Logic Manual

Manufacturing Information Systems
CODE CONVERT

il SYSTEM TEN ~ SINGER

THIS MANUAL SUPERSEDES
ALL PRELIMINARY VERSIONS

SINGER

FRIDEN DIVISION

Copyright® 1871, Friden Division,

1l The Singer Company

TABLE OF CONTENTS

Section O INTRODUCTION

Section 1 GENERAL DESCRIPTION

Section 2 HARDWARE REQUIREMENTS (none)
Section 3 CORE REQUIREMENTS AND ALLOCATION

Section 4 MODULE NARRATIVE

Calling Program
Code Conversion Program

E— -
-

(&)

Section LISTING AND FLOW CHARTS

(o))

LOADING AND OPERATING INSTRUCTIONS

Loading
ORGs
Operating Instructions

Section

ooy O
i1
- b -

~N

CONSTANTS

List and Explanation
General Purpose Constants
Conversion Tables
Relative Addresses
Buffers and Storage Areas
Special Definitions

System Switches

Conversion Tables -- How To Set Up

Section

NNNNNNN
{
EWWWN 2@

Section 8 ROUTINE LOGIC

1 Computing The Index Pointer
3 Functional Description

-3 Table Access
4 Calling Program

5-15-71 i .
Copyright © 1971, Friden Division, The Singer Company 1 CODE CONVERT

PREFACE

This module has been designed as an interdependent part of
Manufacturing Information Systems, but its modularity will
allow it to be used in other software systems where code
conversion is necessary.

The manual assumes reader familiarity with general System
Ten concepts. It is expected that the reader will be
responsible for interfacing a specific set of MIS modules
with the programming needs of a particular installation.

5-15-7%. . .
Copyright © 1971, Friden Division, The Singer Company 11 CODE CONVERT

INTRODUCTION

L

Determination of one's code conversion needs requires
functional analysis of how the code is to be handled within
the CPU, as well as recognition of the differences between
input code and output code. Such an analysis might include
the following points:

1. What type of code 1is generated by the input
terminal? (MIS models 100 and 105 generate System
Ten USASCII code; CD-30 terminals generate 8-bit
code that is truncated upon entry through the IOC
and is read in 6-bit form.)

2. Are there any elements of message processing that
will require the System Ten CPU to analyze message
content? (Input terminal partition programs may
need to interpret data at some fixed point in all
messages -- to determine terminal identification
number, for example.)

a. If data will require such interpretation, a

translation sequence (and specifically
associated table and constants) may need to be
constructed. Code resulting from this should be

in System Ten USASCII.

b. If the code is already in System Ten USASCIT,
translation for this function is not necessary.

3. What type of code is required as output code? A
translation sequence (and specifically associated
table and constants) must be constructed for each
differently coded portion of the message.

Once an installation's <code conversion needs have been
defined, it 1is the wuser's responsibility to write an
interfacing program that will accurately call the actual
code convert program. This document provides a listing of
the code conversion process and a detailed functional
explanation of the routine and its associated constants; it
also explains in detail how to <construct the <calling
program —-- constants and buffers required, and instructions
necessary to branch to the conversion program. The reader
is especially urged to become thoroughly familiar with the
process by which the index pointer is calculated, and with
the use of the three index registers.

5-15-71 0-1

Copyright © 197}, Friden Division, The Singer Company CODE CONVERT

GENERAL DESCRIPTION

The Code Conversion Module is a multi-purpose code trans-
lation program which is used to translate code of one type
into code of another type. Through correct referencing, it
can handle code generated by either CD-30 (truncated System
Ten USASCII) or MIS (System Ten USASCII) terminals, and
translate that code on a character-by-character basis into
output code that can be written in single-frame mode (such
as USASCII or BCD) or double-frame mode (such as EBCDIC).

Possible Possible
input output
code code
© CD-30 (truncated USASCII
System Ten
USASCII) : IBM-BCD
GE-BCD
MIS (normal
System Ten EBCDIC
USASCII)

(Note: if the installation has only MIS terminals, and the
output code desired is USASCII, this module is not needed.
MIS terminals generate data in System Ten code, which is a
subset of USASCII; hence any calls to the Code Conversion
program are superfluous.)

The user supplies three addresses: the first location of
the input area, the first location of the output area, and
the starting 1location of the table wused to make the
required cohversion. He also supplies the conversion table
and the 1length of the character string to be converted
during this translation.

The program operates by focusing on an index-referenced
character in the input area, computing another index value
equal to the binary value of that character (A=100001=33)
and adding that value (or double that value, for double
frame) to the table address. This method, which can be

called relative addressing, results in 'a correctly
translated character being placed in the proper output
location.

This process works whether the desired output code is to
be written in single-frame mode or double-frame mode. If
the output is to be double frame, the relative table
address will be to the first of two characters, which are
both placed in the proper output location.

5-15-71 1-1

Copyright © 1971, Friden Division, The Singer Company CODE CONVERT

HARDWARE REQUIREMENTS

There is no hardware specifically related to this module.

5-15-71 _
Copyright ©® 1971, Friden Division, The Singer Company 2-1 CODE CONVERT

CORE REQUIREMENTS AND ALLOCATION

The needs of the specific MIS application will determine
the total amount and allocation of core for this module.
Depending on the particular installation, the tables and
code conversion routine can be in Common and the calling
sequence in the input terminal partition, or the calling
sequence can be in any partition where a message being
processed will be accessible. Normally, the most efficient
use of core will be to store the code conversion tablel(s),
constants, and code conversion routine in Common, and the
input/output buffers, terminal constants, and calling
sequence(s) in partition.

For applications where only a single-character code
conversion is required (CD-30 to System Ten USASCII, or
Systen Ten USASCII to BCD, for instance), this module will
normally need a minimum of 408 1locations in Common
(including a single 64-character table) and 350 locations
in each input terminal partition.

