
.\sun®
~ microsystems

NeWS™ 2.0 Programmer's Guide

\ 1 l II

1M 1M S · 1M V' 1M 0 W' d 1M d k NeWS ,XlllNeWS , unVlew ,X lew, and pen In ows are tra emar s
of Sun Microsystems, Inc. Sun Workstation@, Sun Microsystems®, and the Sun logo f;®
are registered trademarks of Sun Microsystems Inc.

POSTSCRIPT® is a registered trademark of Adobe Systems Inc. Adobe owns
copyrights related to the PoSTSCRIPT language and the PoSTSCRIPT interpreter.
The trademark POSTSCRIPT is used herein to refer to the material supplied by
Adobe or to programs written in the PoSTSCRIPT language as defined by Adobe.

The X Window System is a trademark of Massachusetts Institute of Technology.

UNIX® is a registered trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright © 1989 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means - graphic, electronic, or mechanical - including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack­
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter­
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun's licensees.

Contents

Chapter 1 Introd.uction .. 3

1.1. NeWS Programming: An Overview .. 3

The POSTSCRIPI' Language ... 3

NeWS Types ... 3

NeWS Operators ... 4

The Xll/N"eWS Server ... 4

Client-Server Communication .. 4

C Client Interfa~e .. 5

Canvases .. 5

The NeWS Imaging Model .. 6

Events .. 6

Memory Management .. 7

Color Support .. 7

Font Support .. 7

1.2. POSTSCRIPT Language Files Used with the Server 8

The Window Manager ... 8

Classes .. ;;................. 8

Debugging ... 8

Chapter 2 Canvases ... ~... 11

The canvastype Extension ; ~............................. 12

Canvas Operators ... , , .. : 12

2.1. Coordinate System Overview ... ;............................... 13

2.2. Creating and Displaying Canvases .. 13

-iii-

Contents - Continued

Creating Canvases .. 13

Shaping Canvases ... 14

Setting the Current Canvas .. 15

Mapping Canvases to the Screen ... 15

2.3. Manipulating Canvases .. 16

Moving Canvases .. 16

Transparent and Opaque Canvases ... 17

Retained and Non-Retained Canvases .. 19

Further Infonnation on Damage ... 21

The SaveBehind Key .. 21

2.4. Parent, Child, and Sibling Canvases ... 22

The Sibling List 22

Establishing a New Parent ... 24

2.5. Overlay Canvases .. 25

Drawing on Overlays .. 25

2.6. Canvas Dipping Operators .. 26

2.7. Cursors ... 26

2.8. Canvases, Files, and Imaging Procedures ... 27

Writing Canvases to Files .. 27

Reading Canvases from Files .. 27

Other File-Related Operators ... 28

Imaging ... 28

2.9. Other Dictionary Keys .. 29

Events .. 29

Color ... 29

X -Specific Features 29

Grab State 29

File Sharing 30

Chapter 3 Events ... 33

The eventtype extension ... 33

Event Operators ... 34

3.1. Overview of Event Distribution .. 34

-iv-

Contents - Continued

3.2. Creating an Event .. 35

3.3. Expressing Interests ... 36

Copying an Event Before Expressing Interest ... 36

Changing and Reusing Interests ... 36

3.4. Rules for Matching Events to Interests ... 37

Rules for Name And Action Key Matching ... 37

Rules for Process Key Matching ... 37

Rules for Serial Key Matching ... 37

3.5. Sending an Event into Distribution ... 38

3.6. Awaiting Events ... 38

3.7. Specifying the Name, Action, and Canvas Keys as
Dictionaries ... 39

N on-Executable Dictionary Values .. 39

Executable Dictionary Values 41

3.8. Using the Canvas Key: Matching Multiple Interests 43

Pre-Child and Post -Child Interest Lists ... 43

Order of Interest Matching .. 44

Specifying a Single Canvas ... 44

Specifying an Array or Dictionary.. 44

Specifying null ... 44

U sing the canvastype EventsConsumed Key.. 45

Multiple Post-Child Interest Matching: An Example 45

Multiple Pre-Child Interest Matching: An Example 49

3.9. System-Generated Events ... 49

Mouse Events .. 50

Enter and Exit Events ... 52

Name Key Values ... 52

Action Key Values ... 54

Using the postcrossings Operator ... 55

Using the XLocation and YLocation Keys .. 56

U sing the Coordinates Key........ ... 57

Focus Events .. 57

Keyboard Events ... 58

-v-

Contents - Continued

The Repeat Key Dictionary ... 58

Damage Events .. 59

Obsolescence Events ... 59

ProcessDied Events ... 59

3.10. Using the ClientData Key .. 60

3.11. Using the Priority Key ... 60

3.12. Using the Exclusivity Key... 62

U sing the redistributeevent Operator ... 63

3.13. Using the TimeStamp Key.. 64

U sing the recallevent Operator ... 65

3.14. Using the Process Key ... 66

3.15. Input Synchronization with Multiple Processes .. 67

Using blockinputqueue .. 67

3.16. Event Logging .. 68

Chapter 4 Classes .. 71

4.1. Basic Terms and Concepts ... 71

Classes and Instances .. 71

Inheritance and the Class Tree .. 73

Superclasses and Subclasses ... 73

The Immediate Superclass ... 73

Inheritance ... :... 73

Single Inheritance and Multiple Inheritance .. 74

The Inheritance Array ... 74

A Single Inheritance Example ... 75

Summary of Terms .. 77

4.2. Creating a New Class .. 79

The Class Definition .. 79

classbegin 79

classend .. 79

redef ... 79

Initializing a New Class .. 80

4.3. Sending Messages With the send Operator .. 80

-vi-

Contents - Continued

The Usual FOnTl of send ... 80

The Steps Involved in a send ... 80

U sing send to Invoke a Method ... 81

A Nested send ... 82

Using send to Create a New Instance ... 83

Another Fonn of send .. 84

U sing send to Change the Value of an Instance Variable 84

U sing send to Change the Value of a Class Variable 84

4.4. f The Psuedo-Variables self and super .. 85

The self Psuedo-Variable ... 87

The super Psuedo-Variable .. 88

U sing super to Send a Message Up the Superclass Chain 90

Restrictions on the Use of self and super ... 90

4.5. Method Compilation .. 90

Compiling self send .. 91

Compiling super send ... 91

Local Dictionaries .. 91

Controlling Method Compilation .. 92

Imethodcompile .. 92

linstallmethod ... 93

Idoit .. 93

SetLocalDicts ... 94

4.6. Creating a New Instance .. 96

Inew .. 97

Inewobject .. 97

Inewinit .. 98

Inewmagic .. 99

4.7. Intrinsic Classes .. 100

Inewdefault .. 101

I defaultclass .. 102

ISubClassResponsibility ... 102

4.8. Overriding Class Variables With UserProfile .. 102

Overriding DefaultClass .. 103

-vii-

Contents - Continued

4.9. Promoting Class Variables to Instance Variables ... 103

promote ... 103

unpromote ... 104

promoted? .. 104

Avoiding an Accidental Promotion .. 104

4.10. Destroying Classes and Instances .. 104

I destroy .. 104

classdestroy ... 105

Icleanoutclass ... 105

4.11. Obsolete Objects in the Class System ... 105

lobsolete ... 105

4.12. Multiple Inheritance .. 106

A Simple Multiple Inheritance Example: a Utility Class 106

A More Complex Multiple Inheritance Example 109

Rules for Valid Inheritance Array Orders ... 109

Possible Inheritance Arrays for this Example ... 110

Which Order Do You Choose? .. 111

Constraining the Order of the Inheritance Array................................... 112

super and Multiple Inheritance ... 112

4.13. Utilities for Setting and Retrieving an Object's Name and
Classname .. 113

Iname ... 113

lsetname .. 113

Iclassname .. 114

4.14. Utilities for Inquiring About an Object's Status ... 114

isobject? .. 114

isclass? 114

isinstance? ... 114

4.15. Utilities for Inquiring About an Object's Heritage 114

Isuperclasses ... 114

Isubclasses .. 114

linstanceof? ... 114

Idescendantof? .. 114

- viii-

Contents - Continued

lunderstands? .. 115

Iclass ... 115

4.16. Utilities for Finding Objects on the send Stack .. 115

Itopmostinstance ... 115

Itopmostdescendant .. 115

lsendtopmost .. 115

4.17. Class OJ)erators .. 116

4.18. Class Methods ... 116

Chapter 5 Client-Server Interface .. 119

5.1. The CPS Facility .. 119

5.2. Creating the . cps File .. 120

Argument TYJ>es .. 122

Sending POSTSCRIPf Language Code without Returning
Values .. 123

Receiving Synchronous Replies ... 124

Receiving Asynchronous Replies .. 125

5.3. Creating the . h File ... 126

CPS Utilities .. 127

5.4. Creating the . c File ... 127

POSTSCRIPT Language Communication Files .. 128

Reading the Client's Input Queue ... 128

5.5. Tokens and Tokenization .. 129

Compiling the . c File ... 130

Comments ... 130

5.6. Debugging CPS .. 131

5.7. Supporting NeWS From Other Languages .. 131

Contacting the Server 132

5.8. Byte Stream Format ... 132

Encoding For Compressed Tokens ... 132

enc_int ... 132

enc_short_string .. 133

enc_string ... 133

- ix-

Contents - Continued

enc_syscommon .. 133

enc_syscommon2 ... 133

enc_usercommon ... 133

enc_lusercommon ... 133

enc_eusercommon .. 133

enc_IEEEfioat ... 133

enc _ IEEE double .. 134

Object Tables .. 134

Magic Numbers .. 134

Examples ... 134

Chapter 6 Debugging ... 139

6.1. Loading the Debugger .. 139

6.2. Starting the Debugger ... 139

6.3. Using the Debugger .. 139

Multi-Process Debugging .. 140

6.4. Client Commands .. 140

6.5. User Commands ... 141

6.6. Miscellaneous Hints ... 145

Aliases ... 145

Use Multiple Debugging Connections .. 146

Chapter 7 Memory Management .. 149

7.1. Reference Counting .. 149

Objects .. 149

References to Counted Objects ... 150

Counted References ... 150

Uncounted References .. 150

Soft References ... 150

Obsolescence Events 151

Reference Tallies ... 151

Object Types .. 151

7.2. Memory Management Operators .. 152

-x-

Contents - Continued

7.3. Memory Management Debugging Operators .. 153

Using tlle debugdict ... 153

Debugging Operators .. 153

7.4. The Unused Font Cache ... 156

Specifying tlle Size of the Cache ... 156

Hushing tlle cache .. 157

Applications ... 157

Chapter 8 NeWS Type Extensions ... 161

8.1. NeWS Objects as Dictionaries .. 161

8.2. List of NeWS Types .. 162

POSTSCRIP1' LaIlguage Types .. 162

NeWS Type Extensions .. 162

8.3. colortype .. 163

8.4. graphicsstatetype ... 163

8.5. monitortype ... 163

8.6. packedarraytype .. 163

8.7. path type -.. 164

8.8. canvastype .. 164

8.9. colormaptype .. 170

8.10. colormapentrytype .. 170

8.11. cursortype .. 171

8.12. environmenttype ... 172

8.13. eventtype ... 174

8.14. fonttype .. 177

8.15. processtype .. 177

8.16. visualtype ... 182

Chapter 9 NeWS Operator Extensions .. 187

Chapter 10 Extensibility through POSTSCRIPT Language Files 221

10.1. Initialization Files ... 221

init.ps ... 221

- xi-

Contents - Continued

redbook . ps ... 221

basics. ps .. 221

colors. ps .. 221

cursor. ps .. 221

statdict. ps ... 221

compa t . ps .. 222

utile ps ... 222

class .ps ... 222

rootmenu . ps ... 222

10.2. User-Created Extension Files .. 222

. user .ps ... 222

. startup. ps ... 222

Oilier Extension Files ... 222

debug .ps ... 222

event log . ps ... 222

journal.ps ... -.. 222

repeat. ps .. 222

Extension File Contents .. 223

10.3. Miscellaneous ... 223

10.4. Array Operations ... 226

10.5. Conditional Operators .. 228

10.6. Input Operators ... 228

10.7. Rectangle Utilities .. 231

10.8. Class Operators .. 231

10.9. Graphics Utilities .. 231

10.10. File Access Utilities .. 233

10.11. CID Utilities .. 234

10.12. Journalling Utilities .. 235

Journalling Internal Variables ... 236

10.13. Constants ... 236

10.14. Key Mapping Utilities ... 237

10.15. Repeating Keys ... 238

10.16. Standard Colors ... 238

- xii-

Contents - Continued

10.17. Logging Events ... 238

UnloggedEvents .. 239

Appendix A NeWS Operators ... 243

A.l. NeWS Operators, Alphabetically ... 243

A.2. NeWS Operators, by Functionality ... 246

Canvas Operators .. 246

Event Operators ... 247

Mat:l1ematical Operators .. 248

Process Operators ... 248

Path Operators .. 248

File Operators .. 249

Color Operators .. 249

KeyboR{d and Mouse Operators ... 249

Cursor Operators ... 250

Font Operators .. 250

Miscellaneous Operators .. 250

Appendix B The Extended Input System .. 255

B.l. Building on NeWS Input Facilities ... 255

B.2. The LiteUI Interface ... 256

B.3. Keyboard Input .. 257

Keyboard Input: Simple ASCII Characters ... 257

Revoking Interest in Keyboard Events ... 257

Keyboard Input: Function Keys ... 257

Assigning Function Keys ... 258

Keyboard Input: Editing and Cursor Control ... 258

B.4. Selections .. 259

Selection Data Structures ... 259

Selection Procedures ... 261

Selection Events 262

ISetSelectionAt .. 263

IExtendSelectionTo .. 264

- xiii-

Contents - Continued

IDeSelect .. 265

IShelveSelection .. 265

ISelectionRequest .. 266

B.S. Input Focus ... 266

Appendix C Omissions and Implementation Limits 273

C.I. Operator Omissions and Limitations ... 273

C.2. Imaging Omissions .. 274

C.3. The statusdict Dictionary .. 274

C.4. Implementation Limits .. 275

C.5. Other Differences with the POSTSCRIPT Language 276

Index ... 275

-xiv -

Tables

Table 3-1 Boundary Crossing Events ... 54

Table 3-2 Input Focus .. 57

Table 4-1 Summary of TeI11ls .. 78

Table 5-1 CPS Argument Types .. 122

Table 5-2 C Utility Routines Provided by CPS ... 127

Table 5-3 Token Values .. 134

Table 5-4 Meaning of Bytes in Encoding Example .. 135

Table 7-1 Uncounted Object Types ... 152

Table 7-2 Counted Object Types ... 152

Table 8-1 Standard Object Types in the PoSTSCRIPT Language 162

Table 8-2 Additional NeWS Object Types ... 163

Table 9-1 Events sent to incanvas and its parents 206

Table 9-2 Events sent to outcanvas and its parents 207

Table 9-3 Rasterop Code Values 214

Table 10-1 Standard NeWS Cursors ; ;;;;.; •.... :; .. ;,"~~ ;.: .. ;.:;; ,

Table B-1 Selection-Dict Keys ... ; ;:.;;;............................... 260

Table B-2 System-defined Selection Attributes .. 260

Table B-3 Request-dict Entries ... ~"....................... 261

-xv-

Tables - Continued

Table B-4 High-Level Selection-Related Events ... 261

Table B-5 Input Focus ... 267

Table C-I Implementation Limits ... 275

Table C-2 NeWS Versions of Various POSTSCRIPT Language Operators 276

-xvi-

Figures

Figure 2-1 Canvas Mapped at 0,0 ... 16

Figure 2-2 Canvas Mapped at 25,25 .. 17

Figure 2-3 A Mapped Child Canvas .. 18

Figure 2-4 Parent Canvas Made Transparent ... 19

Figure 2-5 Parent Canvas Made Opaque and Repainted .. 19

Figure 2-6 Damage on Unretained Canvas .. 20

Figure 2-7 Younger Sibling Obscuring Elder .. 23

Figure 2-8 Elder Sibling Made to Obscure Younger .. 24

Figure 2-9 Modified Parenthood Between Canvases ... 24

Figure 2-10 Results of Canvas Clipping Operation .. 26

Figure 2-11 Imaged Canvas .. 28

Figure 2-12 Canvas Imaged with buildimage Operator ... 29

Figure 3-1 Initial Appearance of Canvases .. 48

Figure 3-2 Result of Pre-Child Interest Matching ... 48

Figure 3-3 Result of Multiple Pre-Child Interest Matching 49

Figure 3-4 Initial Appearance of FirstCanvas and SecondCanvas ;.~.............. 53

Figure 3-5 First Entry Event, Matched by FirstCanvas ~~ ; HU ••••• ~~....... 53

Figure 3-6 Second Entry Event, Matched by SecondCanyas ~ ; ; , ... ,.,. 54

Figure 3-7 Third Entry Event, Matched by FirstCanvas.. 54

Figure 3-8 Result of Mouse-Generated Event .. 57

Figure 4-1 A simple class tree ... ; .. ; ;.............. 73

Figure 4-2 A class tree with multiple inheritance ;............................ 74

- xvii-

Figures - Continued

Figure 4-3 A single inheritance example .. 76

Figure 4-4 Dictionary stack before and during a send to MyScroll Bar 82

Figure 4-5 Dictionary stack before and during a nested send 83

Figure 4-6 Class tree for self and super example .. 86

Figure 4-7 Basic class hierarchy for the multiple inheritance examples 106

Figure 4-8 Class hierarchy with a utility class ... 107

Figure 4-9 Class tree for LabeledOial example ... 109

Figure 4-10 A breadth-first order for LabeledOial's inheritance array.......... 110

Figure 4-11 A depth-first order for LabeledOial's inheritance array.............. 111

- xviii-

Preface

TM

This manual provides a guide to programmin~in the NeWS language. This
language is supported as part of the XIIlNeWS server, which itself fonns a part

TM

of the Open Windows distributed window system.

The NeWS interpreted programming language is based on the POSTSCRIPT®
language. 1 Developed at Adobe Systems, the POSTSCRIPT language is a general
programming language used primarily for specifying the visual appearance of
printed documents. The NeWS language uses POSTSCRIPT language operators to
display text and images on a graphics console. Importantly, the NeWS language
also provides operators and types that are extensions to the POSTSCRIPT
language; many of these extensions handle the interactive aspects of window
management that the POSTSCRWT language does not consider.

This manual, which assumes the reader's familiarity with the POSTSCRIPT
language, describes all the basic concepts of NeWS programming. It also provides
a syntactic analysis for each NeWS operator and includes code examples that
demonstrate the use of NeWS operator and type extensions.

For infonnation about using the Xll/NeWS server, see:

o XllIN&lS Server Guide

o Xll1N&lS Release Notes

For infonnation about Open Windows, see:

o OpenWindows User's Guide

o OpenWindows Installation and Startup Guide

For infonnation about the POSTSCRIPT language, see:

o POSTSCRIPT Language Tutorial and C ookbook2

o POSTSCRIPT Language Reference Manuaz3

1 POSTSCRIPT is a registered trademark of Adobe Systems Inc.

2 Adobe Systems, POSTSCRIPT Language Tutorial and Cookbook, Addison-Wesley, July, 1985.

3 Adobe Systems, POSTSCRIPT Language Reference Manual, Addison-Wesley, July, 1985.

- xix-

Preface - Continued

Notational Conventions This manual uses the following notational conventions:

o bold listinq font

This font indicates text or code typed at the keyboard.

o listing font

This font indicates infonnation displayed by the computer. It it also used in
code examples and textual passages to indicate use of the C programming
language.

o sans serif font

This font is used in code examples to indicate use of the POSTSCRIPT
language or NeWS extensions.

o bold font

This font is used in textual passages to indicate names of NeWS operators,
NeWS types, and system-defined dictionaries.

o italic font

This font is used in code examples and textual passages to indicate user­
specified parameters for insertion into programs or command lines. It is also
used to indicate special tenn,s or phrases the first time they are used in the
text.

-xx-

1
Introduction

Introduction ... 3

1.1. NeWS Programming: An Overview .. 3

The POSTSCRIP1' Language ... 3

NeWS Types ... 3

NeWS Operators ... 4

The Xll/NeWS Server ... 4

Client-Server Communication .. 4

C Client Interface .. 5

Canvases .. 5

The NeWS Imaging Model .. 6

Events .. 6

Memory Management .. 7

Color Support .. 7

Font Support .. 7

1.2. POSTSCRIP1' Language Files Used with the Server 8

The Window Manager ... 8

Classes ... 8

Debugging ... 8

1.1. NeWS Programming:
An Overview

The POSTSCRIPT Language

NeWS Types

1
Introduction

The XlllNeWS server can be used either by a single computer or by multiple
computers linked across a communication network; thus, it is a distributed win­
dow system. When the XII/NeWS server is used with multiple computers, an
application run by one machine can use the windows displayed by another.

The NeWS interpreted programming language is based on the POSTSCRIPT
language. Developed at Adobe Systems, the PoSTSCRIPT language is used pri­
marily for specifying the visual appearance of printed documents. A
POSTSCRIPT program consists of operations that are sent to a PoSTSCRIPT
language interpreter residing within a printer; when interpreted, the operations
define text, graphics, and page coordinates.

The NeWS language uses POSTSCRIPT language operators to display text and
images on a graphics console. Programs are interpreted and executed by the
XII/NeWS server, which is resident on the machine to which the graphics console
is attached. Importantly, the NeWS language also provides operators and types
that are extensions to the POSTSCRIPT language; many of these extensions deal
with the interactive and multi-tasking aspects of a window system, which are not
handled by the POSTSCRIPT language.

This section provides an ovelView of NeWS programming. Detailed infonnation
is provided in later chapters.

The POSTSCRIPT language is a high level language designed to describe page
appearance to a printer. It possesses a wide range of graphics operators.
Nevertheless, only about a third of the language is devoted to graphics; the
remainder provides a general purpose programming capability.

The PoSTSCRIPT language is extensible and thus allows programmers to use the
supplied operators to define their own procedures. This extensibility facilitates
the creation of modular code, encourages the design of well-structured and
comprehensible programs, and helps keep programs small.

The NeWS language implements all the standard types provided by the
POSTSCRIPT language. In addition, the NeWS language provides special types as
extensions to the POSTSCRIPT language.

Some of the NeWS type extensions can be accessed as if they were PoSTSCRIPT
language dictionaries. These objects are known as magic dictionary objects.

3 Revision A, of 25 August 1989

4 NeWS Programmer's Guide

NeWS Operators

The XIIlNeWS Server

Client-Server Communication

Magic dictionaries have keys with predefined names. The programmer can
change the value associated with many of the keys; other keys are read-only.
The programmer can add new keys to magic dictionaries.

Other NeWS type extensions are opaque and cannot be accessed as dictionaries. A
full description of all NeWS type extensions is provided in Chapter 8, NIM'S Type
Extensions .

The NeWS language implements most of the standard operators provided by the
POSTSCRIPr language; many of the omitted operators .relate to page-description
requirements, which are not relevant for a window system. Conversely, the NeWS
language provides many operators as extensions to the POSTSCRIPT language;
many of these operator extensions relate to interactivity requirements, and many
of them exist to create and manipulate the NeWS type extensions.

A full deSCription of all NeWS operator extensions is provided in Chapter 9, NeNS
Operator Extensions.

The XII/NeWS server is not a machine used to serve files; it is a process that can
exist on any graphics machine within a network, its function being to interpret
and execute programs written in the POSTSCRIPT language and to display the
resulting graphics on the screen.

The XII/NeWS server contains multiple lightweight processes, some of which
communicate with client processes. A lightweight process is not a UNIX® pro­
cess; it is a process that lives in the server's address space and is scheduled to be
run by the server. 1 Each lightweight process can perfonn operations on the
display and can receive messages from the keyboard, the mouse, or another light­
weight process. A lightweight process can share data with other lightweight
processes. Many lightweight processes can be created with relatively little over­
head. Lightweight processes are also known as NeNS processes.

Note that the XII/NeWS server is neither a toolkit nor a user interface; it provides
neither standards nor defaults for the creation and appearance of windows. The
XII/NeWS server simply interprets and executes POSTSCRIPT language operations
and NeWS extensions that are specified by the programmer. Different user inter­
faces can thus be designed entirely by the programmer: written in the
POSTSCRIPT language, all can be run on the XII/NeWS server.

The Xll/News server communicates with client programs that run either locally
or remotely. Clients can send POSTSCRIPT language code to the server. The
server runs this code on behalf of the clients.

Typically, a client program contains two main sections. One section, which can
be written in C, FORTRAN, or any other language, is used to perfonn the
application's basic computations; this section is executed in the client process.
The other section, which must be written in the POSTSCRIPT language, is used to
provide corresponding windows or graphics; this section is interpreted by the

1 UNIX~ is a registered trademark of AT&T.

Revision A, of 25 August 1989

C Client Interface

Canvases

Chapter 1 - Introduction 5

server process. The POSTSCRIPT language section of the client program can be
detatched, sent to the server, and executed remotely by means of function calls.

The ability to download POSTSCRIPT programs to the server gives the program­
mer great freedom in designing the communication protocol and the split in func­
tionality between server and client. The server does not directly notify the client
program of events such as mouse manipulation; instead, the server notifies
interested lightweight processes, and the client's POSTSCRIPT language code may
either handle the information itself or write the information across the connection
to the client program. Thus, the way in which the client and server communicate
is specified by the POSTSCRIPT language contents of the client application. The
POSTSCRIPT language code downloaded by the client program can use any of
NeWS' built-in features.

Most programmers are likely to use C as the language of the client application.
Therefore, NeWS provides a special interface facility that supports C client com­
munication. The C client interface, named cPs, converts the client's POSTSCRIPT
language code into functions callable by the client's C code.

Programmers can also create their own interface facility for use with other
languages. The client interface protocol and the C client interface are discussed
in Chapter 5, Client-Server Inter/ace.

A NeWS canvas is a region of the screen in which the client application can
display information to the user. Canvases provide the basic drawing surfaces in
NeWS and are thus the raw material from which windows and menus are created;
each window and menu is usually composed of more than one canvas. Canvases
need not be rectangular since their boundaries are defined by POSTSCRIPT
language paths. When visible on the screen, canvases can overlap. When this
occurs, the hidden portion of a canvas can be stored offscreen and redisplayed
when the canvas is re-exposed.

A canvas is implemented as a NeWS type extension that can be accessed as a dic­
tionary. Many canvas characteristics can be set by changing the values of the
keys in the canvas dictionary. For example, a canvas can be opaque or tran­
sparent, mapped or unmapped. An opaque canvas visually hides all canvases
underneath it; a transparent canvas does not. When drawing operations are per­
fonned on a mapped canvas, the image is visible on the screen (unless it is over­
lapped by another canvas); drawing operations can be performed on an
unmapped canvas, but the image is not visible on the screen.

Canvases exist in a hierarchy. The background of the screen is the root of the
hierarchy and is thus known as the root canvas. A canvas can have any number
of children; the display of each child canvas is clipped to the edges of its parent.
Canvases overlap according to their positions in the hierarchy. When visible on
the screen, opaque children obscure their parent. A canvas' children exist in an
ordered list that determines their overlapping relationships. For a canvas to be
visible on the screen, the canvas and all its ancestors must be mapped.

A canvas can be repositioned in the hierarchy, causing adjustments to the display
of any overlapping canvases on the screen. A canvas can also be repositioned

Revision A, of 25 August 1989

6 NeWS Programmer's Guide

The NeWS Imaging Model

Events

horizontally and vertically on the screen, and it can be reshaped and resized.

Each NeWS process can have a current canvas, which is the canvas that is mani­
pulated by the drawing operations performed by that process.

The NeWS language provides operator extensions for creating and manipulating
canvases. A full account of canvases is provided in Chapter 2, Canvases. The
canvas dictionary keys are described in Chapter 8, NtlNS Type Extensions.

The NeWS imaging model, which is essentially that of the POSTSCRIPT language,
can be described as a stencil/paint model. A stencil is an outline specified by an
infinitely thin boundary; the boundary can be composed of straight lines, curves,
or both. Paint is a color, texture, or image that is applied to the drawing surface;
the paint appears on the drawing surface within the boundary of the stencil.

Note that the stenciVpaint model differs from the pixel-based imaging model
used by most window systems. The pixel-based model requires that rectangular
source and destination areas of pixels be combined using logical operations such
as AND, OR, NOT, and XOR. The stenciVpaint model allows images of any
shape or size, rectangular or non-rectangular, to be specified; it thus provides a
more natural and comprehensible way of specifying images.

A NeWS event is an object that represents a message between NeWS processes. An
event is implemented as a NeWS type extension that can be accessed as a diction­
ary. Events can transmit any kind of information and thus serve as a general
interprocess communication mechanism. Some events report user manipulation
of input devices and are therefore known as input events.

An event can be generated by the server or by any NeWS process. The server
automatically generates input events when the user manipulates the keyboard or
mouse. The server also generates events to report when a canvas is damaged,
when an object becomes obsolete (see Memory Management, below), when a
process dies while it is still referenced, and when the mouse pointer leaves one
canvas and enters another.

The NeWS language provides operators that allow any NeWS process to create an
event and send it into the server's event distribution mechanism. System­
generated events are automatically sent into the distribution mechanism as soon
as they are generated. After an event enters the distribution mechanism, the
server gives a copy of the event to NeWS processes that are interested in the event.
The NeWS language provides an operator that allows processes to describe the
types of events that interest them; each such description of events that interest a
process is known as an interest.

A full account of events is provided in Chapter 3, Events. The event dictionary
keys are described in Chapter 8, NeWS Type Extensions.

+~t!! Revision A, of 25 August 1989

Memory Management

Color Support

Font Support

Chapter 1 - Introduction 7

The Xll/NeWS server provides an automatic garbage collection facility that
removes objects from virtual memory when the objects are no longer needed.
Objects survive as long as they are referenced. If an object's last reference goes
away, the server destroys it to reclaim the memory that it occupied.

The NeWS language provides the notion of soft references for programs that want
to track objects without affecting the lifespan of the objects. A window manager
is an example of this type of program. A window manager has references to the
canvases that it tracks, but the window manager does not want its references to
prevent canvases from being garbage collected. In this type of situation, client
programs should use soft references.

If all the references to an object are soft, the object is considered to be obsolete.
When an object becomes obsolete, the server sends notice, in the fonn of an
event, to all processes that have expressed interest in obsolescence events for that
object. The processes should then remove their references to the object so that
the server can destroy it.

Note that the server does not count references for all objects. Simple objects
such as booleans, numbers, and names are not shared and therefore never have
more than one reference. The server only counts references to objects that
represent shared resources, such as arrays, dictionaries, canvases, and events.

The NeWS language provides operators that aid in memory management. A full
account of the memory management facilities is provided in Chapter 7, Memory
Management.

The NeWS language includes types and operators that provide color support for
appropriate displays. A NeWS color object consists of either red/green/blue or
hue/saturation/brightness components. The NeWS language also provides color­
map objects, which function as color lookup tables, and colormapsegment
objects, which are groups of entries within a colonnap. Facilities are provided
for using bitmasks and planemasks, which pennit colors to be detennined accord­
ing to arithmetic operations.

Full infonnation on all color-related types is provided in Chapter 8, NeWS Type
Extensions.

The server allows bitmap fonts to be defined and placed in the NeWS font library.
Cursor fonts and icon fonts can be created, and existing text fonts can be con­
verted into NeWS fonnat. The server provides the commands convertfont,
bldfamily, and makeiconfont, which are used in font definition. See the
manual pages in the XllINeWS Server Guide for further information.

NeWS font dictionaries are identical to standard POSTSCRIPT language font dic­
tionaries except for one additional key. For a description of the NeWS font dic­
tionary, see Chapter 8, NeWS Type Extensions.

Revision A, of 25 August 1989

8 NeWS Programmer's Guide

1.2. POSTSCRIPT Language
Files Used with the
Server

The Window Manager

Classes

Debugging

In addition to the operator and type extensions that are part of the server itself,
the server also provides various POSTSCRIPT language files that support the NeWS
programming environment; most of these POSTSCRIPT language files are loaded
automatically when the server is initialized. The user can examine the supplied
files and modify the procedures that they contain.

This section describes some of the more important POSTSCRIPT language files.
Full information on these files is provided in Chapter 10, Extensibility through
POSTSCRIPT Language Files.

The POSTSCRIPT language files loaded by the server provide a default window
manager that allows the user to control the appearance of windows on the screen.
The window manager allows the user to move, resize, open, and close windows.
Note, however, that the window manager does not actually create the windows;
this task is the responsibility of the client application. The default window
manager can be replaced if desired. See the XIl1NfM'S Server Guide for more
information on the window manager.

The POSTSCRIPT language files loaded by the server provide support for object­
oriented programming; client applications can create objects known as classes
and instances. A class is a template for a set of similar instance objects. A class
is essentially a blueprint from which any number of instances can be created.

, Each instance inherits the characteristics of its class but can override some of
these characteristics. Qasses and instances are represented as POSTSCRIPT
language dictionaries that contain variables and procedures.

NeWS classes belong to a class hierarchy. The root of the hierarchy is class
Object; class Object is implemented by the server, and the other classes in the
hierarchy are provided by the client or by a toolkit.

Any class in this system can have subclasses, each of which inherits the charac­
teristics of its superclass. A subclass can add new characteristics and can over­
ride its inherited characteristics. A subclass can also inherit characteristics from
more than one branch of the class tree, a feature known as mUltiple inheritance.

The class system is especially useful for defining user interfaces. For example,
class Canvas might be a subclass of class Object, and class Canvas might have
subclasses such as Menu, Scrollbar, Frame, and Window.

Information on the class system is provided in Chapter 4, Classes.

The server provides a debugging facility that allows the user to set breakpoints
and print to debugging output windows. The POSTSCRIPT language file contain­
ing the debugger code is not loaded when the server is initialized; a command
must be given to load this file.

Full information on using the debugger is provided in Chapter 6, Debugging.

Revision A, of 25 August 1989

2
Canvases

Canvases .. 11

The canvastype Extension ... 12

Canvas Operators .. 12

2.1. Coordinate System Overview ... 13

2.2. Creating and Displaying Canvases .. 13

Creating Canvases .. 13

Shaping Canvases ... 14

Setting tl1e Current Canvas .. 15

Mapping Canvases to the Screen ... 15

2.3. Manipulating Canvases .. 16

Moving Canvases .. 16

Transparent and Opaque Canvases ... 17

Retained and Non-Retained Canvases .. 19

Furtl1er Infonnation on Damage ... 21

The SaveBehind Key .. 21

2.4. Parent, Child, and Sibling Canvases ... 22

The Sibling List 22

Establishing a New Parent ... 24

2.5. Overlay Canvases .. 25

Drawing on Overlays .. 25

2.6. Canvas Dipping Operators .. 26

2.7. Cursors 26

2.8. Canvases, Files, and Imaging Procedures ... 27

Writing Canvases to Files .. 27

Reading Canvases from Files .. 27

Other File-Related Operators ... 28

Imaging ... 28

2.9. Other Dictionary Keys .. 29

Events .. 29

Color ... 29

X -Specific Features .. 29

Grab State .. . 29

File Sharing .. 30

2
Canvases

A NeWS canvas is a region of the screen in which the client application can
display information to the user. Canvases provide the basic drawing surfaces in
NeWS and are thus the raw material from which windows and menus are created;
each window and menu is usually composed of more than one canvas. Canvases
need not be rectangular since their boundaries are defined by PoSTSCRIPT

language paths. When visible on the screen, canvases can overlap. When this
occurs, the hidden portion of a canvas can be stored off screen and redisplayed
when the canvas is re-exposed.

A canvas is implemented as a NeWS type extension that can be accessed as a dic­
tionary. Many canvas characteristics can be set by changing the values of the
keys in the canvas dictionary. For example, a canvas can be opaque or tran­
sparent, mapped or unmapped. An opaque canvas visually hides all canvases
underneath it; a transparent canvas does not When drawing operations are per­
formed on a mapped canvas, the image is visible on the screen (unless it is over­
lapped by another canvas); drawing operations can be performed on an
unmapped canvas, but the image is not visible on the screen.

Canvases exist in a hierarchy. The background of the screen is the root of the
hierarchy and is thus known as the root canvas. A canvas can have any number
of children; the display of each child canvas is clipped to the edges of its parent.
Canvases overlap according to their positions in the hierarchy. When visible on
the screen, opaque children obscure their parent. A canvas' children exist in an
ordered list that determines their overlapping relationships. For a canvas to be
visible on the screen, the canvas and all its ancestors must be mapped.

A canvas can be repositioned in the hierarchy, causing adjustments to the disp:',
of any overlapping canvases on the screen. A canvas can also be moved on the
screen, and it can be reshaped and resized.

Each NeWS process can have a current canvas, which is the canvas that is mani­
pulated by the drawing operations performed by that process.

This chapter describes canvases and shows how they can be used.

11 Revision A, of 25 August 1989

12 NeWS Programmer's Guide

The canvastype Extension

Canvas Operators

Each canvas is an object of type canvastype, which is a NeWS extension to the
POSTSCRIPT language. Each canvastype object can be accessed as a
POSTSCRIPT language dictionary. The values of the dictionary keys detennine
the properties of the canvas. A canvas dictionary includes keys for specifying the
following:

o Ancestor and sibling relationships between canvases (TopCanvas, Bottom-
Canvas, CanvasAbove, CanvasBelow, TopChild, Parent)

o The appearance of canvases on the screen (Transparent, Mapped)

o The handling of canvas storage (Retained, SaveBehind)

o The event management properties of the canvas (EventsConsumed,
Interests)

o The color properties of the canvas (Color, Colormap, Visual, VisualList)

o The cursor associated with the canvas (Cursor)

o Properties for keeping a canvas in shared memory (SharedFile, RowBytes)

o XII-related properties (OverrideRedirect, BorderWidth, UserProps,
XID)

o The grabbed state of a canvas (Grabbed, GrabToken)

The keys are discussed in detail throughout this chapter; a full syntactic descrip­
tion of each key is also provided in Chapter 8, Nt!NS Type Extensions.

NeWS includes a variety of operator extensions to be used on canvases. The
operators provide the following functionality:

o Creating canvas objects and overlays (buildimage, createdevice, createo­
verlay, newcanvas)

o Changing ancestor and sibling relationships between canvases (canvasto­
bottom, canvastotop, insertcanvasabove, insertcanvasbelow)

o Defining canvas shapes and paths (clipcanvas, clipcanvaspath, eoclipcan­
vas,eoreshapecanvas,reshapecanvas)

o Reading and writing canvases to files (eowritecanvas, eowritescreen,
imagecanvas, imagemaskcanvas, readcanvas, writecanvas, writescreen)

o Detennining and specifying canvas locations (getcanvaslocation, movecan-
vas)

o Specifying the current canvas (setcanvas)

The operators are described throughout this chapter, a list of the operators is pro­
vided for quick reference in Appendix A, NeNS Operators. A syntactic analysis
and description of all NeWS operators is provided in Chapter 9, NeNS Operator
Extensions.

Revision A, of 25 August 1989

2.1. Coordinate System
Overview

2.2. Creating and
Displaying Canvases

Creating Canvases

Chapter 2 - Canvases 13

In the standard use of the POSTSCRIPT language, a user coordinate system is
associated with the page and a device coordinate system is associated with the
printer. A current transformation matrix, or CfM, contains the current transfor­
mation from user coordinates to device coordinates. The CfM can be changed at
any time with operators such as scale, rotate, or translate.

In NeWS, each canvas represents a separate "user space" with its own coordinate
system, and the device space corresponds to the screen rather than to a printer. A
current transformation matrix is still used to store the current transformation
between the user and device coordinate systems, but in NeWS, each process has its
own CfM as a part of its graphics state. A process' current coordinate system is
specified by its CfM. When a new process is created, it inherits its CfM (along
with the rest of its graphics state) from its parent.

Each NeWS canvas has a default coordinate system determined by its default
transformation matrix. A canvas' default transformation matrix specifies the ini­
tial transformation from the canvas' coordinate system to the screen's coordinate
system. After a new, empty canvas is created with newcanvas, the canvas' shape
and default coordinate system should be set with reshapecanvas. The
reshapecanvas operator sets the canvas' shape to be the same as the current path
and sets the canvas' default coordinate system to be the same as the CfM.

When a canvas is made the current canvas with the setcanvas operator, the CfM
is set to that canvas' default transformation matrix. The CfM can then be
changed with standard PoSTSCRIPT language operators. To change an existing
canvas' default transformation matrix and shape, simply set the CfM and current
path to the desired values and execute reshapecanvas.

These coordinate system definitions are illustrated in this chapter's examples.

This section discusses how canvases can be created, shaped, and mapped to the
display. It also provides an introduction to using the canvastype type extension.

NeWS canvases exist in a hierarchy; thus, each canvas has a parent and can have
one or more children.

When NeWS is initialized, the create device operator is called to create the back­
ground of the screen (note that the createdevice operator should not normally be
used by the programmer). This background is known as the root canvas or
framebuffer; it can be accessed by means of a global variable named frame­
butTer. Any canvas that you wish to create immediately on top of this back-
ground must have framebutTer specified as its parent.

NeWS provides the following operator for creating a canvas with a specified
parent:

Revision ~ of25 August 1989

14 NeWS Programmer's Guide

Shaping Canvases

pcanvas newcanvas ncanvas
This operator creates a new canvas whose parent is pcanvas.

If framebutTer is used as the pcanvas argument, the new canvas is opaque by
default If the parent is specified as some other canvas, the new canvas is tran­
sparent. Detailed information on canvas transparency and other factors affecting
canvas appearance is provided later in this chapter.

The following example uses newcanvas to create a new canvas that has the
framebuffer specified as its parent

IFirstCanvas framebuffer newcanvas def

FirstCanvas is opaque by default, since the framebuffer is its parent.

All coordinates in NeWS are measured with reference to the origin of a specified
canvas, which is often the lower-left comer of the canvas. Methods exist both for
specifying the origin of a canvas and for specifying the canvas from whose origin
coordinates are measured; these are discussed throughout this chapter.

NeWS allows you to shape canvases according to the current path. The following
operator reshapes a canvas.

canvas reshapecanvas-
This operator sets the shape of canvas to be the same as the current path. It also
sets the canvas' default transformation matrix to be the same as the current coor­
dinate system. If the canvas that is being reshaped is the current canvas, this
operator sets the current clipping path (in the graphics state) to be the same as the
canvas' new shape.

The following example uses reshapecanvas to establish a shape and default
coordinate system for the canvas defined in the previous example:

newpath
00 moveto
0250 lineto
250 250 lineto
2500 lineto
closepath

FirstCanvas reshapecanvas

% Define a path to which the
% new canvas can be shaped.

% Reshape the canvas to the
% current path.

NOTE NdVS also provides an operator named eoreshapecanvas. This operator is ident­
ical to reshapecanvas except that it uses the even-odd winding rule, rather than
the non-zero winding rule, to interpret the specified path. For information on
winding rules, see the POSTSCRIPT Language Reference Manual. For an analysis
of eoreshapecanvas, see Chapter 9, NeWS Operator Extensions.

Revision A, of 25 August 1989

Setting the Current Canvas

Mapping Canvases to the
Screen

Chapter 2 - Canvases 15

NeWS SUpports the concept of a current canvas. Each NeWS process can have a
current canvas as part of its graphics state. Many NeWS canvas operations do not
take a canvas argument, but simply use the current canvas. To set the current
canvas, use the following operator:

canvas setcanvas-
The operator sets canvas to be the current canvas. It also sets the current coordi­
nate system to be the same as the canvas' default coordinate system. The current
coordinate system can then be changed by calls to scale, rotate, and translate.
The setcanvas operator sets the current clipping path to be the same as the can­
vas'shape.

The following example demonstrates how to set the current canvas:

(FirstCanvas setcanvas

NeWS does not provide an operator for mapping canvases; instead, it allows you
to map canvases by setting the Mapped key of the canvastype dictionary to
true. This causes the canvas to be visible on the screen within the borders of its
parent, provided that the following conditions are fulfilled:

o All of the canvas' ancestors are also mapped.

o The canvas is not clipped away by its parent or any overlapping canvases.

Even when the canvas is mapped, it might not be noticed on the screen if no
drawing operations have been performed on it.

J

To fill a canvas with a color, use the fillcanvas operator; this operator is included
in the POSTSCRIPT language extensibility files that NeWS provides. The operator
takes a single argument, which can be an integer or a color; see Chapter 10,
Extensibility through POSTSCRIPT Language Files for a syntactic analysis.

To retrieve and establish values for any read-write NeWS dictionary key, use the
POSTSCRIPT language operators get and put respectively. This is demonstrated
by the following example:

When FirstCanvas has been mapped to the screen, it appears in this example at
the bottom-left comer of the framebuffer. This is illustrated in the following
figure:

Revision A. of 25 August 1989

16 NeWS Programmer's Guide

2.3. Manipulating
Canvases

Moving Canvases

Figure 2-1

NOTE

Canvas Mapped at 0,0

Nt!NS does not provide an operator for destroying a canvas,' even when
unmapped, a canvas continues to exist. A canvas is destroyed only when the last
reference to the canvas is removed (see Chapter 7, Memory Management).

This section discusses how canvases can be manipulated on the screen. It
describes how to move canvases and discusses the concepts of transparency,
retaining, and damage.

The display of a canvas is clipped to its parent's boundaries; thus, if a canvas is
moved or reshaped so that parts of the canvas fall outside of its parent's boun­
daries, those parts of the canvas do not appear on the screen when the canvas is
mapped.

NeWS provides the following operator for moving canvases:

x y movecanvas -
x y canvas movecanvas
If no canvas argument is specified, this operator moves the current canvas so that
the origin of its default coordinate system is at the coordinates x and y, where (x,
y) is a vector from the origin of the parent canvas' default coordinate system to
the origin of the repositioned current canvas' coordinate system, measured in
units of the current coordinate system.

If the canvas argument is specified, the operator moves that canvas so that the
origin of its default coordinate system is at the coordinates x and y in the current
coordinate system.

NOTE If a canvas obscures an unretained canvas and is then moved, damage occurs on
the unretained canvas. Detailed information on damage and retained canvases
is provided in the following section.

The following operator returns the coordinates of a canvas:

canvas getcanvaslocatlon x y
The operator returns two integers, which specify the x and y location of the origin
of canvas' default coordinate system. This location is specified relative to the
origin of the current coordinate system (rather than of the parent canvas); thus,
the coordinates may be returned as either negative or positive integers.

Revision A, of 25 August 1989

Figure 2-2

Transparent and Opaque
Canvases

Chapter 2 - Canvases 17

In the following example, a canvas is moved and its coordinates are returned:

The appearance of FirstCanvas is now as follows:

Canvas Mapped at 25,25

An opaque canvas visually hides all canvases underneath it; a transparent canvas
does not. When you create a canvas whose parent is any canvas other than the
framebuffer, the new canvas is transparent by default. If drawing operations are
performed on a transparent canvas, the drawn images appear on the canvas(es)
beneath the transparent canvas (its parent or any siblings that are beneath it);
thus, if the transparent canvas is unmapped, the drawn images remain. A tran­
sparent canvas may define screen areas that are sensitive to input.

To create an opaque canvas whose parent is not the framebuffer, you must set the
new canvas' Transparent key to false. The following psh example creates a
canvas whose parent is the canvas FirstCanvas , which was created in the previ­
ous example.

Note that this example uses the rectpath utility, which is provided by the
POSTSCRIPT language extensibility files. The rectpath utility takes four numbers
as arguments: the x and y location of the rectangle origin, the width of the rectan­
gle, and the height of the rectangle. The rectpath utility adds the rectangle to the
current path. For a complete definition ofrectpath, see Chapter 10, Extensibility
through POSTSCRIPT Language Files.

Revision A, of 25 August 1989

18 NeWS Programmer's Guide

The appearance of SecondCanvas is as follows:

Figure 2-3 A Mapped Child Canvas

When a parent canvas is made transparent, its opaque children are not affected
and remain opaque. This is demonstrated by the following example:

FirstCanvas !Transparent true put % Make the parent transparent; the
% opaque child remains opaque.

This example is illustrated in the following figure:

Revision A, of 25 August 1989

Chapter 2 - Canvases 19

Figure 2-4 Parent Canvas Made Transparent

Figure 2-5

Retained and Non-Retained
Canvases

The following code makes the parent opaque again and paints it, thus restoring
FirstCanvas and SecondCanvas to their previous appearance:

FirstCanvas /Transparent false put
FirstCanvas setcanvas .9 fillcanvas

Parent Canvas Made Opaque and Repainted

The canvastype dictionary has a key named Retained that can be set to true or
false and specifies whether or not a canvas is retained. If a canvas is retained,
any portion of its visible surface that becomes obscured by another canvas is
automatically saved offscreen. The saved portion is restored to the screen
automatically when no longer obscured; thus, the canvas does not receive dam­
age and does not need to be redrawn.

A transparent canvas does not have its own retained image; instead, it shares the
retained image of its parent.

If a canvas is unretained, damage occurs when another canvas, by which it was
previously obscured, is moved or unmapped; the damage takes the form of an
after-image of the moved canvas. Damage can also occur in other situations,
such when an unretained canvas is mapped to the screen. Note that a transparent
canvas never receives damage; instead, damage may be received by the canvas
beneath the transparent canvas.

Revision A, of 25 August 1989

20 NeWS Programmer's Guide

A client must be prepared for damage even on a retained canvas: a retained can­
vas can and will receive damage, although less frequently than will an unretained
canvas. For example, a retained canvas may receive damage when it is reshaped.

NOTE Each system has a retain threshold that specifies the number of bits per pixel
below which a canvas has its Retained key automatically set to true. However,
if your application desires that a canvas be retained, you should always set the
Retained key explicitly.

The following example demonstrates the effects of setting the Retained key:

FirstCanvas IRetained false put
SecondCanvas setcanvas
15 15 movecanvas

% Make a parent canvas unretained.

% Move the child canvas over the
% parent; damage occurs to the
% parent.

The damage caused by moving SecondCanvas is illustrated as follows:

Figure 2-6 Damage on U nretained Canvas

If the damaged parent canvas is repainted and then retained, the child canvas can
be moved over its surface without damage occurring:

FirstCanvas setcanvas
.9 fillcanvas

FirstCanvas IRetained true put
. 9 fillcanvas

SecondCanvas setcanvas
25 25 movecanvas

% Paint the parent, the appearance
% of the child is not affected.

% Retain and paint the parent .

% Move the child over the retained
% parent; no damage occurs.

NOTE Retaining canvases can be extremely costly in terms of memory, particularly on
color displays.

Revision A, of 25 August 1989

Further Infonnation on Damage

The SaveBehind Key

Chapter 2 - Canvases 21

The NeWS server considers a canvas to be damaged if all or part of its image is
incorrect and needs to be redrawn. Damage can occur in the following ways:

o An unretained canvas is damaged when a canvas by which it was previously
obscured is moved away.

o An unretained canvas is damaged when first mapped to the screen.

o An unretained canvas is damaged when its Retained key is set to true (thus
changing it to retained) while part of the canvas is not visible.

o A retained or unretained canvas is damaged when is it reshaped.

When a canvas is initially damaged, the NeWS server automatically sends a dam­
age event to processes interested in damage on that canvas; a damage event has
IDamaged in its Name field and a copy of the affected canvas in its Canvas
field. After receiving a damage event, the client program should repair the dam­
age by redrawing the damaged parts of the canvas. If the client does not immedi­
ately repair the canvas and damage continues to occur, the NeWS server sends no
additional damage events to the client. Instead, the server maintains and updates
a record of all the damage that has occurred to the client. Eventually, the client
should request a copy of this record and repair all damage (for infonnation on
doing this, see the description of the damagepath operator in Chapter 9, NtM'S

Operator Extensions).

The SaveBehind key of the canvastype dictionary can be used to prevent dam­
age from occurring to other canvases. When the key is set to true, NeWS saves
the values of the pixels that the canvas obscures when it is mapped. Even if the
pixels belong to unretained canvases, they can be restored directly to the screen
when the canvas that obscures them is removed.

The SaveBehind key is useful for pop-up menus and other canvases that are
small and are not required to be visible for long; when used with such canvases,
the key can greatly enhance server perfonnance.

The SaveBehind key is demonstrated by the following example:

SecondCanvas IMapped false put

FirstCanvas IRetained false put

SecondCanvas ISaveBehind true put

SecondCanvas IMapped true put

SecondCanvas setcanvas
Ofillcanvas
SecondCanvas IMapped false put

% Unmap the child.

% Make the parent unretained.

% Specify use of SaveBehind.

% Remap the child.

% Make the child current, paint
% it. and unmap it; no damage
% occurs to the parent.

Revision A, of 25 August 1989

22 NeWS Programmer's Guide

2.4. Parent, Child, and
Sibling Canvases

The Sibling List

This section discusses the parent/child and sibling relationships that exist
between canvases.

When a parent canvas has multiple children, the children are automatically
arranged in a sibling list. The list controls the appearance of the siblings when
they are visible on the screen and are made to overlap. By default, the most
recently created child becomes the top sibling in the list; thus, if all siblings are
visible on the screen and overlap, the top sibling covers all others; the bottom
sibling is covered by all others. When the newcanvas operator is called, the
created canvas becomes the top child of its parent

You can change the list-position of a sibling by specifying values for the follow­
ing keys of the canvastype dictionary:

[J CanvasAbove

This key specifies the canvas that is immediately above this canvas in the
sibling list; if no such canvas exists, the value of the key is null. The value
of this key can be set to any sibling; thus, this canvas is inserted in the list at
a position directly below the specified sibling.

[J CanvasBelow

This key specifies the canvas that is immediately below this canvas in the
sibling list; if no such canvas exists, the value of the key is null. The value
of this key can be set to any sibling; thus, this canvas is inserted in the list at
a position directly above the specified sibling.

NeWS also provides the following operators, which allow you to manipulate the
sibling list:

canvas canvastobottom -
Moves the canvas to the bottom of its list of siblings.

canvas canvastotop -
Moves the canvas to the top of its list of siblings.

canvas x y Insertcanvasabove -
Inserts the current canvas into the list at the position immediately above canvas.

canvas x y Insertcanvasbelow -
Inserts the current canvas into the list at the position immediately below canvas.

For the operators insertcanvasabove and insertcanvasbelow, the coordinates x
and yare computed with reference to the origin of the default coordinate system
of the parent of the current canvas (as described for the fonn of the movecanvas
operator that takes no canvas argument). The current canvas must be a sibling of
canvas.

The following example creates ThirdCanvas , which is a sibling to the canvas
SecondCanvas (defined in a previous example); by default, the new canvas is
placed at the top of the sibling list and thus obscures its sibling. The insertcan­
vasabove operator is then used to reverse the position of the canvases in the list;
thus, SecondCanvas obscures the new canvas.

Revision A, of 25 August 1989

Figure 2-7

FirstCanvas IRetained true put
SecondCanvas IMapped true put
Ofillcanvas
SecondCanvas IRetained true put
FirstCanvas setcanvas

Chapter 2 - Canvases 23

rrhirdCanvas FirstCanvas newcanvas def % Define and display a sibling
% of SecondCanvas.

newpath 0 0 75 75 rectpath
ThirdCanvas reshapecanvas
ThirdCanvas rrransparent false put
ThirdCanvas IRetained true put
ThirdCanvas setcanvas
.4 fillcanvas
50 50 movecanvas
ThirdCanvas IMapped true put % ThirdCanvas obscures

% SecondCanvas.

The appearance of ThirdCanvas is illustrated as follows:

Younger Sibling Obscuring Elder

The following code inserts SecondCanvas above ThirdCanvas :

SecondCanvas setcanvas
ThirdCanvas 25 25 insertcanvasabove

% Insert SecondCanvas above
% ThirdCanvas.

The appearance of the canvases is now as follows:

Revision A. of 25 August 1989

24 NeWS Programmer's Guide

Figure 2-8 Elder Sibling Made to Obscure Younger

Establishing a New Parent

The insertcanvasbelow operator can similarly be used to change sibling posi­
tions in the list:

SecondCanvas setcanvas
Thi rdCanvas' 25 25 insertcanvasbelow

% Insert SecondCanvas below
% ThirdCanvas.

NeWS allows you to specify a new parent for a canvas by setting the value of the
Parent key in the canvastype dictionary.

This is shown by the following example:

SecondCanvas IParent ThirdCanvas put % Make ThirdCanvas the parent of
20 20 movecanvas % SecondCanvas

The canvases now appear as follows (note that SecondCanvas is now clipped
where it exceeds the boundaries of ThirdCanvas):

Figure 2-9 Modified Parenthood Between Canvases

Revision A, of 25 August 1989

2.5. Overlay Canvases

Drawing on Overlays

Chapter 2 - Canvases 25

NeWS allows you to create overlay canvases. An overlay canvas, which can only
be created over an existing non-overlay canvas, is always transparent. However,
when graphic objects are drawn on an overlay, they appear on the overlay itself,
rather than on the canvas below.

Overlays are intended for use in transient or animated drawing procedures, such
as the creation of "rubber-band" boxes, which expand or contract according to
mouse movement when a user is resizing a window.

The following operator is provided for creating overlays:

canvas createoverlay canvas
The canvas argument must be an existing canvas; the canvas object returned is
the created overlay. Note that the overlay is not a child of the specified canvas; it
is considered a part of that canvas.

