
l

REFERENCE MANUAL

DMF COMMON-RESIDENT LIOCS
(LIOCS-C)

SINGER
llUSINl!SS MACHINl!S

REFERENCE MANUAL

DMF COMMON-RESIDENT LIOCS
(LIOCS-C)

•A trademark of the Singer Company.

Copyright© 1972, The Singer Company
All rights reserved throughout the vvorld.

PUBLICATION NO. 40-340
CONTROL NO. B554PA

FEBRUARY 1972

SINGER
•USINl!SS MACHINl!S

2350 WASHINGTON AVE.
SAN LEANDRO, CALIF. 94577

PRINTED IN U.S.A.

2/72

PREFACE

This manual describes features provided by common-resident LIOCS
(LIOCS-C) that augment the capabilities of partition-resident
LIOCS described in the DMF Reference Manual. Functions not
described in this manual operate in the manner specified in the
DMF Reference Manual.

iii LIOCS•C

2/72

TABLE OF CONTENTS

Section 1 INTRODUCTION

ADDITIONAL CAPABILITIES PROVIDED BY LIOCS-C •••••• 1-1
DIFFERENCES BETWEEN LIOCS-C AND PARTITION LIOCS •• 1-2
CHOOSING BETWEEN COMMON AND PARTITION LIOCS •••••• 1-3

Section 2 LIOCS-C

OPERATION • 2-2
FILE CONTROL BLOCKS • 2-8
SUBROUTINES • 2-11
CONSIDERATIONS ••••••••••••••••••••••••••••••••••• 2-24

Appendix A LIOCS-C STATUS CODES

Appendix B FCB MACRO PARAMETERS

v LIOCS•C

Section 1

INTRODUCTION

ADDITIONAL CAPABILITIES PROVIDED BY LIOCS-C
DIFFERENCES BETWEEN LIOCS-C AND PARTITION LIOCS
CHOOSING BETWEEN COMMON AND PARTITION LIOCS

I

INTRODUCTION

ADDITIONAL CAPABILITIES PROVIDED BY LIOCS-C

2/72

LIOCS-C differs from its partition-resident counterpart in
capability, location, and user interface. The most significant
additional capabilities are:

1. Multi-sector records are supported.
limit on record length is the amount of
for the I/O area, any record that is
RPG, or is to be sorted, should not
characters (10 sectors).

While the only
core available

to be accessed by
exceed 940 data

2. Record contention, i.e., the attempt by two or more
partitions to update the same record, can be prevented
by utilizing two new operations as follows:

_GETUP (_GET for update)

and

READU (_READ for update)

3. Disc arm movement caused by switching to another
partition during a multi-sector I/O operation, is
prevented by "locking• the disc drive to the controlling
partition until the operation is complete. This feature
can reduce delays in multi-partition systems that are
caused by extraneous arm movement.

4. READ now locates and retrieves the data record in an
indexed-linked sequential file, that is, whether or not
there is a one-for-one entry in the file index.

5. LIOCS-C contains an overlay routine to fetch or load
modules, by file name, that are stored in SYSPOL.

6. A "system lock" is provided to prevent conflict between
partitions that are simultaneously allocating free
sectors to files in the same pool.

The bulk of LIOCS-C code is located in common and is re-entrant,
that is, it allows concurrent use by many partitions. LIOCS-C
exits and switches, which are modified during execution, reside
in locations 750-999 of each partition.

1-1 LIOCS-C

INTRODUCTION

DIFFERENCES BETWEEN LIOCS-C AND PARTITION LIOCS

LIOCS-C

The user interface to LIOCS-C differs from partition LIOCS as
follows:

1. LIOCS-C is not assembled with user programs. The
programmer need only include the common-LIOCS interface
macro (CLIOIN) in his program, and all necessary
references to the LIOCS-C transfer vector in common will
be generated. The transfer vector contains the entry
points for all LIOCS-C operations.

2. The file control blocks (FCB's) are 20 characters larger
for LIOCS-C. Linked sequential files thus have a 94
character FCB. An FCB macro (FCB) is supplied that will
generate FCB'~. and it is strongly recommended that this
macro be used exclusively to generate FCB's.

3. A new open (OPENC), close (CLOSEC), and conversational
loader (C_LOAD) are used with LIOCS-C. These modules,
in addition to LIOCSC and P_COMM, must all reside in
SYSPOL.

4. The recommended assembler for LIOCS-C is Assembler II;
this allows the programmer to use the macros that are
supplied for generating FCB's, transfer vector
references, and calling sequences (GET, PUT, and so on).
These must all be hand-coded each time for use with
Assembler I. In addition, future changes to LIOCS-C may
require modifications to the FCB's, transfer vectors,
and so on. By using Assembler II and the supplied
macros, implementing such a change would require only
refiling the affected macros and reassembling. When
using Assembler I, each program would require program
changes that must be provided by hand, thus increasing
programmer effort significantly.

5. LIOCS-C must be loaded into common core normally at the
start of each day's operation.

1-2 2/72

INTRODUCTION

CHOOSING BETWEEN COMMON AND PARTITION LIOCS

2/72

Deciding whether a System Ten installation should use common or
partition LIOCS depends on a number of inter-related factors
which follow:

1. Core size and the number of partitions. Partition LIOCS
requires approximately 1500 to 4000 positions of core,
depending on the operations being used. LIOCS-C
currently requires approximately 6000 positions in
common core (in addition to the 1000 positions used by
the hardware and system constants, tables, and the
common mail box). Depending on the operations being
used, then, the total amount of core required for
partition LIOCS exceeds the core required for LIOCS-C
when two to four partitions are simultaneously using
partition LIOCS (refer to Figure 1-1).

NUMBER
OF

PARTITIONS
USING LIOCS

1

2

3

4

5

TOTAL CORE USED BY PARTITION
RESI DENT LIOCS ROUTINES

8,000

7,500 12,000

6,000 10,000 16,000

7,500 12,500 20,000

Note: Shaded areas indicate where partition
LIOCS uses less total core than LIOCS-C.

Figure 1-1 TOTAL CORE USED BY PARTITION LIOCS

2. Contention versus non-contention use of disc. When
applications will be contending for the same pools or
files from different partitions, LIOCS-C should be used.

3. LIOCS-C should be used if its capabilities outlined
above are needed.

4. If the System Ten installation does not presently
indicate the use of LIOCS-C, but it is expected to
expand and require LIOCS-C in the future, a conversion
effort can be avoided by using LIOCS-C.

5. More advanced future software will require the use of
LIOCS-C. If the most capable version of software is
wanted (e.g.,RPG), LIOCS-C should be used.

1-3 uocs-c

Section 2
LIOCS-C

OPERATION
FILE CONTROL BLOCKS
SUBROUTINES
CONSIDERATIONS

I

0

410

510
520

1000

COMMON

RECORD PROTECT TABLE

DRIVE LOCK TABLE

TRANSFER VECTOR

LIOCS-C

PARTITION

Transient Area Used
by OPEN, CLOSE and

OVLAY

7501-------------1

P COMM

1000------------1

~-------------'
I
I
I
I
I LIOCS-C
I
I
I
I

USER Is PROGRAM

6600 ----------

Figure 2-1 LOCATION OF LIOCS-C MODULES

2/72 2-1 uocs-c

LIOCS-C

OPERATION

LIOCS-C

At the beginning of each day, in response to:

A)ENTER PROGRAM NAME.

the following dialogue takes place with the user on a Model 70
Workstation or Model 80 Video Display:

LIOCSC
I)LIOCS-C (xxxxxx: REC-PRO, DR-LOCK OPTIONS) LOADED

Note: xxxxxx is date in YYMMDD format

At this point, if the system program UDATE is filed in SYSPOL,
it will automatically be loaded to enable the user to set the
User Date field in Common:

A)SET DATE

If no UDATE is found in
entered in MM/DD/YY format
displayed:

A)ENTER PROGRAM NAME.

SYSPOL or after the date has been
the following message will be

MYPROG Load User's Program

Once LIOCS-C has been loaded, all partitions have access to it.
Even if a program crashes or ends it is not necessary to re-load
LIOCS-C.

