TM-555/002/02A

The JOVIAL Manual, Part 2

The JOVIAL Grammar and Lexicon

16 March 1964

T™-555/002/02A

2L July 1964
combined with
m™-555/002/02

TEGRNIGAL
MEMORANDUM

(TM Series)

This document was produced in connection with a research project sponsored by SDC’s
independent research program.

The JOVIAL Manual, Part 2 SYSTEM
The JOVIAL Grammar and Lexicon DEVELOPMENT
by , CORPORATION

Millard H. Perstein
' 2500 COLORADO AVE.
16 March 196L

SANTA MONICA

(Previous version by Christopher J. Shaw)
CALIFORNIA

2k July 1964

MODIFIGATION T0:

™-555/002/02, "JOVIAL Grammar

2 TM-555/002,/02A

APPROVED

Nillodl P,

and Lexicon," dated 16 March 196k.

M. H. Perstein

System Development Corporation/ 2500 Colorado Ave./Santa Monica, California

Modified Pages

2A 108
3 109
25 110
29 113
b2 114
54 117
55 118
57 119
69 120
79 121
81 122
83 123
91 124
93 125
95 126
o7 127
100 128
103 129
104 130
105 131
106 132
107 133

134

Notes and Filing Instructions

The page numbers listed to the left of
this column are all new pages, dated

2L July and are to replace the old pages
dated 16 March 196k.

16 March 1964 1 TH-555/007/C2

PREFACE

Part 1 of the JOVIAL Manual is an introduction for non-programmers
entitled Computers, Programming Languages and JOVIAL., It was written
20 December 1960 by C, J. Shaw and is designated TM=555, Part 1.

This document, Part 2, the JOVIAL Grammar and Lexicon, is a complete,
concise, and rigorous description of JOVIAL (J3), an SDC-designed,
procedure-oriented programming language. It is intended primarily as
a specification of the language and is not considered a training
document. Three SDC publications on JOVIAL (J3) may be considered
textbooks on the complete language:

TM-555/003/00 by C. J. Shaw 26 December 1961
The JOVIAL Manual, Part 3, The JOVIAL Primer, 216 pages.

N-18652/000/00 by Sandra Peterson 24 July 1962
JOVIAL Syllabus, 1lhl pages.
This is an internal SDC document and is not
appropriate for release outside the corporation.

TM-780/000/00 by Phyllis R, Kennedy 17 September 1962
A Simplified Approach to JOVIAL (A Training Document),
387 pages.

There is also an introduction to JOVIAL in several parts which will
help to carry the student of JOVIAL a considerable part of the way
to an understanding of the complete language:

TM-555/061/00 by M. H. Perstein 8 October 1962
JOVIAL for the Dilettante, Part 1, 40 pages.

TM=-555/062/00 by M, H, Perstein 5 November 1962
JOVIAL for the Dilettante, Part 2, 22 pages.

TM=-555/063/00 by M. H. Perstein 2 January 1963
JOVIAL for the Dilettante and Beyond,
2DC Compiler Error Detection Lists, 19 vages.

When ordering any of these publications, the user should request all
vertinent modifications. TM=555/063/00, the Error Lists, is a handy
booklet for all active J3 nrogrammers using SDC compilers., £ince the
above vutlications have appeared, New error messages have been added

and changes and clarifications to the lancfuage have been apvroved by
cognizant cormittees and imrvlemented by comniler maintenance prosrammers.
This manual includes all chanses aoporoved to date. As new changes are
implemented, modifications to this document will be issued.

16 March 1964 2 TM-555/002/02

This version of Part 2 is published in the hove of rendering the
specification of the language more easily understood. It differs from

the previous version principally in the following ways: a different
metalanguage, omission of formal division into numbered forms, inclusion

of a detailed index, fewer examples, changes of emphasis, and expanded
references to implementation. The references to implementation are

included mainly to point out the meanings and uses of various elements

of the language. These references also serve to remind the reader that

it is necessary to consult supplementary documents concerning implementation
by the compiler in which he is interested.

The author gratefully acknowledges the help of the following people in
critically reviewing a draft of this document: S, L. Arnold, C. Baum,

E. R. Clark, V, L, Cohen, E., Hayes, J. S. Hopkins, C. W. Jackson, Jr.,

P, R, Kennedy, D. K. Oppenheim, and C. J. Shaw. -Responsibility, however,
for the format, contents, and any errors which may come to light rests
entirely with the author.

2k July 1964 3 TM=555/002/02A

CONTENTS

Page

Preface 1
Chapter 1. Introduction

Language and Metalanguage ,.....ceeeeeneececccnances
The Descriptive Metalanguage for JOVIAL ,,...0e000ee
Programming Forms 8nd Fomats.l..OO.0!.000000'.000!.
Syntax and Semantics --- Illegal, Undefined,

Ungrammatical, Compiler-dependent,..ceeseeesnccceses

e o

e
L] L]
Fw -

O VI

N
.

Chapter Elements

Introduction sesisssessesssescesscesessossssnsnsnsses 11
spaces and Spacebooooootltoooclocooououuooooo.ooocco 12
Signs, Elements of the JOVIAL Alphabet,,.,..eoeeeeese 12
ngbOEA' the Words of JOVIAL essesessesssesssnsaness 13
Primitive, Name, Loop:variable, Abbreviation,

Ideogham, COMMEent vevesneossnnonesssssosnsssssassesss 1k
ConBLants seeesssonsssossssssssssssssssssssssssssees 16
Adjectives Applying to JOVIALissssessoossssssseossss 16
Opmw, Opwwg' Nmbe}z" Sca&ell..‘...‘...l 19
The Structure of CONALANLS: esseevstsesosstassscsensns 19
Transition......a............o........-...-......... 22
Ueﬂinetdi&ectiveb teecsssessscassssasssscsosansssnss 23

NN DD
. . L]

SISO RN AV I AV I (N]
e L] L] L]

O~ O\NO\N O\ON Wi EwWwn
w -

o o

Statements

w
[

Chapter

Introduction 06060800008 0008006000008 00606800000600806000s00 25
VaNAabLes «coseeeonnsssssssssssssnsessssnsassscssses 25
SLMpﬂe:vaniabﬂeb.............‘...................... 26
Indexed:variables ..eeesseossecssscsssscscccsscssnsas 26
Additional VaniabteA Csacssssessrersesesassessssnses 21
Integen:ua&iabﬁeA................................... 27
Fixed:vaniabﬂeb G000 0000000000 s00se00 0000000000 s 28
Lite&aﬁzvakiabﬂeéo.-................................ 28
Boolean:variablese ceevesssesssastsssrsestssstsnnenes 29
Entng:vaniabﬂeA..................................... 29
FONMULAS sesosessnssssasnssssasncsnssssnassscesasesss 30
FURCEAONS eoeeevsosssesssossssnssssssrsssssosssesnsss 30
Literal: honmulas, Status:fonnulas, Entru:fonrulas .. 30

s o o

WWWONDNDNDNDND NN
oo Fw NP

[N o

. e o & e e o

WWLwLwwwuwuwwuwwww
.

16 March 196k L TM=555/002/02

CONTENTS (continued)

Page

3.33 Nm@}b{:ﬁ:éom esesssseesssssscessasnssssscssssses 31
3.3)‘ vwzéom Csessscssasesssssssasossssessesssasses 33
3035 RMOMCOpera‘tionSooocoo.oooo.o‘oooooooooooonu.o. 3)4
036 BOOZQaméOMMaA eessessssssssncstcssessesesesssnsses 35
l" Classes of Swmw.00000.n.ooo.oooo.oooeooo.olcoo 37
5 Wpﬁe#éta«tementb sssssssssssessecssssssssssssassass 38
51 Méi—gm@”z:émmm.ocoooooooooo.o.ooooootloo'no.n 38
2 Exchangefbmmm..uu........................... 4o
3GO:»CO’AMWM&........n..........‘................ 4o
L Test:statements, Retuwn:statements, Stop:statementse “1
5 Pmcme:w:btmm sesecc0s000000s60 000000000 42
56 Input, Output, and FifeSesessscssssnssssnsosssanssnne Ly
57 Inm’éwmm, Opan and ShUfessessssssssssssassse hs
58 ou'tm't:awemem, Open and SAUL eeeessasesassecsans 46
.6 COmpOund:A»ta«tmnté................................. 48
T COmp@(’.xfémmnté..........u.....................{. 48
.71 Diﬂmzémmna........................u......... h9
.T2 COMOM@:AMW._......................m..... 50
T3 Mimvezbtatmm.o............u.............. 51
OT"’ LOOPM»&LCQMQM&.........................n........u 52
075 Use of LOOP:AWMoooooooooco-ooocoooo.oou‘soaoo 55
76 Processing:declarations Within Loop:statements +s++s 56
+TT Iteration Control ,useeseessscsasconssscsscnssnssncas 5T

3

3

3

3

3

3

3

3

Chapter 4. Declarations

hl Undeclared Na‘mu 0000000000000 00000000 00000000000000 61
L 2 Pre-defined Namu 66000000000 000000000 000000 0ssss0sLS 61
4 3 Mode-defined Names s 4600000008000 00000000000000080000 62
h'h Da’ta:dem‘a’t’i—om P T T T T I T 62
L hl Itm:duWPaUM 400000000880 000000000000000c00000000 6’4
L b2 S'{:‘mpee:‘i’tm 6600800000000 0000 00000000000 000000080000 66
L h’3 Independw:ovmyb R R R R Y Y NN RN 67
u Complex Data Structures 90 86060600000 068600000606000D000804s00 69
h lComm:wu..."...l...........‘.....‘....“...... 69
h 2M)la.l!b 0 06 00 0060606060200 060500068 050800600600080082000000300000000> TO
h 3Type Mﬂ-tChing for Pre-set Values sssssesssscssccccnns T3
h "‘Tab[% ..‘l..‘.‘...‘...‘.“.‘....“....‘...l..‘.“..'. Th
4 > meélzam%coooo.oooo.oo.ooounn.nooooo.;.;gooon. Th
4 6 O’Ldl(:na/ty:tabﬂus 08 000080000000 0000000008 000000000000c0 76
)"’ 7 Deé’(’rmd:e—m& ...5..‘...‘.....'..“..."‘.“...‘...k'—(9
b.58 Defined: entri: £ablesessssssssesssassssessessassesacss 81
h 9 Lz(:f?.eﬁztab‘e%.......o.o....-........................... 8’4

16 lMarch 196L 5 Ti=555/002/02
(vage 6 blank)

CONTENTS (continued)
Page

&
.
o\

qu 0. 0060000800080 00000000000800880000000800000000000000 8)4

Chapter Processing:declarations

N
.

Introduction €000 0860000000 000080000000008000000000000080 87
P"-ag)"‘a-’n:de'c'zaﬂ-a't'("'on‘6 00000600008 000000000000000000000000 87
&MLICheA $6 8000060060606 000080000006000060000080000800000000800 88
Ind@x:AWLICheA 0006000000000 000000000000000080000800000 89
IIQM:AWitChQA 8000800000000 0 000000000080 080000000800c000 90
C£042A €6 0006600000000 080000000000000606008000000000s000 91
PnoceduaeA €0 0000000000000 000000000600000000000000000800 92
Function:decﬂaﬂaiionb 6850000000800 00000006006000000000 9u

e o o
n =

AV EHFWWW N -

Chapter 6. Proghams

1 Other Pﬂcgﬂaﬂﬁ esssesssessssssesssssssacsscscssassscsnss 97
2 The Present PﬂOgﬂﬂ”’.....-...............--.....o...-. 97
«3 Directives eesssessssssescsssssscessscsssssssssnsessses 97
A Mode:dinectives © 000000000000 000000000000 RINGISIOOIMISES 98
5 Scope of Definition of Names ss6sss000s00sss0s 0000000 98

OANONONONON (o)) A2V IR RV, RV, RV, IV, RN, |
L]

Index and Glossary...................................,............103

Appendix..lhl

16 llarch 196k T TM=555/002/02

Chapter 1. Introduction

l.,1 Language and Metalanguage

In attempting to define and describe programming languages it has
been found convenient, perhaps necessary, to use some other language
which is richer than the programming language, even richer than the
programming language and English combined. Such a richer language
is known as a metalanguage.

This document describes JOVIAL in terms of a specially devised
metalanguage, but one which is a simplification rather than an
elaboration of others that have been used for describing programming
languages., The author is interested in knowing if he has accurately
gauged the needs of his readers. A short, one-page questionnair is
included at the back of the book. Feedback, both negative and positive,
will be appreciated.

1.2 The Descriptive Metalanguage for JOVIAL

The language of this document consists of JOVIAL symbols plus English
plus other words and phrases plus numbers plus punctuation plus
arrangement on the page plus diagrams. Certain elements of JOVIAL
look Just like the punctuation used with English, for instance the
comma and the period which are parts of this sentence. No attempt is
made to distinguish these classes formally, but context should provide
the required distinctions.,

The "other words and phrases" will be distinguished from both

JOVIAL words and English words by being typed in a special font

called "script." An example, to be defined later, is "letter.,"

All such "other words" will be spelled like English words and will have
similar, but not identical, meanings. For instance, "letter" refers
to an element of the JOVIAL alphabet while "letter" refers to an
element of the English alphabet.

Defining sentences, formulas, and lists will use capital letters

and numerals, typed in elite, as specific instances of themselves

in JOVIAL, and "other words and phrases,'" typed in script, as represen-
tative members of classes of JOVIAL elements. English words (in elite
and lower case with normal capitalization), such as "followed by" and

16 March 196k 8 THM=-555/002/02

"or," will be used at times to indicate such things as order

and alternatives, If punctuation is present:

1. In sentences, it is English and part of the sentence.
2. In formulas, it is JOVIAL and part of the expression.

Punctuation may appear indiscriminantly in elite or script, with
no meaning attached to the difference.

Throughout the document there will be lists of alternative defining
formulas and of examples, Some elements of lists will require more
than one line. In order to distinguish the elements unequivocally
they will be numbered at the left as in the previous paragraph. The
number and its following period is never a part of the formula or
example,

Seript words or phrases written one after another, with one or more
intervening spaces, indicate concatenation. For instance, the
formula:

3. Letten Letten

means the same as Leften followed by £etter. In order to join such
words together to form descriptive names for classes, a colon is placed
between the words., If such a phrase begins on one line and continues
on the next, the colon is repeated. For instance -- gfoumal:input:
sparametensist, Such a phrase will never be broken within a word.
Here are four examples of phrases (to be defined later) naming classes
of JOVIAL structures:

L, gormal s inputs parameten: List
5. formal s output: parameten s List
6. actual : input : parameterns £ist
Te actual s output : parameten s List

There will be script words or vhrases, not explicitlv defined, used in
describing JOVIAL structures. These vhrases are derived by breaking up
or nutting together other phrases. The meanings will be obvious. For
instance, it should be clear that the following four examples are four
of the six possible combinations of the classes named in examples

L, 5, 6, and T, taken two at a time:

16 March 1964 9 T-555/002/02

3. Anput s parameterns List

9. output : parameten: List
10. gormal s parameten s L8t
11, actual : parameterns List

1l.3 Programming Forms and Formats

This document is not concerned with how a progtam gets into the
computer, The coding form may be scanned by an optical reader or

the manuscript may be transcribed to punched cards or tape. There

may be columns reserved for identifying or numbering the cards.

The programmer will probably have adopted some consistent and
easy~to-read format. This manual, however, considers a JOVIAL program
to be, from start to termination, a continuous stream of JOVIAL 44gns.

l.4 Syntax ana Semantics -- Illegal, Undefined, Ungrammatical, Compiler-

Jependent :

This manual makes no great distinction between syntax and semantics. It
gives complete specifications, however, for writing legitimate JOVIAL
wogans. In those instances when structure or meaning is described

as compiler-dependent, the user must consult other documentation (or
write it if he is building the compiler) to learn of further restrictions.
Since information about JOVIAL compilers is available, this manual also
tells about some deficiencies or pathologies in the compilers.

For a ntogham to be legitimate it must be meaningfully structured in
accordance with the specifications in this manual. If the program

or any vart of it fails to meet this requirement, it is of small concern
whether it be called illegal, undefined, or ungrammatical.

All that this manual requires of a compiler is that it properly compile
a legitimate progham, A good compiler, however, will exhibit the
following additional characteristies:

1. It will not stop prematurely nor go wild no matter how
indigestible the supposed wrogham,

2. It will give clues as to why the suvbposed program is not
a pLoghan,

16 March 196k 10 TM-555/002/02

Such clues are usually called error messages., A good compiler
can also be helpful by providing listings of information it has
collected and organized concerning the program,

Compilers will often not reject certain illegal or undefined structures,
but compile them instead, giving results which the programmer considers
appropriate, It is recommended that programmers avoid exploiting

these quirks, since there is no guarantee that a new version of the
compiler will exhibit the same eccentricities.

16 March 1964 11 TM-555/002/02

Chapter 2, Elements

2.1 Introduction

A progham written in JOVIAL consists, basically, of stfatements and
declanations, The statements specify the computations to be performed
with arbitrarily named data. There are both Admple:statements and
complex: statements, which can be grouped together into compound:statements.
Among the declarations are data:declarations and processing:declarations.
The data:decfarations name and describe the data on which the program

is to operate, including inputs, intermediate results, and final results.
The processing:declarations generally contain statements and other
declarations., They specify computations, but they differ from statements
in that the computations must be performed only when the particular
processing:declaration is specifically invoked by name. In addition to
statements and declarations there are directives by means of which the
compiler is caused to change its interpretation of certain structures

in the phogram., The 4tatements, declarations, and directives are
composed of Aymbofs which are the words of the JOVIAL language. T .
Aymbofs are in turn composed of the 44gns which comprise the JOVIAL
alphabet.

The general order in which the elements of a progiam have been introduced
in the preceding paragraph represents the general order in which one
looks up definitions when trying to clear up a question. The definitions
in this manual are introduced, however, in the opposite order. Such
arrangements have led to complaints that one must "read the book
btackwards." This comment arises from the process of looking up a form

in the table of contents, turning then to the late chapter where it is
defined in terms of earlier defined forms. These, more elementary,

forms are then found, via the table of contents, in an earlier chapter.
And so forth. Nevertheless the document is arranged for the use of

a reader rather than for reference. Difficult as this may be for reference
use, the opposite arrangement would be much more difficult for a reader.

An index has been included which will, hopefully, facilitate reference.
The index should answer many aquestions directly. It will carry one
ocuickly back through the chain of definitions until the question is
answered or until the reader needs more details, to which he will be
directed through the section numbers.

16 March 1964 12 TM=-555/002/02

2.2 Spaces and Spaces

There is no means in this manual, other than context, of distinguishing
between a 4pace, an element of JOVIAL, and a space, an element of
English and of our descriptive metalanguage. Rather than using a special
character for one or the other, it was felt best to make explicit
explanations where necessary. The first such explanation follows
immediately.

JOVIAL is written using 4umbols, the words of the language. The Auymbols
are composed of 44gns, the elements of the JOVIAL alphabet., In general,
4ymbols do not contain spaces. The exceptions will be pointed out in
sections 2.5 (comment) and 2.63 (holleith: and thansmission:code:
:constants). In general, symbols are separated by 4paces. Again

the exceptions will be noted (section 2.T), but, note here, these
exceptions are permissive -- it is always correct to put 4paces

between symbofs, except that it is never permitted to put a 4pace after
the + or - denoted by the word s{gned (see section 2.61),

In defining and explaining 44{ans and sumbols, any spaces included in

the metalanguage formulas are not meant to be included in the definition.
The phrase "string of" implies that there are to be no 4paces between
the elements strung together. Similarly, phrases such as "followed by,"
"enclosed in," and "separated by," imply that there are to be no spaces
between the elements concerned. This is the situation (except where
explicitly stated to be different) up to section 2.7. In sections 2.7
and 2,8 the transition is noted and forms are explained that don't

quite fit the new rule or the old one.

In Chapter 3 and beyond, the opposite view is maintained with respect
to Apaces. From there to the end of the book (except for the index)
Apaces must come between all elements except where declared otherwise.

In the index, neither rule holds. This is a question of detail which
the index cannot answer directly.

2.3 Signs, Elements of the JOVIAL Alphabet

Sign means a fLetter, a mumewal or a rark,

Letten means one of the twenty-six letters of the Fnglish alphabet,
vritten in the form of a roman capital.,

“umeral means one of the ten Arabic numerals #, 1, 2, 3, 4, 5, 6, 7, 8,
or 9,

2.3

16 I'arch 1964 13 Ti1=555/002/02

Octal:numeral means one of the following eight numerals: @, 1, 2, 3, L,
5, 64 T.

Mank means one of the twelve marks, each associated with a name or
names in parentheses, in the following list:

1, + (nlus:s4ian)

2. - (minus:s4agn)

3. * (star)

b, / (8Lash)

54 (4pace, blank)

6. ‘ (perdiod, decimal:point)
Te . (comma)

8. = (equals:s4ian)

9. ((Legt:varenthesis)
10.) (night:parenthesis)
11, ' (prrime)

12, $ (doklar: sign)

2.4 Symbols, the Words of JOVIAL

The Aymbofs or words of the JOVIAL language are composed of strings of
44gns, in some cases a single 44{gn. Most suynbofs do not contain 4paces.
In fact, Apaces serve to separate symbofs from one another. In the
definitions of symbofs the phrase, "enclosed in patentheses,"" means
having a feft:oarenthesdis on the left and a right:parenthesis on the
right without any intervening 4paces.