For applications where only a double-character conversion
is required (System Ten USASCII from model 100 and 105
terminals to EBCDIC, for example), this module will
normally need ‘476 locations in Common (including a single
128-character table) and 790 locations in each terminal
partition.

Core requirements and allocation for <combinations of
single- and double-character conversion will depend on the
nature of the combination and the interfacing programming.

5-15-71 3-1

Copyright © 1971, Friden Division, The Singer Company CODE CONVERT

MODULE NARRATIVE

Calling program

The calling program resides in an input terminal partition.
Code coming from the input terminal that needs any analysis
by the System Ten CPU (other than character counts) must be
in System Ten internal USASCII. If the code is from a CD-

30 terminal, this requires a single-character code
conversion, in addition to whatever conversion might be
necessary for conversion into output code. If the code is
from a MIS model 100 or 105 terminal, the only translation
necessary will be into output code. (In a CD-30 message,

for instance, for the conversion into System Ten USASCII
these characters may contain the transaction. code and
terminal I.D.; the transaction code is used by the input
terminal module to check for wrong-length messages, while
the terminal I.D. and/or transaction code can be used for
transaction and terminal validation as well as message
routing.)

The number of characters to be translated are specified by
CCSIZE, then the calling sequences are set up according to
the need. The process should be repeated for a new string
of characters or a different translation.

Code Conversion Program

The table access routine facilitates <converting the
message, one character at a time, until the message string
is exhausted; it is also responsible for computing the
index pointer which accesses the conversion table at the
correct point for each character. To do this, the program
examines the bit structure of each character, using bits 7
and 5 as zone bits to reference a line of the table, and
bits 4 through 1 as numeric bits to reference a particular
position in that 1line. Then, depending on whether the
conversion is to be to single-character or double-character
code, the program places the correct one or two characters
in the appropriate location in the output area.

5-15-71 4-1

Copyright © 1971, Friden Division, The Singer Company CODE CONVERT

LISTING AND FLOW CHARTS

TITLE 'CODE CONVERT!
Y I I I I NN R P T Y YRR SRR PR R PR P Y F PP ERT T PP PRy g e e

»

L) CODE CONVERT TABLES

»
COMMON
ORG 37nC
»

T Y R T P T F Y Y R R R RTTE Y PR TR Y PR PR PR TP S P Sy e

*

TAL1Y DM
SIZE1 DM
1ADDR1 DM
OADDR1 DM

" TADDR1 DM
MC

MC

MC

MN

BC

TBL2 DM
SIZE2 OM
IADDR2 DM
OADDR2 DM
TADDRZ DM
MC
Mc
MC
MN
BRC

€« k¥ k¥ k¥ k¥ ¥ ¥ kK ¥ € ¥ ¥ ¥ k¥ ¥ x ¥ ¥ ¥ ¥ ¥« ¥ ¥ ¥ ¥ ¥ & kX & &«

T2 I I TP T TR R Y R R Y P PP P PR T e T P T ST P R P TR S T S TN T

EJFCT
»

FOR SINGLE CHARACTER OUTPUT,

CONFE CONVERSION SUBROQUTINE

Cé4

N3'006!
A '
A '
A'TBL1!

SIZE1,CCSIZE
TADDR1,X1
0ADDR1,X?
TADDR1,CC8+1
CC4+1(6),CC1(5)

FOR DOUBLE CHARACTER OUTPUT, ARGUMENTS AND CALLING SEGUENCE ARE:

c128

N3 200!
Al '
Al '
ArTBL2!

SIZE2,CCSIZE
TADDR2, X1
NDADDR?2, X2
TADDRZ2sCC10+1
CC4+11(6),CC2(5)

% TNITIALIZE TABRLE ACCESS ROUTINE

»

CcC1 MC CCR(35),CC7
BC CC3(5)
ORG »=5
CC7FRO DM . Ccro000!
CC7nNE DM C
cer MC CCO(45),CC7

»*

ARGUMENTS AND CALLING SEWUENCE ARE:

64 CHARACTER [|ABLE

3 CHARACTER LENGTH (1=3999)
HIGH URDER ADDR OF INPUT
HIGH ORDER ADULR OF QUTPUT
HIGH ORDER ADUR OF TABLE

SET LENGTH

SET RtG1 TO INPUT ADDR
SET REG2 TO OULTPUT ADDR
SET A=ADDR T0 TABLE
BRANCH AND L1NK

128 LHARACTER TABLE

3 CHARACTER LENGTH (1=999)
HIGH URDER ADDR OF INPUT
HIGH URDER ADDR OF QUTPUT
HIGH URDER ADUR OF TABLE

SET LENGTH

SET REG1 TO INPUT ADDR
SET REG2 TO CGUTPUT ADDR
SET A=ADDR TO TABLE

¥
L)
»
»
»
¥
»
»
»
'3
»
¥
»
¥
»
»
»
»
»
»
"
»
2
»*
"
»
»
»
»
BRANCH AND LINK M
»
»

SINGLE CHARACTER ENTRY

ZONFE

DOUBLE CHARACTER ENTRY

¥ FXIT FROM SUBROUTINE AT END OF FIELD

»

ccs § CCi16(1)sCCSIZE

CCs4 BC 0000(1),0000(0)

¥

DECREMENT INPUT FIELD SIZE

» CAMPUTE INDEX FOR NEXT INPUT CHARACTER

5

MC OP(1,1),CCZONE

5-15-71

Copyright © 1971, Friden Division, The Singer Company

" ISOLATE ZONE & DIGIT BITS

CODE CONVERT

LISTING AND FLOW CHARTS

MN CCZONE,CCDIGT X
MM CCZERO(1)s,CCZONE X
MC CCZERO(4)sX3 COMPUTE TNDEX
A CChIGBT,X3 X
C CCZONE,CCZERD X
BC CC7(1)sCCoL2) X
C CCZONESCCATY X
BC CCB(2) X
A CC&2,X3 X
RC CC71(5) X
(ol of A CCR2,X3 X
BC CC7(5%) X
ORG »=5
CCAT DM Crar COoMMERCIAL AT SIGN
CC14 DM N'ie6! TABLE INDEX
(o ofc -] DM N132¢ X
CCh A CC16sX3 X
¥ MOVF TABLE CHARACTER TO QUTPUT AREA
»
ccz DM Cu4s THIS AREA 1S LOUADED WITH
* : ONE OF THE FULLOWING ROUTINES
* UPON ENTRY TOU SUBROUTINE
E.IFCT

