change: 17 July 1986 257

INTRO (3C)

NAME

COMPATIBILITY ROUTINES

intro — introduction to compatibility library functions

DESCRIPTION

INTRO (3C)

These functions constitute the compatibility library portion of libc. They are automatically loaded as
needed by the C compiler cc(1). The link editor searches this library under the ‘‘~Ic’” option. Use of these
routines (instead of newer equivalent routines) is encouraged for the sake of program portability. Manual
entries for the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS

Name Appears on Page

alarm
clock
ftime
gfty
nice
pause
rand
srand
stty
time
times
ulimit
utime
vlimit
vtimes

Sun Release 3.2

alarm(3C)
clock(3C)
time(3C)
stty(3C)
nice(3C)
pause(3C)
rand(3C)
rand(3C)
stty(3C)
time(3C)
times (3C)
ulimit(3C)
utime(3C)
v1imit(3C)
vtimes(3C)

Description

schedule signal after specified time
report CPU time used

get date and time

set and get terminal state

set program priority

stop until signal

random number generator

random number generator

set and get terminal state

get date and time

get process times

get and set user limits

set file times

control maximum system resource consumption
get information about resource utilization

Last change: 20 August 1985

259

ALARM(3C) COMPATIBILITY ROUTINES ALARM (3C)

NAME
alarm — schedule signal after specified time
SYNOPSIS
alarm(seconds)
unsigned seconds;
DESCRIPTION
Alarm causes signal SIGALRM, see sigvec(2), to be sent to the invoking process in a number of seconds
given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any alarm
request is canceled. Because of scheduling delays, resumption of execution of when the signal is caught
may be delayed an arbitrary amount. The longest specifiable delay time is 2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.
SEE ALSO
sigpause(2), sigvec(2), signal(3), sleep(3), ualarm(3), usleep(3)

260 Last change: 17 July 1986 Sun Release 3.2

CLOCK (3C) COMPATIBILITY ROUTINES CLOCK (3C)

NAME

clock — report CPU time used
SYNOPSIS

long clock ()
DESCRIPTION

clock returns the amount of CPU time (in microseconds) used since the first call to clock. The time

reported is the sum of the user and system times of the calling process and its terminated child processes
for which it has executed wait(2) or system(3).

The resolution of the clock is 16.667 milliseconds.

SEE ALSO
wait(2), system(3), times(3C) times(3V)
BUGS

The value returned by clock is defined in microseconds for compatibility with systems that have CPU
clocks with much higher resolution. Because of this, the value returned will wrap around after accumulat-
ing only 2147 seconds of CPU time (about 36 minutes).

Sun Release 3.2 Last change: 15 April 1986 261

NICE (3C) COMPATIBILITY ROUTINES NICE(3C)

NAME

nice — change priority of a process

SYNOPSIS

nice(incr)

DESCRIPTION

The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor-
mal. Priority 10 is recommended to users who wish to execute long-running programs without undue
impact on system performance.

Negative increments are illegal, except when specified by the super-user. The priority is limited to the
range —20 (most urgent) to 20 (least). Requests for values above or below these limits result in the
scheduling priority being set to the corresponding limit.

The priority of a process is passed to a child process by fork(2). For a privileged process to return to nor-
mal priority from an unknown state, nice should be called successively with arguments —40 (goes to prior-
ity —20 because of truncation), 20 (to get to 0), then 0 (to maintain compatibility with previous versions of
this call).

RETURN VALUE

Upon successful completion, nice returns 0. Otherwise, a value of —1 is returned and errno is set to indi-
cate the error.

ERRORS

The priority is not changed if:

EACCES The value of incr specified was negative, and the effective user ID is not super-user.
SEE ALSO

262

nice(1), getpriority(2), setpriority(2), fork(2), renice(8)

Last change: 22 May 1986 Sun Release 3.2

PAUSE (3C) COMPATIBILITY ROUTINES PAUSE (3C)

NAME

pause — stop until signal
SYNOPSIS

pause()
DESCRIPTION

Pause never returns normally. It is used to give up control while waiting for a signal from kill(2) or an

interval timer, see setitimer(2). Upon termination of a signal handler started during a pause, the pause call
will return.

RETURN VALUE
Always returns —1.

ERRORS
Pause always returns:

EINTR The call was interrupted.

SEE ALSO
kill(2), select(2), sigpause(2)

Sun Release 3.2 Last change: 23 August 1983 263

RAND(3C) COMPATIBILITY ROUTINES RAND(3C)

NAME

rand, srand — simple random number generator
SYNOPSIS

srand(seed)

int seed;

rand()

DESCRIPTION
rand uses a multiplicative congruential random number generator with period 2*? 10 return successive
pseudo-random numbers in the range from 0 to 231,

srand can be called at any time to reset the random-number generator to a random starting point. The gen-
erator is initially seeded with a value of 1.

NOTE
The spectral properties of rand leave a great deal to be desired. drand48(3) and random(3) provide much
better, though more elaborate, random-number generators.

SEE ALSO
drand48(3), random(3), rand(3V)

BUGS

The low bits of the numbers generated are not very random; use the middle bits. In particular the lowest bit
alternates between 0 and 1.

264 Last change: 17 July 1986 Sun Release 3.2

STTY (3C) COMPATIBILITY ROUTINES STTY (3C)

NAME
stty, gtty — set and get terminal state

SYNOPSIS
#include <sgtty.h>

stty(fd, buf)
int fd;
struct sgttyb *buf;

gtty(fd, buf)
int fd;
struct sgttyb *buf;
DESCRIPTION
This interface is obsoleted by ioctl(2).

Sty sets the state of the terminal associated with fd. Gty retrieves the state of the terminal associated with
fd. To set the state of a terminal the call must have write permission.

The stty call is actually ““ioctl(fd, TIOCSETP, buf)’’, while the gty call is ““ioctl{fd, TIOCGETP, buf)’’.
See ioctl (2) and try(4) for an explanation,
DIAGNOSTICS

If the call is successful O is returned, otherwise —1 is returned and the global variable errno contains the
reason for the failure.

SEE ALSO
ioctl(2), tty(4)

Sun Release 3.2 Last change: 26 August 1983 265

TIME (3C) COMPATIBILITY ROUTINES TIME (3C)

NAME

time, ftime — get date and time

SYNOPSIS

timeofday = time(0)

timeofday = time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)

struct timeb *tp;

DESCRIPTION

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.
If dloc is nonnull, the return value is also stored in the place to which tloc points.

The ftime entry fills in a structure pointed to by its argument, as defined by <sys/timeb.h>:

struct timeb

{ . .
time t time;
unsigned short millitm;
short timezone;
short dstflag;

b

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise inter-
val, the local time zone (measured in minutes of time westward from Greenwich), and a flag that, if
nonzero, indicates that Daylight Saving time applies locally during the appropriate part of the year.

SEE ALSO

266

date(1), gettimeofday(2), settimeofday(2), ctime(3)

Last change: 1 April 1983 Sun Release 3.2

TIMES (3C) COMPATIBILITY ROUTINES TIMES (3C)

NAME
times — get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

times(buffer)
struct tms *buffer;

DESCRIPTION
This interface is obsoleted by getrusage(2).

Times returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are in 1/HZ seconds, where HZ is 60.

This is the structure returned by #mes:

struct tms {
time t tms_utime; /* user time */
time t tms_stime; /* system time */
time t tms_cutime; /* user time, children */
time t tms_cstime; /* system time, children */
b

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time(1V), getrusage(2), wait3(2), time(3C)

Sun Release 3.2 Last change: 3 November 1983 267

ULIMIT (3C) COMPATIBILITY ROUTINES ULIMIT (3C)

NAME
ulimit — get and set user limits
SYNOPSIS
long ulimit(cmd, newlimit)
int cmd;
DESCRIPTION
This function is included for System V compatibility.

This routine provides for control over process limits. The cmd values available are:

1 Get the process’s file size limit. The limit is in units of 512-byte blocks and is inherited by child
processes. Files of any size can be read.

2 Set the process’s file size limit to the value of newlimit. Any process may decrease this limit, but
only a process with an effective user ID of super-user may increase the limit. Ulimit will fail and

the limit will be unchanged if a process with an effective user ID other than the super-user
attempts to increase its file size limit.

3 Get the maximum possible break value. See brk(2).

RETURN VALUE

Upon successful completion, a non-negative value is returned. Otherwise a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO
brk(2), setrlimit(2), write(2V)

268 Last change: 27 February 1985 Sun Release 3.2

UTIME (3C) COMPATIBILITY ROUTINES UTIME (3C)

NAME
utime — set file times
SYNOPSIS
#include <sys/types.h>
utime(file, timep)
char *file;
time_t timep[2];
DESCRIPTION
The utime call uses the ‘accessed’ and ‘updated’ times in that order from the timep vector to set the
corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The ‘inode-changed’ time of the file is set to the
current time.

SEE ALSO
utimes(2), stat(2)

Sun Release 3.2 Last change: 1 April 1983 269

VLIMIT (3C) COMPATIBILITY ROUTINES VLIMIT (3C)

NAME

vlimit — control maximum system resource consumption

SYNOPSIS

#include <sys/vlimit.h>

vlimit(resource, value)

DESCRIPTION

This facility is superseded by getrlimit(2).

Limits the consumption by the current process and each process it creates to not individually exceed value
on the specified resource. If value is specified as —1, then the current limit is returned and the limit is
unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the super-user
may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process
LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro-
gram text

LIM_STACK the maximum size of the automatically-extended stack region
LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the program. If
memory is tight, the system will prefer to take memory from processes which are
exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be executed directly
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to
csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way;
a break call fails if the data space limit is reached, or the process is killed when the stack limit is reached
(since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to be gen-
erated, this normally terminates the process, but may be caught. When the cpu time limit is exceeded, a
signal SIGXCPU is sent to the offending process; to allow it time to process the signal it is given 5 seconds
grace by raising the cpu time limit.

SEE ALSO

BUGS

270

csh(l)

If LIM_NORAISE is set, then no grace should be given when the cpu time limit is exceeded.
There should be limit and unlimit commands in sk (1) as well as in csh.

Last change: 13 June 1983 Sun Release 3.2

VTIMES (3C) COMPATIBILITY ROUTINES VTIMES (3C)

NAME

vtimes — get information about resource utilization
SYNOPSIS

vtimes(par_vm, ch_vm)

struct vtimes *par_vm, *ch_vm;
DESCRIPTION

This facility is superseded by getrusage(2).

Vtimes returns accounting information for the current process and for the terminated child processes of the
current process. Either par_vm or ch_vm or both may be O, in which case only the information for the
pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file
<sys/vtimes.h>:

struct vtimes {

int vm_utime; /* user time (*HZ) */
int vm_stime; /* system time (*HZ) */
/* divide next two by utime+stime to get averages */
unsigned vm_idsrss; /* integral of d+s rss */
unsigned vim_ixrss; /* integral of text rss */
int VIM_maxIss; /* maximum rss */

int vm_maijfit; /* major page faults */
int vm_minflt; /* minor page faults */
int vm_nswap; /* number of swaps */
int vm_inblk; /* block reads */

int vm_oublk; /* block writes */

b

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a second (or 50ths
if that is the frequency of wall current in your locality.) The vm_idrss and vm_ixrss measure memory
usage. They are computed by integrating the number of memory pages in use each over cpu time. They
are reported as though computed discretely, adding the current memory usage (in 512 byte pages) each
time the clock ticks. If a process used 5 core pages over 1 cpu-second for its data and stack, then vm_idsrss
would have the value 5%60, where vm_utime+vm_stime would be the 60. Vm_idsrss integrates data and
stack segment usage, while vm_ixrss integrates text segment usage. Vm_maxrss reports the maximum
instantaneous sum of the text+data+stack core-resident page count.

The vm_maijfit field gives the number of page faults which resulted in disk activity; the vm_minflt field
gives the number of page faults incurred in simulation of reference bits; vm_nswap is the number of swaps
which occurred. The number of file system input/output events are reported in vm_inblk and vn_oublk
These numbers account only for real i/0; data supplied by the caching mechanism is charged only to the
first process to read or write the data.

SEE ALSO
getrusage(2), wait3(2)

Sun Release 3.2 Last change: 13 June 1983 271

INTRO (3M) MATHEMATICAL FUNCTIONS INTRO(3M)

NAME
intro — introduction to mathematical library functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION
The include file <math.h> contains declarations of all the functions in the Math Library libm (described in
Section 3M), as well as various functions in the C Library (Section 3C) that return floating-point values.
Functions in this library are automatically loaded as needed by the Fortran compiler f77(1). The link editor
searches this library under the ‘‘~lm’’ option.

<math.h> also defines the structure and constants used by the matherr(3M) error-handling mechanisms,
including the following constant used as an error-return value:

HUGE The maximum value of a double-precision floating-point number.
The following mathematical constants are defined for user convenience:
M_E The base of natural logarithms (e).
M_LOG2E The base-2 logarithm of e.
M_LOGI10E The base-10 logarithm of e.
M_LN2 The natural logarithm of 2.
M_LN10 The natural logarithm of 10.
M_PI The ratio of the circumference of a circle to its diameter. (There are also several
fractions of its reciprocal and its square root.)
M_SQRT2 The positive square root of 2.
M_SQRT1 2 The positive square root of 1/2.
For the definitions of various machine-dependent ‘‘constants,’”” see the description of the <values.h>
header file.
LIST OF FUNCTIONS
Name Appears on Page Description
acos sin(3M) inverse trigonometric functions
acosh asinh(3M) inverse hyperbolic function
asin sin(3M) inverse trigonometric function
asinh asinh(3M) inverse hyperbolic function
atan sin(3M) inverse trigonometric function
atan2 sin(3M) inverse trigonometric function

atanh asinh(3M) inverse hyperbolic function
cabs hypot(3M) complex magnitude

cbrt sqrt(3M) cube root

ceil floor(3M) ceiling function
copysign ieee(3M) copy sign bit

cos sin(3M) trigonometric function

cosh sinh(3M) hyperbolic function
drem ieee(3M) remainder

erf erf(3M) error function

erfc erf(3M) complementary error function
exp exp(3M) exponential function

expml exp(3M) exp(X)-1

fabs floor(3M) absolute value function

finite ieee(3M) test for finite number

floor floor(3M) floor function

Sun Release 3.2 Last change: 14 March 1986 273

INTRO (3M)

274

hypot
jo

j1

jn
lgamma
log
log10
loglp
logb
matherr
pow
rint
scalb
sin
sinh
sqrt
tan
tanh
y0

yl

yn

hypot(3M)
jOGM)
jOGM)
JOM)
Igamma(3M)
exp(3M)
exp(3M)
exp(3M)
ieee(3M)
matherr(3M)
exp(3M)
floor(3M)
ieee(eM)
sin(3M)
sinh(3M)
sqrt(3M)
sin(3M)
sinh(3M)
jOGM)
jO3M)
i0GM)

MATHEMATICAL FUNCTIONS

Euclidean distance
Bessel function
Bessel function
Bessel function

log gamma function
natural Iogarithm
common logarithm
log(1+X)

exponent extraction
math library error-handling routines
power x*+*y

round to nearest integral value
exponent adjustment
trigonometric function
hyperbolic function
square root
trigonometric function
hyperbolic function
Bessel function
Bessel function
Bessel function

Last change: 14 March 1986

INTRO (3M)

Sun Release 3.2

ASINH (3M) MATHEMATICAL FUNCTIONS ASINH (3M)

NAME
asinh, acosh, atanh — inverse hyperbolic functions

SYNOPSIS
#include <math.h>

double asinh(x)
double x;

double acosh(x)
double x;

double atanh(x)
double x;

DESCRIPTION

These functions compute the designated inverse hyperbolic functions for real arguments. They inherit
much of their (roundoff, etc.) error from loglp, as described in exp (3M).

SEE ALSO
intro(3M), exp(3M)

DIAGNOSTICS
Acosh returns a NaN if the argument is less than 1.

Atanh returns a NaN if the argument has absolute value greater than 1.

Sun Release 3.2 Last change: 14 March 1986 275

ERF(3M) MATHEMATICAL FUNCTIONS ERF(3M)

NAME
erf, erfc — error functions

SYNOPSIS
#include <math.h>

double erf(x)
double x;

double erfc(x)
double x;

DESCRIPTION
Erf (x) returns the error function of x; where erf (x) := (2/Vr) IS exp(—tz) dt.

Erfc (x) returns 1.0—erf (x).

The entry for erfc is provided because of the extreme loss of relative accuracy if erf (x) is called for large x
and the result subtracted from 1. (e.g. for x = 10, 12 places are lost).

SEE ALSO
intro(3M)

276 Last change: 14 March 1986 Sun Release 3.2

EXP(3M) MATHEMATICAL FUNCTIONS EXP(3M)

NAME
exp, log, 1og10, pow — exponential, logarithm, power

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double expm1(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double loglp(x)
double x;

double pow(x, y)
double x, y;

DESCRIPTION
Exp returns the exponential function of x.

Expml returns exp(x)-1 accurately even for tiny x.
Log returns the natural logarithm of x.

Logl0 retumns the base 10 logarithm.

Log1p returns log(1+x) accurately even for tiny x;
Pow returns x’.

SEE ALSO
hypot(3M), sinh(3M), intro(2)

DIAGNOSTICS
These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary floating point
arithmetic. Log(x) for x < 0, log10(x) for x < 0, pow(0.0,0.0), pow(infinity,0.0), and pow(1.0,infinity) are
invalid, as is pow(x,y) if x < 0 and y is not an integer value or infinite value; in all these cases NaN func-
tion values are returned and errno is set to EDOM.

Sun Release 3.2 Last change: 14 March 1986 2717

FLOOR (3M) MATHEMATICAL FUNCTIONS FLOOR (3M)

NAME

floor, ceil, fabs, rint — absolute value, floor, ceiling and round-to-nearest functions

SYNOPSIS

#include <math.h>
double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

double rint(x)
double x;

DESCRIPTION

Fabs returns the absolute value | x |.
Floor returns the value of the greatest integer less than or equal to x.
Ceil returns the value of the least integer greater than or equal to x.

Rint returns the value of the integer nearest x in the direction of the prevailing rounding mode.

SEE ALSO

278

abs(3)

Last change: 14 March 1986 Sun Release 3.2

HYPOT (3M) MATHEMATICAL FUNCTIONS HYPOT (3M)

NAME
hypot, cabs — Euclidean distance

SYNOPSIS
#include <math.h>

double hypot(x, y)
doublex, y;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION
Hypot and cabs return

SQrt(xX*x + y*y),
taking precautions against unwarranted overflows.

SEE ALSO
exp(3M) for sqrt

Sun Release 3.2 Last change: 19 January 1983 279

IEEE (3M) MATHEMATICAL FUNCTIONS IEEE (3M)

NAME

ieee, copysign, drem, finite, logb, scalb — copysign, remainder, exponent manipulations
SYNOPSIS

#include <math.h>

double copysign(x,y)
double x,y;

double drem(x,y)
double x,y;

int finite(x)
double x;

double logh(x)
double x;

double scalb(x,n)
double x;
int n;
DESCRIPTION
These functions are required for, or recommended by the IEEE standard 754 for floating—point arithmetic.

Copysign(x,y) returns x with its sign changed to y’s.

Drem(x,y) returns the remainder r := x — n*y where n is the integer nearest the exact value of x/y; more-
over if [n—x/y|=1/2 then n is even. Consequently the remainder is computed exactly and || < |y|/2. But
drem(x,0) is exceptional; see below under DIAGNOSTICS.

Finite(x) = 1 just when —oo < X < +0o,
= (otherwise (when |x| = oo Or X is NaN.)
Logb(x) returns x’s exponent n, a signed integer converted to double—precision floating—point and so
chosen that 1 < |x}/2**n < 2 unless x = 0 or (only on machines that conform to IEEE 754) |x] = oo or x
lies between 0 and the Underflow Threshold; see below under "BUGS".
Scalb(x,n) = x*(2**n) computed, for integer n, without first computing 2**n.
SEE ALSO
floor(3M), intro(3M)
DIAGNOSTICS
IEEE 754 defines drem(x,0) and drem(eo,y) to be invalid operations that produce a NaN.
IEEE 754 defines logb(zeo) = +oo and logb(0) = —o, and requires the latter to signal Division—by—Zero.

IEEE 754 currently specifies that logb(denormalized no.) = logb(tiniest normalized no. > 0) but the con-
sensus has changed to the specification in the new proposed IEEE standard p854, namely that logb(x)
satisfy

1 < scalb(|x|,-logb(x)) < Radix ... =2 for IEEE 754
for every x except 0, «o and NaN. Almost every program that assumes 754’s specification will work
correctly if logb follows 854’s specification instead.

IEEE 754 requires copysign(x,NaN) = +x but says nothing else about the sign of a NaN - (Not a Number.)

280 Last change: 14 March 1986 Sun Release 3.2

Jo(3M) MATHEMATICAL FUNCTIONS JO(3M)

NAME

jO, j1, jn, yO, y1, yn — Bessel functions
SYNOPSIS

#include <math.h>

double jO(x)
double x;
double j1(x)
double x;
double jn(n, x)
double x;

int n;

double y0(x)
double x;

double y1(x)
double x;

double yn(n, x)

double x;

int n;
DESCRIPTION

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord-
ers.

DIAGNOSTICS
Negative arguments cause y0, yI, and yn to return a huge negative value and set errno to EDOM.

Sun Release 3.2 Last change: 4 April 1986 281

LGAMMA (3M) MATHEMATICAL FUNCTIONS LGAMMA (3M)

NAME
lgamma, gamma — log gamma function

SYNOPSIS
#include <math.h>

double Igamma(x)
double x;

double gamma(x)
double x;

DESCRIPTION
Lgamma
lgamma
returns In |[(x)| where r(x)=f5 ¢ et for x > 0 and
I'(x) = n/(I"(1—x) sin(mx)) forx < 1.

The external integer signgam returns the sign of I'(x) .

Gamma
Gamma returns In |I'(|x|)|. The sign of I'(|x|) is returned in the external integer signgam. The follow-
ing C program might be used to calculate I":
y = gamma(x);
#ifdef vax
if (y > 88.0)
#endif
#ifdef sun
if (y > 706.0)
#endif
error();
y = exp(y);
if(signgam)
y=-v;
IDIOSYNCRASIES
Do not use the expression signgam*exp(lgamma(x)) to compute g := I'(x). Instead use a program like this
(in C):
Ig = Igamma(x); g = signgam#*exp(lg);
Only after I[gamma has returned can signgam be correct. Note too that I'(x) must overflow when x is large
enough, underflow when —x is large enough, and spawn a division by zero when x is a nonpositive integer.
DIAGNOSTICS
For very large arguments over/underflows will occur inside the Igamma routine.
gamma returns a huge value for negative integer arguments.
SEE ALSO
intro(3M)
BUGS
gamma should return a positive indication of error.

Only in the UNIX math library for C was the name gamma ever attached to InI". Elsewhere, for instance in
IBM’s FORTRAN library, the name GAMMA belongs to I" and the name ALGAMA to InI" in single preci-
sion; in double the names are DGAMMA and DLGAMA. Why should C be different?

282 Last change: 14 March 1986 Sun Release 3.2

MATHERR {3M) MATHEMATICAL FUNCTIONS MATHERR (3M)

NAME

matherr — math library error-handling function

SYNOPSIS

#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION

NOTE

matherr is invoked by functions in the Math Library when errors are detected. Users may define their own
procedures for handling errors, by including a function named matherr in their programs. matherr must be
of the form described above. When an error occurs, a pointer to the exception structure x will be passed to

the user-supplied matherr function. This structure, which is defined in the <math.h> header file, is as fol-
lows:

struct exception {
int type;
char *name;
double argl, arg2, retval;
b
The element type is an integer describing the type of error that has occurred, from the following list of con-
stants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurred the error. The vari-
ables argl and arg2 are the arguments with which the function was invoked. Retval is set to the default
value that will be returned by the function unless the user’s matherr sets it to a different value.

If the user’s matherr function returns non-zero, no error message will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling procedures, described with the math func-
tions involved, will be invoked upon error. These procedures are also summarized in the table below. In
every case, errno is set to EDOM or ERANGE and the program continues.

In the Sun environment, the facilities provided by matherr are only available when a program is built with
the software floating point library, as there would be a substantial performance penalty imposed by provid-
ing these facilities with the libraries that support various Sun floating point hardware options.

EXAMPLE

#tinclude <math.h>

int
matherr(x)
register struct exception *x;
{
switch (x—>type) {
case DOMAIN:
/* change sqrt to return sqrt(—arg1), not O */
if (!strcmp(x—>name, "sqrt")) {
x—>retval = sqrt(—x—>argl);
return (0); /* print message and set errno */

Sun Release 3.2 Last change: 30 April 1986 283

MATHERR (3M) MATHEMATICAL FUNCTIONS MATHERR (3M)

}
case SING:

/* all other domain or sing errors, print message and abort */
fprintf(stderr, "domain error in %s\n", x—>name);
abort();
case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g) = %g\n",
X—>name, x—>arg1, x—>retval);
return (1); /* take no other action */

}
return (0); /* all other errors, execute default procedure */
}
ERROR HANDLING
DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - M,0 *
0, y1, yn (arg < 0) M,-H - - - - -
EXP: - - H 0 - -
LOG, LOG10:

(arg < 0) M,-H - - - - -
(arg=0) - M,-H - - - -
POW: — - +H 0 - -
neg ** non-int M, 0 - - - - -

0 ** non-pos
SQRT: M, 0 - - - - -
GAMMA: - M,H H - - -
HYPOT: - - H - - -
SINH: - - +H - - -
COSH: - - H - - -
SIN, COS, TAN: — - - - M,0 *
ASIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS

* As much as possible of the value is returned.

M Message is printed (EDOM error).

H HUGE is returned.
—-H —HUGE is returned.
+tH HUGE or ~HUGE is returned.

0 0 is returned.

284 Last change: 30 April 1986 Sun Release 3.2

SIN (3M) MATHEMATICAL FUNCTIONS SIN(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(y, x)
doublex, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments.

Asin returns the arc sin in the range —n/2 to /2.

Acos returns the arc cosine in the range 0 to x.

Atan returns the arc tangent of x in the range —/2 to /2.
Atan2 returns the arc tangent of y/x in the range —r to x.

DIAGNOSTICS
These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary floating point
arithmetic. When x is infinity in sin(x), cos(x), or tan(x), or when |x| > 1 in asin(x) or acos(x), the functions
return NaN values and ermo is set to EDOM.

Sun Release 3.2 Last change: 19 December 1985 285

SINH(3M) MATHEMATICAL FUNCTIONS SINH(3M)

NAME

sinh, cosh, tanh — hyperbolic functions
SYNOPSIS

#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS
These functions handle exceptional arguments in the spirit of IEEE standard P754 for binary floating point
arithmetic. Thus sinh and cosh return infinity on overflow.