Symbol means one of the following expressions:

1. prumitive

2, constant

3. Loopsvariable
b, abbreviation
5 name

6. Ldeogham

Te conment

The above definition contains a categorical listing of all JOVIAL sumbods,
but MOnitive and {deoghrain have reference to the way these 4umbols are
written rather than their use in contructing ntograms., These two categories
can be regrouped in ways that are more suggestive of their roles in the
language,

Those suibolA which are muimitives or Ldecarams include the categories in
the following list, which is not exhaustive:

1€ March 196k 1L TM-555/002/02
8. arnithmetic: operaton
9. rnelational:operaton
10. Logical:operaton
11. functional smodifden
12, bracket
2.5 Prnimitive, Name, Loop:variable, Abbreviation, Ideogram, Comment
The following list exhibits all the primitives of the JCVIAL
language: ’
© ABS OENTRY +1LS #PROC
© ALL +EQ & MANT % 'PROGRAM
-~ AND HFILE © MODE % RETURN
* ARRAY %FOR @ NENT ¥ SHUT
w-ASSIGN “+£GOTO <+ NOT % START
+BEGIN + G 4+ NQ %STOP
o BIT T GR ONWDSEN »STRING
O BYTE AIF © ODD % SWITCH
O CHAR *IFEITH # OPEN % TABLE
X (¥ CLOSE AINPUT + OR 3¢TERM
% = STATEMENT 1D o) % DEFINE *ITEM #ORIF ¥ TEST
© > DATH QUALIF/CA % DIRECT #JOVIAL #OUTPUT
J- = 0PERATIR * END 2110C »OVERLAY
OENT T LQ OPOS

A pruimitive is a symbol consisting, usually, of two or more Letterns

and having a specific meaning in the JOVIAL language.

In the

above list there are two primitives which begin with the paime.
This is in accordance with a policy of requiring the spelling of
any new piimitive added to the language to begin with this mark.
The purpose is to avoid outlawing any previously written programs
by preventing the possibility of the new prinitive being identical

to any name.

For the primitives in the above list spelled with-

out the puime an alternate form will be accepted in which a wuime

A name is a string of two or more lettens, numerals, and prLimes with the

precedes the £etfers. For example, the following two 4ymbols
are pumitives with the same meaning:

1. GOTO
2. 'GOTO

The following symbof, however, is not a pa{mitive; it may be used as
a name:

3. 100

following characteristics:
245

L, It is not identical to any primitive.

5. It begins with (the leftmost 44gn is) a Lettex.
6. The rightmost &4gn is nct a puime

T. It does not contain two consecutive primes.

Loop:variable., Any single {Letfer can be used as a Loop:vauiable. It is
the context in which it is used that characterizes it as a Loop:vardiable,
A Loop:variable is often called by other terms such as for-variable or
single letter subsecript.

Abbreviation., Several Letferns are used, standing alone, as abbreviations.
The meaning of an abbreviation depends on context. Those £effers which
may be used as abbreviations will not be exhibited here, but will be shown
and explained in connection with the forms in which they can occur.

Ideogham means a string of matks having meaning in JOVIAL, Each of the
twelve marks except the 4pace and the pruime is also an Adeogham, TFollowing
are listed the 20 JOVIAL {deograms:

+ *%
* '
/ ces
. ($
’ $)
= (/

N

16 March 1964 1 TM=555/002/02

Corment means two primes followed by a string of s4gns followed by two
pLines., The string of 44gns between the two sets of doubled primes
may contain 4paces. It must not contain two primes in succession; the
last 44gn before the second set of two pLimes must not be a prime;

and the string of A4gns must not contain $ except in the following two
combinations:

8. ($
9. $)
2.6 Constant

Before proceeding with the definition of constfant it is necessary to
define certain adjectives and adverbs which are used to denote attributes
of constants, variables, files, functions, and certain other expressions.

2.61 Adjectives Applying to JOVIAL

Thansmission:code means having values which are strings of 4.4gns, each
A4gn, if within a computer, being represented by a string of six bits
(binary digits) in accordance with the table of figure 1, In figure 1,
octal digits are used to represent patterns of three bits in accordance
with the usual convention.

Hoflerith means having values which are strings of 44gns, each 44ign,

if within a computer, being represented in a manner dependent on the

particular computer. In all present versions of JOVIAL, the internal
hollenith representation uses six bits per 44gn.

Integen, as a noun, means a numeric value which is represented as a
whole number without a fractional part, but which is treated as if it
had a fractional part with value zero to infinite precision, In this
manual, precision means the number of bits to the right of the point in
binary representations of numeric values,

Integen, as an adjective, means having the value of an {ntegen.
S{aned means being preceded by + or - without any intervening 4paces.

Fixed means having numeric values, within the computer, with a specific
given or stated or understood degree of precision. If the precision is
negative it means that the value is stated not even to the nearest
unit., Fixed does not mean immutable; hence we are led to such seeming
incongruities as {4xed:variable,

16 March 1964 17 TH-555/002/02

Sign Code | Sign Code }| Sign Code | Sign Code
Space ¢ K 2f) Lo) 69
p1 L 21 - 41 1 61
@2 M 22 + 42 2 62
3 N 23 # 43 3 63
gl 0 2k = Ly L 6k
@5 P 25 # 4s 5 65
A P6 Q 26 # L6 6 66
B o7 R 27 $ L7 T 67
C 19 S 39 * 50 8 0
D 11 T 31 (51 9 p!
E 12 U 32 # 52 ' T2
F 13 v 33 # 53 # 73
G 14 W 34 # Sk / Th
H 15 X 35 # 55 . 75
I 16 Y 36 , 56 # 76
J 17 Z 37 # 5T # T

means there is no corresponding 44gn.

Figure 1. Thansmission:code

16 March 1964 18 TM=555/002/02

Floating means having numeric values represented within the computer by
two numbers. These two numbers are the signicand, which carries the
significant bits of the value, and the exrad, or exponent of the radix,
which tells where the binary point is among the bits of the signicand or
how far to right or left. A floating value is equal to the signicand,
multiplied by 2 raised to the power of the exrad. The number of bits in
the signicand depends only on the particular computer involved. In this
manual, significant bits means the bits in a computer representation of
a number without consideration of the reliability of any of the bits.

Octal means having values represented by octal:numerals and certain other
44gns., The value may be considered as an integer or as a bit pattern
depending on context., Octal applies only to JOVIAL structures which

are in the nature of constants.

Dual means having pairs of numeric values. Each member of the pair is
known as a component, The two components must be represented in the
same way, each being octal in the sense of integer, or each being fixed
with the same precision, or each being integexr.

Boolean means having one of two possible values which might be thought
of as "true and false," or "yes and no," etc., and which are represented
by 1 and @ respectively.

Status means having values which are, in essence, mnemonic labels. The
representation, within a computer, of these values depends on context and
not on the particular computer involved.

Liternal means thansmissionscode or hollerith or octal,

Numeric means {nteger or fixed or gfloating or octal. In some other
discussions of JOVIAL,numeric is defined to include duaf, but, in the
hope of making later explanations clearer, humeiic here excludes duak.

Having defined the above adjectives, it will now be possible to use and
understand certain terms without explicit definition. For instance, if
hollenith: constant, floating:constant, etc., are defined, the meaning
of constant is clear. Similarly, if vaiable is defined, the meanings
of status:variable, boolean:variable, ete., are clear.

2,61

16 MMarch 196k 19 TM=555/002/02

2.62 Optional, Optionally, Number, Scale

Optional means, with respect to the noun element to which it is
applied, that the element may be present or absent. For example,
optional: sdaned:numeral followed by Letten means one of the following
three forms:

1. + numenal Letten
2. - numenal Letten
3. Letten

Optionally means, with respect to the adjective to which it applies,
that the adjective may apply or not. For example, optionally:signed:
snumeral followed by Letter means one of the following three forms:

l, + numenal Letten
5. - numM f.etteﬂ
6. numeral Letten

Number means a string of numerals., If a number stands alone as a Aymbol
it has the conventional integral constant value.

Scale means a numbet in certain positions as indicated below,

2,63 The Structure of Constants

Integen:constant means a number, or a number followed by the Letlen

E followed by a 4cale. (The E stands for exrad.) An 4integer:constant
is a JOVIAL symbof, It has a numeric value given, if there is no
scale present, by reading it as a mathematical symbol., If a scale

is present, the value of the integen:constant is the value of the
number multiplied by 10 raised to the power given by the scale.

For example, the following two Anteger:constants have the same value:

1. 2E3
2. 2p@p

FRoating:constant means one of the six structures in the following list
(as explained in section 2.2, Apaces are not permitted):

3. nwnbesr

L, nwnben . numben

5. . nuwnben

5., munbern . E ontlonalli:signed: scale

T wnber . nwnoer E ontlonally:sdigned:scale

3. . numben E ontdonallus:signed: scale

2.67

16 March 1964 20 TM=555/002/02

Examples of f§loating:constants:

Te 3.14159
8. 56789.E-3

Fixed:constant means a floating:constant followed by the Letter A
followed by an optionally:signed:scale. It is a symbol. 1Its

value is the value of the gloating:constant part, curtailed perhaps
because of the optionally:signed:scale following the A. This optionally:
:s4ignedsscale tells how many bits are to be retained after the point in
a binary representation of the value. If the number of bits to be
retained is negative, the meaning is that some of the least significant
bits to the left of the binary point are to be truncated. On the
following three lines are six {4ixed:constants. Although the precision
to be carried may be different, the values of the two fixed:constants
on each line are identical, being that given, in binary, by the third
number on the line:

9. 2.,Ak 2.2kag 19
10. 4 ,PgA-2 J6E1A=2 100
11, 2.25A2 2.375A2 14.01

Octal:constant means the Letter 0 followed by a Left:parenthesis
followed by a string of octal:numerals followed by a aight:parenthesdis.
Examples of octal:constants:

12. 0(2p2¢2).
13. 0(123L45678)

The value of an octal:constant is Literal or numerdic depending on
context. If Literal, the value is the pattern of bits represented, three
bits per numeral, by the string of octal:numerals., If numeric, the value
is the integer represented, in octal, by the string of occtal:numerals.

dual:constant means oneé of the three structures in the following list:

1L, D (optionally: sianed:inteaen:constant, optionally:signed:
sintegen: constant)

15. D(optionally: signed: 4ixed:constant, optionally:signed:
: fixed: constant)

16. D{octal :constant, octal:constant)

2.63

16 farch 1964 21) TH¥-555/002/02

In the form above in which each component is a 4{xed:constant, the
scale after the A must be the same in each component. Examples of
dual: constants:

17. D(27,-15)
18, D(+1.739A1¢,-1.392A10)
19, D(O(TTTT) ,0(LgT6))

Hollerith:constant means a number followed by the £etter H followed by

a Left:parenthesis followed by a string of 44gns followed by a right:
:parenthesis. The value of the number must correspond to the number of
s4gns between the narentheses, The value of a hollenith:constant is the
string of 44gns, represented within the computer in hoflerith., The string
of s4igns between the parentheses may include 4paces., Examples:

20. 28H(7HIS IS A HOLLERITH CONSTANT)
21, 1TH(SO IS THIS...+=)$)

Trhansmission:code:constant means the same as hollerith:constant except
that the H is replaced by T and the computer representation is in
thansmissLon:code instead of hollerith. Example:

22, 29T(THIS ONE IS TRANSMISSION CODE) .

Soolean:constant means the nuneral @, which stands for "false," or the
nuineral 1, which stands for "true." DBoolean:iconstants are distinguished
from 4integen:constants of the same form by context.

Status:constant means either a Letfen or a name enclosed in parentheses
and preceded by the fetfer V., Following are three examples of status:
sconstants:

23. v(a)
2L, V(POOR)
25. V(ALL'GONE)

The value of a status:consfant depends entirely on context. In each
context the status:constant will be associated with a status:item:name
or with a iilesnawne., The status:constants associated with each sfatus:
s (teminame or 4f4le:name must differ among themselves, but they need not
ve different from those associated with other Afatus:{tem:names or file:
:naes, Indeed, the value of a status:constant associated with one
Aitem:name may be different from the value of that same status:constant
when associated with a different {fem:name., Aside from the rules stated
in this varagraph, the uniqueness of names and Loop:variables required

16 March 1964 22 TM-555/002/02

elsewhere does not apply to the interiors of Atatus:constants.

2.7 Transition

A1l the Aumbofs of the JOVIAL language have now been explained, at least
so far as their structure is concerned. Some meanings have also been
explained, but others will be made clear only as the use of the Awmbol in
larger constructions is discussed.

In chapter 3 and those that follow, such phrases as "string of," "followed
by," "enclosed in," and "separated by" imply that 4paces are permitted and
may be required between the elements concerned. In writing a program all
the 4ymbols are to be separated by one or more spaces except that, if the
meaning is still clearly the same, a 4pace may be omitted. This means
that, in general, 4paces are required between primitives, names,
Loop:variables, abbreviations, and constants; but not required between an
ideogham and another symbof, Note that . is an {deogham when used as a
period following a name in certain situations (sections 3.4 and 3.55, for
example), but not when used as a decimal:point in writing constants
(section 2.63). Similar remarks concerning + and - might be made, but no
ambiguity results from disregarding such commentary. Examples:

1. CHANNEL'5 EQ
2. BEGIN GOTO
3. 3E2 TES
L, IF 'LOC
5. P=Q+5%

There are exceptions to the general rule: (1) spaces may be omitted between
a puinitive or abbreviation and a following consfant which begins with a

decimal:point; (2) spaces may be omitted between a consdtant which ends in a
decinal:point and a following primitive which does not begin with E or A.

Examples:
6. BEGIN.5 .6 1.3 2., END
7. IF ALPHA EQ T.OR.3¢2 LO BETA LQ.99@7$

In the metalanguage formulas to follow, a 4pace will appear between sunbols
wherever a 4nace is permitted or required. In examples, 4pdaces might not
be shown if not required.

2.7

16 March 1964 23 TM-555/002/02

A comment may replace any one or more of the string of 4paces between
Aymbols without altering the meaning of the structure except in the
case of a define:dinective, which is explained in the next section.

A comment must not be used to replace a space within a Aymbof such as
a Literal:constant or another conment.

A cormment is only for the edification of a programmer reading a listing
of the progham, It has no effect upon the outcome of compilation.

2.8 Define:dinective

This structure is explained at this point because it fits neither
rule concerning the use of 4paces and comments.

Define:dinective means a structure of the following form:
1. DEFINE name '' string of &4gns '*' $

Among the 44{gns between the first '' and the second '' shown above,

there must not be another two primes in succession; and the last 44gn
before the second set of two primes must not be a prime. Spaces, however,
are permitted among the 44gn4 of the string. In fact, the string may
consist of nothing more than a single space. There must not be a

comment between the name and the first '' symbol.

The degine:directive is meaningful only if the quoted string of 44gns

is actually a string of &paces or else a string of symbols, Its purpose
is to permit a name to be used instead of the quoted string of &ymbols
at subsequent points in the phogram, Wherever such a "defined" name

is used it will be effectively replaced by the quoted string of 4umbols
with the following exceptions:

2. As part of a statussconstant,

3. As part of a Literal:constant,

L, As vart of a comment,

5. Within dinect:code other than within ditect:assigns.

A name may be redefined by the use of another define:directive for the same
nume at a subsequent point in the program, but it cannot be "undefined."
That is, once a name has been given a definition for a particular progham
there is no device or language structure whereby it may be returned

to the pool of unused names or to the usage it had before its first
define:dinective,

2.8

16 March 1964 2L TM-555/002/02

A defined name may be included among the sumbofs defining another name,
effecting the implied replacement, Beyond the second such define:directive
the effect is the same regardless of the order in which the directives

were written.

The programmer must avoid circular definitionms.
Note that puimitives must not be redefined by the use of define:dirnectives,

Examples of define:directives:

6. DEFINE TO ''...'' $

7. DEFINE GOOD ''V(GOOD)''$

8. DEFINE WORD '* '!

9. DEFINE UNIT ''D(.T@TA8,.7@7A8)''$

2.8

24 July 1964 25 TM-555/002/02A

Chapter 3. Statements

3.1 Introduction

A JOVIAL progham consists of a string of statements and declarations
which specify rules for performing computations with sets of data.

The basic elements of data, called {tems, are named to distinguish one
from another. Sometimes a name applies to a group of itemé, requiring
indexing to tell one member of the group from another. Several

named groups may be subsumed under another group, which is known as a
table and which may itself be named. The terms 4tning and aay are
used to characterize certain groups of <tems, For input and output
purposes the basic elements are known as neconds, which are grouped
into 44les.

The values of {{emé and other data can be changed in various ways.

A data element whose value can be changed by means of an assignment:
:statement is known as a variabfe., There is one kind of element
whose value can be changed, but not by means of an assignment:
:statement. This is the §4L€e:name which, in certain contexts, may
be considered to be the name of an {tem which contains information
about the condition of the §4{fe. It is not considered a variable.
Among the JOVIAL pruimitives are some, known as functional:modifiens,
which can be applied to an {tem:name, thereby designating only a part
of the {tem to be considered, for the moment, as a variable. Another
functional:modifier can be used to group the Ltems of a table
together, the group being then considered a single vawdiable.

The value to be given a variable is specified in an ass.dignment:statement
by means of a fornula, which can be a condtant, a variable, or a
function. In the case of mumernic: or dual:fonmulas, arithmetic
combinations of foumulas are also fornnulas,

3.2 Variables

Variables can be named and described in {tem:declarations which declare
and describe {items of one kind or another. Declarations will be discussed
in Chapter 4, They can describe these named:variablfes in terms of the
adjectives defined previously and listed below:

34

16 March 196k 26 T™M-555/002/02

1. Tuansmissionscode
2. hollenith

3. Antegen

L, g4xed

5. 4Loating

6 [} dm

T. boolean

8. Atatus

The collective adjectives previously defined also apply. A Literal:
svarniable means a hollerith:variable or a thansmission:codesvariable, A
numesiesvariable means an {ntegern:variable, a fixed:variable, or a
gLoatingsvariable, Named:variables can also be subdivided into simple:
svarniables and indexed:variables.

3.21 Simplesvariables

Simplesvarniable means the name of an item declared by an {tem:declaraticii
not associated with any avuay:declaration or any tablesdeclaration, The
adjectives which characterize the vaiiable depend on the type description
in the declaration, Exceptions will be explained later, wherein no
declaration is required. Example of a Asdmplesvariable: ’

="

1. ALPHA

3.22 Indexed:variables

It now becomes necessary to introduce the notion of recursive definitions.
We will define {ndexed:varniabfe in terms including 4ndex. Index will be
defined in terms of forwmulas which will be defined later in terms of
varniablfes, including Lndexed:variables, This is not to be interpreted

as circular definition with enigmatic meanings, but rather as a simple
way of indicating how structures of any required complexity may be

built up.

An index means a numerdic:forwnmula or a string of numerdic:forrulas separated
by commas, Each formula in the string is known as a component.

Indexed:vaniable means a structure of the following form:
1. name ($ Lndex 3)

where name is the name of an appropriately declared Lfem.

3.22

1€ March 196k 27 TM=555/002/02

If the {ndex in the above structure has one component, it serves to
specify a particular value from a one-dimensional table or amvay

of values. To pick a value from a two- or more-dimensional arraif
requires a two- or more-component <ndex. Fach time an {ndex is evaluated,
each component must yield a positive value or zero, If the value is

not an integer it will be truncated to an integer. Each component must
also, of course, be small enough to specify an actual entry of the

table or array., Example of an {ndexed:variable:

1. PAWN ($ RANK, FYLE $)

3,23 Additional Vardiables

As descriptions of variables, the terms floating, dual and status
may only describe named:variables, that is, simple: or indexed:
svariables., The rest, terms such as hoflerith, integen, and
boofean, however, may be applied to other variables which will be
explained in the following sections.

3.24 Integern:variables

Following is a list of the structures which, along with named:integenr:
rvariables,are also integer:variables:

1. Loop:variable

2, BIT = ($ 4index &) (named:variable)
3. CHAR (4Loating:variable)

4, POS (f<Lezname)

5. HENT (name)

The four piMitives in the above list are known as 4unctional:modifiiers.
In the form with NENT, the name must be the name of a variable length
table or of an {tem belonging to a variable length table., This vardable
designates the number of entries of the indicated fabfe. Values less than
zero or more than the declared maximum are undefined. The value before
being set, as by an assignment:statement, depends on the compniler.

The sunctional:modiidien, POS, operating on a f«Le:naie, desirnates the
position of the 44fe. The value P corresponds to a vosition before the
first necord of the 44le, the position form which the first necond

may be read or written. For a 44ife of k Zeconds, the value k corresronds
to the position after the last 4ecord. The value of this vardable
changes when the QZZe is involved in input or output., If the value is
changed, as by an asaignment:statement, the f«fe is repositioned
accordinglv, Values outside the range from @ to k are, of course,
undefined,

3.2h

16 March 1964 28 TM=555/002/02

The functional:modifien, CHAR, operating on a 4Loating:variable,
designates the exrad of the vatiable, a negative, positive, or zero
integer value, The term CHAR comes from the common practice of

using "characteristic" in lieu of "exrad" by analogy between logarithms
and floating numbers.

The form with the functional:modifier, BIT, designates the unsigned
integer value represented by the string of bits, or a segment of the
string, used in the machine encoding of the &imple: or {indexed:
svariable., The number of bits in a named:variable is determined from
its declaration., These bits are numbered from the left starting with
zero. The {ndex used with the BIT mod{f{er may have two components,
in which case the first component designates the first bit of the
segment and the second component designates the number of bits in

the segment., It is required, of course, that these be compatible
with the size of the /tem and with the size of numeric values that
the compiler is prepared to handle. The second component may have
the value # in which case the value of the variabfe is @, If only one
bit is wanted a one-component {ndex may be used, indicating which one.

3.25 Fixed:vaniables

The following structure, as well as the named:{{xed:variable, is also
a fixed:variable:

1. MANT (fLoating:variable)

The junctional:modifien, VMANT, operating on a 4Loating:variable,
designates the signicand of the variable, a signed, fixed, fractional
value, The term MANT comes from the common practice of using
"mantissa" in lieu of "signicand" by analogy between logarithms and
floating numbers. Example:

2. MANT (ALPHA (% 3,5 %))

3.26 Literal:varniables

The following structure, in addition to the named:{iteral:variable,
is also a Literal:varable:

1. RYTE (¢ 4andex 3) (named:fitenal :vaniable)

3'26

ol July 1964 29 TM-555/002/02A

The BYTE modig{ett functions in a manner entirely analogous to the
operation of the BIT modif{ier, The machine language representation
of a named:Literal:variable is a string of bytes -- each byte itself
a string of 6 bits representing a single 44gn. The bytes of an
n-byte Literal:{tem are indexed from left to right from $ through n-1,
The one- or two-component {ndex subseripting the BYTE modifiern
indicates a substring of the bytes representing the value of the

Atem modified. The first component of the {ndex indicates the

initial byte of the substring. For a two-component <ndex, the

second component indicates the number of bytes in the substring.