Hardware requirements are the same as those specified in the DMF
Manual, except Common must now be a minimum of 7K to use LIOCS-C
and a lOK Common is recommended.

Core memory requirements for LIOCS-C are shown in Figure 2-1.
Beginning at location 1000 in common is the LIOCS-C transfer
vector, coding the user references to enter LIOCS-C. This
coding is referenced via the user's interface generated by macro
CLIOIN in the user's program (refer to Figures 4-2 and 4-3).
The location of the transfer vector will not change so user
programs will not have to be re-assembled should LIOCS-C change.

OPENC and CLOSEC are similar to their counterparts in the
existing DMF, with the exception that after execution they
return to the user's program via LIOCS-C.

2-2 2/72

"Tl

IC
c
iD
!\.)

~

UI
)>

~
""ti r-
m
""ti
:;ic

0
!\.) G'> w :;ic

)>

~
c
=!
r-
N
z
G'>
r-

6
n
UI
r,
~
)>
n
:;ic

0
UI

,....
6
()
V>
I

()

FILE NA1'1&:

RECORD NO•

TYPE CHANGE
J..EVEL

DATE OF
El(P !RATION

DATE OF
CREATION

DES CR IPTI ON

1 TITLE •TYPICAL USES OF LIOCS•C• SAMPLE000100
2 ••••• •• •••••• •••••••••••_"!'_~-~~-~--~"!'-~•-~!__•~-'!.·-~-~-•-!••_•• •-!_JJ_!:_!:~ ':~--~~ ~-•-!~ ~-• ••. •• ·~ SA."1.PLe:0_00.200
3 • 1'1ACROS TO BE INCLUDED TO DEFINE SYSTEM AREAS • SAMPLE000300
• ••• SAMP~E000400
5 •CCDEF • DEFINE COMMON CORE AREAS SAMPLE000500
6 •LCOEF • DEFINE PARTITION LOW CORE SAMPLE000600
7 EJECT SAMPLE000700
8 CLIOIN • DEFI_NE LIOCS_•C: T_RAN!;FER VECTOR $Al'1F'i,.E00080Q
9 EJECT SAMPLE000900

10 _•_'!'_~••••_!••• •••••• •• •••••••••• SAMPLE001000
11 • BODY OF F'ROGRAl'1 LIDCS•C MACRO CALLS • SAMF'LE001100
12 !!'~!-~~-·~•_'!'_'!_'.'_'!_•••~'!'_••_!•••••••••••••••¥44¥¥¥••••••••••• •••••••••••••••• SAMPLE001200
13 NOIMAL SAMF'LE001300
lit _DB~ __ l_(lQ_Q______ 5AMF'l.EOOl"OQ_
15 START OPEN EXTFCB1ERROR •OF'EN AN EXTEND FILE SA1'1F'LE001500
16 OP[N INDFCB1ERROR •OF'EN AN INDEXED FILE SAMPLE001600
17 GETUF' EXTFCB1ERROR •GET ANO LOCK A RECORD SA1'1PLE001700
18 •<<<< USER'S PROCESSING TAKES F'LACE HERF >>>> SAMF'LE001800
19 UF'OATE EXTFC81ERROR •UPDATE AND UNLOCK THE RECORD SAMF'LE001900

---~O-~« ____ R_E_MA_U4_1)£R_ 0£ \J.SER 1 S F'ROc;ESSING »» SAMF'L.E002000
21 ••• USER'S EDF ROUTINE• SAMPLE002100
22 EOF EQU • SAMPLE002200
23 EDF INDFCB1•+10 SAMPLE002300
2" CLOSE INOFC81ERROR SAMPLEOOc .. 00
25 EDF EXTFCB1•+10 SAMPLE002500
.?A_ _q,_os_E: ~~TEC::Btl;RROR - $AMPLE002600
27 EJECT SAMPLE002700_
28 ••• SAMPLE002800
29 • USER FCB 1 5 GENERATED BY FCB MACRO • SAMF'LE002900
30 ••• SAMPLE003000
31 SF'ACE 2 SAMF'LE003100
32 EXTFCB FCB NAME•PNAME~FNAME11USE•EXTEN01AREA•WKAREA1EXIT•EOF1 X$AMF'LE003200

___ 3_3__ BLKL•"701 TYF'E•LS - . . -· - --- - SAMF'LE003300

3" SPACE 2 SAMPLE003400
35 INOFCB FCB NAME•PNAMEoFNAME21USE•EXTEN01AREA•WORKA21EXIT•EOF1 XSAMF'LE003500
36 8LKL•l881KEYAD•KEY1TYPE•ILS SAMF'LE003600
37 EJECT SAMPLE003700
38 ••• SA~PLE003800

---3~f ---..----PR-ClGRAM CONSTANT ANO WORK AREAS . -- • SAMPLE003900

~O ••• SAMPLE004000
"1 ERROR EQU • SAMPLE004100
"2 ••• USER'S ERROR HOUTINE SAMPLE004200
.. 3 WKAREA OM .. 1oc• I •WORK AREA FOR EXTEND FTLE SAMF'LE004300

---"~-- WORKA2 OM 1_88C' 1 •WORK AREA FOR INDEX FILE SAMF'LE004 .. 00
"5 KEY OM N"'0' •INDEX KEY ARGUMENT SA1'1F'LE004500
•6 ••• SAMPLE004600
H ENO START SAMF'LE004700

FILE SAMPLE IN F'OOL SOURCE CONTAINS "7 SEC TORS

0105:>1
010522
010523
01052"
0105?5
010556
010526
Q1Q5~5
010527
0105?8
0105?9
010561
010562
010530
010531
010532
010533
010534
010535
010563
01051'>4
01051\5
01051\6
010567
010568
OIQ557
010536
010537
010538
010558
010539
010540
010559
010 541
0105 .. 2
010560
0105•3
0105••
0105•5
0105•6
010547
010550
010551
010552
010553
010554
111111

,....
0
n
(/)

n

,....
0
()
(/l

I
()

"Tl

cc
c ..,
Cl)

~

w
-- -· --------------- -,.....

6
SYSTEM TEN ASSEMBLER I I TYPICAL USES OF LIOcs-c

n SEQ• L.OCN INSTR/OAT A OP AIR M I B/S M I LI NE
Cll

h 0008 0095

-t
Al

0003 QOOO 0000 0096G •CLIO!
OOO'o lOOOC 0097G

)> 0005 lOOOC lOOOC 0098G
z 0006 lOOOC lOOOC 0099G •BAS EC
Cll
"Tl
m

0007 lOOOC 1020C OlOOG •GET
0008 1020C 10 .. 0C 01 OlCl •PUT

Al __ QOQj_ 10 ... QC: .. 1060C 0102G •lNSRl

<
~

m
n

,I... -t
0
Al

0010 1060C 1080C 0103G •DLETE
0011 1080C llOOC 010 .. G •UPDTE
0012 11DOC 1120C 0105G •BOF
0013 1120C: 11,.0C 0106G •EDF
001 .. 1 HOC 1160C 0107G •WRTEF

0
m z
m

. 0015 1160C 1180C 0108G •READ
0016 1180C 1200C 0109G •WRITE
0017 1200C 1210C 01 lOG •OPEN
00111 1210C 1220C 01 llG •CLOSE

Al
)>
-t
m

0019 122oc 1230C 0112G •GETUP
0020 1230C 1250C 0113G •READLJ
QQ~L.1£§Q.C. __ .. 1270C 011'!.Cl •QVLAY

0 0022 1270C 1300C 0115G •RETRY

o:i
-<

0023 1300C 1300C 0116G •OVRET
002 .. 0000 0117G
0025 0000 0990 0!18G

n 0026 0990 0001 0010 0119G •USE RX ,.....
6 QQ27 1QOQ 0000 0120G

z
~
)>
n
Al
0

--·----------------·-----------·---------------- --------------
01/0 .. /72 PAGE 0003

IMAGE c

CLIO IN • OE FINE LIOCS•C TRANSFER VECTOR
OR!i . .!'.-·-· ~ - ---- ---- ------ ----------------
COMMON
ORG 1000
ORG • BASE OF TRANSFER VECTOR
ORG •BAS.EC:+20
ORG •BASEC+ .. O
ORG -·-· •BAS.EC+60 ----·-------
ORG •BASEC+80
ORG •BASEC:+100
ORG •BASEC+120
ORG •BASEC+l'IO
ORG •BASEC+160
ORG •.BAS E:Cil!IO . -------- --- -- -

ORG •BASEC+200
ORG •BASEC+210
ORG •BASEC+220
ORG •BASEC+230 ---------

ORG •BASEC+250
oRG •.BAS..E~VQ ______ __ J .. Jl.Afl. OY:E.RLA'LEB0'1 S'!'.SeQI
ORG •BASEC+300 RESUME AFTER DISC FAULT
ORG • OPT! ON.\L USER •.EXEC I AJ>ORES.S
NORMAL
ORG 990
DM ClO USER EXITS
ORG . •CUQl. ___ RES.10.R.E USER l.OCAII ON CCU NIER

!:::
0
("")
(/)

h

I\)

-:::-i-
1\)

.....
5
(')
V>
I

(')

"Tl

cc c: ..
CD

l'J
.i:...