Other features of overlays are as follows:

o Each non-overlay canvas (whether transparent or opaque) can possess one
overlay canvas only.

o An overlay canvas cannot receive any events. If you express interest on an
overlay, the interest is placed on the prechild interest list of the canvas over
which the overlay was created.

o An overlay never receives damage; therefore, it never requires repainting.

o An overlay cannot have a parent, nor can it have children.

o If an overlay's corresponding non-overlay canvas has children, these may
have their own overlays. A canvas' overlay appears above the overlays of
the canvas' children.

o If a canvas possesses an overlay, any subsequent attempt to create an overlay
of the canvas returns the existing overlay.

o An overlay cannot be reshaped; attempting to reshape an overlay produces
no result. An overlay always has the shape of its associated non-overlay
canvas.

o An overlay cannot be possessed by more than one non-overlay, nor can it
change owners.

o An overlay should not be specified as mapped or unmapped; it should appear
in accordance with the state of its associated non-overlay. Programmers
should not attempt to change the keys in the overlay's dictionary.

Due to the way in which overlays are implemented on some machines, perfor­
mance problems may occur if too many objects are drawn on an overlay.

The current color is usually ignored when drawing operations are perfonned on
overlays; this is a deliberate feature to allow the implementation of overlays
using various procedures on different kinds of hardware.

Revision A, of 25 August 1989

26 NeWS Programmer's Guide

2.6. Canvas Clipping
Operators

NeWS provides operators that perform clipping operations on canvases. These
operators are similar to the clipping operators described in the POSTSCRIPT
Language Reference Manual, except that they specify paths that NeWS considers
only in relation to the current canvas. These operators, clipcanvas, clipcan­
vaspath, and eoclipcanvas, are described in Chapter 9, NtM'S Operator Exten­
sions. The clipping operators are typically used to limit the portion of the canvas
painted during damage repair.

The following example demonstrates the clipcanvas operator:

SecondCanvas IMapped false put
Thi rdCanvas IMapped false put

FirstCanvas setcanvas

newpath
2020 moveto
220 70 lineto
80200 lineto

closepath

clipcanvas
Ofillcanvas

% Define a path.

% The fillcanvas operation is performed -
% not on the entire canvas, which is the
% default. but on the area within the
% specified path.

The appearance of FirstCanvas is now as follows:

Figure 2-10 Results of Canvas Clipping Operation

2.7. Cursors The canvastype dictionary contains a Cursor key, which specifies the cursor
object that is used whenever the mouse is positioned over the canvas. When a
canvas is created with newcanvas, it inherits the Cursor value of its parent.

A cursor is composed of a cursor image and a mask image; the complete cursor is
produced by superimposing these two images. The mask and cursor images each
have three attributes: a font, a character in the font, and a color. The default
color for the cursor image is black, while the default color for the mask image is

Revision A, of 25 August 1989

2.S. Canvases, Files, and
Imaging Procedures

Writing Canvases to Files

Reading Canvases from Files

Chapter 2 - Canvases 27

white. The two images are superimposed by aligning the origins associated with
their characters.

Each cursor has a hot spot, which is the pixel coordinate to which the mouse
points. The hot spot resides at the superimposed origin of the mask and cursor
images.

See Chapter 8, Nt!NS Type Extensions for further infonnation on cursors and the
values to which the Cursor key can be set.

NeWS provides operators that allow you to save canvases in files and read them
back into NeWS; it also provides operators that image canvas objects to the
display. This section describes these operators and how they can be used.

NeWS provides the following operator, which allows you to write a canvas to a
file:

file or string wrltecanvas -
This operator writes the current canvas either to a file object (specified by file) or
to a file in the server's file name space (specified by string). The operator creates
a rasterfile that contains an image of the region outlined by the current path in the
current canvas. If the current path is empty, the whole canvas is written.

The writecanvas operator uses the non-zero winding rule; see the POSTSCRIPT

Language Reference Manual for infonnation. To write a canvas to a file using
the even-odd winding rule, use eowritecanvas.

The writecanvas operator is demonstrated by the following example:

FirstCanvas setcanvas
(canvasfile) writecanvas % Write the canvas to aftle.

The following operator reads a canvas from a file:

string or file readcanvas canvas
The operator reads a raster file into a newly created canvas. The raster file can be
specified either as a file or as a string that is the name of a file in the server's file
name space. The created canvas is retained and opaque; it has the depth specified
in the raster file, has no parent, and is not mapped. readcanvas sets the default
coordinate system of the canvas so that the canvas' four comers correspond to
the unit square.

If the filename specified by the string cannot be found, an undefined­
filename error is generated. If the file cannot be intetpreted as a raster file, an
invalidacces s error is generated.

Note that a canvas read into NeWS with this operator cannot be mapped to the
display; any attempt to do this results in an invalidaccess error. The canvas must
be used as source for the imagecanvas operator, which is described as follows:

Revision A, of 25 August 1989

28 NeWS Programmer's Guide

canvas Imagecanvas -
The operator paints the canvas argument onto the current canvas. When canvas
is rendered, the unit square is transfonned to the same orientation and scale as the
unit square in the current transfonnation matrix. (Note that this operator is simi­
lar to the image operator provided by the POSTSCRIPI' language.)

The readcanvas and imagecanvas operators are demonstrated by the following
example, in which the canvas saved in the previous example is imaged to the
screen:

30 30 translate
100 100 scale
IFileCanvas (canvasfile) readcanvas def
FileCanvas imagecanvas

The appearance of FirstCanvas is now as follows:

Figure 2-11 Imaged Canvas

Other File-Related Operators NeWS also provides the operators writescreen and eowritescreen, each of which
creates a raster file that contains a snapshot of the screen, clipped to the current
path in the current canvas. The operators writecanvas and eowritecanvas each
create a raster file that contains an image of the region outlined by the current
path in the current canvas.

Imaging

See Chapter 9, NclVS Operator Extensions for a complete analysis of these opera­
tors.

The NeWS operator buildimage provides functionality similar to that of the
image operator provided by the POSTSCRIPI' language, using the binary represen­
tation of a specified string to create a sampled image as a canvas object. The
canvas object can then be imaged to the screen with the imagecanvas operator.

The buildimage operator is described fully in Chapter 9, NclVS Operator Exten­
sions. The following example demonstrates how it can be used:

Revision A, of 25 August 1989

FirstCanvas setcanvas
Ofillcanvas
IDesign 8 8 1 [8 0 0 8 0 0] (A B) buildimage def

Chapter 2 - Canvases 29

2525 translate % Specify appropriate
100 100 scale % coordinates and scale.

Design i magecanvas % The image appears within
% the clipping area of FirstCanvas.

The appearance of FirstCanvas is now as follows:

Figure 2-12 Canvas Imaged with buildimage Operator

2.9. Other Dictionary Keys Some of the canvastype dictionary keys pertain to NeWS features that are
described fully elsewhere in this guide. This section summarizes these keys and
their functionality.

Events The keys EventsConsumed and Interests control the behavior of the canvas
with reference to events. These keys are described in Chapter 3, Events and
Chapter 8, NtM'S Type Extensions.

Color The keys Color, Colormap, Visual, and VisualList manage the color require­
ments of canvases that are displayed on the appropriate hardware. These keys
are described in Chapter 8, NclVS Type Extensions.

X-Specific Features The keys OverrideRedirect, BorderWidth, UserProps, and XID are used only
for canvases created by XII. These keys are described in Chapter 8, NtM'S Type
Extensions.

Grab State The keys Grabbed and GrabToken are used to set and inspect the grabbed state
of a canvas. These keys are described in Chapter 8, NclVS Type Extensions.

Revision A, of 25 August 1989

30 NeWS Programmer's Guide

File Sharing The keys SharedFile and RowBytes are used to map canvases to files; the keys
are described in Chapter 8, NeNS Type Extensions. Note that the ability to map a
canvas to a file is operating system dependent and may not be present in the
server.

Revision A, of 25 August 1989

3
Events

Events .. 33

The eventtype extension ... 33

Event Operators ... 34

3.1. Overview of Event Distribution .. 34

3.2. Creating an Event .. 35

3.3. Expressing Interests ... 36

Copying an Event Before Expressing Interest ... 36

Changing and Reusing Interests ... 36

3.4. Rules for Matching Events to Interests ... 37

Rules for Name And Action Key Matching ... 37

Rules for Process Key Matching ... 37

Rules for Serial Key Matching ... 37

3.5. Sending an Event into Distribution ... 38

3.6. Awaiting Events ... 38

3.7. Specifying the Name, Action, and Canvas Keys as
Dictionaries ... 39

Non-Executable Dictionary Values .. 39

Executable Dictionary Values ... 41

3.8. Using the Canvas Key: Matching Multiple Interests 43

Pre-Child and Post-Child Interest Lists ... 43

Order of Interest Matching 44

Specifying a Single Canvas ... 44

Specifying an Array or Dictionary 44

Specifying null ... 44

U sing the canvastype EventsConsumed Key.. 45

Multiple Post-Child Interest Matching: An Example 45

Multiple Pre-Child Interest Matching: An Example 49

3.9. System-Generated Events. ... 49

Mouse Events .. 50

Enter and Exit Events ... 52

Name Key Values ... 52

Action Key V alues ... 54

Using the postcrossings Operator ... 55

Using the XLocation and YLocation Keys .. 56

U sing the Coordinates Key... 57

Focus Events .. 57

Keyboard Events ... 58

The Repeat Key Dictionary... 58

Damage Events .. 59

Obsolescence Events ... 59

ProcessDied Events ... 59

3.10. Using the ClientData Key.. 60

3.11. Using the Priority Key ... 60

3.12. Using the Exclusivity Key... 62

Using the redistributeevent Operator ... 63

3.13. Using the TimeStamp Key.. 64

U sing the recallevent Operator 65

3.14. Using the Process Key ... 66

3.15. Input Synchronization with Multiple Processes .. 67

Using bJockinputqueue .. 67

3.16. Event Logging .. 68

The eventtype extension

3
Events

An event is an object that represents a message between NeWS processes. An
event can be generated by the server or by any NeWS process, and an event can be
delivered to any NeWS process. Events that originate from the server are known
as system-generated events; events that originate from NeWS processes are known
as process-generated events. Events can transmit any kind of information and
thus serve as a general interprocess communication mechanism. Some system­
generated events report user manipulation of input devices and are therefore
known as input events. An event is implemented as a NeWS type extension that
can be accessed as a dictionary.

NeWS provides an operator, createevent, that allows a process to create an event
object. The newly created event dictionary contains keys with system-supplied
names and initial values of null or zero. The process can then give the desired
values to the keys and send the event into distribution. A process sends an event
into the server's distribution mechanism with the sendevent operator. System­
generated events are automatically sent into distribution as soon as they are gen­
erated. The server's distribution mechanism accumulates events in a global
event queue and distributes a copy of each event to NeWS processes that are
interested in receiving the event.

A process indicates its interest in receiving a certain type of event by construct­
ing that type of event and passing it as an argument to the expressinterest opera­
tor. An event object used in this way is known as an interest. A process'
interests serve as templates that tell the server what types of events the process
wants to receive.

This chapter provides a full account of events.

Each NeWS event is of type eventtype and can be accessed as a POSTSCRIPT
language dictionary. An event dictionary contains keys that describe the follow­
ing:

o The identity and matching of events (Action, Name, Serial, Process)

o The location or destination of events (Canvas, Coordinates, XLocation,
YLocation)

o The time at which an event is to be distributed (TimeStamp)

33 Revision A, of 25 August 1989

34 NeWS Programmer's Guide

Event Operators

3.1. Overview of Event
Distribution

D Whether an event is in the selVer's global event queue (lsQueued)

D The interest that matched an event (Interest)

D The characteristics of interests (Exclusivity, IsInterest, IsPreChild, Prior-
ity)

D Keyboard status with reference to events (KeyState)

D Additional miscellaneous information (ClientData)

The keys are discussed in detail throughout this chapter; a full syntactic descrip­
tion of each key is also provided in Chapter 8, NEWS Type Extensions.

NeWS includes a variety of operator extensions to be used on events. The opera­
tors provide the following functionality:

D Creating events (createevent)

D Sending events into distribution (sendevent)

o Enabling and disabling reception of events (awaitevent, expressinterest,
revokeinterest)

o Manipulating the event distribution mechanism (blockinputqueue, recal­
levent, redistributeevent, unblockinputqueue)

o Performing miscellaneous operations (countinputqueue, geteventlogger,
lasteventkeystate, lasteventtime, lasteventx, lasteventy, postcrossings,
seteven tlogger)

The distribution of an event consists of four main steps:

1. Generation of the event.

An event is created by the selVer or by any NeWS process. A process creates
an event with the createevent operator.

2. Delivery of the event to the selVer's global event queue.

A process sends an event to the global event queue with the sendevent
operator. System-generated events are automatically sent to the global event
queue after the selVer creates them.

The events in the global queue are sorted according to the value of their
TimeStamp keys. When the selVer generates an event, the current time is
stored in the event's TimeStamp key. Other events have whatever TimeS­
tamp value is specified by the process that creates them. An event is never
delivered before the time indicated in its TimeStamp key. Therefore,
processes can specify that an event be delivered at some time in the future.

3. Distribution of the event to interested processes.

Delivery of an event is initiated whenever the event at the head of the global
event queue has a TimeStamp that is less than or equal to the selVer's
current time. When this occurs, the event is removed from the queue and is
compared with the interests to locate matches. An event is not necessarily

Revision A, of 25 August 1989

3.2. Creating an Event

Chapter 3 - Events 35

compared to all the interests; the value of the event's Canvas key deter­
mines which interests are compared to the event. (The search procedure is
described in detail later in this chapter.)

When an event is compared to an interest, the server attempts to match four
of the dictionary keys in the event to the same four keys in the interest: the
Name, Action, Process, and Serial keys must match according to specific
rules before an interest is said to match an event. (The matching rules are
given later in this chapter.)

When a match is found, a copy of the event is distributed to the process that
has the matching interest; the copy is placed on the local event queue of the
process. A process' local event queue is a simple first-in, first-out queue. If
a process has more than one matching interest, it receives one copy of the
event for each matching interest.

This distribution procedure allows NeWS to broadcast the event that is at the
head of its global event queue to many processes that are interested in the
event. Each process that receives a copy of the event is given a chance to
run before the next event is taken from the global event queue.

4. Reception of the event by processes with matching interests.

To retrieve a delivered event from its local event queue, a process must exe­
cute the awaitevent operator. If an event is present on the process' local
event queue, the awaitevent operator removes the event from the local
queue and puts a copy of the event on the process' operand stack. The pro­
cess can examine the keys in the event dictionary to determine what action it
should take. If no event is waiting on the process' local event queue when
the process executes awaitevent, the process blocks until an event is
delivered.

To create an event, use the createevent operator:

- createevent event
This operator creates an object of type event and places it on the top of the stack
for the current process. Each of the object's keys has the value null (if the key is
non-numeric) or zero (if the key is numeric).

The following example creates an event and associates it with a variable named
e. The POSTSCRIPT language operators begin and end are then used to specify
values for the Name and Action fields of the created event; each of these fields
can take an arbitrary POSTSCRIPT language object as its value; the value is used
to identify the event and match it to interests. Here, each value is specified as a
string:

Ie createevent def
e begin

IName (Hello) def
I Action (There!) def

end

Revision A, of 25 August 1989

36 NeWS Programmer's Guide

3.3. Expressing Interests

Copying an Event Before
Expressing Interest

Changing and Reusing
Interests

Before a process can receive an event, it must express an interest in receiving
that type of event. To express an interest, use the expressinterest operator:

event expresslnterest -
event process expresslnterest -

, The event argument can be an event created with createevent or it can be a
system-generated event. If specified, the process argument indicates the process
for which an interest is expressed; otherwise, an interest is expressed for the
current process. An interest's type is still eventtype. Interests can be dis­
tinguished from other events by the IsInterest key; when an event is expressed
as an interest, its IsInterest key is set to true.

If event is already an active interest, the call to expressinterest is ignored.

All events that match the event argument to expressinterest may be received by
the specified process. The rules used to match events and interests are given in
the Section 3.4, Rules for Matching Events to Interests.

Although events and interests use identical structures, NeWS does not allow you
to dispatch into the event distribution mechanism an event that has already been
expressed as an interest; nor does it allow you to express interest in an event that
has been sent into the event distribution mechanism but not yet delivered.

When there is a danger of an event being used in this way, you can follow this
procedure:

1. Create the event.

2. Make a copy of the event.

3. Express interest in the copy.

4. Send the event into distribution.

To make a copy of an event, use the POSTSCRIPT language copy primitive, as fol­
lows:

/e1 e createevent copy def
e1 expressinterest

The Name and Action key values of an interest 'can be changed after an interest
has been expressed; the interest continues to be expressed and assumes the new
Name and Action values that you have specified; these values are thus used in all
future comparisons with distributed events.

Note, however,that none of the interest's other key values can be changed once
the interest has been expressed; if you attempt to do this, an invalidaccess
error is signaled and all the key values remain the same. To change any of the
other key values, you must revoke the interest (using the revokeinterest opera­
tor) and then change' and re-express the interest.

+~t!! Revision A, of 25 August 1989

3.4. Rules for Matching
Events to Interests

Rules for Name And Action
Key Matching

Rules for Process Key
Matching

Chapter 3 - Events 37

To detennine whether an event matches an interest, NeWS examines the contents
of the Name, Action, Process, and Serial dictionary keys. For each of these
keys, the distributed event's value is compared to the interest's value; values are
considered to match according to a special system of rules provided by NeWS.
When all of the values match, the event and interest themselves match. This sec­
tion summarizes the rules used to match events and interests.

The Name and Action keys can contain values of any type. For an event to
match an interest, the Name and Action keys must satisfy the following require­
ments:

D If the interesCs key value is anything other than an array, a dictionary, or
null, it must be identical to the event's key value.

D If the interest's key value is an array, at least one of its elements must be
identical to the event's key value; if the key value is a dictionary, at least one
of its keys must be identical to the event's key value.

D If the interest's key value is null, it matches anything in the key of the event.

D If the interest's key value is the name AnyValue or is an array or dictionary
that contains AnyValue, it matches anything in the key of the event. (Note
that if a dictionary contains both AnyValue and a value identical to the
event's key value, the identical value is used.)

D If the event's key value is Dull, it matches only null or AnyValue in the
corresponding key of the interest.

The Process key value of an event can be either a reference to a specific process
or null. An interest's Process key value is never null; it is always automatically
set to the process for which the interest is expressed. For an event to match an
interest, the Process keys must satisfy the following rules:

D If the event's key value is Dull, it matches anything in the Process key of the
interest.

D If the event's key value is a specific process, this value must be identical to
the value of the interest's key.

Rules for Serial Key Matching The Serial key of an event, which is read-only for both interests and events, is
automatically set to a numeric value when the event is taken off the global event
queue; the value is used to indicate the sequence in which the removal of events
occurs. If the event is then successfully matched with an interest, the interest's
Serial key is automatically set to the value that the event's key contains. NeWS

allows an event to match an interest only when the interest's serial number is less
than that of the event; this prevents an event passed to the redistributeevent
operator from repeatedly matching the same interests before redistribution takes
place.

NOTE See Section 3.12, Using the Exclusivity Key, for a description of the redistribu­
teevent operator. See Section 3.8, Using the Canvas Key: Matching Multiple
lnterests,for additional information on matching events and interests.

Revision A. of 25 August 1989

38 NeWS Programmer's Guide

3.5. Sending an Event into
Distribution

3.6. Awaiting Events

When an event has been created, it can be sent into the NeWS event distribution
mechanism. The mechanism contains a global event queue into which all sent
events are immediately arranged according to the value of their TimeStamp key,
which should be given a value by the process that creates the event (infonnation
on doing this is provided later in this chapter).

The selVer automatically removes each event from the front of the global event
queue; an event at the head of the queue is removed when its TimeStamp value
is less than or equal to the selVer's current time. When an event is removed, it is
compared with the interests to locate matches. When a match is found, a copy of
the event is distributed to the process that has the matching interest; the copy is
placed on the local event queue of the process. Event copies remain in the local
queue until the operator awaitevent is executed (see the following section for
details).

To send an event, use the sendevent operator, whose syntax is as follows:

event sendevent -

In the following example, the previously defined event is sent into the event dis­
tribution mechanism. Since the value of the event's TimeStamp is zero by
default, the event is immediately removed from the global event queue. A copy
of the event is successfully matched to the interest previously expressed by the
current process (e 1 expressinterest). Therefore, a copy of the event is placed
on the process' local event queue.

(e sendevenl

To retrieve the events that are queued on a process' local event queue, use the
operator awaitevent.

- awaltevent event
When no event is contained on the process' local event queue, this operator
causes the process to block; when an event arrives on the queue, awaitevent
removes the event and places a copy of it on top of the process' operand stack;
the process then ceases to block. If an event is waiting on the local queue when
awaitevent is called, the event is immediately placed on the process' operand
stack.

The following example executes awaitevent and then prints the values of the
event's Name and Action keys.

]

Revision A, of 25 August 1989

3.7. Specifying the Name,
Action, and Canvas
Keys as Dictionaries

Non-Executable Dictionary
Values

Chapter 3 - Events 39

NeWS allows you to specify arrays or dictionaries as values for the Name, Action,
and Canvas keys of an interest. For a process- or system-generated event to
match the interest, each event key value must match one of the array or diction­
ary elements within the interest's corresponding key value. For example, sup­
pose that the value of an interest's Name is a dictionary with three key-value
pairs; for an event to match this interest, the event's Name key value must match
one of the three keys in the interest's Name dictionary.

When an interest has a dictionary as one of its key values, the server performs
some post-match processing on any event that matches the interest; the server
handles the event differently depending on whether the interest has executable or
non-executable values in its dictionary.

If the dictionary value associated with the matching key is non-executable, the
value is automatically stored in the corresponding field of the event copy; that is,
in the Name, Action, or Canvas field. The copy of the event is then placed on
the top of the stack for the current process; thus, the new value can be retrieved.

This behavior is demonstrated by the following example. This example uses
system-generated mouse button events. When the mouse button is pressed, the
server generates an event that has the value of its Name key set to fLeft­
MouseButton, /MiddleMouseButton, or fRightMouseButton, depending on
which mouse button is pressed; the value of the Action key is set to fDownTran­
sition. When the mouse button is released, another event is generated with the
same Name and with an Action of fUpTransition. Mouse events are described
in detail in Section 3.9, System-Generated Events.

Revision A, of 25 August 1989

40 NeWS Programmer's Guide

createevent dup begin % Create an event.
IName 3 diet dup begin % Create dietfor the Name field.

ILeftMouseButton (Left Button Went Down) def
IMiddleMouseButton (Middle Button Went Down) def
IRightMouseButton (Right Button Went Down) def

end def
IAction [/DownTransition] def % Make Action be button presses.
IExclusivity true def

end dup expressinterest % Express interest in the event.

createevent dup begin % Create an event.
IName 3 diet dup begin % Create dietfor the Name field.

ILeftMouseButton (Left Button Went Up) def
IMiddleMouseButton (Middle Button Went Up) def
IRightMouseButton (Right Button Went Up) def

end def
IAction [/UpTransition] def % Make Action be button releases.
IExclusivity true def

end dup expressinterest % Express interest in the event.

awaitevent
IName get dup (Right Button Went Up) eq {

== exit
} {

} ifelse
} loop

revokeinterest revokeinterest % Revoke both interests.

In this example, two interests are created: one interest in IUpTransition mouse
button events and one interest in IDownTransition mouse button events. Each
interest has a dictionary as the value of its Name key. Each Name dictionary
contains three entries (one for each mouse button). Each entry has the Name of a
mouse button event as the dictionary key and a string as the associated value; the
string simply describes which button was pressed or released.

The Exclusivity key of each interest is set to true so that the interests are
exclusive; an event that matches an exclusive interest is not compared to any
other interests. Thus in this example, mouse presses and releases will not affect
other canvases while these interests are expressed. For more information on
exclusive interests, see Section 3.12, Using the Exclusivity Key.

After expressing these two interests, this example loops doing an awaitevent.
When an event is retrieved from the process' local queue, the event's Name
value is printed to the screen. If the event's Name value is (Right Button Went
Up), the loop is exited.

Try typing this example to p shand then pressing the left and middle mouse
buttons. Each time you press or release a mouse button, a message is printed to

Revision A. of 25 August 1989

Executable Dictionary Values

Chapter 3 - Events 41

the screen. To exit the example, press and release the right mouse button.

Notice that for each matching button event, the string assigned in the interest's
Name dictionary is substituted for the event's Name value before the event is
distributed to the process. Thus, when the event's Name value is printed, the
string is printed to the screen. For example, when the left mouse button is
pressed, the string (Left Button Went Down) appears on the screen, instead of
the name ILeftMouseButton.

If the dictionary value associated with the matching key is executable, the
corresponding event field is not modified; instead, the executable dictionary
value is executed immediately after the received event is placed on the top of the
stack by awaitevent. If more than one of the fields have executable values in
their dictionaries, the Name value is executed first, followed by the Action value,
followed by the Canvas value.

This behavior is demonstrated by the following example:

Revision A, of 25 August 1989

42 NeWS Programmer's Guide

createevent dup begin
IName 3 dict dup begin
ILeftMouseButton {

IAction get IUpTransition eq {
(Left Button Up) ==

} {
(Left Button Down) ==

} ifelse
} def
IMiddleMouseButton {

IAction get IUpTransition eq {
(Middle Button Up) ==

} {
(Middle Button Down) ==

} ifelse
} def
IRightMouseButton {

IAction get IUpTransition eq {
(Right Button Up) ==
exit

} {
(Right Button Down) ==

} ifelse
} def

end def

% Create an event.
% Create diet for the Name field.
% event =>-

% event =>-

% event =>-

IAction [/DownTransition IUpTransition] def
IExclusivity true def

end dup expressinterest

await event
} loop

revokei nte rest

% Express interest in the event.

In this example, only one interest is expressed, but the interest contains both
IUpTransition and IDownTransition in its Action field. Therefore, this interest
can match both up and down mouse button events. Again, a dictionary is
assigned to the interest's Name field. In this case, the dictionary values are exe­
cutable; they are procedures that examine the Action of the event returned by
awaitevent and then print the appropriate string. Each procedure also pops the
event from the process' operand stack. Again, a release of the right mouse button
causes an exit from the awaitevent loop.

When the mouse button is pressed or released, the server generates an event and
distributes a copy of it to the process. After awaitevent places the event on the
process' operand stack, the executable dictionary key value associated with the
event's Name is executed immediately, printing the appropriate string to the
screen.

Revision At of 25 August 1989

NOTE

3.8. Using the Canvas Key:
Matching Multiple
Interests

Pre-Child and Post-Child
Interest Lists

Chapter 3 - Events 43

Executable matches, which are permitted by executable Canvas, Name, and
Action dictionary values in interests, provide a highly efficient way of executing
code according to the canvas on which an interest has been matched. Using this
procedure, POSTSCRIPT language constructs such as case, which are normally
used to vector a matched event to the correct handler, are made unnecessary.

The event dictionary contains a Canvas key, whose value can be one of the fol­
lowing:

IJ A canvas

IJ A dictionary or array that contains canvases

IJ The null value

The key has an important role to play in interest matching. This section
describes the Canvas key and explains how multiple interests are matched
according to its value. This section also describes the EventsConsumed key of
the canvastype dictionary.

NeWS provides each canvas with a pre-child and a post-child interest list.
Interests are assigned to canvas interest lists as follows:

IJ When an interest is expressed with a canvas specified as its Canvas key
value, the interest is inserted into one of the interest lists (pre-child or post­
child) for the specified canvas.

IJ When an interest is expressed with an array or dictionary specified as its
Canvas field, the interest is inserted into one of the interest lists for each
canvas in the array or dictionary. One interest can therefore receive events
sent to multiple canvases.

The event dictionary contains a key named IsPreChiid. This key can be set in
both events and interests, but is meaningless in events. When the key is set to
true in an interest, it indicates that the interest appears on the pre-child interest
list of the canvas. When the key is set to false, it indicates that the interest
appears on the canvas' post-child interest list.

The kind of list (that is, pre-child or post-child) into which an interest is inserted
determines the sequence in which events are matched across canvases. Generally
speaking, the pre-child interests of a canvas' ancestors are matched before any of
the interests of the canvas; the post-child interests of the ancestors are matched
after the interests of the canvas. NeWS also provides ways in which the priority of
interests can be specified and allows interests to become exclusive so that no
other interest is matched after they themselves are matched.

A detailed analysis of interest lists and multiple event matching is provided in
the following sections.

Revision A, of 25 August 1989

44 NeWS Programmer's Guide

Order of Interest Matching

Specifying a Single Canvas

Specifying an Array or
Dictionary

Specifying null

NOTE

This section describes how multiple interests are matched across canvases.

When an event is distributed with sendevent, the value in the event's Canvas
key determines which canvas interest lists are searched for potential matcnes.
The exact search path through the canvas hierarchy depends on whether the Can­
vas key value of the event contains a single canvas, an array or dictionary con­
taining multiple canvases, or null. These search paths are discussed in the fol­
lowing subsections:

When a single canvas is specified as an event's Canvas key value, the search
procedure is as follows:

1. NeWS determines the branch of the canvas hierarchy that connects the
specified canvas to the root canvas.

2. NeWS searches the pre-child interest list of each canvas on the branch, start-
ing from the root canvas and ending with the specified canvas.

3. NeWS searches the post-child interest list of the specified canvas.

Therefore, when a single canvas is specified as an event's Canvas key value, the
only post-child interest list to be searched is that of the specified canvas. This
means that the event will not match post-child interests of the canvas' ancestors.

When an array or dictionary is specified as an event's Canvas key value, each
element being a canvas, each canvas is considered in turn according to the rules
described for a single canvas above.

If the Canvasjield of an interest contains a dictionary, it is subject to the same
post-match rules as are the Name and Actionjields. This allows Canvasjield
substitution and executable matches to occur.

When null is specified as an event's Canvas key value, the principal canvas is
the topmost canvas under the x, y location specified in the event. The search pro­
cedure is as follows:

1. NeWS determines the branch of the canvas hierarchy that connects the princi­
pal canvas to the root canvas.

2. NeWS searches the pre-child interest list of each canvas on the branch, start­
ing from the root canvas and ending with the principal canvas.

3. NeWS searches the post-child interest list of each canvas on the branch, start­
ing from the principal canvas and ending with the root canvas.

Therefore, when no canvas is specified as an event's Canvas key value, all pre­
and post-child interest lists on canvases in the search path are searched.

NOTE Any interest with null as its Canvas key value is on the pre-child interest list of
the root canvas.

Revision A, of 25 August 1989

Using the canvastype
EventsConsumed Key

Chapter 3 - Events 45

Although it is often desirable to affect a canvas· ancestors with operations that
are intended to affect the canvas itself. it may sometimes be necessary to override
the procedure you have defined to allow this. The canvastype dictionary con­
tains a key named EventsConsumed; this key allows you to specify whether
events tested for a match with the current canvas· post-child interests are simi­
larly tested with the post-child interests of the canvas· parent; the pre-child
interests of the canvas· parent are always tested. The possible values for the
EventsConsumed key are as follows:

o IAIIEvents

This indicates that all events tested for a match with the canvas· post-child
interests are consumed; that is, none is tested for a match with the post -child
interests of the canvas· parent.

o IMatchedEvents

This indicates that events successfully matched with one or more of the can­
vas' post-child interests are consumed; that is, they are not tested for a match
with the post-child interests of the canvas· parent. However, events not suc­
cessfully matched with the canvas' post-child interests will indeed be tested
against the post-child interests of the canvas' parent.

IMatchedEvents is the default for the EventsConsumed key of all can­
vases.

o INoEvents

This indicates that no events tested for a match with the canvas' post-child
interests are consumed; that is, all are tested against the post-child interests
of the canvas' parent.

Non-consumed events are tested against the post-child interests of the canvas'
grandparent depending on the EventsConsumed status of the canvas' parent.
Thus, if all canvases in a branch extending to the root canvas have INoEvents
specified, all events are tested against all post-child interests of each canvas.

For each successful match that occurs, the server places one copy of the current
distributed event on the local event queue for the process that has the matching
interest. When awaitevent is called, the event is placed on the process' stack.

NOTE Each process in NeWS maintains an interest list. The list contains all interests
currently expressed by the process. For further information see Section 3.14,
Using the Process Key.

Multiple Post-Child Interest The following example shows how multiple post-child interests can be matched.
Matching: An Example

IMakeFirstCanvas { % Make a parent canvas.
IFirstCanvas framebuffer newcanvas def
newpath 0 0 250 250 rectpath
FirstCanvas reshapecanvas
FirstCanvas setcanvas
1 fillcanvas
FirstCanvas IMapped true put

• sun Revision A. of 25 August 1989
~ microsystems

46 NeWS Programmer's Guide

25 25 movecanvas
newpath 3 3 244 244 rectpath
clipcanvas
1 fillcanvas

} def

IMakeSecondCanvas { % Make a child canvas.
ISecondCanvas FirstCanvas newcanvas def
newpath 0 0 75 75 rectpath
SecondCanvasreshapecanvas
SecondCanvas fTransparent false put
SecondCanvas setcanvas
25 25 movecanvas
1 fillcanvas
SecondCanvas IMapped true put
newpath 3 3 69 69 rectpath
clipcanvas
Ofillcanvas

} def

IFlush {
countinputqueue {awaitevent pop} repeat

} def

IMakeEvent {
le1 createevent def
e1 begin

IName IRightMouseButton def
IAction IDownTransition def

end
} def

IMakelnterests {
/lntX e1 createevent copy def
IntX ICanvas SecondCanvas put
II ntV e 1 createevent copy def
IntV ICanvas FirstCanvas put

} def

IChiidOp {

% Clear the process event queue.

% Make an event object.

% Make event objects. specific
% to each canvas. in which
% interest can be expressed.

FirstCanvas setcanvas .8 fillcanvas
SecondCanvas setcanvas .8 fillcanvas
SecondCanvas IEventsConsumed INoEvents put
IntX expressinterest % Set the EventsConsume
IntV expressinterest % key of SecondCanvas
Flush % to INoEvents. express
ICount 0 def % interests. send the event.
2{ % change canvas appearances

awaitevent % accordingly. and revoke
/Interest get dup % interests.
ICanvas get dup
setcanvas Cou nt fillcanvas
ICount Count .1 add def

Revision A, of 25 August 1989

Count 1 gt {/Count 0 def} if
} repeat
IntX revokeinterest
IntY revokeinterest
(ChiidOp has completed.\n) print

} def

Make FirstCanvas
MakeSecondCanvas
Make Event
Make I nterests
ChiidOp

Chapter 3 - Events 47

% Call all operations.

% Click the right mouse button
% over the position of
% SecondCanvas.

This example begins by creating two canvases, named FirstCanvas and
SecondCanvas. SecondCanvas is the child of FirstCanvas; both canvases
have EventsConsumed set to IMatchedEvents by default.

The Flush operation, which is used to clear the process event queue, contains the
following primitive:

- countlnputqueue num
The operator returns the number of events currently available from the process'
local event queue.

The Flush operation retrieves the number of queued events, calls awaitevent on
each of them, and removes each of them from the process stack.

The operation MakeEvent is used to create an event object, named e 1 , whose
Name is lRightMouseButton and whose Action is IDownTransition. This
event object will be used to derive canvas-specific interest objects in which
interest may be expressed. Note that the distributed event corresponding to these
interests will be a system-generated event produced by pressing the right mouse
button. System-generated events, which do not require calls to sendevent, are
explained in Section 3.9, System-Generated Events.

The Makelnterests operation creates two interest objects that match the previ­
ously created event; each specifies one of the two defined canvases. The
IsPreChiid key is not set for either interest object; thus, the interests are both
post-child by default.

The ChiidOp operation establishes the EventsConsumed key value of Second­
Canvas as NoEvents; thus, events that occur directly over SecondCanvas will
be compared with interests expressed by both SecondCanvas and FirstCan­
vas.

Having expressed interest in the previously defined interest objects, Ch ildOp
makes two iterative calls to awaitevent. The operation specifies that whenever
an event appears on the local event queue, the name of the canvas that has
expressed the corresponding interest will be derived; this canvas will then be

Revision A, of 25 August 1989

48 NeWS Programmer's Guide

established as the current canvas, and its color will be modified by a call to
fillcanvas; the color value being derived from the Count variable, incremented
by 0.1 each iteration. Thus, the canvas whose interests are first matched is
changed to the color closer to zero (that is, the darker color).

Therefore, if the mouse is placed over SecondCanvas, and the right mouse but­
ton is clicked, an event identical to e1 is automatically sent. The event is com­
pared with interests owned by SecondCanvas, and a match is made. Since
SecondCanvas is consuming no events, the event is then compared with
interests owned by FirstCanvas, and another match is made. Two copies of e 1
are thus placed on the local event queue of the current process.

When awaitevent is called the first time, it causes the color of SecondCanvas
to be modified to the initial value of the Count variable, which is zero. When
awaitevent is called the second time, it causes the color of FirstCanvas to be
modified to the second value of Count, which is 1. Thus, SecondCanvas
appears darker than FirstCanvas: this is shown by the following illustrations,
which represent the appearance of the canvases before and after the mouse button
is clicked.

Figure 3-1 Initial Appearance of Canvases

Figure 3-2 Result of Pre-Child Interest Matching

Note that ChildOp also calls the following primitive:

event revokeinterest -
event process revokeinterest -
The event argument specifies an event in which interest has previously been
expressed. The optional process argument specifies the process on whose behalf

Revision A, of 25 August 1989

Multiple Pre-Child Interest
Matching: An Example

Figure 3-3

3.9. System-Generated
Events

Chapter 3 - Events 49

the interest is revoked; if no process is specified, interest is revoked on behalf of
the current process.

The following example modifies the IsPreChild key values of the previously
created interest objects:

IntX IlsPreChiid true put
IntY /IsPreChild true put

ChiidOp

% Change interest list status of
% existing interests.

% Click the right mouse button over
% the position of SecondCanvas.

In this example, since the values of the IsPreChild keys are set to true, calling
ChiidOp causes the pre-child interest of FirstCanvas to be matched before the
pre-child interest of SecondCanvas; thus, FirstCanvas appears darker than
SecondCanvas, as shown by the following illustration:

Result of Multiple Pre-Child Interest Matching

A system-generated event is created and sent automatically by NeWS in the fol­
lowing circumstances:

o The mouse is manipulated.

o A keyboard-key is pressed.

o A canvas is damaged.

o An object becomes obsolete, and its memory needs reclaiming.

o A process dies while it is still referenced.

o The mouse pointer exits one canvas and enters another.

Since these events are created and sent automatically, the primitives createevent
and sendevent do not need to be used; however, the other NeWS primitives for
expressing interest and awaiting events must be used in the same way as is
required for process-generated events.

This section describes system-generated events and shows how they can be used.

Revision A, of 25 August 1989

50 NeWS Programmer's Guide

Mouse Events NeWS automatically generates events that correspond to the status of the mouse.
Each event has an appropriate value automatically inserted in its Name and
Action key. Events are generated in the following circumstances:

[J The mouse is moved.

The value of the Name key is set to IMouseDragged; the value of the
Action key is set to null.

[J A mouse button is pressed and released.

When the mouse button is pressed, the value of the Name key is set to ILeft­
MouseButton, IMiddIeMouseButton, or IRightMouseButton, depending
on which button is pressed; the value of the Action key is set to !Down­
Transition. When the button is released, another event is generated with the
same Name value and with the Action set to IUpTransition. Thus, two
events are automatically generated whenever a mouse button is pressed and
released.

The following example demonstrates mouse button events:

0/0
0/0 Create canvas to play in.
0/0
Icanvas framebuffer newcanvas def
1 00 100 translate
o 0 400 400 rectpath
canvasreshapecanvas
canvas IMapped true put
canvas setcanvas
1 fillcanvas
o setgray

0/0
0/0 Print (in the canvas) documentation
0/0 on button usage
%

0/0 Create a canvas object.
% Move its origin.
0/0 Make a rectangular path.
0/0 Make our canvas that shape.
0/0 Map the canvas.
0/0 Make canvas the currentcanvas.
0/0 Give it a white background.
0/0 Draw with black lines.

rrimes-Roman findfont 12 scalefont setfont
1030 moveto
(Press left button to move currentpoint) show
1020 moveto
(Press middle button and drag to draw a line) show
1010 moveto
(Press right button to quit) show
200 200 moveto % set starting point.

0/0
0/0 Create an interest in MouseDragged events on our play canvas
0/0 (store in Idrag); this is an executable match that draws a
0/0 line to the current mouse position each time the mouse moves
0/0 while this interest is expressed. It also leaves the
0/0 currentpoint at the mouse position.
0/0
Idrag createevent dup begin

Revision A, of 25 August 1989

I

Chapter 3 - Events 51

IName 1 dict dup begin
IMouseDragged { % event =>-

begin
XLocation YLocation lineto stroke % Consumes the path.
XLocation YLocation moveto % Set current point to same.

end
} def

end def
IAction null def
ICanvas canvas def

end def

0/0
0/0 Create an interest in Up and Down transitions of all
0/0 three mouse buttons. Each button has its own handler
0/0 associated with it by the value of the corresponding key
0/0 in the IName field of the interest.
0/0
createevent dup begin

IName 3 dict dup begin
ILeftMouseButton {

begin
0/0 event => -

XLocation YLocation moveto % Move the currentpoint.
end

} def
IMiddleMouseButton {

begin
Action IDownTransition eq {

0/0 event => -

drag expressinterest % We want drag events now.
XLocation YLocation Iineto stroke % Stroke consumes the path.
XLocation YLocation moveto % So set current point back.

} {
drag revokeinterest

} ifelse
end

} def
IRightMouseButton {

pop
exit

} def
end def

0/0 Don't want drag events any more.

0/0 event => -
0/0 We're all done ...
0/0 Break out of the {} loop.

IAction [/DownTransition IUpTransition] def
ICanvas canvas def

end dup expressinterest

{ awaitevent} loop

revokeinterest
canvas IMapped false put
Icanvas null def

0/0 Loop, processing events.

0/0 Unmap the window.
0/0 Free the memory.

Revision A, of 25 August 1989

52 NeWS Programmer's Guide

Enter and Exit Events

Name Key Values

This example creates a canvas and maps it to the screen. It then prints three
strings to the canvas to provide user instructions for the example. After prepar­
ing the canvas, an interest named drag is created for IMouseDragged events.
The interest uses an executable value in the Name dictionary; the procedure
strokes a line to the x, y location of the event and then sets the current point to be
the endpoint of the line. This interest is not expressed immediately.

Another interest is then created; the second interest is for mouse button presses
and releases. This interest also uses executable values in its Name dictionary.
When a left mouse button event is matched, a procedure moves the current point
to the x, y location of that event. When a middle mouse button event is matched,
a procedure checks to see if the event is a IDownTransition. If so, drag is
passed to expressinterest. The drag interest is revoked when the button is
released. When a right mouse button event is matched, a procedure pops the
event and exits the awaitevent loop.

Try running this example with psh and drawing in the canvas that is generated.

NeWS generates a special event whenever the cursor crosses the boundary of a
canvas. The Name and Action key values of the event are automatically set
according to the kind of movement that has occurred and the relationship
between the canvases concerned.

The value of the Name key is automatically set to either ExitEvent or
EnterEvent, depending on the movement of the mouse. Thus, when the mouse
crosses any canvas boundary, at least two events are generated; the first event is
the exit event for the canvas being exited; the second event is the enter event for
the canvas being entered.

The following example demonstrates the use of EnterEvents:

IEntryOp {
le1 createevent def

e1 begin
IName IEnterEvent def
ICanvas FirstCanvas def

end
le2 createevent def

e2 begin
IName IEnterEvent def
ICanvas SecondCanvas def

end
e1 expressinterest
e2 expressinterest
Flush
IToggle 0 def
10 {

awaitevent dup IName get
IEnterEvent eq {

Iinterest get dup
ICanvas get setcanvas
Toggle fillcanvas} if

% Create an entry event
% for FirstCanvas.

% Create an entry event
% for SecondCanvas.

% Express interests.

% Modify canvas colors
% whenever an entry
% event occurs.

Revision A, of 25 August 1989

I

I

clear
Toggle dup {

o {lToggle .5 def}
.5 {!Toggle 1 def}
1 {lToggle 0 def}

} case
} repeat
e1 revokeinterest
e2 revokeinterest
(EntryOp has completed.\n) print

} def

SecondCanvas setcanvas
Ofillcanvas
FirstCanvas setcanvas
1 fillcanvas
EntryOp

Chapter 3 - Events 53

In this example, both SecondCanvas and FirstCanvas are specified to change
color when an EnterEvent occurs. The following illustrations respectively show
the appearance of the canvases when the mouse enters FirstCanvas from the
framebuffer, enters SecondCanvas from FirstCanvas, and re-enters FirstCan­
vas from SecondCanvas:

Figure 3-4 Initial Appearance of FirstCanvas and SecondCanvas

Figure 3-5 First Entry Event, Matched by FirstCanvas

Revision A, of 25 August 1989

54 NeWS Programmer's Guide

Figure 3-6 Second Entry Event, Matched by SecondCanvas

Figure 3-7 Third Entry Event, Matched by FirstCanvas

Action Key Values The value of the Action key is automatically set to a numeric value that
corresponds to the movement of the mouse and the relationship between the can­
vases between which it moves.

Table 3-1

The following table describes each numeric value to which Action is set. Note
that a canvas is said to contain the cursor directly when it is the frontmost canvas
under the mouse; a canvas is said to contain the cursor indirectly if it is an ances­
tor of a canvas that directly contains the mouse. Note also that a canvas does not
receive a crossing event if it contains the cursor directly both before and after the
cursor movement; nor does it receive a crossing event if it contains the cursor
indirectly both before and after the cursor movement.

Boundary Crossing Events

Name Action
IEnterEvent o

1

Explanation
The canvas now directly contains the cursor; the
previous direct container was an ancestor of this
canvas.

The canvas now indirectly contains the cursor;
the previous direct container was an ancestor of
this canvas .

• ~sun ~ microsystems
Revision A, of 25 August 1989

Table 3-1

Using the postcrossings
Operator

Chapter 3 - Events 55

Boundary Crossing Events- Continued

Name Action Explanation
2 The canvas now directly contains the cursor, the.

previous direct container was a descendant of
this canvas.

3 The canvas now directly contains the cursor; the
previous direct container was not an ancestor or
descendant of this canvas.

4 The canvas now indirectly contains the cursor;
the previous direct container was not an ancestor
or descendant of this canvas.

IExitEvent 0 The canvas fonnerly contained the cursor
directly; the new direct container is an ancestor
of this canvas.

1 The canvas fonnerly contained the cursor
indirectly; the new direct container is an ances-
tor of this canvas.

2 The canvas fonnerly contained the cursor
directly; the new direct container is a descendant
of this canvas.

3 The canvas fonnerly contained the cursor
directly; the new direct container is not an
ancestor or descendant of this canvas.

4 The canvas fonnerly contained the cursor
indirectly; the new direct container is not an
ancestor or descendant of this canvas.

The postcrossings operator generates canvas crossing events, which notify the
system of the movement from one canvas to another of a state, such as the can­
vas under the pointer or the focus. Examples of crossing events are Enter
events, Exit events, and focus notification events (explained in Focus Events,
below). The Action field values of the crossing events comply with XII focus
and enter/exit event specification.

See Chapter 9, NeWS Operator Extensions, for a complete description of the
postcrossings operator.

Revision A, of 25 August 1989

56 NeWS Programmer's Guide

Using the XLocation and
YLocation Keys

The evenUype dictionary contains XLocation and YLocation keys, which
respectively contain the x and y coordinates at which the event occurred. These
keys are arbitrary in process-generated events and interests; their values are
automatically set in system-generated events. Events coordinates are reported
with respect to the current transformation matrix.

The following example demonstrates how the XLocation and YLocation keys
can be used:

FirstCanvas setcanvas
1 fillcanvas

le1 createevent def

e1 begin
IName ILeftMouseButton def
I Action IDown Transition def
ICanvas Fi rstCanvas def

end

IDrawCircle {
4 setlinewidth
e 1 expressinterest
Flush
o setgray
await event dup /XLocation get
exch dup IYLocation get
exch pop
400360 arc
stroke
e 1 revokeinterest

} def

DrawCircle % Click the left mouse button.

The above example requires that the operation DrawCircle be called and the left
mouse button clicked over FirstCanvas. The XLocation and Ylocation values
for the corresponding event are retrieved and used in a call to the arc· operation,
which draws a circle centered on the retrieved coordinates.

Revision A, of 25 August 1989

Chapter 3 - Events 57

Figure 3-8 Result of Mouse-Generated Event

Using the Coordinates Key The eventtype object contains a Coordinates key, which provides a way to get
and set the x,y location of an event atomically. The field accepts an array of
length two, with the x coordinate in the first position and the y coordinate in the
second.

Focus Events Focus events are generated by the NeWS focus manager through the postcrossings
mechanism. These events signal a change in the focal point of the keyboard,
which detennines the canvas that is to receive keyboard input. The Name value
of a focus event is always IRestoreFocus, I AcceptFocus, or ILoseFocus. The
Action value is an integer specifying the nature of the focal change. These
integers and their significance are shown by the following table:

Table 3-2 Input Focus

Name

IRestoreFocus
I AcceptFocus

Action

o

1

2

3

4

5

Explanation

The canvas is now the focus; the previous focus
was an ancestor of this canvas.

The canvas is now the ancestor of the focus; the
previous focus was an ancestor of this canvas.

The canvas is now the focus; the previous focus
was a descendant of this focus.

The canvas is now the focus; the previous focus
was not an ancestor or descendant of this canvas.

The canvas is now an ancestor of the focus; the
previous focus was not an ancestor or descen­
dant of this canvas.

The canvas directly or indirectly contains the
pointer and is now a descendant of the focus.
The previous canvas is not equivalent to this
canvas nor is the previous canvas an ancestor or
descendant of this canvas.

Revision A, of 25 August 1989

58 NeWS Programmer's Guide

Table 3-2 Input Focus- Continued

Name Action Explanation

6 The focus is now ReDistribute.

7 The focus is now None.
ILoseFocus 0 The canvas used to be the focus; the new focus

is an ancestor of this canvas.

1 The canvas used to be an ancestor of the focus;
the new focus is an ancestor of this canvas.

2 The canvas used to be the focus; the new focus
is a descendant of this canvas.

3 The canvas used to be the focus; the new focus
is not an ancestor or descendant of this canvas.

,4 The canvas used to be an ancestor of the focus;
the new focus is not an ancestor or descendant of
this canvas.

S The canvas directly or indirectly contains the
pointer and used to be a descendant of the focus.
The new canvas is not equivalent to this canvas
nor is the new canvas an ancestor or descendant
of this canvas.

6 The focus used to be ReDistribute.

7 The focus used to be None.

Keyboard Events Keyboard events are generated in response to the user's pressing a key on the
keyboard. These events have a Name value that is a number in the range of
28416 to 28671 (6FOO to 6FFF hexidecimal) and an Action value of IUpTransi­
tion or IDownTransition. The name of the keyboard event does not represent
the character that is encoded on the key; it represents an implementation­
dependent keyboard encoding.

The Repeat Key Dictionary One of the dictionaries within systemdict is named repeatkeydict. This is a dic­
tionary specifying which keyboard keys should repeat. All of the key codes
defined in the dictionary are eligible for repeating. Note that the user should not
manipulate this dictionary directly but should use ClassRepeatKeys.

ClassRepeatKeys controls the key repeating characteristics of the seIVer; its
class methods are described below. For a basic explanation of classes and class
methods, see Chapter 4, Classes.

Revision A. of 25 August 1989

Damage Events

Obsolescence Events

ProcessDied Events

- Iinterval nurn
nurn lsetlnterval

Chapter 3 - Events 59

Get and set the keyboard repeat interval. num specifies how fast the keyboard
will repeat and is in units of216 milliseconds.

- Ithreshold nurn
nurn lsetthreshold -
Get and set the keyboard repeat threshold. num specifies the amount of time a
key must be depressed before it will begin to repeat. num is in units of216 mil­
liseconds.

- Irepetltlon boolean
boolean lsetrepetltlon -
Get and set the global state of repeat keys. If boolean is true, the keyboard will
repeat.

keycode Ilnhlbltrepeat -
keycode lall owre peat -
Allow or inhibit the repeating of a particular key.

The following values can be specified in the user's User Profile (in
. startup .ps):

IKeyRepeatThresh
The initial repeat threshold in units of 216 milliseconds.

IKeyRepeatTime
The initial repeat interval in units of 216 milliseconds.

Damage events are generated for a canvas whenever it is damaged (a definition
of damage is provided in Chapter 2, Canvases). The server will not send another
event until the damage has been cleared by use of the damagepath operator.
The Action key value for the event is null; the Canvas key value specifies the
affected canvas.

Obsolescence events are generated by the server for an object that becomes
obsolete. Obsolescence is defined as the state where all the references to an
object are soft. (See the discussion of soft references in Chapter 7, Memory
Management). The Name field of the event is IObsolete; the Action field is the
obsolete object.

ProcessDied events are generated when a lightweight process dies. The Name
key value of the event is IProcessDied; the Action key value is the process itself.
Note that no ProcessDied event is generated if the process dies when no refer­
ences to it exist or no waitprocess is being executed upon it.

+1Y..,!! Revision A, of 25 August 1989

60 NeWS Programmer's Guide

3.10. Using the ClientData
Key

3.11. Using the Priority
Key

The eventtype object contains a ClientData key. The value of this key may be
set to any NeWS object; the object can be accessed at any time. Although new
keys may be added to an event dictionary, doing so adds memory overhead. The
ClientData key is useful if the programmer has only one piece of information to
add to the event dictionary.

The following example demonstrates how the ClientData key can be used:

FirstCanvas setcanvas
1 fillcanvas
Flush

le1 createevent def
e1 begin

IName IHelio def
IClientData {.2 fillcanvas} def

end

lex e1 createevent copy def

IClientDataOp {
e 1 expressinterest
ex sendevent
awaitevent dup IName get
IHelio eq { IClientData get exec} if
e1 revokeinterest

} def

ClientDataOp

In the above example, the value of the ClientData key for e 1 is specified as a
call to fillcanvas. When a successful match has been made between the event
and a corresponding interest, the value of the key is retrieved and executed.

The interests contained in the interest list of any canvas can be assigned different
priorities. The interest that has the highest priority is always the first interest in
the list with which a distributed event is compared and may thus be the first
interest matched. The interest that has the lowest priority is always the last with
which the event is compared.

The eventtype dictionary includes a Priority key that allows you to specify a
priority; note that a specified priority is meaningless when the event object is
used as an event rather than an interest. The Priority key value can be set to any
number; the default value is 0; negative and fractional values are permitted. The
highest number signifies the highest priority. When interests have the same
priority (which is the default), exclusive interests are compared first. Among
non-exclusive interests of the same priority, the most recently expressed interest
is compared first.

+~t!! Revision A, of25 August 1989

Chapter 3 - Events 61

The following example demonstrates use of the Priority key:

FirstCanvas setcanvas
Ofillcanvas
Flush

le1 createevent def
e1 begin

IName IHelio def
end

IlntA e1 createevent copy def
IntA begin

IClientData {.04 sleep .8 fillcanvas} def
ICanvas Fi rstCanvas def
IPriority 1 def

end

IlntB e1 createevent copy def
IntB begin

IClientData {.04 sleep .2 fillcanvas} def
ICanvas FirstCanvas def
IPriority 0 def

end

le1 a e1 createevent copy def
e1a begin

ICanvas FirstCanvas def
end

IReceiveEvents {
2{

awaitevent Iinterest get dup
IClientData get exec

} repeat
} def

/Waiting {
IntA expressinterest
IntB expressinterest
e1a sendevent
ReceiveEvents
IntA revokeinterest
IntB revokeinterest

} def

Waiting

% The canvas goes light gray
% when interest IntA is matched.

% The canvas goes dark gray
% when interest IntB is matched.

% Retrieve and execute the
% value of the matched interest's
% ClientData key.

The above example creates an event that is matched by two post-child interests
on a single canvas. Initially, the interests have Priority values of 1 and 0 respec­
tively; thus, when the event is sent, the interest with Priority 1 is matched first.

Revision A, of 25 August 1989

62 NeWS Programmer's Guide

3.12. Using the Exclusivity
Key

Two calls to awaitevent are then made and the corresponding events are placed
on the process' stack.

The ClientData key for each interest contains a call to the fill canvas primitive,
preceded by a call to sleep. When the interest IntA is matched, the current can­
vas turns light gray; when IntB is matched, the canvas turns dark gray. Thus,
since the priority of IntA is higher than that of IntB, the canvas turns light gray
first, then dark gray.

In the following example, the respective priorities of the interests are reversed;
thus, the order of color changes made to the current canvas is also reversed.

Ofillcanvas
Flush
IntB IPriority 1 put
IntA IPriority 0 put
Waiting

The eventtype dictionary contains an Exclusivity key. This key is significant
only for interests; its value is ignored in distributed events. The value of the key
can be set to either true or false: if the value is true, a distributed event success­
fully matched with this interest is not compared with any further interests. Note
that the Exclusivity key prohibits interest-comparison across all processes and all
canvases.