For a one component {index, the length of the substring is implicitly
one byte. The BYTE variable is defined only if the 4{ndex on

the BYTE modif{ier indicates a substring of bytes within the byte range
of the {tem, The value of a byte-string of zero length is blanks.

The BYTE variable is hollenith or transmission:code if the named:
svariable is hollerith or trhansmission:code, respectively. Example:

2. BYTE (3 1, 2 %) (MESSAGE ($ K $))

3,27 Boolean:varuiables

Besides the named:boofean:variable, the following two structures are also
boolean:variables:

1. 0DD (Loop:variable)

2. ODD (named:nuneric:variable)

The functional:modifier ODD designates the value true when the least
significant bit of the modified variable represents a magnitude of one,
and false when it represents a magnitude of zero. ODD is true, therefore,
when the absolute value of the modified vaiiable, considered an integer
regardless of the actual type or scaling, is odd; and false when that
magnitude is even.

3.28 Entrysvariiables

A table, which will be discussed at greater length later, is an ordered

set of entrdies, indexed from @ through n-l for an n-entrw tabfe, Each
entrnit is a set of related Lfens; related, perhavs, only by having been
declared to comprise a single tabfe., An entry:vasuiable is an agglomeration
of the values of the {fems comprising an entnu of a tabfe. Its value
devends on both the structure of the entru and the values of the L{tems
correrising the entay, This value mav be denoted by @ if all the bits in
the entr have the value @P. Otherwise there is no JOVIAL constant

which can denote the value. Following are the two ecuivalent forms of the
entrusvatichle:

3.23

16 March 1964 30 T™M=-555/002/02

1. ENTRY (name ($ index §))
2. ENT (name ($ 4Andex $))

in which the name is the name of a tabfe or of one of the {fems
of the table and the index consists of just one component,
designating which entry.

3.3 Forumulas

Formulas are the means for expressing values. Hence vauiablfes and
constants are also formulas., The adjectives which characterize varniables

may also be applied to fomumulas., An important kind of forvmula is the
gunction,

3.31 Functions

A function means one of the following structures:

1. gunction:name (actual:input:parameten:List)
2. function:name ()

A function is also known as a funciion:call. Actuakl:input:parametesn:ist
is explained in section 3.55 in connection with procedure:call:statements.
Even if the actual:input:parametern:fist is missing the parentheses are
needed to identify the name as a function:name. The name refers to a
gunction:declaration, described in section 5.6. The actual:parametesrs
must conform to the fommal:parametens of the corresponding function:
sdecarnation in the same manner as explained for wrocedure:call:statements.

A function has a value which is hollerith, gloating, boolean, etc.,and
which derives from the computations specified in the function:declaration
which defines it. Examples:

3. RANDOM ()
L, cos (ALPHA)
5. GRADE (FIMAL , MID + (TL+T2+7T3) /2)

3.32 Liternal:gorvmulas, Status:formulas, Entry: fornmulas

A hollernith: forvula means one of the structures in the following list:

1. octal:constant

2. hollerith: constant
3. hollerith:variable
4, hollerith: junction

3.32

16 March 196k 31 TM=555/002/02

A transmission:code: jorumula means one of the following expressions:

5. octal:constant

6. thansmission: code: constant
7. thansmission: code:varriable
8. thansmission:code: function

A status:formula means one of the expressions in the following list:

9. status:constant
10. status cvaniable
11. dtatus: function

An entry: forvula means one of the following two structures:

12, ¢
13. entrysvariable

The value of an entry:variable in which all the bits are zeros may be
denoted by @ in JOVIAL. No other value of an entry:variable may be
denoted in any way in JOVIAL, hence the limited definition of entry:
: gjorvmula.

3.33 Numeric:forvmulas

An anithmetic:operaton means one of the Ldeograms in the following list, -
in which the meaning is given on the same line with each:

1. + addition

2. - subtraction

3. * multiplication
L, / division

5 % exponentiation

Recall that aumenic means 4integer, fixed, floating, or octal.
A numerndic: jorvula means one of the following structures:

6. numeric: constant i
7. numeric:variable i
8. numesie: function 1
9. s (name) 1
10. UENT . (name) i\
11. 'Loc. (name) !
12, 'Log. (name .)
13. « nwnesc: fomula

1L, - wmetde: jorumka

16 March 196k 32 TM-555/002/02

15, (numerndic:fovula)

16. (/ numerdc:fornmula /)

17. ABS (numerndic:gornmula)

18. numeriic s formula arnithmetic:operatorn numeric: formula
19. numerde s gormuka (* numerdic: foruula *)

A numerdc: formula containing one or more arithmetic:operatons specifies
the value arising from the computations described by the fowmudla,

in the familiar sense as defined by the notation of ordinary algebra,
with a few exceptions as noted herewith. The forms with (/ and /) and
with ABS denote the sabsolute value of the enclosed foumula, Exponentiation
may be denoted by ** or by the (¥ and *) brackets, which, in the form
given at the end of the above list, indicate the first fomula raised to
the power of the second, enclosed, forumula, Multiplication, denoted by
¥, and exponentiation must be explieitly shown. The unary operator +
may be used although it is redundant. The unary operator - means
negation. Parentheses and the other brackets perform their usual
grouping function. Within groups the order of operations is negations
first, then exponentiations, then multiplications and divisions, then
additions and subtractions. Within these categories operations are
performed from left to right.

Note that, since negation has high priority and subtraction low priority,
the formulas listed at the left below have the values listed at the right:

20. T =2 ¥ 2 3
21. =3 ¥ 2 _ 5 L

Conversions between fLoating and {nteger or g4ixed will be carried out
automatically as required to perform the indicated operations. The exact
order of such conversions and the scaling of intermediate results is
dependent on the compiler, which will take into account the characteristics
of the target computer and, possibly, the use of the goumula within the
progham, Division by zero is undefined, as is an exponentiation such as
(-2)%*,5 which would result in a complex root being taken.

In the forms with NWDSEN and NENT the name must be a fabfe:name or the
name of an {tem belonging to a tabfe, NWDSEN indicates the number of
words per enthy of the referenced fable, aconstant integer value. NENT
indicates the number of entiies of the referenced tabfe, another integer.
As mentioned previously, the application of NENT to a variable:length:
:table yields an {nteger:variabfe, If the table is of rigid length,

the use of NENT yields a fowmula, a constant integer value, but not a
varriable,

3.33

16 March 1961; 33 TM-555/002/02

In the forms using 'LOC the name must be a progrham:name, a statement:name,
a table:name, or an {tem:name, The siatement:name or program:name must be
followed by a period; the table:name or item:name must not. The value of
the 'LOC govmula is a non-negative integer equal to the machine address of
the core location containing
the s4mple:item or
the first word of the s.4mpfe:item
or of the table
or of the named:statement
or of the program
or of the first compiler-assigned occurrence of
the table:.item or of
the stningsitem or of
the avaysiten,

The specified location is not that of any associated control register
which may precede the «tem, table, array, or program,

Examples of numerdc: formulas:

22, ALPHA + BETA

23. GAMMA / (DELTA ($ I, J $) ** (/XX - YY/))

24, -EPSILON (* SIN (PHI %% 2) %%2 . COS (PHI %% 2) %%0%)
25. ('LOC(ZETA) + NENT(TBL) * NWDSEN(TBL))/2

3.34 Dual:formulas

A dual:formula means one of the following expressions:

1. numeric: foumula

2. dual:constant

3. dual svariable

L, dual: function

5. + dual: formula

6. - dual: formula

T. (dual:forrula)

8. (/ dual:formula /)

9. ABs (dual:jorvmula)

10. dual: forvula arnitameticsoperaton dual:fonmula
11. dual: formula (* dual:founula *)

Aithmetic:operatons, ABS, parentheses, and other brackets have the
same meanings with respect to dual:forumulas as they have with respect
to mumerdc: jormulas., A set of computations with dual values is carried
out as the indicated set of computations with all the left components

3.3L

16 March 1964 34 TM=555/002/02

performed in parallel with the same set of computations on the right
components. When necessary a numeitic value is "twinned" to convert

it into a dual value so that it can partake in computations with other
dual values. There is no inverse conversion method for turning dual
values into numendic values., As with numerdic values, division by zero
and the taking of complex roots are undefined.

Examples of duaf:gomumulas:

12. THETA ($ ZENDA $) + D(1L.p@17A15,-1.PP63A15)
13. D(~1,1) + COMPLEX'PRODUCT (IOTA, D(@.A5,13.T19A5))

3.35 Relational Operations

A nelational:operator is the means of expressing a relation between two
gjormulas, The relation is in the form of a proposition which may be
either true or false, Hence the proposition is a boolLean:forwmula. A
relational:operaton means one of the primitives in the following list:

1. EQ is equal to

2. GR is greater than

3. GQ is greater than or equal to
L, LQ is less than or equal to

5 LS is less than

6. NQ is not equal to

In the above list the meaning of each relational:operatorn follows it

on the same line. The effect of a #relational:operatorn is to state that
the fo/vmula on its left stands in the indicated relation to the foaumula
on its right. The meaning of such a proposition is fairly obvious in
the case of muwnendic:forvmulas and its truth is determined by an arithmetic
comparison., In the case of dual:formulas, for the proposition to be
considered true the relation must hold for both component pairs. If
necessary a numetic value will be "twinned" for the comparison. The
precision of an arithmetic comparison is compiler dependent, but will
usually match or better the precision of the least precise of the two
values involved.

Between Atatus:jormmulas, Literal:gomulas, or entry: poumudas, the truth

of the relation depends on the numeric encoding of the values as unsigned
integers., If enthu values are of different lengths, the shorter is
prefaced with zeros for the comparison., If £iteral values are of different
lengths, a shorter octal value is prefaced with zeros, but a shorter
hollenith or trhansmissionscode value is prefaced with proverly encoded
blanks)

3.35

16 March 196k 35 TM=-555/002/02

A boofean:gormula is not to be interpreted in terms of its numeric
encoding. Hence the nelational:operatons cannot be used to express
relations between boofean:fornmulas., Indeed, relational:operatons
are elements of boolean:gommulas,

A numerdic:nelation:£ist means one of the structures in the following
list:

Te nelational : operaton numenrdice: gormula
8. numerdc snelation: List numeric:nelation: List

A dual:nelation:list means one of the following structures:

9. nelational s operaton dual: formula
10. dualsnelation: List dual :nelation: List

A Liternal:nelation:£ist means one of the following structures:

11. rnelational : o peraton Literal: formula
12, Literal:nelation: List Literal:nelation: List

Examples of nelation:€ists:

13. EQ (XYz+J3/3)/2
14, LQ ALPHA LQ BETA EQ GAMMA NQ 27.5

3.36 Boofean: gormulas

- A boolean: jorvmula means one of the structures in the following list:

1. boolean:constant

2. booLean:variable

3. boolLean: gunction

L, numeric : forumula numericsnelations List

5. dual : foruvula dual :nelation: List

6. Liternal: jornmula Literal s nelation: List

7. piles name rnelational :operaton status: gormula
8. statussvariable nelational:operaton status: formula
9. entry:variable EQ entruys forumula

10. entrhysvariable o] entrhy: jorumula

11. { boolean:jorvula)

12, NOT boolean: jormula

13. boolean: forvula AND booLeans fonumula

1k, boolean: formula OR booLean: formula

3.36

16 March 1964 36 TM-555/002/02

In the forms above in which #elation:£ists occur, for the boolean:
sforumula to express the value "true," it is necessary and sufficient
that the relation expressed by each relational:operator and its two
adjacent numeric:, dual:, or Literal:foumulas be true.

The three primitives, AND, OR, and NOT, are known as boofean: or
Logical:operatons, Their meanings are illustrated in figure 2. In

the heading of the figure,p and g stand for simple boolean:formulas.

The body of the table shows the values of the compound boofean:formulas,
NOT q, p AND q, and p OR g, corresponding to the possible combinations
of values of p and q. @ means false and 1 means true. In boolean:

: jorumulas containing Loglcal:operatons, warentheses may be used to
indicate the scope of the operatons, as recursively shown by the
structures in the list of boofean:fommulas. Where precedence is not
shown by parentheses, §oDtakes effect first, €gen)AND, finally

Within these categories, the sequence of operations is from left to
right.

From the preceding discussion of fowmulas it can be seen that a boofLean:
s foula may contain arithmetic:operatons, relational:operatorns, and
Logical:operatorns, It can be deduced from the previous explanations,
but it is well to point out here, that in such a boolean:formula the
aithmetic:operatons are applied first, then the nelational:operatons,
and finally the Logical:operatorns. The obvious exception to this rule
is that a function must be evaluated before a foamula in which it is
embedded can be evaluated; consequently nelational:operatons among the
parametens of the 4unction will be utilized before arithmetdc:operatons
external to the function.

D a NOT q | pAND q | p OR q
)) 1 ¢ ¢

¢ 1 ¢ ¢ 1

1 ¢ 1 ¢ 1

1 1) 1 1 i

Figure 2, uffect of the Loalcal:oneratons

3‘36

16 March 196k 37 TM-555/002/02

Lxamples of boofean:formulas:

15. 1.5 LQ XX LQ 3.79
16, ALPHA EQ BETA AND KOT LIT LS 0(@37T)
17. (A+B LS C-D OR X+Y GR 2) AND (X EQ Y OR A LS C)

3.4 Classes of Statements

Statements are the operational units of JOVIAL. They describe self-
contained rules of computation, specifying manipulations of data, or,
conditionally or unconditionally, sequencing of the execution of
dtatements, or both.

In following sections the various kinds of As{atements will be explained.
Here, they are all listed. Statement means any of the expressions in the
following list:

1. Andependent: statement
2. named : s tatement M
3. Sdmple:statement —
L, compound : 8 tatement—"
5. complex: s tatement

Independent:statement means a sdmple:statement or a compound:statement.
Named: statement means the following expression:

6. name . statement

Statement: name means the name in the above expression.: From the definitions
of Atatement and named:statement it can be seen that a statement may have
more than one name.

Example:

Te CEASE. DESIST. HALT. WHOA. STOP §

In the above example, from the space before any of the four names

up to and including the doflar:sign, we have a stop:statement, Each of
the four names is a name of this statement.

3.4

16 HMarch 1964 38 TM=555/002/02

In the definitions of the various kinds of 4fatements to follow,
they will be explained without names, but it is to be understood
that they retain the defined characteristics when they are named.
Thus a Adtop:statement remains a Sfop:sfatement whether or not it
is also a named:8tatement. The following list exhibits three
named: statements., The first line is also a 4sdmple:statement, the

second line is also a complex:statement, and the third line is also
a compound:statement:

8. S1 . STOP $
9. S2 . IF THETA EQ 45 $ XX = .T87 $
10. S3 . BEGIN ALPHA = ALPHA + 1 $ BETA = GAMMA/ALPHA $ END

3.5 Simple:statements

Simple:statement means one of the expressions in the following list:

1. assignment: statement
2, exchange: statement

3. go:to:statement

L, Lest:statement

5 neturns statement

6. sLop: statement

T. procedure s call: statement
8. “Anput:statement

9. output: statement

10. opens input: statement
11. open: output:statement
12, shut: input: statement
13. - shut:output:statement

3.51 Assignment:statements

Assignment: statement means one of the expressions in the following list:

1. numesricsvariable = numesle s formula $
2. dual:variable = dual: § omula $
3. Liternal :variable = Literal: gormula $
L, boolean:variable = boolean: fonmula $
5. status:variable = status: formula $
6. entry:variable = entny: forvmula $

3.51

16 March 1964 39 TM~-555/002/02

Assignment:statements can be further characterized, in the obvious
way, by means of the adjectives which occur in each of the above six
expressions. For instance, nume/ic:assignment:statement means the
expression on the first line of the above list.

An assignment:statement specifies that the formula to right of the

= 44gn be evaluated and that this value become the new value of the
vaiable to the left of the = s4ign. It is permissible for the vaiable
on the left to occur also in the fovula on the right. In this case
the o0ld value of the variabfe is used throughout the calculations
needed to evaluate the forvula. A function may, of course, be included
in the forvmula, Evaluation of a function may involve side effects,
which possibility will become apparent when we consider function:
sdeclarnations, If the side effects of evaluating the function involve
other elements of the 40/mufa in which the gunction is embedded, the
results are undefined. This is so because, although the rules for
evaluation of a foumula are unequivocal concerning the order in which
elements are combined, the order in which they are mobilized is not
stated, except that each sfatement is completely executed before any-
thing is done about the next statement. In evaluation of numeiic:
:formulas and dual:gormulas, rules have already been stated concerning
conversions to compatible forms among {infeger, 4ixed, 4Loating, and
dual values. Such conversions will also be carried out where necessary
in assigning the value as required in numeric: and dual:assignment:
:8tatements.

In executing Literal:assignment:statements there will not be any
conversion among hoflerith, transmission:code, and octal values. If

the value of the founula is longer than the Literwal:variable to which

it is to be assigned, excess bytes will be truncated starting at the left
end. If shorter, bfanks will be added at the left, as required, coded
in hollenith or transmission:code to match the coding of the Literal:
svardable,

If the formmula on the right in a status:assignment:statement i: .
status:constant, it must be one of those avpearing in the declaration
(or mode:dinective; which previously described the Atatus:variable
appearing in the same assignment:statement., Otherwise there is no
way for the compiler to associate a value with the Afutus:constant.

3.51

16 March 1964 Lo TM-555/002/02

In the entry:assignment:statement if the entry:forvmula on the right
is an entry:variable which differs in length from the entry:variable
on the left, in making the assignment excess machine registers are
truncated starting at the left or else full registers of zeros are
added at the left to make up the deficiency.

3.52 Excnange:statements

Exchange:statement means one of the expressions in the following
list:

1. numesic svariable == numerie svarniable $
2. dual :varniable == dual:varniable $
3. Literal:varniable == Liternal :variable $
L, boolLean:variable == boolean:varniable $
5. status svarniable == status svarniable $
6. entrnysvarniable == entrhy:varniable $

Exchange:statements can be further characterized by means of the
adjectives which occur in the above expressions. For instance,
dual:exchange:statement means the expression on the second line of
the above list.

The exchange:statement specifies that the old value of each of the two
variables is to become the new value of the other variable. The
remarks made in connection with assignment:siatements concerning
conversion of numeiic values, non-conversion of Literal values,

and truncation and augmentation of Li{feraf values and ent&y‘values
apply also to exchange:statements, but in both directions. Example:

7. ENT (T1(1)) == ENT(TL($¢$))$
3.53 Go:tosstatements

A sequence:designator specifies a sequel in the sequence of statement
executions. Normally the Atatements of a pwcessing:declaration or of a
progiam are executed in the order in which they are written. However,
this normal execution order is modified by use of a sequence:designatonr,
among other devices., A seguence:designaton means one of the two following
expressions:

1. name.
2. name. (6 Andex $)

In the first of the above forms, the name must be the name of a statenent,

a vwgran, a close:declaration, or a switch:decfaration. In the second
form the name may only be the name of a switch:declaration.

3.53

16 lMarch 1964 L1 TM-555/002/02

Go:to:statement means an expression of the following form:
3. GOTO sequence:designaton $

A go:to:statement may interrupt the ordinary, listed sequence of Atatement
executions, defining its successor explicitly by means of a sequence:
:designaton. This interruption will not occur if the sequence:designaton
does not lead, perhaps circuitously, to a Atfatement:name, a wrogram:name,
or the name of a close:declaration, and the next statement executed will
therefore be the next listed. If the sequence:designaton is, or leads

to, the name of a program or of a close:sdeclaration, the interruption may
only be temporary, since a program or a close:declaration, upon execution,
may be expected to return control to the next sfatement listed after the
go:to:statement that invoked it. Finally, if the sequence:desddignatorn

is, or leads eventually to, a Atatement:name, the interruption of the
Atatement execution sequence will be permanent, with the next 4statement
executed being the one bearing the specified sfatement:name.

3.54 Test:statement, Retuwn:statement, Stop:statement

Test: statement means one of the expressions in the following list:

1. TEST §
2. TEST Loop:variable $

Although a fest:statement is a sdmple:statement it may only appear within
ééjgggggznzzmznt and its exvlanation depends on concepts pertinent to the
Loop:statement., Its explanation is therefore postponed until the Loop:

:statement is explained (section 3.77).

The netunn:statement means RETURN followed by a daﬁ{anzbignt A retwins
:statement indicates an operational end to a close:declaration, a
procedure:declaration, or a junction:declaration, and may thus appear
only within one of these processing:declarations. It serves to terminate
the execution of a processing:declaration by transferring the sfatement
execution sequence to the exit routine which automatically follows the
last listed Atatement of the declaration. An exit routine, being an
implied function, can have no Atatement:name, and, therefore, cannot

be referenced in a qo:Zo:statement.

3.5k

2k July 1964 42 TM=-555/002/02A

The 4&op:statement means one of the expressions in the following list:

3. STOP $
4, STOP statement:name $

A stop:statement serves to halt the sequence of executions. It usually
indicates an operational end to the ptrogiam in which it appears. If the
compiler environment includes an operating system,the Afop:statement
may be compiled so as to return control to the operating system. Or it
may be that only the sfop:stfatement without reference to a slatement:
tname will return control to the system. If the computer halts without
giving control to the system and if it is then restarted by some nmeans,
the execution sequence will resume with the next sfatement listed, or
with the 8fatement bearing the speecified statement:name if one is given
in the stop:statement. See section 6.1 for the use of 4top:sitatements
in "other" programs.