(II
)>
~
"ti ,...
m
,...
6
n
(II

h
~
)>
n
::ill
0

~ ,... ,...
(II

SYSTEM TEN ASSEMBLER II TYPICAL USES OF LIOcs-c

SEQ• LOCN INSTR/DATA OP AIR M I 8/S M

0010
___ Q_Ql.l

0012
0013 OODO
OOH 0000
0015

1000

1000 VOPS15120P 11 0031 6 0 1200C 5 0
__ _.l_QJ.Q__P1J.JY!!~U~6 .. 11 U6_Q_ 0 o 136.. 9 o

0016

0017

1020
1030

VOPS15120P 11 0031
PlRU49136• 11 1254

6 0 1200C 5 0
0 0 l361t 9 0

1040 VOPS15122P 11 0031
______ l~LJ>li'l_Q9 ll6_~ __ lL1 t~O.

0018

6 0 1220C 5 0
0 0 1364 9 0

0019

0024

1060
1070

VOPS15108P 11 0031
P1QV09136" 11 1160

6 O 10BOC 5 O
0 0 136.. 9 0

1080 VOPS15112P 11 0031 6 0 1120C 5 0
1090 P1RU491100 11 1254 0 0 1100 9 0

_______ !H!Q __ V.0!"$.1!H!?l!" 11 0031 6 0 121QC 5 0
1110 P1RU491364 11 1254 0 0 1361t 9 0

0025

0026

1120 VOPS15112P 11 0031 6 0 1120C 5 0
1130 PlQV09l140 11 1160 0 0 1140 9 0

..11:\9 ___ V_Of'S15t!?.1..P. U_ QO~J.- 6 __ o 1210(; 5 0
1150 PlQV09l36" 11 1160 0 0 1364 9 0

LINE

0123
- ··-···0.1.l?!.

0125
0126
0127
012!!
0136G
Ol.38G
OHO
014!!G
0150G
0152
0155G
Ot57G
0159
0160
0171G
0173G
0175
0176
0177
_0178
01901!
0192G
0194

.O?OZG
020'1G
0206
O?lBG
02201'1
0222
0?.30G
0232G

01/0'l/72 PAGE 000<\

IMAl'iE c

•••
!'. BODY. QLPflO.G8.A!L __ •_~ ___ L_H1..t.S.~ttAC.~J1,__,. __________ --"-----
•••

NORMAL
ORG 1000

START OPEN EXTFCB1ERROR •OPEN AN EXTEND FILE
START RC 311611•0PEN151

.. BC El<JFt!! .. LOl.1.~~lL~.1.~.L _______ ·-··
OPEN INDFCB1ERROR •OPEN AN INDEXED FILE
BC 311611•0PEN151
RC INDFCBIOl1ERRORl91
GETUP EXTFCB1E~flOR •GET AND 1.0CK A RECORD
LINK 311•GETUP
BC . _ ... EXTF.!;_tu_Ol..l.il_fillfil_u_ ____________ --------------

•<<<< USER•S PROCESSING TAKES PLACE HERE >>>>
UPDATE EXTFCB.1ERROfl. --~U!"DAJ'E. AN])_ U.N.L.OJ:.K THE 9E.C.0.RIL. ···--··----------
RC 311611•UPDTEISI
BC EXTFCBIOl1.E~.R.o_RJ.?L . -····-- __________________ _

•<<<< REMAINDER OF USER•S PROCESSING >>>>
•••
EOF

J.JSER!JLJ.QL.f«!U IN •
fQU •
EOF .. lfll!)F_!;e_1••-10
BC 31C611•EOFl51
BC JNDFCB 1011'!-+.lOJ.lH
CLOSE INDFC81ERROR
_ec__ ____ 31C6I1•CLOSE151
BC INDFCBIOl1ERRORl91
fOF EXTFCB1•+lQ
BC 311611•EOF151
BC EXTFCBIO)lulOU!.L ..
CLOSE EXTFCB1ERRDR

__ e_k. _________ lll~J 1.~LOSE C 5 I
BC EXTFCBIOl1ERRORC9J

. ·---·--·-·------- ------ -------

---· -· ··--·---------------

0 n
(/)

h

,....
0
('\
(/)
I

('\

t-J
0.

"Tl

cc
c ...
CD

t-J
0,

(/)
)>

~ .,, .-
m
"Tl
(")
O'

~
)>
(")
::!:I
0
G>
m z
m
::!:I
)>
-t

6 z

SYSTEM TEN ASSEMBLER II TYPICAL USES OF LIOCS•C 01/0'l/72 PAGE 0005

SEQ• LOCN INSTR/DATA OP AIR H I BIS H I

0028
002'
0030

0.032 -----
0033

__ QJlll.'I_ _________ --·-

1160
1160 a
1161 PNAME

__ 1_1_67 __ ENAl1E1
1173 136'1
1111 ouo__ __ _
1181 1080
1185
1191 010

---- ___ _Ill.'!___~~ .. -- -

0035
0036
000'1

1198
1202

1160
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001

___ _OQ_Ql

0001
0006
00.06
000'1
000'1
000'1
0006
0003
000'1
000'1

__ oosa _

LINE IMAGE

0235 ••• _ .02.36 _• USER FLJI. t 5-_JiEl'tEJli.IEQ_ll FCB MACf!O •
0237 •••

0239 EXTFCB FCB NA...HE.,PN.ld'IE tf NA!'IEJ...o!J~.l.EHO.A.ARE bWKAREA •EXT TaEOf,
BLKL•'l701TYPE•LS

024.QCL!'l!.LlQCS _EC.fl-11-1.1.2.2.!lL __
0263G EXTFCB EQU •1941

c

x

026713 OM C' QI ______ l'lLLI'l'P...£_ L.LS ______ . _________ _
0269G OM C6'PNAME 1

027113 D!'I Cb I FN.H!El '·
0273G DM A•WKAREA'

POOL NAME
---·---- __ J'l.LE.N.At!L_. -----------------

WORK AREA ADDRESS
0225.G_ D.l'L .. ___ A 1..'l.Zli!. OCK L ENGT
0277G DM A•EOF 1 USER EXIT ADDRESS
0279G QM C6 t t PASSWORD ______ _
0281G OM c 1 010• ACTION FLAGS : EXTEND
Q_283G DM . C' •o.t_t _____ ,.s.,_E.._c o.....,NDARl' ALLOCATION
0285G OM C•••••• PRIMARY ALLOCATION

_ ___ OZMJL.__ ll!L. ___ .. CO.!ia.'..--'-'--------'-'-"R"'E..-S"'E""RLIY'-"E"'Dulc.__ _______________ _

- --------------·-·----------
0292 INDFCB FCB NAHE•PNAHEeFNAME21USE•EXTEND1AREA•WORKA21EXIT•EOF1 x

8Ll(L_,.18ll.LK£'.l'__~_D'f£.tlLS____. _____
0293G ... LIOCS FCB 17112201

12!H 1.2J5.'1 ·- _____ . ____ 03.1ll.1Lilit2E~£GU •
125'1 I 0001 0001 0322G DH C' I' FILE TYPE . ILS .
1255 PNAHE 0001 0006 0324'3 DH _C6_tpN~Mft POOL Ji!t1E_ __________