¥ SINGLE CHARACTER ROUTINE
»

CCR MC 0000(15s3),000P(22) MV CHAR FROM TABLE TOu QuUIPUT
A CC16(1)sX1 INCREMENT INPUT FOINTER
A CCi1s6(1)sX2 - INCREMENT OUTRPUT POINTEK
BC CC3(5) GO TO END OF FIELD TEST

»
* NDOURLE CHARACTER ROUTINE
™

cca A X3:X3 DOUBLE INDEX

ccen MC 0000(2,3),000P(s2) MV CHAR FROM TABLE TC CUTPUT
A CCia(1)aX1 INCREMENT INPUT POINTER
A CC32+1(1),X2 INCREMENT OUTPUT POINTEK
BC CC3(5) GO TO END OF FIELD TEST

»
* CONSTANTS AND WORK AREAS
»

0ORG »ub
CCST1ZF DM N3 LENGTH OF INPULT FIELD
CCNTGT DM cro DIGIT
CC4Rr nM NI4R! X
NORMAL
¥ .
% THESF INDFX REGISTEFRS ARE T0 GO IN THE SAME FPARTITION AS THE
CALLING SEQUENCES IN THE INPUT TERMINAL FPROGRAM.
»
ORG 0011
X1 DM Cé INDEX REGISTFER 1
ORG np21 .
X? DM Ck INDEX REGISTER 2
ORG 0031
X3 DM C4 INDEX REGISTER 3
EMD

) 5-2 5-15-71
CODE CONVERT Copyright © 1971, Friden Division, The Singer Company

LISTING AND FLOW CHARTS

ccl cc2
A y
TNTTTALTZE TNITIALTZE CODE CONVERSION SUBROUTINE
o
FOR SINGLE FOR DOUBLE
CHAR. MODE MODE
L -
A
DECREMENT
CCSIZE \
BY 1
NO
MOVE INPUT .
CHARACTER DIGIT |RESULT
T |
ZONE 0 0
1 1
MOVE (MN) 2 2
lz El
o 3 | 3
'DIGIT' 4 4
l 5 5
MOVE (MN) 6 6
0" TO 7 7
' ZONE*
l 8 8
9 9
MOVE.
10000" , _ 10
T0 3 ; n
l < 12
: = 13
ADD
DIGIT | > 14
T0 3 ? 15

ADD 16 ADD 32 ADD 48
T0 3 T0 3 10 3
4 y
MOVE TABLE
CHARACTER INCREMENT INCREMENT
b
T0 QUTPUT 18Y 1 2 BY 1
AREA
MOVE TABLE
INCREMENT
DOUBLE 2 | CHARACTERS ‘ E p| [NCREMENT
TO OUTPUT BY 1 2BY2
iam © 19 5-3 CODE CONVERT

Copyright © 1971, Friden Division, The Singer Company

LOADING AND OPERATING INSTRUCTIONS

Loading

Use any System Ten loading program as appropriate for the
installation. The tables, table access routine, and
associated constants will normally be loaded into Common,
unless there is room to duplicate them and place them in
each input terminal partition. If the table is’ in
partition, the A address referred to in CC8 (and/or CC10)
must be followed by a P to indicate that the address is in
partition rather than Common. The user's calling program
and its associated constants should be 1loaded into the
appropriate partition. (The tables must either all be in
Common or all in partition.) :

ORGs

The Common portion of this program may be ORGed at any
location that does not conflict with other specified areas.
In determining where to place this programming, the reader
is reminded to be cognizant of the order and placement of
other MIS system constants.

In input terminal partition programming, it is usually
convenient for the programmer to plan to wuse the three
index registers to hold the input address, output address,
and index pointer, respectively, in passes through this
module, and to initialize them appropriately.

Operating Instructions

There is no operator intervention required for this module.

5-15-71. _
Copyright ©® 1971, Friden Division, The Singer Company 6-1 CODE CONVERT

CONSTANTS

List and Explanation

The following are constants, buffers and storage areas
defined by DM statements. They should not necessarily be
loaded in the order presented here. An asterisk (*)
indicates that the user should define the term to fit his
own requirements.

GENERAL PURPOSE CONSTANTS

Label DM Explanation
CCZERO c'o000' Constant used for comparison.
CC16 N'16' Used to increment X3 by

value necessary to correctly
address the table being
used; also, first digit
('1') used to decrement
character counter (CCSIZE).

CC32 N'32' Used to increment X3 by
value necessary to correctly
address the table being
used.

ccus N'48' Used to increment X3 by
value necessary to correctly
address the table being used.

CCAT c'a’ "At" sign used in compare
operation to determine
which zone bits are on for
this character; results in
incrementing X3 by the value
necessary to correctly
address the table being
used.

CONVERSION TABLES

Label DM Explanation
*TBL1 ocel Table 1 (Single frame).

(see below)

*TBL2 0c128 Table 2 (Double frame).
(see below

CODE CONVERT

5-15-71 7-1
Copyright ©® 1971, Friden Division, The Singer C y

CONSTANTS

RELATIVE ADDRESSES |

Label Qg Explanation

*SIZE1 C3 Size (three digits, 001-999)
(User defined) of input character string.

*IADDR1 Al Beginning address of input
(User defined) character string.

*TADDR1 Al Address of Table 1.
(user defined)

*SIZE2 Cc3 Size (three digits, 001-999)
(User defined) of input character string,

conversion using Table 2.

*IADDR2 Al Beginning address of input
(User defined) character string, conversion
using Table 2.

