

© 1992 by Sun Microsystems, Inc.-Printed in the United States of America.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.s.A.

All rights reserved. This product and related documentation is protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems,
licensed from UNIX Systems Laboratories, Inc. and the University of California,
respectively. Third party font software in this product is protected by copyright and
licensed from Sun's Font Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more u.s. patents,
foreign patents, or pending applications.

TRADEMARKS

Sun Microsystems, Sun Workstation, Solaris, and NeWS are registered trademarks of Sun
Microsystems, Inc.sun, Sun-4, SunOS, SunPro, the SunPro logo, Sun View, XView,
X11 /NeWS, and Open Windows are trademarks of Sun Microsystems, Inc. All other
product names mentioned herein are the trademarks of their respective owners.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered
trademarks of SPARC International, Inc. SPARCworks and SPARCompiler are licensed
exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based
upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUI's and otherwise comply with Sun's written license agreements.

X Window System is a trademark and product of the Massachusetts Institute of
Technology.

Classes and Members 12

Member Data Fields 14

Member Functions 14

Public, Private, and Protected Members 15

Referring to Members 16

Friends of a Class. 19

Member Operators, Overloaded Operators, and Operator
Functions . 19

Constructors and Destructors 25

Inheritance and Derived Classes. 31

Public and Private Derived Classes. 32

Changing Access Modes in Derived Classes 33

Virtual Functions. 34

Multiple Inheritance. 37

Virtual Base Classes 39

Objects. 40

Creating Objects. 41

References to Objects 42

Allocation and Deallocation: Operators new and delete. 44

Archiving Global Object Arrays in a C++ Library. 44

In-line Functions 46

Comments . 47

User-Defined Type Conversion 47

Constructors for Type Conversion 47

iv c++ Programmer's Guide - October 1992

Building Shared Libraries Under SunOS 4.l.x 63

Building Shared Libraries Under SunOS 5.0. 69

4. Using the c++ Compiler. 71

Basic Use of the Compiler 71

Compiling a Program That Uses a Standard Library. . . 72

Compiling a Program with a Module 72

Supporting Multiple File Extensions in make 73

Exit Status . 75

Using the Complex and Task Libraries 76

Predefined Macro 76

Static Linking of libC . 76

Compiler Options 77

5. The Iostream Package. 93

Introduction. 94

Using Iostreams with stdio 94

Basic Structure of Iostream Interaction 94

Using Iostreams 95

Output Using Iostreams . 96

Input .. 99

Defining Your Own Extraction Operators 99

The char* Extractor. .. 100

Reading Any Single Character 101

Binary Input 101

Peeking at Input 101

vi c++ Programmer's Guide - October 1992

viii

Pending Objects 129

Queues .. 129

FIFO Queues 130

Queue Modes 133

Queue Size 133

The Scheduler. .. 134

Task Library Limitations .. 134

7. The Complex Arithmetic Library. 141

Type Complex. .. 142

Constructors of Type complex .. 142

Arithmetic Opera tors. .. 143

Error Handling .. 143

Mathematical Functions. .. 144

Input and Output. .. 146

8. C++ Programming Conventions. 149

File Naming Conventions .. 149

C++ Constructs. .. 150

Naming Conventions. .. 150

Comments. .. 151

Use of canst. .. 152

Use of enum .. 152

Use of virtual. .. 153

Structures versus Classes. .. 154

Class Declarations. .. 154

c++ Programmer's Guide - October 1992

x

Array Indexing and Order 177

Libraries and Linking with the f77 Command 178

File Descriptors and stdio .. 178

File Permissions 179

FORTRAN Calls C++ 180

Arguments Passed by Reference (f77 Calls C++). 180

Character Strings Passed by Reference (f77 Calls C++).. 182

Arguments Passed by Value (f77 Calls C++) 188

Function Return Values (f77 Calls C++) 192

Labeled Common 198

Sharing I/O (£77 Calls C++) 199

Alternate Returns (f77 Calls C++) - N/ A. 202

C++ Calls FORTRAN 202

Arguments Passed by Reference (C++ Calls f77). 202

Arguments Passed by Value (C++ Calls f77) - N/ A. 206

Function Return Values (C++ Calls f77) 206

Labeled Common 211

Sharing I/O (C++ Calls f77) 213

Alternate Returns (C++ Calls f77). 215

10. Tools.. 217

The ctags Utility .. 217

The dem Utility .. 218

The c++fil t Utility................................ 219

The nm Utility (Sun 4.l.x only) 219

c++ Programmer's Guide - October 1992

xii

External Functions. .. 251

The struct s { /* ... * / } sTags. .. 252

Pointers to Functions Declared as Struct Members 253

F. C Wrappers for c++ Functions. .. 255

The Problem .. 255

Proposed Solution. .. 256

Class Methods. .. 256

Overloaded Operators. .. 258

Other Functions .. 260

Comments .. 260

G. Bibliography... 263

Index. 265

c++ Programmer's Guide - October 1992

xiv c++ Programmer's Guide - October 1992

xvi

Chapter 1 "Introduction"-Introduction to the C++ product.

Chapter 2 "About This Version of C++"-Summarizes the C++ language.

Chapter 3 "Using C and C++"-How to move from programming in C to
programming in C++, and how to write C++ libraries for C programs.

Chapter 4 "Using the C++ Compiler"-How to use the C++ compiler, with
special attention to command-line options.

Chapter 5 "The Iostream Package"-Use of and basic documentation for the
iostream library.

Chapter 6 "Co-routine Library" -Use of and basic documentation for the C++
co-routine library.

Chapter 7 "Complex Arithmetic Library"-Use of and basic documentation
for the C++ complex mathematics library.

Chapter 8 "C++ Programming Conventions"-Programming tips for C++
programmers.

Chapter 9 "FORTRAN Interface" -How to call C++ from FORTRAN and how
to call FORTRAN from C++.

Chapter 10 "Tools" -Description of C++ tools.

Appendix A "Sample Program" -Code for a sample class, a simple string
type, and a sample program that uses the class.

Appendix B "Co-routine Examples" -Code for a sample program that uses the
co-routine library.

Appendix C "Differences Between C++ 3.0.1 and Previous Releases"­
Differences between previous versions of the AT&T or USL C++ Translator, in
release 1.2,2.0,2.1, and the version of the translator used for Sun C++, up to
Release 3.0.1. It also discusses modifying existing C++ 1.2,2.0, and 3.0 code to
work with Sun C++, and #include file limitations in Sun C++.

Appendix D "Functions with Variable Numbers of Arguments" -Technical
details of defining functions with variable numbers of arguments.

Appendix E "Creating Generic Header Files" -Method you can use to create
header files that can be used for Sun C, ANSI C, and C++.

c++ Programmer's Guide - October 1992

xviii

Title

• c++ 3.0.1 Language System Product Reference Manual

The Product Reference Manual provides a complete definition of the C++
language supported by Release 3.0.l.

• C++ 3.0.1 Language System Library Manual

The Library Manual contains information derived from papers that
document the libraries included with C++.

• C++ 3.0.1 Language System Selected Readings

The Selected Readings manual contains papers that were presented at forums
such as a C++ or object-oriented programming conferences. Those papers
are included in the Selected Readings manual because they provide different
perspectives on the C++ language.

• C++ 3.0.1 Language System Release Notes

The Release Notes manual describes enhancements to Release 3.0.1, and
differences between this release and previous releases.

On-line Documentation
C++ on-line documentation UNIX manual pages and the AnswerBook™
documentation system. You do a separate install for the AnswerBook system.
You display the manual pages with the man command.

Hard Copy and AnswerBook Documents
The following documents are on-line (in the Answerbook system) and in hard
copy, as shown.

Hard
Part Number Copy On-line

C++ 3.0.1 Language System Product Reference Manual 800-7025-11 X X

C++ 3.0.1 Language System Library Manual 800-6987-11 X

C++ 3.0.1 Language System Selected Readings 800-7024-11 X

C++ 3.0.1 Language System Release Notes 800-6988-11 X X

Numerical Computation Guide 800-7097-11 X

Installing SPARCworks and SPARCompiler Software on Solaris 2.0 800-7333-11 X

C++ Programmer's Guide- October 1992

xx

• The courier font shows system prompts, system replies, and C++
statements and key words.

• The boldface courier font shows text that you enter during
interactive sessions.

tutorial% echo hello
hello
tutorial%

• A common operating system prompt is the percent sign (%), but most
programmers customize their workstations to have distinct host names in
front of a prompt. For this reason, and so that you can easily recognize
examples in this manual, tutorial% denotes a system prompt.

• Italics indicate one of four things in this guide:
o General arguments or parameters that you should replace with the

appropriate input, for example:

dc::dc (dc ctor parameters): [class_name] (bc ctor parameters)
o Emphasis:

Do not change anything here.

o New terms:

A friend is a class or a function that is not a member of a class, but is
given permission to access private and protected members of that class.

o Book titles:

Product Reference Manual

• The names of operating system programs listed in text, such as cfront,
dbx, are printed in courier font.

c++ Programmer's Guide - October 1992

2

• gprof++

• nm++

• ctags++

• rpcgen

For C++ 3.0.1, these tools are either part of the package or bundled with
operating system, release 5.0 .

c++ 3.0.1 is now based on ANSI C (not K&R C). See Appendix C, "This
Release of C++," for a discussion of the major differences between C++ release
2.1 and Release 3.0.1 arising from this change.

1.2 Compiler and Driver

Note - In this guide, if the assembler is discussed, it refers to fbe for operating
system 5.0 and as for operating system 4.1.x .

C++ is a complete compilation system. When you type cc the following occurs:

1. acpp performs preprocessing.

2. cfront converts C++ code to C code.

3. ptcomp processes templates (only if the user program contains templates).

4. acomp compiles C code into assembly code.

5. iropt and cg optimize for execution time and generate assembly code
(optional) .

6. fbe (far back end) or as (in the 4.1.x operating system) converts assembly
code into object files.

7. ptlink processes templates (only if the user program contains templates).

8. 1 d performs link editing.

Chapter 4, "Using the C++ Compiler," discusses basic use of the driver,
including how to compile a program.

c++ Programmer's Guide-October 1992

4

This last feature, particularly, allows good design of modular, extensible
interfaces among program modules.

This chapter provides a very brief overview of C++ from a conceptual point of
view, with particular emphasis on the areas of difference and similarity with C.
Chapter 2, "About This Version of C++," gives a full overview of the language.
Chapter 3, "Using C and C++," summarizes issues important to C
programmers moving to C++.

Compatibility with C

C++ is almost entirely compatible with C. The language was purposely
designed this way; for one thing, experienced C programmers can learn C++ at
their own pace and incorporate features of the new language when it seems
appropriate. What is new about C++ supplements what is good and useful
about C; most importantly, C++ retains C's efficient interface to the hardware
of the computer, including types and operators that correspond directly to
components of computing equipment.

C++ does have some important differences with C that you should be aware of.
An ordinary C program probably won't be accepted by the C++ compiler
without some modifications. Chapter 3, "Using C and C++," discusses what
you must know to move from programming in C to programming in C++.

Even though the differences between C and C++ are most evident in the way
you can design interfaces between program modules, C++ retains all of C's
facilities for designing such interfaces. You can, for example, link C++ modules
to C modules. This allows you to use C libraries with C++ programs.

Type Checking

A compiler or interpreter performs type checking when it ensures that
operations are applied to data of the correct type. C++ has stronger type
checking than C, though not as strong as that provided by Pascal. The
approach to type checking is different from the approach in languages like
Pascal: where Pascal always protests attempts to use data of the wrong type,
the C++ translator protests in some cases and in other cases converts data to
the correct type.

Rather than allowing the translator to do these automatic conversions, you can
explicitly convert between types, as you can in C.

c++ Programmer's Guide - October 1992

6

Object-Oriented Features

A program is object-oriented when the program is designed with classes
organized so that common features are embodied in base classes. (Base classes
are also sometimes called parent classes.) The feature that makes this possible is
inheritance. A class in C++ can inherit features from one base class or from
several. A class that has a base class is said to be derived from the base class.

The greatest use of this idea is in extending existing programs or libraries; you
can define a new descendant that differs from its parent in some way that was
not imagined when the parent class was designed. For example, a class defines
a kind of window with scroll bars; you later want to implement windows with
a different kind of scroll bars. You could create a descendant of the original
window class and simply change the implementation of the scroll bar
functions, without reimplementing or even examining the implementation of
other parts of the program.

Other Differences from C

C++ differs from C in a number of other details. They are simply listed here:

• Defined constants in C++ allow you to avoid using the preprocessor to use
named constants in your program.

• Default types for function parameters are not used in C++. You generally
must specify function parameter types.

• Free store operators new and delete create dynamic variables in C++.

• You can use references as function parameters. References are alternate
"handles" on the same object. A reference is an automatically dereferenced
pointer, and acts something like an alternate name for a variable.

• There is a functional syntax for type coercions.

• C++ allows programmer-defined automatic type conversion.

• Variable declarations are allowed anywhere, not just at the beginning of the
block.

• A new comment delimiter begins a comment that continues to the end of the
line.

c++ Programmer's Guide - October 1992

8

If you reset your system locale to, say, France and rerun the program, you'll
still get the same output. The period won't be replaced with a comma, the
French decimal unit.

Locale
You can change your application from one native language to another by
setting the locale. For information on this and other native language support
features, see the operating system documentation.

Use with Open Windows

OpenWindowsTM 3.0:1 and later releases provide C++ compatible header files
for the XView (not NeWS) libraries (SunOS 5.0 only).

OpenWindowsTM 2.0 and later releases provide C++ compatible header files for
the XView (not NeWS) libraries (SunOS 4.1.x only).

c++ Programmer's Guide - October 1992

10

• Overloading resolution

The C++ overloading mechanism was revised to allow resolution of types
that used to be too similar and to gain independence of declaration order.

• Type-safe linkage

The overload declaration and keyword were abolished. Type specification
of function arguments now eliminates ambiguity.

• Multiple inheritance

It is possible to derive a class from more than one base class.

• Base and member initialization

It is possible to specify the order in which base and member classes are
initialized.

• Abstract classes

A class with one or more pure virtual functions is an abstract class. A "pure
virtual" function is a virtual function that does not have a definition. An
abstract class can only be used as a base for another class.

• static member functions

A static member function is a member whose name is in the class scope
and the usual access control rules apply. A static member function is not
associated with any particular object and need not be called using the
special member function syntax.

• cons t member functions

The canst member function is a member function that can be called for all
objects including canst objects. (A non-canst member function can be
called only for a non-canst object.)

• Initialization of static members

A static data member of a class must be defined somewhere. The static
declaration in the class declaration is only a declaration and does not set
aside storage or provide an initializer. This is a change from the original
C++ definition of static members, which relied on implicit definition of
static members and on implicit initialization of such members to O.

c++ Programmer's Guide - October 1992

12

2.2 Classes and Members
You use a class - a user-defined data type - in the same way that you use a
predefined data type. That is, a class not only contains data, like a C struct,
but also defines operations that apply to objects of that class, as the translator
or compiler does for objects of the built-in types. Here is an example of a class
definition:

class string
private:

char* data;11 private data fields
int size;

public:
string() size= 0; data= NULL; } II inline constructor
string(char*);11 constructor function

void insert(char*) II public function

operator char*() { return data; } II conversion operator

string operator+(string);11 operator functions
string operator=(string&);

friend ostream& operator«(ostream&, string); Ilfriends
friend istream& operator»(istream&, string&);
} ;

Note - Most examples in this chapter, including this one, are part of the string
module and programming example fully reproduced in Appendix A, uSample
Program".

A class is divided into two parts: one part preceding the label public and one
part after. The part preceding public is known as the private part. (In this
case the optional keyword private explicitly states that part is private.)
Functions, operators, and data fields (collectively called members of the class)
defined in the private part can only be accessed by other members or by friends
of the class. (The operator» function is an example of a friend function.)
Members declared in the public part of the class can be accessed by any
function within the scope of an object of this class. This allows you to make the

c++ Programmer's Guide - October 1992

14

Member Data Fields

Member data fields work like fields of C structures, except that some data
fields (those that are private or protected) can be hidden from functions that
aren't members or friends of the class.

Member Functions

Functions that are part of the definition of a class are known as member
functions of that class. When you call a member function, you always call it for
a specific object of a class. For example, given the definition for class string
used in an earlier example (and reproduced in full in Appendix A, "Sample
Program"), you must create a variable of type string to call the member
function insert:

string aString;

aString.insert("Hello.") ;

Every member function is automatically and implicitly called with a parameter
that is a pointer to the object used to call the function. Within the member
function you can access the implicit parameter using the keyword this. For
example, when you call insert as just shown, insert can use this to refer
to a string.

A class can have any number of member functions with the same name, as
long as the compiler can distinguish them based on their parameter types.
These are called overloaded member functions. For example, the sample class
string shown earlier in this chapter has overloaded constructors:

I string();
string(char*);

The parameters of overloaded functions must differ enough so that the
translator can distinguish between them; differences that are erased using

c++ Programmer's Guide - October 1992

16

Referring to Members

You refer to members in five ways, whether the member is a function or a data
field. One way only applies to static members. One way applies to a
member you refer to from another member of the same class. The other ways
apply to all members.

Referring to a Member from Another Member
When you want to refer to a member from another member of the same class,
you simply give the member's name, as if it were an ordinary C variable or
function. The meaning is as if thi s - > preceded every member name. For
example, given the definition of class string used at the beginning of this
chapter (and in Appendix A, "Sample Program"), you can refer to the field
data from within function string: : operator+ like this:

strcpy(holder, data);

The variable holder is a local variable.

Using the Operators - > and . to Refer to Member
These two operators have similar meanings and are used for some of the same
purposes they are used for in C. As in C, you use -> with pointers and. with
direct variables.

Note - If a class member function must refer to members of another (non­
this) variable of the same class, it will use this syntax. See the implementation
of the example string: : operator+ in Appendix A, "Sample Program" for
an illustration.