1261 FNAME2 0001 0006 OJ26G OM C6'FNAME2' FILE NAHE
.1267 1834 0001 000'1 0328G QM -·~')iQ!!KU_t_ _ WORK Af!EA At!t!RESS
1271 0188 0001 0004 0330G DM A• 188' BLOCK LENGTH
1275 1080 _ .Jl.Qll_ _9p_Q'I _ P33ZG _______ j)_"I_ ___ A•EOF• USEB EXIT ADDRESS
1279 0001 0006 0334G OM C6' PASSWORD
128~ 010 0001 0003 0336G OM C_1 QJO' _________ A~I.ION ELAH_: EX TENO
1288 •••• 0001 000'1 033813 DM c•••••• SECONDARY ALL DC AT ION
1292 •••• 0001 0004 OJ'IOG DM _Ct••••· PRIMARY ALLOCATION
1296 2022 0001 000'1 03'13G OM A•KEY' KEY ADDRESS
1300 0001 ---·---···-----

OOf,'I 03'16_11 J:>M co.u• t C RESERVED I

,...
0
n
CJ)

h

LIOCS-C

UFCBl UFCB 2 UFCB 3 UFCB 4 UFCB 5 UFCB 6
0 0 1 6 7 12 13 16 17 20 21 24

FCB TYPE POOL NAME FILE NAME WORK NO LOGICAL USER EDF
ADDRESS RECORD ROUTINE

SIZE ADDRESS

UFCB 7 UFCB B UFCB 9 UFCB 10 UFCB 11 UFCB 1Z
ZS 30 31 33 34 37 38 41 42 45 46 n*

FILE ACCESS ACTION FLAGS SECONDARY PRIMARY KEY ARGUMENT USED BY
PASSWORD ALLOCATION ALLOCATION ADDRESS OPEN

SPECS SPECS

* 93 FOR LINKED SEQUENTIAL FILES, 109 FOR INDEXED LINKED SEQUENTIAL FILES.

Figure 2-6 USER FILE CONTROL BLOCK(UFCB)

2/72 2-7 LIOCS-C

LIOCS-C

FILE CONTROL BLOCKS

User FCB:

The user file control block is as described in the DMF Manual,
with the following modifications (refer to Figure 2-6).

1. The FCB must not be in common core. (Same as before)

2. Work Area Address - Field 4, Positions 13 to 16. User's
Work Area must be in partition.

3. Logical Record Size - Field 5, Positions 17 to 20.
maximum record size is 9,999 (but full record must
in partition).

The
fit

4. User EOF Routine Address - Field 6, Positions 21 to 24.
Must not be in common core.

5. Reserved for Post Open FCB - Field 12, Positions 46 to
n. If the file is not indexed, this field must be 52
characters (including field 11). If the file is
indexed, this field must be 64 characters in length to
allow for expansion by the OPEN operation.

Post Open FCB:

LIOCS-C

This is as described in the DMF Manual, with the following
modification (refer to Figure 2-7).

1. Save Start of Record (_FCBSF) contains the start address
of a multi-sector record.

2. Record Protect Switch (_FCBGU) set ON when a file is
using record protect.

3. Open flag (_FCBOP) is set to '!' after the file is
opened.

2-8 2/72

_ftBTY _FCBPL _FCBFL

0 0 1 6 7 12

FCB TYPE POOL LABEL FILE LABEL
ADDRESS ADDRESS

_FCBST _FCBCT _FCBCN
25 25 26 29 JO 33

USER STATUS CONTENTION CONTROL FLAGS
CODE CONTROL

_FCBNS _FCBAL _FCBEL
50 55 56 61 62 67

NEXT SECTOR SECTORS ALLOCATED EDF MARK
ADORE SS DISC ADDRESS

_FCBIP _FCBAR* _FCBDP
93 93 94 97 98 101

OPEN (ACTUAL) KEY KEY DISPLACEMENT
FLAG ARGUMENT

ADDRESS

*' FIELDS THAT CAN BE MODIFIED BY USER AFTER FILE
HAS BEEN OPENED.

_FCBWA* _FCBLR*

13 16 17 20

WORK AREA LOGICAL RECORD
ADDRESS SIZE

_Fcesc* _FCBFS
34 37 38 43

SECONDARY PRIOR SECTOR
SECTOR ALLOCATION ADDRESS

_FCBEX _FCBSF
68 73 74 91

POINTER TO PRIOR SECTOR,
EXTENSION CURRENT SECTOR,
PORTION NEXT SECTOR OF

START OF
MUL Tl-SECTOR

RECORD

_FCBKL _FCBOR
1()2 1.03 104 109

KEY LENGTH POINTER TO
INDEX ROOT

Figure 2-7 POST OPEN FILE CONTROL BLOCK (POFCB)

2/72 2-9

LIOCS-C

_FCBEF*
21 24

USER EOF
ROUTltE

ADDRESS

_FCBCS
44 49

CURRENT SECTOR
ADDRESS

_f CBGU
92 92

RECORD PROTECT
SWITCH

uocs-c

LIOCS-C

~----INDEX----~ READ KEY B

Key A--i. Key D--i. Key G--.etc.

SEARCH INDEX FDR KEY B

FINDS KEY D (>KEY Bl

SEARCH FDR KEY<KEY B

Record A--+ Record D--.Record G--.etc. TAKES POINTER TO RECORD A
'-------DATA-------'

GET RECORD A

READ KEY A GET NEXT SEO. RECORD

SEARCH INDEX FDR KEY A KEY IN RECORD OOES NOT EQUAL KEY B

TAKE POINTER TO RECORD A SET ERROR STATUS 8

RECORD A PLACED IN USER'S BUFFER USER'S ERROR EXIT

Figure 2-8 DATA RETRIEVAL FROM AN INDEXED FILE

READ KEY ·B

,,.---------INDEX---------..
SEARCH INDEX FOR KEY B

Key A----- • Key D ·-·--·· -•Key G _ _.etc.

NOT FOUND - TAKE POINTER TO KEY A

Record A--.Record B--.Record O--.Record G ___.etc.
~-------DATA------~

GET RECORD A

GET NEXT SE 0. RECORD

KEY IN RECORD EQUALS KEY B

RECORD B PLACED IN USER'S BUFFER

Figure 2-9 DATA RETRIEVAL AFTER RECORD INSERTION IN AN INDEXED FILE

LIOCS-C 2-10 2/72

LIOCS-C

SUBROUTINES

2/72

All subroutines not listed below operate as described in the DMF
Reference Manual provided "multi-sector record" is substituted
for "sector" in all the discussions.

Open A File

Main Subroutine Name: OPEN

Function:

The OPEN subroutine calls the system program OPENC, which
converts the UFCB into the POFCB.

Description of Operation:

OPEN functions in the same
though it uses a transient named
user's program via LIOCS-C.

2-11

way as the DMF OPEN subroutine,
OPENC which returns to the

LIOCS-C

LIOCS-C

Close A File

LIOCS-C

Main Subroutine Name: CLOSE

Function:

To finalize the state of the files created by the user's
program.

Description of Operation:

CLOSE functions in the same way as the DMF CLOSE subroutine,
though it uses a transient named CLOSEC which causes returns to
the user's program via LIOCS-C.

2-12 2/72

2/72

UOCS-C

Read A Record

Main Subroutine Name: READ

Function:

To access an indexed linked sequential data file in a random
manner and to read a desired record, or its logical successor,
into the user's buffer.

Description of Operation:

READ enables the location and retrieval of data in a file,
whether or not there is a one-for-one entry in the file index.
If the required data is not found, then the record having the
next higher key to that requested is placed in the user's
buffer.

Figure 2-8 illustrates an indexed file and two attempts to read
from that file, one of which is successful while the other is
not, since key/record B does not exist. After the resulting
error exit the user's FCB points to record D. The user can now
employ INSRT to link record B between records A and D. Figure
2-9 shows the result of this insert, and the way in which the
inserted record is retrieved.

A further example of the use of READ is given in Figure 2-10.
Here, the index contains one entry for every four keys, and the
consequent search and retrieval sequence is detailed in the flow
diagram.