The following example (which modifies the code used in Section 3.11, Using the
Priority Key) demonstrates how the Exclusivity key can be used:

Revision At of 25 August 1989

Using the redistributeevent
Operator

o fillcanvas
Flush
IntB IExclusivity true put

INewReceiveEvents {
2{
awaitevent Iinterest get dup
IClientData get exec
dup IExclusivity get {exit} if
} repeat

} def

INewWaiting {
IntA expressinterest
IntB expressinterest
e1a sendevent
NewReceiveEvents
IntA revokeinterest
IntB revokeinterest
(NewWaiting has completed.\n) print

} def

NewWaiting

Chapter 3 - Events 63

In the above example, the Exclusivity key of IntB is set to true. Thus, since the
Priority of IntB is currently higher than that of IntA, IntA is not matched follow­
ing the successful match made with IntB.

The redistributeevent operator effectively allows you to override the exclusivity
of an interest. The operator is as follows:

event redlstrlbuteevent -
The event argument should be an event already returned by awaitevent; the
redistributeevent operator continues the distribution process, comparing the
specified event with all available interests, starting from the interest immediately
after the successfully matched interest that permitted the event object to be
returned by awaitevent. Note that redistributeevent does not reinsert the event
into the global event queue. No interest compared with the specified event since
the last call to sendevent is compared with that event again.

The following example, which modifies the previous example, shows how redis­
tributeevent can be used:

Revision A, of 25 August 1989

64 NeWS Programmer's Guide

3.13. Using the TimeStamp
Key

INewReceiveEvents {
2{
awaitevent Iinterest get dup
IClientData get exec .
dup IExclusivity get {e1 a redistributeevent} if
} repeat

} def

o fillcanvas
NewWaiting

In the above example, redistributeevent is called when the Exclusivity key of
the matched interest is determined to be true.

The evenUype dictionary contains a TimeStamp key, whose value indicates the
time after which the event may be removed from the global event queue for com­
parisons to be made with available interests. Time values are measured in units
of 216 milliseconds. No event can be removed from the queue before its TimeS­
tamp value signifies the current time; thus, when an event contains a TimeS­
tamp value that specfies a time in the future, the event must - following the call
to sendevent - remain in the global event queue until the appropriate time is
reached.

The following example demonstrates how the TimeStamp value can be used:

FirstCanvas setcanvas
1 fillcanvas
Flush

IPrepareEvents {
le1 createevent def
e1 begin

IName IDark def
end
le2 createevent def
e2 begin

IName IMedium def
end
le3 createevent def
e3 begin

IName ILight def
end
lex e1 createevent copy def
ley e2 createevent copy def
lez e3 createevent copy def
ex rnmeStamp currenttime .07629 add put
ey /TimeStamp currenttime .15259 add put
ez /TimeStamp currenttime .30518 add put
e1 expressinterest
e2 expressinterest
e3 expressinterest

Revision A, of25 August 1989

U sing the recallevent
Operator

ez sendevent
ey sendevent
ex sendevent

} def

!Transform {
3{

awaitevent IName get
dup{

IDark {.2 fillcanvas}
IMedium {.S fillcanvas}
lLight {.8 fillcanvas}

} case
} repeat
e1 revokeinterest
e2 revokeinterest
e3 revokeinterest
(Transform has completed.\n) print

} def

Prepare Events
Transform

Chapter 3 - Events 65

In the above example, the operation PrepareEvents is used to create and
express interest in three events, each with its own Name and TimeStamp value.
Note that each TimeStamp value is specified as a value added to the value of
currenttime when the event is sent; thus, each event remains in the global event
queue until its specified TimeStamp value becomes the current time.

The operation Transform is used to call awaitevent and examine the Name
value of each event returned to the local event queue; the color of the current
canvas is then changed in accordance with the Name value. Note that the
sequence of color changes indicates that the events were matched and processed
in the reverse order of their sending (that is, in the correct order as specified by
their respective TimeStamp values).

NeWS provides a recallevent operator that allows you to recall an event that has
not yet been distributed. The operator is as follows:

event recallevent -
The event argument should be an event object that is currently in the global event
queue.

The following example (which modifies the previous example) shows how recal­
levent can be used:

1 fillcanvas
Flush

INewTransform {
3{

Revision A, of 25 August 1989

66 NeWS Programmer's Guide

awaitevent IName get
dup {

IDark {.2 fillcanvas}
IMedium {.5 fillcanvas

ez recallevent
ex mmeStamp currenttime .15259 add put
ex sendevent}

ILight {.8 fillcanvas}
} case

} repeat
e1 revokeinterest
e2 revokeinterest
e3 revokeinterest

(NewTransform has completed.\n) print
} def

Prepare Events
NewTransform

The above example redefines the operation NewTransform so that the event ez
is recalled and ex is resent with a new TimeStamp value.

3.14. Using the Process Key The eventtype dictionary contains a Process key, which can be used to specify a
process. If a distributed event specifies a process in this way, the event is com­
pared only with interests expressed by that process. The default value for this
key is null, which means that the event can be compared with interests expressed
by any process.

The Process key value of an interest is always automatically set to the process in
which the interest is expressed.

The following example shows how the Process key can be used:

IProcessProg {
IParentProc{

FirstCanvas setcanvas
le1 createevent def

e1 begin
IName IHelio def

end
le2 e1 createevent copy def
e2/Process ParentProc put
IlntZ e1 createevent copy def
IntZ expressinterest
e2 sendevent
e1 sendevent

{
SecondCanvas setcanvas
IlntX e 1 createevent copy def
IntX expressinterest
awaitevent IProcess get ==
.5 fillcanvas

Revision A, of 25 August 1989

3.15. Input
Synchronization with
Multiple Processes

Using blockinputqueue

IntX revokeinterest
} fork waitprocess

await event IProcess get ==
.5 fillcanvas
IntZ revokeinterest

} fork def
} def

FirstCanvas setcanvas
1 fillcanvas
SecondCanvas setcanvas
Ofillcanvas
ProcessProg

Chapter 3 - Events 67

The above example defines a parent process (named ParentProc), and an
unnamed child process. The parent process sends two events; the first has the
name ParentProc specified as its Process key value and is thus acceptable only
to interests generated by the parent process itself; the other has null as its Pro­
cess key value and can thus be accepted by any process, specifically by the child
process that ParentProc generates.

NeWS synchronizes the event distribution process so that when an event is
removed from the front of the global event queue, is successfully matched with
one or more interests, and has copies of itself placed on the local event queues of
the relevant processes, no other event is removed from the global queue until
each of the relevant processes has had a chance to run. Similarly, when an event
is passed to redistributeevent, NeWS will not remove an event from the queue
until processes that receive the redistributed event have either completed or
blocked.

In interactive window management, event distribution must often be explicitly
synchronized in accordance with special circumstances. For example, a process
might be defined to respond to the DownTransition of a mouse button by
displaying a menu, and to respond to the UpTransition by removing the menu.
Interest in the UpTransition must be expressed before the UpTransition event
is automatically distributed by release of the button; however, since the button
may be released immediately, distribution of the event must be explicitly delayed
until interest has been expressed.

NeWS provides a primitive named blockinputqueue, which prevents events from
being removed from the global event queue. The syntax is as follows:

nurn blocklnputqueue -
The num argument specifies the amount of time (in units of 216 ms) during which
blocking continues. When the operator is executed, no event is removed from
the global event queue until one of the following has occurred:

o The time specified by the num argument has elapsed.

o The unblockinputqueue operator is executed.

Revision A, of 25 August 1989

68 NeWS Programmer's Guide

3.16. Event Logging

The syntax of the unblockinputqueue operator is as follows:

- unblocklnputqueue-
This operator releases the event queue lock previously set by blockinputqueue.
If more than one event queue lock was set, additional calls to unblockinput­
queue may be required; when all locks are released, the distribution mechanism
resumes.

As a development aid, NeWS provides the seteventlogger primitive, which allows
you to designate a process as an event-logger:

process seteventlogger -
The process argument must be a process that has expressed some interest and has
entered an awaitevent loop. The expressed interest, which must not match any
distributed event, is required to prevent awaitevent from returning a syntax error.
The specified process becomes the event-logger. A copy of each event either
removed from the global event queue or redistributed with redistributeevent
will be given to this process before it is given to any other (note that the
existence of the event-logger does not affect the normal running of the distribu­
tion mechanism). When the awaitevent loop retrieves the event-copies from the
event-logger's local event queue, the event-logger can proceed in whatever way
is appropriate. For example, it might print certain key values in a window or to a
file.

To tum off a designated event-logger, specify null as the argument to
seteventlogger.

The file event log. ps, which is described in Chapter 10, Extensibility through
POSTSCRIPT Language Files. provides a fonnatted display of events that can be
used in the context of the seteventlogger operator.

The current event-logger is returned by the geteventlogger operator:

- geteventlogger process
The operator returns the process that is the current event logger or null if there is
none.

Revision A, of 25 August 1989

4
Classes

Classes .. 71

4.1. Basic Terms and Concepts ... 71

Classes and Instances .. 71

Inheritance and the Class Tree .. 73

Superclasses and Subclasses ... 73

The Immediate Superclass ... 73

Inheritance ... 73

Single Inheritance and Multiple Inheritance .. 74

The Inheritance Array ... 74

A Single Inheritance Example ... 75

Summary of Terms .. 77

4.2. Creating a New Class .. 79

The Class Definition .. 79

classbegin ... 79

classend .. 79

redef ... 79

Initializing a New Class .. 80

4.3. Sending Messages With the send Operator .. 80

The Usual Form of send ... 80

The Steps Involved in a send ... 80

U sing send to Invoke a Method ... 81

A Nested send ... 82

Using send to Create a New Instance ... 83

AnotherFonn of send .. 84

U sing send to Change the Value of an Instance Variable 84

U sing send to Change the Value of a Class Variable 84

4.4. The Psuedo-Variables self and super .. 85

The self Psuedo-Variable ... 87

The super Psuedo-Variable .. 88

U sing super to Send a Message Up the Superclass Chain 90

Restrictions on the Use of self and super ... 90

4.5. Method Compilation .. 90

Compiling self send .. 91

Compiling super send ... 91

Local Dictionaries .. 91

Controlling Method Compilation .. 92

Imethodcompile .. 92

linstallmethod ... 93

Idoit .. 93

SetLocalDicts ... 94

4.6. Creating a New Instance .. 96

Inew .. 97

Inewobject .. 97

Inewinit .. 98

Inewmagic .. 99

4.7. Intrinsic Classes .. 100

Inewdefault 101

Idefaultclass .. 102

ISubClassResponsibility ... 102

4.8. Overriding Class Variables With UserProfile .. 102

Overriding DefaultClass .. 103

4.9. Promoting Class Variables to Instance Variables ... 103

promote ... 103

unpromote ... 104

promoted? .. 104

Avoiding an Accidental Promotion .. 104

4.10. Destroying Classes and Instances .. 104

Idestroy .. 104

classdestroy ... 105

Icleanoutclass ... 105

4.11. Obsolete Objects in the Oass System ... 105

lobS()lete ... 105

4.12. Multiple Inheritance .. 106

A Simple Multiple Inheritance Example: a Utility Class 106

A More Complex Multiple Inheritance Example 109

Rules for Valid Inheritance Array Orders ... 109

Possible Inheritance Arrays for this Example ... 110

Which Order Do You Choose? .. 111

Constraining the Order of the Inheritance Array................................... 112

super and Multiple Inheritance ... 112

4.13. Utilities for Setting and Retrieving an Object's Name and
Classname .. 113

Iname ... 113

Isetname .. 113

Iclassname .. 114

4.14. Utilities for Inquiring About an Object's Status ... 114

isobject? .. 114

isclass? 114

isinstance? ... 114

4.15. Utilities for Inquiring About an Object's Heritage 114

Isuperclasses ... 114

I subclasses .. 114

linstanceof? ... 114

I descendantor? .. 114

lunderstands? .. 115

Iclass ... 115

4.16. Utilities for Finding Objects on the send Stack .. 115

Itopmostinstance ... 115

Itopmostdescendant .. 115

Isendtopmost .. 115

4.17. Class Operators .. 116

4.18. Class Methods ... 116

4.1. Basic Terms and
Concepts

Classes and Instances

4
Classes

NeWS provides an object-oriented programming scheme based on classes. The
code that implements the basic class mechanism is located in the class. ps
file (see Chapter 10, Extensibility through POSTSCRIPT Language Files, for infor­
mation about the POSTSCRIPT language files). Client applications will find
classes especially useful for creating user interface components such as windows,
menus, and scroll bars.

The NeWS class system is extremely flexible. You can define your own classes,
so you can build whatever user interface components you desire. You can also
use the predefined classes that are supplied with the NeWS toolkit. The classes in
the NeWS toolkit provide the building blocks of a user interface; they do not
impose any particular style of user interface.

This chapter provides an introduction to the NeWS class system. You should read
this chapter if you want to create your own classes or if you are going to use the
NeWS toolkit. The toolkit classes are built with the basic class mechanisms
described here.

This chapter explains how to use the NeWS class operators and methods. Alpha­
beticallists of the operators and methods are provided at the end of the chapter.

Special notation is used to help you distinguish between operators and methods.
Names of methods are preceded by a slash (for example, /new). Names of opera­
tors are written without a slash (for example, send). Optional arguments to
operators and methods are listed in angle brackets (for example, <args».

This section explains some basic terms and concepts that are used throughout this
chapter. Some of the terms are common object-oriented programming terms;
others are specific to the NeWS class system.

In the context of classes, an object consists of data and the procedures needed to
operate on that data. NeWS represents these objects as POSTSCRIPT language dic­
tionaries. An object's dictionary contains the object's data (represented as vari­
ables) and the object's procedures (represented as POSTSCRIPT language pro­
cedures).

A class is a template for a set of similar objects; the objects described by the
class are known as instances of the class. An instance of a class inherits the
characteristics of its class but can selectively alter some of these characteristics.

71 Revision A, of 25 August 1989

72 NeWS Programmer's Guide

Classes and instances of classes are all objects; they are all represented by
POSTSCRIPT language dictionaries that store the object's variables and pro­
cedures.

A class is like an architect's plan for a house; it is a blueprint that specifies the
fundamental characteristics of a specific type of object. An instance of the class
is like the house itself; it is a particular object that is based on the blueprint.

When you create a class, you must specify its instance variables, class variables,
and methods. All of these items are stored in the class' dictionary. Each variable
is stored with its variable name as a dictionary key and its variable value as the
dictionary key's value. Each method is stored with its name as a dictionary key
and its procedure as the dictionary key's value.

A class' instance variables are variable data contained in each instance of the
class. Each instance receives its own copy of its class' instance variables, and
each instance is free to change the values associated with its copy of the instance
variables. The instance variables are stored in an instance dictionary in the same
way that they are stored in a class dictionary: each variable name-value pair is
stored as a key-value pair in the instance dictionary.

Class variables are variable data shared by all the instances of a class. A class'
class variables are stored in its class dictionary, but the instances of the class do
not receive a copy of the class variables. If you change the value of a class vari­
able, that change affects all the instances of the class.

A class' methods are procedures that you use to operate on the class' instances.
You send a message to an object to invoke the method associated with that mes­
sage; the message identifies the name of the method that you want to invoke.
Class methods are stored only in class dictionaries, not in instance dictionaries.

To continue the house analogy, assume that a whole subdivision of houses is
built with the same blueprint. The houses have the same floor plan and the same
style, but each house is slightly different. For example, the paint and carpet
colors vary from house to house. Instances of a class are like the houses in the
subdivision; the instances have certain basic characteristics in common, and they
perfonn the same functions, but each instance is slightly different.

In this analogy, the physical aspects that vary from house to house correspond to
the instance variables. The physical aspects that are specified in the blueprint,
and thus do not vary from house to house, correspond to the class variables. The
blueprint also specifes certain. functions that all the houses must perfonn. For
example, each house must provide a working electrical system, plumbing system,
and heating system. These functions specified in the blueprint correspond to the
class methods. The "messages" that someone must send to invoke these func­
tions of a house are flipping on an a light switch, turning on a faucet, and turning
up the thennostat.

Revision A, of 25 August 1989

Inheritance and the Class
Tree

Superclasses and Subclasses

Chapter 4 - Classes 73

The classes in the NeWS class system belong to a class tree. The class tree is a
hierarchy that is similar to, but completely separate from, the canvas tree. The
root of the class tree is class Object. The server provides the implementation of
class Object (in the class. ps file), and the other classes in the tree are
defined by the client or by a toolkit.

Except for class Object, each class has at least one class that is above it on its
branch of the class tree; these classes that are above a class are called the class'
superclasses. A class can also have subclasses, which are located on branches
that emanate from beneath the class. Thus, a class' superclasses are closer to the
root of the class tree, and a class' subclasses are farther from the root.

The illustration below shows the structure of a simple class tree with class
Object at the root of the tree. This tree has just two short branches.

Figure 4-1 A simple class tree

The Immediate Superclass

Inheritance

Object

ClassB ClassD

In this example, ClassA and ClassC are subclasses of class Object. Object is
the superclass of ClassA and ClassC. ClassB is a subclass of ClassA, and
ClassO is a subclass of ClassC. ClassB and ClassO each have two super­
classes: ClassB's superclasses are ClassA and class Object, and ClassD's
superclasses are ClassC and class Object.

The superclass that is immediately above a class on its branch of the class tree is
called the class' immediate superclass. ClassB's immediate superclass is
ClassA, and ClassO's immediate superclass is ClassC. ClassA and ClassC
both have class Object as an immediate superclass.

A class inherits the variables and methods of all its superclasses. For example,
ClassB inherits all the variables and methods of ClassA and class Object. Note
that class Object's methods are available to all classes in the tree since Object is
the root of the tree.

A class can override any of the variables and methods that it inherits. For exam­
ple, ClassB can redefine a variable or method that is defined in ClassA. When a
subclass overrides a method of one of its superclasses, the subclass can simply
add to the method definition given by the superclass, or it can completely
redefine the method. A class can also define new variables and methods.

Revision A, of 25 August 1989

74 NeWS Programmer's Guide

Single Inheritance and Multiple
Inheritance

An instance inherits the variables and methods of its class and its class' super­
classes. For example, an instance of ClassB inherits the variables and methods
of ClassB, ClassA, and Object.

An instance can override anything that it inherits, although it usually should not
override a class variable or method. An instance often changes the values associ­
ated with the instance variables that it inherits. In unusual cases, an instance can
even define new variables and methods.

Two kinds of inheritance can occur in the class tree: single inheritance and multi­
ple inheritance. The term single inheritance refers to the case in which a class
has only one immediate superclass. The tenn multiple inheritance refers to the
case in which a class has more than one immediate superclass.

The class tree shown in the previous figure contains only single inheritance
because all of the classes have only one immediate superclass. An example of
multiple inheritance would be if ClassB inherited not only from ClassA, but
also from ClassC. In this case, another line would need to be drawn on the tree
diagram to connect ClassB to ClassC. This situation is illustrated below.

Figure 4-2 A class tree with multiple inheritance

The Inheritance Array

Object

OassD

In this example of multiple inheritance, ClassB has three superclasses: ClassA,
ClassC, and Object. ClassB has two immediate superclasses: ClassA and
ClassC.

ClassB inherits from all three of its superclasses. But a question arises: should
ClassA override ClassC or vice versa? This issue is discussed in detail in Sec­
tion 4.12, Multiple Inheritance.

When you create a class, you must specify where the class belongs in the class
tree; you do this by specifying the new class' immediate superclass(es). In the
single inheritance case, you just need to specify the one class that is immediately
above the new class. In the multiple inheritance case, you need to specify all the
class' immediate superclasses.

Based on this immediate superclass information for the new class, NeWS creates a
special array called the class' inheritance array. The inheritance array lists all
the class' superclasses in the order that they override each other. Each class in

Revision A, of 25 August 1989

A Single Inheritance Example

Chapter 4 - Classes 75

the array overrides the classes listed after it in the array.

In the single inheritance case, a class' inheritance array contains all the class'
superclasses listed in leaf-to-root order. For example, the inheritance array of
ClassO is

[ClassC Object]

and the inheritance array of ClassA is

[Object}

In the multiple inheritance case, a class' inheritance array still contains all the
class' superclasses, but a unique order no longer exists. A valid inheritance array
consists of any arrangement of the superclasses that maintains the leaf-to-root
order of classes on the same branch. For example, ClassB in the above figure
has the following two possible inheritance arrays:

[ClassA ClassC Object]

[ClassC ClassA Object]

You can choose either one of these arrays for ClassB. Section 4.12, Multiple
Inheritance, explains the details of inheritance arrays for the multiple inheritance
case.

Each instance also has an inheritance array. An instance's inheritance array is
the same as the inheritance array of its class except that the class is added to the
list. Thus, an instance's inheritance array contains its class and all of its class'
superclasses. For example, the inheritance array of an instance of ClassO is

[ClassO ClassA Object]

and the inheritance array of an instance of ClassA is

[ClassA Object]

An instance has a copy of all the instance variables of the classes in its inheri­
tance array, and an instance can invoke any of the methods of the classes in its
inheritance array.

This section describes a single inheritance example in which every class has only
one superclass. The following figure illustrates the class tree for this example.

sun
microsystems

Revision A, of 25 August 1989

76 NeWS Programmer's Guide

Figure 4-3 A single inheritance example

Object

Canvas

Menu

OLMenu

In this example, class Object has one immediate subclass named class Canvas.
Class Canvas and its subclasses implement different kinds of canvases, such as
menus and scrollbars. Note that the class tree should not be confused with the
canvas tree. Instances of class Canvas (and of its subclasses) represent NeWS

canvas objects that exist in the canvas tree. But the instances inherit their vari­
ables and methods from class Canvas in the class tree.

In this example, class Control handles the basic user interaction operations
needed by control objects such as dials. Control objects are canvases that have a
current value and a callback procedure; the callback procedure is executed when
the user interacts with the object to change its current value.

Class Dial is a subclass of Control that provides the basic operations needed to
build various types of dials. A dial lets the user choose a numeric value between
a minimum and maximum. Sliders and scrollbars are types of dials. Scrollbars
are commonly used to scroll through a text file. Class Slider implements generic
sliders, and class ScrollBar implements scrollbars.

Class Selection List manages a list of items, along with any sublists the items
have; this class provides the basic operations needed by menus. Class Menu
implements a basic menu, using the operations defined in Selection List. Class
OLMenu is used to create menus with a special user interface.

You can arrange your class tree (your subclasses) to maximize modularity and to
take advantage of the shared aspects of objects. You can implement different
variations of an object as subclasses of one class. For example, you might have
several different user interface options for menus; each user interface option
could be a subclass of class Menu. Class Menu would contain code that is

Revision A, of 25 August 1989

Summary of Terms

Chapter 4 - Classes 77

common to all menus, thus avoiding repetition of the same code in each type of
menu object.

Since this example is a single inheritance case, every class has just one immedi­
ate superclass. For example, class Dial's immediate superclass is Control, and
class Control's immediate superclass is Canvas.

In the single inheritance case, the inheritance array for any class consists of the
class' superclasses, listed in leaf-to-root order. For example, class ScrollBar's
inheritance array is

[Dial Control Canvas Object]

and class Menu's inheritance array is

[Selection List Canvas Object]

Assume that you have an instance of class Scroll Bar named MyScroliBar and an
instance of class OLMenu named MyOLMenu. The inheritance array of an
instance is the same as the inheritance array of the instance's class, except that
the instance's class is added to the array. For example, the inheritance array for
MyScrollBar is

[ScroliBar Dial Control Canvas Object]

and the inheritance array for MyOLMenu is

[OLMenu Menu Selection List Canvas Object]

The following table summarizes the class terminology introduced in the previous
sections.

Revision A. of 25 August 1989

78 NeWS Programmer's Guide

Table 4-1 Summary of Terms

object a class or an instance; each class and instance object
consists of variables and procedures stored in a
POSTSCRIPT language dictionary

class a template for a set of similar objects known as
instances

instance one of the objects described by a class; an instance
inherits its variables and procedures from its class

instance variables variables that are given to each instance of a class

class variables variables that are shared by all instances of a class

methods procedures that a class uses to operate on its
instances

message a method name that is sent to an object to invoke
the associated method

Object the class that is the root of the class tree

superclasses a class' superclasses are located on the branch(es)
that emanate root-ward from the class (in the single
inheritance case only one such branch exists and it
connects the class to the root); a class inherits from
all its superclasses

subclasses a class' subclasses are located on the branches that
emanate leaf-ward from the class

single inheritance when a class' superclasses all occupy the same
branch of the tree

multiple inheritance when a class' superclasses do not all occupy the
same branch of the tree

immediate superclass in the single inheritance case, a class' immediate
superclass is directly above the class on the branch
that connects the class to the root; in the multiple
inheritance case, a class has more than one branch
that emanates root-ward from the class and each
such branch has an immediate superclass that is
directly above the class

inheritance array each object has an inheritance array that contains
the classes from which the object inherits, listed in
the order that the classes override each other

Revision A, of 25 August 1989

4.2. Creating a New Class

The Class Definition

c1assbegin

c1assend

redef

Chapter 4 - Classes 79

To create a new class, you use the c1assbegin and c1assend operators in
sequence.

The basic structure of a class definition is given below (you define each class
variable and method with the def operator).

/classname [superclasses] [instancevars]
classbegin

class variable definitions
class method definitions

classend def

The operators that are used in class definitions are described below.

classname superclasses instancevars classbegin-

Creates an empty class dictionary for the new class and puts it on the dictionary
stack.

c1assbegin takes three arguments: the classname, the immediate superclass or an
array of superclasses, and the instance variables. You specify the superclass(es)
as one immediate superclass (the single inheritance case) or as an array of super­
classes (the multiple inheritance case). See Section 4.12, Multiple Inheritance,
for an explanation of how to specify an array of superclasses. You can specify
the instance variables as an array of names or as a dictionary of key-value pairs.
If you use an array of names, the variables are initialized to null; if you use a dic­
tionary, the variables are initialized to the values specified in the dictionary.

After calling c1assbegin, you use the def operator to fill the class dictionary with
the class' variables and methods. Then you call c1assend to complete the crea­
tion of the new class.

- classend classname newclass

Completes the class dictionary that was left on the dictionary stack by c1assbe­
gin. The c1assend operator constructs the inheritance array based on the
superclass(es) that you passed to c1assbegin (see Section 4.12, Multiple Inheri­
tance, for a discussion of the inheritance array in the multiple inheritance case).
c1assend also compiles the class' methods (see Section 4.5, Method Compilation)
and executes any procedures in UserProfile that have the same name as the class
(see Section 4.8, Overriding Class Variables With UserProfile). c1assend returns
the name of the new class (the name that you passed to classbegin) and the new
class dictionary.

name object redef -

In a class definition, the redef operator redefines an instance variable that is
already defined in one of the class' superclasses. If you use the def operator to
redefine an instance variable in a dictionary passed to c1assbegin, you will be
warned that you are redefining an existing instance variable. If you want to avoid

Revision A, of 25 August 1989

80 NeWS Programmer's Guide

Initializing a New Class

4.3. Sending Messages
With the send
Operator

The Usual Form of send

The Steps Involved in a send

the warning, you must use the redef operator instead of the def operator.

If a class requires some processing before the definition of the class is complete,
the convention is to put the initialization code in a Iclassinit method for the class.
For example, class Object's Iclassinit method starts a process that listens for
obsolescence events; class Object then handles obsolete classes and instances as
explained in Section 4.11, Obsolete Objects in the Class System.

This section explains how to use the send operator to invoke class methods. The
section discusses both fonns of the send operator and gives an example of a sim­
ple send and a nested send.

<args> name object send <results>

Sends a message to an object to invo~e the method associated with the message.
The name argument is the name of the method that is invoked by the message,
and the object argument is the receiver of the message. The object argument is
often an instance, but it can also be a class. Any arguments required by the
method must be specified; any results of the method are returned.

Before send invokes the name method, it places the classes in object's inheri­
tance array on the dictionary stack and places object on top of the dictionary
stack. When the name method is invoked, the seNer searches the stack from top
to bottom to find the method; the seNer finds the first occurrence of the method
in the inheritance array that is on the stack. This mechanism ensures that classes
override each other in the proper order. After the name method executes, the
send operator restores the dictionary stack to the state it was in before the send.

Thus, the send operator takes advantage of the stack-based nature of the
POSTSCRIPT language to implement inheritance. An object can access the class
variables and methods of the classes in its inheritance array because the object's
inheritance array is placed on the dictionary stack when a message is sent to that
object. This arrangement allows a class dictionary to store only its own class
variables and methods, not the class variables and methods of its superclasses.
Likewise, an instance only needs to store its instance variables.

The group of objects that is put on the dictionary stack during a send is known as
the send context. The send context includes the message receiver and the classes
in its inheritance array.

The send process is explained in detail below.

When name is sent to object, the following steps are taken:

1. Any existing send context is temporarily removed from the dictionary stack.
(In a nested send, the first send's context is on the dictionary stack when the
second send is called.) If a local dictionary happens to be on top of the dic­
tionary stack (because send is called inside the local dictionary), then send
temporarily removes the local dictionary from the stack. The example in the
subsection A Nested send illustrates how send handles local dictionaries.

Revision A, of 25 August 1989

Using send to Invoke a
Method

Chapter 4 - Classes 81

Note that you might have problems if one of your methods puts a local dic­
tionary on the stack and never removes it from the stack. See Section 4.5,
Method Compilation, if you plan to use such a method; you may need to
take special precautions to ensure that the local dictionary is handled prop­
erly.

2. The send operator establishes object's context by putting object and all of
the classes in object's inheritance array onto the dictionary stack. The inher­
itance array is placed on the stack with the root-most classes toward the bot­
tom of the stack and the leaf-most classes toward the top; object itself is
placed on the top of the stack.

3. The server searches the dictionary stack from top to bottom for the name
method. Because object and the classes in its inheritance array were placed
on the dictionary stack, the server finds the first occurrence of the method in
objecfs context. If the chain of classes is searched all the way back to the
root without finding the specified method, an error is returned.

4. When the name method is found, it is executed. The arguments required by
the method are taken from the operand stack, and any results of the method
are put on the operand stack.

5. The initial context is then restored; the dictionary stack is restored to the
state it was in before the send was made. If a local dictionary was removed
from the top of the stack in step 1, the local dictionary is restored to its origi­
nal position at the top of the stack.

The example in the following section illustrates these five steps.

This example uses the class hierarchy given in Section 4.1, Basic Terms and
Concepts. Assume that send is invoked as follows:

[____ ar_g_1_a_~_2_I_m_Y_m_e_th_o_d_M_Y_S_c_ro_I_IB_a_r_se_n_d ______________________ ~J
Also assume that before this send, the dictionary stack contains the systemdict
on the bottom and the userdict on the top. When this send is executed, the fol­
lowing steps are taken:

1. No existing send context is on the stack when this send is called, so nothing
is removed from the stack.

2. The instance MyScroliBar and the classes in its inheritance array are pushed
on the dictionary stack, as shown in the following figure:

Revision A, of 25 August 1989

82 NeWS Programmer's Guide

Figure 4-4 Dictionary stack before and during a send to MyScroliBar

userdict

systemdict

dictstack (before)

A Nested send

MyScrollBar

ScrollBar

Dial

Control

Canvas

Object

/mymethod MyScrollBar send userdict

systemdict

dictstack (during)

instance

class

superclasses

3. The server locates Imymethod in one of the classes on the stack.

4. The server executes Imymethod. As Imymethod executes, it consumes
arg2 and arg 1 from the operand stack. If Imymethod returns any results,
they are placed on the operand stack.

5) The send operator restores the dictionary stack to its previous state with the
systemdict on the bottom and the userdict on the top.

This section expands on the previous example to illustrate a nested send (one
send within another). The example also shows what happens when send is used
in a local dictionary.

Assume that Imymethod is sent to MyScroliBar as before. The classes in
MyScrollBar's inheritance array are put on the dictionary stack. Suppose that
Imymethod is located in Scroll Bar and that Imymethod is defined as follows:

Imymethod {
10 diet begi n

Imethod2 Dial send

end

} def

When Imymethod is found and executed, it puts a local dictionary on the dic­
tionary stack. When the send to Dial is encountered in Imymethod, the follow­
ing steps are taken:

Revision A. of 25 August 1989

Chapter 4 - Classes 83

1. This inner send removes the local dictionary and the existing send context
(MyScroliBar and its inheritance array) from the dictionary stack.

2. The send to Dial then puts Dial and its inheritance array on the stack, as
shown in the following figure:

Figure 4-5 Dictionary stack before and during a nested send

previous

send

context

localdict

MyScrollBar

ScrollBar

Dial

Control

Canvas

Object

userdict

systemdict

dictstack (before)

Using send to Create a New
Instance

Dial

Control

Canvas

Object

Imethod2 Dial send userdict

systemdict

dictstack (during)

3. The server locates Imethod2 in one of the classes on the stack.

4. The server executes Imethod2.

new

send

context

5. The inner send takes its send context (Dial and its inheritance array) off the
stack and puts the previous send context (MyScroliBar and its inheritance
array) back on the stack. The local dictionary is placed back on top of the
stack.

After the inner send is complete, Imymethod finishes executing. When
Imymethod finishes, MyScroliBar and the classes in its inheritance array are
removed from the stack to complete the outer send.

This example is only meant to illustrate the manipulation of the dictionary stack
during a nested send. In Imymethod, you would not actually send a message
directly to Scroll Bar's superclass. Instead, you would use the super psuedo­
variable to represent the message receiver; super is discussed in Section 4.4, The
Psuedo-Variables self and super.

Class ObjeCt provides several methods for creating new instances of a class. The
Inew method is briefly introduced here; the creation of new instances is discussed
in detail in Section 4.6, Creating a New Instance.

The following example creates a new instance of MyClass by sending the Inew
message to MyClass.

(Inew MyClass send J

Revision A, of 25 August 1989

84 NeWS Programmer's Guide

Another Form of send

Using send to Change the
Value of an Instance Variable

Using send to Change the
Value of a Class Variable

In this case, send puts MyClass and its inheritance array on the dictionary stack.
The server locates the Inew method and executes it, leaving the new instance on
the operand stack. Then send removes MyClass and its inheritance array from
the dictionary stack.

<args> proc object send <results>

Executes proc in the context of object, exactly as if proc had been predefined as a
method and given a name that was passed as an argument to send. Any argu­
ments needed by the procedure are taken from the operand stack; any results of
the procedure are returned to the operand stack. The syntax for this fonn of send
is shown below.

(____ w_r_oc_e_~_r_e_}O_b_j_ec_t_s_e_nd _____________________________________]

The Idoit method must sometimes be used in conjunction with this form of send.
For details, see Section 4.5, Method Compilation.

This form of send bypasses the established class interface and should rarely be
used. One valid use of this fonn of send is a batch send; see the I doit method in
Section 4.5, Method Compilation, for an example of a batch send.

After you create a class and some instances of the class, you will probably want
to change the values of some of the instance variables. Although you can change
the value of an instance's variable in several ways, only one way is proper.

The appropriate way to change the value of an instance variable is to include in
the class definition a method that changes the value. Then you can send that
message to any instance of the class to change the value of its copy of that
instance variable. This is just a specific case of using send to invoke a class
method.

You can also change the value of an instance variable by passing a new value in a
procedure argument to send (see the subsection Another Form oj send, above) or
by putting the value directly in the instance dictionary. Both these methods are
discouraged because they ignore the established class interface. A class method
that changes the value of an instance variable might also take a special action
when the value is changed. For example, suppose class Dial has a /setvalue
method that not only sets the Dial's internal value, but also redraws the dial on
the screen to reflect the new value. For this reason, you should always use an
established class interface to change the value of instance variables.

You change the value of a class variable the same way you change the value of
an instance variable: define a class method that changes the value of the vari­
able, and then invoke the method. Note that you should use store instead of def
in methods that define the value of class variables. If you used def, you might
accidently add the class variable to an instance dictionary that happens to be on
top of the stack. (You can intentionally add a class variable to an instance dic­
tionary; this action is known as promoting the instance variable. For details, see

Revision A, of 25 August 1989

4.4. The Psuedo-Variables
self and super

Chapter 4 - Classes 85

Section 4.9, Promoting Class Variables to Instance Variables.

When send is used outside a method, an object is given as an argument to send,
and the search for the method begins with that object. The object argument to
send can be an instance or a class.

When send is used inside a method, two special symbols named self and super
can be used as the object argument to the send operator. These symbols, known
as psuedo-variables, add flexibility and generality to class methods because they
take different values depending on the situation.

This section uses a simple example to illustrate self and super (this example is
adapted from an example in Adele Goldberg's SmalUalk- The Interactive Pro­
gramming Environment, Addison Wesley, 1984, pp 62-66).

Four classes are defined as follows:

lOne Object [] classbegin
!test {1} def
Iresult1 {/test self send} def

classend def

{Two One [] classbegin
!test {2} def

classend def

{Three Two [] classbegin
Iresult2 {/result1 self send} def
Iresult3 {/test super send} def

classend def

IFour Three [] classbegin
!test {4} def

classend def

Class Object has a subclass named One, class One a subclass named Two, class
Two a subclass named Three, and class Three a subclass named Four. The fol­
lowing diagram illustrates this simple class tree:

Revision A, of 25 August 1989

86 NeWS Programmer's Guide

Figure 4-6 Class tree/or self and super example

These classes do not define any instance or class variables, but they do define
some methods. The method definitions are summarized below.

o Class One defines a method named ftest that puts the number 1 on the
operand stack. Qass One also defines a method named fresult1 that sends
the ftest message to self.

o Class Two defines a method named ftest that puts the number 2 on the
operand stack. Qass Two's ftest method overrides class One's ftest
method.

o Class Three defines a method named fresult2 that sends fresult1 to self.
Class Three also defines a method named fresult3 that sends ftest to super.

o Class Four defines a method named ftest that puts the number 4 on the
operand stack. Class Four's ftest method overrides the ftest methods in
classes One and Two.

An instance of each class is created as shown below. Inst1 is an instance of class
One, Inst2 an instance of class Two, Inst3 an instance of class Three, and
Inst4 an instance of class Four.

/Inst1 Inew One send def
IInst2 Inew Two send def
IInst3/new Three send def
IInst4/new Four send def

The psh command can be used to begin an interactive session with NeWS (see
the manual page for psh in theXlllNeWS Server Guide). The above class and
instance definitions can be defined during such an interactive session. Then the
class methods can be executed by sending messages to the instances. The next
two sections use this approach to illustrate sends to self and super for these class
and instance definitions. For each example send, the code that is typed to psh
is shown on the first line (in sans serif font) and the resulting number that the

~~sun ~~ microsystems
Revision A, of 25 August 1989

The self Psuedo-Variable

Chapter 4 - Classes 87

server prints to the screen is shown on the second line (in listing font).

When a message is sent to self, the search for the method begins with the object
that received the original message that caused the current method to be invoked.
Thus, self represents the object that is on top of the dictionary stack at the time
that the self send is encountered. The following examples clarify the use of self.

First, the Iresult1 message is sent to Inst1 as follows:

When Iresult1 is sent to Inst1, the following actions are taken:

1. The send operator puts Inst1 and the classes in its inheritance array on the
dictionary stack.

2. The Iresult1 method is found in class One and is executed. The Iresult1
method sends Itest to self, which in this case is Inst1. (The instance Inst1
is the object that received the message, Iresult1, that caused the Itest
method to be invoked.)

3. Because this is a nested send, the old send context is temporarily removed
from the dictionary stack, and the new send context is put on the dictionary
stack. In this case, the old and new send contexts are identical since the
sends were made to the same object; the first message (lresult1) was sent to
Inst1 , and the second message (/test) was sent to self, which resolved to
Inst1. When the new context is put on the stack, the stack still contains
Inst1 and its inheritance array.

4. The search for the Itest method begins with self, which is Inst1. The Itest
method is found in class One. When executed, Itest puts the number I on
the operand stack.

5. The two nested send contexts are then cleared from the dictionary stack.
First the new send context is removed and replaced with the old context;
then the old send context is removed to complete the outer send.

6. After the sends are completed, the number I is printed to the screen with the
= operator.

Note that the context swapping in this nested send is inefficient. The same con­
text is swapped on and off the stack several times. The NeWS class mechanism
usually avoids doing these extra context swaps that occur when self is used with
send; the c1assend operator compiles a class' methods to replace most
occurrences of Imethod self send with a more efficient form (see Section 4.5,
Method Compilation). Because self is implemented as an operator that returns an
object, the construct Imethod self send can be executed even if it is not com­
piled; the compilation is done merely as an optimization.

Next, the Iresult1 message is sent to Inst2 as follows:

Revision A. of 25 August 1989

88 NeWS Programmer's Guide

The super Psuedo-Variable

When Iresult1 is sent to Inst2, the following actions are taken:

1. The send operator puts Inst2 and the classes in its inheritance array on the
dictionary stack.

2. The Iresult1 method is found in class One. The Iresult1 method sends
Itest to self, which in this case is Inst2. Thus the search for the Itest
method begins with Inst2, in the same context.

3. The Itest method is found in class Two. When executed, Itest puts the
number 2 on the operand stack.

4. The dictionary stack is restored to its initial state with the systemdict on the
bottom and the userdict on the top.

5. The number 2 is printed to the screen with the = operator.

Below are four more example sends.

The super psuedo-variable provides a way to invoke a method that would other­
wise be overridden. If super is used in a method as the object argument to send,
the search for the method associated with send's message begins with the class
that is immediately below the method's class on the dictionary stack (the next
superclass in the current send context). In other words, super represents the
class that follows the method's class in the inheritance array that is currently on
the dictionary stack.

The next two examples use the same class and instance definitions as the previ­
ous section, but this time they illustrate the super psuedo-variable.

First, the Iresult3 message is sent to Inst3 as follows:

When the Iresult3 message is sent to Inst3, the following actions are taken:

1. The send operator puts Inst3 and the classes in its inheritance array on the
dictionary stack. The dictionary stack then contains, from bottom to top, the

Revision A, of 25 Augu~t 1 Q~N

Chapter 4 - Classes 89

systemdict, the userdict, class Object, class One, class Two, class Three,
and Inst3.

2. The Iresult3 method is found in class Three. The Iresult3 method sends
Itest to super, which in this case is class Two. Note that super is the class
that follows Iresult3's class in the current send context, not the class that
follows Inst3.

3. Like any nested send, the send to super involves an old send context and a
new send context. In this case, the old send context is I nst3 and its inheri­
tance array. The new send context is super, or class Two, and its inheri­
tance array. These two contexts are identical except that the new context
begins with class Two instead of Inst3; the chain of superclasses is the
same, but the new context just omits class Three and Inst3. Therefore, the
contexts do not need to be swapped, as long as the search for the method
begins with super rather than with the object on top of the stack.

The search for the Itest method begins with super, which is class Two.

4. The Itest method is found in class Two. When Itest is executed, it puts the
number 2 on the operand stack.

5. The dictionary stack is restored to its initial state with the systemdict on the
bottom and the userdict on the top.

6. The number 2 is then printed to the screen with the = operator.

Unlike self, super is not implemented as an operator that returns an object.
When the classend operator compiles a class' methods, each occurrence of
Imethod super send is replaced with an operator that resolves super and then
finds and executes the method in the current context. Thus super cannot be used
without send, and it cannot be used unless the method in which it occurs is com­
piled. As a consequence of this implementation, the context swapping is always
avoided for sends to super (see Section 4.5, Method Compilation).

Now the Iresult3 message is sent to Inst4 as follows:

When the Iresult3 message is sent to Inst4, the following actions are taken:

1. The send operator puts Inst4 and the classes in its inheritance array on the
dictionary stack. The dictionary stack then contains, from bottom to top, the
systemdict, the userdict, class Object, class One, class Two, class Three,
class Four, and Inst4.

2. The Iresult3 method is found in class Three. The Iresult3 method sends
Itest to super, which is class Two. The search for Itest begins ~tticlass
Two, in the same context.

3. The Itest method is found in class Two. The Itest method is executed, put­
ting the number 2 on the operand stack.

Revision A. of 25 August 1989

90 NeWS Programmer's Guide

Using super to Send a
Message Up the Superclass
Chain

4. The dictionary stack is restored to its initial state with the systemdiet on the
bottom and the user diet on the top.

S. The number 2 is printed to the screen with the = operator.

The super pseudo-variable is often used recursively to send a message up the
superclass chain. If a method sends a message to super, the method in super can
send the same message to its super, and the sends to super can continue until the
root of the class tree is reached.

This construction allows a subclass to add to a method of one of its superclasses
without repeating the entire code of the method. The subclass' method can first
send the method to super to execute its superclass' operations for that method;
then the subclass' method can add its own sequence of operations to its definition
of the method. If all the classes on the branch define the method in this way, the
message will pass all the way up the class chain to the root.

Below is the basic structure used in a method to send a message up the superclass
chain:

Imymethod {
Imymethod super send % Do what super does.

% Do what this class wants to do.
} def

Restrictions on the Use of self In addition to being used as an argument to send, self can be used anywhere in a
and super class definition to refer to the object that self represents. This usage is possible

because self is implemented as an operator that puts an object on the stack.

Unlike self, super can only be used as an argument to send. The super psuedo­
variable is not implemented as an operator that returns an object; for details on
how super is implemented, see Section 4.S, Method Compilation. The super
psuedo-variable has one other restriction on its use: super cannot be used any­
where in a procedure passed to send unless the Idoit method is used (see Idoit in
Section 4.5, Method Compilation).

4.5. Method Compilation This section is optional reading; it will be helpful to advanced users, but most
. users will not need the detailed infonnation described here. The one possible

exception is the description of batch sends and the Idoit method; a batch send is
a fairly useful concept.

As explained in the examples of self and super above, sends to self and super
can be optimized by leaving the existing context alone. The classend operator
compiles a class' methods to substitute a more efficient fonn for most
occurrences of self send and all occurrences of super send. When the methods
are invoked later, the context swapping is avoided. Note that super send must
be compiled, but self send is compiled merely as an optimization.

Revision A, of 25 August 1989

Compiling self send

Compiling super send

Local Dictionaries

Chapter 4 - Classes 91

The method compiler replaces most occurrences of /method self send with
method. The search for /method then starts at the top of the existing dictionary
stack. The method compiler does not replace /method self send when it occurs
in a local dictionary, as explained below.

The method compiler replaces occurrences of /method super send with an
operator that resolves super and then finds and executes /method in the current
context. The search for /method begins with the object that super represents. If
/method super send occurs in a local dictionary, the method compiler replaces
it with a slightly less efficient fonn as explained below.

When a send is executed, any current send context is cleared from the dictionary
stack, and the context for the message receiver is established on the dictionary
stack. The send operator puts the message receiver on top of the dictionary
stack. During execution of the method invoked by the send, the topmost diction­
ary is almost always the message receiver. However in certain cases, a method
may use a local dictionary during its execution. A local dictionary is a diction­
ary that the method places on the dictionary stack while the method is executing.
If a local dictionary is on the stack when a nested send is invoked, the local dic­
tionary is removed from the stack before the nested method is invoked (see Sec­
tion 4.3, Sending Messages With the send Operator).

During most sends, an instance dictionary is on top of the dictionary stack. Most
methods assume that the top dictionary on the dictionary stack is an instance dic­
tionary. That is, most methods assume that they can store into instance variables
using the following construct: /variable value def. If a local dictionary were on
the stack above the instance dictionary, this construct would make a new value in
the local dictionary instead of replacing the instance variable in the instance dic­
tionary; that is why send removes local dictionaries before executing a nested
method.

In the following example, /method1 pushes a local dictionary mydict onto the
dictionary stack and then invokes /method2.

Imethod1 {
mydict begin

Imethod2 self send
end

} def

Imethod2 {
/variable 5 def

} def

During the execution of /method2, mydict is not present on the stack because
the send temporarily removes it, along with the previous send context. Thus
when /method1 is sent to an instance, variable is stored in the instance diction­
ary.

Revision A, of 25 August 1989

92 NeWS Programmer's Guide

Controlling Method
Compilation

Imethodcompile

The method compiler usually replaces /method self send with method. This
substitution works when the topmost dictionary is the message receiver. How­
ever, this optimization fails in the presence of local dictionaries. Returning to the
example, the following code illustrates the problem that would occur if the
method compiler optimized /method2 self send:

Imethod1 {

} def

mydict begin
method2

end

Imethod2 {
Ivariable 5 def

} def

In this case, mydict would still be on the dictionary stack when /method2 is
invoked. As a result, variable would be stored into mydict instead of being
stored as an instance variable.

To avoid this problem, the method compiler does not replace self send when it
occurs within a local dictionary. The method compiler still replaces super send
when it occurs in a local dictionary, but it uses a slightly less efficient form to
ensure that the local dictionary is handled properly.

The method compiler keeps track of local dictionaries in methods by counting
begin/end and dictbegin/dictend pairs. When the method compiler starts to
compile a method, the counter is initialized to zero. Each time a begin or dictbe­
gin is encountered, the count is incremented by one; each time an end or dictend
is encountered, the count is decremented by one. If the count is less than or
equal to zero when the method compiler comes across a self send or super send,
the compiler substitutes the most efficient form.

The method compiler can be fooled if you have a method that pushes a local dic­
tionary on the stack and does not remove it. You can compensate for this situa­
tion with the SetLocalDicts compiler directive. You can also use SetLocalDicts
to force the method compiler to optimize a self send or super send in a local dic­
tionary (if you want to purposely leave the dictionary on the stack). For details,
see the explanation of SetLocalDicts below.

Three methods are available to compile a method outside of a class definition.
These three methods and the SetLocalDicts directive are described below.

uncompiledproc Imethodcompile compiledproc

Compiles a procedure to replace occurrences of self send and super send as dis­
cussed above. Imethodcompile is called by c1assend to compile a class'
methods; it can also be used directly to compile a procedure that is passed to it.
The following example compiles a procedure in the context of MyClass and
returns the new, compiled, executable array:

~~ sun Revision A, of 25 August 1989
~ microsystems

linstallmethod

Idoit

Chapter 4 - Classes 93

{procedure} Imethodcompile MyClass send

name proc Iinstalimethod-

Creates a new method outside of a class definition. When you send
linstallmethod to an object, it installs the specified procedure as a method of the
object and gives the method the specified name. linstallmethod compiles the
procedure by calling Imethodcompile, and then it adds the method to the
object's dictionary. The object can be a class or an instance; in the latter case,
linstallmethod creates an "instance method."

In the example below, a new method called Imymethod is installed in MyClass.

Imymethod {procedure} linstallmethod MyClass send

<args> proc /dolt <results>

Compiles and executes a procedure. The Idoit method is used to compile a pro­
cedure that is passed to the send operator (see Another Form of send in Section
4.3, Sending Messages With the send Operator, above). You use Idoit in the fol­
lowing way:

(~ ___ {p_~_oc_e_du_r_e_}/_d_o_it_m_y_in_s_ta_n_c_e_s_e_nd ______________________________ J

If you use the procedure form of send outside of a method, the following rules
apply:

o Idoit is required when the procedure passed to send contains a reference to
super.

o Idoit is suggested when the procedure passed to send contains a reference to
self. Although the send works without Idoit in the case of self, the send is
more efficient when you compile the procedure.

If you use the procedure form of send inside a method definition, you do not
need to use Idoit because any self sends and super sends are compiled when the
method is compiled.

The procedure form of send is commonly used with Idoit to send a group of mes­
sages, or a batch send, to an object. The following example sends four messages
to myinstance.

Revision A, of 25 August 1989

94 NeWS Programmer's Guide

SetLocalDicts

{
Imethod1 self send
Imethod2 self send
Imethod3 self send
Imethod4 self send
} Idoit myinstance send

The above code is more efficient than sending each message separately to myin­
stance because only one send is actually executed; the sends to self are avoided
by the method compiler. Note that Idoit could be omitted if the above batch
send was located inside a method definition.

A batch send can omit both the Idoit method and the self sends, as follows:

{
method 1
method2
method3
method4
} myinstance send

Howeyer, the above construction is not as clear as the self send form and is
therefore not recommended.

int SetLocalDlcts -

Sets the method compiler's local dictionary count to int. When the local diction­
ary count is less than or equal to zero, the method compiler optimizes self send
and super send; when the local dictionary count is greater than zero, the method
compiler does not optimize self send and super send. The int argument and the
SetLocalDicts call are removed from the method when the method is compiled.

SetLocalDicts can be used in two ways: to ensure that the method compiler
optimizes sends when it should and to force the method compiler to optimize
sends when it otherwise would not. An example of each case is given below.

If you define a method that leaves a local dictionary on the stack, you might
cause the method compiler to optimize a send when it should not. The example
below illustrates such a case. The following methods represent a portion of a
class definition .

• \sun
• microsystems

Revision A, of 25 August 1989

Imethod1 {

} def

Imethod2 self send
Isize seH send

Imethod2 {
10 diet begi n

Isize 1 def

} def

Isize {

} def

Chapter 4 - Classes 95

In this example, /method2 puts a dictionary on the stack with a begin, but it
does not remove the dictionary with an end. /method2 is invoked from within
Imethod1. Therefore, a local dictionary is left on the stack in Imethod1, but the
method compiler has no way to know that the local dictionary exists since its
local dictionary counter is zero when it compiles /method 1 .

The method compiler optimizes the two sends in /method1 as follows:

Imethod1 {
method2
size

When /method1 is invoked, /method2 is called. /method2 puts a dictionary on
the stack and defines a variable named /size. Imethod2leaves the local diction­
ary on the stack. Then /size is encountered in /method1; /size is supposed to
invoke the /size method, but since /size was just defined in the local dictionary
that is still on the stack, /size refers to the variable instead of the method.
Although this is a coincidence that the variable and method names are the same,
the problem only occurred because /size self send was optimized by the method
compiler.

You can use the SetLocalDicts directive to tell the method compiler to avoid
optimizing Isize self send, as follows:

Imethod1 {

} def

Imethod2 self send
1 SetLoealDiets
Isize self send

Revision A, of 25 August 1989

96 NeWS Programmer's Guide

4.6. Creating a New
Instance

In this case, the local dictionary count is 1 when the method compiler reaches
Isize; therefore, Isize self send is not be optimized. Imethod 1 looks like the
following after it is compiled:

Imethod1 {
method2
Isize self send

} def

Although Imethod2 still leaves a local dictionary on the stack, the subsequent
send removes the local dictionary before the Isize method is executed.

In rare cases, you might want to leave a local dictionary on the stack before a
send. The example code below illustrates how you could set the local dictionary
count to be zero to force the method compiler to optimize two self sends.

Imymethod {
1 0 diet begi n

end
} def

o SetLoealDiets
Idothis self send
Idothat self send

After the method compiler compiles this method, it looks like the following:

Imymethod {

} def

1 0 diet begi n
dothis
dothat

end

When Imymethod is invoked, the two methods Idothis and Idothat are executed
with the local dictionary on top of the stack.

This section discusses the methods that NeWS provides to create and initialize
instances. You send the Inew message to create a new instance of a class. A
class can use the standard object creation provided by Object's Inewobject
method, or the class can alter the wayan object is created. For ex.ample, the
Inewmagic method can be used to create a new instance from an existing NeWS

magic dictionary. A class can initialize its instances with the Inewinit method.
To request the default implementation of a class, you can send the Inewdefault
message instead of the Inew message (/newdefault is discussed in Section 4.7,
Intrinsic Classes).

Revision A, of 25 August 1989

Inew

Inewobject

Chapter 4 - Classes 97

<initializationargs> <creationargs> Inew instance

Builds an instance of the class that receives the Inew message. For example, the
following expression creates a new instance of MyClass:

(~ ___ /n_e_W_M __ YC __ la_S_s_s_en_d ______________________________________ ~]
A class should not need to define its own Inew method. Instead, the Inew
method in class Object is separated into two parts, and a class can choose to
override either or both of the parts. These two parts are the two methods that
Inew calls: Inewobject and Inewinit. The Inewobject method builds a new
instance of a class, and the Inewinit method initializes the instance.

When Inew is sent to MyClass, the following steps are taken:

1. The send operator puts MyClass and its superclasses on the dictionary
stack.

2. The Inew method is located in Object (assuming no subclasses override
Object's Inew method).

3. The Inew method in class Object sends Inewobject to MyClass to create a
new instance of the class. The Inewobject method leaves the newly created
instance on the operand stack.

4. The Inew method sends Inewinit to the new instance to initialize it. A class'
Inewinit method adds anything that is unique to that class.

5. After invoking Inewobject and Inewinit, the Inew method is done. The
Inew method leaves the new instance on the operand stack. The send opera­
tor takes MyClass and its superclasses off the dictionary stack to complete
the send.

If a class requires arguments to its Inewobject or Inewinit methods, they must be
passed to Inew when an instance of the class is created. The following syntax
creates an instance of MyClass and names the instance myinstance:

Imyinstance <initializationargs> <creationargs> Inew MyClass send def

The Inewobject and Inewinit methods are described in more detail below.

<creationargs> Inewobject instance

Creates an instance and leaves it on the operand stack. The Inewobject method
is called by Inew when a new instance of a class is created. After calling
Inewobject, the Inew method then calls Inewinit to allow the class to initialize
its new instance.

Class Object's Inewobject method creates an instance dictionary and copies the
class' instance variables into it. The Inewobject method also assigns an inheri­
tance array to the instance.

+~I!! Revision A. of 25 August 1989

98 NeWS Programmer's Guide

Inewinit

Most classes do not need to override Inewobject. The Inewmagic method, dis­
cussed below, is an example of how a class might override the Inewobject
method.

<initializationargs> Inewlnlt -

Initializes a new instance. The Inew method sends Inewinit to the instance
immediately after it has been created.

Class Object's Inewinit method performs no action. A class should provide its
own Inewinit method if it needs to initialize its instances. The Inewinit method
can perfonn any action that should be taken when a new instance of the class is
created. If a class offers a Inewinit method, the method should send Inewinit to
super to perfonn any initialization required by the class' superclasses, and then it
should perform the class' initialization.