286 Last change: 8 August 1985 Sun Release 3.2

SQRT (3M) MATHEMATICAL FUNCTIONS SQRT(3M)

NAME
sqrt, cbrt — cube root, square root

SYNOPSIS
#include <math.h>

double cbrt(x)
double x;

double sqrt(x)
double x;
DESCRIPTION
Cbrt(x) returns the cube root of x.

Sqrt(x) returns the square root of x.

SEE ALSO
intro(3M)
DIAGNOSTICS
ERROR (due to Roundoff etc.)
Cbrt is accurate to within 0.7 ulps.
Sqrt on a machine that conforms to IEEE 754 is correctly rounded in accordance with the rounding mode in

force; the error is less than half an ulp in the default mode (round—to—nearest). An ulp is one Unit in the
Last Place carried.

Sun Release 3.2 Last change: 14 March 1986 287

INTRO(3N) NETWORK FUNCTIONS INTRO(3N)
NAME
intro — introduction to network library functions
DESCRIPTION
This section describes functions that are applicable to the DARPA Intemet network, which are part of the
standard C library.
LIST OF FUNCTIONS
Name Appears on Page Description
endhostent gethostent(3N) get network host entry
endnetent getnetent(3N) get network entry
endprotoent getprotoent(3N) get protocol entry
endservent getservent(3N) get service entry
gethostbyaddr gethostent(3N) get network host entry
gethostbyname gethostent(3N) get network host entry
gethostent gethostent(3N) get network host entry
getnetbyaddr getnetent(3N) get network entry
getnetbyname getnetent(3N) get network entry
getnetent getnetent(3N) get network entry
getprotobyname getprotoent(3N) get protocol entry
getprotobynumber getprotoent(3N) get protocol entry
getprotoent getprotoent(3N) get protocol entry
getrpcbyname getrpcent(3N) get rpc entry
getrpcbynumber getrpcent(3N) get rpc entry
getrpcent getrpcent(3N) get rpc entry
getservbyname getservent(3N) get service entry
getservbyport getservent(3N) get service entry
getservent getservent(3N) get service entry
htonl byteorder(3N) convert values between host and network byte order
htons byteorder(3N) convert values between host and network byte order
inet_addr inet(3N) Internet address manipulation
inet_Inaof inet(3N) Internet address manipulation
inet_makeaddr inet(3N) Internet address manipulation
inet_netof inet(3N) Internet address manipulation
inet_network inet(3N) Internet address manipulation
inet_ntoa inet(3N) Internet address manipulation
ntohl byteorder(3N) convert values between host and network byte order
ntohs byteorder(3N) convert values between host and network byte order
rcmd rcmd(3N) routines for returning a stream to a remote command
rexec rexec(3N) return stream to a remote command
rresvport rcmd(3N) routines for returning a stream to a remote command
ruserok rcmd(3N) routines for returning a stream to a remote command
sethostent gethostent(3N) get network host entry
setnetent getnetent(3N) get network entry
setprotoent getprotoent(3N) get protocol entry
setservent getservent(3N) get service entry
yp_all ypcint(3N) YP client interface routines
yp_bind ypcint(3N) YP client interface routines
yp_first ypclnt(3N) YP client interface routines

yp:get_default_domain

ypcInt(3N)YP client interface routines

yp_master ypcint(3N) YP client interface routines
yp_match ypcint(3N) YP client interface routines
yp_next ypcInt(3N) YP client interface routines
yp_order ypcint(3N) YP client interface routines
Sun Release 3.2 Last change: 20 August 1985 289

INTRO(3N)

290

yp_unbind
ypcint
yperr_string
ypprot_err

ypcint(3N)
ypcint(3N)
ypelnt(3N)
ypclnt(3N)

NETWORK FUNCTIONS

YP client interface routines
YP client interface routines
YP client interface routines
YP client interface routines

Last change: 20 August 1985

INTRO (3N)

Sun Release 3.2

BYTEORDER (3N) NETWORK FUNCTIONS BYTEORDER(3N)

NAME

byteorder, htonl, htons, ntohl, ntohs — convert values between host and network byte order
SYNOPSIS

#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
u_long netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

DESCRIPTION

These routines convert 16 and 32 bit quantities between network byte order and host byte order. On
machines such as the Sun these routines are defined as null macros in the include file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as returned by
gethostent(3N) and getservent (3N).

SEE ALSO
gethostent(3N), getservent(3N)
BUGS

The VAX handles bytes backwards from most everyone else in the world. This is not expected to be fixed
in the near future.

Sun Release 3.2 Last change: 4 March 1983 291

ETHERS (3N) NETWORK FUNCTIONS ETHERS(3N)

NAME

ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line — Ethernet address mapping opera-
tions

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>

#include <netinet/in.h>
#include <netinet/if ether.h>

char *
ether_ntoa(e)
struct ether_addr *e;

struct ether_addr *
ether_aton(s)
char *s;

ether_ntohost(hostname, e)
char *hostname;
struct ether_addr *e;

ether_hostton(hostname, e)
char *hostname;
struct ether_addr *e;

ether_line(l, e, hostname)
char *I;
struct ether_addr +*e;
char *hostname;

DESCRIPTION

ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII representations or their
corresponding host names, and vice versa.

The function ether_ntoa converts a 48 bit Etheret number pointed to by e to its standard ACSII represen-
tation; it returns a pointer to the ASCII string. The representation is of the form: ‘‘x:x:x:x:x:x’’ where x is
a hexadecimal number between O and ff. The function ether_aton converts an ASCII string in the standard
representation back to a 48 bit Ethernet number; the function returns NULL if the string cannot be scanned
successfully.

The function ether_ntohost maps an Ethernet number (pointed to by &) to its associated hostname. The
string pointed to by hostname must be long enough to hold the hostname and a null character. The function
returns zero upon success and non-zero upon failure. Inversely, the function ether_hostton maps a host-
name string to its corresponding Ethernet number; the function modifies the Ethernet number pointed to by
e. The function also returns zero upon success and non-zero upon failure.

The function ether_line scans a line (pointed to by /) and sets the hostname and the Ethernet number
(pointed to by e). The string pointed to by kostname must be long enough to hold the hostname and a null
character. The function returns zero upon success and non-zero upon failure. The format of the scanned
line is described by ethers(S).

FILES
/etc/ethers (or the yellowpages’ maps ethers.byaddr and ethers.byname)
SEE ALSO
ethers(5)
292 Last change: 8 July 1985 Sun Release 3.2

GETHOSTENT (3N) NETWORK FUNCTIONS GETHOSTENT (3N)

NAME

gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent — get network host entry

SYNOPSIS

#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostent()

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

sethostent(stayopen)
int stayopen
endhostent()

DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the following struc-
ture containing the broken-out fields of a line in the network host data base, /etc/hosts.

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of address */

char *h_addry* address */
b
The members of this structure are:
h_name Official name of the host.
h_aliases A zero terminated array of alternate names for the host.
h_addrtype The type of address being returned; currently always AF_INET.
h_length The length, in bytes, of the address.

h_addr A pointer to the network address for the host. Host addresses are returned in network byte
order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base will not be closed
after each call to gethostent (either directly, or indirectly through one of the other *‘gethost’’ calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file until a matching host
name or host address is found, or until EOF is encountered. Host addresses are supplied in network order.

/etc/hosts
letc/yp/domainname /hosts byname
letc/yp/domainname /hosts byaddr

SEE ALSO

hosts(5), ypserv(8)

DIAGNOSTICS

Null pointer (0) returned on EOF or error.

Sun Release 3.2 Last change: 16 June 1986 293

GETHOSTENT (3N) NETWORK FUNCTIONS GETHOSTENT(3N)

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the Internet
address format is currently understood.

294 Last change: 16 June 1986 Sun Release 3.2

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT (3N)

NAME

getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent — get network entry

SYNOPSIS

#include <netdb.h>
struct netent *getnetent()

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;

int type;

setnetent(stayopen)

int stayopen;

endnetent()

DESCRIPTION

getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following structure
containing the broken-out fields of a line in the network data base, /etc/networks.

struct netent {

char *n_name; /* official name of net */
char **n_aliases; /* alias list */

int n_addrtype; /* net number type */
long n_net; /* net number */

b
The members of this structure are:
n_name The official name of the network.
n_aliases A zero terminated list of alternate names for the network.
n_addrtype The type of the network number returned; currently only AF_INET.
n_net The network number. Network numbers are returned in machine byte order.
getnetent reads the next line of the file, opening the file if necessary.

setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getnetent (either directly, or indirectly through one of the other ‘‘getnet’’ calls).

endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a matching net
name or net address and type is found, or until EOF is encountered. Network numbers are supplied in host
order.

FILES
/etc/networks
letc/yp/domainname /networks .byname
letc/yp/domainname /networks.byaddr
SEE ALSO
networks(5), ypserv(8)
DIAGNOSTICS
Null pointer (0) returned on EOF or error.
BUGS

All information is contained in a static area so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 17 July 1986 295

GETNETENT (3N) NETWORK FUNCTIONS GETNETENT (3N)

Only Internet network numbers are currently understood.

296 Last change: 17 July 1986 Sun Release 3.2

GETNETGRENT (3N) NETWORK FUNCTIONS GETNETGRENT (3N)

NAME

getnetgrent, setnetgrent, endnetgrent, innetgr — get network group entry

SYNOPSIS

innetgr(netgroup, machine, user, domain)
char *netgroup, *machine, *user, *domain;

setnetgrent(netgroup)
char *netgroup

endnetgrent()

getnetgrent(machinep, userp, domainp)
char *#+*machinep, *+*userp, **domainp;

DESCRIPTION

FILES

Inngetgr returns 1 or 0, depending on whether netgroup contains the machine, user, domain triple as a
member. Any of the three strings machine, user, or domain can be NULL, in which case it signifies a wild
card.

Getnetgrent returns the next member of a network group. After the call, machinep will contain a pointer to
a string containing the name of the machine part of the network group member, and similarly for userp and
domainp. If any of machinep, userp or domainp is returned as a NULL pointer, it signifies a wild card.
Getnetgrent will malloc space for the name. This space is released when a endnetgrent call is made. Get-
netgrent returns 1 if it succeeding in obtaining another member of the network group, O if it has reached the
end of the group.

Setnetgrent establishes the network group from which getnetgrent will obtain members, and also restarts
calls to getnetgrent from the beginning of the list. If the previous setnetgrent call was to a different net-
work group, a endnetgrent call is implied. Endnetgrent frees the space allocated during the getnetgrent
calls.

/etc/netgroup
{etc/yp/domain/netgroup
/etc/ypldomain/netgroup.byuser
/etc/yp/domain/netgroup.byhost

Sun Release 3.2 Last change: 1 February 1985 297

GETPROTOENT (3N) NETWORK FUNCTIONS GETPROTOENT (3N)

NAME

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent — get protocol entry

SYNOPSIS

#include <netdb.h>
struct protoent *getprotoent()

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen;

endprotoent()

DESCRIPTION

getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network protocol data base, /etc/protocols.

struct protoent {

char *p_name; {* official name of protocol */
char **p_aliases; /* alias list */
int P_proto; /* protocol number */

b
The members of this structure are:
p_name The official name of the protocol.
p_aliases A zero terminated list of alternate names for the protocol.
p_proto The protocol number.
getprotoent reads the next line of the file, opening the file if necessary.

setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getprotoent (either directly, or indirectly through one of the other “‘getproto’’ calls).

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially search from the beginning of the file until a matching
protocol name or protocol number is found, or until EOF is encountered.

FILES
/etc/protocols
/etc/yp/domainname/protocols.byname
/etc/yp/domainname/protocols.bynumber
SEE ALSO
protocols(S), ypserv(8)
DIAGNOSTICS
Null pointer (0) returned on EOF or error.
BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the Internet pro-
tocols are currently understood.
298 Last change: 17 July 1986 Sun Release 3.2

GETRPCENT (3N) NETWORK FUNCTIONS GETRPCENT (3N)

NAME

getrpcent, getrpcbyname, getrpcbynumber — get RPC entry

SYNOPSIS

#include <netdb.h>
struct rpcent *getrpcent()

struct rpcent *getrpcbyname(name)
char *name;

struct rpcent *getrpcbynumber(number)
int number;

setrpcent(stayopen)
int stayopen

endrpcent()

DESCRIPTION

FILES

Getrpcent, getrpcbyname,, and getrpcbynumber each return a pointer to an object with the following struc-
ture containing the broken-out fields of a line in the rpc program number data base, /etc/rpc.

struct rpcent {

char *I_name; /* name of server for this rpc program */
char *#r_aliases; /* alias list */
long r_number; /* rpc program number */

b
The members of this structure are:
r name The name of the server for this rpc program.
r_aliases A zero terminated list of alternate names for the rpc program.
r_number The rpc program number for this service.
Getrpcent reads the next line of the file, opening the file if necessary.

Setrpcent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getrpcent (either directly, or indirectly through one of the other *‘getrpc’” calls).

Endrpcent closes the file.

Getrpcbyname and getrpcbynumber sequentially search from the beginning of the file until a matching rpc
program name or program number is found, or until EOF is encountered.

fetc/rpc
letc/yp/domainname/rpc.bynumber

SEE ALSO

rpc(5), rpcinfo(8), ypservices(8)

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 26 September 1985 299

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT (3N)

NAME

getservent, getservbyport, getservbyname, setservent, endservent — get service entry

SYNOPSIS

#include <netdb.h>
struct servent *getservent()

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen;

endservent()

DESCRIPTION

getservent, getservbyname, and getservbyport each return a pointer to an object with the following struc-
ture containing the broken-out fields of a line in the network services data base, /etc/services.

struct servent {

char *s_name; /* official name of service */
char #*#s_aliases; /* alias list */

int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

b
The members of this structure are:
s_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.
s_port The port number at which the service resides. Port numbers are returned in network byte order.
s proto The name of the protocol to use when contacting the service.
getservent reads the next line of the file, opening the file if necessary.

setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed
after each call to getservent (either directly, or indirectly through one of the other *‘getserv’’ calls).

endservent closes the file.

getservbyname ahd‘getservbyport sequentially search from the beginning of the file until a matching proto-
col name or port number is found, or until EOF is encountered. If a protocol name is also supplied (non-
NULL), searches must also match the protocol.

FILES
/etc/services
/etc/yp/domainname/services.byname
SEE ALSO
getprotoent(3N), services(5), ypserv(8)
DIAGNOSTICS
Null pointer {(0) returned on EOF or error.
BUGS
All information is contained in a static area so it must be copied if it is to be saved. Expecting port
numbers to fit in a 32 bit quantity is probably naive.
300 Last change: 17 July 1986 Sun Release 3.2

INET (3N) NETWORK FUNCTIONS INET(3N)

NAME

inet inet_addr, inet network, inet_makeaddr, inet_Inaof, inet_netof, inet_ntoa — Internet address manipula-
tion

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long
inet_addr(cp)
char *cp;

inet_network(cp)
char *cp;

struct in_addr
inet_makeaddr(net, Ina)
int net, Ina;

inet_Inaof(in)
struct in_addr in;

inet_netof(in)
struct in_addr in;

char *
inet_ntoa(in)
struct in_addr in;

DESCRIPTION
The routines inet_addr and inet_network each interpret character strings representing numbers expressed in
the Internet standard ““.’’ notation, returning numbers suitable for use as Internet addresses and Internet
network numbers, respectively. The routine inet_makeaddr takes an Internet network number and a local
network address and constructs an Internet address from it. The routines inet_netof and inet_Inaof break
apart Internet host addresses, returning the network number and local network address part, respectively.

The routine inet_ntoa returns a pointer to a string in the base 256 notation ‘‘d.d.d.d”’ described below.

All Internet address are returned in network order (bytes ordered from left to right). All network numbers
and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the *‘.”” notation take one of the following forms:

abcd
abc
ab

a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the
four bytes of an Internet address. Note that when an Internet address is viewed as a 32-bit integer quantity
on the VAX the bytes referred to above appear as ‘‘d.c.b.a’’. That is, VAX bytes are ordered from right to
left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the right
most two bytes of the network address. This makes the three part address format convenient for specifying
Class B network addresses as ‘‘128.net.host™’.

Sun Release 3.2 Last change: 27 February 1985 301

INET(3N) NETWORK FUNCTIONS INET (3N)

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the right
most three bytes of the network address. This makes the two part address format convenient for specifying
Class A network addresses as ‘‘net.host’’.

When only one part is given, the value is stored directly in the network address without any byte rearrange-
ment.

All numbers supplied as ‘‘parts’’ in a ‘“.”’ notation may be decimal, octal, or hexadecimal, as specified in
the C language (that is, a leading Ox or 0X implies hexadecimal; otherwise, a leading 0 implies octal; other-
wise, the number is interpreted as decimal).

SEE ALSO

gethostent(3N), getnetent(3N), hosts(5), networks(5),

DIAGNOSTICS

BUGS

302

The value —1 is retumned by inet_addr and inet_network for malformed requests.
The problem of host byte ordering versus network byte ordering is confusing. A simple way to specify

Class C network addresses in a manner similar to that for Class B and Class A is needed.

The return value from inet_ntoa points to static information which is overwritten in each call.

Last change: 27 February 1985 Sun Release 3.2

RCMD (3N) NETWORK FUNCTIONS RCMD (3N)

NAME

rcmd, rresvport, ruserok — routines for returning a stream to a remote command

SYNOPSIS

rem = rcmd(ahost, inport, locuser, remuser, cmd, fd2p);
char *#*ahost;

u_short inport;

char *locuser, *remuser, *cmd;

int #fd2p;

s = rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;

int superuser;

char *ruser, *luser;

DESCRIPTION

Rcmd is a routine used by the super-user to execute a command on a remote machine using an authentica-
tion scheme based on reserved port numbers. Rresvport is a routine which returns a descriptor to a socket
with an address in the privileged port space. Ruserok is a routine used by servers to authenticate clients
requesting service with remd. All three functions are present in the same file and are used by the rshd(8C)
server (among others).

Rcmd 1ooks up the host *ahost using gethostbyname (3N), returning —1 if the host does not exist. Other-
wise *ahost is set to the standard name of the host and a connection is established to a server residing at the
well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote
command as stdin and stdout. If fd2p is non-zero, then an auxiliary channel to a control process will be
set up, and a descriptor for it will be placed in *fd2p. The control process will return diagnostic output
from the command (unit 2) on this channel, and will also accept bytes on this channel as being UNIX sig-
nal numbers, to be forwarded to the process group of the command. If fd2p is O, then the stderr (unit 2 of
the remote command) will be made the same as the stdout and no provision is made for sending arbitrary
signals to the remote process, although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd (8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This socket is suit-
able for use by rcmd and several other routines. Privileged addresses consist of a port in the range 0 to
1023. Only the super-user is allowed to bind an address of this sort to a socket.

Ruserok takes a remote host’s name, as returned by a gethostent(3N) routine, two user names and a flag
indicating if the local user’s name is the super-user. It then checks the files /etc/hosts.equiv and, possibly,
.rhosts in the current working directory (normally the local user’s home directory) to see if the request for
service is allowed. A O is returned if the machine name is listed in the "hosts.equiv” file, or the host and
remote user name are found in the ".rhosts" file; otherwise ruserok returns -1. If the superuser flag is 1, the
checking of the "host.equiv" file is bypassed.

SEE ALSO

BUGS

rlogin(1C), rsh(1C), rexec(3N), rexecd(8C), rlogind(8C), rshd(8C)

There is no way to specify options to the socket call which remd makes.

Sun Release 3.2 Last change: 17 March 1982 303

REXEC(3N) NETWORK FUNCTIONS REXEC(3N)

NAME

rexec — return stream to a remote command

SYNOPSIS

rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char **ahost;

u_short inport;

char *user, *passwd, *cmd;

int *fd2p;

DESCRIPTION

Rexec looks up the host *ahost using gethostbyname (3N), returning —1 if the host does not exist. Other-
wise *ahost is set to the standard name of the host. If a username and password are both specified, then
these are used to authenticate to the foreign host; otherwise the environment and then the user’s .netrc file
in his home directory are searched for appropriate information. If all this fails, the user is prompted for the
information.

The port inport specifies which well-known DARPA Internet port to use for the connection; it will nor-
mally be the value returned from the call ‘“getservbyname("exec”, "tcp")’’ (see getservent(3N)). The pro-
tocol for connection is described in detail in rexecd (8C).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote
command as stdin and stdout. If fd2p is non-zero, then a auxiliary channel to a control process will be
setup, and a descriptor for it will be placed in *fd2p. The control process will return diagnostic output
from the command (unit 2) on this channel, and will also accept bytes on this channel as being UNIX sig-
nal numbers, to be forwarded to the process group of the command. If fd2p is 0, then the stderr (unit 2 of
the remote command) will be made the same as the stdout and no provision is made for sending arbitrary
signals to the remote process, although you may be able to get its attention by using out-of-band data.

SEE ALSO

BUGS

304

rcmd(3N), rexecd(8C)

There is no way to specify options to the socket call which rexec makes.

Last change: 17 March 1982 Sun Release 3.2

RPC(3N) NETWORK FUNCTIONS RPC(3N)
NAME

1pc — library routines for remote procedure calls
DESCRIPTION

These routines allow C programs to make procedure calls on other machines across the network. First, the
client calls a procedure to send a data packet to the server. Upon receipt of the packet, the server calls a

dispatch routine to perform the requested service, and then sends back a reply. Finally, the procedure call
returns to the client.

FUNCTIONS

auth_destroy()
authnone_create()
authunix_create()

authunix_create_default()

destroy authentication information handle

return RPC authentication handle with no checking
return RPC authentication handle with UNIX permissions
return default UNIX authentication handle

callrpc() call remote procedure, given [prognum,versnum,procnum]
cint_broadcast() broadcast remote procedure call everywhere
clnt_cali() call remote procedure associated with client handle

cint_destroy()
cint_freeres()

destroy client’s RPC handle
free data allocated by RPC/XDR system when decoding results

cint_geterr() copy error information from client handle to error structure
clnt_pcreateerror() print message to stderr about why client handle creation failed
cint_permo() print message to stderr corresponing to condition given
cint_perror() print message to stderr about why RPC call failed
cint_sperrno() print message to a string corresponding to condition given
cint_sperror() print message to a string

clntraw_create()
clnttcp_create()

cintudp_create()
get myaddress()

create toy RPC client for simulation
create RPC client using TCP transport
create RPC client using UDP transport
get the machine’s IP address

pmap_getmaps() return list of RPC program-to-port mappings

pmap_getport() return port number on which waits supporting service
pmap_rmtcall() instructs portmapper to make an RPC call

pmap_set() establish mapping between [prognum,versnum,procnum] and port
pmap_unset() destroy mapping between [prognum,versnum,procnum} and port
registerrpc() register procedure with RPC service package

IpC_createerr global variable indicating reason why client creation failed
svc_destroy() destroy RPC service transport handle

svc_fds global variable with RPC service file descriptor mask

svc_freeargs()
svc_getargs()
svc_getcaller()
svc_getreq()
svc_register()
svc_run()
svc_sendreply()
svc_unregister()
svecerr_auth()
svcerr_decode()
sveerr_noproc()
sveerr_noprog()
sveerr_progvers()
sveerr_systemerr()
svcerr_weakauth()
svcraw_create()
svctcp_create()

Sun Release 3.2

free data allocated by RPC/XDR system when decoding arguments
decodes the arguments of an RPC request

get the network address of the caller of a procedure

returns when all associated sockets have been serviced

associates prognum and versnum with service dispatch procedure
wait for RPC requests to arrive and call appropriate service

send back results of a remote procedure call

remove mapping of [prognum,versnum] to dispatch routines
called when refusing service because of authentication error
called when service cannot decode its parameters

called when service hasn’t implemented the desired procedure
called when program is not registered with RPC package

called when version is not registered with RPC package

called when service detects system error

called when refusing service because of insufficient authentication
creates a toy RPC service transport for testing

creates an RPC service based on TCP transport

Last change: 5 June 1986

305

RPC(3N)

sveudp_create()
xdr_accepted_reply()
xdr_authunix_parms()
xdr_callhdr()
xdr_callmsg()
xdr_opaque_auth()
xdr_pmap()
xdr_pmaplist()
xdr_rejected_reply()
xdr_replymsg()
xprt_register()
xprt_unregister()

SEE ALSO
Remote Procedure Call Programming Guide, in Networking on the Sun Workstation.

306

NETWORK FUNCTIONS RPC(3N)

creates an RPC service based on UDP transport

generates RPC-style replies without using RPC package
generates UNIX credentials without using RPC package
generates RPC-style headers without using RPC package
generates RPC-style messages without using RPC package
describes RPC messages, externally

describes parameters for portmap procedures, externally
describes a list of port mappings, externally

generates RPC-style rejections without using RPC package
generates RPC-style replies without using RPC package
registers RPC service transport with RPC package
unregisters RPC service transport from RPC package

Last change: 5 June 1986 Sun Release 3.2

XDR (3N)

NAME

NETWORK FUNCTIONS

xdr — library routines for external data representation

DESCRIPTION

These routines allow C programmers to describe arbitrary data structures in a machine-independent
fashion. Data for remote procedure calls are transmitted using these routines.

FUNCTIONS

xdr_array()
xdr_bool()
xdr_bytes()
xdr_destroy()
xdr_double()
xdr_enum()
xdr_float()
xdr_getpos()
xdr_inline()
xdr_int()
xdr_long()
xdr_opaque()
xdr_reference()
xdr_setpos()
xdr_short()
xdr_string()
xdr_u_int()
xdr_u_long()
xdr_u_short()
xdr_union()
xdr_void()
xdr_wrapstring()
xdrmem_create()
xdrrec_create()

xdrrec_endofrecord()

xdrrec_eof()

xdrrec_skiprecord()

xdrstdio_create()

SEE ALSO

External Data Representation Protocol Specification, in Networking on the Sun Workstation.