For the data retrieval logic to operate successfully, the data
file must be in ascending key sequence. But, if the user has
more than one index per file it is possible that the data file
is out of key sequence for one of the file indexes. If a data
file is not in key sequence, therefore, there must be a one-for
one index, and in this case, the function INSRT cannot be used.

Conditions:

1. A key of high value (e.g. underscores) should be placed at
the end of a file to prevent any attempted _INSRT off the
end of the file.

2. Since the search logic reads each record into the user's
buffer, any record to be inserted must only be placed in the
buffer immediately prior to the INSRT taking effect.

3. If indexed access is used on an extend file, the function
EOF must be used before CLOSE.

4. When setting up the index for a file having multi-sector
records, the NENTRIES parameter must contain a multiple of
the number of sectors per record.

5. If a record is not found in an indexed file and its key is
not lower than the lowest key in the index, error status 8
is set in FCBST and the User's Error Exit is taken.

2-13 LIOCS-C

LIOCS-C

LIOCS-C

6. If a record is not found in an indexed file and its key is
lower than the lowest key in the index, error status 9 is
set in FCBST and the User's Error Exit is taken.

2-14 2/72

~--------INDEX---------

Key A--------------. Key E --+etc.

Record A___. Record B___.Record C---+Record D---+Record E __.etc.
~--------DATA---------~

LIOCS-C

READ KEY D

SEARCH INDEX FOR KEY D
NOT FOUND

TAKE POINTER TO LESSER KEY (A)

GET RECORD A

GET NEXT SEQ. RECORD (8)

KEY IN RECORD B DOES NOT EQUAL KEY D

GET NEXT SEO. RECORD (Cl

KEY IN RECORD C DOES NOT EQUAL KEY D

GET NEXT SEQ. RECORD (D)

KEY D CORRESPONDS

EX IT TO USER

Figure 2-10 DATA RETRIEVAL FROM A MULTI-SECTOR RECORD INDEXED FILE

2/72 2-15 LIOCS-C

LIOCS-C

Read And Lock A Record

LIOCS-C

Main Subroutine Name: READU

Function:

To access an indexed linked sequential data file in a random
manner, lock the desired record and read it into the user's
buffer.

Description of Operation:

READU operates in a manner similar to READ. READU also
inspects the Record Protect Table (see Record Protection), locks
each record in turn, inspects it and unlocks it if it is not the
required record. If the required record is not encountered in
the file, its logical successor is locked and read into the
user's buffer. READU honors record locks in its search for a
record. If a record it is attempting to inspect is locked, it
will switch out until that record is unlocked.

A record locked by READU will be unlocked by any subsequent
LIOCS-C operation from the same partition on the same FCB. Only
one record per FCB may be locked at a time.

2-16 2/72

2/72

LIOCS-C

Write A Record

Main Subroutine Name: WRITE

Function:

To write the user's work area into an indexed linked sequential
file, provided its key exists in the relevant index file.

Description of Operation:

Upon issuing a _WRITE, the index is searched for the desired
key. If the key is found in the index, the user's work area is
written into the sectors pointed to by that index entry. No
check of the subject data record is made to ascertain it does
indeed contain the desired key. If inserts have been made into
the file, erroneous results can be obtained using WRITE.

If the desired key is not found in the index, the user's error
exit will be taken with the status code set to 8 or 9. FCB
pointers are set so a subsequent GET will obtain the record
pointed to by the index entry with the next lower key. It is
then the user's responsibility to issue GET's until the desired
record is found and then issue an UPDTE or INSRT. WRITE does
not provide any record protect facility.

Conditions:

1. WRITE can only be used if no inserts have been made in the
file since the last MAINT/INDEX run.

2. The only efficient use of WRITE is with an index built with
a density of one index entry per data record.

3. If both conditions above are not met, READ/ READU followed
by UPDTE or INSRT should be used.

2-17 LIOCS-C

LIOCS-C

Get and Lock A Record

LIOCS-C

Main Subroutine Name: GETUP

Function:

To lock the next logically sequential record and to read its
contents into the user's buffer.

Description of Operation:

The operation of GETUP is similar to that of the main
subroutine GET in partition LIOCS, with the exception that

GETUP locks any record it retrieves. If the record it is
attempting to read has been previously locked by GETUP or
_READU, the partition will switch out until the record is
unlocked. A record locked by GETUP will be unlocked by any
subsequent LIOCS-C operation from the same partition on the same
FCB. Only one record per FCB may be locked at a time.

2-18 2/72

2/72

LIOCS-C

Update A Record

Main Subroutine Name: UPDTE

Function:

To write the contents of the user's buffer into the current
record.

Description of Operation:

UPDTE behaves in a similar manner to the existing DMF main
subroutine, with the exception that if it refers to a locked
record after a GETUP or _READU operation, it will unlock that
record after it has been completely updated.

2-19 LIOCS-C

LIOCS-C

Insert A Record

LIOCS-C

Main Subroutine Name: INSRT

Function:

To write from the user's buffer into a record, which is then
linked between the prior and current records.

Description of Operation:

INSRT operates in the manner described in the DMF Manual, with
the addition that all partitions have the possibility to insert
into the same file.

Multi-partition Insert into the Same File:

Primary and secondary allocation must be specified in the FCB by
the user; a primary allocation of zero, for an extend file, is
acceptable. There is no conflict during OPEN, CLOSE and
allocation, since the pool directory is automatically locked for
all allocating of sectors to private free sector lists. When an

INSRT is made, the following sequence takes place. The last
sector of the previous record is reread, and the link is
compared with the sector address of the first sector in the
current record: non-equality indicates that another partition
has simultaneously made an INSRT at this point. Consequently,
the FCB is set up so issuing a GET will retrieve the record
just inserted by the other partition, and the user's error exit
is taken with error status V. Figure 2-11 illustrates an
example of two partitions (0 and 1) attempting simultaneous
inserts between records 1 and 2. Partition O succeeded in
inserting record lA, while partition 1 took an error exit and
its insert failed. A GET was then taken by partition 1, and
record lA was obtained; and since partition 1 did not want an
insert between records 1 and lA, another GET was taken and
record 2 was obtained. INSRT B then inserts record lB in the
desired location between records lA and 2.

Note that partition 1 obtained record 2 twice, owing to the
alteration of the sequence of the records. This factor must be
taken into account by the user in the preparation of his
program. Note also that after an error exit with status V, the
only valid operation is _GET, after which all I/O operations are
valid. However, GET will overwrite the data in the user's
buffer; the user must be able either to re-create his data in
the buffer or to GET into another buffer.

2-20 2/72

2/72

PROGRESS OF OATA FILE

AT START - PARTITON 0

GET

OPERATIONS

Record 1
Record 2
Record 3

AT INSERT@
Record 1
Record 1A
Record 2
Record 3

AT INSERT@
Record 1
Record1A
Re co rd 1B
Record 2
Record 3

GETS RECORD 1

IA\ INSERT
\!j) INSERTS RECORD 1A

GET
GETS RECORD 3

®

Figure 2-11 MUL Tl-PARTITION INSERT

2-21

PARTITION 1

GET
GETS RECORD 1

GET
GETS RECORD 2

INSERT

LIOCS-C

INSERTS RECORD 1 B

TAKES ERROR EXIT
STATUS V

GET
GETS RECORD 1A

GET
GETS RECORD 2

INSERT
INSERTS RECORD 18

GET
GETS RECORD 3

uocs-c

LIOCS-C

Find End of File

uocs-c

Main Subroutine Name: EOF

Function:

To position the file at the record that contains either a
temporary or an absolute end-of-file mark.

Description of Operation:

EOF operates in the same way as its DMF counterpart, with the
addition that it will set up the user's FCB so that for
subsequent operations:

GET will take the user's EOF exit.

UPDTE will update the last record in the file.

INSRT will insert ahead of the last record in the file.

DLETE will delete the last record in the file.