*OADDR2 A4 Beginning address of output
(User defined) area to be used when
referencing Table 2.

*TADDR2 Al Address of Table 2.
(User defined)

7-2 5-15-71
CODE CONVERT Copyright © 1971, Friden Division, The Singer Company

CONSTANTS

BUFFERS AND STORAGE AREAS

Label DM Explanation
*X1 cy Index register 1; holds

input address.

*X2 (o]} Index register 2; holds
output address.

*X3 (o'} Index register 3; holds
pointer indicating where in
a specified table the char-
acter's translated value is;
also referred to as index
pointer.

CCSIZE N3 Counter used to keep track
of number of characters
being converted; successive-
ly decremented until it is a
negative value, then program
exits.

CCZONE N1 Storage area for input
character's zone bits.
Numeric bits are set at
'0000°'.

CCDIGT c'o'’ Storage area for input char-
acter's numeric bits. 2Zone
bits of CCDIGT are fixed at
'o1'.

SPECIAL DEFINITIONS FOR THIS DOCUMENT

Zone bits = bits 7 and 5 for any character.
Numeric bits = bits 4 through 1 for any character.
System Switches

None of the MIS system switches are referenced or modified
by the instructions of this module.

-15-71. . _
gopyvigm © 1971, Friden Division, The Singer Company 7-3 CODE CONVERT

CONSTANTS

Conversion Tables

The two tables referenced in this module are used to
translate code into single frame GE-BCD and double frame
EBCDIC.

1. Table 1 has been set up so that a single-character
translation from System Ten USASCII into GE-BCD code will
take place when the index pointer is correctly calculated.

Table 1 (64 characters)
'0<+4+4+K\:0=MLPLJ;Q !"#$%&'()-N>1/"

', 123456789ABCDEFGHIRSTUVWXY*?2<32"'

The single quote mark following the ampersand in the first
line must be modified when assembled. (The assembler
requires two single quote marks so that it can distinguish
between a quote mark used as a delimiter and a quote mark
used as a character.)

The table is addressed by using an index pointer computed
from the numeric and zone bits of the input character and
added to the starting address of the table, thus giving the
location of the translated character. The character at
this address is placed in the output area (with single-
character conversions, the input and output areas can be
the same).

2. Table 2 has been set up so that a double-character
translation from System Ten USASCII into EBCDIC will take
place when the index pointer is correctly calculated.

Table 2 (128 characters)
'O4J507K7KSL605SM7MUMS5LSNUK606KL 16"
'00102030405060708090J7N5LUNTN60O6 '
'L71L2L3L4LSL6L7L8LOL TM2M3M4M5M6EM '

' 7M8MIM2N3NUNSNEN7NSNINMUNGMSL 4M6 '

Note: for this document, zero is represented as 0, the
letter as O.

7-14 5-15-71.

CODE CONVERTY Copyright © 1971, Friden Division, The Singer-Company

CONSTANTS

This table is addressed by doubling the index pointer
computed from the binary representation of the System Ten
character, and adding this value to the starting address of
the table, thus giving the beginning address of the
translated character. Since this conversion is to be from
one character into two, this character and the one
following it must both be placed in the output area --
which must be separate from the input area so that there
will be sufficient room for the output string.

For example, suppose the character we wish to translate has
a System Ten binary value of 011001 (the character is 9).
The code conversion program determines the index pointer by
isolating 2zone and numeric bits as described in the next
section, then it picks up the 50th and 51st characters (90)
and places them in the output area.

5-15-7%. .
Copyright © 1971, Friden Division, The Singer Company 7-5 CODE CONVERT

ROUTINE LOGIC

Computing the Index Pointer

S-15-71

Copyright ® 1971, Friden Divisi

The Singer Company 8-1

The index pointer for referencing the code conversion table
is computed in index register 3 (X3). The computation
process involves isolating the zone bits (bits 7 and 5) and
the numeric bits (bits 4 through 1) for each character.

Zone bits of 00 mean one of the addends to X3 will be 0;
zone bits of 01 mean this addend will be 16; zone bits of
10 mean this addend will be 32; zone bits 11 mean this
addend will be 48. The decimal equivalent of the numeric
bits for this character form the other addend to X3, such
that this index pointer now represents a given number of
positions in a table. If this is to be a single-character
conversion, X3 is left at this value; if it is to be a
double-character conversion, X3 is doubled. The resulting
value in X3 is used as an address relative to the beginning
location of the conversion table being used.

Since the process by which the value in the index pointer
(X3) 1is calculated is the same for all characters, it then
becomes a relatively simple task to set up the conversion
tables such that, when the table is accessed , the index
pointer will indicate precisely where in the table the
correctly translated character or characters will be.

The length modifier on the Move Character instruction that
moves the correct character into the output area is
specified as 1 for single-character conversions, or 2 for
double-character conversions. Therefore, in a double-
character conversion, the <correct .combination of two
characters must begin at the 1location which will be
specified by the value in the index pointer (X3).
Regardless of the type of output code desired, or the
number of conversions to take place within a program,
organization of a conversion table depends on the proper
calculation of the index pointer, the process being the
same for all tables. This requires that the bit structure
of any output code must increment in the same order as the
bit structure of the input code.

The programmer should keep in mind that the whole purpose
of a conversion table is to convert characters at the bit
structure level. Thus it becomes his task to use the table
as a translation medium, so that an incoming character's
bit structure, when wused to calculate the index pointer,
will correctly reference a System Ten USASCII character (or
pair of characters) that will produce the desired output
bit structure, regardless of the type of output code
desired.

CODE CONVERT

ROUTINE LOGIC

SYSTEM TEN TO WRITE BCD TO WRITE GE
CHARACTER CODE EQUIVALENT EQUIVALENT
m »
SP 000000 0 010000 0 010000
H 000001 d 101010 o+ 1M
" 000010 SP 000000 + 111110
000011 + 001011 + 001011
$ 000100 K 101011 K 101011
% 000101 < 011100 \ 111100
& 000110 P 110000 : 011010
! 000111 s 001100 [101111
(001000 < 011100 = 011101
) 001001 \ 111100 M 101101
* 001010 L 101100 L 101100
+ 001011 P 110000 P 110000
. 001100 3 011011 [111011
- 001101 [100000 J 101010
. 001110 [001110 3 01101
/001111 1 010001 Q 110001
0 010000 * 001010 SP 000000
1 010001 H 000001 . 000001 -
2 010010 " 000010 " 000010
3 o1001 # 000011 # 000011
4 010100 $ 000100 $ 000100
5 010101 % 000101 % 000101
6 010110 & 000110 & 000110
7 0101M ! 000111 ! 000111
8 011000 (001000 (001000
9 011001) 001001) 001001
: 011010 - 00yl01 - 001101
3 01101 N 101110 N 101110
< 011100 + 111110 > 011110
= 011101 + 001011] 111101
> 011110 . 001110 . 001110
? oM z 111010 /001111
@ 100000 N 001100 ’ 001100
A 100001 Q 110001 1 010001
B 100010 R 110010 2 010010
C 100011 S 11001 3 010011
D 100100 T 110100 4 010100
E 100101 U 110101 5 010101
F 100110 v 110110 6 . 010110
G 10011 W 110111 7. 01011
H 101000 X 111000 8 011000
I 101001 Y 111001 9 011001
J 101010 A 100001 A 100001
K 101011 B 100010] 100010
L 101100 c 100011 C 100011
M 101101 D 100100 D 100100
N 101110 E 100101 E 100101
g 101 F 100110 F 100110
P 110000 G 100111 G 100111
Q 110001 H 101000 H 101000
R 110010 I" 101001 1 101001
s 1ioon 2 010010 R 110010
T 110100 3 010011 S 110011
U 110101 4 010100 T 110100
v 110110 5 010101 U 110101
W 110 6 010170 v 110170
X 111000 7 0101M w1101
Y 111001 8 0/1000 X 111000
Z 111010 9 011001 Y 111001
[1mon] 111101 * 001010
5 111100 > 011110 ? oM
111101 M 101101 < 011100
+ 111110 SP 000000 e 100000
<« 1Mm SP 000000 Z 11010
FIGURE 1

To read this chart, start with the System Ten USASCII character and its bit
structure in the first column. The bit structure for this character in either IBM
or GE-BCD is indicated at the same level in columns 2 and 3. The character on the
left in each of these two columns is the System Ten USASCII character which has
this bit structure.

8-2 5-15-71
CODE CONVERT Copyright © 1971, Friden Division, The Singer Company

- ROUTINE LOGIC

For instance, suppose a character coming from the Job
Information Station (which sends messages in System Ten
USASCII) is an A, with a bit structure of 100001, and that
the desired output code 1is GE-BCD. The task of the
programmer is to design his conversion table such that,
when the index pointer is calculated in the normal fashion,
the character pointed to has a bit structure 010001,
equivalent to a GE-BCD character A. This happens to be a
System Ten USASCII digit 1. See Figure 1.

As another example, suppose we have a System Ten USASCII
character 4, which we wish to translate into IBM-BCD. The
bit structure of the character to be translated is 010100.
To write an IBM-BCD 4, we need a character with a bit
structure of 000100; in System Ten USASCII this is a $.
Thus the index pointer would be calculated to point to a
location 20 characters after the beginning address of the
table (zone bits 01 mean the table 1level starting at
relative 1location 16, plus 4 1locations for the numeric
bits), at which 1location is the System Ten USASCII
character §.

Truncated CD-30 code presents the same sort of problem,
since it comes into the System Ten CPU in 6-bit form. A
programmer should remember, however, that in order to
correctly analyze message content from the CD-30, the
System Ten CPU must read those characters in its internal
USASCII subset; however, other portions of the message can
be directly translated into output code if content analysis
is not needed at this point. See Figure 2.

The only difference in procedure in converting to double-
frame code (EDCDIC) is that the index pointer will point to
the first of two characters, both of which will be written
in a combined form to produce the desired 8-bit EBCDIC
character. The two characters will have a total of 12
bits, of which EBCDIC will need only 8; hence to get the
proper 8 bits, the tape controller will drop the zone bits
of both characters and write in double-frame mode,
resulting in a single 8-bit character comprised of the
numeric bits of the first character (low-order bits of the
EBCDIC character) and the second character (high-order bits
of the EBCDIC character). The ninth bit will be added to
the character frame as either a 0 or 1, in accordance with
parity declaration. The parity (ninth) bit is added by the
tape or disc controller.

Functional Description

This module consists of two parts: the table access routine
and user-supplied tables in Common, and the wuser-supplied
entry from input terminal partition.

5-15-71. 8-3

Copyright © 1971, Friden Division, The Singer Company CODE CONVERT

ROUTINE LOGIC

TO WRITE CD-30 TO WRITE FROM CD-30 TO WRITE FROM CD-30
EQUIVALENT TO BCD T0 GE
e —————— e — T — N . B B AL W A
e s |
SP 000000 0 010000 0 010000
1 010001 ! 000001 ! 000001
2 010010 Y 000010 " 000010
3 010011 # 000011 # 000011
4 010100 $ 000100 $ 000100
§ 010101 % 000101 % 000101
6 010110 & 000110 & 000110
7 0101 ' 000111 ! 000111
8 011000 (001000 (001000
9 011001) 001001) 001001
T1 010001 t 000001 ! 000001
NA SP 000000 0 010000
NA SP 000000 0 010000
T8 011000 001000 (001000
NA SP 000000 (] 010000
NA SP 000000 0 010000
0 010000 * 001010 SP 000000
/001N 1 010001 Q 110001
S 110011 2 010010 R 110010
T 110100 3 010011 S 110011
U 110101 4 010100 T 110100
vV 110110 5 010101 v 110101
W 110 6 010110 v 110110
X 111000 7 0101 W 110111
Y 111001 8 011000 X 111000
Z 101 9 011001 Y 111001
73 010011 # 000011 # 000011
, onon 3 0110m [111011
NA SP 000000 0 010000
T4 010100 $ 000100 $ 000100
NA SP 000000 0 010000
NA SP 000000 0 010000
- 001101 @ 100000 J 101010
J 101010 A 100001 A 100001
K 101011 B 100010 B 100010
L 101100 ¢ 100011 c 100011
M 101101 D 100100 D 100100
N 101110 E 100101 E 100101
g 1011 F 100110 F 100110
P 110000 G 10011 G 100111
Q 110001 H 101000 H 101000
R 110010 I 101001 1 101001
T2 010010 . " 000010 " 000010
% 000101 _ = 011100 \ 111100
NA SP 000000 0 010000
T6 010110 i & 000110 & 000110
NA SP 000000 0 010000
NA SP 000000 J 101010
NA SP 000000 0 010000
A 100001 Q 110001 1 010001
B 100010 R - 110010 2 010010
c 10001 S 110011 3 010011
D 100100 T 110100 4 010100
E 100101 U 110101 5 010101
F 100110 v 110110 6 010110
G 1001M W 110 7 010111
H 101000 X 111000 8 011000
1 101001 Y 111001 9 011001
7 01011 ' 000111 ! 000111
. 001110 [1mon 3 011011
NA SP 000000 0 010000
T5 010101 % 000101 % 000101
NA SP 000000 0 010000
NA SP 000000 0 010000
FIGURE 2

The first column of this chart shows the character that was sent by the CD-30
Terminals (if the CPU recognizes a character of bit structure 010010 as a 2, it
started out in the CD-30 terminal as an S, with bit structure 00110010). Thus, the
first column shows CD-30 truncated characters. Columns 2 and 3 show the bit
structure for the System Ten character in IBM and GE-BCD. The character at the left
of each of these two columns is the System Ten representation of the CD-30 character
required to get this bit structure.

' 515-71
CODE CONVERT 8-4 Copyright © 1971, Friden Division, The Singer Company

ROUTINE LOGIC

Table Access

CC1 and CC2 represent, respectively, the single-character
and double-character entry points. 1In either case, the MC
instruction results in a set of processing instructions
(cc8 for single character, CC9 for double character) being
moved into the processing area at CC7. '

The instruction at CC3 uses the leftmost digit of CCl16 --
in this case, 1 -- to decrement the counter in CCSIZE which
tells how many characters are yet to be translated in this
character string. :

CC4's A operand holds the return address stored there by
a Branch and Link instruction from the wuser's routine,
which is wused . only if all characters for this stage have
been translated; its B operand simply passes control on to
the next instructions.

Then the routin> isolates zone and numeric bits, by moving
one character at a time from the input area into first
CCZONE, then CCDIGT, fixing the numeric bits of CCZONE to
0000 and the zone bits of CCDIGT to 01. The numeric value
is stored in CCDIGT: the bit configuration in CCZONE will
then result in 0, 16, 32, or 48 being added to X3. X3 then
holds a number representing a position in a conversion
table where a particular character's translated value is to
be found.

Next, the routine processes whatever instructions have been
placed in the subroutine buffer area in CC7. If this is to
be a single-character translation, the instructions
starting at CC8 are there; if double <character, those
starting at CC9 are there. Either set operates the same
way, except that, if this 1is to be double-character
conversion, the value in X3 is doubled first. The
character at the address indicated by X3 is moved to the
output area 1location specified by the value in X2; X1 is
incremented by 1; X2 is incremented by 1 if this is single-
character conversion, or by 2 if it is double-character
conversion, and the subroutine exits to CC3 and back to the
calling program in partition when all characters have been
converted.

Calling Program (user’s)
This routine is to be supplied by the user. What will be
explained here are two general approaches which can be

adapted to convert single- or double-character messages.
The specific programming must be done by the user.

5-15-71. _ .
Copyright © 1971, Friden Division, The Singer Company 8-5 CODE CONVERT

ROUTINE LOGIC

SINGLE CHARACTER

The calling sequence required to effect a single-character
translation is illustrated below, step by step. A brief
operating description follows each statement.

MC , IADDR1, 11

This instruction loads - a four-position address constant
defining the leftmost position of the input string into
index register 1.

MC OADDR1,21

This instruction loads a four-position address constant
defining the 1leftmost position of the output area into
index register 2. If desired, this address constant may be
the same as that loaded into index register 1, in which
case the translated characters will overlay the input
characters.

MN TADDR1,CC8+1

This statement sets the A address of a move-character
instruction, which selects the translated characters from
the translate table, to the leftmost position of the 64—
character translate table.

MC INLENG,CCSIZE

This instruction sets CCSIZE, a three-character counter, to
the length (001-999) of the input character string.

BC . cca+1(6),cc1(5)

This instruction has two effects: the address of the
instruction following it is loaded into the A operand at
CC4, there to be used as an exit point when all characters
involved in this stage of translation are processed; and it
branches to the single-character entry point at CC1.

8-6 ' 515-71

CODE CONVERT Copyright © 1971, Friden Division, The Singer Company

ROUTINE LOGIC

A subroutine calling sequence and associated declaratives,
which could be wused to convert a 32-character Dbuffer
(BUFFER) containing CD-30 transmission code to its
equivalent in System Ten internal USASCII, is illustrated

below.
BUFFER DM C32
TBL DM oce4

DM C32'B123456789BBBBBB0/STUVWXYZE' 'BEB'
DM C32'-JKLMNOPQRB*EBKBBABCDEFGHIK .BBEDB'
BUFADR DM A'BUFFER'
TBLADR DM A'TBL’
SIZE DM N'032'

MC BUFADR, 11
MC BUFADR, 21
MN . TBLADR,CC8+1
MC SIZE,CCSIZE

BC ccu+1(6),cCc1(5)

The contents of BUFFER before and after translation are
given below.