Again as in C, you use these operators to refer to member data fields. In C++,
they also can refer to member functions. In either case, you usually only need
to use them from functions that are not members of the same class as the
member you want to refer to. To use . (period) , give a class-type variable
name followed by the . followed by the name of the data field; to use - > (a
minus sign and a greater-than sign), give a pointer to a class followed by - >
followed by the name of the data field. For example, assuming that class

c++ Programmer's Guide - October 1992

18

You can declare and initialize a pointer to the member function insert like
this:

int (string::*pinsert) (char*) = &string::inserti

You can use the pointer where the last line calls function insert through the
pointer:

I string a;
(a. *pinsert) ("hello") i

You can also call a member function given a pointer to an object.

string* Pi

(p->*pinsert) ("hello") i

You can also declare and use pointers to member data fields. For example,

struct 8
int ai

} i

int 8::* psm = &8: :ai

void f(8* ps)
{

ps->*psm 2i

void g ()

8 ai

f (&a) i

This is equivalent to simply assigning 2 to a . a.

c++ Programmer's Guide - October 1992

20

Operator functions are implemented by defining new functions that are called
when you use the operators.

Every operator has a name formed by the word operator followed by the
symbol for the operator. For example, operator+ is the name of the +
operator. You use the operator name to declare and define the operator
function. The declaration of class string given at the beginning of this
chapter shows a declaration of the + operator in the case of objects of type
string; here is the implementation of the operator function:

string string: :operator+(string second)
{

char* holder = new char[size + second.size +1];

strcpy(holder, data);
strcat(holder, second.data);
string temp (holder);

delete holder;
return temp;

An important point about operator functions is that they do not imply
anything about other operators that seem to be related. For example, for int,
the += operator is related to the + and = operators. In the previous example, if
you want the += operator to work with type string, you have to define an
operator function for it. That operator function defines any relationship that
might exist between += and any other operator. (In other words, nothing stops
you from defining += to mean subtraction for your new type. That would be
extremely bad programming, though.)

You cannot redefine operators for built-in types, and you cannot define brand
new operators; you can only overload existing operators. The exception is
conversion operators (see Section 2.8, "User-Defined Type Conversion," on
page 47).

The following operators cannot be overloaded: ., • * , ::,? :. The
preprocessing symbols # and ## also cannot be overloaded (see the c++ 3.0.1
Language System Product Reference Manual). The. * operator is a binary operator
which binds its second operand to its first operand. The second operand must
be of type "pointer to member of class T" and the first operand must be of class
T or a class publicly derived from class T. The result is an object or a function

c++ Programmer's Guide - October 1992

22

If you want, you can also explicitly call operator functions using the normal
function syntax. For example:

string first("Hello");
string second("there.");
string third;
operator=(third, operator+(first, second));

Use of this syntax is discouraged.

Overloading the Operator - >

The C++ Programming Language states that you cannot overload operator ->
This is no longer true.

By overloading operator ->, you can create classes of objects that can act as
"smart pointers." This may be important to programs where indirection is a
key concept that can clearly be represented by operator ->. You can also
use operator -> to provide C++ with a limited, but still very useful, form of
delegation.

When overloading, operator -> is considered a unary operator of its left­
hand operand and -> is reapplied to the result of executing operator ->.
Therefore, the return type of an operator -> function must be a pointer to a
class or an object of a class for which operator -> is defined. For example:

struct X
y* p;

y* operator->()

} ;

if (p == 0) {
II initialize p
}

else {
II check p
}

return p;

c++ Programmer's Guide - October 1992

24

void* operator new(size_t SZ)i

The type size_t is defined in <stddef . h>. It is defined as an unsigned
int in Release 3.0.1 (see the c++ 3.0.1 Language System Product Reference
Manual for further details).

Once you make this definition, X: : opera tor new () is used instead of the
default operator new () for objects of class X. This does not affect other
uses of operator new within the scope of x; it only affects the use of new on
objects of class x.

The usual rules of inheritance apply. If you derive a class Y from X, Y objects
are also allocated using x: : operator new () . It is because of inheritance
that x: : operator new () needs an argument specifying how much space
should be allocated; the size of a Y object may be· different from the size of an
X object. A class that is never used as a base class does not need the size
argument. You always should use the size argument, though, unless you are
absolutely sure the class will never be used as a base class.

Like the global operator new() ,X: : operator new () returns a void*.
This indicates that it returns uninitialized memory. The translator must make
sure that the memory returned by operator new () is converted to the
proper type and, if necessary, initialized using the constructor of the class. The
same thing happens for X: : operator new () . The pointer in X: : operator
new () is uninitialized.

c++ Programmer's Guide - October 1992

26

A constructor often has parameters that receive information needed to
initialize data fields. For example, the following is the definition of a
constructor of type string.

string::string(char* aStr);
{

if(aStr == NULL) size= 0;
else size = strlen(aStr);

if(size
data

else {

o) {
NULL;

data new char[size+l];
strcpy(data, aStr);

You implicitely call a constructor when you create a new object. (That is, the
translator automatically calls the function; you only explicitly call a constructor
function to convert a value of one type into a value of another type.) If the
constructor has formal parameters, you must give actual parameters when you
declare the object.

You can overload constructors. As with other overloaded function names, the
parameters must differ enough that the translator can tell which to call. Class
string has two constructor functions. The definition of one was just given.
The implementation of the second constructor is given with the declaration of
the function within the class declaration (making it an inline function) because
it is very simple. Here it is:

string() { size= 0; data= NULL; }

The translator calls the first when you create a string using a char* string.
When you create a string without giving a parameter, the other constructor is
invoked. For example, the first line following invokes the constructor just
shown. The second line invokes the other constructor.

string firstString(lIsome initial data");
string secondString;

c++ Programmer's Guide - October 1992

28

The constructors come last for members of the main class. A member
constructor is written with its name. The base class is always constructed first,
followed by the members, and, lastly, the class itself. If there is more than one
member constructor, the translator calls them in the order you give them.
Similarly, if there is more than one base class at a given level (that is, you've
used multiple inheritance), the translator calls the constructors for those base
classes in the order given.

You supply parameters using the same format. For example:

dc anObj (de ctor params) [class_name] (c1 params) dl(d1 params);

To clarify the situation when you use multiple inheritance, consider the
following definitions:

class X {public X(int , int); ... };
class Y public {Y(); ... };
class Z : public X, public Y {public Z(); ... };

In the definition of the constructor z () you specify the order of initialization
by giving a statement like this:

Z: : Z () : Y () I X (5 I 10) {body of constructor}

If there are other base classes you don't mention, the translator calls their
constructors after the specified ones, in the default order, i.e. the order the
classes appear in the program.

Constructors of virtual base classes are a special case. If the virtual base has a
constructor, the translator calls that constructor before any constructor of its
derived classes. See the C++ 3.0.1 Language System Product Reference Manual and
"Virtual Base Classes" on page 39 in this chapter for definitions of virtual base
classes.

Note - Virtual base classes can have constructors too. See the C++ 3.0.1
Language System Product Reference Manual for further details.

Destructors
Use destructor functions to do any cleanup when the program is done with an
object. You must name a destructor function by concatenating a tilde (-) with
the name of the class, in that order.

c++ Programmer's Guide - October 1992

30

The assignment rule implies that for a class x, the constructor X (canst X&)

and the assignment operator cons t X& x:: opera tor= (cons t X&) are
supplied by the translator where necessary. Unless you supply it, a constructor
X (cons t X&) is created for a class X where X has one of the following.

• A member or base of class z for which Z: : opera tor= or Z : : Z (Z&) is
defined

• A virtual function or a virtual base class

Access controls are correctly applied to both implicit and explicit copy
operations so you have a way of prohibiting assignment of objects of a given
class. For example:

class X {
void operator=(X&) i

X(X&) i

public
X(int) i

} i

Because operator= is defined as a private member, only other members (or
friends) of class X can use the operator. For example:

void f () {
X a (1) i

X b= aill error: X:: (X&) private
b = aill error: X::operator=(X&) private

c++ Programmer's Guide - October 1992

32

Taking another approach, a derived class may provide a specialized interface
to a base class.

You can have multiple levels of inheritance. For example, given the preceding
example,

i

class mountainLion: public lion
. { . . . };

An object of a class mountainLion is laid out like this

cat part

lion part

mountainlion part

The different parts of the object are called subobjects.

The derived classes do not have access to the private members of their base
classes. They do have access to public and protected members.

Public and Private Derived Classes

Notice the keyword public used in the sample derived class declarations in
the previous section. Base classes can be declared public or private.
When a base class is public, its members are inherited in their original form
by the derived class. That is, public members of the base class become public
members of the derived class. When a base class is declared private, all
members inherited from the base class are private, even if they are declared
public in the base class. Base classes are private by default, which is a
possible source of confusion. The following two declarations are equivalent:

class window private frame { ... };
class window frame { ... };

c++ Programmer's Guide - October 1992

34

You can also make a member of a public base class private. For example, given
the definition of class 1 i s t given in the last example, here is a similar
definition of class 1 inkedl i s t :

class linkedlist : public list

private:
list::printll print is now private but

II add and remove are public

This is not exactly equivalent to the preceding example because it has the side
effect of implying that you can no longer treat a 1 inkedl i s t as if it were a
list (that is, linkedlist is no longer a sUbtypel of list). There is no
implicit coercion of a pointer to linkedlist to a pointer to list, and not all
public members of 1 i stare automatically public members of 1 inkedl i s t.

Virtual Functions

An important feature of object-oriented programming allows you to defer
determination of what function is called to runtime. This ability is provided in
C++ through the use of virtual functions.

For example, suppose you have a base class shape that has a draw member
function.

class shape

virtual void draw();
} ;

Suppose, further, that you have a number of classes derived from shape:

class rectangle { ... };
class oval { ... };
class polygon { ... };

1. If you take any X and treat it as a Y, then X is a subtype of Y.

c++ Programmer's Guide-October 1992

36

Virtual Function Tables
Please reread the section on virtual function tables, or virtual tables, to
understand the +e translator option (see the C++ 3.0.1 Language System Release
Notes manual).

When you create an object of some class, the translator allocates a contiguous
region of memory for the object. In the simplest case, the object takes up just
the space needed for the object data. For example, suppose you have a class
with the definition:

class samp {

} ;

int first;
int second;
void samp(int, int);
void change (int, int);

The translator translates calls to the member functions samp and change into
direct, ordinary function calls, so the program doesn't need information
included with the objects about where to find member functions.

This is still true with derived objects. For example, a class derived from samp
might have this definition:

class derived: samp {
int third;
void derived (int): int, inti
void morechange(int, int, int);

Again, the translator changes calls of member functions der i ved and
morechanged into direct, normal functions calls.

When you have virtual functions, such a simple scenario is not possible
because the translator does not know what function will actually be called at
execution time. When a class has virtual functions, the translator creates a
virtual function table or vtbl for it. Then, when you create an object of that
class, the translator inserts a pointer to the vtbl in the object. This pointer is
sometimes called a vptr.

c++ Programmer's Guide-October 1992

38

To illustrate this, consider the following example:

struct york {work()i . .. }i

struct america {wbrk()i ... }
struct newyork : york, america { ... }

main ()

newyork* dospassosj
dospassos->work()i //error: ambiguous

You could resolve this ambiguity by adding a function in the derived class
with the same name. That function could call the function from the base class
that you want to be called.

struct newyork : york, america { ...
work()
{

america: :work () ;

A class can appear as base class more than once in the ancestry of a derived
class. For example, the following is legal:

class A
class B
class C

public X { ... };
public X { ... };
public A, public B { ... };

Normally, this means that two (or more) copies or instances of the class appear
more than once. If you want to have only one instance of that class, you should
declare it as a virtual base class. See "Virtual Base Classes" on page 39 for details
of virtual base classes.

c++ Programmer's Guide - October 1992

2.4 Objects

40

The quality of being a virtual base class only applies to the use of a class as a
base class. The class itself is not declared virtual.

Virtual classes exist primarily as a way of expressing dependencies among
objects.

You can cast from a derived class to a virtual base class, but not from a virtual
base class to a derived class. Casting from a derived class to a virtual base class
involves following the virtual base pointer, which can be done. The opposite
operation involves more information than is available at runtime.

An object is an instance of a class. In other words, an object is a part of memory
allocated in a manner defined by the class definition: a specific instance of the
general case defined by the class. Each object has its own data fields, except for
static data fields, which are shared by all objects of a given class. The type of an
object is not only its own class but also generally any base class of its class. For
example, given the following class definitions, an object of type thirdclass
is also of types firstclass and secondclass:

class firstclass { ... };
class secondclass : firstclass { ... };
class thirdclass : secondclass { ... };

Once you've defined a class, you can create an object of the given type simply
by declaring a variable of that type. For example,

firstclass anObject;
thirdclass anotherObject(5);

The first declaration creates an object of type firstclass that can be referred
to using the name anObj ect. The second declaration creates an object of type
thirdclass that can be referred to using the name anotherObj ect. The
parameter 5 gets passed to the constructor of type thirdclass. Each new
object remains in memory until its scope exits. (See U Allocation and
Deallocation: Operators new and delete" on page 44 for information on how
you can create objects that last even when the current scope exits.)

c++ Programmer's Guide - October 1992

42

Note - The word static is used for two different purposes in C++. The
declaration of static data members has nothing to do with the declaration of
static objects.

The translator allocates space for all file-scope static objects and calls their
constructors, if any, when the program begins. The translator calls the
destructors for static objects and destroys the objects when the program ends.

Dynamic Objects
You create dynamic objects using the new free store operator. The declaration
of a dynamic object looks like this:

someClass* aPointer = new someClass

(Notice that the new operator returns a pointer.)

The translator allocates space for a dynamic object and calls the constructor, if
any, when it encounters the statement that declares the object. Unlike the
situation with static and automatic objects, the translator does not destroy a
dynamic object until you call the delete operator. When you call delete, it
first calls the class destructor, if any, and then deallocates the space. (If you do
not call delete before the program exits, the translator destroys the object at
that time. The destructor for the object will not be called when the program
exits, unless the program exits by calling the return function from within the
main function.)

References to Objects

You can create additional names, or references, for objects that already exist.1 If,
for example, you've declared an int object (that is, an ordinary integer
variable) like this

int anlnt = 1;

you can declare a reference to the same int object like this:

int& thelnt = anlnt;

1. A C programmer may think of a reference as a pointer that is automatically dereferenced except when
passed as a reference parameter.

c++ Programmer's Guide-October 1992

44

Allocation and Deallocation: Operators new and de 1 e t e

c++ provides the new and delete operators to replace the standard UNIX
system routines malloe and free. You use new to create a dynamic object;
that is, an object that exists after the program exits the scope of the function
that created it. You don't have to use new for objects that you don't want to use
after the current function exits; the translator creates those automatic objects
when they are declared, as with declarations of predefined types. The new
dynamic object stays in existence until you use the delete operator to destroy
it (or until the program completes).

There is no "garbage collection" built into C++; objects created with new that
have no references to them are not destroyed until the program exits, even
though there is no way to use them.

2.5 Archiving Global Object Arrays in a c++ Library
You may have problems if you archive a global object array into a C++ library
you've built yourself. It is not a bug but intended cfront behavior.

When a global object array is defined and initialized, the actual initialization
does not take place until the constructors for the array objects are called, which
occurs at runtime.

If it is a single object instance rather than an array, cfront will initialize it to
zero first. However, if it is an array of your own defined class objects, no
initialization will occur. This is done intentionally to avoid increasing the size
of the resulting object file.

For example,

class X {
public:

int ai

X(int b) : a(b) { }

} ;

x x[] = {l,2}, y(3);

c++ Programmer's Guide -October 1992

46

2.6 In-line Functions
C programs sometimes use macros to replace small functions because
frequently calling small functions can decrease the efficiency of a program.
Macros, though, do not act exactly like functions. C++ provides in-line
functions, thus eliminating the need to use macros for this purpose.

You can create an in-line function both explicitely and implicitely. To explicitly
create an inline function, simply precede it with the keyword inl ine . For
example:

inline int cube(int number) {
return number*number*number;
} ;

To create an implicitly in-line member function, simply declare and define the
function (that is, give the body of the function) within a class definition. It will
automatically be in-line. For example, this declaration appears in the definition
of class string:

string() { size= 0; data= NULL; }

This constructor function is implicitly in-line. This form only works for class
members.

In either case, when you use the function, the translator replaces it with
equivalent code. For example, the expression

answer = cube(4)

is replaced with code equivalent to:

answer = 4*4*4

In-line functions are efficient only for very small functions, and they should be
used only when necessary. The inline keyword is only a suggestion to the
translator, and it may be ignored.

c++ Programmer's Guide - October 1992

48

prints the string:

Here is some data.

Conversion Operators

Using constructors for conversion has limitations, in that you can't convert
from a new type into a pre-existing type. The alternative is to define a
conversion operator. A conversion operator is a function that is a member of the
source type (unlike a constructor, which is a member of the destination type).
You name a conversion operator by giving the keyword opera tor followed
by the destination type name. For example, if you want an operator to convert
a value of type string (see Appendix A, US ample Program") to char*, you
might include this definition in the definition of type string:

operator char*() {return data};

The operator char* () takes a value of type string as its input parameter
and returns a value of type char* (simply by returning the data field, which
is a char* field).

Once this operator is defined, if you use a value of type string where you
need a value of type char*, the translator automatically uses the operator
you've defined to convert the value. For example:

string aString("a");
char* x = aString;

You can also call it explicitly using a format like this:

char* x = (char*(aString));

Such conversion operators can render overloaded functions ambiguous and
therefore illegal because the translator may no longer be able to tell two
functions apart based on parameter types.

Type names containing [] and () as well as multiword types (such as
unsigned long) cannot be defined this way. To define conversion operators
for these types, give them names using typedef. For example,

typedef unsigned long u_long;
operator u_long(){ ... };

c++ Programmer's Guide - October 1992

2.11 Overloaded Function Names

50

More than one function in a C++ program can share the same name. It makes
sense to do this for functions that perform similar operations on values of
different types. For example, you might define a function to store integer data
in a file and want another function to store real number data. For similar
reasons, you might want to create a function that takes the same kind of action
as a standard function, but acts on values of a new type. You can give such
functions different names, but it makes logical sense to give them the same
name. In C++, you can declare them like this:

I void store(int);
void store(float);

The translator decides which function to invoke based on the types of the
parameters used when you call the function. The parameters of overloaded
functions must differ enough so the translator can distinguish between them;
differences that are erased using standard conversions or user-defined
conversions are not enough. This means, for example, that the following is
illegal:

int wontwork(int) ;
int wontwork(char);// error

This is illegal because one of the standard conversions would promote an
argument of type char to match a formal argument of type in t, leading to an
ambiguous situation.