Below is an example of a class definition that uses the Inewinit method. The
class, called TimeKeep, is a subclass of class Object.

/TimeKeep Object
%instance variables:
dictbegin

/Time null def
dictend
classbegin

%class variables:

IClassTime currenttime def

%methods:

Inewinit {
Inewinit super send
Iresettime self send

} def

Iprinttime {
(Time is:) print
Time 10 string cvs print
(\n) print

} def

Iresetti me {
ITime currenttime def

} def

classend def

Class TimeKeep has a class variable, ClassTime, that is set to the time of crea·
tion of the class. TimeKeep has an instance variable named Time. Class

Revision A, of 25 August 1989

inewmagic

Chapter 4 - Classes 99

TimeKeep's Inewinit method first sends Inewinit to super; then it calls the
Iresettime method to initialize the instance variable Time to be the time of crea­
tion of the instance (the time at which the method is called). The method print­
time prints the value of the instance variable Time.

The following expression defines an instance of class TimeKeep named timer:

(/timer Inew TimeKeep send del

The expression below prints the value of timer's instance variable Time:

(Iprinttime timer send

A class' instance variables can often be initialized in a dictionary passed to
c1assbegin; usually, you do not need to use newinit to assign initial values to
instance variables. However, you can use Inewinit to make the initialization of
instance variables more efficient.

When you create a new instance, the Inewobject method copies all the class'
instance variables into the new instance dictionary. This copying takes less time
for simple instance variables than for composite instance variables. Therefore,
whenever you can avoid declaring a composite instance variable in a dictionary
passed to c1assbegin, you shorten the amount of time required to create a new
instance of that class. This time difference is more significant if you can arrange
your class definition to avoid passing any composite instance variables to
c1assbegin. To initialize a null dictionary, for example, you might define a sim­
ple instance variable to be null in the dictionary that you pass to classbegin and
then define that variable to be a growabledict in a Inewinit method for the class.
This arrangement is faster than simply defining the variable to be nulldict in the
dictionary that you pass to classbegin.

Note that you can pass composite instance variables to classbegin when neces­
sary; your code is just more efficient if you minimize the number of composite
instance variables passed to classbegin in your class definitions.

<creationargs> dict Inewmagic instance

J

J

Builds an instance from an existing NeWS dictionary object such as a canvas or an
event. To create such an instance, you send the Inew message to the desired
class of the object, and the class overrides the Inewobject method with the
inewmagic method.

The Inewmagic method takes a magic dictionary object from the stack and uses
the key-value pairs in the magic dictionary as instance variables. The instance is
also given any instance variables specified by its class. The magic dictionary is
turned into an instance dictionary by adding the additional instance keys; this is
possible because, by definition, a magic dictionary can have keys added to it.

Revision A, of 25 August 1989

100 NeWS Programmer's Guide

4.7. Intrinsic Classes

Suppose you have a class called Canvas that is used to create instances that are
canvas objects. You could define class Canvas in the following way:

ICanvas Object
dictbegin

%instance variables

dictend
classbegin

%class variables

%class methods

Inewobject {
newcanvas
Inewmagic super send

} def

Inewinit {
%initialize canvas instance variables

} def

classend

You could create an instance of class Canvas by sending the Inew message to
class Canvas. When you do this, the Inew method in class Object sends
Inewobject to self, and class Canvas overrides the Inewobject method with its
own version. Canvas' Inewobject method calls the canvas operator newcanvas
to create a new, empty canvas dictionary. Then Canvas' Inewobject method
calls Inewmagic to make an instance dictionary out of the canvas dictionary.

Note that an instance of Canvas is a true NeWS canvas. For example, if you
change the Mapped instance variable from false to true, the canvas will be
mapped to the screen. The canvas is part of the canvas hierarchy, but the
instance and class Canvas are part of the class hierarchy.

Sometimes you want a class to be a common, abstract superclass for a group of
subclasses. An abstract superclass provides an easy way to implement many dif­
ferent versions of the object that the superclass represents. The abstract super­
class defines a set of basic characteristics that all its subclasses must have, but the
superclass allows many of the implementation details to vary from subclass to
subclass. In fact, an abstract superclass can demand that its subclasses

Revision A, of 25 August 1989

Inewdefault

Chapter 4 - Classes 101

implement certain methods that it does not implement itself. Usually, an abstract
superclass does not have direct instances; instead, its subclasses have instances.
In NeWS, abstract superclasses are known as intrinsic classes.

For example, Window could be an intrinsic class that implements different types
of windows. Each subclass of Window might implement a different "look and
feel" for the window's user interface.

An intrinsic class should specify a default subclass; then if the Inewdefault mes­
sage is sent to the intrinsic class, the newly created instance belongs to that
default subclass (see Inewdefault below).

The three methods described below are often used with intrinsic classes.

<initializationargs> <creationargs> Inewdefault instance

Creates a new instance of a class' default implementation by sending the !new
message to the class' default subclass. If a class has no default subclass, the
server assumes that the default implementation is the class itself.

The following expression creates a new instance of the default subclass of Win­
dow:

(InewdefauR Window send

For example, if the default subclass of Window is MyWindow, the above
expression causes Inew to be sent to MyWindow.

A class' default subclass is specified by a class variable named DefaultClass.
You can set the value of DefaultClass in the class definition. The example
below sets the default class for Window to be MyWindow. Note that the value
of the DefaultClass variable is the default subclass inside procedure braces; the
braces are needed to defer execution until the default subclass is defined.

!Window [Canvas]
instance variables
classbegin

IDefaultClass {MyWindow} def

classend

A user can override the default implementation of a class by including a pro­
cedure in the UserProfile dictionary (see Section 4.8, Overriding Class Vari­
ables With UserProfile).

J

Revision A, of 25 August 1989

102 NeWS Programmer's Guide

I defaultclass

ISubClassResponsibility

4.8. Overriding Class
Variables With
UserProfile

- Idefaultclass class

Returns the default subclass of the class that receives the Idefaultclass message.
The default subclass is specified by a class' DefaultClass variable. If a class has
no DefaultClass variable, the default implementation is the class itself.

- ISubClassResponslbllity -

Requires a subclass to implement a certain method. ISubClassResponsibility
causes a deliberate undef ined error if the required method is sent to a sub­
class that does not implement it.

For example, the method ICreateFrameMenu must be implemented by any
subclass of Window if Window has the following code in its class definition:

ICreateFrameMenu {SubClass Responsibility} def

If the message ICreateFrameMenu is sent to a subclass of Window that does
not implement the ICreateFrameMenu method, ISubClassResponsibility
causes an undefined error.

UserProfile is a dictionary in . start up. ps that contains user-supplied infor­
mation. A user can add procedures to User Profile to override the default values
of class variables. (See theXl11NlM'S Server Guide for more information about
UserProfile.)

The c1assend operator completes the definition of a class. The last step that the
c1assend operator takes is to check the UserProfile dictionary for a procedure
with the same name as the class that is currently being defined. If the classend
operator finds such a procedure, it executes the procedure with the class name
and the class object on the stack. The procedure must leave the stack unchanged.

The following example shows part of a UserProfile dictionary. In this example,
the procedure named Frame overrides the default value of FrameColor for class
Frame; the procedure sets the value of FrameColor to be gray.

UserProfile begin

end

IFrame { %classname class => classname class
dup IFrameColor .75 .75 .75 rgbcolor put

} def

Revision A, of 25 August 1989

Overriding DefaultClass

4.9. Promoting Class
Variables to Instance
Variables

promote

Chapter 4 - Classes 103

A user can include a procedure in UserProfile that assigns a new value to a class'
DefaultClass variable; the new value overrides the value assigned in the class
definition. (For an explanation of DefaultClass see Inewdefault in Section 4.7,
Intrinsic Classes).

Assume that the default class of Window is set to MyWindow by the program­
mer (in the class definition). If a user wants the default implementation of class
Window to be SpecialWindow instead of MyWindow, the user could add the
following definition to the UserProfile dictionary:

UserProfile begin

IWindow { %classname class => classname class
dup IDefaultClass {SpeciaIWindow} put

} def

end

Note that SpecialWindow must be given in braces.

An instance can override a class variable by promoting that class variable to be
an instance variable. Class Object provides utilities to promote a class variable
to an instance variable and to inquire about the current promotion status of a vari­
able. These utilities are described below.

name value promote -

Takes a name and a value from the operand stack and adds that name-value pair
to the dictionary that is on top of the dictionary stack, exactly as the def operator
does. The promote utility is called when an instance dictionary is on top of the
stack so that the name-value pair becomes an instance variable. The promote
utility is just a fonnal way to use def instead of store; you should use promote
instead of def because promote makes your intention clear.

Suppose you have a class named Frame and an instance of the class named
myframe. (A frame is an object that "frames" a canvas. The frame might offer
such features as a menu and scrollbars.) Assume that one of Frame's class vari­
ables is FrameColor, which is the color of the frame's background. Also
assume that the default color of FrameColor is white. You can give myframe a
gray FrameColor by putting myframe's dictionary on top of the stack and then
promoting the class variable FrameColor as follows:

(____ /F_ra_m __ eC_o_�_o_r._7_5_.7_5_._7_5_~_b_C_o_lo_r_pr_o_m_o_te ______________________ ~)

In the above example, promote adds FrameColor to myframe's instance vari­
able dictionary and assigns the value returned by the rgbcolor operator to the

Revision A, of 25 August 1989

104 NeWS Programmer's Guide

unpromote

promoted?

A voiding an Accidental
Promotion

4.10. Destroying Classes
and Instances

/destroy

new instance variable.

name unpromote -

Removes, or un promotes, an instance variable from the instance's dictionary.
The unpromote utility takes the name of the variable from the operand stack and
removes that variable from the dictionary that is on top of the dictionary stack.
After putting myframe on top of the stack, you could remove FrameColor from
myframe's dictionary with the following expression:

(IFrameColor unpromote

name promoted? boolean

Takes the name of a variable from the operand stack and returns true if that vari­
able is found in the dictionary that is on top of the stack. Assuming that
myframe is on top of the dictionary stack, the following example returns true if
FrameColor is an instance variable (and was therefore promoted):

(IFrameCoior promoted?

J

J

If you try to use a def statement to change the value of a class variable while an
instance is on the top of the dictionary stack, you will add that variable to the
instance, effectively promoting it. If you just want to change the value of the
class variable, you should use store instead of def. The store operator finds the
first occurrence of the variable on the dictionary stack and replaces the value of
the variable with the newly specified value. (The def operator adds the name­
value pair to the top dictionary on the stack if it does not find the variable already
in that dictionary.)

This accidental promotion can occur even if you use def in a method that
changes the value of the class variable because the method might be sent to an
instance of the class, putting the instance dictionary on top of the stack. To be
safe, you should always use store to define values of class variables.

Instances are destroyed with the /destroy method; classes are destroyed with the
c1assdestroy operator. The c1assdestroy operator invokes a utility named
/c1eanoutclass. The /destroy method, c1assdestroy operator, and /cleanoutclass
method are described below.

-/destroy-

Destroys the instance that receives the /destroy message. An application might
invoke /destroy when a user chooses the "quit" option from a menu. Classes
should provide their own /destroy methods. A class' /destroy method should
remove circular references and then send /destroy to super. The /destroy
method in class Object perfonns no action; it is just there so that classes can

+!Y..!! Revision A, of 25 August 1989

classdestroy

/ clean outclass

4.11. Obsolete Objects in
the Class System

lobsolete

Chapter 4 - Classes 105

safely send Idestroy to super.

class classdestroy -

Destroys a class. classdestroy removes several circular references to the class by
removing the class from the subclass lists of its superclasses. Then classdestroy
sends the Icleanoutclass method (see description below) to the class.

- Icleanoutclass -

Calls the cleanoutdict operator, which is a NeWS utility that undefines every key
in the specified dictionary using the undefNeWS primitive. The Icleanoutclass
method is defined by the c1assbegin operator. A class can override the default
Icleanoutclass with its own clean-up procedure, if necessary.

When all the references to an object are soft, the object is obsolete and NeWS
sends an obsolescence event to all processes that have expressed interest in
obsolescence events for that object (see Chapter 7, M emory Management). The
processes should then remove their soft references to the object so that NeWS can
destroy the object and reclaim the memory that it used.

When class Object is initialized, it starts a process named ObsoleteEventMgr
that expresses interest in obsolescence events. When ObsoleteEventMgr
receives an obsolescence event from the server, it invokes a method in class
Object that handles obsolescence events. This method perfonns the following
actions:

o If the obsolescence event is for a class, the classdestroy operator is called to
destroy the class (see classdestroy in Section 4.10, Destroying Classes and
Instances).

o If the obsolescence event is for an instance, the lobsolete method is sent to
the instance to destroy it (see the description of lobsolete, below).

o If the obsolescence event is not for a class or an instance, it is simply popped
from the stack.

The lobsolete method is described below.

- /obsolete -

Sends Idestroy to self (see the explanation of /destroy in Section 4.10, Destroy­
ing Classes and Instances). When class Object's ObsoleteEventMgr receives
an obsolescence event for an instance, the lobsolete message is sent to the
instance to destroy it. A class rarely needs to override the default lobsolete
method.

Note that instances are usually destroyed without having to call lobsolete; the
/destroy method is usually called directly to destroy an instance.

Revision A, of 25 August 1989

106 NeWS Programmer's Guide

4.12. Multiple Inheritance Multiple inheritance is an optional aspect of the NeWS class system. You can
build a whole class tree without using multiple inheritance. However, in some
situations, multiple inheritance is very useful and easy to apply. This section first
gives an example of a simple case to illustrate why you might want to use multi­
ple inheritance, and then it gives a more complex example to explain the details
of multiple inheritance. Both the simple example and the more complex exam­
ple use the class structure shown in the following figure:

Figure 4-7 Basic class hierarchy for the multiple inheritance examples

A Simple Multiple Inheritance
Example: a Utility Class

Object

Canvas

Dial FlexBag

Class Canvas is a subclass of class Object. In this example, class Canvas has
two immediate subclasses: Control and Bag. Control represents a type of can­
vas that handles user interaction for objects such as buttons and dials. Bag
represents a special type of canvas that contains objects; an instance of Bag can
perfonn layout and intelligent repainting of its contained objects.

Control and Bag each have one subclass. Control has a subclass named Dial
that provides basic operations needed by sliders and scrollbars. Bag has a sub­
class named FlexBag; an instance of FlexBag can arrange its contained objects
by specifying interobject relationships based on compass directions.

So far, each class in this tree only specifies one immediate superclass. For exam­
ple, Dial's immediate superclass is Control, and FlexBag's immediate super­
class is Bag.

For convenience and efficiency, you can define a utility class that contains low­
level methods needed by many of your classes. You can define a utility class that
exists apart from the main class tree - a class with no superclasses. To create
such a class, you specify an empty superclass array to the classbegin operator, as
follows:

Revision A, of 25 August 1989

Figure 4-8

IUtility []
instance variables
classbegin

class variables
class methods

classend def

Chapter 4 - Classes 107

In fact, this is how class Object is defined. But class Object is the root of the
class tree, whereas class Utility is a utility class. Multiple inheritance allows the
classes in the main class tree to access class Utility's methods.

Assume that you want class Bag to be able to access the methods in Utility.
When you create class Bag, you could specify both Utility and Canvas in the
superclass array that you give to c1assbegin. For example, your class definition
could take the following form:

IBag [Utility Canvas]
instance variables
classbegin

class variables
class methods

classend def

The class tree is illustrated below. Note that Bag now has two immediate super­
classes; therefore two lines connect it to classes above it.

Class hierarchy with a utility class

Object

Canvas

Dial FlexBag

A class' superclasses include the class' immediate superclasses and all of their
superclasses. As shown in the diagram of the class tree, Bag's superclasses are
Utility, Canvas, and Object. Although the tree does indicate which classes are
Bag's superclasses, it does not indicate a unique order in which the superclasses

Revision A, of 25 August 1989

108 NeWS Programmer's Guide

should override each other. The superclasses do not belong to the same branch,
so a unique leaf-to-root order is no longer possible.

Thus in the multiple inheritance case, more than one valid order exists for the
classes in an inheritance array. A valid array consists of any arrangement of the
superclasses that maintains the leaf-to-root order of classes on the same branch.
Based on its superclasses, the three valid arrays for Bag in this example are the
following:

[Utility Canvas Object]

[Canvas Utility Object]

[Canvas Object Utility]

In some situations the order does not matter. If the classes in the inheritance
array have no methods or class variables in common, the order of those classes
makes no difference to the final result of a send.

With a utility class, all that matters is whether any classes override the methods
in the utility class. If the classes in the main class tree do not override any of the
utility class' methods, you can place the utility class anywhere in the inheritance
array and the results will be the same.

If you only specify a class' immediate superclasses in the array that you pass to
classbegin, the classend operator uses an algorithm to construct a default order
for the inheritance array. The classend operator starts with a copy of the super­
classes that you pass to classbegin, and it adds the other superclasses to build the
complete inheritance array. After your new class is created, you can examine the
default order of the inheritance array by sending the Isuperclasses method to the
new class. The Isuperclasses method puts the inheritance array on the operand
stack (see Section 4.15, Utilities/or Inquiring About an Object's Heritage).

If you do not like the default order of the inheritance array, you can change your
class definition to achieve the order you want. You can alter the order of the
inheritance array by changing the order of the superclasses that you give to
classbegin or by listing more superclasses in the array that you give to classbe­
gin. You can even list every superclass in the array that you give to classbegin
so that the inheritance array will be exactly what you specify. These options are
explained in more detail in the subsection A More Complex Multiple Inheritance
Example, below.

Once the inheritance array is constructed, the class mechanism works in the same
way for multiple inheritance as it does for single inheritance. If a message is sent
to Bag, any existing send context is temporarily removed, and then the classes in
Bag's inheritance array are placed on the dictionary stack. In this way, sends to
Bag can locate methods that reside in the utility class. Multiple inheritance does
not affect how the send operator works; it just determines the inheritance array
that send puts on the stack.

Revision A, of 25 August 1989

A More Complex Multiple
Inheritance Example

Chapter 4 - Classes 109

This example shows how to use multiple inheritance to create a subclass of Dial
named LabeledDial. The new type of dial has the basic characteristics of Dial,
and it also has the capabilities of FlexBag: an instance of LabeledDial is a dial
that can place a label north, south, east, or west of the dial itself. LabeledDial
inherits from both Dial and FlexBag because both these classes are specified in
the superclass array that is given to c1assbegin.

To simplify this example, the utility class is omitted. The following figure illus­
trates the class tree. Note that class LabeledDial has two immediate super­
classes: Dial and FlexBag.

Figure 4-9 C lass tree for LabeledDial example

Rules for Valid Inheritance
Array Orders

Object

Canvas

Again, the class tree does not indicate the order of the superclasses in
LabeledDial's inheritance array, but it does indicate which classes belong in the
inheritance array: Dial, FlexBag, Control, Bag, Canvas, and Object. (The
superclasses of LabeledDial include LabeledDial's immediate superclasses and
all of their superclasses.)

The basic rules for valid inheritance arrays in the NeWS class system are given
below:

(1) Classes on the same branch of the tree must be listed in leaf-to-root order in
the inheritance array.

(2) If class A precedes class B in the superclass array that is passed to c1assbe­
gin for class C, then class A must precede class B in the inheritance array of
class C.

(3) If class A precedes class B in the inheritance array of a superclass of class C,
then class A must precede class B in the inheritance array of class C.

Revision A, of 25 August 1989

110 NeWS Programmer's Guide

Possible Inheritance Arrays for
this Example

Given the above rules, more than one valid inheritance array is possible for
LabeledDial.

Assume that the following array is given to the c1assbegin operator for Labeled­
Dial:

[Dial FlexBag]

Based on the c1assbegin superclass array above (and the previously-defined
rules), the following two arrays are valid inheritance arrays for LabeledDial:

[Dial FlexBag Control Bag Canvas Object]

[Dial Control FlexBag Bag Canvas Object]

(A)

(B)

Note that the first array is a leaf-to-root breadth-first search through the tree and
the second array is a leaf-to-root depth-first search through the tree. The
breadth-first search moves up the tree one level at a time; classes at one level of
the tree are included in the array before the search moves up to the next level of
the tree. The depth-first search follows each branch, in turn, until the point at
which the branch meets the next branch; classes on one branch are included in
the array before the search moves down the tree to start again with the next
branch. Both these search types start with the first class listed in the classbegin
superclass array, and both search types satisfy the server's rules for valid inheri­
tance arrays.

The following picture illustrates the breadth-first order (inheritance array (A)
given above). Each class name has a number before it that indicates that class'
position in the inheritance array.

Figure 4-10 A breadth-first order for LabeledDial's inheritance array

6 Object

5 Canvas

Revision A, of 25 August 1989

Chapter 4 - Classes 111

The following picture illustrates the depth-first order (inheritance array (B) given
above). Each class name has a number before it that indicates that class' position
in the inheritance array.

Figure 4-11 A depth-first order for LabeledDial's inheritance array

Which Order Do You Choose?

6 Object

5 Canvas

Assume that the order of the superclasses in the superclass array passed to
c1assbegin is reversed, as follows:

[FlexBag Dial]

Based on the above c1assbegin superclass array (and the previously-defined
rules), the following two arrays are valid inheritance arrays for LabeledDial:

[FlexBag Dial Bag Control Canvas Object]

[FlexBag Bag Dial Control Canvas Object]

Again, one order represents a breadth-first search and one order represents a
depth-first search. In this case, the inheritance arrays begin with FlexBag
instead of Dial because FlexBag is listed before Dial in this version of
LabeledDial's c1assbegin superclass array. The order of the classes in the
c1assbegin superclass array is always maintained in the inheritance array (rule 2
in the subsection Rules for Order of Inheritance Arrays, above).

You choose the order of the inheritance array based on the order in which you
want the classes to override each other. If it makes no difference, you can
specify just the two immediate superclasses and let the server create the defaul t
array based on your classbegin superclass array. To examine the default order,
you can send the Isuperclasses method to the newly created class (see Section
4.15, Utilities for Inquiring About an Object's Heritage).

Revision A. of 25 August 1989

112 NeWS Programmer's Guide

Constraining the Order of the
Inheritance Array

super and Multiple Inheritance

If you do not like the default order, you can constrain the order of the classes in
the inheritance array by specifying more classes in the classbegin superclass
array. Note that you must always list the superclasses in leaf-to-root order.

Assume that LabeledDial's classbegin superclass array is specified as follows:

[Dial Control FlexBag]

Based on the above classbegin superclass array, the inheritance array for
LabeledDial is the following:

[Dial Control FlexBag Bag Canvas Object]

In effect, you have forced the inheritance array to be the depth-first choice that
starts with Dial.

You could force the array to be the breadth-first choice that starts with Dial by
specifying the classbegin superclass array as follows:

[Dial FlexBag Control]

In this case, the inheritance array for LabeledDial is the following:

[Dial FlexBag Control Bag Canvas Object]

All you are doing is specifying more of the array to achieve the order you desire.
The extreme case is to list the entire inheritance array that you desire. If you list
every superclass in the classbegin superclass array, and if you give a valid order,
the inheritance array will be identical to the superclass array that you specify.

With multiple inheritance, the send operator still puts the classes in the message
receiver's inheritance array on the dictionary stack and searches for the specified
method. The super psuedo-variable still refers to the superclass that follows the
method's class in the current send context, but note that super could mean dif­
ferent things to different classes.

For example, suppose that class Control has a method named /method 1 that
sends /method2 to super. Also suppose that /method1 is not overridden by any
classes beneath Control in the class tree. In this example, /method1 has the fol­
lowing structure:

Imethod1 {

Imethod2 super send

} def

As illustrated in the previous diagram of the class tree, Control's inheritance
array is the following:

[Canvas Object]

Revision A, of 25 August 1989

4.13. Utilities for Setting
and Retrieving an
Object's Name and
Classname

Iname

Isetname

Chapter 4 - Classes 113

If /method1 is sent to Control, Control and the superclasses in Control's inheri­
tance array are put on the dictionary stack. Then /method1 is located in Con­
trol, and the send to super is encountered. The super pseudo-variable refers to
the class that is below /method1 's class in the current send context; in this case,
the super in /method 1 refers to Canvas.

Assume that LabeledDial's inheritance array is the following:

[Dial FlexBag Control Bag Canvas Object]

If /method1 is sent to LabeledDial, LabeledDial and the superclasses in
LabeledDial's inheritance array are put on the dictionary stack. Then /method1
is found in Control, and the send to super is encountered. The super pseudo­
variable still refers to the class that is below /method1 's class in the current
send context, but in this case, that class is Bag. Therefore, if /method1 is sent
to LabeledDial, the search for /method2 starts with Bag.

The super psuedo-variable is always evaluated within the current context.
Therefore, the super in Control's method refers to Canvas if Control's inheri­
tance array is on the stack, but it refers to Bag if LabeledDial's inheritance array
is on the stack.

Each class has a ClassName variable that is assigned the classname that you pass
to the classbegin operator. In addition to the ClassName variable, each class
also has a Name variable. The default value of the Name is the ClassName.
You can set the value of the Name variable to something other than ClassName;
this is generally done for an instance by promoting Name to be an instance vari­
able and then giving the instance a name.

The class methods that set and retrieve the values of Name and Classname are
described below.

-/name name

Returns the name of the object that receives the Iname message. An object's
name is stored in its Name variable. The Name variable defaults to the
ClassName.

name Isetname -

Assigns the specified name to the Name variable of the object that receives the
Isetname message. If you send this message to an instance, the Name variable is
promoted to an instance variable. The following example promotes Name to be
an instance variable for Mylnstance and sets the value of Name to be IMyln­
stance:

IMylnstance Isetname Mylnstance send

Revision A, of 25 August 1989

114 NeWS Programmer's Guide

Iclassname

4.14. Utilities for Inquiring
About an Object's
Status

isobject?

isclass?

isinstance?

4.15. Utilities for Inquiring
About an Object's
Heritage

I superclasses

I subclasses

linstanceor?

Idescendantor?

-/classname name

Returns the class name of the class that receives the Iclassname message. The
class name is stored in a class' ClassName variable. The ClassName variable
defaults to the class name that you pass to classbegin.

You can use the operators described in this section to inquire about the status of
an object. You can ask whether the object is a "sendable object" (an instance or
a class), whether the object is a class, or whether the object is an instance.

object isobJect? boolean

Takes object from the top of the operand stack and returns true if the object is an
instance or a class. Returns false if the object is not an instance or a class.

object Isclass? boolean

Takes object from the top of the operand stack and returns true if the object is a
class or false if the object is not a class.

object isinstance? boolean

Takes object from the top of the operand stack and returns true if the object is an
instance or false if the object is not an instance.

You can use the methods described in this section to inquire about an object's
heritage and to retrieve information concerning the object's relationship to other
objects.

-/superclasses array

Returns the inheritance array of the object that receives the Isuperclasses mes­
sage.

-/subclasses array

Returns the subclass array of the class that receives the Isubclasses message.
Class B is in the subclass array of class A if class A was given to the c1assbegin
operator as a superclass of class B.

object linstanceof? boolean

When the linstanceor? message is sent to a class, the method takes the top object
off the operand stack and returns true if the object is an instance of the class or
false if it is not.

object Idescendantof? boolean

When the Idescendantor? message is sent to a class, the method takes the top
object off the operand stack and returns true if the class is in the object's inheri­
tance array.

Revision A. of 25 August 1989

lunderstands?

Iclass

4.16. Utilities for Finding
Objects on the send
Stack

Itopmostinstance

Itopmostdescendant

I sendtopmost

Chapter 4 - Classes 115

name lunderstands? boolean

When the lunderstands? message is sent to an object, the method takes the
specified name off the operand stack and returns true if any of the classes in the
object's inheritance array has a method with that specified name.

- Iclass class

When the Iclass message is sent to an instance, the method returns the instance's
class.

The send stack is a record of all the send contexts that have accumulated during
a nested send. The send stack is not the same as the dictionary stack; the dic­
tionary stack only contains the current send context, but the send stack contains
all the send contexts that came before the current send context in a nested send.
The send stack is aranged with the oldest context on the bottom and the most
recent context on the top.

You can use the utilities described in this section to locate the top instance or top
descendant of a class on the send stack or to send a message to the top descen­
dant on the send stack.

-/topmostlnstance object or null

When the Itopmostinstance message is sent to a class, the method finds and
returns the class' topmost instance on the send stack; ifno such instance exists,
the method returns null.

-/topmostdescendant object or null

When the Itopmostdescendant message is sent to a class, the method finds and
returns the class' topmost descendant on the send stack; if no such object exists,
the method returns null. A class' descendant is defined as an object that has that
class in its inheritance array.

<args> name Isendtopmost <results>

When lsendtopmost is sent to a class, it sends name to the topmost descendant
of the class (see the explanation of Itopmostdescendant, above). If name
requires arguments, they should be specified.

Revision A. of 25 August 1989

116 NeWS Programmer's Guide

4.17. Class Operators

classname superclasses instvars
class

object
object
object

name object
name

name object
name

<args> name object
<args> proc object

4.18. Class Methods

object

<args> proc
name proc

object
u ncompiledproc

<args>
<args>
<args>

<args> dict
<args>

<args> name

name
name

classbegln
classdestroy
classend
IsobJect?
isclass?
Islnstance?
promote
promoted?
redef
unpromote
self
send
send

Iclass
Iclassname
Icleanoutclass
Idefaultclass
Idescendantof?
Idestroy
Idoit
linstallmethod
Iinstanceof?
Imethodcompile
Iname
Inew
Inewdefault
Inewinit
Inewmaglc
InewobJect
lobsolete
Isendtopmost
Isuperclasses
Isubclasses
Itopmostdescendant
Itopmostinstance
lunderstands?
Isetname
ISubClassResponslbllity

classname newclass
boolean
boolean
boolean

boolean

object
<results>
<results>

class
name

class
boolean

<results>

boolean
compiledproc
name
instance
instance

instance
instance

<results>
array
array
null or object
null or object
boolean

Revision A, of 25 August 1989

5
Client-Server Interface

Client-Server Interface ... 119

5.1. The CPS Facility .. 119

5.2. Creating the . cps File .. 120

Argument Types .. 122

Sending POSTSCRIPT Language Code without Returning
Values .. 123

Receiving Synchronous Replies ... 124

Receiving Asynchronous Replies .. 125

5.3. Creating the . h File ... 126

CPS Utilities .. 127

5.4. Creating the . c File ... 127

POSTSCRIPT Language Communication Files .. 128

Reading the Client's Input Queue 128

5.5. Tokens and Tokenization .. 129

Compiling the . c File ... 130

Comments ... 130

5.6. Debugging CPS .. 131

5.7. Supporting NeWS From Other Languages .. 131

Contacting the Server ... 132

5.8. Byte Stream Fonnat ... 132

Encoding For Compressed Tokens ... 132

ene_int ... 132

ene_short_string .. 133

ene_string ... 133

enc_syscommon .. 133

enc _ syscommon2 ... 133

enc _ usercommon ... 133

enc __ usercommon ... 133

enc_eusercommon .. 133

enc _ IEEEfioat ... 133

enc _ IEEEdouble .. 134

Object Tables .. 134

Magic Numbers .. 134

Examples ... 134

5
Client-Server Interface

The Xll/NeWS seIVer contains facilities for communicating with client programs
that run either locally or remotely. Each client is pennitted to send POSTSCRIPT
language code to the seIVer. The seIVer runs this code on behalf of the client.

Typically, a client program contains two main sections; one, which can be writ­
ten in C, FORTRAN, or any other language, is used to perfonn the basic computa­
tions that are required; the other, which must be written in the POSTSCRIPT
language, is used to provide corresponding windows or graphics. The
POSTSCRIPT language section of the client program can be detached, sent to the
seIVer, and executed remotely by means of function calls.

This form of interprocess communication has the advantage of allowing great
freedom of execution for the respective parts of a process. The POSTSCRIPT
language code downloaded by the client program can reference any of NeWS '
inbuilt features, including procedures defined in the userdict and systemdict dic­
tionaries. The seIVer contains no predefined messages with which to respond to
the client; for example, no routine exists for notifying the seIVer when the user
manipulates the mouse. Instead, the way in which the client and seIVer commun­
icate is specified entirely by the programmer in tenns of the contents of the client
application.

Most programmers are likely to use C as the language of the client application.
Therefore, NeWS provides a special interface facility that supports C-client com­
munication (most of this chapter is concerned with this facility). However, it is
also possible for programmers to create their own interface facility for use with
other languages; information is provided on how this can be achieved.

NOTE Users who wish to download pure POSTSCRIPT programs to the server should use
the program psh (1) .

5.1. The CPS Facility The C to POSTSCRIPT facility (cps) provides an interface that allows C client
applications to communicate with the seIVer. The facility allows a client pro­
gram to define POSTSCRIPT language routines and associate them with C
function-names; these functions and their corresponding arguments can then be
downloaded into the server and executed. The facility provides functions that
open and close server communication, utilities that implement commonly used
POSTSCRIPT language operators, and a token-definition system that allows data to
be compressed before it is sent to the server.

119 Revision A, of 25 August 1989

120 NeWS Programmer's Guide

5.2. Creating the . cp s
File

To use the CPS facility, a client application must contain three files, which are
summarized as follows:

[J A. cps file

This file contains POSTSCRIPT language expressions to be executed within
the selVer, each expression is specified as an argument to the cdef com­
mand, which associates the expressions with a C function-name and other
facilities required for client-selVer communication.

[J A. h header file

This file is created by specifying a defined . cps file as the argument to the
cps command; the . h file contains the POSTSCRIPT language expressions
from the . cps file as specially compiled macros that are comprehensible to
the C compiler.

A . h header file automatically includes the file <NeWS/psmacros . h>,
which contains definitions of standard CPS macros and function-declarations
residing in libcps. a (this library must be added to the list of libraries
searched by the linker, using -lcps on the compile command line);
<NeWS/psmacros . h> also contains #include statements for both the
standard I/O package <stdio. h> and the NeWS I/O package
<NeWS/psio. h>.

[J A. c file

This file typically contains the main section of the C client program. The
file must begin with an #include statement that includes the previously
created . h file. The C function-names defined in the . cp s file can then be
referenced freely within the . c file and thereby used within the selVer to call
the associated compiled POSTSCRIPT language expressions.

NeWS provides C functions for opening, maintaining, and closing a line of
communication between the client and the selVer. These functions may also
be used freely within the . c file.

These three files are described in detail throughout the following sections.

The . cps file must consist of cdef statements, each of which defines a macro
to be used in selVer communication. The cdef command can be used to specify
both of the following:

[J POSTSCRIPT language code to be sent to the selVer for execution

[J Results returned from the selVer after execution

Revision A. of 25 August 1989

Chapter 5 - Client-Server Interface 121

The full syntax of the cdef command is as follows:

cdef name (args) => tag (results) POSTSCRIPT-code

[J name

This is the name of the macro as it appears in the client program

[J args

This represents any number of arguments to be passed to the C macro
defined by cdef. Each argument can be specified either as a value to be
used in the specified POSTSCRIPf language computation or as a pointer­
variable combination into which a result is read when returned from the
server. Note that the specified args must come immediately after the
specified name.

[J =>

These symbols are used to indicate that the following integer (the tag) and
parenthesized list (the results) are the specification of a packet to be received
by the client when it executes this macro.

o tag

This is an identifier associated with the specified results. The identifier is
used to prevent confusion when multiple NeWS processes are simultaneously
writing results back to the client. The identifier must be a unique integer
constant or must appear in the list of arguments to the cdef as an integer
argument.

[J results

This is an optional list of one or more variables that receive the values
returned from the server's execution of the specified POSTSCRIPf language
code. Each variable must also be included in the args argument.

Note that the =>, tag, and results arguments must come together and must
appear after the name and (args) arguments: however, they can appear
before, after, or in the middle of the specified POSTSCRIPT-code.

[J POSTSCRIPT-code

This is the POSTSCRIPf language procedure invoked within the server when
the name macro is called. The POSTSCRIPf language code can continue for
several lines: indentation is not important. One cdef statement is always
terminated by the start of another.

The args, =>, tag, results, and POSTSCRIPT-code arguments are optional. Thus,
a cdef statement may simply specify POSTSCRIPT language code to be executed
without arguments and without the need to returns results, or it can specify the
contents of a return packet with no POSTSCRIPT code to be sent to the server.

If=>, tag, and results arguments are specified, the server must be made to return
values from its execution of some POSTSCRIPT language code. NeWS provides
two operators, tagprint and typedprint, that do this. The values are returned as

Revision A, of 25 August 1989

122 NeWS Programmer's Guide

Argument Types

a packet of data, in which they are preceded by the specified tag. The tag thus
separates its own packet from any others that might appear in the data stream
flowing from the server to the client.

Thus, the uses of the cde f statement can be classified as follows:

o Sending POSTSCRIPT language code to the server without requesting that
values be returned.

This PoSTSCRIPT language code may send packets of data back to the client
for retrieval by some other cdef statement.

o Sending POSTSCRIPT language code to the server, explicitly requesting that a
given set of results be returned, and blocking until this has occurred (this is
termed receiving a synchronous reply).

o Sending no POSTSCRIPT language code to the server, explicitly requesting
that a given set of results be returned, but continuing to run without blocking
if a different set of results has been sent back by POSTSCRIPT language code
running in the server (this is termed receiving an asynchronous reply).

These three uses are described in detail throughout this chapter.

Each parameter specified in the args field of the cde f command must have a
specified type; the default type is in t. To specify a type, precede the parameter
with the appropriate type name. The syntax is thus as follows:

cdef name (type-name argl, type-name arg2) POSTSCRIPT-code

NOTE int uses the natural data type size/or a computer; this is 32 bits/or a Sun;
however, in the current release, ints are sent over the network as 16-bit
integers. You need to be aware 0/ this to avoid portability problems with some
other machines.

Table 5-1

Most of the types correspond directly to C types. The following table lists the
CPS argument types:

CPS Argument Types

CPS type

int

float
string
cstring

fixed

C type

int, long, and char (this is the default type in
cde f specifications)
float or double
char * strings that are null terminated
char * with an accompanying count of the number of
characters in the string. Counted strings have two argu­
ments in the C function's argument list: one is the
pointer to the string, the other is the count.
a fixed-point number represented as an integer with 16
bits after the binary point

Revision A, of 25 August 1989

Table 5-1

Sending POSTSCRIPT
Language Code without
Returning Values

Chapter 5 - Client-Server Interface 123

CPS Argument Types- Continued

CPS type

token

postscript

cpostscript

Ctype

a special user-defined token used for perfonnance
improvement
char * sent to the server as POSTSCRIPT language
code rather than as a POSTSCRIPT string
char * with an accompanying count sent to the server
as PoSTSCRIPT language code rather than as a
POSTSCRIPT language string

To create a c de f function that sends POSTSCRIPT language code to the server
without requesting any results, you only need to use the following syntax, which
omits the =>, tag, and results arguments:

cdef name (args) POSTSCRIPT_code

This type of cdef statement requires the name of the macro, the POSTSCRIPT
language code, and possibly some arguments.

The following example shows how cdef was used to create the the standard CPS
macro ps _ moveto () .

(cde! ps_movelo(x,y) x y movelo

Thus, when the statement ps _ movet 0 (10, 20) is encountered in the . c file,
the following POSTSCRIPT language code is transmitted:

(1020 moveto

J

J

Note that macros should always be structured to minimize the amount of traffic
that occurs between client and server. For example, it may be useful to use
cdef to define POSTSCRIPT language initialization routines that can themselves
be called by subsequent cdef statements. This is shown by the following exam­
ple:

cdef initializeO
/draw-dot { 4 0 360 arc fill } def

cdef draw_dot(x,y) x y draw-dot

Invoking initialize () transmits the definition of the POSTSCRIPT language
function draw-dot a single time. Invocations of the routine dr a w _ dot () from
the C code - for example, draw_dot (30,50) - requires the transmission of
fewer bytes than would be necessary if all the POSTSCRIPT language code were
transmitted each time a dot were drawn.

Revision A, of 25 August 1989

124 NeWS Programmer's Guide

Receiving Synchronous
Replies

To create a cdef function that synchronously returns results from the server, the
double symbol => must be used, followed by a tag and a results field, and some
POSTSCRIPT code must be specified. Each argument in the results field must also
have been specified in the args field; each argument will contain a value returned
by the computation performed by the server. The tag argument will be specifed
by the server as a small integer and associated with the results.

NeWS provides two operators that allow the server to return the specified tag and
results arguments to the client program. The operators, which must be included
in the cdef statement as part of the POSTSCRIPT-code argument, are as follows:

object typed print -
Prints the object object in an encoded form on the current output stream: The
object can then be read by the client program.

n tagprlnt -
Prints the integer n (where _215~ <215) encoded as a tag on the current output
stream.

Before calling the cdef, the client must define the tag to have some unique
integer value. Note that the server does not force packets to begin with a tag and
to contain typed data; this must be ensured by the client's POSTSCRIPT language
code. The client should not pause in the middle of sending a tagged reply; if it
does, the packet may be confused with a packet simultaneously returned as an
asynchronous reply (see below).

The following is a generic syntax for requesting a synchronous tagged reply from
the server:

=ltdefine tag tagint
cdef name (args) => tag (results) POSTSCRIPT-code
tag tagprint
typedprint
typedprint

In this syntax, tag represents the tag and tagint is the integer with which the tag
is associated. Following the POSTSCRIPT-code used to perform the computation,
tagprint is called with tag specified as its argument; thus, tagprint sends the
defined value of tag (this value being tagint) back to the client. The typedprint
operator is then called once for each argument specified in the results field; each
result value is thus sent back to the client. (Note that typed print can return vari,:­
abIes of any of the CPS argument types.) The returned values can be ·then
accessed within the C client according to their defined variable names, as
specified in both the args and results fields.

Note that the results field is optional for a synchronous reply (and therefore the
typedprint calls are also optional). Note also that the parentheses around the
results are mandatory if the results field is used.

When a cdef function is used in this way, it transmits its POSTSCRIPT-code to
the server, then pauses until the server sends the tag back with the accompanying

Revision A, of 25 August 1989

Receiving Asynchronous
Replies

Chapter 5 - Client-Server Interface 125

results.

The following example demonstrates how to receive a synchronous reply by
using a tagged results field.

#define BBOX TAG 57
cdef ps_bbox(xO,yO,xl,yl) => BBOX_TAG (yl, xl, yO, xO)

clippath pathbbox % Find the bounding box of the
% current clip.

BBOX TAG tagprint % Send back the tag.
typedprint % yl is on the top of the stack,
typedprint % then xl. Thus, the results list
typedprint % is in the opposite order from
typedprint % the argument list.

This cdef statement defines a C function, named ps_bbox () , that takes as its
parameters four pointers to integers. The function sets the integers to the bound­
ing box of the current clipping path. When ps _ bbox () is called, it transmits
the specified POSTSCRIPT language code to the server. When executed, the
clippath pathbbox call returns the bounding box of the current clipping
region onto the operand stack; tagprint and typedprint then send back the tag
and results to the C-client. The tagprint operator sends the tag 57 back to the
client and the typedprint operators send back the coordinates. The C client has
been waiting for the tag 57; thus, when the tag is returned, the client is able to
receive the coordinates into the specified variables.

Typically, asynchronous replies are required when user input needs to be moni­
tored. The client program enters a loop and, on each iteration, checks whether
values have been returned from the server.

To create a cdef function that receives an asynchronous reply from the server,
omit the POSTSCRIPT-code argument from the cdef statement:

cdef name (args) => tag [(results)]

When this form of cdef function is called from the C code, the input connection
to the server is checked. The following then occurs:

o If no input is waiting, the client blocks until some input is sent from the
server.

o If input is waiting (or arrives while the client is blocked), the first input item
is compared with tag. If the input does not match the value of tag, the cdef
returns 0 and the client continues execution. If the input does match the
value of tag, the results are read into the specified variables and the cdef
returns 1.

Thus, a cdef routine that sends no POSTSCRIPT language code to the server only
blocks if no input has been sent from the server to the client; if input has been
sent, execution of the client is allowed to continue even when the returned tag
does not match.

Revision A, of 25 August 1989

126 NeWS Programmer's Guide

5.3. Creating the . h File

The results field is optional for an asynchronous reply. The parentheses around
the results are mandatory if the results field is used.

Note that the server is still responsible for executing tagprint and typedprint to
return the specified tag and results. However, the code that calls these operators
is not supplied by the cdef statement; instead, it must already have been sent to
the server by a previous cdef statement that the client has executed. The code
in the server is then triggered by an event (for example, the occurrence of user
input) that is external to the client.

For example, the following expression, which sends a tag and result to a client,
could be executed by the server whenever a menu selection is made by the user:

MENU_HIT_TAG tagprint
menuindex typedprint

Thus, the following cde f statement could be used within a client loop to receive
asynchronous menu-selection messages:

When the function p s _me n u _ hit () is called from the client, the client blocks
until input arrives from the server. When input arrives, the tag is compared to
the cdef tag MENU_HIT_TAG. If the tag values match, ps_menu_hit ()
returns 1 and the value of the results field (in this case, an index) is received. If
the tag values do not match, the function returns O.

Functions such as ps _menu_hi t () can be used to construct the basic com­
mand interpretation loops of a NeWS client program. This is demonstrated as fol­
lows:

while (!psio_error(PostScriptlnput) {
if (ps_menu_hit(&index))

handle_menu_hit(index);
else if (ps_character_typed(&character))

handle_typed_character(character);
else if (ps_redraw_requested())

handle_redraw()i
else

1* illegal tag; program bug *1

To create a . h file, specify an existing. cps file as the argument to the cps
command:

[paper% cps test.cps]
Revision A, of25 August 1989

I

I

Chapter 5 - Client-Server Interface 127

This creates a header file named test. h. The new file contains all definitions
from the file test. cps in a specially compiled fonn. The test. h file can
now be included in a . c file. "

NOTE For further information on the cps command and options, see the cps manual
page.

CPS Utilities When you create a . h file with the cps program, additional utilities are
automatically added to the . h file. You can use these utilities without defining
them on the server side. The utilities, which are all found in
<NeWS /psmacros . h>, are as follows:

Table 5-2 C Utility Routines Provided by CPS

Function() Description
ps_open_PostScript()
ps_close_PostScript()
ps_flush_PostScript()
ps_moveto(x,y)
ps_rmoveto(x,y)
ps_lineto(x,y)
ps_rlineto(x,y)
ps_closepath ()
ps_arc(x,y,r,aO,al)
ps_stroke ()
ps_fill ()
ps_show(string s)
ps_cshow(cstring s)
ps_findfont(string font)
ps_scalefont(n)
ps_setfont ()
ps_gsave ()
ps_grestore()

open connection to Xll/NeWS selVer
close connection to Xll/NeWS selVer
flush the output buffer
x y move to
x y rmoveto
x y Iineto
x y rlineto
closepath
x y r aO a1 arc
stroke
fill
sshow
scshow
font findfont
n scalefont
setfont
gsave
grestore

ps_finddef(string font, usertoken) takes font, adds it to token list, and returns
integer index of font into token list

ps_scaledef(string font, scale, usertoken) takes font and scale, adds scaled font to token list,
and returns integer index of font into token

ps_usetfont(token font)

5.4. Creating the . c File

list
takes integer index of font into token list
and sets current font to font given by token

The . c file, which is the main part of the C client program, should contain the
following:

o An #include statement that references the . h file generated from the
. cps file

o Calls to C macros originally defined in the. cps file

Revision A. of 25 August 1989

128 NeWS Programmer's Guide

POSTSCRIPT Language
Communication Files

Reading the Client's Input
Queue

Note that variables used in the results arguments of the cdef command
must be referenced as a pointer-variable combination in the argument list of
the called macro.

[J Standard CPS functions for managing communication between client and
server

Three standard functions are used for opening communication, closing communi­
cation, and flushing data to the server. The functions are as follows:

[J ps_open_PostScript()

Establishes a connection to the Xll/NeWS server specified by the NEWS­
SERVER environment variable. If a connection to the Xll/NeWS server is
successfully established, ps_open_PostScript () returns a PSFILE
pointer; if a connection is not established, it returns null.
ps_open_PostScript () must be called before any procedure that
needs to communicate with the selVer is called.

[J ps_flush_PostScript()

Output from the client to the server is buffered to ensure the efficiency of the
interface mechanism: when the client calls a function that blocks while wait­
ing for input, the contents of the buffer are automatically sent to the selVer.
However, the client can send the contents of the buffer to the selVer at any
time by calling ps_flush_PostScript (). The function returns -1 if
an error occurs and 0 if no error occurs.

[J ps_close_PostScript()

Closes the connection to the selVer: this function should be called before the
client program exits. The function returns -1 if an error occurs and 0 if no
error occurs.

These functions form a subset of the CPS utilities automatically added to the . h
file when the cps program is used. The utilities can be used in the C client pro­
vided that the CPS library is included when the client program is compiled. See
the subsection Compiling the. c File, below.

Two PSFILE pointers, PostScript and PostScriptlnput, are the con­
duits through which information flows between the Xll/NeWS selVer and the
client program. When the client writes to the Xll/NeWS selVer, it writes to the file
represented by the pointer PostScript. When the client reads information
sent from the selVer, it reads from the file represented by the pointer
PostScript Input. All operations on these PSFILE pointers are performed
using the psio package, not the standard I/O package.

This section describes the CPS library functions that examine the client's input
queue. All the functions calII/O functions contained in the psio package. Note
that the client can use these psio functions directly. However, if the client does
so, it must explicitly pass the PSFILE structures for the files on which to read
and write. CPS simplifies the task by supplying the PSFILE structures for you,
using the pointers PostScriptlnput and PostScript.

Revision A, of 25 August 1989

5.5. Tokens and
Tokenization

Chapter 5 - Client-Server Interface 129

D ps_check_PostScript_event()

Checks whether the input queue contains input. Returns 1 if the queue con­
tains input, 0 if it does not, and -1 if there is an error.

D ps_query_PostScript_event(tag)

Searches for tag in the input queue. Returns 1 if tag is in the queue, 0 if it is
not in the queue, and -1 if there is an error.

D ps-peek_PostScript_event(ptag)

Examines the tag associated with the top packet in the input queue and
returns the tag's value in the pointer ptag. Th function leaves the tag in the
queue. The function returns 1 if a tag is in the queue, 0 if something other
than a tag is in the queue, and -1 if there is an error. If no input is in the
queue when ps-peek_PostScript_event is called, the function
blocks until the server sends input to the queue.

D ps_read_PostScript_event(ptag)

This function is identical to ps_peek_PostScript_event, except that
if a tag is found in the queue, ps_read_PostScript_event removes
the tag from the queue. You should only use this function if you know that
the tag in the queue has no associated data; otherwise, associated data is
stranded in the input queue without a tag.

D ps_skip_PostScript_event()

Removes the top entry from the input queue, regardless of what the entry is.
Returns 1 if it successfully removes something from the queue and returns -1
if there is an error. If no input is in the queue when
ps_skip_PostScript_event is called, the function blocks until the
server sends input to the queue. This function can be used to remove a tag
from the queue or it can be used to restore order in the input queue if a tag
becomes separated from its associated data.

NeWS provides a facility for establishing and maintaining a token list. This facil­
ity is intended for perfonnance optimization. You should not use it unless your
application is running and you are encountering problems with communication
and interpretation overheads.

The token list is an efficient mechanism for the compression of data prior to
transmission. The list is variable in length with a maximum dimension of 32768
elements. The first 32 elements are tightly compressed, yielding a I-byte token.
The next 1024 tokens generate two-byte codes. The remaining 31,712 generate
three-byte codes.

Several operators are defined by the CPS utility to allow you to add and retrieve
tokens from the token list. When a token is added to the list, it is available when­
ever the token is found by the scanner in the input stream. (It is frequently useful
to add font objects to the token list and save the lookup time.)

Revision At of 25 August 1989

130 NeWS Programmer's Guide

Compiling the . c File

Comments

NeWS has a mechanism, supported by CPS, where a client program and the server
can cooperatively agree on the definition of a user token. The CPS declaration

usertoken black

tells CPS that you want to transmit the user-defined token black in compressed
fonn. When black appears in following CPS definitions, the compressed token
is used in the definition.

In order to establish the meaning of the token, the client has to talk to NeWS

before the first use of the token. There are a number of procedures that the C
program can call to do this:

D ps _ def ine _stack _ token(utok)

Takes the value on the top of the stack in the server and defines it as the
value of the token utok. In future messages to the server, utok has this value.

D ps _ def ine _val ue _ token(utok)

Defines the user token utok to be the same as the current value of the
POSTSCRIPT language variable utok. In future messages to the server, utok
has the value that the POSTSCRIPT language variable utok had at the time
ps_define_ value_token () was called. Future changes to the value
of the POSTSCRIPT language variable utok, or its identity as detennined by
changes in variable scope, have no effect on the definition of the token.

D ps _ def ine _word _ token(utok)

Defines the user token utok to be the name of the POSTSCRIPT language vari­
able utok. In future messages to the server, utok is the POSTSCRIPT variable
utok. This binds the token utok to the name utok. When it is sent to the
server, the name utok is evaluated and its value is used.

The operators that manipulate the token list are listed in the table C Utility
Routines Provided by cps.

When compiling the . c file, you must add the CPS library to the list of libraries
searched by the linker. You must also inform the compiler and linker of the
patbnames of these libraries and include files, using the cc options -I and -L.
This can be achieved with a command line of the following fonn:

% cc -I$OPENWINHOME/inciude test.c -L$OPENWINHOMEllib -Icps

In this example, the patbnames provided to the compiler are the full pathnames
of the CPS library and header files.

The CPS comment convention is the same as the POSTSCRIPT language comment
convention: everything from a % sign to the end of a line is a comment. Despite
the fact that CPS runs the cpp program on all input files, it uses the -C option so
that the C-style commenting convention is interpreted as valid PoSTSCRIPT

language code.

Revision A, of 25 August 1989

I

5.6. Debugging CPS

5.7. Supporting NeWS From
Other Languages

Chapter 5 - Client-Server Interface 131

You can test your application's POSTSCRIPT language code by typing into an
interactive ps h session with the server. However, you may reach a point at
which the POSTSCRIPT language code only works in the context of the client -side
program. Typically, a CPS program downloads a large amount of POSTSCRIPT
language code and special operators in its "initialize ()" cdef function.
Therefore, you can place this portion of the POSTSCRIPT language code in a
separate file and then change the initialization file to something that resembles
the following:

cdef initialize()
(workltestinit.ps) LoadFile
... any other initialization required

You can now make changes to the POSTSCRIPT language initialization code (for
example, adding "console (debugging-statement fprintf") in certain places)
without having to recompile the C-side.

The POSTSCRIPT language and C are the only languages that are supported for
NeWS clients, the support for C being provided by the CPS preprocessor. For users
who wish to download pure POSTSCRIPT programs to the server, equivalent
mechanisms are provided by the psh(1) program.

If you wish to create a client process in some other language than NeWS or C, you
must write a CPS-like program that is appropriate for the required language. The
basis for such a program should be the input and output facilities used by CPS; the
program should contain rountines for calling the facilities, macros that can be
expanded into invocations of them, or similar features.

To provide runtime output for your cPs-equivalent program, you must create a
function similar to the C function pp r in t f () , which provides the runtime
output for the CPS program. This function is invoked in a manner similar to
fprintf () (3S), taking a fonnat string that is interpreted in a similar way.
When the fonnat strings contain % s, % d, or any of the other formatting
specifiers, the corresponding arguments are transmitted as compressed binary
tokens. The rest of the format string is transmitted as specified; it may contain
compressed tokens or simple ASCII.

Input that the Xll/NeWS server transmits to the client appears as bytes that can be
read from the server I/O stream. The format of these bytes is specified entirely
by the POSTSCRIPT language code downloaded by the client into the server; thus,
it can be as simple or complex as is required. For interpreting these messages,
NeWS contains a facility for writing objects back to the clients (using the same
compressed binary format as the client uses to write to the server); CPS and a
corresponding C procedure, named p scan f (). Several functions are also pro­
vided for detecting and manipulating tagged messages from the server. The tags
are described below, in section 5.8, Byte Stream Format.

Revision A, of 25 August 1989

132 NeWS Programmer's Guide

Contacting the Server

5.8. Byte Stream Format

Encoding For Compressed
Tokens

enc int

To contact the selVer from a UNIX environment you must obtain the correct IP
port number of the selVer and connect to it. One way of obtaining the address is
to examine the environment variable NEWSSERVER. This contains a string of
the following fonn:

3227656822.2000;paper

The number before the period is the 32-bit IP address of the selVer in host byte
order. The number after the period is the server's IP port number. To contact the
selVer, you must create a socket and connect it to the IP address and port
specified by these numbers. The name that follows the semicolon in the NEWS­
SERVER variable is the text name of the host on which the selVer is running; you
can ignore this name.

The news server str(1) command is a shell script that generates the appropri­
ate string for NEWS SERVER.

Once a connection has been established, simply write bytes down the stream, as
described below in section 5.8, Byte Stream Format. Remember, you do not
need to use the compressed binary tokens, they are merely an optimization.
ASCII POSTSCRIPT language code can be sent without use of compression.

The infonnation in this section is only of interest to programmers implementing
the NeWS protocol. Most C programmers should use CPs, which deals with all of
the protocol issues transparently.