Before: 3XY2¥BY2BF43GU43¥KVIFDBSFTUBSFESUI3

After: THIS IS OUTPUT FROM CODE CONVERT

DOUBLE CHARACTER

The calling sequence required to effect a double -character
translation is illustrated below, step by step. An
explanation follows each step. The reader will note that
it differs from the single-character translation process
only in that the input and output addresses for this stage
are in X1 and X2 respectively, the address of Table 2 is
placed in the A operand of the Move Character instruction
at CC10, and the branch is to the double-character entry
point at CC2.

MC IADDR2, 11

This instruction loads a four-position address constant
defining the 1leftmost position of the input string into
index register 1.

MC OADDR2, 21

This instruction loads a four-position address constant
defining the 1leftmost position of the output area into
index register 2. This address must reference a different
area than index register 1 does.

5-15-71. . ; -
Copyright © 1971, Friden Division, The Singer Company 8-7 CODE CONVERT

ROUTINE LOGIC

MN TADDR2,CC10+1

The above statement sets the A address of a move character
instruction, which selects translated characters from the
translate table, to the 1leftmost position of the 128-
character translate table. Observe that the B operand of
this statement is different from the corresponding
statement in the single-character calling sequence.

MC INLENG,CCSIZE

This instruction sets CCSIZE, a three-character counter, to
the length (001-999) of the input character string.

BC ccu+1(6),cc2(5)

The above instruction has two effects: the address of the
instruction following it is loaded into the A operand at
CC4, there to be used as an exit point when all characters
involved in this stage of translation are processed; and it
branches to the double-character entry point at CC2.

A subroutine calling sequence and associated declaratives,
which could be used to produce the two-character (double
frame) codes required to write the contents of BUF1 in
EBCDIC on the Model 45 tape drive, are illustrated below.

BUF1 DM C29'THIS IS INPUT TO CODE CONVERT'
BUF2 DM C58

TBL DM 0Cc128
DM C32'04J507K7K51605M7MUMSL5SNUK606K4 16"
DM C32'00102030405060708090J7N5LU4N7N606 '

DM C32'L71L2L3L4LSL6L7L8LIL IM2M3M4MSM6EM'
DM C32'7M8MIM2N3N4UNSN6N7NSNINMUANGMSLUMG '
BUFAD1 DM A'BUF1' '
BUFAD2 DM A'BUF2'
TBLADR DM A'TBL'
SIZE DM N'029

MC BUFAD1, 11

MC BUFAD2,21

NM TBLADR,CC10+1
MC SIZE,CCSIZE

BC Cc4+1(6),cc2(s)

The contents of BUF2 following execution of code convert
will be:

'3NS8LI9L2NO49L2NO49LSM7MUNINO4L3N6MOU3L6MULSLOY3L6M5SMSNSLOM3N

_ 5-15-71
CODE CONVERT 8 8 Copyright © 1971, Friden Division, The Singer Company

ROUTINE LOGIC

FROM SYSTEM TEN

SYSTEM TEN cD-30 FROM CD-30 TO

CHARACTER CHARACTER CODE | iRACTER TBL mnoTt;L:FRN‘E DOUBLE FRAME TBL 3

I E—
~

sp 000000 sP 04 04
1 000001 1 J5 19
" 000010 2 97 29
' 000011 3 K7)
$ 000100 a K5 ap
% 000101 5 L6 5p
& 000110 6 05 69
' 000111 7 M7 7
(001000 8 e 8
) 001001 9 M5 99
. 001010 * L5 19*
+ 001011 N4
, 001100 K6
: 001101 g+ 06 8o
. 001110 K4
/ 001111 16
0 010000 0 0p 0p
1 010001 / 19 16
2 010010 s 29 N
3 010011 T » N
3 010100 U ap an
5 010101 v 59 SN
6 010110 W 69 6N
7 010111 X 79 N
8 011000 Y 8p 8N
9 011001 z 9p 9N
: 911010 3* 37 3P
; 011011 \ N5 K6
< 011100 L4
= om0 4 N7 ap+
> 011110 N6
? o 96
e 110000 - L7 06
A 160001 J L ™
B 100010 K 2L 2M
c 100011 L 3L M
D 100100 M 4L 4aM
E 100101 N 5L 5M
F 100110) 6L 6M
G 100111 P L ™
H 101000 Q 8L 8M
I 101001 R 9L oM
J 101010 2% i 20*
K 101011 % 2M L6
L 101100 M
M 101101 6 ay 60*
N 101110 5M
0 101111 - oM 06
p 110000 ™
Q 110001 A 8M i
R 110010 8 oM 2
s 110011 c 2N 3
T 110100 D N a
v 10101 £ an 5L
v 110110 F 5N 6L
W 110111 6 6N L
X 111000 H N 8L
Y 111001 1 8N oL
z 111010 ™ 9N 70
[1101 : . M4 K4
\ 111100 N6
] ol 5+ M5 5p*
~ 111110 L4
~ nnn M6

* Indicates CD-30 Transaction Codes

FIGURE 3

This chart is designed to show conversions from CD-30 code into double frame EBCDIC
with an intermediate translation from CD-30 into System Ten USASCII, then into
double frame EBCDIC. The character shown in TBL 1 will result in the System Ten
USASCII bit configuration of a character that is the same as the CD-30 character
originally sent. The column under TBL 2 shows the translation pair of characters
necessary to get from System Ten USASCII, and the column under TBL 3 shows the
translation pair of characters necessary to translate truncated CD-30 code into
double frame EBCDIC.