3.55 Procedune:call:statements

An actual:input:parameter:€ist means one of the expressions in the
following list:

1. gormmula

2. aay: name

3. Lable: name

L, close:name . :

5. actual: input: parameten: List , actual:input: parameten: List

There is one minor exception needed to make this definition complete. A
Atatus:constant is not permitted as one of the paramefers in an actual:
sinput: parameten: £ist. The reason for this is that there is no place in
the L8t or in the 4tatement in which it occurs (a procedure:call:statement)
for the sfatus:varniable which would provide a value meaning for the
sLatus:constant.

Note that a close:name in an input:parameten:Zist is identified as such
by the presence of a following pertod.

An actual soutput: parametensiist means one of the expressions in the
following list:

16 March 1964 43 TM=-555/002/02 -

6. variable

T. Zable:name

8. aay: name

9. statement:name .

10, actual soutput: parameten: List , actual:output:parameten:fist

Note that a statement:name in an output:parameten:€ist is identified as
such by the presence of a following period.

A procedure:call:statement means one of the expressions in the following
list:

11, procedure:name $

12, procedure:name () $

13. pwceduresname (actual:input:parameten:list) $

1k, procedwre:name (= actual:output:parameten:list) $

15. procedune:name (actual:input: parameter:List = actual:output:

:parameter:List) $

A procedune:call:statement serves to call for the execution of a procedure,
which is a self-contained process with a fixed and ordered set of parameters,
A procedurne is defined by a procedure:declaration. In general, a pwcedure:
scall:statement consists of a procedwre:name, a set (possibly empty) of
actual:parameterns, and necessary delimiters. The actual:parameters of a
procedure s call:statement must agree in type, number, and position with the
gormal:parnametens of the procedure:declaration which bears the same name,
That is table:name, close:name, statement:name, and foumula, variable, or
Atem:name must correspond to tabfe:name, close:name, statement:name, and
{tem:name, respectively. In the procedure:declaration the names listed as
gormal: parametens are referenced elsewhere in the decfaration. The
execution of the procedure is effected as if all such references to tabfe:
snames, array:names, close:names, and statement:names were replaced by the
corresponding actual:parameter:names., This extends to the L{fems of tables
which are named as gounal:parameters. That is, references to the variously
named bits of the foumal:varameten:table will be effected as references to
the corresponding bits of the actual:parameter:table. The above description
is of the intended method for handling these parameferns, but in at least one
version of the compiler complete sets of values are transferred between

the tables which are named as actual:parameters and foumal:parametenrs.

3.55

16 March 1964 Ly TM-555/002/02

With respect to parameters which are fowmulas ard variables, execution

of the procedure is effected as if the values of the 40umulas which are
actual: input: parametens are assigned to the {tems which are §ormal:input:
:parametens before execution and the values of the fomal:outpout:parametens
are assigned to the variables which are actual:output:parameterns after
execution. Consequently there must be ccmpatibility between forwmaf:
sparameten:items and the corresponding actual:parameten:fowmulas and
svarniables, of the same nature as exhibited by assignment:statements
(section 3.51). Indices in the actual:parameten:fists are evaluated before
execution,

3.56 Input, Output, and Files

With many data storage devices the insertion or withdrawal of the value

of an arbitrary item of information may be a relatively complex operation,
requiring the transfer of an entire block or fecoad of data. Such devices
are termed "external" storage devices, as contrasted with the "internal"
memory of the computer. To allow a reasonably efficient description of
algorithms involving the data stored in an external storage device, the
44Le concept is introduced, so that all data which enter or leave the
internal memory of the computer are organized into 44{fes.

A f4Le is a collection of 4ecords each of which is again a collection --
of bits or bytes depending on the §ife type: binary or Hollerith. A 4ile
of length k may be considered a vector, arranged as follows:

p(¢)9 R¢’ p(l)' Rl’ @se 9 p(k"l)’ Rk"l’ P(k)

where the R's are necondé, the components of the vector, and the p's are
partition symbols, with a computer-dependent physical representation,
which may be interpreted as:

p(k) = end-of-file; p(n < k) = end-of-record.

If the 41ecord currently available for transfer to or from the $ile

is R , the 44Le is positioned at partition symbol p(n), and the value
designated by "POS({§iLe:name)" is n. An assdgnment:statement
"POS(f4Lesname) = 1 3" positions the 44Le to the value specified by

Jd, wvhere ¢ < Il < k., In particular, "POS(§Le:name) = @ $" "rewinds"

the f4£e. Any 44Lfe for which the general positioning operation is to

be avoided as inefficient (e.g., tape) or impossible (e.g., cards, printer)
is called a "serial," as opposed to "addressable," #ilLe.

16 lMarch 1964 4s TM=555/002/02

A necond in a f4fe may be input by a read operation or outout by a
write operation, although some §4fe4 are read-only or write-only depending
on the characteristics of the storage device involved.

Input:operand means one of the following five expressions:

1. varuiable

2. aays: name

3. table:name

L, table: name ($ 4index $)

5. table: name ($ 4ndex ... 4ndex $)

Output:operand means one of the following two expressions:

6. constant
T. Anput: operand

An operand in an {input:statement or an output:statement specifies the
rnecond to be read or written, which may consist of the bits or bytes
representing: a single value, denoted by a constant or a variable;
the values comprising an atnay, indicated by an avaysname; the values
comprising a tabfe, indicated by a fabfe:name; the values comprising a
table:enthy, indicated by a tabfe:name subscripted by a l-component
entny:index; the values comprising a consecutive set of fable:entrnies,
indicated by a tablfe:name subscripted by a pair of one-component

entry:indices (sevarated by ... the continuation {deogram), whose values
specify the initial and final entries of the set.

3.57 Input:statements, Open and Shut

Input: statement means:
1. INPUT {§4Lesname Anput:operand $

Upen:input: statement means one of the two following expressions:

2. OPEN INPUT {4Le:name $
3. OPEN IWPUT {dLe:name Anput:operand $

Shut:input: statement means one of the two following expressions:

L, SHUT INPUT 44lesname 3
5. SHUT TIUPUT 44Lesname Ainput:overand 3

3.57

16 March 1964 L6 TM-555/002/02

A {4le may be read by the execution of a sequence of statements consisting
of, first, an open:input:statement, next, a sequence of {input:stfatements,
and finally, a shut:input:statement.

An open:input:statement activates the §iLe and prepares it for reading.

An open:input:statement need not designate that a necord be read, in which
case, §ife position is initialized to zero. If, however, values are
designated to be read from a %econd, the read operation is initiated and
g<le position is set to 1. The meaning of "initialized to zero" depends
on the compiler and the characteristics of the f{fe. It may mean "set

to the initial position" or it may mean "call the present position zero."

An Ainput:statement initiates a read operation transferring data from the
necond to represent the designated values, and increments the f§ilfe
position by 1. The sequence of sfatement executions may continue,
concurrently, with the read operation although the f§ife is "busy" (or
at any rate not "ready") until the read is successfully terminated.

This occurs when a partition symbol is encountered, or when all the
designated values have been read from the %econd. A read operation is
unsuccessful when started from the end-of-file position or when
uncorrectable errors occur in the data transmission.

A shut:input:statement serves to deactivate the §ife, releasing the
external storage device associated with the §{fe for possible other use.
A shut:input:statement need not designate values to be read from a feconrd,
but if any are designated, the read operation is completed prior tc the
deactivation of the f.{fe.

3.58 Output:statements, Open and Shut
Output:statement means:

1. OUTPUT {4ile:name output:operand $
Open:output:statement means one of the following two expressions:

2. OPEN OUTPUT {$ile:name $
3. OPEN OUTPUT file:name output:operand $

Shut:output: statement means one of the following two expressions:

L, SHUT OUTPUT f4iLe:name $
5. SHUT OUTPUT {4Le:name output:operand $

3.58

16 March 196k L7 TM=-555/002/02

A f4le may be written by the execution of a sequence of statements
consisting of, first, an open:output:statement, next, a sequence of
output:statements, and finally, a shut:output:statement.

An open:output:statement activates the §4£e and prepares it for writing
(e.g., an identification block may be written). An open:output:statement
need not specify that a #econd be written, in which case §4£e position
is initialized to zero. If, however, an output:operand is specified,

the write operation is initiated and 44fe position is set to 1.

An output:statement initiates a write operation for the next output
necond and increments the §4fe position by 1. The sequence of statement
executions may continue, concurrently, with the write operation, although
the §4fe is not "ready" again until the write is successfully terminated,
when all the specified bits or bytes are written without the occurrence
of any uncorrectable error in the data transmission. In some §ifes,
partition symbols and thus g§4{fe positions are predetermined. Consequently,
a write operation started from the end-of-file position would be
unsuccessful. In other f§{fes, notably tape §i£es, the partition symbols
are determined by the write operation itself so that, in effect, the
end-of-file partition symbol follows the last #ecord written.

A shut:output:statement serves to deactivate the f4fe, causing its
termination by an end-of-file partition symbol and releasing the
external storage device associated with the {{£e for possible other use.
A shut:output:statement need not specify that a necond be written, but
if an auzput:openand is specified, the write operation is completed
prior to the deactivation of the f{«fe. '

The necords of a §4fe have no internal structure, and may be thought of as
strings of bits or bytes. Structure is supplied only by the operand
portion of the {input:statement or output:statement. Thus, reading‘and
writing are Just information transfers, and no editing or rearranging of
data (except that required for conversion to 6-bit hollerith code) is
implied. A write transfers just the bits or bytes specified by the oprernand.
A read transfers just the bits or bytes of the #econd, to the maximum
designated by the owerand,

A shut:statement is defined only for active §4fes, and an open:statement

is defined only for inactive j4fes. Further, some {4Le pairs must not be
active concurrently, for example: two 44Les on the same tape reel.

3.58

16 March 1964 L8 TM=555/002/02

Input:statements and output:statements are defined only for active
§iLes, and in general, an active §<{fe may be both written and read,
and positioned -- if the §4{fe characteristics allow. Thus, a read
with a serial, write-only §4{e such as a printer is undefined. The
characteristies of some §4£es, however, also preclude the initiation
of a read or write operation when the §4fe is "busy", thus eliminating
the possibility of stacking input-output operations.

3.6 Compound:statement

A compound:statement is a string of 4tatements enclosed in the brackets,
BEGIN and END. The enclosed siatements may be named or not, simple,
compound, or complex and there may be declarations and directives
included among them., In order to make the definition more precise it
is necessary to define a st{atement:£ist.

A statement:List is one of the expreséions in the following list:

1. Statement

2. declaration statement:List
3. directive statement: List
h, Statement: List declaration

5. Atatement: List dinective

6. statement: List statement:List

A compound:statement means the following expression:
T, BEGIN Atatement:List END

Example of a compound:siatement:

8. BEGIN ALPHA = 1 $ SL1. GOTO SLT $ SL2. BEGIN INT (
X¢, X1, DERIV. = AREA) $ GOTO DERIV $ END END .

3.7 Complex:statements

ComplLex:statement means one of the expressions in the following list:

1. dinect: statement

2. conditional:statement
3. alternative: statement
L, Loop: statement

3.7

16 March 1964 Lo TM=555/002/02

3.71 Dinect:statements

The direct:statement is a means for breaking out of the JOVIAL
language within a prognram and writing some instructions in another
language more directly related to the organization of the computer

for which the progham is being compiled. What is legal and meaningful
within a ddirect:statement depends on the particular version of the
compiler which is processing the progham. For a precise definition of
dinect:statement it will be necessary to make a few preliminary
definitions,

Dinect:assign provides access to the variabfes of a JOVIAL program
from within a ditect:statement. 0Direct:assign means one of the
expressions in the following list:

1. ASSIGN A(optional:optionally:signed:integer:constant) = named:variable $
2. ASSIGN named:vardiable = Aloptional:optionally:signed:integern:constant) $

There must be no 4paces between the A and the Leff:parenthesis or between the
parentheses, In the first form above, the value of the named:variable is
moved to the accumulator (the principal program-accessible register of the
arithmetic unit). In the second form the value is moved from the accumulator
to the vardiable., If there is no constant within the parentheses the

contents of the accumulator represent a f§foating value. If there is a
constant other than zero the value is fixed, with the stated number of
fractional bits in the accumulator. A negative number means the binary
point is so many places to the right of the right end of the accumulator.

If the constant is zero the accumulator contains an {nteger or non-nwreric
value,

Dinect:code means an essentially arbitrary string of JOVIAL 44gns, not
including the symbof JOVIAL, optionally interspersed with direct:assdigns.
More specifically, ditect:code means one of the following expressions,
but not including the symbol JOVIAL:

3. 44gns
4, dinect:assign
5. dinect:code direct:code

3.71

16 March 1964 50 TM-555/002/02

Dinect:statenent means:
6. DIRECT direct:code JOVIAL

Although dinrect:code is arbitrary so far as the definition of JOVIAL
expressions is concerned, only certain configurations will be meaningful.
If the input medium is punched cards, specifications of meaningful
dirnect:code will probably involve positioning on the card. Because of
this it will probably be "safest" to prevare programs so that each direct:
:ass4ign is on a separate card without other direct:code (except spaces)
and so that there is no direct:code, besides 4paces, on the cards
containing the 4ymbofs DIRECT and JOVIAL.,

It has been felt "safest" to classify a ditect:statement as a complex:
:statement, vut if it contains no direct:assigns it may be considered a
saimple: statement,

3,72 Conditional:statements

A conditional:statement means:
1. Lf:clause Andependent: statement

Remember that an {ndependent:statement is a simple:statement or a
compound:statement, The expressions in this and following sections
which are here called clauses are known as sfatements in other JOVIAL
documentation. The present nomenclature, however, is felt to make it
easier to understand the language structure,

T4:clause means one of the two following expressions:

2. IF boolLean:formula $
3. statement:name . ALficlause

The effect of a conditional:statement is that if the value of the boolean:
tfoumula of the L4:clause is true, the independent:statement is executed;
otherwise the {ndependent:statement is skipped.

Following are two examples of conditdional:statements:

L, IF ALPHA - BETA LS 2 3 GOTO NEAR $
5. IF BOOL $ LBL , BEGIN RANDOM (= BASIC) $ BASIC = BASIC ** 2 § END

16 March 196k 51 TM-555/002/02

3.73 Altermnative:statements

Whereas a condi{tional:statement provides an {ndependent:statement
which may or may not be executed depending on the satisfaction of a
condition, an alternative:siatement provides a list of 4independent:
:statements and associated conditions. That <ndependent:statement
associated with the first condition which is satisfied will be the
only one executed if any one is. The conditions are expressed by
the boolLean:f{orvulas in the following definitionms.
I§:eithern:clause means:

1. IFEITH boolean:formula $

On:if:clause means:

2. ORIF boolean:forvula $

Alternative means one of the expressions in the following list:

3. on:if:clause independent: statement
b, statement:name . alternative

Altewative: (st means one of the following two expressions:

5. if:eithen:clause independent:statement alternative
6. alternative: List altermnative

Alterwmative: statement means:
T. altewmative:List END

Here is one example of an alternative:statement:

8. IFEITH ALPHA LS BETA $
ALPHA = BETA $
Ll . ORIF ALPHA + BETA GR 1¢ $
BEGIN GAMMA = (ALPHA + BETA) / 2 $

(
L2 . ALPHA = GAMA +1 $
BETA = GAMMA +1 $
END
ORIF 1 $ GOTO KEEP §$
END

3.73

16 lfarch 1964 52 T!=-555/002/02

The above example provides for the execution of one assignment:
:8tatement if the first condition is satisfied. It makes no
difference then if any of the other conditions are satisfied:

after executicn of the single assdignment:statement the execution
sequence continues with the Atatement following the second EIT.

If the first condition is not satisfied, the second condition is
examined, and so forth. The third condition in the example is a
catch-all. The constant 1 is a boolfean: formula which always has

the value "true," A jump to L1 from elsewhere in the program

will cause the search for alternatives to begin at that point;

it is as if execution of the alternative:siatement had begun at the
top, but that all the conditions before the referenced name vere
false. A Jump to L2 will cause execution of the sfatement at that
point regardless of the satisfaction of the earlier conditions. In
this case only two of the three simple:statements which comprise the
independent:statement of this alternative will be executed. Following
execution of BETA = GAMMA - 1 $ control will pass to the Atatement
following the alternative:statement.

Although @ and 1 should be recognized as boolean:fonmulas in i4:
sclauses, Lf:eithen:clauses, and on:if:clauses, the compilers presently
recognize only 1 in the expression ORIF 1 $ in such cases. Actually,
of course, this is the only place, other than assignment:statements,
where such recognition is useful,

3.7h Loop:statements

The Loop:statement provides for the "iteration" of an {ndependent:
:statement (or special:compound), The iterations or repetitions of
the {ndependent:statement are controlled by means of one or more
Loop:variables which are set up by gor:clauses. Remember that a
Loop:variable is a single Letfer in certain contexts. Those contexts
will now be described.

Comolete: jor:clause means one of the following two expressions:

1. FOR Loon:ivariable = nwnerdic:fommula , numeric:{ommula , nwneric:formula §
2., FOR Loop:varniable = ALL (nane) §

16 March 196k 53 ‘ TH-555/002/02

In the second of the above expressions the name must be a table:nane
or the name of an {item belonging to a tabfe. In either case, the
complete: for:clause with the ALL modigier is equivalent to either one
of the following two expressions:

3. FOR Loop:variable
L. FOR Loop:variable

¢ ,1, NENT (name) -1 $
NENT (name) -1, -1 , 8 $

The designers of each compiler are free to decide, arbitrarily, which of
the two interpretations to select. Presumably they will choose that
interpretation which is likely to give the better machine language code.
Hence, the ALL modif{et should be used only when the programmer does not
care which of these two interpretations is assumed.

The complete: qon:clause defines a Loopsvariable to control the iteration
of an 4ndependert:statement and for use as an integer:variable within the
statement. The first of the three numendic:forvmulas is the initial value,
given immediately to the Loop:variable (in the sense of "assignment" to an
integenivariable). The second 40uula provides an increment to be added
to the Loop:variable for each iteration. The third fonwmula is a limit

for iteration. After the Loop:variable has been increased by the current
value of the increment it is compared with the current value of the limit.
If it has not reached or gone beyond the limit, execution of the {ndependent:
:statoment (the one controlled by the for:clause) is repeated. If the
value of the fLoop:variable after incrementation is beyond the value of the
limiting 4onwmda, the Andependent:statement is not repeated. '"Beyond"
means "greater than" or "less than" depending on whether the increment
value is currently positive or negative, respectively. In some compilers
the direction of comparison depends on the explicit sign rather than the
current value of the increment.,

Incomplete: jor:clause means a two:jacton:forn:clause or a one: factonsfon:
rclause, A two:factonrn:fon:clause means the following expression:

5. FOR Loop:varndiable = nwnerdc:forvmula , nunerdc:fovmula §

The twe:facton:ion:clause defines a Loopsvariable with some measure of
control over the iteration of an {ndependent:statement. The first of the
two nwnerdc: jorvulas provides the initial value of the Loop:svariable.

The second #onwula provides the increment to the Loop:variable for each
iteration of the ndependent:statement. There is no limiting value
provided and termination of the recveated executions will have to be
rrovided by some other means.

24 July 196k 5k TM-555/002/02A

One: gacton: forn:clause means the following expression:
6. FOR Loop:variable = numeric:fomula $

A one:facton: fon:clause defines a Loop:variable and gives it an initial
value, but it does not cause any iteration.

Special:compound means one of the following expressions:

7. BEGIN 4statement:List if:clause END
8. name . special:compound

Although the special:compound is not, strictly spesking, a sfatement,

the name in the second of the above two expressions is a atatement:

tname, It may be considered a name of the first s{atement in the statement:
:8ist. The special:compound may take the place of the 4independent:
:8tatement in a Loop:statement and be iterated under control of the
Loop:variables. .

Incomplete: Loop: statement means one of the following expressions:

9. Ancomplete: forn:clause Aindependent: statement
10. Ancomplete: fornsclause speciak :compound
11. Ancomplete: fon: clause Ancomplete: Loop: statement

Note that an 4incomplete:loop:statement is a statement and may therefore
be preceded by a Atatement:name and a period. One example of an Ancomplete:
:Loop:statement is the following:

12, FOR I=1,1 $
SLl1. FOR J=I+5 $
BEGIN AA (JT) = BB ($I3%) $
J = 2 *% 1 - 1 $
IF BB ($ I $)EQ@ $ GOTO EXIT $
IFJ GR 1¢¢¢ $ GOTO SL1 $
END

Complete:Loop: statement means one of the following expressions:

13. comnlete: forn:clause Aindependent:statement
1k, complete: jorn:clause special s compound
15. complete: forn:clause Ancomolete:Loop: statement

16. one: facton: forn:clause complete:Loop: statement

2L July 1964 55 TM=-555/002/02A

From the last two definitions we see that a Loop:statement is a string of
forn:clauses followed by an Lndependent:statement or a special:compound,

A special:compound may be used as part of a foop:statement only if at least

one of the string of fon:clauses is a two:facton:gfor:clause or a complete:
sqon:clause. In a completesloop:statement it is actually permissible for

more than one of the for:clauses in the string to be complete:fon:
:clauses., The compiler, however, will ignore the third fo/mula in all

but the first of such cfauses, treating them as two:facton:fon:clauses.