The communication path between NeWS and a client is a byte stream that contains
POSTSCRIPT programs. The basic encoding, which is compatible with
POSTSCRIPT language printers, is simply a stream of ASCII characters. NeWS also
suppOrts a compressed binary encoding that may be freely intermixed with the
ASCII encoding. The two encodings are differentiated according to the top bit of
the eight-bit bytes in the stream. If the top bit is 0, the byte is an ASCII character.
If it is 1, the byte is a compressed token. This differentiation is not applied
within string constants or the parameter bytes of a compressed token.

Each compressed token has a code in its first byte; the code byte is a single byte
with the top bit set. Parameter bytes may follow the code byte; parameters may
also be encoded in the least significant bits of the code byte. The parameters are
part of the token's description. After the code byte and any parameter bytes,
there may be bytes that describe the token object itself, such as an encoded
integer or string.

In the following description of the various types of token, the token values are
referred to symbolically (with names). Some of the tokens use values taken from
object tables; object tables are described below, in the subsection Object Tables.

enc _int+(d < <2)+w ; (w+ l)*N

O~w~3 and O~d~3: The next w+l bytes fonn a signed integer taken from high
order to low order. The bottom d bytes are after the binary point. This is used
for encoding integers and fixed-point numbers.

Revision A, of25 August 1989

enc_string

enc _ syscommon

enc _ syscommon2

enc usercommon

enc lusercommon

enc eusercommon

enc IEEEfloat

Chapter 5 - Client-Server Interface 133

enc_short_string+w; w*C

OSw~15: The next w bytes are taken as a string.

enc _string +w; (w+ l)*L ; I*C

OSw~3: The next w+l bytes fonn an unsigned integer taken from high order to
low order. Call this value I. The next I bytes are taken as a string.

enc _ syscommon +k

0Sk ~31: Inside the Xll/NeWS server there is table of PoSTSCRIPT language
objects. The enc_syscommon token causes the kth table entry to be inserted in
the input stream. Typically these names are primitive POSTSCRIPT language
operator objects. This table is a constant for all instances of POSTSCRIPT
language code - the contents of the table are "well-known" and static. This
token allows common POSTSCRIPT language operators to be encoded as a single
byte.

enc _syscommon 2; k

0~~255: This is essentially identical to enc_syscommon except that the index
into the object table is k +32. This allows the less common NeWS operators to be
encoded as two bytes.

enc usercommon +k

0Sk~31: This is similar to enc_syscommon except that it provides user-definable
tokens. Each communication channel to the server has an associated
POSTSCRIPT language object table. The enc _ usercommon token causes the k th
table entry to be inserted in the input stream. The table is dynamic; it is the
responsibility of the client program to load objects into this table. The NeWS
operator setfileinputtoken associates an object with a table slot for an input
channel.

enc _Iusercommon + j; k

0~j~3 and 0~~255: This is essentially identical to enc_usercommon except that
the index is U < <8)+(k +32).

enc _ eusercommon ; jk

0~j~255 and 0~~255: This is essentially identical to enc_usercommon except
that the index is (j < <8)+(k+32+ 1024).

enc_IEEEfioat;4*F

The next four bytes, high order to low order, form an IEEE fonnat floating-point
number.

+~I!! Revision A. of 25 August 1989

134 NeWS Programmer's Guide

enc IEEEdouble

Object Tables

enc_IEEEdouble; 8*F

The next eight bytes, high order to low order, fonn an IEEE double precision
floating-point number.

The enc_ *common* tokens all interpolate values from object tables. The
appearance of one of these tokens causes the appropriate object table entry to be
used as the value of the token. These tokens are typically a part of a POSTSCRIPT

language stream that is to be executed and can be any kind of POSTSCRIPT

language object. Usually either executable keyword or operator objects are used.

This has some subtle implications with scope rules. If the object is a keyword,
then its value will be looked up before being executed, just as an ASCII encoded
keyword would be. If it is an operator object, then the operator will be executed
directly, with no name lookup. This improves perfonnance, but it also binds the
interpretation of the object table slot at the time that the slot is loaded.

For example, if the executable keyword moveto were loaded into a slot, then
whenever that token was encountered moveto would be looked up and executed.
On the other hand, if the value of moveto were loaded into the slot, then when­
ever that token was encountered the interpretation of moveto at the time the slot
was loaded would be used.

Magic Numbers The binding between token names and values is as follows:

Table 5-3 Token Values

Octal Span Symbolic Name
0200 16 enc_int+(d«2)+w
0220 16 enc_short_string+w
0240 4 enc_string
0244 1 enc_IEEEfloat
0245 1 enc_IEEEdouble
0246 1 enc_syscommon2
0247 4 enc_lusercommon
0253 1 enc_eusercommon
0254 4 free
0260 32 enc_syscommon
0320 32 enc_usercommon
0360 16 free

Examples The POSTSCRIPT language code fragment

[

10 300 moveto]
____ (H_e_IIO __ w_O_rld_)_S_h_OW ____________________________________ __

can be encoded simply as an ASCII text string

"10 300 moveto\n(Hello world) show"

that gives a message that is 33 bytes long, The space following show is a

+~.!t!! Revision A, of 25 August 1989

Chapter 5 - Client-Server Interface 135

delimiter; without it the tokens would run together. Binary tokens are self­
delimiting. If the tokens were sent in compressed binary format then the mes­
sage would be the following 19 bytes:

Table 5-4 Meaning oj Bytes in Encoding Example

Byte

0200
0012
0201
0001
0054

0275
0233
0110
0145

0144
0286

Meaning
Encoded integer, one byte long, no fractional bytes
The number 10
Encoded integer, two bytes long, no fractional bytes
First byte of the number 300
Second byte of the integer,
(1 «8)+054==0454==300
moveto is in slot 12 of the operator table
(0220+ 11) Start of an II-character string
'H'
'e'

'd'
show is in slot 20 of the operator table

Revision A, of 25 August 1989

6
Debugging

Debugging .. 139

6.1. Loading the Debugger .. 139

6.2. Starting the Debugger ... 139

6.3. Using the Debugger .. 139

Multi-Process Debugging .. 140

6.4. Client Commands .. 140

6.5. User Commands ... 141

6.6. Miscellaneous Hints ... 145

Aliases ... 145

Use Multiple Debugging Connections .. 146

6.1. Loading the Debugger

6.2. Starting the Debugger

6.3. Using the Debugger

I

I

I

I

I

6

Debugging

NeWS provides a debugging facility that allows you to set breakpoints and print
messages to special output windows. The facility is provided as a POSTSCRIPT

language extension file and can be modified by users.

This chapter describes the debugger and the operators it provides.

The NeWS debugging facility is provided as the POSTSCRIPT language extension
file debug. ps. Note that this file is not automatically loaded during the stan­
dard initialization process; thus, if you wish to load the debugger, you must exe­
cute the following command, either by adding it to your. user. ps file or by
typing interactively in a psh window:

(___ (_N_e_W_s_/d_e_b_u_Q._P_S)_N_n ___________________________________ J

To start the debugger, open a psh executive connection to the server and start the
debugger with the dbgstart operator. This is demonstrated by the following
example:

paper% psh
executive
Welcome to Xll/NeWS Version 1.0
dbgstart
Debugger installed.

NeWS provides two kinds of debugging commands:

o Commands to be executed from client programs (client commands)

o Commands to be executed interactively by the user (user commands)

The dbgstart operator forks a debugger process that is attached to the p sh con­
nection and listens for debugger-related events generated by client commands.
(All client commands broadcast debugger events to these debugger daemons.)
Any client command that causes printing will print in each debugging p s h con­
nection.

139 Revision A. of 25 August 1989

140 NeWS Programmer's Guide

Multi-Process Debugging Since NeWS is a multi-process environment, you may often need to debug several
processes at one time. The solution the debugger implements is to have each
debugging connection maintain a list of processes that are paused for debugging.
This list is printed via the dbglistbreaks command below. It is also printed
whenever a new break. occurs. Any of the listed breaks can be entered using the
dbgenterbreak command. This swaps the psh debugging context out and
replaces it with the paused process. The context currently consists of the dict
stack and operand stack.

6.4. Client Commands These are the client commands:

dbgbreak name dbgbreak
Causes the current client to pause, printing the pending breaks in all debugger
connections. Name is used as a label in the list to distinguish between breaks,
e.g./Break1.

See also: dbgbreakenter, dbgbreakexit

dbgprintf formatstring argarray dbgprintf
Prints on each debugger connection, in printf style. If there are no debugger
connections, it prints on the console. Thus the following code

(Testing: % % %\n) [1 2 3] dbgprintf

will print:

(
Testing: 1 2 3]

,---. ----------"

on each debugger connection.
See also: printf, dbgprintfenter , dbgprintfexit

In addition to the above explicit calls to the debugger, errors cause the debugger
to be implicitly invoked. This is done by the debugger putting a special error
dictionary in the system dictionary. Each error slot in this debugger-supplied
dictionary has a call to the debugger for each error. See the PostScript Language
Reference Manual for details on error handling.

Revision A, of 25 August 1989

I

<errors>

6.5. User Commands

dbgstart

dbgstop

dbglistbreaks

Chapter 6 - Debugging 141

- <errors>
While debugging, a client error causes the client program to break to the
debugger. This is exactly the same as inserting the code '/<errorname>
dbgbreak' at the point the error occurred. Here is the result of encountering an
undefined error while a debugger is running:

Break:/undefined from process (4154624, breakpoint)
Currently pending breakpoints are:

1: /undefined called from process (4154624, breakpoint)

Most of the user-level debugger commands come in two fonns: one that expli­
citly takes a breaknumber and one that does not. The general rule is:

o A command of the fonn cmdnamebreak expects an explicit breaknumber for
its argument.

o A command of the fonn cmdname (without "-break") uses an implicit
breaknumber. This number is generally the currently entered break, or the
last break in the list if there is no currently entered break.

The implicit fonn is primarily used in the most common case of only one break
pending, or where constantly restating the breaknumber for the currently entered
process would be arduous.

The user-commands are as follows:

- dbgstart
Make the current connection to the server a debugger. Required before any of
the other commands below can be used.

- dbgstop
Removes the debugger from your p s h connection.

- dbgllstbreaks
List all the pending breakpoints resulting from dbgbreak and <errors> above.
They are listed in the following fonn:

dbglistbreaks
Currently pending breakpoints are:

1: /oneA called from process(4245774, breakpoint)
2: /oneB called from process (4306134, breakpoint)
3: /menubreak called from process(5177764, breakpoint)
4: /undefined called from process(4154624, breakpoint)

The number preceding the colon is the breaknumber used in many of the follow­
ing commands. A number beyond the end of the listing behaves as the last entry.

Revision A, of 25 August 1989

142 NeWS Programmer's Guide

dbgbreakenter

dbgbreakexit

dbgremovebreak

dbgremove

dbgprintfenter

dbgprin tfexit

name dbgbreakenter
[diet name] dbgbreakenter -
Modify the named procedure to call dbgbreak just after starting. If the top of
the operand stack is an array, it should contain a dict and the name of a procedure
in the dict. Thus to break when any new window is made:

[DefaultWindow Inew] dbgbreakenter
Break:/new from process (4050350, input_wait)
Currently pending breakpoints are:

1: /new called from process (4050350, input_wait)

See also: dbgbreak

name dbgbreakexlt
[diet name] dbgbreakexlt -
Modify the named procedure to call dbgbreak just before exiting.

See also: dbgbreak

breaknumber dbgremovebreak
dbgremovebreak looks at the top execution stack entry of the stopped process.
If it is a regular (non-packed) array and its current execution point is a call to
dbgbreak, the dbgbreak is replaced with pop. Once a breakpoint is removed,
the procedure must be redefined in order to put the breakpoint back.

- dbgremove
dbgremove calls debgmovebreak on the currently entered breakpoint.

name formatstring argarray dbgprlntfenter
[diet name] formatstring argarray dbgprintfenter -
Modify the named procedure to call dbgprintf withformatstring and argarray
just after starting. Note that argarray can be an executable array if you want to
defer evaluation of the arguments until the dbgprintf occurs.

See also: dbgprintf

name formatstring argarray dbgprlntfexlt
[diet name] formatstring argarray dbgprlntfexlt -
Modify the named procedure to call dbgprintf withformatstring and argarray
just before exiting. The effects of this change will persist until the NeWS server is
restarted. Note that argarray can be an executable array if you want to defer
evaluation of the arguments until the dbgprintf occurs.

Revision A, of 25 August 1989

dbgwherebreak

dbgwhere

dbgcontinuebreak

dbgcontinue

dbgenterbreak

Chapter 6 - Debugging 143

[DefaultWindow Ireshape] (resize: % % % %\n)
{FrameX FrameY FrameV~idth FrameHeight} dbgprintfexit

resize: 91 100 179 181
resize: 91 94 223 187

See also: dbgprintf

breaknumber dbgwherebreak
Prints a exec stack trace for the process identified by breaknumber:

1 dbgwherebreak
Level 1

{ /foo 10 'def' /bar 20 'def' /A 'false' 'def' /B 'true'
'def' /msg (Hi!) 'def' (Testing: %\n) 'mark' msg] dbgprintf
/oneB *dbgbreak } (*21,22)

Level 0
{ 100 'diet' 'begin' array{22} *'loop' 'end' } (*4,6)

The asterisk indicates the currently executing primitive in each level. The two
numbers following each procedure are the index, relative to zero, of the asterisk
and the size of the procedure. This is useful information for using dbgpatch.

- dbgwhere
Prints the execution stack for the currently entered process or for the last process
listed if no process is currently entered.

breaknumber dbgcontlnuebreak
Continues the process identified by breaknumber.

- dbgcontlnue
Continues the currently entered process or the last process listed if no process is
currentl y entered.

breaknumber dbgenterbreak
As far as possible, make this debug connection have the same execution environ­
ment as the process identified by breaknumber. Currently, this includes the
operand stack and the dictionary stack. Thus dbgenterbreak allows you to
browse around in the given process' state. If dbglistbreaks is executed while
within an entered process, the listing will indicate that process with a "=>" in the
left margin:

Revision A, of 25 August 1989

144 NeWS Programmer's Guide

dbgenter

dbgexit

dbgcopystack

dbgcallbreak

dbgcall

dbggetbreak

dbgpatchbreak

3 dbgenterbreak
dbglistbreaks
Currently pending breakpoints are:

1: /oneA called from process (4245774, breakpoint)
2: /oneB called from process (4306134, breakpoint)

=>3: /menubreak called from process(~177764, breakpoint)

- dbgenter
Enters the last process listed.

- dbgexlt
Return to the debugger connection from whatever process you may have entered.
This is a no-op ifno process is currently entered. The following debugger primi­
tives will call this routine: dbgcontinuebreak, dbgkillbreak, dbgenterbreak,
dbgstop. Thus, dbgenterbreak first calls dbgexit to insure preserving state.

- dbgcopystack
Copies the current operand stack to the process being debugged. This allows you
to dbgenter a process, modify that copy of the operand stack, and copy it back to
the process.

arg clientproc breaknumber dbgcallbreak
Execute clientproc in the broken process with arg as data. The clientproc prim­
itive will be executed (in the client environment) with the arg on the stack, thus
is responsible for popping it off.

arg clientproc dbgcall
Implicit version of dbgcallbreak.

breaknumber dbggetbreak process
Returns the NeWS process object for the given breaknumber.

level index patch breaknumber dbgpatchbreak
Patch the execution stack for breaknumber process. The patch overwrites the
word in the executable at the given level, and at the given index within that level.
Prints the resulting execution stack (dbgwhere) .

• \sun
• microsystems

Revision A, of 25 August 1989

dbgpatch

dbgmodifyproc

dbgkillbreak

dbgkill

6.6. Miscellaneous Hints

Aliases

level index patch dbgpatch
Patch the implicit process.

Chapter 6 - Debugging 145

name/[dict name] headproc tailproc dbgmodlfyproc
Modify the named procedure to execute headproc just before calling it, and to
call tailproc just after calling it. In affect, '{proc}' becomes '{headproc proc
tailproc}.' This is the mechanism used for implementing dbgbreakenter/exit
and dbgprintfenter/exit.

breaknumber dbgkillbreak
Kills a breakpointed process, removing it from the breaknumber list.

- dbgklll
Kills the default process.

Here are some miscellaneous tips for debugging.

Because the debugger is based on the POSTSCRIPT language, the above com­
mands can easily be modified or overridden entirely. One common change is to
define some easily-typed aliases for the above verbose names. The following
POSTSCRIPT language code does the trick; you can add this to your . user. ps
file to make the aliases available in all debugging connections.

Idbe {dbgbreakenter} def
Idbx {dbgbreakexit} def
Ide {dbgeontinue} def
Ideb {dbgcontinuebreak} def
Idee {dbgeopystaek dbgeontinue} def
Ides {dbgeopystaek} def
Ide {dbgenter} def
Ideb {dbgenterbreak} def
Idgb {dbggetbreak} def
Idk {dbgkill} def
Idkb {dbgkillbreak} def
Idlb {dbglistbreaks} def
Idmp {dbgmodifyproe} def
Idp {dbgpateh} def
Idpe {dbgprintfenter} def
Idpx {dbgprintfexit} def
Idw {dbgwhere} def
Idwb {dbgwherebreak} def
Idx {dbgexit} def

Revision A, of 25 August 1989

146 NeWS Programmer's Guide

Use Multiple Debugging
Connections

If you are debugging POSTSCRIPT language code that you are running directly
from an executive, start a debugging executive in another psh connection. This
avoids baving the debugging code trying to break to itself. You use the first exe­
cutive to run the code being tested, and the second one to trap the errors.

Revision A, of 25 August 1989

7
Memory Management

Memory Management ... 149

7.1. Reference Counting .. 149

Objects .. 149

References to Counted Objects ... 150

Counted References ... 150

Uncounted References .. 150

Soft References ... 150

Obsolescence Events ... 151

Reference Tallies ... 151

Object Types .. 151

7.2. Memory Management Operators .. 152

7.3. Memory Management Debugging Operators .. 153

Using the debugdict ... 153

Debugging Operators .. 153

7.4. The Unused Font Cache ... 156

Specifying the Size of the Cache ... 156

Flushing the cache .. 157

Applications ... 157

7.1. Reference Counting

Objects

7
Memory Management

In any software system, a limit must be imposed on the number of objects that
are allowed to exist; otherwise, storage requirements become too great and per­
fonnance is impaired. The usefulness of existing objects should thus be continu­
ally monitored; those that cease to be useful should be destroyed and their
storage reclaimed.

NeWS provides a facility of reference counting that allows objects to survive as
long as defined references to them exist; references are created by the system
whenever one object becomes associated with another. When all references to an
object are removed, the storage occupied by the object is automatically
reclaimed.

This chapter explains the principles of reference counting; it also lists the opera­
tors that NeWS provides for the purposes of memory management.

NeWS counts references that are made to a given object, using this to detennine
how long the object is maintained in storage. The operations that are applied to
an object have the effect of adding or removing references to that object.

For memory management purposes, two kinds of object exist:

o Uncounted objects

These are simple resources, such as booleans, fixed numbers, and real
numbers. These objects are not shared and therefore have no reference
count.

o Counted objects

These objects, which include all other resources that the system contains,
can be shared within the system. Thus, they are reference counted and can
be systematically removed when they become useless.

Objects are grouped according to type. A complete list of object types is pro­
vided below, in the subsection Object Types.

149 Revision A, of 25 August 1989

150 NeWS Programmer's Guide

References to Counted
Objects

Counted References

Uncounted References

Soft References

A counted object is an object that may have one or more references indicating its
existence; a reference is a NeWS pointer that extends from one object to another.
NeWS SUpports two kinds of reference, counted and uncounted.

A counted reference affects the existence of an object. While the object has at
least one counted reference, the object continues to exist in memory, and its
storage cannot be reclaimed.

Note that a reference is always considered to be the property of its recipient; thus,
if a reference points from A to B, the reference belongs to B and is included in
B's reference count; moreover, the existence of the reference ensures that B
remains in storage. By contrast, when A is destroyed, its reference to B is des­
troyed and B becomes available for garbage collection, provided that no other
counted references point to it. --.

See the subsection Reference Tallies below for information on how references
are counted.

An uncounted reference, which is created only by the server itself, never affects
the existence of a object; it is ignored by the reference counting and automati­
cally cleaned up by the garbage collection procedures.

Uncounted references are used to avoid circular references; these occur when
two objects point to each other with counted references; neither object can be
destroyed, since each continues to be referenced by the other. To prevent this
from occurring in the canvas hierarchy, NeWS ensures that a parent canvas always
references its child canvas with an uncounted reference; this allows the child
canvas to be destroyed and its storage immediately reclaimed, provided that no
other counted references to the child exist. However, a child canvas always refer­
ences its parent with a counted reference; thus, the parent is never destroyed
while any of its children exist, regardless of the removal of other references to
the parent.

NOTE The uncounted reference that points from a parent canvas to its child is used by
NtM'S internals to perform access operations such as the following,'

[NewCanvas ITopChiid get

When this code is entered, NtM'S locates the top child of the specified canvas by
tracing the appropriate uncounted reference.

Since uncounted references are created only by the server, NeWS programmers
cannot use them to prevent circular references from occurring in the objects they
themselves define; instead, programmers must use soft references. A soft refer­
ence is created with the following operator:

]

Revision A, of 25 August 1989

Obsolescence Events

Chapter 7 - Memory Management 151

any soften any
The operator takes a single argument and returns it unchanged, except that if the
argument is a reference to an object, it is returned as a soft reference. If the
operator is used to soften the last existing hard reference to an object, the object
becomes obsolete and an obsolescence event is generated by the system.

NOTE Objects inNtWs arefrequently pointed to by many references; thus, when using
the harden, soft, and soften operators, the programmer is responsiblefor speci­
fying the correct reference to be operated upon.

A soft reference differs from an uncounted reference, since it exists as a counted
reference and ensures the continued existence of the object to which it points.
However, to allow soft references to govern storage reclamation, NeWS associates
them with obsolescence events.

An obsolescence event is automatically generated by the system when an object
is preserved only by soft references (that is, when all the remaining references to
it are soft). The event, which has Obsolete in its Name field and a copy of the
object in its Action field, signifies that all remaining references to the object are
soft.

Any process that uses the soften operator to soften an existing hard reference
should also express interest in receiving an obsolescence event: when the event
is distributed and successfully matched to the interest, the event can be passed to
a handler that removes the process' soft reference. When all references have
been removed, the object is automatically garbage collected.

For further information on event management, see Chapter 3, Events.

NOTE Soft references can also used by any NtWS system process that tracks resources
within the system; an example of such a process is a window manager, which
tracks windows. When all other references to the window are removed, the win­
dow manager can respond to the consequent system-generated obsolescence
event by removing its own soft reference. This prevents a useless window from
continuing to exist due to its link with the window manager.

Reference Tallies Each counted object contains two tallies, which are as follows:

Object Types

o The total number of counted references to the object

o The number of those references to the object that are soft

This section lists all existing object types. The types are presented in two tables:
the first table contains uncounted objects; the second, counted objects.

Revision A. of 25 August 1989

152 NeWS Programmer's Guide

Table 7-1 Uncounted Object Types

booleantype
colortype
integertype

Table 7-2 Counted Object Types

arraytype
canvastype
colormapentrytype
colormaptype
cursortype
dicttype
environmenttype

marktype
nametype
nulltype

eventtype
filetype
fonttype
graphicsstatetype
monitortype
packedarraytype
pathtype

operatortype
realtype
savetype

processtype
stringtype
visualtype

7.2. Memory Management
Operators

This section lists the operators that are provided by NeWS for the purposes of
memory management.

harden any harden any
Takes a single argument and returns it unchanged, except that if the argument is
a soft reference to an object, a hard reference to the same object is returned.

Caution should be exercised when using this operator; results may not be as
expected depending on the state of the target object. For example, suppose the
target is an obsolete canvas on which most obsolescence handling has been per­
formed. If some of the soft references that have been removed belonged to sys­
tem processes such as the window manager, hardening a remaining soft reference
will keep the canvas in existence, but it will not be tracked in the system as it had
been.

soft any soft boolean
Takes a single argument and returns true if the argument is a soft reference to
an object, false otherwise.

soften any soften any
The operator takes a single argument and returns it unchanged, except that if the
argument is a reference to an object, it is returned as a soft reference. If the
operator is used to soften the last existing hard reference to an object, the object
becomes obsolete and an obsolescence event is generated by the system.

NOTE Objects inNtWS are frequently pointed to by many references; thus, when using
the harden, soft, and soften operators, the programmer is responsible for speci­
fying the correct reference to be operated upon. This is demonstrated by the fol­
lowing example:

Revision A. of 25 August 1989

7.3. Memory Management
Debugging Operators

Using the debugdict

Debugging Operators

objectdump

Icv frame buffer newcanvas def

cv setcanvas

Icv cv soften def

currentcanvas soften setcanvas

Chapter 7 - Memory Management 153

% This creates a single hard
% reference in the process'
% dictionary.

% This creates a second hard
% reference, extending from
% the graphicsstate to the
% current canvas.

% This softens the cv reference.

% This softens the graphicsstate
% reference.

This section lists the operators that are provided by NeWS for the purposes of
memory management debugging.

With the exception of the operator vrnstatus, the debugging operators described
in this section are contained in a NeWS system dictionary named debugdict.
Therefore, before typing any of these debugging operators in the psh connection,
you must type debugdict begin to place debugdict on the dictionary stack.
When you type end, the dictionary is closed. If you attempt to use the debug­
ging operators while the dictionary is closed, the system signals undef ined
errors.

Thus, you must use the debugging operators as follows:

debugdict begin
debugging operators

end

The debugging operators are as follows:

file obJectdump
Writes to the specified file a fonnatted summary of the number of objects that the
seIVer has created. Note that the specifiedjile must be open for writing; other­
wise, an invalidaccess error is signaled.

In the output, objects are classified according to the following/amilies:

o interpreter data

Contains objects allocated by the interpreter for the execution of
POSTSCRIPT language code.

sun
microsystems

Revision A, of 25 August 1989

154 NeWS Programmer's Guide

[J core types

Contains objects allocated for NeWS language processes; any of these objects
can appear on the operand stack of a process.

[J shapes classes

Contains objects allocated by the underlying graphics library to perform
rendering.

[J miscellaneous types

Contains objects allocated for system management, such as the overhead
incurred processing fonts and the memory allocated to support the unused
font cache (see the following section for a discussion about this).

[J other

Contains 1/0 buffer space, objects for which accounting is not performed,
and memory allocator overhead.

The output written to the specified file has the following form:

family_name f ami ly :
nnnnn bytes for mm object_type objects

The operator is demonstrated by the following psh example:

debugdict begin
currentfile objectdump

(Itmp/objects1) (w) file objectdump

Inew MyClass send
(Itmp/objects2) (w) file objectdump

end

% Use the debugging dictionary.
% This directs output to the
% psh connection.

% This directs output to the
% specified/lie.

% A secondfile is specified; the
% two files can now be compared
% to indicate the number of
% objects created due to the
% creation of an instance
% of My Class.

% End use of the debugging
% dictionary.

Revision A. of 25 August 1989

refent

reffinder

Chapter 7 -Memory Management 155

object refcnt fixed fixed
Returns two numbers onto the process stack: the first is the total reference count
for the specified object; the second is the soft reference count for the specified
object. (Note that the counts indicate the status of the object after the operator
has cleaned up the reference to the object that was given to it on the stack.)

object refflnder
object boolean refflnder -
Prints to standard output infonnation on all current references to the specified
object. The optional boolean argument can be true (which specifies that only
infonnation about references that are not soft is printed) or false (which
specifies that infonnation about all references is printed).

If the specified object is not a counted type, a message is printed and reffinder
returns.

The reffinder operator causes memory to be allocated for a hash table, which
holds traceback infonnation about the system. All allocated memory is freed
when the operator returns. If memory cannot be allocated, a message is printed,
all memory currently allocated due to the operator is freed, and the operator
returns.

The refent and reffinder operators can be used together; refent detennining how
many references to an object continue to exist, reffinder printing infonnation on
those references. Note that if a call to refent indicates that all but one of an
object's remaining references are soft, the problem you are debugging is likely to
have been caused by the remaining non-soft reference. In such a case, reffinder
should be executed with the boolean argument specified as true: this prints
infonnation on the non-soft reference only.

Use of reffinder may indicate a discrepancy between the number of references
registered in the object's tallies and the number that actually exist in the system.
If this occurs, messages are printed to indicate the discrepancy. There are at least
two possible reasons why the discrepancy might occur:

o A cycle exists; that is, an object in the system contains a reference to itself.
Note that the reffinder operator cannot find cycles.

The effects of a cycle can be illustrated as follows. The reffinder operator is
used to search for references to a canvas. A reference to the canvas is held
by a dictionary. The dictionary holds a reference to itself; however, no
external references to the dictionary exist. Therefore, reffinder cannot find
the dictionary, since there are no external references to it. Since it cannot
find the dictionary, it cannot find the dictionary's reference to the canvas
either.

o A reference counting bug exists in the server. While possible, the likelihood
of this happening is small. User code should be examined thoroughly for
cycles and errors in cleanup processing.

If such a discrepancy is reported, proceed as follows:

Revision A, of 25 August 1989

156 NeWS Programmer's Guide

vrnstatus

o If all existing references to the object are soft, check obsolete processing to
be sure it is being invoked correctly and that, once invoked, it is executing
correctly.

o Check code (particularly POSTSCRIPT language code) for reference counting
bugs and cycles.

- vmstatus nurn nurn nurn
Returns three numbers, which indicate the amount of available memory, the
amount of memory used, and the system break value.

NOTE The information returned by this Nt!NS operator differs from that returned by the
standard POSTSCRIPT language vrnstatus operator.

7.4. The Unused Font
Cache

Specifying the Size of the
Cache

The vrnstatus operator is provided as a standard Nt!NS operator and is not part
of debugdict, as are the other operators described in this section.

In NeWS, the memory requirements for font representation may be high, particu­
larly when an application uses multiple fonts or employs a wide range of font­
sizes. It is important, therefore, that no font should ever occupy memory
unnecessarily.

However, it is often inappropriate to remove a font from memory when its refer­
ence count becomes zero: the font may need to be used again, and the perfor­
mance cost of reloading fonts is high. Therefore, to prevent the unnecessary
reloading of fonts, NeWS provides an unused font cache. When a font's reference
count becomes zero, it is not destroyed; instead, it is placed in the unused font
cache. The font thus continues to exist in memory and is not destroyed. When
the font is subsequently referenced, it is removed from the cache.

The size of the cache is limited at all times; the limit can be determined by the
user (see the following subsection for details). If the cache becomes full, and a
new font needs to be added, the earliest cached font is removed and destroyed; its
memory is thus freed. Fonts continue to be removed from the cache and deleted
from memory until sufficient room for the new font has been created. (Note that
fonts may be of different sizes and may thus maintain different memory require­
ments: therefore, no precise figure exists for the number of fonts that may be
cached at one time.)

The size limit of the unused font cache determines the balance between memory
consumption (caused by maintaining fonts in memory) and performance degrada­
tion (caused by reloading fonts). When the size limit is high, fonts tend to be
maintained in memory; when the limit is low, fonts tend to be destroyed.

Memory is not allocated for the unused font cache. The size of the cache is the
amount of space in the system consumed by unused fonts; it is set to a default
value during system initialization. The following operators can be used to query
and set the size of the cache:

Revision A, of 25 August 1989

currentfontmem

setfontmem

Flushing the cache

Applications

Chapter 7 - Memory Management 157

- currentfontmem nurn
Returns the size of the font memory cache in units of kilobytes: this is the
amount of memory that is used to store unused fonts in the system.

size setfontmem
Sets the size of the font memory cache. The num argument specifies the size of
the cache in units of kilobytes. This is the amount of memory that is used to
store unused fonts in the system.

If a font that is bigger than the current size limit of the cache is itself cached, the
cache is automatically expanded by the size of the new font. After this has
occurred, the size of the cache can only be decreased by use of the setfontmem
operator.

For most font uses, the default cache size is sufficient. However, if you run
applications that use multiple fonts, and some of the fonts are large, an expanded
cache may be required to avoid the appearance of perfonnance degradation.

To flush the cache, execute setfontmem with size set to O. This frees the
memory of all unused fonts. If the system is run with the cache size set to zero,
the memory of each font is freed whenever its reference counts go to zero. Run­
ning the system with a cache size of zero is not recommended, due to the perfor­
mance penalties associated with loading fonts.

Applications cannot ascertain current system memory: thus, they should never
attempt to modify the cache size. Setting an improperly high cache size may
consume all available memory and cause the server to crash.

Revision A. of 25 August 1989

8
NeWS Type Extensions

NeWS Type Extensions .. 161

8.1. NeWS Objects as Dictionaries .. 161

8.2. List of NeWS Types .. 162

POSTSCRIPT Language Types .. 162

NeWS Type Extensions .. 162

8.3. colortype .. 163

8.4. graphicsstatetype ... 163

8.5. monitortype ... 163

8.6. packedarraytype .. 163

8.7. pathtype ... 164

8.8. canvastype .. 164

8.9. colormaptype .. 170

8.10. colormapentrytype .. 170

8.11. cursortype .. 171

8.12. environmenttype ... 172

8.13. eventtype ... 174

8.14. fonttype .. 177

8.15. processtype .. 177

8.16. visualtype ... 182

8.1. NeWS Objects as
Dictionaries

8
NeWS Type Extensions

NeWS extends the POSTSCRIPT language with a number of new types. These new
types are necessary because NeWS programs run in a dynamic, interactive
environment whereas traditional POSTSCRIPT programs run inside a printer. The
type extensions allow NeWS to support multiple imaging surfaces, user input,
multiple processes, and the other requirements of a window system.

In addition to the type extensions, NeWS defines a number of operator extensions
to support the new types. The operator extensions are described in the next
chapter.

Some of the NeWS type extensions are opaque and can only be used with opera­
tors that have been created or extended to handle them. Other types behave just
like dictionaries, and all dictionary access operators can be used on them. This
chapter describes all the NeWS type extensions.

Some NeWS type extensions have pieces of internal state that are accessible to the
NeWS programmer. Objects of these types behave almost exactly like standard
POSTSCRIPT language dictionary objects. All of the standard dictionary manipu­
lation operators (such as begin, def, get, and put) work on these new types.
However, the internal representation of these objects is completely different from
standard dictionaries, and storing or retrieving values from these new types may
involve side-effects. Objects of these new types are known as magic dictionary
objects.

Although magic dictionaries are extremely similar to standard PostScript
language dictionaries, several important differences exist:

o Magic dictionary objects are not created with the diet operator as are stan­
dard dictionaries. Instead, magic dictionary objects are created with special
operators. NeWS provides one creation operator for each magic dictionary
type. For example, the neweanvas operator creates a new canvas, and the
ereateevent operator creates a new event.

o Magic dictionary objects contain predefined key-value pairs, which cannot
be removed with the undef operator. The key in each pair names a piece of
internal state of the object, and the value is a POSTSCRIPT language
representation of that state. These predefined keys are already present in
newly-created magic dictionary objects.

+~t!! 161 Revision A, of 25 August 1989

162 NeWS Programmer's Guide

o Some of the predefined key-value pairs are read-only. Attempts to write
these key-value pairs (for example, with put or del) will result in an
invalidaccess error.

The following examples illustrate the use of operator extensions and standard
dictionary operators to manipulate magic dictionary objects. The examples use
canvastype and eventtype objects. These types are explained in greater detail
later in this chapter.

IMyCanvas framebuffer newcanvas def % Create a new canvas as a child of
0/0 the frame buffer and store it in

MyCanvas IMapped true put

MyCanvas IColor get

0/0 IMyCanvas in the current
0/0 dictionary.

0/0 Set the mapped state of MyCanvas
0/0 to be true. This has the side
0/0 effect of painting the contents
0/0 of the canvas to the screen.

0/0 Retrieve the Color attribute of the
0/0 canvas, a boolean value. This
0/0 attribute is read-only and cannot
0/0 be changed.

8.2. List of NeWS Types This section lists all the types that are accessible to NeWS programmers.

POSTSCRIPT Language Types NeWS provides the following standard POSTSCRIPT language object types, which
are returned by the type operator:

Table 8-1 Standard Object Types in the POSTSCRIPT Language

NeWS Type Extensions

arraytype
boolean type
dicttype
filetype
integertype

marktype
nametype
nulltype
operatortype
packedarraytype

reaJtype
savetype
stringtype

All of the above types, except packedarraytype, are described in the PostScript
Language Reference Manual. The packedarraytype is a new POSTSCRIPT type
that will be included in a future edition of the PostScript Language Reference
Manual.

The following types are provided by NeWS as extensions to the POSTSCRIPT
language:

Revision A, of 25 August 1989

Table 8-2 Additional NtM'S Object Types

canvastype
colormapentrytype
colormaptype
colortype
cursortype

Chapter 8 - NeWS Type Extensions 163

environmenUype
eventtype
fonttype
graphicsstatetype
monitortype

pathtype
processtype
visualtype

All of the above types are accessible as POSTSCRIPT language dictionaries except
for colortype, graphicsstatetype, monitortype, and pathtype.

The type operator returns the name of all of the above NeWS type extensions
except for fonUype; the type operator returns dicttype for a NeWS font object to
be consistent with the POSTSCRIPT language. The NeWS truetype operator
returns fonttype for a NeWS font object.

The sections that follow provide a description of each NeWS type extension. For
each type that is accessible as a dictionary, the dictionary keys are described.
The types that are not accessible as dictionaries are listed first; the other types are
listed in alphabetical order. Because packedarraytype is not yet described in
the PostScript Language Reference Manual, it is described here along with the
NeWS type extensions.

8.3. colortype NeWS color objects can have either red/green/blue or hue/saturation/brightness
values. Color objects with red/green/blue components are created with the
rgbcolor operator. Color objects with hue/saturation/brightness components are
created with the hsbcolor operator. The color objects can be compared and can
be used as a source of paint for the rendering primitives. Color objects cannot be
accessed as dictionaries.

NOTE NtM'S provides a dictionary of named colors; see Chapter 10, Extensibility
through POSTSCRIPT Language Files for information.

8.4. graphicsstatetype Graphics state objects preserve entire graphics states, as defined by the
POSTSCRIPT language, in a pennanent fOnD. Their only use is to save the graph­
ics state of a process for future re-use by that (or another) process. They are
retrieved and set with the currentstate and setstate operators. They cannot be
accessed as dictionaries.

8.5. monitortype Monitor objects can be accessed by only one process at a time; they are used for
synchronization. A monitor object can be locked or unlocked. Processes can use
monitors to implement mutual exclusion (for example, to prevent conflicts in
updating shared data structures). Monitors are created with the createmonitor
operator. Monitors cannot be accessed as dictionaries.

8.6. packedarraytype The NeWS packedarraytype is equivalent to the new POSTSCRIPT packedarray­
type; packedarraytype is documented here because it is not yet included in the
PostScript Language Reference Manual.

A packedarraytype object is a more compact representation of an array than an
ordinary arraytype object. Packed arrays save space; they should be used

Revision A, of 25 August 1989

164 NeWS Programmer's Guide

8.7. pathtype

8.8. canvastype

whenever possible.

In many ways, packed array objects are similar to ordinary array objects. Packed
arrays can be executed. Elements or subarrays can be extracted from a packed
array with the standard get and getinterval operators; a subarray of a packed
array is itself a packed array. Packed arrays can be enumerated with the foraH
operator.

However, some differences do exist between packed array objects and ordinary
array objects. Packed arrays are always read-only; the put operator cannot be
used to store into a packed array. Accessing arbitrary elements of a packed array
can be slow, but accessing the elements sequentially takes about the same
amount of time as it does for an ordinary array.

The setpacking operator can be used to set a process' array-packing mode to
true; when true, the server automatically creates packed arrays for any executable
array that it reads for that process. When the symbol II {" is encountered, the
seIVer accumulates all tokens until the associated "} II and then creates a packed
array instead of an ordinary array. The array-packing mode defaults to false. A
child process inherits its parent's array-packing mode.

A packed array can also be created with the packedarray operator. This opera­
tor takes as arguments the objects that are to be included in the packed array.

Path objects represent paths, as defined by the POSTSCRIPT language, in a per­
manent form. Their only use is to save the current path of a process for future
re-use by that (or another) process. They are retrieved and set with the
currentpath and setpath operators. They cannot be accessed as dictionaries.

All NeWS canvas objects are of type canvastype. Each canvas is a surface on
which objects such as text or graphic images can be drawn. A canvas' boundary
is represented by a POSTSCRIPT language path and can be any arbitrary shape.
When mapped to the screen, canvases can overlap. When this occurs, the hidden
portion of a canvas can be stored offscreen and redisplayed when the canvas is
re-exposed.

Canvases exist in a hierarchy. The background of the screen is the root of the
hierarchy and is thus known as the root canvas. A canvas can have any number
of children, each of which can exist at any coordinates; however, each child is
visually clipped by the bounds of its parent and thus becomes invisible when
located outside those bounds.

Canvases are created with the newcanvas operator. They can be accessed as dic­
tionaries.

Canvases are described in detail in Chapter 2, Canvases. This section describes
the keys in the canvas dictionary.

A canvastype dictionary contains the following keys:

Revision A, of 25 August 1989

TopCanvas
BottomCanvas
CanvasAbove
CanvasBelow
TopChiid
Parent
Transparent
Mapped
Retained
SaveBehind
Color
EventsConsumed
Interests
Cursor
Colormap
Visual
VisualList
OverrideRedirect
BorderWidth
UserProps
XID
SharedFile
RowBytes
Grabbed
GrabToken

The value of each key is described below.

TopCanvas canvas (read-only)

Chapter 8 - NeWS Type Extensions 165

The canvas' top sibling (the TopChiid of the parent canvas), or the canvas itself
if it has no siblings.

BottomCanvas canvas (read-only)
The canvas' bottom sibling (the bottom child of the parent canvas), or the canvas
itself if it has no siblings.

CanvasAbove canvas or null
The sibling canvas immediately above this canvas, or null if no such canvas
exists. You can change a canvas' position in the hierarchy by setting the value of
this key to be any of the canvas' siblings. When you set the value of a canvas'
CanvasAbove key, the canvas is inserted into the hierarchy directly below the
specified sibling. Note that the CanvasAbove and CanvasBelow keys of the
affected siblings will change to reflect the new hierarchy.

Revision A. of 25 August 1989

166 NeWS Programmer's Guide

CanvasBelow canvas or null
The sibling canvas immediately below this canvas, or null if no such canvas
exists. You can change a canvas' position in the hierarchy by setting the value of
this key to be any of the canvas' siblings. When you set the value of a canvas'
CanvasBelow key, the canvas is inserted into the hierarchy directly above the
specified sibling. Note that the CanvasAbove and CanvasBelow keys of the
affected siblings will change to reflect the new hierarchy.

TopChiid canvas or null (read-only)
The top child of this canvas, or null if no such canvas exists.

Parent canvas or null
The parent of this canvas, or null if the canvas has no parent. Null is associated
with canvases that result from createdevice, readcanvas, and buildimage. Set­
ting a canvas' Parent key manipulates the canvas hierarchy; the canvas becomes
the top child of the canvas specified in this key. Canvases created with readcan­
vas and buildimage cannot be inserted into the canvas hierarchy; setting the
Parent key of such a canvas is ignored.

Transparent boolean
True if the canvas is transparent, false if it is opaque. An opaque canvas visually
hides all canvases underneath it; a transparent canvas does not. An opaque can­
vas can be damaged; a transparent canvas cannot. A transparent canvas never
has a retained image; instead it shares its parent's retained image. Anything
painted on a transparent canvas is actually painted on the first opaque canvas
beneath it (often, its parent).

Mapped boolean
True if the canvas is mapped, false if it is unmapped. When a canvas is mapped,
it becomes visible on the screen that its parent is on, provided that all of its
ancestors are mapped and that it is not obscured by overlapping canvases. Note
that canvases created with readcanvas and buildimage cannot be mapped to the
screen. When a nonretained canvas is mapped, the region that becomes visible is
considered to be damaged.

Retained boolean
True if the canvas is retained, false if it is not. NeWS keeps an offscreen copy of
the invisible parts of a retained canvas. If a retained canvas is mapped and is
overlapped by some other canvas, the hidden parts of the canvas will be saved. If
a canvas is retained when it is not mapped, a copy of the entire canvas is saved.

A retained canvas usually perfonns much better with most window management
operations, like moving and mapping canvases. But the retained image does con­
sume storage. For color displays, the cost of retaining canvases is often prohibi­
tive.

If the server runs low on memory, the retained portions of canvases may be
reclaimed. When this happens, querying the Retained field of such a canvas
returns false. In addition, damage may be reported on this canvas. Therefore,
programs should be prepared to ha.l1dle damage on a.l1Y canvas. including retained

Revision A, of 25 August 1989

Chapter 8 - NeWS Type Extensions 167

ones.

The Retained field is meaningless for a transparent canvas. When queried, it
returns the Retained value of its nearest opaque ancestor; in this case, the value
cannot be changed.

SaveBehind boolean
SaveBehind is a hint to the window system that when the canvas is made visible
on the screen, the canvas won't be up very long and the canvases below it won't
be very active. If the value of a canvas' SaveBehind key is true, NeWS usually
saves the values of the pixels underneath the canvas when the canvas is mapped
to the screen. NeWS then restores the original pixel values back to the screen
when the canvas is unmapped, and none of the canvases are damaged. This is a
performance hint only; it does not affect the semantics of any other operations. It
is usually employed with pop-up canvases to reduce the cost of damage repair
when they are unmapped.

Color boolean (read-only)
True if and only if this canvas can support more colors than just black-and-white
or greyscale.

EventsConsumed name
This key determines the event consumption behavior of the canvas. Its value is
one of the following names:

IAIIEvents
All events that are tested against this canvas' post-child interests are con­
sumed; they are not tested against the post-child interest lists of this canvas'
ancestors.

IMatchedEvents
Events that match a post-child interest of this canvas are consumed, but
non-matching events may still pass to this canvas' ancestors for further test­
ing against post -child interests.

INoEvents
No events are consumed by this canvas; all events may pass to the canvas'
ancestors during testing against post -child interests.

Interests array (read-only)
The interest lists for the canvas, represented as an array of events. The array is a
concatenation of the canvas' pre-child and post-child interest lists, with the pre­
child interest list first. Within each list, the interests are ordered according to
their priority, with highest priority first. Among interests with the same priority,
exclusive interests are listed first.

Revision A, of 25 August 1989

168 NeWS Programmer's Guide

Cursor cursor or null
The cursor associated with this canvas, or null if a cursor has not been specified
for this canvas.

Colormap colormap
The colonnap that is associated with this canvas (see colormaptype).

Visual visual (read-only)
The visual that is associated with this canvas (see visuaJtype).

VisualList array (read-only)
An array that contains all possible visuals for the canvas (see visualtype).

OverrideRedirect boolean (read-only)
True if an XII client has selected the OverrideRedirect window attribute for
this canvas. (This key is useful only for canvases created by XI1.)

BorderWidth null or integer (read-only)
The XII border width. If this value is an integer, the canvas has a window
border with the specified width. A non-null BorderWidth can be changed with
the reshapecanvas operator. If the value is null, the canvas has no border and
none can be set. (This key is useful only for canvases created by XI1.)

UserProps dict
A dictionary that contains the XII properties for this canvas. The keys in this
dictionary are atoms that name each property. The values are arrays of length
four, containing the property name, type, fonnat, and data in that order. (This
key is useful only for canvases created by XII.)

XID number (read-only)
The XII resource ID of the canvas. If this number is zero, the canvas is not in
the XII resource database. (This key is useful only for canvases created by
Xl 1.)

SharedFile string
Maps a canvas object to a file. The canvas must have been previously defined
with the buildimage operator. Note that canvases defined with buildimage have
no parent. If the specified canvas does have a parent, a t ypecheck error is
returned. The string must contain the name of a file in the server's name space.
If the file is inaccessible or does not have read-write access pennission, an
invalidfileaccess error is returned. If the canvas is currently mapped to a
file, a null string unmaps the file; a string containing a filename unmaps the
current file and remaps the canvas to the file named in string. The file is assumed
to contain image data stored a line at a time in increasing y order, the number of
bytes per scanline being that specified by RowBytes .

• \sun ~ microsystems
Revision A, of 25 August 1989

I

The ability to map a canvas to a file
is operating system dependent and
may not be present in the server.

Chapter 8 - NeWS Type Extensions 169

The file should be accessed by the client directly using mmap (2). The server
will process the shared file in native byte order. The client is responsible for syn­
chronizing accesses to the shared file. This facility is intended for use by clients
running locally with the server. If the client and server do not reside on the same
machine, canvas data consistency is not guaranteed by the server.

RowBytes number (read-only)
The scanline padding requirements for a canvas. This represents the dimen­
sioned width plus any padding added by the server.

Grabbed boolean
Unless you are using a OX graphics accelerator, neither this key nor the Grab­
Token key (see below) has an effect on the canvas.

If you are running Xll/NeWS with a GX graphics accelerator
(FRAMEBUFFER=/ dey / cgsixO), this key controls NeWS access to the graph­
ics hardware. When used in conjunction with a C language interface to the
hardware, the key mediates the control over the bits inside a given canvas. To
demonstrate how the Grabbed key is used, the following code creates a new can­
vas:

(lean Iramebufler neweanvas del

The following example shows the three possible uses of the Grabbed key:

can /Grabbed true put
can /Grabbed false put
can /Grabbed get

% Make can a grabbed window.
% Release the grab on can.
% Returns the value of
% the Grabbed key.

When a GX graphics accelerator is present and a client sets a canvas' Grabbed
key to true, the cgsix segment driver assigns an integer to the canvas' GrabTo­
ken key. The client can then communicate with the cgsix segment driver using
this GrabToken to identify which canvas' clip area to use when rendering
directly to the framebuffer.

GrabToken int (read-only)
The grab token for the canvas. This key's value is zero when the canvas is not
grabbed and is a non-zero integer when it is grabbed. The key is demonstrated
by the following example:

can /GrabToken get % Returns 0 if not grabbed.

]

Revision A. of 25 August 1989

170 NeWS Programmer's Guide

8.9. colormaptype

8.10. colormapentrytype

A colormap is a color lookup table that detennines which color is displayed for a
specified pixel value. Each entry in the colonnap table contains a red, a blue, and
a green value; these values can be used to specify the color-mix of a given pixel.
Each entry also contains an integer that is a index for the entry.

A colonnap can be created with the createcolormap operator (see Chapter 9,
NtM'S Operator Extensions). Colonnaps can be accessed as dictionaries.

A colormaptype dictionary contains the following keys:

Entries
Free
Installed
Visual

The value of each key is described below.

Entries array (read-only)
An array of the colonnapentries used by this colonnap. The mininum number of
elements in the array is 0; the maximum number of elements is given by the Size
key of the colonnap' s visual.

Free number (read-only)
The number of free entries in the colonnap.

Installed boolean
True if the colonnap is installed as a hardware map; otherwise false.

Visual object (read-only)
An object that is the visual for this colonnap. Note that a canvas and its color­
map must have the same visual. The colonnap's visual is specified as an argu­
ment to the createcolormap operator.

A colormapentry is usually a single entry in a colonnap; however, it may also be
specified as a group of several entries (or slots). In such cases, a bitmask can be
used to manipulate the indices of the entries and thereby derive the required
color. Colonnapentry objects can be accessed as dictionaries.

A colonnapentry is created with the createcolorsegment operator. The colors of
a colonnapentry are accessed with putcolor and getcolor.

A colormapentrytype dictionary contains the following keys:

Colormap
Mask
Slot

The value of each key is described below.

Revision A, of 25 August 1989

8.11. cursortype

I

Chapter 8 - NeWS Type Extensions 171

Colormap object (read-only)
The colonnap to which the entry belongs.

Mask int (read-only)
A mask of bits that can be used on a multiple entry to manipulate its indices. If
the entry is not a multiple entry, the value of Mask is O.

Slot int (read-only)
An integer that is the index position of the slot in the entry. If the entry has only
one slot, the value of Slot is O.

Cursor objects are composed of a cursor image and a mask image. These two
images are superimposed to create the complete cursor.

Mask and cursor images each have three attributes: a font, a character within the
font, and a color. The cursor image and mask image are superimposed by align­
ing the origins of their respective characters. This point is also the cursor hot
spot (the pixel coordinate to which the cursor points).

You can think of the mask image as the background and the cursor image as the
foreground. The mask image defines the shape and color of the background on
which the cursor image is painted. The mask image is like a stencil that the cur­
sor image is passed through; any parts of the cursor image that fall outside of the
mask will not be painted. The portion of the complete cursor painted by the cur­
sor image appears in the cursor image color. The remainder of the complete cur­
sor appears in the mask image color. The complete cursor has a halo effect if a
cursor image is superimposed on a larger mask image.

Each canvas in the hierarchy has an associated cursor object specified by its Cur­
sor key; the canvas' cursor is displayed when the mouse pointer is over the can­
vas. When a canvas is created with the newcanvas operator, the new canvas
inherits the cursor of its parent.

Cursors are created with the newcursor operator. A cursor's characters and fonts
are detennined by the arguments specified to the newcursor operator. Cursors
can be accessed as dictionaries; a cursor's colors are set with two of the diction­
ary keys. Cursors are not guaranteed to be displayed with their specified colors
because some display devices have color limitations. The mask and image are
guaranteed to be painted in contrasting colors, however.

NeWS provides a special font, called cursorfont, that includes common cursor
shapes and their corresponding masks.

A cursortype dictionary contains the following keys:

CursorChar
CursorColor
CursorFont
MaskChar
MaskColor
MaskFont

Revision A. of 25 August 19~N

172 NeWS Programmer's Guide

8.12. environmenttype

The value of each key is described below.

CursorChar int (read-only)
The integer that corresponds to the character used for the cursor image.

CursorColor object
The color with which the image is painted.

CursorFont object (read-only)
The font that is used for the cursor image.

MaskChar int (read-only)
The integer that corresponds to the character used for the mask image.

MaskColor object
The color with which the mask image is painted.

MaskFont object (read-only)
The font that is used for the mask image.

Environment objects represent information about the server run-time environ­
ment. These objects store information about input devices such as the mouse and
keyboard. Each device has its own environment object that can be accessed as a
dictionary; information is stored only in the subset of keys that pertain to that
particular device. The environment dictionary keys are device dependent.

An environment dictionary is created with the createdevice operator.

An environmenttype dictionary contains the following keys:

BellDuration
BellPitch
BellPercent
KeyClickPercent
Leds
AutoRepeat
KeyRepeatTime
KeyRepeatThresh
MotionCompression
Threshold
AccelNumerator
AccelDenominator

The value of each key is described below.

Revision A, of 25 August 1989

Chapter 8 - NeWS Type Extensions 173

BellDuration real or integer
The duration of the keyboard bell (in 216 milliseconds).

BellPitch real or integer
The pitch of the keyboard bell (in Hz).

BellPercent real or integer
The volume of the keyboard bell (O.O=off, 1.0=loudest).

KeyClickPercent real or integer
The volume of the keyboard key click (O.O=off, 1.0=loudest).

Leds integer
The status of the keyboard LEDs (a bit mask that determines whether the LEDs
are on or off).

AutoRepeat boolean
The status of keyboard auto-repeat (true=on, false=off).

KeyRepeatTime real or integer
The keyboard repeat key cycle time (in 216 milliseconds). Determines the speed
at which a key will repeat.

KeyRepeatThresh real or integer
The keyboard repeat key threshold (in 216 milliseconds). Specifies the amount of
time a key must be pressed before it begins to repeat.

MotionCompression boolean
The status of pointer motion compression (true=motion compression on,
false=motion compression off). If true and the server falls behind in processing
motion events, multiple events may be collapsed into one.

Threshold integer
The pointer acceleration threshold. Specifies how fast the pointer must be moved
(the threshold number of pixels moved at once) before pointer acceleration takes
place.

AccelNumerator real or integer
Specifies the numerator for the pointer acceleration multiplier. When accelera­
tion takes place, the pointer speed will be multipied by
AccelNumeratorl AccelDenominator.

Revision A, of 25 August 1989

174 NeWS Programmer's Guide

8.13. eventtype

AccelDenominator real or integer
Specifies the denominator for the pointer acceleration multiplier. (See Accel­
Numerator above.)

Events are NeWS objects, generated by the system and by NeWS processes, that are
used for handling input and intetprocess communication. The system generates
input events to report user actions such as mouse motion and key presses. The
server receives infonnation from the input devices, translates the information
into NeWS events, and distributes the events to the processes that are interested in
them. In addition to input events, the server also generates events that tell
processes when a canvas is damaged, when an object becomes obsolete, and
when a process dies while it is still referenced. NeWS lightweight processes can
also generate events and submit them for distribution.

Event objects are created using the createevent operator. System-generated
events are created automatically. Events can be accessed as dictionaries.

Events are described in detail in Chapter 3, Events. This section describes the
keys in the event dictionary.

An eventtype dictionary contains the following keys:

Action
Canvas
ClientData
Exclusivity
Interest
IsInterest
IsPreChild
IsQueued
KeyState
Name
Priority
Process
Serial
TimeStamp
XLocation
YLocation
Coordinates

The value of each key is described below.

Action obj ect
An arbitrary POSTSCRIPT language object that often depends on the value of the
Name. For keystrokes, the value of Action is IDownTransition or IUpTransi­
tion; for mouse motion, Action is null.