Sun Release 3.2

translate arrays to/from external representation

translate Booleans to/from external representation

translate counted byte strings to/from external representation
destroy XDR stream and free associated memory

translate double precision to/from external representation
translate enumerations to/from external representation

translate floating point to/from external representation

return current position in XDR stream

invoke the in-line routines associated with XDR stream
translate integers to/from external representation

translate long integers to/from external representation

translate fixed-size opaque data to/from external representation
chase pointers within structures

change current position in XDR stream

translate short integers to/from external representation

translate null-terminated strings to/from external representation
translate unsigned integers to/from external representation
translate unsigned long integers to/from external representation
translate unsigned short integers to/from external representation
translate discriminated unions to/from external representation
always return one (1)

package RPC routine for XDR routine, or vice-versa

initialize an XDR stream

initialize an XDR stream with record boundaries

mark XDR record stream with an end-of-record

mark XDR record stream with an end-of-file

skip remaining record in XDR record stream

initialize an XDR stream as standard I/O FILE stream

Last change: 22 July 1985

XDR (3N)

307

YPCLNT(3N) NETWORK FUNCTIONS

NAME

YPCLNT(3N)

ypcint, yp_ get default domain, yp bind, yp_unbind, yp_match, yp first, yp next, yp all, yp order,

yp_master, yperr_string, ypprot_err — yellow pages client interface

SYNOPSIS

308

#include <rpcsve/ypclnth>

yp_bind(indomain);
char *indomain;

void yp_unbind(indomain)
char *indomain;

yp_get_default_domain(outdomain);
char **outdomain;

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen)
char *indomain;

char *inmap;

char *inkey;

int inkeylen;

char **outval;

int *outvallen;

yp_first(indomain, inmap, outkey, outkeylen, outval, outvallen)
char *indomain;

char *inmap;

char *#*outkey;

int *outkeylen;

char **outval;

int *outvallen;

yp_next(indomain, inmap, inkey, inkeylen, outkey, outkeylen, outval, outvallen);

char *indomain;
char *inmap;
char *inkey;

int inkeylen;
char **outkey;
int *outkeylen;
char *+outval;
int *outvallen;

yp_all(indomain, inmap, incallback);
char *indomain;

char *inmap;

struct ypall_callback incallback;

yp_order(indomain, inmap, outorder);
char *indomain;

char *inmap;

int *outorder;

yp_master(indomain, inmap, outname);
char *indomain;

char *inmap;

char **outname;

char *yperr_string(incode)
int incode;

Last change: 14 September 1985

Sun Release 3.2

YPCLNT (3N) NETWORK FUNCTIONS YPCLNT (3N)

ypprot_err(incode)
unsigned int incode;

DESCRIPTION
This package of functions provides an interface to the yellow pages (YP) network lookup service. The
package can be loaded from the standard library, /lib/libc.a. Refer to ypfiles(5) and ypserv(8) for an over-
view of the yellow pages, including the definitions of map and domain , and a description of the various
servers, databases, and commands that comprise the YP.

All input parameters names begin with in. Output parameters begin with out. Output parameters of type
char ** should be addresses of uninitialized character pointers. Memory is allocated by the YP client
package using malloc(3), and may be freed if the user code has no continuing need for it. For each outkey
and outval, two extra bytes of memory are allocated at the end that contain NEWLINE and NULL, respec-
tively, but these two bytes are not reflected in outkeylen or outvallen . indomain and inmap strings must be
non-null and null-terminated. String parameters which are accompanied by a count parameter may not be
null, but may point to null strings, with the count parameter indicating this. Counted strings need not be
null-terminated.

All functions in this package of type int return 0 if they succeed, and a failure code (YPERR xxxx) other-
wise. Failure codes are described under DIAGNOSTICS below.

The YP lookup calls require a map name and a domain name, at minimum. It is assumed that the client pro-
cess knows the name of the map of interest. Client processes should fetch the node’s default domain by

calling yp_get_default_domain() , and use the returned outdomain as the indomain parameter to succes-
sive YP calls.

To use the YP services, the client process must be ‘‘bound’’ to a YP server that serves the appropriate
domain using yp_bind. Binding need not be done explicitly by user code; this is done automatically when-
ever a YP lookup function is called. yp_bind can be called directly for processes that make use of a backup
strategy (e.g., a local file) in cases when YP services are not available.

Each binding allocates (uses up) one client process socket descriptor; each bound domain costs one socket
descriptor. However, multiple requests to the same domain use that same descriptor. yp unbind() is avail-
able at the client interface for processes that explicitly manage their socket descriptors while accessing
multiple domains. The call to yp_unbind() make the domain unbound, and free all per-process and per-
node resources used to bind it.

If an RPC failure results upon use of a binding, that domain will be unbound automatically. At that point,
the ypclnt layer will retry forever or until the operation succeeds, provided that ypbind is running, and

either
a) the client process can’t bind a server for the proper domain, or
b) RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound ypserv process retums any answer
(success or failure), the ypclnt layer will return control to the user code, either with an error code, or a suc-
cess code and any results.

yp_match returns the value associated with a passed key. This key must be exact; no pattern matching is
available.

Yp_first returns the first key-value pair from the named map in the named domain.

yp_next() returns the next key-value pair in a named map. The inkey parameter should be the outkey
returned from an initial call to yp_first() (to get the second key-value pair) or the one returned from the nth
call to yp_next() (to get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the structure of the YP map being process-
ing; there is no relation in retrieval order to either the lexical order within any original (non-YP) data base,
or to any obvious numerical sorting order on the keys, values, or key-value pairs. The only ordering
guarantee made is that if the yp_firs¢() function is called on a particular map, and then the yp next()

Sun Release 3.2 Last change: 14 September 1985 309

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT (3N)

310

function is repeatedly called on the same map at the same server until the call fails with a reason of
YPERR_NOMORE, every entry in the data base will be seen exactly once. Further, if the same sequence
of operations is performed on the same map at the same server, the entries will be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for the domain to become unbound,
then bound once again (perhaps to a different server) while a client is running. This can cause a break in
one of the enumeration rules; specific entries may be seen twice by the client, or not at all. This approach
protects the client from error messages that would otherwise be returned in the midst of the enumeration.
The next paragraph describes a better solution to enumerating all entries in a map.

yp_all provides a way to transfer an entire map from server to client in a single request using TCP (rather
than UDP as with other functions in this package). The entire transaction take place as a single RPC
request and response. You can use yp_all just like any other YP procedure, identify the map in the normal
manner, and supply the name of a function which will be called to process each key-value pair within the
map. You return from the call to yp_all only when the transaction is completed (successfully or unsuccess-
fully), or your “‘foreach’” function decides that it doesn’t want to see any more key-value pairs.

The third parameter to yp_all is
struct ypall_callback *incallback {
int (*foreach)();
char *data;
b
The function foreach is called

foreach(instatus, inkey, inkeylen, inval, invallen, indata);
int instatus;

char *inkey;

int inkeylen;

char *inval;

int invalllen;

char *indata;

The instatus parameter will hold one of the return status values defined in <rpcsve/yp_prot.h>—
either YP_ TRUE or an error code. (See ypprot_err , below, for a function which converts a YP protocol
error code to0 a ypcint layer error code.)

The key and value parameters are somewhat different than defined in the synopsis section above. First, the
memory pointed to by the inkey and inval parameters is private to the yp_all function, and is overwritten
with the arrival of each new key-value pair. It is the responsibility of the foreach function to do something
useful with the contents of that memory, but it does not own the memory itself. Key and value objects
presented to the foreach function look exactly as they do in the server’s map — if they were not newline-
terminated or null-terminated in the map, they won’t be here either.

The indata parameter is the contents of the incallback->data element passed to yp_all . The data element
of the callback structure may be used to share state information between the foreach function and the main-
line code. Its use is optional, and no part of the YP client package inspects its contents — cast it to some-
thing useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to indicate that it wants to be called again for
further received key-value pairs, or non-zero to stop the flow of key-value pairs. If foreach returns a non-
zero value, it is not called again; the functional value of yp_all is then 0.

Yp_order returns the order number for a map.
yp_master returns the machine name of the master YP server for a map.

yperr_string returns a pointer to an error message string that is null-terminated but contains no period or
newline.

Last change: 14 September 1985 Sun Release 3.2

YPCLNT(3N) NETWORK FUNCTIONS YPCLNT (3N)

ypprot_err takes a YP protocol error code as input, and returns a ypclnt layer error code, which may be
used in turn as an input to yperr_string .

FILES

/usr/include/rpcsve/ypeinth
fusr/include/rpcsve/yp_proth

SEE ALSO
ypfiles(5), ypserv(8),
DIAGNOSTICS

All integer functions return O if the requested operation is successful, or one of the following errors if the
operation fails.

#define YPERR_BADARGS
#define YPERR_RPC
#define YPERR_DOMAIN
#define YPERR_MAP
#define YPERR_KEY
#define YPERR_YPERR
#define YPERR_RESRC

/* args to function are bad */

/* RPC failure - domain has been unbound */
/* can’t bind to server on this domain */
/* no such map in server’s domain */

/* no such key in map */

/* internal yp server or client error */

/* resource allocation failure */

#define YPERR_NOMORE /* no more records in map database */
#define YPERR_PMAP /* can’t communicate with portmapper */
#define YPERR_YPBIND 10 /* can’t communicate with ypbind */
#define YPERR_YPSERV 11 /* can’t communicate with ypserv */
#define YPERR_NODOM 12 /* local domain name not set */

el -RES B NV, B R S

Sun Release 3.2 Last change: 14 September 1985 311

INTRO(3R)

NAME

RPC SERVICES

intro — introduction to RPC service library functions

DESCRIPTION

INTRO(3R)

These functions constitute the RPC service library, librpcsve. In order to get the link editor to load this

library, use the —Irpcsve option of cc. Declarations for these functions may be obtained from various
include files <rpcsve/*.h>.

LIST OF FUNCTIONS

routine on page
ether ether(3R)
getrpcport getrpcport(3R)
havedisk rstat(3R)
Tex rex(3r)
rnusers musers(3R)
rquota rquota(3R)
rstat rstat(3R)
rusers musers(3R)
rwall rwall(3R)
spray spray(3R)
yppasswd yppasswd(3R)

Sun Release 3.2

description

monitor traffic on the Ethernet

get RPC port number

determine if remote machine has disk
remote execution protocol

return number of users on remote machine
implement quotas on remote machines

get performance data from remote kernel
return information about users on remote machine
write to specified remote machines

scatter data in order to check the network
update user password in yellow pages

Last change: 10 August 1985

313

ETHER (3R)

NAME

RPC SERVICES ETHER (3R)

ether — monitor traffic on the Ethernet
SYNPOSIS

RPC INFO
program number:

314

#include <rpcsvc/ether.h>

ETHERPROG

xdr routines:

procs:

xdr_etherstat(xdrs, es)

XDR *xdrs;

struct etherstat *es;
xdr_etheraddrs(xdrs, ea)

XDR #*xdrs;

struct etheraddrs *ea;
xdr_etherhtable(xdrs, hm)

XDR *xdrs;

struct etherhmem **hm;
xdr_etherhmem(xdrs, hm)

XDR #xdrs;

struct etherhmem **hm;
xdr_etherhbody(xdrs, hm)

XDR #xdrs;

struct etherhmem *hm;
xdr_addrmask(xdrs, am)

XDR #*xdrs;

struct addrmask *am;

Xdr_etherhmem processes a single etherhmem structure. Xdr_etherhtable processes an array of
HASHSIZE #struct etherhmems. The **etherhmem field of etheraddrs is actually a hashtable,
that is, it is a pointer to an array of HASHSIZE hmem pointers.

ETHERPROC_GETDATA

no args, returns struct etherstat
ETHERPROC_ON

no args or results, puts server in promiscuous mode
ETHERPROC_OFF

no args or results, puts server in promiscuous mode
ETHERPROC _GETSRCDATA

no args, returns struct etheraddrs with information

about source of packets
ETHERPROC GETDSTDATA

no args, returns struct etheraddrs with information

about destination of packets
ETHERPROC SELECTSRC

takes struct mask as argument, no results

sets a mask for source
ETHERPROC_SELECTDST

takes struct mask as argument, no results

sets a mask for dst
ETHERPROC_SELECTPROTO

takes struct mask as argument, no results

sets a mask for proto

Last change: 10 August 1985 Sun Release 3.2

ETHER (3R) RPC SERVICES

ETHERPROC_SELECTLNTH
takes struct mask as argument, no results
sets a mask for Inth

versions:
ETHERVERS ORIG
structures:
/%
* all ether stat’s except src, dst addresses
*/
struct etherstat {
struct timeval e_time;
unsigned long e_bytes;
unsigned long e _packets;
unsigned long e_bcast;
unsigned long e_size[NBUCKETS];
unsigned long e proto[NPROTOS]J;
b
/%
* member of address hash table
*/
struct etherhmem {
int h_addr;
unsigned h_cnt;
struct etherhmem *h_nxt;
b
/*
* src, dst address info
*/

struct etheraddrs {
struct timeval e_time;
unsigned long e bytes;
unsigned long e_packets;
unsigned long e _bcast;
struct etherhmem **e_addrs;

b
/*
* for size, a_addr is lowvalue, a_mask is high value
*/
struct addrmask {

int a_addr;

int a_mask; /* 0 means wild card */
b

SEE ALSO
traffic(1C), etherfind(8C), etherd(8C)

Sun Release 3.2 Last change: 10 August 1985

ETHER (3R)

315

GETRPCPORT(3R) RPC SERVICES GETRPCPORT(3R)

NAME
getrpcport — get RPC port number

SYNOPSIS
int getrpcport(host, prognum, versnum, proto)
char *host;
int prognum, versnum, proto;

DESCRIPTION
Getrpcport returns the port number for version versnum of the RPC program prognum running on host and
using protocol proto. It returns O if it cannot contact the portmapper, or if prognum is not registered. If
prognum is registered but not with version versnum, it will return that port number.

316 Last change: 21 October 1985 Sun Release 3.2

REX(3R) . RPC SERVICES REX(3R)

NAME
Tex — remote execution protocol

SYNOPSIS
#include <sys/ioctLh>
#include <rpcsvc/rex.h>

DESCRIPTION
This server will execute commands remotely. the working directory and environment of the command can
be specified, and the standard input and output of the command can be arbitrarily redirected. An option is
provided for interactive I/O for programs that expect to be running on terminals. Note that this service is
only provided with the TCP transport.

RPC INFO

program number:
REXPROG

xdr routines:
int xdr_rex_start(xdrs, start);
XDR #xdrs;
struct rex_start *start;
int xdr_rex_result(xdrs, result);
XDR *xdrs;
struct rex_result *result;
int xdr_rex_ttymode(xdrs, mode);
XDR *xdrs;
struct rex_ttymode *mode;
int xdr_rex_ttysize(xdrs, size);
XDR *xdrs;
struct ttysize *size;

procs:
REXPROC_START
Takes rex_start structure, starts a command executing,
and returns a rex_result structure.
REXPROC _WAIT
Takes no arguments, waits for a command to finish executing,
and returns a rex_result structure.
REXPROC_MODES
Takes arex_ttymode structure, and sends the tty modes.
REXPROC_WINCH
Takes a ttysize structure, and sends window size information.
versions:
REXVERS_ORIG
Original version
structures:

#define REX INTERACTIVE 1 /* Interative mode */
struct rex_start {
char **rst_cmd; /* list of command and args */
char *rst_host; /* working directory host name */
char *rst_fsname; /* working directory file system name */
char *rst_dirwithin; /* working directory within file system */
char **rst_env; /* list of environment */
u_short rst_port0; /* port for stdin */
u_short rst_portl; /* port for stdin */
u_short rst_port2; /* port for stdin */

Sun Release 3.2 Last change: 21 January 1986 317

REX(3R)

u_long rst_flags;
IS

struct rex_result {
int rlt_stat;
char #rlt_message;

b

struct rex_ttymode {
struct sgttyb basic;
struct tchars more;
struct Itchars yetmore;

u_long andmore;
b
SEE ALSO
on(1C), rexd(8C)

318

RPC SERVICES REX(3R)

/* options - see #defines above */

/* integer status code */
/* string message for human consumption */

/* standard unix tty flags */

/* interrupt, kill characters, etc. */
/* special Berkeley characters */
/* and Berkeley modes */

Last change: 21 January 1986 Sun Release 3.2

RNUSERS(3R) RPC SERVICES RNUSERS(3R)

NAME
rnusers, rusers — return information about users on remote machines

SYNOPSIS
#include <rpcsve/rusers.h>

rnusers(host)
char *host

rusers(host, up)
char *host
struct utmpidlearr *up;

DESCRIPTION

Rnusers returns the number of users logged on to host (-1 if it cannot determine that number). Rusers fills
the utmpidlearr structure with data about host, and returns 0 if successful. The relevant structures are:

struct utmparr { /* RUSERSVERS_ORIG */
struct utmp **uta_arr;
int uta_cnt

b

struct utmpidle {
struct utmp ui_utmp;
unsigned ui_idle;

b

struct utmpidlearr { /#* RUSERSVERS _IDLE #/
struct utmpidle **uia_arr;
int uia_cnt
b
RPC INFO
program number:
RUSERSPROG

xdr routines:
int xdr_utmp(xdrs, up)
XDR *xdrs;
struct utmp *up;
int xdr_utmpidle(xdrs, ui);
XDR #xdrs;
struct utmpidle *ui;
int xdr_utmpptr(xdrs, up);
XDR *xdrs;
struct utmp **up;
int xdr_utmpidleptr(xdrs, up);
XDR *xdrs;
struct utmpidle **up;
int xdr_utmparr(xdrs, up);
XDR #*xdrs;
struct utmparr *up;
int xdr_utmpidlearr(xdrs, up);
XDR *xdrs;
struct utmpidlearr *up;

procs:
RUSERSPROC NUM
No arguments, returns number of users as an unsigned long.

Sun Release 3.2 Last change: 10 August 1985 319

RNUSERS (3R) RPC SERVICES RNUSERS(3R)

RUSERSPROC_NAMES
No arguments, returns utmparr or utmpidlearr, depending on version number.

RUSERSPROC_ALLNAMES
No arguments, returns utmparr or utmpidlearr, depending on version number.
Returns listing even for utmp entries satisfying nonuser() in utmp.h.

versions:
RUSERSVERS _ORIG
RUSERSVERS_IDLE

structures:

SEE ALSO
rusers(1C)

320 Last change: 10 August 1985 Sun Release 3.2

RQUOTA(3R)

RPC SERVICES

RQUOTA(3R)

/* path to filesystem of interest */
/* inquire about quota for uid */

/* block size for block counts */

/* indicates whether quota is active */
/* absolute limit on disk blks alloc */
/* preferred limit on disk blks */

/* current block count */

{/* absolute limit on allocated files */
/* preferred file limit */

/* current # allocated files */

/* time left for excessive disk use */
/* time left for excessive files */

/* quota returned */
/* noquota for uid */
/* no permission to access quota */

NAME
rquota — implement quotas on remote machines
SYNPOSIS
#include <rpcsve/rquota.h>
RPC INFO
program number:
RQUOTAPROG
xdr routines:
xdr_getquota_args(xdrs, gqa);
XDR #*xdrs;
struct getquota_args *gqa;
xdr_getquota_rslt(xdrs, gqr);
XDR #*xdrs;
struct getquota_rslt *gqr;
xdr_rquota(xdrs, 1q);
XDR *xdrs;
struct rquota *rq;
procs:
RQUOTAPROC_GETQUOTA
RQUOTAPROC_GETACTIVEQUOTA
Arguments of struct getquota_args.
Returns struct getquota_rsit.
Uses UNIX authentication.
Returns quota only on filesystems with quota active.
versions:
RQUOTAVERS_ORIG
structures:
struct getquota_args {
char *gqa_pathp;
int gqa_uid;
b
/%
* remote quota structure
*/
struct rquota {
int rq_bsize;
bool_trq_active;
u_long rq_bhardlimit;
u_long rq_bsoftlimit;
u_long rq_curblocks;
u_long rq_fhardlimit;
u_long rq_fsoftlimit;
u_long rq_curfiles;
u_long rq_btimeleft;
u_long rq_ftimeleft;
b
enum gqr_status {
QOK=1,
Q_NOQUOTA =2,
Q_EPERM =3
b
Sun Release 3.2

Last change: 10 August 1985 321

RQUOTA(3R) RPC SERVICES RQUOTA (3R)

struct getquota_rslt {
enum gqr_status gqr_status; /* discriminant */
struct rquota gqr_rquota; /* valid if status == Q_OK #/
b
SEE ALSO
quota(1), quotactl(2)

322 Last change: 10 August 1985 . SunRelease 3.2

RSTAT(3R) RPC SERVICES

NAME
rstat, havedisk — get performance data from remote kernel

SYNOPSIS
#include <rpcsve/rstat.h>

havedisk(host)
char *host;

rstat(host, statp)
char *host;
struct statstime *statp;

DESCRIPTION

RSTAT (3R)

Havedisk returns 1 if host has a disk, O if it does not, and —1 if this cannot be determined. Rstat fills in the

statstime structure for host, and returns O if it was successful. The relevant structures are:
struct stats { /* RSTATVERS ORIG #/

int cp_time[CPUSTATES];
int dk_xfer[DK_NDRIVE];

unsigned v_pgpgin; /* these are cumulative sum */

unsigned v_pgpgout;
unsigned v_pswpin;
unsigned v_pswpout;
unsigned v_intr;

intif ipackets;

int if ierrors;

int if opackets;
intif_oerrors;

int if _collisions;

b

struct statsswich { /* RSTATVERS_SWTCH */

int cp_time[CPUSTATES];
int dk_xfer[DK_NDRIVE];

unsigned v_pgpgin; /* these are cumulative sum */

unsigned v_pgpgout;

unsigned v_pswpin;

unsigned v_pswpout;

unsigned v_intr;

intif_ipackets;

int if_ierrors;

int if_opackets;

int if oerrors;

intif collisions;

unsigned v_swtch;

long avenrun[3];

struct timeval boottime
b

struct statstime { /* RSTATVERS_TIME */

intcp_time[CPUSTATES];
int dk_xfer[DK_NDRIVE];

unsigned v_pgpgin; /* these are cumulative sum */

unsigned v_pgpgout;
unsigned v_pswpin;
unsigned v_pswpout;
unsigned v_intr;

Sun Release 3.2 Last change: 10 August 1985

323

RSTAT(3R)

int if_ipackets;
int if_ierrors;
int if opackets;
int if oerrors;
int if_collisions;
unsigned v_swich;
long avenrun[3];
struct timeval boottime;
struct timeval curtime;

b

RPC INFO

program number:

RSTATPROG

xdr routines:
int xdr_stats(xdrs, stat)
XDR #*xdrs;
struct stats *stat;
int xdr_statsswtch(xdrs, stat)
XDR *xdrs;
struct statsswtch *stat;
int xdr_statstime(xdrs, stat)
XDR *xdrs;
struct statstime *stat;
int xdr_timeval(xdrs, tv)
XDR #*xdrs;
struct timeval *tv;
procs:
RSTATPROC_HAVEDISK

Takes no arguments, returns long which is true if remote host has a disk.

RSTATPROC_STATS

Takes no arguments, return struct statsxxx, depending on version.

versions:
RSTATVERS_ORIG
RSTATVERS SWTCH
RSTATVERS_TIME

SEE ALSO
perfmeter(1), rup(1C), rstatd(8C)

324 Last change: 10 August 1985

RPC SERVICES

RSTAT(3R)

Sun Release 3.2

RWALL (3R) RPC SERVICES

NAME
rwall — write to specified remote machines

SYNOPSIS
#include <rpcsve/rwallh>
rwall(host, msg);
char *+host, *msg;
DESCRIPTION

Rwall causes host to print the string msg to all its users. It returns 0 if successful.

RPC INFO
program number:
WALLPROG

procs:
WALLPROC_WALL
Takes string as argument (wrapstring), returns no arguments.
Executes wall on remote host with string.
versions:
RSTATVERS_ORIG

SEE ALSO
rwall(1), shutdown(8), rwalld(8C)

Sun Release 3.2 Last change: 10 August 1985

RWALL (3R)

325

SPRAY (3R) RPC SERVICES

NAME
spray — scatter data in order to check the network

SYNOPSIS
#include <rpcsve/spray.h>

RPC INFO
program number:
SPRAYPROG

xdr routines:
xdr_sprayarr(xdrs, arr);
XDR *xdrs;
struct sprayarr *arr;
xdr_spraycumul(xdrs, cumul);
XDR #xdrs;
sturct spraycumul *cumul;

SPRAY (3R)

The server does not return this call, so the caller should have a timeout of 0.

Takes no arguments, returns struct spraycumul with value of counter and clock.

procs:

SPRAYPROC_SPRAY
Takes no arguments, returns no value.
Increments a counter in server daemon.

SPRAYPROC_GET

SPRAYPROC_CLEAR
Takes no arguments and returns no value.
Zeros out counter and clock.

versions:
SPRAYVERS ORIG
structures:

struct spraycumul {
unsigned counter;
struct timeval clock;

b

struct sprayarr {
int *data,
int Inth

b

SEE ALSO

spray(8), sprayd(8)

326 Last change: 10 August 1985

Sun Release 3.2

YPPASSWD (3R) RPC SERVICES

NAME

yppasswd — update user password in yellow pages
SYNPOSIS

#include <rpcsvc/yppasswd.h>

yppasswd(oldpass, newpw)
char *oldpass
struct passwd *newpw;

DESCRIPTION

YPPASSWD (3R)

If oldpass is indeed the old user password, this routine replaces the password entry with newpw. It returns

0 if successful.

RPC INFO
program number:
YPPASSWDPROG

xdr routines:
xdr_ppasswd(xdrs, yp)
XDR *xdrs;
struct yppasswd *yp;
xdr_yppasswd(xdrs, pw)
XDR *xdrs;
struct passwd *pw;
procs:
YPPASSWDPROC_UPDATE

Takes struct yppasswd as argument, returns integer.

Same behavior as yppasswd() wrapper.
Uses UNIX authentication.
versions:
YPPASSWDVERS_ORIG

structures:
struct yppasswd {

char *oldpass; /* old (unencrypted) password */
struct passwd newpw; /¥ new pw structure */

b
SEE ALSO
yppasswd(1), yppasswdd(8C)

Sun Release 3.2 Last change: 10 August 1985

327

INTRO(3S) STANDARD /O LIBRARY INTRO (3S)

NAME

intro, stdio — standard buffered input/output package

SYNOPSIS

#include <stdio.h>

FILE #*stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION

The functions described in section 3S constitute a user-level /O buffering scheme. The in-line macros getc
and putc(3S) handle characters quickly. The macros getchar and putchar, and the higher level routines

feetc, getw, gets, fgets, scanf, fscanf, fread, fputc, putw, puts, fputs, printf, fprintf, fwrite all use or act as
if they use getc and puic; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type FILE.
fopen(3S) creates certain descriptive data for a stream and returns a pointer to designate the stream in all
further transactions. Normally, there are three open streams with constant pointers declared in the
<stdio.h> include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (—1) is returned upon end-of-file or error by most integer functions that deal with
streams (see the individual descriptions for details).

Any module that uses this package must include the header file of pertinent macro definitions, as follows:
#include <stdio.h>

The functions and constants mentioned in sections labeled 3S of this manual are declared in that header file
and need no further declaration. The constants and the following ‘functions’ are implemented as macros;
redeclaration of these names is perilous: getc, getchar, putc, putchar, feof, ferror, fileno, and clearerr.

SEE ALSO

open(2V), close(2), Iseek(2), pipe(2), read(2V), write(2V), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S),
fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3S), system(3), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with fopen,
input (output) has been attempted on an output (input) stream, or a FILE pointer designates corrupt or oth-
erwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line buffer out-
put to a terminal by default and attempts to do this transparently by flushing the output whenever a
read(2V) from the standard input is necessary. This is almost always transparent, but may cause confusion
or malfunctioning of programs which use standard I/O routines but use read(2V) themselves to read from
the standard input.

In cases where a large amount of computation is done after printing part of a line on an output terminal, it
is necessary to fflush (see fclose(3S)) the standard output before going off and computing so that the output
will appear.