3.75 Use of Loop:Statements

The effect of a Loop:statement is to define a set of Loop:variables and,
usually, to execute an independent:statement or special:compound repetitively.
Since a Loop:statement is a statement, it may be part of the siatement:

:£i8% which forms part of a larger £oop:stfatement. Such nesting of Loop:
:8tatements, in general, leads to repetition of the execution of the inner
Loop: statement, each execution of this inner Loop:statement leading to
repetitive executions of the {ndependent:statement which forms its latter
Parto

Each fon:clause defines or activates the Loop:vaiable which immediately
follows the 4ymbof FOR and gives it the current value of the first numeric:
sgovmula following the = s4gn. This Loop:variable is then active and may

be used as an {nteger:variable until the end of the {ndependent:statement
which is the latter part of the Loop:statement. The Loopsvariable is active
and may be used in the formulas of the other fonr:clauses of the string
following the one which activated it. It is even active and may be used in
the one or two fomulas following the forvmuula which provides its initial
value in the same gon:clause that activates it. A for:clause may be used
to activate only a {Loop:variable which is not already active. A given
Loopsvariable may be activated by more than one forn:clause, but these for:
:clauses must be parts of disjunct Loop:statements -- they must not be
included in the same string of j4or:clauses and one must not be nested

under another. They will be considered different Loop:variables in the
different Loop:statements,

A Loopsvarniable is activated only by execution of the jor:clause and

remains active only so long as execution remains within the {Loop:statement,
except for the cases noted in the next paragraph. A fLoop:staterent nust

not be entered from outside by means of a go:to:statement leading

(directly or through switches) to a statement:name inside the Loon:statenent.

3.75

16 March 1964 56 TM-555/002/02

This prohibition applies to sXatement:names on any fpor:clauses other
than the first one in a string as well as to statement:names, switch:
snames , or close:names on or within the Lndependent:statement forming
the latter part of the Loop:statement, It is permitted to transfer
control to stalements, forn:clauses, switch:declarations, and close:
sdeclarations within a Loop:statement from other points within the
same Loop:statement,

In general the Loop:variables are deactivated whenever control is
transferred outside the loop by means of a go:to:statement or by

coming out the bottom because of completion of the Loop:statement.

The Loop:varniables are not deactivated if control is transferred to a
procedure:declaration, a function:declaration, or a program:name;
provided the procedutre, function or outside proghram returns control

to the Loop:statement through the normal exit of the procedure, function,
or ptogham or through one of the actual:parameter alternate exits (from a
procedure) if this alternate exit is a name within the Loop:statement.

3.76 Processing:declarations Within Loop:statements

Procedure:declarations and function:declarations written within a Loop:
:statement are not, in any way, associated with the Loop:vardiables defined
for the Loop:statement. The same Loopsvariables may be defined for Loop:
sstatenents within the procedunre: or gunction:declarations and may be used
inside the procedure: or function:declarations only within such Loop:
:slatenents. Execution of a procedure: or function:declaration may be
invoked from inside or outside any Loop:statement within which the
declaration way be written.

Loop:variables are, on the other hand, defined within swifch:declarations
and closesdeclarations written as parts of the Loop:statement for which
the Loop:variables are defined. These Loop:variables may be used inside
such switch:deckarations and close:declarations; these suitch:declarations
and close:declarations may be invoked from inside the Loop:statement in
which they occur, but not from outside; and any such close:dectaration
must not contain a for:clause defining one of these same Loow:variables.
If a procedure:call:statement or a junction:call within a Loop:statenent
contains, as an {nput:narameten, the name of a close:declaration also
within the foow:statement, this is considered proper invocation of the
closesnanie from within the same Loow:staterient.

2k July 196k 5T TM-555/002/02A

3.77 Iteration Control

The compiled instructions needed to do the testing and incrementing
specified by complete:for:clauses and two:facton:fon:clauses are inserted
at the end of the fLoop:siatement. Incrementation of the Loop:variables,
by the current values of the corresponding incrementation formulas, takes
place in the reverse order of that in which they are defined. If there

is no complete:fon:clause, incrementation is terminated by an unconditional
transfer to the top of the loop, Just following initialization of the last
Loop:variabfe, If the gor:clause string contains a complete:gon:clause,
incrementation is followed by a test of the controlling Loop:variable, the
one defined by the complete:for:clause., If the controlling Loop:variable
has not reached or gone beyond the current value of its limit, control is
transferred to the top of the loop; otherwise, execution proceeds to the
instructions following the Loop:statement.

As mentioned before (section 3.54), fest:statement means one of the two
following expressions:

1. TEST $
2, TEST Loop:variable $

A test:statement may only appear within a Loop:statement. It serves to
transfer control to the iteration control routine at the end of a £Loop:
sstatement. Since the iteration control routine is an implied function.
without a name, a go:fo:statement cannot be used to transfer control to it.
A test:statement without a Loop:variable transfers control to the beginning
of the next following iteration control routine.

A test:statement containing a Loop:variabfe may only appear in a Loop:
:statement in which the referenced Loop:variable is defined. It serves to
transfer control to the point at which the referenced Loop:variable is
incremented. Thus it causes incrementing of the referenced Loop:variable
and all those which precede it in the initialization sequence for the
Loop:statement. If the referenced Loop:variable is one which was defined
by a one:jacton:fon:clause, control is nevertheless transferred to the
proper place so that incrementation and testing takes place for those
Loop:variables defined in the Loop:statement before the referenced Loop:
:vaniable but not for those defined after the referenced Loop:variable.

(VS
-
-]

16 iarch 196k

58 T™~555/002/02

Initialize
Initialize
t—> Initialize

QW >

Initialize
Initialize
Initialize

[N lle

FOR A = X11, X12, X13%
FOR B = X21$

LC. FOR C = X31, X32$
BEGIN «
FOR D = xh1, xh2, Xh3$
FOR E = X51, X52%
FOR F = X61$
BEGIN +
* % % % *
GOTO LC$
¥ * % % *
TEST$
* % % % *
TEST D$

*¥ % * * x

IF ALPHA EQ ¢$
END -

* ¥ % % *

3

> Increment
Increment
Test

oo

FOR G = XT1, X72$ Initialize G
LH. FOR H = X81% — Initialize H
BEGIN <
* * * * *
GOTO LH$ _
* * * * *
FOR I = X913 Initialize I
FOR J = X@1$ Initialize J
BEGIN
* * * * *
TEST$ —
* * * * *
END
* * * * * PR |
TEST G$ >
* * * * *
TEST B$ >
* * * * *
IF BLTA =3 @3 ————+T
END > > Increment G
l Test (2) G
oD : + Increment C
&—————— Tncrement A
Test A

Locw:statenent Sumnmar: Exarvle

16 lMarch 1964 59 TM=555/002/02
(Page 60 blank)

The 4{f§:clause at the end of a special:compound controls execution of the
iteration control routine at the end of the Loop:statement., Execution of
a Lest:statement, however, supersedes control by this L{f:clause. When the
Af:clause is executed , if the condition is true the iteration control
routine is executed; if the condition (the boofLean:{orwmula) is false the

iteration control routine is skipped, thus terminating execution of the
Loop: statement.

Figure 3 summarizes the foregoing discussions of {Loop:statements, showing
complete: and {ncomplete:Loop:statements, nested Loopsstatements, test:
:sfatements, and transfers to the midst of a string of for:clauses, together
with initialization of the Loop:variables and iteration control. On the
left in the diagram is a sample of JOVIAL coding. A line with five
asterisks represents one or more lines of JOVIAL coding not germane to
this discussion. On the right the initialization and loop control is
shown in positions corresponding to their respective parts of the code.
The incrementing and testing of D and E (and F if there were any) corres-
ponds to the first END. The control with respect to A and C (and to B if
there were any) corresponds to the last END. The arrows show transfers
of control. Some of the coding represented by lines of asterisks must,

of course, permit Jumps around the go:to:stalements and fLesi:statements
shown.

The four little "electric switch" diagrams represent conditional transfers.
After the incrementation of G there is an unconditional transfer to the
beginning of the loop in which G and H are defined. This transfer point

is called a "test on G," but the jump is unconditional since the Loop:
:statement is incomplete (there is no limiting formula). In the loop on
I and J there is no incrementation and no return since all the pertinent
gorn:clauses are one:facton: fornsclauses.

16 March 1964 61 TM=-555/002/02

Chapter b4, Declarations

4,1 Undeclared Names

Declarations are the principal means of associating names with the elements
of a program or of its environment. This discussion begins by considering
the exceptions., A statement:name is defined by its appearance (not in a
pnarnameten: £ist) followed by a period., It is thereby defined as the name
of that point in the ptogram which is the beginning of the next statement
or cfause, A reference, in the procedure: or function:declaration, to a
name which is followed by a period in a formal:input:parameten:€ist is
treated as a reference to the corresponding close:name in the invoking
pcedure:call:statement or function call., Such reference to a name

which is followed by a period in a foumal:output:parameten:List is treated
as a reference to the corresponding statement:name in the invoking procedure:
scalls statement,

4,2 Pre-defined Names

Names may be pre-defined for a program as names of Ltems, tables, files,
external proghams, procedwre:declarations, or function:declarations.
Such pre-definition is accomplished by means of a COMPOOL or a library
or both.

A COMPOOL (communications pool) is a table or dictionary of definitionms

for use by a system of related programs, If a progham is to be integrated
into the system, the descriptions and locations of common data, procedures,
and program$ are found in the COMPOOL., A library does not contain descrip-
tions, but rather complete procedutes or functions., If a prwgham calls

one of these procedures or functions, it is copied from the library and
made a part of the program,

If a progham written in JOVIAL makes reference to a name defined in the
COMPOOL or library and if this reference is compatible with the COMPOOL or
library definition, then the reference is taken to be a reference to the
COMPOOL or library defined name, If, however, the program properly defines
such a name explicitly then, if there is a conflict, this definition takes
precedence and the COMPOOL or library definition is disregarded. "Proper"
definition has reference to the necessity of placing program:declarations
and data:declarations ahead of any references to them.

16 March 1964 62 T1-1-555/002/02

4,3 Mode-defined Names

Names which have not been pre-defined, nor declared, nor previously
defined by mode, as elements with conflicting scope and category

(section 6.5) may be defined by mode simply by referencing the name

in an appropriate sfatement. Each compiler assumes a normal mode for
such definitions -- probably an integer of some convenient sizej; perhaps
signed, perhaps unsigned. The method for changing this mode is described
in section 6.h4.

Definition by mode can be done only for s{mple:items and it cannot be
done if it would thereby change the existing scope of definition of the
same name applied to a different element. Consider, for instance, a
procedurne:declaration in which a particular name is not declared and

is not used as a gorwmal:parameter, but is used as if it were the name
of a sdmple:item:

1. If the name has been pre-defined as a Adnple:item:
sname, or declared in the main:program (bvefore this
procedure:declaration is encountered) as a sdimple:
siteminame, or defined by mode in the main:progham
(vefore this procedure:declaration is encountered),
then the reference to it is a reference to that
simplesitem which is already defined (global item).

2. If the name has not yet been defined in any way for
the main:progham as any entity in the same category as
a sdmple:item:name, then the reference to it in this
procedure:declaration serves to define it by mode but
only within this procedure:declaration (local item).

3. If the name has already been defined in some way for the:
main:progham, not as a sdmplesitem:name, but in the
same category (see section 6.5), then this reference in

this procedure:declaration is erroneous.
L. b Data:declarations

Data:declarnations serve to declare and describe the data on which a
wrogham is to operate -- the inputs, the initial elements of information,
the intermediate results, the final results, and the outputs. The

ik

16 March 196k 63 TM-555/002/02

names given to the data follow the primitives which begin the
declanations, are chosen at the arbitrary discretion of the programmer
(or programming supervisor), and have no necessary connection with names
used in the outside world -- on input manuscripts or printed output, for
instance, Data:declaration may be subdivided into groups as follows:

1. Atem:declaration
2. table:declaration
3. ovelay:declaration
L, g<Le:declarnation

Iten:declaration may be further subdivided into the following groups:

S5 sdimple: item:declaration
6. Andexed: {tem:declaration

And {ndexed:{tem:declaration may be subdivided into the following
groups:

Te aray: Ltem:declaration
8. table: {tem:declaration

Numbers, which have been defined in section 2,62, are used extensively
in data:declarations. In the expressions to be discussed below, there
will be several numbers in a single form, each with a different meaning.
In order to facilitate the explanations, each of the expressions in the
following list is defined to be a numben:

9. nin
10. nZn
1l. nin
12. n4n

The above list is to be understood to be extended, as far as required,
in the obvious way. Each of these special ways of writing number will
be used with only one significance in the explanations to follow.

L4

16 liarch 196k 6L TM-555/002/02

L,hl Ttem:descriptions

Item:desciiptions are parts of Ltem:declarations which give the
characteristics of the {tems. The adjectives, defined in section 2.61,
which apply to constants and vatiabfes also apply to {items, item:
:descniptions, and item:declarations., '

Floating:item:desciption means one of the expressions in the following

list:

1. F

2. F R

3. F gloating:constant ... gloating:constant
L, F R fLrating:constant ... floating:constant

The abbreviation F s;2cifies a gloating:item. The optional:abbreviation
R declares that any value assigned to the {fem be rounded instead of
truncated. The pair of gloating:constants separated by the ... Ldeogram,
if present, state an estimated minimum through maximum absolute value
range. This range might be used by the compiler in optimizing the machine
language program. The constants must be positive or zero and the smaller
must come first,

Integern:speciyion means one of the expressions in the following list:

5. I nin -
6. I nin U
Te A uln S
8. A nin U

Integer: (tem:descdp” >n means one of the following expressions:

9. Lntegen:specifien

10. integen:specifier R

11, Aintegen:speciflenn Anteger:constant ... Anteger:constant
12, integen:specifiern R Anteger:scomstant ... Antegern:iconstant

}7n declares the number of bits required by the 4A%em, including any sign
bity; 5 declares a signed Ltem; U declares an unsigned (positive) Ltewy;

bl

16 March 1964 65 TM-555/002/02

R declares, if present, that any value assigned to the Atem be

rounded instead of truncated; the optional pair of constants give

the range as explained for gloating:item:desciiption. The use of

A instead of I in an {ntegern:item:descniption is allowed because of

the similarity to a §4xed:{tem:desciiption, where A stands for "arithmetic."

Fixed:specifier means one of these two expressions:

13. A nin S optionally:asdigned:nén

1k, A nln U optionally:signed:nsn

Fixed:item:des ciiption means one of the expressions in the following list:
15. g4ixed: specifien

16. g4ixed: specifien R

17. f4Axed: specifien constant ces constant

18. §4xed: specifien R constant cos constant

Again, n7n declares the number of bits required by the {fem, including

the sign bit if there is onej S declares a signed {tem; U declares an
unsigned (positive) {tem; nén declares the number of fractional bits in

the {tem; R declares rounding instead of truncating; the pair of constants
give the absolute value range as explained above. The constants may be
gLoating or integern or fixed. The rules about spaces permit a form such as
l....5 to be written., This may seem ambiguous, but the necessity for going
from lesser to greater values requires it to mean the same as if 1., ... 5

had been written. If the first nwmber in such an expression were zero, the
meaning would be ambiguous without some convention. Hence the convention is
adopted that if number,... is written and if nothing preceding forbids, it
will be considered as if numbet. ... had been written, whatever may follow the
fourth period. If nén, along with its optional sign, specifies a negative
value, it means that low order integer bits are missing from the Atem, The
abbreviation A used in this desciption means "arithmetic."

uals: specijien means one of these two expressions:

19. D nin S optional:optionally:signed:nén
20, D wnin U ontional:optionally:signed:ngn

Jual s Lten:descsiption means one of the following four expressions:

21. dual:specd fien

22, duakl:specifierr R

23. dual:specifdien duaksconstant ... duad:constant
ok, dual:svecifien 2 dual:constant ... dual:iconstant

L1

16 dMarch 1964 66 TM=-555/002/02

The abbreviation D specifies a dual:.item; n7n declares the number of bits

in each component of the 4{tem, including the sign bits if present; S de-
clares each component to be signed; U declares each component to be unsigned;
n8n declares the number of fractional bits in each component; R declares
rounding instead of truncating; and the optional pair of dual:constants
declare estimated minimum through maximum absolute value ranges for the

two components.,

Hollenith: item:descriiption means H n7n
and thansmission:code: {temsdescription means T nin
vhere n7n declares the number of bytes in the .item.

Status:item:description means the abbreviation S followed by an optional:
:n7n followed by a string of status:constants. If present, n7n declares
the number of bits to be allocated to the item. If the given number of
bits is k, the number of status:constants must not exceed 2°. If nin

is not given, k w'i be determined such that the number of Afatus:consitanis

is greater than and less than or equal to 2°. The string of Atfatus:
sconstants declares all the possible values of the Lfem.

Boolean:item:desciiption means the abbreviation B
L.42 Simple:items

Simple: item:declarnation means one of the expressions in the following list:

1. ITEM name Jitem:desciiption $
2. ITEM name Atem:desciiption P optionally:signed:constant §
3. ITEM name optionally:signed:constant 3§

The s4imple:item:declaration defines an ifem by naming it and describing it.

The second and third forms above also give it an initial value, the value

of the constant. In the second form, the P stands for "pre-set." The constant
mist be consistent with the {tem:descniption; that is, it must be of a type
which can be assigned to this Aftem in an assigmnent:siatement, In the third
form the description is implicitly that of the comstant. The third form, the
one without an explicit desc/dption, cannot be used to declare sftatus:.itens

or bcoLean:items; the use of @ or 1 or an octal:constant declares an

Lntegen: Lte,

Examples of sdmple:iten:declarations:
1. ITEM ALPHA F $
2. ITEM THETA F R @, ... 3.1416 3

L b2

16 lMarch 1964 67 TM-555/002/02

3. ITEM X2 I 6 S R 5 ... 23 P -18 $

L, ITEM X3 A15 U 5 P 97.168 $

5. ITEM X4 -97.168AT7 $

6. ITEM DX5 D 13 S -3 D(2k,24)...D(2kpdd,2uppp) $

L.43 Independent:overlays

Space for {tems is allocated in the computer in various ways devending
on the particular compiler. In general, space at least as large as the
declared size is set aside. There are restrictions, however. Any
restriction on the size of a Literal:.item usually is dictated by the
maximum size of n7n expected by the compiler. Besides this restriction,
most compilers will not handle {tems, other than Literal:.items, greater
in size than one machine word.

It is possible to specify that storage for s.4mple:.items, tables, and
avays be allocated in particular sequences. This would not be useful
except that it is also possible to specify that these sequences start
in the same machine word. Thus an {tem may have more than one name,
each name corresponding to an entirely different desciipfion of the
item, It is even possible for a Literal:item, for instance, to overlay
more than one Ltfem,

In all compilers (which compile this version of JOVIAL) presently in
existence, s{mplesitems are not packed. That means they occupy one or
more machine words without sharing any with other «tems. Some other
features of data storage are not quite so standardized. In one compiler
all tables begin with a control word containing the number of entrnies in
the table. In another compiler, only variable length tables have this
control word., In one compiler Literal:items have a similar control word;
in another compiler they do not. It is often necessary to be cognizant of
the presence or absence of control words and of the allocation algorithms
used by the compiler when specifying data:sequences.

Independent:data:sequence means one of the four expressions in the following
list:

1. Admple: Ltens name

2. Lable:name

3. arraysname

L, Aindependent:data: sequence , 4ndependent:data:sequence

L.43

16 March 1964 68 TM=-555/002/02

Avayiname is a synonym for array:item:name, (Table:name is not a
synonym for table:item:name.)

Independent:overlay: specification means one of the expressions in the
following list:

5 independent:datas sequence
6. Andependent:overlay: specification = Lndependent:data:sequence

Independent:overlay:declaration means one of the three expressions in
the following list:

Te OVERLAY <udependent:overlay: specification $
8. OVERLAY number = Jindependent:overlay:specification $
9. OVERLAY octal:constant = Lndependent:overlay:specification $

An independent:overlaysdeclaration may be used to arrange dimple:items,
tabteb, and aUays in sequence; to overlay these 4equenced on one another;
and to assign these overlays to specific machine locations. Within the
ave&tag:dacﬁaﬂatian,data structures separated by commas will be given
sequential locations in the order in which they are named and 4equences
separated by equal:s4gns will begin at the same location. If the overlay:
:declaration contains a number or an octal:constant the common origin of
the 4equences will be the location identified by the value of the consfant;
otherwise the common origin will be selected by the compiler not to conflict
with other data or program storage. Examples:

10. OVERLAY WORD'LIST = DUMMY, MESSAGE $
11, OVERLAY 1¢24 = UMPIRE $

The name of a data structure may appear no more than once in an overlay:
:declaration, but it may appear in more than one overkay:declaration if
logical inconsistencies are avoided., With most compilers the avoidance
of logical inconsistencies means that any structure named in more than
one overkay:declaration must immediately follow the primitive OVERLAY
in all overlawusdeclarations in which it appears, other than the first.

With some compilers, if a data structure derives itslocation, either
directly or indirectly, from an overlau:declaration containing a constant,
it must not be provided with initial values., With all present compilers,

2k July 196L 69 TM=555/002/02A

data structures named in an overlay:declaration must first be defined:
either pre-defined by COMPOOL, declared, or defined by mode.

4,5 Complex Data Structures

It is often necessary to specify more complex data structures than s4mple:
sitems. Tables and aays serve this need. An array is a one-(or more)
dimensional arrangement of {fems all having the same {tem:name. The
particular {{em out of the aay is designated by means of an Andex
having a number of components corresponding to the dimensionality of the
awvay, A table is basically a one-dimensional arrangement (or list) of
entrnies, the particular entry being designated by a one-component Lndex.
Each entny is a group of {tems, each having a unique ifem:name, For
example, ALPHA ($ 5 $) might be one of several {tems in entry 5 of a
particular table, or it might be the only {fem in entry 5, or it might be
element 5 of a one-dimensional attay. There are exceptions in the
structure of a table:entry., For instance, a sUuing:item, consisting of

a linear arrangement of components called beada, can only be part of a
table:entry, Thus a particular bead of a particular 8thing in a particular
entry of a tabfe would require the sthing:{tem:name and a two-component
index for complete identification. (Stiing is a synonym for stning:item),

4,51 Constant:Lists

It is sometimes desirable to specify initial values for all or part of an
avay or a table when it is declared. Such initial values are specified in
lists known as constant:Lists. A constant:List must correspond, in
dimensionality, to the declared structure for which it specifies initial
values., A one:dimensdional:constant:List is the primitive BEGIN followed by
a string of optionally:sdigned:constants followed by the primitive END.