Revision A, of 25 August 1989

Chapter 8 - NeWS Type Extensions 175

Canvas null, canvas, diet, or array
In an interest, the Canvas key indicates the canvas whose interest list the interest
is on (or null if the interest is on the pre-child interest list of the root canvas).
The Canvas key of an interest may contain an array or dictionary; in this case,
the interest is placed on the interest list of each specified canvas. When an event
is expressed as an interest, this key becomes read-only.

In an event that is to be distributed, the Canvas key determines which canvas
interest lists are searched for potential matches. If a single canvas is specified,
the event is tested against that canvas' interests and the interests of that canvas'
ancestors (according to the rules given in Chapter 3, Events). Ifnull is specified,
the event is tested against the interests of the canvas directly under the event's
location (as determined by the canvas Coordinates key) and the interests of that
canvas' ancestors. If an array or dictionary of canvases is specified, each canvas
and its ancestors are considered in turn.

ClientData object
In either an interest or an event submitted for distribution, this field may hold
additional information .relating to the event. The server does not set or use the
value of this key.

Exclusivity boolean
If the Exclusivity key of an interest is true, an event that matches this interest in
distribution is not allowed to match any further interests. This key is meaningful
only for interests; when an event is expressed as an interest, this key becomes
read-only.

Interest event (read-only)
This read-only key is set in an event as it is distributed; its value is the interest
that the event matched in order to be delivered to its recipient.

IsInterest boolean (read-only)
True if the event is currently on some interest list.

IsPreChiid boolean
True if the event is on the pre-child interest list of its canvas(es). This key has no
effect until the event is expressed as an interest; when the event is expressed as
an interest, this key becomes read-only.

IsQueued boolean (read-only)
True if the event has been put in the input queue and has not yet been delivered.

Revision A, of 25 August 1989

176 NeWS Programmer's Guide

KeyState array (read-only)
When keyboard translation is on, this array is empty. When translation is off,
this array indicates all the keys that were down at the time the event was distri­
buted. The array actually contains the Name values from events that had an
Action of lDownTransition and that did not have a subsequent event with the
same Name and an Action of IUpTransition. In generating this array, the test is
executed before a down-event, and after an up-event, so a down-up pair with no
intervening events will not be reflected in the KeyState array.

This key is meaningless in an interest.

Name object
An arbitrary POSTSCRIPT language object that usually indicates the kind of event.
For example, keystrokes have numeric values associated with the Name key,
corresponding to the ASCII characters (or the keys) that were pressed. Other
events have name values associated with the Name key, such as IDamaged or
tEnter Event.

Priority number
Priority is meaningful only for interests. When an event is expressed as an
interest, this key becomes read-only. Distributed events are matched against the
interests expressed on a canvas in priority order, highest priority first. Among
interests with the same priority, interests with the Exclusivity key set to true are
considered first; among nonexclusive interests of the same priority, the most
recently expressed interest is considered first. The default priority is 0; fractional
and negative values are allowed. The priority rarely needs to be changed from its
default value.

Process null or process
The Process key can be set prior to sending an event out for distribution. In a
distributed event, the Process key restricts distribution of the event to the
specified process. Distributed events usually have null in their Process fields and
are matched against interests without restriction. The Process key in an interest
is set by the expressinterest operator to be the process that will own the interest.
When an event is expressed as an interest, this key becomes read-only.

Serial number (read-only)
The Serial key is read-only for both interests and events. An event's Serial key
is automatically set to a numeric value when the event is taken off the global
event queue (the value is set from a monotomically increasing counter to indicate
the sequence in which the removal of events occurs). If the event is then success­
fully matched with an interest, the interest's Serial key is automatically set to the
value that the event's key contains. NeWS allows an event to match an interest
only when the interest's serial number is less than that of the event; this prevents
an event passed to the redistributeevent operator from repeatedly matching the
same interests before redistribution takes place.

Revision A, of 25 August 1989

The current nominal resolution of a
time value is 1 ms and the maximun
interval is 71,582 minutes (49.7
days).

8.14. fonttype

8.15. processtype

Chapter 8 - NeWS Type Extensions 177

TimeStamp number
This numeric value indicates the time an event occurred. A time value is simply
the amount of time that has elapsed since the system started, calculated in units
of 216 milliseconds.

Events in the global event queue are distributed in TimeStamp order, and no
event is delivered before the time in its TimeStamp field. Thus, a timer event is
simply any event handed to sendevent with a TimeStamp value in the future.
This key is ignored in interests.

XLocation number
System events are labeled with the cursor location at the time they are generated;
this location is used to determine which canvas interest lists are tested against the
event for potential matches. The location is available to recipients and is given
with respect to the current transfonnation matrix. This key accesses the x coordi­
nate of the event's location. This key is ignored in interests.

YLocation number
This key accesses the y coordinate of the event's location; see the explanation
under XLocation above. This key is ignored in interests.

Coordinates [x-location y-Iocation]
This key accesses the event's x and y locations as an array with two elements.
The x and y coordinates are given with respect to the current transfonnation
matrix.

A NeWS font object is accessible as a dictionary. The type operator returns diet­
type for a NeWS font object; the truetype operator returns fonttype.

A NeWS font dictionary includes all the standard keys for a POSTSCRIPT language
font dictionary; it also contains the following News-defined key:

WidthArray array (read-only)
An array of number pairs that specify the x and y components of the width of
each character. The x component of character c is in WidthArray(2*c), and the
y component is in WidthArray(2*c+l). The width components are given in
units of the current coordinate system with respect to the origin of the character's
coordinate system.

The NeWS server maintains a set of simultaneously executing lightweight
processes. Each process object is an individual thread of control with its own
graphics context, dictionary stack, execution stack, and operand stack. These
lightweight processes all exist in the same address space; two processes can refer
to the same object if they can both locate the object. Typically, each connection
to the server obtains a separate thread of execution with its own context. A pro­
cess can create, orfork, new processes to fonn a process group. Processes com­
municate with each other using NeWS events.

When NeWS first starts to run, it creates a single process that executes the NeWS
startup file. At this time, code may be downloaded into the server and many

Revision A, of 25 August 1989

178 NeWS Programmer's Guide

more lightweight processes may start. The process that runs the startup file is the
only process that is not created by some earlier process executing the fork opera­
tor.

When a process executes the fork operator, the newly created process is the child
of the parent process that created it. The child proccess inherits its parent's dic­
tionary stack, operand stack, and graphics state. The parent and child start out in
the same process group. However, the newproeessgroup operator can be used to
remove a process from its process group and put it in its own, new process group.
Although a child process starts out with the same name space as its parent, each
lightweight process can control the extent to which its name space is shared with
other processes by pushing and popping dictionaries to and from its private stack.

A process can kill its child processes, or it can wait for them to die and obtain a
return value from them. A process can pause to allow other processes to run.
NeWS processes can also temporarily suspend themselves and other processes. A
process can examine the state of other processes by opening the process objects
that represent them as dictionaries.

A process dictionary contains two special keys in systemdict: $error and error­
diet. When accessed, they return the $error or errordiet of the current process.
To access the $error or errordiet of a different process, use the corresponding
magic fields in that process. Note that the $error field will always be private to
an individual process, containing information about the last error that process
encountered, but the errordiet can be shared between processes since its refer­
ence is copied to a child process during a fork.

A proeesstype dictionary contains the following keys:

DictionaryStack
$error
errordict
ErrorCode
ErrorDetaiILevel
Execee
ExecutionStack
Interests
OperandStack
ProcessName
State
Priority
Stdout
Stderr
Send Contexts
SendStack

The value of each key is described below.

Revision A, of 25 August 1989

Chapter 8 - NeWS Type Extensions 179

DictionaryStack array (read-only)
An array that contains the current dictionary stack of the process. The dictionary
on the bottom of the stack (the systemdict) is array element 0, and the process'
userdict is array element 1.

$error diet or null
A dictionary that contains infonnation about the last error that the process
encountered. The dictionary is filled by the defaulterroraction primitive when
errors occur. This error dictionary is similar to the POSTSCRIPT language $error
dictionary, but it has one additional key named message; if ErrorDetailLevel is
greater than zero, message contains a string that describes the context of the
error. If the defaulterroraction primitive has not been executed, the value of
$error will be null.

errordict diet
The errordict that is used to resolve the process' errors. This errordict is
copied to a forked process by the fork operator. The initial value of this field is a
copy of the NeWS listener's errordict, which by default maps each error to the
defaulterroraction operator.

ErrorCode name
A name that specifies the current errorcode of the process. This key's value is
one of the following names:

Revision A, of 25 August 1989

180 NeWS Programmer's Guide

accept
dictfull
dictstackoverflow
dictstackunderflow
execstackoverflow
interrupt
invalid access
invalidexit
invalidfileaccess
invalid font
invalid restore
ioerr
killprocess
limitcheck
nocurrentpoint
none
rangecheck
stackoverflow
stackunderflow
syntaxerror
timeout
typecheck
undefined
undefinedfilename
undefinedresult
unim plemented
unmatchedmark
unregistered
VMerror

Most of the error codes are standard POSTSCRIPT language error codes. How­
ever, the following five are NeWS-specific:

o accept indicates that something went wrong when the server tried to accept a
connection from a client process.

o killprocess indicates that the process has been killed, usually by the killpro­
cess operator.

o none indicates no error.

o timeout indicates that the process has exceeded its time quota without paus­
ing. The NeWS timeout is different than the POSTSCRIPT language timeout
because NeWS interprets timeout on a per process basis and each process can
avoid timeout by using the pause operator.

o unimplemented indicates that the process has executed an operator that is
not currently implemented.

Revision A, of 25 August 1989

Chapter 8 - NeWS Type Extensions 181

ErrorDetailLevel integer
Controls the amount of detail that is included in the default error handler's error
report. Setting ErrorDetailLevel to 0 (the default) gives a minimum of error
reporting. Setting it to 1 records a more descriptive message in the $error dic­
tionary, and setting it to 2 records the contents of the dictionary, execution, and
operand stacks in the $error dictionary. The following line sets the error detail
level to 1:

currentprocess IErrorDetailLevel1 put

Execee object (read-only)
The object currently being evaluated (Le., the top of the process' execution
stack).

ExecutionStack array (read-only)
The full current execution stack of the process, represented as an array that con­
tains pairs of executable arrays and indices. The executable array at the bottom
of the stack is element 0 of the array, and the first index is element 1. The
indices indicate which element of the associated array is currently being exe­
cuted.

Interests array (read-only)
An array that contains the current interest list of the process.

OperandStack array (read-only)
The full current operand stack of the process, represented as an array. The object
on the bottom of the operand stack is element 0 of the array.

ProcessName string
This key can be used to store an identifying string that gives the process a name.
It defaults to (Unnamed process). This value is not used by anything internal
to the server but is useful for debugging. (See the manual page for psps.)

State array (read-only)
A name that specifies the current execution state of the process. The set of possi­
bIe results is as follows:

o breakpoint indicates that the process is suspended, normally for debugging.

o dead indicates that the process is completely dead.

o input_wait indicates that the process is waiting on an event.

o 10 _wait indicates that the process is waiting on input/output.

o mon _wait indicates that the process is waiting at a monitor.

o proc _wait indicates that the process is waiting for another process to exit.

o runnable indicates that the process is running.

Revision A, of 25 August 1989

182 NeWS Programmer's Guide

8.16. visualtype

o zombie indicates that the process has exited, but other processes still have
references to it.

Priority int
The scheduler priority of the process. The server has an internal priority and will
not execute any process whose priority is less than this value. NeWS lightweight
processes whose Priority falls below this dynamically-changing priority limit
are not scheduled to be run by the server - they are "frozen."

NeWS processes should have no need to change their priority. Process priority is
only used by the Xll/NeWS server to implement "grabs". Nonnal processes
should have a priority of UserPriority (0). Processes that cannot block (such as
NeWS support processes) should have a priority of SystemPriority (100).

Stdout file
The current standard output file of the process.

Stderr file
The current standard error file of the process.

SendContexts array (read-only)
An array that contains the current send stack of the process. The dictionary stack
on the bottom of the send stack is element 0 of the array.

SendStack array (read-only)
Identical to SendContexts but in the reverse order, so that it matches the order­
ing of the other stacks in a process.

A visual is an object that describes the pennissible color properties for a canvas.
Visuals are accessible as dictionaries. Each available visual is system-supplied
and its dictionary is read-only. A canvas' visual can be passed as an argument to
the newcanvas operator; the canvas then has the properties allowed by the
specified visual. If no visual is specified, a default visual is used.

To obtain a list of available visuals, examine the VisualList key of the root can­
vas.

Each colonnap is also associated with a visual that is specified when the color­
map is created; a colormap's visual is stored in its read-only Visual key. Note
that a colormap and its canvas must have the same visual.

A visualtype dictionary contains the following keys:

Size
Class
BitsPerPixel

The value of each key is described below.

Revision A, of 25 August 1989

Chapter 8 - NeWS Type Extensions 183

Size number (read-only)
The maximum number of colonnapentries for colonnaps associated with this
visual (see colormapentrytype and colormaptype).

Class number (read-only)
A number that indicates the color class of the visual. Visuals are divided into six
classes, representing six different types of display hardware. The following list
describes the classes and their effects on the mapping between pixel value and
visible color. The first line of each description gives the number that is the value
of the Class key, followed by a name (in parentheses) that is commonly used to
describe that color class.

o (StaticGray)
The pixel value indexes a predefined, read-only colonnap. For each color­
map cell, the red, green, and blue values are the same, producing a gray
image.

1 (GrayScale)
The pixel value indexes a colonnap that the client can alter, subject to the
restriction that the red, green, and blue values of each cell must always be
the same, producing a gray image.

2 (StaticColor)
The pixel value indexes a predefined, read-only colonnap. The red, green,
and blue values for each cell are server-dependent.

3 (Pseudo Color)
The pixel value indexes a colonnap that the client can alter. The red, green,
and blue values of each cell can be selected arbitrarily.

4 (TrueColor)
The pixel value is divided into sub-fields for red, green, and blue. Each
sub-field separately indexes the appropriate primary of a predefined, read­
only colormap. The red, green, and blue values for each cell are server­
dependent and are selected to provide a nearly linear increasing ramp.

S (DirectColor)
The pixel value is divided into sub-fields for red, green, and blue. Each
sub-field separately indexes the appropriate primary of a colormap that the
client can alter.

BitsPerPixel number (read-only)
The number of bitplanes used by the canvas.

Revision A, of 25 August 1989

9
NeWS Operator Extensions

NeWS Operator Extensions ... 187

acceptconnection

arccos

arcsin

assert

awaitevent

9

NeWS Operator Extensions

listenfile acceptconnectlon file
Listens on listenfile for a request made by a client UNIX process for a connection
with the Xll/NeWS server. When the request is received, file connects the client
to the server. Messages written by the client to the server appear on file; they are
then sent to the server.

The listenfile is created by invoking file with the special file name
(% socket In) , where n is the IP port number used for listening.

See also: getsocketpeername

num arccos num
Computes the arc cosine in degrees of num.

num arcsin num
Computes the arc sine in degrees of num.

boolean errorname assert
Generates a POSTSCRIPT error of type errorname if boolean is false .

- awaitevent event
Removes an event from the head of the current process' local input queue, then
places the event on the process' operand stack. If the local input queue does not
contain an event, awaitevent blocks until an event is placed on the queue: an
event is placed on the queue when a distributed event successfully matches an
interest expressed by the process.

See also: blockinputqueue, createevent , expressinterest , redistributeevent ,
sendevent

187 Revision A, of 25 August 1989

188 NeWS Programmer's Guide

beep - beep

blockinputqueue

breakpoint

buildimage

Generates an audible signal. On most server implementations, this rings the key­
board bell.

num or null blocklnputqueue
Inhibits distribution of events from the global event queue. When the operator is
executed, a release time is calculated for the block; the release time is the sum of
the current time and the argument to blockinputqueue. The argument can be
num or null; num is a number in units of216 milliseconds and null represents a
system-defined default timeout. When the operator is executed, no event is
removed from the global event queue until one of the following has occurred:

[J The amount of time specified by the release time has elapsed.

[J The unblockinputqueue operator is executed.

When nested calls to blockinputqueue are made, no event is removed from the
global event queue until one of the following has occurred:

[J The amount of time specified by the greatest of the release times has
elapsed.

[J The unblockinputqueue operator has been executed once for each call to
blockinputqueue.

Since an event used as the argument to sendevent is inserted in the global event
queue, its distribution can be inhibited by blockinputqueue. However, an event
used as the argument to redistributeevent is not inserted in the global event
queue; thus, its distribution cannot be inhibited by blockinputqueue.

See also: sendevent, unblockinputqueue

- breakpoint
Suspends the current process.

width height bits/sample matrix proc buildlmage canvas
Constructs a canvas object, using the width, height, bits/sample, and proc argu­
ments as does the POSTSCRIPT language image operator. The parameters
represent a sampled image that is a rectangular array of width by height sample
values. Each value consists of bits/sample bits of data (1,2,4,8). The data is
received as a sequence of characters (that is, 8-bit integers in the range 0 to 255).
If bits/sample is less than 8, the sample bits are packed left to right within a char­
acter (from the high-order bit to the low-order bit). Each row is padded out to a
character boundary.

The buildimage operator executes proc repeatedly to obtain the image data. The
specified proc must place on the operand stack a string containing any number of
additional characters of sample data.

If proc is nUll, buildimage constructs the canvas but does not initialize its con­
tents. (This is the recommended way of creating canvases to hold offscreen
images.)

Revision A, of 25 August 1989

can vasesun derpath

Chapter 9 - NeWS Operator Extensions 189

The canvas object that buildimage creates is retained, has no parent, and is not
mapped. The canvas object cannot be mapped: it can be rendered to the screen
with the imagecanvas or imagemaskcanvas operators; it can also be written to a
file with the writecanvas operator. The matrix argument is used to define the
default coordinate system of the canvas.

See also: imagecanvas, imagemaskcanvas, writecanvas

- canvasesunderpath array
Returns a nested array of canvases that "intersect" the current path, starting with
the current canvas. A canvas "intersects" the path if the canvas itself or any of its
children fall within the area described by the path. Both opaque and transparent
canvases can intersect the path. An opaque canvas can also "consume" the path;
that is, prevent any younger siblings that it visually obscures from themselves
intersecting the path. A transparent canvas cannot consume the path.

The returned array has the following format:

[parent [child [..] child [..] ..]]

The array is a nested array whose first element is the parent canvas that either
intersects the path or has one or more children that themselves intersect the path.
The second element is an array whose elements are the children that intersect the
path. If a child itself has children that intersect the path, those children appear in
a subarray in the position immediately after the child itself.

Note the following examples:

o No canvas intersects the current path:

[]

o The current canvas (A) intersects the current path:

[A []]

o The current canvas (A) and one of its children (B) intersect the current path:

[A [B []]]

o The current canvas (A) and two of its children (B and C) intersect the current
path:

[A [B [] C []]]

o A canvas (A), its child (B), and grandchild (C) intersect the current path:

[A [B [C []]]]

o A canvas (A), three children (B, E, and F), and three grandchildren (C, D, and
G) intersect the current path:

[A [B [C [] D []] E [] F [G []]]]

Revision A. of 2S August 1989

190 NeWS Programmer's Guide

canvasesunderpoint

canvastobottom

canvastotop

c1earsendcontexts

clipcanvas

x y or null canvasesunderpolnt array
Returns an array containing the canvas under the given point and all the canvas'
ancestors. The ordering is from leaf to root; thus, the canvas under the point is
the first canvas in the array, and the root canvas is the last canvas in the array. If
null is specified instead of x, y, the operator returns the hierarchy of the canvas
that was under the cursor position when the last event was distributed from the
global input queue, provided that the event contained meaningful cursor coordi­
nates.

NOTE This operator does not return canvases that lie geometrically under the given
point. The operator describes a canvas' ancestry, returning its parent canvas, its
grandparent canvas, and so forth. This can be used to determine how default
event distribution takes place from a given canvas.

See also: currentcursorlocation

canvas canvastobottom
Moves canvas to the bottom of its list of siblings.

See also: insertcanvasbelow

canvas canvastotop
Moves canvas to the top of its list of siblings.

See also: insertcanvasabove

- clearsendcontexts
Removes all history of currently executing send contexts from the current pro­
cess. This means that the dictionary stack will not revert to its previous state
when exiting from the currently executing send context(s).

This operator is useful when no return from a send is possible, as in a forked pro­
cess.

See also: send

- cllpcanvas
The clipcanvas operator is identical to clip, except that it sets a clipping path
that is an attribute of the current canvas, rather than of the current graphics state.
The operator imposes clipping restrictions on all painting operations aimed at the
current canvas. This is typically used during damage repair to restrict update
operations to the damaged region. If the current path is empty, clipcanvas
removes the clipping restriction of the current canvas, if such a restriction exists.
Note that clipcanvas does not intersect the current path with the existing canvas
clipping region, as the clip operator does.

The clipping boundary set by this operator is not affected by initgraphics,
initclip, gsave, grestore, or any of the other graphics state modifiers. Graphics
operations are clipped to the intersection of the canvas clip, the graphics state
clip, and the shape of the canvas.

Revision A, of 25 August 1989

clipcanvaspath

continueprocess

contrastswithcurrent

Chapter 9 - NeWS Operator Extensions 191

The clipping path set by this operator is not the clipping path manipulated by the
operations clip, clippath, eoclip, and initclip. The initclip operator sets its clip­
ping path to the shape of the canvas.

See also: damagepath, c1ipcanvaspath

- cllpcanvaspath
Sets the current path to be the clipping path for the current canvas as set by c1ip­
canvas.

process contlnueprocess
Restarts a suspended process.

See also: suspendprocess, breakpoint

color contrastswlthcurrent boolean
Returns true if the color argument is different from the current color; otherwise,
returns false .

This operator takes into account the characteristics of the current device. Boolean
operators, such as eq, can be used to compare colors without accounting for the
current device.

copyarea dx dy copyarea
Copies the area enclosed by the current path to a position offset by dx,dy from its
current position. The non-zero winding number rule is used to define the inside
and outside of the path.

NOTE This primitive might be used to scroll a text window.

countfileinputtoken file countfllelnputtoken integer
Returns the number of usertokens associated with the given file, ignoring null
tokens at the end of the list. (Normally, the returned number is simply the
number of user tokens that have been defined, since applications rarely define
null user tokens.) The returned index can be used as the next slot into which a
user token can be stored.

countinputqueue - countlnputqueue nurn
Returns the number of events currently available from the process' local input
queue.

Revision A, of 25 August 1989

192 NeWS Programmer's Guide

createcolormap

createcolorsegment

create device

createevent

createmonitor

createoverlay

visual createcolormap cmap
Returns an empty colormap for the specified visual.

cmap color createcolorsegment cmapseg
cmap C P createcolorsegment cmapsegs
In the first syntactic fonn, cmap is a colormap and color is a NeWS color object.
The operator returns a single colorsegment of one entry. If the specified colormap
is static, the entry returned is the one that has the closest match to the specified
color value. If the colormap is dynamic, a new entry is set to the specified color
value, unless the colonnap is full, in which case the entry returned is the one that
most closely matches the specified color.

In the second syntactic fonn, cmap is a colonnap; both C and P are integers. C
represents the number of colorsegments to be returned. P represents the number
of planes to be used in the mask of each returned colorsegment.

string createdevlce boolean or canvas or env
Creates and initializes a new device, such as a framebuffer, keyboard, or mouse.
The string argument, which is system dependent, indicates the device to be ini­
tialized. For example, the strings / dev / fb, / dev /keyboard, and
/ dev /mouse might represent a framebuffer, keyboard, and mouse.

If createdevice fails to create the specified device, it returns false. If it
succeeds, it returns the specified device. If a framebuffer was specified, the
returned device is an object of type canvas. If an input device, such as a key­
board or mouse, was specified, the returned device is an object of type environ­
ment. The returned device is system and implementation dependent.

This operator should only be called during system initialization.

- createevent event
Creates an object of type event and initializes its fields to either null or zero.

See also: awaitevent, redistributeevent , expressinterest , sendevent

- createmonitor monitor
Creates a new monitor object.

See also: monitorlocked, monitor

canvas createoverlay overlaycanvas
Creates a new canvas that is an overlay canvas and is associated with the non­
overlay canvas specified by the canvas argument.

An overlay canvas can only be created over an existing non-overlay canvas and
is always transparent. However, when graphic objects are drawn on an overlay,
they appear on the overlay itself, rather than on the canvas below. Overlays are
intended for use in transient or animated drawing procedures, such as the creation
of rubber-band boxes, which expand or contract according to mouse movement,
such as when a user is resizing a window.

~~!! Revision A, of 25 August 1989

currentautobind

currentbackcolor

current back pixel

currentcanvas

Chapter 9 - NeWS Operator Extensions 193

See Chapter 2, Canvases for further infonnation on overlays.

- currentautoblnd boolean
Returns true or false , depending on whether or not autobinding is enabled for the
current process.

NOTE When the POSTSCRIPT language interpreter encounters an executable name, it
searches the dictionary stack from the top to the bottom until it finds a definition
for this name. This procedure allows programmers to redefine names selectively;
each name can be redefined in a dictionary placed on the dictionary stack above
the normal name definition.

However, the procedure also means that execution time tends to increase in pro­
portion to the size of the dictionary stack. To alleviate this problem, the
POSTSCRIPT language provides an operator named bind that circumvents the
lookup process. The operator examines the contents of a specified procedure and
checks each executable name that it encounters. If a name resolves to an opera­
tor object in the context of the current dictionary stack, bind modifies the pro­
cedure by replacing the encountered name with the associated operator object.
This has the effect of eliminating the time required by name lookups when the
procedure is executed. Note, however, that it also removes the flexibility of being
able to change a procedure's behavior by redefining names prior to execution.

When autobinding is enabled, the effect is as if the bind operator were called
automatically in every procedure.

See also: setautobind

- currentbackcolor color
Returns the background color, which is the color painted by erasepage.

See also: setbackcolor

- currentbackplxel integer
Returns an integer that is an index into a colonnap and corresponds to the current
color of the background.

See also: setbackpixeI

- currentcanvas canvas
Returns the current value of the canvas parameter in the graphics state.

Revision A, of 25 August 1989

194 NeWS Programmer's Guide

currentcolor - currentcolor color
Returns the current color as set by setcolor, setrgbcolor, sethsbcolor, or set­
pixel.

currentcursorlocation - currentcursorlocatlon x y
Returns the position that was occupied by the cursor when the last event was dis­
tributed from the global input queue, provided that the event contained meaning­
ful cursor coordinates.

See also: canvasesunderpoint

currentfontmem - currentfontmem nurn
Returns the size of the font memory cache in units of kilobytes: this is the
amount of memory that is used to store unused fonts in the system. For an expla­
nation of this cache and its use, see See Chapter 7, Memory Management.

See also: setfontmem

currentpacking - currentpacklng bool
Returns the current array-packing mode.

See also: packedarray, setpacking

currentpath - currentpath path
Returns an object of type path that describes the current path.

currentpixel - current pixel integer
Returns an integer that is an index into a colormap and corresponds to the current
color of the graphics context.

currentplanemask - currentplanemask integer
Returns the integer currently used as the planemask. The pixel value used by the
current graphics context is AND'd with the planemask during drawing opera­
tions.

See also: setplanemask

currentprintermatch - currentprinterrnatch boolean
Returns the current value of the printermatch flag in the graphics state.

See also: setprintermatch

Revision A, of 25 August 1989

currentprocess

currentrasteropcode

currentshared

currentstate

currenttime

damagepath

Chapter 9 - NeWS Operator Extensions 195

- currentprocess process
Returns an object that represents the current process.

- currentrasteropcode nurn
Returns a number that represents the current rasterop combination function. See
setrasteropcode for a table of the rasterop combination functions and a discus­
sion of its use.

See also: setrasteropcode

- currentshared boolean
Returns true or false , depending on whether the current allocation status of the
current process from the shared VM pool is enabled or disabled. See setshared
for an explanation of the shared VM pool.

See also: setshared

- currentstate state
Returns a graphicsstate object that is a snapshot of the current graphics state.

See also: setstate

- currenttlme nurn
Returns a time value n.nnn (in units of216 milliseconds) that represents time
elapsed since some unspecified starting time.

This operator is guaranteed only as follows: the difference of the results of two
successive calls is approximately the time that has elapsed between the calls.

- damagepath
Sets the current path to be the damage path of the current canvas. The damage
path will be cleared.

The damage path represents those parts of the canvas that have been damaged
and cannot be repainted from stored bitmaps. Processes can arrange to be
notified of damage by expressing interest in damage events. When damage
occurs to a canvas, a damage event is generated by the server.

See also: clipcanvas

defaulterroraction any errornarne defaulterroractlon
Produces an $error dictionary for the current process as if the error specified by
errorname had been encountered while executing the object any. The operator
will then execute the stop primitive.

NOTE These actions are similar to the actions of the default error handling procedures
described in the PostScript Language Reference Manual.

Revision A. of 25 August 1989

196 NeWS Programmer's Guide

emptypath

encodefont

eoclipcanvas

eocopyarea

eoreshapecanvas

eoextenddamage

eoextenddamageall

- emptypath boolean
Returns true if the current path is empty, otherwise false .

font array encodefont font
font name encodefont font
If the array argument is specified, this operator creates a new font that is identi­
cal to the original font specified by the font argument, except that the IEncoding
array of the old font is replaced by the specified array argument.

If the name argument is specified, the font bearing that name is located in the
encoding directory and is encoded.

- eocllpcanvas
This is the same as clipcanvas, except that it uses the even-odd rule, rather than
the non-zero winding number rule.

See also: clipcanvas

dx dy eocopyarea
Copies the area enclosed by the current path to a position offset by dx,dy from its
current position. The even-odd rule is used to define the inside and outside of the
path.

NOTE This primitive might be used to scroll a text window.
See also: copyarea

canvas eoreshapecanvas
The eoreshapecanvas operator is identical to reshapecanvas, except that it uses
the even-odd rule to interpret the path.

See also: reshapecanvas

- eoextenddamage
Adds the current path to the damage shape for the current canvas. If damage was
not present on a particular canvas; a damage event is sent to processes that have
expressed interest. This operator uses the even-odd rule.

- eoextenddamageall
Adds the visible parts of the current path to the damage shape for the current can­
vas and the damage shapes of its children. If damage was not present on a partic­
ular canvas, a damage event is sent to processes that have expressed interest.
The eoextenddamageall operator uses the even-odd rule.

Revision A, of 25 August 1989

eowritecanvas

eowritescreen

expressinterest

extenddamage

extenddamageall

file

Chapter 9 - NeWS Operator Extensions 197

file or string eowrltecanvas
This operator is identical to writecanvas, except that eowritecanvas uses the
even-odd rule to define the path.

See also: writecanvas, writescreen ,eowritescreen

file or stri ng eowrltescreen
This operator is identical to writescreen, except that eowritescreen uses the
even-odd rule to define the path.

See also: writecanvas, writescreen , eowritecanvas

event expresslnterest
event process expresslnterest -
Expresses interest in receiving an event distributed from the global event queue.
If a process argument is specified, interest is expressed on behalf of that process;
otherwise, interest is expressed on behalf of the current process.

When passed to expressinterest, the event becomes an interest, against which
each event distributed from the global event queue is compared. When a distri­
buted event matches the interest, a copy of the distributed event is placed on the
process' local input queue.

If the event argument is already an interest, the expressinterest operator takes no
action when called.

See also: awaitevent, createevent, redistributeevent ,revokeinterest , sendevent

- extenddamage
Adds the current path to the damage shape for the current canvas. If damage was
not present on a particular canvas, a damage event is sent to processes that have
expressed interest. This operator uses the non-zero winding number rule.

- extenddamageall
Adds the visible parts of the current path to the damage shape for the current can­
vas and the damage shapes of its children. A damage event is distributed if dam­
age was not present on a particular canvas. This operator uses the non-zero
winding number rule.

See also: eoextenddamageall

string1 string2 file file
Creates afile object for the file identified by stringJ, accessing it as specified by
string2. This operator is the same as the standard POSTSCRIPT language version,
except that a specific search procedure is used to locate existing files. The file
operator first tries to open stringl in the current directory (./stringJ). If that fails,
it tries to locate and open stringJ in the home directory C/stringJ). If that fails, it
tries to open $OPENWINHOME/etc/stringJ.

The file operator can be used to create files for connections between client
processes and the NeWS server; these files are socket connections and are given

Revision A, of 25 August 1989

198 NeWS Programmer's Guide

special filenames. Files that listen for a connection from some other process
have the special filename (% socket In), where n is the port number that is
used for listening. Files that establish a connection between two processes have
either the filename (%socketcn) or the filename (%socketcn.h), where n
is the port number and h is the hostname. The connection file looks for a listener
file on port n and host h (the default host is the local host); if it finds the specified
listener file, it establishes the connection.

The file operator can also be used to run programs and connect their input or out­
put to afile object. Opening the special filename (%pipecommand) executes
the UNIX command by passing it to the shell. Either the standard input or output
is connected to the returned file, depending on whether string2 is (w) or (r) .

findfilefont string findfllefont font

fontascent

fontdescent

fontheight

fork

Reads the font family file named by string and returns a newly-created font
object that refers to it. The font is entered into the FontDirectory under the font
name in the family file.

NOTE This operator allows a bitmap font to be loaded after start-up has already
occurred.

font fontascent number
Returns the specified/ont's ascent, which is the logical distance that a character
in the font extends above the baseline. Specific characters may extend beyond
this distance. The measurement is given in units of the current coordinate sys­
tem.

font fontdescent number
Returns/ont's descent (as a positive number), which is the logical distance that a
character in the font extends below the baseline. Specific characters may extend
beyond this distance. The measurement is given in units of the current coordi­
nate system.

font fonthelght number
Returns/ont's height, which is the sum of fontascent and fontdescent.

proc fork process
Creates a new process that executes proc in an environment that is a copy of the
original process's environment. When proc exits, the process terminates. pro­
cess is a handle by which the newly created process can be manipulated.

See also: killprocess, killprocessgroup , waitprocess

Revision A, of 25 August 1989

getcanvaslocation

getcanvasshape

getcard32

getcolor

getenv

geteventlogger

Chapter 9 - NeWS Operator Extensions 199

canvas getcanvaslocatlon x y
Returns the location of canvas, relative to the current canvas. The x,y pair is the
offset from the origin of the current coordinate system to the origin of canvas'
default coordinate system.

- getcanvasshape path
Returns a path object that describes the shape of the current canvas.

See also: movecanvas

string index getcard32 integer
Returns an integer that contains the 32 bits in string, starting at the 32-bit word
offset index. Note that this operator has architecture dependencies.

See also: putcard32

cmapseg integer getcolor color
Returns the color contained in a slot of a colonnapsegment. The cmapseg argu­
ment specifies the colonnapsegment. The integer argument specifies the slot.

See also: putcolor

Example

string1 getenv string2
Returns the value of the server environment variable string 1. The value is
returned as it exists in the environment of the server process; the value may be
modified by putenv operations. The getenv operator fails with an undefined
error if string1 is not present in the environment. The stopped operator can be
used to recover from the error.

{ (ENV) getenv } stopped { pop (default env string) } if

See also: putenv

- geteventlogger process or null
Returns the process that is the current event logger, or null if no such process
exists.

See also: seteventlogger

Revision A, of 25 August 1989

200 NeWS Programmer's Guide

getfiieinputtoken integer getfllelnputtoken any
integer file getfllelnputtoken any
Returns the object associated with the integer in file 's token list. If no file is
specified, currentfile is used.

getkeyboardtranslation - getkeyboardtranslatlon bool
Returns true if the kernel is intetpreting the keyboard,jalse if the task is being
perfonned by POSTSCRIPT language code.

See also: keyboardtype, setkeyboardtransiation

get processes - getprocesses array
Returns an array of process groups and zombie processes. Each process group is
an array of the currently active processes in the process group. Each zombie pro­
cess is returned as an array containing only the zombie process, since zombie
processes are not associated with any process group.

getprocessgroup process or null getprocessgroup array
Returns the array of all processes in the process group of either the specified pro­
cess or the current process (if null is specified). If process is a zombie process, it
is the only process in the array, since zombie processes are not associated with
any process group.

getsocketlocaladdress file getsocketlocaladdress string

getsocketpeername

Returns a string that describes the local address of the file argument; this argu­
ment must be a socket file; nonnally, it should be a socket that is being listened
to.

This operator is generally used by the server to generate a name that can be
passed to client programs, telling them how to contact the server. The format of
the returned string is unspecified.

file getsocketpeername string
Returns the name of the host to which file is connected. Thefile argument must
be an IPC connection to another process. Such files are created with either
acceptconnection or (% socket) file. This operator is nonnally used with
currentfile to determine the location from which a client program is contacting
the server.

See also: acceptconnection

.\sun
• microsystems

Revision A, of 25 August 1989

harden

hsbcolor

imagecanvas

imagemaskcanvas

insertcan vasabove

Chapter 9 ---'- NeWS Operator Extensions 201

any harden any
Takes a single argument and returns it unchanged, except that if the argument is
a soft reference to an object, a hard reference to the same object is returned.

See also: soften

h s b hsbcolor color
Takes three numbers between 0 and 1, representing the hue, saturation, and
brightness components of a color. The operator returns a color object that
represents that color.

See also: rgbcolor

canvas Imagecanvas
Renders a canvas onto the current canvas. This operator is similar to the image
operator, except that the rendered image comes from a canvas, rather than from a
POSTSCRIPT language procedure. When canvas is rendered, the unit square is
transformed to the same orientation and scale as the unit square in the current
transformation matrix.

The current transfonnation matrix can be modified (using translate, scale, or
rotate) in order to render canvas to a particular area within the current canvas.

This operator maps color images onto black and white screens by dithering.

The imagecanvas primitive cannot be used to render a canvas into an overlay.
See also: buildimage, imagemaskcanvas, readcanvas

boolean canvas Imagemaskcanvas
Renders a canvas onto the current canvas. This operator is identical to the
imagemask operator, except that the image comes from a canvas instead of a
POSTSCRIPT language procedure. The boolean argument determines whether the
polarity of the mask canvas is inverted.

When canvas is rendered, the unit square is transfonned to the same orientation
and scale as the unit square in the current transfonnation matrix.

The current transfonnation matrix can be modified (using translate, scale, or
rotate) in order to render canvas to a particular area within the current canvas.

See also: buildimage, imagecanvas, readcanvas

canvas x y insertcanvasabove
Inserts the current canvas above canvas. The current canvas must be a sibling of
canvas.

See also: canvastotop, movecanvas

Revision A, of 25 August 1989

202 NeWS Programmer's Guide

insertcanvasbelow

keyboardtype

kill process

kill processgroup

lasteven tkeystate

lasteventtime

lasteventx

lasteventy

localhostname

canvas x y Insertcanvasbelow
Inserts the current canvas below canvas. The current canvas must be a sibling of
canvas.

See also: canvastobottom

- keyboardtype num
Returns a small integer that indicates the kind of keyboard that is attached to the
selVer. The returned number is actually the return from the KIOCTYPE ioctl,
documented under kb(4S).

See also: getkeyboardtranslation, setkeyboardtranslation

process killprocess
Kills process.

process kiliprocessgroup
Kills process and all other processes in the same process group.

See also: newprocessgroup

- lasteventkeystate array
Returns the KeyState key value of the last event delivered by the event distribu­
tion mechanism.

- lasteventtlme num
Returns the TimeStamp key value of the last event delivered by the event distri­
bution mechanism.

- lasteventx num
Returns the x coordinate of the last event delivered by the event distribution
mechanism.

- lasteventy num
Returns the y coordinate of the last event delivered by the event distribution
mechanism.

- localhostname string
Returns the network hostname of the host on which the selVer is running.

Revision A, of 25 August 1989

localhostnamearray

max

min

monitor

monitor locked

movecanvas

Chapter 9 - NeWS Operator Extensions 203

- localhostnamearray array
Returns an array whose first element is the primary hosmame of the host on
which the server is running, and whose remaining elements (if any exist) are
aliases. The value returned by the localhostname operator is identical to the first
element in the array returned by localhostnamearray.

a b max c
Compares a and b and leaves the greater of the two on the stack. Works on any
data type for which gt is defined.

a b min c
Compares a and b and leaves the smaller of the two on the stack. Works on any
data type for which gt is defined.

monitor procedure monitor
Executes procedure with monitor locked (entered). At any given time, only one
process may have a monitor locked. If a process attempts to lock a locked moni­
tor, the process blocks until the monitor is unlocked. If an error occurs during
the execution of procedure, and the execution stack is unwound beyond the mon­
itor, the monitor object becomes unlocked.

See also: createmonitor, monitorlocked

monitor monitorlocked boolean
Returns true if the monitor is currently locked; false otherwise.

See also: createmonitor, monitor

x y movecanvas
x y canvas movecanvas -
If no canvas argument is specified, movecanvas moves the current canvas to x,y,
relative to its parent. In this case, x,y is an offset from the origin of the parent
canvas' default coordinate system to the origin of the current canvas' default
coordinate system, measured in units of the current coordinate system.

If a canvas argument is specified, movecanvas moves canvas to x,y in the current
coordinate system. In this case, x,y is an offset from the origin of the current
coordinate system to the origin of the repositioned canvas' default coordinate
system.

See also: getcanvaslocation

Revision A, of 25 August 1989

204 NeWS Programmer's Guide

newcanvas

newcursor

newprocessgroup

objectdump

packedarray

pcanvas newcanvas ncanvas
pcanvas visual cmap newcanvas ncanvas
If the pcanvas argument alone is specified, the operator creates a new empty can­
vas, ncanvas, whose parent is pcanvas. The canvas' coordinate system and shape
are undefined until set with reshapecanvas.

The visual and colormap arguments can be used to specify a visual and a color­
map for the new canvas. If these arguments are specified, the Visual attribute of
the specified colormap must match the specified visual. If the arguments are not
specified, the canvas' visual and colormap are inherited from its parent.

The new canvas defaults to being opaque if its parent is the framebuffer; tran­
sparent otherwise. The canvas defaults to being retained if it is opaque and the
number of bits per pixel of the framebuffer is less than the retain threshold.

See also: reshapecanvas

cursorchar maskchar font newcursor cursor
cursorchar maskchar cursorfont maskfont newcursor cursor
Creates an object of type cursor. Two syntactic forms can be used. With the
first, a cursor is constructed using the cursor character cursorchar and the mask
character maskchar; both are selected from/onto With the second, a cursor is
constructed using cursorchar from the font cursor/ont and maskchar from the
font mask/ont. In both cases, the new cursor is initialized with a CursorColor
value of black and a MaskColor value of white.

- newprocessgroup
Creates a new process group, with the current process as its only member. When
a process forks, the child will be in the same process group as its parent.

file objectdump
Writes to the specified file a formatted summary of the number of objects that the
server has created. Nothing is returned. Note that the specified file must be open
for writing; otherwise, an invalidacces s error is signaled.

This operator does not reside in systemdict; it resides in another system diction­
ary called debugdict. To use this operator, you must first place debugdict on the
dictionary stack by typing debugdict begin.

objects n packedarray packed array
Creates a packed array object of length n. The array contains the specified
objects as its elements. The operator first removes the non-negative integer n
from the operand stack. It then removes n objects from the operand stack, creates
a packed array containing those objects, and puts the resulting packed array
object on the operand stack. The resulting object is of type packedarraytype,
has a literal attribute, and has read-only access. In all other respects, its behavior
is identical to that of an ordinary array object.

See also: currentpacking, setpacking

Revision A, of 25 August 1989

pa thforall vec

pause

pointinpath

postcrossings

Chapter 9 - NeWS Operator Extensions 205

array pathforallvec
The single argument to pathforallvec is an array of procedures. The path­
forallvec operator then enumerates the current path in order, executing one of the
procedures in the array for each of the elements in the path. The type of the path
element determines which array element will be executed. moveto, Iineto, cur­
veto, and closepath, are array elements 0, 1,2, and 3, respectively. If the array is
too short, pathforallvec tries to reduce elements of one type to another. The fifth
element is used to handle conic control points. The standard POSTSCRIPT
language operator pathforall is exactly equivalent to '4 array astore path­
forallvec. '

The pathforallvec operator should not normally be used: the pathforall operator
should be used instead.

- pause
Suspends the current process until all other eligible processes have had a chance
to execute.

x y polntlnpath boolean
Returns true if the point x,y is inside the current path.

outcanvas incanvas outname inname detailpointer? postcrosslngs
This operator generates "crossing events", which notify the system of the move­
ment from one canvas to another of a "state"; for example the state can be the
canvas under the pointer or the focus. Examples of crossing events are Enter
events, Exit events, and "focus notification" events.

The outcanvas argument is the canvas that the state is leaving. The incanvas
argument is the canvas that the state is entering. Both of these arguments can be
specified as either the keyword IReDistribute or null; this is useful for manag­
ing focus states and other states that need additional modes.

The outname argument specifies the Name value of the events that indicate the
canvas that the state is leaving. The inname argument specifies the Name value
of the events that indicate the canvas that the state is entering. If null is
specified for either of these arguments, generation of events with that name is
suppressed.

The detailpointer? argument is a boolean that determines whether or not to gen­
erate extra events that indicate the relation of the state holder to the canvas under
the pointer. If detailpointer? is set to true, events with an Action value of 5 are
delivered to all canvases under the pointer that are also descendants of either
outcanvas or incanvas.

The crossing events are generated in the XII style of Enter/Leave notification;
that is, the least common ancestor of outcanvas and incanvas is determined. (In
some circumstances, there is no least common ancestor: for example, when
crossing between windows on different screens; however, this is acceptable.)
Events with Name set to outname are sent to outcanvas and to each of its ances­
tors up to, but excluding, the least common ancestor; these events are sent in

Revision A, of 25 August 1989

206 NeWS Programmer's Guide

Table 9-1

leaf-to-root order. Then, events with Name set to inname are sent to incanvas
and to each of its ancestors up to, but excluding, the least common ancestor, in
root-to-Ieaf order.

The Action field is set to a value dependent on the canvas' position in the hierar­
chy with respect to outcanvas and incanvas, according to the following guide­
lines:

Events sent to incanvas and its parents

Action
o

1

2

3

4

5

6

7

Explanation
The canvas now holds the state; the previous
holder was an ancestor of this canvas.

The canvas is now an ancestor of the holder of
the state; the previous holder was an ancestor of
this canvas.

The canvas is now the holder of the state; the
previous holder was a descendant of this canvas.

The canvas is now the holder of the state; the
previous holder was not an ancestor or descen­
dant of this canvas.

The canvas is now an ancestor of the holder of
the state; the previous holder was not an ances­
tor or descendant of this canvas.

The canvas directly or indirectly contains the
pointer, and is now a descendant of the holder of
the state. The previous holder was not this can­
vas or an ancestor or descendant of it.

The holder of the state is now ReDistribute.

The holder of the state is now None.

Revision A, of 25 August 1989

putcard32

Chapter 9 - NeWS Operator Extensions 207

Table 9-2 Events sent to outcanvas and its parents

Action
o

1

2

3

4

5

6

7

Explanation
The canvas used to be the holder of the state; the
new holder is an ancestor of this canvas.

The holder of the state used to be a descendant
of this canvas; the new holder is an ancestor of
this canvas.

The canvas used to be the holder of the state; the
new holder is an descendant of this canvas.

The canvas used to be the holder of the state; the
new holder is not an ancestor or descendant of
this canvas.

The canvas used to be an ancestor of the holder
of the state; the new holder is not an ancestor or
descendant of this canvas.

The canvas directly or indirectly contains the
pointer, and used to be a descendant of the
holder of the state. The new holder is not this
canvas or an ancestor or descendant of it.

The holder of the state used to be ReDistribute.

The holder of the state used to be None.

This primitive is provided for the convenience of system event and state
managers. An example of postcrossings usage can be found in the X11/NeWS
focus manager.

string index integer putcard32
Inserts 32 bits, represented by integer, into the value of string at the 32-bit word
offset specified by index. Note that this operator has architecture dependencies.

See also: getcard32

Revision A, of 25 August 1989

208 NeWS Programmer's Guide

putcolor

putenv

random

readcanvas

recallevent

colorrnapentry integer color putcolor
Puts a color into a colonnapentry object. The arguments to putcolor are a color­
mapentry object (which can be returned by the createcolorsegment operation),
an integer (which is the number of the colonnapentry slot into which the color is
placed), and a color object. If the colonnapentry object has only one slot, the
value of the integer argument should be O. Note that colonnapentry must be
writable to use putcolor.

See also: getcolor

string1 string2 putenv
Defines the seNer environment variable string] to have the value string2.
Environment variables inherited by the seNer may be modified by calls to the
putenv operator. If the runprogram operator is used to create a new UNIX pro­
cess, the new process inherits the seNer's environment variables at their current
value.

See also: getenv

- random nurn
Returns a random number in the range [0,1].

string or file readcanvas canvas
Reads a raster file into a newly created canvas. The raster file can be specified
either as a file or as a string that is the name of a file in the seNer's file name
space. The created canvas is retained and opaque; it has the depth specified in
the raster file, has no parent, and is not mapped. This operator sets the default
coordinate system of the canvas so that the canvas' four comers correspond to
the unit square.

If the specified file cannot be found, an undefinedfilename error is gen­
erated. If the file cannot be interpreted as a raster file, an invalidaccess
error is generated.

Note that a canvas read into NeWS with this operator cannot be mapped to the
screen; any attempt to do this results in an invalidacces s error. However,
the canvas can be used as source for the imagecanvas operator.

See also: imagecanvas, writecanvas

event recallevent
Removes event from the global event queue. This primitive can be used to tum
off a timer-event that has been sent but not yet delivered.

See also: sendevent

Revision A, of 25 August 1989

redistributeevent

refcnt

reffinder

reshapecanvas

Chapter 9 - NeWS Operator Extensions 209

event redlstrlbuteevent
Compares against current interests an event object already returned by
awaitevent. Comparison starts with the interest that immediately follows the
successfully matched interest, which previously pennitted the event object to be
returned by awaitevent.

This operator allows an event to be matched with interests that were previously
inaccessible (due, for example, to the exclusivity of the interest previously
matched, or to the event consumption previously performed by some canvas).

Note that redistributeevent does not reinsert the event into the global event
queue. No interest compared with the specified event since the last call to sen­
devent is compared with that event again.

See also: expressinterest

object refcnt fixed fixed
Returns two numbers onto the process stack: the first is the total reference count
for the specified object; the second is the soft reference count for the specified
object. The counts indicate the status of the object after the operator has cleaned
up the reference to the object that was given to it on the stack.

This operator does not reside in systemdict; it resides in another system diction­
ary called debugdict. To use this operator, you must first place debugdict on the
dictionary stack by typing debugdict begin.

object reffinder
object boolean reffinder -
Prints to standard output infonnation on all current references to the specified
object. The optional boolean argument can be true (which specifies that only
infonnation about hard references is printed) or false (which specifies that infor­
mation about all references is printed).

If the specified object is not a counted type, a message is printed and reffinder
returns.

This operator does not reside in systemdict; it resides in another system diction­
ary called debugdict. To use this operator, you must first place debugdict on the
dictionary stack by typing debugdict begin.

canvas reshapecanvas
canvas path width reshapecanvas
If a canvas argument alone is specified, this operator sets the shape of canvas to
be the same as the current path, and sets canvas' default transformation matrix to
be the same as the current transfonnation matrix. If canvas is the current canvas,
an implicit initmatrix is perfonned. The entire contents of the canvas are con­
sidered to be damaged. Note that if canvas is the current canvas, an implicit
initclip is perfonned; the initclip operation sets the path to the shape defined by
the shape of the current canvas.

Revision A, of 25 August 1989

210 NeWS Programmer's Guide

revokeinterest

The path and width arguments can only be used if the specified canvas is an X
canvas; if this is not so, a typecheck error is signaled. When the path and
width arguments are specified, reshapecanvas can be used to give an X canvas a
new border width. The width argument is the new border width. The path argu­
ment represents the drawable part of the X canvas not including the border width;
it should be placed in a position inside the current path by a distance equal to
width pixels. The following code can be used to give an X canvas a new border
width.

canvas set canvas
canvas bw-oldbw bw-oldbw width height rectpath
currentpath bw
newpath x y width+2*bw height+2*bw rectpath
reshapecanvas

where

bw
oldbw
width
height
xy

the new border width
the old border width
the new width
the new height
the new x and y location of the canvas
in the old coordinate system

Undefined results occur if the width and paths involved are inconsistent, or do
not follow the rules for X canvases.

event revokelnterest
event process revokeinterest
Revokes an interest previously expressed either by the specified process, or, if no
process argument is specified, by the current process. Following execution of
this operator, no event matching event is distributed to the process.

Revoking interest on a non-interest has no effect.
See also: expressinterest

rgbcolor r 9 b rgbcolor color
Takes three numbers between 0 and 1, respectively representing the red, green,
and blue components of a color, and returns a color object that represents the
specified color.

Revision A, of 25 August 1989

runprogram

send

sendevent

setautobind

setbackcolor

Chapter 9 - NeWS Operator Extensions 211

string runprogram
Forks a UNIX process to execute string as a shell command line. Standard input,
standard output, and standard error are directed to / dev /null.

name object send
proc object send -
Establishes object's context by putting it and the classes in its inheritance array
on the dictionary stack, executes the method, then restores the initial context. In
a nested send, the previous send context is temporarily removed from the dic­
tionary stack while the nested send executes. The object argument is the receiver
of the message; it can be a class or an instance. In the first form, the name argu­
ment is the name of the method that is invoked. Any arguments required by the
method must be specified; any results of the method are returned.

The second fonn of send uses a proc argument instead of the name of a method;
proc is executed in the context of object exactly as if it had been predefined as a
method and given a name that was passed to send.

See Chapter 4, Classes, for more information about classes and the send opera­
tor.

event sendevent
Sends an event into the event distribution mechanism. The event is positioned in
the global event queue according to its TimeStamp. When the event at the head
of the queue has a TimeStamp value that is less than or equal to the server's
current time, the event is removed from the queue and compared with interests to
find matches. Whenever a matching interest is found, the server distributes a
copy of the event to the local event queue of the process with the matching
interest. The process can then retrieve the event with awaitevent.

See Chapter 3, Events, for more infonnation about event distribution.
See also: awaitevent, createevent , recallevent , redistributeevent , expressinterest

boolean setautoblnd
Enables or disables autobinding for the current process. By default, autobinding
is on. (For a description of autobinding, see the entry for the currentautobind
operator.)

See also: currentautobind

color setbackcolor
Sets the color painted by erasepage.

See also: currentbackcolor

Revision A, of 25 August 1989

212 NeWS Programmer's Guide

setback pixel

setcanvas

setcolor

setcursorlocation

seteven tlogger

pixel setbackplxel
Sets the pixel value of the background to a specified NeWS integer that is an index
into a colonnap. This color is used by erasepage.

See also: currentbackpixel, setbackcolor

canvas setcanvas
Sets the current canvas to be canvas. Implicitly executes newpath initmatrix
initclip.

color setcolor
Sets the current color to be color. The operation rgbcolor setcolor is identical
to setrgbcolor; the operation hsbcolor setcolor is identical to sethsbcolor.

x y setcursorlocatlon
Moves the cursor so that its hot spot is at x, y in the current canvas' coordinate
system. Generates an event with Name set to MouseDragged, Action set to
null, and the XLocation and YLocation set to the new cursor location.

process seteventlogger
Designates a process as an event-logger. The process argument must be a pro­
cess that has expressed an interest (the exact nature of the interest is not
significant); the process must also have entered an awaitevent loop. Note that
the expressed interest must not match any distributed event; the interest is
required to prevent awaitevent from returning a syntax error. The specified pro­
cess becomes the event-logger. A copy of each event either removed from the
global event queue or redistributed with redistributeevent will be given to this
process before any other (note that the existence of the event-logger does not
affect the nonnal running of the distribution mechanism). When the awaitevent
loop retrieves the event copies from the event-logger's local input queue, the
event-logger can proceed in whatever way is appropriate. For example, it might
print certain key values in a window or to a file.

To tum off a designated event-logger, specify n u 11 as the argument to
seteventlogger.

The file eventlog. ps, which is described in Chapter 10, Extensibility through
POSTSCRIPT Language Files, provides a formatted display of events that can be
used in the context of the seteventlogger operator.

See also: geteventlogger

.\sun
., microsystems

Revision A, of 25 August 1989

setfileinputtoken

setfontmem

Chapter 9 - NeWS Operator Extensions 213

any integer setfllelnputtoken
any integer file setfllelnputtoken -
Takes a specified object and integer and associates them. The object is placed in
file's token list at the index location specified by integer. Ifno file is specifed,
currentfile (that is, the top file on the execution stack) is used. This operator is
used to define compressed tokens for communication efficiency.

nurn setfontmem
Sets the size of the font memory cache. The num argument specifies the size of
the cache in units of kilobytes. This is the amount of memory that is used to
store unused fonts in the system.

See also: currentfontmem

setkeyboardtranslation boolean setkeyboardtranslatlon
Turns the kernel translation of the keyboard on or off, according to whether the
boolean argument is specified as true or false.

See also: getkeyboardtranslation, keyboardtype

setpacking boolean setpacking

setpath

Sets the array packing mode to the specified boolean value. This detennines the
type of executable arrays subsequently created by the POSTSCRIPT language
scanner. If the specified boolean is true , packed arrays are created; if the
boolean isfalse ,ordinary arrays are created.