The overloading mechanism can even distinguish between signed and
unsigned values. For example:

void f (int) ;
void f(unsigned);
void gl(int i, unsigned u)

f(i) ;//invoke f(int)
f(u) ;//invoke f(unsigned)

c++ Programmer's Guide-October 1992

52 c++ Programmer's Guide-October 1992

54

long new operator overload private

protected public register return short

signed sizeof sparc static struct

sun switch template this throw

try typedef union unix unsigned

virtual void volatile while

STDC _ is predefined, but has the value O. For example, the following
program:

#include <stdio.h>
main()
{

#ifdef STDC_ _
printf ("yes \n") i

#else
printf ("no\n") i

#endif

#ifdef __ STDC __ ==0
printf ("yes\n") i

#else
printf ("no\n") i

#endif

produces the following output:

yes
yes

Note - Treating overload as a keyword is an anachronism; future releases of
C++ may not use this keyword. The names catch, throw, and try are not
currently used for anything, but are reserved for use in future versions of the
language.

c++ Programmer's Guide - October 1992

56

Function Return Value Declarations

3.3 Structures

In C, when you don't declare the type of a function's return value, the compiler
assumes the return value is an into Although this is still true in C++, you
should declare all function return values or declare the function void;
otherwise, the translator is unable to check types. (This also makes your
program more meaningful to those who use it.)

C++ reacts to structure definitions in slightly different ways from C, which
may cause problems in C programs.

Structure Tags in Declarations

Structure tag names in C++ are also type names. You can use the tag name of a
structure you've defined in a declaration without the keyword struct,
although you also can give the keyword, if you want. For example:

struct anything {
/*contents of structure*/
} ;

void afunc(anything);

The last line can also be given as follows.

void afunc(struct anything);

Both lines have the same effect.

Structure Tags and Functions with the Same Names

C puts variables and structure tag names in different name spaces. C++,
because of its abstract data typing and classes, uses one name space for
variables and types. However, to maintain conformance with C and ANSI C,
C++ permits:

struct growth { };
int growth(int *, struct growth*);

c++ Programmer's Guide-October 1992

58

Operating System 5.0

For operating system, release 5.0, static constructors are executed from
the. ini t section and _main should not be called. All static destructors are
called from the . f ini section.

3.5 Writing C++ Libraries for C Programs

Note - This section applies to operating system 4.l.x only.

This section discusses C++ implementation and component-dependency issues
you may encounter if you are writing C++ libraries to link with C programs.
These issues are particularly important if the C++ libraries are to be used by C
programmers who do not have access to the Sun C++ translator.

The following examples describe two different scenarios:

• Writing C++ libraries without static initialization or destruction

• Writing c++ libraries with static initialization or destruction

The first example is not affected by implementation changes; it is the
recommended way to write C++ libraries for C programs. The second example
is affected by implementation changes. It is based on C++ 3.0.1 implementation
only and may change in future releases.

This section will only discuss implementation-specific issues. For language
specific issues, see Appendix F, "C Wrappers for C++ Functions". C++ runtime
library licensing issues are not addressed here either.

Writing Libraries Without Static Initialization or Destruction

Writing a C++ library without static initialization or destruction applies when
the following occurs:

• No static initialization or destruction exists, and therefore no class objects
are declared in FILE scope - either internally linked (static) or
externally linked (global).

The object refers only to classes that have constructors or destructors
defined in either the current class, or in a class from which it directly or
indirectly derives. This also includes classes that contain virtual functions

c++ Programmer's Guide - October 1992

60

To correctly call the static initialization and destruction mechanism in C++
3.0.1, do the following:

If the Sun C++ translator is available to you - the main () module of the
program must be compiled by the C++ translator driver, then all C and C++
object modules must be linked together by CC.

If the Sun C++ translator is not available - two minimal Sun C++ components
are still required for Sun C++ 3.0.1:

• The patch C++ post-linker

• The libC

With the above components, modify the C program's main () module. For
example:

main()
_main() j

/ * your code here * /
}

/* this is to link in __ head from libC.so for patch version
of cfront */
extern struct __ linkl * __ headj
struct __ linkl ** __ LinkInHead = (struct __ linkl **) (& __ head)j

All symbols with two preceding '_' (underscores) are, by convention, reserved
for C++ implementation, and their use should be avoided. _head is not
referenced anywhere else in the program; it is used by the pa tch postlinker to
position the beginning of the chain of static initializer and destructor functions
needed by _main () .

Next, link the program as follows:

tutorial% CC other modules and flags -lyour c++ library -lC

Make sure that libC is searched before libc (C library) because libC
includes a different version of exi t () that invokes the static destruction
mechanism before exiting.

Last, run the postlinker pa tch on the final executable to chain the static
initializer and destructor structures together.

tutorial% patch a.out

c++ Programmer's Guide- October 1992

62

3.8 Linking to C Functions
The translator encodes C++ function names to allow overloading. To call a C
function or a C++ function "masquerading" 1 as a C function, you must
prevent this encoding. Do so by using the extern "e" declaration. For
example:

extern "C" {
double sqrt(double); //sqrt(double) has C linkage

}

This linkage specification does not affect the semantics of the program using
sqrt () but simply tells the translator to use the C naming conventions for
sqrt().

Only one instance of an overloaded C++ function can have linkage. You can
use C linkage for C++ functions that you intend to call from a C program, but
you might not want to do that since you would only be able to use one
instance of that function.

You cannot specify C linkage inside a function definition. It can only be
specified globally.

1. Although this section concentrates on using the extern "C" declaration to call C functions from C++
programs, you can also use it to create a C++ function that can be called from C programs. A C++ function
that is called by a C program is masquerading as a C function. C++ functions masquerading as C functions
cannot use many of the capabilities of C++; in particular, such functions cannot be overloaded and cannot be
member functions. For example, A C++ function that is called from a C program cannot be an overloaded
function or a member function.You may not want to do this because you would only be able to use one
instance of the function.

c++ Programmer's Guide - October 1992

64

CAS,f I - 'J'he object is exported and will be referenced by user
appltcattons.

If an object is exported and will be referenced by user applications, you can put
its definition into a . sa file. The . sa file will be statically linked into the final
executable only if user applications reference some data item defined in it.

For example, if a . sa file contains the following definition, object obj_l and
obj_2 will be properly initialized and destroyed if at least one of them is
referenced by the user application:

Faa obj_l(3, "string");
Goo obj_2(5.432);

If·you put all of the exported global objects into one. sa file, the whole file will
be linked into the final executable - even if only a few of them are referenced.
This not only makes the executable larger than it should be, but also degrades
the performance of the application due to all the unnecessary constructor and
destructor calls for the unused library objects. It will be even worse if those
constructor or destructor calls result in side effects.

Note - Avoid using global objects in a library that may result in side effects
during construction and destruction. Always put each exported library object
into a single. sa file unless some of them are closely related and will always
be used together; then it should work to group them into a single. sa file.

c++ Programmer's Guide - October 1992

66

makefile:

test: main.cc libfoo.so.O.l libfoo.sa.O.l
CC -0 test main.cc -L. -lfoo

lsrc.o: lsrc.cc
CC -pic -c lsrc.cc

sa.o: sa.cc
CC -c sa.cc

libfoo.so.O.l: lsrc.o
Id -0 $@ -assert pure-text $?

lib£oo.sa.O.l: sa.o
ar rv $@ $?
ranlib $@

After you make and run these files, they produce:

% Idd test

% test
A: :A(S)

main()
A::-A()

%

-lfoo.O => ./libfoo.so.O.l
-lC.O => /usr/lang/SC1.0/1ibC.so.0.2
-lc.l => /usr/lib/libc.so.l.S

CASE 2 - The object is not exported; or, it is exported but its constructor
and/or destructor should be tnvoked no matter whether user applications
reference it or not.

If the object is only used internally in the library, you should not define it in a
. sa file. The reason is that unless the user application happens to reference
something else in the same. sa file, the. sa file won't be linked into the final
executable. Thus, the constructor and destructor of the object won't be invoked.
Worse yet, internal use of the global object in . so files without explicit
referencing of the object in the user program will result in a "Symbol not

found" dynamic linker error during runtime, if the object is defined in a . sa

file.

c++ Programmer's Guide - October 1992

68

lsrc2.cc:

B: :-B()

#include <stdio.h>
#include <new.h>
#include "libfoo.h"

int B:: a = 0;
extern A a_lib_obj;

B: :B() {

printf ("B: :B (%d) \n" I a);
++a;
if (a > 1) return;
new (&a_1ib_obj) A(5);

printf ("B: :-B(%d) \n" I a);
--a;
if (a > 0) return;
a_1ib_obj .A: : -A () ;

main.cc:

main()

#inc1ude <stdio.h>
#inc1ude "libfoo.h"

printf ("main () \n") ;
/ / ...

dummy.cc:

#inc1ude "libfoo.h"

makefi1e:

test: main.cc dummy.cc 1ibfoo.so.O.l
CC -0 test main.cc dummy.cc -L. -lfoo

c++ Programmer's Guide-October 1992

70

This will be equivalent to typing the following commands:

cc -c -pic lsrcl.cc lsrc2.cc
ld -dy -G -z text -0 libfoo.so.l lsrcl.o lsrc2.0

If you want to assign a name to your shared library for versioning purposes,
type:

cc -G -0 libfoo.so.l lsrcl.cc lsrc2.cc -h libfoo.so.l

c++ Programmer's Guide-October 1992

72

The resulting executable file is called, in this case, myProg because this
command line uses the -0 name argument. Without that argument, the
executable file gets the default name a. ou t.

The file name extension can be. c . c, . C , . cc , or . cxx.

Compiling a Program That Uses a Standard Library

Under normal circumstances, you don't need to do anything special to compile
a program that calls routines in a standard library. However, the standard
library header file must be included at the beginning of your program using a
format like:

#include <stdlib.h>

If the header files you want to use are in a different place, you can specify the
location on the cc command line. For example, if the header files are in
/usr/libraries/include:

tutorial% CC -X/usr/libraries/include myProg.cc

Compiling a Program with a Module

The sample program testr (see Appendix A, "Sample Program"), consists of
two modules: the main program module testr. cc and the string class
module, s tr . cc and s tr . h.

When you have a second module like the string class module, both the
implementation part of the second module and the main program module
must include the header file for the second module. For example, testr. cc
and str. cc include the header file str. h with a line like this one:

#include "str.h"

If there is not an object file for the second module, you can compile the second
module and link it with the program with a command line like this one:

tutorial% CC testr.cc str.cc -0 testr

The order of the files is not significant.

Alternately, you can create an object file for the second module with a
command line like this one:

tutorial% CC -c str.cc

c++ Programmer's Guide - October 1992

74

2. To include .C in your default, add .C .C- to the end of the SUFFIXES
macro.

3. Next, copy these lines from defaul t .mk .

. cc:
$ (LINK.cc) -0 $@ $< $ (LDLIBS)

.cC.O:
$ (COMPILE.cc) $ (OUTPUT_OPTION) $<

.cc.a:
$ (COMPILE.cc) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

4. Add them to your makefile, replacing. cc with. C (or whatever file
extension you wish to use).

5. If you are editing defaul t . mk, add these lines to the end of the file .

. C:

.C.o:

.C.a:

$(LINK.cc) -0 $@ $< $ (LDLIBS)

$ (COMPILE.cc) $ (OUTPUT_OPTION) $<

$ (COMPILE.cc) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$(RM) $%

Since. c is supported as a C-Ianguage suffix, it is the one suffix that cannot be
added to the SUFFIXES macro to support C++. Write explicit rules in your
own makefile to handle C++ files with a . c suffix.

c++ Programmer's Guide - October 1992

76

This message may be explained by noting that make examines the exit status of
each program that it invokes where the program's exit status is the value
returned by main () or passed to exi t () . If main () does not call exi t () , or
return explicitly, the exit status is undefined and may cause make to fail.

4.4 Using the Complex and Task Libraries
Give ee an extra option when you use the complex math or the task (co­
routine) library. You must give this extra option because these libraries call
functions in 1 ibm, the standard math library. For example, cos (complex) in
the complex library calls cos (double) if you use the complex library:

tutorial% CC yourFile -lcomplex

or, if you use the task library:

tutorial% cc yourFile -ltask

4.5 Predefined Macro
You can use the _cplusplus macro to mix C and C++ code. For example,

#ifdef __ cplusplus
int printf(char* ...); II c++ function declaration
#else
int printf();I* C function declaration *1
#endif

Note - There are two underline characters at the beginning of _cplusplus

See Section 3.7, "The _cplusplus Directive," on page 61 and Appendix E,
"Creating Generic Header Files" for more information.

4.6 Static Linking of 1 ibC

The ee driver links in several libraries by default by passing -1 options
to Id. On 4.1.x, the driver passes -1m -lansi -Ie -lc to ld. On 5.0,
the driver passes -1m -Ie -lc to Id. This occasionally causes
problems because the shared version of 1 ibe gets linked by default.
Since the shared library libe. so is not bundled with the operating

c++ Programmer's Guide-October 1992

78

• Linker ld using -qoption or -qpath (see the cC.1 manual page)

Before you use the CC command, insert /opt/SUNWspro/bin (or the name of
the directory in which you have chosen to install the C++ translator) at the
beginning of your search path. This is usually done in the. eshre file, in a line
with set path = at the start; or in the .profile file, in a line with PATH= at
the start. (Applies to SunGS 5.0 only).

Before you use the man command, insert / opt / SUNWspro /man (or the name
of the directory in which you have chosen to install the C++ translator) at the
beginning of your search path. This is usually done in the. eshre file, in a line
with setenv MANPATH= at the start; or in the. profile file, in a line with
export MANPATH= at the start. (Applies to SunGS 5.0 only).

The options for those programs do not conflict. All compiler options are
position independent except -Bstatie and -Bdynamie .

-a
Prepares object code for coverage analysis using teov .

-bsdmalloe (SunOS 5.0 only)
Directs the compiler to link in calls to malloe from the library
libbsdmalloe. a. When invoked, causes flags -u_malloe and
/lib/libbsdmalloe.a to be passed to the linker.

-Bbinding

-e

Specifies whether bindings of libraries for linking are static or dynamic,
indicating whether libraries are nonshared or shared. The possible values
for binding are static and dynamic. The default is dynamic.

Directs cc to suppress linking with ld and produce a .0 file for each
source file. You can explicitly name a single object file with the -0 option.

-eg[87,89,92]
Code generator. Generates code that runs on both the older and the newer
Sun-4 systems or on only the newer Sun-4 systems. There is one option
under SunGS 5.0 and three under 4.1.x.

Use fpversion (1) to tell you which floating-point hardware you have. It
may take about a minute to display its report.

c++ Programmer's Guide - October 1992

80

+d

If you are building a shared library with -cgx and -pic, then there
is no load-time check for any modules miscombining with other
-cgx options. You must do the check yourself.

Prevents the compiler from expanding in-line functions. Use this option if
you want to debug in-line functions. For maximum flexibility, this option is
not automatically invoked when you specify the debugging (-g) option.
This option now operates as it did in C++ 2.1. In this respect, and for this
option, the behavior of C++ 3.0.1 is identical to C++ 2.1.

-dalign
Generates double load and store instructions whenever possible for
improved performance. It assumes that all double-typed data are double
aligned, and should not be used when correct alignment is not assured.

-dryrun
Directs cc to show but not execute the commands constructed by the
compilation driver.

- Dname [=defJ

-E

Defines a symbol name to the preprocessor acpp. This is equivalent to a
#define directive at the beginning of the source. If you don't use =def,
name is defined as ~1'. You may give multiple - D options.

Tells cc to run only acpp and to send the result to the standard output.

+enumber
Since release 2.0, the +enumber option is honored only if the new virtual
table optimizations cannot be automatically employed by the compiler. The
option lets you optimize your program manually to use less space. It
ensures that only one virtual table is generated per class.

The C++ compiler in almost all cases generates one virtual table per class
per executable regardless of how often it sees any particular class definition;
using this option is rarely necessary (see the C++ 3.0.1 Language System
Release Notes manual).

Use the +enumber option on classes where virtual functions are present and
all the virtual functions are either defined as inl ine or pure. number
can be 0 or 1.

c++ Programmer's Guide - October 1992

82

-g

This is a convenience option that chooses the fastest code generation
option available on the compile-time hardware, the optimization level -
02, a set of inline expansion templates, the -fnonstd floating-point
option, and on a SPARCstation, the -dalign option.

If you combine -fast with other options, the last specification applies.
The code generation option, the optimization level, and using in-line
template files can be overridden by subsequent switches. For example,
although the optimization part of - fa s t is - 0 2, the optimization part of
-fast -03 is -03.

Do not use this option for programs that depend on IEEE standard
exception handling; you can get different numerical results, premature
program termination, or unexpected SIGFPE signals.

Produces additional symbol table information for the debugger. This also
causes the C++ compiler to produce C code for every declaration in the
compilation rather than only for those declarations that are needed or used.
This additional information enables easier debugging, but also increases the
size of the object file because the symbol table is larger. The +d option is no
longer turned on automatically when you select -g. This provides you with
more control when you debug your code. When you debug in-line
functions, you must also select the +d option.

-G (SunOS 5.0 only)

-H

Builds a shared library (see the Id (1) manual page). All source files
specified in the command line are compiled with -pic. Also, -dy , -G , -z
text options are passed to Id if -c is not specified.

Prints, one per line, the path name of each file included during the current
compilation on the standard error output. This option is processed by acpp.

-h name (SunOS 5.0 only)

Names a shared dynamic library. Provides a way to have versions of a
shared dynamic library. In general, the name after -h should be exactly
what you have after the -0. The space between the -h and name is optional.
This is a loader option.

c++ Programmer's Guide - October 1992

84

Do not use the -L directory option to specify /usr/lib or /usr/ccs/lib,
since they are searched by default and including them here prevents using
the unbundled libm. Do not use LD_LIBRARY_PATH to do this either, for
the same reasons.

Problem: Library not Found

You may get the following error message while executing any program.

Id.so: library not found

This happens during the running of a. au t, not during compilation or
linking.

Solution

Set LD_LIBRARY_PATH to include the directory where the missing
library resides. It is usually better to add the directory to the list of paths,
rather than replacing the whole list of paths with the one directory.

As an example of the problem, if you are using Open Windows and you
define the LD_LIBRARY_PATH environment variable to link in the Xview
libraries, and if you get the above error message while executing your
program, then you can fix the problem by setting the variable:
LD_LIBRARY_PATH.

Do not include /usr/lib or /usr/ccs/lib here, since they are
searched by default, and including them here prevents using the
unbundled 1 ibm.