2-22 2/72

BUFFER

SECTOR 101

BUFFER

SECTORS 101
AND 102

BUFFER

SECTORS 101
AND 102

2/72

LIOCS-C

-----------194CHARACTERS -----------

(Link to next sector)

-----94 CHARACTERS ~
::=.::::.:::.:::.:::.:::.:::::::.:.:::::::: llttttttttttttttlttllttttttttttttttttttttttttltltlllltttlttltltttttttttttttttttl
================~=======11tttlttlttltlttltltllltltllltltllltllltltltltlllllltlltltltltltltttltlltttltltlt

lltlllllltllltltllltltltttllttlltttlttlttlttlttttttttlttttlttttttln:n
llllflllllllllltltltllltlltllllllllltlllllllllllilllllllllllllll ll!H

ltllllllllltlll•tttllllllllllllllllllllllllllllllllltllllllllltlllrr.t:'ll
lllllllltltlllllltllllllttttltttttltllllltllllttllttlllllllttlllt11&::11

SECTOR 103 ______ R_U_BB_ISH __ 11_04__.I

Figure 2-12. PUTTING A MUL Tl-SECTOR RECORD TO DISC

2-23 LIOCS-C

LIOCS-C

CONSIDERATIONS

Multi-sector Records:

The maximum permissible record size is li~ited only by the
amount of partition core the user has available. If the user
specifies a block size of, say, 194 characters and then
initiates a _PUT, the following sequence occurs (refer to Figure
2-12).

1. LIOCS-C writes the first 94 characters directly from the
user's buffer into the first sector.

2. This is followed by the next 94 characters being written
into the next sector.

3. Finally, the remaining six characters are written into
the next sector.

No exit is made to the user until the contents of the entire
buffer is written. In response to the next PUT the first part
of the record will be written in sector 104, the remaining space
in sector 103 being left unused.

_GET, READ, INSRT, DLETE and UPDTE operate in a similar
manner to _PUT, though GET and _READ do not transfer any of the
'rubbish' from the last sector into the user's buffer.

Record Access Time Considerations

uocs-c

LIOCS-C has the ability to read all sectors of a multi-sector
record •on the fly" (i.e. on the same revolution of the disc)
provided the sectors reside in consecutive disc addresses and
the record is an integral multiple of 94 characters in length.
All sectors of a record are read directly into the user's buffer
unless the record does not end on a sector boundary. Then the
last sector must first be read into the system buffer (200-299
in partition) and a portion of it moved to the user's buffer.
This eliminates overlaying the area immediately after the user's
buffer when reading this last "short• sector. This added
processing makes it impossible to read ~he first sector of the
next record on the same revolution. Since LIOCS-C automatically
scans through the file for the proper key on a _READ, this is an
important consideration, especially when a file has a density of
many records per index entry.

It is recommended that record length be specified as a multiple
of 94 characters. It costs no disc space; each record must
begin on a sector boundary anyway. The potential time savings
are worth the cost of a few core positions to pad out the user's
buffers to integral multiples of 94 characters.

2-24 2/72

2/72

LIOCS-C

Record Protection:

LIOCS-C provides a facility to prevent the simultaneous update
of the same record by more than one partition. This is afforded
by GETUP (_GET for update), _READU (_READ for update), and a
ten entry Record Protect Table in Common. When a partition
issues a _GETUP or _READU, the partition number and the address
of the first sector of the record obtained are placed in the
Record Protect Table. The record is unlocked when the locking
partition performs any subsequent LIOCS-C operation on the file
in question (normally an _UPDTE). While a record is locked, any
reference to it by GETUP or READU from another partition will
cause that partition to switch out until the record is unlocked.

Locked records are only protected from access by GETUP or
_READU; all other LIOCS-C operations by-pass the record protect
logic. For instance, a record locked by a _READU from partition
1 may be accessed simultaneously by a READ from partition 3.
LIOCS-C does not restrict partition 3 from now issuing an UPDTE
on the record it has just obtained via a _READ, which would
probably overlay any updating done on the record by partition 1.
This feature allows read-only accessing of files being updated
by READU and GETUP. If two or more partitions have the
possiblity of updating the same record simultaneously, it is the
programmer's responsibility to utilize GETUP and READU so
LIOCS-C can coordinate the use of records by all partitions.

There is no limit to the number of FCB's that may have records
locked, but the Record Protect Table can only accommodate ten
entries at a time. Should it become filled, any partition
attempting to lock a record will switch out until an entry in
the table is freed. Filling the table is an unlikely event.
Still, good system design dictates that any partition lock a
record for only as long as absolutely necessary to perform an
update. This is primarily a consideration to increase system
response when many partitions are referencing the same records
but it will also minimize competition for table entries.

If a partition should go to a load condition, the address of any
records it has locked will remain in the table. Whenever the
conversational loader (C_LOAD) is used to load a program, it
purges all entries in the Record Protect Table for all
partitions in a load and for the partition in which it is
running.

Drive Lock:

A drive lock routine is included to prevent any partition from
accessing a drive already accessed by another partition, and to
maintain the lock on the drive until the controlling partition
has completed I/O operation, i.e. until every sector in a multi
sector record has been read or written. This facility reduces
I/O times by minimizing head movement. The drive lock routine
references a ten-character field; known as the Drive Lock Table,
which is situated in locations 510C to 519C.

2-25 LIOCS-C

LIOCS-C

uocs-c

The left-most position (510C) refers to drive 0, the next to
drive 1, and so on, the right-most position (519C) relating to
drive 9. The state of each position indicates whether or not
the relevant drive is locked; if the position contains a blank,
the drive is free; if it contains the partition number the drive
is locked. (In Figure 2-13, drives O, 2 and 3 are locked by
partitions 0, 4 and 2 respectively. A single-character
partition number is used: 10, 11, 12 etc. are represented by P,
Q, R etc., respectively.)

Any attempt by a program to use a locked drive will cause
control to be switched to the next partition. However, the
partition is not informed that this event has occurred, and it
attempts to access the locked drive each time it has control.

If the controlling partition assumes a load condition before the
I/O operation is completed, it is possible that the drive will
remain locked. The conversational loader clears from the table
all locks if the associated partition is in a load condition.

2-26 2/72

LIOCS-C

510C 519C

0 4 2

Figure 2-13 DRIVE LOCK TABLE

2/72 2-27 uocs-c

LIOCS-C

Error Exit:

During an error exit, location 990 in partition contains the
instruction

BC ERROR(5),NORMAL(5)

so that the instruction

MN _USERX+6(4), •••

can be used to obtain the address of the calling sequence.

NORMAL is the normal return address.

N.B. A move numeric instruction must be used.

Physical 1/0 Errors:

If a physical I/O error (status code 1) occurs within a file, it
is not advisable to continue using that file after an error
exit; the file should be closed, and both the file and pool free
sector list should be checked for correct link addresses.

Drive Not Ready:

LIOCS-C

If a drive is not ready, the message

A)READY DEVICE Dn.

will be displayed on the CONO device. If the user responds via
the CON! device by setting a FLAG condition (pressing any
control key on the workstation or video display), the user's
error exit is taken with status code 1 set. Any other response
via the CON! device will cause the I/O operation to be retried.

If either the CONO or CON! device is unassigned (assigned as
NODEV), the user's error exit will be taken with a status code X
set. The only legitimate option the user may then exercise in
his error routine is to branch to RETRY within LIOCS-C with a
particular condition code set. At RETRY is a branch
instruction which:

1. For a condition code of 2, will retry the I/O operation.

2. For a condition code other than 2, will take the user's
error exit with condition code 1 set.

This allows I/O error retries from "blind" partitions under
program control.

2-28 2/72

2/72

LIOCS-C

Error Status Code:

Table 4-7 of the DMF Manual is replaced by Table A-1.

Sector· Allocation and Contention Problems:

As described in the DMF Manual, with two additions; multi
partition inserts (which have already been dealt with under the
heading _INSRT) and multi-partition deletes.

Multi-partition Delete in the Same File:

Multi-partition deletes in the same file are not permitted. If
one partition references a file in any way, and a second
partition deletes a record that the first partition is about to
access, the results are unpredictable. If it is required to
delete a record in these circumstances, the relevant record must
be obtained using Record Protect, and be UPDTE'd with
characters that will indicate to all programs referencing that
file, that the record has been deleted. The record may be
deleted at some later time by a user-written program operating
in a non-contention environment.