A k:plus:sone:dimensional:constant:List is BEGIN followed by a string of
k:dimensional:constant: £ists followed by END. Below are three examples,
a one:sdimensionalsconstant: List, a Ltwo:dimensional:constant:List, and a
Lthreesdimensional:constant: List.,

l. BEG’IN "130 78l 35 . -16. ¢a 624. END

4,51

16 March 1964 70 TM=555/002/02

2. BEGIN BEGIN V(HI'OUTSIDE) V(HIGH) V(HI'INSIDE) END
BEGIN V(OUTSIDE) V(STRIKE) V(INSIDE) END
BEGIN V(LO'OUTSIDE) V(LOW) V(LO'INSIDE) END
END
3. BEGIN BEGIN BEGIN ¢ 111 ¢ END
BEGIN 1 ¢ @d¢@¢ 1 END
BEGIN 1 ¢ @@ 1 END
BEGIN 1 ¢ @@ 1 END
BEGIN 1 ¢@4¢ 1 END
BEGIN 1 ¢@4¢ 1 END
BEGIN ¢ 111 ¢ END
END
BEGIN BEGIN ¢ 111 ¢ END
BEGIN 1 111 1 END
BEGIN 1 1¢1 1 END
BEGIN 1 1¢1 1 END
BEGIN 1 1 @41 1 END
BEGIN 1 111 1 END
BEGIN ¢ 111 ¢ END
END END

At the present time the compilers are prepared to handle consfant:Lisits
of no more than three dimensions.

4,52 Auvays

In specifying an atnay it is necessary to state the number of dimensions
and the extent of each dimension. This is done by means of a dimension:
:fist, Dimension:List means a string of numberns, Away:declaration
means one of the expressions in the following list:

1. ARRAY name dimension:Zist Aitem:descrniption $
2. ARRAY name ddimension:€ist Aitem:descriiption $ constant:list

The name is the auvray:ifem:name, The number of numbers in the dimension:
:List is the number of dimensions of the attay. A one-dimensional artray

is a column vector., (Of course, the programmer may treat it as & row
vector if he wishes)., A two-dimensional attay is a matrix, a row of

column vectors. A three-dimensional aray is a set of matrices. And so
forth., The (first) number in the dimension:List declares the number of
elements in (each column of) the atay, The second number in the dimensdions:
:£is% declares the number of columns in a matrix or plane of the avay

,4552

16 March 196k 71 TM=555/002/02

(or the number of elements in a row). The third numbenr is the number of
planes in a volume. And so forth, The number of dimensions of atrays
is, of course, limited by what the compiler is prepared to handle. Some
compilers do not handle arays at all.

The {tem:description in an avuay:declaration applies to the whole avay,
to each element or component of the atray., Thus, one might declare an
wuay of boolean:items or a dual:array, where every element of the avtay
is a dual value with the same number of bits per component and the same
number of fractional bits per component.

If the array:declaration contains a constant:£ist it must be of the
dimensionality declared by the dimension:€ist. However, it need not
specifyy an initial value for every element. The values given are

used to set elements starting with the first element of the atray.

Thus, if we wished to specify only the first element of the first column
of the front matrix of a 3 by 3 by 3 avtay, the constant:£ist might

be as follows:

3. BEGIN BEGIN BEGIN S5 END END END

to specify the middle element of such an auay, it is necessary to
specify other elements leading to it, as follows:

L, BEGIN BEGIN BEGIN 1 END END
BEGIN BEGIN 2 END
BEGIN 35 END END END

The 1, 2, and 3 specify initial values for elements we didn't care about,
but we had to specify them in order to get a 5 initially into the center

of this 27-element aay. The 1 is the initial value of the upper left

hand corner of the front plane (see figure 4). While looking at the figure,
the reader should consider the order of indeximg into this attay. The
components of the {ndex used in referring to a$ aaysitem are in the same
order as the dimension numbers in the dimension:List., Thus, the entries
marked A, B, and C in figure 4 are indexed as follows (in JOVIAL, indexing

4,52

16 March 196k4 T2 TM=555/002/02

starts with ¢, not 1):

5. A: 2,1,0
6. B: ¢,2,0
Te c: ¢,1,2

8. 1
9. 2
10, 3
11, 5

.
.
.
.
.
.
.

It may appear that the index shown above
with the value 3 should be ¢#,1,1 instead
of 1,8,1, That would be true if the
bracketing order within a constant:list 2
matched the order of components in an
Andex and the order of nwmbers in a
dimensions£is£., It was felt desirable,
however, to match two conflicting
conventions. The order of components 1 B
in an 4ndex is in accordance with conven-
tional mathematical notation. It -is also
desirable to write the elements of a Awo:
sdimensionals constant: £is£ in the same
arrangement in which they would appear '
in a picture of the atrtay (compare the ‘ A
arrangement of 2, 3, and 5 in the example
with the arrangement in figure 4). 1In
order to do this it was necessary to
interchange the bracketing of rows and
columns in constant:Lists of two or more
dimensions. Thus, in such a constant:List
the innermost BEGINs and ENDs bracket elements of rows rather than of
columns. BEGINs and ENDs at the second level outward bracket rows of a
matrix or plane., BEGINs and ENDs at the third nesting level outward
bracket planes of a volume. And so forth. Nothing in the language
specifies the order in which the elements of an atiay are to be stored
in the computer., This is a compiler-dependent feature of the object
code,

jw
'\

Figure U,
A 3 by 3 by 3 Avaay

k.52

16 March 1964 73 TM=555/002/02

4,53 Type Matching for Pre-set Values

As with a single constant given as initial value of a s{mple:item,
each of the constants in a constant:£€ist must be of a type which can
be assigned to the associated 4teri, Furthermore, certain mixtures
of type are allowed, while others are not. The permissible type
mixtures of the constants given as initial values of Andexed:

:4{tens are shown in figure 5.

In f4ixed:constants given as initial values of .nteger: {ixed: or
tloating: items, the scale after the A is ignored, the number of
fraction bits to be utilized being picked up from the item:
:description, Therefore, there is really no need to use f4xed:
rcomstants in a constant:list,

Lxample:
1. ARRAY MIRX 3 L F $
BEGIN BEGIN 1 -1) @ END
BEGIN -1.5 2.3 1.7 # END
BEGIN @ @ 1.2 -1 END END
Item type Constant types

Integen, f4ixed, or fLoating Integer, gixed, gloating, or any
mixtures of these three types

Integen, g4ixed, or fLoating Octal

Dual Dual

Hollerith or trhansmission: Hollernith, oetakl, or transmission:
icode :code, but not mixed

Status Status

Boolean 3ooLean

Figure 5. Constant Types for Pre-setting Ites

16 March 1964 Th TM=-555/002/02

L,5h Tables

The structure of a fabfe is more complex than that of an array
although the possible number of dimensions of a table is more
limited. In the complex structure of a tabfe, variously described

parts of the tabfe have distinct names, These segaratel named
parts of the tabfe must be declared within the fa Ze:decgénaIAOn.

There are three kinds of table:declarations as follovs:

1. ondinany: table:declaration
2. degined:entry: table:declaration
3. Like:table:deckaration

There are subordinate decfarations which can be used only within table:
:declarations. These subordinate declarations will be explained in

sections 4.55 and 4,57 prior to putting them together into the three
kinds of Zable:declarations,

4,55 Orndinany:entrnies

Ondinanys tables itemsdeclaration means one of the two following expressions:

1. ITEM name ALitem:descrniption $
2. ITEM name Litem:sdescdiption $ onesdimensional:constant:fist

The permissible ifem:desctiptions are the same, and have the same meanings,
in samplesitensdeclarations and all other ifem:declarations. (Sections 4.4l
and 4,42), The orndinary:table:item:declaration declares, names, and
describes an ifem for every enthy of the table with which it is declared

(as explained below). In referring to a particular Afem in a particular
entriy the L{tem:name and a one-component {ndex are used as in the following
examples (indexing the entries of a table begins with zero):

3. ALPHA ($ ¢ 3)
L, BETA (3 T + 5 %)
5. MESSAGE ($ ALPHA ($ K $) * 2 %)

16 March 1964 75 TM-555/002/02

It may be that a particular {tem is not present in a particular enthy
of the tabfe, but is present in subsequent entries. For instance, an
overlay:declaration (as explained below) may be part of the table:
:declaration, The compiler has no way, in general, of knowing which
entries contain which {tems, since this is determined by usage rather
than declarations. In any case such information is ignored and indexing
is accomplished as if every entny contained every declared Ltem,

A table:.item:declaration containing a one:dimensional:constant:List
specifies initial values for the ifem in entries of the fable. The
first value is given to the {tem in entry §, the second value to the
Atem in entry 1, and so forth. No cognizance is taken that in actual
usage this Lfem might not exist in a particular entny. The number of
constants in the constant:List may be less than the number of entries
specified for the fable (section 4.56), but there must not be too many
constants for the number of entries. If there are not enough constants to
complete the initial assignments, no values are provided for the {fem in
the remaining entnies at the end of the table. The specific values, at
the start of execution, of {tems for which no initial values have been
provided depend on the particular compiler.

Subondinate:datas sequence means one of the following expressions:

6. ondinany: table: Ltem: name
7. subondinate:datazsequence , subordinate:data:sequence

Suborndinatesoverlay: specification means one of these two expressions:

8. subondinate:data: sequence]
9. subondinate:overlay: specification = subordinate:data:sequence

Subordinate :overlay:declaration means
10. OVERLAY suborndinate:overlay:specification $

Ondinarny: entrysdescription means one of the three following expressions:

11. ondinany:ables Ltem:declaration o
12, ondinany: entry:description ondinarny:entryideseription
13. ondinary:entry:deserndiption subordinate:overlay:declaration

k.55

16 March 1964 76 TM=555/002/02

In other words, an ondinary:entry:desciiption is a string of
ondinary:table: {tem:declarations and subordinate:overlay:
sdeclarations, The form is restricted in that all item:names
appearing in any overlay:declaration in the entry:description

must have been previously declared in Litem:declarations occurring
earlier in the same entry:description. An ordinary:entry:
sdescrdption names and describes all the {fems which comprise a
tablesentrny, A subordinate:overlay:declaration within the
entrny:description arranges {tems of the enthy -- items separated
by commas will be allocated consecutive storage space within the
enthy in the order in which they are named, except that packed
Atems may be rearranged for storage efficiency; sequences separated
by equals:signs will begin at the same location within the entny.
Note that a subordinate:overlay:declaration cannot specify an absolute
location as origin of the data Aequences,

A name may appear in more than one subordinate:overlay:deckaration,

but as with {ndependent:overlay:declarations, logical inconsistencies
must be avoided. Some compilers do not permit subordinate:overlay:
sdeclarations since the effect can be achieved by other means (sections
4.57 and 4,58).

4,56 Ondinary:tables

Table:size: specification means one of the two following expressions:

1. vV nln
2. R nln

A table:sdize:specification declares the size of a fable in terms of the
number of entnies in the table. The V means that the size of the
table is variable; that nin is the maximum number of entries in the
table; and that NENT (fabfe:name) is a numeric:variable. The R

means that the fabfe is of a rigid size with nln entrnies and that

NWENT (table:name) is a numeric:fornmula but not a variabfe. It is
dependent on the particular compiler whether the value of a variable
NENT (table:name) is zero, nln, or undefined prior to being set by an
assignment: statement or some other statement.

16 March 1964 T7

TM=-555/002/02

Basic:stucturne:specification means the Letfen P or the Letten S. It

is used to specify the basic structural pattern of the table, P declaring
parallel structure and S declaring serial structure. Parallel and

gerial structure can best be explained in terms of the sizes of a

table and its entnies. From the previous paragraph we have that

Serial Structure Parallel Structure
MN control word MN control word
1st half AB[g@] 1st half AB[¢]
2nd half AB[¢] 1st half AB[1]
xy([g] 1st half AB[2]
1st half AB[1] 1st half AB[3]
2nd half AB[1] 2nd half AB[¢@]
Xy([1] 2nd half AB[1]
1st half AB[2] 2nd half AB[2]
2nd half AB[2] 2nd half AB[3]
xy[2] xy(g]
1st half AB[3] Xy[1]
2nd half AB[3] xy[2]
xy(3] xy[3]

Example: Table MV has 2 {fems: AB and XY
and 4 entnies: ¢, 1, 2, and 3.
AB occupies 2 words.
XY occupies 1 word.

13 consecutive computer words are shown in
each illustration above.

Figure 6. Serial & Parallel Tabfe Structure

nin is the (maximum) number
of entries in the table.
Let nZn ve the number of
storage cells (computer
words) in an entry. 1In
serial tabfes there are

nln consecutive blocks of
storage, blocks being allo-
cated to entries in numeri-
cal order, and each block
consisting of the nin
consecutive words of the
entry. In parallel tables
there are n2n blocks of
nln storage cells, each
block containing one word
from each enthy of the
table. (See figures 6

and T.) In addition, each
table, regardless of its
basic structure, may con-
tain one or more control
words. The presence of
control words depends on
the particular compiler
and whether the fable is
variable or rigid in size.

The use of a basic:

s sthwuctune: specifdication
in a table:declaration
is completely optional.
In the absence of a
basic:structune:soecd jLcation,

whether the table has parallel

or serial structure depends
on the compiler. In tables
with variable length entries
(section 4.58), the basic
structure

16 March 1964 78 TM=-555/002/02

must be serial, either declared or normal for the particular compiler,

Packing:specification means the Letter N or the Letten M or the Letter D.
It is used to specify the packing of «fems within an entry of a table,

N stands for "no packing" which usually means that each Afem occcupies

its own computer word or words without sharing it (or them) with other
Atems. "No packing" does not preclude "overlaying." D stands for “"dense
packing" which may mean that {fems are packed together to utilize every
bit in the word and minimize space. The interpretation in many compilers
will relax "dense packing" somewhat. For instance, it is likely that

an {tem which will fit in one word will not be packed so as to be

Serial Structure
MN control word
. 2nd word 5th word | 8th word | 1lth word
%? 3rd word 6th word 9th word 12th word
XY 4th word Tth word 1¢th word 13th word
Entry ¢ Entry 1 Entrhy 2 Entry 3
Parallel Structure
MN control word
Enthy ¢ 2nd word 6th word 1¢th word
tntny 1 3rd word Tth word 11th word
Enthy 2 th word 8th word 12th word
Enthy 3 5th word 9th word 13th word

esccceveccscenece/\loesesocosvcovcoos Xy

This illustrates the same example as figure 6. The same
13 words are shown, but the blocks are drawn side by side.

Figure 7. Parallel and Serial Tabfe Structure

24 July 196k 79 TM-555/002/02A

divided between two words and it may be that every .{tem which will not
fit in one word will begin at the left end of a word. M stands for
"medium packing" which usually means that £{tems are packed but not so
closely that they share sub-register units. Sub-register units are
the parts of a computer word which can easily be referenced in

machine instructions: -- parts such as half words, addresses, bytes,
ete,

Ondinary: table:declaration means the following structure:

3. TABLE optional:name ZLable:sizesspecifdication
optional: basic: strueture: specigication
optional:packing: specification $
BEGIN ondinary:entry:description END

The table need not be named if there is no occasion to refer to it,
such as in an {nput:statement or an Lndependent:overlay:declaration.
The 4{ze:specification tells whether the fable has a variable or rigid
number of entiies and how many. The basic:sthucturne:specification,

if present, declares the table to be parallel or serial. The packing:
:specifleation, if present, declares medium or dense packing or none.
The entry:description declares, names, and describes all the Lfems

of the table and any overlaying among these {fems.

Example:

L, TABLE TB2 V 196 P N $
BEGIN ITEM ALF H 2 $
BEGIN 2H(PH) 2H(%*) 2H(U2) END
ITEM NUM I 12 U 64 ... ugos $
OVERLAY ALF = NUM $
END

4,57 Defined:entrnies

Degined:entrys itenmsdeclaration means the following expression:
1. ITEM name Jitem:descniption n3n ndn

optional:packing: specification $
optional:one:dimensionalsconstant: List

k.57

16 March 1964 80 TM=555/002/02

The elements of the above expression which are also included in the
ondinanystable:item:declaration (section 4.,55) serve the same purpose
here that they serve there. This declaration occurs only within a
table:deckaration (section 4.58) in which the number of words in an
entrhy is specified. In this declaration, n3n declares which word in
the enthy contains the {tem (or in which word the item begins). For
this purpose the words are numbered starting with @#. Thus, the words of
a b-word entry sre numbered @, 1, 2, and 3. The bit within the word in
which the {tem begins is specified by n4n., The bits are numbered from
the left starting with @#. The item:descriiption and the use of the
optional:onesdimensional:constant: L8t to set initial values have been
explained before. The packing:apecification may be used to provide
information which may be useful to the compiler. It does not direct
the packing of the Aifem, but describes the packing which results from
n3n, ndn, the Ltem:descidiption, and the situation of adjacent Lifems

in the entry.

Strning: item:declaration means the following expression:

2, STRING name ALtem:description n3n nén
optional:packing:specification nsn nén $
optlonal s two sdimensional sconstants List

The stning:item:declaration provides the means by which an {item can
be declared, having more than one occurrence per enthy of a table,
Each such occurrence of a Atning:item is called a bead., To refer
to a particular bead in a numeric:formula or a statement (beads
need not be numeric) the Ltem:name is used, followed by a two-
component {ndex as in the following example:

3. ALTITUDE ($ K-3 , 5 $)

The first component, K-3 in the above example, indicates which bead
within the enthy., The second component, 5 in the example, tells
which entry of the fable,

N3n and n4n, as in the defined:entry:item:declaration, tell in which
word in the entry and in which bit in the word the {tem (that is, the
first bead of the {tem) begins. The optional:packing:specification
describes rather than directs the packing. N5n declares the
frequency of occurrenceof the Atning:{item in the words of the entry,
That is, there are beads of the Atning in every nsnth word of the

.57

2L July 1964 81 TM=555/002/02A

entry (starting with word n3n of course). Nén declares the number of
beads in each word of the entry. Consider the following example:

L, STRING ZEUS I 12 U ¢ 1 2 3 $

The above example declares that the beads of ZEUS are 12-bit unsigned
integers, that the first bead starts in word @, bit 1 of the entny,
that there are beads in every second word of the entry, andthat there are
3 beads in each word of the enthiy which contains beads. HN4n (1 in this
example) tells in which bit of the word is the beginning of the first
bead in each word which contains beads. That is, not only does bead

§ begin in bit 1 of word @, but also bead 3 begins in bit 1 of word

2. Suppose that the example is embedded in a table declared to have

3 words perentry and that on this computer there are 48 bits per word.
Then tigure 8 may be considered to be a partial illustration of entry

L of the table.

A two:dimensional:constant:List, if present, declares initial values for some
of the beads of the stning. The first one:dimensional:constant:List provides
values for beads in entry @; the second one:dimensional:constant:List provides
values for enthy l; etc. Within each one:dimensional:constant:£€ist, the first
constant provides the initial value for bead @; the second constant provides
the value for bead 1; etc.

Defaned: entrhy:description means one of the following three expressions:

. defined: entny: Ltem:declaration
. strung:s Ltemsdeckarnation
. defined: entry:descrniption degined: entry:description

—~3 .\

In other words, a degdined:entry:descrniption is a string of Athing:Ltem:
sdeclarations and defined:enthy:item:declarnations, Notice that overlay:
:deckarnations are not permitted in a defined:entrny:description. They

are not needed since the position in the enthy of every Lfem is explicitly
declared, including any desired overlaying or partial overlaying.

4,58 Dejined:entrny:tables

Jessined: entays tablesdeclaration means the following expression:

1. TABLE optlonal:name table:sdize:specdpication
entioned s basic: structune s specisication nn $
BEGIN defdned: entry:descdption EID

The talle need not be named if there is no ocecasion to refer to it.
Tne s4ze:svecdiication indicates a variable or rigid nunmber of entries

h'58

16 Harch 1964 82 TM=555/002/02

and how many. The basic:structure:specification, if present, declares
parallel or serial fabfe structure. NZn declares the number of words
per enthy., The entry:description declares, names, and describes all the
{tems of the table and defines their positions within the entries.

Notice that nZn is now required, to state the size of an entry. Since the
strning: itemsdeclaration declares an unlimited number of beads, the size
of an entry can only be determined by this explicit means. However, nin
is really only a nominal or assumed enthy size. The compiler uses nin
(and, of course, nln, the number of ent/ies) to allocate space for the
Lable -- nZn blocks of nln words or nin bvlocks of nlZn words depending on
the basic structure. See, for an example, figure 7. Suppose the program
containing the tabfe shown in figure 8 has a reference to ZEUS ($6, 4 $).
By the structure of the fabfe there is no such bead. The compiler,
however, will use the tabfe structure to determine the beginning of
entry b and the ifem structure to determine the position of bead 6 with
respect to the beginning of entry 4., Hence the reference will be to a
bead of ZEUS in what would seem to be the middle word of entry 5.

Such a reference as we described in the last paragraph is permitted. A
table to which such references are made is considered to have variable
length entries, It is even permissible to declare a Atning:item or
table:item to begin in a word of the entry which, by nZn, doesn't exist.
That is, n3n may be equal to or greater than nZn. Again, the table
structure will be used to find the beginning of a referenced entry

and n3n will be used to find the Ltem,

For tables with variable length entnies the compiler takes no extra pains
beyond what has just been described. Therefore, it is up to the programmer
to be aware of the differences between his conception of the table and

the way the compiler treats it and to write his progham accordingly.

ZEUS ($¢,48) | ZEUS (81,43) | ZEUS ($2,L43)

m
l....§.....
=

ZEUS (33,43) | ZEUS (8L,43) | ZEUS ($5,43)

TABLE K 1¢ S 3 5 BEGIM STRING ZEUS I 12 U ¢ 1 2 3 ¢ LD

“irure 9. Eatnr b of a Table

24 July 196k 83 TM-555/002/02A

Among the things which must be considered:

2. The table must be of serial enthy structure. This
is so even if there is only one word per entry.
Consideration of figure T shows that for a serial
table, for all entries except the last, a reference
beyond the end of an entry spills over into the
next entry. For a parallel table, on the other
hand, a reference beyond the end of an entry is a
reference completely outside the block allocated to
the Zable.