5-15-71. ‘ 8-9

Copyright © 1971, Friden Division, The Singer Company CODE CONVERT

ROUTINE LOGIC

CrNMSENONRNORNR~NMNMET OO~ AN ONOANMNMTNONOCOCICILOALCOOAOOLOWANOd—TWWWLOOWOOO

%;srsn TENW
ARACTER

>
r.“.. e e L L LML LLOOOLOLLLCLLLOOLOCLOCCDWWWWWWWLWSUONNODOLNANSTVONLSODOTONDNOOVNTONO T
-_
8¢
g
=5t CO0O00OO00OOAduddd e d el I EEEEFEEEE T E R EE Z R ORNNOONNT N O OTONNNOONT OO
558
~N O~ OrOFO~OrrOrO~O~Orr O~ OrOr OO~ O~~~ O~ ~OOrr 00—~ O~ 0000~~~ — O
O OO0~ OO00~rO0FrmO00rr OO0~ 00— O0~—O00r~—~rr—ORCOCOrrOrCOr mrrerOO~O00 OO
o W COO0Or OO0~~~ OO0~ OO0, e OO0~ OCmOr mrr e e OCOO O i~ ——
MW ¢ OO00O0OCOOO~—OO0O00O0Or 0000000~ OO0 Ormr e Or O —————————————
2= o - =) — o Orrmrr e O~~~ 0000 00~ 00 —~000
Wweo N - o o — OCOr OO~ 0O000 QO rrrm e O~O~ 00
- - - — — = = = e = D P o = P e P = e = o P = = T =
o ~- - — — CO0COCO00DOOOO0OOOOCOOOCOOO0OOO000
-+ e L T T U
m o~ NN NN NN NN NN NN NN NN NN NN o N NN o~ N~ NN oo~
& < s L XX St CE R << < oo ST T o
© 0 < o 0 © W EMOWWBWOM C0WOW €0 O OO CO €O &0 €O 6O 0
W < L L L L L L4 EL L L L LT L L << < <L << < L L 44
W - DODOOODOONDODONODE M@ OO O DOOMO M MOm o @
Sw — L I T T R R - — ———— = - -
mc L3 ot TTeT St <<t o Seo Tt o SSTT
MM © @ © ™ 0 © © M @ M MM O OEOEEMPOWDD
-.IT. < <L <L <C L € <L L L <C T L L L L L L L= L L < << <<
~ © €000 e0 D 00000 O R F0 60 OO0 (0 60 60 C0 0 «© @ o mm®m mo) @ © o o
— L T T T e el T e
ﬂcm < LR cs st st o< <<t T gt
BWE L © €0 €O €O €O O €O O O © 0 €0 €0 €0 C0 €0 €0.CO C0 CO CO O WD O €0 €O €0 &0 O O
%FW < I LI CLL L LTI LT LI LTI
-3 OCOOMOOOOOOMOMOOOROMMMMNM0NN [--F--F.-F--F--] -1
— L i R a a L i e e
— ~ NN NN NN NN NN NN oo NN ~N oo NN NN NN NN o~ o~ o~
m el MmMmomm MmHmm Mmoo MmO m MoMmMmm ‘ MmMmmmm Mmmnm mMmMmm e
] - << eSS TTS << TLIL IS LSS ST ST
m w LWLV WD WDLWN WL WLWWLWWDLW OO WO WD WD LWL WD
© woovwovwvwwwow [-X-XV-JV-JV-RV-RV. Y- RT-RV- RV JV-RT.RV-RV-RV. V. RV- R YT ¥V.] o
= - L R T e — R T I T a al l t
T.nu” ~N NN NN NN NN oo oo~ oo~ oo o~ NN NN ooy NN NN N~ o~ o~ o~
] L << TS << TeIISLIST S ISY SIS TS
.ﬂ w LWLV LWL WLWLW WLV WLLW WY WW O WL O WD WO WD N
~ L i N N N Y T o LN NN Y Ll ol ol Y ~
=
o
gk
Wm O =z HARD- —nOENFD>EX>COO O T (O OO I~ OO 5 ~ .
f= 1
&
[=
- - — e e e e e e e e - - - - - — — -
mms] MmMmem™ MmO m MmMMHMmm MmMOHOOH™
woezgs << << < o< << < - <
Omm w w 0w wn wy w w0 Wn w mn.un w w wwn wn uw w wy
@ gfe o [XCXV-JrRV-YV-RV-RV-R7) : [-YV-RU-JT-RV Xr-NV-FVY w0 wo
w ‘7 PSISISISINISISISISISINIS NSNS SN ~ e~
©
0123456789ABCDEFGH1JKLMNOPQRSTUV”XYZWI.N FPIR B e wrrmE + ma) N sa] AR v

FIGURE 4

.
9

(For these
therefore, no eighth bit is shown here.) The third colum shows the character

1S acce

ing columns show the representat
ted at the top of each column.

. o
—
V) =t Y
) Y- -
S 4 Y g D
oL O L v
s P W GE
(7]
Q Y= o [
+ O ©
(7] [3 =3)]
o= bpe 0oL
— 0.0 -+
- [
r LS55
ewh [R =
L8229 4%%
o
o n o 4= D
~ o o Q
< - < ©
Nl = W = - S
Cmt © o]
e
[= [- O
L+ n < QO
Fogvecss
=]
£ 1+ S 4D
[TR e8] S b
+ < D b G
QVJ..l.M“ d-._lo
[V B <X~ Vv S
— O ©.c O
[=] T 4D e
= <
+ < n
- o
L 7]
(=] =
Y [T]
<A
% O
o Y
o (=]
(8]
(]
()] (%]
> b=
a3
(8]
[
=]

i
The second. column shows the ori

+

n &

[}
+ 7] © [
< (8]
~— o + o
m o o ©

1 £ =

(=] (7] L
[J) (&) T =
= © O (]
- ()] Qo ©

= Su Su [=]
m + n"m (8]
(=] + QO 4=
= < = o= [=]
(7] = N

+- mm (4
- a c o
S e S 20 = >
T4+ @ d m+u
=k >0
OwLo v mn»
O < =
7] S 4= o o+
- QL oS Q
L OO = L o<
-4+ O 4+ 00 b= or

5-15-71

Copyright © 1971, Friden Division, The Singer Company

8-10

CODE CONVERT

SINGER

FRIDEN DIVISION

40-502 PRINTED IN US.A.

(%

