REFERENCE MANUAL

DMF COMMON-RESIDENT LIOCS
(LIOCS-C)

- SYSTEM TEN couvuren v SINGER

SINGER

SSSSSSSSSSSSSSSS

REFERENCE MANUAL

DMF COMMON-RESIDENT LIOCS
(LIOCS-C)

- SVSTEM TBN Seuvren o SINGER

PUBLICATION NO. 40-340
CONTROL NO. B55U4PA
FEBRUARY 1972

SINGER

BUSINESS MACHINES

2350 WASHINGTON AVE.
*A trademark of the Singer Company. SAN LEANDRO, CALIF. 94577

Copyright © 1972, The Singer Company PRINTED IN U.S.A.

All rights reserved throughout the world.

PREFACE

2/72

This manual describes features provided by common-resident LIOCS
(LIOCS-C) that augment the capabilities of partition-resident
LIOCS described in the DMF Reference Manual. Functions not
described in this manual operate in the manner specified in the
DMF Reference Manual.

iii LIOCS=C

TABLE OF CONTENTS

2/72

Section 1 INTRODUCTION

ADDITIONAL CAPABILITIES PROVIDED BY LIOCS-C .ceeee
DIFFERENCES BETWEEN LIOCS-C AND PARTITION LIOCS ..
CHOOSING BETWEEN COMMON AND PARTITION LIOCS

[
1
w0+

Section 2 LIOCS-C

OPERATION ccceecececcesscscossessscnscosscsscoscns 2
FILE CONTROL BLOCKS ¢coececerccoscscscconscnscnses 2
SUBROUTINES ccecececoacesccsconsenssscoosonssascnsecns 27
CONSIDERATIONS «ececencecccoscosscoascsscnssnscnns 2

Appendix A LIOCS-C STATUS CODES

Appendix B FCB MACRO PARAMETERS

v LIOCS=C

Section 1
INTRODUCTION

ADDITIONAL CAPABILITIES PROVIDED BY LIOCS-C
DIFFERENCES BETWEEN LIOCS-C AND PARTITION LIOCS
CHOOSING BETWEEN COMMON AND PARTITION LIOCS

INTRODUCTION

ADDITIONAL CAPABILITIES PROVIDED BY LIOCS-C

2/72

LIOCS-C

differs from its partition-resident counterpart in

capability, location, and user interface. The most significant
additional capabilities are:

1.

Multi-sector records are supported. While the only
limit on record length is the amount of core available
for the I/0 area, any record that is to be accessed by
RPG, or is to be sorted, should not exceed 940 data
characters (10 sectors).

Record contention, i.e., the attempt by two or more
partitions to update the same record, can be prevented
by utilizing two new operations as follows:

_GETUP (_GET for update)
and
_READU (_READ for update)

Disc arm movement caused by switching to another
partition during a multi-sector I/0 operation, is
prevented by "locking" the disc drive to the controlling
partition until the operation is complete. This feature
can reduce delays in multi-partition systems that are
caused by extraneous arm movement.

_READ now locates and retrieves the data record in an
indexed-linked sequential file, that is, whether or not
there is a one-for-one entry in the file index.

LIOCS-C contains an overlay routine to fetch or 1load
modules, by file name, that are stored in SYSPOL.

A "system lock" is provided to prevent conflict between
partitions that are simultaneously allocating free
sectors to files in the same pool.

The bulk of LIOCS-C code is located in common and is re-entrant,
that is, it allows concurrent use by many partitions. LIOCS-C

exits

and switches, which are modified during execution, reside

in locations 750-999 of each partition.

1-1 LIOCS=C

INTRODUCTION

DIFFERENCES BETWEEN LIOCS-C AND PARTITION LIOCS

LIOCS=C

The user interface to LIOCS-C differs from partition LIOCS as

follows:

1.

LIOCS-C is not assembled with wuser programs. The
programmer need only include the common-LIOCS interface
macro (CLIOIN) in his program, and all necessary
references to the LIOCS-C transfer vector in common will
be generated. The transfer vector contains the entry
points for all LIOCS-C operations.

The file control blocks (FCB's) are 20 characters larger
for LIOCS-C. Linked sequential files thus have a 94
character FCB. An FCB macro (FCB) is supplied that will
generate FCB'a, and it is strongly recommended that this
macro be used exclusively to generate FCB's.

A new open (OPENC), close (CLOSEC), and conversational
loader (C_LOAD) are used with LIOCS-C. These modules,
in addition to LIOCSC and P_COMM, must all reside in
SYSPOL.

The recommended assembler for LIOCS-C is Assembler II;
this allows the programmer to use the macros that are
supplied for generating FCB's, transfer vector
references, and calling sequences (GET, PUT, and so on).
These must all be hand-coded each time for use with
Assembler I. In addition, future changes to LIOCS-C may
require modifications to the FCB's, transfer vectors,
and so on. By using Assembler II and the supplied
macros, implementing such a change would require only
refiling the affected macros and reassembling. When
using Assembler I, each program would require program
changes that must be provided by hand, thus increasing
programmer effort significantly.

LIOCS-C must be loaded into common core normally at the
start of each day's operation.

1-2 2/72

INTRODUCTION

CHOOSING BETWEEN COMMON AND PARTITION LIOCS

2/72

Deciding

whether a System Ten installation should use common or

partition LIOCS depends on a number of inter-related factors
which follow:

1.

Core size and the number of partitions. Partition LIOCS
requires approximately 1500 to 4000 positions of core,
depending on the operations being used. LIOCS-C
currently requires approximately 6000 positions in
common core (in addition to the 1000 positions used by
the hardware and system constants, tables, and the
common mail box). Depending on the operations being
used, then, the total amount of core required for
partition LIOCS exceeds the core required for LIOCS-C
when two to four partitions are simultaneously using
partition LIOCS (refer to Figure 1-1).

NUMBER TOTAL CORE USED BY PARTITION-

OF RESIDENT LIOCS ROUTINES
PARTITIONS
USING LIOCS | MINIMUM I AVERAGE LMAXIMUM

1

2

3

4

5

Note: Shaded areas indicate where partition
LIOCS uses less total core than LIOCS-C.

Figure 1-1 TOTAL CORE USED BY PARTITION LIOCS

Contention versus non-contention use of disc. When
applications will be contending for the same pools or
files from different partitions, LIOCS-C should be used.

LIOCS-C should be used if its capabilities outlined
above are needed.

If the System Ten installation does mnot presently
indicate the use of LIOCS-C, but it is expected to
expand and require LIOCS-C in the future, a conversion
effort can be avoided by using LIOCS-C.

More advanced future software will require the use of

LIOCS-C. If the most capable version of software is
wanted (e.g.,RPG), LIOCS-C should be used.

1-3 LIOCS=C

Section 2
LIOCS-C

OPERATION

FILE CONTROL BLOCKS
SUBROUTINES
CONSIDERATIONS

LIOCS-C

COMMON PARTITION
Om (S
300
410
RECORD PROTECT TABLE Transient Area Used
510 by _OPEN, _CLOSE and
DRIVE LOCK TABLE OVLAY
520 —
750
P_COMM
1000 1000
TRANSFER VECTOR
| |
| |
| L10CS-C i USER'S PROGRAM
I
| |
6600f— —————————

Figure 2-1 LOCATION OF LIOCS-C MODULES

2/72 2-1 LIOCS=C

LIOCS-C

OPERATION

LIOCS=C

At the beginning of each day, in response to:
A)ENTER PROGRAM NAME.

the following dialogue takes place with the user on a Model 70
Workstation or Model 80 Video Display:

LIOCSC
I)LIOCS-C (xxxxxx: REC-PRO, DR-LOCK OPTIONS) LOADED

Note: xxxxxx is date in YYMMDD format

At this point, if the system program UDATE is filed in SYSPOL,
it will automatically be loaded to enable the user to set the
User Date field in Common:

A)SET DATE

If no UDATE is found in SYSPOL or after the date has been
entered in MM/DD/YY format the following message will be
displayed:

A)ENTER PROGRAM NAME.
MYPROG Load User's Program

Once LIOCS-C has been loaded, all partitions have access to it.
Even if a program crashes or ends it is not necessary to re-load
LIOCS-C.