The array-packing mode affects the creation of procedures by the scanner when
program text bracketed by { and} is encountered in the following circumstances:

o During interpretation of an executable file or string object

o During execution of the token operator

Note that it does not affect the creation of literal arrays by the [and] operators or
by the array operator.

The setting continues to exist until it is overriden by a further call to setpacking,
or undone by a call to restore. The packing mode is set on a per-process basis.
A child process inherits the packing mode of its parent.

See also: currentpacking, packedarray

path setpath
Sets the current path from the specified path object.

.\sun ~ microsystems
Revision A, of 25 August 1989

214 NeWS Programmer's Guide

setpixel

setplanemask

setprintermatch

setrasteropcode

colorobject or integer setplxel
Sets the pixel value of the current graphics context to the specified integer, which
is an index into a colormap.

See also: currentpixel

integer setplanemask
Sets planemask to the specified integer. The pixel value used by the current
graphics context is AND'd with the planemask.

See also: currentplanemask

boolean setprlntermatch
Sets the current value of the printermatch flag in the graphics state to boolean.
When printer matching is enabled, text output to the display is forced to be ident­
ical to text output to a printer. The metrics used by the printer are imposed on
the display fonts (note that this may reduce readability). If printer matching is
disabled, readability is maximized; however, the character metrics for the display
do not correspond to the printer.

See also: currentprintermatch

num setrasteropcode
Sets the current rasterop combination function, which will be used in subsequent
graphics operations. The setrasteropcode operator accepts the following values:

Table 9-3 Rasterop Code Values

opcode
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

junction
o
NOT (source OR destination)
(NOT source) AND destination
NOT source
source AND (NOT destination)
NOT destination
source XOR destination
NOT (source AND destination)
source AND destination
(NOT source) XOR destination
destination
(NOT source) OR destination
source
source OR (NOT destination)
source OR destination
NOT 0

The default value for the rasterop code is 12.

NOTE The RasterOp combination function exists only to support emulation of existing
window systems. It should not normally be used, since it causes problems when

Revision A, of 25 August 1989

setshared

setstate

shutdownserver

Chapter 9 - NeWS Operator Extensions 215

programs are used on a wide range of displays. Currently, the image primitive
does not use the rasteropcode.

See also: currentrasteropcode

boolean setshared
Depending on the value of boolean (true or false), this operator either
enables or disables allocations from the Shared VM pool. When a process is in
shared mode, all of its allocations come from the single Shared VM pool in the
server. When a process is not in shared mode, all of its allocations come from its
own private VM pool. See the information on the objectdump operator (in
Chapter 7, Memory Management) for an account of the types of object allocated
in the server. The shared allocation status for newly forked processes is always
false.

See also: currentshared

graphicsstate setstate
Sets the current graphics state from graphicsstate.

See also: currentstate

- shutdownserver
Causes the server to exit.

soft any soft boolean
Takes a single argument and returns true if the argument is a soft reference to an
object, false otherwise.

soften any soften any
The operator takes a single argument and returns it unchanged, except that if the
argument is a reference to an object, it is returned as a soft reference. If the
operator is used to soften the last existing hard reference to an object, the object
becomes obsolete and an obsolescence event is generated by the system.

See also: harden

startkeyboardandmouse - startkeyboardandmouse
Initiates server processing of keyboard and mouse input. This operator is called
once from the initialization file ini t . ps; it should not be called again.

Revision A, of 25 August 1989

216 NeWS Programmer's Guide

suspendprocess

tagprint

truetype

typedprint

unhlockinputqueue

undef

vrnstatus

process suspendprocess
Suspends the given process.

See also: breakpoint, continueprocess

n tagprlnt
n file tagprlnt-
Prints the integer n (where _215s" <215) encoded as a tag on the specified output
file; if no file is specified, prints n on the current output stream. Tags are used to
identify packets sent from the server to client programs. See Chapter 5, Client­
Server Interface for infonnation on how the CPS facility uses tags.

any truetype name
Returns a name that identifies the true type of the object any. Note that this may
be different from the name returned by the type operator: this occurs when the
specified object is a magic dictionary that appears to be a nonnal dictionary or
when a number with a fractional part is represented internally as a scaled integer.

object typedprint
object file typedprint -
Print the object in an encoded fonn on the specified output file; if no file is
specified, prints object on the current output stream. The object can then be read
by C client programs, using the CPS facility. The fonnat in which objects are
encoded is described in Chapter 5, Client-Server Interface.

- unblocklnputqueue
Releases the input queue lock set by hlockinputqueue. If this reduces the count
of locks to 0, distribution of events from the input queue is resumed.

See also: hlockinputqueue

dictionary key undef
Removes the definition of key from the specified dictionary.

- vmstatus avail used size
Returns three integers, indicating the status of memory usage. The three
numbers have different meanings from the Adobe implementation. The value of
avail is the amount of memory the server has allocated, but is not necessarily
using; used is the amount of memory currently in use; size is the size of the
server's heap. All sizes are in units of kilobytes.

~)sun
~ microsystems

Revision A, of 25 August 1989

waitprocess

writecanvas

writeobject

writescreen

Chapter 9 - NeWS Operator Extensions 217

process waltprocess value
Waits until process completes and returns the value that was on the top of its
stack at the time of completion.

See also: fork

file or string wrltecanvas
Either opens string as a file for writing or, if the argument is afiie, simply writes
to that file. Creates a raster file that contains an image of the region outlined by
the current path in the current canvas. The writecanvas operator uses the non­
zero winding number rule to define the path. If the current path is empty, the
whole canvas is written. If the current canvas is partially obscured by one or
more canvases that lie on top of it, writecanvas writes only the image of the
current canvas.

Files written by writecanvas can be read by readcanvas; the file formats that are
supported are implementation specific.

See also: writescreen, eowritescreen , eowritecanvas

file object wrlteobJect
Writes the specified object to the specifiedfile, in a readable ASCII form.

file or string wrltescreen
Either opens string as a file for writing or, if the argument is afile, simply writes
to that file. Creates a raster file that contains a snapshot of the screen, clipped to
the current path in the current canvas. The writescreen operator uses the non­
zero winding number rule to define the path. If the current path is empty, the
whole canvas is written. If the current canvas is partially obscured by one or
more canvases that lie on top of it, writecanvas includes the overlapping can­
vases in the image.

The write screen operator writes files that readcanvas can read; the file formats
that are supported are implementation specific.

Example This operator can be used to do a conventional screen dump, as follows:

framebuffer setcanvas (ltmp/snapshot) writescreen

See also: writecanvas, eowritecanvas, eowritescreen

Revision A, of 25 August 1989

Extensibility through POSTSCRIPT
Language Files

10

Extensibility through POSTSCRIPT Language Files ... 221

1 0.1. Initialization Files ... 221

init .ps ... 221

redbook . ps ... 221

basics. ps .. 221

colors .ps .. 221

cursor. ps .. 221

statdict. ps ... 221

compat .ps .. 222

utile ps ... 222

class .ps ... 222

rootmenu . ps ... 222

10.2. User-Created Extension Files .. 222

. user .ps' ... 222

. startup. ps ... 222

Oth.er Extension Files ... 222

debug .ps ... 222

event log. ps ... 222

journal.ps ... 222

repea t . ps .. 222

Extension File Contents .. 223

10.3. Miscellaneous ... 223

10.4. Array Operations ... 226

10.5. Conditional Operators .. 228

10.6. Input Operators ... 228

10.7. Rectangle Utilities .. 231

10.8. Class Operators .. 231

10.9. Graphics Utilities .. 231

10.10. File Access Utilities .. 233

10.11. CID Utilities .. 234

10.12. Journalling Utilities .. 235

Journalling Internal Variables ... 236

10.13. Constants ... 236

10.14. Key Mapping Utilities ... 237

10.15. Repeating Keys ... 238

10.16. Standard Colors ... 238

10.17. Logging Events ... 238

UnloggedEvents .. 239

I

I

I

10
Extensibility through POSTSCRIPT

Language Files

In addition to operator and type extensions, which are part of the server itself,
NeWS also supplies various PoSTSCRIPT files that provide support for the NeWS
programming environment; the files are loaded automatically when NeWS is ini­
tialized. You can examine these files and modify the procedures that they con­
tain. However, if you modify them, portable NeWS programs may not run on your
server.

This chapter gives an overview of the PoSTSCRIPT extension files.

10.1. Initialization Files When the NeWS server is initialized, the following extension files are automati­
cally loaded:

init.ps

redbook.ps

basics.ps

colors.ps

cursor.ps

statdict.ps

Initializes the frame buffer, loads most of the other initialization files described
in this section, defines and starts the server, and sets various constants and
system-defaults.

Defines some POSTSCRIPT language operators that are in the PostScript
Language Reference Manual but are not NeWS primitives.

Defines the utilities necessary to run NeWS as a filter.

Defines a set of standard colors (the same as those in the XII librgb color set).
Adds the dictionary Colordiet to system diet.

Builds a dictionary useful for naming characters in eursorfont, which is a special
font of cursors. Client-defined cursor fonts can also be built.

Adds the statusdiet to the systemdiet for users needing extreme printer compati­
bility. The statusdict dictionary contains printer-specific operators such as prin­
tername and setseebateh, as specified in Section D.6 of the PostScript Language
Reference Manual. Many of these operators are pseudo-implemented, since they
have no meaning in a window system. The file statusdict. ps is loaded
automatically by ini t . ps at start-up.

NOTE NeWS contains many extensions to POSTSCRIPT that do not work on printers. If
you have code that you wish to send both to a NeWS server and to a printer, you
should test whether the neweanvas primitive is in systemdict, since only NeWS

221 Revision A, of 25 August 1989

222 NeWS Programmer's Guide

compat.ps

util.ps

class.ps

servers have such an operator defined.

Defines routines that make the server backwards-compatible with older NeWS
client programs; in effect, the server is programmed to emulate previous versions
of itself.

Simple utilities shared by packages and NeWS applications; anything that is used
by more than one package should be defined in here.

Implements the NeWS class mechanism and the methods supplied by the base
Object class.

NOTE Some class operators are implemented in C for performance reasons; however,
definitions of them in the POSTSCRIPT language are still provided.

rootmenu.ps

10.2. User-Created
Extension Files

.user.ps

.startup.ps

Other Extension Files

debug.ps

eventlog.ps

journal.ps

repeat.ps

Creates the default root menu. You can modify this in your. user. ps file when
it is loaded.

This section describes files that can be created by the user; these files can contain
customized NeWS initialization procedures. When NeWS is initialized, ini t . ps
automatically searches for these files. The search begins in the directory from
which NeWS was started; if the files are not found, the directories - / and
$OPENWINHOME/ etc/ are searched in tum.

Contains the user's own definitions of POSTSCRIPT operators, including
redefinitions of operators already in NeWS.

Contains code fragments created by the user. If . start up. ps exists, its con­
tents are executed by ini t. ps before any other package is loaded.

The following files all define extensions to NeWS; the files are loaded by indivi­
dual programs rather than by init .ps:

Contains POSTSCRIPT procedures used for debugging.

Contains a small package for monitoring event distribution, described under Sec­
tion 10.17, Logging Events below.

Contains a package for recording user actions and replaying them in player-piano
mode, described below in Section 10.12, Journalling Utilities.

Implements variable-rate repeating on keyboard keys. See Section 10.15, Repeat­
ing Keys below.

~~sun ~~ microsystems
Revision A, of 25 August 1989

Extension File Contents

10.3. Miscellaneous

append

buildsend

Chapter 10 - Extensibility through POSTSCRIPf Language Files 223

The following sections describe some of the most useful POSTSCRIPT procedures
that are contained by the files that have been described above. Note that more
exist than are documented here. All of the procedures can be customized to suit
the user's individual needs.

The following operators provide miscellaneous functionality:

obj1 obj2 append obj3
Concatenates arrays, strings, and dictionaries. In the case of duplicate dictionary
keys, the keys in the second dictionary overwrite those of the first.

name or array object bulldsend proc
Builds a procedure that sends a message to object. This procedure is self­
contained and does not depend on being in a certain dictionary context. This is
useful for callback procedures such as the following:

Imyinstance Inew MyClass send def
Idosomething myinstance buildsend linstallcallback Manager send

case value {key proc key key proc ... } case

c1eanoutdict

createcanvas

Compares value against several keys, performing the associated procedure if a
match is found. The key !Default matches all values.

Example The following example uses case to convert a number to a string:

MyNumber {
1 {(One)}
2 {(Two)}
3 4 5 {(Between 3 & 5)}
IDefault {(Infinity)}

} case

dict cleanoutdlct
Undefines every key in the dictionary diet using undef.

parentcanvas numx numy createcanvas canvas
Creates canvas, a child of parentcanvas, located at (0, 0) relative to its parent and
possessing the given width and height.

Revision A, of 25 August 1989

224 NeWS Programmer's Guide

cvad array cvad diet
Considers array as a list of key-value pairs and fills them into a newly-created
dictionary .

cvas array cvas string
Converts an array of small integers into a string.

cvis int cvls string

dictbegin

dictend

dictkey

fprintf

Example

Example

Converts a small integer into a one-character string.

- dlctbegln
Combined with dictend, creates a dictionary large enough for subsequent defs
and puts it on the dictionary stack. This lets you avoid needing to guess the size
of the dictionary to be created.

- dlctend diet
Returns the dictionary created by a previous dictbegin; together, they "shrink­
wrap" a dictionary around your def statements.

IMyDict dictbegin
Imyvar 1 def

dictend def

diet value dlctkey key true or false
Searches diet for value and returns the corresponding key, if it is present. If
value corresponds to several keys within diet, only one of the keys is returned.

file formatstring argarray fprlntf
Prints to file.

console (Server currenttime is:%n) [currenttimel fprintf

The above example prints the amount of time during which the NeWS server has
been running on your console.

See also: console

Revision A, of 25 August 1989

growabledict

Iitstring

Example

Chapter 10- Extensibility through POSTSCRIPT Language Files 225

- growabledlct diet
Creates a large, growable dict and leaves it on the stack.

str Iitstri ng str'
Replaces escapes in strings with escaped escapes.

(____ (b_�a_n_~_n_)I_its_t_rin_g ______________________________________ J

The above example produces the following string:

(\(blank\\n\))

modifyproc proc {head} {tail} modlfyproc {head proc tail}
Adds a head and/or a tail modification to a procedure, leaving on the stack an
executable array that contains the modified procedure body. You can use this to
override the behavior of a procedure.

Example The following code modifies the existing version of 'myproc' by prepending the
sequence '(myproc called\n) print' to the contents of the procedure each time it
is invoked.

Imyproc Imyproc {(myproc called\n) print} {} modifyproc store

NOTE You can use a literal name in place of any procedure you give to modifyproc. If
this name is associated with a procedure in the current dictionary context, this
procedure will be used in its place.

nulloutdict dict nulloutdlct

printf

refork

Defines every key in the dictionary dict to be null.

formatstring argarray prlntf
This is the printing form of sprintf. Prints on the standard output file, like print.

See also: dbgprintf

proeessname proe refork
Check to see whether a process specified by process name is running. If so, that
process is killed with killprocess. Then the process (proc) is forked.

Revision A, of 25 August 1989

226 NeWS Programmer's Guide

sendstack

sleep

sprintf

Example

stringbbox

- sendstack array
Returns the current send stack as an array.

interval sleep
sleep sends itself an event, timestamped interval in the future and returns when
that event is delivered.

formatstring argarray sprlntf string
A utility similar to the standard C spr intf(3S). Jormatstring is a string with
'0/0' characters where argument substitution is to occur.

(Here is a string:%, and an integer:%) [(Hello) 10] sprintf

The above example puts the following string on the stack:

(Here is a string:Hello, and an integer:10)

string strlngbbox x y w h
Returns string's bounding box.

See also: fontascent, fontdescent, fontheight

10.4. Array Operations

arraycontains?

arraydelete

arrayindex

The following operators are provided to perform operations on arrays.

array value arraycontalns? bool
Returns the boolean true if the indicated value is found in the specified array.

array index arraydelete
Returns a new array, deleting the value in array at position index. If index is
beyond the end of the array, the last item in the newly-constructed array is
deleted. Thus:

[Ia Ib 0 Ix Iy) 2 arraydelete ~ [Ia Ib Ix Iy]

array value arraylndex index boolean
Given an array and specified value, arrayindex returns the index of the value (if
it is found) and the boolean true; if the index is not found, the operator returns no
index value and the boolean false.

Revision A, of 25 August 1989

arrayinsert

arrayop

arrayreverse

arrayreverseFast

Example

Example

Chapter 10 - Extensibility through POSTSCRIPf Language Files 227

array index value arraylnsert newarray
Creates a new array one larger than the initial array by inserting value at position
index. If index is beyond the end of the array, value is appended to the end of the
array. Thus:

[/a Ib Ix Iy] 2 0 arrayinsert => [/a Ib 0 Ix Iy]

A B proc arrayop C
Performs proc on pairs of elements from arrays A and B in tum (for the union of
the set), placing the result in array C.

[1 23] [456] {add} arrayop => [5 79]
and

[345] [4566] {add} arrayop => [7 9 11]

array arrayreverse array_reversed
Reverses the elements of the specified array.

. ([3 56 7 8 2 1) arrayreverse

The above example produces the following:

[1 287563]

array arrayreverseFast array_reversed
Reverses the elements of the specified array. It runs more quickly than
arrayreverse but uses the operand stack; thus, it may result in stackoverflow
errors.

J

NOTE Stack usage is twice the array size.

arraysequal? array_A array_B arraysequal? bool
Compares the contents of the two arrays. If they are equal, it returns true, other­
wise it returns false.

Revision A, of 25 August 1989

228 NeWS Programmer's Guide

isarray?

quicksort

10.5. Conditional
Operators

?get

?getenv

?load

?put

?undef

Example

10.6. Input Operators

any Isarray? boolean
Returns a boolean indicating whether the object is one of the array types.

array proe quicksort array
Uses the process proe as a rule to sort the contents of the array.

((79834) (gl) quicksort

The above example produces the following:

[34789]

The following operators are provided to allow you to specify conditional opera­
tions where a value mayor may not already be defined.

diet key default ?get value
If the specified key is found in the diet, its value is returned on the stack; other­
wise the default value is returned on the stack.

envstr defau Itstr ?getenv str

]

Returns the specified envstr as a string on the stack, if it differs from the specified
defaultstr.

key default ?Ioad value
Searches for the specified key through the dictionary stack, starting with the top­
most dictionary. If the key is found, the value is returned on the stack; otherwise
the default value is returned on the stack.

diet key value ?put
Check if the key-value pair exists in the diet. If not, add the pair to the diction­
ary.

diet key ?undef
Remove the specified key from the dictionary, if the key is present.

The following operators provide functionality in the area of input and event
management.

Revision A. of 25 August 1989

eventmgrinterest

forkeventmgr

getanimated

I

I

I

I

Example

Example

Chapter 10 - Extensibility through POSTSCRIPT Language Files 229

eventname eventproc action canvas eventmgrlnterest interest
Makes an interest that is suitable for use by forkeventmgr or expressinterest.

/MyEventMgr [
MenuButton {/popup MyMenu send}
/DownTransition MyCanvas eventrngrinterest

] forkeventmgr def

This creates an event manager that handles popping up a menu.

interests forkeventmgr process
Forks a process that expresses interest in interests, which may be either an array
whose elements are interests or a dictionary whose values are interests. Each
interest must have an executable match that consumes the event returned by
awaitevent (eventmgrinterest produces interests of this type)

/MyEventMgr [
MenuButton
{/popup MyMenu send}
/DownTransition
MyCanvas
eventmgrinterest

] forkeventmgr def

% event name
% eventyroc
% action
% canvas
% build an interest

This invocation of forkeventmgr forks an event manager to watch for a IDown­
Transition of the MenuButton.

NOTE The event manager uses some entries of the operand stack; do not use clear to
clean up the stack in your lproc' procedure.

xO yO procedure getanlmated process
Forks a process that does animation while tracking the mouse, returning the pro­
cess object process to the parent process. Each time the mouse moves, the pro­
cess executes 'erasepage xO yO moveto,' pushes the current mouse coordi­
nates x and y onto its stack, and calls procedure. The variables xO, yO, x, and y
are available to procedure. After procedure returns, the process executes the
stroke operator. Thus, procedure can use xO, yO, x, and y to build a path that is
drawn each time the mouse is moved - drawing a line to the current cursor loca­
tion, for example. (Note that this routine is typically useful only when the current
canvas is an overlay canvas.)

The process calling procedure exits when the user clicks the mouse; it leaves the
final mouse coordinates in an array '[x y]' on top of its stack, so that they are
available to the parent process via the waitprocess operator. Since erasepage is
executed each time the mouse is moved, the current canvas should be an overlay
canvas when you call getanimated. getanimated is used to implement most

Revision A, of 25 August 1989

230 NeWS Programmer's Guide

get click

getrect

getwholerect

?revokeinterest

setstandardcursor

rubber-banding operations on the screen such as in the rubber demo program.
See also: createoverlay, waitprocess

Example

- getcllck xO yO
Uses getanimated to let the user indicate a point on the screen. getclick returns
the location of the click on the stack.

xO yO getrect process
Uses getanimated to let the user "rubber-band" a rectangle with a fixed origin
xO, yO. Returns a process with which you can retrieve the coordinates of the
upper right-hand comer of the rectangle. Use waitprocess to put these coordi­
nates [x1 y1] (in an array) on the stack.

[____ 1_00 __ 10_0_Q_e_t_re_c_tw __ ai_tP_rn_c_e_s_s ______________________________ ~]
The above example sizes a window and then produces the following:

[400432]

See also: waitprocess

Example

- getwholerect process
Uses getclick and getrect to let the user indicate both the origin and a comer of a
rectangle. Returns a process with which you can retrieve the coordinates of both
the origin and the upper right-hand comer of the rectangle. Use waitprocess to
put these coordinates [xO yO x1 y1] (in an array) on the stack.

event ?revokel nterest
Revokes interest in an event. This operator is identical to revokeinterest, except
that it does not generate invalidaccesserrorS if the interest has already
been revoked.

primary mask canvas setstandardcursor
Sets canvas's cursor to the cursor composed of the primary and mask keywords.
primary and mask must be cursors in cursorfont, the font of standard system cur­
sors loaded by cursor. ps.

IhourQ IhourQ_m MyCanvas setstandardcursor

This sets the cursor in 'MyCanvas' to an hourglass, usually to indicate that its
process will not be responding to user-input for a while.

The following table represents the cursors and their masks in cursorfont:

Revision A, of 25 August 1989

I

I

Chapter 10 - Extensibility through POSTSCRIPT Language Files 231

Table 10-1 Standard Nt!NS Cursors

Primary Mask
Image Image Description When/Where Used

ptr ptr_m arrow pointing to upper left default
beye beye_m bullseye window frame
rtarr rtarr m "~" arrow menus
xhair xhair m crosshairs ("+" shape)
xeurs xeurs m "x" shape icons
hourg hourg_m hourglass shape start-up/canvas busy
nouse nouse m no cursor

See also: seteanvaseursor

10.7. Rectangle Utilities The following operators manage rectangular coordinates and paths; other graph­
ics procedures are listed below, under Graphics Utilities.

insetreet delta x y w h Insetreet x' y' w' h'
Creates a new rectangle inset by delta.

points2reet x y x' y' polnts2rect x y width height
Converts a rectangle specified by any two opposite comers to one specified by an
origin and size.

reet width height reet
Adds a rectangle to the current path at the current pen location.

rectpath x y width height reetpath
Adds a rectangle to the current path with x,y as the origin.

reetsoverlap x y w h x' y' w' h' reetsoverlap bool
Returns true if the two specified rectangles overlap.

reet2points x y width height reet2polnts x y x' y'
Converts a rectangle specified by its origin and size to a pair of points that
specify the origin and top right corner of the rectangle.

10.8. Class Operators The class operators and methods are described in Chapter 4, Classes.

10.9. Graphics Utilities The following operators can be used to create graphics in canvases.

Revision A, of 25 August 1989

232 NeWS Programmer's Guide

colorhsb

colorrgb

cshow

fill canvas

insetrrect

color colorhsb h s b
Returns the HSB values for the given color.

color colorrgb r 9 b
Returns the RGB values for the given color.

string cshow
Shows string centered on the current location.

int or color fillcanvas
Fills the entire current canvas with the gray value or color.

delta r x y w h Insetrrect r' x' y' Wi hi
Similar to insetrect, but with a rounded rectangle.

See also: rrectpath

ovalframe

ovalpath

polyline

polypath

polyrectline

thickness x y w h ovalframe
Similar to rectframe but with an oval.

x y w h ovalpath
Creates an oval path with the given bounding box.

array polyline
Draws lines using numbers from array. Considers array as an array of (dx,dy)
pairs and then executes dx dy rlineto for each pair.

x y array polypath
Starts a path at (x,y) and then draws lines using array as for polyline. Closes the
path at the end.

array polyrectllne
Draws rectlinear lines using numbers from array. If array contains [aO al a2 ...
], this does the equivalent of aO 0 rlineto 0 al rlineto a2 0 rlineto and so forth.

Revision A, of 25 August 1989

polyrectpath

rectframe

rrectframe

rrectpath

rshow

setshade

strokecanvas

10.10. File Access Utilities

DefineAutoLoads

I

Chapter 10 - Extensibility through POSTSCRiPI' Language Files 233

x y array polyrectpath
Starts a path at (x,y) and draws rectlinear lines as for polyrectline. Closes the
path at the end.

thickness x y w h rectframe
Creates a path composed of two rectangles, the first with origin x,y and size w,h;
the second inset from this by thickness. Calling eofill fills the frame, while
stroke creates a "wire frame" around it.

thickness r x y w h rrectframe
Similar to rectframe but with a rounded rectangle.

r x y w h rrectpath
Creates a rectangular path with rounded comers. The radius of the comer arcs is
r, the bounding box is x Y W h.

string rshow
Shows string right-justified at the current location.

gray or color setshade
Sets the current color to gray or to color value. The argument may be either a
color or a shade of gray.

int or color strokecanvas
Strokes the border of the canvas with a one point edge, using the gray value or
color. Currently only works for rectangular canvases.

The following operators provide file access functionality:

array DeflneAutoLoads
NeWS defines many operators that may never be used. To avoid loading the
POSTSCRIPT code definition of every NeWS object at initialization, you can
"lazy-define" an object to be the action of loading a file. When the object is first
accessed, the file is read in; the loaded file should nonnally redefine the object to
its original value. This fonn of definition is especially useful for classes, since
all the methods and utility procedures that use a class can be defined in a single
file, which is only read in when the class is first used. DefineAutoLoads takes
an array of object-filename pairs.

Revision A, of 25 August 1989

234 NeWS Programmer's Guide

filepathopen filename path array access fllepathopen path file true or name false
Takes a filename, an array of path strings (such as those produced by filepath­
parse) and the same access control string as file; it then tries to openfiiename in
each of the paths in turn. As soon as it succeeds, it returns three values: the path
that successfully located the file, a file object, and true. If it fails, it returns two
values: filename and false.

filepathparse pathstring fllepathparse path array

filepathrun

LoadFiIe

10.11. CID Utilities

Takes a colon-separated set of patbnames and returns the patbnames as an array
of strings.

Example The following code parses the patbnames in the environment variable MYPATH;
if the variable does not exist, a default set of strings is loaded.

Imypath (MVPATH) (.:-/bin:$OPENWINHOMElbin) ?getenv filepathparse def

filename path array fllepathrun path true or namelpath false
Takes a filename and an array of path strings; the operator attempts to run the
resulting file. If it cannot find the desired file in any of the given paths (using
filepathopen), it returns filename and false. If it succeeds in finding the file, it
runs the file (using cvx exec) in a stopped environment and reports errors. If it
finds the file but cannot access or run it, filepathrun leaves the full path to the
file and false on the stack. It also checks whether the file left anything on the
execution stack and prints an error if this occurred. If no file was left on the
stack, filepathrun leaves the full path to the file and true on the stack.

string LoadFile boolean
This is a robust, more general version of run. It is used to execute most NeWS
startup files, returning false if it has problems, true otherwise. It searches for
files in several locations: first, it prepends the user's home directory and tries to
read from there; then, it passes the actual filename string to file. file looks first in
the directory in which the Xll/NeWS server was initialized, then in
$OPENWINHOME/etc.

The POSTSCRIPT files supplied by NeWS include a simple CID (Client IDentifier)
synchronizer package. This generates a unique identifier used to generate a chan­
nel for client communication.

Revision A. of 25 August 1989

cidinterest

cidinterestlonly

sendcidevent

uniquecid

10.12. Journalling Utilities

journalplay

j ournalrecord

journalend

Chapter 10 - Extensibility through POSTSCRIPI' Language Files 235

id cldlnterest interest
Creates an interest appropriate for use with forkeventmgr. The callback pro­
cedure installed in this interest simply executes the code fragment stored in the
event's IClientData field.

id cldlnterest10nly interest
This is a special form of cidinterest that processes only one code fragment. It
automatically exits by itself, rather than requiring the client to send the exit. For
example, the go demo uses this operator to respond to mouse buttons which place
a single stone using the above drawing fragments.

id proc sendcldevent
Sends a code fragment to a process created by the cidinterest - forkeventmgr
usage shown above.

- unlquecld integer
Generates a unique identifier (integer) for use with the rest of the package.

The following utilites allow you to control the joumalling mechanism. With this
mechanism, you can record and play back NeWS user input events. The file
$OPENWINHOME/ demo/ journaldemo implements the following three pro­
cedures:

- Journalplay
Begins replaying from the joumalling file. The default filename is
/tmp/NeWS. journal.

- Journalrecord
Starts a joumalling session by opening the joumalling file and logging user
actions to it. The default filename is /tmp/NeWS . journal.

- Journalend
Ends a joumalling session started by journalrecord and closes the joumalling
file.

Only raw mouse and keyboard events are replayed; thus, the system should be in
exactly the same state at the beginning of the replay as it was at the start of the
joumalling session; this means that the same windows should exist in the same
positions on the screen, the same user should be running the system from the
same directory, and so forth. The journalplay operator automatically repositions
the mouse to the exact position it occupied at the start of the session.

Revision A, of 25 August 1989

236 NeWS Programmer's Guide

Journalling Internal Variables The journalling utilities use the following internal variables:

10.13. Constants

console

framebuffer

minim

nulldict

nullproc

nullstring

HOME

D RecordFile - the journalling file.

D PlayBackFile - initially identical to RecordFile, this is the file from which
playback takes place.

D PlayForever - play forever if true.

D State - the current state of journalling system.

These variables are explained more fully in the comments of the file
$OPENWINHOME/ demo/ journaldemo. They are defined in the NeWS dic­
tionary journal, created in systemdict.

The following constants and environment variables are provided:

- console file
Returns the file object for the system's console. Use with fprintfto write mes­
sages to the console.

See also: fprintf

- frame buffer canvas
Returns the root canvas.

- minim real
Returns the smallest value that is representable in NeWS, which is 2-16

•

- nulldlct dict
Returns an empty, zero-length dictionary.

- nullproc procedure
Returns a no-op procedure.

- nullstrlng string
Returns an empty string.

- HOME string
Puts the absolute pathoame to the user's home directory on the stack, or ' .' if the
HOME environment variable is not set.

Revision A, of 25 August 1989

OPENWINHOME

Chapter 10 - Extensibility through POSTSCRIPT Language Files 237

- OPENWINHOME string
Puts the patbname in the OPENWINHOME environment variable on the stack, or
/home/openwin if this is not set. This operator is used to locate NeWS files;
users should set this environment variable if they install NeWS in a non-standard
location.

10.14. Key Mapping
Utilities

A key may be unbound using the unbindkey procedure. The bindkey and
unbindkey operators are described below.

bindkey keyarg blndkey
Creates a new process that waits for key to be pressed and executes arg whenever
that happens. If arg is an executable array, name, or string, it is simply handed to
the PostScript interpreter. Otherwise, if it is a string, the following expression is
evaluated:

{arg runprogram }

Example The following example binds the string ! make to key (EBJ and assigns the
NeWS-Sun View selection converters to (E2J and (EI[)2:

IFunctionF8 {
dup begin

IName IInserlValue def
IAction (!make) def

end
redistributeevent

} bindkey

IFunctionF9 (sv2newsJ)ut) bindkey
IFunctionF10 (news2svJ)ut) bindkey

unbindkey key arg unblndkey
Removes the binding of the arg for the specified key (there is no need to call
unbindkey before rebinding a key to a new value; the new value replaces the old
in bindkey).

Example The following example unbinds the key that was bound in the previous example:

(~ ___ /F_u_n_ct_io_n_F_9_u_n_b_in_d_k_ey _____________________________________ J

2 The (FlO I function key doesn't exist on Sun-3 keyboards.

+!2.t!! Revision A, of 25 August 1989

238 NeWS Programmer's Guide

10.15. Repeating Keys By default, the keys of the standard typing array (which does not include the
function or shift keys) repeat 20 times per second, after a .5 second threshold.
The repeating keys behavior is implemented by a standalone repeat-keys pack­
age, $OPENWINHOME/lib/NeWS/repeat .ps, which is loaded as part of
the extended input system started by ini t . ps. You can adjust the threshold
and repeat rates according to your preference; you can do this by modifying
within your. user. ps file the KeyRepeatThresh and KeyRepeatTime keys
of your UserProfile dictionary. This is demonstrated by the following example:

UserProfile begin
IKeyRepeatThresh
IKeyRepeatTime

end

1 60 div 2 div def
1 60 div 12 div def

10.16. Standard Colors ColorDict is a dictionary that contains named colors. It is implemented by
colors. ps, which is loaded by ini t . ps. The color names are the same as
the values in the XIIR2 librgb library.

Example Here are some sample color name definitions from the file:

IAquamarine
IMediumAquamarine
IBlack
IBlue
ICadetBlue
ICornflowerBlue
IDarkSlateBlue

RGBcolor is described as follows:

112 219 147 RGBcoior def
50204153 RGBcoior def
o 0 0 RGBcolor def
o 0 255 RGBcolor def
95 159 159 RGBcoior def
6666111 RGBcolor def
107 35 142 RGBcoior def

RGBcolor red green blue RGBcolor color
Converts color values, specified by red, green, and blue values between 0 and
255, into a NeWS color object.

See also: rgbcolor, setcolor

10.17. Logging Events The file eventlog. ps defines a procedure (eventlog) td'tum logging of event
distribution on and off, and a dictionary (UnloggedEvents), which defines those
events to be excluded from the log record. "Logging" means that a copy of each
event is printed as it is taken out of the event queue for distribution. This is use­
ful for debugging the server and for clients that use events heavily. The fields of
the event that are printed are Serial, TimeStamp, Location, Name, Action,
Canvas, Process, KeyState, and ClientData.

The Journal application uses the event logging mechanism to allow the user to
record and play back user actions. See the journalling(l) manual page for more
information.

~~!!I!! Revision A, of 25 August 1989

Chapter 10 - Extensibility through POSTSCRIPT Language Files 239

eventlog bool eventlog
Turns event logging on if the boolean is true, off if it is false.

The following example shows a typical log message:

#300 1.582 [166 161] EnterEvent 1 canvas (512x512,root,parent) null [] null

UnloggedEvents

Log messages are sent to standard output (event logging uses the POSTSCRIPT

operators print and ==).

This is a dictionary of event names that are specified by the user; NeWS does not
log these events. The default definition of UnloggedEvents is as follows:

IUnloggedEvents 20 diet dup begin
IDamaged dup def
IMouseDragged dup def

end def

Revision A. of 25 August 1989

A
NeWS Operators

NeWS Operators .. 243

A.I. NeWS Operators, Alphabetically ... 243

A.2. NeWS Operators, by Functionality ... 246

Canvas Operators .. 246

Event Operators ... 247

Matllematical Operators .. 248

Process Operators ... 248

Path Operators .. 248

File Operators 249

Color Operators .. 249

Keyboard and Mouse Operators ... 249

Cursor Operators ... 250

Font Operators .. 250

Miscellaneous Operators .. 250

I

A.I. NeWS Operators,
Alphabetically

listenfile
num
num

boolean errorname

num

width height bits/sample
matrix proc

x y or null
canvas
canvas

process
color
dxdy

file

visual
cmap color
cmap C P

string

canvas

A
NeWS Operators

This appendix lists all the current NeWS operators, alphabetically first, then by
type.

acceptconnectlon file
arccos num
arcsin num
assert -
awaltevent event
beep -
blockinputqueue -
breakpoint -

build Image canvas
canvasesunderpath array
canvasesunderpoint array
canvastobottom -
canvastotop -
clearsendcontexts -
cllpcanvas -
cllpcanvaspath -
contlnueprocess -
contrastswithcu rrent boo lean
copyarea -
countfilelnputtoken integer
countlnputqueue num
createcolormap cmap
createcolorsegment cmapseg
createcolorsegment cmapsegs
createdevlce boolean, canvas or env
createevent event
createmonitor monitor
createoverlay overlaycanvas
currentautoblnd boolean
currentbackcolor color

243

listens for connection
computes arc cosine
computes arc sine
generates an error
blocks for event
generates audible signal
blocks input events
suspends current process

constructs canvas object
returns canvases under path
returns canvases under point
moves to bottom of sibling list
moves to top of sibling list
removes history of send contexts
clips to canvas boundary
sets current path to clip
restarts suspended process
compares colors
copies current path to dx, dy
returns associated usertokens
returns count of input queue
returns colormap for visual
returns colorsegment
returns colorsegments
creates canvas or environment object
creates event
creates monitor object
creates overlay canvas
tests whether autobinding is on
gets color painted by erasepage

Revision A, of 25 August 1989

244 NeWS Programmer's Guide

font array
font name

dxdy

canvas
file or string
file or string

event
event process

string1 string2
string

font
font
font
proc

canvas

string index
cmapseg integer

string1

integer
integer file

process or null
file
file

currentbackplxel integer
currentcanvas canvas
currentcolor color
currentcursorlocatlon x y
currentfontmem num
currentpath path
currentplxel integer
currentplanemask integer
currentprlntermatch boolean
currentprocess process
currentrasteropcode num
currentshared boolean
currentstate state
currenttime num
damagepath -
defaulterroraction -
emptypath boolean
encodefont font
encodefont font
eocllpcanvas -
eocopyarea -
eoextenddamage -
eoextenddamageall -
eoreshapecanvas -
eowrltecanvas -
eowritescreen -
expressinterest -
expresslnterest -
extenddamage -
extenddamgeall -
file file
findfilefont font
fontascent number
fontdescent number
fontheight number
fork process
getcanvaslocation x y
getcanvasshape path
getcard32 integer
getcolor color
getenv string2
geteventlogger process
getfileinputtoken any
getfilelnputtoken any
getkeyboardtranslation boolean
getprocesses array
getprocessg roup array
getsocketlocaladd ress stri ng
getsocketpeername stri ng

returns background pixel
returns current canvas
returns current color
returns mouse coordinates
returns size of font memory cache
returns current path
returns index of current pixel
returns current planemask
returns printermatch value
returns current process
rasterop combination function
tests whether allocation status is enabled
returns graphicsstate object
returns current time value
sets path to damage path
produces $error dictionary for process
tests current path
duplicates font using new encoding
encodes font
clips to current canvas
copies area to dx, dy
extends damage path
extends damage path to all
reshapes canvas
writes canvas to file
writes screen to file
enables reception of events
enables reception of events
extends damage path
extends damage path
creates file object
reads font family file, returns font
returns font ascent
returns font descent
returns font height
creates new process
returns canvas location
returns path object of canvas shape
returns bits from offset
returns color from colormapsegment
gets value of string] in server
gets event logger process
returns file input token
returns file input token
returns mode of translation
returns array of process groups
returns array of processes
returns address of file
returns name of host connected

Revision A, of 25 August 1989

any
hsb

canvas
boolean canvas

canvas x y
canvas x y

process
process

ab
ab

monitor procedure
monitor

xy
x y canvas

pcanvas
pcanvas visual cmap

cursorchar maskchar
font

cursorchar maskchar
cursorfont maskfont

file
objects n

array

xy
outcanvas incanvas outname

inname detailpoint?
string index integer
cmapentry int color

string1 string2

string
event
event
object
object

canvas
canvas path width

event
event process

rg b
string

harden any
hsbeolor color
Imageeanvas -
Imagemaskeanvas -
Inserteanvasabove -
Inserteanvasbelow -
keyboardtype nurn
killproeess -
killprocessgroup -
lasteventkeystate array
lasteventtlme num
lasteventx num
lasteventy nurn
loealhostname string
loealhostnamearray array
max c
min c
monitor -
monltorloeked boolean
moveeanvas -
moveeanvas -
neweanvas ncanvas
neweanvas ncanvas

newcursor cursor

neweursor cursor
newproeessgroup -
objeetdump -
paekedarray packed array
pathforallvee -
pause -
pointinpath boolean

posterossings -
puteard32 -
puteolor -
putenv -
random num
readeanvas canvas
reeallevent -
redistributeevent -
refent fixed fixed
reffinder -
reshapeeanvas -
reshapeeanvas -
revokeinterest -
revokel nte rest -
rgbeolor color
runprogram -

Appendix A - NeWS Operators 245

returns reference as hard reference
returns color matching h s b
maps canvas to current canvas
analogous to imagemask
inserts above current canvas
inserts below current canvas
returns type of keyboard
kills process
kills process group
returns KeyState
returns TimeStamp
returns x coordinatate of event
returns y coordinatate of event
returns network hostname
returns network hostname and aliases
leaves maximum on stack
leaves minimum on stack
executes procedure with locked monitor
checks state of monitor
moves canvas to x y
moves canvas to x y
creates new canvas
creates new canvas

creates cursor

creates cursor
creates new process group
writes summary of created objects
creates packed array
analogous to pathforall
lets other processes run
tests whether point is in path

generates events
inserts 32 into string at offset
puts color in colormapentry
alters value of string 1
returns random value
reads string as canvas
removes event from queue
continues distribution of event
returns soft and hard reference counts
prints references to object
sets canvas to be path
reshapes X canvas
revokes interest in event
revokes interest in event
returns color object with r g b value
forks UNIX process

Revision A, of 25 August 1989

246 NeWS Programmer's Guide

name object
proc object

event
boolean

color
pixel

canvas
color

xy
process

any integer
any integer file

num
boolean

bool
path

colorobject or integer
integer

boolean
num

graphicsstate

any
any

process
num
any

object

dictionary key

process
file or string

file object
file or string

A.2. NeWS Operators, by
Functionality

Canvas Operators

width height bits/sample
matrix proc

x y or null
canvas
canvas

send -
send -
sendevent -
setautoblnd -
setbackcolor -
setbackplxel -
setcanvas -
setcolor -
setcursorlocatlon -
seteventlogger -
setfilelnputtoken -
setfilelnputtoken -
setfontmem -
setkeyboardtranslation -
setpacklng -
setpath -
setplxel -
setplanemask -
setprintermatch -
setrasteropcode -
setstate -
shutdownserver -
soft boolean
soften any
startkeyboardandmouse -
suspendprocess -
tagprint -
truetype name
typedprint -
unblockinputqueue -
undef -
vmstatus avail used size
waitprocess value
writecanvas -
writeobject -
writescreen -

invokes named method in object's context
invokes procedure in object's context
sends event
sets autobinding
sets erasepage
sets background pixel
sets current canvas
sets current color
sets cursor location to x y
specifies process as event logger
adds object to tokenlist
adds object to tokenlist
sets size of font memory cache
tests whether translation is on
sets packing mode
sets path to path
sets pixel to map index
sets planemask to integer
sets printermatch flag
sets rasterop combination function
sets graphics state
aborts the NeWS server
tests whether argument is soft reference
returns reference as soft reference
initiates server processing
suspends process
puts num on output stream
identifies true type of object
puts object on output stream
releases input queue block
undefines key from dictionary
returns status of memory usage
waits until completion of process
writes canvas to file
writes object to file
writes screen to file

The following operators are sorted according to functionality.

buildimage canvas
canvasesunderpath array
canvasesunderpoint array
canvastobottom -
canvastotop -
clipcanvas -

constructs canvas object
returns canvases under path
returns canvases under point
moves to bottom of sibling list
moves to top of sibling list
clips to canvas boundary

Revision A, of 25 August 1989

string
canvas

canvas
file or string
file or string

canvas

canvas
boolean canvas

canvas x y
canvas x y

xy
x y canvas

pcanvas
pcanvas visual crnap

string
canvas

canvas path width
canvas

file or string
file or string

Event Operators

nurn

event
event process

outcanvas incanvas outnarne
innarne detailpoint?

event
event
event

event process
event

process

cllpcanvaspath -
createdevlce boolean, canvas or env
createoverlay overlaycanvas
currentcanvas canvas
eocllpcanvas -
eoreshapecanvas -
eowrltecanvas -
eowrltescreen -
getcanvaslocatlon x y
getcanvasshape path
Imagecanvas -
Imagemaskcanvas -
Insencanvasabove -
Insertcanvasbelow -
movecanvas -
movecanvas -
newcanvas ncanvas
newcanvas ncanvas
readcanvas canvas
reshapecanvas -
reshapecanvas -
setcanvas -
wrltecanvas -
wrltescreen -

awaitevent event
blockinputqueue -
countlnputqueue nurn
createevent event
expressinterest -
expresslnterest -
geteventlogger process
lasteventkeystate array
lasteventtime nurn
lasteventx nurn
lasteventy nurn

postcrossings -
recallevent -
redistributeevent -
revokei nte rest -
revokei nte rest -
sendevent -
seteventlogger -
unblocklnputqueue -

Appendix A - NeWS Operators 247

sets current path to clip
creates canvas or environment object
creates overlay canvas
returns current canvas
clips to current canvas
reshapes canvas
writes canvas to file
writes screen to file
returns canvas location
returns path object of canvas shape
maps canvas to current canvas
analogoustoirnagernask
inserts above current canvas
inserts below current canvas
moves canvas to x y
moves canvas to x y
creates new canvas
creates new canvas
reads string as canvas
sets canvas to be path
reshapes X canvas
sets current canvas
writes canvas to file
writes screen to file

blocks for event
blocks input events
returns count of input queue
creates event
enables reception of events
enables reception of events
gets event logger process
returns KeyState
returns TimeStamp
returns x coordinatate of event
returns y coordinatate of event

generates events
removes event from queue
continues distribution of event
revokes interest in event
revokes interest in event
sends event
specifies process as event logger
releases input queue block

Revision A, of 25 August 1989

248 NeWS Programmer's Guide

Mathematical Operators

num
num
ab
ab

Process Operators

process

proc

process or null
process
process

monitor procedure
monitor

string
process
process

Path Operators

arccos num
arcsin num
max c
min c
random num

breakpoint -
clearsendcontexts -
contlnueprocess -
createmonltor monitor
currentprocess process
currentshared boolean
defaulterroractlon -
fork process
getprocesses array
getprocessgroup array
killprocess -
killprocessgroup -
monitor -
monltorlocked boolean
newprocessgroup -
pause -
runprogram -
suspendprocess -
waitprocess value

dx dy copyarea-
currentpath path
damagepath -
emptypath boolean

dx dy eocopyarea-
eoextenddamage -
extenddamage -
extenddamgeall -

x y polntlnpath boolean
path setpath-

computes arc cosine
computes arc sine
leaves max on stack
leaves min on stack
returns random value

suspends current process
removes history of send contexts
restarts suspended process
creates monitor object
returns current process
tests whether allocation status is enabled
produces $error dictionary for process
creates new process
returns array of process groups
returns array of processes
kills process
kills process group
executes procedure with locked monitor
checks state of monitor
creates new process group
lets other processes run
forks UNIX process
suspends process
waits until completion of process

copies path to dx, dy
returns current path
sets path to damage path
tests current path
copies area to dx, dy
extends damage path
extends damage path
extends damage path
tests whether point is in path
sets path to path

Revision A, of 25 August 1989

File Operators

listenfile
file

string1 string2
integer

integer file
file
file

any integer
any integer file

num
object

file object

Color Operators

color
visual

crnapcolor
crnap color
cmap C P

cmapseg integer
hsb

cmapentry int color
r g b
color
pixel
color

colorobject or integer
integer

acceptconnectlon file
countfilelnputtoken integer
file file
getfilelnputtoken any
getfilelnputtoken any
getsocketlocaladdress string
getsocketpeername string
setfilelnputtoken -
setfilelnputtoken -
tagprint -
typedprlnt -
writeobject -

contrastswithcurrent boolean
createcolormap cmap
createcolorsegment cmapentry
createcolorsegment cmapseg
createcolorsegment cmapsegs
currentbackcolor color
currentbackplxel integer
currentcolor color
currentpixel integer
currentplanemask integer
getcolor color
hsbcolor color
putcolor -
rgbcolor color
setbackcolor -
setbackpixel -
setcolor -
setpixel -
setplanemask -

Keyboard and Mouse Operators

currentcursorlocation x y
getkeyboardtranslation boolean
getmousetranslation boolean
keyboardtype nurn

boolean setkeyboardtranslation-
startkeyboardandmouse -

+~t!!

Appendix A - NeWS Operators 249

listens for connection
returns associated usertokens
creates file object
returns file input token
returns file input token
returns address of file
returns name of host connected
adds object to tokenlist
adds object to tokenlist
puts num on output stream
puts object on output stream
writes object to file

compares colors
returns colonnap for visual
returns colonnapentry object
returns colorsegment
returns colorsegments
gets color painted by erasepage
returns background pixel
returns current color
returns index of current pixel
returns current planemask
returns color from colonnapsegment
returns color matching h s b
puts color in colormapentry
returns color object with r g b value
sets erasepage
sets background pixel
sets current color
sets pixel to map index
sets planemask to integer

returns mouse coordinates
returns mode of translation
tests whether events are translated
returns type of keyboard
tests whether translation is on
initiates server processing

Revision At of 25 August 1989

250 NeWS Programmer's Guide

Cursor Operators

curosrchar maskchar
font

cursorchar maskchar
cursorfont maskfont

xy

Font Operators

font array
font name

string
font
font
font
num

eurrenteursorloeatlon x y

neweursor cursor

newcursor cursor
seteursorlocatlon -

eurrentfontmem num
eneodefont font
encodefont font
findfilefont font
fontaseent number
fontdeseent number
fonthelght number
setfontmem -

Miscellaneous Operators

boolean errorname

string index
string1

any

file
objects n

array
string index integer

string1 string2
object
object

name object
proc object

boolean
boolean
boolean

assert -
beep -
eurrentautobind boolean
eurrentprintermateh boolean
eurrentrasteropeode num
currentshared boolean
eurrentstate state
eurrenttlme num
geteard32 integer
getenv stri ng2
harden any
loealhostname string
loealhostnamearray array
objeetdump -
paekedarray packed array
pathforallvee -
puteard32 -
putenv -
refent fixed fixed
reffinder -
send -
send -
setautobind -
setpaeklng -
setprintermateh -

returns mouse coordinates

creates cursor

creates cursor
sets cursor location to x y

returns size of font memory cache
duplicates font using new encoding
encodes font
reads font family file, returns font
returns font ascent
returns font descent
returns font height
sets size of font memory cache

generates an error
generates audible signal
tests whether autobinding is on
returns printermatch value
rasterop combination function
tests whether allocation status is enabled
returns graphicsstate object
returns current time value
returns bits from offset
gets value of string] in server
returns reference as hard reference
returns network hostname
returns network hostname and aliases
writes summary of created objects
creates packed array
analogous to pathforall
inserts bits into string at offset
alters value of string]
returns soft and hard reference counts
prints references to object
invokes named method in object's context
invokes procedure in object's context
sets autobinding
sets packing mode
sets printermatch flag

Revision A, of 25 August 1989

num
graphicsstate

any
any
any

dictionary key

setrasteropcode -
setstate -
shutdownserver -
soft boolean
soften any
truetype name
undef -
vmstatus avail used size

Appendix A - NeWS Operators 251

sets rasterop combination function
sets graphics state
aborts the NeWS server
tests whether argument is soft reference
returns reference as soft reference
identifies true type of object
undefines key from dictionary
returns status of memory usage

Revision A, of 25 August 1989

B
The Extended Input System

The Extended Input System ... 255

B.l. Building on NeWS Input Facilities ... 255

B.2. The LiteUI Interface ... 256

B.3. Keyboard Input .. 257

Keyboard Input: Simple ASCII Characters ... 257

Revoking Interest in Keyboard Events ... 257

Keyboard Input: Function Keys ... 257

Assigning Function Keys ... 258

Keyboard Input: Editing and Cursor Control ... 258

B.4. Selections .. 259

Selection Data Structures ... 259

Selection Procedures ... 261

Selection Events .. 262

ISetSelectionAt .. 263

IExtendSelectionTo .. 264

IDeSelect .. 265

IShelveSelection .. 265

ISelectionRequest .. 266

B.S. Input Focus ... 266

I

I

I

I

I

B.I. Building on NeWS
Input Facilities

B
The Extended Input System

This appendix contains information on the Lite user interface. This interface,
previously available under NeWS 1.1, continues to be supported but will no longer
be enhanced.

The Extended Input System (EIS) described in this appendix is implemented
entirely in the POSTSCRIPf language on top of the basic facilities provided by the
primitives in the NeWS server. It aims to support a sophisticated interface of at
least the complexity of Sun View or the Mac, and to provide at least one such
interface as an existence proof. It also is aimed at separating independent issues
in the implementation of interfaces. For example, it should be possible to pro­
vide alternatives in each of the following three categories without dependencies
between categories and without requiring any change to client code:

[J different input devices (1- and 3-button mice, or keyboards with different
collections of function keys);

[J alternative styles of input-focus, such as follow-cursor or click-to-type;

[J alternative styles of selection, such as point-and-extend or wipe-through.

The EIS is sufficiently flexible that it should be possible to support a keyboard­
only input system.

This chapter has several independent sections, corresponding to some of the
modules of the EIS. It begins with a description of a particular user interface,
implemented by the file Ii teUI . ps, which is a suggestive subset of the Sun­
View interface. It includes a description of the requirements and facilities for a
client to handle keyboard input and selections in that world.

A good deal of the processing in the EIS is carried on in a single process called
"the global input handler." Some of it, however, must be done on a per-client
basis; facilities are provided which are active in the client's lightweight process
in the server. For example, recognizing events that indicate a change of input
focus and distributing keystrokes to that focus are done in the global input
handler. But recognizing user actions that indicate a selection is to be made must
be done for each client, since some clients will not make selections at all, but will
apply other interpretations to the same user actions.

255 Revision A, of 25 August 1989

256 NeWS Programmer's Guide

B.2. The LiteUI Interface The liteUI implementation provides distribution of keyboard input and manage­
ment of selections in a style reminiscent of Sun View.

Primary, Secondary, and Shelf selections are provided; CQWi) and ~3 work
with all of them in the standard fashion. Selections are made when the
ViewPoint mouse button goes down, and are always in character units. Key­
board focus may be controlled either by cursor motion into and out of windows,
or by clicking a mouse button to reset the focus. In the latter mode, the
ViewPoint (this is in UserProfile, and is set to LeftMouseButton by default)
button sets both the focus and the Primary selection at the indicated position; the
ViewAdjust (MiddleMouseButton by default) button restores the focus to a
window, at its previous position, and without affecting the Primary selection.

There is no multi-clicking to grow a selection, and no dragging a selection with
the button down. The Find and Delete functions do not yet have any clients, and
so they have not been implemented. These restrictions are simply things not
(yet) done in liteUI; the underlying facilities to support them are already in the
EIS.

Clients of the liteUI interface are all lightweight processes running in the NeWS
server. Such clients may have two categories of interaction with liteUI, getting
keyboard input, and dealing with selections (for example, cutting and pasting
between windows). In general, a client follows the sequence:

o In an initialization phase, the client declares its interest in various classes of
activity. These classes include simple and extended keyboard input, and
selection processing. In response, the EIS sets up a number of interests
(some in the global input handler, some in the client's own process), and
records the client in some global structures.

o The client process enters its main loop, which includes an awaitevent. Some
of the events it receives will be in response to interests expressed in the ini­
tialization calls it made. These events will generally be at a high semantic
level; translating mouse events into selection actions is done inside EIS.
The client will typically have more work to do with these events; for exam­
ple, characters may be sent across the communication channel to be pro­
cessed in the client's non-POsTSCRIPT language code. Some of the process­
ing will require calls back into EIS code; for example, a client will have to
inform the system what selection it has made in response to selection events.

o Finally, when a client no longer requires various EIS facilities, it should
revoke its interests, so that resources do not remain committed when it no
longer needs them.

3 These are the names of the keys on the keyboard in SunOS 4.0; however, internally the EIS refers to them
as "Put" and "Get" operations.

Revision A, of 25 August 1989

I

I

I

I

I

B.3. Keyboard Input

Keyboard Input: Simple
ASCII Characters

addkbdinterests

ASCII Typing

Inserting Text

Input Focus

Revoking Interest in Keyboard
Events

revokekbdinterests

Keyboard Input: Function
Keys

Appendix B - The Extended Input System 257

Four procedures provide access to increasingly sophisticated levels of keyboard
input. The most straightforward client merely wants to get characters from the
keyboard. To do this call addkbdinterests, passing the client canvas as an argu­
ment; then enter a loop, doing an awaitevent and processing the returned event.

canvas addkbdlnterests [events]
declares the client's canvas to be a candidate for the input focus. It also creates
and expresses interest in the following three kinds of events, and returns an array
of the three corresponding interest-events:

The first interest has ascii_ keymap for its Name, and IDownTransition for its
Action. ascii _ keymap is a dictionary provided by EIS for expressing interest in
ASCII characters; it includes the translation from the user's keyboard to the ASCII
character codes where that is necessary. Events which match this interest will

. have ASCII characters in their Names, and IDownTransition in their actions.
The client can choose to see up-events too, by storing null into the Action field
of this interest.