3. In assigning preset values and in interpreting
indices, every declared item is considered to
be associated with every entry of the table regard-
less of conflicts due to overlays. For example,
you may know that there is no ALPHA in entry 7
because GAMMA ($ 6 $) actually occupies that space,
but the compiler doesn't know it. When referring to the
next ALPHA that does exist, it should be called ALPHA
($ 8 $) and not ALPHA ($ 7 $).

L, The programmer must provide for any extra incrementing
that may be necessary while indexing through a table
by means of a {Loop:statement. For instance, some
such coding may be required as below:

FOR Q = #, 1, NENT (XXX) -1 $

BEGIN
IF SIZE ($ Q $§) EQ 2 §
Q=Q+1 $
END
5. It is probably necessary that the nominal entry size,

n2n, be a divisor of each of the various actual entiy
sizes that the programmer has in mind for the particular
table. If each of these "actual" sizes is not a multiple
of nZn,there will be wasted space in the table or the
required programming adjustments will be impossible, or
both. Of course, one way of satisfying this requirement
is to use the value 1 for nln.

16 larch 1964 8L TM=555/002/02

4,59 Like:tables

Likestable:declaration means the following expression:

1. TABLE name optlonal:tablessdize:specification
optionals basic: stueture: specification
optional s packing: specification L $

The L just before the doflar:sign declares this to be a table with
an entry structure "like" a previously declared and named fable

(or a pre-defined fable), the "pattern" <table. The name of the
Like:table is formed by suffixing a numeral or Letier to the

name of the pattern tabfe. The items of the Like:table are then
automatically named with the {tem:names, similarly suffixed, of the
pattern table, The composition and structure of the entries of

the &ike:table are generated by the declarations describing the
enties of the pattern fable, with the difference, of course, of

the mumeral or Letten attached to each {tem:name., Table:size, basic:
sstructurne, and packing can be specified for the Like:table, but if
this information is omitted, the specifdications of the pattern table
are used for these characteristics,

h,6 Files

A file:declaration is used to name and describe a f{4L£e on some hardware
device used for input and/or output and to declare the status:constants
to be used in designating the various statuses of the f{4fe. A few
preliminary definitions are reguired.

File: stwctune: specification means one of the following expressions:

1. H nin VvV nipn
2. B nin VvV nifn
3. H nn R nlgn
L, B n9n R nlgn

Status: 454 means a string of one or more Astatus:constants.

File:declaration means the following expression:

16 March 196k 85 TM=555/002/02

5. FILE {4ile:name filesstructurne:specification
Atatus s R8st device:name $

The {4le:name is a name chosen by the programmer and hereby declared

as a 4ilesname, Hollerith:file structure, declared by an H, means that
the #1ecornds of the §4ile are composed of characters or bytes encoded in
whatever manner is normal for the storing of alpha-numeric information
on the device., Input or output involving hollenith:4iles and hollerith:
or thansmission:codesvarniables is permissible; any necessary code
conversions will be included automatically. If the variables are not
hoflenith or trhansmissionscode, however, the effect of input/output

with a hollenith:§4ile is undefined. Input/output with a binary:{§ile,
declared by a B, and any kind of variable is accomplished without any
code conversion. The number n9n declares the estimated maximum number
of necords in the §ile. The abbreviation V declares a variable fecord
size; the abbreviation R declares a rigid f1ecord size; and nlfn declares
the (estimated maximum) number of bits in a 1ecord (for a binary:file)
or bytes in a necond (for a hollernith:gile).

The verious possible statuses of a {§.fe, such as "busy," "ready," and
"error," are associated with numeric values by the compiler. The
programmer declares a L4t of sfatus:constants to be defined, respectively,
as these values, starting at zero and going up by ones. These sfatus:
iconstants are then meaningful only in context with the fife:name, which
functions as a status:item:name, but only as specified for {ilesnames

in boolean: formulas and in switch:declarations., There must be at least
one status:constant in this £is8£, but there need not be as many as there
are meaningful values.

The device:name must be in the form of a JOVIAL name, but the programmer
does not choose it., Such names are permanently assigned to the various
input/output devices available. The use of one of these names as a
device:name does not prejudice its use in some other way, such as an
Ltem: name or statement:name, but it would be incompatible with definition
of the name by means of a define:directive.

One should consult the documentation for a particular compiler for the

list of dev{ce:names and the statuses which apply to the various input/
output devices.,

4.6

16 March 1964 86

Example of a file:declaration:

6. FILE SNAP H 2¢¢ v 12¢
V(READY) V(BUSY) V(ERROR)
TAPES $

4.6

V(EOF)

TM-555/002/02

16 March 1964 87 TM=555/002/02

Chapter 5. Processding:declarations

5.1 Introduction

Unless otherwise directed (section 6.2) every progham begins execution
with the first statement of what may be called the main:program,
Statement execution then proceeds sequentially except for iterationms

of Loop:sitatements and jumps due to go:to:statements, conditional:
Btatements, and alternative:statements. In (almost) every program,
however, there are groupings of siatements or other elements of the
progham to which execution control cannot or must not pass sequentially,
but only through invocation of the group or element by name., Such
groups or elements are defined as processing:declarations.

A statement or group of statements which is blocked from sequential
access only because of the presence of go:to:statements, conditional:
:statements, or alternative:statements is not thereby a processing:
sdeclaration,

The following list enumerates all the processing:declarations:

1. program: declaration
2. switch:declaration

3. close:declaration

L, proceduresdeclaration
5. functionsdeclaration

5.2 Program:declarations

Programsdeclaration means one of the following expressions:

1. ' PROGRAM name $
2. ' PROGRAM name number $
3. ' PROGRAM name octal:constant $

Notice that the primitive introducing the above expressions is spelled
with a leading puime. A program:declaration serves to establish
communication between the present program and another proghram, named

in the declaration and compiled independently. The {ntegen: or octal:
sconstant declares the machine address of the beginning compiled location

5.2

16 March 1964 88 TM=555/002/02

of the named ptogham, The presence or absence of the constant
depends on the compiler and the operating system in which it is
embedded. If the system supplies the machine location and if it

is not desired or not permitted to override this given location,
the constant is omitted. When transfer to the named program is
specified by means of a go:fo:statement, the compiler assumes that
the named progham is e subroutine which will return control to the
Atatement following the go:to:statement; and that the values of any
Loopsvariables which are active at execution of the go:ifo:statement
will be undisturbed upon return from the subroutine.

A program:declarnation is e processing:declaration since it names a
group of statements to which control can be transferred. However, it
shares with data:declarations the property of not directly generating
any machine language coding; it can occur among the sfatements of a
progham without affecting the order of execution.

5.3 Switches

A switch:declaration includes a list of sequence:designatons, but
proghamsname is not permitted among them. These 4equence:designatons
specify points to which execution control may be transferred, depending
on the value of an Litem or an {ndex. Switch:declaration is therefore
divided into the following categories: '

1. Aindex: switch:declaration
2. Atems switeh:declaration

A switeh:declaration causes the generation of machine language instructions
which are to be executed only when the swifch:name is invoked by a go:fo:
:statement or another switfch, Therefore, a switch:declaration should occur
only in a position, relative to sfatements, such that ordinary sequential
execution cannot reech it; for example, in the positions indicated below:

3.

L N 3

STOP $
switehsdeclaration
XYZ =5 $

GOTO Atatement:name $
switch:declaration

5.3

16 March 1964 89 TM=555/002/02

If, in some system, the 4fop:Atatement shown above dashes any hope of
continuing, then the positions shown for switch:declarations are all
right. If, on the other hand, it is possible to continue in sequence
after the stop, then the first switch:declaration in the example should
not be in such a position. gome versions of the compiler, however,
always prevent "falling into" a switch,

A switch:declaration within a Loop:statement must not be invoked by a
go:to:statement nor via another switch:declaration outside that Loop:
:statement, For more details see section 3.76 on processing:declarations
within Loop:statements.

5.31 TIndex:switches

Index:switch:List means one of the following expressions:

1. sequence:designaton

2. s dequencesdesdignator

3. sequence :designator

L, Andexsswitchsist , 4ndexsswiteh:fist

Progrham:names must not be among the sequence:designatorns in a switch:
s List.

Index:switch:declaration means:
5. SWITCH name = (index:swifch:£ist) $

The name in the above expression is thereby declared to be the switch:
tname, Following is an example of an {ndex:switch:declaration:

6. SWITCH TOGGLE = (BL97, , LOOP, EMIT (I,J),) $

To invoke an {ndex:switch, the switch:name with a one-component .ndex
is the sequence:designator in a go:to:statement or another sudtch, For
example:

7. GOTO TOGGLE ($ ¢ $) $
8. SWITCH CHOOSE = (, , ST#l ($ ALPHA $), TOGGLE ($k$)) $

\J1
.

(O8]
l.—-‘

16 March 1964 90 TM=555/002/02

The 4ndex in a reference to an {ndex:switch must be within the range
indicated by the swifch:&is% in the declaration., The index value
points out the required 4equence:designator according to its position
in the list, starting with zero. Commas without corresponding
sequence:designatons indicate values of the {ndex for which no
transfer of control takes place. Thus, GOTO TOGGLE ($ ¢ $) $ effects
a transfer to BLOT7. If the reference to TOGGLE ($ K $) is activated;
for K = 2 control is transferred to LOOP; for K = 3 control is trans-
ferred via suifch EMIT -- where EMIT is an {tem:swifch dependent on
values of a stning:item or two-dimensional atiay, in this case bead or
enthy ($ I, J $); for K = 1 or 4 control is not transferred, but is
returned to the Aiatement following the invoking go:to:btatemeni; and
K must not be more than b,

5.32 Item:switches

Itemsswiteh: £i8L means one of the two following expressions:

1. constant = sequence:designatorn
2, Atem: switchs€ist , itemsswitch:List

Program: names must not be among the sequence:designators in this kind
of switchslist, either.

Ltem: switeh:declaration means one of the following expressions:

3. SWITCH name (Afemsname)
L. SWITCH name (gile:name)

(itemsswitch:List) $
(itemsswiteh:list) $

The name following the primitive, SWITCH, is the switch:name. The

Atem: switch: €481 consists of constants paired with sequence:
:designatons. The constants are possible values of the Ltem

named in the declaration. When the Awitch is invoked, if the value

of the {tem matches one of the constants,execution control is trans-
ferred in accordance with the correspondlng sequence:designator, If the
{tem value doesn't match any of the constants, execution continues with
the statement following the invoking go:fto:statement.

Example of an {fem:sudtch:declaration:
5. SWITCH WHICH (BETA) = (3H(ARY) = ST34, 3H(@L9) = FINIS($A/23),

38() = sg1, 3H(ABC) = sp2, 3H(''') = EXIT, 3H(===) = 5f1,
3u(.%.) = ESSO(A,B,C), O(TTTTTT) = STPL, 3H(XXX) = PCR'SORT) $

1
.

(8]
n

oh July 1964 91 TM-555/002/02A

If a §«€e is named in the declaration, the constants are status:
sconstants from the file:declaration representing conditions of the
§<Le. If the switch:declaration names a f{ife or a simple:item,

any reference to the Awditfch omits an index. If the switch:declaration
names an {ndexed:{item, reference to the 4witch includes an Lndex

(of the appropriate number of components) to select the particular
bead or entry of the item to be compared with the constants, For
example:

6. GOTO WHICH (J, K, L, M) $

This go:Zo:statement implies that BETA (the {tem named in the declaration
for WHICH) is a four-dimensional awviay.

S.4 Closes

Close:declaration means the following expression:

1. CLOSE name $ BEGIN statement:List END

Close:declarations, as well as pweedure: and function:declarations,
provide the means for setting up groups of stfatements as subroutines

to be called upon or invoked from various points in a progham. A close:
sdeckaration may invoke procedures or gunctions or other close:declarations,
but there must be no recursive calls. That is, no subroutine may call
itself nor any other subroutine which in turn calls it, either directly

or indirectly. The name in the above decfaration becomes the close:

‘name.,

A close:declaration sets up the statement forming its latter part as a
closed subroutine without varameters. As with a swifch:declaration, a
close:declarnation should not be placed in such a position among the

siaterents of a proaram that the execution sequence can "fall into" it.

The processing specified by a close:declaration is executed when the
closeiname is invoked by a go:fo:statement, either directly or via a
suwiteh, Normally, after execution of a close:declaration, control

16 March 196L 92 1M-555/002/02

returns to the s{atement following the invoking go:fo:sfatement, It is
permissible, however, for there to be a go:fo:slatement, within the close:
:declaration, which jumps to an entirely independent p01nt in the progham.

A close:declaration within a Loop:statement must not be called by a
go:to:statement (nor via a switch:declaration) outside that Loop:
:statement. A close:declaration outside the Loop:statement should be
invoked from within the Loop:statement only if the close:declaration
will not return control to the Loop:statement. See section 3.76 on
processing :declarations within Loop:statements for more details.

5.5 Procedures

A procedure:declaration sets up a closed subroutine which may have
Anput:parametens or output:parameters or both., A procedure:declaration

is independent of outside Loop:siatements; it may be invoked from within
any Loop:statement in the main:progham or in other processdng:declarations
without deactivating the Loop:variables., On the other hand, the outside
Loop:variables are not defined in the procedure:declaration.

Some preliminary definitions are needed.

Declaration: L4t means one of the following expressions:

1. data:declaration
2. pro gham: declaration
3. declaration: List declanations List

Forumal s input: parameter: £is4 means one of the expressions in the following
list:

L, sdmple: Ltem: name

De auay: name

6. table: name

Te closezname

8. gorumal : inputs parnameter: List , forumal: Lnput: parametensList

liote that a close:name in a gfoumals {nput: parameter:£ist is followed by
a period. 1In fact, it is the presence of the perndiod in a goamal:input:
sparametens£ist that defines the preceeding name as a close:name.

Forumal : output: parameten: £ist means one of the expressions in the following
list:

2k July 196k 93 TM-555/002/02A

9. simple: {Ltems name

10, aray: name

11. table: name

12, Statement:name

13. gormal:output: parameten: List , gformal:outputs parameten: List

A statement:name in a formal:output:parameter:fist must be followed by
a perndiod; it is the presence of the period that defines it as a statement:
fhame,

Procedure: heading means one of the following three expressions:

1L, PROC name $ optional:declaration:list

15. PROC name (optional:formal:input:parametern:list) $
optional:declaration: List

16. PROC name (optional:foamal:input: parameten:List =

goumal soutput: parameten:€ist) $ optional:declaration:list
Procedure: body means
17. BEGIN siatement:£ist END
Procedure:declaration means
18. procedune:heading procedure: body

The statement:List of a procedure:body is restricted in that it must not
contain any procedure:declarations nor function:declarations. Thus,
procedure:declarations cannot be nested, although it is permissible for a
procedure:decfaration to contain procedure:call:statements or function:
:calls., There must not be any recursive calls, however, That is, a
procedure must not call itself nor any close, procedure, or function
which calls it in turn, either directly or indirectly.

If the procedure:heading contains formal:parameters other than close:names and
statement:names, they must be declared in the procedure:declaration before
they are referenced in Atatements.

The name following PROC becomes the procedure:name, A procedure:declaration
sets up a closed subroutine (or procedure) which is invoked by a procedunre:
:call:statement. Normally, when execution of the statement:{ist is '
completed or a fetwin:statement is executed, control returns to the
statenent which follows the invoking procedure:call:statement, If there

is a go:to:statement or suitch executed, vhich references a statement:

‘,'5

16 iarch 196k ol TM=-555/002/02

sname declared in the fo/mal:output:parameten:List, control returns
to the statement labelled with the corresponding name in the actual:
soutout: parametens List. Therefore, output:parametern:statement: names
are called alternate exits. Under these circumstances, as control
passes from the procedwte, actual:output:parameters corresponding
to sdmplesiten:names in the formal:output:parameten:fist are assigned
the values calculated by the procedwre, It is possible, however, for
the procedure to contain a go:fo:statement or switch which references
a Atatement:name in the main:program, If control passes to that
main: program Atatement through execution of such a go:to:statement

or swifch, then the final assignment process is bypassed and the
actuak :output: parametens corresponding to the simplesitem: names

among the foumal:output:paraneters are not changed. It is also possible
that Loopsvarniables in the main:program which were active at the time
of calling the procedure, will not have their correct values. See
section 3.55 for more details on the usage of nput:paramefers and
output: parametens .

5.6 Function:declarations

A functionsdeclaration is very similar to a procedure:decfaration; so
much so in fact that the same primitive, PROC, is used to introduce
both.

Function:heading means one of the following expressions:

1. PROC name $ optional:declaration:list
2. PROC name (optional:formal:input:parameten:fist) §
optional:declaration: List

Function:declaration means
3. function: heading procedwre: body

A function:declaration is distinguished from a procedure:declaration by
the presence, in a function:declaration, of a Admple: item:deckaration
declaring an {tem with the same name as the function:declaration, Tt is
this {tem with the matching name that is to carry the value of the
junction. This {tem is to be treated, within the function:declaration,
as the sole owfput:parameter although the function:declaration does not
provide for a foumal:output:parametest: LisLt,

506

24 July 196k 95 TM-555/002/02A
(Page 96 blank)

The type of the .tei which acts as the output:parameter determines the
type of foumuka represented by a gfunction:call, The discussion in section

3.55 concerning {nput:parameters apolies to function:declarations and
corresponding function:calls.

Function:declarations may contain prwcedure:call:statements or function:
:calls, but not recursively. Function:declarations must not contain
function:declarations nor prwocedure:declarations. A function:declaration,
Just as a procedure:declaration, is independent of outside Loop:
sstatements.

If the fumetion:heading contains fo/mal:input:parameters other than close:

thames, they must be declared in the function:declaration before they are
referenced in statements.

5.6

24 July 1964 97 TM-555/002/02A

Chapter 6. Programs

6.1 Other Programs

In section 5.2 we discussed the means whereby communication can be
established between the present ptogham and other programs compiled
independently. Assumptions are made about the characteristics of the
"other" programs, but there is no universal means for informing the
compiler that the "present" progham is to be compiled in a manner to
make it a progham of this "other" sort. For some compilers there may

be compiler-dependent declarations or directives for accomplishing
such a result.

If the compiler recognizes that this progham is of this other sort, an indepen-
dently compiled subroutine, it will most likely treat the stop:statement as an
indication to return control to the external calling program.

6.2 The Present Program

The progham meens one of these two expressions:

1. START &tatement:&ist TERM $
2. START Atatement:List TERM statement:name $

In other words the program is a string of astatements, declarations,

and directives (see statement:List section 3.6) enclosed in the brackets,
START and TERM, and followed by a doflar:sign or a statement:name and a
dollan:sign.

If there is no &tatement:name following TERM, execution of the object
program will begin with the first statement of the main:program, Other-
wise, the name must be that of a sfatement of the main:program and execution
will begin with that named:statement.

6.3 Directives

We have already discussed the define:directive (section 2.8) which makes
it possible to direct the compiler to treat a name as an expression of
one or more symbofs, There is another directive, the mode:directive,
which directs the compiler to change the mode for definition of otherwise
undefined namesd, This is discussed in the next section.

6.3

16 March 1964 98 TM=555/002/02

6.4 Mode:dinectives

Mode:dinective means one of these two expressions:

1. MODE 4item:description §$
2. MODE {item:descrniption P optionally:signed:constant $

Each compiler assumes a normal mode for the definition of undeclared
or otherwise undefined simple:ifem:names., The presence of a mode:
sdinective causes the compiler to change the current mode to be in
accordance with the {tem:description. If a pre-set value is also
specified, all subsequent mode-defined {{ems will be given this value
initially.

The effect of a mode:directive begins at the point where it occurs
among the statements and declarations of the pwgham and lasts until
the next mode:directive or the end of the program (TERM) is encountered.
The new mode is established and persists irrespective of whether the
mode:sdirective occurs in the main:progham or a procedure: or
gunction:declaration.

6.5 Scope of Definition of Names

There are over twelve million names available to JOVIAL programmers if

we consider only those with no more than six fetfens and numerals.
Nevertheless, programmers seem to concentrate on a very few out of these
millions, The designers of JOVIAL have catered to this tendency by
providing for duplication of names in accordance with the criteria explained
below.

Loop:variables are not names; yet the scope of their definitions is of
critical importance. This is explained in detail in sections 3.75, 3.76,
gnd 3.77; -In connection with Loop:variables, "defined" means the same as
active,

In status:constants the names within parentheses have no connection with
names$ used elsewhere in the programi. There need be no concern about
duplication except that there must be no duplication among the sfatus:
tconsfants associated with any particular status:item or f§ile.

6.5

16 March 1964 99 TM-555/002/02

Following a define:directive, any occurrence of the name thereby defined
will be effectively replaced by its definition, with these exceptions =--
the name may be redefined by a new define:directive; there will be no
replacement where the name occurs as part of a siatus:constant, Literal:
sconstant, or comment; the name will be replaced where it appears within
dinect:assigns but not elsewhere in direct:code.

Let us now consider the names in the program after all effective
replacements in accordance with define:directives. The namesd fall into
three categories as follows:

1. device:names (used only in §4ile:declarations)
2. statement:names, programsnames, closesnames, sudltch:names
3. item:names, table:names, file:names, procedure:names, function:names

A name used in one of the above three categories may duplicate a name
in one or both of the other categories without conflict or ambiguity.

There may even be duplication within a category if the elements so named
have non-overlapping scope. "Scope" has reference to the setting off of
parts of the proghram in procedure:declarations and function:declarations.
In general, a name which is defined in a particular way just within a
procedure: or function:declaration is said to be "local" to that procedunre:
or function:declaration., All of the program which is not part of a
procedwie: or 4function:declaration is the main:program, A name which

is predefined or defined within the main:progham is said to be "global."