Hardware requirements are the same as those specified in the DMF
Manual, except Common must now be a minimum of 7K to use LIOCS-C
and a 10K Common is recommended.

Core memory requirements for LIOCS-C are shown in Figure 2-1.
Beginning at location 1000 in common is the LIOCS-C transfer
vector, coding the user references to enter LIOCS-C. This
coding is referenced via the user's interface generated by macro
CLIOIN in the wuser's program (refer to Figures 4-2 and 4-3).
The location of the transfer vector will not change so user
programs will not have to be re—-assembled should LIOCS-C change.

OPENC and CLOSEC are similar to their counterparts in the

existing DMF, with the exception that after execution they
return to the user's program via LIOCS-C.

2-2 2/72

2L/

€T

J=so0n

SOY¥IVW D-SOOIT ONIZILN WVYIOO0Ud FIdWVS T-T 24nBiy

FILE SAMPLE IN POOL SOURCE CONTAINS 47 SECTORS

FILE NAME TYPE CHANGE DATE OF DATE OF DESCRIPTION
e = LEVEL . EXPIRATION CREATION
SAMPLE Q 000 _01=04=72 = Q0=00=00 L IOCS=C SAMPLE __ _______
RECORD NOe«
1 TITLE 'TYPICAL USES OF LIOCS=C! . SAMPLEOO0100
2 SASBBRBNIFANISIIRNIFRSRBIARFANRSRAI NSNS AR AN AN AL AN IR NRNI R ¥u A NR RIS SAMPLEODQR0OO
3 # MACROS TO BE INCLUDED TO DEFINE SYSTEM AREAS % SAMPLE0OO0O300
Ly BRRFIRRFSFIRFINFBABIBRRAS SRR NF R IR RN RERN RSB IS AN RP ARSI RN 22 U200 SAMPLEOQO400
S *CCDEF » DEFINE COMMON CORE AREAS SAMPLEO00500
6 . _.*LCDEF x DEFINE PARTITION LOW CORE SAMPLEQ00600
7 EJECT SAMPLEO00700
8 CLIOIN ¥ DEFINE L]OCS=C TRANSFER VECTOR e _SAMPLE000800
9 EJECT SAMPLE000900
10 BRSNS BNIBRBBANNNN SRR RS SR SR IS AN SRS BE BB AN SB SN RN SR XA S L RN RN SN NN SS SN 2% SAMPLEOO01000
11 % BODY OF PROGRAM .= LIOCS=C MACRO CALLS » SAMPLEOO1100
12 3333335333330 333 853385888 R AR RRRRARRNRRNRRRNRRRFRANFR RN SR I¥ S ¥R2x SAMPLEOO1200
13 NORMAL SAMPLEOO01300
14 ORG 1000 R e ... SAMPLE00Q1400_ .
15 START OPEN EXTFCB, ERROR #0PEN AN EXTEND FILE SAMPLEO01500
16 OPEN INDFCB, ERROR #*OPEN AN INDEXED FILE SAMPLE001600
17 GETUP EXTFCB,ERROR ¥GET AND LOCK A RECORD SAMPLE001700
18 #<<<< USER'S PROCESSING TAKES PLACE HERF >>>> SAMPLEO01800
19 UPDATE EXTFCB,ERROR sUPDATE AND UNLOCK THE RECORD SAMPLEOO1900
20 #<<<<__REMAINDER OF USER'S PROCESSING >>>> e . __ SAMPLEOOROOO
21 LX) USER'S EOF ROUTINE. SAMPLEOO2100
22 EOF EQU * SAMPLE002200
23 EOF INDFCB, #+10 SAMPLEO02300
24 CLOSE INDFCB,ERROR SAMPLEO02400
25 EOF EXTFCB, #+10 SAMPLE002500
86 _ . _CLOSE. EXTFCB,ERROR . o - ... SAMPLE002600
27 EJECT SAMPLE0O2700 .
28 BEBERBRIRERINBRIR IR RN BB VRS RIR IR BB ERRS AR NI R IR AR IR NN ¥R XX b2 ¥R 2 ¥%y SAMPLEOO28B0OO
29 # USER FCB'S GENERATED BY FCB MACRO * SAMPLE002900
30 ARSI BEN IR BB ISE R BRI IR USRS RN RN BN SR SRR BB NN N R AR N N S ankr e yu ¥y SAMPLEOO3000
31 SPACE 2 SAMPLEOO03100
32 EXTFCB FCB _ NAMEsPNAME«FNAME1,USE=EXTEND, AREA=WKAREA,EXITSEOFs _ XSAMPLE003200
33 BLKL=470,TYPE=SLS SAMPLEO03300
34 SPACE 2 SAMPLE003400
35 INDFCB FCB NAME=PNAME « FNAME2,USE=EXTEND, AREA=WORKA2,EXIT=EOQF » XSAMPLE003500
36 BLKL®188,KEYADSKEY, TYPE=]ILS SAMPLEOO03600
37 EJECT SAMPLEO03700
38 RN NNEENNNENNNNNANNSANRNNNRNNBRNRRANRANRRNN SR NN R AN RN NA NN N NS ¥ ¥ SAMPLEOO3800
39 » PROGRAM CONSTANT AND WORK AREAS * SAMPLE0033%00
40 BERBBERES BB BR RN RSB IR SR RSB R AN BRI NN BRI IR AR NN IR XX SR N2 ¥R S ¥ ¥ ¥ 2328 SAMPLEOO4000O
41 ERROR EQU » SAMPLEO004100
42 san USER'S ERROR ROUTINE SAMPLEOOQ4200
43 WKAREA DM 470C! #WORK AREA FOR EXTEND FILE SAMPLEOO4300
LX] WORKA2 DM~ 188C' ! #WORK AREA FOR INDEX FILE _SAMPLEOO4400
45 KEY OM N&1 O #INDEX KEY ARGUMENT SAMPLEOO4500
46 BEBIBRBVBURSFIBSIBBS RN EN B IN BRSPS SN IR BN BN ISR AR N SR NR XA NP SN VNS08 SAMPLEOO4600
47 END START SAMPLEOO4700

010521
— 01Q522
010523
010524
010525
010556
010526
..010555
010527
010578
010529
010561
010562

010530

010531
010532
010533
010534
010535
010563
010564
010565
010566
010567
010568
010557
010536
010537
010538
010558
010539
010540
010553
010541
010542
010560
010543
010544
010545
010546
010547
010550
010551
010552
010553
010554
177777

J-SJ20I11

2=S20I1

v-C

eLfe

€-7 aunbyy

OYIVW NIOITD A9 A3LVIINIO JOLD3IA ¥3I4SNVIL D-SO0I

" SYSTEM TEN ASSEMBLER II
SEG@es LOCN INSTR/DATA OP

0008

Q003 0000

0004 1000C

0005 1000C

0006 1000C

0007 1000C

0008 1020C

~-0009 1040C __

0010 1060C
0011 1080C
0012 1100C
0013 1120C
0014 1140C

.0015 1160C .. o

0016 1180C
0017 1200C
0018 1210C
0019 1220C
0020 1230C
~.0021 1250C .
0022 1270C
0023 1300C
0024 0000
0025 0000
0026 0990
0027 1000

TYPICAL USES OF LIOCS=C

A/R M1 Bs/s M1 LINE
0095
0000 00966
0097G
1000C 00986
1000C 00996
1020C 0100G
1040C 0101G
1060C 01026
1080C 01036
1100C 01046
1120C 0105G
1140C 01066
1160C 01076
1180C 01086
1200C 0109G
1210C 0110G
1220C 01116
1230C 0112G
1250C 0113G
1270C 01146
1300C 0115G
1300C 0116G
0117G
0990 0118G
0001 0010 01196
0000 01206

«CLIOI

+BASEC
*GET
«PUT

«INSRT.

«DLETE
«UPDTE
«BOF
*EOF
~WRTEF

*READ .