The second interest has the name IInsertValue and a null Action. This will
match events whose Name is the keyword IInsertValue, and whose Action is a
string which is to be treated as though it had been typed by the user. Such events
will be generated if some process is pasting selections to this window, or if
function-key strings have also been requested (see below).

The third interest has the array [I AcceptFocus ILoseFocus IRestoreFocus] in
its Name. Events matching this interest inform the client that it now has, or has
lost, the input focus. These events are informational only; they do not affect the
distribution of keyboard events. They are intended for clients which provide
some feedback, such as a modified namestripe or a blinking caret, when they
have the input focus. Clients are always free to ignore them.

A process that is about to exit, or that will continue to exist, but wants no more
keyboard input, may revoke its interest in keyboard input by passing the array
returned from addkbdinterests, along with the client canvas, to revokekbdin­
terests:

[events] canvas revokekbdinterests
Undoes all the effects of addkbdinterests.

By default, clients do not receive any events associated with function keys. A
client can choose to receive function-key events, either in the form of a keyword
naming the key that went down, or as a string of the form "ESC [nnnz" (the
ASCII-standard escape sequence for such keys).

To get the function-keys identified by escape sequences, the client should pass its
client canvas to addfunctionstringsinterest.

Revision A, of 25 August 1989

258 NeWS Programmerts Guide

addfunctionstringsinterest

addfunctionnamesinterest

Assigning Function Keys

Keyboard Input: Editing and
Cursor Control

addeditkeysinterest

canvas addfunctlonstrlngslnterest event
creates an interest in the function keys, expresses interest in it, and returns that
event. As a result, when a function key is depressed, awaitevent returns an event
whose Name is IInsertValue, and whose Action is a string holding the escape
sequence defined for that key. Only function-key-down events can be received
by this mechanism. addkbdinterests must also have been called for this pro­
cedure to have any effect.

To get the function-keys identified by name, the client should pass its client can­
vas to addfunctionnamesinterest.

canvas addfunctlonnameslnterest event
creates an interest in the function keys, expresses interest in it, and returns that
event. As a result, when a function key is pressed, awaitevent returns an event
whose Name is a keyword like lFunctionL7.

By default, both up and down transitions on the keys are noted; the client may
change this by storing IDownTransition (or IUpTransition, if that is what is
desired) into the Action field of the returned interest. addkbdinterests must also
have been called for this procedure to have any effect.

No special procedure is provided to revoke interests generated by either of these
two procedures, since passing the interest to the revokeinterest primitive
suffices.

Users may assign a procedure to be executed when a specified key goes down.
See the section on bindkey in Chapter 10, Extensibility through POSTSCRIPT

Language Files.

If the client is passing characters through to a shell or some similar process that
will do its own translations on them, it should pass them through unmodified.
But if the client is dealing with text directly, it should provide the editing and
caret-motion facilities defined in the user's global profile. To assist in this, the
client may ask for incoming events to be checked for a match against those key­
board actions, and converted to uniform editing-events if they do. This is done
by passing the client canvas to addeditkeysinterest.

canvas addedltkeyslnterest event
creates an interest in the key combinations that are defined for global editing and
caret motion, expresses interest in it, and returns that event. As a result, the
client sees events with a Name from the set:

{Edit,Move} {Back,Fwd} {Char,Word,Field,Line,Column}

For example, here are the event names for the various EditBack* combinations:

IEditBackChar Delete the character before the caret.

IEditBackWord Delete the word before the caret.

IEditBackField Move the caret back to the end of the preceding field if any exists t deleting its
contents or selecting them in pending-delete mode.

Revision At of 25 August 1989

I

I

I

I

I

Appendix B - The Extended Input System 259

IEditBackLine Delete from the caret back to the beginning of the current line.

IEditBackColumn Delete all characters between the caret and the nearest boundary in the line
above; if the previous line ends to the left of the caret, delete back through the
preceding end-of-line.

B.4. Selections

Selection Data Structures

Substituting Fwd for Back indicates that the deletion or motion (see the next
paragraph) extends after rather than before the caret. IEditFwdLine deletes
through the next end-of-line.

Substituting Move for Edit indicates the caret is moved to the far end of the span
that would be deleted by an Edit, but the characters are not deleted.

Again, no separate procedure is provided to revoke this interest, since the
revokeinterest primitive does exactly what is needed.

Clients that will make selections and pass information about them to other
processes declare this interest by calling addselectioninterests. Thereafter, EIS
code will process user inputs according to the current selection policy. Occasion­
ally, it will pass a higher-level event through to the client, when some client
action is required in response. The exact interface by which a user indicates a
selection is not the client's responsibility; the client must simply be prepared to
handle higher-level events. Clients will also occasionally see events with a
Name of /Ignore; these are events which were delivered to the client process, but
handled entirely by EIS code before the event was made available to the client.
The /Ignore event is left behind in this situation so that client code can depend
on an event being on the stack when it gets control after awaitevent returns.

There is no separate "selection service" in EIS; some selection processing takes
place in the global input handler, and the rest in client processes. There is a glo­
bal repository of data about selections, however, and there are some standard for­
mats for the information stored in that repository and communicated between
selection clients.

There are two broad styles of dealing with selections: the communication model
and the buffer model. In the former, the selection holder says "Here is my phone
number, call me/or answers about the selection I hold." In the buffer model, the
selection holder puts all the information about its selection into the selection-diet
itself.

The selection most users are familiar with is the primary selection indicating the
text they have selected in a terminal emulator window. However, there are other
kinds of selection. A selection is named by its rank; in liteUI, the ranks are IPri­
marySelection, ISecondarySelectioll, and IShelfSelection.4 For each rank, there
is a dictionary containing the information known to the system about that selec­
tion. Such a dictionary will be called a selection-diet henceforth. It will have at
least the following three keys defined:

4 There is nothing to prevent clients from using other ranks, with names they define themselves. Strictly
speaking a rank is simply a key in the Selections dictionary.

Revision A, of 25 August 1989

260 NeWS Programmer's Guide

Table B-1 Selection-Diet Keys

Key
SelectionHolder
Canvas

SelectionResponder

Type
process
The canvas

null or process

Semantics
Which process made the selection
the canvas in which the selection
was made.
What process will answer
requests concerning this selec­
tion.

If SelectionResponder is defined to null, then the selection holder is using the
buffer model, and information about the selection will be stored in other keys
defined in the dictionary. setting out all available information about that selec­
tion. A few such keys have been defined because they are expected to be gen­
erally useful. These are listed in the table below. Others may be provided by
clients as convenient - there is no limit on what consenting clients may say to
each other kbout a selection.

Table B-2 System-defined Selection Attributes

Key
ContentsAscii
ContentsPostScript

SelectionObjsize
SelectionStartlndex

SelectionLastlndex

Type
string
string

number
number

number

Semantics
selection contents, encoded as a string
selection contents, encoded as an
executable POSTSCRIPT language object
n >= 0; for text, 1 indicates a character
position of the first object of selection
in its container
position of the last object of selection
in its container

Finally, communications between clients about selections (that is, requests and
their responses) are formatted as another dictionary, hereafter called a request­
diet. When submitted by the requester, the dictionary will have a key naming
each attribute for which the requestor wants a value. It may also contain com­
mands the selection holder should execute, such as ReplaceContents. When
received by a selection holder, a request-dict will contain the keys defined by the
requester, plus the following two:

Revision A, of 25 August 1989

Selection Procedures

addselectioninterests

clearselection

I
selectionrequest

I

I

I

I

Appendix B - The Extended Input System 261

Table B-3 Request-diet Entries

Key Type Semantics
Rank rank. the rank. of selection which this request concerns
Selection Requester process the process which is sending the request

The use of these various structures is detailed under the relevant event descrip­
tions below.

This section lists the library procedures provided for clients to deal with selec­
tions.

canvas addselectlonlnterests [events]
creates and expresses interest in two classes of events, returning an array of the
two interests.

The first interest matches events with names in the following list:

Table B-4 High-Level Selection-Related Events

IInsert Value
ISetSelectionAt
IExtendSelectionTo
IDeSelect
IShel veSelection
ISelectionRequest

The response required from the client to each of these events is detailed below
under Selection Events. (Some clients may safely omit handlers for the last two;
see the detailed description).

The second interest matches events which are uninteresting to the client. It
arranges for EIS processing to be done by library code before the client ever sees
the event.

rank clearselection
sets the indicated selection to null; this allows a selection holder to indicate the
selection no longer exists.

request-diet rank selectlonrequest request-diet
makes a request (contained in request-diet) concerning the selection of the
specified rank. The fonnat of a request-diet is described above, in Table B-3,
Request-diet Entries. The SelectionRequester and Rank entries will be filled in
by selectionrequest.

If the SelectionResponder in rank's selection-diet is null, then the selection
holder is employing the buffer model. The selectionrequest procedure itself fills
in the request-dict using infonnation which the selection holder put in the
selection-diet. But if the SelectionResponder in rank's selection-diet is not null,

+~!!.t!! Revision A, of 25 August 1989

262 NeWS Programmer's Guide

selectionresponse

setselection

getselection

Selection Events

then the selection holder is employing the communication model, and selection­
request has to do a lot more work. It sends the request-dict to the Selection­
Responder process in a ISelectionRequest event, and forks a process that waits
for a reply. The SelectionResponder process is supposed to fill in the request­
dict with whatever values the requester asked for, then hand back the same dic­
tionary using selection response; this is explained in greater detail in the descrip­
tion of ISelectionRequest below. If the SelectionResponder process does not
respond within a certain amount of time, selection request will return null.

In either case, if the indicated selection does not exist, selectionrequest will
return null. Also, some keys in the request may not have an answer available. In
this case they will be set to IUnknownRequest in the response.

event selection response
is used by a selection holder using the request-model to return a response when it
receives a selection request event. The event given should be the same ISelec­
tionRequest event which the selection holder has just processed. (/SelectionRe­
quest events are described below under Selection Events.) selectionresponse
transforms event into a ISelectionResponse event and returns it to the requester.

selection-diet rank setselectlon
is used by a process to declare itself the holder of a selection. selection-diet is a
dictionary containing either a definition of SelectionResponder, or of keys
which provide data about the selection itself, as described above in Table B-1,
Selection Data Structures. Rank indicates which selection is being set. If
another process currently holds that selection, it will be told to deselect.

rank getselectlon selection-diet
retrieves the information currently known to the system about the indicated
selection. This procedure is likely to be more useful to the implementor of a
package like liteUI than to window clients.

As mentioned above, clients may expect to receive six different kinds of events
concerning the selection. Of these, the IInsertValue event has already been
described under Keyboard Input; its usage in the selection context is exactly the
same as for function strings. The remaining five events and the appropriate
responses to them are presented below.

Each event is described in the following format:

Revision A, of 25 August 1989

1

I

ISetSelectionAt

I

I

Appendix B - The Extended Input System 263

EventType short description of the event's semantics

Name:
keyword that identifies the event

Action:
description of the contents of the event's
Action field

Response:
description of what the client should do
when it receives such an event

Informs the client the user has just made a selection in its canvas.

Name:
ISetSelectionAt

Action:

diet [Rank
X
Y
PendingDelete
Preview
Size

/PrimarySeleetion I ISeeondarySeieetion
number
number
true I false
true I false
number

NOTE LiteUI provides constant valuesfor three fields: PendingDelete = false, Preview
= false, and Size = 1.

Response:

Make a selection of the indicated Rank with the following parameters:

Revision A, of 25 August 1989

264 NeWS Programmer's Guide

/ExtendSelectionTo

[

Key
XandY

Size

PendingDelete

Preview

Value
indicate a position (it will be in the current canvas'
coordinate system).
indicates the unit to be selected; for example, in text:

o means a null selection at the nearest character
boundary,

1 corresponds to a character, and
larger values indicate larger units (words, lines, etc.)
whose definition is at the discretion of the client

indicates whether that mode should be used
(if supported by the client)
indicates whether the selection is only for feedback to
the user; a selection shouldn't actually be set until
a selection event is received with Preview false

In client PoSTSCRIPT langauge code, some private processing will generally
be required. For instance, the given position will have to be resolved to a
character in a text window, and appropriate feedback displayed on the
screen. Then the client should build a selection-dict describing the selection
just made, and pass it to setselection, along with the rank it received in the
/SetSelectionAt event:

selection-diet rank setselection

'selection-dict' should contain either a non-null definition of Selection­
Responder, or it should define keys which actually provide information
about the selection (ContentsAscii at a minimum). In the former case, the
holder is following the communication model of selection, and must be
prepared to receive and respond to /SelectionRequest events as long as it
holds the selection. In the latter case, the holder is following the buffer
model of selection; requests will be answered automatically by the global
input handler.

]

'selection-dict' will have keys added to it, so it should be created with room
for at least five more entries beyond those defined by the client.

Informs the client the user has just adjusted the bounds of a selection in its can­
vas.

Name:
/ExtendSelection To

Action:

dict [Rank
X
Y
PendingDelete
Preview
Size

/PrimarySelection I /SecondarySelection
number
number
true I false
true I false
number

Revision A, of 25 August 1989

IDeS elect

IShelveSelection

I

I

I

I

Appendix B - The Extended Input System 265

Response:
The dictionary in the Action field is the same as the Action of a ISetSelec­
tionAt event, and the client response is very much the same. The distinction
is that this event indicates a modification of an existing selection, where
ISetSelectionAt indicates a new one.

The client should adjust the nearest end of the current selection of the indi­
cated Rank to include the indicated position. If Size indicates growth,
extend both ends as necessary to get them at a boundary of the indicated
size. (For example, if Size has changed from 1 to 2, a text window might
grow both ends of the selection to ensure that they fall at word boundaries.)
Adjust the PendingDelete mode or ignore it as the window is editable or
not.

If there was no selection of the indicated rank, pretend there was an empty
one at the indicated position.

In client POSTSCRIPT language code, after doing any private processing
required, processing is exactly the same as for ISetSelectionAt.

Informs the client that it no longer holds the indicated selection.

Name:
IDeSelect

Action:
rank

Response:
Undo a selection of the given rank in this window. Do not call
clearselection; the global selection information has already been updated.

Tells the client to set the shelf selection to be the same as a selection which the
client currently holds.

Name:
IShelveSelection

Action:
rank

Response:
Buffer-model clients (those that did not define SelectionResponder when
they set the selection) will not receive IShelveSelection events; the service
will copy their selection to the shelf for them. Others should set the
ShelfSelection to be the same as the selection whose rank is in Action,
using setselection as above.

NOTE Be ca!eful of the difference between the ShelveSelection and ShelfSelection; the
former is a selection event, and the latter is one of the selection ranks along with
IPrimarySelection and ISecondarySelection.

Revision A, of 25 August 1989

266 NeWS Programmer's Guide

ISelectionRequest

B.S. Input Focus

The client is requested to provide infonnation about a selection it holds.

Name:
ISelectionRequest

Action:
request-diet

Response:
Buffer-model clients (those that did not define SelectionResponder when
they set the selection) will not receive SelectionRequest events; the service
will answer the request for them.

The client should enumerate the request-dict, responding to the various
requests by defining their values (as for ContentsAscii), or performing the
requested operation (as for IReplaceContents, whose value will be the
replacement value). The resultant dict should be left as the Action of the
event, which should then be passed as the argument to the procedure selec­
tionresponse.

NOTE There is no restriction on what requests may be contained in a selection request;
this is left to negotiation between the requester and the selection holder. A
holder may reject any request, by defining its value to be /UnknownRequest.

It may be noted that there is no mechanism described here for getting a
selection's contents from someplace else. In [iteUI, user actions that precipitate
such a transfer are recognized and processed in the global input handler, which
then performs the selection request, and sends an IInsert Value event to the
receiving process. The selection procedures described above provide an interface
for instigating such transfers independent of user actions.

The input focus (where standard keyboard events are directed) is maintained by
the global input-handler process, according to the current focus policy. A client
becomes eligible to be the input focus by calling addkbdinterests (described
above under Selection Procedures). At some later time, some user action will
indicate that the client should become the focus. The client will receive an event
indicating this has happened (its Name will be I AcceptFocus or IRestoreFocus,
and its Action is described in the table below). Thereafter, the client will receive
events whose Names are ASCII character codes. Loss of the keyboard focus will
be indicated by the delivery of an event with Name ILoseFocus.

Revision A, of 25 August 1989

I

I

Appendix B - The Extended Input System 267

Table B-5 Input Focus

Name Action Explanation
IRestore-AcceptFocus 0 The canvas is now the focus; the previous focus

was an ancestor of this canvas.

1 The canvas is now the ancestor of the focus; the
previous focus was an ancestor of this canvas.

2 The canvas is now the focus; the previous focus
was a descendant of this focus.

3 The canvas is now the focus; the previous focus
was not an ancestor or descendant of this canvas.

4 The canvas is now an ancestor of the focus; the
previous focus was not an ancestor or descen-
dant of this canvas.

5 The canvas directly or indirectly contains the
pointer and is now a descendant of the focus.
The previous canvas is not equivalent to this
canvas nor is the previus canvas an ancestor or
descendant of this canvas.

6 The focus is now PointerRoot.

7 The focus is now None.
ILoseFocus 0 The canvas used to be the focus; the new focus

is an ancestor of this canvas.

1 The canvas used to be an ancestor of the focus;
the new focus is an ancestor of this canvas.

2 The canvas used to be the focus; the new focus
is a descendant of this canvas.

3 The canvas used to be the focus; the new focus
is not an ancestor or descendant of this canvas.

4 The canvas used to be an ancestor of the focus;
the new focus is not an ancestor or descendant of
this canvas.

I

I

I
Revision A, of 25 August 1989

268 NeWS Programmer's Guide

Table B-5 Input Focus- Continued

Name Action
5

Explanation
The canvas directly or indirectly contains the
pointer and used to be a descendant of the focus.
The new canvas is not equivalent to this canvas
nor is the new canvas an ancestor or descendant
of this canvas.

6 The focus used to be PointerRoot.

7 The focus used to be None.

This section describes a collection of routines provided to inquire about and
manipulate the focus. These nonnally will not be called by clients of the window
system; rather, they support focus-policy implementations, which then communi­
cate with the clients.

The focus is identified in an array with two elements, a canvas and a process.
The canvas will be the canvas argument to addkbdinterests. The process will
be one which called addkbdinterests, and which should be doing an awaitevent
for keyboard events.

setinputfocus canvas process setlnputfocus
The input focus is set to be the canvas - client pair identified by the arguments to
setinputfocus.

currentinputfocus - currentlnputfocus [canvas, process]
The current input focus is returned by currentinputfocus. If there is no current
focus, null is returned.

hasfocus process hasfocus bool
Returns true or false as the indicated process is or is not currently the input
focus.

setfocusmode keyword setfocusmode
The global focus policy is reset to the policy named by the argument.
Currently-supported focus policies are identified by:

IClickFocus As long as no function keys are down clicking the Select button will set both the
focus and the primary selection in a window. Clicking Adjust will restore the
focus at its last position in this window, without making any selection.

ICursor Focus a window will receive the focus when the mouse enters its subtree, and lose it
when the mouse exits. If the mouse crosses window boundaries while a function
key is down, a focus change is delayed until all function keys are up, and then
reflects the current situation.

Revision A, of 25 August 1989

I

I

I

lDefaultFocus

Appendix B - The Extended Input System 269

events are distributed as though no EIS were in effect.

Revision A, of 25 August 1989

c
Omissions and Implementation Limits

Omissions and Implementation Limits .. 273

C.l. Operator Omissions and Limitations ... 273

C.2. Imaging Omissions .. 274

C.3. The statusdict Dictionary .. 274

C.4. Implementation Limits .. 275

C.S. Other Differences with the POSTSCRIPT Language 276

I

I

I

e.l. Operator Omissions
and Limitations

c
Omissions and Implementation Limits

The following primitives are defined in the PostScript Language Reference
Manual. They have not been implemented in the Xll/NeWS POSTSCRIPT
language interpreter because they are either printer- or environment-specific.

banddevice
framedevice
render bands
start

The following operators are implemented, but they do not do anything. If you
execute them they will consume or produce the right arguments on the operand
stack, but they will have no other effects. The showpage operator does perform
an implicit initgraphics operation, but it otherwise has no other effect.

copypage
current screen
echo
setscreen
showpage

The following operators are unimplemented:

executeonly
no access
resetfile
reversepath

The charpath operator does not return the actual path outline of the string given
as an argument. Instead, it returns the bounding rectangle of this path.

The forms of the translate, transform, itransform, and idtransform operators
that take matrix arguments do not work. However, the two-argument forms do
work. For example:

[~ ___ x_y_t_ra_n_SI_a_te __ J

works properly, but the following fails with a typecheck error:

273 Revision A, of 25 August 1989

274 NeWS Programmer's Guide

C.2. Imaging Omissions

C.3. The statusdict
Dictionary

(x y matrix translate

The only portion of the stenciVpaint imaging model that is unimplemented is
halftone screening. The setscreen and currentscreen operators exist, and they
produce and consume appropriate objects from the operand stack, but they have
no other effect. Xll/NeWS uses dithering techniques instead of halftone screens.

J

Most of the entries in the statusdict dictionary (described in Appendix D of the
PostScript Language Reference Manual) are pseudo-implemented; they have rea­
sonable values, but setting them has no effect. One exception is the job timeout.
Getting and setting the job timeout will change how long a process is allowed to
execute without blocking before receiving a timeout error.

Revision A, of 25 August 1989

I

I

I

C.4. Implementation
Limits

Table C-l

Appendix C - Omissions and Implementation Limits 275

The following table lists implementation limits of NeWS:

Implementation Limits

Quantity
integer

real

array

dictionary

string

name

file

userdict

operand stack

dict stack

exec stack

gsave level

path

VM

interpreter level

save level

I Limit 1
32767

Explanation
Integers are represented as 32 bits, 16 bits of
them fraction. Integers are automatically con­
verted to reals if they overflow.

Single-precision floating-point numbers are
used. Reals are represented as fractional
integers if they are small enough, but the type
detennination operators will describe them as
real.

32767 Number of entries in an array.

16384 Number of key/value pairs in a dictionary.

32767 Number of characters in a string.

32767 Number of characters in a name.

250

1500

250

Number of open files (includes open client com­
munication channels). The limit is
getdtablesize () -n, where n depends on
the particular server but will be about four.

Set by code in init. ps; easy to change.

Maximum size of an operand stack.

Expanded as required.

Maximum function/compound statement nesting
depth.

Expanded as required.

Expanded as required.

The server expands to use as much VM as the
underlying system permits.

Not applicable.

Expanded as required.

Revision A, of 25 August 1989

276 NeWS Programmer's Guide

c.s. Other Differences
with the POSTSCRIPT
Language

Table C-2

In addition to the omissions and differences implemented above, the POSTSCRIPT
language has slightly different semantics for some standard POSTSCRIPT
language operators. The NeWS versions of these operators are described in
Chapter 9, NeWS Operator Extensions along with the wholly-new NeWS operators.

NeWS Versions of Various POSTSCRIPT Language Operators

Operator

bind

file

vrnstatus

Note

Although there is no specification for their out­
put in the PostScript Language Reference
Manual, you may be confused because = and ==
print objects out in a slightly different fonnat
than the particular implementations in the Laser­
Writer. = identifies dictionaries as such and
prints some useful fields from the various
"magic dictionary" types in NeWS. == actually
prints out the first few key-value pairs in dic­
tionaries.
== uses quotation marks as follows to indicate
the types of objects: 'operator-type', 'called­
operator-type', and 'magic-variable-typet

bind is implemented in NeWS, but it is useful
only when autobinding is off. Autobinding is on
by default. See currentautobind in Chapter 9,
NeWS Operator Extensions.

NeWS has the additional special name '%sock­
etln' for socket-based network connections to
the server.
Also, the POSTSCRIPT language operators file
and run (together with all the NeWS utility pro­
cedures for file access) will look for relative path
names in the directory from which the server
was started, and in $OPENWINHOME/ etc.

In NeWS, vrnstatus returns avail, used, and size;
the PostScript Language Reference Manual
states that it should return level, used, and max­
imum.

~~sun
• microsystems

Revision A, of 25 August 1989

I

I

I

I

Index

Special Characters
<errors>, 141
?get, 228
?getenv, 228
?load,228
?put, 228
?revokeinterest, 230
?undef,228

A
acceptconnection, 187,200
accessing files, 233
Action, 37, 39, 50, 54, 174
addeditkeysinterest, 258
addfunctionnamesinterest, 258
addfunctionstringsinterest, 258
addkbdinterests, 257
addselectioninterests, 261
IAIlEvents,45,167
animated drawing procedures, 25, 192
append,223
ps_arc(x,y,r,aO,al),127
arccos, 187
arcsin, 187
arraycontains?, 226
arraydelete, 226
arrayindex,226
arrayinsert, 227
arrayop,227
arrayreverse,227
arrayreverseFast, 227
arrays, 226
arraysequal?, 227
assert, 187
asynchronous replies from server, 122, 125
AutoRepeat, 173
awaitevent, 187,38, 192, 197,211,257

B
banddevice, 273
basics .ps, 221
beep, 188
BellPercent, 173
Bell Pitch, 173

-277-

blndkey, 237
BltsPerPixel, 183
blocklnputqueue, 188,67, 187,216
BorderVVidth,29,168
BottomCanvas, 165
breakpoint, 188, 191,216
buildlmage, 188,28,201
buildsend,223
byte stream fonnat, 132

encoding, 132

c
C client interface, see CPS facility
C communication functions for CPS facility, 120
• c file, 127
cache for fonts, 156
Canvas, 39, 43, 175
CanvasAbove,22,165
CanvasBelow,22,166
canvases,S, 11

IAlIEvents, 45, 167
animated drawing, 25, 192
BorderVVldth,29,168
BottomCanvas, 165
buildimage,28
CanvasAbove, 22, 165
CanvasBelow, 22, 166
canvastobottom, 22, 190
canvastotop, 22, 190
canvastype extension, 12
changing parenthood, 24
changing sibling relationships, 22
cllpcanvas, 26
clipcanvaspath, 191
clipping operators, 26
Color, 29, 167
Colormap, 29,168
createdevice, 192
createoverlay, 25, 192
creating and displaying, 13
current canvas, 15
current transformation matrix, 13
currentcanvas, 193
Cursor, 26, 168
damage, 19, 21
damagepath, 195
default transformation matrix, 13

Index - Continued

canvases, continued
eoreshapecanvas, 196
eowritecanvas, 197
eowritescreen, 197
EventsConsumed, 29, 45,167
framebuffer, 236
getcanvaslocation, 16
getcanvasshape, 199
Grabbed,29,169
GrabToken,29,169
imagecanvas, 28, 201
imagemaskcanvas, 201
imaging, 27, 28
insertcanvasabove, 22. 201
insertcanvasbelow. 22, 202
Interests, 29. 167
Mapped, IS, 166
mapping to the screen. 15
lMatchedEvents. 45,167
movecanvas, 16.203
newcanvas, 14,204
lNoEvents, 45, 167
non-retained. 19
opaqueness, 17
operator extensions. 12
origins of. 14
overlay canvases. 25, 192
OverrideRedirect, 29,168
Parent. 24, 166
readcanvas.27,208
reading and writing to files. 27
reshapecanvas, 14.209
retain threshold, 20
Retained, 19. 166
RowBytes. 30, 169
SaveBehind.21,167
setcanvas, IS, 212
shaping, 14
SharedFile, 30, 168
sibling list, 22
specialized dictionary keys. 29
storage of, 16
TopCanvas.165
TopChild.166
transparency, 17
Transparent, 17, 166
UserProps.29,168
Visual, 29. 168
VisualList, 29. 168
writecanvas, 27,217
writescreen. 217
XID,29.168

canvasesunderpath, 189
canvasesunderpoint. 190, 194
canvastobottom, 190. 22, 202
canvastotop, 190, 22,201
canvastype dictionary keys. 12 thru 30. 164 thru 169
canvastype extension, 164
case. 223
cdef command. 120. 121. 124. 125

requesting no values. 123
changing and reusing events. 36
changing canvas parenthood. 24

-278-

ps_check_PostScript_event().129
cid utilities. 234
cldinterest. 235
cldlnterestlonly. 235
Iclass,115
class operators, 231
Class, 183
classbegin, 79
classdestroY, 105
classend, 79
classes, 71, 8

batch send, 93
Iclass,115
class initialization, 80
class Object, 73
class variables. 72
class, definition of. 71
class .ps, 222
classbegin, 79
classdestroy.105
classend, 79
Iclassname. 114
Icleanoutclass.105
creating a new class. 79
creating a new instance. 96
Idefaultclass, 102
Idescendantorl.114
Idestroy.104
destroying classes, 104
destroying instances, 104
Idolt.93
immediate superclass, 73
inheritance, 73
inheritance array, 74
linstallmethod, 93
instance variables. 72
instance, definition of, 71
linstanceorl,114
intrinsic class, 100
isclass? 114
isinstance? 114
isobject?, 114
list of class methods. 116
list of class operators. 116
method compilation, 90, 87, 89
Imethodcompile, 92
methods. 72
mUltiple inheritance. 74, 106 thru 113
Iname,1l3
Inew,97
Inewdefault, 101
Inewinit. 98, 97
Inewmagic, 99
Inewobject, 97,97
Object, 222
object, definition of, 71
lobsolete, 105
obsolete classes, 105
obsolete instances, 105
overriding class variables, 102
promote, 103
promoted?, 104
promoting class variables, 103

I

I

I

I

I

I

I

classes, continued
redef,79
self, 85 Ihru 90
send, 80 Ihru 85
send context, 80
/sendtopmost,115
SetLocalDicts, 94
/setname, 113
subclass, 73
/subclasses,114
/SubClassResponsibility, 102
super, 85 Ihru 90
superclass, 73
/superclasses, 114
the class tree, 73
/topmostdescendant, 115
/topmostinstance,115
/understands?,115
unpromote, 104

/c1assname, 114
/cleanoutclass, 105
cleanoutdict, 223
clearselection, 261
clearsendcontexts, 190
client data in events, 60
client debugging commands, 140
client-server interface, 4, 5, 119

contacting the server, 132
CPS facility, 5, 119
downloading POSTSCRIPf language code, 119
psh (1), 119

ClientData, 60, 175
c1ipcanvas, 190, 26, 195, 196
clipcanvaspath, 191, 191
ps_closepath(),127
ps_close_PostScript(),127,128
Color, 29, 167
Colordict, 221
colorhsb, 232
Colormap, 29, 168, 171
colonnapentrytype dictionary keys, 170 thru 171
colonnapentries

Colormap, 171
Mask,171
Slot, 171

colonnapentrytype extension, 170
colonnaps

Entries, 170
Free, 170
Installed, 170
Visual,170

colonnaptype dictionary keys, 170
colonnaptype extension, 170
colorrgb, 232
colors, 7

colors. ps, 221
as color dictionaries, 238
ColorDict, 238
contrastswithcurrent, 191
currentcolor, 194
hsbcolor, 201

-279-

colors, continued
rgbcolor, 210
RGBcolor, 238
setcolor, 212

colors. ps, 221
colortype extension, 163
compat. ps, 222
conditional operators, 228
console, 236, 224
constants, 236
contacting the server

for debugging, 139
NEWSSERVER, 132

continueprocess, 191,216
contrastswithcurrent, 191
coordinates of events, 56, 57
Coordinates, 57, 177
copyarea, 191, 196
copying events, 36
counted objects, 151

counted references to, 150
reference tallies, 151
soft references, 150
uncounted references to, 150

counted references, 150
countfileinputtoken, 191
countinputqueue, 191
cps command, 120
CPS facility,S, 119

argument types, 122
asynchronous replies, 122, 125
C communication functions, 120
• c file, 127
C utility routines, 127
cdef command, 120, 121
compiling . c files, 130
cps command, 120
· cps file, 120

Index - COnJinued

creating equivalents for other languages, 131
debugging, 131
· h file, 120, 126
macro files, 120
parameters, 122
POSTSCRIPT language communication files, 128
psh (1), 131
reading client input queue, 128
synchronous replies, 122, 124
tagprint, 124,216
typedprint, 124, 216

. cp s file, creating, 120
createcanvas, 223
createcolonnap, 192
createcolorsegment, 192
createdevice, 192
createevent, 192,35, 187, 197,211
createmonitor, 192, 203
createoverlay, 192,25,230
creating a new class, 79
creating a new instance, 96
cshow, 232
ps_cshow(cstring s), 127

Index - Continued

current canvas
currentcanva~ 193
setting, 15

currentautoblnd, 193, 211
currentbackcolor, 193, 211
currentbackpixel, 193,212
currentcanvas, 193
currentcolor, 194
currentcursorlocation, 194, 190
currentfontmem, 194, 157,213
currentinputfocus, 268
currentpacking, 194,204,213
currentpath,194,164
currentpixel, 194,214
currentplanemask,194,214
currentprintermatch, 194,214
currentprocess, 195
currentrasteropcode, 195, 215
currentscreen, 273
currentshared,195,215
currentstate, 195, 163, 215
currenttime, 195
Cursor,26,168
cursor. ps, 221, 230
CursorChar, 172
CursorColor, 172
CursorFont, 172
cursors

building, 221
currentcursorlocation, 194
CursorChar, 172
CursorColor, 172
cursorfont,221,230
CursorFont, 172
fonts, 221
MaskChar,172
MaskColor, 172
MaskFont, 172
setcursorlocation, 212

cursortype dictionary keys, 171 thru 172
cursortype extension, 171
cvad,224
cvas, 224
cvis,224

D
damage, 19,21

clipcanvas, 190
damage events, 59
damagepath, 195
eoextenddamage, 196
extenddamage, 197

damagepath, 195, 191
dbgbreak, 140, 142
dbgbreakenter, 142, 140
dbgbreakexit, 142, 140
dbgcall,144
dbgcallbreak, 144
dbgcontinue, 143
dbgcontinuebreak,143

-280-

dbgcopystack,l44
dbgenter,l44
dbgenterbreak, 143
dbgexit,l44
dbggetbreak,144
dbgkill,145
dbgkillbreak,145
dbglistbreaks, 141
dbgmodifyproc, 145
dbgpatch,145
dbgpatchbreak,l44
dbgprlntf, 140,142,143,225
dbgprlntfenter, 142, 140
dbgprlntfexlt, 142, 140
dbgremove, 142
dbgremovebreak, 142
dbgstart, 141
dbgstop, 141
dbgwhere, 143
dbgwherebreak, 143
debugdict, 153
debugging, 139,8

aliases, 145
client commands, 140
contacting the server, 139
dbgbreak,140
dbgbreakenter, 142
dbgbreakexit, 142
dbgcall, 144
dgbcallbreak, 144
dbgcontinue, 143
dbgcontinuebreak, 143
dbgcopystack,l44
dbgenter, 144
dbgenterbreak, 140, 143
dbgexit. 144
dbggetbreak,l44
dbgkill,145
dbgkillbreak,145
dbglistbreaks, 140, 141
dbgmodifyproc, 145
dgbpatch, 145
dbgpatchbreak,l44
dbgprintf,140
dbgprintfenter, 142
dbgprintfexit, 142
dbgremove, 142
dbgremovebreak,142
dbgstart, 141
dbgstop, 141
dbgwhere,143
dbgwherebreak, 143
debug.ps,139,222
errors, 141
loading the debugger, 139
miscellaneous hints, 145
mUltiple connections, use of, 146
multiple processes, 140
starting the debugger, 139
user commands, 141
using the debugger, 139

Idefaultclass, 102 I

I

I

I

I

I

I

defaulterroraction, 195
DefineAutoLoads, 233
ps_define_stack_token(),130
ps_define_value_token(),130
ps_define_word token(),130
demos -

rubber, 230
Idescendantof?,114
Idestroy, 104
destroying classes, 104
destroying instances, 104
dictbegin, 224
dictend, 224
dictionaries, 161

colors. ps, 221
canvastype keys, 12 thru 30, 164 thru 169
nulloutdict, 223
colormapentrytype dictionary keys
colormaptype keys, 170
cursortype keys, 171 thru 172
dictbegin, 224
dictend, 224
environmenttype keys, 172 thru 174
eventtype keys, 33 thru 68, 174 thru 177
magic dictionaries, 161
nulloutdict, 225
processtype keys, 178 thru 182
UnloggedEvents, 239
utilities, 223, 225
visualtype keys, 182 thru 183

dictionary
size of userdict, 275

DictionaryStack, 179
dictkey, 224
distributed window system, 3
distribution of events, 38, 211
Idoit, 93

E
echo, 273
emptypath, 196
encodefont, 196
enter and exit events, 52
Entries, 170
environment objects

AutoRepeat, 173
BellPercent, 173
BellPitch, 173
KeyClickPercent, 173
Leds, 173

environment variables
getenv,l99
HOME,236
OPENWINHOME, 237
putenv, 208

environmenttype dictionary keys, 172 thru 174
environmenttype extension, 172
eoclipcanvas, 196
eocopyarea,l96
eoextenddamage, 196

- 281-

eoextenddamageall, 196, 197
eoreshapecanvas, 196
eowritecanvas, 197, 217
eowritescreen, 197, 197,217
$error,179
ErrorCode, 179
ErrorDetailLevel, 181
errordict, 179
errors

accept, 179
dictfull,179
dictstackoverflow, 179
dictstackunderflow, 179
execstackoverflow,179
interrupt, 179
invalidaccess, 179
invalidexit, 179
invalidfileaccess, 179
invalidfont, 179
invalidrestore, 179
ioerr, 179
killprocess, 179
limitcheck,179
nocurrentpoint, 179
none, 179
rangecheck, 179
stackoverflow, 179
stackunderf low, 179
syntaxerror, 179
typecheck,179
undefined, 179
undefinedfilename, 179
undefinedresult, 179
unimplemented,179
unmatchedmarck,179
unregistered, 179
VMerror, 179

eventlog,239
eventmgrinterest, 229
events, 33

Action, 37,39,50,54, 174
as event dictionaries, 33, 174
awaitevent, 38, 187
blockinputqueue, 67, 188
Canvas,39,43,175
changing and reusing, 36
ClientData, 60, 175
coordinates of, 57
Coordinates, 57, 177
copying, 36
createevent,35,192
damage, 59
distribution of, 38, 211
enter and exit, 52
event operators, 34
eventlog, 222
eventmgrinterest, 229

Index Continued

EventsConsumed key (in canvastype dictionary), 45
Exclusivity, 62, 175
executable matches, 39
expressinterest, 36, 197
focus events, 57
forkeventmgr, 229

Index - Continued

events, continued
geteventlogger, 68, 199
Interest, 175
mt~ests,33,36,39,43,45,49
Interests key (m processtype dictionary), 181
Islnterest, 175
IsPreChild, 175
IsQueued, 175
keyboard, 58
KeyState, 176
lasteventtime, 202
loggmg, 68, 238
matching mt~ests, 37
matchmg mUltiple mterests, 43, 45,49
mouse events, 50
~ame,37,39,50,52, 176
obsolescence, 59, 151
Priority, 60, 176
process died, 59
Process,37,66,176
process-generated, 33
processes, 66
recallevent, 65, 208
redistributeevent, 63, 209
redistribution, 63
repeat key dictionary, 58
revokeinterest, 48, 210
sendevent, 33, 38, 211
Serial,37,176
seteventlogger, 68, 212
system-gen~ated, 33, 49
TimeStamp, 38, 64,177,202
unlogging, 239
XLocation, 56, 177
YLocation, 56, 177

EventsConsumed, 29, 45,167
eventtype dictionary keys, 33 thru 68, 174 thru 177
environmenttype extension, 174
Exclusivity, 62, 175
Execee, 181
executable matches, 39
executeonly, 273
ExecutionStack, 181
expressing mterests, 36
expressinterest, 197,36, 187, 192,209,210,211
extenddamage, 197
extenddamageall, 197
extended mput, 2SS

addeditkeysinterest, 258
addfunctionnamesinterest, 258
addfunctionstringsinterest, 25 8
addkbdinterests, 257
addselectioninterests, 259, 261
ascii_keymap, 257
awaitevent, 257
buffer model for selection, 259
clearselection, 261
IClickFocus, 268
commWlication model for selection, 259
ContentsAscii, 260
ContentsPostScript, 260
currentinputfocus, 268
cursor control, 258

-282-

extended input, continued
ICursorFocus, 268
IDefaultFocus, 269
IDeSelect, 265
IExtendSelectionTo, 264
focus events, 257
function key assignment, 258
function keys, 257
IFunctionL7,258
getselection, 262
hasfocus, 268
mput focus, 266
IInsertValue, 257, 258, 262
keyboard editmg, 258
keyboard mput, 257
Rank,261
revokekdbinterests, 257
selection events, 262
selection procedures, 261
SelectionHolder, 260
SelectionLastIndex, 260
SelectionObjsize, 260
selection request, 261
ISelectionRequest, 266
SelectionRequester, 261
SelectionResponder, 260
selectionresponse, 262, 266
ISelectionResponse, 262
selections, 259
SelectionStartIndex, 260
setfocusmode, 268
setinputfocus, 268
setselection, 262
ISetSelectionAt, 263
IShelveSelection, 265
IUnknownRequest, 262
ViewPoint, 256

extensibility,8
extensions in NeWS

operators, 187
types, 161

file
F

access utilities, 233
raster, 208

file, 197
filet>athopen, 234
filepathparse, 234
filepathrun, 234
files

POSTSCRIPT language extensibility, 8, 139
raster, 27
reading and writing canvases to, 27

ps_fill (), 127
fillcanvas, 232, 15
ps_finddef(string font, usertoken),127
findfilefont, 198
ps_findfont(string font), 127
ps_flush_PostScript(),127,128
focus events, 57
font object, 198

I

I

I

I

I

I

I

I

I

font support, 7
font utilities

cvas,224
cvis, 224
findfilefont, 198
stringbbox, 226

fontascent,198,226
fontdescent, 198,226
FontDirectory, 198
fontheight, 198, 226
fonts

cache, 156
cursorfont, 221
WidthArray, 177

fonttype extension, 177
fork,198,178,217
forkevenbngr, 229
format

byte stream, 132
fprintf, 224, 236
framebuffer,236
framedevice, 273
Free, 170
function keys

assigning, 237
repeating, 238

G
getanimated, 229
getcanvaslocation, 199, 16,203
getcanvasshape, 199
getcard32, 199, 207
getclick, 230
getcolor, 199, 208
getenv, 199,208
recallevent, 68
geteventlogger, 199,212
getfileinputtoken, 200
getkeyboardtranslation, 200, 202, 213
getprocesses, 200
getprocessgroup, 200
getrect, 230
getselection, 262
getsocketlocaladdress, 200
getsocketpeername, 200, 187
getwholerect, 230
Grabbed, 29, 169
GrabToken,29,169
graphics states

currentstate, 163, 195
setstate, 163,215

graphics utilities, 231
graphicsstatetype extension, 163
ps_grestore (), 127
growabledict, 225
ps_gsave (), 127

-283-

H
harden,201,152,215
hasfocus, 268
HOME,236
hsbcolor,201,163

I
imagecanvas, 201,189,208
imagemaskcanvas, 201, 189,201
imaging, 6, 28

buildimage, 188
imagecanvas, 28,201
imagemaskcanvas, 201

implementation limits, 275
ini t . ps, 221

size of userdict, 275
initclip, 209
input, see events
insertcanvasabove, 201, 22, 190
insertcanvasbelow, 202, 22, 190
insetrect, 231
insetrrect, 232
Installed, 170
linstallmethod, 93
linstanceor?,114
Interest, 175
interests, 33, 181

executable matches, 39
expressing, 36
interest lists, 43
matching multiple, 43, 45,49
Name, Action, and Canvas keys, 39
post-child, 43, 45
pre-child, 43, 49

Interests, 29, 167, 181
interprocess communication, 4
intrinsic class, 100
isarray?, 228
isclass?, 114
isinstance?, 114
IsInterest, 175
isobject?,114
IsPreChild, 175
IsQueued,175

J
journalend, 235
journalling, 235

controls, 236
internal variables, 236
journal,236
journal. ps, 222
journalend, 235
journalplay,235
journalrecord, 235
PlayBackFile, 236
PlayForever, 236
RecordFile, 236
State, 236

journalplay,23S

Index - ConJinued

Index - Continued

journalrecord, 235

K
key mapping, 237
keyboard

events, 58
repeating keys, 238

keyboardtype, 202,200, 213
KeyClickPercent, 173
keys

bindkey, 237
mapping, 237
repeat. ps, 222
repeating, 238
unbind key, 237

KeyState, 176
killprocess, 202, 198
killprocessgroup,202,198

L
lasteventkeystate, 202
lasteventtime, 202
lasteventx, 202
lasteventy, 202
Leds, 173
lightweight processes, 4
ps_lineto(x,y),127
list of class methods, 116
list of class operators, 116
liteUI user interface package, 256
li teUI • ps, 255
Utstring,225
LoadFile, 234
localhostname, 202
localhostnamearray,203
logging events, 68, 238

eventlog. ps, 222

M
macro files for CPS facility, 120
magic dictionaries, 161
magic numbers, 134
Mapped, 15, 166
mapping canvases, 15
Mask,l71
MaskChar, 172
MaskColor, 172
MaskFont, 172
lMatchedEvents, 45,167
matching interests, 37
matching mUltiple interests, 43
max, 203
memory management, 149

counted objects, 149, 151
currentfontmem, 157
debugdict, 153
harden, 152
object types, 151
objectdump, 153

-284-

memory management, conJinued
obsolescence events, 151
operators, 152
operators for debugging, 153
refcnt, 155
reference counting, 149
reference tallies. 151
reffinder. 155
setfontmem. 157
soft references. 150
soft. 152
soften. 151. 152
uncounted objects. 149, 151
vmstatus, 156

menu
rootmenu • pSt 222

method compilation, 90. 87. 89
Imethodcompile. 92
min. 203
minim, 236
missing POSTSCRIPT language operators, 273
modifying the server

saving keystrokes, 145
• startup. ps, 222
. user. pSt 222

modifyproc. 225
monitor

createmonitor, 192
monitor. 203, 192
monitorlocked, 203, 192, 203
monitortype extension, 163
mouse. see cursor
mouse events, 50
movecanvas, 203. 16, 199.201
ps_moveto(x,y).127
multiple inheritance of classes, 106 thru 113

N
Iname,113
Name, 37. 39.50,52. 176
Inew.97
newcanvas.204. 14, 164
newcursor. 204, 171
Inewdefault, 101
Inewinit, 98. 97
Inewmagic. 99
Inewobject. 97, 97
newprocessgroup, 204, 202
NeWS

classes, 8
client-server interface, 5, 119
color support, 7
debugging, 8, 139
distributed window system, 3
events, 33
font support, 7
memory management, 149
operators, 3, 4
POSTSCRIPT language extension files, 8
protocol, 132
types, 3

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

NEWS SERVER, 132
newsserverstr(1),132
noaccess, 273
/NoEvents,45,167
non-retained canvases, 19
nulldict, 236
nulloutdict, 225
nullproc, 236
nullstring, 236

o
object tables, 134
objectdump, 204, 153
objects

types in memory management, 151
obsolescence events, 59, 151
/obsolete, 105
obsolete classes, 105
obsolete instances, 105
omitted POSTSCRIPT language operators, 273
opaque canvases, 17
ps_open_PostScript (), 127, 128
OPENWINHOME, 237
OperandStack, 181
operators, 243

arrays, 226
conditional, 228
extensions in NeWS, 3
memory management, 152
memory management debugging, 153
NeWS extensions, 4

origin of canvas, specifying, 14
ovalframe, 232
ovalpatb, 232
overlay canvases, 25, 192

create overlay, 25, 192
drawing on, 25
getanimated, 229

OverrideRedirect, 29, 168
overriding class variables, 102

p
packedarray, 204, 194,213
packedarraytype extension, 163
Parent, 24, 166
pathforallvec, 205
paths, 164

currentpatb, 164
setpath, 164

pathtype extension, 164
pause, 205
ps-peek PostScript event(),129
PlayBackFile, 236 -
Play Forever, 236
pointinpath, 205
points2rect, 231
polyline, 232
polypath, 232
polyrectline, 232

-285-

polyrectpath, 233
portability

retained,204
post-child interests, 45
postcrossings, 205
POSTSCRUPTlanguage, 3

extensibility, 3
extension files, 8

POSTSCRUPT language extensions
in * . ps files, 223

POSTSCRUPT language files, see * . p s files
pprintf (), 131
pre-child interests, 49
printer compatability

NeWS?,221
statusdict, 221
test to see if running under NeWS, 221

printername, 221
printf,225, 140
priority of events, 60
Priority, 60, 176, 182
process died events, 59
Process, 37, 66,176
process-generated events, 33
processes

breakpoint, 188
continueprocess, 191
current execution state names, 181
currentprocess, 195
DictionaryStack, 179
$error, 179
ErrorCode, 179
ErrorDetailLevel, 181
errordict, 179
Execee, 181
ExecutionStack, 181
fork,198
Interests, 181
kill process, 202
killprocessgroup, 202
lightweight, 4
newprocessgroup, 204
OperandStack, 181
pause, 205
Priority, 182
ProcessName, 181
runprogram, 211
scheduling policy of, 182
SendContexts, 182
SendStack, 182
State, 181
Stderr, 182
Stdout, 182
suspendprocess, 216
waitprocess, 217

processes and events, relationship between, 66
ProcessName, 181
processtype dictionary keys, 178 thru 182
processtype extension, 177
promote, 103
promoted?, 104

Index - ConJinued

Index - Continued

promoting class variables, 103
* . ps files, 221

basics.ps,221 ~
class .ps, 222
colors. ps, 221
compat. ps, 222
cursor. ps, 221, 230
debug. ps, 139, 222
eventlog.ps, 222
ini t . ps, 221, 275
journal.ps, 222
liteUI .ps, 255
POSTSCRIPf procedures they define, 223
redbook • ps, 221
repeat. ps, 222
rootmenu. ps, 222
. startup.ps, 222, 273
statdict . ps, 221
. user .ps, 145,222,273
util. ps, 222

ps_arc(x,y,r,aO,a1),127
pscanf (), 131
ps_check_PostScript_event(),129
ps closepath(),127
ps-close PostScript(),127,128
ps-cshow(cstring s),127
ps-define stack token(),130
ps-define-value-token(),130
ps=define=word_token(),130
ps fill (), 127
ps-finddef(string font, usertoken),127
ps-findfont(string font), 127
ps=flush_PostScript(), 127, 128
ps _grestore (), 127
ps_gsave (), 127
psh (1), 119
ps_Iineto(x,y),127
ps moveto(x,y),127
ps -open PostScript () , 127, 128
ps~eek=PostScript_event(),129
ps query PostScript(),129
ps-read PostScript event(),129
ps=rlin;to(x,y),127-
ps_rmoveto(x,y),127
ps_scaledef(string font, scale, usertoken),

127
ps_scalefont(n),127
ps setfont () , 127
ps-show(string s),127
ps=skip_PostScript_event(),129
ps _stroke (), 127
ps_usetfont(token font), 127
putcard32,207,199
putcolor, 208, 199
putenv,208,199

Q
ps_query_PostScript(),129
quicksort, 228

-286-

R
random, 208
raster files, ~7, Z08
rasteropcode

currentrasteropcode, 195
setrasteropcode,214

readcanvas,208,27,201
ps_read_PostScript_event(),129
recallevent, 208, 65, 211
ReeordFile, 236
reet,231
reet2points,231
rectangle utilities, 231
reetframe, 233
reetpath, 231
reetsoverlap, 231
redbook . ps, 221
reder, 79
redistributeevent, 209,63, 187, 192, 197,211
refent, 209, ISS
reference counting, 149

counted objects, 149, 151
uncounted objects, 149, 151

reference tallies for counted objects, 151
reffinder,209, ISS
refork,22S
repeat key dictionary, 58
resetfile, 273
reshapecanvas,209, 14, 196,204
retain threshold, 20
retained

portability, 204
retained canvases, 19
Retained, 19, 166
reverse path, 273
revokeinterest,210,197
?revokeinterest, 230
revokekbdinterests, 2S7
rgbeolor,210,163,201,238
RGBeolor, 238
ps rlineto(x,y),127
ps-rmoveto(x,y),127
ro~tmenu . ps, 222
RowBytes, 30, 169
rreetrrame, 233
rreetpath,233,232
rshow,233
rubber, 230
runprogram, 211

S
SaveBehind, 21, 167
saving behind canvases, 21
ps_scaledef(string font, scale, usertoken),

127
ps_scalefont(n),127
selection request, 261
seleetionresponse, 262

J

I

I

I

I

I

I

I

I

I

I

I

self, 85 Ihru 90
send, 80 Ihru 85
send context, 80
send, 211, 190
sendcidevent, 235
Send Contexts, 182
sendevent, 211, 33, 38, 187, 188, 192, 197, 208
sendstack, 226
SendStack,182
/sendtopmost, 115
Serial, 37, 176
setautobind, 211, 193
setbackcolor, 211, 193,212
setbackpixel, 212, 193
setcanvas, 212, 15
setcanvascursor, 231
setcolor, 212, 238
setcursorlocation, 212
seteventlogger, 212, 199
setfileinputtoken, 213
setfocusmode, 268
ps_setfont(),127
setfontmem, 213, 157, 194
sethsbcolor, 212
setinputfocus, 268
setkeyboardtranslation, 213, 200, 202
SetLocalDicts, 94
/setname, 113
setpacking, 213, 194, 204
setpath, 213, 164
setpixel, 214
setplanemask, 214, 194
setprintermatch, 214, 194
setrasteropcode, 214, 195
setrgbcolor, 212
setsccsbatch,221
setscreen, 273
setselection, 262
setshade, 233
setshared, 215, 195
setstandardcursor, 230
setstate, 215, 163, 195
SharedFile, 30, 168
ps_show(string s),127
showpage, 273
shutdownserver, 215
sibling canvases, 22
Size, 183
ps_skip_PostScript_event(),129
sleep, 226
Slot, 171
sockets

acceptconnection, 187
getsocketlocaladdress, 200
getsocketpeername, 200

soft references, 150
soft, 215, 152
soften, 215, 152, 201

-287-

sprintf, 226
start, 273
starting the debugger, 139
startkeyboardandmouse, 215
statdict. ps, 221
State, 181,236
statusdict, 221
Stderr, 182
Stdout, 182
stenciVpaint model, 6
stringbbox, 226
ps_stroke (), 127
strokecanvas, 233
/subclasses, 114
/SubClassResponsibility, 102
super, 85 Ihru 90
/superclasses,114
suspendprocess,216,191
synchronous replies from server, 122, 124
system-generated events, 33, 49
SystemPriorlty, 182

T
tagprint, 216
time values

resolution, 177
TimeStamp, 38, 64,177,202
tokenization, 129
tokens, 129
TopCanvas, 165
TopChild, 166
/topmostdescendant, 115
/topmostinstance, 115
transparent canvases, 17
Transparent, 17, 166
truetype, 216
typedprlnt, 216
types, 161

as magic dictionaries, 161
canvastype, 12, 164
colormapentrytype, 170
colormaptype, 170
colortype, 163
cursortype, 171
environmenttype, 172
eventtype, 33, 174
extensions in NeWS, 3, 163
fonttype, 177
graphicsstate, 163
graphicsstatetype, 163
memory management objects, 151
monitortype, 163
packedarraytype, 163
pathtype, 164
processtype, 177
standard types, 162
vlsualtype, 182

Index - COnJinued

Index - Continued

U
unbindkey,237
unblocklnputqueue, 216, 188
uncounted objects, 149, 151
uncounted references, 150
under, 216
/understands?,115
uniquecid, 235
unlogging, 239
unpromote, 104
user debugging commands, 141
.user.ps, 145,222
UserPriority, 182
UserProfile, 256
UserProps,29,168
usertoken, 130
ps_usetfont(token font),127
using the debugger, 139
utilities

miscellaneous, 223
util. ps, 222

V
Visual,29, 168, 170
VisualList, 29, 168
visuals

BitsPerPixel, 183
Class, 183
Size, 183

visuaJtype dictionary keys, 182 thru 183
visualtype extension, 182
vrnstatus, 216, 156

W
waitprocess, 217, 198,230
WidthArray, 177
window manager, 8
writecanvas, 217, 27, 189, 197,208
writeobject, 217
writescreen, 217, 197,217

X
Xll/NeWS server, 4

lightweight processes, 4
XID, 29,168
XLocation, 56, 177

y
YLocation, 56, 177

I
-288-

I

Systems for Open Computing ™

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
FAX415969-9131

For U.S. Sales Office
locations, call:
800821-4643
In CA: 800821-4642

European Headquarters
Sun Microsystems Europe, Inc.
Bagshot Manor, Green Lane
Bagshot, Surrey GU19 5NL
England
027651440
TLX859017

Australia: (02) 413 2666
Canada: 416477-6745
France: (1) 40 94 80 00

Germany: (089) 95094-0
Hong Kong: 8525-8651688
Italy: (39) 6056337
Japan: (03) 221-7021
Korea: 2-7802255
New Zealand: (04) 499 2344
Nordic Countries: +46 (0)87647810
PRC: 1-8315568
Singapore: 2243388
Spain: (1) 2532003
Switzerland: (1) 8289555
The Netherlands: 033 501234

Taiwan: 2-7213257
UK: 027662111

Europe, Middle East, and Africa,
call European Headquarters:
027651440

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales

