
. I

I

Logic Manual

Manufacturing Information Systems
CODE CONVERT

...
-=~{ ·::~:- SYSTeM Te.ti BY SINBm.. • ..

THIS MANUAL SUPERSEDES

ALL PRELIMINARY VERSIONS

SINGER
P'RIDl!N DIVISION

CopynghtC 1971 . Fr iden D11ns1on , The Singer Company

TABLE OF CONTENTS

Section 0 INTRODUCTION

Section 1 GENERAL DESCRIPTION

Section 2 HARDWARE REQUIREMENTS (none)

Section 3 CORE REQUIREMENTS AND ALLOCATION

Section 4 MODULE NARRATIVE

4-1 Calling Program
4-1 Code Conversion Program

Section 5 LISTING AND FLOW CHARTS

Section 6 LOADING AND OPERATING INSTRUCTIONS

6-1 Loading
6•1 ORGs
6-1 Operating Instructions

Section 7 CONSTANTS

7-1 List and Explanation
7-1 General Purpose Constants
7-1 Conversion Tables
7-2 Relative Addresses
7-3 Buffers and storage Areas
7-3 Special Definitions
7-3 System Sw"itches
7-4 Conversion Tables -- How To Set Up

Section 8 ROUTINE LOGIC

8-1 Computing The Index Pointer
8-3 Functional Description
8-3 Table Access
8-4 Calling Program

5-15-71
Copyright® 1971, Friden Division, The Singer Company i CODI; CONVERT

5·1$-71.

PREFACE

This module has been designed as an interdependent part of
Manufacturing Information Systems, but its modularity will
allow it to be used in other software systems where code
conversion is necessary.

The manual assumes reader familiarity with general System
T.en concepts. It is expected that the reader will be
responsible for interfacing a specific set of MIS modules
with the programming needs of a particular installation.

Copyright © 1971, Friden Division, Th!t Singer Company ii CODE CONVERT

5·15-71

INTRODUCTION

Determination of one's code conversion needs requires
functional analysis of how the code is to be handled within
the CPU, as well as recognition of the differences between
input code and output code. Such an analysis might include
the following points:

1. What type of code is generated
terminal? (MIS models 100 and 105
Ten USASCII code; CD-30 terminals
code that is truncated upon entry
and is read in 6-bit form.)

by the input
generate System
generate 8-bit
through the IOC

2. Are there any elements of message processing that
will require the System Ten CPU to analyze message
content? (Input terminal partition programs may
need to int•rpret data at some fixed point in all
messages to determine terminal identification
number, for example.)

3.

a. If data will require such ~nterpretation, a
translation sequence (and specifically
associated table and constants) may need to be
constructed. Code resulting from this should be
in System Ten USASCII.

b. If the code is already in System Ten USASCII,
translation for this function is not necessary.

What type of code is required as output
translation sequence (and specifically
table and constants) must be constructed
differently coded portion of the message.

code? A
associated

for each

Once an installation's code conversion needs have been
defined, it is the user's responsibility to write an
interfacing program that will accurately call the actual
code convert program. This document provides a listing of
the code conversion process and a detailed functional
explanation of the routine and its associated constants; it
also explains in detail how to construct the calling
program -- constants and buffers required, and instructions
necessary to branch to the conversion program. The reader
is especially urged to become thoroughly familiar with the
process by which the index pointer is calculated, and with
the use of the three index registers.

Copyright© 197!, Friden Di•l•ion, The Singer Company 0-1 CODE CONVERT

5·15-71

GENERAL DESCRIPTION

The Code Conversion Module is a multi-purpose code trans­
lation program which is used to translate code of one type
into code of another type. Through correct referencing, it
can handle code generated by either CD-30 (truncated System
Ten USASCII) or MIS (System Ten USASCII) terminals, and
translate that code on a character-by-character basis into
output code that can be written in single-frame mode (such
as USASCII or BCD) or double-frame mode (such as EBCDIC).

Possible
input

code

CD-30 (truncated
System Ten
USASCII)

MIS (normal
System Ten
USASCII)

Possible
output

code

USASCII

IBM-BCD

GE-BCD

EBCDIC

(Note: if the installation has only MIS terminals, and the
output code desired is USASCII, this module is not needed.
MIS terminals generate data in System Ten code, which is a
subset of USASCIIi hence any calls to the Code Conversion
program are superfluous.)

The user supplies three addresses: the first location of
the input area, the first location of the output area, and
the starting location of the table used to make the
required conversion. He also supplies the conversion table
and the length of the character string to be converted
during this translation.

The program operates by focusing on an index-referenced
character in the input area, computing another index value
equal to the binary value of that character (A•100001•33)
and adding that value (or double that value, for double
frame) to the table address. This method, which can be
called relative addressing, results in ·a correctly
translated character being placed in the proper output
location.

This process works whether the desired output code is to
be written in single-frame mode or double-frame mode. If
the output is to be double frame, the relative table
address will be to the first of two characters, which are
both placed in the proper output location.

Copyright 0 1971, Friden DM1ion, The $Inger C°".'pany 1-1 CODE CONVERT

HARDWARE REQUIREMENTS

There is no hardware specifically related to this module.

5-15-71
Copyright© 1971, Friden Division, The Singer Company 2-1 CODE CONVERT

5-15-71

CORE REQUIREMENTS AND ALLOCATION

The needs of the specific MIS application will determine
the total amount and allocation of core for this module.
Depending on the particular installation, the tables and
code conversion routine can be in Common and the calling
sequence in the input terminal partition, or the calling
sequence can be in any partition where a message being
processed will be accessible. Normally, the most efficient
use of core will be to store the code conversion table(s),
constants, and code conversion routine in Common, and the
input/output buffers, terminal constants, and calling
sequence(s) in partition.

For applications where only a single-character code
conversion is required (CD-30 to System Ten USASCII, or
Systen Ten USASCII to BCD, for instance), this module will
normally need a minimum of 408 locations in Common
(including a ~ingle 64-character table) and 350 locations
in each input terminal partition.

For applications where only a double-character conversion
is required (System Ten USASCII from model 100 and 105
terminals to EBCDIC, for example), this module will
normally need 476 locations in Common (including a single
128-character table) and 790 locations in each terminal
partition.

Core requirements and allocation for combinations of
single- and double-character conversion will depend on the
nature of the combination and the interfacing programming.

Copyright© 1971, Friden Division, The Singer Compony 3-1 CODE CONVERT

5-15-71

MODULE NARRATIVE

Calling program

The calling program resides in an input terminal partition.
Code coming from the input terminal that needs any analysis
by the System Ten CPU (other than character counts) must be
in System Ten internal USASCII. If the code is from a CD-
30 terminal, this requires a single-character code
conversion, in addition to whatever conversion might be
necessary for conversion into output code. If the code is
from a MIS model 100 or 105 terminal, the only translation
necessary will be into output code. (In a CD-30 message,
for instance, for the conversion into system Ten USASCII
these characters may contain the transaction code and
terminal I.D.; the transaction code is used by the input
terminal module to check for wrong-length messages, while
the terminal I.D. and/or transaction code can be used for
transaction and te·rminal validation as well as message
routing.)

The number of characters to be translated are specified by
CCSIZE, then the calling sequences are set up according to
the need. The process should be repeated for a new string
of characters or a different translation.

Code Conversion Program

The table access routine facilitates converting the
message, one character at a time, until the message string
is exhausted; it is also responsible for computing the
index pointer which accesses the conversion table at the
correct point for each character. To do this, the program
examines the bit structure of each character, using bits 7
and 5 as zone bits to reference a line of the table, and
bits 4 through 1 as numeric bits to reference a particular
position in that line. Then, depending on whether the
conversion is to be to single-character or double-character
code, the program places the correct one or two characters
in the appropriate location in the output area.

Copyright© 1971, Friden Division, The Singer Company CODE CONVERT

LISTING AND FLOW CHARTS

TITLE •CODE' CONVERT'
••
•
• CODE CONVERT TABLES

•

COMMON
ORG 3?0C

••• • •
• ~ODF CONVERSION SUBROUTINE •
• •
• s;'OR SINGLE Cl-IARACTF.R OUTPUT, ARGLJME'NTS AND CALLI NG SEWUENCE ARE: • • ..
• TRL1 OM C64 b'+ CHARACTER IABLE • • SIZE1 OM N3'006 1 3 CHA~ACTER LENuTH (1•999l • ... IADDA1 OM A I HIGH CJRD~R ADDR OF INPUT • • OADDR1 OM A I HIGH ORDER Alllif.I OF OUTPUT •
• TAOOR1 OM A•TBLl' HIGH ORDER ADUR OF TABLE • • •
• MC SIZEl1CCSIZE SE.T Lt. NGTH •
• MC IADDR11X1 SET kt:.Gl TO INPUT ADOR •
• MC OAOOR11X2 SET ~t.G2 TO 01,,, TPUT ADDR •
• MN TADOR11C:C8+1 SE.T A•ADDR TO Tld::)LE • • BC CC.tt+l(6l1CC115l BRANUi AN(; LlNK •
• •
• FOR DOUBLE CHARACTER OUTPUT, AR~UMENTS AND CALLING ~EQUENC~ ARE: •
• •
• TBL2 OM C128 128 LHARACTER TABLE •
• SIZE2 DH N3'200 1 3 CHARACTER Lt.NGTH (1•999l • • IAODR2 DH A I HIGH uROER ADUR OF INPUT • • OADDR2 OM A' HIGH URDER AIJDR OF OUTPUT •
• TADOR2 DH A 'TBL2 1 HIGH uROC:R ADDR OF TABLE • .. ,,.
• MC SIZE21CCSIZE SET LENGTH ..,.

... MC IAOOR21X1 SE.T Rt..G1 TO lNPUT AODR • ,,. MC OAOORi?1X?. SET RE.G2 TO OUTPUT ADDR •
• MN TAOOR21CC1O+1 St.T A•AODR TO TABLE • .. BC CC4+1C6)1"CC2151 BRANCH AND LINK • • • .. ,,.•....... ,,. ...

E'.IFCT

•
• TNITIALIZE TABLE ACCESS ROUTINE
•
CC1 MC CC813511CC7 SINGLE CHARACTER ENTRY

BC CC3151
ORG ••5

CC7FRO OM c•oooo•
CC70NF.: OM C ZONF.'
cc~ MC CC914511CC7 OOURLE CHARACTER ENTRY ..
• FXIT FROM SUBROUTINE AT END OF FIELD ..
cc::.
CC4

S CC161111CCSIZE
BC OOOOC1110000(0)

OECREM£NT INPUT FIELD SIZE

• ~nMPUTE INOFX FOR NEXT INPUT CHARACTER

ISOLATE ZONE & OIGIT BITS

5-15-71 .
COpyright © 1971, Friden Division, The Singer Company 5-1 CODE CONVERT

.LISTING ANO FLOW CHARTS

MN CCZONE1CCDIGT x
MN CCZFROC111CCZONE)(

MC CCZEROf41,X3 COMPUTE INDEX
A ccrHGT1X3)(

c CCZONF 1 CCZERO. x
er. CC711 llCC6121)(

c CC70NF.1CCAT)(

AC CC~l21 x
A CC4R1X3 x
ec CC71!51)(

CCFi A CC3i?1X3 x
BC CC7151 x
ORG i=;

CCAT OM c I GI I COMMtkCIAL A"I SIGN
c:c 1,, OM N'16 1 lABU INDEX
cc~~ DM Nl32' x
CCI. A CC161X3)(

"' Mn VF TABLE'. CHARACTER TO OUTPUT AREA

•
CC? OM C45

• ...
E.IF:CT

"' !:U!'.iGLE CMARACTFR QOUTlNF
•
CC!lt MC OOOOC11311000PC121

A CC16C111X1
A CC161111X2
RC CC:il 51

... nnu~LE CHARACTER ROUTINE

• ccq
cc1n

•

A X3.1X3
MC OODOl213),000P1121
A CC16111.1X1
A CC3?+111),X2
BC CC315l

"' r.n~STANTS A~O WORK AREAS
•

ORG ••5
CCRTlF OM N3
ccnrnr OM c101
CC4R Of"! N•48'

NORMAi .

THIS AREA I S L 0 A DE 0 W ITH
LINE UF T1"1E FULLOWING ROUTINE~
UPON t:NTRY TU SUBROUTINE

MV CHAR FROM TABLE TU OUIPGT
INCREMENT INPUT POINTER
INCREMENT 0UTPU1 POINTER
GO TO ENO OF FltLD TEST

DOUBLE INDEX
MV CHAR FROM TABLE TO OUTPUT
INCREMENT INPUT POINTER
INCREMENT OUTPUT POI~TER
GO ro ENn OF FIELD TEST

LENGTri OF INP~T FIELD
DIGIT
x

•
• THESF INnFx REGiSTF.RS ARE TO GO IN THE SAME PARTITION AS TH~

CALLING SEQUENCES IN THE INPUT TERMINAL PROGRAM•
•

ORA no11
X1 OM C4

ORG 0021
X? OM r.4

ORG 0031
X3 OM C4

EMO

COOE CONVERT

INDEX REGJSTFR

INDEX REGISTE:R

INDEX REGJSTE:R

5-2

1

2

3

5-15-71
Copyright © l971, Friden Division •. The Singer Compo~y

I

·usTING AND FLOW CHARTS

_CC! (CC2)
I CODE CONVERSION SUBROUTINE

INITIALIZE INITIALIZE
TABLE ACCESS TABLE ACCESS
SEQUENCE SEQUENCE
FOR SINGLE 1~:,oou:i~ CHAR. MODE R. M

l]"
1

DECREMENT
CCSIZE ~ BY 1

,.
/

IS
RESULT YES EXIT) NEGATIVE

?

NO

MOVE INPUT
CHARACTER DIGIT RESULT

(1) TO
ZONE 0 0

T l 1

MOVE {ltl) 2 2
'ZONE'

TO 3 3

I DIGIT' 4 4

I 5 5

MOVE {MN) 6 6
'O' TO
'ZONE'

7 7

8 8

9 9
MOVE_

'0000'
: 10

TO 3 ; 11

< 12 . 13
APO

DIGIT -------1 > 14

TO 3 ? 15

~ <~ > COMPA
I""" y ~· l I

= =
_]

ADD 16 AOO 32 ADD 48
TO 3 TO 3 TO 3

,
~

,

~
MOVE TABLE

DOUBLE FRAME
NO CHARACTER H INCREMENT

f-+ INCREMENT
TO OUTPUT

..a.I
? AREA

1 BY l 2 BY l

DOUBLE 2 ~ YES
MOVE TABLE

~
INCREMENT INCREMENT

~HARACTERS H ..
TO OUTPUT 1 BY 1 ~ BY 2

5-15-11.
Copyright © 1971, Friden Division, The Singer Compony

5-3 CODI: CONVERT

5-15-71.

Loading

OR Gs

LOADING AND OPERATING INSTRUCTIONS

Use any System Ten loading program as appropriate for the
installation. The tables, table access routine, and
associated constants Will normally be loaded into Common,
unless there is room to duplicate them and place them in
each input terminal partition. If the table is in
partition, the A address referred to in CC8 (and/or CC10)
must be followed by a P to indicate that the address is in
partition rather than Common. The user's calling program
and its associated constants should be loaded into the
appropriate partition. (The t~bles must either all be in
Common or all in partition.)

The Common portion of this program may be ORGed at any
location that does not conflict with other specified areas.
In determining where to place this programming, the reader
is reminded to be cognizant of the order and placement of
other MIS system constants.

In input terminal partition programming, it is usually
convenient for the programmer t9 plan to use the three
index registers to hold the input address, output address,
and index pointer, respectively, in passes through this
module, and to initialize them appropriately.

Operating Instructions

There is no operator intervention required for this module.

Copyright © 1971, Friden Division, The Singer Company 6-1 CODE CONVERT

5-15-71

CONSTANTS

List and Explanation

The following are constants, buffers and storage areas
defined by DH statements. They should not necessarily be
loaded in the order presented here. An asterisk (•)
indicates that the user should define the term to fit his
own requirements.

Label

CC ZERO

CC16

CC32

CC48

CCAT

Label

*TBL1

*TBL2

GENERAL PURPOSE CONSTANTS

OM

C'OOOO'

N' 16 I

N' 32'

N' lf8'

c I Ql I

Explanation

Constant used for comparison.

Used to increment X3 by
value necessary to correctly
address the table being
used; also, first digit
('1') used to decrement
character counter (CCSIZE).

Used to increment X3 by
value necessary to correctly
address the table being
used.

Used to increment X3 by
value necessary to correctly
address the table being used.

"At" sign used in compare
operation to determine
which zone bits are on for
this character; results in
incrementing X3 by the value
necessary to correctly
address the table being
used.

CONVERSION TABLES

OM Explanation

OC6lf Table 1 (Single frame).
(See below)

OC128 Table 2 (Double frame).
(See below

Copyright © 1971, Friden Oivi•ion, The Singer Company 7-1 CODE CONVERT

CONSTANTS

RELATIVE ADDRESSES

Label DM

*SIZE1 C3
(User defined)

*IADDR1 All
(User defined)

*TADDR1 All
(user defined)

*SIZE2 C3
(user defined)

*IADDR2 All
(User defined)

*OADDR2 All
(User defined)

*TADDR2 All
(User defined)

7-2
CODE CONVERT

Explanation

Size (three digits, 001-999)
of input character string.

Beginning address of input
character string.

Address of Table 1.

Size (three digits, 001-999)
of input character string,
conversion using Table 2.

Beginning address of input
character string, conversion
using Table 2.

Beginning address of output
area to be used when
referencing Table 2.

Address of Table 2.

5-15-71
Copyright© 1971, Friden Division, The Singer Compony

t.abel

*X1

*X2

*X3

CCSIZE

CC ZONE

CCDIGT

CONSTANTS

BUFFERS ANO STORAGE AREAS

OM

C4

C4

C4

N3

N1

C'O'

Explanation

Index register 1; holds
input address.

Index register 2; holds
output address.

Index register 3; holds
pointer indicating where in
a specified table the char­
acter's translated value is;
also ref erred to as index
pointer.

Counter used to keep track
of number of characters
being converted; successive­
ly decremented until it is a
negative value, then program
exits.

storage area for input
character's zone bits.
Numeric bits are set at
I 0000 Io

Storage area for input char­
acter's numeric bits. Zone
bits of CCDIGT are fixed at
I 01 I •

SPECIAX.. DEFINITIONS FOR THIS DOCUMENT

zone bits • bits 7 and 5 for any character.

Numeric bits • bits 4 through 1 for any character.

System Switches

None of the MIS system switches are referenced or modified
by the instruction~ of this module.

$-15-71. .
c.pyright C> 1971, Friden Divl1iC111, The Singer Company 7-3 CODE CONVER1'

CONSTANTS

Conversion Tables

The two tables referenced in this module are used to
translate code into single frame GE-BCD and double frame
EBCDIC.

1. Table 1 has been set up so that a single-character
translation from System Ten USASCII into GE-BCD code will
take place when the index pointer is correctly calculated.

Table 1 (64 characters)

'O+t+K\:O=MLPCJ1Q !"#$~&'()~N>J/'

I ,123456789ABCDEFGHIRSTUVWXY*?<@Z'

The single quote mark following the ampersand in the first
line must be modified when assembled. (The assembler
requires two single quote marks so that it can distinguish
between a quote mark used as a delimiter and a quote mark
used as a character.)

The table is addressed by using an index pointer computed
from the numeric and zone bits of the input character and
added to the starting address of the table, thus giving the
location of the translated character. The character at
this address is placed in the output area (with single­
character conversions, the input and output areas can be
the same).

2. Table 2 has peen set up so that a double-character
translation from System Ten USASCII into EBCDIC will take
place when the index pointer is correctly calculated.

Table 2 (128 characters)

'04J507K7~5L605M7M4MSLSN4K606K416'

'00102030405060708090J7NSL4N7N606'

'L71L2L3L4LSL6L7L8L9L1M2M3M4MSM6M'

'7M8M9M2N3N4NSN6N7N8N9NM4N6MSL4M6'

Note: for this document, zero is represented as 0, the
letter as o.

CODE CONVERT 7-4 5-15-71
Copyright© 1971, Friden Division, The Singer·Compar:iv

CONSTANTS

This table is addressed by doubling the index pointer
computed from the binary representation of the System Ten
c·harac;:ter, and adding this value to the starting address of
the table, thus giving the beginning address of the
translated character. Since this conversion is to be from
one character into two, this character and the one
following it must both be placed in the output area
which must be separate from the input area so that there
will be sufficient room for the output string.

For example, suppose the character we wish to translate has
a System Ten binary value of 011001 (the character is 9).
The code conversion program determines the index pointer by
isolating zone and numeric bits as described in the next
section, then it picks up the SOth and 51st characters (90)
and places theaa in the output area.

5·15-71.
Copyright® 1971, Fri"-n Dlviaion, Tt.. Singer Company 7-5 CODI CONVERT

5·15-71.

ROUTINE LOGIC

Computing the Index Pointer

The index pointer for referencing the code conversion table
is computed in index register 3 (X3). The computation
process involves isolating the zone bits (bits 7 and 5) and
the numeric bits (bits 4 through 1) for each character.

Zone bits of 00 mean one of the addends to X3 will be O;
zone bits of 01 mean this addend will be 16; zone bits of
10 mean this addend will be 32; zone bits 11 mean this
addend will be 48. The decimal equivalent of the numeric
bits for this character form the other addend to X3, such
that this index pointer now represents a given number of
positions in a table. If this is to be a single-character
conversion, X3 is left at this value; if it is to be a
double-character conversion, X3 is doubled. The resulting
value in X3 is used as an address relative to the beginning
location of the conversion table being used.

Since the process by which the value in the index pointer
(X3) is calculated is the same for all characters, it then
becomes a relatively simple task to set up the conversion
tables such that, when the table is accessed , the index
pointer will indicate precisely where in the table the
correctly translated character or characters will be.

The length modifier on the Move Character instruction that
moves the dorrect character into the output area is
specified as 1 for single-character conversions, or 2 for
double-character conversions. Therefore, in a double­
character conversion, the correct .combination of two
characters must begin at the location which will be
specified by the value in the index pointer (X3).
Regardless of the type of output code desired, or the
number of conversions to take place within a program,
organization of a conversion table depends on the proper
calculation of the index pointer, the process being the
same for all tables. This requires that the bit structure
of any output code must increment in the same order as the
bit structure of the input code.

The programmer should keep in mind that the whole purpose
of a conversion table is to convert characters at the bit
structure level. Thus it becomes his task to use the table
as a translation medium, so that an incoming character's
bit structure, when used to calculate the index pointer,
will correctly reference a System Ten USASCII character (or
pair of characters) that will produce the desired output
bit structure, regardless of the type of output code
desired.

Copyright «I 1971, Fri"'n Division, The Singer Company 8-1 CODE CONVERT

ROUTINE LOGIC

SYSTEM TEN
QiARACTER CODE

SP 000000
I 000001
II 000010
000011
$ 000100
% 000101 ,. 000110
I OOOlll

l 001000
001001

* 001010
+ 001011 . 001100
- 001101

001110
I 001111
0 010000
1 010001
2 010010
3 010011
4 010100
5 010101
6 010110
7 010lll
8 011000
9 011001
: 011010
; 011011
< 011100 .. OlllOl
> 011110
? Olllll
@ 100000
A 100001
B 100010
c 100011
D 100100
E 100101
F 100110
G 100111
H 101000
I 101001
J 101010
K 101011
L 101100
M 101101
N lOlllO
111 lOllll
p 110000
Q 110001
R 110010
s 110011
T 110100
u 110101
v 110110
w 110111
x mooo
y lllOOl
z 111010
[111011

j llllOO
llllOl

+ lllllO ... mm

TO WRITE BCD
EQUIVALENT

0 010000
J 101010
SP 000000
+ 001011
K 101011
< OlllOO
p 110000
• 001100
< OlllOO
I llllOO
L 101100
p 110000

@
011011
100000

[001110
1 010001
* 001010
I 000001
II 000010
II 000011
$ 000100
z 000101 ,. 000110
I 000111

l 001000
001001

- OOylOl
N lOlllO
t lllllO
+ 001011

001110
z lll010
• 001100
Q 110001
R 110010
s 110011
T 110100
u 110101
v 110110
w 1101ll
x lllOOO
y 111001
A 100001
B 100010
c 100011
D 100100
E 100101
F 100110
G 100111
H 101000
I. 101001
2 010010
3 010011
4 010100
5 010101
6 010110
7 010111
8 0/1000
9 011001
] 111101
> OllllO
M 101101
SP 000000
SP 000000

FIGURE 1

TO WRITE GE·
EQUIVALENT

0 010000 ... llllll
t lllllO
+ 001011
K 101011
I llllOO

011010

" 101111
= OlllOl
M 101101
L 101100
p 110000
[lll011
J 101010

Q
011011
110001

SP 000000
I 000001
II 000010
000011
$ 000100
% 000101 ,. 000110
I OOOlll

~ 001000
001001

- 001101
N 101110
> OllllO
] 111101

OOlllO
I 001111 . 001100
1 010001
2 010010
3 010011
4 010100
5 010101
6 010110
7. 0101.11
8 011000
9 011001
A 100001
B 100010
c 100011
D 100100
E 100101
F 100110
G lOOlll
H 101000
I 101001

.R 110010
s 110011
T 110100
u 110101
v 110110
w 110111
x lllOOO
y lllOOl
* 001010
? 011111
< OlllOO
@ 100000
z lllOlO

To read this chart, start with the System Ten USASCII character and its .bit
structure in the first column. The bit structure for this character in either IBM
or GE-BCD is indicated at the same level in columns 2 and 3. The character on the
left in each of these two columns is the System Ten USASCII character which has
this bit structure.

-1-71
CODE CONVERT

8-2 Copyright © 19.71., Friden Division, The Singer Company

5-15-71

ROUTINE LOGIC

For instance, suppose a character coming from the Job
Information station (which sends messages in System Ten
USASCII) is an A, with a bit structure of 100001, and that
the desired output code is GE-BCD. The task of the
programmer is to design his conversion table such that,
when the index pointer is calculated in the normal fashion,
the character pointed to has a bit structure 010001,
equivalent to a GE-BCD character A. This happens to be a
System Ten USASCII digit 1. See Figure 1.

As another example, suppose we have a System Ten USASCII
character 4, which we wish to translate into IBM-BCD. The
bit structure of the character to be translated is 010100.
To write an IBM-BCD 4, we need a character with a bit
structure of 000100: in system Ten USASCII this is a $.
Thus the index pointer would be calculated to point to a
location 20 characters after the beginning address of the
table (zone bits 01 mean the table level starting at
relative location 16, plus 4 locations for the numeric
bits), at which location is the System Ten USASCII
character $.

Truncated CD-30 code presents the same sort of problem,
since it comes into the System Ten CPU in 6-bit form. A
programmer should remember, however, that in order to
correctly analyze message content from the CD-30, the
System Ten CPU must read those characters in its internal
USASCII subset; however, other portions of the message can
be directly translated into output code if content analysis
is not needed at this point. See Figure 2.

The only difference in procedure in converting to double­
frame code (EDCDIC) is that the index pointer will point to
the first of two characters, both of which will be written
in a combined ·form to produce the desired 8-bit EBCDIC
character. The two characters will have a total of 12
bits, of which EBCDIC will need only 8: hence to get the
proper 8 bits, the tape controller will drop the zone bits
of both characters and write in double-frame mode,
resulting in a single 8-bit character comprised of the
numeric bits of the first character (low-order.bits of the
EBCDIC character) and the second character (high-order bits
of the EBCDIC character). The ninth bit will be added to
the character frame as either a 0 or 1, in accordance with
parity declaration. The parity (ninth) bit is added by the
tape or disc controller.

Functional Description

This module consists of two parts: the table access routine
and user-supplied tables in Common, and the user-supplied
entry from input terminal partition.

Copyright© 1971, Friden Division, The Singer Company 8-3 CODE CONVERT

ROUTINE LOGIC

10 WRITE CD-30 10 WRITE FID'I CD-30 10 WRITE FRlM CD-30
EQUIVALENT 10 BCD 10 GE

SP 000000 0 010000 0 010000
1 010001 I 000001 I 000001
2 010010 II 000010 • 000010
3 010011 ' 000011 ' 000011
4 010100 $ 000100 $ 000100
5 010101 s 000101 s 000101
6 010110 " 000110 " 000110
7 010111 I 000111 I 000111
8 011000 ~ 001000 ~ 001000
9 011001 001001 001001
TI 010001 ! 000001 ! 000001
NA SP 000000 0 010000
NA SP 000000 ~ 010000
T8 011000 (001000 001000
NA SP 000000 0 010000
NA SP 000000 0 010000
0 010000 * 001010 SP 000000
I 001111 1 0.10001 Q 110001
s 110011 2 010010 R 110010
T 110100 3 010011 s 110011
u 110101 4 010100 T 110100
v 110110 5 010101 u 110101
w 110111 6 010110 v 110110
x 111000 7 010111 w 110111
y 111001 8 011000 x 111000
z 111010 9 011001 y 111001
T3 010011 ' 000011 * 000011 . 011011 ; 011011 [111011
NA SP 000000 0 010000
T4 010100 $ 000100 $ 000100
NA SP 000000 0 010000
NA SP 000000 0 010000 - 001101 ' 100000 J 101010
J 101010 A 100001 A 100001
K 101011 B 100010 B 100010
L 101100 c 100011 c 100011
M 101101 D 100100 D 100100
N 101110 E 100101 E 100101
IJ 101111 F 100110 F 100110
p 110000 G 100111 G 100111
Q 110001 H 101000 H 101000
R 110010 I 101001 I 101001
T2 010010 . 000010 ff 000010
s 000101 IC 011100 \ 111100
NA SP 000000 0 010000
T6 010110 " 000110 " 000110
NA SP 000000 0 010000
NA SP 000000 J 101010
NA SP 000000 0 010000
A 100001 Q 110001 1 010001
B 100010 R • 110010 2 010010
c 100011 s 110011 3 010011
D 100100 T 110100 4 010100
E 100101 u 110101 5 010101
F 100110 v 110110 6 010110
G 100111 w 110111 7 010111
H 101000 x 111000 8 011000
I 101001 y 111001 9 011001
T7 010111 I 000111 I 000111

001110 [111011 ; 011011
NA SP 000000 0 010000
TS 010101 s 000101 % 000101
NA SP 000000 0 010000
NA SP 000000 0 010000

FIGURE 2

The first column of this chart shows the character that was sent by the CD-30
Terminals (if the CPU recognizes a character of bit structure 010010 as a 2, it
started out in the CD-30 terminal as an S, with bit structure 00110010}. Thus, the
first column shows CD-30 truncated characters. Columns 2 and 3 show the bit
structure for the System Ten character in IBM and GE-BCD. The character at the left
of each of these two columns is the System Ten representation of the CD-30 character
required to get this bit structure.

CODE CONVERT
8-4

5-15-71
Copyright © 1971, Friden Division, The Singer Company

5-15-71.

ROUTINE LOGIC

Table Access

CC1 and CC2 represent, respectively, the single-character
and double-character entry points. In either case, the MC
instruction results in a set of processing instructions
Ceca for single character, CC9 for double character) being
moved into the processing area at CC7.

The instruction at CC3 uses the leftmost digit of CC16 -­
in this case, 1 -- to decrement the counter in CCSIZE which
tells how many characters are yet to be translated in this
character string.

CC4's A operand holds the return address stored there by
a Branch and Link instruction from the user's routine,
which is used only if all characters for this stage have
been translated1 its B operand simply passes control on to
the next instructions.

Then the routin'" isolates zone and numeric bits, by moving
one character at a time from the input area into first
CCZONE, then CCDIGT, fixing the numeric bits of CCZONE to
0000 and the zone bits of CCDIGT to 01. The numeric value
is stored in CCDIGT: the bit configuration in CCZONE will
then result in 0, 16, 32, or 48 being added to X3. X3 then
holds a number representing a position in a conversion
table where a particular character's translated value is to
be found.

Next, the routine processes whatever instructions have been
placed in the subroutine buffer area in CC7. If this is to
be a single-character translation, the instructions
starting at CCS are there: if double character, those
starting at CCJ are there. Either set operates the same
way, except that, if this is to be double-character
conversion, the value in X3 is doubled first. The
character at the address indicated by X3 is moved to the
output area location specified by the value in X21 X1 is
incremented by 11 X2 is incremented by 1 if this is single­
character conversion, or by 2 if it is double-character
conversion, and the subroutine exits to CC3 and back to the
calling program in partition when all characters have been
converted.

Calling Program (user's)

This routine is to be supplied by the user. What will be
explained here are two general approaches which can be
adapted to convert single- or double-character messages.
The specific programming must be done by the user.

Copyright © 1971, Friden Divi5ion, The Singer Company 8-5 CODE CONVERT

ROUTINE LOGIC

SINGLE CHARACTER

The calling sequence required to effect a single-character
translation is illustrated below, step by step. A brief
operating description follows each statement.

MC

This instruction loads
defining the leftmost
index register 1.

MC

IADDR 1, 11

a four-position address constant
position of the input string into

OADDR1, 21

This instruction loads a four-position address constant
defining the leftmost position of the output area into
index register 2. If desired, this address constant may be
the same as that loaded into index register 1, in which
case the translated characters will overlay the input
characters.

MN TADDR1,CC8+1

This statement sets the A address of a move-character
instruction, which selects the translated characters from
the translate table, to the leftmost position of the 64-
character translate table.

MC INLENG,CCSIZE

This instruction.sets CCSIZE, a three-character counter, to
the length (001-999) of the input character string.

BC CC4+1(6),CC1(5)

This instruction has two effects: the address of the
instruction following it is loaded into the A operand at
CC4, there to be used as an exit point when all characters
involved in this stage of translation are processed; and it
branches to the single-character entry point at CC1.

CODE CONVERT 8-6 . 5-15-71
Copyright © 1971, Friden Division, The Singer Company

5-15-71.

ROUTINE LOGIC

A subroutine calling sequence and associated declaratives,
which could be used to convert a 32-character buffer
(BUFFER) containing CD-30 transmission code to its
equivalent in System Ten internal USASCII, is illustrated
below.

BUFFER DM C32

TBL DM OC64
DK
DM

BUFADR DM
TBLADR DM
SIZE DM

C32'~123456789~~~~~~0/STUVWXYZ~' ·~~~·
C32'-JKLMNOPQR~%~~~~~ABCDEFGHI~.~~~~·
A'BUFFER'
A'TBL'
N'032'

MC BUFADR,11
MC BUF'ADR,21
MN .TBLADR,CC8+1
MC SIZE,CCSIZE
BC CC4+1(6),CC1(5)

The contents of BUFFER before and after translation are
given below.

Before: 3XY2~Y2~F43G43~VIFD~SFTU~SFE5UI3

After: THIS IS OUTPUT FROM CODE CONVERT

DOUBLE CHARACTER

The calling sequence required to effect a double -character
translation is illustrated below, step by step. An
explanation follows each step. The reader will note that
it differs from the single-character translation process
only in that the input and output addresses for this stage
are in X1 and X2 respectively, the address of Table 2 is
placed in the A operand of the Move Character instruction
at CC10, and the branch is to the double-character entry
point at CC2.

MC

This instruction loads
defining the leftmost
index register 1.

MC

IADDR2,11

a four-position address constant
position of the input string into

OADDR2,21

This instruction loads a four-position address constant
defining the leftmost position of the output area into
index register 2. This address must reference a different
area than index register 1 does.

Copyright© 1971, Friden Division, The Singer Company
8-7 CODE CONVERT

ROUTINE LOGIC

MN TADDR2,CC10+1

The above statement sets the A address of a move character
instruction, which selects translated characters from the
translate table, to the leftmost position of the 128-
character translate table. Observe that the B operand of
this statement is different from the corresponding
statement in the single-character calling sequence.

MC INLENG,CCSIZE

This instruction sets CCSIZE, a three-character counter, to
the length (001-999) of the input character string.

BC CC4+1 (6) ,CC2(5)

The above instruction has two effects: the address of the
instruction following it is loaded into the A operand at
CC4, there to be used as an exit point when all characters
involved in this stage of translation are processed; and it
branches to the double-character entry point at CC2.

A subroutine calling sequence and associated declaratives,
which could be used to produce the two-character (double
frame) codes required to write the contents of BUF1 in
EBCDIC on the Model 45 tape drive, are illustrated below.

BUF1 OM C29'THIS IS INPUT TO CODE CONVERT'
BUF2 DM C58
TBL DM OC128

DM C32'04J507K7K51605M7M4M5L5N4K606K416'
DM C32'00102030405060708090J7N5L4N7N606'
DM C32'L71L2L3L4L5L6L7L8L9L1M2M3M4M5M6M'
DM C32'7M8M9M2N3N4N5N6N7N8N9NM4N6M5L4M6'

BUFAD1 DM A' BUP1'
BUFAD2 OM A'BUF2'
TBLADR DM A'TBL'
SIZE DM N' 029

MC BUFAD1,11
MC BUFAD2,21
NM TBLADR,CC10+1
MC SIZE,CCSIZE
BC CC4+1 (6) ,CC2(5)

The contents of BUF2 following execution of code convert
will be:

'3N8L9L2N049L2N049L5M7M4N3N043N6M043L6M4L5L04JL6M5M5N5L9M3N

CODE CONVERT 8-8 5-15-71
Copyright © l971, Friden Division, The Singer Company

5-15-71.

ROUTINE LOGIC

SYSTEM TEN CD-30 FIU-I SYSTEM TEN FIU-I CD-30 TO
OiARACl'ER OiARACTER COI£ OiARACTER 1Bl 1

TO OOlBLE FRAM: OOLBLE FIW£ 1Bl 3
1BL2

SP 000000 SP 04 04
I 000001 1 J5 Ul
II 000010 2 117 2fl

' 000011 3 K7 3"
$ 000100 4 K5 4fl
% 000101 5 L6 511
& 000110 6 05 6fl . 000111 7 M7 7fl
(001000 8 M4 8fl
) 001001 9 M5 9fl
* 001010 1* L5 lfl*
+ 001011 N4 . .001100 K6
- 001101 8* 06 8"*

001110 K4
I 001111 16
0 010000 0 Of) Ofl
1 010001 I 111 16
2 010010 s 2fl 2N
3 010011 T 3" 3N
4 010100 u 4fl 4N
5 010101 v 511 5N
6 010110 w 6fl 6N
7 010111 x 711 7N
8 011000 y 8fl BN
9 011001 z 911 9N
: 911010 3* J7 3"*
; 011011 . NS K6
< 011100 L4
= 011101 4* N7 4f!l*
> 01 lllO N6
? 011111 116
@ 110000 - L7 06
A 1(10001 J ll lM
B 100010 K 2L 2M
c 100011 L 3L 3M
D 100100 M 4L 4M
E 100101 N 5L 5M
F 100110 II 6L 6M
G lOOlll p 7L 7M
H 101000 Q 8L BM
I 101001 R 9L 9M
J 101010 2* lM 211*
K 101011 % 2M L6
L 101100 3M
M 101101 6* 4M 611*
N lOlllO 5M
0 lOllll - 6M 06
p 110000 7M
Q 110001 A 8M ll
R 110010 B 9M 2L
s 110011 c 2N 3L
T 110100 D 3N 4L
u 110101 E 4N 5L
v 110110 F SN 6L
w 110111 G 6N 7L
x 111000 H 7N 8L
y lll001 I 8N 9L
z 111010 7* 9N 7f!l*

~ lllOll M4 K4
111100 N6

J 111101 5* M5 Sil*
,..., 111110 L4

llllll M6 -

* Indicates CD-30 Transaction Codes

FIGURE 3

This chart is designed to show conversions from CD-30 code into double frame EBCDIC
with an intermediate translation from CD-30 into System Ten USASCII, then into
double frame EBCDIC. The character shown in TBL 1 will result in the System Ten
USASCII bit configuration of a character that is the same as the CD-30 character
originally sent. The column under TBL 2 shows the translation pair of characters
necessary to get from System Ten USASCII, and the column under TBL 3 shows the
translation pair of characters necessary to translate truncated CD-30 code into
double frame EBCDIC.

Copyright © 1971, friden Divis.ion, The Singer Company 8-9 CODE CONVERT

~~mt TEN
ARACTER

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
s
T
u
v
w
x
y
z
SP
!
"
* $
%
&
I

!
*
+ . -
I
:
; .
>
7
@
[

]

<

ROUTINE LOG.IC

CD-30 TERMINAL CD-30 SYSTEM TEN USASCll 7-TRACK BCD EBCDIC SYSTEM TEN
OUTPUT TRUNCATED) USASCll USASCll 7~TRACK TAPE. CODE GE-400 SERIES (BINARY) CHARACTERS

FRIDEN BCD TAPE CODE (llOll!LE f1W£)

a: 1 6 5 4 3 2 1 754321 7654321 8A8421 BA8421 BA8421 01234567

6 0 5 6 5 A 8 2 11110000 0 0
1 ! 5 1 6 5 1 A 1 · 1 1 0 0 0 1 1 0

2 . 5 2 6 5 2 A 2 2 2 0 0 1 0 2 0
5 2 1 * 5 2 1 6 5 2 1 A 2 1 2 1 2 1 0 0 1 1 3 0

3 $ 5 3 6 5 3 A 4 4 4 0 1 0 0 4 0
5 3 1 % 5 3 1 6 5 3 1 A .4 1 4 1 4 1 0 1 0 1 5 0
5 3 2 " 5 3 2 6 s 3 2 A 4 2 4 2 4 2 0 1 1 0 6 0

3 2 1 I 5 3 2 1 6 5 3 2 1 A 4 2 1 4 2 1 4 2 1 0 1 1 1 7 0
4 ! 5 4 6 5 4 A 8 8 8 1 0 0 0 8 0

5 4 1 5 4 1 6 5 4 1 AB 1 8 1 8 1 1 0 0 1 9 0
7 6 1 Q 7 1 7 1 1 BA 1 A 1 11000001 1 L
7 6 2 R 7 2 7 2 2 BA 2 A 2 0 0 1 0 2 L
7 6 5 2 1 s 7 2 1 7 2 1 2 1 BA 2 1 A 2 1 0 0 1 1 3 L
7 6 3 T 7 3 7 3 4 BA 4 A 4 0 .1 0 0 4 L
7 6 5 3 1 u 7 3 1 7 3 1 4 1 B A 4 1 A 4 1 0 1 0 1 5 L
7 6 3 2 v 7 3 2 7 3 2 4 2 8 A 4 2 A 4 2 0 1 1 0 6 L
7 6 3 2 1 w 7 3 2 1 7 3 2 1 4 2 1 BA 4 2 1 A 4 2 1 0 1 1 1 7 L
7 6 4 x 7 4 7 4 8 BA 8 A 8 1 0 0 0 8 L
7 6 5 4 1 y 7 4 1 7 4 1 8 1 B A 8 1 A 8 1 1 0 0 1 9 L
7 5 1 A 7 4 2 7 4 2 8 2 B 1 B 1 1 1 0 1 0 0 0 1 1 M
7 5 2 B 7 4 2 1 7 4 2 1 8 2 1 B 2 B 2 0 0 1 0 2 M
7 2 1 c 7 4 3 7 4 3 8 4 B 2 1 B 2 1 0 0 1 1 JM
7 5 3 D 7 4 3 1 7 4 3 1 84 1 B 4 B 4 0 1 0 0 4 M
7 3 1 E 7 4 3.2 7 4 3 2 8 4 2 B 4 1 B 4 1 0 1 0 1 5 M
7 4 3 2 F 7 4 3 2 1 7 4 3 2 1 B B 4 2 1 B 4 2 B 4 2 0 1 1 0 6 M
7 . ,5 3. 2 1 G 7 5 7 5 BA B 4 2 1 B 4 2 1 0 1 1 1 7M
7 5 4 H 7 5 1 7 5 1 B A 1 B 8 B s 1 0 0 0 SM
7 4 1 I 7 5 2 7 5 2 B A 2 B 8 1 B 8 1 1 0 0 1 9 M