*WRITE
«QPEN

+CLOSE
*«GETUP
*READU
*QVLAY
+RETRY
+OVRET

*USERX

cLIO
0RG
COMM
QRG
ORG
ORG
ORG
QRG.
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
NORM
ORG
DM
ORG

01/04/72 PAGE 0003

IMAGE c

IN * DEFINE LIOCS=C TRANS?ER VECTOR

SN, S
ON

1000

»
*BASEC+20
*BASEC+40

.. *BASEC+60 . _ .

*BASEC+80
«BASEC+100
+BASEC+120
+BASEC+140
+BASEC+160
... .»BASEC+180
+BASEC+200
*BASEC+210
+BASEC+220
+BASEC+230
*BASEC+250

BASE OF TRANSFER VECTOR

...+BASEC+270 _ ___ LQAD OVERLAY FROM SYSPOL

+BASEC+300
»
AL
990
C10
eCLIOI

RESUME AFTER DISC FAULT
OPTIONAL USER 'EXEC' ADDRESS . _

USER EXITS

.—___RESTORE USER LOCATION COUNTER

2-So0I

2Ll

ST

pLielel)]

STIVD O¥DVW D-SDOIT J1dWVS T 24nBiy

SYSTEM TEN ASSEMBLER II TYPICAL USES OF LIOCS=C
SEQe LOCN INSTR/DATA OP A/R M I B/S M1 LINE
0010 0123

o1y - — 0124
0012 0125
0013 0000 0126
0014 0000 1000 o127
0015 0128

1000 VOPS15120P 11 0031 6 0 1200C 5 0 0136G

——..— 1010 P1QV091364 11 1160 O 0 1364 9 0 01386

0016 " 0140
1020 VOPS15120P 11 0031 6 0 1200C 5 0 01488
1030 P1RU491364 11 1254 0 0 1364 9 0 01506

0017 0152
1040 VOPS15122P 11 0031 6 0 1220C 5 0 0155G
_ 1050 P1GV091364 11 1160 0 0 1364 9 0 01576
0018 0159
0019 0160
1060 VOPS15108P 11 0031 6 0 1080C 5 0 017186
1070 P1Qv091364 11 1160 0 0 1364 9 0 0173G

0020 0175
0021 el 0176
0022 1080 1080 0177
0023 0178
1080 VOPS15112P 11 0031 6 0 1120C 5 0 019086
1090 P1RU491100 11 1254 O O 1100 9 0 0192G

0024 0194
—.—.1100_ VOPS15121P 11 0031 6 0 1210C 5 0 02026
1110 P1{RU491364 11 1254 0 0 1364 9 0 02048

0025 0206
1120 VOPS15112P 11 0031 6 0 1120C 5 0 021886
. 1130 P1QV091140 11 1160 0 0 1140 9 0 022086
0026 0222
—— . 1140 VOPS15121P 11 0031 6 0 1210C 5 0 02306
1150 P1QV091364 11 1160 O 0 1364 9 0 02326

LR R R L A R AL R R R R R R A R R R R A R A A R R I RS AT R R RS R R L 2

*. BODY. OF PROGRAM LIOCS=C MACRO CALLS L

01/04/72 PAGE 0004

IMAGE ¢

LR R R I R R R I R L R R AL S R R RS RIS RS R S RS R R R 2 X2 2 3

NORMAL S
ORG 1000
START OPEN EXTFCB,ERROR *0PEN AN EXTEND FILE . e
START BRC 31(6),+0PEN(5)
.BC _ EXTFCB(Q),ERRQR(S9) ___
OPEN INDFCB,ERROR #0OPEN AN INDEXED FILE
BC 31(6),+0QPEN(S) ———
RC INDFCB(0),ERROR(9)
GETUP EXTFCB,ERROR #GET AND LOCK A RECORD
LINK 31,+GETUP
BC _ EXTFCB(0),ERROR(9)
#<<<< USER'S PROCESSING TAKES PLACE HERE >>>>
UPDATE EXTFCB,ERROR ~ “¥UPDATE AND UNLOCK THE RECORD_
RC 31(6)s«UPDTE(S)
BC EXTFCB(0),ERROR(9) e N _
#<{<<< REMAINDER OF USER'S PROCESSING >>>>
LX) USER'S EOF ROUTINES.
EOF EQU »
EOF ~ INDFCB,#+10 _ o S _
BC 31(6),*EOF(5)
BC INDFCB(0),*+10(9) e
CLOSE INDFCB,ERROR
BC . 31(6)s,+CLOSE(S)
BC INDFCB(0),ERROR(9)
EOF EXTFCB,»+10 e
BC 31(6),*EOF (5)
BC EXTFCB(O)as%#+10(9) = _ e I
CLOSE EXTFCB,ERROR
__BC 31(6),+CLOSE(5)
BC EXTFCB(0)sERROR(9)

J-So0In

o=3500n

9-T

2Lfe

NOILV¥INIDO O¥DVW 824 IJ1dWVS G-Z 9:nBuy

SYSTEM TEN ASSEMBLER Il

SEQe LOCN INSTR/DATA OP A/R M1 B/S M I LINE

0028
__0029 -
0030
0032 . -
0033
0004 R
1160 1160
1160 0. 0001 0001
1161 PNAME 0001 0006
... 1167 FNAMEL 0001 0006
1173 1364 0001 0004
1177 0a70 . 0001 0004
1181 1080 0001 0004
1185 L 0001 0006
1191 010 0001 0003
N __ssss .. 0001 0004
1198 $s3s 0001 0004
1202 0001 . .0bos2.
0035
_.Q036 _ ..
0004
1254 1254 P
1254 1 0001 0001
1255 PNAME 0001 0006
1261 FNAME2 0001 0006
_1267 183 _.....0001 0004
1271 0188 0001 0004
1275 1080 0001 . 000&
1279 0001 0006
1285 010 0001 0003
1288 338 0001 0004
1292 s$sss 0001 0004
1296 2022 0001 0004
1300 . 0001 0064

TYPICAL USES OF LIOCS=C

01/04/72 PAGE 0005

IMAGE

c

[Pk Y T T T T T Py P Py Ty P Y vy Y Yy Py Py Y Py Py P Py PR P P PR Y Py Ty Y
_..0236 .» USER FCB'S GENERATED By FCB MACRQ 'y
0237 #S XN BEBIRBRNNNRBSNIRAR SR NE RSN N AN RSN R BE NS RN SR RN RN N NP SR SRR RA IS
0239 EXTECB FCB NAMESPNAME o+ FNAME1, USEsEXTENDAREAsWKARFALFXTTmEQF, X =
BLKL=470,TYPE=LS
.0240G »#LI0CS FCB (711220)
0263G EXTFCB EQU *(9%4)
02676 . ..M. CrOr I FILE TYPE : LS
02696 DM C6'PNAME ! POOL NAME
02716 DM C6'PNAMEL' == FILE NAME
02736 DM A'WKAREA!' WORK AREA ADDRESS
..02256G. _ DM _A'A70! BLOCK LENGTH
02776 DM AVEOF! USER EXIT ADDRESS
027986 DM Ce' ' PASSWORD -
0281G DM cr'010! ACTION FLAGS : EXTEND
02836 DM . Cresss 000020 SECOND
0285G DM Crssss! PRIMARY ALLOCATION
... 02896 pM_____CoSe' ! (RESERVED)
0292 INDFCB FCB NAME AME « FNAME2, USESEXTEND,AREA=WORKAZ2,EXTToEQF, X
— BLKL=1BB)KEYAD=KEY,TYPE=ILS
0293G »»LI0CS FCB (711220)
—..0318G_INDFCB FQU (3110}
03226 DM crI FILE TYPE ¢ ILS
0324G OM C6'PNAME!Y PQOL NAME
0326G DM C6'FNAME2! FILE NAME
03286 DM _A'WORKA2' =~~~ WORK AREA ADDRESS
03306 DM A'188¢ BLOCK LENGTH
03326 DM A'EQF! USER EXIT ADDRESS
03346 oM Ce! ' PASSWORD
03366 DM €C'010' ACTION FLAGS : EXTEND
0338G DM Crssss!’ SECONDARY ALLOCATION
03406 DM Creses! PRIMARY ALLOCATION
0343G oM ATKEY! KEY ADDRESS
03466 DM Co64s' ! __(RESERVED)

2-s001

LIOCS-C

UFCB1 UFCB 2 UFCB 3 UFCB & UFCB 5 UFCB 6
0 011 6|7 12113 16|17 202 24
FCB TYPE POOL NAME FILE NAME WORK AREA LOGICAL USER EOF
ADDRESS RECORD ROUTINE
SIZE ADDRESS
UFCB 7 UFCB 8 UFCB 9 UFCB 10 UFCB N UFCB 12
25 30| AN 3313 37138 o1 {42 45| 46 n¥
FILE ACCESS ACTION FLAGS SECONDARY PRIMARY KEY ARGUMENT USED BY
PASSWORD ALLOCATION ALLOCATION ADDRESS OPEN
SPECS SPECS
*93 FOR LINKED SEQUENTIAL FILES, 109 FOR INDEXED LINKED SEQUENTIAL FILES.
Figure 2-6 USER FILE CONTROL BLOCK(UFCB)
2/72 2-7 LIOCS=C

LIOCS-C

FILE CONTROL BLOCKS

User FCB:

The wuser file control block is as described in the DMF Manual,
with the following modifications (refer to Figure 2-6).

1.

2.

Post Open FCB:

LIOCS=C

This

The FCB must not be in common core. (Same as before)

Work Area Address - Field 4, Positions 13 to 16. User's
Work Area must be in partition.

Logical Record Size - Field 5, Positions 17 to 20. The
maximum record size is 9,999 (but full record must fit
in partition).

User EOF Routine Address - Field 6, Positions 21 to 24.
Must not be in common core.

Reserved for Post Open FCB - Field 12, Positions 46 to
n. If the file is not indexed, this field must be 52
characters (including field 11). If the file is
indexed, this field must be 64 characters in length to
allow for expansion by the _OPEN operation.

as described in the DMF Manual, with the following

modification (refer to Figure 2-7).

1.

Save Start of Record (_FCBSF) contains the start address
of a multi-sector record.

Record Protect Switch (_FCBGU) set ON when a file is
using record protect.

Open flag (_FCBOP) is set to '!' after the file is
opened.

2-8 2/72

LIOCS-C

_FUBTY _FOBRL _FCBFL _Foawa® _FCBR™ _FeBer™
0 01 6|7 12 [13 16 | 17 20 |21 m
FCB TYPE POOL LABEL FILE LABEL WORK AREA | LOGICAL RECORD USER EOF
ADDRESS ADDRESS ADDRESS SIZE ROUTINE
ADORESS
_FCBST _FCBCT _FUBCN _reesc* _FCBFS _FCBCS
5 5|2 29 |30 3 | 3% 37|38 43 | 4h 49
USER STATUS CONTENTION CONTROL FLAGS | SECONDARY PRIOR SECTOR | CURRENT SECTOR
CODE CONTROL SECTOR ALLOCATION| ADDRESS ADDRESS
_FCBNS _FCBAL _FOBEL _FCBEX _FOBSF _FCBGU
50 55 | 56 61| 62 67 | 68 7 T4 91 |92 92
NEXT SECTOR |SECTORS ALLOCATED | EOF MARK POINTER 10 PRIOR SECTOR, | RECORD PROTECT
ADDRESS DISC ADDRESS EXTENSION | CURRENT SECTOR, SWITCH
PORTION NEXT SECTOR OF
START OF
MULTI-SECTOR
RECORD
_FCBEP _Feear™® _FCBOP _FCBKL _FCBOR
9 93 | 9 97 |98 101 | 102 103 | 104 109
OPEN (ACTUAL) KEY |KEY DISPLACEMENT| KEY LENGTH POINTER 10
FLAG ARGUMENT INDEX ROOT
ADDRESS
L
FIELDS THAT CAN BE MODIFIED BY USER AFTER FILE
HAS BEEN OPENED.
Figure 2-7 POST OPEN FILE CONTROL BLOCK (POFCB)
2-9 LIOCS=C

2/72

LIOCS-C

7 INDEX \ (CREAD KEY B)

Key A——» Key D——» Key 6— etc.

[SEARCH INDEX FOR KEY B]

| FINDS KEY D (=KEY B) |

[SEARCH FOR KEY<KEY B |

v v v
Record A— Record D — Record G —etc. [TAKES POINTER TO RECORD Al

\ DATA l
[GET RECORD A |

READ KEY A [GET NEXT SEQ RECORD |
I

[SEARCH INDEX FOR KEY A] | KEY IN RECORD DOES NOT EQUAL KEY B |

I
[TAKE POINTER 10 RECORD A] [SET ERROR STATUS 8 |

[RECORD A PLACED IN USER'S BUFFER] (USER'S ERROR _EXIT)

Figure 2-8 DATA RETRIEVAL FROM AN INDEXED FILE

INDEX ‘ [SEARCH INDEX FOR KEY 8]
Key A »Key D -»Key & & etc.
[NOT FOUND - TAKE POINTER TO KEV A]
GET RECORD A
[GET NEXT SEQ.RECORD |
Recr‘Jbrd A—Record B—bRec‘o’rd U——bReC‘O'rd 6—»etc. [KEY IN RECORD EQUALS KEY BJ
DATA

[RECORD B PLACED IN USER'S BUFFER|

Figure 2-9 DATA RETRIEVAL AFTER RECORD INSERTION IN AN INDEXED FILE

LI0Cs=C 2-10 2/72

LIOCS-C

SUBROUTINES

All subroutines not listed below operate as described in the DMF
Reference Manual provided "multi-sector record" is substituted
for "sector" in all the discussions.
Open A File
Main Subroutine Name: _ OPEN

Function:

The OPEN subroutine calls the system program OPENC, which
converts the UFCB into the POFCB.

Description of Operation:
_OPEN functions in the same way as the DMF OPEN subroutine,

though it uses a transient named OPENC which returns to the
user's program via LIOCS-C.

2/72 2-1 LIOCS=C

LIOCS-C

Close A File
Main Subroutine Name: _ CLOSE
Function:

To finalize the state of +the files created by the user's
program.

Description of Operation:
_CLOSE functions in the same way as the DMF CLOSE subroutine,

though it uses a transient named CLOSEC which causes returns to
the user's program via LIOCS-C.

LIOCS=C 2-12 2/72

LIOCS-C

2/72

Read A Record
Main Subroutine Name: _READ

Function:

To access an indexed 1linked sequential data file in a random
manner and to read a desired record, or its 1logical successor,
into the user's buffer.

Description of Operation:

_READ enables the location and retrieval of data in a file,
whether or not there is a one-for-one entry in the file index.
If the required data is not found, then the record having the
next higher key to that requested 1is placed in the user's
buffer.

Figure 2-8 illustrates an indexed file and two attempts to read
from that file, one of which is successful while the other is
not, since key/record B does not exist. After the resulting
error exit the user's FCB points to record D. The user can now
employ _INSRT to link record B between records A and D. Figure
2-9 shows the result of this insert, and the way in which the
inserted record is retrieved.

A further example of the use of _READ is given in Figure 2-10.
Here, the index contains one entry for every four keys, and the
consequent search and retrieval sequence is detailed in the flow
diagram.

For the data retrieval logic to operate successfully, the data
file must be in ascending key sequence. But, if the user has
more than one index per file it is possible that the data file
is out of key sequence for one of the file indexes. If a data
file is not in key sequence, therefore, there must be a one-for-
one index, and in this case, the function _INSRT cannot be used.

Conditions:

l. A kxey of high value (e.g. underscores) should be placed at
the end of a file to prevent any attempted _INSRT off the
end of the file.

2. Since the search 1logic reads each record into the user's
buffer, any record to be inserted must only be placed in the
buffer immediately prior to the _INSRT taking effect.

3. If indexed access 1is used on an extend file, the function
EOF must be used before _CLOSE.

4. When setting up the index for a file having multi-sector
records, the NENTRIES parameter must contain a multiple of
the number of sectors per record.

5. If a record is not found in an indexed file and its key is

not lower than the lowest key in the index, error status 8
is set in _FCBST and the User's Error Exit is taken.

2-13 LIOCS=C

LIOCS-C

6. If a record is not found in an indexed file and its key is
lower than the lowest key in the index, error status 9 is
set in _FCBST and the User's Error Exit is taken.

LIOCS-C 2-14 2/72

LIOCS-C

INDEX —
Key A » Key E —etc. READ KEY D
[SEARCH INDEX FOR KEY D}
[NOT FOUND

[TAKE POINTER TO LESSER KEY (A)]

GET RECORD A
Record A— Record B—Record C —» Record D — Record E — etc.
DATA [GET NEXT SEQ. RECORD (B)]

[KEY IN RECORD B DOES NOT EQUAL KEY D}

[GET NEXT SEQ. RECORD(C)}

[KEY TN RECORD C DOES NOT EQUAL KEY D]

[GET NEXT SEQ. RECORD (D)]

|

[KEY D CORRESPONDS]

(EXIT TO USER)

Figure 2-10 DATA RETRIEVAL FROM A MULTI-SECTOR RECORD INDEXED FILE

2/72 2-15 LIOCS=C

LIOCS-C

Read And Lock A Record
Main Subroutine Name: _ READU

Function:

To access an indexed 1linked sequential data file in a random
manner, lock the desired record and read it into the user's
buffer.

Description of Operation:

_READU operates in a manner similar to _READ. _READU also
inspects the Record Protect Table (see Record Protection), locks
each record in turn, inspects it and unlocks it if it is not the
required record. If the required record is not encountered in
the file, its 1logical successor is locked and read into the
user's buffer. _READU honors record locks in its search for a
record. If a record it is attempting to inspect is locked, it
will switch out until that record is unlocked.

A record locked by _READU will be unlocked by any subsequent

LIOCS-C operation from the same partition on the same FCB. Only
one record per FCB may be locked at a time.

LI0CS=C 2-16 2/72

LIOCS-C

2/72

Write A Record
Main Subroutine Name: _ WRITE

Function:

To write the user's work area into an indexed linked sequential
file, provided its key exists in the relevant index file.

Description of Operation:

Upon issuing a _WRITE, the index is searched for the desired
key. If the key is found in the index, the user's work area is
written into the sectors pointed to by that index entry. No
check of the subject data record is made to ascertain it does
indeed contain the desired key. If inserts have been made into
the file, erroneous results can be obtained using _WRITE.

If the desired key is not found in the index, the user's error
exit will be taken with the status code set to 8 or 9. FCB
pointers are set so a subsequent _GET will obtain the record
pointed to by the index entry with the next lower key. It is
then the user's responsibility to issue _GET's until the desired
record is found and then issue an _UPDTE or _INSRT. _WRITE does
not provide any record protect facility.

Conditions:

1. _WRITE can only be used if no inserts have been made in the
file since the last MAINT/INDEX run.

2. The only efficient use of _WRITE is with an index built with
a density of one index entry per data record.

3. If both conditions above are not met, _READ/_READU followed
by _UPDTE or _INSRT should be used.

2-17 LIOCS=C

LIOCS-C

Get

LIOCS=C

and Lock A Record
Main Subroutine Name: _ GETUP
Function:

To 1lock the next 1logically sequential record and to read its
contents into the user's buffer.

Description of Operation:

The operation of _GETUP is similar to that of the main
subroutine _GET in partition LIOCS, with the exception that
_GETUP 1locks any record it retrieves. If the record it is
attempting to read has been previously 1locked by _GETUP or
_READU, the partition will switch out wuntil the record is
unlocked. A record locked by _GETUP will be wunlocked by any
subsequent LIOCS-C operation from the same partition on the same
FCB. Only one record per FCB may be locked at a time.

2-18 2/72

LIOCS-C

2/72

Update A Record
Main Subroutine Name: _UPDTE
Function:

To write the contents of the user's buffer into the current
record.

Description of Operation:
_UPDTE behaves in a similar manner to the existing DMF main
subroutine, with the exception that if it refers to a 1locked

record after a _GETUP or _READU operation, it will unlock that
record after it has been completely updated.

219 LIOCS=C

LIOCS-C

Insert A Record

LIOCS=C

Main Subroutine Name: _INSRT

Function:

To write from the wuser's buffer into a record, which is then
linked between the prior and current records.

Description of Operation:

_INSRT operates in the manner described in the DMF Manual, with
the addition that all partitions have the possibility to insert
into the same file.

Multi-partition Insert into the Same File:

Primary and secondary allocation must be specified in the FCB by
the user; a primary allocation of zero, for an extend file, is
acceptable. There is no conflict during _OPEN, _CLOSE and
allocation, since the pool directory is automatically locked for
all allocating of sectors to private free sector lists. When an
_INSRT is made, the following sequence takes place. The 1last
sector of the previous record 1is reread, and the link is
compared with the sector address of the first sector in the
current record: non-equality indicates that another partition
has simultaneously made an _INSRT at this point. Consequently,
the FCB 1is set wup so issuing a _GET will retrieve the record
just inserted by the other partition, and the user's error exit

is taken with error status V. Figure 2-11 illustrates an
example of two partitions (O and 1) attempting simultaneous
inserts between records 1 and 2. Partition O succeeded in

inserting record 1A, while partition 1 took an error exit and
its insert failed. A GET was then taken by partition 1, and
record 1A was obtained; and since partition 1 did not want an
insert between records 1 and 1A, another _GET was taken and
record 2 was obtained. _INSRT B then inserts record 1B in the
desired location between records 1A and 2.

Note that partition 1 obtained record 2 twice, owing to the
alteration of the sequence of the records. This factor must be
taken into account by the wuser in the preparation of his
program. Note also that after an error exit with status V, the
only valid operation is _GET, after which all I/0 operations are
valid. However, _GET will overwrite the data in the wuser's
buffer; the user must be able either to re-create his data in
the buffer or to _GET into another buffer.

2-20 2/72

LIOCS-C

2/72

PROGRESS OF DATA FILE

AT START -
Record 1
Record 2
Record 3

AT INSERT D)

Record 1
Record 1A
Record 2
Record 3

ATINSERT(®)

Record 1
Record 1A
Record1B
Record 2
Record 3

OPERATIONS

PARTITON 0

GET
GETS RECORD !
I

GET
GETS RECORD 2

|

INSERT
INSERTS RECORD 1A

PARTITION 1

GET
GETS RECORD 1
|
GET
GETS RECORD 2

Figure 2-11

I

GET
GETS RECORD 3

2-21

INSERT
INSERTS RECORD 1B

l

TAKES ERROR EXIT
STATUS V

l

GET
GETS RECORD 1A

GET
GETS RECORD 2

|

INSERT
INSERTS RECORD 1B

|

GET
GETS RECORD 3

MULTI-PARTITION INSERT

LIOCS=C

LIOCS-C

Find End of File
Main Subroutine Name: _EOF
Function:

To position the file at the record that contains either a
temporary or an absolute end-of-file mark.

Description of Operation:
_EOF operates in the same way as its DMF counterpart, with the
addition that it will set up the wuser's FCB so that for

subsequent operations:

_GET will take the user's EOF exit.

_UPDTE will update the last record in the file.
_INSRT will insert ahead of the last record in the file.

_DLETE will delete the last record in the file.

LIOCS-C 2-22 272

LIOCS-C

- 194 CHARACTERS »>
BUFFER ' |
SECTOR 101 =3102 |(Link to next sector)
e 94 CHARACTERS ——»
BUFFER
SECIUA’EIS] }?]12 ‘ t'I‘0‘0'0.6'0.0'C.O'0.0.I’m :‘W 0.6'0’0. 0’0'0.l‘t't’l.::t’:l.: :l' 0’:"0‘0'6.:6'0. 0‘0‘ ﬁ':0‘0‘0‘6'0'0’0'0’0‘::0“ 103
6 JHARACTERS
BUFFER '.‘.‘.'.’.’.‘.’.’.'I.‘.‘.‘.‘.‘."'.‘;‘.""'“.’.’f.‘.'.’.‘.‘.‘.‘.‘»'»’.‘a’.‘f»‘e‘.‘.‘.’.‘;'.'o‘.'o’o’;'»'o‘.'.W.’o’.‘»‘»’.‘.’s’o’&
SECLRSS}& == %ﬁ ‘.’.'.‘.’A‘.'.'c‘.‘.“’.‘.'.’.'.'.‘.'4’.‘.’.‘.'.‘.’.'.'.’.’.’.'.'.'.'.'.‘.'.'.'l.‘&‘.‘.’.'.’.‘.’.‘.'.’lo'.’.'.'.‘.'.’A’M
SECTOR 103 % RUBBISH [104 |

Figure 2-12. PUTTING A MULTI-SECTOR RECORD TO DISC

2f72 2-23 LIOCS=C

LIOCS-C

CONSIDERATIONS

Multi-sector Records:

The maximum permissible record size is 1limited only by the
amount of partition core the user has available. If the user
specifies a block size of, say, 194 characters and then
initiates a _PUT, the following sequence occurs (refer to Figure
2-12).

1. LIOCS-C writes the first 94 characters directly from the
user's buffer into the first sector.

2. This is followed by the next 94 characters being written
into the next sector.

3. Finally, the remaining six characters are written into
the next sector.

No exit is made to the user until the contents of the entire
buffer is written. In response to the next _PUT the first part
of the record will be written in sector 104, the remaining space
in sector 103 being left unused.

_GET, _READ, _INSRT, _DLETE and _UPDTE operate in a similar
manner to _PUT, though _GET and _READ do not transfer any of the
'rubbish' from the last sector into the user's buffer.

Record Access Time Considerations

LIOCS=C

LIOCS-C has the ability to read all sectors of a multi-sector
record "on the fly" (i.e. on the same revolution of the disc)
provided the sectors reside in consecutive disc addresses and
the record is an integral multiple of 94 characters in 1length.
All sectors of a record are read directly into the user's buffer
unless the record does not end on a sector boundary. Then the
last sector must first be read into the system buffer (200-299
in partition) and a portion of it moved to the wuser's buffer.
This eliminates overlaying the area immediately after the user's
buffer when reading this 1last "short" sector. This added
processing makes it impossible to read the first sector of the
next record on the same revolution. Since LIOCS-C automatically
scans through the file for the proper key on a _READ, this is an
important consideration, especially when a file has a density of
many records per index entry.

It is recommended that record length be specified as a multiple
of 94 characters. It costs no disc space; each record must
begin on a sector boundary anyway. The potential time savings
are worth the cost of a few core positions to pad out the user's
buffers to integral multiples of 94 characters.

2-24 2/72

LIOCS-C

2/72

Record Protection:

LIOCS-C provides a facility to prevent the simultaneous update
of the same record by more than one partition. This is afforded
by _GETUP (_GET for update), READU (_READ for update), and a
ten entry Record Protect Table in Common. When a partition
issues a _GETUP or _READU, the partition number and the address
of the first sector of the record obtained are placed in the
Record Protect Table. The record is unlocked when the locking
partition performs any subsequent LIOCS-C operation on the file
in question (normally an _UPDTE). While a record is locked, any
reference to it by _GETUP or _READU from another partition will
cause that partition to switch out until the record is unlocked.

Locked records are only protected from access by _GETUP or
_READU; all other LIOCS-C operations by-pass the record protect
logic. For instance, a record locked by a _READU from partition
1 may be accessed simultaneously by a _READ from partition 3.
LIOCS-C does not restrict partition 3 from now issuing an _UPDTE
on the record it has just obtained via a _READ, which would
probably overlay any updating done on the record by partition 1.
This feature allows read-only accessing of files being updated
by _READU and _GETUP. If two or more partitions have the
possiblity of updating the same record simultaneously, it is the
programmer's responsibility to wutilize _GETUP and _READU so
LIOCS-C can coordinate the use of records by all partitions.

There is no limit to the number of FCB's that may have records
locked, but the Record Protect Table can only accommodate ten
entries at a time. Should it become filled, any partition
attempting to lock a record will switch out until an entry in
the table 1is freed. Filling the table is an unlikely event.
Still, good system design dictates that any partition 1lock a
record for only as long as absolutely necessary to perform an
update. This is primarily a consideration to increase system
response when many partitions are referencing the same records
but it will also minimize competition for table entries.

If a partition should go to a load condition, the address of any
records it has locked will remain in the table. Whenever the
conversational 1loader (C_LOAD) is wused to load a program, it
purges all entries in the Record Protect Table for all
partitions in a 1load and for the partition in which it is
running.

Drive Lock:

A drive 1lock routine is included to prevent any partition from
accessing a drive already accessed by another partition, and to
maintain the 1lock on the drive until the controlling partition
has completed I/0 operation, i.e. until every sector in a multi-
sector record has been read or written. This facility reduces
I/0 times by minimizing head movement. The drive 1lock routine
references a ten—-character field; known as the Drive Lock Table,
which is situated in locations 510C to 519C.

2-25 LIOCS=C

LIOCS-C

LIOCS=C

The left-most position (510C) refers to drive O, the next to
drive 1, and so on, the right-most position (519C) relating to
drive 9. The state of each position indicates whether or not
the relevant drive is locked; if the position contains a blank,
the drive is free; if it contains the partition number the drive
is locked. (In Figure 2-13, drives O, 2 and 3 are 1locked by
partitions o, 4 and 2 respectively. A single-character
partition number is used: 10, 11, 12 etc. are represented by P,
Q, R etc., respectively.)

Any attempt by a program to wuse a locked drive will cause
control to be switched to the next partition. However, the
partition is not informed that this event has occurred, and it
attempts to access the locked drive each time it has control.

If the controlling partition assumes a load condition before the
I/0 operation is completed, it is possible that the drive will
remain 1locked. The conversational loader clears from the table
all locks if the associated partition is in a load condition.

2-26 2/72

LIOCS-C

510C 519C

Figure 2-13 DRIVE LOCK TABLE

2/72 2-27 LIOCS=C

LIOCS-C

Error Exit:

Physical

During an error exit, 1location 990 in partition contains the
instruction

BC ERROR(5),NORMAL(5)
so that the instruction
MN _USERX+6(4),...
can be used to obtain the address of the calling sequence.
NORMAL is the normal return address.
N.B. A move numeric instruction must be used.
1/O Errors:
If a physical I/0 error (status code 1) occurs within a file, it
is not advisable to continue using that file after an error

exit; the file should be closed, and both the file and pool free
sector list should be checked for correct link addresses.

Drive Not Ready:

LIoCs=C

If a drive is not ready, the message
A)READY DEVICE Dn.

will be displayed on the CONO device. If the user responds via
the CONI device by setting a FLAG condition (pressing any
control Xkey on the workstation or video display), the user's
error exit is taken with status code 1 set. Any other response
via the CONI device will cause the I/0 operation to be retried.

If either the CONO or CONI device is unassigned (assigned as
NODEV), the user's error exit will be taken with a status code X
set. The only legitimate option the user may then exercise in
his error routine is to branch to _RETRY within LIOCS-C with a
particular condition code set. At _RETRY is a branch
instruction whichs

1. For a condition code of 2, will retry the I/0 operation.

2. For a condition code other than 2, will take the user's
error exit with condition code 1 set.

This allows I/0 error retries from "blind" partitions under
program control.

2-28 2/72

LIOCS-C

2/72

Error Status Code:

Table 4-7 of the DMF Manual is replaced by Table A-1.

Sector Allocation and Contention Problems:

As described in the DMF Manual, with two additions; multi-
partition inserts (which have already been dealt with under the
heading _INSRT) and multi-partition deletes.

Multi-partition Delete in the Same File:

Multi-partition deletes in the same file are not permitted. If
one partition references a file in any way, and a second
partition deletes a record that the first partition is about to
access, the results are unpredictable. If it is required to
delete a record in these circumstances, the relevant record must
be obtained using Record Protect, and be _UPDTE'd with
characters that will indicate to all programs referencing that
file, that the record has been deleted. The record may be
deleted at some later time by a user-written program operating
in a non-contention environment.

Multi-partition Extend in the Same File:

Overlay

LIOCS-C does not provide any additional capabilities for
physically extending (i.e. _PUT beyond EOF marker) an extend
type file than Partition LIOCS provided. A physical extension
is still linked onto the file at Close. If two physical
extensions are made to the same file simultaneously, when the
second one is closed it will overlay the l1link to the extension
of the first. If physical extension is to be used, one FCB must
be passed back and forth through Common to each contending
partition as was necessary in Partition LIOCS. Common flags
must be used to make sure only one partition uses the common FCB
at a time.

Logical extension from many partitions may be accomplished under
LIOCS-C contention control by using _INSRT in front of a trailer
record.

Routine:

LIOCS-C contains an overlay routine to load modules stored in
SYSPOL. The user places the name of the program to be loaded in
partition 1locations 25-30 (_LNAM) and branches to _OVLAY in the
LIOCS-C transfer vector.

If the wuser wishes to execute the overlay after loading (begin
executing at the address defined in the EXEC card), the calling
sequence

B _OVLAY

is used.

2-29 LIOCS=C

LIOCS-C

LIOCS=C

If the user wishes to load the overlay and return to the calling
program, the calling sequence

LINK _LXR3, OVLAY

is wused and the overlay module must be terminated with an EXEC
card image specifying the address 1300C generated by

EXEC _OVRET

in the overlay module's source deck (_OVRET is defined by
including the macro CLIOIN in the source deck). An overlay
loaded in this manner must not modify index register 3,
otherwise the user's return address will be lost.

In neither case is it necessary for the user to load the Locator
or set its search arguments in low core. All overlays 1loaded
via _OVLAY must be previously filed in SYSPOL. 1If an overlay is
not found, the message

L)progname NOT FOUND.

is displayed on CONO, if it is defined. Whether or not CONO is
defined, the partition will then go to a load with the Program
Check Area (_LCKR;40P to 44P) containing the address of the
above message.

The overlay routine does not require P_COMM or the Locator to be

loaded by the user; the Locator is 1loaded automatically by
LIOCS-C and P_COMM is not used.

2-30 2/72

Appendix A
LIOCS-C STATUS CODES

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (0-9)

STATUS LIOCS MAIN

CODE SUBROUTINE CONDITION INDICATED
0 (NONE) (NOT USED)
1 ALL An irrecoverable read parity or a flag error was encountered while
attempting to perform linked sequential disc I/0
or

A write flag error has been encountered while attempting to perform
linked sequential disc I/0.

2 (NONE) (NO LONGER USED)
3 _PUT The pool free sector list is exhausted.
_INSRT
4 _READ The user's key argument was found in the index file, but is missing

from the indexed data file. The desired data record has either been
deleted, improperly updated, or a record with a higher key inserted
in front of it. The record in the user's work area contains the
first record encountered with a key greater than the one desired.

An _INSRT could now be performed if the sequence of the data file
can still be assumed.

5 _PUT,_UPDTE, Invalid operation was attempted on a read-only file.
or WRTEF
6 _PUT An attempt was made to write beyond the absolute end-of-file mark

on a fixed-allocation file.
_INSRT,_DLETE | Invalid operations on fixed-allocation or read-only file.

7 (NONE) (No Tonger used -- if a read error occurs during READ or WRITE,
status code 1 is set.)

8 Key argument not found in the index file, but it is higher than the
lowest key in the index file.

_READ No record containing the specified key has been found in the data
file. The record in the user's work area and referenced by the FCB
pointers is the first one encountered in the data file with a key
greater than the one specified.

_WRITE FCB pointers set so _GET will retrieve record with next lower key
contained in the index. User's work area is undisturbed.

9 Key argument not found in the index file. It is lower than the
lowest key in the index file.

_READ No record containing the specified key has been found in the data
file. The record in the user's work area and referenced by the FCB
pointers is the first one encountered in the data file with a key
greater than the one specified.

_WRITE FCB pointers set so _GET will retrieve record with lowest key in the
index. User's work area is undisturbed.

NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION

UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN SUB-
ROUTINE CALLING SEQUENCE.

NOTE: ERROR CONDITIONS THAT APPLY TO _READ ALSO APPLY TO _READU; THOSE THAT APPLY TO GET
ALSO APPLY TO _GETUP. -

2/72 A-1 LIOCSs=C

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (A-G)
STATUS LIOCS MAIN
CODE SUBROUTINE CONDITION INDICATED
A (NONE) (NOT USED)
B _READ, WRITE | _READ or _WRITE attempted to a non-indexed file.
_READ or _WRITE attempted on an output or work file.
_GET,_BOF One of these operations was attempted in the extension portion of an
_EOF, INSRT, extend file; they are permitted only in the original portion of the
_DLETE, READ, | file.
_WRITE
Or, one of these operations was attempted in a work or output file
before a temporary end-of-file mark was written or after the tem-
porary end-of-file mark was overwritten by a PUT.
_UPDTE, DLETE | Current sector address is null. One of these operations was attemp-
_WRTEF ted immediately after a _DLETE, BOF, WRTEF, or _OPEN.
_WRTEF The operation was attempted on an extend file. It is prohibited.
Or an attempt was made to shorten an output file which already had
an existing temporary end-of-file mark.
Any LIOCS-C An operation other than _OPEN attempted on an unopened file.
Operation
C _OPEN A disc error has occurred in processing a directory entry or allo-
cating pool free sectors.
CONO unit display will be:
S)OPEN pppppp. ffffff:DISC I/0 ERROR.
) _OPEN The system was unable to locate a pool specified (in UFCB Field 2).
CONO unit display will be:
S)OPEN pppppp. ffffff:POOL NOT FOUND.
E _OPEN The system was unable to locate the file specified (in UFCB Field 3)
in the pool specified (in UFCB Field 2).
CONO unit display will be:
S)OPEN pppppp. ffffff:FILE NOT FOUND.
F _OPEN The user's file type does not agree with the file type of the re-
quested file.
CONO unit display will be:
D)OPEN pppppp. ffffff: INVALID USER FCB TYPE.
G _OPEN The action flag field of the UFCB does not contain one of the five
acceptable values (000,100,010,001 or WO0).
CONO unit display will be:
S)OPEN pppppp. ffffff: INVALID ACTION FLAGS.
NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN
SUBROUTINE CALLING SEQUENCE.
NOTE: ERROR CONDITIONS THAT APPLY TO _READ ALSO APPLY TO READU; THOSL THAT APPLY TO GET
ALSO APPLY TO _GETUP. i

LIOCs=C

A-2

2/72

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (H-N)

STATUS LIOCS MAIN
CODE SUBROUTINE CONDITION INDICATED

H _OPEN The user has attempted to open a null file (one containing no data
records) as a read-only, fixed-allocation or extend file; these
three categories must contain data records at _OPEN time.

CONO unit display will be:

S)OPEN pppppp. ffffff: INVALID ACTION FOR NULL FILE.

I _OPEN An attempt has been made to open a file containing data records as
a work or output file; these two types of file must be null at open
time.

CONO unit display will be:

S)OPEN pppppp. ffffff:INVALID ACTION FOR NON-NULL FILE.

J _OPEN An attempt has been made to open an indexed file as an output or
work file.

CONO unit display will be:
S)OPEN pppppp. ffffff: INVALID ACTION FOR INDEX FILE.

K _OPEN UFCB Field 4 (Work Area Address) does not contain a valid partition
address. User's Work Area must be in partition.

CONO unit display will be:

S)OPEN pppppp. ffffff: INVALID WORK AREA ADDRESS.

L _OPEN UFCB Field 5 (Logical Record Size) does not contain a numeric value.
(Note that a 0 size record is accepted but will default to the
record size specified in the file label Field 9.)

CONO unit display will be:

S)OPEN pppppp. Ffffff:INVALID RECORD SIZE.

M _OPEN UFCB Field 6 (User EOF Routine Address) does not contain a valid
System Ten partition address. User error routines must not be in
common.

CONO unit display will be:

S)OPEN pppppp. ffffff:INVALID USER EOF ADDRESS.

N _OPEN UFCB Field 11 (Key Argument Address) does not contain a valid parti-
tion or common address. In the UFCB source coding, this field
should contain either the label or the address where the key
argument will be stored during program execution.

CONO unit display will be:

S)OPEN pppppp. fFFFFf: INVALID KEY ARG ADDRESS.

NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN
SUBROUTINE CALLING SEQUENCE.

NOTE: ERROR CONDITIONS THAT APPLY TO _READ ALSO APPLY TO _READU; THOSE THAT APPLY TO _GET
ALSO APPLY TO _GETUP.

2/72 A-3 LIOCS=C

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (0-2)

STATUS
CODE

LIOCS MAIN
SUBROUTINE

CONDITION INDICATED

(NONE)
(NONE)
_OPEN

(NONE)
_OPEN

(NONE)
(NONE)
_INSRT

Any LIOCS-C

Operation

_READ,_WRITE

_CLOSE

_CLOSE

(NOT USED)

(NOT USED)

UFCB Fields 9 and 10 (Secondary and Primary Allocation fields) do
not contain $$$$, ////, or numeric values; or the fields are not in
agreement. If contention is specified in either field, it must be
specified in both. (//// = non-contention, numeric value = special
allocation requested, and $$$$ = default allocation requested).
CONO unit display will be:

S)OPEN pppppp. FFFFFF:INVALID SECTOR ALLOCATION.

(NOT USED)

A primary allocation was requested but no pool free sectors were
available.

CONO unit display will be:

S)OPEN pppppp. ffffff:NO POOL FREE SECTORS AVAILABLE
(NOT USED)

(NOT USED)

Between the time this partition obtained the pointers to the prior
and current sectors and initiated an _INSRT, another partition has
made an _INSRT into the file at the same place. This partition did
not insert the record or alter the file. It's FCB has been set up
so the next _GET will obtain the record just inserted by the other
partition. User Response: issue _GET's until a key greater than
the one to be inserted is encountered, then re-issue the INSRT.

Remember to GET into a different buffer or the record to be inserted

will be overTayed.

A previous _READ or _WRITE encountered an error with a status code
of X and the user program failed to respond by branching to _RETRY
The partition is missing either a CONO or CONI device or both
making communication with the operator impossible. User Response:
Close all other files, abort the run, and check the integrity of
the file in question.

An attempt was made to access a disc drive that is not ready. The
partition is missing either the CONO or CONI device or both, making
displaying the normal error message and responding to it impossible.
ONLY USER PROGRAM RESPONSE: Branch to _RETRY in LIOCS-C with condi-
tion code set. CC2=retry I/0 operation; any other condition code =
the user's error exit will be taken with status code 1 set.

A disc error was encountered during execution of the system program
CLOSEC. The file has not been properly closed.

CONO unit display will be:
S)I/0 ERROR (nnnnnn):CLOSE NOT COMPLETED.

(nnnnnn) specifies the physical disc address of the sector on which
the error was encountered.

A disc I/0 error was encountered during execution of the system
program CLOSEC. The file may be closed but unused sectors were not
returned to the pool free sector list.

CONO unit display will be:

S)I/0 ERROR (nnnnnn):SECTORS LOST DURING CLOSE.

(nnnnnn) specifies the physical disc address of the sector on which
the error was encountered.

NOTE:

NOTE:

THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN
SUBROUTINE CALLING SEQUENCE.

ERROR CONDITIONS THAT APPLY TO _READ ALSO APPLY TO READU; THOSE THAT APPLY TO GET
ALSO APPLY TO _GETUP. - - -

LIOCS=-C

A-4

2/72

Appendix B
FCB MACRO PARAMETERS

FCB MACRO PARAMETERS

Table B-1

FCB MACRO PARAMETERS

FCB MACRO FORMAT:

Labe1pFCBPNAME=p-name.f-name,USE=action, AREA=wkarea,

EXIT=eofaddr,BLKL=blklen,PASSW="'password"',
KEYAD=keyaddr,ALLOC=alspec,TYPE=fcbtype

EXAMPLE: FCB NAME=PNAME.FNAME1,USE=EXTEND ,AREA=WKAREA,EXIT=EOF ,BLKL=470,ALLOC=(0,10),
TYFE=LS

PARAME?ER EXPLANATION DEFAULT

Label Label for beginning of FCB --Optional Optional

FCB Macro name Required

NAME=p-name. f-name

USE=action

AREA=wkarea
EXIT=eofaddr

BLKL=blklen

PASSW="'password’

KEYAD=keyaddr

ALLOC=alspec

TYPE=fcbtype

Names of pool and file to be accessed

Sets Action Flags.

action specified file type

INPUT read-only file

PUTPUT output file

EXTEND extend file

FIXED fixed-allocation file
WORK work file

wkarea is the address (an expression) of
the User's Work Area

eofaddr is the address (an expression) of
the User's End-of-File Routine

Logical Block Length (an expression)

File Access Password; password is 1-6
characters enclosed in apostrophes

keyaddr is the address of the Key Argument
Field (an expression).

alspec is the Allocation Specification

alspec: meaning:
YES System default values (field

set to '$3$$$"')

- N No allocation-- Input or FIXED
file (field set to '////")

(primary, secondary) Explicit specification
of primary and secondary allocation; both
are expressions

FCB type specification:

LS-- for Linked Sequential FCB (will
generate a 94 character FCB)

ILS-- for Indexed Linked Sequential FCB
(will generate a 110 character
FCB)

Required -- no
default pool.

Defaults to INPUT
if not specified

Required

Required

Defaults to zero if not
specified (Logical Block
Length to be picked up
from file label)

Defaults to blanks if
not specified

Required for Indexed
Linked Sequential Files
(TYPE=ILS)

Defaults to YES if not
specified.

Required

2/72

B-1

LIOCS=C

GLOSSARY

2/72

Drive Lock

A LIOCS-C facility that minimizes disc seek time by locking a
disc drive to a partition until it has completely read or
written a record. The ten-entry Drive Lock Table begins in
location 510 in common.

Record Lock

LIOCS-C functions _GETUP and _READU 1lock a record so it is
protected from being accessed by _GETUP or _READU from another
partition as 1long as it is 1locked. Any subsequent LIOCS-C
operation from the same partition on the same FCB will
automatically unlock the record. The ten-entry Record Protect
Table begins in location 410 in common.

System Lock

The system lock makes sure only one partition at a time modifies
the Pool Directory.

Transfer Vector

A transfer vector 1is a set of branch instructions in a fixed
location which are used as entry points to routines whose
locations may vary.

GLOSSARY-1 LIOCS=C

DETACH HERE

DMF COMMON—RESIDENT LIOCS (LIOCS-C)
REFERENCE MANUAL
Publication No. 40-340

We produce manuals for you, and we want you to find them useful and informative. That’s our job.
So we're asking you to help us furnish you with the best possible publications. Please take a few minutes to

answer the following questions. Add any comments you wish. If you desire a reply to any question, be sure to
include your name and address.

Thank you.

e Does this manual meet your needs? Yes (1 No [
If not, what additional information would be of help to you?

e Can you find what you’re looking for quickly and easily? Yes (1 No [
How can the organization be improved?

e |s the material easy to read and to understand? Yes [] No []
Are there enough illustrations to support the text? Yes [No [
Comments

e Did you find any errors or ambiguities in the manual? Yes [] No []

If yes, please cite page, line, and/or figure number with your comments.

e (Other comments.

e What is your relationship to the product described?
O Operator.
O Programmer.
[other (please specify)

SINGER

BUSINESS MACHINES

STAPLE

FOLD BACK

BUSINESS REPLY MAIL

No postag P y if mailed in the United States

POSTAGE WILL BE PAID BY

FRIDEN DIVISION

THE SINGER COMPANY

2350 Washington Ave.

San Leandro, California 94577

Attn: Customer Technical Publications,
Department 753

FOLD BACK

STAPLE

FIRST CLASS
PERMIT No. 320

San Leandro, Calif.

SINGER

BUSINESS MACHINES

PUBLICATION NO. 40-340
CONTROL NO. B554PA

/’l