The standard buffered functions do not interact well with certain other library and system functions, espe-
cially vfork.

Sun Release 3.2 Last change: 20 August 1985 329

INTRO(3S)

STANDARD I/O LIBRARY

LIST OF FUNCTIONS
Name Appears on Page Description
clearerr ferror(3S) stream status inquiries
ctermid ctermid(3S) generate filename for terminal
cuserid cuserid(3S) get character login name of user
fclose fclose(3S) close or flush a stream
fdopen fopen(3S) open a stream
feof ferror(3S) stream status inquiries
ferror ferror(3S) stream status inquiries
fflush fclose(3S) close or flush a stream
fgetc getc(3S) get character or integer from stream
fgets gets(3S) get a string from a stream
fileno ferror(3S) stream status inquiries
fopen fopen(3S) open a stream
fprintf printf(3S) formatted output conversion
fputc putc(3S) put character or word on a stream
fputs puts(3S) put a string on a stream
fread fread(3S) buffered binary input/output
freopen fopen(3S) open a stream
fscanf scanf(3S) formatted input conversion
fseek fseek(3S) reposition a stream
frell fseek(3S) reposition a stream
fwrite fread(3S) buffered binary input/output
getc getc(3S) get character or integer from stream
getchar getc(3S) get character or integer from stream
gets gets(3S) get a string from a stream
getw getc(3S) get character or integer from stream
pclose popen(3S) initiate I/O to/from a process
popen popen(3S) initiate I/O to/from a process
printf printf(3S) formatted output conversion
putc putc(3S) put character or word on a stream
putchar putc(3S) put character or word on a stream
puts puts(3S) put a string on a stream
putw putc(3S) put character or word on a stream
rewind fseek(3S) reposition a stream
scanf scanf(3S) formatted input conversion
setbuf setbuf(3S) assign buffering to a stream
setbuffer setbuf(3S) assign buffering to a stream
setlinebuf setbuf(3S) assign buffering to a stream
sprintf printf(3S) formatted output conversion
sscanf scanf(3S) formatted input conversion
ungetc ungetc(3S) push character back into input stream
viprintf vprintf(3S) print formatted varargs output
vprintf vprintf(3S) print formatted varargs output
vsprintf vprintf(3S) print formatted varargs output

330

Last change: 20 August 1985

INTRO(3S)

Sun Release 3.2

CTERMID (3S) STANDARD I/O LIBRARY CTERMID (3S)

NAME
ctermid — generate filename for terminal

SYNOPSIS
#tinclude <stdio.h>
char *ctermid (s)
char #*s;

DESCRIPTION
ctermid generates the pathname of the controlling terminal for the current process, and stores it in a string.
If s is a NULL pointer, the string is stored in an internal static area, the contents of which are overwritten at
the next call to ctermid, and the address of which is returned. Otherwise, s is assumed to point to a charac-
ter array of at least L_ctermid elements; the path name is placed in this array and the value of s is returned.
The constant L_ctermid is defined in the <stdio.h> header file.

NOTES

The difference between ctermid and ttyname (3) is that ttyname must be handed a file descriptor and returns
the actual name of the terminal associated with that file descriptor, while ctermid returns a string (/dev/tty)
that will refer to the terminal if used as a file name. Thus ttyname is useful only if the process already has
at least one file open to a terminal. ctermid is useful largely for making code portable to non-UNIX sys-
tems where the current terminal is referred to by a name other than /dev/tty.

SEE ALSO
ttyname(3)

Sun Release 3.2 Last change: 15 April 1986 331

CUSERID (3S) STANDARD IO LIBRARY CUSERID(3S)

NAME
cuserid — get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
cuserid generates a character-string representation of the login name that the owner of the current process
is logged in under. If s is a NULL pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an array of at least L._cuserid characters;
the representation is left in this array. The constant L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer, a null char-
acter (*e0) will be placed at s[0].

SEE ALSO
getlogin(3), getpwent(3)

332 Last change: 15 April 1986 Sun Release 3.2

FCLOSE(3S) STANDARD /O LIBRARY FCLOSE(3S)

NAME

fclose, fflush — close or flush a stream
SYNOPSIS

#include <stdio.h>

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION

fclose causes any buffered data for the named stream to be written out, and the named stream to be closed.
Buffers allocated by the standard input/output system are freed.

fclose is performed automatically for all open files upon calling exiz(3).

[fflush causes any buffered data for the named output stream to be written out. The named stream remains
open.

SEE ALSO
close(2), exit(3), fopen(3S), setbuf(3S)

DIAGNOSTICS

These functions return Q for success, and EOF if any error (such as trying to write to a file that has not been
opened for writing) was detected.

Sun Release 3.2 Last change: 15 April 1986 333

FERROR(3S) STANDARD 1/O LIBRARY FERROR (3S)

NAME

ferror, feof, clearerr, fileno — stream status inquiries
SYNOPSIS

#include <stdio.h>

ferror(stream)
FILE *stream;

feof(stream)
FILE #stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION

ferror returns non-zero when an error has occurred reading from or writing to the named stream, otherwise
zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

feof returns non-zero when EOF has previously been detected reading the named input stream, otherwise
zero. Unless cleared by clearerr, the end-of-file indication lasts until the stream is closed.

clearerr resets the error indication and EOF indication to zero on the named stream.
Jfileno returns the integer file descriptor associated with the stream; see open(2V).

NOTE
All these functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2V)

334 Last change: 17 July 1986 Sun Release 3.2

FOPEN (3S) STANDARD I/O LIBRARY FOPEN (3S)

NAME

fopen, freopen, fdopen — open a stream
SYNOPSIS

#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION

fopen opens the file named by filename and associates a stream with it. fopen returns a pointer to be used to
identify the stream in subsequent operations.

filename points to a character string that contains the name of the file to be opened.
type is a character string having one of the following values:

" open for reading

"w" truncate or create for writing

"a" append: open for writing at end of file, or create for writing
"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

freopen substitutes the named file in place of the open stream. It returns the original value of stream. The
original stream is closed, regardless of whether the open ultimately succeeds.

freopen is typically used to attach the preopened streams associated with stdin, stdout, and stderr to other
files.

fdopen associates a stream with a file descriptor. File descriptors are obtained from calls like open, dup,
creat, or pipe(2), which open files but do not return streams. Streams are necessary input for many of the
Section 3S library routines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening fseek or rewind, and input may not be

directly followed by output without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

SEE ALSO

open(2V), fclose(3S), fseek(3S), fopen(3V)
DIAGNOSTICS

fopen and freopen return a NULL pointer on failure.
BUGS

In order to support the same number of open files as the system does, fopen must allocate additional
memory for data structures using calloc after 20 files have been opened. This confuses some programs
which use their own memory allocators.

Sun Release 3.2 Last change: 24 April 1986 335

FREAD(3S) STANDARD I/O LIBRARY FREAD (3S)

NAME

fread, fwrite — buffered binary input/output

SYNOPSIS

#include <stdio.h>

fread(ptr, size, nitems, stream)
FILE #*stream;

fwrite(ptr, size, nitems, stream)
FILE #stream;

DESCRIPTION

fread reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It returns the number
of items actually read. fread stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. fread leaves the file pointer in stream, if defined, point-
ing to the byte following the last byte read if there is one. fread does not change the contents of stream.

If the standard output is line-buffered, fread flushes its output before reading from the standard input. This
is also true for the standard error.

fwrite appends at most nitems of data from the block pointed to by ptr to the named output stream. It
returns the number of items actually written. fwrite stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. fwrite does not change the contents of the block
pointed to by ptr.

The argument size is typically sizeof{*ptr) where the pseudo-function sizeof specifies the length of an item
pointed to by ptr. If ptr points to a data type other than char it should be cast into a pointer to char.

If size or nitems is non-positive, no characters are read or written and O is returned by both fread and

fwrite.

SEE ALSO

read(2V), write(2V), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S), fread(3V)

DIAGNOSTICS

336

fread and fwrite return 0 upon end of file or error.

Last change: 15 April 1986 Sun Release 3.2

FSEEK (3S) STANDARD /O LIBRARY FSEEK (3S)

NAME

fseek, ftell, rewind — reposition a stream
SYNOPSIS

#include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind(stream)
FILE #*stream;
DESCRIPTION

[seek sets the position of the next input or output operation on the stream. The new position is at the signed
distance offset bytes from the beginning, the current position, or the end of the file, according as ptrname

has the value 0, 1, or 2.
rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is returned.
fseek and rewind undo any effects of ungetc (3S).

After fseek or rewind, the next operation on a file opened for update may be either input or output.

ftell returns the offset of the current byte relative to the beginning of the file associated with the named
Stream.

SEE ALSO
1seek(2), fopen(3S), ungetc(3S)

DIAGNOSTICS
fseek returns —1 for improper seeks, otherwise zero. An improper seek can be, for example, an fseek done
on a file that has not been opened via fopen; in particular, fseek may not be used on a terminal, or on a file
opened via popen(3S).

WARNING
Although on the UNIX system an offset returned by ftell is measured in bytes, and it is permissible to seek
to positions relative to that offset, portability to non-UNIX systems requires that an offset be used by fseek

directly. Arithmetic may not meaningfully be performed on such an offset, which is not necessarily meas-
ured in bytes.

Sun Release 3.2 Last change: 15 April 1986 337

GETC(3S) STANDARD I/O LIBRARY GETC (3S)

NAME

getc, getchar, fgetc, getw — get character or integer from stream

SYNOPSIS

#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE #stream;
int getw(stream)
FILE *stream;

DESCRIPTION

Getc returns the next character (i.e., byte) from the named input stream, as an integer. It also moves the
file pointer, if defined, ahead one character in stream. getchar is defined as getc(stdin). Getc and getchar
are macros.

fgetc behaves like getc, but is a function rather than a macro. fgetc runs more slowly than getc, but it takes
less space per invocation and its name can be passed as an argument to a function.

getw returns the next C int (word) from the named input stream. getw increments the associated file
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from
machine to machine. gerw assumes no special alignment in the file.

SEE ALSO

fopen(3S), putc(3S), gets(3S), ferror(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS

These functions return the integer constant EOF at end-of-file or upon an error. The end-of-file condition is
remembered, even on a terminal, and all subsequent attempts to read will reurn EOF until the condition is
cleared with clearerr(3S). Because EOF is a valid integer, ferror(3S) should be used to detect getw errors.

WARNING

BUGS

338

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of a character
on widening to integer is machine-dependent.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. In par-
ticular, getc(*f++) doesn’t work sensibly. Fgetc should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are machine-
dependent, and may not be readable using getw on a different processor.

Last change: 17 July 1986 Sun Release 3.2

GETS (3S) STANDARD I/O LIBRARY GETS(3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets(s)
char *s;
char *fgets(s, n, stream)
char #*s;
FILE *stream;
DESCRIPTION
gets reads characters from the standard input stream, stdin, into the array pointed to by s, until a new-line

character is read or an end-of-file condition is encountered. The new-line character is discarded and the
string is terminated with a null character. gets returns its argument.

feets reads characters from the stream into the array pointed to by s, until n—1 characters are read, a new-
line character is read and transferred to s, or an end-of-file condition is encountered. The string is then ter-
minated with a null character. fgets returns its first argument.

SEE ALSO
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred to s and a
NULL pointer is returned. If a read error occurs, such as trying to use these functions on a file that has not
been opened for reading, a NULL pointer is returned. Otherwise s is returned.

Sun Release 3.2 Last change: 15 April 1986 339

POPEN (3S) STANDARD /O LIBRARY POPEN (3S)

NAME

popen, pclose — initiate I/O to/from a process

SYNOPSIS

#include <stdio.h>

FILE *popen(command, type)
char *command, *type;.

pclose(stream)
FILE *stream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing, respectively, a shell command
line and an I/O mode, either r for reading or w for writing. popen creates a pipe between the calling pro-
cess and the command to be executed. The value returned is a stream pointer such that one can write to the
standard input of the command, if the /O mode is w, by writing to the file stream; and one can read from
the standard output of the command, if the /O mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated process to terminate
and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter, reading its standard input
(which is also the standard input of the process doing the popen) and providing filtered input on the stream,
and a type w command may be used as an output filter, reading a stream of output written to the stream
process doing the popen and further filtering it and writing it to its standard output (which is also the stan-
dard input of the process doing the popen).

Popen always calls sh, never csh.

SEE ALSO

pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(1)

DIAGNOSTICS

BUGS

340

popen returns a NULL pointer if files or processes cannot be created, or the shell cannot be accessed.

pclose returns —1 if stream is not associated with a *‘popen ed’’ command.

If the original and ‘‘popen ed’’ processes concurrently read or write 2a common file, neither should use buf-
fered /0, because the buffering gets all mixed up. Similar problems with an output filter may be fores-
talled by careful buffer flushing, for instance, with fflush; see fclose(3S).

Last change: 15 April 1986 Sun Release 3.2

PRINTF(3S) STANDARD I/O LIBRARY PRINTF (3S)

NAME
printf, fprintf, sprintf — formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(format [,arg]...)
char *format;

int fprintf(stream, format [,arg]...)
FILE *stream;
char *format;

char *sprintf(s, format [,arg]...)
char #*s, *format;

#include <varargs.h>

int _doprnt(format, args, stream)
char *format;

va_list *args;

FILE #stream;

DESCRIPTION
IX string "number conversion” string "number conversion — printf" printfplaces output on the stan-
dard output stream stdout. fprintf places output on the named output stream. sprintf places ‘‘output’’, fol-
lowed by the null character (\0), in consecutive bytes starting at *s; it is the user’s responsibility to ensure
that enough storage is available. printf and fprini return the number of characters transmitted, while
sprintf returns a pointer to the string. printf and fprintf return an EOF if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the format. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the out-
put stream, and conversion specifications, each of which causes conversion and printing of zero or more
args. The results are undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it will be padded on the left (or right, if the left-adjustment
flag ‘—’, described below, has been given) to the field width. If the field width for an s conversion
is preceded by a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d, o, u, x, or X conver-
sions, the number of digits to appear after the decimal point for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string; a null digit string is treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or X conversion character applies to a
long integer arg. Al before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or precision must appear before the arg (if any)
to be converted.

Sun Release 3.2 Last change: 16 April 1986 341

PRINTF(3S)

STANDARD /O LIBRARY PRINTF (3S)

The flag characters and their meanings are:

+

blank

#

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign (+ or -).

If the first character of a signed conversion is not a sign, a blank will be prefixed to the result.
This implies that if the blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an ‘‘alternate form.”” For ¢, d, s, and u
conversions, the flag has no effect. For o conversion, it increases the precision to force the first
digit of the result to be a zero. For x or X conversion, a non-zero result will have 0x or 0X
prefixed to it. Fore, E, f, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,ux, X The integer arg is converted to signed decimal, unsigned octal, unsigned decimal, or unsigned

e,E

hexadecimal notation (x and X), respectively; the letters abcdef are used for x conversion and
the letters ABCDEF for X conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older versions, padding with leading zeroes may
alternatively be specified by prepending a zero to the field width. This does not imply an octal
value for the field width.) The default precision is 1. The result of converting a zero value
with a precision of zero is a null string.

The float or double arg is converted to decimal notation in the style ‘‘[-]ddd.ddd”’ where the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are
printed.

The float or double arg is converted in the style ‘‘[-]d.dddet+ddd,”’” where there is one digit
before the decimal point and the number after it is equal to the precision; when the precision is
missing, 6 digits are produced; if the precision is zero, no decimal point appears. The E format
code will produce a number with E instead of e introducing the exponent. The exponent
always contains at least two digits.

The float or double arg is printed in style d, in style f, or in style e, (or in style E in the case of
a G format code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e or E will be used only if the exponent resulting
from the conversion is less than —4 or greater than the precision. Trailing zeroes are removed
from the result; a decimal point appears only if it is followed by a digit.

The e, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as ‘‘Infinity’’ or
““Nan’’ respectively.

%

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from the string are printed
until a null character (\0) is encountered or until the number of characters indicated by the pre-
cision specification is reached. If the precision is missing, it is taken to be infinite, so all char-
acters up to the first null character are printed. A NULL value for arg will yield undefined
results.

Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result. Padding takes
place only if the specified field width exceeds the actual width. Characters generated by printf and fprintf
are printed as if puzc(3S) had been called.

EXAMPLES

To print a date and time in the form ‘‘Sunday, July 3, 10:02,”” where weekday and month are pointers to
null-terminated strings:

342

Last change: 16 April 1986 Sun Release 3.2

PRINTF (3S) STANDARD IO LIBRARY PRINTF (3S)

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);
To print 7t to 5 decimal places:
printf("pi = %.5f", 4 * atan(1.0));
NOTE
These routines call _doprnt, which is an implementation-dependent routine. Each uses the variable-length
argument facilities of varargs(3). Although it is possible to use _doprnt to take a list of arguments and

pass them on to a routine like printf, not all implementations have such a routine. We strongly recommend
that you use the routines described in vprintf (3S) instead.

SEE ALSO
putc(3S), scanf(3S), ecvt(3), printf(3V)

BUGS
Very wide fields (>128 characters) fail.

The values ‘‘Infinity’’ and ‘‘Nan’’ cannot be read by scanf(3S).

Sun Release 3.2 Last change: 16 April 1986 343

PUTC(3S) STANDARD I/O LIBRARY PUTC(3S)

NAME

putc, putchar, fputc, putw — put character or word on a stream

SYNOPSIS

#include <stdio.h>

int putc(c, stream)
char c;

FILE *stream;
putchar(c)

fpute(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;

DESCRIPTION

putc writes the character ¢ onto the named output stream (at the position where the file pointer, if defined,
is pointing). It returns the character written.

putchar(c) is defined as putc(c, stdout). putc and putchar are macros.

fputc behaves like putc, but is a function rather than a macro. fputc runs more slowly than putc, but it takes
less space per invocation and its name can be passed as an argument to a function.

putw writes the C int (word) w to the output stream (at the position at which the file pointer, if defined, is
pointing). The size of a word is the size of an integer and varies from machine to machine. It returns the
integer written. putw neither assumes nor causes special alignment in the file.

Output streams are by default buffered if the output refers to a file and line-buffered if the output refers to a
terminal. When an output stream is unbuffered, information is queued for writing on the destination file or
terminal as soon as written; when it is buffered, many characters are saved up and written as a block.
When it is line-buffered, each line of output is queued for writing on the destination terminal as soon as the
line is completed (that is, as soon as a new-line character is written or terminal input is requested).
setbuf (3S), setbuffer(3S), or setvbuf(3S) may be used to change the stream’s buffering strategy.

SEE ALSO

fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

344

On success, these functions each return the value they have written. On error, these functions return the
constant EOF Because EOF is a valid integer, ferror (3S) should be used to detect putw errors.

Because it is implemented as a macro, pufc treats a stream argument with side effects improperly. In par-
ticular, putc(c, *f++); doesn’t work sensibly. fputc should be used instead.

Errors can occur long after the call to putc.

Because of possible differences in word length and byte ordering, files written using putw are machine-
dependent, and may not be read using getw on a different processor.

Last change: 15 April 1986 Sun Release 3.2

PUTS(3S) STANDARD I/O LIBRARY PUTS (3S)

NAME

puts, fputs — put a string on a stream
SYNOPSIS

#include <stdio.h>

puts(s)

char *s;

fputs(s, stream)

char *s;

FILE *stream;
DESCRIPTION

puts writes the null-terminated string pointed to by s, followed by a newline character, to the standard out-
put stream stdout.

fputs writes the nuli-terminated string pointed to by s to the named output stream.
Neither function writes the terminal null character.
DIAGNOSTICS

Both routines return EOF on error. This will happen if the routines try to write on a file that has not been
opened for writing.

SEE ALSO

fopen(3S), putc(3S), printf(3S), ferror(3S), fread(3S)
NOTES

puts appends a newline while fputs does not.

Sun Release 3.2 Last change: April 15 1986 345

SCANF(3S) STANDARD I/O LIBRARY SCANF (3S)

NAME

scanf, fscanf, sscanf — formatted input conversion

SYNOPSIS

#include <stdio.h>

scanf(format [, pointer]...)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer]...)
char *s, *format;

DESCRIPTION

346

scanf reads from the standard input stream stdin. fscanf reads from the named input stream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control string format, described below,
and a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, or new-lines) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppressing character
*, an optional numerical maximum field width, an optional 1 (ell) or h indicating the size of the receiv-
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except *‘[*’ and ‘‘c’’, white space leading an input
field is ignored.

The conversion character indicates the interpretation of the input field; the corresponding pointer argument

must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following

conversion characters are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument should be an unsigned
integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

X a hexadecimal integer is expected; the corresponding argument should be an integer pointer.

ef,g afloating point number is expected; the next field is converted accordingly and stored through the
corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, —, or space, followed
by an integer.

S a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

c a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use %1s. If
a field width is given, the corresponding argument should refer to a character array, and the indi-
cated number of characters is read.

Last change: 16 April 1986 Sun Release 3.2

SCANF(3S)

STANDARD I/O LIBRARY SCANF(3S)

indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumflex ("), when it appears as the first character in the scanset, serves as a complement opera-
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan-
set string. There are some conventions used in the construction of the scanset. A range of charac-
ters may be represented by the construct first—last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset. To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char-
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized or preceded by 1 or h to indicate that a pointer
to long or to short rather than to int is in the argument list. Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather than to float is in the argument list The 1or
h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control string, or when an input character conflicts

with the

scanf ret
event of

control string. In the latter case, the offending character is left unread in the input stream.

urns the number of successfully matched and assigned input items; this number can be zero in the
an early conflict between an input character and the control string. The constant EOF is returned

upon end of input; note that this is different from 0, which means that no conversion was done; if conver-

sion was

EXAMPLES
The call:

with the

intended, it was frustrated by an inappropriate character in the input.

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

input line:
25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\0. Or:

int i; float x; char name[50];
(void) scanf ("%2d%f%*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc (3S)) will return a.

SEE ALSO
getc(3S),

DIAGNOSTICS

printf(3S) strtod(3), strtol(3), scanf(3V)

These functions return EOF on end of input, and a short count for missing or illegal data items.

BUGS
The succ

ess of literal matches and suppressed assignments is not directly determinable.

scanf cannot read the strings which printf(3S) generates for IEEE indeterminate floating point values.

scanf provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi-
tional C conventions (leading O or Ox).

Sun Release 3.2

Last change: 16 April 1986 347

SETBUF(3S) STANDARD V/O LIBRARY SETBUF(3S)

NAME

setbuf, setbuffer, setlinebuf, setvbuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)
FILE #*stream;

char *buf;

int size;

setlinebuf(stream)

FILE #*stream;

int setvbuf (stream, buf, type, size)
FILE *stream;

char *buf;

int type, size;

DESCRIPTION

348

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. fflush (see fclose(3S)) may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon
the first getc or putc (3S) on the file. If the standard stream stdout refers to a terminal it is line buffered. If
the standard stream stderr refers to a terminal it is line buffered.

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuf, can be used after a stream has been opened but before it is read or
written. It causes the character array buf whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely unbuf-
fered.

setvbuf can be used after a stream has been opened but before it is read or written. fype determines how
stream will be buffered. Legal values for type (defined in <stdio.h>) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered. If buf is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuf is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuf, setbuffer, and setvbuf, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using freopen (see fopen(3S)).
A file can be changed from block buffered or line buffered to unbuffered by using freopen followed by set-
buf with a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.2

SETBUF(3S) STANDARD I/O LIBRARY SETBUF(3S)

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S), setbuf(3V)
DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the value
returned will be zero.

NOTE
A common source of error is allocating buffer space as an “‘automatic’’ variable in a code block, and then
failing to close the stream in the same block.

Sun Release 3.2 Last change: 16 April 1986 349

TMPFILE (3S) STANDARD I/O LIBRARY TMPFILE (3S)

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile ()

DESCRIPTION
tmpfile creates a temporary file using a name generated by tmpnam(3S), and returns a corresponding FILE
pointer. If the file cannot be opened, an error message is printed using perror(3), and a NULL pointer is
returned. The file will automatically be deleted when the process using it terminates. The file is opened for
update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3), perror(3), tmpnam(3S)

350 Last change: 30 April 1986 Sun Release 3.2

TMPNAM (3S) STANDARD /O LIBRARY TMPNAM(3S)

NAME

tmpnam, tempnam — create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam (s)
char #*s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary file.

tmpnam always generates a file name using the path-prefix defined as P_tmpdir in the <stdio.h> header
file. If 5 is NULL, tmpnam leaves its result in an internal static area and returns a pointer to that area. The
next call to tmpnam will destroy the contents of the area. If s is not NULL, it is assumed to be the address
of an array of at least L_tmpnam bytes, where L._tmpnam is a constant defined in <stdio.h>; tmpnam
places its result in that array and returns s.

tempnam allows the user to control the choice of a directory. The argument dir points to the name of the
directory in which the file is to be created. If dir is NULL or points to a string which is not a name for an
appropriate directory, the path-prefix defined as P_tmpdir in the <stdio.h> header file is used. If that
directory is not accessible, /tmp will be used as a last resort. This entire sequence can be up-staged by pro-
viding an environment variable TMPDIR in the user’s environment, whose value is the name of the desired
temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in their
names. Use the pfx argument for this. This argument may be NULL or point to a string of up to five char-
acters to be used as the first few characters of the temporary-file name.

tempnam uses malloc to get space for the constructed file name, and returns a pointer to this area. Thus,
any pointer value returned from fempnam may serve as an argument to free (see malloc(3)). If tempnam
cannot return the expected result for any reason, i.e. malloc failed, or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are temporary only in the sense that they reside
in a directory intended for temporary use, and their names are unique. It is the user’s responsibility to use
unlink to remove the file when its use is ended.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3), mktemp(3), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start recycling previously used
names.

Between the time a file name is created and the file is opened, it is possible for some other process to create
a file with the same name. This can never happen if that other process is using these functions or mktemp,
and the file names are chosen so as to render duplication by other means unlikely.

Sun Release 3.2 Last change: 30 April 1986 351

UNGETC(3S) STANDARD I/O LIBRARY UNGETC (3S)

NAME

ungetc — push character back into input stream
SYNOPSIS

#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION
ungetc pushes the character ¢ back onto an input stream. That character will be returned by the next getc
call on that stream. ungeic returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed provided something has been read from the stream and the stream
is actually buffered. In’the case that stream is sidin, one character may be pushed back onto the buffer
without a previous read statement.

If ¢ equals EOF, ungetc does nothing to the buffer and returns EOF.
An fseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can’t push a character back.

352 Last change: 30 April 1986 Sun Release 3.2

VPRINTF(3S) STANDARD IO LIBRARY VPRINTF (3S)

NAME
vprintf, vfprintf, vsprintf — print formatted output of a varargs argument list
SYNOPSIS
#include <stdio.h>
#include <varargs.h>
int vprintf (format, ap)
char *format;
va_list ap;
int vfprintf (stream, format, ap)
FILE *stream;
char *format;
va_list ap;
char *vsprintf (s, format, ap)
char *s, *format;
va_list ap;
DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf respectively, except that instead of
being called with a variable number of arguments, they are called with an argument list as defined by
varargs(3).
EXAMPLE
The following demonstrates how vfprintf could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/%
* error should be called like
* error(function _name, format, argl, arg2...);
*/

/*VARARGSO0*/

void

error(va_alist)

/* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.

*/

va_dcl

{
va_list args;
char *fmt;
va_start(args);
/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
fmt = va_arg(args, char *);
/* print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
(void)abort();

}

Sun Release 3.2 Last change: 30 April 1986 353

VPRINTF(3S)

SEE ALSO
varargs(3)

354

STANDARD I/O LIBRARY

Last change: 30 April 1986

VPRINTF(3S)

Sun Release 3.2

INTRO (3V)

NAME

SYSTEM V COMPATIBILITY ROUTINES

intro — introduction to System V functions

SYNOPSIS
/usr/5bin/cc

DESCRIPTION

INTRO (3V)

These functions are contained in the System V library, /usr/5lib/libc.a. They are automatically linked
when you compile a C program with the C compiler in /usr/Sbin/cc.

LIST OF FUNCTIONS
Name

_tolower
_toupper
asctime
assert
ctime
curses
endpwent
fdopen
feof
ferror
fgetc
fgetpwent
fileno
fopen
fprintf
fread
freopen
fscanf
fwrite
getc
getchar
getpass
getpwent
getpwnam
getpwuid
getw
gmtime
isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
localtime
nice
printf

Sun Release 3.2

Appears on Page

ctype(3V)
ctype(3V)
ctime(3V)
assert(3V)
ctime(3V)
curses(3V)
getpwent(3V)
fopen(3V)
ferror(3V)
ferror(3V)
getc(3V)
getpwent(3V)
ferror(3V)
fopen(3V)
printf(3V)
fread(3V)
fopen(3V)
scanf(3V)
fread(3V)
getc(3V)
getc(3V)
getpass(3V)
getpwent(3V)
getpwent(3V)
getpwent(3V)
getc(3V)
ctime(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ctime(3V)
nice(3V)
printf(3V)

Description

character classification and conversion
character classification and conversion
convert date and time to ASCII

verify program assertion

convert date and time to ASCII

CRT screen handling and optimization package

get password file entry

open a stream

stream status inquiry

stream status inquiry

get character or integer from stream
get password file entry

stream status inquiry

open a stream

formatted output conversion

buffered binary input/output

open a stream

formatted input conversion

buffered binary input/output

get character or integer from stream
get character or integer from stream
read a password

get password file entry

get password file entry

get password file entry

get character or integer from stream
convert date and time to ASCII
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
character classification and conversion
convert date and time to ASCII
change priority of a process

formatted output conversion

Last change: 2 May 1986

355

INTRO(3V)

356

rand
scanf
setbuf
setbuffer
setlinebuf
setpwent
setuid
setvbuf
signal
sleep
sprintf
srand
sscanf
times
toascii
tolower
toupper
ttyslot
tzset

SYSTEM V COMPATIBILITY ROUTINES

rand(3V)
scanf(3V)
setbuf(3V)
setbuf(3V)
setbuf(3V)
getpwent(3V)
setuid(3V)
setbuf(3V)
signal(3V)
sleep(3V)
printf(3V)
rand(3V)
scanf(3V)
times(3V)
ctype(3V)
ctype(3V)
ctype(3V)
ttyslot(3V)
ctime(3V)

simple random number generator
formatted input conversion

-assign buffering to a stream

assign buffering to a stream

assign buffering to a stream

get password file entry

set user ID

assign buffering to a stream

simplified software signal facilities
suspend execution for interval
formatted output conversion

simple random number generator
formatted input conversion

get process and child process times
character classification and conversion
character classification and conversion
character classification and conversion
find the slot in the utmp file of the current process
convert date and time to ASCII

Last change: 2 May 1986

INTRO (3V)

Sun Release 3.2

ASSERT(3V) SYSTEM V COMPATIBILITY ROUTINES ASSERT(3V)

NAME

assert — verify program assertion
SYNOPSIS

#include <assert.h>

assert (expression)

int expression; System V"
DESCRIPTION

assert is a macro that indicates expression is expected to be true at this point in the program. When it is
executed, if expression is false (zero), assert prints

‘‘Assertion failed: expression, file xyz, line nnn”

on the standard error output and aborts. In the error message, xyz is the name of the source file and nnn the
source line number of the assert statement.

Compiling with the cc(1) option -DNDEBUG, or with the preprocessor control statement *‘#define NDE-
BUG™ ahead of the “#include <assert.h>"’ statement, will stop assertions from being compiled into the
program.

SEE ALSO
cc(1), abort(3)

Sun Release 3.2 Last change: 30 April 1986 357

CTIME (3V) SYSTEM V COMPATIBILITY ROUTINES CTIME(3V)

NAME

ctime, localtime, gmtime, asctime, tzset — convert date and time to ASCII

SYNOPSIS

char *ctime(clock)
long *clock;

#include <time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

extern long timezone;
extern int daylight;
extern char *tzname[2];
void tzset ()

DESCRIPTION

358

ctime converts to ASCII a long integer, pointed to by clock, that represents the time in seconds since Jan. 1,
1970, 00:00, Greenwich Mean Time. It returns a pointer to a 26-character string of the form:

Sun Sep 16 01:03:52 1973\n\0

Each field has a constant width. localtime and gmtime return pointers to structures containing the time bro-
ken down. localtime corrects for the time zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time UNIX uses. asctime converts the broken-down time to ASCII and
returns a pointer to a 26-character string.

Declarations of all the functions and externals, and the ‘‘tm’’ structure, are in the <time.h> header file.
The structure declaration is:

struct tm {
int tm_sec; /* seconds (0 - 59) */
int tm_min; /* minutes (0 - 59) ¥/
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon,; /* month of year (0 - 11) #/
int tm_year; /* year — 1900 */
int tm_wday; /* day of week (Sunday = Q) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst;

b

tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds, between GMT and local standard
time (in PST, timezone is 8*60*60); the external variable daylight is non-zero if and only if Daylight Sav-
ings Time conversion should be applied. Its value indicates the type of conversion to apply; it is normally
the value returned by gettimeofday (2) in the tz_dsttime field of the timezone structure. The program knows
about various peculiarities in time conversion over the past 10-20 years.

The external variable tzname is an array of two pointers which contains the names of the current time zone.
The first pointer points to a character string which is the name of the current time zone when Daylight Sav-
ings Time is not in effect; the second one, if Daylight Savings Time conversion should be applied, points to
a character string which is the name of the current time zone when Daylight Savings Time is in effect.

Last change: 15 April 1986 Sun Release 3.2

CTIME (3V) SYSTEM V COMPATIBILITY ROUTINES CTIME(3V)

If an environment variable named TZ is present, asctime uses the contents of the variable to override the
time zone and conversion rule type supplied by the system. The value of TZ must be a three-letter time
zone name, followed by a signed number representing the difference between local time and Greenwich
Mean Time in hours, followed by an optional three-letter name for a daylight time zone. For example, the
setting for California would be PST8PDT. The effects of setting TZ are thus to change the values of the
external variables timezone, daylight, and tzname. The function fzset sets these external variables from TZ
or, if TZ is not present in the environment, the values supplied by the system. tzset is called by asctime and
may also be called explicitly by the user.

SEE ALSO
gettimeofday(2), time(3C), getenv(3), environ(5V), ctime(3)
BUGS
The return values point to static data, whose contents are overwritten by each call.

Sun Release 3.2 Last change: 15 April 1986 359

CTYPE(3V) SYSTEM V COMPATIBILITY ROUTINES CTYPE(3V)

NAME
ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii, isgraph,
toupper, tolower, toascii, _toupper, _tolower — character classification and conversion macros and func-
tions

SYNOPSIS
#include <ctype.h>
isalpha(c)

CHARACTER CLASSIFICATION MACROS
These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero
for true, zero for false. isascii is defined on all integer values; the rest are defined only where isascii(c) is
true and on the single non-ASCII value EOF (see stdio(3S)).

isalpha(c) cis aletter

isupper(c) c is an upper case letter

islower(c) c is a lower case letter

isdigit(c) c is a digit [0-9].

isxdigit(c) c is a hexadecimal digit [0-9], [A-F], or [a-f].

isalnum(c) c is an alphanumeric character, that is, c is a letter or a digit

isspace(c) c is a space, tab, carriage return, newline, vertical tab, or formfeed
ispunct(c) c is a punctuation character (neither control nor alphanumeric)

isprint(c) c is a printing character, code 040(8) (space) through 0176 (tilde)
iscntrl(c) c is a delete character (0177) or ordinary control character (less than 040).
isascii(c) ¢ is an ASCII character, code less than 0200

isgraph(c) c is a visible graphic character, code 041 (exclamation mark) through 0176 (tilde).

CHARACTER CONVERSION MACROS AND FUNCTIONS
toupper and tolower are functions, rather than macros, and work correctly on all characters. The macros
_toupper and _tolower are faster than the equivalent functions (toupper and tolower) but only work prop-
erly on a restricted range of characters.

These functions perform simple conversions on single characters.
toupper(c) converts c to its upper-case equivalent. If ¢ is not a lower-case letter, it is returned unchanged.

tolower(c) converts ¢ to its lower-case equivalent. If ¢ is not an upper-case letter, it is returned
unchanged.

toascii(c) masks ¢ with the correct value so that ¢ is guaranteed to be an ASCII character in the range 0
thru Ox7f,

These macros perform simple conversions on single characters.

_toupper(c) converts c to its upper-case equivalent. Note that this only works where c is known to be
a lower-case character to start with (presumably checked via islower).

_tolower(c) converts ¢ to its lower-case equivalent. Note that this only works where ¢ is known to be
a upper-case character to start with (presumably checked via isupper).

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the result is undefined.

360 Last change: 15 April 1986 Sun Release 3.2

CTYPE(3V) SYSTEM V COMPATIBILITY ROUTINES CTYPE(3V)

SEE ALSO
stdio(38S), ascii(7), ctype(3)

Sun Release 3.2 Last change: 15 April 1986 361

CURSES (3V)

NAME

SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
fusr/5bin/cc [flags] files —Icurses [libraries]

DESCRIPTION

These routines give the user a method of updating screens with reasonable optimization. In order to initial-
ize the routines, the routine initscr() must be called before any of the other routines that deal with windows
and screens are used. The routine endwin() should be called before exiting. To get character-at-a-time
input without echoing, (most interactive, screen oriented-programs want this) after calling initscr() you
should call “‘nonl(); cbreak(); noecho(); ’’

The full curses interface permits manipulation of data structures called windows which can be thought of as
two dimensional arrays of characters representing all or part of a CRT screen. A default window called
stdscr is supplied, and others can be created with newwin. Windows are referred to by variables declared
““WINDOW #”’, the type WINDOW is defined in curses.h to be a C structure. These data structures are
manipulated with functions described below, among which the most basic are move and addch. (More
general versions of these functions are included with names beginning with ‘w’, allowing you to specify a
window. The routines not beginning with ‘w’ affect stdscr.) Then refresh is called, telling the routines to
make the user’s CRT screen look like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than one window. To invoke
this subset, use -DMINICURSES as a cc option. This level is smaller and faster than full curses.

If the environment variable TERMINFO is defined, any program using curses will check for a local terminal
definition before checking in the standard place. For example, if the standard place is /usr/5lib/terminfo,
and TERM is set to ‘‘vt100”’, then normally the compiled file is found in /usr/5lib/terminfo/v/vt100. (The
““v’’ is copied from the first letter of ‘‘vt100°’ to avoid creation of huge directories.) However, if TER-
MINFO is set to /usr/mark/myterms, curses will first check /opusr/mark/myterms/v/vt100, and if that
fails, will then check /usr/Slib/terminfo/v/vt100. This is useful for developing experimental definitions or
when write permission in /usr/5lib/terminfo is not available.

SEE ALSO

ioctl(2), getenv(3), tty(4), terminfo(5V)

FUNCTIONS

362

Routines listed here may be called when using the full curses. Those marked with an asterisk may be
called when using Mini-Curses.

addch(ch)* add a character to stdscr

(like putchar) (wraps to next

line at end of line)
addstr(str)* calls addch with each character in str
attroff(attrs)* turn off attributes named
attron(attrs)* turn on attributes named
attrset(attrs)* set current attributes to attrs
baudrate()* current terminal speed
beep()* sound beep on terminal

box(win, vert, hor)

draw a box around edges of win
vert and hor are chars to use for vert.
and hor. edges of box

clear() clear stdscr

clearok(win, bf) clear screen before next redraw of win
clrtobot() clear to bottom of stdscr

clrtoeol() clear to end of line on stdscr
cbreak()* set cbreak mode

Last change: 30 April 1986

Sun Release 3.2

CURSES (3V)

delay_output(ms)*
delch()

SYSTEM V COMPATIBILITY ROUTINES

insert ms millisecond pause in output
delete a character

deleteln() delete a line

delwin(win) delete win

doupdate() update screen from all wnooutrefresh
echo()* set echo mode

endwin()* end window modes

erase() erase stdscr

erasechar() return user’s erase character
fixterm() restore tty to "in curses” state
flash() flash screen or beep
flushinp()* throw away any typeahead
getch()* get a char from tty

getstr(str) get a string through stdscr
gettmode() establish current tty modes

getyx(win, y, x)
has_ic()

get (y, x) co-ordinates
true if terminal can do insert character

has_il() true if terminal can do insert line
idlok(win, bf)* use terminal’s insert/delete line if bf 1= 0
inch() get char at current (y, x) co-ordinates
initscr()* initialize screens

insch(c) insert a char

insertin() insert a line

intrflush(win, bf) interrupts flush output if bf is TRUE
keypad(win, bf) enable keypad input

killchar() return current user’s kill character

leaveok(win, flag)

OK to leave cursor anywhere after refresh if
flag!=0 for win, otherwise cursor must be left
at current position.

longname() return verbose name of terminal
meta(win, flag)* allow meta characters on input if flag != 0
move(y, X)* move to (y, X) on stdscr

mvaddch(y, x, ch)
mvaddstr(y, x, str)

move(y, x) then addch(ch)
similar...

mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)

low level cursor motion
like delch, but move(y, x) first
etc.

CURSES (3V)

mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, X, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, ¢)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)

Sun Release 3.2 Last change: 30 April 1986 363

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

newpad(nlines, ncols) create a new pad with given dimensions
newterm(type, fd) set up new terminal of given type to output on fd
newwin(lines, cols, begin_y, begin_x)

create a new window

nl()* set newline mapping

nocbreak()* unset cbreak mode

nodelay(win, bf) enable nodelay input mode through getch
noecho()* unset echo mode

nonl()* unset newline mapping

noraw()* unset raw mode

overlay(winl, win2) overlay winl on win2

overwrite(winl, win2) overwrite winl on top of win2

pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)
like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

printw(fmt, arg1, arg2, ...)

raw()*
refresh()*
resetterm()*
resetty()*
saveterm()*
savetty()*

scanw(fmt, argl, arg2, ...)

scroll(win)
scrollok(win, flag)
set_term(new)
setscrreg(t, b)
setterm(type)

setupterm(term, filenum, errret)

standend()*
standout()*

subwin(win, lines, cols, begin y, begin_x)

touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)*
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)

Last change: 30 April 1986

refresh from pad starting with given upper left
corer of pad with output to given
portion of screen

printf on stdscr

set raw mode

make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value

save current modes as "in curses” state
store current tty flags

scanf through stdscr

scroll win one line

allow terminal to scroll if flag != 0

now talk to terminal new

set user scrolling region to lines t through b
establish terminal with given type

clear standout mode attribute
set standout mode attribute

create a subwindow

“‘change’’ all of win

turn off debugging trace output
turn on debugging trace output
use file descriptor fd to check typeahead
printable version of ch

add char to win

add string to win

turn off attrs in win

turn on attrs in win

set attrs in win to attrs

clear win

clear to bottom of win

clear to end of line on win

Sun Release 3.2

CURSES(3V) SYSTEM V COMPATIBILITY ROUTINES

wdelch(win, c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, c)
winsertln(win)
wmove(win, y, X)
wnoutrefresh(win)
wprintw(win, fmt, argl, arg2, ...)

wrefresh(win)
wscanw(win, fmt, argl, arg?, ...)

wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

TERMINFO LEVEL ROUTINES

delete char from win

delete line from win

erase win

get a char through win

get a string through win

get char at current (y, x) in win
insert char into win

insert line into win

set current (y, x) co-ordinates on win
refresh but no screen output

printf on win
make screen look like win

scanf through win

set scrolling region of win
clear standout attribute in win
set standout attribute in win

CURSES(3V)

These routines should be called by programs wishing to deal directly with the terminfo database. Due to
the low level of this interface, it is discouraged. Initially, setupterm should be called. This will define the
set of terminal dependent variables defined in terminfo(4). The include files <curses.h> and <term.h>
should be included to get the definitions for these strings, numbers, and flags. Parmeterized strings should
be passed through tparm to instantiate them. All terminfo strings (including the output of tparm) should be
printed with tputs or putp . Before exiting, resetterm should be called to restore the tty modes. (Programs
desiring shell escapes or suspending with control Z can call resetterm before the shell is called and fixterm

after returning from the shell.)
fixterm()

resetterm()
setupterm(term, fd, rc)

tparm(str, p1, p2, ..., p9)

tputs(str, affent, putc)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

Sun Release 3.2

restore tty modes for terminfo use

(called by setupterm)

reset tty modes to state before program entry
read in database. Terminal type is the
character string term, all output is to UNIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1

is normal. The simplest call would be
setupterm(0, 1, 0) which uses all defaults.

instantiate string str with parms p;-

apply padding info to string str.

affent is the number of lines affected,

or 1 if not applicable. Putcisa
putchar-like function to which the characters
are passed, one at a time.

handy function that calls tputs

(str, 1, putchar)

output the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like

function putc.

Like vidputs but outputs through

putchar

Last change: 30 April 1986

365

CURSES (3V)

SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that use termcap. Their parameters are the
same as for termcap. They are emulated using the terminfo database. They may go away at a later date.

tgetent(bp, name)

tgetflag(id)
tgetnum(id)

tgetstr(id, area)
tgoto(cap, col, row)

ATTRIBUTES
The following video attributes can be passed to the functions attron,attroff attrset.

A_STANDOUT
A_UNDERLINE

A REVERSE
A_BLINK
A_DIM
A_BOLD
A_BLANK
A_PROTECT

A_ALTCHARSET

FUNCTION KEYS

The following function keys might be returned by getch if keypad has been enabled. Note that not all of
these are currently supported, due to lack of definitions in terminfo or the terminal not transmitting a unique

366

look up termcap entry for name
get boolean entry for id

get numeric entry for id

get string entry for id

apply parms to given cap

Terminal’s best highlighting mode
Underlining

Reverse video

Blinking

Half bright

Extra bright or bold

Blanking (invisible)

Protected

Alternate character set

code when the key is pressed.

Name Value Key name

KEY BREAK 0401 break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...

KEY _UP 0403

KEY LEFT 0404

KEY RIGHT 0405

KEY HOME 0406 Home key (upward+left arrow)
KEY BACKSPACE 0407 backspace (unreliable)
KEY_FO 0410 Function keys. Space for 64 is reserved.
KEY_F(n) (KEY_FO-+(n)) Formula for fn.

KEY DL 0510 Delete line

KEY_IL 0511 Insert line

KEY DC 0512 Delete character

KEY IC 0513 Insert char or enter insert mode
KEY_EIC 0514 Exit insert char mode

KEY CLEAR 0515 Clear screen

KEY_EOS 0516 Clear to end of screen

KEY EOL 0517 Clear to end of line

KEY_SF 0520 Scroll 1 line forward

KEY SR 0521 Scroll 1 line backwards (reverse)
KEY NPAGE 0522 Next page

KEY_PPAGE 0523 Previous page

KEY_STAB 0524 Set tab

KEY CTAB 0525 Clear tab

KEY_CATAB 0526 Clear all tabs

KEY_ENTER 0527 Enter or send (unreliable)

KEY SRESET 0530 soft (partial) reset (unreliable)
KEY_RESET 0531 reset or hard reset (unreliable)
KEY PRINT 0532 print or copy

KEY LL 0533 home down or bottom (lower left)

Last change: 30 April 1986 Sun Release 3.2

CURSES (3V) SYSTEM V COMPATIBILITY ROUTINES CURSES(3V)

WARNING
The plotting library plot(3X) and the curses library curses(3V) both use the names erase() and move().
The curses versions are macros. If you need both libraries, put the plot(3X) code in a different source file
than the curses(3V) code, and/or #undef move() and erase() in the plot(3X) code.

Sun Release 3.2 Last change: 30 April 1986 367

FERROR (3V) SYSTEM V COMPATIBILITY ROUTINES FERROR(3V)

NAME

ferror, feof, clearerr, fileno — stream status inquiries
SYNOPSIS

#include <stdio.h>

ferror(stream)

FILE *stream;

feof(stream)

FILE #stream;

clrerr(stream)
FILE #*stream;

fileno(stream)
FILE *stream;
DESCRIPTION
Jerror returns non-zero when an error has occurred reading from or writing to the named stream, otherwise
zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

feof returns non-zero when EOF has previously been detected reading the named input stream, otherwise
zero. Unless cleared by clearerr, the end-of-file indication lasts until the stream is closed; however, opera-
tions which attempt to read from the stream will ignore the current state of the end-of-file indication and
attempt to read from the file descriptor associated with the stream.

clearerr resets the error indication and EOF indication to zero on the named stream.

Sileno returns the integer file descriptor associated with the stream; see open(2V).
NOTE

All these functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2V)

368 Last change: 17 July 1986 Sun Release 3.2

FOPEN (3V) SYSTEM V COMPATIBILITY ROUTINES FOPEN (3V)

NAME
fopen, freopen, fdopen — open a stream
SYNOPSIS
#include <stdio.h>
FILE *fopen(filename, type)
char *filename, *type;
FILE *freopen(filename, type, stream)
char *filename, *type;
FILE #*stream;
FILE *fdopen(fildes, type)
char *type;
DESCRIPTION
fopen opens the file named by filename and associates a stream with it. fopen returns a pointer to be used to
identify the stream in subsequent operations.
filename points to a character string that contains the name of the file to be opened.

type is a character string having one of the following values:

m"on

r open for reading

" w"

truncate or create for writing

"a" append: open for writing at end of file, or create for writing
"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

freopen substitutes the named file in place of the open stream. It returns the original value of stream. The
original stream is closed, regardless of whether the open ultimately succeeds.

freopen is typically used to attach the preopened streams associated with stdin, stdout, and stderr to other
files.

fdopen associates a stream with a file descriptor. File descriptors are obtained from calls like open, dup,
creat, or pipe(2), which open files but do not return streams. Streams are necessary input for many of the
Section 38 library routines. The type of the stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream. However,
output may not be directly followed by input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an input operation which encounters
end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is impossible to overwrite information
already in the file. fseek may be used to reposition the file pointer to any position in the file, but when out-
put is written to the file, the current file pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the output. If two separate processes open the
same file for append, each process may write freely to the file without fear of destroying output being writ-
ten by the other. The output from the two processes will be intermixed in the file in the order in which it is
written.

SEE ALSO
open(2), fclose(3S), fseek(3S), fopen(3S)

DIAGNOSTICS
fopen and freopen return a NULL pointer on failure.

Sun Release 3.2 Last change: 17 July 1986 369

FOPEN (3V) SYSTEM V COMPATIBILITY ROUTINES FOPEN(3V)

BUGS
In order to support the same number of open files as does the system, fopen must allocate additional
memory for data structures using calloc after 20 files have been opened. This confuses some programs
which use their own memory allocators.

370 Last change: 17 July 1986 Sun Release 3.2

FREAD(3V) SYSTEM V COMPATIBILITY ROUTINES FREAD(3V)

NAME

fread, fwrite — buffered binary input/output

SYNOPSIS

#include <stdio.h>

fread(ptr, size, nitems, stream)
FILE *stream;
fwrite(ptr, size, nitems, stream)
FILE *stream;

DESCRIPTION

fread reads, into a block pointed to by ptr, nitems of data from the named input stream, where an item of
data is a sequence of bytes (not necessarily terminated by a null byte) of length size. It returns the number
of items actually read. fread stops appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. fread leaves the file pointer in stream, if defined, point-
ing to the byte following the last byte read if there is one. fread does not change the contents of stream.

When input is read from any line-buffered stream, output to all line-buffered streams is flushed (including
the standard error). Input read from a stream that is not line-buffered does not cause flushing of these
streams.

fwrite appends at most nitems of data from the block pointed to by ptr to the named output stream. It
returns the number of items actually written. fwrite stops appending when it has appended nitems items of
data or if an error condition is encountered on stream. fwrite does not change the contents of the block
pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof specifies the length of an item
pointed to by ptr. If ptr points to a data type other than char it should be cast into a pointer to char.

If size or nitems is non-positive, no characters are read or written and O is returned by both fread and

fwrite.

SEE ALSO

read(2V), write(2V), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S), fread(3S)

DIAGNOSTICS

fread and fwrite return 0 upon end of file or error.

Sun Release 3.2 Last change: 15 April 1986 371

GETC(3V) SYSTEM V COMPATIBILITY ROUTINES GETC(3V)

NAME

getc, getchar, fgetc, getw — get character or integer from stream

SYNOPSIS

#tinclude <stdio.h>

int getc(stream)
FILE #stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE #*stream;

DESCRIPTION

Getc returns the next character (i.e., byte) from the named input stream, as an integer. It also moves the
file pointer, if defined, ahead one character in stream. getchar is defined as getc(stdin). Getc and getchar
are macros.

JSgetc behaves like getc, but is a function rather than a macro. fgetc runs more slowly than getc, but it takes
less space per invocation and its name can be passed as an argument to a function.

getw returns the next C int (word) from the named input stream. getw increments the associated file
pointer, if defined, to point to the next word. The size of a word is the size of an integer and varies from
machine to machine. getw assumes no special alignment in the file.

SEE ALSO

fopen(3S), putc(3S), gets(3S), ferror(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS

These functions return the integer constant EOF at end-of-file or upon an error. Because EOF is a valid
integer, ferror(3S) should be used to detect getw errors.

WARNING

BUGS

372

If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then compared
against the integer constant EOF, the comparison may never succeed, because sign-extension of a character
on widening to integer is machine-dependent.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. In par-
ticular, getc(*f4++) doesn’t work sensibly. Fgetc should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are machine-
dependent, and may not be readable using getw on a different processor.

Last change: 17 July 1986 Sun Release 3.2

GETPASS(3V) SYSTEM V COMPATIBILITY ROUTINES GETPASS(3V)

NAME
getpass — read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPTION
getpass reads up to a newline or EOF from the file /dev/tty, after prompting with the null-terminated string
prompt and disabling echoing. A pointer is returned to a null-terminated string of at most 8 characters. An
interrupt will terminate input and send an interrupt signal to the calling program before returning. If
/dev/tty cannot be opened, a NULL pointer is returned; the standard input is not read.

FILES
/devitty

SEE ALSO
crypt(3), getpass(3)

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs not otherwise using
standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

Sun Release 3.2 Last change: 15 April 1986 373

GETPWENT (3V) SYSTEM V COMPATIBILITY ROUTINES GETPWENT (3V)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent — get password file entry

SYNOPSIS

#include <pwd.h>

struct passwd *getpwent()

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwent()

int endpwent()

struct passwd *fgetpwent(f)
FILE *f;

DESCRIPTION

FILES

374

getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure contain-
ing the broken-out fields of a line in the password file. Each line in the file contains a ‘‘passwd’’ structure,
declared in the <pwd.h> header file:

struct passwd { /* see getpwent(3) */
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *DW_gecos;
char *pw_dir;
char *pw_shell;

b

struct passwd *getpwent(), *getpwuid(), *getpwnam();
This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The field pw_comment is unused; the others have meanings described in passwd(5). When first called,
getpwent returns a pointer to the first passwd structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to search the entire file. Getpwuid searches
from the beginning of the file until a numerical user id matching uid is found and returns a pointer to the
particular structure in which it was found. Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the particular structure in which it was found. If an
end-of-file or an error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches. endpwent may
be called to close the password file when processing is complete.

fgetpwent returns a pointer to the next passwd structure in the stream f, which matches the format of the
password file /etc/passwd.

The field, pw_age, is used to hold a value for ‘‘password aging’’ on some systems; ‘‘password aging” is
not supported on Sun systems. As such, it is effectively not used.

/etc/passwd
letc/yp/domainname/passwd.byname
letc/yp/domainname/passwd.byuid

Last change: 15 April 1986 Sun Release 3.2

GETPWENT (3V) SYSTEM V COMPATIBILITY ROUTINES GETPWENT (3V)

SEE ALSO

getlogin(3), getgrent(3), passwd(S), ypserv(8), getpwent(3)
DIAGNOSTICS

A NULL pointer is returned on EOF or error.
WARNING

The above routines use <stdio.h>, which causes them to increase the size of programs, not otherwise using
standard 1/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Sun Release 3.2 Last change: 15 April 1986 375

NICE(3V) SYSTEM V COMPATIBILITY ROUTINES NICE(3V)

NAME
nice — change priority of a process

SYNOPSIS
nice(incr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor-
mal. Priority 10 is recommended to users who wish to execute long-running programs undue impact on
system performance.
Negative increments are illegal, except when specified by the super-user. The priority is limited to the
range —20 (most urgent) to 19 (least). Requests for values above or below these limits result in the
scheduling priority being set to the corresponding limit.
The priority of a process is passed to a child process by fork(2).

RETURN VALUE
Upon successful completion, nice returns the new scheduling priority. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

ERRORS
The priority is not changed if:
EPERM The value of incr specified was negative, or greater than 40, and the effective user ID is
not super-user.
SEE ALSO

nice(1), getpriority(2), setpriority(2), fork(2), renice(8)

376 Last change: 22 May 1986 Sun Release 3.2

PRINTF (3V) SYSTEM V COMPATIBILITY ROUTINES PRINTF(3V)

NAME
printf, fprintf, sprintf — formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(format [, arg]...)
char *format;

int fprintf(stream, format [,arg]...)
FILE *stream;
char *format;

int sprintf(s, format [,arg]...)
char *s, *format;

#include <varargs.h>

int _doprnt(format, args, stream)
char *format;

va_list *args;

FILE *stream;

DESCRIPTION
printf places output on the standard output stream stdout. fprintf places output on the named output
stream. sprintf places “‘output’’, followed by the null character (\0), in consecutive bytes starting at *s; it
is the user’s responsibility to ensure that enough storage is available. printf, fprintf and sprintf return the
number of characters transmitted (excluding the null character in the case of sprintf).

If an output error is encountered printf, fprintf and sprintf return EOF.

Each of these functions converts, formats, and prints its args under control of the format. The format is a
character string which contains two types of objects: plain characters, which are simply copied to the out-
put stream, and conversion specifications, each of which causes conversion and printing of zero or more
args. The results are undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in
sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value has
fewer characters than the field width, it will be padded on the left (or right, if the left-adjustment
flag ‘-’, described below, has been given) to the field width. If the field width for an s conversion
is preceded by a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d, o, u, x, or X conver-
sions, the number of digits to appear after the decimal point for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversion, or the maximum number of
characters to be printed from a string in s conversion. The precision takes the form of a period (.)
followed by a decimal digit string; a null digit string is treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or X conversion character applies to a
long integer arg. A1 before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this case, an
integer arg supplies the field width or precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or precision must appear before the arg (if any)
to be converted.

Sun Release 3.2 Last change: 16 April 1986 377

PRINTF(3V)

SYSTEM V COMPATIBILITY ROUTINES PRINTF(3V)

The flag characters and their meanings are:

+
blank

#

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign (+ or —).

If the first character of a signed conversion is not a sign, a blank will be prefixed to the result.
This implies that if the blank and + flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an *‘alternate form.”” For ¢, d, s, and u
conversions, the flag has no effect. For o conversion, it increases the precision to force the first
digit of the result to be a zero. For x or X conversion, a non-zero result will have 0x or 0X
prefixed to it. For e, E, f, g, and G conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,ux,X The integer arg is converted to signed decimal, unsigned octal, unsigned decimal, or unsigned

e¢,E

&G

hexadecimal notation (x and X), respectively; the letters abedef are used for x conversion and
the letters ABCDEF for X conversion. The precision specifies the minimum number of digits
to appear; if the value being converted can be represented in fewer digits, it will be expanded
with leading zeroes. (For compatibility with older versions, padding with leading zeroes may
alternatively be specified by prepending a zero to the field width. This does not imply an octal
value for the field width.) The default precision is 1. The result of converting a zero value
with a precision of zero is a null string.

The float or double arg is converted to decimal notation in the style ‘‘[-]ddd.ddd’’ where the
number of digits after the decimal point is equal to the precision specification. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits and no decimal point are
printed.

The float or double arg is converted in the style ‘‘[—]d.dddet+ddd,”’ where there is one digit
before the decimal point and the number after it is equal to the precision; when the precision is
missing, 6 digits are produced; if the precision is zero, no decimal point appears. The E format
code will produce a number with E instead of e introducing the exponent. The exponent
always contains at least two digits.

The float or double arg is printed in style d, in style f, or in style e, (or in style E in the case of
a G format code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e or E will be used only if the exponent resulting
from the conversion is less than —4 or greater than the precision. Trailing zeroes are removed
from the result; a decimal point appears only if it is followed by a digit.

The ¢, E, f, g, and G formats print IEEE indeterminate values (infinity or not-a-number) as *‘Infinity’’ or
‘““‘Nan’’ respectively.

C
S

%

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from the string are printed
until a null character (\0) is encountered or until the number of characters indicated by the pre-
cision specification is reached. If the precision is missing, it is taken to be infinite, so all char-
acters up to the first null character are printed. A NULL value for arg will yield undefined
results.

Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is
wider than the field width, the field is simply expanded to contain the conversion result. Padding takes
place only if the specified field width exceeds the actual width. Characters generated by prinitf and fprintf
are printed as if putc(3S) had been called.

EXAMPLES

To print a date and time in the form “‘Sunday, July 3, 10:02,”” where weekday and month are pointers to
null-terminated strings:

378

Last change: 16 April 1986 Sun Release 3.2

PRINTF(3V) SYSTEM V COMPATIBILITY ROUTINES PRINTF(3V)

printf(" %s, %s %d, %d:%.2d", weekday, month, day, hour, min);
To print & to 5 decimal places:
printf("pi = %.5f", 4 * atan(1.0));
NOTE

These routines call _doprnt, which is an implementation-dependent routine. Each uses the variable-length
argument facilities of varargs(3). Although it is possible to use _doprnt to take a list of arguments and
pass them on to a routine like printf, not all implementations have such a routine. We strongly recommend
that you use the routines described in vprintf (3S) instead.

SEE ALSO

putc(3S), scanf(3V), ecvt(3), printf(3V)
BUGS

Very wide fields (>128 characters) fail.

The values ‘‘Infinity’’ and ‘‘Nan’’ cannot be read by scanf(3V).

Sun Release 3.2 Last change: 16 April 1986 379

RAND(3V) SYSTEM V COMPATIBILITY ROUTINES RAND(3V)

NAME
rand, srand — simple random number generator

SYNOPSIS
srand(seed)
int seed;
rand()

DESCRIPTION
rand uses a multiplicative congruential random number generator with period 22 to return successive
pseudo-random numbers in the range from 0 to 2.1,

srand can be called at any time to reset the random-number generator to a random starting point. The gen-
erator is initially seeded with a value of 1.

NOTE
The spectral properties of rand leave a great deal to be desired. drand48(3) and random(3) provide much
better, though more elaborate, random-number generators.

SEE ALSO
drand48(3), random(3), rand(3C)

BUGS

The low bits of the numbers generated are not very random; use the middle bits. In particular the lowest bit
alternates between O and 1.

380 Last change: 17 July 1986 Sun Release 3.2

SCANF (3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

NAME

scanf, fscanf, sscanf — formatted input conversion

SYNOPSIS

#include <stdio.h>

scanf(format [, pointer]...)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer]...)
char *s, *format;

DESCRIPTION

scanf reads from the standard input stream stdin. fscanf reads from the named input siream. sscanf reads
from the character string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control string format, described below,
and a set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct interpretation of
input sequences. The control string may contain:

1. White-space characters (blanks, tabs, or new-lines) which, except in two cases described below, cause
input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppressing character
*, an optional numerical maximum field width, an optional 1 (ell) or h indicating the size of the receiv-
ing variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable
pointed to by the corresponding argument, unless assignment suppression was indicated by *. The
suppression of assignment provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except ‘‘{’” and ‘‘c’’, white space leading an input
field is ignored.

The conversion character indicates the interpretation of the input field; the corresponding pointer argument

must usually be of a restricted type. For a suppressed field, no pointer argument is given. The following

conversion characters are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument should be an unsigned
integer pointer.

0 an octal integer is expected; the corresponding argument should be a integer pointer.

b a hexadecimal integer is expected; the corresponding argument should be an integer pointer.

ef,g afloating point number is expected; the next field is converted accordingly and stored through the
corresponding argument, which should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits, possibly containing a decimal point, followed by
an optional exponent field consisting of an E or e followed by an optional +, —, or space, followed
by an integer.

] a character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white space character.

¢ a character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use %1s. If
a field width is given, the corresponding argument should refer to a character array, and the indi-
cated number of characters is read.

Sun Release 3.2 Last change: 16 April 1986 381

SCANF(3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

[indicates string data; the normal skip over leading white space is suppressed. The left bracket is
followed by a set of characters, which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of characters in the scanset. The
circumflex ("), when it appears as the first character in the scanset, serves as a complement opera-
tor and redefines the scanset as the set of all characters not contained in the remainder of the scan-
set string. There are some conventions used in the construction of the scanset. A range of charac-
ters may be represented by the construct first—last, thus [0123456789] may be expressed [0-9].
Using this convention, first must be lexically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is the first or the last character in the
scanset. To include the right square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The corresponding argument must point to a char-
acter array large enough to hold the data field and the terminating \0, which will be added
automatically. At least one character must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be capitalized or preceded by 1 or h to indicate that a pointer
to long or to short rather than to int is in the argument list. Similarly, the conversion characters e, f, and g
may be preceded by 1to indicate that a pointer to double rather than to float is in the argument list The 1 or
h modifier is ignored for other conversion characters.

scanf conversion terminates at EOF, at the end of the control string, or when an input character conflicts
with the control string. In the latter case, the offending character is left unread in the input stream.

scanf returns the number of successfully matched and assigned input items; this number can be zero in the
event of an early conflict between an input character and the control string. The constant EOF is returned
upon end of input; note that this is different from O, which means that no conversion was done; if conver-
sion was intended, it was frustrated by an inappropriate character in the input.

If the input ends before the first conflict or conversion, EOF is returned. If the input ends after the first
conflict or conversion, the number of successfully matched items is returned.

EXAMPLES

The call:

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:
25 54.32E-1 thompson
will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain thompson\0. Or:

int i; float x; char name[50];
(void) scanf ("%2d%f%*d %[0-9]", &i, &x, name);

with input:
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar (see
getc (3S)) will return a.

SEE ALSO

getc(3S), printf(3V) strtod(3), strtol(3), scanf(3S)

DIAGNOSTICS

BUGS

382

These functions return EOF on end of input, and a short count for missing or illegal data items.

The success of literal matches and suppressed assignments is not directly determinable.

Last change: 16 April 1986 Sun Release 3.2

SCANF (3V) SYSTEM V COMPATIBILITY ROUTINES SCANF(3V)

scanf cannot read the strings which printf(3V) generates for IEEE indeterminate floating point values.

scanf provides no way to convert a number in any arbitrary base (decimal, hex or octal) based on the tradi-
tional C conventions (leading O or 0x).

Sun Release 3.2 Last change: 16 April 1986 383

SETBUF(3V) SYSTEM V COMPATIBILITY ROUTINES SETBUF(3V)

NAME

setbuf, setbuffer, setlinebuf, setvbuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)

FILE *stream;

char *buf;

int size;

setlinebuf(stream)

FILE *stream;

int setvbuf (stream, buf, type, size)
FILE #*stream;

char *buf;

int type, size;

DESCRIPTION

384

The three types of buffering available are unbuffered, block buffered, and line buffered. When an output
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is
block buffered many characters are saved up and written as a block; when it is line buffered characters are
saved up until a newline is encountered or input is read from stdin. fflush (see fclose(3S)) may be used to
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon
the first gerc or putc (3S) on the file.

By default, output to a terminal is line buffered and all other input/output is fully buffered.

setbuf can be used after a stream has been opened but before it is read or written. It causes the array
pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in the <stdio.h> header
file, tells how big an array is needed:

char buf[BUFSIZ];

setbuffer, an alternate form of setbuf, can be used after a stream has been opened but before it is read or
written. It causes the character array buf whose size is determined by the size argument to be used instead
of an automatically allocated buffer. If buf is the NULL pointer, input/output will be completely unbuf-
fered.

setvbuf can be used after a stream has been opened but before it is read or written. type determines how
stream will be buffered. Legal values for type (defined in <stdio.h>) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed when a newline is written, the
buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered. If buf is not the NULL pointer, the array it
points to will be used for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used.

setlinebuf is used to change the buffering on a stream from block buffered or unbuffered to line buffered.
Unlike setbuf, setbuffer, and setvbuf, it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using freopen (see fopen (3S)).
A file can be changed from block buffered or line buffered to unbuffered by using freopen followed by set-
buf with a buffer argument of NULL.

Last change: 16 April 1986 Sun Release 3.2

SETBUF (3V) SYSTEM V COMPATIBILITY ROUTINES SETBUF(3V)

SEE ALSO
fopen(3V), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3V), fread(3V), setbuf(3S)
DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the value
returned will be zero.
NOTE

A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block, and then
failing to close the stream in the same block.

Sun Release 3.2 Last change: 16 April 1986 385

SETUID (3V) SYSTEM V COMPATIBILITY ROUTINES SETUID(3V)

NAME
setuid — set user ID

SYNOPSIS
setuid(uid)
DESCRIPTION
setuid is used to set the real user ID and effective user ID of the calling process.

If the effective user ID of the calling process is super-user, the real user ID and effective user ID are set to
uid.

If the effective user ID of the calling process is not super-user, but its real user ID is equal to uid, the effec-
tive user ID is set to uid.
If the effective user ID of the calling process is not super-user, but the saved set-user ID from execve (2) is
equal to uid, the effective user ID is set to uid.

SEE ALSO
setreuid(2), getuid(2)

DIAGNOSTICS

Zero is returned if the user ID is set; —1 is returned otherwise, with the global variable errno set as for
setreuid,

386 Last change: 1 May 1986 Sun Release 3.2

SIGNAL (3V)

NAME

SYSTEM V COMPATIBILITY ROUTINES

signal — simplified software signal facilities

SYNOPSIS

#include <signal.h>
(*signal(sig, func))()

int (*func)();
DESCRIPTION

SIGNAL(3V)

signal is a simplified interface to the more general sigvec (2) facility. Programs that use signal in prefer-
ence to sigvec are more likely to be portable to all UNIX systems.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop), by a
program error (bus error, etc.), by request of another program (kill), or when a process is stopped because it
wishes to access its control terminal while in the background (see tzy(4)). Signals are optionally generated
when a process resumes after being stopped, when the status of child processes changes, or when input is
ready at the control terminal. Most signals cause termination of the receiving process if no action is taken;
some signals instead cause the process receiving them to be stopped, or are simply discarded if the process
has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows signals
either to be ignored or to cause an interrupt to a specified location. The following is a list of all signals
with names as in the include file <signal.h>:

SIGHUP 1
SIGINT 2
SIGQUIT 3
SIGILL 4*
SIGTRAP 5%
SIGIOT 6*
SIGEMT 7*
SIGFPE 8*
SIGKILL 9
SIGBUS 10+
SIGSEGV 11+
SIGSYS 12*
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGURG 16¢
SIGSTOP 17t
SIGTSTP 18t
SIGCONT 19-
SIGCHLD 20
SIGTTIN 217
SIGTTOU 227
SIGIO 23
SIGXCPU 24
SIGXFSZ 25
SIGVTALRM 26
SIGPROF 27
SIGWINCH 28
SIGLOST AL
SIGUSR1 30
SIGUSR2 31
Sun Release 3.2

hangup
interrupt
quit

illegal instruction (other than A-line or F-line op code)

trace trap

IOT trap (not generated on Suns)

EMT trap (A-line or F-line op code)
arithmetic exception

kill (cannot be caught, blocked, or ignored)
bus error

segmentation violation

bad argument to system call

write on a pipe with no one to read it

alarm clock

software termination signal

urgent condition present on socket

stop (cannot be caught, blocked, or ignored)
stop signal generated from keyboard
continue after stop (cannot be blocked)
child status has changed

background read attempted from control terminal
background write attempted to control terminal
I/O is possible on a descriptor (see fcntl(2))
cpu time limit exceeded (see setrlimit(2))
file size limit exceeded (see setrlimit(2))
virtual time alarm (see setitimer (2))
profiling timer alarm (see setitimer(2))
window changed (see win(4S))

resource lost (see lockd (8C))

user-defined signal 1

user-defined signal 2

Last change: 21 May 1986

387

SIGNAL (3V) SYSTEM V COMPATIBILITY ROUTINES SIGNAL (3V)

NOTES

CODES

The starred signals in the list above cause a core image if not caught or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is termination (with a core
image for starred signals) except for signals marked with « or . Signals marked with « are discarded if the
action is SIG_DFL; signals marked with T cause the process to stop. If func is SIG_IGN the signal is sub-
sequently ignored and pending instances of the signal are discarded. Otherwise, when the signal occurs
func is called. The value of func for the caught signal is reset to SIG_DFL before func is called, unless the
signal is SIGILL or SIGTRAP

A return from the function continues the process at the point it was interrupted.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call is
interrupted. In particular this can occur during a read or write(2V) on a slow device (such as a terminal;
but not a file) and during a wait(2). After the signal catching function returns, the interrupted system call
may return a2 —1 to the calling process with errno set to EINTR.

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. An execve(2) resets all caught signals to the
default action; ignored signals remain ignored.

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;
Here sig is the signal number. Code is a parameter of certain signals that provides additional detail. scp is

a pointer to the sigcontext structure (defined in <signal.h>), used to restore the context from before the sig-
nal.

The following defines the codes for signals which produce them. All of these symbols are defined in
<signal.h>:

Hardware condition Signal Code
Tlegal instruction SIGILL ILL_INSTR_FAULT
Privilege violation SIGILL ILL PRIVVIO FAULT
Coprocessor protocol error SIGILL ILL_INSTR_FAULT
Trap #n (1 <=n <= 14) SIGILL ILL_TRAP FAULT
A-line op code SIGEMT EMT_EMU1010
F-line op code SIGEMT EMT _EMUI1111
Integer division by zero SIGFPE FPE_INTDIV_TRAP
CHK or CHK2 instruction SIGFPE FPE_CHKINST TRAP
TRAPYV or TRAPcc or cpTRAPcc SIGFPE FPE_TRAPV_TRAP
IEEE floating point compare unordered ~ SIGFPE FPE_FLTBSUN_TRAP
IEEE floating point inexact SIGFPE FPE_FLTINEX_ TRAP
IEEE floating point division by zero SIGFPE FPE_FLTDIV_TRAP
IEEE floating point underflow SIGFPE FPE_FLTUND_TRAP
IEEE floating point operand error SIGFPE FPE_FLTOPERR_TRAP
IEEE floating point overflow SIGFPE FPE_FLTOVF _FAULT
IEEE floating point signaling NaN SIGFPE FPE_FLTNAN_TRAP
RETURN VALUE

388

The previous action is returned on a successful call. Otherwise, —1 is returned and errno is set to indicate
the error.

Last change: 21 May 1986 Sun Release 3.2

SIGNAL (3V) SYSTEM V COMPATIBILITY ROUTINES SIGNAL (3V)

ERRORS
signal will fail and no action will take place if one of the following occur:
EINVAL sig is not a valid signal number.
EINVAL An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
EINVAL An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).
SEE ALSO

kill(1), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3), tty(4)

Sun Release 3.2 Last change: 21 May 1986 389

SLEEP(3V) SYSTEM V COMPATIBILITY ROUTINES SLEEP(3V)

NAME

sleep — suspend execution for interval

SYNOPSIS

unsigned sleep(seconds)
unsigned seconds;

DESCRIPTION

sleep suspends the current process from execution for the number of seconds specified by the argument.
The actual suspension time may be less than that requested for two reasons: (1) Because scheduled wake-
ups occur at fixed 1-second intervals and (2) because any caught signal will terminate the sleep following
execution of that signal’s catching routine. Also, the suspension time may be an arbitrary amount longer
than requested because of other activity in the system. The value returned by sleep will be the ‘‘unslept”
amount (the requested time minus the time actually slept) in case the caller had an alarm set to go off ear-
lier than the end of the requested sleep time, or premature arousal due to another caught signal.

sleep is implemented by setting an interval timer and pausing until it expires. The previous state of this
timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous value of the
timer, the process sleeps only until the timer would have expired, and the signal which occurs with the
expiration of the timer is sent one second later.

SEE ALSO

390

setitimer(2), sigpause(2), usleep(3)

Last change: 17 July 1986 Sun Release 3.2

TIMES (3V) SYSTEM V COMPATIBILITY ROUTINES TIMES (3V)

NAME
times — get process and child process times
SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>
long times(buffer)
struct tms *buffer;
DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child processes of
the current process. All times are in 1/HZ seconds, where HZ is 60.

This is the structure returned by fimes:

struct tms {
time t tms_utime; /* user time */
time t tms_stime; /* system time */
time t tms_cutime; /* user time, children */
time t tms_cstime; /* system time, children */
b
This information comes from the calling process and each of its terminated child processes for which it has
executed a wait.

tms_utime is the CPU time used while executing instructions in the user space of the calling process.
tms_stime is the CPU time used by the system on behalf of the calling process.

tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.

tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths of a second, since an arbitrary
point in the past. This point does not change from one invocation of times to another within the same pro-
cess. If times fails, a —1 is returned and errno is set to indicate the error.

SEE ALSO
time(1V), getrusage(2), wait3(2), time(3C)

Sun Release 3.2 Last change: 21 May 1986 391

TTYSLOT(3V) SYSTEM V COMPATIBILITY ROUTINES TTYSLOT (3V)

NAME
ttyslot — find the slot in the utmp file of the current process

SYNOPSIS
ttyslot()

DESCRIPTION
ttyslot returns the index of the current user’s entry in the /etc/utmp file. This is accomplished by actually
scanning the file /etc/ttys for the name of the terminal associated with the standard input, the standard out-
put, or the error output (0, 1 or 2).

FILES
letc/ttys

DIAGNOSTICS
A value of —1 is returned if an error was encountered while searching for the terminal name or if none of
the above file descriptors is associated with a terminal device.

392 Last change: 22 May 1986 Sun Release 3.2

INTRO (3X)

NAME

FILES

MISCELLANEOUS FUNCTIONS

intro — introduction to other libraries

DESCRIPTION
This section contains manual pages describing other libraries, which are available only from C. The list
below includes libraries which provide device independent plotting functions, terminal independent screen
management routines for two dimensional non-bitmap display terminals, and functions for managing data
bases with inverted indexes. All functions are located in separate libraries indicated in each manual entry.

{usr/lib/libcurses.a
fusr/lib/libdbm.a
/usr/lib/libmp.a
/usr/lib/libplot.a
fusr/lib/1ib300.a
/usr/lib/1ib300s.a
/usr/lib/1ib450.a
/usr/lib/1ib4014.a
/usr/lib/libtermcap.a
fusr/lib/libtermcap p.a
/usr/lib/libtermlib.a
fust/lib/libtermlib_p.a
{usr/lib/libresolv.a

Sun Release 3.2

screen management routines (see curses(3X))
data base management routines (see dbm (3X))

multiple precision math library (see mp (3X))
plot routines (see plot(3X))

terminal handling routines (see termcap (3X))
(link to /usr/lib/libtermcap.a)

(link to /usr/lib/libtermcap_p.a)
Internet server routines (see resolver (3X))

Last change: 29 July 1986

INTRO (3X)

393

CURSES (3X)

NAME

MISCELLANEOUS FUNCTIONS

CURSES (3X)

curses — screen functions with ‘‘optimal’’ cursor motion

SYNOPSIS

cc [flags 1 files —1curses —ltermcap [libraries |

DESCRIPTION

These routines give the user a method of updating screens with reasonable optimization. They keep an
image of the current screen, and the user sets up an image of a new one. Then the refresh() tells the rou-
tines to make the current screen look like the new one. In order to initialize the routines, the routine
initscr() must be called before any of the other routines that deal with windows and screens are used. The

routine endwin() should be called before exiting.

SEE ALSO
ioctl(2), getenv(3), tty(4), termcap(5)
Programmer’ s Reference Manual for Curses
addch(ch)
addstr(str)
box(win,vert,hor)
cbreak()
clear()
clearok(scr,boolf)
clrtobot()
clrtoeol()
delch()
deleteln()
delwin(win)
echo()
endwin()
erase()
flusok(win,boolf)
getch()
getcap(name)
getstr(str)
gettmode()
getyx(win,y,x)
inch()
initscr()
insch(c)
insertln()
leaveok(win,boolf}
longname(termbuf,name)
move(y,Xx)
mvcur(lasty,lastx,newy,newx)
newwin(lines,cols,begin_y,begin_x)
nl()
nocbreak()
noecho()
nonl()
noraw(}
overlay(winl,win2)
overwrite(winl,win2)
printw(fmt,arg1l,arg2,...)
raw()
refresh()

394 Last change: 17 July 1986

add a character to stdscr

add a string to stdscr

draw a box around a window
set cbreak mode

clear stdscr

set clear flag for scr

clear to bottom on stdscr

clear to end of line on stdscr
delete a character

delete a line

delete win

set echo mode

end window modes

erase stdscr

set flush-on-refresh flag for win
get a char through stdscr

get terminal capability name
get a string through stdscr

get tty modes

get (y,x) co-ordinates

get char at current (y,x) co-ordinates
initialize screens

insert a char

insert a line

set leave flag for win

get long name from termbuf
move to (y,x) on stdscr
actually move cursor

create a new window

set newline mapping

unset cbreak mode

unset echo mode

unset newline mapping

unset raw mode

overlay winl on win2
overwrite winl on top of win2
printf on stdscr

set raw mode

make current screen look like stdscr

Sun Release 3.2

CURSES (3X) MISCELLANEOUS FUNCTIONS CURSES (3X)

resetty() reset tty flags to stored value
savetty() stored current tty flags
scanw(fmt,arg1,arg2,...) scanf through stdscr
scroll(win) scroll win one line
scrollok(win,boolf) set scroll flag

setterm(name) set term variables for name
standend() end standout mode

standout() start standout mode
subwin(win,lines,cols,begin_y,begin_x) create a subwindow
touchline(win,y,sx,ex) mark line y sx through sy as changed
touchoverlap(winl,win2) mark overlap of winl on win2 as changed
touchwin(win) ““‘change’’ all of win
unctri(ch) printable version of ch
waddch(win,ch) add char to win
waddstr(win,str) add string to win

wclear(win) clear win

wclrtobot(win) clear to bottom of win
wclrtoeol(win) clear to end of line on win
wdelch(win,c) delete char from win
wdeleteln(win) delete line from win
werase(win) erase win

wgetch(win) get a char through win
wgetstr(win,str) get a string through win
winch(win) get char at current (y,x) in win
winsch(win,c) insert character into win
winsertin(win) insert line into win
wmove(win,y,x) set current (y,x) co-ordinates on win
wprintw(win,fmt,arg1,arg2,...) printf on win

wrefresh(win) make screen look like win
wscanw(win,fmt,arg1,arg2,...) scanf through win
wstandend(win) end standout mode on win
wstandout(win) start standout mode on win

Sun Release 3.2 Last change: 17 July 1986 395

DBM (3X) MISCELLANEOUS FUNCTIONS DBM(3X)

NAME

dbm, dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines

SYNOPSIS

typedef struct {
char *dptr;
int dsize;

} datum;

dbminit(file)

char *file;

datum fetch(key)

datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkey()

datum nextkey(key)
datum key;

dbmclose()

DESCRIPTION

These functions maintain key/content pairs in a data base. The functions will handle very large (a billion
blocks) databases and will access a keyed item in one or two file system accesses. The functions are
obtained with the loader option —ldbm.

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two
files. One file is a directory containing a bit map and has ‘.dir’ as its suffix. The second file contains all
data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files file dir
and file pag must exist. (An empty database is created by creating zero-length ‘.dir’ and ‘.pag’ files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a key by store. A key
(and its associated contents) is deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use of firstkey and nextkey. Firstkey will return the first key in
the database. With any key nextkey will return the next key in the database. This code will traverse the
data base:

for (key = firstkey(); key.dptr != NULL,; key = nextkey(key))

A database may be closed by calling dbmclose. You must close a database before opening a new one.

DIAGNOSTICS

BUGS

396

All functions that return an int indicate errors with negative values. A zero return indicates ok. Routines
that return a datum indicate errors with a null (0) dptr.

The “.pag’ file will contain holes so that its apparent size is about four times its actual content. Older
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied by
normal means (cp, cat, tp, tar, ar) without filling in the holes.

Dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

Last change: 20 March 1984 Sun Release 3.2

DBM (3X) MISCELLANEOUS FUNCTIONS DBM (3X)

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes).
Moreover all key/content pairs that hash together must fit on a single block. Store will return an error in
the event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by firstkey and nextkey depends on a hashing function, not on anything
interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating and reading is risky.

Sun Release 3.2 Last change: 20 March 1984 397

MP (3X) MISCELLANEOUS FUNCTIONS MP (3X)

NAME
mp, itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow, xtom, mtox, mfree — multiple precision
integer arithmetic

SYNOPSIS
#include <mp.h>

madd(a, b, ¢)
MINT =*a, *b, *c;

msub(a, b, ¢)
MINT =*a, *b, *c;
mult(a, b, c)
MINT #a, +b, *c;
mdiv(a, b, q, r)
MINT #a, *b, *q, *r;
min(a)

MINT #a;
mout(a)

MINT #*a;
pow(a, b, c,d)
MINT =*a, *b, *c, *d;
ged(a, b, ¢)
MINT #*a, *b, *c;
rpow(a, n, b)
MINT #*a, *b;
short n;

msqrt(a, b, r)
MINT #a, *b, *r;
sdiv(a, n, q, r)
MINT #a, *q;
short n, *r;
MINT *itom(n)
short n;

MINT =*xtom(s)
char *s;

char *mtox(a)
MINT =*a;

void mfree(a)
MINT =*a;

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are stored using the defined
type MINT. Pointers to a MINT should be initialized using the function itom, which sets the initial value to
n. Altematively, xtom may be used to initialize a MINT from a string of hexadecimal digits. mfree may be
used to release the storage allocated by these routines.

Madd, msub and mult assign to their third arguments the sum, difference, and product, respectively, of their
first two arguments. Mdiv assigns the quotient and remainder, respectively, to its third and fourth argu-
ments. Sdiv is like mdiv except that the divisor is an ordinary integer. Msgrt produces the square root and

398 Last change: 6 March 1986 Sun Release 3.2

MP (3X) MISCELLANEOUS FUNCTIONS MP(3X)

remainder of its first argument. Rpow calculates a raised to the power b, while pow calculates this reduced
modulo m. Min and mout do decimal input and output. miox provides the inverse of xtom.

Use the —Imp loader option to obtain access to these functions.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

FILES
/usr/lib/libmp.a

Sun Release 3.2 Last change: 6 March 1986 399

NDBM (3X) MISCELLANEOUS FUNCTIONS NDBM (3X)

NAME
ndbm, dbm_open, dbm close, dbm_fetch, dbm_store, dbm_delete, dbm firstkey, dbm_ nextkey,
dbm_error, dbm_clearerr — data base subroutines

SYNOPSIS
#include <ndbm.h>

typedef struct {
char *dptr;
int dsize;
} datum;
DBM +dbm_open(file, flags, mode)
char #file;
int flags, mode;

dbm_close(db)
DBM #db;

datum dbm_fetch(db, key)
DBM *db;
struct key;
datum key;

dbm_store(db, key, content, flags)
DBM #db;
datum key, content;
int flags;

dbm_delete(db, key)
DBM #db;
datum key;

datum dbm_firstkey(db)
DBM #db;

datum dbm_nextkey(db)
DBM +db;

datum dbm_error(db)
DBM #*db;

datum dbm_clearerr(db)
DBM #db;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will handle very large (a billion
blocks) databases and will access a keyed item in one or two file system accesses.

keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two
files. One file is a directory containing a bit map and has ‘.dir’ as its suffix. The second file contains all
data and has ‘.pag’ as its suffix.

Before a database can be accessed, it must be opened by dbm_open. This will open and/or create the files
file dir and file .pag depending on the flags parameter (see open(2V)).

Once open, the data stored under a key is accessed by dbm_fetch and data is placed under a key by
dbm_store. The flags field can be either DBM_INSERT or DBM_REPLACE. DBM_INSERT will only
insert new entries into the database and will not change an existing entry with the same key.
DBM_REPLACE will replace an existing entry if it has the same key. A key (and its associated contents)
is deleted by dbm_delete. A linear pass through all keys in a database may be made, in an (apparently)
random order, by use of dbm_firstkey and dbm_nextkey. dbm_firstkey will return the first key in the

400 Last change: 24 April 1986 Sun Release 3.2

NDBM (3X) MISCELLANEOUS FUNCTIONS NDBM (3X)

database. dbm_nextkey will return the next key in the database. This code will traverse the data base:
for (key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

dbm_error returns non-zero when an error has occured reading or writing the database. dbm_clearerr
Resets the error condition on the named database.

DIAGNOSTICS

BUGS

All functions that return an int indicate errors with negative values. A zero return indicates ok. Routines
that return a datum indicate errors with a null (0) dptr.

The ‘.pag’ file will contain holes so that its apparent size is about four times its actual content. Older
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied by
normal means (cp, cat, tp, tar, ar) without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 4096 bytes).
Moreover all key/content pairs that hash together must fit on a single block. dbm_store will return an error
in the event that a disk block fills with inseparable data.

dbm_delete does not physically reclaim file space, although it does make it available for reuse.

The order of keys presented by dbm_firstkey and dbm_nextkey depends on a hashing function, not on any-
thing interesting.

Sun Release 3.2 Last change: 24 April 1986 401

PLOT (3X) MISCELLANEOUS FUNCTIONS PLOT (3X)

NAME

plot, openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl — graphics interface
SYNOPSIS

openpl()

erase()

Iabel(s)
char s[1;

line(x1, y1, x2, y2)
circle(x, y, r)

arc(x, y, x0, y0, x1, y1)
move(x, y)

cont(x, y)

point(x, y)

linemod(s)
char s[];

space(x0, y0, x1, y1)
closepl()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for a
description of their effect. Openpl must be used before any of the others to open the device for writing.
Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the following
1d(1) options:

—Iplot device-independent graphics stream on standard output for plot(1G) filters
-I1300 GSI 300 terminal
—1300s GSI 300S terminal
—1450 GSI450 terminal
—14014 Tektronix 4014 terminal
—Iplotaed
AED 512 color graphics terminal
—Iplotbg BBN bitgraph graphics terminal
—~Iplotdumb
Dumb terminals without cursor addressing or line printers
—Iplotgigi
DEC Gigi terminals
—Iplot2648
Hewlett Packard 2648 graphics terminal
—Iplot7221
Hewlett Packard 7221 graphics terminal
—Iplotimagen
Imagen laser printer (default 240 dots-per-inch resolution).

SEE ALSO
plot(5), plot(1G), graph(1G)

402 Last change: 17 July 1986 Sun Release 3.2

PLOT (3X) MISCELLANEOUS FUNCTIONS PLOT (3X)

FILES
lusrilibllibplot.a
lusrilib/lib300.a
/usrilib/lib300s.a
lusrllib/lib450.a
{usr/libllib4014.a
lusr/libl/libplotaed.a
lusrllibllibplotbg.a
lusr/libllibplotdumb.a
lusrllibllibplotgigi.a
lusrllibllibplot2648.a
lusrllibllibplot7221.a
lusr/lib/libplotimagen.a

Sun Release 3.2 Last change: 17 July 1986 403

TERMCAP(3X) MISCELLANEOUS FUNCTIONS TERMCAP(3X)

NAME

termcap, tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — terminal independent operation routines

SYNOPSIS

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;
tgetnumy(id)

char *id;
tgetflag(id)

char *id;

char *

tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affent, outc)
register char *cp;

int affcnt;

int (*outc)();

DESCRIPTION

404

These functions extract and use capabilities from the terminal capability data base termcap(5). These are
low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the bp buffer, with the current size of the tty (usually a
window). This allows pre-SunWindows programs to run in a window of arbitrary size. Bp should be a
character buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tgetflag, and
tgetstr. Tgetent returns —1 if it cannot open the termcap file, 0 if the terminal name given does not have an
entry, and 1 if all goes well. It will look in the environment for a TERMCAP variable. If found, and the
value does not begin with a slash, and the terminal type name is the same as the environment string TERM,
the TERMCAP string is used instead of reading the termcap file. If it does begin with a slash, the string is
used as a path name rather than /etc/termcap. This can speed up entry into programs that call sgetent, as
well as to help debug new terminal descriptions or to make one for your terminal if you can’t write the file
letc/termcap. Note that if the window size changes, the "lines" and "columns"entries in bp are no longer
correct. See the Sunwindows Reference Manual for details regarding [how to handle] this.

Tgetnum gets the numeric value of capability id, returning —1 if is not given for the terminal. Tgetflag
returns 1 if the specified capability is present in the terminal’s entry, 0 if it is not. Tgetstr gets the string
value of capability id, placing it in the buffer at area, advancing the area pointer. It decodes the abbrevia-
tions for this field described in termcap (5), except for cursor addressing and padding information. Tgetstr
returns the string pointer if successful. Otherwise it returns zero.

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line destline. 1t uses
the external variables UP (from the up capability) and BC (if bc is given rather than bs) if necessary to
avoid placing \n, "D or "@ in the returned string. (Programs which call tgoto should be sure to turn off the
XTABS bit(s), since tgoto may now output a tab. Note that programs using termcap should in general turn
off XTABS anyway since some terminals use control I for other functions, such as nondestructive space.)
If a % sequence is given which is not understood, then tgoto returns ‘“OOPS’’.

Last change: 13 May 1986 Sun Release 3.2

TERMCAP (3X) MISCELLANEOUS FUNCTIONS TERMCAP (3X)

Tputs decodes the leading padding information of the string cp; affcnt gives the number of lines affected by
the operation, or 1 if this is not applicable, outc is a routine which is called with each character in turn. The
external variable ospeed should contain the encoded output speed of the terminal as described in fry(4).
The external variable PC should contain a pad character to be used (from the pc capability) if a null @) is

inappropriate.

FILES
/ust/lib/libtermcap.a —ltermcap library
/etc/termcap data base

SEE ALSO

ex(1), curses(3X), tty(4), termcap(5)

Sun Release 3.2 Last change: 13 May 1986 405

INTRO (4) SPECIAL FILES INTRO (4)

NAME
intro — introduction to special files and hardware support
DESCRIPTION
This section describes device interfaces (drivers) in the operating system for disks, tapes, serial communi-

cations, high-speed network communications, and other devices such as mice, frame buffers and windows.
The section is divided into a few subsections:

. Sun-specific drivers are grouped in ‘4S’.

. Protocol families are grouped in ‘4F’,

. Protocols and raw interfaces are treated in ‘4P’.
. Network interfaces are grouped in ‘4N’.

The operating system can be built with or without many of the drivers listed here. For most of them, the
SYNOPSIS section of the manual page gives the syntax of the line to include in a kernel configuration file
if you wish to include the driver in a system. See config(8) for a description of this process.

Several manual pages will contain SYNOPSIS sections specific to the Sun-2 and Sun-3 architectures.
Where a SYNOPSIS section appears without any specific architecture against it, it applies to both the Sun-
2 and Sun-3 architectures. Where a SYNOPSIS section appears with only one specific architecture against
it, it applies only to that specific architecture.

The pages for most drivers also include a DIAGNOSTICS section listing error messages the driver may

produce. These messages appear on the system console, and also in the system error log file
[usrladm/messages .

DEVICES ALWAYS PRESENT

Drivers which are present in every kernel include a driver for the paging device, drum(4); drivers for
accessing physical, virtual, and I/O space, mem (4S); and drivers for the data sink, null(4).

COMMUNICATIONS DEVICES
Communications lines are most often used with the terminal driver described in tzy(4). The terminal driver
runs on communications lines provided either by a communications driver such as mti(4S) or zs(4S) or by
a virtual terminal. The virtual terminal may be provided either by the Sun console monitor, cons(4S), or by
a true pseudo-terminal, pty(4), used in applications such as windowing or remote networking.

MAGNETIC TAPE DEVICES

Magnetic tapes all provide the interface described in mtio(4). Tape devices for the Sun include ar(4S),
tm(48S), st(4S), and xz(4S).

DISK DEVICES
Disk controllers provide standard block and raw interfaces, as well as a set of ioctl’s defined in dkio (4S),

which support getting and setting disk geometry and partition information. Drivers available for the Sun
include xy(4S), ip(4S), and sd(4S).

PROTOCOL FAMILIES
The operating system supports one or more protocol families for local network communications. The only
complete protocol family in this version of the system is the Internet protocol family; see inet(4F). Each
protocol family provides basic services — packet fragmentation and reassembly, routing, addressing, and
basic transport — to each protocol implementation. A protocol family is normally composed of a number
of protocols, one per socket(2) type. A protocol family is not required to support all socket types.

The primary network support is for the Internet protocol family described in inet(4F). Major protocols in
this family include the Internet Protocol, ip(4P), describing the universal datagram format, the stream
Transmission Control Protocol tcp(4P), the User Datagram Protocol udp (4P), the Address Resolution Pro-
tocol arp(4P), the Internet Control Message Protocol icmp(4P), and the Network Interface Tap nit(4P).
The primary network interface is for the 10 Megabit Ethernet; see ec (4S), ie(4S), and le(4S). A software
loopback interface, lo(4) also exists. General properties of these (and all) network interfaces are described
in if(4N).

Sun Release 3.2 Last change: 25 July 1985 407

INTRO(4) SPECIAL FILES INTRO (4)

The general support in the system for local network routing is described in routing (4N); these facilities
apply to all protocol families.

MISCELLANEOUS DEVICES
Miscellaneous devices include color frame buffers cg*(4S), monochrome frame buffers bw*(4S), the con-
sole frame buffer fb(4S), the graphics processor interface gpone(4S), the console mouse mouse(4S), and
the window devices win (4S).

GENERAL IOCTL CALLS

In general, ioctl calls relating to a specific device are mentioned with the description for that device. There
are however a bunch of ioctl calls that apply to files in general. These are described here. The form of the
ioctl call for file control is:

#include <sys/ioctl.h>

ioctl(fd, request, argp)

int fd, request;

int *argp;

FIOCLEX Set set close-on-exec flag for the file descriptor specified by fd. This flag is also mani-
pulated by the F_SETFD command of fcntl(2). The argp argument is not used in this
call.

FIONCLEX Remove close-on-exec flag for the file descriptor specified by fd. The argp argument is
not used in this call.

FIONREAD Returns in the long integer whose address is argp the number of immediately readable
characters from whatever the descriptor specified by fd. refers to. This works for files,
pipes, and terminals.

FIONBIO Set or clear non-blocking I/O. If the value pointed to by argp is a 1 (one) the descriptor
is set for non-blocking I/0. If the value pointed to by argp is a O (zero) the descriptor is
cleared for non-blocking I/O.

FIOASYNC Set or clear asynchronous I/O. If the value pointed to by argp is a 1 (one) the descriptor
is set for asynchronous I/0. If the value pointed to by argp is a O (zero) the descriptor is
cleared for asynchronous I/O.

FIOSETOWN Set the process-group ID that will subsequently receive SIGIO or SIGURG signals for this
descriptor.

FIOGETOWN Get the process-group ID that is receiving SIGIO or SIGURG signals for this descriptor.

SEE ALSO
fentl(2)

408 Last change: 25 July 1985 Sun Release 3.2

AR (45) SPECIAL FILES AR (4S)

NAME
ar — Archive 1/4 inch Streaming Tape Drive

SYNOPSIS — SUN-2
device ar0 at mbio ? csr 0x200 priority 3
device arl at mbio ? csr 0x208 priority 3

DESCRIPTION

The Archive tape controller is a Sun *‘QIC-II’ interface to an Archive streaming tape drive. It provides a
standard tape interface to the device, see mtio (4), with some deficiencies listed under BUGS below.

The maximum blocksize for the raw device is limited only by available memory.

FILES
/dev/rar*
/dev/nrar* non-rewinding

SEE ALSO
mtio(4)

DIAGNOSTICS
ar+*: would not initialize.
"ar*: already open."
The tape can be open by only one process at a time.
ar#: no such drive.
ar*: no cartridge in drive.
ar#: cartridge is write protected.
ar: interrupt from unitialized controller %x.
ar#*: many retries, consider retiring this tape.
ar*: %b error at block # %d punted.
ar*: %b error at block # %d.
ar: giving up on Rdy, try again.
BUGS
The tape cannot reverse direction so the BSF and BSR ioctls are not supported.
The FSR ioctl is not supported.
The system will hang if the tape is removed while running.
When using the raw device, the number of bytes in any given transfer must be a multiple of 512 bytes. If it
is not, the device driver returns an error.
The driver will only write an end of file mark on close if the last operation was a write, without regard for
the mode used when opening the file. This will cause empty files to be deleted on a raw tape copy opera-
tion.

Sun Release 3.2 Last change: 17 April 1986 409

ARP (4P) SPECIAL FILES ARP (4P)

NAME
arp — Address Resolution Protocol
SYNOPSIS
pseudo-device ether
DESCRIPTION
ARP is a protocol used to dynamically map between DARPA Internet and 10Mb/s Ethernet addresses. It is
used by all the 10Mb/s Ethernet interface drivers.
ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an address not
in the cache, ARP queues the message which requires the mapping and broadcasts a message on the associ-
ated network requesting the address mapping. If a response is provided, the new mapping is cached and
any pending messages are transmitted. ARP will queue at most one packet while waiting for a mapping
request to be responded to; only the most recently ‘‘transmitted’’ packet is kept.
To enable communications with systems which do not use ARP, ioctls are provided to enter and delete
entries in the Internet-to-Ethernet tables. Usage:
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
struct arpreq arpreq;
ioctl(s, SIOCSARP, (caddr_t)&arpreq);
ioctl(s, SIOCGARP, (caddr_t)&arpreq);
ioctl(s, SIOCDARP, (caddr_t)&arpreq);
Each ioctl takes the same structure as an argument. SIOCSARP sets an ARP entry, SIOCGARP gets an
ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be applied to any socket descriptor s,
but only by the super-user. The arpreq structure contains:
J*
* ARP ioctl request
*/
struct arpreq {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */
b
/* arp_flags field values */
#define ATF_COM 2 /* completed entry (arp_ha valid) */
#define ATF_PERM 4 /* permanent entry */
#define ATF PUBL 8 /* publish (respond for other host) */
The address family for the arp_pa sockaddr must be AF_INET; for the arp_ha sockaddr it must be
AF UNSPEC. The only flag bits which may be written are ATF_PERM and ATF_PUBL. ATF_PERM
causes the entry to be permanent if the ioctl call succeeds. The pecuhar nature of the ARP tables may cause
the ioctl to fail if more than 4 (permanent) Internet host addresses hash to the same slot. ATF PUBL
specifies that the ARP code should respond to ARP requests for the indicated host coming from other
machines. This allows a Sun to act as an "ARP server” which may be useful in convincing an ARP-only
machine to talk to a non-ARP machine.
ARP watches passively for hosts impersonating the local host (that is, a host which responds to an ARP
mapping request for the local host’s address).
DIAGNOSTICS
duplicate IP address!! sent from ethernet address: %x:%x: %x: %x:%x:%x. ARP has discovered
another host on the local network which responds to mapping requests for its own Internet address.
410 Last change: 26 July 1985 Sun Release 3.2

ARP (4P) SPECIAL FILES ARP(4P)

SEE ALSO
ec(4S), ie(4S), inet(4F), arp(8C), ifconfig(8C)
An Ethernet Address Resolution Protocol, RFC826, Dave Plummer, MIT (Sun 800-1059-01)

BUGS
ARP packets on the Ethernet use only 42 bytes of data, however, the smallest legal Ethernet packet is 60
bytes (not including CRC). Some systems may not enforce the minimum packet size, others will.

Sun Release 3.2 Last change: 26 July 1985 411

BK(4)

NAME

SPECIAL FILES BK(4)

bk — line discipline for machine-machine communication

SYNOPSIS

pseudo-device bk

DESCRIPTION

This line discipline provides a replacement for the tty driver tzy (4) when high speed output to and espe-
cially input from another machine is to be transmitted over an asynchronous communications line. The dis-
cipline was designed for use by a (now obsolete) store-and-forward local network running over serial lines.
It may be suitable for uploading of data from microprocessors into the system. If you are going to send
data over asynchronous communications lines at high speed into the system, you must use this discipline,
as the system otherwise may detect high input data rates on terminal lines and disable the lines; in any case
the processing of such data when normal terminal mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#include <sgtty.h>
int ldisc = NETLDISC, fildes; ...
ioctl(fildes, TIOCSETD, &ldisc);

A typical application program then reads a sequence of lines from the terminal port, checking header and
sequencing information on each line and acknowledging receipt of each line to the sender, who then
transmits another line of data. Typically several hundred bytes of data and a smaller amount of control
information will be received on each handshake.

The old standard teletype discipline can be restored by doing:

Idisc = OTTYDISC;
ioctl(fildes, TIOCSETD, &ldisc);

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output data path is
desired, it is necessary to prepare the output line by putting it into RAW mode using ioctl(2). This must be
done before changing the discipline with TIOCSETD, as most ioct!(2) calls are disabled while in network
line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the input path is
only 7 bits wide, with newline the only character terminating an input record. Each input record must be
read and acknowledged before the next input is read as the system refuses to accept any new data when
there is a record in the buffer. The buffer is limited in length, but the system guarantees to always be wil-
ling to accept input resulting in 512 data characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee accurate
data transfer.

SEE ALSO

412

tty(4)

Last change: 25 July 1985 Sun Release 3.2

BWONE (4S) SPECIAL FILES BWONE (4S)

NAME
bwone — Sun-1 black and white frame buffer

SYNOPSIS — SUN-2
device bwone0 at mbmem ? csr 0xc0000 priority 3

DESCRIPTION
The bwone interface provides access to Sun-1 black and white graphics controller boards. It supports the

FBIOGTYPE ioctl which programs can use to determine the characteristics of the display device; see
fbio(4S).

bwone also supports the FBIOGPIXRECT ioctl which allows SunWindows to be run on it; see fbio (4S).

Reading or writing to the frame buffer is not allowed — you must use the mmap(2) system call to map the
board into your address space.

FILES
/devibwone[0-9]

SEE ALSO
mmap(2), fb(4S), fbio(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

The FBVIDEO_ON value returned by the FBIOGVIDEO ioctl may be incorrect. See fbio(4S).

Sun Release 3.2 Last change: 25 July 1986 413

BWTWO(4S) SPECIAL FILES BWTWO (4S)

NAME
bwtwo — Sun-3/Sun-2 black and white frame buffer

SYNOPSIS — SUN-3
device bwtwo0 at obmem 1 csr 0xff000000 priority 4
device bwtwo0 at obmem 2 csr 0x100000 priority 4
device bwtwo0 at obmem 3 csr 0xff000000 priority 4
device bwtwo0 at obmem 4 csr 0xff000000

The first synopsis line given above should be used to generate a kernel for a Sun-3/160; the second, for a
Sun-3/75M; the third, for a Sun-3/260; and the fourth, for a Sun-3/110.

SYNOPSIS — SUN-2
device bwtwo0 at obmem 1 csr 0x700000 priority 4
device bwtwo0 at obio 2 csr 0x0 priority 4

The first synopsis line given above should be used to generate a kernel for a Sun-2/120 or Sun-2/170; the
second, for a Sun-2/50 or Sun-2/160.

DESCRIPTION
The bwtwo interface provides access to Sun Monochrome Video Controller boards.

bwtwo supports the FBIOGTYPE ioctl, which may be used to determine the characteristics of the display
device, and the FBIOGPIXRECT ioctl, which allows SunWindows to be run on it (see fbio(4S)).

If flags 0x1 is specified, frame buffer write operations are buffered through regular high-speed RAM. This
““‘copy memory’’ mode of operation speeds the write operations, but consumes an extra 128K bytes of
memory.

Reading or writing to the frame buffer is not allowed — you must use the mmap(2) system call to map the
board into your address space.

FILES
/devibwtwo[0-9]

SEE ALSO
mmap(2), fb(4S), fbio(4S), cgfour(4S)

BUGS
Use of vertical-retrace interrupts is not supported.

The FBVIDEO_ON value returned by the FBIOGVIDEO ioctl may be incorrect. See fbio(4S).

414 Last change: 25 July 1986 Sun Release 3.2

CGFOUR (4S) SPECIAL FILES CGFOUR (4S)

NAME
cgfour — Sun-3 color graphics interface

SYNOPSIS — SUN-3
cgfour0 at obmem 4 csr 0xff000000

DESCRIPTION
The cgfour is the Sun-3/110 color frame buffer, normally supplied with a 19°” color, 19°’ grayscale, or 15’
color 66 Hz non-interlaced color monitor. It provides the standard frame buffer interface as defined in

fbio(4S).

In addition to the ioctls described under fbio(4s), the cgfour interface responds to two cgfour-specific

colormap ioctls, FBIOPUTCMAP and FBIOGETCMAP. FBIOPUTCMAP returns no information other than

success/failure via the ioctl return value. FBIOGETCMAP returns its information in the arrays pointed to by

the red, green, and blue members of its fbcmap structure argument; fbemap is defined in <sun/fbio.h> as:
struct fbcmap {

int index; /* first element (O origin) */
int count; /* number of elements */
unsigned char *red; /* red color map elements */
unsigned char *green; /* green color map elements */
unsigned char #blue; /* blue color map elements */

¥

The driver uses color board vertical-retrace interrupts to load the colormap.

Currently the ioctls FBIOSATTR and FBIOGATTR are only supported by the cgfour frame buffer. See
fbio(4S).

FILES
Idevlcgfour0

SEE ALSO
mmap(2), fbio(4S)

Sun-3/1xx CPU Board Hardware Engineering Manual

BUGS
The FBVIDEO_ON value returned by the FBIOGVIDEO ioctl may be incorrect. See fbio(4S).

Sun Release 3.2 Last change: 25 July 1986 415

CGONE (4S) SPECIAL FILES CGONE (4S)

NAME
cgone — Sun-1 color graphics interface

SYNOPSIS — SUN-2
device cgone0 at mbmem ? csr 0xec000 priority 3

DESCRIPTION
The cgone interface provides access to the Sun-1 color graphics controller board, which is normally sup-
plied with a 13" or 19" RS170 color monitor. It provides the standard frame buffer interface as defined in
fbio(4S).
It supports the FBIOGPIXRECT ioctl which allows SunWindows to be run on it; see fbio(4S)

The hardware consumes 16 kilobytes of Multibus memory space. The board starts at standard addresses
0xE8000 or 0xEC000. The board must be configured for interrupt level 3.

FILES
/dev/cgone[0-9]

SEE ALSO
mmap(2), fbio(4S)

BUGS
Use of color board vertical-retrace interrupts is not supported.

416 Last change: 16 September 1985 Sun Release 3.2

CGTWO(4S) SPECIAL FILES CGTWO(4S)

NAME

cgtwo — Sun-3/Sun-2 color graphics interface
SYNOPSIS — SUN-3

cgtwol at vime24d16 ? csr 0x400000
SYNOPSIS — SUN-2

cgtwo0 at vime24 ? csr 0x400000
DESCRIPTION

The cgtwo interface provides access to the Sun-3/Sun-2 color graphics controller board, which is normally
supplied with a 19> 66 Hz non-interlaced color monitor. It provides the standard frame buffer interface as
defined in fbio (4S).

The hardware consumes 4 megabytes of VME bus address space. The board starts at standard address
0x400000. The board must be configured for interrupt level 3.

FILES
/devicgtwo[0-9]

SEE ALSO
mmap(2), fbio(4S)

Sun Release 3.2 Last change: 25 July 1986 417

CONSOLE(4S) SPECIAL FILES CONSOLE (4S)

NAME

console — console driver and terminal emulator for the Sun workstation

SYNOPSIS

None; included in standard system.

DESCRIPTION

Cons is an indirect driver for the Sun workstation console, which implements a standard UNIX system ter-
minal. Cons is implemented by calling the PROM resident monitor or other kernel UART drivers (zs(4S)) to
perform I/O to and from the current system console, which is either a Sun frame buffer or an R$232 port.

When the Sun window system wir(4S) is active, console input is directed through the window system
rather than being read from the hardware console.

An ioctl TIOCCONS can be applied to serial devices other than the console to route output which would
normally appear on the console to the other devices instead. Thus, the window system does a TIOCCONS
on a pseudoterminal to route console output to the pseudoterminal rather than routing output through the
PROM monitor to the screen, since routing output through the PROM monitor destroys the integrity of the
screen. Note however, that when you use TIOCCONS in this way, the console input is routed from the
pseudoterminal as well.

ANSI STANDARD TERMINAL EMULATION

418

The Sun Workstation’s PROM monitor provides routines that emulates a standard ANSI X3.64 terminal.

Note that the VT100 also follows the ANSI X3.64 standard but both the Sun and the VT100 have nonstan-
dard extensions to the ANSI X3.64 standard. The Sun terminal emulator and the VT100 are not compatible
in any true sense.

The Sun console displays 34 lines of 80 ASCII characters per line, with scrolling, (x, y) cursor addressabil-
ity, and a number of other control functions.

The Sun console displays a non-blinking block cursor which marks the current line and character position
on the screen. ASCII characters between 0x20 (space) and Ox7E (tilde) inclusive are printing characters —
when one is written to the Sun console (and is not part of an escape sequence), it is displayed at the current
cursor position and the cursor moves one position to the right on the current line. If the cursor is already at
the right edge of the screen, it moves to the first character position on the next line. If the cursor is already
at the right edge of the screen on the bottom line, the Line-feed function is performed (see control-J
below), which scrolls the screen up by one or more lines or wraps around, before moving the cursor to the
first character position on the next line.

Control Sequence Syntax

The Sun console defines a number of control sequences which may occur in its input. When such a
sequence is written to the Sun console, it is not displayed on the screen, but effects some control function
as described below, for example, moves the cursor or sets a display mode.

Some of the control sequences consist of a single character. The notation
control-X
for some character X , represents a control character.

Other ANSI control sequences are of the form
ESC { <params> <char>

Spaces are included only for readability; these characters must occur in the given sequence without the
intervening spaces.

ESC represents the ASCII escape character (ESC, control-[, Ox1B).

[The next character is a left square bracket ‘[’ (0x5B).

<params>
are a sequence of zero or more decimal numbers made up of digits between 0 and 9, separated by
semicolons.

<char> represents a function character, which is different for each control sequence.

Last change: 6 June 1986 Sun Release 3.2

CONSOLE (4S) SPECIAL FILES CONSOLE (4S)

Some examples of syntactically valid escape sequences are (again, ESC represent the single ASCII character

‘Escape’):
ESC[m select graphic rendition with default parameter
ESC[7m select graphic rendition with reverse image
ESC[33;54H set cursor position
ESC[123;456;0;;3;B move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted by the Sun console are
ignored. Control characters which are not currently interpreted by the Sun console are also ignored.

Each control function requires a specified number of parameters, as noted below. If fewer parameters are
supplied, the remaining parameters default to 1, except as noted in the descriptions below.

If more than the required number of parameters is supplied, only the last n are used, where n is the number
required by that particular command character. Also, parameters which are omitted or set to zero are reset
to the default value of 1 (except as noted below).

Consider, for example, the command character M which requires one parameter. ESC[;M and ESC{OM
and ESC[M and ESC([23;15;32;1M are all equivalent to ESC[1M and provide a parameter value of 1. Note
that ESC[;5M (interpreted as ‘ESC[SM’) is not equivalent to ESC[S5;M (interpreted as ‘ESC[S;1M”) which
is ultimately interpreted as ‘ESC[1M”).

In the syntax descriptions below, parameters are represented as ‘#’ or ‘#1;#2’.

ANSI Control Functions

The following paragraphs specify the ANSI control functions implemented by the Sun console. Each
description gives:

« the control sequence syntax

« the hex equivalent of control characters where applicable

« the control function name and ANSI or Sun abbreviation (if any).

» description of parameters required, if any

« description of the control function

« for functions which set a mode, the initial setting of the mode. The initial settings can be restored with
the SUNRESET escape sequence.

Control Character Functions

control-G (0x7) Bell (BEL)
The Sun Workstation Model 100 and 100U is not equipped with an audible bell. It ‘rings the bell’
by flashing the entire screen. The Sun-2 models have an audible bell which beeps. The window
system flashes the window.

control-H (0x8) Backspace (BS)
The cursor moves one position to the left on the current line. If it is already at the left edge of the
screen, nothing happens.

control-1 (0x9) Tab (TAB)
The cursor moves right on the current line to the next tab stop. The tab stops are fixed at every
multiple of 8 columns. If the cursor is already at the right edge of the screen, nothing happens;
otherwise the cursor moves right a minimum of one and a maximum of eight character positions.
control-J (0xA) Line-feed (LF)
The cursor moves down one line, remaining at the same character position on the line. If the cur-
sor is already at the bottom line, the screen either scrolls up or ‘wraps around’ depending on the
setting of an internal variable S (initially 1) which can be changed by the ESC[r control sequence.

Sun Release 3.2 Last change: 6 June 1986 419

CONSOLE (4S) SPECIAL FILES CONSOLE (4S)

420

If S is greater than zero, the entire screen (including the cursor) is scrolled up by S lines before
executing the Line-feed. The top S lines scroll off the screen and are lost. S new blank lines scroll
onto the bottom of the screen. After scrolling, the line-feed is executed by moving the cursor
down one line.

If § is zero, ‘wrap-around’ mode is entered. ‘ESC [1 r’ exits back to scroll mode. If a linefeed
occurs on the bottom line in wrap mode, the cursor goes to the same character position in the top
line of the screen. When any linefeed occurs, the line that the cursor moves to is cleared. This
means that no scrolling occurs. Wrap-around mode is not implemented in the window system.

The screen scrolls as fast as possible depending on how much data is backed up awaiting printing.
Whenever a scroll must take place and the console is in normal scroll mode (‘ESC [1 r’), it scans
the rest of the data awaiting printing to see how many linefeeds occur in it. This scan stops when
any control character from the set {VT, FF, SO, SI, DLE, DC1, DC2, DC3, DC4, NAK, SYN,
ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is found. At that point, the screen is scrolled by N
lines (N at least 1) and processing continues. The scanned text is still processed normally to fill in
the newly created lines. This results in much faster scrolling with scrolling as long as no escape
codes or other control characters are intermixed with the text.

See also the discussion of the ‘Set scrolling’ (ESC[r) control funtion below.

control-K (0xB) Reverse Line-feed
The cursor moves up one line, remaining at the same character position on the line. If the cursor
is already at the top line, nothing happens.

control-L (0xC) Form-feed (FF)
The cursor is postioned to the Home position (upper-left comer) and the entire screen is cleared.

control-M (0xD) Return (CR)
The cursor moves to the leftmost character position on the current line.

Escape Sequence Functions

control-[(0x1B) Escape (ESC)
This is the escape character. Escape initiates a multi-character control sequence.

ESC[#@ Insert Character (ICH)
Takes one parameter, # (default 1). Inserts # spaces at the current cursor position. The tail of the
current line starting at the current cursor position inclusive is shifted to the right by # character
positions to make room for the spaces. The rightmost # character positions shift off the line and
are lost. The position of the cursor is unchanged.

ESC[#A Cursor Up (CUU)
Takes one parameter, # (default 1). Moves the cursor up # lines. If the cursor is fewer than #
lines from the top of the screen, moves the cursor to the topmost line on the screen. The character
position of the cursor on the line is unchanged.

ESC[#B Cursor Down (CUD)
Takes one parameter, # (default 1). Moves the cursor down # lines. If the cursor is fewer than #
lines from the bottom of the screen, move the cursor to the last line on the screen. The character
position of the cursor on the line is unchanged.

ESC[#C Cursor Forward (CUF)
Takes one parameter, # (default 1). Moves the cursor to the right by # character positions on the
current line. If the cursor is fewer than # positions from the right edge of the screen, moves the
cursor to the rightmost position on the current line.

ESC[#D Cursor Backward (CUB)
Takes one parameter, # (default 1). Moves the cursor to the left by # character positions on the
current line. If the cursor is fewer than # positions from the left edge of the screen, moves the

Last change: 6 June 1986 Sun Release 3.2

CONSOLE (4S) SPECIAL FILES CONSOLE (4S)

cursor to the leftmost position on the current line.

ESC[#E Cursor Next Line (CNL)
Takes one parameter, # (default 1). Positions the cursor at the leftmost character position on the
#-th line below the current line. If the current line is less than # lines from the bottom of the
screen, postions the cursor at the leftmost character position on the bottom line.

ESC[#1;#2f Horizontal And Vertical Position (HVP)
or

ESC[#1;#2H Cursor Position (CUP)
Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the #2-th character position
on the #1-th line. Character positions are numbered from 1 at the left edge of the screen; line
positions are numbered from 1 at the top of the screen. Hence, if both parameters are omitted, the
default action moves the cursor to the home position (upper left corner). If only one parameter is
supplied, the cursor moves to column 1 of the specified line.

ESC[J Erase in Display (ED)
Takes no parameters. Erases from the current cursor position inclusive to the end of the screen.
In other words, erases from the current cursor position inclusive to the end of the current line and
all lines below the current line. The cursor position is unchanged.

ESC[K Erase in Line (EL)
Takes no parameters. Erases from the current cursor position inclusive to the end of the current
line. The cursor position is unchanged.

ESC[#L Insert Line (IL)
Takes one parameter, # (default 1). Makes room for # new lines starting at the current line by
scrolling down by # lines the portion of the screen from the current line inclusive to the bottom.
The # new lines at the cursor are filled with spaces; the bottom # lines shift off the bottom of the
screen and are lost. The position of the cursor on the screen is unchanged.

ESC[#M Delete Line (DL)
Takes one parameter, # (default 1). Deletes # lines beginning with the current line. The portion
of the screen from the current line inclusive to the bottom is scrolled upward by # lines. The #
new lines scrolling onto the bottom of the screen are filled with spaces; the # old lines beginning at
the cursor line are deleted. The position of the cursor on the screen is unchanged.

ESC[#P Delete Character (DCH)
Takes one parameter, # (default 1). Deletes # characters starting with the current cursor position.
Shifts to the left by # character positions the tail of the current line from the current cursor posi-
tion inclusive to the end of the line. Blanks are shifted into the rightmost # character positions.
The position of the cursor on the screen is unchanged.

ESC[#m Select Graphic Rendition (SGR)
Takes one parameter, # (default 0). Note that, unlike most escape sequences, the parameter
defaults to zero if omitted. Invokes the graphic rendition specified by the parameter. All follow-
ing printing characters in the data stream are rendered according to the parameter until the next
occurrence of this escape sequence in the data stream. Currently only two graphic renditions are
defined:

0 Normal rendition.
7 Negative (reverse) image.

Negative image displays characters as white-on-black if the screen mode is currently black-on
white, and vice-versa. Any non-zero value of # is currently equivalent to 7 and selects the nega-
tive image rendition.

ESC[p Black On White (SUNBOW)
Takes no parameters. Sets the screen mode to black-on-white. If the screen mode is already
black-on-white, has no effect. In this mode spaces display as solid white, other characters as

Sun Release 3.2 Last change: 6 June 1986 421

CONSOLE (4S)

ESC[q

ESC[#r

ESC[s

SPECIAL FILES CONSOLE (4S)

black-on-white. The cursor is a solid black block. Characters displayed in negative image rendi-
tion (see ‘Select Graphic Rendition’ above) is white-on-black in this mode. This is the initial set-
ting of the screen mode on reset.

White On Black (SUNWOB)
Takes no parameters. Sets the screen mode to white-on-black. If the screen mode is already
white-on-black, has no effect. In this mode spaces display as solid black, other characters as
white-on-black. The cursor is a solid white block. Characters displayed in negative image rendi-
tion (see ‘Select Graphic Rendition’ above) is black-on-white in this mode. The initial setting of
the screen mode on reset is the alternative mode, black on white.

Set scrolling (SUNSCRL)
Takes one parameter, # (default 0). Sets to # an internal register which determines how many lines
the screen scrolls up when a line-feed function is performed with the cursor on the bottom line. A
parameter of 2 or 3 introduces a small amount of ‘jump’ when a scroll occurs. A parameter of 34
clears the screen rather than scrolling. The initial setting is 1 on reset.

A parameter of zero initiates ‘wrap mode’ instead of scrolling. In wrap mode, if a linefeed occurs
on the bottom line, the cursor goes to the same character position in the top line of the screen.
When any linefeed occurs, the line that the cursor moves to is cleared. This means that no scrol-
ling ever occurs. ‘ESC [1 r’ exits back to scroll mode.

For more information, see the description of the Line-feed (control-J) control function above.

Reset terminal emulator (SUNRESET)
Takes no parameters. Resets all modes to default, restores current font from PROM. Screen and
cursor position are unchanged.

4014 TERMINAL EMULATION
The PROM monitor for Sun models 100U and 150U provides the Sun Workstation with the capability to
emulate a subset of the Tektronix 4014 terminal. This feature does not exist in Sun-2 PROMs and will be
removed from models 100U and 150U in future Sun releases. Tektool (1) provides Tektronix 4014 terminal
emulation and should be used instead of relying on the capabilities of the PROM monitor.

FILES
/dev/console
/devittya alternate console (serial port)
SEE ALSO
kb(4S), tty(4), zs(4S), tektool(1)
ANSI Standard X3.64, ‘Additional Controls for Use with ASCII’, Secretariat: CBEMA, 1828 L St., N.W.,
Washington, D.C. 20036.
BUGS
TIOCCONS should be restricted to the owner of /dev/console.
422 Last change: 6 June 1986 Sun Release 3.2

DES(4S) SPECIAL FILES DES (4S)

NAME

des — DES encryption chip interface
SYNOPSIS — SUN-3

des0 at obio ? csr 0x1c0000

#include <sys/des.h>

SYNOPSIS — SUN-2
des0 at virtual ? csr Oxeel800

#include <sys/des.h>

DESCRIPTION
The des driver provides a high level interface to the AmZ8068 Data Ciphering Processor, a hardware
implementation of the NBS Data Encryption Standard.

The high level interface provided by this driver is hardware independent and could be shared by future
drivers in other systems.

The interface allows access to two modes of the DES algorithm: Electronic Code Book (ECB) and Cipher
Block Chaining (CBC). All access to the DES driver is through ioctl(2) calls rather than through reads and
writes; all encryption is done in-place in the user’s buffers. The ioctls provided are:
DESIOCBLOCK
This call encrypts/decrypts an entire buffer of data, whose address and length are passed in the
struct desparams addressed by the argument. The length must be a multiple of 8 bytes.
DESIOCQUICK

This call encrypts/decrypts a small amount of data quickly. The data is limited to
DES_QUICKLEN bytes, and must be a multiple of 8 bytes. Rather than being addresses, the data
is passed directly in the struct desparams argument.

FILES
/dev/des

SEE ALSO
des_crypt(3), des(1)

Federal Information Processing Standards Publication 46
AmZ8068 DCP Product Description, Advanced Micro Devices

Sun Release 3.2 Last change: 27 March 1986 423

DKIO (4S)

NAME

dkio — generic disk control operations

DESCRIPTION
All Sun disk drivers support a set of ioctl’s for disk formatting and labelling operations. Basic to these

424

ioctl’s are the definitions in <sun/dkio.h>:

[*

SPECIAL FILES

DKIO(4S)

* Structures and definitions for disk io control commands

*/

/* Disk identification */

struct dk_info {
int dki_ctlr; /* controller address */
short dki_unit; /* unit (slave) address */
short dki_ctype; /* controller type */
short dki flags; /% flags */

b

/* controller types */

#define DKC_UNKNOWN 0

#define DKC_SMD?2180 1

#define DKC_DSDS5215 5

#define DKC_XY450 6

#define DKC_ACB4000 7

#define DKC_MD21 8

/= flags */

#define DKI_BAD144 0x01 /* use DEC std 144 bad sector fwding */
#define DKI MAPTRK 0x02 /* controller does track mapping */
#define DKI_ FMTTRK 0x04 /* formats only full track at a time */
#define DKI FMTVOL 0x08 /* formats only full volume at a time */

/* Definition of a disk’s geometry */
struct dk_geom {

b

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

dkg_ncyl; /* # of data cylinders */

dkg_acyl; /* # of alternate cylinders */
dkg_beyl; /* cyl offset (for fixed head area) */
dkg_nhead; /* # of heads */

dkg bhead; /* head offset (for Larks, etc.) */
dkg_nsect; /* # of sectors per track */
dkg_intrlv; /* interleave factor */

dkg gapl; /* gap 1 size */

dkg gap2; /* gap 2 size */

dkg_apc; /* alternates per cyl (SCSI only) */
dkg extra[9]; /# for compatible expansion */

/* disk io control commands */

#define
#define
f#idefine
{tdefine
#define

DKIOCGGEOM IOR(d, 2, struct dk_geom)
DKIOCSGEOM

DKIOCGPART
DKIOCSPART
DKIOCINFO

/* Get geometry */

_IOW(d, 3, struct dk_geom) /* Set geometry */
_TOR(d, 4, struct dk_map) /* Get partition info */
_IOW(d, 5, struct dk_map) /* Set partition info */
_IOR(d, 8, struct dk_info) /* Get info */

Last change: 25 July 1986 Sun Release 3.2

DKIO (4S) : SPECIAL FILES DKIO (4S)

The DKIOCGINFO ioctl returns a dk_info structure which tells the kind of the controller and attributes
about how bad-block processing is done on the controller. The DKIOCGPART and DKIOCSPART get
and set the controller’s current notion of the partition table for the disk (without changing the partition table
on the disk itself), while the DKIOCGGEOM and DKIOCSGEOM ioctl’s do similar things for the per-
drive geometry information.

SEE ALSO
ip(48S), sd(4S), xy(4S)

Sun Release 3.2 Last change: 25 July 1986 425

DRUM (4) SPECIAL FILES DRUM (4)

NAME
drum — paging device
SYNOPSIS
None; included with standard system.

DESCRIPTION
This file refers to the paging device in use by the system. This may actually be a subdevice of one of the
disk drivers, but in a system with paging interleaved across multiple disk drives it provides an indirect
driver for the multiple drives.

FILES
/dev/drum

BUGS
Reads from the drum are not allowed across the interleaving boundaries. Since these only occur every
.5Mbytes or so, and since the system never allocates blocks across the boundary, this is usually not a prob-
lem.

426 Last change: 25 July 1985 Sun Release 3.2

EC(4S)

NAME

SPECIAL FILES EC(4S)

ec — 3Com 10 Mb/s Ethemnet interface

SYNOPSIS — SUN-2

device ecO at mbmem ? csr 0xe0000 priority 3
device ec1 at mbmem ? csr 0xe2000 priority 3

DESCRIPTION

The ec interface provides access to a 10 Mb/s Ethernet network through a 3COM controller. For a general
description of network interfaces see if(4N).

The hardware consumes 8 kilobytes of Multibus memory space. This memory is used for internal buffer-
ing by the board. The board starts at standard addresses 0xE0000 or 0xE2000. The board must be
configured for interrupt level 3.

The interface software implements an exponential backoff algorithm when notified of a collision on the
cable.

The interface handles the Internet protocol family, with the interface address maintained in Internet format.
The Address Resolution Protocol arp(4P) is used to map 32-bit Internet addresses used in inet(4F) to the
48-bit addresses used on the Ethernet.

DIAGNOSTICS

ec%d: Ethernet jammed. After 16 failed transmissions and backoffs using the exponential backoff algo-
rithm, the packet was dropped.

ec%d: can’t handle af%d. The interface was handed a message with addresses formatted in an unsuit-
able address family; the packet was dropped.

SEE ALSO

BUGS

arp(4P), if(4N), inet(4F)

The interface hardware is not capable of talking to itself, making diagnosis more difficult.

Sun Release 3.2 Last change: 16 September 1985 427

FB(4S) SPECIAL FILES FB(4S)

NAME
fb — driver for Sun console frame buffer

SYNOPSIS
None; included in standard system.

DESCRIPTION
The fb driver provides indirect access to a Sun graphics controller board. It is an indirect driver for the Sun
workstation console’s frame buffer. At boot time, the workstation’s frame buffer device is determined
from information from the Monitor Proms and set to be the one that fb will indirect to. The device driver
for the console’s frame buffer must be configured into the kernel so that this indirect driver can access it.

The idea behind this driver is that user programs can open a known device, query its characteristics and
access it in a device dependent way, depending on the type. Fb redirects open(2V), close(2), ioctl(2), and
mmap(2) calls to the real frame buffer. All of the Sun frame buffers support the same general interface;
see fbio(4S)

FILES
/dev/fb

SEE ALSO
fbio(4S), bwone(4S), bwtwo(4S), cgone(4S), cgtwo(4S), gpone(4S)

428 Last change: 20 September 1985 Sun Release 3.2

FBIO(4S) SPECIAL FILES FBIO (4S)

NAME

fbio — general properties of frame buffers

DESCRIPTION

All of the Sun frame buffers support the same general interface. Each responds to a FBIOGTYPE ioctl
which returns information in a structure defined in <sun/fbio.h>:

struct fbtype {
int fb_type; /* as defined below */
int fb_height; /#* in pixels */
int fb_width; /* in pixels */
int fb_depth; /* bits per pixel */
int fb_cmsize; /* size of color map (entries) */
int fb_size; /* total size in bytes */
b

#define FBTYPE_SUN1BW
#define FBTYPE_SUN1COLOR
#define FBTYPE SUN2BW
#define FBTYPE_SUN2COLOR
#define FBTYPE_SUN2GP

Each device has an FBTYPE which is used by higher-level software to determine how to perform raster-op
and other functions. Each device is used by opening it, doing a FBIOGTYPE ioctl to see which frame buffer
type is present, and thereby selecting the appropriate device-management routines.

Full-fledged frame buffers (that is, those that run SunWindows) implement an FBIOGPIXRECT ioctl, which
returns a pixrect. This call is made only from inside the kemel. The returned pixrect is used by win(4S)
for cursor tracking and colormap loading.

HWN=O

FBIOSVIDEO and FB