Example: Set LD_LIBRARY_PATH.

In sh under SunOS 5.0:

demo$ LD_LIBRARY_PATH=/opt/SUNWspro/SC2.0.1 :"$LD_LIBRARY_PATH"
demoS export LD_LIBRARY_PATH

In csh under SunOS 5.0:

In c sh under SunOS 4.1.x:

Background

c++ Programmer's Guide - October 1992

86

Do only the minimum amount of optimization (peephole). This is
postpass assembly-level optimization. Do not use -01 unless -02 and
-03 result in excessive compilation time, or running out of swap space.

-02

Do basic local and global optimization. This is induction-variable
elimination, local and global common sub expression elimination,
algebraic simplification, copy propagation, constant propagation, loop­
invariant optimization, register allocation, basic block merging, tail
recursion elimination, dead code elimination, tail call elimination and
complex expression expansion.

The -02 level does not optimize references or definitions for external or
indirect variables. Do not use -02 unless -03 results in excessive
compilation time, or running out of swap space. In general, the -02 level
results in minimum code size.

-03

In addition to optimizations performed at the - 02 level, this also
optimizes references and definitions for external variables. The -03 level
does not trace the effects of pointer assignments. Do not use -03 when
compiling either device drivers, or programs that modify external
variables from within signal handlers. In general, the -03 level results in
increased code size.

-04

In addition to optimizations performed at the - 0 3 level, this also does
automatic in-lining of functions contained in the same file; this usually
improves execution speed, but sometimes makes it worse. In general, the
-04 level results in increased code size.

For most programs:

-04 is faster than -03

-03 is faster than -02

-02 is faster than -01

In a few cases -02 may perform better than the others, and -03 may
outperform -04. Try compiling with each level to see if you have one of
these rare cases.

c++ Programmer's Guide - October 1992

88

-P

+p

Runs the source file through acpp, the preprocessor, only. It then puts the
output in a file with a . i suffix. Does not include acpp-type line number
information in the output.

Disallows all anachronistic constructs. See the C++ 3.0.1 Language System
Product Reference Manual for all disallowed anachronisms under this option.

-pg
Prepares the object code to collect data for profiling with gpraf. It invokes
a runtime recording mechanism that produces a groan. au t file at normal
termination.

-pic
Produces position-independent code. Each reference to a global datum is
generated as a dereference of a pointer in the global offset table. Each
function call is generated in pc-relative addressing mode through a
procedure linkage table. The size of the global offset table is limited to
8Kbytes on SPARC stations.

-PIC

This option is similar to -pic, but lets the global offset table span the range
of 32-bit addresses in those rare cases where there are too many global data
objects for -pic.

-pipe
Directs CC to use pipes, rather than intermediate files, between compilation
stages (very CPU-intensive).

Templates

The template instantiation system adds several options to CC. These are
specified on the CC line or by setting the environment variable PTOPTS. For
example, to permanently enable verbose mode, you would say:

demo: export PTOPTS=-ptv
demo: setenv PTOPTS -ptv

-pta

c++ Programmer's Guide - October 1992

{in the. profile file}
{in the. cshrc file}

90

Prepares object code to collect data for profiling with Ipro f (see the
Iprof (1) man page).

-qp

Prepares the object code to collect data for profiling with pro f (see the
prof (1) man page). Invokes a runtime recording mechanism that produces
a mon . ou t file (at normal termination).

-Qpa th or -qpa th pathname

Inserts a directory path name into the search path used to locate compiler
components. This path will also be searched first for certain relocatable
object files that are implicitly referenced by the compiler driver, for example,
* crt * . 0 and bb_l ink. 0 . This lets you choose whether or not to use
default versions of programs invoked during compilation.

-Qproduce or -qproduce sourcetype
Causes cc to produce source code of the type sourcetype. Sourcetype can be
one of the following:

.cc
C source (from cfront) .

. i
Preprocessed C++ source from acpp .

. 0

Object file from fbe, the assembler .

. s
Assembler source (from acomp, or fbe).

-R path (SunOS 5.0 only)

-S

A colon-separated list of directories used to specify library search directories
to the run-time linker. If present and not null, it is recorded in the output
object file and passed to the run-time linker. If both the LD_RUN_PATH and
the - R option are specified, the - R option takes precedence.

Directs cc to produce an assembly source file but not to assemble the
program.

-sb
Directs cc to generate Source Browser database.

c++ Programmer's Guide - October 1992

92

Allows the use of the $ (dollar sign) character in identifier names. Unlike C,
$ cannot be the first character of an identifier in C++.

-xs

Places symbol table information in the executable. Without this option, the
symbol table information is kept in . 0 files. This option increases the size
of the executable.

c++ Programmer's Guide -October 1992

94

5.1 Introduction
C++, like C, has no built-in input or output statements. The standard C++ I/O
library is iostream.

As with much of object-oriented programming, discussions of iostreams may
be somewhat circular and may be difficult to understand without knowing
more about the topic. A terminology section at the end of this chapter defines
many of the basic terms you need to know. You can to refer to that section as
you progress through this chapter.

Using Iostreams with s tdio

You can use stdio with C++ programs, but problems can occur when you mix
iostreams and stdio within a program. To eliminate this problem, execute
the following:

cin.sync_with_stdio()

This will connect the predefined iostreams with the corresponding stdio
FILEs. Such connection is not the default because there is a significant
performance penalty when the predefined files are made unbuffered as part of
the connection.

5.2 Basic Structure ofIostream Interaction
The iostream package allows a program to use any number of input or output
streams. Each stream has some source or sink, which might be standard input,
standard output, or a file. A stream can be restricted to input or output. The
iostream package implements these streams using two processing layers, or a
single stream can allow both input and output.

The lower layer implements sequences, which are simply streams of characters.
These sequences are implemented by the strearnbuf class.

The upper layer performs formatting operations on sequences. These
formatting operations are implemented by the iostrearn class, which has as
one of its members an object of type streambuf.

Standard input and output are handled by objects of class iostream.

c++ Programmer's Guide-October 1992

96

Output Using Iostreams

Output using iostream usually relies on the overloaded leftshift operator «,
which, in the context of iostream, is called the insertion operator. To output a
value to standard output, you insert the value in the predefined iostream
couto For example, given a value someValue, you send it to standard output
with a statement like

cout « someValuei

The insertion operator is overloaded for most (but not all) built-in types, and
the value represented by someValue is converted to its proper output
representation. If, for example, someValue is a float value, the « operator
converts the value to the proper sequence of digits with a decimal point.
Where it inserts float values on the output stream, « is called the float
inserter. In general, given a type x, « is called the X inserter.

The format of output and how you can control it is discussed later in this
chapter in the section "Format Control."

The iostream package does not, of course, know about user-defined types. If
you define types that you want to output in your own way, you must define an
inserter (that is, overload the « operator) to handle them correctly.

The operator «can be applied repetitively; to insert two values on cout, you
can use a statement like this one:

cout « someValue « anotherValuei

This will have no space between the two values, though, so you might want to
do this:

cout « someValue « " " « anotherValuei

The « operator has the precedence of the left shift operator (its built-in
meaning). As with other operators, you can always use parentheses to
guarantee the order of action. It may be a good idea to always use parentheses
to avoid problems of precedence. Of the following four statements, the first
two are equivalent, but the last two are not.

cout « a+bi //+ has higher precedence than «
cout « (a+b) i

cout « (a&y) i //but « has precedence higher than &
cout « a&Yi

c++ Programmer's Guide - October 1992

98

error, which takes a string and aborts the program. error is not a predefined
function. (See Section, "Handling Input Errors," on page 102 for an example of
an error function.) You can examine the state of an iostream with the operator
!, which will return a nonzero value if the iostream is in an error state. For
example:

if (!cout) error("aborted due to output error");

There is another way to test for errors. The iostream class defines operator
void * () so it returns a NULL pointer when there is an error. This allows you
to use a statement like:

if (cout « x) return ;

You can also use the function good, a member of iostream:

if (cout.good()) return;

The error bits are declared in the enum:

enum io_state { goodbit=O, eofbit=l, failbit=2,
badbit=4, hardfail=0200} ;

For details of this as well as the error functions see the man pages.

Flushing
As with most 110 packages, iostream often accumulates output and sends it on
in larger and generally more efficient chunks. If you want to flush the buffer,
you simply insert the special value flush. For example,

cout « "This needs to get out immediately. II « flush;

Note - If you want to use any manipulators, you must include the header file
.iomanip.h

flush is an example of a kind of object known as a manipulator, which is a
value that may be inserted into an iostream to have some effect other than
causing output of its value. It is really a function that takes an ostream& or
istream& argument and returns its argument after performing some actions
on it (see Section 5.8, "Manipulators," on page 109).

c++ Programmer's Guide - October 1992

100

Class string (defined in Section, "Output Using Iostreams," on page 96 and
more completely in Appendix A, "Sample Program") defines its extraction
operator like this:

istream& operator» (istream& ios, string& input)
{char holder[256]i
ios.get(holder, 256 , "\en") i

string got(holder)i

input = got;
return ios;

By convention, an extractor converts characters from its first argument (in this
case, istream& ios), stores them in its second argument (always a
reference), and returns its first argument. The second argument must be a
reference because an extractor is meant to store the input value in its second
argument.

The char * Extractor
This predefined extractor is mentioned here because it can cause problems. You
use it like this:

char x[50] i

cin » Xi

This extractor skips leading white space and extracts characters and copies
them to x until it reaches another white space character. It then completes the
string with a terminating null (0) character. Be careful because input can
overflow the given array.

c++ Programmer's Guide- October 1992

Handling Input Errors

By convention an extractor whose first argument has a nonzero error state
should not extract anything from the input stream and should not clear any
error bits. However, an extractor that fails can and should set at least one error
bit. The string extractor shown previously does not explicitly follow these
conventions. Nevertheless, because it only modifies the iostream using other
extractors that do follow the conventions (as all the predefined extractors do),
the conventions are implicitly followed. You can also follow that strategy.

As with output errors, you should check the error state periodically and take
some action (such as aborting) when you find a nonzero state. The! prefix
operator returns the error state of an iostream. For example, the following
code produces an input error if you type alphabetic characters for input:

#include <stream.h>
void error (char* message)

cout « message « "\n"
exit(l);

main()
{ cout « "Put in some characters: ";

int bad;
cin » bad;
if (!cin) error("aborted due to input error");
cout « "If you see this, not an error." « "\n";

Class iostream has member functions that you can use for error handling.
See the iostream man pages for details.

5.4 Predefined Iostreams

102

There are four predefined iostreams: the two mentioned earlier, c in and
cout, and two others, cerr and clog.

Both cerr and clog are connected to standard error, but clog is buffered
while cerr is not.

c++ Programmer's Guide - October 1992

104

Open Mode
The mode is constructed from the open_mode enum, which has the definition:

enum open_mode {in=l, out=2, ate=4, trunc=20, app=OlO,
nocreate=040, noreplace=OlOO};

For compatibility reasons, the following constants (used for open modes) are
defined:

• static const int input = (ios:: in) i

• static const int output (ios: :out);

• static const int append (ios: :app);

• static const int atend = (ios: :ate);

You can open a file for input and output simultaneously. For example:

fstream inoutFile(lsomeName", input I output) ;

Declaring an f stream without a File
You can declare an f stream without specifying a file and open the file later.
For example,

fstream toFile;
toFile.open(argv[l], output);

Opening and Closing Files
You can close the fstream and then open it with another file. For example:

fstream infile;
for (char** f = &argv[l]; *f; ++f) {
infile.open(*f, input);

infile.close();
}

c++ Programmer's Guide-October 1992

seekg(seekp) can take one or two parameters. When it has two parameters,
the first is a position relative to the position indicated by the seek_dir value
given as the second parameter. For example, the following code moves to 10
bytes from the end:

aFile.seekp(-lO, ios::end)i

While this second example moves to 10 bytes forward from the current
position:

aFile.seekp(lO, ios: :cur) i

5.6 Assigning Iostreams

106

Earlier versions of c++ allowed assignment of one stream to another. This is no
longer allowed. The C++ 3.0.1 Language System Library Manual briefly discusses
this:

Assignment of streams is not possible in general but the predefined
streams have special types which allow it.

This problem is discussed also in the C++ 3.0.1 Language System Library Manual:

The old stream library allowed assignment of one stream to
another. Such assignments should be changed to user pointers or
references to streams in iostreams.

The problem with copying a stream object is that there are two versions of the
state information (such as a pointer to the current write point within an output
file), which may be changed independently. This could cause havoc.

Although Stroustrup's book, The C++ Programming Language, indicates that it is
possible to copy streams, he implies that this is usually used for initialization.
This is borne out by the available examples, such as:

cout = cerr

There is no need (beyond initialization) to copy stream objects. Most streams
(such as fstream) need no object copy at all.

c++ Programmer's Guide - October 1992

5.7 Format Control

108

If, however, we replace void print (fstream b) with void
print (fstream &b), then it compiles without error as follows:

tutorial% CC t.e
cc -Wl,-L/c++/cfront/2.00 t.c -lC

If fstream were an ordinary class, passing it would create a new instance of
fstream and initialize it by doing a member by member copy from instance a.
It turns out, however, that iostream has carefully defined operator= and
ios (ios&) as private to prevent this default behavior.

Consider another case. The following test code example:

#include <stream.h>
void foo(ostream s)

s « "Hello\n";

main()
foo (cout) ;

will cause a compilation error:

tutorial% CC report2.c
Ireport2.c", line 9: error: ostream::ostream() cannot

access ios: :ios(): private member
1 error

If you tried hacking iostream.h to make ios: : ios () public, you would get
a linker error for no definition for ios: : ios (). If you looked closely at source
code, you would realize that you could change the functions expecting
os tream to take os tream &.

Fprmat control is discussed in detail in the C++ 3.0.1 Language System Library
Manual and in the lOS man page.

c++ Programmer's Guide - October 1992

110

To use predefined manipulators, you must include the file iomanip . h in your
program.

You can easily define your own manipulators and parameterized manipulators.
There are three basic types of manipulators:

• Macro-type manipulators, which use #define statements.

• Plain manipulators, which take an istream& or ostream& argument,
operate on the iostream, and then return istream& or ostream. You use a
plain manipulator by inserting it into or extracting it from an iostream.

• Parameterized manipulators
which are functions that return other manipulators.

The following subsections give examples of each type.

Manipulators Using Macros

Here is an example of a macro manipulator that simply inserts a newline.

#define eol "\n" « flush
cout « "y = " « y « eol

Parameterized Manipulators

One of the manipulators that is not included in iostream sets the fill character
controlled by the format state variable fill.

Here is a definition for the parameterized manipulator set fill:

ostream& ios_setfill(ostream& ios, int f) {
ios.fill(f);
return ios;
}

ioap setfill = ios_setfill;

An ioap is a class that looks like a function. The type of the result of applying
an ioap to an int is an iomanip. An iomanip is a data structure that contains
both the functional value and the int parameter. The inserter (and extractor)
for iomanip applies the functional value in the obvious way. For example,
when an insertion or extraction operator is invoked, as in the following code:

c++ Programmer's Guide - October 1992

112

this purpose. For example, to declare types analogous to ioap and iomanip
for use with a manipulator with an extra iostream* argument, use a
statement like

IOMANIP(iosptr_rnanip, iosptr_ap, ostrearn*);

This declares two classes, iosptr_manip and iosptr_ap, for use with an
extra os tream * argument.

Here is an example of a field manipulator for floating point-numbers:

IOMANIP(dbl_rnanip, dbl_ap, double);
ostream& do_dbl(ostream& ios, double x)

int oldp = ios.precision();
ios.precision(12) i

ios « Xi

ios.precision(oldp)i
return iOSi

dbl_ap dfield = do_dbli
cout « dfield(3.14) i

To create a manipulator with two extra arguments, use the macro IOMANIP2 .

(There are no macros for defining manipulators with more than two extra
arguments.) For example:

IOMANIP2(icp_manip, icp_ap, int, char*);
ostream& repeat_str(ostrearn&, ios, int n, char* s) {

while (ios && --n >= 0) ios « Si

return iOSi

icp_manip tentimes(repeat_str, 10) i

cout « tentimes("a") i

This produces the following output:

aaaaaaaaaa

c++ Programmer's Guide - October 1992

5.11 Streambufs

114

Iostreams are actually the formatting part of a two-part input/output system.
The other part of the system is made up of streambufs, which deal in input or
output of unformatted streams of characters.

You usually use streambufs through iostreams, so you don't have to worry
about the details of streambufs. However, you can use streambufs directly if
you choose to, for example, if you need to improve efficiency or to get around
the error handling or formatting built in to iostreams.

How Streambufs Work

A streambuf consists of a stream or sequence of characters and one or two
pointers into that sequence. One of the two possible pointers is a put pointer,
while the other is a get pointer. A streambuf can have one or both of these
pointers.

Position of Pointers
Each pointer points between two characters; the get pointer points just before
the next character that will be fetched; the put pointer points just before the
position of the next character delivered. (You can also think of the position of
the put pointer as just after the last character delivered, but the pointer may
have been moved since the last character was actually delivered or may be
moved before the next character is delivered.)

The positions of the pointers and the contents of the sequences can be
manipulated in various ways. Whether or not both pointers move when one
pointer moves depends on the kind of streambuf used. Generally, with queue­
like streambufs, the get and put pointers move independently; with file-like
streambufs the get and put pointers always move together.

Using Streambufs

See the C++ 3.0.1 Language System Library Manual for information on using
streambufs.

c++ Programmer's Guide - October 1992

Describes the interface needed by programmers who are coding a class
derived from class streambuf. You may also want to see sbuf. pub (1),

because some public functions are not discussed in this man page.

sbuf .pub
Details the public interface of class streambuf. In particular, this man page
describes the public member functions of streambuf.

This man page contains the information you need if you want to use a
streambuf-type object directly, or if you want to find out about functions
that classes derived from streambuf inherit from it. If you want to derive a
class from streambuf, see sbuf .prot.

stdiobuf
Contains minimal description of class stdiobuf, which is derived from
streambuf and specialized for dealing with stdio FILE. See the
sbuf . pub (1) and sbuf . prot (1) man pages for details of features
inherited from class streambuf.

strstream
Details the specialized member functions of strstreams, which are
implemented by a set of classes derived from the iostream classes and
specialized for dealing with arrays.

ssbuf
Details the specialized public interface of class strstreambuf, which is
derived from s treambuf and specialized for dealing with arrays. See the
sbuf . pub (3) and sbuf.prot(3) man pages for details of features inherited
from class streambuf.

5.13 Iostream Terminology

116

The iostream package has similar or identical terms that are used differently.
This section defines those terms as they are used in discussing the iostream
package.

Buffer
A word with two meanings, one specific to the iostream package and one
more generally applied to input and output.

C++ Programmer's Guide - October 1992

118

Class iostream has an object of class streambuf as a member. A
streambuf presents a simple sequence of characters that may have pointers
for input and output associated with it. An iostream uses the streambuf
and adds formatting so you can deal with output or input of specific data
types (including class types). In addition, output iostreams can take
formatting commands to change the way printed information appears.

Iostream package
The package implemented by the include files iostream.h, fstream.h,
s trs tream. h, iomanip. h, and s tdios tream. h. In the nature of object­
oriented packages, this is intended to be extended by programmers who use
it; some of what you can do with this package is not actually implemented
in it.

Pipestream
An iostream specialized as a circular queue.

Stream
An iostream, fstream, strstream, pipestream, or user-defined stream in
general.

streambuf
An object of class streambuf (printed in courier font).

Streambuf
A buffer that contains a sequence of characters with a put or get pointer, or
both (printed in default font). Generally an object of class streambuf or a
class derived from streambuf.

Strstream
An iostream specialized for use with arrays.

c++ Programmer's Guide-October 1992

6.1 Structure of the Co-Routine Classes

6.2 Objects

120

The co-routine library provides six basic kinds of objects.

Table 6-1 Six Basic Objects in a Co-routine Library

Object Action

Tasks Co-routines. When you want to create a task, you derive a
class from the predefined class task. You put the action or
program of the task in the constructor of the new class.

Schedulers Control the basic operation of a program, specifically
choosing which task runs next. There is one scheduler per
program.

Queues Data structures that allow you to make ordered collections
of objects.

Timers Classes that allow you to implement timeouts and other
time-dependent functions.

Histograms Data structures provided to help gather data.

Interrupt handlers Classes that represent external events.

In addition, two important base classes are defined.

Table 6-2 Two Base Classes in a Co-routine Library

Object

Class object

Class sched

Action

Provides a basic definition of an object.

Provides a basic definition for an object that knows
about time. Used as a base class for the classes timer
and task, as well as being the class for schedulers.

The co-routine library defines class object as a base class for every other class
in the library. You can derive from object yourself; in particular, messages
passed between tasks are usually instances of classes derived from class
obj ect. (Queues, which often store messages, can only store obj ect-type
objects.)

c++ Programmer's Guide - October 1992

Class task

122

A task is an object of a class derived from class . task The action of a task is
contained in the constructor of the task's class; if a task is like a process then
the constructor is like the program running in the process. Because of the
nature of co-routine programming, the constructor of a task never completes
until the program as a whole completes.

A task is always in one of three states:

• RUNNING - Executing instructions or on the scheduler's ready-to-run list.

• IDLE - Suspended; that is, waiting for something to happen before
returning to RUNNING.

• TERMINATED - Completely done running. It cannot return to a
RUNNING or IDLE state. However, it is not completely dead because
another task can access its result.

c++ Programmer's Guide-October 1992

124

Parts of a Task
This table discusses each line of the public part of class task.

task(char* =0,
int =0, int =0

-task ()

waitvec to sleep

void
resultis(int)

void cancel (int)

void swap_stack(­
int*, int*,
int*,int*,int*);

Constructor for class task. Every derived class has
its own constructor that contains the "'program" of
the task. When you create an object of your derived
class, you can optionally pass parameters to task ().

Destructor for class task. This takes care of default
destruction. task* t_next inserts the class in
. task_chain task_chain is a chain of tasks cre­
ated by task () . A new task is placed at the start of
task_chain. It is used by task () and -task () .

String naming the task provided for use by debug­
ging aids and error reporting functions. Value of the
optional first parameter of .task (). A task does
not have to have a name.

Functions dealing with suspending this task.
Discussed in Section, "Waiting States for Tasks" on
page 126.

Function that returns the result of the task and puts
the task in a TERMINATED state. Takes the place of
the usual function return mechanism and, in fact,
you cannot use return.

Puts the task into the terminated state and sets the
return value just like resul tis does. However,
cancel does not invoke the scheduler, so a task can
call cancel on another task and still retain control.

Function that the scheduler calls when it "wakes up"
the task. Restores the stack frame and other features
of the task environment.

c++ Programmer's Guide - October 1992

126

The implementation of the constructor getString () is very simple:

getString::getString () {
char aString[256];
cout « "Enter String: ";
cin » aString;
resultis ((int) aString);

The declaration for countDollar is also simple:

countDollar::countDollar (getString *theGetter)
char *s;
register int i = 0;
register char c;

s (char*) (theGetter->result ());
while (c = *s++) {

if (c == '$') i++;

resultis (i);

The main program looks like this:

void main() {
getString getter;
countDollar counter (&getter);
cout« "Result is: "«counter.result()«"\n";
thistask->resultis(O); lithe main routine is also a

II task and should be terminated by resultis()

Waiting States for Tasks

When a task needs to wait, generally for some other task to take some action or
produce some information, it needs to change its state to IDLE. Later, when the
condition that led to its suspension no longer exists, the task needs to change
its state back to RUNNING. The definition of class task provides a number of
means to achieve that behavior.

c++ Programmer's Guide - October 1992

128

You can put a task to sleep by calling the following void function:

void sleep(object* t = 0)

A task calls sleep () on itself. The calling task goes to sleep until the object
pointed to by the parameter is no longer pending. If the task is not pending
when you execute this call, the calling task goes to sleep indefinitely.

If you don't give a pointer as follows, your task goes to sleep indefinitely:

sleep () ;

Waiting for an Object
A task can wait for another task to take some unspecified action. You do so
with the wai t () task member function.

You can make a task wait by calling:

void wait (object* ob);

A task calls wai t () on itself. The calling task waits until the object pointed to
by the parameter is no longer pending. If the task is not pending when you
execute this call, the calling task continues execution immediately.

If you give a null pointer as follows, your task waits indefinitely:

wait(O) ;

Waiting for a List of Tasks
Tasks have two member functions that let them wait for one of a list of pending
objects to become no longer pending. The two functions are:

int waitlist(object* ...);
int waitvec(object**);

You give wai tYee a list of objects to wait for. They can be queues or tasks.
For example:

qhead* firstQ;
qhead* secondQ;
taskType* aTask;

int which = waitlist(firstQ, secondQ, aTask, 0);

c++ Programmer's Guide - October 1992

FIFO Queues

130

A more concurrent way to write these tasks is to give them a different way of
passing information and let each routine loop indefinitely. For example, you
could write countDollars () like this:

countDollars: :countDollars()
{

while (1)
{

}

//get a string somehow
//process the string
//pass the total on

Appendix B, "Co-Routine Examples," gives the full text of a program written
this way.

The mechanism provided by the co-routine package for such intertask
communication is embodied in queues. A queue is a data structure made up of
a series of linked objects. Two kinds of queues are: circular queues and first-in­
first-out (FIFO) queues with ahead and a tail.

Both kinds of queues can hold only descendants of type obj ect.

A FIFO queue is made of two objects: a qhead and a . qtai 1. You create a
queue by creating a qhead object for it. You then create a tail by calling the
member function of qhead :

qtail* tail() i

You can place objects on the queue with the member function of qtail (the
return value is 1 if the action is successful) :

int put(object*)

and take objects from the queue with the member function of qhead:

object* get ()

You can also put an object back at the head of the queue with the qhead
member function:

int putback(object*)

You can use this to treat a queue head like a stack.

c++ Programmer's Guide - October 1992

132

The implementation for countDollars is:

countDollars::countDollars(qhead *stringQ,qtail * countQ)
{

} ;

register char Ci

stringHolder *inrnessagei
while (1) {

inrnessage = (stringHolder *) stringQ->get();
char *s = inrnessage->theStringi
register int i = 0;
while (c = *s++)

if (c == '$') i++i
numDollars *num = new numDollars(i);

countQ->put(num)i

Since countDollar is first created in the main program (which is different
from the original version, where it couldn't be created first), when
countDollar () tries to get a message from the queue, countDollar
suspends because there is no message. This is because it is the default waiting­
type queue. At this point, the main program creates the string getter. Here is
the implementation of getString () :

getString::getString(qhead *countQ,qtail* stringQ)
{

} i

numDollars * cmessagei
while (1) {

cout « "Enter a string. Use Control-C to end
session. "i

char aString[256];
cin » aString;
stringQ->put(new stringHolder(aString))i
cmessage = (numDollars *) countQ->get()i
printf("The number of dollar signs was %d\n"

,cmessage->dollars);

c++ Programmer's Guide - October 1992

134

6.5 The Scheduler

You can find out how many objects are in a queue with the qhead member
function int rdcountO.

You can find out how many more objects can be inserted in a queue with the
qtail member function int rdspaceO.

Although you don't deal directly with the task scheduler, it oversees the life of
tasks; you may need to know some of the principles under which it operates.

• The main activity of the scheduler is maintaining the run chain. The run
chain is the list of tasks that have state RUNNING and therefore are ready
to run.

• The scheduler runs "in between" tasks. In other words, it does what it has to
do after a task has given up execution and before it starts up the next task
on the run chain.

• When a task changes its state from IDLE to RUNNING, the scheduler adds
it to the end of the run chain.

• When a task gives up execution but does not change its state (still has the
state RUNNING), the scheduler puts it on the end of the run chain.

• The scheduler cannot preempt a task (also, a task cannot preempt another
task). The currently running task stops execution only when it wants to or
when it asks for information that is not yet available.

• If the run chain is empty and there are no interrupt handlers, the scheduler
exits because no task can become RUNNING.

6.6 Task Library Limitations

The task library is "flat" in the sense that a class derived from task may not
have derived classes. That is, only one "level" of derivation is allowed. This is
not a bug; this is the way the library was designed, and reflects the way the
tasks are manipulated on the stack. The enhancement of allowing multiple
levels would require a rewrite of the current implementation.

If you need to have the certain sets of tasks share information, a multiple
inheritance scheme needs to be adopted.

c++ Programmer's Guide - October 1992

136

#include <task.h>

const int NO_OF_TASKS = 2;
const int MAX_ITERATIONS 5;

class task_info_to_share
static int task_count;
int sharedinfo;

protected:
task_info_to_share (){

if (task_count)
task_count++;

else
task_count= NO_OF_TASKS;

II main is created with the 1st task
sharedinfo = 0; }

public:

} ;

static int get_task_count(){
return task_count; }

int get_sharedinfo(){
return sharedinfo;

int set_sharedinfo(int i){
int info = sharedinfo;
sharedinfo= i
return info; }

I/Caveat: members of class task_info_to_share will not
Ilbe accessible via the thistask pointer, since that is
I/onlya pointer to a task.

I/Use of mUltiple inheritance here is used to share
I/information from class task_info to share. Note that
I/this is one flat level of inheritance.

struct pc : public task, public task_info_to_share
pc (char*, qtail*, qhead*);

} ;

c++ Programmer's Guide - October 1992

138

The output of the previous is as follows:

main
new pc(a)
task_count (2)
main() 's loop
new pc (b)
task_count = (3)
main () 's loop
new pc(first pc)
task_count = (4)
main: task_count = 4
main: task_chain is:

task
task first pc (IDLE) this = d350:

task
task b (IDLE) this = d2a8:

task
task a (IDLE) this = dlbO:

task
task main (is thistask, RUNNING): this = b450:

task
task Interrupt_alerter (IDLE) this ab38:

main: here we go
main: exit
task b
task a
task first pc
task b
task a
task first pc
task b
task a
task first pc
task b
task a
task first pc

c++ Programmer's Guide - October 1992

140 c++ Programmer's Guide - October 1992

142

7.1 Type Complex

The complex arithmetic library defines one class: type complex. An object of
type complex can hold a single complex number. The complex number is
constructed of two parts: the real part and the imaginary part. The numerical
values of each part are held in double fields. Here is the relevant part of the
definition of type complex:

I class complex {
double re, imi

The value of an object of type complex is a pair of double values. The first
value represents the real part; the second value represents the imaginary part.

Constructors of Type complex

There are two constructors for type complex. Their definitions are:

complex() { re=O.Oi im=O.Oi
complex(double r, double i = 0.0) {re=ri im=ii }

If you declare a complex variable without parameters, the first constructor is
used and the variable is initialized so that both parts are o. For example,
complex aComp; creates a complex variable whose r<eal and imaginary parts
are both o.

If you give parameters, you can give one or two parameters. In either case, the
second constructor is used. When you give only one parameter, it is taken as
the magnitude for the real part and the imaginary part is set to o. For example,
complex aComp(4.533); creates a complex variable with the value 4.533 + Oi.

If you give two values, the first is taken as the magnitude of the real part and
the second as the magnitude of the imaginary part. For example,
complex aComp(8.999, 2.333); creates a complex variable with the value
8.999 + 2.333i.

You can also create a complex number using the polar function. The polar
function creates a complex value given a pair of polar coordinates (magnitude
and angle).

There is no special destructor for type complex.

c++ Programmer's Guide - October 1992

144

Exceptions for cosh:

C_COSH_RE
The real part was too large. A value with the correct angle and a huge
magnitude was returned.

C_COSH_IM
The imaginary part was too large. A value with real and imaginary part
of 0 returned.

Exceptions for exp:

C_EXP _RE_POS
The imaginary part was too small. A value with the correct angle and a
huge magnitude was returned.

C_EXP _RE_NEG
The real part was too small. A value with real and imaginary part of
o returned.

Exceptions for log:

C_LOG_O
The real and imaginary parts were both o. The same value returned.

Exceptions for sinh:

C_SINH_RE
The real part was too large. A value with the correct angle and a huge
magnitude was returned.

C_SINH_IM
The imaginary part was too large. A value with real and imaginary part
of 0 returned.

7.3 Mathematical Functions
The complex library provides 15 mathematical functions. Five are peculiar to
complex numbers; the rest are complex number versions of functions in the
standard C mathematical library.

c++ Programmer's Guide - October 1992

polar
Takes a pair of polar coordinates that represent the magnitude and angle of
a complex number and returns a complex number with the given magnitude
and angle.

pow
This function takes two arguments. In the following example, it raises a to
the power of b:

pow(a, b)

For example, to calculate (l-i)**4, enter:

pow(complex(l,-l) ,4)

This will produce the value (-4,0).

real
Returns the real part of a complex number.

sin
Returns the sine of its argument.

sinh
Returns the hyperbolic sine of its argument.

sqrt
Returns the square root of its argument.

7.4 Input and Output

The complex library provides extractors and inserters for complex numbers.
(See The C++ Programming Language for basic information on extractors and
inserters.)

146

For input, the complex extractor » extracts a pair of numbers surrounded by
parentheses and separated by a comma from the input stream, and reads them
into a complex object. The first number is taken as the magnitude of the real
part; the second as the magnitude of the imaginary part.

c++ Programmer's Guide -October 1992

148 C++ Programmer's Guide - October 1992

8.2 C++ Constructs

Naming Conventions

150

In general, variable and function names should consist of lowercase letters;
exceptions are listed in the following subsections. Multiword names should
use underscore{ _) to separate the words. For example:

draw_circle(), get_value(), maximum_rectangle_width

Manifest Constants
Manifest constant names defined with #de fine should be all uppercase
letters. For example:

#define MAX_HEIGHT 30

The use of #define constants is discouraged; use canst or enum instead.

User-Defined Types
In C++, the class, struct, union, and enum tags are type names, and can be
used in the same way as typedef names in C. Therefore, they should follow
the naming conventions for all user-defined types. The first letter of class,
struct, union, and enum names should be capitalized; all other letters
should be lowercase or underscore. You might also capitalize the first letter or
append _t (underscore t) to any types you create through typedef.

class rodent { } ; II not recommended
typedef int rat; II not recommended

class Rodent { } ; II better
typedef int Rat; II better
typedef int Rat_t; II better

c++ Programmer's Guide - October 1992

152

Use of canst

Useofenum

A const object is one that is not allowed to change. A variable that is never
known to be modified after initialization should be declared a const. Not only
does this help other programmers, but it also allows the compiler to perform
some optimizations that might not otherwise be possible. A const object
should always be used in preference to a #de fine manifest constant or literal.

A const formal parameter of a function means that the function does not
change the parameter. Formal parameters should be declared cons t if they are
pointers or references and they are not changed in the call. Failure to do this
will prevent other functions from calling that function with a cons t
parameter. All class member functions that do not change the class object
(*this) should also be declared const. For example:

class Foo {
public:

get_val () const;
} ;

Only cons t member functions may be called for cons t class objects.

When there are a set of related constants, they should be defined as an
enumeration, rather than as separate constants. For example:

II not recommended:
const int color_red = 0;
const int color_green = 1;
const int color_blue = 2;

II better:
enum Color { red, green, blue };

The enums are full-fledged types in C++ and their use allows the compiler to
do stronger type checking.

c++ Programmer's Guide-October 1992

154

The exceptions to these rules are constructors and destructors. Constructors
cannot be virtual. Destructors should be virtual if there is a virtual function
member, but cannot be pure virtual. See "Constructors and Destructors" on
page 161.

Structures versus Classes

The keywords struct and class are interchangeable except for different
default member access types (public for struct and private for class). To
avoid confusion, s truc t should be used only when the structure would
qualify as a valid C structure; that is, when there are no private or protected
members and no member functions (including constructors and destructors).
The class keyword should be used in all other cases.

Class Declarations

A C++ class declaration has several elements: public members, protected
members, private members, and friend declarations. The complete declaration
of a major class can be very large and complex. A consistent layout style for the
class elements increases readability and allows you to quickly find any
particular element. A consistent style also allows construction of a simple class
pretty-printer that outputs class declarations (with only the public members
visible) for other programmers who might use the class.

There are two ways you might declare the elements of a class. This is the first
way:

public members

protected members

private members

friend declarations

c++ Programmer's Guide-October 1992

156

Type declarations

Data members

Constructors (default constructor first, followed by other constructors)

Destructors

Overloaded operators

Other member functions

The colon separating a class name from its derived class name should have a
space on both sides of it. The labels public, private, and protected within the
class body should start in the same column as the class keyword so as to stand
out from the member declarations. An alternate style is to indent them four
spaces.

Defining Member Functions

As a general rule, member functions should be defined outside the class body.
There are several reasons for this.

• It increases the separation between the class interface and its
implementation by hiding the implementation of the class methods from
users of the class.

• It makes it easier to change between in-line and non in-line versions of the
functions since member functions defined outside the class body are not
automatically in-lined.

• It makes the class definition less cluttered and easier to read.

Occasionally you might want to define very simple member functions inside a
class body. This is acceptable under the following circumstances:

• If the member function is very simple, consisting of not more than a few
lines of source code. (This is the same as one of the criteria used to
determine whether or not to make a function an in-line function.)

• If the member function is intended to always be an in-line function.

C++ Programmer's Guide - October 1992

158

Further, inlining increases code size, causing larger programs. This, in turn,
causes the system to do more paging operations, which could easily
overwhelm any saved call/return overhead. Hence, functions whose body
contains more than a few lines of code should not be in-lined (and should also
not be defined inside a class body).

Inlining also makes debugging more difficult because in-lined functions lose
their identity. One way to resolve this is to use the cfront compiler flag +d
during development. The +d flag keeps all functions from being in-lined, even
those which have been explicitly declared as in-line. For the production
compile, remove that flag. The inl ine keyword is only a recommendation to
the compiler; the compiler mayor may not in-line a function depending on the
function's complexity. In C++ 3.0, the -g flag will automatically turn on the
+d flag.

Using Overloaded Functions

Be careful if you use overloaded functions with similar arguments that might
be converted, particularly if they are used in several files. Put the declarations
in one header file. For example,

sts *alloc_and_init (int size);
sts *alloc_and_init (enum foobar info);

One of your files could have a bug that the compiler cannot report if one of the
declarations is missing.

sts *alloc_and_init (int size);

enum foobar a;
c_structure *foo;

foo = alloc_and_init (a); II BUG: 'a' converted to int

Using Operator Functions

The use of operator functions can potentially make code difficult to
understand. Their infix use may disguise the fact that an expression is actually
a function call on class-type operands.

c++ Programmer's Guide - October 1992

160

Constructor Initialization Lists

Initialization is distinct from assignment, both conceptually and semantically.
Class constructors are called in the context of initialization; so the members
should be initialized in the initialization list for the constructor rather than
assigned in the body of the constructor.

class Complex {
double r, i;

} i

Complex() { r = 0.0; i = 0.0; }II inferior
Complex(double x, double y) { r = x; i = y; }II inferior

class Complex {
double r, i;

} ;

Complex(): r(O.O), i(O.O) { }II preferred
Complex(double x, double y): r(x), i(y) { }II preferred

Declarations inside a for Initializing Statement

C++ allows variables to be declared inside the initializing statement of a for
loop. The scope of such variables is not the for loop, as you might expect from
its lexical location, but extends to the end of the block enclosing the f or loop.
This can cause considerable confusion. For example, the following code
fragment does not terminate.

for (int i=O; i<10i) {
for (int i=Oi i<10; i++) {

II

i++; II CAUTION: refers to inner i!

c++ Programmer's Guide - October 1992

162

Using Virtual Destructors
As a rule, if a class has virtual functions, give it a virtual destructor. Look at
the following example. The destructor for the derived class will not be called.
Memory will probably be left undeleted.

class Base {
I I ...
Base() ;
-Base() ;

} ;

class Derived public Base {
I I ...
Obj () ;
-Obj ();

} ;

void f ()

Usingbzero ()

Base * b = new Derived; II create a Derived object
delete *b; II delete a Base object, not a Derived object

It is a common practice in C to zero out C structures by using bzero (). This
should not be done if those structures are converted to C++ objects, since you
might destroy the virtual pointer within the object. The correct method is to
zero out each field of the object explicitly.

c++ Programmer's Guide-October 1992

164

The guard name is created by turning the file name to all uppercase characters,
preceding it with an underscore, and replacing all nonalphanumeric characters
with an underscore. The last line in the file is the # endi f as follows:

#ident String
After the guard, there should an #ident line that contains a standard sees ID
string. The sees ID should contain the magic string @ (#) , the module name,
the sees version number, the date of last modification, and a company
designator. sees will automatically insert this information if the following
string is used:

#ident "%Z%c++sty1e.mif 2.190/11/05 XYZ"

A tab character appears between #ident and the double quote.

Block Comment
Next is a block comment describing the purpose of the header file and the
objects contained within. The description should be concise.

#include
Any include files come next. All additional header files that are required by the
inc 1 ude file should be included, so that you or another programmer do not
have to do this. Double quotes around the included file name allow for greater
flexibility at compilation time. For example:

#include "dir/foo.h"

Absolute path names should be avoided in include statements.

#define
Any define statements that are global to the module but not specific to a
member of a class or structure come next.

Try to avoid define statements. For single-value macros, enum or cons t
variables should be used instead. For parameterized macros, in-line functions
should be used instead. Your program will be easier to debug and understand.

c++ Programmer's Guide - October 1992

166

Here are some ways to work around the problem:

• Write smaller header files.

Usually, one class per file is a good rule to follow. If several closely related
small classes are often used together, you may want to put the class
declarations into the same header file. This will reduce the amount of time
acpp needs to open/close multiple header files.

• Write organized. cc files.

Do not put unrelated functions into the same file. Group logically related
functions together to reduce the number of unrelated header files that need
to be included into the same. cc file.

• Enclose header files with #ifndef I #define or #endifs directives.

Always enclose header files with #ifndef, #define, or #endif acpp
directives. In large C++ applications, it will prevent you from the accidental
multiple inclusion of header files.

• Include (or nest) header files in other header files only when absolutely
necessary.

Including unnecessary header files in other header files instead of . cc files
is usually the main cause of large include problems. Many of the header
files are actually more appropriate in the. cc file than the header file.

The procedure for reducing the number of header file includes statements is
simple. Look at the include statements in each header file. For each
inc 1 ude, see if the types defined in that file are referenced in the header
file.

In the following examples the # inc 1 ude statement should be in the header
file.

• Base. h defines a base class of one of the classes in a header file. Therefore,
it should be included in that header file. For example:

#include "Base.h"

class Obj : public Base {

} ;

c++ Programmer's Guide - October 1992

8.5 Source File Structure

168

The format of a source file is similar to that of a header file.

II Copyright (c) 1990 by XYZ, Inc.

#ident U@(#)foo.h 1.1 90104/23 XYZ u

II Functions to manipulate object foo

{#includes}
{#defines}
{typedefs}
{class declarations}
{global variables definitions}
{local function declarations}
{local function definitions}
{class function definitions}

Copyright notice
The first line of the file should be a comment containing a copyright notice.

II Copyright (c) 1990 by XYZ, Inc.

The #ident String
As with header files, source files contain a #ident string containing a
standard sees identification string.

Block Comment
Next, a block comment describes the purpose of the source file and the
functions contained within. The description should be concise.

The #includeFile
Any include files come next. Only those header files needed directly by the
source file should be included. It is assumed that those header files include any
additional header files needed indirectly.

c++ Programmer's Guide - October 1992

8.6 Additional Miscellaneous Guidelines

170

Avoid declaring anything global. Globals are problematic, especially in
libraries. The problems with global variables include:

• They pollute the global name space, increasing the potential for name
conflicts.

• They are directly referenced by functions, causing those functions to have
side effects and making the program harder to understand.

• A global variable contains state for the program, that is, the operations
depending on that global cannot be parameterized.

• They cause trouble for multithreaded applications, since each thread does
not have its own copy of the data.

The number of global variables or functions in a program can be reduced by a
more object-oriented programming approach. With this approach, the program
state is contained within the objects rather than being global to all objects. If
global variables or functions still remain, consider defining them as static class
members. Although static class members also have the same problems as the
last two items listed above for globals, their access is more controlled and their
names are scoped within the class.

Avoid using unions, because union types defeat strong type checking and can
be difficult to inspect in a debugger.

c++ Programmer's Guide - October 1992

9.2 How to Use this Chapter

172

1. Study the above sample and Section 9.3, "Getting It Right," on page 173.

2. Turn to Section 9.5, "FORTRAN Calls C++," on page 180 or Section 9.6,
"C++ Calls FORTRAN," on page 202.

3. Within any of the two sections mentioned in step 2, choose one of these
subsections:

•
•
•
•
•
•

Arguments Passed by Reference
Arguments Passed by Value
Function Return Values
Labeled Common
Sharing I/O
Alternate Returns

4. Within any of the subsections mentioned in step 3, choose one of these
examples:

For the arguments, there is an example for each of these:

•
•
•
•
•
•
•

Simple types (character*l, logical, integer, real, double precision)
Complex types (complex, double complex)
Character strings (character*n)
One-dimensional arrays (integer a(9»
Two-dimensional arrays (integer a(4,4»
Structured records (structure and record)
Pointers

For the function return values, there is an example for each of these:

•
•
•
•
•
•

Integer (int)
Real (float)
Pointer to real (pointer to float)
Double precision (double)
Complex
Character string

For each of labeled common, sharing I/O, and alternate returns, there is one
set of examples.

If anyone of these cannot be done, a statement says so.

c++ Programmer's Guide - October 1992

Data Type Compatibility

The REAL * 16 and the
COMPLEX * 3 2 can be
passed between
FORTRAN and C++,
but not between
FORTRAN and some
previous versions of
C++.

Note: C++ does not
support long double

174

Default data type sizes and alignments (that is, without -f, -i2, -misalign,
-r4, or -r8) are shown in Table 9-1.

Table 9-1 Argument Sizes and Alignments - Pass by Reference (No Options)

FORTRAN Type C++ Type Size Alignment
(bytes) (bytes)

byte x char x 1 1

character x char x 1 1

character*n x char x[n] n 1

complex x struct {float r,ii} Xi 8 4

complex*8 x struct {float r,ii} Xi 8 4

double complex x struct {double dr,dii }Xi 16 4

complex*l6 x struct {double dr,dii }Xi 16 4

double precision x double x 8 4

real x float x 4 4

real*4 x float x 4 4

real*8 x double x 8 4

integer x int x 4 4

integer*2 x short x 2 2

integer*4 x int x 4 4

logical x int x 4 4

logical*4 x int x 4 4

logical*2 x short x 2 2

logical*l x char x 1 1

Remarks

• Alignments are for FORTRAN types.
• Arrays pass by reference, if the elements are compatible.

c++ Programmer's Guide - October 1992

Underscore in Names of Routines

The FORTRAN compiler normally appends an underscore (_) to the names of
subprograms, for both a subprogram and a call to a subprogram. This
distinguishes it from C++ procedures or external variables with the same user­
assigned name. If the name has exactly 32 characters, the underscore is not
appended. All FORTRAN library procedure names have double leading
underscores to reduce clashes with user-assigned subroutine names.

Two common solutions to the underscore problem are:

• In the C++ function, change the name of the function by appending an
underscore to that name.

• Use the C () pragma to tell the FORTRAN compiler to omit those trailing
underscores.

Use one or the other, but not both.

Most of the examples in this chapter use the FORTRAN C () compiler pragma
and do not use the underscores.

The C () pragma directive takes the names of external functions as arguments.
It specifies that these functions are written in the C (or C++) language, so the
FORTRAN compiler does not append an underscore to such names, as it
ordinarily does with external names. The C () directive for a particular
function must appear before the first reference to that function. It must appear
in each subprogram that contains such a reference. The conventional usage is
this:

EXTERNAL ABC, XYZ!$PRAGMA C(ABC, XYZ)

If you use this pragma, then in the C++ function you must not append an
underscore to those names.

9.4 C++ Name Encoding

176

To implement function overloading and type-safe linkage, the C++ compiler
normally appends type information to the names of functions. To prevent the
C++ compiler from appending type information to the names of functions,

c++ Programmer's Guide - October 1992

178

Array Order
FORTRAN arrays are stored in" column-major order, C++ arrays in row-major
order. For one-dimensional arrays, this is no problem. This is only a minor
problem for two-dimensional arrays as long as the array is square. Sometimes
it is enough to just switch subscripts.

For two-dimensional arrays that are not square, it is not enough to just switch
subscripts. For arrays of more than two dimensions, this is usually considered
too much of a problem.

Libraries and Linking with the £77 Command

To get the proper FORTRAN libraries linked, use the f 77 command to pass
the.o files on to the linker. This usually shows up as a problem only if a C++
main calls FORTRAN. Dynamic linking is encouraged and made easy.

Example 1: Use f77 to link.

demo% £77 -c -silent RetCmplx.£
demo% CC -c RetCmplxmain.cc
demo% £77 RetCmplx.o RetCmplxmain.o ~ This does the linking.
demo% a.out

4.0 4.5
8.0 9.0

demo% •

Example 2: Use CC to link. This fails. The libraries are not linked.

demo% £77 -c RetCmplx.£
RetCmplx.f:

retcmplx:
demo% CC RetCmplx.o RetCmplxmain.cc
ld: Undefined symbol
_Fc_mult

demo% •

File Descriptors and stdio

~ wrong link command
~ missing routine

FORTRAN IIO channels are in terms of unit numbers. The IIO system does
not deal with unit numbers, but with file descriptors. The FORTRAN runtime
system translates from one to the other, so most FORTRAN programs don't
have to know about file descriptors. Many C++ programs use a set of

c++ Programmer's Guide-October 1992

This occurs transparently and should be of concern only if you try to perform
a READ, WRITE, or ENDFILE but you don't have permission. Magnetic tape
operations are an exception to this general freedom, since you could have write
permissions on a file but not have a write ring on the tape.

9.5 FORTRANCallsC++

180

The following sections discuss the FORTRAN calls within C++

Arguments Passed by Reference (f77 Calls C++)

SimRef.cc

Simple Types Passed by Reference (f77 Calls C++)
For simple types, define each C++ argument as a reference.

extern "e" void simref (
char& t,
char& f,
char& c,
int& i,
float& r,
double& d,
short& si)

t 1;
f 0;
c I z I ;

i 9;
r 9.9;
d = 9.9;
si = 9;

c++ Programmer's Guide - October 1992

182

Compile and execute, with output.

demo% CC -c CmplxRef.cc
demo% f77 -silent CmplxRef.o CmplxRefmain.f
demo% a.out

(6.00000, 7.00000)
(8.0000000000000, 9.0000000000000)

demo% •

A C++ reference to a float matches a REAL passed by reference.

Character Strings Passed by Reference (f77 Calls C++)

Passing strings between C++ and FORTRAN is not encouraged.

For every FORTRAN argument of character type, FORTRAN associates an
extra argument, giving the length of the string. The string lengths are
equivalent to C++ long int quantities passed by value. This differs from
standard C++ use where all C++ strings are passed by reference. The order of
arguments is as follows:

1. Address for each argument (datum or function)

2. The length of each character argument, as a long into

The whole list of string lengths comes after the whole list of other arguments.

The FORTRAN call in:

CHARACTER*7 S
INTEGER B(3)

(arguments)
CALL SAM (B(2), S)

is equivalent to the C++ call in:

char s[7];
long int b[3];

(arguments)
sam_(&b[l], s, 7L);

c++ Programmer's Guide-October 1992

StrRef2.cc

FixVec.cc

Fixvecmain.f

184

Using the Extra Arguments

You can use the extra arguments. In the following example, all this C++ function
does with the lengths is print them; what you really do with them is up to you.

#include <string.h>
#include <stdio.h>

extern "C" void strref (char (&s10) [], char (&s26) [], int LI0,
int L26) {

static char ax[ll] = "abcdefghij";
static char sx[27] = "abcdefghijklmnopqrstuvwxyz";
printf("%d %d\n", LI0, L26);
strncpy(s10, ax, 10);
strncpy(s26, sx, 26);

If you compile StrRef2 . c and StrRefmain. f, then you get this output.

10 26
s10='abcdefghij'
s26='abcdefghijklmnopqrstuvwxyz'

One-Dimensional Arrays Passed by Reference (f77 Calls C++)
A C++ array, indexed from 0 to 8:

extern "C" void fixvec (int V[9], int& Sum)

Sum= 0;
for(int i= 0; i < 9; ++i) {

Sum += V[i];

A FORTRAN array, implicitly indexed from 1 to 9:

integer i, Sum
integer a(9) / 1,2,3,4,5,6,7,8,9 /
external FixVec !$pragma C(FixVec
call FixVec(a, Sum)
write(*, '(9I2, " ->" I3)') (a(i),i=1,9), Sum
end

c++ Programmer's Guide - October 1992

186

FixMatmain.f

Compare a [0] [1]
withm (1,0) :
C++ changed
a [0] [1], which is
FORTRANm(l, 0) .

A 2 by 2 FORTRAN array, explicitly indexed from a to 1, and a to 1:

integer c, m(O:l,O:l) / 00, la, 01, 11 /, r
external FixMat !$pragma C(FixMat)
do r= 0, 1

do c= 0, 1
write (* , ("m (II , 11, " , II , 11, II) = II , 12 . 2) ') r, c, m (r , c)

end do
end do

call FixMat(m
write (*, *)

do r= A, 1
do c= 0, 1

write (* '("m(",Il,",",Il,")=",I2.2) ') r, c, m(r,c)
end do

end do

end

Compile and execute. Show m before and after the C call.

demo% CC -c FixMat.cc
demo% £77 -silent FixMat.o FixMatmain.£
demo% a.out
m(O,O) 00
m(O,l) 01
m(l,O) 10
m(l,l) 11

m(O,O) 00
m(O,l) 01
m(l,O) 99
m(l,l) 11
demo% •

c++ Programmer's Guide - October 1992

188

PassPtr.cc

PassPtrmain.f

Pointers Passed by Reference (f77 Calls C++)
c++ gets it as a reference to a pointer.

extern "C" void passptr (int* & i, double* & d)
{

*i 9;
*d 9.9;

FORTRAN passes by reference, and it is passing a pointer.

program Passptrmain
integer i
double precision d
pointer (iPtr, i), (dPtr, d)
external PassPtr !$pragma C (PassPtr)
iptr = malloc(4)
dPtr = malloc(8)
i = 0
d = 0.0
call PassPtr(iPtr, dPtr
wri te (*, "(i2, f4. 1)") i, d
end

Compile and execute, with output:

demo% CC -c PassPtr.cc
demo% f77 -silent PassPtr.o PassPtr.main.f
demo% a.out

9 9.9
demo% •

Arguments Passed by Value (f77 Calls C++)

In the call, enclose an argument in the nonstandard function %VAL () .

C++ Programmer's Guide - October 1992

FloatVal.cc

FloatValrnain.f

190

Compile and execute, with output.

derno% CC -c SimVal.cc
derno% £77 -silent SimVal.o SimValmain.£
derno% a.out
args=llllll (If nth digit=l, arg n OK)
derno% •

Real Variables Passed by Value (f7 7 Calls C++)
In some previous versions of C++, if C++ passed an argument of type float

by value, C++ promoted it to a double. To avoid this, the macros FLOATP ...

and FLOATP. .. VALUE were used. Using FLOATP ... and FLOATP ...

VALUE is no longer necessary. Compare this example with the first one in this
chapter, Samp. cc and Sampmain. f. In Sampmain. f, FORTRAN passes an
integer and a real by reference to C++; then C++ uses them as references to an
integer and to a real.

#include <rnath.h>

extern "e" void floatval (FLOATPARAMETER f, double& d) {
float Xi

x FLOATPARAMETERVALUE(f);
d = double(x) + 1.0 i

double precision d
real r / 8.0 /
external FloatVal !$pragrna e(FloatVal)
call FloatVal(%VAL(r), d)
write (*, *) r, d
end

Compile and execute, with output.

derno% CC -c FloatVal.cc
derno% £77 -silent FloatVal.o FloatValmain.£
derno% a.out

8.00000 9.0000000000000
derno% •

c++ Programmer's Guide-October 1992

192

PassptrVal.cc

PassptrValmain.f

Pointers Passed by Value (f77 Calls C++)
c++ gets it as a pointer.

extern "e" void passptrval (int* i, double* d)
{

*i 9;
*d 9.9;

FORTRAN passes a pointer by value:

program PassptrValmain
integer i
double precision d
pointer (iPtr, i), (dPtr, d)
external PassptrVal !$pragma e (PassPtrVal)
iptr = malloc(4)
dPtr = malloc(8)
i = a
d = 0.0
call PassPtrVal(%VAL(iptr), %VAL(dPtr)
wri te (*, "(i2, f4.1)") i, d
end

Compile and execute, with output:

demo% CC -c PassPtrVal.cc
demo% f77 -silent PassPtrVal.o PassptrValmain.f
demo% a.out

9 9.9
demo% •

Nonstandard?

Function Return Values (f77 Calls C++)

For function return values, a FORTRAN function of type BYTE, INTEGER,

REAL, LOGICAL, or DOUBLE PRECISION is equivalent to a C++ function that
returns the corresponding type. There are two extra arguments for the return
values of character functions and one extra argument for the return values of
complex functions.

c++ Programmer's Guide - October 1992

RetFloat.cc

RetFloatmain.f

RetPtrF.cc

194

Return a float (f77 Calls C++)

extern "C" float retfloat (float& pf)

float f;
f = pf;
++f;
return f;

real RetFloat, r, s
external RetFloat !$pragma C(RetFloat)
r = 8.0
s = RetFloat(r)
print *, r, s
end

demo% CC -0 RetFloat.oo
demo% £77 -silent RetFloat.o RetFloatmain.£
demo% a.out

8.00000 9.00000
demo% •

In earlier versions of C++, if C++ returned a function value that was a float,
C++ promoted it to a double, and various tricks were needed to get around
that.

Return a Pointer to a float (f77 Calls C++)
This example shows how to return a function value that is a pointer to a
float. Compare with previous example.

static float f;

extern "C" float* retptrf (float& a)

f = a;
++f;
return &f;

c++ Programmer's Guide-October 1992

RetCmplx.cc

RetCmplxmain.f

196

Compile and execute, with output.

demo% CC -c RetDbl.cc
demo% £77 -silent RetDbl.o RetDblmain.£
demo% a.out

8.0 9.0
demo% •

Return a Complex (f 77 Calls C++)
A COMPLEX or DOUBLE COMPLEX function is equivalent to a C++ routine
having an additional initial argument that points to the return value storage
location. A general pattern for such a FORTRAN function is

COMPLEX FUNCTION F (arguments)

The pattern for a corresponding C++ function is

struct complex { float r, i; };
f_ (complex temp, arguments);

Example - C++ returns a type COMPLEX function value to FORTRAN:

struct complex { float r, ii };

extern "C" void retcmplx
RetVal.r w.r + 1.0
RetVal.i = w.i + 1.0
return;

complex& RetVal, complex& w) {

complex u, v, RetCmplx
external RetCmplx !$pragma C(RetCmplx)
u = (7.0, 8.0)
v = RetCmplx(u)
write (* *) u
write (*, *) v
end

c++ Programmer's Guide - October 1992

198

RetStrmain.f

• The returned string is passed by the extra arguments retvalJ)tr and
retval_len, a pointer to the start of the string and the string's length.

• The character-string argument is passed with chJ)tr and ch_len.

• The ch_len is at the end of the argument list.

• The repeat factor is passed as nJ)tr.

In FORTRAN, use the above c++ function as follows:

character String*100, RetStr*50
String = RetStr('*', 10)
print *, "''', String(1:10), "'"
end

demo% CC -c RetStr.cc
demo% f77 -silent RetStr.o RetStr.main.f
,**********,
demo% •

Labeled Common

UseCom.f

c++ and FORTRAN can share values in labeled common. The method is the
same no matter which language calls which.

subroutine UseCom (n)
integer n
real u, v, w
common / ilk / u, v, w
n 3
u 7.0
v 8.0
w 9.0
return
end

c++ Programmer's Guide-October 1992

MixIO.cc

MixIOmain.f

200

If a FORTRAN main program calls C++, then before the FORTRAN program
starts, the FORTRAN I/O library is initialized to connect units 0, 5, and 6 to
stderr, stdin, and stdout, respectively. The C++ function must take the
FORTRAN I/O environment into consideration to perform I/O on open file
descriptors.

Mixing with s tdou t (f 77 Calls C++)
A C++ function that writes to stderr and to stdout:

#include <stdio.h>

extern "C" void mixio (int& n) {
if (n <= 0) {
fprintf (stderr/ "Error: negative line number (%d) \n" / n);
n= 1;

printf ("In c++: line # %2d\n"/ n);

In FORTRAN, use the above C++ function as follows:

integer n/ -9 /
external MixIO !$pragma C(MixIO)
do i= 1/ 6

n = n +1
if (abs(mod(n/2)) .eq. 1) then

call MixIO(n)
else

write (*/ '("In Fortran: line #
end if

end do
end

c++ Programmer/ s Guide - October 1992

i2)') n

Alternate Returns (f 77 Calls C++) - N / A

c++ does not have an alternate return. The work-around is to pass an
argument and branch on that.

9.6 C++ Calls FORTRAN

202

Arguments Passed by Reference (c++ Calls f77)

SimRef.f

Simple Types Passed by Reference (C++ Calls f77)
Here, FORTRAN expects all these arguments to be passed by reference
(default).

subroutine SimRef (t, f, c, i, d, si, sr)
logical*l t, f

character c
integer i
double precision d
integer*2 si
real sr
t .true.
f .false.
C I Z I

i 9
d = 9.9
si = 9
sr = 9.9
return
end

c++ Programmer's Guide - October 1992

CmplxRef.f

CmplxRefmain.cc

204

Complex Types Passed by Reference (C++ Calls f77)

The complex types require a simple structure.

subroutine CmplxRef (w, z)
complex w
double complex z
w = (6, 7)
z = (8, 9)
return
end

In the previous example, wand z are passed by reference (default).

#include <stdlib.h>

struct complex { float r, ii }i
struct dcomplex { double r, ii }i

extern "C" void cmplxref_ (complex& w, dcomplex& Z)i

main () {
complex d1i
dcomplex d2i

cmplxref_(d1, d2)i

printf("%3.1f %3.1f\n%3.1f %3.1f\n", d1.r, d1.i, d2.r, d2.i
) i

exit(O)i

In the previous example, wand z are references.

Compile and execute, with output.

demo% f77 -c -silent CmplxRef.f
demo% CC -c CmplxRefmain.cc
demo% f77 CmplxRef.o CmplxRefmain.o
demo% a.out
6.0 7.0
8.0 9.0
demo% •

c++ Programmer's Guide-October 1992

Arguments Passed by Value (C++ Calls f77) - N/A

FORTRAN can call C++, and pass an argument by value. But FORTRAN
cannot handle an argument passed by value if C++ calls FORTRAN. The work­
around is to pass all arguments by reference.

Function Return Values (C++ Calls f77)

Retlnt.f

For function return values, a FORTRAN function of type BYTE, INTEGER,

LOGICAL, or DOUBLE PRECISION is equivalent to a C++ function that returns
the corresponding type. There are two extra arguments for the return values of
character functions and one extra argument for the return values of complex
functions.

Return an int (C++ Calls f77)

Example: FORTRAN returns an INTEGER function value to c++.

integer function Retlnt (k)
integer k
Retlnt = k + 1
return
end

Retlntmain.cc #include <stdlib.h>

extern "e" int retint - (int&) ;

main) {

int k 8;
int m retint -(k) ;

printf("%d %d\n" , k, m) ;

exit(O)i

206 C++ Programmer's Guide- October 1992

RetDbl.f

RetDblmain.cc

208

Return a double (C++ Calls f7 7)

Example: FORTRAN returns a DOUBLE PRECISION function value to C++.

double precision function RetDbl (x)
double precision x
RetDbl = x + 1.0
return
end

#include <stdlib.h>

extern "C" double retdbl (double&);

main) {
double x = 8.0;
double y = retdbl_(x);
printf("%8.6f %8.6f\n", x, y);
exit(O);

Compile and execute, with output.

demo% £77 -c -silent RetDbl.£
demo% CC -c RetDblmain.cc
demo% £77 RetDbl.o RetDblmain.o
demo% a.out
8.000000 9.000000
demo% •

Return a COMPLEX (C++ Calls f7 7)

A COMPLEX or DOUBLE COMPLEX function is equivalent to a C++ routine
having an additional initial argument that points to the return value storage
location. A general pattern for such a FORTRAN function is

COMPLEX FUNCTION F (arguments)

The pattern for a corresponding C++ function is

struct complex { float r , i; }i

void f_ (complex & I other arguments)

c++ Programmer's Guide - October 1992

RetChr.f

210

A FORTRAN string function has two extra initial arguments - data address
and length. If you have a FORTRAN function of the following form, with no
c++ () pragma,

CHARACTER*15 FUNCTION G (arguments)

and a C++ function of this form

g_ (char * result, long int length, other arguments

they are equivalent, and can be invoked in C++ with

char chars [15] i

g_ (chars, 15L, arguments) i

The lengths are passed by value. You must provide the null terminator.

function RetChr(c, n
character RetChr*(*), c
RetChr = I I

do i = 1, n
RetChr(i:i) c

end do

RetChr(n+l:n+l)
return
end

char(O)

c++ Programmer's Guide - October 1992

Put in the null terminator.

UseCom.f

UseCommain.cc

212

The method is the same no matter which language calls which.

subroutine UseCom (n)
integer n
real u, v, w
common /ilk/ li, v, W

n 3
u 7.0
v 8.0
W 9.0
return
end

#include <stdio.h>

struct ilk_type
float p;
float q;
float r;

} ;

extern ilk_type ilk_
extern "C" void usecom_ (int&);

main () {
char *string
int count = 3;
ilk_.p 1. 0;
ilk_.q = 2.0;
ilk_.r = 3.0;

"abeD"

usecom_(count);
printf("ilk_.p=%4.1f, ilk_.q=%4.1f, ilk_.r=%4.1f\n",

ilk_.p, ilk_.q, ilk_.r);
exit(O)i

C++ Programmer's Guide - October 1992

MixIO.f

MixIOmain.cc

214

Example: Sharing I/O using a C++ main and a FORTRAN subroutine.

subroutine MixIO (n
integer n
if (n .le. 0) then

write(O,*) "error: negative line #"
n = 1

end if

write (* I ("In Fortran: line #
end

#include <stdio.h>

extern "C" {

} ;

void mixio_(int&);
void f_init();
void f_exit();

main () {
f_init();
int m= -9;

for(int i= 0; i < 5; ++i
++m;
if (m == 2 I I m 4)

i2) I) n

printf("In C++ line # %d\n", m);
else {

mixio_ (m);

c++ Programmer's Guide - October 1992

AltRetmain.cc

216

c++ invokes the subroutine as a function.

#include <stdlib.h>

extern "e" int altret_ (int&);

main () {
int k = 0;
int m = altret_(k);
printf("%d %d\n" , k, m);
exit(O);

Compile, link, and execute:

demo% £772.0 -c AltRet.£
AltRet.f:

altret:
demo% aCC -c AltRetmain.cc
demo% £772.0 AltRet.o AltRetmain.o
demo% a.out
k:
20
9 2
demo %

In this example, the C++ main receives a 2 as the return value of the
subroutine, because the user typed in a 20.

c++ Programmer's Guide - October 1992

You can also use this utility to get an index. For example:

tutorial% ctags -v testr.cc str.cc I sort -f > index
tutorial% cat index
main testr.cc 1
operator« str.cc 1
operator» str.cc 1
string: : insert str.cc 1
string::string str.cc 1

The number at the end of the line refers to the page number in the program
listing. In this case all the numbers are 1 because the programs are short and all
functions are defined on one page.

In the previous example, the output that ctags produces is suitable for input
to the vgrind utility, which processes files for improved output appearance.

10.2 The dem Utility

218

When a C++ program has overloaded function names, the C++ translator alters
the names of the functions to produce unique names. These altered names are
called mangled names. The demangler utility, dem, takes C++ mangled names
and produces the function prototypes that must have produced them. For
example:

tutorial% dem _ct_ _6stringFRC6string
__ ct __ 6stringFRC6string == string::string(const string&)

See the dem manual page for more information on the dem program.

C++ Programmer's Guide - October 1992

220

for static destructor.

The demangled names for static constructors and destructors are printed in the
following format:

For static constructors:

static constructor function for <filename>

For static destructors:

static destructor function for <filename>

For example, __ 8 td __ 8 tream_in_c_ is demangled as:

static destructor function for __ stream_in_c •

The file name is left in the mangled format because the c f ron t name
demangling scheme does not preserve enough information to demangle it.

For C++ virtual table symbols, the mangled name takes the following format:

vtbl_ _ <class>
_ _ vtbl_ _ <rootclass> _ _ <derived class>

In the nrn++ output, the demangled names for the virtual table symbols are
printed as:

virtual table for <class>
virtual table for <derived class> derived from <rootclass>

For example, the demangled format of:

vtbl __ 7fstream

is:

virtual table for fstream

and the demangled format of:

_vtbl __ 3ios __ 18ostream_withassign

is:

virtual table for class ostream_withassign derived from ios

c++ Programmer's Guide - October 1992

222

Suppose that the final executable file is named index. Now you can run the
index program as usual. When a program is profiled, the results appear in a
file called man. au t at the end of the run. Every time you run the program, a
new man. au t is created, overwriting the old version. You then use pro f + + to
interpret the results of the profile as shown in the following example.

tutorial% index
tutorial% prof index
%time cumsecs #call ms/call name

14.8 3.88 3918 0.99 write
[_write]

11.5 6.90 count
[mcount]

8.7 9.18 608 3.75 yyparse()
[--yyparse __ Fv]

5.6 10.66 24393 0.06 tlex()

[-tlex __ Fv]
4.9 11. 94 22920 0.06 fputs

[_fputs]
4.0 12.98 16454 0.06 table::look(char*,unsigned char)

[-look __ 5tableFPcUc]
3.3 13.84 24393 0.04 deltok (int)

[_del tok __ Fi]
3.2 14.68 10770 0.08 expr: :typ(table*)

[_typ __ 4exprFP5table]
2.7 15.38 7939 0.09 type::check(type*,unsigned char)

[_check __ 4typeFP4typeUc]
2.2 15.96 24392 0.02 lalex()

[-lalex __ Fv]
1.9 16.46 4382 0.11 _doprnt

[__ doprnt]
1.9 16.96 10147 0.05 lxget (int, int)

[_lxget __ Fi Tl]
..............

In the output all c++ mangled names are decoded and their corresponding
demangled names are also printed. See the pro f manual page for an
interpretation of the profiling results.

C++ Programmer's Guide - October 1992

Note - Some of the following code sample was cut so it could fit on the page.

tutorial% index
tutorial% gprof++ index

index %time

[1] 97.3

[2] 97.3

called/total
self descendents called+self

called/total

parents
name index

children

0.00
0.00
0.00
0.00

34.53
34.53

25.22

12.58

24.85

<spontaneous>
204.63 tart [1]
204.63 1/1 main [3]

0.00 1/1 finitfp_ [204]
0.00 1/1 on_exit [212]

170.11 1/1 main [3]
170.11 1 ProcO () [2]

[_ProcO __ Fv]
31. 77 500000/500000 Proc1 (Record*) [4]

[_Proc1_ _FP6Record]
30.37 500000/500000 Func2(char[31] ,char[31]) [5]

[_Func2 __ FA31_cT1]
0.00 500000/500000 Proc8(int[51] ,int([51])

[-Proc8 - - FA51_iA51 -

In the output, all C++ mangled names are decoded and their corresponding
demangled names are also printed out. See the manual page for gprof++ for
an interpretation of the profiling results and the call-graph.

10.7 The lex++ Utility

224

The lex++ utility is based on operating system 4.1 lex with C++
enhancements so that its output can be compiled by both the C and C++
compilers.

c++ Programmer's Guide - October 1992

{number} { }
%%

Running lex xyz.l produces slightly different output than running SunOS
4.l.x lex on xyz.1.

10.8 Theyacc++ Utility (SunOS 4.1.x only)

226

The yacc++ utility is based on operating system 4.1 yacc, with
enhancements to permit successful compilation under c++. The yacc++

utility is available with SunOS 4.l.x only. yacc++ uses the parser prototype file
yaccpar installed under the same directory where yacc++ resides. If yacc++

does not find yaccpar in that directory, it uses the copy of yaccpar in
/usr/lib.

c++ Programmer's Guide - October 1992

228

% yacc++ nor.mal.y
% cat y.tab.c
#if defined (__ cplusplus) I I defined (c-p1usplus)
#include <c_varieties.h>
#ifdef __ EXTERN_C __
EXTERN_FUNCTION (extern int yylex, ());
#else
extern int yylex() i

#endif
extern void yyerror(char*) ientern int yyparse() i

#endif
#include <malloc.h>

The yacc++ Utility Limitations

c++ 3.0.1 yacc and 2.1 yacc++ (operating system 4.1-based) are different from
2.0 yacc++ (operating system 4.0-based) in that they allow dynamic memory
reallocation of yacc's value and state stacks (expands in multiples of
YYMAXDEPTH).

There is a side effect because of the dynamic memory reallocation: yacc does
not support any class types that define their own assignment operator
functions as YYSTYPE. This can be implemented, but it will involve
considerable performance trade-offs in the resulting program and is not
recommended.

Instead of using the actual class type itself as YYSTYPE, use a pointer to the
class type as YYSTYPE. There is no problem with yacc 3.0 using this scheme,
and the resulting memory allocation and reallocation is more efficient.

Since C++ 2.0,2.1, and 3.0.1 do not allow any class types with constructors,
destructors, or user-defined assignment functions to be member fields of a
union, those classes cannot be member fields of YYSTYPE, if it is a union in
yacc++. This can be circumvented by using pointers to class types instead.

c++ Programmer's Guide-October 1992

You can also run rpcgen without the -c option and compile the resulting C
files with cc. You can link the compiled object modules with the other C++
modules that you provide.

10.10 The vgrindUtility(SunOS4.1.xonly)

230

You can use vgrind with C++ programs. This utility is available on SunOS
4.l.x only. Use the -1 language option to specify the language. For C++ the
option is -lc++.

The vgrind utility uses troff to format the program sources named by the
filename arguments. Comments are placed in italics, keywords in boldface; as
each function is encountered, its name is listed on the page margin. See the
manual page vgrind (1) for more information.

c++ Programmer's Guide - October 1992

string operator+(string);
string operator=(string&);

friend ostream& operator«(ostream&, string);
friend istream& operator»(istream&, string&);
} ;

***************************** str.cc *****************************
II implementation for toy c++ strings package
II header file str.h

#include "str.h"

string: : string (char *aStr)
{

if (aStr NULL)
size 0;

else
size strlen(aStr);

if (size == 0)
data NULL;

else

data = new char[size+1];
strcpy(data, aStr);

void string::insert(char *ins)

char *holder = new char [size + strlen(ins)+l];

strcpy(holder, data);
strcat(holder, ins);

if (data)

} ;

delete data;

size
data

strlen(holder) - 1;
holder;

string string: :operator+(string second)
{

char *holder = new char[size + second. size + 1];
strcpy(holder, data);

232 c++ Programmer's Guide - October 1992

} ;

cout « "first: " « first « "\n";

string sec ("And this is an another.");
cout « "Type in a string II;

cin » sec;
cout « "sec: " « sec « "\n";

string third;
third = sec+first;
cout « "sec + first: " « third « "\n";

third = sec+sec;
cout « "sec + sec: " « third « "\n";

third.insert(" plus");
cout « "with insert:" « third « "\n";

third = third + sec;
cout « "added to itself:" « third « "\n";

234 c++ Programmer's Guide-October 1992

s (char*) (theGetter->result ());
while (c = *s++) {

if (c == '$') i++;

resultis (i);

void main() {
getString getter;

countDollar counter &getter) ;
cout « "Result is: " « counter.result() « "\n";

thistask->resultis(O); II the main routine is also a task
II and should be terminated by resultis()

II Program using queues
#include <task.h>
#include <stream.h>

class getString : public task {
public:

getString(qhead *,qtail*);
} ;

class countDollars : public task {
public:
countDollars(qhead *,qtail*);

} ;

class stringHolder :public object {
pUblic:

} ;

stringHolder(char *aString) {theString
char *theString;

class numDollars:public object {
pUblic:

aString; };

numDollars(int count) {dollars
int dollars;

count; };

} ;

getString::getString(qhead *countQ,qtail* stringQ)
{

236

numDollars * cmessage;
while (1) {

c++ Programmer's Guide-October 1992

238 c++ Programmer's Guide - October 1992

The enhanced +w option issues warning messages for in-line functions that are
not in-lined. You may find this information useful for performance analysis.

C.2 New Enhancements: Release 2.1 to 3.0.1

Release 3.0.1 includes the following enhancements to Release 2.1:

• Template instantiation tools (ptcornp and ptlink)

• Template support

• True nested types

• Generates ANSI C code not K&R C code

• Options -g (debugging)and -0 (optimization) can be used together

For other minor changes, see the c++ 3.0.1 Language System Release Notes.

C.3 C++ 2.1 K&R C and C++ 3.0.1 ANSI C Differences

240

This release of c++ 3.0.1 is based on ANSI C, not K&R C. This section
describes the major differences between C++ 2.1 and 3.0.1 because of this
change:

• acpp predefines the macro _STDC_ (as 0), _TIME_, and _DATE_,
while cpp doesn't.

• acpp specifies that a new-line character immediately preceded by a '\'
character is spliced together. cpp does not allow '\' in places other than
comment and string. For example, the following constructs are legal in
C++ 3.0.1, but not in C++ 2.1:

#def\
ine write printf

II this is a \
comment

c++ Programmer's Guide - October 1992

242

• acpp supports # # as the preprocessor operator, which performs token
passing. It also treats comments found within macro replacement as
whitespace, hence delimiting adjacent tokens.

cpp does not support the # # operator. Instead, you may use a comment as
illustrated:

#ifdef STDC -
#define PASTE (A, B) A##B
#else
#define PASTE (A, B) A/**/B
#endif

• acpp will not replace a macro if the macro is found in the replacement list
during the rescan. cpp will recursively substitute. For example:

#define F(X) X(arg)
F(F)

yields "arg (arg)" with cpp ,and acpp issues the error:

fatal: macro recursion

• acpp supports the #error directive that causes the implementation to
generate a diagnostic message with a user-specified token sequence. cpp
does not support this directive.

• C++ 2.1 allows comments that start in an include file to be terminated in
the file which includes the first file, C++ 3.0.1 does not.

c++ Programmer's Guide - October 1992

244

• C++ 2.1 uses a bottom-up algorithm when parsing and processing partially
elided initializers within braces. C++ 3.0.1 uses a top-down parsing
algorithm. As an example, look at the following program:

#include <stdio.h>

struct A { int a[3], b; } w[2] { {I }, 2 };

main()
{

for (int i = 0; i < 2; ++i)

print("w[%d].a = %d, %d, %d\n", i,
w[i] .a[O], w[i] .a[l], w[i] .a[2]);

print("w[%d].b = %d\n", i, w[i] .b);

When it is compiled and run under c++ 2.1, it gives the following output:

% cc test.cc
% a.out
w[O] .a I, 0, 0
w[O] .b 2
w[l] .a 0, 0, 0
w[l] .b 0

When it is compiled and run under C++ 3.0.1, it gives the following output:

% cc test.cc
% a.out
w[O] .a I, 0, 0
w[O] .b 0
w[l] .a 2, 0, 0
w[l] .b 0

c++ Programmer's Guide - October 1992

c.s New Enhancements: Release 1.2 to 2.0

246

Version 2.0 included significant enhancements to C++ Release 1.2:

• Multiple inheritance

• Default member-wise initialization and assignment

• Ability of each class to define its own new and delete operators

• Type-safe linkage

Type-Safe Linkage and Handling of Overloaded Function Names

Release 2.0 implemented type-safe linkage as described in Bjarne Stroustrup's
paper, "Type-safe Linkage for C++." Now all function names are encoded,
overloading of functions is now implicit (use of the overload keyword is now
optional), and C functions must be explicitly declared as requiring C linkage
(that is, you need to ten the translator those names should not be encoded).
You do so by using the extern "C" declaration.

These changes might have caused some old code to break; however, the new
linkage scheme fixes what proved to be a rather pernicious category of user
bug. Overloading is now independent of the order the functions are declared.
In addition, you gain some degree of type checking across files.

In past releases, the first instance of an overloaded function name was not
encoded. This enabled the user to overload library function names, and still
link with the existing library by defining its instance first. For example:

overload absi
abs (int i) i
double abs(double d)i

complex abs(complex c)i

main() {
int i abs(i) i

will no longer link. abs will be encoded and ld will not find the libc. a abs.
Instead, abs must be declared as requiring C linkage, as follows:

c++ Programmer's Guide - October 1992

248

In the previous C++ 2.1 release there were also constraints to the number of
inc 1 ude files - both nested and non-nested - allowed. This is no longer
true in C++ 3.0.1.

c++ Programmer's Guide - October 1992

250 c++ Programmer's Guide-October 1992

Don't forget that to conform with ANSI C, you should put a comma at the end
of the first argument of the printf () declaration:

ifdef __ STDC __
void printf(char*, ...) i

int fread(char*, int,int,FJLEX)i
int getpid(void)i

#else
void printf()i
int fread () i

int getpidi
#endif

When user-defined "generic" header files are used for Sun C, the C++ include
directory path has to be passed with the -I option to the cc driver to locate
c_varieties. h.

This path is passed by the CC driver by default. One alternative (not
necessarily recommended) is to include the file with the absolute path, as in
I ... I include/CCI c_varieties. h, or have a duplicate copy of the
c_varieties.h in your source directory.

E.2 The struct s { /* * / } sTags

252

In C++, struct tags are in the same name space as variables. This restriction
is relaxed for ANSI C/C conformance. (Also see "C++: As Close As Possible to
C - But No Closer" in the c++ 3.0.1 Language System Selected Readings manual
for more information.).

c++ Programmer's Guide - October 1992

254 C++ Programmer's Guide - October 1992

256

functions and operators can be overloaded, their names are encoded by the
C++ compiler. This makes it difficult to reference C++ functions by using the
names shown in header files.

It is not realistic to expect that all existing C code will be rewritten in C++ or
recompiled with a C++ compiler. First of all, much C code is used to provide
libraries for users who may not have access to a C++ compiler. This leads to
the same problem of encoded function names in a library that is to be linked
with C programs.

Second, the performance of code generated by a C++ compiler may not be as
good as that generated by a C compiler. As C++ compilers mature, this
objection will go away. The problem is how to allow C programs to use code
compiled with a C++ compiler. Any solution must be reasonably easy to use
and not cost too much in execution efficiency.

F.2 Proposed Solution
To solve the problem, first separate it into three somewhat simpler problems.
These are characterized by the type of c++ function which must be called by
the C programs:

• Methods for C++ classes

• Overloaded operators (whether or not part of a class definition)

• Other C++ functions

Class Methods

Class methods are invoked by sending a message to an object instance of a
class. This is really a function call with one extra hidden parameter; a pointer
to the object being sent the message. The C language does not allow for objects.
It does allow for effective use of pointers. As long as the C program has a
pointer to the object in question, a simple scheme can be used to invoke the
proper method for the object. The following example describes how this is
done.

In C++, you have an access function, Type (), for objects of type
TComponentSet. This returns the value of the type member variable (type
cpt_set_type_t). If the variable cSet is a pointer to an object of type
TComponentSet then you can invoke the method with the message:

c++ Programmer's Guide-October 1992

258

It is invoked either statically by having global variables of type
TComponentSet on entry to a function, or explicitly through the new
operator. When attempting to create a new object from a C program, pointers
are needed; so you will usually invoke the new operator. In the example,
assume that there is a constructor for class TComponentSet that is declared
as:

A corresponding C-callable function will be defined in the following way:

extern "C" {
Handle WNewComponentSet(cpt_set_type t, cpt_name_t n)
{

TComponentSet *s;
s = new TComponentSet(t, n);
return (Handle)s;

It is probably not necessary to use the temporary variable s; it may be more
readable to do so. To use this function in a C program, you simply need code
like the following:

Handle h;

h = WNewComponentSet(myType, myName);

Now the handle h can be used in the invocation of functions like
WGetSetType () .

Overloaded Operators

The technique used to invoke overloaded operators is similar to the previous
technique. Realizing that an overloaded operator in C++ is just a function
invocation, all that is necessary to invoke the function in a C program is to
provide a wrapper that is not encoded. Two types of operator overloading can
occur: overloading operators as part of a class definition, and overloading
operators outside of a class definition. In the first case, a handle to the object

c++ Programmer's Guide-October 1992

Other Functions

10.11 Comments

260

This case is the easiest of the three. The technique used has already been
covered. It is similar to overloaded operators which are not part of a class
definition. First of all, if there are no objects of any sort involved, and the
function is not overloaded, then the function can just be wrapped with the
extern { ... } syntax and it can be called directly from C programs.

If there are objects involved, all that is necessary is to build a wrapper where
handles are used to identify the appropriate objects and then cast to the
appropriate type in the C++ wrapper. For example, if you have the C++
function:

int Foo(Object1& 01, int i, Object2 *02) i

You can build the wrapper for it as follows:

extern "e" {
int WFoo(Handle 01, int i, Handle 02)

return Foo (* (Object1 *) 01, i, (Object2 *) 02) i

The proposed solution is far from ideal. It is more cumbersome than you
would like to see when dealing with languages as close as C and C++. One
view of a better solution would be to enable the C compiler to understand that
a function is a C++ function and thereby call the appropriate encoded function
(perhaps with extern "C++" { ... } being recognized). This would also
imply that there be a way to indicate something about classes and objects to
the C compiler. This solution is rather difficult and complex for the language
implementors.

It might be possible to simulate the above mechanism in a C program. This
would involve knowing how functions are encoded and then calling the proper
function, with the proper arguments (providing the address of an object as a
"hidden" argument in the case of class methods). This would require
additional header file information and should be rejected as being much too
complex.

c++ Programmer's Guide - October 1992

262 c++ Programmer's Guide - October 1992

264

The Waite Group's C++ Programming, John Thomas Barry (Howard W. Sams &
Co, 1988)

Using C++ , Bruce Eckel (Osborne/McGraw-Hill, July 1989)

c++ Programmer's Guide - October 1992

266

c_plusplus macro, 76
calling constructors, 25
calling result to wait for information from

a task, 127
case preserving, 175
-cg87, 79
-cg89, 79
-cg92, 79
char%insertion

operators" 113
char* extractor, 100
characters, reading, 101
class task, 122
Classes, 5
classes and members, 12
classes, full class-type, 13
classes, structure-type, 13
clean-up, 28
closing and opening files, 104
code generator, 79
comments, 47
Compatibility, 4
compatibility of C programs, 53
compile option

code generator, -cg89, 79
Compiler, 2
compiler options

B binding
B binding$Previous, 78

c
c, 78

d
+d,80

dalign
dalign, 80

dryrun
dryrun, 80

E
E,80

e
+e,80

F

c++ Programmer's Guide - October 7992

F, 81
ffpa

ffpa, 82
floating-point options, 81
fnonstd

fnonstd, 81
g

g, 82
help

help, 83

+i, 83
Ipathname

I pathname$Previous, 83

I, 83
L directory

L directory$Previous, 83
libmil

libmil, 85
misalign

misalign, 85
native

native, 81
nolibmil

nolibmil, 85
o outputfile

P

p

pg

o outputfile$Previous, 85

P, 88

+p,88
p,87

pg,88
PIC

PIC, 88
pic

pic, 88
pipe

pipe, 88
qdir directory

qdir directory$Previous, 89
qoption prog opt

qoption prog opt$Previous, 89
qpath pathname

268

extraction operators, 99
extraction operators, defining, 99

F
FIFO queues, 130
file

permissions C FORTRAN, 179
file descriptors, using, 105
file mode, opening, 104
file name extensions for C++, 72
files, opening and closing, 104
files, repositioning, 105
files, using fstreams with, 103
floating-point options

ffpa
ffpa, 82

native
native, 81

flushing, 98
format control with iostreams, 108
formats, default, 108
FORTRAN

calls C, 180
friends of a class, 19
friends of classes, 13
full class-type classes, 13
function

names, 175
return values from C, 192
return values to C, 206
vs subroutine C FORTRAN, 173

function argument types, 55
function prototypes, 49
function return value declaration, 56
functions, inline, 46

functions, linking C and C++, 62
functions, member, 14
functions, names of operators, 20

handling input errors, 102

c++ Progranlmer's Guide - October 1992

handling output errors, 97

I
I/O library, 94
IDLE task mode, 122
initialization of objects, and

constructors, 25
inline functions, 46

input, 94, 99
input errors, handling, 102
input of binary values, 101
input, peeking, 101
inserters, 96
insertion operator, 96
insertion operators, defining, 97
interface

C FORTRAN sample, 171
internationalization, 7
iostream terminology, 116
iostream, using, 95
iostreams, basic structure, 94
iostreams, copying, 106
iostreams, creating, 103
iostreams, default formats, 108
iostreams, input to, 99
iostreams, output to, 96
iostreams, predefined, 102

keywords, additional in C++, 53

L
labeled common C FORTRAN, 198,211
LD_LIBRARY_PATH, 84
compiler options

o level
0, 85

libm
user error making it unavailable, 84

-libmieee, 85

270

pass by
reference, 175
value, 175

peeking at input, 101
pending objects, 129
pending tasks, 129
plain manipulators, 110, 113
pointers to members, 17
pragma

CO directive, 176
predefined iostreams, 102
predefined macro, 76
Prerequisite, xv
preserve case, 175
private members, 15
procedure names, 175
prof, 221
program with standard library,

compiling, 72
protected information, 13
protection members, 15
prototypes, for functions, 49
ptcomp,3
ptlink, 3
public, private, and protected

members, 15
Purpose, xv
putting your task to sleep, 127

queue modes, 133
queue size, 133
queues, 129
queues, and suspension, 127
queues, FIFO type, 130

R
-R(SunOS 5.0 only), 90
raw binary input, 101
raw binary output, 99

c++ Programrner's Guide - October 1992

rdcount, 134
rdmax, 133
rdmode, 133
rdspace, 134
rdstate, 124
rdtime, 124
reading a single character, 101
README,3
reference vs value

C FORTRAN, 175
references to objects, 42
referring to a member from another

member, 16
referring to members, 16
referring to members using pointers, 17
referring to static members, 17
repositioning within a file, 105
reserved words, 53
result, 124
result, and waiting, 127
return function values to C, 206
return value declaration, 56
RUNNING task mode, 122

s
sample interface C FORTRAN, 171
scheduler, 134
set

LD_LIBRARY_PATH, 84

setmax, 133
setmode, 133
sharing I/O C FORTRAN, 199,213
signed, as reserved word, 54
single characters, reading, 101
size

of types, 174
size of queues, 133
sleeping tasks, 127
standard error, 102
standard library, compiling a program

272

waiting for a predetermined time, 129
waiting for an object, 128
waiting states for tasks, 126
What, 1
WMODE,133
writing C++ libraries for C programs, 58

x
-xF, 91

Z
ZMODE,133

c++ Programmer's Guide - October 1992