Multi-partition Extend in the Same File:

LIOCS-C does not provide any additional capabilities for
physically extending (i.e. _PUT beyond EOF marker) an extend
type file than Partition LIOCS provided. A physical extension
is still linked onto the file at Close. If two physical
extensions are made to the same file simultaneously, when the
second one is closed it will overlay the link to the extension
of the first. If physical extension is to be used, one FCB must
be passed back and forth through Common to each contending
partition as was necessary in Partition LIOCS. Common flags
must be used to make sure only one partition uses the common FCB
at a time.

Logical extension from many partitions may be accomplished under
LIOCS-C contention control by using INSRT in front of a trailer
record.

Overlay Routine:

LIOCS-C contains an overlay routine to load modules stored in
SYSPOL. The user places the name of the program to be loaded in
partition locations 25-30 (_LNAM) and branches to _OVLAY in the
LIOCS-C transfer vector.

If the user wishes to execute the overlay after loading (begin
executing at the address defined in the EXEC card), the calling
sequence

B OVLAY

is used.

2-29 LIOCS-C

LIOCS-C

LIOCS-C

If the user wishes to load the overlay and return to the calling
program, the calling sequence

LINK _LXR3,_0VLAY

is used and the overlay module must be terminated with an EXEC
card image specifying the address 1300C generated by

EXEC OVRET

in the overlay module's source
including the macro CLIOIN in the
loaded in this manner must not
otherwise the user's return address

deck (_OVRET
source deck).
modify index

will be lost.

is defined by
An overlay

register 3,

In neither case is it necessary for the user to load the Locator
or set its search arguments in low core. All overlays loaded
via OVLAY must be previously filed in SYSPOL. If an overlay is
not found, the message

L)progname NOT FOUND.

is displayed on CONO, if it is defined. Whether or not CONO is
defined, the partition will then go to a load with the Program
Check Area (_LCKR;40P to 44P) containing the address of the
above message.

The overlay routine does not require P COMM or the Locator to be
loaded by the user; the Locator is loaded automatically by
LIOCS-C and P COMM is not used.

2-30 2/72

Appendix A

LIOCS-C STATUS CODES

I

STATUS LIOCS MAIN
CODE SUBROUTINE

0 (NONE)

l ALL

2 (NONE)

3 PUT
INS RT

4 READ

5 PUT, UPDTE,
or WRTEF

6 _PUT

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (0-9)

CONDITION INDICATED

(NOT USED)

An irrecoverable read parity or a flag error was encountered while
attempting to perform linked sequential disc I/O

or
A write flag error has been encountered while attempting to perform
linked sequential disc I/0.

(NO LONGER USED)

The pool free sector list is exhausted.

The user's key argument was found in the index file, but is missing
from the indexed data file. The desired data record has either been
deleted, improperly updated, or a record with a higher key inserted
in front of it. The record in the user's work area contains the
first record encountered with a key greater than the one desired.
An INSRT could now be performed if the sequence of the data file
can-still be assumed.

Invalid operation was attempted on a read-only file.

An attempt was made to write beyond the absolute end-of-file mark
on a fixed-allocation file.

_INSRT,_DLETE Invalid operations on fixed-allocation or read-only file.

7 (NONE)

8

READ

WRITE

9

_READ

WRITE

(~o longer used -- if a read error occurs during _READ or _WRITE,
status code l is set.)

Key argument not found in the index file, but it is higher than the
lowest key in the index file.

No record containing the specified key has been found in the data
file. The record in the user's work area and referenced by the FCB
pointers is the first one encountered in the data file with a key
greater than the one specified.

FCB pointers set so GET will retrieve record with next lower key
contained in the index. User's work area is undisturbed.

Key argument not found in the index file. It is lower than the
lowest key in the index file.

No record containing the specified key has been found in the data
file. The record in the user's work area and referenced by the FCB
pointers is the first one encountered in the data file with a key
greater than the one specified.

FCB pointers set so GET will retrieve record with lowest key in the
index. User's work area is undisturbed.

NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN SUB
ROUTINE CALLING SEQUENCE.

NOTE: ERROR CONDITIONS THAT APPLY TO READ ALSO APPLY TO READU; THOSE THAT APPLY TO GET
ALSO APPLY TO GETUP. - - -

2/72 A-1 LIOCS-C

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (A-G)

STATUS LIOCS MAIN
CODE SUBROUTINE

A (NONE)

B _READ,_WRITE

c

lJ

E

F

G

GET, BOF
-EOF, -INS RT,
-DLETE, READ,
=WRITE -

UPDTE, DLETE
-WRTEF -

_WRTEF

Any LIOCS-C
Operation

_OPEN

_OPEN

_OPEN

_OPEN

_OPEN

CONDITION INDICATED

(NOT USED)

_REAO or _WRITE attempted to a non-indexed file.

_READ or _WRITE attempted on an output or work file.

One of these operations was attempted in the extension portion of an
extend file; they are permitted only in the original portion of the
file.

Or, one of these operations was attempted in a work or output file
before a temporary end-of-file mark was written or after the tem
porary end-of-file mark was overwritten by a _PUT.

Current sector address is null. One of these operations was attemp
ted immediately after a _DLETE,_BOF,_WRTEF, or OPEN.

The operation was attempted on an extend file. It is prohibited.

Or an attempt was made to shorten an output file which already had
an existing temporary end-of-file mark.

An operation other than _OPEN attempted on an unopened file.

A disc error has occurred ·in processing a directory entry or allo
cating pool free sectors.

CONO unit display will be:

S)OPEN pppppp.ffffff:DISC I/O ERROR.

The system was unable to locate a pool specified (in UFCB Field 2).

CONO unit display will be:

S)OPEN pppppp.ffffff:POOL NOT FOUND.

The system was unable to locate the file specified (in UFCB Field 3)
in the pool specified (in UFCB Field 2).

CONO unit display will be:

S)OPEN pppppp.ffffff:FILE NOT FOUND.

The user's file type does not agree with the file type of the re
quested file.

CONO unit display will be:

D)OPEN pppppp.ffffff:INVALID USER FCB TYPE.

The action flag field of the UFCB does not contain one of the five
acceptable values (000,100,010,001 or WOO).

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID ACTION FLAGS.

NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIEIJ IN I\ LIOCS MAIN
SUBROUTINE CALLING SEQUENCE.

flOTE: ERROR CONIJITIONS THAT APPLY TO RE/Ill /\LSO APPLY TO RE/IOU; TllOSL Tll/\T APPLY TO GET
ALSO APPLY TO GETUP. -

LIOCS-C A-2 2/72

STATUS LIOCS MAIN
CODE SUBROUTINE

H OPEN

OPEN

J OPEN

K OPEN

L OPEN

M _OPEN

N OPEN

LIOCS-C STATUS CODES

Table A-1 STATUS CODE SETTINGS (H- N)

CONDITION INDICATED

The user has attempted to open a null file (one containing no data
records) as a read-only, fixed-allocation or extend file; these
three categories must contain data records at _OPEN time.

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID ACTION FOR NULL FILE.

An attempt has been made to open a file containing data records as
a work or output file; these two types of file must be null at open
time.

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID ACTION FOR NON-NULL FILE.

An attempt has been made to open an indexed file as an output or
work file.

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID ACTION FOR INDEX FILE.

UFCB Field 4 (Work Area Address) does not contain a valid partition
address. User's Work Area must be in partition.

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID WORK AREA ADDRESS.

UFCB Field 5 (Logical Record Size) does not contain a numeric value.
(Note that a 0 size record is accepted but will default to the
record size specified in the file label Field 9.)

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID RECORD SIZE.

UFCB Field 6 (User EOF Routine Address) does not contain a valid
System Ten partition address. User error routines must not be in
common.

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID USER EOF ADDRESS.

UFCB Field 11 (Key Argument Address) does not contain a valid parti
tion or common address. In the UFCB source coding, this field
should contain either the label or the address where the key
argument will be stored during program execution.

CONO unit display will be:

S)OPEN pppppp.ffffff:INVALID KEY ARG ADDRESS.

NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTED BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN
SUBROUTINE CALLING SEQUENCE.

NOTE: ERROR CONDITIONS THAT APPLY TO READ ALSO APPLY TO READU; THOSE THAT APPLY TO GET
ALSO APPLY TO GETUP. -

2/72 A-3 LIOCS-C

LIOCS-C STATUS CODES

uocs-c

Table A-1 STATUS CODE SETTINGS (o-z)

STATUS LIOCS MAIN
CODE SUBROUTINE

0 (NONE)

P (NONE)

Q _OPEN

R

s

T

u

v

w

x

y

z

(NONE)

_OPEN

(NONE)

(NONE)

_INS RT

Any LIOCS-C
Operation

_READ,_WRITE

_CLOSE

_CLOSE

(NOT USED)

(NOT USED)

CONDITION INDICATED

UFCB Fields 9 and 10 (Secondary and Primary Allocation fields) do
not contain $$$$, /Ill, or numeric values; or the fields are not in
agreement. If contention is specified in either field, it must be
specified in both. (/Ill= non-contention, numeric value= special
allocation requested, and $$$$ = default allocation requested).

CONO unit display will be:

S)OPEN pppppp. ffffff: INVALID SECTOR ALLOCATION.

(NOT USED)

A primary al location was requested but no pool free sectors were
available.

CONO unit display will be:

S)OPEN pppppp. ffffff:NO POOL FREE SECTORS AVAILABLE

(NOT USED)

(NOT USED)

Between the time this partition obtained the pointers to the prior
and current sectors and initiated an INSRT, another partition has
made an INSRT into the file at the same place. This partition did
not insert the record or alter the file. It's FCB has bee11 set up
so the next GET will obtain the record just inserted by the other
partition. User Response: issue GET's until a key greater than
the one to be inserted is encountered, then re-issue the INSRT.
Remember to GET into a different buffer or the record to-be inserted
will be overTayed.

A previous READ or WRITE encountered an error with a status code
of X and the user program failed to respond by branching to RETRY
The partition is missing either a CONO or CON! device or both
making communication with the operator impossible. User Response:
Close all other files, abort the run, and check the integrity of
the file in question.

An attempt was made to access a disc drive that is not ready. The
partition is missing either the CONO or CON! device or both, making
displaying the normal error message and responding to it impossible.
ONLY USER PROGRAM RESPONSE: Branch to RETRY in LIOCS-C with condi
tion code set. CC2=retry 110 operation; any other condition code =
the user's error exit will be taken with status code l set.

A disc error was encountered during execution of the system program
CLOSEC. The file has not been properly closed.

CONO unit display will be:

S)IIO ERROR (nnnnnn) :CLOSE NOT COMPLETED.

(nnnnnn) specifies the physical disc address of the sector on which
the error was encountered.

A disc 110 error was encountered during execution of the system
program CLOS EC. The fi 1 e may be closed but unused sectors were not
returned to the pool free sector 1 ist.

CONO unit display will be:

S)l/O ERROR (nnnnnn) :SECTORS LOST DURING CLOSE.

(nnnnnn) specifies the physical disc address of the sector on which
the error was encountered.

NOTE: THE CONTENTS OF THE STATUS CODE FIELD OF THE POFCB ARE NOT INDICATIVE OF ANY CONDITION
UNLESS THE PROGRAM BEING EXECUTEU BRANCHES TO AN ERROR ROUTINE SPECIFIED IN A LIOCS MAIN
SUBROUTINE CALLING SEQUENCE.

NOTE: ERROR CONIJITIONS THAT APPLY TO READ ALSO APPLY TO READU; THOSE THAT APPLY TO GET
ALSO APPLY TO GETUP. - - -

A-4 2/72

Appendix B

FCB MACRO PARAMETERS

I

FCB MACRO PARAMETERS

Table B-1 FCB MACRO PARAMETERS

FCB MACRO FORMAT: Label~FCB~NAME=p-name.f-name,USE=action, AREA=wkarea,
EXIT=eofaddr,BLKL=blklen,PASSW='password',
KEYAD=keyaddr,ALLOC=alspec,TYPE=fcbtype

EXAMPLE: FCB NAME=PNAME.FNAME1,USE=EXTEND,AREA=WKAREA,EXIT=EOF,BLKL=470,ALLOC=(O,l0),
TYFE=LS

PARAMETER

Label
FCB
NAME=p-name.f-name

USE=action

AREA=wkarea

EXIT=eofaddr

BLKL=blklen

PASSW='password'

KEYAD=keyaddr

ALLOC=alspec

TYPE=fcbtype

2/72

EXPLANATION

Label for beginning of FCB --Optional
Macro name
Names of pool and file to be accessed

Sets Action Flags.
action specified

INPUT
~UT PUT
EXTEND
FIXED
WORK

file type

read-only file
output file
extend file
fixed-allocation file
work file

wkarea is the address (an expression) of
the User's Work Area

eofaddr is the address (an expression) of
the User's End-of-File Routine

Logical Block Length (an expression)

File Access Password; password is 1-6
characters enclosed in apostrophes

keyaddr is the address of the Key Argument
Field (an expression).

al spec is the Allocation Specification

al spec: meaning:

YES System default values (field
set to '$$$$')

N~ No allocation-- Input or FIXED
file (field set to '////')

(primary, secondary) Explicit specification
of primary and secondary allocation; both
are expressions

FCB type specification:

LS-- for Linked Sequential FCB (will
generate a 94 character FCB)

ILS-- for Indexed Linked Sequential FCB
(will generate a 110 character

FCB)

B-1

DEFAULT

Optional
Required
Required -- no
default pool.

Defaults to INPUT
if not specified

Required

Required

Defaults to zero if not
specified (Logical Block
Length to be picked up
from file label)

Defaults to blanks if
not specified

Required for Indexed
Linked Sequential Files
(TYPE=ILS)

Defaults to YES if not
specified.

Required

LIOCS-C

2/72

GLOSSARY

Drive Lock

A LIOCS-C facility that minimizes disc seek time by locking a
disc drive to a partition until it has completely read or
written a record. The ten-entry Drive Lock Table begins in
location 510 in common.

Record Lock

LIOCS-C functions GETUP and READU lock a record so it is
protected .from being accessed by GETUP or READU from another
partition as long as it is locked. Any subsequent LIOCS-C
operation from the same partition on the same FCB will
automatically unlock the record. The ten-entry Record Protect
Table begins in location 410 in common.

System Lock

The system lock makes sure only one partition at a time modifies
the Pool Directory.

Transfer Vector

A transfer vector
location which are
locations may vary.

is
used

a set of branch instructions in a fixed
as entry points to routines whose

GLOSSARY-1 LIOCS-C

w
a:
w
:i::
:i::

~ w
0

DMF COMMON-RESIDENT LIOCS (LIOCS-C)
REFERENCE MANUAL
Publication No. 40-340

We produce manuals for you, and we want you to find them useful and informative. That's our job.

So we're asking you to help us furnish you with the best possible publications. Please take a few minutes to
answer the following questions. Add any comments you wish. If you desire a reply to any question, be sure to
include your name and address.

Thank you.

• Does this manual meet your needs? Yes D
If not, what additional information would be of help to you?

• Can you find what you're looking for quickly and easily? Yes D
How can the organization be improved?

• Is the material easy to read and to understand?
Are there enough illustrations to support the text?

Yes D
Yes D

NoD

NoD

NoD
NoD

Comments~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• Did you find any errors or ambiguities in the manual? Yes D No D
If yes, please cite page, line, and/or figure number with your comments.

• Other comments.

• What is your relationship to the product described?
D Operator.
D Programmer.
D Other (please specify)

SINGER
BUSINESS MACHINES

STAPLE

FOLD BACK

BUSINESS REPLY MAIL
No postage stamp necessary If mailed In the United States

POSTAGE WILL BE PAID BY

FRIDEN DIVISION
THE SINGER COMPANY
2350 Washington Ave.
San Leandro, California 94577

Attn: Customer Technical Publications,
Department 753

FOLD BACK

STAPLE

FIRST CLASS

PERMIT No. 320
San Leandro, Calif.

SINGER
BUSINESS MACHINES

PUBLICATION NO. 40-340
CONTROL NO. B)54PA

t

\
\