6 5 2 2 7 5 2 1 7 5 2 1 B A 2 1 A 2 BA 2 11100010 2 N
6 1 3 7 5 3 7 5 3 BA 4 A 2 1 BA 2 1 0 0 1 1 3 N
6 5 3 4 7 5 3 1 7. 5 3 1 BA 4 1 A 4 BA 4 0 1 0 0 4 N
6 3 1 5 7 5 3 2 7 5 3 2 BA 4 2 A 4 1 BA 4 1 0 1 0 1 5 N
6 3 2 6 7 5 3 2 1 7 5 3 2 1 BA 4 2 1 A 4 2 BA 4 2 0 1 1 0 6 N
6 5 3 2 1 7 7 5 4 7 5 4 BA 8 A 4 2 1 BA 4 2 1 0 1 1 1 7 N
6 5 4 8 7 5 4 1 7 5 4 1 BA 8 1 AS BA 8 1 0 0 0 B N
6 4 1 9 7 5 4 2 7 5 4 2 BA 8 2 AS 1 BA 8 1 1 0 0 1 9 N

5 SP 6 A A 01000000 0 4
1 6 1 1 B s 2 A 8 4 2 1 01011010 J 5

2 6 2 2 A 8 4 2 0 1 1 1 1 1 1 1 0 7
2 1 6 2 1 2 1 B 2 1 8 2 1 0 1 1 1 1 0 1 1 K 7

3 6 3 4 B 8 2 1 8 2 1 0 1 0 1 1 0 1 1 K 5
7 5 4 2 1 K 3 1 6 3 1 4 1 A84 A. 8 4 0 1 1 0 1 1 0 0 L 6

3 2 6 3 2 4 2 BA AS 2 01010000 0 5
3 2 1 6 3 2 1 4 2 1 8 4 8 4 2 1 0 1 1 1 1 1 0 1 M 7

4 6 4 s A84 AS 4 1 01001101 M 4
4 1 6 4 r 8 1 BA 8 4 s 4 1 0 1 0 1 1 1 0 1 M 5
4 2 6 4 . 2 s 2 8 8 4 s 4 0 1 0 1 1 1 0 0 L 5
4 2 1 6 4 2 1 B 2 1 BA A 0 1 0 0 1 1 1 0 N 4

6 5 4 2 1

'
4 3 6 4 3 B 4 AB 2 1 AS 2 1 0 1 1 0 1 0 1 1 K 6

7 4 3 1 6 4 3 1 s 4 1 B s 2 01100000 0 6
7 6 4 2 1 [4 3 2 6 4 3 2 s 4 2 B AS 2 1 AB 2 1 0 1 0 0 1 0 1 1 K 4

6 5 1 1 4 3 2 1 6 4 3 2 1 B 4 2 1 A 1 A 1 0 1 1 0 1 0 0 1 1 6
5 4 2 6 5 4 2 ~s 2 B 4 1 s 4 1 0 1 1 1 1 0 1 0 J 7
5 4 2 1 6 5 4 2 1 AB 2 l B B 4 2 s 4 2 0 1 0 1 1 1 1 0 N 5
5 ·4 3 1 6 5 4 3 1 AB4 1 s 2 1 AB 4 1 0 1 1 ·1 1 1 1 0 N 7
5 4 3 2 6 5 4 3 2 AB 4. 2 s 4 2 B 4 2 0 1 1 0 1 1 1 0 N 6
5 4 3 2 1 654321 AB 4 2 1 BAB 2 s 4 2 1 0 1 1 0 1 1 1 1 0 6

7 7 B s 4 s 4 0 1 1 1 1 1 0 0 L 7
7 5 4 2 1 7 5 4 2 1 BAS 2 1 B AS 4 1 B 2 01001101 M 4
7 5 4 3 7 5 4 3 BAB 4 AB 4 2 AS 4 2 1 0 1 1 0 1 1 1 0 N 6
7 5 4 3 1 7 5 4 3 1 BAS4 1 B s 4 1 AS 4 0 1 0 1 1 1 0 1 M 5
754321 7 5 4 3 2 1 BAS421 BA 8 2 01101101 M 6

5 4 3 6 5 4 3 AS4 B AS 4 2 AB 4 2 01001100 L 4
7 5 4 3 2 7 5 4 3 2 BAS 4 2 B 0 1 0 0 1 1 0 1 L 4

FIGURE 4

This chart shows the relative codes for the System Ten characters listed on
the left. Th.e second column shows the original 8-bit representation of this
character that the CD-30 sent. (For these characters, the .eighth bit is off;
therefore, no eighth bit is shown here.) The third column shows the character
that System Ten reads, because of the standard truncation of CD-30 code (bits
8 and 5 are ignored, bit 6 is accepted as the fifth bit in System Ten USASCII).
The remai.ning columns show the representation of the character on the far left,
in the type of code indicated at the top of each column.

HEX

F 0
F 1
F 2
F 3
F 4
F 5
F 6
F 7
F 8
F 9
c 1
c 2
c 3
c 4
c 5
c 6
c 7
c 8
c 9
D 1
D 2
D 3
D 4
D 5
D 6
D 7
D S
D 9
E 2
E 3
E 4
E 5
E 6
E 7
E 8
E 9
4 0
5 A
7 F
7 B
5 B
6 c
5 0
7 D
4 D
5 D
5 c
4 E
6 B
6 0
4 B
6 1
7 A
5 E
7 E
6 E
6 F
7 c
4 D
6 E
5 D
6 D
4 c
4 c

CODE CONVERT 8-10 5-15·71
Copyright© 1971, Friden Division, The Singer Compony

1.

SINGER
l'RIDl!N DIVISION

40-502 PRINTED IN U.S.A.

