microsystems

S »
% sun

NeWS™ 2.0 Programmer’s Guide

Newsm, Xll/Newsm, SunViewm, XViewm, and OpenWindowsml are trademarks ®
of Sun Microsystems, Inc. Sun Workstation®, Sun Microsystems®, and the Sun logo €
are registered trademarks of Sun Microsystems Inc.

POSTSCRIPT® is a registered trademark of Adobe Systems Inc. Adobe owns
copyrights related to the POSTSCRIPT language and the POSTSCRIPT interpreter.
The trademark POSTSCRIPT is used herein to refer to the material supplied by
Adobe or to programs written in the POSTSCRIPT language as defined by Adobe.

The X Window System is a trademark of Massachusetts Institute of Technology.
UNIx®is a registered trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright © 1989 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means — graphic, electronic, or mechanical — including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter-
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees.

Contents

Chapter 1 INrOQUCHON ... ssess s
1.1. NeWs Programming: An OVEIVIEW ..o
The POSTSCRIPT Languageoeoerereesssereersssssonee
NeWs Types

NEWS OPCIALOLSoocvvevescnnsonessnsesessssssss s sssssssssssssseen
THE XT1/NEWS SEIVEToooooooeeeeeeeeveeees s srsseseeneseesesmesesssssesessessessessesesssesseenn

Client-Server Communication
C Client Interface
CANVASES ... ereevesseessesss st s s et ssesss s s
The NeWS Imaging Model ... ssssseen
Events

Memory ManagemeNLmmmersmsmmssesmsssssssssessssss s s sesssssecsss

COLOT SUPPOTLcc.oooeeeerseres s sssre st sssses s s s sssse s s

FONE SUPPOTL ..o sssresnssssssssssssss e srsresssesens

" 1.2. POSTSCRIPT Language Files Used with the Server ...
The WINAOW MAaNAZEToomeciceineeee s essese s smsssssssssssssssen
ClLassSescccrcrecrrcrn eesneveesos e sninn

00 00 00 00 =~ NN NN b b bW WwWWw W

Chapter 2 Canvases

The canvastype Extension

Canvas Operators

2.1. Coordinate System Overview ...

2.2. Creating and Displaying Canvases

— iii -

Contents — Continued

2.3.

24.

2.5.

2.6.

2.7.
2.8.

29.

Chapter 3 Events

3.1.

Creating Canvases

Shaping Canvases

Setting the Current Canvas

Mapping Canvases to the Screen

Manipulating Canvases
Moving Canvases

Transparent and Opaque Canvases

Retained and Non-Retained Canvases

Further Information on Damage

The SaveBehind Key
Parent, Child, and Sibling Canvases

The Sibling List ..

Establishing a New Parent

Overlay Canvases

Drawing on Overlays

Canvas Clipping Operators
Cursors

Canvases, Files, and Imaging Procedures
Writing Canvases to Files

Reading Canvases from Files

Other File-Related Operators

Imaging
Other Dictionary Keys

Events

X-Specific Features

Grab State

The eventtype extension

Event Operators
Overview of Event Distribution

iv

13
14
15
15
16
16
17
19
21
21
22
22
24
25
25
26
26
27
27
27
28
28
29
29
29
29
29
30

33
34
34

Contents — Continued

3.2
3.3.

34.

35.
3.6.
3.7.

3.8.

3.9.

Creating an EVENL ... s sessesssssseos 35
EXPressing INLETESESoouvevooeoceversseenssssesesssssesmssssiesns 36
Copying an Event Before Expressing Interest ... 36
Changing and Reusing INMEIESLSoooeecercemoeosscsisssssseeessssssssssenees 36
Rules for Matching Events to INtErestsoooomenisirin 37
Rules for Name And Action Key Matching 37
Rules for Process Key Matchingoooeovomnsmmsnienssseen 37
Rules for Serial Key Matching ettt s senes 37
Sending an Event into Distributionoreereveneenecsssierissens 38
Awaiting Events 38
Specifying the Name, Action, and Canvas Keys as
DICHONALIEScooooceveerercnsere e eississss s s sre s ssssssss s sssessss s 39
Non-Executable Dictionary Valuesooinnn 39
Executable Dictionary Values 41
Using the Canvas Key: Matching Multiple Interests ..o 43
Pre-Child and Post-Child Interest LiStsoooreememccroinen 43
Order of Interest MAtChiNG ... s e seensesns 44
Specifying a Single Canvas ... 44
Specifying an Array Or DIiCHONATYooorrmmmeinsiie e essseneen 44
SPECIfYING MUIL oo ssse s 44
Using the canvastype EventsConsumed Key ... 45
Multiple Post-Child Interest Matching: An Example ... 45
Multiple Pre-Child Interest Matching: An Example ... 49
System-Generated Events cerssssene e s s e e 49
MOUSE EVENLSoooorerrssesirsssssssessnssssessssssssssssssseeesssssssssssessesene 50
Enter and EXit EVENLS ... csossssssmsossssssmsssmsssns 52

Name Key Values

Action Key Values ... sssssssssssssssssscsesssssessnns 94

Using the postcrossings OPEratormmmsssmmsessen 55
Using the XLocation and YLocation Keys ... 56
Using the Coordinates Key ... s 57
Focus Events e eAeeaA SRR SRR xRS £ R 57
KeYDOArd EVENLSooovvoioiveere e ssssssssssssss s ssssssssssssssns 58

Contents — Continued

Chapter 4 Classes

The Repeat Key Dictionary

" Damage Events

........

Obsolescence Events

ProcessDied Events

3.10. Using the ClientData Key
3.11. Using the Priority Key

3.12. Using the Exclusivity Key

Using the redistributeevent Operator

3.13. Using the TimeStamp Key

Using the recallevent Operator

3.14. Using the Process Key

3.15. Input Synchronization with Multiple Processes .

Using blockinputqueue

3.16. Event Logging

4.1. Basic Terms and Concepts

Classes and Instances

Inheritance and the Class Tree

Superclasses and Subclasses
The Immediate Superclass

Inheritance

Single Inheritance and Multiple Inheritance

The Inheritance Array
A Single Inheritance Example

Summary of Terms

4.2. Creating a New Class

The Class Definition

classbegin

classend

Initializing a New Class
4.3. Sending Messages With the send Operator

vi

39
59
59
60
60
62
63

65
66
67
67
68

Contents — Continued

The Usual Form of send

The Steps Involved in a send

Using send to Invoke a Method

A Nested send

Using send to Create a New Instance

Another Form of send

Using send to Change the Value of an Instance Variable

Using send to Change the Value of a Class Variable ...

4.4. The Psuedo-Variables self and super

The self Psuedo-Variable ...,

The super Psuedo-Variable

................

Using super to Send a Message Up the Superclass Chain ...

Restrictions on the Use of self and super

4.5. Method Compilation

Compiling self send

Compiling super send

Local Dictionaries

Controlling Method Compilation ...

/methodcompile

{/installmethod

/doit

SetLocalDicts

4.6. Creating a New Instance

/mew

Inewobject ...

/mewinit

/newmagic
4.7. Intrinsic Classes

/mewdefault

[defaultclass

/SubClassResponsibility

4.8. Overriding Class Variables With UserProfile

Overriding DefaultClass .

— vii -

80
80
81
82
83
84
84
84
85
87
88
90
90
90
91
91
91
92
92
93
93
94
96
97
97
98
99
100
101
102
102
102

Contents — Continued

4.9. Promoting Class Variables to Instance Variables

promote

unpromote

promoted?

Avoiding an Accidental Promotion
4.10. Destroying Classes and Instances

/destroy

classdestroy

[/cleanoutclass

4.11. Obsolete Objects in the Class System

/obsolete

4.12. Multiple Inheritance

A Simple Multiple Inheritance Example: a Utility Class

A More Complex Multiple Inheritance Example

Rules for Valid Inheritance Array Orders

Possible Inheritance Arrays for this Example

Which Order Do You Choose?

Constraining the Order of the Inheritance Array ...

super and Multiple Inheritance

4.13. Utilities for Setting and Retrieving an Object’s Name and
Classname ...

/name

/classname

4.14. Utilities for Inquiring About an Object’s Status

isobject?

170 Y ST

ISINSEATICE? ... sensse s nesee e esesse s

4.15. Utilities for Inquiring About an Object’s Heritage

/superclasses

ISUBCIASSES ..o sssms s s s

/instanceof?

.....

/descendantof?

- viii —

103
103
104
104
104
104
104
105
105
105
105
106
106
109
109
110
111
112
112

113
113
113
114
114
114
114
114
114
114
114
114
114

Contents — Continued

4.16. Utilities for Finding Objects on the send Stack

4.17. Class Operators
4.18. Class Methods

Chapter 5 Client-Server Interface

5.1
5.2

5.3.

5.4.

5.5.

5.6.
5.7.

5.8.

/understands?

TRMASS ..o oo ssssssssssssssessse s s

/topmostinstance

/topmostdescendant

/sendtopmost

The CPs Facility
Creating the .cps File ... sssisaissnsosssanen

Argument Types

Sending POSTSCRIPT Language Code without Returning
Values

Receiving Synchronous Replies

Receiving Asynchronous Replies

Creatingthe .hFIe ... raneen

CPS UTLILIESooooooeoeoce oo esesses s ssesssssesss s s sessmsasses s seeeremeesseses sremsesessssssnssass

Creating the . C File ... sssssse e

POSTSCRIPT Language Communication Files ...

Reading the Client’s Input Queue

Tokens and Tokenization

Compiling the .c File
Comments

Debugging CPS

Supporting NeWS From Other Languages ...

Contacting the Server

Byte Stream Format ...

Encoding For Compressed Tokens ...

enc_int

enc_short_string

enc_string e e e R s e

—ix =

115
115
115
115
115
115
116
116

119
120
122

123
124
125
126
127
127
128
128
129
130
130
131
131
132
132
132
132
133

Contents — Continued

enc_syscommon 133
enc_syscommon2 133
enc_usercommon 133
enc_lusercommon 133
€NC_CUSEICOMIMONccoororreseenssesssisssesssssssrssseessssssssesssiss e 133
enc_IEEEfloat 133
enc_IEEEdouble 134

Object Tables | 134
Magic Numbers 134
Examples 134
Chapter 6 Debugging 139
6.1. Loading the Debugger 139
6.2. Starting the Debugger 139
6.3. UsSINg the DEDUGEETcoeeoeeeeeerrsesnessssssssssss s 139
Multi-Process Debugging 140

6.4. Client Commands 140
6.5. User Commandsccccovvovreeusvcescssvnsenn 141
6.6. Miscellaneous Hints 145
ALASES ..o ssssssssss s s s sss s s s s s s e 145

Use Multiple Debugging Connectionsceeemineseeessnns 146
Chapter 7 Memory Management 149
7.1. Reference COUNtNG ..o rsmasssssssssssions R U 1)
ODJECLS ..o sssssssssssss s s mssss s s sssssses s ssssssessessssess s 149
References to Counted ODJECLSoo.ovmevermomucenrersssmmrersessssessssesss e 150
Counted REfEIEINCEScooiurrrrrenrenene e esenssessssssssssssesssses e 150
Uncounted REfEICICES ...t sessssssssssssssses 150

SOt RETETEIICESoocceveeee e ssssssssssesssss s e snssesssesssssssessesns oo 150
ODbsolescence EVENLS ... sssssssssens 151
Reference TallIEsoomevevenirsseeessssensse s sssnesseessssssassssssssessessoses 151

Object Types 151

7.2. Memory Management Operators ..o 152

Contents — Continued

7.3. Memory Management Debugging Operators

Using the debugdict

Debugging Operators
7.4. The Unused Font Cache

Specifying the Size of the Cache

Flushing the cache

Applications

Chapter 8 News Type Extensions
8.1. News Objects as Dictionaries

8.2. List of News Types

POSTSCRIPT Language Types

News Type Extensions
8.3. colortype

8.4. graphicsstatetype
8.5. monitortype

8.6. packedarraytype

8.7. pathtype

8.8. canvastype

8.9. colormaptype
8.10. colormapentrytype

8.11. cursortype

8.12. environmenttype

8.13. eventtype ...

8.14. fonttype

8.15. processtype

8.16. visualtype

Chapter 9 News Operator Extensions ...

Chapter 10 Extensibility through POSTSCRIPT Language Files ...

10.1. Initialization Files

init.ps

xi

153
153
153
156
156
157
157

161
161
162
162
162
163
163
163
163
164
164
170
170
171
172
174
177
177
182

187

Contents — Continued

redbook.ps

basics.ps

colors.ps

cursor.ps

statdict.ps

compat.ps

util.ps

class.ps

rootmenu.ps

10.2. User-Created Extension Files

.user.ps

.startup.ps
Other Extension Files

debug.ps

eventlog.ps

journal.ps

repeat.ps
Extension File Contents

10.3. Miscellaneous

10.4. Array Operations

10.5. Conditional Operators

10.6. Input Operators

10.7. Rectangle Utilities
10.8. Class Operators

10.9. Graphics Utilities

10.10. File Access Utilities

10.11. CID Utilities .

10.12. Journalling Utilities

Journalling Internal Variables
10.13. CONSLANLScc.ccomrrmmmrressmsemmssssssrssiens
10.14. Key Mapping Utilities

10.15. Repeating Keys

10.16. Standard Colors

—Xii —

221
221
221
221
221
222
222
222
222
222
222
222
222
222
222
222
222
223
223
226
228
228
231
231
231
233
234
235
236
236
237
238

Contents — Continued

10.17. Logging Events

UnloggedEvents

Appendix A News Operators

A.1. News Operators, Alphabetically

A.2. News Operators, by Functionality

Canvas Operators
Event Operators

Mathematical Operators

Process Operators

Path Operators
File Operators

Color Operators

Keyboaid and Mouse Operators

Cursor Operators

Font Operators
Miscellaneous Operators

Appendix B The Extended Input System
B.1. Building on News Input Facilities

B.2. The LiteUI Interface

B.3. Keyboard INpULimreeenmmessissneeesssssssnnee

Keyboard Input: Simple ASCII Characters

Revoking Interest in Keyboard Events
Keyboard Input: Function Keys

Assigning Function Keys ...

Keyboard Input: Editing and Cursor Control
B.4. SElectionseemerremmeneerssssseesin

Selection Data Structures ..o

Selection Procedures ..o

SeleClon EVENLSccooovevereeereeercsesreeeeenemmmsmsesseseenss

/SetSelectionAt

.................................

— xiii —

238
239

243
243
246
246
247
248
248
248
249
249
249
250
250
250

255
255
256
257
257
257
257
258
258
259
259
261
262
263
264

Contents — Continued

/DeSelect 265
/ShelveSelection 265
/SelectionRequest 266

B.S. Input Focus 266
Appendix C Omissions and Implementation Limits ..o 273
C.1. Operator Omissions and Limitations 273
C.2. Imaging Omissions 274
C.3. The statusdict Dictionary 274
C.4. Implementation Limits 275
C.5. Other Differences with the POSTSCRIPT Language ..., 276
Index 275

- Xiv —

Table 3-1 Boundary Crossing EVENLSooeeeeeooomsnscsssssessssmmssesssesssssssenee 54

Table 3-2 Input Focus 57
Table 4-1 Summary Of TEIMS ... ssnasssse s sssss s 78
Table 5-1 CPS Argument Types 122
Table 5-2 C Utility Routines Provided by CPS SR V4
Table 5-3 Token Values 134
Table 5-4 Meaning of Bytes in Encoding Example e 135
Table 7-1 Uncounted Object Types 152
Table 7-2 Counted Object Types 152
Table 8-1 Standard Object Types in the POSTSCRIPT Language ... 162
Table 8-2 Additional NeWS ODBJECt TYPESooooocereoeeceeer s smssreessssssreeesssisssssssen 163
Table 9-1 Events sent to incanvas and its parents . 206

Table 9-2 Events sent to outcanvas and its parents ..
Table 9-3 Rasterop Code Values

207

Table 10-1 Standard News Cursors

Table B-1 Selection-Dict Keys i it 260
Table B-2 System-defined Selection Attributes : : 260
Table B-3 Request-dict Entries ...

— XV —

Tables — Continued

Table B-4 High-Level Selection-Related Events 261
Table B-5 Input Focus 267
Table C-1 Implementation Limits 275

Table C-2 News Versions of Various POSTSCRIPT Language Operators 276

- XVi—

Figure 2-1 Canvas Mapped at 0,0

Figures

Figure 2-2 Canvas Mapped at 25,25

Figure 2-3 A Mapped Child Canvas

Figure 2-4 Parent Canvas Made Transparent

Figure 2-5 Parent Canvas Made Opaque and Repainted .

Figure 2-6 Damage on Unretained Canvas

Figure 2-7 Younger Sibling Obscuring EIder ...

Figure 2-8 Elder Sibling Made to Obscure Younger
Figure 2-9 Modified Parenthood Between Canvases

Figure 2-10 Results of Canvas Clipping Operation

Figure 2-11 Imaged Canvas

Figure 2-12 Canvas Imaged with buildimage Operator

Figure 3-1 Initial Appearance of Canvases

Figure 3-2 Result of Pre-Child Interest Matching

Figure 3-3 Result of Multiple Pre-Child Interest Matching

Figure 3-4 Initial Appearance of FirstCanvas and SecondCanvas.................

Figure 3-5 First Entry Event, Matched by FirstCanvas

Figure 3-6 Second Entry Event, Matched by SecondCanva

Figure 3-7 Third Entry Event, Matched by FirstCanvas ...

Figure 3-8 Result of Mouse-Generated Event

Figure 4-1 A simple class tree

Figure 4-2 A class tree with multiple inheritance

- Xvii —

eeserereeeratanesesnetarettesott rnatatetitsertetttssetsiieiaitsbossretinetetersthsattosasiiianes

16
17
18
19
19
20
23
24
24
26
28
29

48
48
49
53
53

. 54
4
5

Figures — Continued

Figure 4-3 A single inheritance example

Figure 4-4 Dictionary stack before and during a send to MyScrollBar

Figure 4-5 Dictionary stack before and during a nested send

Figure 4-6 Class tree for self and super example
Figure 4-7 Basic class hierarchy for the multiple inheritance examples
Figure 4-8 Class hierarchy with a utility class
Figure 4-9 Class tree for LabeledDial example
Figure 4-10 A breadth-first order for LabeledDial’s inheritance array

Figure 4-11 A depth-first order for LabeledDial’s inheritance array ...

— Xviii -

Preface

This manual provides a guide to programming in the NeWs language. This
language is supported as part of the X11/NeWs server, which itself forms a part
of the OpenWindows distributed window system.

The NeWs interpreted programming language is based on the POSTSCRIPT®
language.! Developed at Adobe Systems, the POSTSCRIPT language is a general
programming language used primarily for specifying the visual appearance of
printed documents. The NeWS language uses POSTSCRIPT language operators to
display text and images on a graphics console. Importantly, the News language
also provides operators and types that are extensions to the POSTSCRIPT
language; many of these extensions handle the interactive aspects of window
management that the POSTSCRIPT language does not consider.

This manual, which assumes the reader’s familiarity with the POSTSCRIPT
language, describes all the basic concepts of NeWs programming. It also provides
a syntactic analysis for each NeWs operator and includes code examples that
demonstrate the use of NeWs operator and type extensions.

For information about using the X11/NeWs server, see:

O X11INeWS Server Guide

0 XI11/INeWS Release Notes

For information about OpenWindows, see:

o OpenWindows User’s Guide

a OpenWindows Installation and Startup Guide

For information about the POSTSCRIPT language, see:

o POSTSCRIPT Language Tutorial and Cookbook? i S
o POSTSCRIPT Language Reference Manual®

1 POSTSCRIPT is a registered trademark of Adobe Systems Inc.
2 Adobe Systems, PostScripT Language Tutorial and Cookbook, Addison-Wesley, July, 1985.
3 Adobe Systems, PosTScriPT Language Reference Manual, Addison-Wesley, July, 1985.

- Xix —

Preface — Continued

Notational Conventions

This manual uses the following notational conventions:

u]

bold listing font
This font indicates text or code typed at the keyboard.
listing font |

This font indicates information displayed by the computer. It it also used in
code examples and textual passages to indicate use of the C programming
language.

sans serif font

This font is used in code examples to indicate use of the POSTSCRIPT
language or NeWs extensions.

bold font

This font is used in textual passages to indicate names of NeWS operators,
NeWs types, and system-defined dictionaries.

italic font

This font is used in code examples and textual passages to indicate user-
specified parameters for insertion into programs or command lines. It is also
used to indicate special terms or phrases the first time they are used in the
text. ~

- XX —

Introduction

Introduction

1.1. News Programming: An Overview
The POSTSCRIPT Language

News Types ..

News Operators

The X11/News Server

Client-Server Communication

C Client Interface

Canvases

The NeWs Imaging Model

Events

Memory Management
Color Support

Font Support

1.2. POSTSCRIPT Language Files Used with the Server

The Window Manager
Classes

Debugging

00 00 00 00 ~] =1 N O O Lt L B b DWW W

i

G

o
o

Tl
e e

o

i

e

Gl
=

e

.
L et
G
S

e
T
e

e
o

Ll
L

.
e

o
e

L

R
-
e
T

e

i
.
A

0

L
L B L
- -

ity s

e
WA

A

i o
... .

s e
o ...

L

o

e

o

o

.

R e

S . e

.

e G

i
i

S
i

o
o]

e . e
L o
o s

S

e . L
- G

o -

i o
e i
.

F
-

Sl
.
.

e
G
e
.

o

.
L
-

o

- b
e
. e

e

L
i
Gy

i

S

1.1. NewS Programming:
An Overview

The POSTSCRIPT Language

News Types

Introduction

The X11/NeWs server can be used either by a single computer or by multiple
computers linked across a communication network; thus, it is a distributed win-
dow system. When the X11/NeWs server is used with multiple computers, an
application run by one machine can use the windows displayed by another.

The News interpreted programming language is based on the POSTSCRIPT
language. Developed at Adobe Systems, the POSTSCRIPT language is used pri-
marily for specifying the visual appearance of printed documents. A
POSTSCRIPT program consists of operations that are sent to a POSTSCRIPT
language interpreter residing within a printer; when interpreted, the operations
define text, graphics, and page coordinates.

The News language uses POSTSCRIPT language operators to display text and
images on a graphics console. Programs are interpreted and executed by the
X11/NeWs server, which is resident on the machine to which the graphics console
is attached. Importantly, the NeWs language also provides operators and types
that are extensions to the POSTSCRIPT language; many of these extensions deal
with the interactive and multi-tasking aspects of a window system, which are not
handled by the POSTSCRIPT language.

This section provides an overview of NeWS programming. Detailed information
is provided in later chapters.

The POSTSCRIPT language is a high level language designed to describe page
appearance to a printer. It possesses a wide range of graphics operators.
Nevertheless, only about a third of the language is devoted to graphics; the
remainder provides a general purpose programming capability.

The POSTSCRIPT language is extensible and thus allows programmers to use the
supplied operators to define their own procedures. This extensibility facilitates
the creation of modular code, encourages the design of well-structured and
comprehensible programs, and helps keep programs small.

The News language implements all the standard types provided by the
POSTSCRIPT language. In addition, the NeWws language provides special types as
extensions to the POSTSCRIPT language.

Some of the NeWs type extensions can be accessed as if they were POSTSCRIPT
language dictionaries. These objects are known as magic dictionary objects.

sun 3 Revision A, of 25 August 1989

microsystems

4 News Programmer’s Guide

NeWws Operators

The X11/NeWSs Server

Client-Server Communication

Magic dictionaries have keys with predefined names. The programmer can
change the value associated with many of the keys; other keys are read-only.
The programmer can add new keys to magic dictionaries.

Other NeWs type extensions are opaque and cannot be accessed as dictionaries. A
full description of all NeWs type extensions is provided in Chapter 8, NeWS Type
Extensions.

The NeWs language implements most of the standard operators provided by the
POSTSCRIPT language; many of the omitted operators relate to page-description
requirements, which are not relevant for a window system. Conversely, the News
language provides many operators as extensions to the POSTSCRIPT language;
many of these operator extensions relate to interactivity requirements, and many
of them exist to create and manipulate the NeWs type extensions.

A full description of all NeWsS operator extensions is provided in Chapter 9, NeWs
Operator Extensions.

The X11/News server is not a machine used to serve files; it is a process that can
exist on any graphics machine within a network, its function being to interpret
and execute programs written in the POSTSCRIPT language and to display the
resulting graphics on the screen.

The X11/NeWws server contains multiple lightweight processes, some of whnch
communicate with client processes. A hghtwelght process is not a UNIx® pro-
cess; it is a process that lives in the server’s address space and is scheduled to be
run by the server.! Each lightweight process can perform operations on the
display and can receive messages from the keyboard, the mouse, or another light-
weight process. A lightweight process can share data with other lightweight
processes. Many lightweight processes can be created with relatively little over-
head. Lightweight processes are also known as NeWS processes.

Note that the X11/News server is neither a toolkit nor a user interface; it provides
neither standards nor defaults for the creation and appearance of windows. The
X11/NeWs server simply interprets and executes POSTSCRIPT language operations
and NeWs extensions that are specified by the programmer. Different user inter-
faces can thus be designed entirely by the programmer: written in the
POSTSCRIPT language, all can be run on the X11/NeWsS server.

The X11/NeWws server communicates with client programs that run either locally
or remotely. Clients can send POSTSCRIPT language code to the server. The
server runs this code on behalf of the clients.

Typically, a client program contains two main sections. One section, which can
be written in C, FORTRAN, or any other language, is used to perform the
application’s basic computations; this section is executed in the client process.
The other section, which must be written in the POSTSCRIPT language, is used to
provide corresponding windows or graphics; this section is interpreted by the

1 UNIX® is a registered trademark of AT&T.

sun ~ Revision A, of 25 August 1989

microsystems

Chapter 1 — Introduction 5

C Client Interface

Canvases

server process. The POSTSCRIPT language section of the client program can be
detatched, sent to the server, and executed remotely by means of function calls.

The ability to download POSTSCRIPT programs to the server gives the program-
mer great freedom in designing the communication protocol and the split in func-
tionality between server and client. The server does not directly notify the client
program of events such as mouse manipulation; instead, the server notifies
interested lightweight processes, and the client’s POSTSCRIPT language code may
either handle the information itself or write the information across the connection
to the client program. Thus, the way in which the client and server communicate
is specified by the POSTSCRIPT language contents of the client application. The
POSTSCRIPT language code downloaded by the client program can use any of
NeWs’ built-in features.

Most programmers are likely to use C as the language of the client application.
Therefore, NeWS provides a special interface facility that supports C client com-
munication. The C client interface, named CPS, converts the client’s POSTSCRIPT
language code into functions callable by the client’s C code.

Programmers can also create their own interface facility for use with other
languages. The client interface protocol and the C client interface are discussed
in Chapter 5, Client-Server Interface.

A NeWSs canvas is a region of the screen in which the client application can
display information to the user. Canvases provide the basic drawing surfaces in
NeWws and are thus the raw material from which windows and menus are created;
each window and menu is usually composed of more than one canvas. Canvases
need not be rectangular since their boundaries are defined by POSTSCRIPT
language paths. When visible on the screen, canvases can overlap. When this
occurs, the hidden portion of a canvas can be stored offscreen and redisplayed
when the canvas is re-exposed.

A canvas is implemented as a News type extension that can be accessed as a dic-
tionary. Many canvas characteristics can be set by changing the values of the
keys in the canvas dictionary. For example, a canvas can be opaque or tran-
sparent, mapped or unmapped. An opaque canvas visually hides all canvases
underneath it; a transparent canvas does not. When drawing operations are per-
formed on a mapped canvas, the image is visible on the screen (unless it is over-
lapped by another canvas); drawing operations can be performed on an
unmapped canvas, but the image is not visible on the screen.

Canvases exist in a hierarchy. The background of the screen is the root of the
hierarchy and is thus known as the root canvas. A canvas can have any number
of children; the display of each child canvas is clipped to the edges of its parent.
Canvases overlap according to their positions in the hierarchy. When visible on
the screen, opaque children obscure their parent. A canvas’ children exist in an
ordered list that determines their overlapping relationships. For a canvas to be
visible on the screen, the canvas and all its ancestors must be mapped.

A canvas can be repositioned in the hierarchy, causing adjustments to the display
of any overlapping canvases on the screen. A canvas can also be repositioned

sSun Revision A, of 25 August 1989

microsystems

6 News Programmer’s Guide

The News Imaging Model

Events

4

horizontally and vertically on the screen, and it can be reshaped and resized.

Each NeWs process can have a current canvas, which is the canvas that is mani-
pulated by the drawing operations performed by that process.

The NeWs language provides operator extensions for creating and manipulating
canvases. A full account of canvases is provided in Chapter 2, Canvases. The
canvas dictionary keys are described in Chapter 8, NeWs Type Extensions.

The News imaging model, which is essentially that of the POSTSCRIPT language,
can be described as a stencil/paint model. A stencil is an outline specified by an
infinitely thin boundary; the boundary can be composed of straight lines, curves,
or both. Paint is a color, texture, or image that is applied to the drawing surface;
the paint appears on the drawing surface within the boundary of the stencil.

Note that the stencil/paint model differs from the pixel-based imaging model
used by most window systems. The pixel-based model requires that rectangular
source and destination areas of pixels be combined using logical operations such
as AND, OR, NOT, and XOR. The stencil/paint model allows images of any
shape or size, rectangular or non-rectangular, to be specified; it thus provides a
more natural and comprehensible way of specifying images.

A NeWS event is an object that represents a message between NeWs processes. An
event is implemented as a NeWS type extension that can be accessed as a diction-
ary. Events can transmit any kind of information and thus serve as a general
interprocess communication mechanism. Some events report user manipulation
of input devices and are therefore known as input events.

An event can be generated by the server or by any News process. The server
automatically generates input events when the user manipulates the keyboard or
mouse. The server also generates events to report when a canvas is damaged,
when an object becomes obsolete (see Memory Management, below), when a
process dies while it is still referenced, and when the mouse pointer leaves one
canvas and enters another.

The News language provides operators that allow any NeWs process 10 create an
event and send it into the server’s event distribution mechanism. System-
generated events are automatically sent into the distribution mechanism as soon
as they are generated. After an event enters the distribution mechanism, the
server gives a copy of the event to NeWs processes that are interested in the event.
The NeWs language provides an operator that allows processes to describe the
types of events that interest them; each such description of events that interest a
process is known as an interest.

A full account of events is provided in Chapter 3, Events. The event dictionary
keys are described in Chapter 8, NeWS Type Extensions.

S u n Revision A, of 25 August 1989

microsystems

Chapter 1 — Introduction 7

Memory Management

Color Support

Font Support

The X11/News server provides an automatic garbage collection facility that
removes objects from virtual memory when the objects are no longer needed.
Objects survive as long as they are referenced. If an object’s last reference goes
away, the server destroys it to reclaim the memory that it occupied.

The NeWs language provides the notion of soft references for programs that want
to track objects without affecting the lifespan of the objects. A window manager
is an example of this type of program. A window manager has references to the
canvases that it tracks, but the window manager does not want its references to
prevent canvases from being garbage collected. In this type of situation, client
programs should use soft references.

If all the references to an object are soft, the object is considered to be obsolete.
When an object becomes obsolete, the server sends notice, in the form of an
event, to all processes that have expressed interest in obsolescence events for that
object. The processes should then remove their references to the object so that
the server can destroy it.

Note that the server does not count references for all objects. Simple objects
such as booleans, numbers, and names are not shared and therefore never have
more than one reference. The server only counts references to objects that
represent shared resources, such as arrays, dictionaries, canvases, and events.

The News language provides operators that aid in memory management. A full
account of the memory management facilities is provided in Chapter 7, Memory
Management.

The NeWs language includes types and operators that provide color support for
appropriate displays. A NeWs color object consists of either red/green/blue or
hue/saturation/brightness components. The NeW$ language also provides color-
map objects, which function as color lookup tables, and colormapsegment
objects, which are groups of entries within a colormap. Facilities are provided
for using bitmasks and planemasks, which permit colors to be determined accord-
ing to arithmetic operations.

Full information on all color-related types is provided in Chapter 8, NeWs Type
Extensions.

The server allows bitmap fonts to be defined and placed in the News font library.
Cursor fonts and icon fonts can be created, and existing text fonts can be con-
verted into NeWs format. The server provides the commands convertfont,
bldfamily, and makeiconfont, which are used in font definition. See the
manual pages in the X11/NeWs Server Guide for further information.

NeWs font dictionaries are identical to standard POSTSCRIPT language font dic-
tionaries except for one additional key. For a description of the News font dic-
tionary, see Chapter 8, NeWS Type Extensions.

Sun Revision A, of 25 August 1989

microsystems

8 News Programmer’s Guide

1.2. POSTSCRIPT Language

Files Used with the
Server

The Window Manager

Classes

Debugging

In addition to the operator and type extensions that are part of the server itself,
the server also provides various POSTSCRIPT language files that support the NewS
programming environment; most of these POSTSCRIPT language files are loaded
automatically when the server is initialized. The user can examine the supplied
files and modify the procedures that they contain.

This section describes some of the more important POSTSCRIPT language files.
Full information on these files is provided in Chapter 10, Extensibility through
POSTSCRIPT Language Files.

The POSTSCRIPT language files loaded by the server provide a default window
manager that allows the user to control the appearance of windows on the screen.
The window manager allows the user to move, resize, open, and close windows.
Note, however, that the window manager does not actually create the windows;
this task is the responsibility of the client application. The default window
manager can be replaced if desired. See the X11/NeWws Server Guide for more
information on the window manager.

The POSTSCRIPT language files loaded by the server provide support for object-
oriented programming; client applications can create objects known as classes
and instances. A class is a template for a set of similar instance objects. A class
is essentially a blueprint from which any number of instances can be created.

~ Each instance inherits the characteristics of its class but can override some of

L4

these characteristics. Classes and instances are represented as POSTSCRIPT
language dictionaries that contain variables and procedures.

NeWs classes belong to a class hierarchy. The root of the hierarchy is class
Object; class Object is implemented by the server, and the other classes in the
hierarchy are provided by the client or by a toolkit.

Any class in this system can have subclasses, each of which inherits the charac-
teristics of its superclass. A subclass can add new characteristics and can over-
ride its inherited characteristics. A subclass can also inherit characteristics from
more than one branch of the class tree, a feature known as multiple inheritance.

The class system is especially useful for defining user interfaces. For example,
class Canvas might be a subclass of class Object, and class Canvas might have
subclasses such as Menu, Scrollbar, Frame, and Window.

Information on the class system is provided in Chapter 4, Classes.
The server provides a debugging facility that allows the user to set breakpoints
and print to debugging output windows. The POSTSCRIPT language file contain-

ing the debugger code is not loaded when the server is initialized; a command
must be given to load this file.

Full information on using the debugger is provided in Chapter 6, Debugging.

sSun ’ Revision A, of 25 August 1989

microsystems

Canvases

Canvases

The canvastype Extension

Canvas Operators

2.1. Coordinate System Overview

2.2. Creating and Displaying Canvases

Creating Canvases

..................

Shaping Canvases

Setting the Current Canvas

Mapping Canvases to the Screen ..

2.3. Manipulating Canvases
Moving Canvases

Transparent and Opaque Canvases
Retained and Non-Retained Canvases
Further Information on Damage

The SaveBehind Key ...

2.4. Parent, Child, and Sibling Canvases

.........

The Sibling List
Establishing a New Parent

2.5. Overlay Canvases

Drawing on Overlays
2.6. Canvas Clipping Operators
2.7. Cursors

2.8. Canvases, Files, and Imaging Procedures

11

12
12
13
13
13
14
15
15
16
16
17
19
21
21
2
2
24
25
25
26
26
27

Writing Canvases to Files

Reading Canvases from Files
Other File-Related Operators
Imaging

2.9. Other Dictionary Keys

Events

Color

X-Specific Features

Grab State

File Sharing

27
27
28
28
29
29
29
29

29

30

Canvases

A NeWS canvas is a region of the screen in which the client application can
display information to the user. Canvases provide the basic drawing surfaces in
News and are thus the raw material from which windows and menus are created;
each window and menu is usually composed of more than one canvas. Canvases
need not be rectangular since their boundaries are defined by POSTSCRIPT
language paths. When visible on the screen, canvases can overlap. When this
occurs, the hidden portion of a canvas can be stored offscreen and redisplayed
when the canvas is re-exposed.

A canvas is implemented as a NeWS type extension that can be accessed as a dic-
tionary. Many canvas characteristics can be set by changing the values of the
keys in the canvas dictionary. For example, a canvas can be opaque or tran-
sparent, mapped or unmapped. An opaque canvas visually hides all canvases
underneath it; a transparent canvas does not. When drawing operations are per-
formed on a mapped canvas, the image is visible on the screen (unless it is over-
lapped by another canvas); drawing operations can be performed on an
unmapped canvas, but the image is not visible on the screen.

Canvases exist in a hierarchy. The background of the screen is the root of the
hierarchy and is thus known as the root canvas. A canvas can have any number
of children; the display of each child canvas is clipped to the edges of its parent.
Canvases overlap according to their positions in the hierarchy. When visible on
the screen, opaque children obscure their parent. A canvas’ children exist in an
ordered list that determines their overlapping relationships. For a canvas to be
visible on the screen, the canvas and all its ancestors must be mapped.

A canvas can be repositioned in the hierarchy, causing adjustments to the disp: ..
of any overlapping canvases on the screen. A canvas can also be moved on the
screen, and it can be reshaped and resized.

Each NeWs process can have a current canvas, which is the canvas that is mani-
pulated by the drawing operations performed by that process.

This chapter describes canvases and shows how they can be used.

sun 11 Revision A, of 25 August 1989

microsystems

12 News Programmer’s Guide

The canvastype Extension

Canvas Operators

Each canvas is an object of type canvastype, which is a NeWs extension to the
POSTSCRIPT language. Each canvastype object can be accessed as a
POSTSCRIPT language dictionary. The values of the dictionary keys determine
the properties of the canvas. A canvas dictionary includes keys for specifying the
following:

o Ancestor and sibling relationships between canvases (TopCanvas, Bottom-
Canvas, CanvasAbove, CanvasBelow, TopChild, Parent)

o The appearance of canvases on the screen (Transparent, Mapped)
o The handling of canvas storage (Retained, SaveBehind)

o The event management properties of the canvas (EventsConsumed,
Interests)

o The color properties of the canvas (Color, Colormap, Visual, VisualList)
o The cursor associated with the canvas (Cursor)
o Properties for keeping a canvas in shared memory (SharedFile, RowBytes)

o Xll1-related properties (OverrideRedirect, Border Width, UserProps,
XID)

o The grabbed state of a canvas (Grabbed, GrabToken)

The keys are discussed in detail throughout this chapter; a full syntactic descrip-
tion of each key is also provided in Chapter 8, NeWs Type Extensions.

NeWs includes a variety of operator extensions to be used on canvases. The
operators provide the following functionality:

o Creating canvas objects and overlays (buildimage, createdevice, createo-
verlay, newcanvas)

o Changing ancestor and sibling relationships between canvases (canvasto-
bottom, canvastotop, insertcanvasabove, insertcanvasbelow)

o Defining canvas shapes and paths (clipcanvas, clipcanvaspath, eoclipcan-
vas, eoreshapecanvas, reshapecanvas)

o Reading and writing canvases to files (eowritecanvas, eowritescreen,
imagecanvas, imagemaskcanvas, readcanvas, writecanvas, writescreen)

o Determining and specifying canvas locations (getcanvaslocation, movecan-
vas)

o Specifying the current canvas (setcanvas)

The operators are described throughout this chapter; a list of the operators is pro-
vided for quick reference in Appendix A, NeWS Operators. A syntactic analysis
and description of all NeWs operators is provided in Chapter 9, NeWs Operator
Extensions.

microsystems

sun Revision A, of 25 August 1989

Chapter 2 — Canvases 13

2.1, Coordinate System
Overview

2.2. Creating and
Displaying Canvases

Creating Canvases

In the standard use of the POSTSCRIPT language, a user coordinate system is
associated with the page and a device coordinate system is associated with the
printer. A current transformation matrix, or CTM, contains the current transfor-
mation from user coordinates to device coordinates. The CTM can be changed at
any time with operators such as scale, rotate, or translate.

In News, each canvas represents a separate “user space” with its own coordinate
system, and the device space corresponds to the screen rather than to a printer. A
current transformation matrix is still used to store the current transformation
between the user and device coordinate systems, but in NeWs, each process has its
own CTM as a part of its graphics state. A process’ current coordinate system is
specified by its CTM. When a new process is created, it inherits its CTM (along
with the rest of its graphics state) from its parent.

Each NeWs canvas has a default coordinate system determined by its default
transformation matrix. A canvas’ default transformation matrix specifies the ini-
tial transformation from the canvas’ coordinate system to the screen’s coordinate
system. After a new, empty canvas is created with newcanvas, the canvas’ shape
and default coordinate system should be set with reshapecanvas. The
reshapecanvas operator sets the canvas’ shape to be the same as the current path
and sets the canvas’ default coordinate system to be the same as the CTM.

When a canvas is made the current canvas with the setcanvas operator, the CTM
is set to that canvas’ default transformation matrix. The CTM can then be
changed with standard POSTSCRIPT language operators. To change an existing
canvas’ default transformation matrix and shape, simply set the CTM and current
path to the desired values and execute reshapecanvas.

These coordinate system definitions are illustrated in this chapter’s examples.

This section discusses how canvases can be created, shaped, and mapped to the
display. It also provides an introduction to using the canvastype type extension.

NeWS canvases exist in a hierarchy; thus, each canvas has a parent and can have
one or more children.

When News is initialized, the createdevice operator is called to create the back-
ground of the screen (note that the createdevice operator should not normally be
used by the programmer). This background is known as the root canvas or
framebuffer; it can be accessed by means of a global variable named frame-
buffer. Any canvas that you wish to create immediately on top of this back-
ground must have framebuffer specified as its parent.

NeWSs provides the following operator for creating a canvas with a specified
parent:

sun Revision A, of 25 August 1989

microsystems

14 News Programmer’s Guide

Shaping Canvases

NOTE

pcanvas newcanvas ncanvas
This operator creates a new canvas whose parent is pcanvas.

If framebuffer is used as the pcanvas argument, the new canvas is opaque by
default. If the parent is specified as some other canvas, the new canvas is tran-
sparent. Detailed information on canvas transparency and other factors affecting
canvas appearance is provided later in this chapter.

The following example uses newcanvas to create a new canvas that has the
framebuffer specified as its parent.

F /FirstCanvas framebuffer newcanvas def]

FirstCanvas is opaque by default, since the framebuffer is its parent.

All coordinates in NeWws are measured with reference to the origin of a specified
canvas, which is often the lower-left comer of the canvas. Methods exist both for
specifying the origin of a canvas and for specifying the canvas from whose origin
coordinates are measured; these are discussed throughout this chapter.

News allows you to shape canvases according to the current path. The following
operator reshapes a canvas.

canvas reshapecanvas —

This operator sets the shape of canvas to be the same as the current path. It also
sets the canvas’ default transformation matrix to be the same as the current coor-
dinate system. If the canvas that is being reshaped is the current canvas, this
operator sets the current clipping path (in the graphics state) to be the same as the
canvas’ new shape.

The following example uses reshapecanvas to establish a shape and default
coordinate system for the canvas defined in the previous example:

.)
newpath % Define a path to which the
0 0 moveto % new canvas can be shaped.
0 250 lineto
250 250 lineto
250 0 lineto
closepath
FirstCanvas reshapecanvas % Reshape the canvas to the
% current path.
\L J

NeWs also provides an operator named eoreshapecanvas. This operator is ident-
ical to reshapecanvas except that it uses the even-odd winding rule, rather than
the non-zero winding rule, to interpret the specified path. For information on
winding rules, see the POSTSCRIPT Language Reference Manual. For an analysis
of eoreshapecanvas, see Chapter 9, NewWs Operator Extensions.

sun Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 15

Setting the Current Canvas

Mapping Canvases to the
Screen

NeWs supports the concept of a current canvas. Each NeWs process can have a
current canvas as part of its graphics state. Many News canvas operations do not
take a canvas argument, but simply use the current canvas. To set the current
canvas, use the following operator:

canvas setcanvas —

The operator sets canvas to be the current canvas. It also sets the current coordi-
nate system to be the same as the canvas’ default coordinate system. The current
coordinate system can then be changed by calls to scale, rotate, and translate.
The setcanvas operator sets the current clipping path to be the same as the can-
vas’ shape.

The following example demonstrates how to set the current canvas:

F FirstCanvas setcanvas J

NeWs does not provide an operator for mapping canvases; instead, it allows you
to map canvases by setting the Mapped key of the canvastype dictionary to
true. This causes the canvas to be visible on the screen within the borders of its
parent, provided that the following conditions are fulfilled:

o All of the canvas’ ancestors are also mapped.
o The canvas is not clipped away by its parent or any overlapping canvases.

Even when the canvas is mapped, it might not be noticed on the screen if no
drawing operations have been performed on it.

To fill a canvas with a color, use the fillcanvas operator; this operator is included
in the POSTSCRIPT language extensibility files that News provides. The operator
takes a single argument, which can be an integer or a color; see Chapter 10,
Extensibility through POSTSCRIPT Language Files for a syntactic analysis.

To retrieve and establish values for any read-write News dictionary key, use the
POSTSCRIPT language operators get and put respectively. This is demonstrated
by the following example:

When FirstCanvas has been mapped to the screen, it appears in this example at
the bottom-left corner of the framebuffer. This is illustrated in the following
figure:

S ll n Revision A, of 25 August 1989

microsystems

16 News Programmer’s Guide

2.3. Manipulating
Canvases

Moving Canvases

Figure 2-1

NOTE

NOTE

Canvas Mapped at 0,0

NeWs does not provide an operator for destroying a canvas, even when
unmapped, a canvas continues to exist. A canvas is destroyed only when the last
reference to the canvas is removed (see Chapter 7, Memory Management).

This section discusses how canvases can be manipulated on the screen. It
describes how to move canvases and discusses the concepts of transparency,
retaining, and damage.

The display of a canvas is clipped to its parent’s boundaries; thus, if a canvas is
moved or reshaped so that parts of the canvas fall outside of its parent’s boun-
daries, those parts of the canvas do not appear on the screen when the canvas is

mapped.

NeWs provides the following operator for moving canvases:

Xy movecanvas -

X y canvas movecanvas -

If no canvas argument is specified, this operator moves the current canvas so that
the origin of its default coordinate system is at the coordinates x and y, where (x,
y) is a vector from the origin of the parent canvas’ default coordinate system to
the origin of the repositioned current canvas’ coordinate system, measured in
units of the current coordinate system.

If the canvas argument is specified, the operator moves that canvas so that the
origin of its default coordinate system is at the coordinates x and y in the current
coordinate system.

If a canvas obscures an unretained canvas and is then moved, damage occurs on
the unretained canvas. Detailed information on damage and retained canvases
is provided in the following section.

The following operator returns the coordinates of a canvas:

canvas getcanvaslocation xy

The operator returns two integers, which specify the x and y location of the origin
of canvas’ default coordinate system. This location is specified relative to the
origin of the current coordinate system (rather than of the parent canvas); thus,
the coordinates may be returned as either negative or positive integers.

S ll n Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 17

Figure 2-2

Transparent and Opaque
Canvases

In the following example, a canvas is moved and its coordinates are returned:

The appearance of FirstCanvas is now as follows:

Canvas Mapped at 25,25

An opaque canvas visually hides all canvases undemeath it; a transparent canvas
does not. When you create a canvas whose parent is any canvas other than the
framebuffer, the new canvas is transparent by default. If drawing operations are
performed on a transparent canvas, the drawn images appear on the canvas(es)
beneath the transparent canvas (its parent or any siblings that are beneath it);
thus, if the transparent canvas is unmapped, the drawn images remain. A tran-
sparent canvas may define screen areas that are sensitive to input.

To create an opaque canvas whose parent is not the framebuffer, you must set the
new canvas’ Transparent key to false. The following psh example creates a
canvas whose parent is the canvas FirstCanvas , which was created in the previ-
ous example.

Note that this example uses the rectpath utility, which is provided by the
POSTSCRIPT language extensibility files. The rectpath utility takes four numbers
as arguments: the x and y location of the rectangle origin, the width of the rectan-
gle, and the height of the rectangle. The rectpath utility adds the rectangle to the
current path. For a complete definition of rectpath, see Chapter 10, Extensibility
through POSTSCRIPT Language Files.

S u n Revision A, of 25 August 1989

microsystems

18 News Programmer’s Guide

The appearance of SecondCanvas is as follows:

Figure 2-3 A Mapped Child Canvas

When a parent canvas is made transparent, its opaque children are not affected
and remain opaque. This is demonstrated by the following example:

FirstCanvas /Transparent true put % Make the parent transparent; the
% opaque child remains opaque.

This example is illustrated in the following figure:

sun Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 19

Figure 2-4 Parent Canvas Made Transparent

Figure 2-5

Retained and Non-Retained
Canvases

The following code makes the parent opaque again and paints it, thus restoring
FirstCanvas and SecondCanvas to their previous appearance:

FirstCanvas /Transparent false put
FirstCanvas setcanvas .9 fillcanvas

Parent Canvas Made Opaque and Repainted

The canvastype dictionary has a key named Retained that can be set to true or
false and specifies whether or not a canvas is retained. If a canvas is retained,
any portion of its visible surface that becomes obscured by another canvas is
automatically saved offscreen. The saved portion is restored to the screen
automatically when no longer obscured; thus, the canvas does not receive dam-
age and does not need to be redrawn.

A transparent canvas does not have its own retained image; instead, it shares the
retained image of its parent.

If a canvas is unretained, damage occurs when another canvas, by which it was
previously obscured, is moved or unmapped; the damage takes the form of an
after-image of the moved canvas. Damage can also occur in other situations,
such when an unretained canvas is mapped to the screen. Note that a transparent
canvas never receives damage; instead, damage may be received by the canvas
beneath the transparent canvas.

S un Revision A, of 25 August 1989

microsystems

20

News Programmer’s Guide

NOTE

Figure 2-6

NOTE

A client must be prepared for damage even on a retained canvas: a retained can-
vas can and will receive damage, although less frequently than will an unretained
canvas. For example, a retained canvas may receive damage when it is reshaped.

Each system has a retain threshold that specifies the number of bits per pixel
below which a canvas has its Retained key automatically set to true. However,
if your application desires that a canvas be retained, you should always set the
Retained key explicitly.

The following example demonstrates the effects of setting the Retained key:

e)
FirstCanvas /Retained false put % Make a parent canvas unretained.
SecondCanvas setcanvas
15 15 movecanvas % Move the child canvas over the

% parent; damage occurs to the
% parent.
- J

The damage caused by moving SecondCanvas is illustrated as follows:

Damage on Unretained Canvas

If the damaged parent canvas is repainted and then retained, the child canvas can
be moved over its surface without damage occurring:

) A
(FirstCanvas setcanvas % Paint the parent, the appearance
9 fillcanvas % of the child is not affected.
FirstCanvas /Retained true put % Retain and paint the parent.
.9 fillcanvas
SecondCanvas setcanvas % Move the child over the retained
25 25 movecanvas % parent; no damage occurs.
_ J

Retaining canvases can be extremely costly in terms of memory, particularly on
color displays.

sSun Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 21

Further Information on Damage

The SaveBehind Key

The News server considers a canvas to be damaged if all or part of its image is
incorrect and needs to be redrawn. Damage can occur in the following ways:

o Anunretained canvas is damaged when a canvas by which it was previously
obscured is moved away.

o Anunretained canvas is damaged when first mapped to the screen.

o Anunretained canvas is damaged when its Retained key is set to true (thus
changing it to retained) while part of the canvas is not visible.

o A retained or unretained canvas is damaged when is it reshaped.

When a canvas is initially damaged, the NeWs server automatically sends a dam-
age event to processes interested in damage on that canvas; a damage event has
/Damaged in its Name field and a copy of the affected canvas in its Canvas
field. After receiving a damage event, the client program should repair the dam-
age by redrawing the damaged parts of the canvas. If the client does not immedi-
ately repair the canvas and damage continues to occur, the NeWs server sends no
additional damage events to the client. Instead, the server maintains and updates
a record of all the damage that has occurred to the client. Eventually, the client
should request a copy of this record and repair all damage (for information on
doing this, see the description of the damagepath operator in Chapter 9, NeWs
Operator Extensions).

The SaveBehind key of the canvastype dictionary can be used to prevent dam-
age from occurring to other canvases. When the key is set to true, NeWs saves
the values of the pixels that the canvas obscures when it is mapped. Even if the
pixels belong to unretained canvases, they can be restored directly to the screen
when the canvas that obscures them is removed.

The SaveBehind key is useful for pop-up menus and other canvases that are
small and are not required to be visible for long; when used with such canvases,
the key can greatly enhance server performance.

The SaveBehind key is demonstrated by the following example:

~
SecondCanvas /Mapped false put % Unmap the child.
FirstCanvas /Retained false put % Make the parent unretained.
SecondCanvas /SaveBehind true put % Specify use of SaveBehind.
SecondCanvas /Mapped true put % Remap the child.
SecondCanvas setcanvas % Make the child current, paint
0 fillcanvas % it, and unmap it; no damage
SecondCanvas /Mapped false put % occurs to the parent.
_ J
sun Revision A, of 25 August 1989
microsystems

22 News Programmer’s Guide

2.4. Parent, Child, and
Sibling Canvases

The Sibling List

This section discusses the parent/child and sibling relationships that exist
between canvases.

When a parent canvas has multiple children, the children are automatically
arranged in a sibling list. The list controls the appearance of the siblings when
they are visible on the screen and are made to overlap. By default, the most
recently created child becomes the top sibling in the list; thus, if all siblings are
visible on the screen and overlap, the top sibling covers all others; the bottom
sibling is covered by all others. When the newcanvas operator is called, the
created canvas becomes the top child of its parent.

You can change the list-position of a sibling by specifying values for the follow-
ing keys of the canvastype dictionary:

o CanvasAbove

This key specifies the canvas that is immediately above this canvas in the
sibling list; if no such canvas exists, the value of the key is null. The value
of this key can be set to any sibling; thus, this canvas is inserted in the list at
a position directly below the specified sibling.

a CanvasBelow

This key specifies the canvas that is immediately below this canvas in the
sibling list; if no such canvas exists, the value of the key is null. The value
of this key can be set to any sibling; thus, this canvas is inserted in the list at
a position directly above the specified sibling.

NeWs also provides the following operators, which allow you to manipulate the
sibling list:

canvas canvastobottom -
Moves the canvas to the bottom of its list of siblings.

canvas canvastotop —
Moves the canvas to the top of its list of siblings.

canvas x y Insertcanvasabove -
Inserts the current canvas into the list at the position immediately above canvas.

canvas x y insertcanvasbelow -
Inserts the current canvas into the list at the position immediately below canvas.

For the operators insertcanvasabove and insertcanvasbelow, the coordinates x
and y are computed with reference to the origin of the default coordinate system
of the parent of the current canvas (as described for the form of the movecanvas
operator that takes no canvas argument). The current canvas must be a sibling of
canvas.

The following example creates ThirdCanvas , which is a sibling to the canvas
SecondCanvas (defined in a previous example); by default, the new canvas is
placed at the top of the sibling list and thus obscures its sibling. The insertcan-
vasabove operator is then used to reverse the position of the canvases in the list;
thus, SecondCanvas obscures the new canvas.

sun Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 23

FirstCanvas /Retained true put

SecondCanvas /Mapped true put

0 fillcanvas

SecondCanvas /Retained true put

FirstCanvas setcanvas

/ThirdCanvas FirstCanvas newcanvas def % Define and display a sibling
% of SecondCanvas.

newpath 0 0 75 75 rectpath

ThirdCanvas reshapecanvas

ThirdCanvas /Transparent false put

ThirdCanvas /Retained true put

ThirdCanvas setcanvas

A4 fillcanvas

50 50 movecanvas

ThirdCanvas /Mapped true put % ThirdCanvas obscures
% SecondCanvas.

_ J

The appearance of ThirdCanvas is illustrated as follows:

Figure 2-7 Younger Sibling Obscuring Elder

The following code inserts SecondCanvas above ThirdCanvas :

SecondCanvas setcanvas % Insert SecondCanvas above
ThirdCanvas 25 25 insertcanvasabove % ThirdCanvas.

The appearance of the canvases is now as follows:

Sun Revision A, of 25 August 1989

microsystems

24 News Programmer’s Guide

Figure 2-8

Establishing a New Parent

Figure 2-9

@

Elder Sibling Made to Obscure Younger

The insertcanvasbelow operator can similarly be used to change sibling posi-
tions in the list:

SecondCan\(as setcanvas % Insert SecondCanvas below
ThirdCanvas 25 25 insertcanvasbelow % ThirdCanvas.

News allows you to specify a new parent for a canvas by setting the value of the
Parent key in the canvastype dictionary.

This is shown by the following example:

SecondCanvas /Parent ThirdCanvas put % Make ThirdCanvas the parent of
20 20 movecanvas % SecondCanvas

The canvases now appear as follows (note that SecondCanvas is now clipped
where it exceeds the boundaries of ThirdCanvas):

Modified Parenthood Between Canvases

S un Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 25

2.5. Overlay Canvases

Drawing on Overlays

News allows you to create overlay canvases. An overlay canvas, which can only
be created over an existing non-overlay canvas, is always transparent. However,
when graphic objects are drawn on an overlay, they appear on the overlay itself,

rather than on the canvas below.

Overlays are intended for use in transient or animated drawing procedures, such
as the creation of “rubber-band” boxes, which expand or contract according to
mouse movement when a user is resizing a window.

The following operator is provided for creating overlays:

canvas createoverlay canvas

The canvas argument must be an existing canvas; the canvas object returned is
the created overlay. Note that the overlay is not a child of the specified canvas; it
is considered a part of that canvas.

Other features of overlays are as follows:

o Each non-overlay canvas (whether transparent or opaque) can possess one
overlay canvas only.

o Anoverlay canvas cannot receive any events. If you express interest on an
overlay, the interest is placed on the prechild interest list of the canvas over
which the overlay was created.

o Anoverlay never receives damage; therefore, it never requires repainting.
o Anoverlay cannot have a parent, nor can it have children.

o Ifanoverlay’s corresponding non-overlay canvas has children, these may
have their own overlays. A canvas’ overlay appears above the overlays of
the canvas’ children.

o If a canvas possesses an overlay, any subsequent attempt to create an overlay
of the canvas returns the existing overlay.

o Anoverlay cannot be reshaped; attempting to reshape an overlay produces
no result. An overlay always has the shape of its associated non-overlay
canvas.

o Anoverlay cannot be possessed by more than one non-overlay, nor can it
change owners.

o Anoverlay should not be specified as mapped or unmapped; it should appear
in accordance with the state of its associated non-overlay. Programmers
should not attempt to change the keys in the overlay’s dictionary.

Due to the way in which overlays are implemented on some machines, perfor-
mance problems may occur if too many objects are drawn on an overlay.

The current color is usually ignored when drawing operations are performed on
overlays; this is a deliberate feature to allow the implementation of overlays
using various procedures on different kinds of hardware.

sun Revision A, of 25 August 1989

microsystems

26 News Programmer’s Guide

2.6. Canvas Clipping
Operators

Figure 2-10

2.7. Cursors

NeWs provides operators that perform clipping operations on canvases. These
operators are similar to the clipping operators described in the POSTSCRIPT
Language Reference Manual, except that they specify paths that NeWs considers
only in relation to the current canvas. These operators, clipcanvas, clipcan-
vaspath, and eoclipcanvas, are described in Chapter 9, NeWS Operator Exten-
sions. The clipping operators are typically used to limit the portion of the canvas
painted during damage repair.

The following example demonstrates the clipcanvas operator:

4 -)
SecondCanvas /Mapped false put
ThirdCanvas /Mapped false put

FirstCanvas setcanvas

newpath % Define a path.
20 20 moveto
220 70 lineto
80 200 lineto

closepath

clipcanvas

0 fillcanvas % The fillcanvas operation is performed —
% not on the entire canvas, which is the
% default, but on the area within the
% specified path.

The appearance of FirstCanvas is now as follows:

Results of Canvas Clipping Operation

The canvastype dictionary contains a Cursor key, which specifies the cursor
object that is used whenever the mouse is positioned over the canvas. When a
canvas is created with newcanvas, it inherits the Cursor value of its parent.

A cursor is composed of a cursor image and a mask image; the complete cursor is
produced by superimposing these two images. The mask and cursor images each
have three attributes: a font, a character in the font, and a color. The default
color for the cursor image is black, while the default color for the mask image is

sSun Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 27

2.8. Canvases, Files, and
Imaging Procedures

Writing Canvases to Files

Reading Canvases from Files

white. The two images are superimposed by aligning the origins associated with
their characters.

Each cursor has a hot spot, which is the pixel coordinate to which the mouse
points. The hot spot resides at the superimposed origin of the mask and cursor
images.

See Chapter 8, NeWs Type Extensions for further information on cursors and the
values to which the Cursor key can be set.

NeWs provides operators that allow you to save canvases in files and read them
back into News; it also provides operators that image canvas objects to the
display. This section describes these operators and how they can be used.

NeWs provides the following operator, which allows you to write a canvas to a
file:

file or string writecanvas —

This operator writes the current canvas either to a file object (specified by file) or
to a file in the server’s file name space (specified by string). The operator creates
a rasterfile that contains an image of the region outlined by the current path in the
current canvas. If the current path is empty, the whole canvas is written.

The writecanvas operator uses the non-zero winding rule; see the POSTSCRIPT
Language Reference Manual for information. To write a canvas to a file using
the even-odd winding rule, use eowritecanvas.

The writecanvas operator is demonstrated by the following example:

FirstCanvas setcanvas
(canvasfile) writecanvas % Write the canvas to a file.

The following operator reads a canvas from a file:

string or file readcanvas canvas

The operator reads a raster file into a newly created canvas. The raster file can be
specified either as a file or as a string that is the name of a file in the server’s file
name space. The created canvas is retained and opaque; it has the depth specified
in the raster file, has no parent, and is not mapped. readcanvas sets the default
coordinate system of the canvas so that the canvas’ four comers correspond to
the unit square.

If the filename specified by the string cannot be found, an undefined-
filename erroris generated. If the file cannot be interpreted as a raster file, an
invalidaccess erroris generated.

Note that a canvas read into NeWs with this operator cannot be mapped to the
display; any attempt to do this results in an invalidaccess error. The canvas must
be used as source for the imagecanvas operator, which is described as follows:

S un . Revision A, of 25 August 1989

microsystems

28 News Programmer’s Guide

Figure 2-11

Other File-Related Operators

Imaging

canvas Imagecanvas —

The operator paints the canvas argument onto the current canvas. When canvas
is rendered, the unit square is transformed to the same orientation and scale as the
unit square in the current transformation matrix. (Note that this operator is simi-
lar to the image operator provided by the POSTSCRIPT language.)

The readcanvas and imagecanvas operators are demonstrated by the following
example, in which the canvas saved in the previous example is imaged to the
screen:

30 30 translate

100 100 scale

[FileCanvas (canvasfile) readcanvas def
FileCanvas imagecanvas

The appearance of FirstCanvas is now as follows:

Imaged Canvas

News also provides the operators writescreen and eowritescreen, each of which
creates a raster file that contains a snapshot of the screen, clipped to the current
path in the current canvas. The operators writecanvas and eowritecanvas each
create a raster file that contains an image of the region outlined by the current
path in the current canvas.

See Chapter 9, NéWS Operator Extensions for a complete analysis of these opera-
tors.

The NeWs operator buildimage provides functionality similar to that of the
image operator provided by the POSTSCRIPT language, using the binary represen-
tation of a specified string to create a sampled image as a canvas object. The
canvas object can then be imaged to the screen with the imagecanvas operator.

The buildimage operator is described fully in Chapter 9, NewS Operator Exten-
sions. The following example demonstrates how it can be used:

S un Revision A, of 25 August 1989

microsystems

Chapter 2 — Canvases 29

Figure 2-12

2.9. Other Dictionary Keys

Events

Color

X-Specific Features

Grab State

4 A

FirstCanvas setcanvas

0 fillcanvas

/Design 8 8 1[8 0 0 8 0 0] (A B) buildimage def

25 25 translate % Specify appropriate

100 100 scale % coordinates and scale.

Design imagecanvas % The image appears within

% the clipping area of FirstCanvas.

\. J

The appearance of FirstCanvas is now as follows:

Canvas Imaged with buildimage Operator

Some of the canvastype dictionary keys pertain to News features that are
described fully elsewhere in this guide. This section summarizes these keys and
their functionality.

The keys EventsConsumed and Interests control the behavior of the canvas
with reference to events. These keys are described in Chapter 3, Events and
Chapter 8, NeWS Type Extensions.

The keys Color, Colormap, Visual, and VisualList manage the color require-
ments of canvases that are displayed on the appropriate hardware. These keys
are described in Chapter 8, NeWS Type Extensions.

The keys OverrideRedirect, BorderWidth, UserProps, and XID are used only
for canvases created by X11. These keys are described in Chapter 8, NeWS Type
Extensions.

The keys Grabbed and GrabToken are used to set and inspect the grabbed state
of a canvas. These keys are described in Chapter 8, NeWs Type Extensions.

sun ‘ CoEr ~ Revision A, of 25 August 1989

microsystems

30 News Programmer’s Guide

File Sharing The keys SharedFile and RowBytes are used to map canvases 1o files; the keys

are described in Chapter 8, NeWs Type Extensions. Note that the ability to map a

canvas to a file is operating system dependent and may not be present in the
server.

@ sun Revision A, of 25 August 1989
microsystems

Events

Events

3.1.
3.2.
33.

34.

3.5.
3.6.
3.7.

3.8.

The eventtype extension

Event Operators

Overview of Event Distribution

Creating an Event

Expressing Interests

Copying an Event Before Expressing Interest

Changing and Reusing Interests
Rules for Matching Events to Interests

Rules for Name And Action Key Matching

Rules for Process Key Matching

Rules for Serial Key Matching
Sending an Event into Distribution

Awaiting Events

Specifying the Name, Action, and Canvas Keys as

Dictionaries

Non-Executable Dictionary ValUEsenneensmsosesssessessones

Executable Dictionary Values

Using the Canvas Key: Matching Multiple INterests ...

Pre-Child and Post-Child Interest Lists

Order of Interest MatCHiNGccooocovveoeenee s ssmssis s ssessisssssssessnsee

Specifying a Single Canvas ...

Specifying an Array or Dictionary ..

33

33
34
34
35
36
36
36
37
37
37
37
38
38

39
39
41
43
43
44
44
44
44

3.9. System-Generated Events

3.10.
3.11.
3.12.

3.13.

3.14.
3.15.

3.16.

Using the canvastype EventsConsumed Key

Multiple Post-Child Interest Matching: An Example

Multiple Pre-Child Interest Matching: An Example

..........

Mouse Events

Enter and Exit Events

.............................

..

Name Key Values

........

Action Key Values

Using the postcrossings Operator
Using the XLocation and YLocation Keys

Using the Coordinates Key

.....

Focus Events

Keyboard Events

The Repeat Key Dictionary

Damage Events

Obsolescence Events

ProcessDied Events

Using the ClientData Key

Using the Priority Key

Using the Exclusivity Key
Using the redistributeevent Operator

Using the TimeStamp Key

Using the recallevent Operator

Using the Process Key

Input Synchronization with Multiple Processes

Using blockinputqueue
Event Logging ..

45
45
49
49
50
52
52
54
55
56
57
57
58
58
59
59
59
60
60
62
63
64
65
66
67
67
68

The eventtype extension

@

Events

An event is an object that represents a message between NeWS processes. An
event can be generated by the server or by any NeWs process, and an event can be
delivered to any NeWws process. Events that originate from the server are known
as system-generated events; events that originate from NeWs processes are known
as process-generated events. Events can transmit any kind of information and
thus serve as a general interprocess communication mechanism. Some system-
generated events report user manipulation of input devices and are therefore
known as input events. An event is implemented as a NeWS type extension that
can be accessed as a dictionary.

NeWs provides an operator, createevent, that allows a process to create an event
object. The newly created event dictionary contains keys with system-supplied
names and initial values of null or zero. The process can then give the desired
values to the keys and send the event into distribution. A process sends an event
into the server’s distribution mechanism with the sendevent operator. System-
generated events are automatically sent into distribution as soon as they are gen-
erated. The server’s distribution mechanism accumulates events in a global
event queue and distributes a copy of each event to NeWs processes that are
interested in receiving the event.

A process indicates its interest in receiving a certain type of event by construct-
ing that type of event and passing it as an argument to the expressinterest opera-
tor. An event object used in this way is known as an interest. A process’
interests serve as templates that tell the server what types of events the process
wants to receive.

This chapter provides a full account of events.
Each News event is of type eventtype and can be accessed as a POSTSCRIPT

language dictionary. An event dictionary contains keys that describe the follow-
ing:

o The identity and matching of events (Action, Name, Serial, Process)

o The location or destination of events (Canvas, Coordinates, XLocation,
YLocation)

o The time at which an event is to be distributed (TimeStamp)

sSun 33 Revision A, of 25 August 1989

microsystems

34 News Programmer’s Guide

o Whether an event is in the server’s global event queue (IsQueued)
o The interest that matched an event (Interest)

o The characteristics of interests (Exclusivity, IsInterest, IsPreChild, Prior-
ity)

o Keyboard status with reference to events (KeyState)

o Additional miscellaneous information (ClientData)

The keys are discussed in detail throughout this chapter; a full syntactic descrip-
tion of each key is also provided in Chapter 8, NeWs Type Extensions.

Event Operators NeWs includes a variety of operator extensions to be used on events. The opera-
tors provide the following functionality:

o Creating events (createevent)
o Sending events into distribution (sendevent)

o Enabling and disabling reception of events (awaitevent, expressinterest,
revokeinterest)

o Manipulating the event distribution mechanism (blockinputqueue, recal-
levent, redistributeevent, unblockinputqueue)

o Performing miscellaneous operations (countinputqueue, geteventlogger,
lasteventkeystate, lasteventtime, lasteventx, lasteventy, postcrossings,
seteventlogger)

3.1. Overview of Event The distribution of an event consists of four main steps:
Distribution . ‘
1. Generation of the event.
An event is created by the server or by any NeWS process. A process creates
an event with the createevent operator.

2. Delivery of the event to the server’s global event queue.

A process sends an event to the global event queue with the sendevent
operator. System-generated events are automatically sent to the global event
queue after the server creates them.

The events in the global queue are sorted according to the value of their
TimeStamp keys. When the server generates an event, the current time is
stored in the event’s TimeStamp key. Other events have whatever TimeS-
tamp value is specified by the process that creates them. An event is never
delivered before the time indicated in its TimeStamp key. Therefore,
processes can specify that an event be delivered at some time in the future.

3. Distribution of the event to interested processes.

Delivery of an event is initiated whenever the event at the head of the global
event queue has a TimeStamp that is less than or equal to the server’s
current time. When this occurs, the event is removed from the queue and is
compared with the interests to locate matches. An event is not necessarily

é&:}& sSun Revision A, of 25 August 1989

microsystems

Chapter 3 — Events 35

3.2. Creating an Event

%

compared to all the interests; the value of the event’s Canvas key deter-
mines which interests are compared to the event. (The search procedure is
described in detail later in this chapter.)

When an event is compared to an interest, the server attempts to match four
of the dictionary keys in the event to the same four keys in the interest: the
Name, Action, Process, and Serial keys must match according to specific
rules before an interest is said to match an event. (The matching rules are
given later in this chapter.)

When a match is found, a copy of the event is distributed to the process that
has the matching interest; the copy is placed on the local event queue of the
process. A process’ local event queue is a simple first-in, first-out queue. If
a process has more than one matching interest, it receives one copy of the
event for each matching interest.

This distribution procedure allows NeWs to broadcast the event that is at the
head of its global event queue to many processes that are interested in the
event. Each process that receives a copy of the event is given a chance to
run before the next event is taken from the global event queue.

Reception of the event by processes with matching interests.

To retrieve a delivered event from its local event queue, a process must exe-
cute the awaitevent operator. If an event is present on the process’ local
event queue, the awaitevent operator removes the event from the local
queue and puts a copy of the event on the process’ operand stack. The pro-
cess can examine the keys in the event dictionary to determine what action it
should take. If no event is waiting on the process’ local event queue when
the process executes awaitevent, the process blocks until an event is
delivered.

To create an event, use the createevent operator:

~ Createevent event

This operator creates an object of type event and places it on the top of the stack
for the current process. Each of the object’s keys has the value null (if the key is
non-numeric) or zero (if the key is numeric).

The following example creates an event and associates it with a variable named
€. The POSTSCRIPT language operators begin and end are then used to specify
values for the Name and Action fields of the created event; each of these fields
can take an arbitrary POSTSCRIPT language object as its value; the value is used
to identify the event and match it to interests. Here, each value is specified as a
string:

/e createevent def
e begin
/Name (Hello) def
/Action (There!) det
end

sSun Revision A, of 25 August 1989

microsystems

36 News Programmer’s Guide

3.3. Expressing Interests

Copying an Event Before
Expressing Interest

Changing and Reusing
Interests

Before a process can receive an event, it must express an interest in receiving
that type of event. To express an interest, use the expressinterest operator:

event expressinterest —
event process expressinterest -

- The event argument can be an event created with createevent or it can be a

system-generated event. If specified, the process argument indicates the process
for which an interest is expressed; otherwise, an interest is expressed for the
current process. An interest’s type is still eventtype. Interests can be dis-
tinguished from other events by the IsInterest key; when an event is expressed
as an interest, its IsInterest key is set to true.

If event is already an active interest, the call to expressinterest is ignored.

All events that match the event argument to expressinterest may be received by
the specified process. The rules used to match events and interests are given in
the Section 3.4, Rules for Matching Events to Interests.

Although events and interests use identical structures, NeWs does not allow you
to dispatch into the event distribution mechanism an event that has already been
expressed as an interest; nor does it allow you to express interest in an event that
has been sent into the event distribution mechanism but not yet delivered.

When there is a danger of an event being used in this way, you can follow this
procedure:

1. Create the event.

2. Make a copy of the event.

3. Express interest in the copy.

4. Send the event into distribution.

To make a copy of an event, use the POSTSCRIPT language copy primitive, as fol-
lows:

/e1 e createevent copy def
e1 expressinterest

The Name and Action key values of an interest can be changed after an interest
has been expressed; the interest continues to be expressed and assumes the new
Name and Action values that you have specified; these values are thus used in all
future comparisons with distributed events.

Note, however, that none of the interest’s other key values can be changed once
the interest has been expressed; if you attempt to do this, an invalidaccess
error is signaled and all the key values remain the same. To change any of the
other key values, you must revoke the interest (using the revokeinterest opera-
tor) and then change and re-express the interest.

sun ‘ Revision A, of 25 August 1989

microsystems

Chapter 3 — Events 37

3.4. Rules for Matching
Events to Interests

Rules for Name And Action
Key Matching

Rules for Process Key
Matching

Rules for Serial Key Matching

NOTE

@

To determine whether an event matches an interest, NeWS examines the contents
of the Name, Action, Process, and Serial dictionary keys. For each of these
keys, the distributed event’s value is compared to the interest’s value; values are
considered to match according to a special system of rules provided by News.
When all of the values match, the event and interest themselves match. This sec-
tion summarizes the rules used to match events and interests.

The Name and Action keys can contain values of any type. For an event to
match an interest, the Name and Action keys must satisfy the following require-
ments:

o If the interest’s key value is anything other than an array, a dictionary, or
null, it must be identical to the event’s key value.

o Ifthe interest’s key value is an array, at least one of its elements must be
identical to the event’s key value; if the key value is a dictionary, at least one
of its keys must be identical to the event’s key value.

o If the interest’s key value is null, it matches anything in the key of the event.

o Ifthe interest’s key value is the name AnyValue or is an array or dictionary
that contains AnyValue, it matches anything in the key of the event. (Note
that if a dictionary contains both AnyValue and a value identical to the
event’s key value, the identical value is used.)

o If the event’s key value is null, it matches only null or AnyValue in the
corresponding key of the interest.

The Process key value of an event can be either a reference to a specific process
ornull. An interest’s Process key value is never null; it is always automatically
set to the process for which the interest is expressed. For an event to match an
interest, the Process keys must satisfy the following rules:

o Ifthe event’s key value is null, it matches anything in the Process key of the
interest.

o If the event’s key value is a specific process, this value must be identical to
the value of the interest’s key.

The Serial key of an event, which is read-only for both interests and events, is
automatically set to a numeric value when the event is taken off the global event
queue; the value is used to indicate the sequence in which the removal of events
occurs. If the event is then successfully matched with an interest, the interest’s
Serial key is automatically set to the value that the event’s key contains. News
allows an event to match an interest only when the interest’s serial number is less
than that of the event; this prevents an event passed to the redistributeevent
operator from repeatedly matching the same interests before redistribution takes
place.

See Section 3.12, Using the Exclusivity Key, for a description of the redistribu-
teevent operator. See Section 3.8, Using the Canvas Key: Matching Multiple
Interests, for additional information on matching events and interests.

sun Revision A, of 25 August 1989

microsystems

38 News Programmer’s Guide

3.5. Sending an Event into
Distribution

3.6. Awaiting Events

When an event has been created, it can be sent into the NeWs event distribution
mechanism. The mechanism contains a global event queue into which all sent
events are immediately arranged according to the value of their TimeStamp key,
which should be given a value by the process that creates the event (information
on doing this is provided later in this chapter).

The server automatically removes each event from the front of the global event
queue; an event at the head of the queue is removed when its TimeStamp value
is less than or equal to the server’s current time. When an event is removed, it is
compared with the interests to locate matches. When a match is found, a copy of
the event is distributed to the process that has the matching interest; the copy is
placed on the local event queue of the process. Event copies remain in the local
queue until the operator awaitevent is executed (see the following section for
details).

To send an event, use the sendevent operator, whose syntax is as follows:
event sendevent —

In the following example, the previously defined event is sent into the event dis-
tribution mechanism. Since the value of the event’s TimeStamp is zero by
default, the event is immediately removed from the global event queue. A copy
of the event is successfully matched to the interest previously expressed by the
current process (e1 expressinterest). Therefore, a copy of the event is placed
on the process’ local event queue.

[e sendevent]

To retrieve the events that are queued on a process’ local event queue, use the
operator awaitevent.

— awaltevent event

When no event is contained on the process’ local event queue, this operator
causes the process to block; when an event arrives on the queue, awaitevent
removes the event and places a copy of it on top of the process’ operand stack;
the process then ceases to block. If an event is waiting on the local queue when
awaitevent is called, the event is immediately placed on the process’ operand
stack.

The following example executes awaitevent and then prints the values of the
event’s Name and Action keys.

un Revision A, of 25 August 1989

Chapter 3 — Events 39

3.7. Specifying the Name,
Action, and Canvas
Keys as Dictionaries

Non-Executable Dictionary
Values

@

News allows you to specify arrays or dictionaries as values for the Name, Action,
and Canvas keys of an interest. For a process- or system-generated event to
match the interest, each event key value must match one of the array or diction-
ary elements within the interest’s corresponding key value. For example, sup-
pose that the value of an interest’s Name is a dictionary with three key-value
pairs; for an event to match this interest, the event’s Name key value must match
one of the three keys in the interest’s Name dictionary.

When an interest has a dictionary as one of its key values, the server performs
some post-match processing on any event that matches the interest; the server
handles the event differently depending on whether the interest has executable or
non-executable values in its dictionary.

If the dictionary value associated with the matching key is non-executable, the
value is automatically stored in the corresponding field of the event copy; that is,
in the Name, Action, or Canvas field. The copy of the event is then placed on
the top of the stack for the current process; thus, the new value can be retrieved.

This behavior is demonstrated by the following example. This example uses
system-generated mouse button events. When the mouse button is pressed, the
server generates an event that has the value of its Name key set to /Left-
MouseButton, /MiddleMouseButton, or /RightMouseButton, depending on
which mouse button is pressed; the value of the Action key is set to /DownTran-
sition. When the mouse button is released, another event is generated with the
same Name and with an Action of /UpTransition. Mouse events are described
in detail in Section 3.9, System-Generated Events.

S ll n Revision A, of 25 August 1989

microsystems.

40

News Programmer’s Guide

N

(createevent dup begin % Create an event.

/Name 3 dict dup begin % Create dict for the Name field.
/LeftMouseButton (Left Button Went Down) def
/MiddieMouseButton (Middle Button Went Down) def
/RightMouseButton (Right Button Went Down) def

end def
/Action [/DownTransition] def % Make Action be button presses.
/Exclusivity true def
end dup expressinterest % Express interest in the event.
createevent dup begin % Create an event.
/Name 3 dict dup begin % Create dict for the Name field.

/LeftMouseButton (Left Button Went Up) def
/MiddleMouseButton (Middle Button Went Up) def
/RightMouseButton (Right Button Went Up) def
end def
/Action [/UpTransition] def % Make Action be button releases.
/Exclusivity true def
end dup expressinterest % Express interest in the event.

{

awaitevent
/Name get dup (Right Button Went Up) eq {
== exit

H

} ifelse
} loop

revokeinterest revokeinterest % Revoke both interests.

\. /

In this example, two interests are created: one interest in /UpTransition mouse
button events and one interest in /DownTransition mouse button events. Each
interest has a dictionary as the value of its Name key. Each Name dictionary
contains three entries (one for each mouse button). Each entry has the Name of a
mouse button event as the dictionary key and a string as the associated value; the
string simply describes which button was pressed or released.

The Exclusivity key of each interest is set to true so that the interests are
exclusive; an event that matches an exclusive interest is not compared to any
other interests. Thus in this example, mouse presses and releases will not affect
other canvases while these interests are expressed. For more information on
exclusive interests, see Section 3.12, Using the Exclusivity Key.

After expressing these two interests, this example loops doing an awaitevent.
When an event is retrieved from the process’ local queue, the event’s Name
value is printed to the screen. If the event’s Name value is (Right Button Went
Up), the loop is exited.

Try typing this example to psh and then pressing the left and middle mouse
buttons. Each time you press or release a mouse button, a message is printed to

S un Revision A, of 25 August 1989

microsystems

Chapter 3 — Events 41

Executable Dictionary Values

the screen. To exit the example, press and release the right mouse button.

Notice that for each matching button event, the string assigned in the interest’s
Name dictionary is substituted for the event’s Name value before the event is
distributed to the process. Thus, when the event’s Name value is printed, the
string is printed to the screen. For example, when the left mouse button is
pressed, the string (Left Button Went Down) appears on the screen, instead of
the name /LeftMouseButton.

If the dictionary value associated with the matching key is executable, the
corresponding event field is not modified; instead, the executable dictionary
value is executed immediately after the received event is placed on the top of the
stack by awaitevent. If more than one of the fields have executable values in
their dictionaries, the Name value is executed first, followed by the Action value,
followed by the Canvas value. '

This behavior is demonstrated by the following example:

N -~
&v S Revision A, of 25 August 1989

42

News Programmer’s Guide

createevent dup begin % Create an event.
/Name 3 dict dup begin % Create dict for the Name field.
/LeftMouseButton { % event => —
/Action get /UpTransition eq {
(Left Button Up) ==
H
(Left Button Down) ==
} ifelse
} def
/MiddleMouseButton { % event => —
/Action get /UpTransition eq {
(Middle Button Up) ==

{
(Middle Button Down) ==
} ifelse
} def
/RightMouseButton { % event => —
/Action get /UpTransition eq {
(Right Button Up) ==
exit
H
(Right Button Down) ==
} ifelse
} def
end def
/Action [/DownTransition /UpTransition] def
/Exclusivity true def
end dup expressinterest 9% Express interest in the event.

{

awaitevent
} loop

revokeinterest

_ _J

In this example, only one interest is expressed, but the interest contains both
/UpTransition and /DownTransition in its Action field. Therefore, this interest
can match both up and down mouse button events. Again, a dictionary is
assigned to the interest’s Name ficld. In this case, the dictionary values are exe-
cutable; they are procedures that examine the Action of the event returned by
awaitevent and then print the appropriate string. Each procedure also pops the
event from the process’ operand stack. Again, a release of the right mouse button
causes an exit from the awaitevent loop.

When the mouse button is pressed or released, the server generates an event and
distributes a copy of it to the process. After awaitevent places the event on the
process’ operand stack, the executable dictionary key value associated with the
event’s Name is executed immediately, printing the appropriate string to the
screen.

Sun Revision A, of 25 August 1989

microsystems

Chapter 3 —Events 43

NOTE Executable matches, which are permitted by executable Canvas, Name, and
Action dictionary values in interests, provide a highly efficient way of executing
code according to the canvas on which an interest has been matched. Using this
procedure, POSTSCRIPT language constructs such as case, which are normally
used to vector a matched event to the correct handler, are made unnecessary.

3.8. Using the Canvas Key: The event dictionary contains a Canvas key, whose value can be one of the fol-
Matching Multiple lowing:
Interests
o A canvas
o A dictionary or array that contains canvases
o The null value

The key has an important role to play in interest matching. This section
describes the Canvas key and explains how multiple interests are matched
according to its value. This section also describes the EventsConsumed key of

the canvastype dictionary.
Pre-Child and Post-Child NeWs provides each canvas with a pre-child and a post-child interest list.
Interest Lists Interests are assigned to canvas interest lists as follows:

o When an interest is expressed with a canvas specified as its Canvas key
value, the interest is inserted into one of the interest lists (pre-child or post-
child) for the specified canvas.

o When an interest is expressed with an array or dictionary specified as its
Canvas field, the interest is inserted into one of the interest lists for each
canvas in the array or dictionary. One interest can therefore receive events
sent to multiple canvases.

The event dictionary contains a key named IsPreChild. This key can be set in
both events and interests, but is meaningless in events. When the key is set to
true in an interest, it indicates that the interest appears on the pre-child interest
list of the canvas. When the key is set to false , it indicates that the interest
appears on the canvas’ post-child interest list.

The kind of list (that is, pre-child or post-child) into which an interest is inserted
determines the sequence in which events are matched across canvases. Generally
speaking, the pre-child interests of a canvas’ ancestors are matched before any of
the interests of the canvas; the post-child interests of the ancestors are matched
after the interests of the canvas. NeWs also provides ways in which the priority of
interests can be specified and allows interests to become exclusive so that no
other interest is matched after they themselves are matched.

A detailed analysis of interest lists and multiple event matching is provided in
the following sections.

Q> un Revision A, of 25 August 1989

microsystems

44 News Programmer’s Guide

Order of Interest Matching

Specifying a Single Canvas

Specifying an Array or
Dictionary

Specifying null

NOTE

NOTE

@

This section describes how multiple interests are matched across canvases.

When an event is distributed with sendevent, the value in the event’s Canvas
key determines which canvas interest lists are searched for potential matches.
The exact search path through the canvas hierarchy depends on whether the Can-
vas key value of the event contains a single canvas, an array or dictionary con-
taining multiple canvases, or null. These search paths are discussed in the fol-
lowing subsections:

When a single canvas is specified as an event’s Canvas key value, the search
procedure is as follows:

1. News determines the branch of the canvas hierarchy that connects the
specified canvas to the root canvas.

2. News searches the pre-child interest list of each canvas on the branch, start-
ing from the root canvas and ending with the specified canvas.

3. NeWws searches the post-child interest list of the specified canvas.

Therefore, when a single canvas is specified as an event’s Canvas key value, the
only post-child interest list to be searched is that of the specified canvas. This
means that the event will not match post-child interests of the canvas’ ancestors.

When an array or dictionary is specified as an event’s Canvas key value, each
element being a canvas, each canvas is considered in turn according to the rules
described for a single canvas above.

If the Canvas field of an interest contains a dictionary, it is subject to the same
post-match rules as are the Name and Action fields. This allows Canvas field
substitution and executable matches to occur.

When null is specified as an event’s Canvas key value, the principal canvas is
the topmost canvas under the x, y location specified in the event. The search pro-
cedure is as follows:

1. News determines the branch of the canvas hierarchy that connects the princi-
pal canvas to the root canvas.

2. News searches the pre-child interest list of each canvas on the branch, start-
ing from the root canvas and ending with the principal canvas.

3. News searches the post-child interest list of each canvas on the branch, start-
ing from the principal canvas and ending with the root canvas.

Therefore, when no canvas is specified as an event’s Canvas key value, all pre-
and post-child interest lists on canvases in the search path are searched.

Any interest with null as its Canvas key value is on the pre-child interest list of
the root canvas.

sun Revision A, of 25 August 1989

microsystems

Chapter 3 —Events 45

Using the canvastype
EventsConsumed Key

NOTE

Multiple Post-Child Interest
Matching: An Example

@

Although it is often desirable to affect a canvas’ ancestors with operations that
are intended to affect the canvas itself, it may sometimes be necessary to override
the procedure you have defined to allow this. The canvastype dictionary con-
tains a key named EventsConsumed; this key allows you to specify whether
events tested for a match with the current canvas’ post-child interests are simi-
larly tested with the post-child interests of the canvas’ parent; the pre-child
interests of the canvas’ parent are always tested. The possible values for the
EventsConsumed key are as follows:

o /AllEvents

This indicates that all events tested for a match with the canvas’ post-child
interests are consumed; that is, none is tested for a match with the post-child
interests of the canvas’ parent.

o /MatchedEvents

This indicates that events successfully matched with one or more of the can-
vas’ post-child interests are consumed; that is, they are not tested for a match
with the post-child interests of the canvas’ parent. However, events not suc-
cessfully matched with the canvas’ post-child interests will indeed be tested
against the post-child interests of the canvas’ parent.

/MatchedEvents is the default for the EventsConsumed key of all can-
vases.

o /NoEvents

This indicates that no events tested for a match with the canvas’ post-child
interests are consumed; that is, all are tested against the post-child interests
of the canvas’ parent.

Non-consumed events are tested against the post-child interests of the canvas’
grandparent depending on the EventsConsumed status of the canvas’ parent.
Thus, if all canvases in a branch extending to the root canvas have /NoEvents
specified, all events are tested against all post-child interests of each canvas.

For each successful match that occurs, the server places one copy of the current
distributed event on the local event queue for the process that has the matching
interest. When awaitevent is called, the event is placed on the process’ stack.

Each process in NeWS maintains an interest list. The list contains all interests
currently expressed by the process. For further information see Section 3.14,
Using the Process Key.

The following example shows how multiple post-child interests can be matched.
/MakeFirstCanvas { , % Make a parent canvas.
[FirstCanvas framebuffer newcanvas def
newpath 0 0 250 250 rectpath
FirstCanvas reshapecanvas
FirstCanvas setcanvas

1 fillcanvas

FirstCanvas /Mapped true put
. J
Sun Revision A, of 25 August 1989

microsystems

46 News Programmer’s Guide

(25 25 movecanvas

newpath 3 3 244 244 rectpath
clipcanvas
1 fillcanvas

} det

/MakeSecondCanvas { % Make a child canvas.
/SecondCanvas FirstCanvas newcanvas def
newpath 0 0 75 75 rectpath
SecondCanvas reshapecanvas
SecondCanvas /Transparent false put
SecondCanvas setcanvas
25 25 movecanvas
1 fillcanvas
SecondCanvas /Mapped true put
newpath 3 3 69 69 rectpath
clipcanvas
0 fillcanvas

} def

/Flush { % Clear the process event queue.
countinputqueue {awaitevent pop} repeat
} def

/MakeEvent { % Make an event object.
/e1 createevent def
e1 begin
/Name /RightMouseButton def
/Action /DownTransition def
end
} def

/Makelnterests { % Make event objects, specific
/IntX e1 createevent copy def % to each canvas, in which
IntX /Canvas SecondCanvas put % interest can be expressed.
/intY e1 createevent copy def
IntY /Canvas FirstCanvas put

} def

/ChildOp {
FirstCanvas setcanvas .8 fillcanvas
SecondCanvas setcanvas .8 fillcanvas
SecondCanvas /EventsConsumed /NoEvents put
IntX expressinterest % Set the EventsConsume
IntY expressinterest % key of SecondCanvas
Flush % to INoEvents, express
/Count 0 def % interests, send the event,
2{ % change canvas appearances
awaitevent % accordingly, and revoke
/interest get dup % interests.
/Canvas get dup
setcanvas Count fillcanvas
/Count Count .1 add def

\. J

@ Sun Revision A, of 25 August 1989

Chapter 3 — Events 47

(Count 1 gt {/Count 0 def} if)
} repeat
IntX revokeinterest
IntY revokeinterest
(ChildOp has completed.\n) print
} def

MakeFirstCanvas % Call all operations.
MakeSecondCanvas
MakeEvent
Makelnterests
ChildOp
% Click the right mouse button
% over the position of
% SecondCanvas.
\. J

This example begins by creating two canvases, named FirstCanvas and
SecondCanvas. SecondCanvas is the child of FirstCanvas; both canvases
have EventsConsumed set to /MatchedEvents by default.

The Flush operation, which is used to clear the process event queue, contains the
following primitive:

— countinputqueue num
The operator retumns the number of events currently available from the process’
local event queue.

The Flush operation retrieves the number of queued events, calls awaitevent on
each of them, and removes each of them from the process stack.

The operation MakeEvent is used to create an event object, named e1, whose
Name is /RightMouseButton and whose Action is /DownTransition. This
event object will be used to derive canvas-specific interest objects in which
interest may be expressed. Note that the distributed event corresponding to these
interests will be a system-generated event produced by pressing the right mouse
button. System-generated events, which do not require calls to sendevent, are
explained in Section 3.9, System-Generated Events.

The Makelnterests operation creates two interest objects that match the previ-
ously created event; each specifies one of the two defined canvases. The
IsPreChild key is not set for either interest object; thus, the interests are both
post-child by default.

The ChildOp operation establishes the EventsConsumed key value of Second-
Canvas as NoEvents; thus, events that occur directly over SecondCanvas will
be compared with interests expressed by both SecondCanvas and FirstCan-
vas.

Having expressed interest in the previously defined interest objects, ChildOp
makes two iterative calls to awaitevent. The operation specifies that whenever
an event appears on the local event queue, the name of the canvas that has
expressed the corresponding interest will be derived; this canvas will then be

@ S un Revision A, of 25 August 1989
microsystems

48

News Programmer’s Guide

Figure 3-1

Figure 3-2

@

established as the current canvas, and its color will be modified by a call to
fillcanvas; the color value being derived from the Count variable, incremented
by 0.1 each iteration. Thus, the canvas whose interests are first matched is
changed to the color closer to zero (that is, the darker color).

Therefore, if the mouse is placed over SecondCanvas, and the right mouse but-
ton is clicked, an event identical to €1 is automatically sent. The event is com-
pared with interests owned by SecondCanvas, and a match is made. Since
SecondCanvas is consuming no events, the event is then compared with
interests owned by FirstCanvas, and another match is made. Two copies of e1
are thus placed on the local event queue of the current process.

When awaitevent is called the first time, it causes the color of SecondCanvas
to be modified to the initial value of the Count variable, which is zero. When
awaitevent is called the second time, it causes the color of FirstCanvas to be
modified to the second value of Count, which is 1. Thus, SecondCanvas
appears darker than FirstCanvas: this is shown by the following illustrations,
which represent the appearance of the canvases before and after the mouse button
is clicked.

Initial Appearance of Canvases

Result of Pre-Child Interest Matching

Note that ChildOp also calls the following primitive:

event revokeinterest —

event process revokeinterest —

The event argument specifies an event in which interest has previously been
expressed. The optional process argument specifies the process on whose behalf

sun Revision A, of 25 August 1989

microsystems

Chapter 3 —Events 49

Multiple Pre-Child Interest
Matching: An Example

Figure 3-3

3.9. System-Generated
Events

the interest is revoked; if no process is specified, interest is revoked on behalf of
the current process.

The following example modifies the IsPreChild key values of the previously
created interest objects:

{ A
IntX /IsPreChild true put % Change interest list status of
IntY /IsPreChild true put % existing interests.
ChildOp
% Click the right mouse button over
L % the position of SecondCanvas.

J

In this example, since the values of the IsPreChild keys are set to true , calling
ChildOp causes the pre-child interest of FirstCanvas to be matched before the
pre-child interest of SecondCanvas; thus, FirstCanvas appears darker than
SecondCanvas, as shown by the following illustration:

Result of Multiple Pre-Child Interest Matching

A system-generated event is created and sent automatically by News in the fol-
lowing circumstances:

o The mouse is manipulated.

o A keyboard-key is pressed.

o A canvas is damaged.

o An object becomes obsolete, and its memory needs reclaiming.
o A process dies while it is still referenced.

o The mouse pointer exits one canvas and enters another.

Since these events are created and sent automatically, the primitives createevent
and sendevent do not need to be used; however, the other NeWs primitives for
expressing interest and awaiting events must be used in the same way as is
required for process-generated events.

This section describes system-generated events and shows how they can be used.

Revision A, of 25 August 1989

50 News Programmer’s Guide

Mouse Events

@

NeWs automatically generates events that correspond to the status of the mouse.
Each event has an appropriate value automatically inserted in its Name and
Action key. Events are generated in the following circumstances:

o

The mouse is moved.

The value of the Name key is set to /MouseDragged; the value of the
Action key is set to null.

o A mouse button is pressed and released.
When the mouse button is pressed, the value of the Name key is set to /Left-
MouseButton, /MiddleMouseButton, or /RightMouseButton, depending
on which button is pressed; the value of the Action key is set to /Down-
Transition. When the button is released, another event is generated with the
same Name value and with the Action set to /UpTransition. Thus, two
events are automatically generated whenever a mouse button is pressed and
released.
The following example demonstrates mouse button events:
{ N\
%
% Create canvas to play in.
%
/canvas framebuffer newcanvas def % Create a canvas object.
100 100 translate % Move its origin.
0 0 400 400 rectpath % Make a rectangular path.
canvas reshapecanvas % Make our canvas that shape.
canvas /Mapped true put % Map the canvas.
canvas setcanvas % Make canvas the currentcanvas.
1 fillcanvas % Give it a white background.
0 setgray % Draw with black lines.
%
% Print (in the canvas) documentation
% on button usage
%
/Times-Roman findfont 12 scalefont setfont
10 30 moveto
(Press left button to move currentpoint) show
10 20 moveto
(Press middle button and drag to draw a line) show
10 10 moveto
(Press right button to quit) show
200 200 moveto % set starting point.
%
% Create an interest in MouseDragged events on our play canvas
% (store in Idrag); this is an executable match that draws a
% line to the current mouse position each time the mouse moves
% while this interest is expressed. It also leaves the
% currentpoint at the mouse position.
%
/drag createevent dup begin
_ J
S u n Revision A, of 25 August 1989

microsystems

Chapter 3 —Events 51

@

/Name 1 dict dup begin
/MouseDragged {
begin

XLocation YLocation moveto
end
} def
end def
/Action null def
/Canvas canvas def
end def

%

% in the IName field of the interest.
%
createevent dup begin
/Name 3 dict dup begin
/LeftMouseButton {
begin
XLocation YLocation moveto
end
} det
/MiddleMouseButton {
begin
Action /DownTransition eq {
drag expressinterest

XLocation YLocation moveto
H
drag revokeinterest
} ifelse
end
} def
/RightMouseButton {
pop
exit
} def
end def

/Canvas canvas def
end dup expressinterest

{ awaitevent } loop
revokeinterest

canvas /Mapped false put
/canvas null def

% event => —

XLocation YLocation lineto stroke % Consumes the path.

% Create an interest in Up and Down transitions of all
% three mouse buttons. Each button has its own handler
% associated with it by the value of the corresponding key

XLocation YLocation lineto stroke % Stroke consumes the path.

/Action [/DownTransition /UpTransition] def

% Set currentpoint to same.

% event => —

% Move the currentpoint.

% event => ~

% We want drag events now.
% So set currentpoint back.

% Don’t want drag events any more.

% event => —
% We're all done...
% Break out of the {} loop.

% Loop, processing events.

% Unmap the window.
% Free the memory.

sun

microsystems

Revision A, of 25 August 1989

52 News Programmer’s Guide

Enter and Exit Events

Name Key Values

4

This example creates a canvas and maps it to the screen. It then prints three
strings to the canvas to provide user instructions for the example. After prepar-
ing the canvas, an interest named drag is created for /MouseDragged events.
The interest uses an executable value in the Name dictionary; the procedure
strokes a line to the x, y location of the event and then sets the current point to be
the endpoint of the line. This interest is not expressed immediately.

Another interest is then created; the second interest is for mouse button presses
and releases. This interest also uses executable values in its Name dictionary.
When a left mouse button event is matched, a procedure moves the current point
to the x, y location of that event. When a middle mouse button event is matched,
a procedure checks to see if the event is a/DownTransition. If so, drag is
passed to expressinterest. The drag interest is revoked when the button is
released. When a right mouse button event is matched, a procedure pops the
event and exits the awaitevent loop.

Try running this example with psh and drawing in the canvas that is generated.

NeWS generates a special event whenever the cursor crosses the boundary of a
canvas. The Name and Action key values of the event are automatically set
according to the kind of movement that has occurred and the relationship
between the canvases concemned.

The value of the Name key is automatically set to either ExitEvent or
EnterEvent, depending on the movement of the mouse. Thus, when the mouse
crosses any canvas boundary, at least two events are generated; the first event is
the exit event for the canvas being exited; the second event is the enter event for
the canvas being entered.

The following example demonstrates the use of EnterEvents:

4 B
/EntryOp {
/e1 createevent def % Create an entry event
e1 begin % for FirstCanvas.
/Name /EnterEvent def
/Canvas FirstCanvas def
end
/e2 createevent def % Create an entry event
e2 begin % for SecondCanvas.

/Name /EnterEvent def
/Canvas SecondCanvas def

end
e1 expressinterest % Express interests.
e2 expressinterest
Flush
/Toggle 0 def
10 {
awaitevent dup /Name get
/EnterEvent eq {
/Interest get dup % Modify canvas colors
/Canvas get setcanvas % whenever an entry
Toggle fillcanvas} if % event occurs.
& J
sSun) Revision A, of 25 August 1989

microsystems

Chapter 3 — Events 53

clear
Toggle dup {
0 {/Toggle .5 def}
.5 {{Toggle 1 def}
1 {/Toggle 0 def}
} case
} repeat
e1 revokeinterest
e2 revokeinterest
(EntryOp has completed.\n) print
} def

SecondCanvas setcanvas
0 fillcanvas

FirstCanvas setcanvas

1 fillcanvas

EntryOp

\. /

In this example, both SecondCanvas and FirstCanvas are specified to change
color when an EnterEvent occurs. The following illustrations respectively show
the appearance of the canvases when the mouse enters FirstCanvas from the
framebuffer, enters SecondCanvas from FirstCanvas, and re-enters FirstCan-

vas from SecondCanvas:

Figure 3-4 [Initial Appearance of FirstCanvas and SecondCanvas

Figure 3-5 First Entry Event, Matched by FirstCanvas

é{%) Revision A, of 25 August 1989
microsystems

54 News Programmer’s Guide

Figure 3-6

Figure 3-7

Action Key Values

Table 3-1

Second Entry Event, Matched by SecondCanvas

Third Entry Event, Matched by FirstCanvas

The value of the Action key is automatically set to a numeric value that
corresponds to the movement of the mouse and the relationship between the can-
vases between which it moves.

The following table describes each numeric value to which Action is set. Note
that a canvas is said to contain the cursor directly when it is the frontmost canvas
under the mouse; a canvas is said to contain the cursor indirectly if it is an ances-
tor of a canvas that directly contains the mouse. Note also that a canvas does not
receive a crossing event if it contains the cursor directly both before and after the
cursor movement; nor does it receive a crossing event if it contains the cursor
indirectly both before and after the cursor movement.

Boundary Crossing Events
Name Action Explanation

/EnterEvent 0 The canvas now directly contains the cursor; the
previous direct container was an ancestor of this
canvas.

1 The canvas now indirectly contains the cursor;
the previous direct container was an ancestor of
this canvas.
un Revision A, of 25 August 1989

Chapter 3 — Events 55

Table 3-1

Using the postcrossings
Operator

Boundary Crossing Events— Continued

Name

Action

Explanation

2

The canvas now directly contains the cursor; the
previous direct container was a descendant of
this canvas.

The canvas now directly contains the cursor; the
previous direct container was not an ancestor or
descendant of this canvas.

The canvas now indirectly contains the cursor;
the previous direct container was not an ancestor
or descendant of this canvas.

[ExitEvent

The canvas formerly contained the cursor
directly; the new direct container is an ancestor
of this canvas.

The canvas formerly contained the cursor
indirectly; the new direct container is an ances-
tor of this canvas.

The canvas formerly contained the cursor
directly; the new direct container is a descendant
of this canvas.

The canvas formerly contained the cursor
directly; the new direct container is not an
ancestor or descendant of this canvas.

The canvas formerly contained the cursor
indirectly; the new direct container is not an
ancestor or descendant of this canvas.

The postcrossings operator generates canvas crossing events, which notify the
system of the movement from one canvas to another of a stzate, such as the can-
vas under the pointer or the focus. Examples of crossing events are Enter
events, Exit events, and focus notification events (explained in Focus Events,
below). The Action field values of the crossing events comply with X11 focus
and enter/exit event specification.

See Chapter 9, NeWS Operator Extensions, for a complete description of the
postcrossings operator.

Revision A, of 25 August 1989

56 News Programmer’s Guide

Using the XLocation and
YLocation Keys

The eventtype dictionary contains XLocation and YLocation keys, which
respectively contain the x and y coordinates at which the event occurred. These
keys are arbitrary in process-generated events and interests; their values are
automatically set in system-generated events. Events coordinates are reported
with respect to the current transformation matrix.

The following example demonstrates how the XLocation and YLocation keys
can be used:

'd N\
FirstCanvas setcanvas

1 fillcanvas

/e1 createevent def

e1 begin
/Name /LeftMouseButton def
/Action /DownTransition def
/Canvas FirstCanvas def
end

/DrawCircle {
4 setlinewidth
e1 expressinterest
Flush
0 setgray
awaitevent dup /XLocation get
exch dup /YLocation get
exch pop
40 0 360 arc
stroke
e1 revokeinterest
} def

DrawCircle % Click the left mouse button.

The above example requires that the operation DrawCircle be called and the left
mouse button clicked over FirstCanvas. The XLocation and Ylocation values
for the corresponding event are retrieved and used in a call to the arc operation,
which draws a circle centered on the retrieved coordinates.

Sun Revision A, of 25 August 1989

Chapter 3 — Events 57

Figure 3-8

Using the Coordinates Key

Focus Events

Table 3-2

Result of Mouse-Generated Event

The eventtype object contains a Coordinates key, which provides a way to get
and set the x,y location of an event atomically. The field accepts an array of
length two, with the x coordinate in the first position and the y coordinate in the
second.

Focus events are generated by the NeWs focus manager through the postcrossings
mechanism. These events signal a change in the focal point of the keyboard,
which determines the canvas that is to receive keyboard input. The Name value
of a focus event is always /RestoreFocus, /AcceptFocus, or /LoseFocus. The
Action value is an integer specifying the nature of the focal change. These
integers and their significance are shown by the following table:

Input Focus

Name Action Explanation

/RestoreFocus 0 The canvas is now the focus; the previous focus
/AcceptFocus was an ancestor of this canvas.

1 The canvas is now the ancestor of the focus; the
previous focus was an ancestor of this canvas.

2 The canvas is now the focus; the previous focus
was a descendant of this focus.

3 The canvas is now the focus; the previous focus
was not an ancestor or descendant of this canvas.

4 The canvas is now an ancestor of the focus; the
previous focus was not an ancestor or descen-
dant of this canvas.

5 The canvas directly or indirectly contains the
pointer and is now a descendant of the focus.
The previous canvas is not equivalent to this
canvas nor is the previous canvas an ancestor or
descendant of this canvas.

n Revision A, of 25 August 1989

58 News Programmer’s Guide

Table 3-2

Keyboard Events

The Repeat Key Dictionary

@

Input Focus— Continued
Name Action Explanation
6 The focus is now ReDistribute.
7 The focus is now None.
/LoseFocus 0 The canvas used to be the focus; the new focus

is an ancestor of this canvas.

1 The canvas used to be an ancestor of the focus;
the new focus is an ancestor of this canvas.

2 The canvas used to be the focus; the new focus
is a descendant of this canvas.

3 The canvas used to be the focus; the new focus
is not an ancestor or descendant of this canvas.

4 The canvas used to be an ancestor of the focus;
the new focus is not an ancestor or descendant of
this canvas.

5 The canvas directly or indirectly contains the
pointer and used to be a descendant of the focus.
The new canvas is not equivalent to this canvas
nor is the new canvas an ancestor or descendant
of this canvas.

6 The focus used to be ReDistribute.

7 The focus used to be None.

Keyboard events are generated in response to the user’s pressing a key on the
keyboard. These events have a Name value that is a number in the range of
28416 to 28671 (6F00 to 6FFF hexidecimal) and an Action value of /UpTransi-
tion or /DownTransition. The name of the keyboard event does not represent
the character that is encoded on the key; it represents an implementation-
dependent keyboard encoding.

One of the dictionaries within systemdict is named repeatkeydict. This is a dic-
tionary specifying which keyboard keys should repeat. All of the key codes
defined in the dictionary are eligible for repeating. Note that the user should not
manipulate this dictionary directly but should use ClassRepeatKeys.

ClassRepeatKeys controls the key repeating characteristics of the server; its
class methods are described below. For a basic explanation of classes and class
methods, see Chapter 4, Classes.

sun Revision A, of 25 August 1989

microsystems

Chapter 3 — Events 59

i Damage Events

Obsolescence Events

ProcessDied Events

— /interval num

num /setinterval -

Get and set the keyboard repeat interval. num specifies how fast the keyboard
will repeat and is in units of 2!® milliseconds.

— /threshold num

num /setthreshold -

Get and set the keyboard repeat threshold. num specifies the amount of time a
key must be depressed before it will begin to repeat. num is in units of 2! mil-
liseconds.

— /repetition boolean

boolean /setrepetition -

Get and set the global state of repeat keys. If boolean is true, the keyboard will
repeat.

keycode /inhibitrepeat -
keycode /allowrepeat -
Allow or inhibit the repeating of a particular key.

The following values can be specified in the user’s UserProfile (in
.startup.ps):

/KeyRepeatThresh
The initial repeat threshold in units of 2'® milliseconds.

/KeyRepeatTime
The initial repeat interval in units of 2'® milliseconds.

Damage events are generated for a canvas whenever it is damaged (a definition
of damage is provided in Chapter 2, Canvases). The server will not send another
event until the damage has been cleared by use of the damagepath operator.
The Action key value for the event is null; the Canvas key value specifies the
affected canvas.

Obsolescence events are generated by the server for an object that becomes
obsolete. Obsolescence is defined as the state where all the references to an
object are soft. (See the discussion of soft references in Chapter 7, Memory
Management). The Name field of the event is /Obsolete; the Action field is the
obsolete object.

ProcessDied events are generated when a lightweight process dies. The Name
key value of the event is /ProcessDied; the Action key value is the process itself.
Note that no ProcessDied event is generated if the process dies when no refer-
ences to it exist or no waitprocess is being executed upon it.

sun Revision A, of 25 August 1989

microsystems

60 News Programmer’s Guide

3.10. Using the ClientData
Key

3.11. Using the Priority
Key

4

The eventtype object contains a ClientData key. The value of this key may be
set to any News object; the object can be accessed at any time. Although new
keys may be added to an event dictionary, doing so adds memory overhead. The
ClientData key is useful if the programmer has only one piece of information to
add to the event dictionary.

The following example demonstrates how the ClientData key can be used:
()
FirstCanvas setcanvas
1 filicanvas

Flush

/e1 createevent def
e1 begin

/Name /Hello def

/ClientData {.2 fillcanvas} def
end

/ex e1 createevent copy def

/ClientDataOp {
e1 expressinterest
ex sendevent
awaitevent dup /Name get
/Hello eq { /ClientData get exec } if
e1 revokeinterest
} def

ClientDataOp

\. J

In the above example, the value of the ClientData key for e1 is specified as a
call to fillcanvas. When a successful match has been made between the event
and a corresponding interest, the value of the key is retrieved and executed.

The interests contained in the interest list of any canvas can be assigned different
priorities. The interest that has the highest priority is always the first interest in
the list with which a distributed event is compared and may thus be the first
interest matched. The interest that has the lowest priority is always the last with
which the event is compared.

The eventtype dictionary includes a Priority key that allows you to specify a
priority; note that a specified priority is meaningless when the event object is
used as an event rather than an interest. The Priority key value can be set to any
number; the default value is 0; negative and fractional values are permitted. The
highest number signifies the highest priority. When interests have the same
priority (which is the default), exclusive interests are compared first. Among
non-exclusive interests of the same priority, the most recently expressed interest
is compared first.

sun

microsystems

Revision A, of 25 August 1989

Chapter 3 — Events 61

The following example demonstrates use of the Priority key:

-
FirstCanvas setcanvas
0 fillcanvas

Flush

/e1 createevent def
e1 begin

/Name /Hello def
end

/IntA e1 createevent copy def

IntA begin
/ClientData {.04 sleep .8 fillcanvas} def
/Canvas FirstCanvas def
[Priority 1 def

end

/IntB e1 createevent copy def

IntB begin _
/ClientData {.04 sleep .2 fillcanvas} def
/Canvas FirstCanvas def
[Priority 0 def

end

/e1a el createevent copy def
ela begin

/Canvas FirstCanvas def
end

/ReceiveEvents {
2{
awaitevent /Interest get dup
/ClientData get exec
} repeat
} def

/Waiting {
IntA expressinterest
IntB expressinterest
e1a sendevent
ReceiveEvents
IntA revokeinterest
IntB revokeinterest
} def

Waiting

% The canvas goes light gray
% when interest IntA is matched.

% The canvas goes dark gray
% when interest IntB is matched.

% Retrieve and execute the
% value of the matched interest's
% ClientData key.

The above example creates an event that is matched by two post-child interests
on a single canvas. Initially, the interests have Priority values of 1 and O respec-
tively; thus, when the event is sent, the interest with Priority 1 is matched first.

4sun

Revision A, of 25 August 1989

62 News Programmer’s Guide

Two calls to awaitevent are then made and the corresponding events are placed
on the process’ stack.

The ClientData key for each interest contains a call to the fillcanvas primitive,
preceded by a call to sleep. When the interest IntA is matched, the current can-
vas turns light gray; when IntB is matched, the canvas turns dark gray. Thus,
since the priority of IntA is higher than that of IntB, the canvas turns light gray
first, then dark gray.

In the following example, the respective priorities of the interests are reversed;
thus, the order of color changes made to the current canvas is also reversed.

()
0 fillcanvas
Flush
IntB /Priority 1 put
IntA /Priority 0 put
Waiting
\. J

3.12. Using the Exclusivity The eventtype dictionary contains an Exclusivity key. This key is significant
Key only for interests; its value is ignored in distributed events. The value of the key
can be set to either true or false: if the value is true, a distributed event success-
fully matched with this interest is not compared with any further interests. Note
that the Exclusivity key prohibits interest-comparison across all processes and all
canvases.

The following example (which modifies the code used in Section 3.11, Using the
Priority Key) demonstrates how the Exclusivity key can be used:

Sun Revision A, of 25 August 1989

microsystems

Chapter 3 —Events 63

\
(0 fillcanvas

Flush

IntB /Exclusivity true put

/NewReceiveEvents {
2{
awaitevent /Interest get dup
/ClientData get exec
dup /Exclusivity get {exit} if
} repeat

} def

/NewWaiting {

IntA expressinterest

IntB expressinterest

e1a sendevent

NewReceiveEvents

IntA revokeinterest

IntB revokeinterest
(NewWaiting has completed.\n) print
} def '

NewWaiting
_ J

In the above example, the Exclusivity key of IntB is set to true. Thus, since the
Priority of IntB is currently higher than that of IntA, IntA is not matched follow-
ing the successful match made with IntB.

Using the redistributeevent The redistributeevent operator effectively allows you to override the exclusivity
Operator of an interest. The operator is as follows:

event redistributeevent —

The event argument should be an event already retumed by awaitevent; the
redistributeevent operator continues the distribution process, comparing the
specified event with all available interests, starting from the interest immediately
after the successfully matched interest that permitted the event object to be
returned by awaitevent. Note that redistributeevent does not reinsert the event
into the global event queue. No interest compared with the specified event since
the last call to sendevent is compared with that event again.

The following example, which modifies the previous example, shows how redis-
tributeevent can be used:

@ S u n Revision A, of 25 August 1989

microsystems

64 News Programmer’s Guide

3.13. Using the TimeStamp
Key

/NewReceiveEvents {
2{
awaitevent /interest get dup
/ClientData get exec
dup /Exclusivity get {e1a redistributeevent} it
} repeat
} def

0 fillcanvas
NewWaiting
_ J

In the above example, redistributeevent is called when the Exclusivity key of
the matched interest is determined to be true.

The eventtype dictionary contains a TimeStamp key, whose value indicates the
time after which the event may be removed from the global event queue for com-
parisons to be made with available interests. Time values are measured in units
of 2!¢ milliseconds. No event can be removed from the queue before its TimeS-
tamp value signifies the current time; thus, when an event contains a TimeS-
tamp value that specfies a time in the future, the event must — following the call
to sendevent — remain in the global event queue until the appropriate time is
reached.

The following example demonstrates how the TimeStamp value can be used:

e i] 3
FirstCanvas setcanvas

1 fillcanvas

Flush

/PrepareEvents {
/e1 createevent def
e1 begin
/Name /Dark def
end
/e2 createevent def
e2 begin
/Name /Medium def
end
/e3 createevent def
€3 begin
/Name /Light def
end
/ex e1 createevent copy def
/ey e2 createevent copy def
/ez e3 createevent copy def
ex /TimeStamp currenttime .07629 add put
ey /TimeStamp currenttime .15259 add put
ez /TimeStamp currenttime .30518 add put
e1 expressinterest
e2 expressinterest
e3 expressinterest

J

\
Sun Revision A, of 25 August 1989

Chapter 3 —Events 65

Using the recallevent
Operator

@

(ez sendevent
ey sendevent
ex sendevent

} def

[Transform {
3{
awaitevent /Name get
dup {
/Dark {.2 fillcanvas}
/Medium {.5 fillcanvas}
/Light {.8 filicanvas}
} case
} repeat
e1 revokeinterest
e2 revokeinterest
e3 revokeinterest
(Transform has completed.\n) print
} def

PrepareEvents

L Transform

In the above example, the operation PrepareEvents is used to create and
express interest in three events, each with its own Name and TimeStamp value.
Note that each TimeStamp value is specified as a value added to the value of
currenttime when the event is sent; thus, each event remains in the global event
queue until its specified TimeStamp value becomes the current time.

The operation Transform is used to call awaitevent and examine the Name
value of each event retumed to the local event queue; the color of the current
canvas is then changed in accordance with the Name value. Note that the
sequence of color changes indicates that the events were matched and processed
in the reverse order of their sending (that is, in the correct order as specified by
their respective TimeStamp values).

NeWs provides a recallevent operator that allows you to recall an event that has
not yet been distributed. The operator is as follows:

event recallevent —
The event argument should be an event object that is currently in the global event
queue.

The following example (which modifies the previous example) shows how recal-
levent can be used:

‘s B
1 fillcanvas
Flush
/NewTransform {
3{
N J
S ‘ Revision A, of 25 August 1989

microsystems

66

NeWws Programmer’s Guide

3.14. Using the Process Key

@

awaitevent /Name get
dup {
/Dark {.2 fillcanvas}
/Medium {.5 filicanvas
ez recallevent
ex /TimeStamp currenttime .15259 add put
ex sendevent}
/Light {.8 filicanvas}
} case
} repeat
e1 revokeinterest
€2 revokeinterest
e3 revokeinterest
(NewTransform has completed.\n) print
} def

PrepareEvents
NewTransform

\

The above example redefines the operation NewTransform so that the event ez
is recalled and ex is resent with a new TimeStamp value.

The eventtype dictionary contains a Process key, which can be used to specify a
process. If a distributed event specifies a process in this way, the event is com-
pared only with interests expressed by that process. The default value for this
key is null, which means that the event can be compared with interests expressed
by any process.

The Process key value of an interest is always automatically set to the process in
which the interest is expressed.

The following example shows how the Process key can be used:

7

/ProcessProg {
/ParentProc{
FirstCanvas setcanvas
/e1 createevent def
e1 begin
/Name /Hello def
end
/e2 e1 createevent copy def
e2 /Process ParentProc put
/IntZ e1 createevent copy def
IntZ expressinterest
e2 sendevent
e1 sendevent
{
SecondCanvas setcanvas
/IntX e1 createevent copy def
IntX expressinterest
awaitevent /Process get ==
.S fillcanvas

-

sun

microsystems

S

Revision A, of 25 August 1989

Chapter 3 —Events 67

3.15. Input

Synchronization with

Multiple Processes

Using blockinputqueue

@

IntX revokeinterest
} fork waitprocess
awaitevent /Process get ==
.5 fillcanvas
IntZ revokeinterest
} fork def
} def

FirstCanvas setcanvas

1 fillcanvas
SecondCanvas setcanvas
0 fillcanvas

ProcessProg

L y

The above example defines a parent process (named ParentProc), and an
unnamed child process. The parent process sends two events; the first has the
name ParentProc specified as its Process key value and is thus acceptable only
to interests generated by the parent process itself; the other has null as its Pro-
cess key value and can thus be accepted by any process, specifically by the child
process that ParentProc generates.

News synchronizes the event distribution process so that when an event is
removed from the front of the global event queue, is successfully matched with
one or more interests, and has copies of itself placed on the local event queues of
the relevant processes, no other event is removed from the global queue until
each of the relevant processes has had a chance to run. Similarly, when an event
is passed to redistributeevent, News will not remove an event from the queue
until processes that receive the redistributed event have either completed or
blocked.

In interactive window management, event distribution must often be explicitly
synchronized in accordance with special circumstances. For example, a process
might be defined to respond to the DownTransition of a mouse button by
displaying a menu, and to respond to the UpTransition by removing the menu.
Interest in the UpTransition must be expressed before the UpTransition event
is automatically distributed by release of the button; however, since the button
may be released immediately, distribution of the event must be explicitly delayed
until interest has been expressed.

NeWs provides a primitive named blockinputqueue, which prevents events from
being removed from the global event queue. The syntax is as follows:

num blockinputqueue -

The num argument specifies the amount of time (in units of 2!¢ ms) during which
blocking continues. When the operator is executed, no event is removed from
the global event queue until one of the following has occurred:

o The time specified by the num argument has elapsed.

o The unblockinputqueue operator is executed.

sun ' Revision A, of 25 August 1989

microsystems

68 News Programmer’s Guide

3.16. Event Logging

Q

The syntax of the unblockinputqueue operator is as follows:

- unblockinputqueue -
This operator releases the event queue lock previously set by blockinputqueue.
If more than one event queue lock was set, additional calls to unblockinput-
queue may be required; when all locks are released, the distribution mechanism
resumes.

As a development aid, NeWs provides the seteventlogger primitive, which allows
you to designate a process as an event-logger:

process seteventlogger -

The process argument must be a process that has expressed some interest and has
entered an awaitevent loop. The expressed interest, which must not match any
distributed event, is required to prevent awaitevent from returning a syntax error.
The specified process becomes the event-logger. A copy of each event either
removed from the global event queue or redistributed with redistributeevent
will be given to this process before it is given to any other (note that the
existence of the event-logger does not affect the normal running of the distribu-
tion mechanism). When the awaitevent loop retrieves the event-copies from the
event-logger’s local event queue, the event-logger can proceed in whatever way
is appropriate. For example, it might print certain key values in a window or to a
file.

To turn off a designated event-logger, specify null as the argument to
seteventlogger. :

The file event log. ps, which is described in Chapter 10, Extensibility through
POSTSCRIPT Language Files. provides a formatted display of events that can be
used in the context of the seteventlogger operator.

The current event-logger is returned by the geteventlogger operator:
— geteventlogger process

The operator returns the process that is the current event logger or null if there is
none.

S ll Il Revision A, of 25 August 1989

microsystems

Classes

Classes

4.1. Basic Terms and Concepts

Classes and Instances

Inheritance and the Class Tree

.........

Superclasses and Subclasses
The Immediate Superclass
Inheritance

Single Inheritance and Multiple Inheritance
The Inheritance Array

A Single Inheritance Example ..
Summary of Terms

4.2. Creating a New Class
The Class Definition
classbegin

.................

classend .

.................

Initializing a New Class

4.3. Sending Messages With the send Operator
The Usual FOrm Of SeNd ...
The Steps Involved in a send .

Using send to Invoke a Method .
A Nested send

71

71
71
73
73
73
73
74
74
75
77
79
79
79
79
79
80
80
80
80
81
82
83

4.6. Creating a New Instance

4.7. Intrinsic Classes .,

Another Form of send

Using send to Change the Value of an Instance Variable
Using send to Change the Value of a Class Variable
4.4. The Psuedo-Variables self and super

......

.....................

........................

The self Psuedo-Variable

The super Psuedo-Variable
Using super to Send a Message Up the Superclass Chain
Restrictions on the Use of self and super
4.5. Method Compilation
Compiling self send
Compiling super send

...................

Local Dictionaries

Controlling Method Compilation
/methodcompile

/installmethod

/doit

SetLocalDicts

/new

/newobject

/newinit

/newmagic

/newdefault

/defaultclass

/SubClassResponsibility
4.8. Overriding Class Variables With UserProfile .
Overriding DefaultClass

4.9. Promoting Class Variables to Instance Variables

4.10.

promote

unpromote

promoted?

..

Avoiding an

Destroying Classes and Instances

/destroy

Accidental Promotion

84
84
85
87
88
90
90
90
91
91
91
92
92
93
93
94
96
97
97
98
99
100
101
102
102
102
103
103
103
104
104
104
104
104

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.
4.18.

classdestroy

/cleanoutclass

Obsolete Objects in the Class System

/obsolete

Multiple Inheritance
A Simple Multiple Inheritance Example: a Utility Class
A More Complex Multiple Inheritance Example

Rules for Valid Inheritance Array Orders

Possible Inheritance Arrays for this Example

Which Order Do You Choose?

Constraining the Order of the Inheritance Array
super and Multiple Inheritance

Utilities for Setting and Retrieving an Object’s Name and
Classname

/name

[setname

/classname

Utilities for Inquiring About an Object’s Status

isobject?

isclass?

isinstance?

Utilities for Inquiring About an Object’s Heritage
/superclasses

/subclasses

f/instanceof?

/descendantof?

/understands?

[class

Utilities for Finding Objects on the send Stack

/topmostinstance

/topmostdescendant

/sendtopmost

Class Operators

Class Methods

105
105
105
105
106
106
109
109
110
111
112
112

113
113
113
114
114
114
114
114
114
114
114
114
114
115
115
115
115
115
115
116
116

SR

Classes

NeWs provides an object-oriented programming scheme based on classes. The
code that implements the basic class mechanism is located in the class.ps
file (sece Chapter 10, Extensibility through POSTSCRIPT Language Files, for infor-
mation about the POSTSCRIPT language files). Client applications will find
classes especially useful for creating user interface components such as windows,
menus, and scrollbars.

The NeWs class system is extremely flexible. You can define your own classes,
so you can build whatever user interface components you desire. You can also
use the predefined classes that are supplied with the NeWws toolkit. The classes in
the NeWs toolkit provide the building blocks of a user interface; they do not
impose any particular style of user interface.

This chapter provides an introduction to the News class system. You should read
this chapter if you want to create your own classes or if you are going to use the
News toolkit. The toolkit classes are built with the basic class mechanisms
described here.

This chapter explains how to use the News class operators and methods. Alpha-
betical lists of the operators and methods are provided at the end of the chapter.

Special notation is used to help you distinguish between operators and methods.
Names of methods are preceded by a slash (for example, /new). Names of opera-
tors are written without a slash (for example, send). Optional arguments to
operators and methods are listed in angle brackets (for example, <args>).

4.1. Basic Terms and This section explains some basic terms and concepts that are used throughout this
Concepts chapter. Some of the terms are common object-oriented programming terms;
others are specific to the News class system.

Classes and Instances In the context of classes, an object consists of data and the procedures needed to
operate on that data. NeWws represents these objects as POSTSCRIPT language dic-
tionaries. An object’s dictionary contains the object’s data (represented as vari-
ables) and the object’s procedures (represented as POSTSCRIPT language pro-
cedures).

A class is a template for a set of similar objects; the objects described by the
class are known as instances of the class. An instance of a class inherits the
characteristics of its class but can selectively alter some of these characteristics.

@ un 7 Revision A, of 25 August 1989

microsystems

72

News Programmer’s Guide

Classes and instances of classes are all objects; they are all represented by
POSTSCRIPT language dictionaries that store the object’s variables and pro-
cedures.

A class is like an architect’s plan for a house; it is a blueprint that specifies the
fundamental characteristics of a specific type of object. An instance of the class
is like the house itself; it is a particular object that is based on the blueprint.

When you create a class, you must specify its instance variables, class variables,
and methods. All of these items are stored in the class’ dictionary. Each variable
is stored with its variable name as a dictionary key and its variable value as the
dictionary key’s value. Each method is stored with its name as a dictionary key
and its procedure as the dictionary key’s value.

A class’ instance variables are variable data contained in each instance of the
class. Each instance receives its own copy of its class’ instance variables, and
each instance is free to change the values associated with its copy of the instance
variables. The instance variables are stored in an instance dictionary in the same
way that they are stored in a class dictionary: each variable name-value pair is
stored as a key-value pair in the instance dictionary.

Class variables are variable data shared by all the instances of a class. A class’
class variables are stored in its class dictionary, but the instances of the class do
not receive a copy of the class variables. If you change the value of a class vari-
able, that change affects all the instances of the class.

A class’ methods are procedures that you use to operate on the class’ instances.
You send a message to an object to invoke the method associated with that mes-
sage; the message identifies the name of the method that you want to invoke.
Class methods are stored only in class dictionaries, not in instance dictionaries.

To continue the house analogy, assume that a whole subdivision of houses is
built with the same blueprint. The houses have the same floor plan and the same
style, but each house is slightly different. For example, the paint and carpet
colors vary from house to house. Instances of a class are like the houses in the
subdivision; the instances have certain basic characteristics in common, and they
perform the same functions, but each instance is slightly different.

In this analogy, the physical aspects that vary from house to house correspond to
the instance variables. The physical aspects that are specified in the blueprint,
and thus do not vary from house to house, correspond to the class variables. The
blueprint also specifes certain functions that all the houses must perform. For
example, each house must provide a working electrical system, plumbing system,
and heating system. These functions specified in the blueprint correspond to the
class methods. The “messages” that someone must send to invoke these func-
tions of a house are flipping on an a light switch, turning on a faucet, and turning
up the thermostat.

sSun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 73

Inheritance and the Class
Tree

Superclasses and Subclasses

Figure 4-1

The Immediate Superclass

Inheritance

The classes in the NeWs class system belong to a class tree. The class tree is a
hierarchy that is similar to, but completely separate from, the canvas tree. The
root of the class tree is class Object. The server provides the implementation of
class Object (in the class.ps file), and the other classes in the tree are
defined by the client or by a toolkit.

Except for class Object, each class has at least one class that is above it on its
branch of the class tree; these classes that are above a class are called the class’
superclasses. A class can also have subclasses, which are located on branches
that emanate from beneath the class. Thus, a class’ superclasses are closer to the
root of the class tree, and a class’ subclasses are farther from the root.

The illustration below shows the structure of a simple class tree with class
Object at the root of the tree. This tree has just two short branches.

A simple class tree

Object
ClassA ClassC
ClassB ClassD

In this example, ClassA and ClassC are subclasses of class Object. Object is
the superclass of ClassA and ClassC. ClassB is a subclass of ClassA, and
ClassD is a subclass of ClassC. ClassB and ClassD each have two super-
classes: ClassB’s superclasses are ClassA and class Object, and ClassD’s
superclasses are ClassC and class Object.

The superclass that is immediately above a class on its branch of the class tree is
called the class’ immediate superclass. ClassB’s immediate superclass is
ClassA, and ClassD’s immediate superclass is ClassC. ClassA and ClassC
both have class Object as an immediate superclass.

A class inherits the variables and methods of all its superclasses. For example,
ClassB inherits all the variables and methods of ClassA and class Object. Note
that class Object’s methods are available to all classes in the tree since Object is
the root of the tree.

A class can override any of the variables and methods that it inherits. For exam-
ple, ClassB can redefine a variable or method that is defined in ClassA. When a
subclass overrides a method of one of its superclasses, the subclass can simply
add to the method definition given by the superclass, or it can completely
redefine the method. A class can also define new variables and methods.

S un Revision A, of 25 August 1989

microsystems

74 News Programmer’s Guide

Single Inheritance and Multiple

Inheritance

Figure 4-2

The Inheritance Array

S
&

An instance inherits the variables and methods of its class and its class’ super-
classes. For example, an instance of ClassB inherits the variables and methods
of ClassB, ClassA, and Object.

An instance can override anything that it inherits, although it usually should not
override a class variable or method. An instance often changes the values associ-
ated with the instance variables that it inherits. In unusual cases, an instance can
even define new variables and methods.

Two kinds of inheritance can occur in the class tree: single inheritance and multi-
ple inheritance. The term single inheritance refers to the case in which a class
has only one immediate superclass. The term multiple inheritance refers to the
case in which a class has more than one immediate superclass.

The class tree shown in the previous figure contains only single inheritance
because all of the classes have only one immediate superclass. An example of
multiple inheritance would be if ClassB inherited not only from ClassA, but
also from ClassC. In this case, another line would need to be drawn on the tree
diagram to connect ClassB to ClassC. This situation is illustrated below.

A class tree with multiple inheritance

Object
ClassA ClassC
ClassB ClassD

In this example of multiple inheritance, ClassB has three superclasses: ClassA,
ClassC, and Object. ClassB has two immediate superclasses: ClassA and
ClassC. '

ClassB inherits from all three of its superclasses. But a question arises: should
ClassA override ClassC or vice versa? This issue is discussed in detail in Sec-
tion 4.12, Multiple Inheritance.

When you create a class, you must specify where the class belongs in the class
tree; you do this by specifying the new class’ immediate superclass(es). In the
single inheritance case, you just need to specify the one class that is immediately
above the new class. In the multiple inheritance case, you need to specify all the
class’ immediate superclasses.

Based on this immediate superclass information for the new class, NeWS creates a
special array called the class’ inheritance array. The inheritance array lists all
the class’ superclasses in the order that they override each other. Each class in

S ll n Revision A, of 25 August 1989

microsystems

Chapter 4 —Classes 75

A Single Inheritance Example

the array overrides the classes listed after it in the array.

In the single inheritance case, a class’ inheritance array contains all the class’
superclasses listed in leaf-to-root order. For example, the inheritance array of
ClassD is

[ClassC Object]
and the inheritance array of ClassA is
[Object}

In the multiple inheritance case, a class’ inheritance array still contains all the
class’ superclasses, but a unique order no longer exists. A valid inheritance array
consists of any arrangement of the superclasses that maintains the leaf-to-root
order of classes on the same branch. For example, ClassB in the above figure
has the following two possible inheritance arrays:

[ClassA ClassC Object]
[ClassC ClassA Object]

You can choose either one of these arrays for ClassB. Section 4.12, Multiple
Inheritance, explains the details of inheritance arrays for the multiple inheritance
case.

Each instance also has an inheritance array. An instance’s inheritance array is
the same as the inheritance array of its class except that the class is added to the
list. Thus, an instance’s inheritance array contains its class and all of its class’
superclasses. For example, the inheritance array of an instance of ClassD is

[ClassD ClassA Object]
and the inheritance array of an instance of ClassA is
[ClassA Object]

An instance has a copy of all the instance variables of the classes in its inheri-
tance array, and an instance can invoke any of the methods of the classes in its
inheritance array.

This section describes a single inheritance example in which every class has only
one superclass. The following figure illustrates the class tree for this example.

n Revision A, of 25 August 1989
ems

76 News Programmer’s Guide

Figure 4-3

Q@

A single inheritance example
Object
Canvas
/ \
Control SelectionList
Dial Menu
/ \
Slider ScroliBar OLMenu

In this example, class Object has one immediate subclass named class Canvas.
Class Canvas and its subclasses implement different kinds of canvases, such as
menus and scrollbars. Note that the class tree should not be confused with the
canvas tree. Instances of class Canvas (and of its subclasses) represent News
canvas objects that exist in the canvas tree. But the instances inherit their vari-
ables and methods from class Canvas in the class tree.

In this example, class Control handles the basic user interaction operations
needed by control objects such as dials. Control objects are canvases that have a
current value and a callback procedure; the callback procedure is executed when
the user interacts with the object to change its current value.

Class Dial is a subclass of Control that provides the basic operations needed to
build various types of dials. A dial lets the user choose a numeric value between
a minimum and maximum. Sliders and scrollbars are types of dials. Scrollbars
are commonly used to scroll through a text file. Class Slider implements generic
sliders, and class ScrollBar implements scrollbars.

Class SelectionList manages a list of items, along with any sublists the items
have; this class provides the basic operations needed by menus. Class Menu
implements a basic menu, using the operations defined in SelectionList. Class
OLMenu is used to create menus with a special user interface.

You can arrange your class tree (your subclasses) to maximize modularity and to
take advantage of the shared aspects of objects. You can implement different
variations of an object as subclasses of one class. For example, you might have
several different user interface options for menus; each user interface option
could be a subclass of class Menu. Class Menu would contain code that is

s u n Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 77

Summary of Terms

common to all menus, thus avoiding repetition of the same code in each type of
menu object.

Since this example is a single inheritance case, every class has just one immedi-
ate superclass. For example, class Dial’s immediate superclass is Control, and
class Control’s immediate superclass is Canvas.

In the single inheritance case, the inheritance array for any class consists of the
class’ superclasses, listed in leaf-to-root order. For example, class ScrollBar’s
inheritance array is

[Dial Control Canvas Object]
and class Menu’s inheritance array is
[SelectionList Canvas Object]

Assume that you have an instance of class ScroliBar named MyScroliBar and an
instance of class OLMenu named MyOLMenu. The inheritance array of an
instance is the same as the inheritance array of the instance’s class, except that
the instance’s class is added to the array. For example, the inheritance array for
MyScroliBar is

[ScroliBar Dial Control Canvas Object]
and the inheritance array for MyOLMenu is
[OLMenu Menu SelectionList Canvas Object]

The following table summarizes the class terminology introduced in the previous
sections.

@ S ll n Revision A, of 25 August 1989

microsystems

News Programmer’s Guide

Summary of Terms

object a class or an instance; each class and instance object
consists of variables and procedures stored in a
POSTSCRIPT language dictionary

class a template for a set of similar objeéts known as
instances

instance one of the objects described by a class; an instance
inherits its variables and procedures from its class

instance variables variables that are given to each instance of a class

class variables variables that are shared by all instances of a class

methods procedures that a class uses to operate on its
instances

message a method name that is sent to an object to invoke
the associated method

Object the class that is the root of the class tree

superclasses a class’ superclasses are located on the branch(es)
that emanate root-ward from the class (in the single
inheritance case only one such branch exists and it
connects the class to the root); a class inherits from
all its superclasses

subclasses a class’ subclasses are located on the branches that

emanate leaf-ward from the class

single inheritance

when a class’ superclasses all occupy the same
branch of the tree

multiple inheritance

when a class’ superclasses do not all occupy the
same branch of the tree

immediate superclass

in the single inheritance case, a class’ immediate
superclass is directly above the class on the branch
that connects the class to the root; in the multiple
inheritance case, a class has more than one branch
that emanates root-ward from the class and each
such branch has an immediate superclass that is
directly above the class

inheritance array

each object has an inheritance array that contains
the classes from which the object inherits, listed in
the order that the classes override each other

sun

microsystems

Revision A, of 25 August 1989

Chapter 4 — Classes 79

4.2. Creating a New Class

The Class Definition

classbegin

classend

redef

To create a new class, you use the classbegin and classend operators in
sequence.

The basic structure of a class definition is given below (you define each class
variable and method with the def operator).

4 N\
[classname [superclasses] [instancevars)
classbegin
class variable definitions
class method definitions
classend def
\. J

The operators that are used in class definitions are described below.

classname superclasses instancevars classbegin —

Creates an empty class dictionary for the new class and puts it on the dictionary
stack.

classbegin takes three arguments: the classname, the immediate superclass or an
array of superclasses, and the instance variables. You specify the superclass(es)
as one immediate superclass (the single inheritance case) or as an array of super-
classes (the multiple inheritance case). See Section 4.12, Multiple Inheritance,
for an explanation of how to specify an array of superclasses. You can specify
the instance variables as an array of names or as a dictionary of key-value pairs.
If you use an array of names, the variables are initialized to null; if you use a dic-
tionary, the variables are initialized to the values specified in the dictionary.

After calling classbegin, you use the def operator to fill the class dictionary with
the class’ variables and methods. Then you call classend to complete the crea-
tion of the new class.

— classend classname newclass

Completes the class dictionary that was left on the dictionary stack by classbe-
gin. The classend operator constructs the inheritance array based on the
superclass(es) that you passed to classbegin (see Section 4.12, Multiple Inheri-
tance, for a discussion of the inheritance array in the multiple inheritance case).
classend also compiles the class’ methods (see Section 4.5, Method Compilation)
and executes any procedures in UserProfile that have the same name as the class
(see Section 4.8, Overriding Class Variables With UserProfile). classend returns
the name of the new class (the name that you passed to classbegin) and the new
class dictionary.

name object redef —

In a class definition, the redef operator redefines an instance variable that is
already defined in one of the class’ superclasses. If you use the def operator to
redefine an instance variable in a dictionary passed to classbegin, you will be
warned that you are redefining an existing instance variable. If you want to avoid

sun Revision A, of 25 August 1989

microsystems

80 News Programmer’s Guide

Initializing a New Class

4.3. Sending Messages
With the send
Operator

The Usual Form of send

The Steps Involved in a send

the warning, you must use the redef operator instead of the def operator.

If a class requires some processing before the definition of the class is complete,
the convention is to put the initialization code in a /classinit method for the class.
For example, class Object’s /classinit method starts a process that listens for
obsolescence events; class Object then handles obsolete classes and instances as
explained in Section 4.11, Obsolete Objects in the Class System.

This section explains how to use the send operator to invoke class methods. The
section discusses both forms of the send operator and gives an example of a sim-
ple send and a nested send.

<args> name object send <results>

Sends a message to an object to invoke the method associated with the message.
The name argument is the name of the method that is invoked by the message,
and the object argument is the receiver of the message. The object argument is
often an instance, but it can also be a class. Any arguments required by the
method must be specified; any results of the method are returned.

Before send invokes the name method, it places the classes in object’s inheri-
tance array on the dictionary stack and places object on top of the dictionary
stack. When the name method is invoked, the server searches the stack from top
to bottom to find the method; the server finds the first occurrence of the method
in the inheritance array that is on the stack. This mechanism ensures that classes
override each other in the proper order. After the name method executes, the
send operator restores the dictionary stack to the state it was in before the send.

Thus, the send operator takes advantage of the stack-based nature of the
POSTSCRIPT language to implement inheritance. An object can access the class
variables and methods of the classes in its inheritance array because the object’s
inheritance array is placed on the dictionary stack when a message is sent to that
object. This arrangement allows a class dictionary to store only its own class
variables and methods, not the class variables and methods of its superclasses.
Likewise, an instance only needs to store its instance variables.

The group of objects that is put on the dictionary stack during a send is known as
the send context. The send context includes the message receiver and the classes
in its inheritance array.

The send process is explained in detail below.

When name is sent to object, the following steps are taken:

1. Any existing send context is temporarily removed from the dictionary stack.
(In a nested send, the first send’s context is on the dictionary stack when the
second send is called.) If a local dictionary happens to be on top of the dic-
tionary stack (because send is called inside the local dictionary), then send
temporarily removes the local dictionary from the stack. The example in the
subsection A Nested send illustrates how send handles local dictionaries.

S u n Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 81

Using send to Invoke a
Method

Note that you might have problems if one of your methods puts a local dic-
tionary on the stack and never removes it from the stack. See Section 4.5,
Method Compilation, if you plan to use such a method; you may need to
take special precautions to ensure that the local dictionary is handled prop-
erly.

2. The send operator establishes object’s context by putting object and all of
the classes in object’s inheritance array onto the dictionary stack. The inher-
itance array is placed on the stack with the root-most classes toward the bot-
tom of the stack and the leaf-most classes toward the top; object itself is
placed on the top of the stack.

3. The server searches the dictionary stack from top to bottom for the name
method. Because object and the classes in its inheritance array were placed
on the dictionary stack, the server finds the first occurrence of the method in
object’s context. If the chain of classes is searched all the way back to the
root without finding the specified method, an error is returned.

4. 'When the name method is found, it is executed. The arguments required by
the method are taken from the operand stack, and any results of the method
are put on the operand stack.

5. The initial context is then restored; the dictionary stack is restored to the
state it was in before the send was made. If alocal dictionary was removed
from the top of the stack in step 1, the local dictionary is restored to its origi-
nal position at the top of the stack.

The example in the following section illustrates these five steps.

This example uses the class hierarchy given in Section 4.1, Basic Terms and
Concepts. Assume that send is invoked as follows:

(arg1 arg2 /mymethod MyScroliBar send]

Also assume that before this send, the dictionary stack contains the systemdict
on the bottom and the userdict on the top. When this send is executed, the fol-
lowing steps are taken:

1. No existing send context is on the stack when this send is called, so nothing
is removed from the stack.

2. The instance MyScrollBar and the classes in its inheritance array are pushed
on the dictionary stack, as shown in the following figure:

@ S un Revision A, of 25 August 1989

82 News Programmer’s Guide

Figure 4-4

userdict

Dictionary stack before and during a send to MyScrollBar

MyScrollBar instance

ScrollBar __ Class
Dial
Control

superclasses
Canvas

Object
/mymethod MyScrollBar send userdict

systemdict

A Nested send

dictstack (before)

systemdict

dictstack (during)

The server locates /mymethod in one of the classes on the stack.

4. The server executes /mymethod. As /mymethod executes, it consumes
arg2 and arg1 from the operand stack. If /mymethod returns any results,
they are placed on the operand stack.

5) The send operator restores the dictionary stack to its previous state with the
systemdict on the bottom and the userdict on the top.

This section expands on the previous example to illustrate a nested send (one
send within another). The example also shows what happens when send is used
in a local dictionary.

Assume that /mymethod is sent to MyScrollBar as before. The classes in
MyScrollBar’s inheritance array are put on the dictionary stack. Suppose that
/mymethod is located in ScrollBar and that /mymethod is defined as follows:

' N\
/mymethod {
10 dict begin

}methodz Dial send
end

} def

L)

When /mymethod is found and executed, it puts a local dictionary on the dic-
tionary stack. When the send to Dial is encountered in /mymethod, the follow-
ing steps are taken:

sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 83

previous
send

context

1. This inner send removes the local dictionary and the existing send context
(MyScroliBar and its inheritance array) from the dictionary stack.

2. The send to Dial then puts Dial and its inheritance array on the stack, as
shown in the following figure:

Using send to Create a New

Instance

@

Figure 4-5 Dictionary stack before and during a nested send

localdict
MyScrollBar
ScrollBar _
Dial Dial new
Control Control send
Canvas Canvas context
Object Object]
userdict /method2 Dial send > userdict
systemdict systemdict

dictstack (before) dictstack (during)

3. The server locates /method2 in one of thc classes on the stack.
4. The server executes /method2.

5. The inner send takes its send context (Dial and its inheritance array) off the
stack and puts the previous send context (MyScrollBar and its inheritance
array) back on the stack. The local dictionary is placed back on top of the
stack.

After the inner send is complete, /mymethod finishes executing. When
/mymethod finishes, MyScrollBar and the classes in its inheritance array are
removed from the stack to complete the outer send.

This example is only meant to illustrate the manipulation of the dictionary stack
during a nested send. In /mymethod, you would not actually send a message
directly to ScrollBar’s superclass. Instead, you would use the super psuedo-
variable to represent the message receiver; super is discussed in Section 4.4, The
Psuedo-Variables self and super.

Class Object provides several methods for creating new instances of a class. The
/new method is briefly introduced here; the creation of new instances is discussed
in detail in Section 4.6, Creating a New Instance.

The following example creates a new instance of MyClass by sending the /new
message to MyClass.

(/new MyClass send J

S u n Revision A, of 25 August 1989

microsystems

84 Nows Programmer’s Guide

Another Form of send

Using send to Change the
Value of an Instance Variable

Using send to Change the
Value of a Class Variable

@

In this case, send puts MyClass and its inheritance array on the dictionary stack.
The server locates the /new method and executes it, leaving the new instance on
the operand stack. Then send removes MyClass and its inheritance array from
the dictionary stack.

<args> proc object send <results>

Executes proc in the context of object, exactly as if proc had been predefined as a
method and given a name that was passed as an argument to send. Any argu-
ments needed by the procedure are taken from the operand stack; any results of
the procedure are returned to the operand stack. The syntax for this form of send
is shown below.

[{procedure} object send]

The /doit method must sometimes be used in conjunction with this form of send.
For details, see Section 4.5, Method Compilation.

This form of send bypasses the established class interface and should rarely be
used. One valid use of this form of send is a barch send; see the /doit method in
Section 4.5, Method Compilation, for an example of a batch send.

After you create a class and some instances of the class, you will probably want
to change the values of some of the instance variables. Although you can change
the value of an instance’s variable in several ways, only one way is proper.

The appropriate way to change the value of an instance variable is to include in
the class definition a method that changes the value. Then you can send that
message to any instance of the class to change the value of its copy of that
instance variable. This is just a specific case of using send to invoke a class
method.

You can also change the value of an instance variable by passing a new value in a
procedure argument to send (see the subsection Another Form of send, above) or
by putting the value directly in the instance dictionary. Both these methods are
discouraged because they ignore the established class interface. A class method
that changes the value of an instance variable might also take a special action
when the value is changed. For example, suppose class Dial has a /setvalue
method that not only sets the Dial’s internal value, but also redraws the dial on
the screen to reflect the new value. For this reason, you should always use an
established class interface to change the value of instance variables.

You change the value of a class variable the same way you change the value of
an instance variable: define a class method that changes the value of the vari-
able, and then invoke the method. Note that you should use store instead of def
in methods that define the value of class variables. If you used def, you might
accidently add the class variable to an instance dictionary that happens to be on
top of the stack. (You can intentionally add a class variable to an instance dic-
tionary; this action is known as promoting the instance variable. For details, see

sun A Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 85

4.4. The Psuedo-Variables
self and super

@

Section 4.9, Promoting Class Variables to Instance Variables.

When send is used outside a method, an object is given as an argument to send,
and the search for the method begins with that object. The object argument to
send can be an instance or a class.

When send is used inside a method, two special symbols named self and super
can be used as the object argument to the send operator. These symbols, known
as psuedo-variables, add flexibility and generality to class methods because they
take different values depending on the situation.

This section uses a simple example to illustrate self and super (this example is
adapted from an example in Adele Goldberg’s SmallTalk — The Interactive Pro-
gramming Environment, Addison Wesley, 1984, pp 62-66).

Four classes are defined as follows:

4 A
/One Object [] classbegin

fest {1} def

/result1 {/test self send} def
classend def

/Two One [] classbegin
ftest {2} def
classend def

/Three Two [] classbegin
/result2 {/result1 self send} def
fresult3 {/test super send} def
classend def

/Four Three [] classbegin
ftest {4} def

classend def

\. J

Class Object has a subclass named One, class One a subclass named Two, class
Two a subclass named Three, and class Three a subclass named Four. The fol-
lowing diagram illustrates this simple class tree:

sun

microsystems

Revision A, of 25 August 1989

86

News Programmer’s Guide

Figure 4-6

X

Class tree for self and super example

Object

One

Two

Three

Four

These classes do not define any instance or class variables, but they do define
some methods. The method definitions are summarized below.

o Class One defines a method named /test that puts the number 1 on the
operand stack. Class One also defines a method named /resulti that sends
the /test message to self.

o Class Two defines a method named /test that puts the number 2 on the
operand stack. Class Two’s /test method overrides class One’s /test
method.

o Class Three defines a method named /result2 that sends /result1 to self.
Class Three also defines a method named /result3 that sends /test to super.

o Class Four defines a method named /test that puts the number 4 on the
operand stack. Class Four’s /test method overrides the /test methods in
classes One and Two.

An instance of each class is created as shown below. Inst1 is an instance of class
One, Inst2 an instance of class Two, Inst3 an instance of class Three, and
Inst4 an instance of class Four.

/Inst1 /new One send def
/Inst2 /new Two send def
/Inst3 /new Three send def
/Inst4 /new Four send def

The psh command can be used to begin an interactive session with NeWs (see
the manual page for psh in the X11/NeWs Server Guide). The above class and
instance definitions can be defined during such an interactive session. Then the
class methods can be executed by sending messages to the instances. The next
two sections use this approach to illustrate sends to self and super for these class
and instance definitions. For each example send, the code that is typed to psh
is shown on the first line (in sans serif font) and the resulting number that the

S u n Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 87

The self Psuedo-Variable

server prints to the screen is shown on the second line (in 1isting font).

When a message is sent to self, the search for the method begins with the object
that received the original message that caused the current method to be invoked.
Thus, self represents the object that is on top of the dictionary stack at the time
that the self send is encountered. The following examples clarify the use of self.

First, the /result1 message is sent to Inst1 as follows:

When /result1 is sent to Inst1, the following actions are taken:

1. The send operator puts Inst1 and the classes in its inheritance array on the
dictionary stack.

2. The /result1 method is found in class One and is executed. The /resulti
method sends /test to self, which in this case is Inst1. (The instance Inst1
is the object that received the message, /result1, that caused the /test
method to be invoked.)

3. Because this is a nested send, the old send context is temporarily removed
from the dictionary stack, and the new send context is put on the dictionary
stack. In this case, the old and new send contexts are identical since the
sends were made to the same object; the first message (/result1) was sent to
Inst1, and the second message (/test) was sent to self, which resolved to
Inst1. When the new context is put on the stack, the stack still contains
Inst1 and its inheritance array.

4. The search for the /test method begins with self, which is Inst1. The /test
method is found in class One. When executed, /test puts the number 1 on
the operand stack.

5. The two nested send contexts are then cleared from the dictionary stack.
First the new send context is removed and replaced with the old context;
then the old send context is removed to complete the outer send.

6. After the sends are completed, the number 1 is printed to the screen with the
= operator.

Note that the context swapping in this nested send is inefficient. The same con-
text is swapped on and off the stack several times. The News class mechanism
usually avoids doing these extra context swaps that occur when self is used with
send; the classend operator compiles a class’ methods to replace most
occurrences of /method self send with a more efficient form (see Section 4.5,
Method Compilation). Because self is implemented as an operator that returns an
object, the construct /method self send can be executed even if it is not com-
piled; the compilation is done merely as an optimization.

Next, the /result1 message is sent to Inst2 as follows:

sun Revision A, of 25 August 1989

microsystems

88 News Programmer’s Guide

The super Psuedo-Variable

When /result1 is sent to Inst2, the following actions are taken:

1. The send operator puts Inst2 and the classes in its inheritance array on the
dictionary stack.

2. The /result1 method is found in class One. The /result1 method sends
/test to self, which in this case is Inst2. Thus the search for the /test
method begins with Inst2, in the same context.

3. The /test method is found in class Two. When executed, /test puts the
number 2 on the operand stack.

4. The dictionary stack is restored to its initial state with the systemdict on the
bottom and the userdict on the top.

5. The number 2 is printed to the screen with the = operator.

Below are four more example sends.

The super psuedo-variable provides a way to invoke a method that would other-
wise be overridden. If super is used in a method as the object argument to send,
the search for the method associated with send’s message begins with the class
that is immediately below the method’s class on the dictionary stack (the next
superclass in the current send context). In other words, super represents the
class that follows the method’s class in the inheritance array that is currently on
the dictionary stack.

The next two examples use the same class and instance definitions as the previ-
ous section, but this time they illustrate the super psuedo-variable.

First, the /result3 message is sent to Inst3 as follows:

When the /result3 message is sent to Inst3, the following actions are taken:

1. The send operator puts Inst3 and the classes in its inheritance array on the
dictionary stack. The dictionary stack then contains, from bottom to top, the

sSun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 89

systemdict, the userdict, class Object, class One, class Two, class Three,
and Inst3.

2. The /result3 method is found in class Three. The /result3 method sends
/test to super, which in this case is class Two. Note that super is the class
that follows /result3’s class in the current send context, not the class that
follows Inst3.

3. Like any nested send, the send to super involves an old send context and a
new send context. In this case, the old send context is Inst3 and its inheri-
tance array. The new send context is super, or class Two, and its inheri-
tance array. These two contexts are identical except that the new context
begins with class Two instead of Inst3; the chain of superclasses is the
same, but the new context just omits class Three and Inst3. Therefore, the
contexts do not need to be swapped, as long as the search for the method
begins with super rather than with the object on top of the stack.

The search for the /test method begins with super, which is class Two.

4. The est method is found in class Two. When /test is executed, it puts the
number 2 on the operand stack.

5. The dictionary stack is restored to its initial state with the systemdict on the
bottom and the userdict on the top.

6. The number 2 is then printed to the screen with the = operator.

Unlike self, super is not implemented as an operator that returns an object.
When the classend operator compiles a class’ methods, each occurrence of
/method super send is replaced with an operator that resolves super and then
finds and executes the method in the current context. Thus super cannot be used
without send, and it cannot be used unless the method in which it occurs is com-
piled. As a consequence of this implementation, the context swapping is always
avoided for sends to super (see Section 4.5, Method Compilation).

Now the /result3 message is sent to Inst4 as follows:

When the /result3 message is sent to Inst4, the following actions are taken:

1. The send operator puts Inst4 and the classes in its inheritance array on the
dictionary stack. The dictionary stack then contains, from bottom to top, the
systemdict, the userdict, class Object, class One, class Two, class Three,
class Four, and Inst4.

2. The /result3 method is found in class Three. The /result3 method sends
/test to super, which is class Two. The search for /test begins v)%{h class
Two, in the same context.

3. The /test method is found in class Two. The /test method is executed, put-
ting the number 2 on the operand stack.

Sun Revision A, of 25 August 1989

90 News Programmer’s Guide

Using super to Send a
Message Up the Superclass
Chain

Restrictions on the Use of self
and super

4.5. Method Compilation

4. The dictionary stack is restored to its initial state with the systemdict on the
bottom and the userdict on the top.

5. The number 2 is printed to the screen with the = operator.

The super pseudo-variable is often used recursively to send a message up the
superclass chain. If a method sends a message to super, the method in super can
send the same message to its super, and the sends to super can continue until the
root of the class tree is reached.

This construction allows a subclass to add to a method of one of its superclasses
without repeating the entire code of the method. The subclass’ method can first
send the method to super to execute its superclass’ operations for that method;
then the subclass’ method can add its own sequence of operations to its definition
of the method. If all the classes on the branch define the method in this way, the
message will pass all the way up the class chain to the root.

Below is the basic structure used in a method to send a message up the superclass
chain:

/mymethod {
/mymethod super send % Do what super does.

% Do what this class wants to do.
} def

In addition to being used as an argument to send, self can be used anywhere in a
class definition to refer to the object that self represents. This usage is possible
because self is implemented as an operator that puts an object on the stack.

Unlike self, super can only be used as an argument to send. The super psuedo-
variable is not implemented as an operator that returns an object; for details on
how super is implemented, see Section 4.5, Method Compilation. The super
psuedo-variable has one other restriction on its use: super cannot be used any-
where in a procedure passed to send unless the /doit method is used (see /doit in
Section 4.5, Method Compilation).

This section is optional reading; it will be helpful to advanced users, but most

- users will not need the detailed information described here. The one possible

exception is the description of batch sends and the /doit method; a batch send is
a fairly useful concept.

As explained in the examples of self and super above, sends to self and super
can be optimized by leaving the existing context alone. The classend operator
compiles a class’ methods to substitute a more efficient form for most
occurrences of self send and all occurrences of super send. When the methods
are invoked later, the context swapping is avoided. Note that super send must
be compiled, but self send is compiled merely as an optimization.

%2Sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 91

Compiling self send |

Compiling super send

Local Dictionaries

The method compiler replaces most occurrences of /method self send with
method. The search for /method then starts at the top of the existing dictionary
stack. The method compiler does not replace /method self send when it occurs
in a local dictionary, as explained below.

The method compiler replaces occurrences of /method super send with an
operator that resolves super and then finds and executes /method in the current
context. The search for /method begins with the object that super represents. If
/method super send occurs in a local dictionary, the method compiler replaces
it with a slightly less efficient form as explained below.

When a send is executed, any current send context is cleared from the dictionary
stack, and the context for the message receiver is established on the dictionary
stack. The send operator puts the message receiver on top of the dictionary
stack. During execution of the method invoked by the send, the topmost diction-
ary is almost always the message receiver. However in certain cases, a method
may use a local dictionary during its execution. A local dictionary is a diction-
ary that the method places on the dictionary stack while the method is executing.
If a local dictionary is on the stack when a nested send is invoked, the local dic-
tionary is removed from the stack before the nested method is invoked (see Sec-
tion 4.3, Sending Messages With the send Operator).

During most sends, an instance dictionary is on top of the dictionary stack. Most
methods assume that the top dictionary on the dictionary stack is an instance dic-
tionary. That is, most methods assume that they can store into instance variables
using the following construct: /variable value def. If a local dictionary were on
the stack above the instance dictionary, this construct would make a new value in
the local dictionary instead of replacing the instance variable in the instance dic-
tionary; that is why send removes local dictionaries before executing a nested
method.

In the following example, /method1 pushes a local dictionary mydict onto the
dictionary stack and then invokes /method2.

4 N\
/method1 {
mydict begin
/method2 self send
end
} def
/method2 {
Ivariable 5 def
l } def
J
During the execution of /method2, mydict is not present on the stack because
the send temporarily removes it, along with the previous send context. Thus
when /method1 is sent to an instance, variable is stored in the instance diction-
ary.
}V/ sun Revision A, of 25 August 1989

microsystems

92 News Programmer’s Guide

Controlling Method
Compilation

/methodcompile

The method compiler usually replaces /method self send with method. This
substitution works when the topmost dictionary is the message receiver. How-
ever, this optimization fails in the presence of local dictionaries. Returning to the
example, the following code illustrates the problem that would occur if the
method compiler optimized /method2 self send:

4 A
/method1 {
mydict begin
method2
end
} def
/method2 {
Ivariable 5 def
} def
_ J

In this case, mydict would still be on the dictionary stack when /method2 is
invoked. As a result, variable would be stored into mydict instead of being
stored as an instance variable.

To avoid this problem, the method compiler does not replace self send when it
occurs within a local dictionary. The method compiler still replaces super send
when it occurs in a local dictionary, but it uses a slightly less efficient form to
ensure that the local dictionary is handled properly.

The method compiler keeps track of local dictionaries in methods by counting
begin/end and dictbegin/dictend pairs. When the method compiler starts to
compile a method, the counter is initialized to zero. Each time a begin or dictbe-
gin is encountered, the count is incremented by one; each time an end or dictend
is encountered, the count is decremented by one. If the count is less than or
equal to zero when the method compiler comes across a self send or super send,
the compiler substitutes the most efficient form.

The method compiler can be fooled if you have a method that pushes a local dic-
tionary on the stack and does not remove it. You can compensate for this situa-
tion with the SetLocalDicts compiler directive. You can also use SetLocalDicts
to force the method compiler to optimize a self send or super send in a local dic-
tionary (if you want to purposely leave the dictionary on the stack). For details,
see the explanation of SetLocalDicts below.

Three methods are available to compile a method outside of a class definition.
These three methods and the SetLocalDicts directive are described below.

uncompiledproc /methodcompile compiledproc

Compiles a procedure to replace occurrences of self send and super send as dis-
cussed above. /methodcompile is called by classend to compile a class’
methods; it can also be used directly to compile a procedure that is passed to it.
The following example compiles a procedure in the context of MyClass and
returns the new, compiled, executable array:

sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 93

/installmethod

/doit

L {procedure} /methodcompile MyClass send]

name proc /instalimethod —

Creates a new method outside of a class definition. When you send
/installmethod to an object, it installs the specified procedure as a method of the
object and gives the method the specified name. /installmethod compiles the
procedure by calling /methodcompile, and then it adds the method to the
object’s dictionary. The object can be a class or an instance; in the latter case,
/installmethod creates an “instance method.”

In the example below, a new method called /mymethod is installed in MyClass.

[/mymethod {procedure} /instalimethod MyClass send]

<args> proc /doit <results>

Compiles and executes a procedure. The /doit method is used to compile a pro-
cedure that is passed to the send operator (see Another Form of send in Section
4.3, Sending Messages With the send Operator, above). You use /doit in the fol-
lowing way:

L {procedure} /doit myinstance send J

If you use the procedure form of send outside of a method, the following rules
apply:

o /doit is required when the procedure passed to send contains a reference to
super.

o /doit is suggested when the procedure passed to send contains a reference to
self. Although the send works without /doit in the case of self, the send is
more efficient when you compile the procedure.

If you use the procedure form of send inside a method definition, you do not
need to use /doit because any self sends and super sends are compiled when the
method is compiled.

The procedure form of send is commonly used with /doit to send a group of mes-
sages, or a batch send, to an object. The following example sends four messages
to myinstance.

sun Revision A, of 25 August 1989

microsystems

94 News Programmer’s Guide

SetLocalDicts

(~ 3
/method1 self send
/method?2 self send
/method3 self send
/method4 self send
} /doit myinstance send |
\.

The above code is more efficient than sending each message separately to myin-
stance because only one send is actually executed; the sends to self are avoided
by the method compiler. Note that /doit could be omitted if the above batch
send was located inside a method definition.

A batch send can omit both the /doit method and the self sends, as follows:

s ™
{
method1
method2
method3
method4
} myinstance send

|\ J

Howeyer, the above construction is not as clear as the self send form and is
therefore not recommended.

int SetLocalDicts —

Sets the method compiler’s local dictionary count to int. When the local diction-
ary count is less than or equal to zero, the method compiler optimizes self send
and super send; when the local dictionary count is greater than zero, the method
compiler does not optimize self send and super send. The int argument and the
SetLocalDicts call are removed from the method when the method is compiled.

SetLocalDicts can be used in two ways: to ensure that the method compiler
optimizes sends when it should and to force the method compiler to optimize
sends when it otherwise would not. An example of each case is given below.

If you define a method that leaves a local dictionary on the stack, you might
cause the method compiler to optimize a send when it should not. The example
below illustrates such a case. The following methods represent a portion of a
class definition.

sSun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 95

/method1 {
/method?2 self send
/size self send

} def

/method2 {
10 dict begin
/size 1 det
} det
Isize {

} def
\ J

In this example, /method2 puts a dictionary on the stack with a begin, but it
does not remove the dictionary with an end. /method2 is invoked from within
/method1. Therefore, a local dictionary is left on the stack in /method1, but the
method compiler has no way to know that the local dictionary exists since its
local dictionary counter is zero when it compiles /method1.

The method compiler optimizes the two sends in /method1 as follows:

/method1 {
method2
size

When /method1 is invoked, /method2 is called. /method2 puts a dictionary on
the stack and defines a variable named /size. /method2 leaves the local diction-
ary on the stack. Then /size is encountered in /method1; /size is supposed to
invoke the /size method, but since /size was just defined in the local dictionary
that is still on the stack, /size refers to the variable instead of the method.
Although this is a coincidence that the variable and method names are the same,
the problem only occurred because /size self send was optimized by the method
compiler.

You can use the SetLocalDicts directive to tell the method compiler to avoid
optimizing /size self send, as follows:
r N\
/method1 {
/method?2 self send

1 SetlLocalDicts
/size self send

} def
\— J
@ ﬁgﬁg Revision A, of 25 August 1989

96 News Programmer’s Guide

4.6. Creating a New
Instance

2

In this case, the local dictionary count is 1 when the method compiler reaches
/size; therefore, /size self send is not be optimized. /method1 looks like the
following after it is compiled:

/method1 {

method2

Isize self send
} def

Although /method?2 still leaves a local dictionary on the stack, the subsequent
send removes the local dictionary before the /size method is executed.

In rare cases, you might want to leave a local dictionary on the stack before a
send. The example code below illustrates how you could set the local dictionary
count to be zero to force the method compiler to optimize two self sends.

q)
/mymethod {
10 dict begin
0 SetlLocalDicts
/dothis self send
/dothat self send
end
} def

\. J

After the method compiler compiles this method, it looks like the following:

()
/mymethod {
10 dict begin
dothis
dothat
end
} def
_ J

When /mymethod is invoked, the two methods /dothis and /dothat are executed
with the local dictionary on top of the stack.

This section discusses the methods that NeWs provides to create and initialize
instances. You send the /new message to create a new instance of a class. A
class can use the standard object creation provided by Object’s /newobject
method, or the class can alter the way an object is created. For example, the
/newmagic method can be used to create a new instance from an existing News
magic dictionary. A class can initialize its instances with the /newinit method.
To request the default implementation of a class, you can send the /newdefault
message instead of the /new message (/newdefault is discussed in Section 4.7,
Intrinsic Classes).

sSsun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 97

/new

/newobject

<initializationargs> <creationargs> /new instance

Builds an instance of the class that receives the /new message. For example, the
following expression creates a new instance of MyClass:

[/new MyClass send]

A class should not need to define its own /new method. Instead, the /new
method in class Object is separated into two parts, and a class can choose to
override either or both of the parts. These two parts are the two methods that
/mew calls: /newobject and /newinit. The /newobject method builds a new
instance of a class, and the /newinit method initializes the instance.

When /new is sent to MyClass, the following steps are taken:

1. The send operator puts MyClass and its superclasses on the dictionary
stack.

2. The /new method is located in Object (assuming no subclasses override
Object’s /new method).

3. The /new method in class Object sends /newobject to MyClass to create a
new instance of the class. The /newobject method leaves the newly created
instance on the operand stack.

4. The /new method sends /newinit to the new instance to initialize it. A class’
/mewinit method adds anything that is unique to that class.

5. After invoking /newobject and /newinit, the /new method is done. The
/mew method leaves the new instance on the operand stack. The send opera-
tor takes MyClass and its superclasses off the dictionary stack to complete
the send.

If a class requires arguments to its /newobject or /newinit methods, they must be
passed to /new when an instance of the class is created. The following syntax
creates an instance of MyClass and names the instance myinstance:

[/myinstance <initializationargs> <creationargs> /new MyClass send def]

The /newobject and /newinit methods are described in more detail below.

<creationargs> /newobject instance

Creates an instance and leaves it on the operand stack. The /newobject method
is called by /new when a new instance of a class is created. After calling
/newobject, the /new method then calls /newinit to allow the class to initialize
its new instance.

Class Object’s /newobject method creates an instance dictionary and copies the
class’ instance variables into it. The /newobject method also assigns an inheri-
tance array to the instance.

sSun Revision A, of 25 August 1989

microsystems

98 News Programmer’s Guide

/mewinit

@

Most classes do not need to override /newobject. The /newmagic method, dis-
cussed below, is an example of how a class might override the /newobject
method.

<initializationargs> /newinit —

Initializes a new instance. The /new method sends /newinit to the instance
immediately after it has been created.

Class Object’s /newinit method performs no action. A class should provide its
own /newinit method if it needs to initialize its instances. The /newinit method
can perform any action that should be taken when a new instance of the class is
created. If a class offers a /newinit method, the method should send /newinit to
super to perform any initialization required by the class’ superclasses, and then it
should perform the class’ initialization.

Below is an example of a class definition that uses the /newinit method. The
class, called TimeKeep, is a subclass of class Object.

p
/TimeKeep Object)
Jeinstance variables:
dictbegin
/Time null def
dictend
classbegin

%class variables:
/ClassTime currenttime def
Yomethods:

/newinit {
/newinit super send
/resettime self send
} def

/printtime {
(Time is:) print
Time 10 string cvs print
(\n) print

} def

/resettime {
/Time currenttime def
} def

classend def
_ J

Class TimeKeep has a class variable, ClassTime, that is set to the time of crea-
tion of the class. TimeKeep has an instance variable named Time. Class

Sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 99

/mewmagic

TimeKeep’s /newinit method first sends /newinit to super; then it calls the
/resettime method to initialize the instance variable Time to be the time of crea-
tion of the instance (the time at which the method is called). The method print-
time prints the value of the instance variable Time.

The following expression defines an instance of class TimeKeep named timer:

[Aimer /new TimeKeep send def J

The expression below prints the value of timer’s instance variable Time:

{ /printtime timer send J

A class’ instance variables can often be initialized in a dictionary passed to
classbegin; usually, you do not need to use newinit to assign initial values to
instance variables. However, you can use /newinit to make the initialization of
instance variables more efficient.

When you create a new instance, the /newobject method copies all the class’
instance variables into the new instance dictionary. This copying takes less time
for simple instance variables than for composite instance variables. Therefore,
whenever you can avoid declaring a composite instance variable in a dictionary
passed to classbegin, you shorten the amount of time required to create a new
instance of that class. This time difference is more significant if you can arrange
your class definition to avoid passing any composite instance variables to
classbegin. To initialize a null dictionary, for example, you might define a sim-
ple instance variable to be null in the dictionary that you pass to classbegin and
then define that variable to be a growabledict in a /newinit method for the class.
This arrangement is faster than simply defining the variable to be nulldict in the
dictionary that you pass to classbegin.

Note that you can pass composite instance variables to classbegin when neces-
sary; your code is just more efficient if you minimize the number of composite
instance variables passed to classbegin in your class definitions.

<creationargs> dict /newmagic instance

Builds an instance from an existing News dictionary object such as a canvas or an
event. To create such an instance, you send the /new message to the desired
class of the object, and the class overrides the /newobject method with the
/mewmagic method.

The /newmagic method takes a magic dictionary object from the stack and uses
the key-value pairs in the magic dictionary as instance variables. The instance is
also given any instance variables specified by its class. The magic dictionary is
turned into an instance dictionary by adding the additional instance keys; this is
possible because, by definition, a magic dictionary can have keys added to it.

S un Revision A, of 25 August 1989

microsystems

100 News Programmer’s Guide

4.7. Intrinsic Classes

Suppose you have a class called Canvas that is used to create instances that are
canvas objects. You could define class Canvas in the following way:

{)
/Canvas Obiject
dictbegin

%instance variables

dictend
classbegin

%class variables

%class methods
/newobiject {
newcanvas
/newmagic super send
} def
/newinit {

%initialize canvas instance variables

}def

classend

You could create an instance of class Canvas by sending the /new message to
class Canvas. When you do this, the /new method in class Object sends
/newobject to self, and class Canvas overrides the /newobject method with its
own version. Canvas’ /newobject method calls the canvas operator newcanvas
to create a new, empty canvas dictionary. Then Canvas’ /newobject method
calls /newmagic to make an instance dictionary out of the canvas dictionary.

Note that an instance of Canvas is a true NeWs canvas. For example, if you
change the Mapped instance variable from false to true, the canvas will be
mapped to the screen. The canvas is part of the canvas hierarchy, but the
instance and class Canvas are part of the class hierarchy.

Sometimes you want a class to be a common, abstract superclass for a group of
subclasses. An abstract superclass provides an easy way to implement many dif-
ferent versions of the object that the superclass represents. The abstract super-
class defines a set of basic characteristics that all its subclasses must have, but the
superclass allows many of the implementation details to vary from subclass to
subclass. In fact, an abstract superclass can demand that its subclasses

sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 101

/mewdefault

implement certain methods that it does not implement itself. Usually, an abstract
superclass does not have direct instances; instead, its subclasses have instances.
In News, abstract superclasses are known as intrinsic classes.

For example, Window could be an intrinsic class that implements different types
of windows. Each subclass of Window might implement a different “look and
feel” for the window’s user interface.

An intrinsic class should specify a default subclass; then if the /newdefault mes-
sage is sent to the intrinsic class, the newly created instance belongs to that
default subclass (see /newdefault below).

The three methods described below are often used with intrinsic classes.

<initializationargs> <creationargs> /newdefault instance

Creates a new instance of a class’ default implementation by sending the /new
message to the class’ default subclass. If a class has no default subclass, the
server assumes that the default implementation is the class itself.

The following expression creates a new instance of the default subclass of Win-
dow:

(/newdefault Window send]

For example, if the default subclass of Window is MyWindow, the above
expression causes /new to be sent to MyWindow.

A class’ default subclass is specified by a class variable named DefaultClass.
You can set the value of DefaultClass in the class definition. The example
below sets the default class for Window to be MyWindow. Note that the value
of the DefaultClass variable is the default subclass inside procedure braces; the
braces are needed to defer execution until the default subclass is defined.

e a
/Window [Canvas]

instance variables

classbegin

/DefaultClass {MyWindow} def

classend
g J

A user can override the default implementation of a class by including a pro-
cedure in the UserProfile dictionary (see Section 4.8, Overriding Class Vari-
ables With UserProfile).

Revision A, of 25 August 1989

102 News Programmer’s Guide

/defaultclass

/SubClassResponsibility

4.8. Overriding Class
Variables With
UserProfile

%

— /defaultclass class

Retumns the default subclass of the class that receives the /defaultclass message.
The default subclass is specified by a class’ DefaultClass variable. If a class has
no DefaultClass variable, the default implementation is the class itself.

— /SubClassResponsibility —

Requires a subclass to implement a certain method. /SubClassResponsibility
causes a deliberate undefined error if the required method is sent to a sub-
class that does not implement it.

For example, the method /CreateFrameMenu must be implemented by any
subclass of Window if Window has the following code in its class definition:

[/CreateFrameMenu {SubClassResponsibility} def]

If the message /CreateFrameMenu is sent to a subclass of Window that does
not implement the /CreateFrameMenu method, /SubClassResponsibility
causes an undefined error.

UserProfile is a dictionary in . startup.ps that contains user-supplied infor-
mation. A user can add procedures to UserProfile to override the default values
of class variables. (See the X11/NeWS Server Guide for more information about
UserProfile.)

The classend operator completes the definition of a class. The last step that the
classend operator takes is to check the UserProfile dictionary for a procedure
with the same name as the class that is currently being defined. If the classend
operator finds such a procedure, it executes the procedure with the class name
and the class object on the stack. The procedure must leave the stack unchanged.

The following example shows part of a UserProfile dictionary. In this example,
the procedure named Frame overrides the default value of FrameColor for class
Frame; the procedure sets the value of FrameColor to be gray.

4 D
UserProfile begin

IFrame { %classname class => classname class
dup /FrameColor .75 .75 .75 rgbcolor put
} def

end

sSsun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 103

Overriding DefaultClass

4.9. Promoting Class
Variables to Instance
Variables

promote

A user can include a procedure in UserProfile that assigns a new value to a class’
DefaultClass variable; the new value overrides the value assigned in the class
definition. (For an explanation of DefaultClass see /newdefault in Section 4.7,
Intrinsic Classes).

Assume that the default class of Window is set to MyWindow by the program-
mer (in the class definition). If a user wants the default implementation of class
Window to be SpecialWindow instead of MyWindow, the user could add the
following definition to the UserProfile dictionary:

(™)
UserProfile begin

/Window { %classname class => classname class
dup /DefaultClass {SpecialWindow} put
} def

end .

. J

Note that SpecialWindow must be given in braces.

An instance can override a class variable by promoting that class variable to be
an instance variable. Class Object provides utilities to promote a class variable
to an instance variable and to inquire about the current promotion status of a vari-
able. These utilities are described below.

name value promote —

Takes a name and a value from the operand stack and adds that name-value pair
to the dictionary that is on top of the dictionary stack, exactly as the def operator
does. The promote utility is called when an instance dictionary is on top of the
stack so that the name-value pair becomes an instance variable. The promote
utility is just a formal way to use def instead of store; you should use promote
instead of def because promote makes your intention clear.

Suppose you have a class named Frame and an instance of the class named
myframe. (A frame is an object that “frames” a canvas. The frame might offer
such features as a menu and scrollbars.) Assume that one of Frame’s class vari-
ables is FrameColor, which is the color of the frame’s background. Also
assume that the default color of FrameColor is white. You can give myframe a
gray FrameColor by putting myframe’s dictionary on top of the stack and then
promoting the class variable FrameColor as follows:

(/FrameColor .75 .75 .75 rgbcolor promote]

In the above example, promote adds FrameColor to myframe’s instance vari-
able dictionary and assigns the value returned by the rgbcolor operator to the

S ll n Revision A, of 25 August 1989

microsystems

104 News Programmer’s Guide

unpromote

promoted?

Avoiding an Accidental
Promotion

4.10. Destroying Classes
and Instances

/destroy

new instance variable.

name unpromote —

Removes, or unpromotes, an instance variable from the instance’s dictionary.
The unpromote utility takes the name of the variable from the operand stack and
removes that variable from the dictionary that is on top of the dictionary stack.
After putting myframe on top of the stack, you could remove FrameColor from
myframe’s dictionary with the following expression:

(/FrameColor unpromote }

name promoted? boolean

Takes the name of a variable from the operand stack and returns true if that vari-
able is found in the dictionary that is on top of the stack. Assuming that
myframe is on top of the dictionary stack, the following example returns true if
FrameColor is an instance variable (and was therefore promoted):

C /FrameColor promoted? j

If you try to use a def statement to change the value of a class variable while an
instance is on the top of the dictionary stack, you will add that variable to the
instance, effectively promoting it. If you just want to change the value of the
class variable, you should use store instead of def. The store operator finds the
first occurrence of the variable on the dictionary stack and replaces the value of
the variable with the newly specified value. (The def operator adds the name-
value pair to the top dictionary on the stack if it does not find the variable already
in that dictionary.)

This accidental promotion can occur even if you use def in a method that
changes the value of the class variable because the method might be sent to an
instance of the class, putting the instance dictionary on top of the stack. To be
safe, you should always use store to define values of class variables.

Instances are destroyed with the /destroy method; classes are destroyed with the
classdestroy operator. The classdestroy operator invokes a utility named
/cleanoutclass. The /destroy method, classdestroy operator, and /cleanoutclass
method are described below.

— /destroy —

Destroys the instance that receives the /destroy message. An application might
invoke /destroy when a user chooses the “quit” option from a menu. Classes
should provide their own /destroy methods. A class’ /destroy method should
remove circular references and then send /destroy to super. The /destroy
method in class Object performs no action; it is just there so that classes can

S un Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 105

classdestroy

/cleanoutclass

4.11. Obsolete Objects in
the Class System

/obsolete

safely send /destroy to super.

class classdestroy —

Destroys a class. classdestroy removes several circular references to the class by
removing the class from the subclass lists of its superclasses. Then classdestroy
sends the /cleanoutclass method (see description below) to the class.

— /cleanoutclass —

Calls the cleanoutdict operator, which is a NeWs utility that undefines every key
in the specified dictionary using the undef News primitive. The /cleanoutclass
method is defined by the classbegin operator. A class can override the default
/cleanoutclass with its own clean-up procedure, if necessary.

When all the references to an object are soft, the object is obsolete and News
sends an obsolescence event to all processes that have expressed interest in
obsolescence events for that object (see Chapter 7, Memory Management). The
processes should then remove their soft references to the object so that NeWs can
destroy the object and reclaim the memory that it used.

When class Object is initialized, it starts a process named ObsoleteEventMgr
that expresses interest in obsolescence events. When ObsoleteEventMgr
receives an obsolescence event from the server, it invokes a method in class
Object that handles obsolescence events. This method performs the following
actions:

o If the obsolescence event is for a class, the classdestroy operator is called to
destroy the class (see classdestroy in Section 4.10, Destroying Classes and
Instances).

o If the obsolescence event is for an instance, the /obsolete method is sent to
the instance to destroy it (see the description of /obsolete, below).

o If the obsolescence event is not for a class or an instance, it is simply popped
from the stack.

The /obsolete method is described below.

— /obsolete —

Sends /destroy to self (see the explanation of /destroy in Section 4.10, Destroy-
ing Classes and Instances). When class Object’s ObsoleteEventMgr receives
an obsolescence event for an instance, the /obsolete message is sent to the
instance to destroy it. A class rarely needs to override the default /obsolete
method.

Note that instances are usually destroyed without having to call /obsolete; the
/destroy method is usually called directly to destroy an instance.

S u n Revision A, of 25 August 1989

microsystems

106 News Programmer’s Guide

4.12. Multiple Inheritance

Figure 4-7

A Simple Multiple Inheritance
Example: a Utility Class

@

Multiple inheritance is an optional aspect of the News class system. You can
build a whole class tree without using multiple inheritance. However, in some
situations, multiple inheritance is very useful and easy to apply. This section first
gives an example of a simple case to illustrate why you might want to use multi-
ple inheritance, and then it gives a more complex example to explain the details
of multiple inheritance. Both the simple example and the more complex exam-
ple use the class structure shown in the following figure:

Basic class hierarchy for the multiple inheritance examples

Object
Canvas
/\
Control Bag
Dial FlexBag

Class Canvas is a subclass of class Object. In this example, class Canvas has
two immediate subclasses: Control and Bag. Control represents a type of can-
vas that handles user interaction for objects such as buttons and dials. Bag
represents a special type of canvas that contains objects; an instance of Bag can
perform layout and intelligent repainting of its contained objects.

Control and Bag each have one subclass. Control has a subclass named Dial
that provides basic operations needed by sliders and scrollbars. Bag has a sub-
class named FlexBag; an instance of FlexBag can arrange its contained objects
by specifying interobject relationships based on compass directions.

So far, each class in this tree only specifies one immediate superclass. For exam-
ple, Dial’s immediate superclass is Control, and FlexBag’s immediate super-
class is Bag.

For convenience and efficiency, you can define a utility class that contains low-
level methods needed by many of your classes. You can define a utility class that
exists apart from the main class tree — a class with no superclasses. To create
such a class, you specify an empty superclass array to the classbegin opcrator, as
follows:

sun Revision A, of 25 August 1989

microsystems

Chapter 4 — Classes 107

Figure 4-8

4

JUtility []
instance variables
classbegin
class variables
class methods
classend def

. _

In fact, this is how class Object is defined. But class Object is the root of the
class tree, whereas class Utility is a utility class. Multiple inheritance allows the
classes in the main class tree to access class Utility’s methods.

Assume that you want class Bag to be able to access the methods in Ultility.
When you create class Bag, you could specify both Utility and Canvas in the
superclass array that you give to classbegin. For example, your class definition
could take the following form:

f N
/Bag [Utility Canvas]
instance variables
classbegin
class variables
class methods
classend def

. _J

The class tree is illustrated below. Note that Bag now has two immediate super-
classes; therefore two lines connect it to classes above it.

Class hierarchy with a utility class

Object Utility
Canvas
Control Bag
Dial FlexBag

A class’ superclasses include the class’ immediate superclasses and all of their
superclasses. As shown in the diagram of the class tree, Bag’s superclasses are
Utility, Canvas, and Object. Although the tree does indicate which classes are
Bag’s superclasses, it does not indicate a unique order in which the superclasses

sun Revision A, of 25 August 1989

microsystems

108

NeWs Programmer's Guide

should override each other. The superclasses do not belong to the same branch,
s0 a unique leaf-to-root order is no longer possible.

Thus in the multiple inheritance case, more than one valid order exists for the
classes in an inheritance array. A valid array consists of any arrangement of the
superclasses that maintains the leaf-to-root order of classes on the same branch.
Based on its superclasses, the three valid arrays for Bag in this example are the
following:

[Utility Canvas Obiject]
[Canvas Utility Object]
[Canvas Object Utility]

In some situations the order does not matter. If the classes in the inheritance
array have no methods or class variables in common, the order of those classes
makes no difference to the final result of a send.

With a utility class, all that matters is whether any classes override the methods
in the utility class. If the classes in the main class tree do not override any of the
utility class’ methods, you can place the utility class anywhere in the inheritance
array and the results will be the same.

If you only specify a class’ immediate superclasses in the array that you pass to
classbegin, the classend operator uses an algorithm to construct a default order
for the inheritance array. The classend operator starts with a copy of the super-
classes that you pass to classbegin, and it adds the other superclasses to build the
complete inheritance array. After your new class is created, you can examine the
default order of the inheritance array by sending the /superclasses method to the
new class. The /superclasses method puts the inheritance array on the operand
stack (see Section 4.15, Utilities for Inquiring About an Object’ s Heritage).

If you do not like the default order of the inheritance array, you can change your
class definition