Device:naies are all predefined and there is no way to define them within
the program. Therefore, device:names are always global,

All types of names in the above three categories may be predefined (by
COMPOOL or otherwise). All names of categories 2 and 3 may be explicitly
defined -- statement:names by being properly prefixed to sfatenents or
clauses; the others by declarations; and statement:names and close:nanes,
locally, by appearing as f{ounal:parametens.

Predefined names are global., Names explicitly defined in the main:progran
are global, If an explicit definition in the main:program conflicts with
a predefinition the oredefinition is nullified. Conflicting global
definitions in the main:prograii are not allowed. MAanes explicitly defined
within a procedure: or junction:decfaration are local to that particular
procedure: or function:declaration. This includes all goumal:parametests.

(@2
.
\J1

24 July 1964 100 TM=555/002/02A

Conflicting local definitions within a particular procedure: or function:
tdeclaration are not allowed. A name, local to a given procedwre:declaration
must not be used as both a gormal:input:parameter and s 60nma£:output:pammmetén.
A procedure: or function:name is both global and local to the procedure: or
function:declaration which it names, One seeming conflict in naming

is not only permitted but required -- a junction:declaration must contain

a sdmplesitem:declaration duplicating the function:name,

The scope of a local name is the procedure: or function:declaration

in which it is defined. The scope of a global name is the main:
:program and all procedure: and function:declarations which do not

have local definitions of the same name in the same category. Consider
figure 9 for example. As device:names, T12 and T1l3 are predefined

and global; their scope is the whole program, Assume that the other
definitions are made explicitly as shown in the main:program or
procedunes. Then, with respect to figure 9A, T12 is:

1. as a statement:name, global; and its scope is the
main: progham and procedure P2,

2. as a tablesname, global; and its scope is the
madn: progham and procedure Pl,

3. as a close:name, local to procedure Pl,

L, as an {tem:name, local to procedure P2,

With respect to figure 9B, T13 is:

5. as a Awditchiname, global; and its scope is only the main:progham.
6. as a pwceduresname, both global and local to procedure
T1l3; its scope is the entire program,
Te as a Astatement:name, local to procedure T13,
8. as a program:name, local to procedure P3,

Reference to any defined name, as in a go:to:statement, an assignment:
:statement, or a procedwre:call:statement, may be made only from within
its scope.

Programsnames, Ateminames, table:names, and 4£Le:names which are to be
defined by declaration must be declared before they are used in their
respective scopes.

N
.
\

16 March 1964 101 TM-555/002/02
(Page 102 blank)

Definition by mode is possible only at points in the program for which
there is no other definition, for the particular name, in category 3.
Thus, any name which is predefined in category 3 cannot be redefined
by mode, Otherwise, a name may be defined by mode as a global Aample:
s{teminame only if there is no global declaration for that name in
category 3. A name may be defined by mode as a local Admple:.item:name
only if there is no category 3 declaration for that name in the same
procedure: or function:declaration and no prior global category 3
definition for that name (either by mode or by declaration).

A, START Main: program
T12 (device:name)
T12 (statement:name)
T12 (table:name)

PROC P1
T12 (close:name)
PROC P2
T12 (4tem:name)
TERM $
B. START Mains program

T13 (device:name)
T13 (switch: name) '

PROC T13 (proceduwre:name)
T13 (statement:name)

PROC P3
T13 (program:name)

TERM $

Figure 9. Scope

24k July 1964 103 TM-555/002/02A

Index and Glossary

Three kinds of words are indexed below: English or programmer's

Jargon, metalanguage words and phrases, and JOVIAL primitives. Two
kinds of references are given: numbers of sections where the word

or phrase is used and numbers of sections where it is defined. Defining
section numbers are typed in script.* For example, see the entry for
abbreviation below., The term is defined in section 2.5; it is used

in sections 2.4, 2.5, 2.7, 4.41, and 4.,6. For the main index listing

of metalanguage words and phrases, all references are indexed. For
English words or Jargon and for subordinate listings of metalanguage
words and phrases, usually only defining references are indexed. For
pumitives all references are indexed. Since these words are puimitives
there can be no definitionms.,

Many terms are defined partially or completely in this index (glossary).
Such definitions are intended as reminders for people who are already
familiar with the language. Others should consult the defining section
to avoid overlooking important exceptions and qualifying remarks. It
is also necessary to be familiar with the rules concerning the use of
4paces as explained in section 2.2. Defining expressions or remarks
are indented under the word or phrase to which they apply. Expressions
with the same level of indentation are alternate definitions or different
ways of saying the same thing. In some cases there are second, or even
third, levels of indentation to define the definitions. Lines of the
index are numbered at the left except that a line which is merely a
continuation of the previous line is not numbered.

1. abbreviation 2.4 2,5 2.7 4,h1 L4.6
2. ABS 2.5 3.33 " 3.3k
3. accumulator 3.71
L, actual:input:parameten 3.55
5. auuy:name 4.43
6. close:name

Te gormula

8. table: name

9. actual:input:parametensist 1.2 3.31 3.55

10, actual:input: parameten

11, actual:input:parameter , actual:input:parametensiiszt

12, actual:outputs parrametet 3.55
13. auviayiname

14, Atatement:nwie .

15. Ztable:name

16. vaiable

;hxn
ol

* Defining section numbers are also underlined

24k July 1964 10L TM=-555/002/02A

1.
2.
3.

hl
5.
6.

8.
9.
10.
11.
12,
13.

13.
1L,
15!
16.
17.
18,
19.

20,
21,
22,
230
2k,
25,
26.
2T.
28.
29.
30.
31.
32.
33.
3k,

actual : output: parametens List 1.2 3,55
actual:output: parameter
actual:output: parameter , actual:output:
: parameten s L8t
actual : parameter 3.31 3.55
actual : input: parameten
actual: output: parameten
actual: parameten: forumula
gomula in actual:inputs parameternsList
actual : parameters List 1.2
actual s inputs parameten:s List
actual:output: parameten s £is81
actual: partameten: name
Any of the following names when occurring in
an actuakl:parameten:fist. In the reference
in section 3.55 {tem:name is obviously not
included:
avay: name
closesname
Ltem:name
statement: name
Zable:name
actual : parameten: table
a {able, the name of which occurs in an
actual: parametens List
actual: parameter: vaniable
variable in actual: parameten:fist
ALL 2
alternate exit 3
output: parameten: statement: name
statement: name in output: parametesr:List
alternative
on:if:clause independent:statement
statement:name . alternative
alternative: List
ig:edithensclause Andependent:statement alternative
alternatives st alternative
alternative: statement 3.7 3,73
alternative:List END
AND 2.5

55

5.1

3.36

24 July 1964 105 TM=555/002/02A

1. auithmetic:operaton 2.b 3,33 3.34 3.36
2. +
30 -
u. *
5. /
60 **
T. ARRAY 2.5 L.52 4,53
8. awvay 3.1 3.22 3.33 3.56 L.,Mu43 4,5 4,51
L.,52 L,5k 5,31 5.32
9. collection of data
declared by an auay:
sdeclaration
10. essentially equivalent
to avay:item, but
aviay has the conno-
tation of the group
of data
11. avay:declaration 3.21 4,52

12, ARRAY name dimensionsfist
iten:deseniption $

13. ARRAY name dimension:fist
item:deseniption $ constant:{ist

13. specification of a one or more
dimensional, rectangular array
of similar data values
14, avay:item 3.33 L.5
15. collection of data declared
by an avay:declaration
16. essentially equivalent to avuay,
but arnay:item has the conno-
tation of a member of the group

n

17. auay: item:declanation b.Y
18, avuy:declaration 4.52
19. array:Ltem: name L.43 4,52
20. auvay:name 4.43
21, nane following ARRAY in an
arvay:declaration

22, avay:name 3.55 3.56 4.43 5.5
23. amray:item:name 4.52
2k, name following ARRAY in an

avay: declaration

24 July 1964 106

1.
2.

Te
8.
9.
10,
11.
12.

13.

1k,
15.

16.
17.
13,
19.
20,

ASSIGN
a.augnmmtmwement 3.1 3.2k 3.5 3,51

3.71 3.73
variable = gormula $
Statement specifying
that the value of a
variable be changed
to the current value
of a fonula, The
variable and formula
must be of compatible
data types.
basic:strwucture
property of a tablfe being
parallel or serial. Serial
means the words of an entry
occupy & contiguous block.
Parallel means the words of
an enthy are similarly
placed in separate blocks.
basic:stweturnesspecification
P for parallel
S for serial
part of a table:declaration
bead L,5 4,57
a particular occurrence of a s{iing:item,
specified by a two-component {ndex, the
first component indicating which bead
within the entry, the second component
indicating which entry of the fable.

BEGIN 2.5 2.7 3.4 3.6
L,51 4,52 4,53
binany: gile
§ile, declared with B following the f§ife:
fname, in which data are represented with
the same bit patterns that are used in the
internal memory of the computer
BIT
bit
binary digit
@ or 1
basic unit of information

TM-555/002/02A

LN
.

(2l
o

L.58

2.5

W
.
1\ W

4,58

5.31

3-2h

k.59

ok July 196k 107 TM=555/002/02A

1.
2.
3.

L.
Se

6.

T.
80
9.
10,
ll.
12,
13.
1k,
15.

16.
17.

18,
19.

20,
21,
22,
23.
24,
25,
26.
270
28,
29.
30.
31.
32.
33.
3k,
35.
36.
37.
38.
39.

blank
space
the JOVIAL character represented
with no ink on the paper
booLean 2,61 3.2
pertaining to the algebra of truth
values
having one of two possible values,
"true" or "false," represented by
1l and # respectively.
boolean:constant
¢

1
boolLean: jormula 3.35 3,36 3.51 3.72 3.7T3
boolean:constant
boolean: function
booLean:variable
relational proposition v
combination of boolean:forvmlas with
parentheses and boolean:operatons
boolean: unction
invocation of a function:declaration
with a boofean output value.
boolean:.item
Atem specified by declaration in which
B follows the Ltem:name
boolean: item:description
B
booLean:operaton
AND
NOT
OR
booLean:variable 2.61 3.27 3.36
boolean:item
oDD (Loop:variable)
ODD (named:numeric:variable)
bracket 2.bh 3.33 3.3
BEGIN END
DIRECT JOVIAL
IFEITH END
START TERM

Can)

R
- XA
-, e e

3.35

3.23

4,42

3.51

3.51

3.36

4,52

W Lo
o

w LN
(<)Y —

6.2

24 July 1964

1.
2,

L,
5
6.
Te
8.

10.
11.
12,
13.
1k,
15.
16.
170
18.
19.
20.

21,
22,

23.
2k,
25.
26.
27,

28,
2.

30.
31.
32,
33.
- 3k,
350

108

BYTE
byte
computer representation of one character
of a hollenith or thansmission:code value
CHAR
characteristic
integral part of a logarithm
exrad, by analogy with logarithms
clause 3.72
gor:clause
complete: forn:clause
Ancomplete: fornsclause
if:clause
i§:eithensclause
on:if:clause
CLOSE
close
close:declanation
da&e:decmmn 3.53 305)‘
CLOSE name $ {independent:statement
a subroutine without parameters,

sensitive to the scope of definition
of gor:variables

3.75 3.T6

close: name 3.55 3.75 3.76 k4.1 5,4 5,5
the name in a close:declaration
following the primitive CLOSE

comma 2,3 3.22 L,u3
1 4

comment 2.2 2.4 2,5 2.7
(] bo(:gné (X}
equivalent to 4pace in most
places

complete: fon:clause
FOR Loop:variable = numeric: formula,
numesic: §ormula, numesic: joula $
FOR Loop:variable = ALL (fable:name) $

FOR Loop:variable = ALL (lable:item:name) $

completesLoop: statement
complete: gorn:clause independent:statement
complete: forn:clause specdial:compound
complete: for:clause incomplete:Loopsstatement

TM-555/002/02A

3.77

2Lk July 1964 109 TM=-555-002/02A

1. complex 3.6

2. pertaining to a compfex:statement

3. complex:statement 2.1 3.4 3.7 3.71

L, alternative: statement 3,73

5. conditional : statement 3,72

6. dinect:statement 3.71

Te Loop: statement 3.74

8. COMPOOL 4,2

9. communication pool

10. a table or dictionary of system definitions

11, compound 3.6

12, pertaining to a compound:statement

13. compound:statement 2,1 3.4 3,6 3.72

1k, BEGIN statement:£ist END

15. conditional:statement 3.7 3.72 3.73 5.1

16. 4f:clause Jindependent:statement

17. constant 2.4 2,6 2,61 2,63 2.7 3.1 3.28
3.3 3.56 3.71 3.73 bL.,b1 L,k2 L,L3
L.,s1 4,53 L,55 L.57 5.2 5.32 6.4

18. boofean:constant 2,63

19. dual:constant 2,63

20, Literal:constant

21, hollerdith:constant 2,63

22, octal:constant 2,63

23. tansmission:code: constant 2,63

2k, numendc: constant

25, §4ixed: constant 2,63

26, §loating:constant 2,63

2T7. integen:constant 2,63

28, octal:constant 2,63

29. status:constant 2,63

30, constant:List 4,51 L,52 L4,53 k,55

31. dimensioned list of constants for pre-

setting values of table:.items, stnings,
and avays

32. one:dimensional:constant:List 4.51

33. two:dimensional:constant:List

3k, etec. 4.51

35. data:declaration 2.1 L,2 4.4 5.2 5.5

36. §ile:declaration 4.6

37. ALtem:declaration 4.4

38. Aindexed:iten:declaration 4.4

39. arnay:item:declaration 4,52

Lo. string:item:declaration 4.57

L1, table:item:declaration

L2, simple:iten:declaration 4.42

L3, cverlay:declaration

Ly, table:declaration 4,54

2h July 1964 110 TM=-555/002/02A

1. data:sequence L.43 k4,55
2, Andependent:data: sequence 4,43
3. subondinate:datas sequence 4,55
4, part of overlay:declaration
2. decimal:point 2.3 2.7
T. declaration 2.1 3.1 3.2 3.21 3.24 3.51 3.54
3.55 3.6 3.76 L. L.k 4,54 4,55
4,57 4.59 5.2 5.31 5.32 5.b 6.1
6.2 6.4 6.5
8. data:declaration 4.4
9. pwcessing:declaration 5,1
10. declaration:List 5.5 5.6
11, data:declaration 4.4
12, pwgram:declaration 5.2
13. declaration:fist declaration:List
14, DEFINE 2.5 2.8
15, define:directive 2.7 2.8 4.6 6.3 6.5
16, DEFINE name '‘sdgns'' $
17. defined 2.8 6.5

18, with respect to Loop:variable: within its
active range
19, with respect to name: given a meaning within
a scope within a program
20. defined:entry 4,57
21, fable:entry for which the location of
each ilem is specified by the programmer.

22, def4ned:entry:description 4,57 L4.58
23. degined:entry:item:declaration 4,57
2k, stning:item:declaration 4,57
25, defined:entry:descrniption defined:entry:description

26. defined:entrny:item:declarnation 4,57
27. defdined:entry:table 4,58

28. table declared by a defined:entry:table:declaration

29. defined:entry:table:declaration L.sk 4,58
30. deserdiption L.h1 h.h2 L.L3
31, ditem:description :

32, device:name 4.6 6.5

33. a compiler-dependent name permanently assigned
to an input-output device for which a §4ile may
be declared
34, dimension:List 4,52
35. a string of numbers; part of an avway:declaration
36. DIRECT 2.5 3.7l

16 March 196 111 TM-555/002/02

1. direct:assign 2.8 3,71 6.5
2. ASSIGN A(sdigned:number) = named:variable $

3. ASSIGN named:variable = A(signed:number) $

L. direct:code 2.8 3,71 6.5
5. A4gns 2.3
6. dinect:assign 3,71
T. dinect:code direct:code

8. dinect:statement 3.7 3.71
9. DIRECT direct:code JOVIAL

10, ditective 2,1 3.6 6.1 6.2 6.3
11, define:dinective 2.8
12, mode:directive 6.4
lz. dag&vr.:u.gn 2.3 3.4 3.5 kL,59 6.2
l L]

15, dual 2,61 3.2 3.23 3.34 3.51 L.52

16, pertaining to data forms and
values having two components

17. dual:array Lb.52
avay whose declaration contains
a dual:item:description

18. dual:assigmment:statement 3.51
dual:item = dual:govmula $

19, dual:constant 2,63 3.34 L.b1

20, dual:exchange:statement 3.52

21, dual:item == duakl:item $
22, Astatement specifying that the values of
two duakl:.items be exchanged

23. duak:govmula 3.1 3.34 3.35 3.36 3.51
2k, numeric:forumula 3.33
25, dual:constant .63

26, dual:item
27. duaf:function
28, arithmetic combinations of dual:fomulas
29, dual:gunction 3.34
30. invocation of a function:declaration with
a dual output value
31. dualsitem L.h1
32, 4item specified by declaration in which
the item:name is followed by D or a
dual:constant
33, dual:item:descrnintion 4.41
34, dual:rnelation:€ist
35. list of nelational:operators and
dual s forumulas
36. dual:specifien 4.41

w
0
w
Uy
w;
.
w
o\

16 March 196k 112 TM=555/002/02

1. dual:variable , 3.3k 3,51 3.52
2. dual:item :
3. END 2.5 3.4 3.6 3.72 3.73 3.Th 3.77
L,51 L4,52 4,53 kL,56 L,58 5.5
L, ENT 2.5 3.28 3.52
5. ENTRY 2.5 3.28
6. entry : 3.22 3.24 3.28 3.33 3.35 3.52 3.56
L,u3 4,5 L,55 kL,56 4,57 4,58 L.59
5.31 5.32
T. one occurrence of an auvay:ifem;
which one specified by an {ndex
8. the set of all the i{ems of a
fable with the same second component
of the index in the case of A{nings
and the same {ndex in the case of other
Ltems
9. entry:assigmment:statement 3.51
10. entry:varniable = entry: formula $
11, Atalement specifying that the value of an
entrysvariable be changed to the current
value of an entry:gornmula
12, entry:description L.55 L4,56 L.58
13, degdned:entry:description 4,57
1k, ondinany:entry:description 4,55
12. en;&y : formula 3.32 3.35 3.36 3.51
l6.
17. entrysvarniable 3,28
18, entry:index 3.56

19, 4index used to specify which entry of
avay or table
20. entry:variable 3.28 3.32 3.36 3.51 3.52
21, ENT (table:name ($ index $))
22. ENT (table:item:name ($ Andex $))
23, ENTRY (table:name ($ 4index $))
24, ENTRY (table:item:name ($ index $))

25, EQ 2.5 2.7 3.35 3.36 3.4 3,74 k.58

26. equaks:sign 2,3 4.3 k.55

27. =

28. exchange:statement 3.5 3.52
variable == variable $

29. express
30. global
31, exrad 2,61

32. exponent of the radix in floating representations
of numbers

2Lk July 196k 113 TM=555/002/02A

1. FILE 2.5 L4.,6
2. {4le 2.6 3.6 3.24 3,56 3.57 3.58 4.2
L,6 5.32 6.5
3. a collection of Zecords
on an input or output device
4, f4ile:declaration L.h 4,6 5.32 6.5
5. f§4lezname 2,63 3.1 3.2k 3,36 3.56 3.57 3.58
| 4.6 5.32 6.5
6. name following FILE in a
§iLe:declaration
Te 541.& Amme:Apeu5Wn 4.6
8. nwnbern numben
9. B numben v numben
10. H aunber R numben
11, B wnunber R number

12, f44xed 2,61 3.2 3.33 3.51 3.71 L.
13. pertaining to values with

a specified number (which may

even be zero or negative) of

bits after the binary point

1k, 44ixed:constant 2,63 L.53
15. f$4xedsLitem 4,53
16. Atem specified by declaration

in which the {tem:name is followed

by a fixed:item:descripntion or a

fixed:constant
17. fixed:4item:description 4.41
18, 4ixed:specifien 4,41
19. f4ixed:svariable 2,61 3.2 3,25
20, g4ixed:item
21, MANT (gloating:iten)
22, f4Loating 2,61 3.2 3.23 3.31 3.33 3.51 311

41

pertaining to values (v in the
equation below) represented by
two numbers (s for signicand
and e for exrad in the equation
below)

e
v=s x2

where s = § or |s| =1/2 or 1/2 < |s]| <1

24 July 196k 11k TM-555/002/02A

1. {loating:constant 2.61 2,63 L.k
2, floating:item L. L1 k4,53

3. Atem specified by declaration
in which the item:name is
followed by F or a floating:constant

L., {4loating:item:description 4.41
5, floating-point

6. gLoating 2,61
T. 4loating:vaniable 3.2 3.24 3.25
8. gloating:item

9. FOR 2.5 3.7k 3.75 L4.58
10. gor:clause 3.7k 3.75 3.76 3.77
11. complete:gorn:clause 3,74
12, Ancomplete:forn:clause 3,74
13, for-variable . 2.5
1k, Loop:varniable 2.5 3,74
15. formal:inputs parameter 3.55 5.6 6.5
16, arnray:name 4,43

17. cfose:name .
18. sdmplesitem:name
19, Zable:name
20. formal:input: parameternsList 1.2 4,1 55 5.6
21, gormal: input: parameten
22, formal:input:parameter , goumalsinput:parameten:List
23. goumaksoutpuis parameten 3.55 5.5
2k, amaysname
25, sdmplesitem: name
26. statement:name
27. table:name
28, jommal:outpuls parameiensList 1.2 hka 5.5 5.6
29, fowmal:outout: paraieien
30. fomwmal:output:varameter , formal:output: parameten:List
31. 4fonumal: parameten 3.31 3.55 4.3 5,5 6.5
32. gomal:input: parameten
33. gonmal:output: parameten .
34, gowmal:parameten: item 3.55
35. an {tem, the name of which occurs in

a 4ommal:parameters£ist. In the

reference in section 3.55, obviously

only simple:items are meant

SO
o o
S
w

16 March 1964 115 TM-555/002/02

1. gonwmal:parameten: List 1.2
2. gormal s input: parametens List
3. gormal :output: parametern: £ist

L, formal:parameten:table 3.55
5. a fable, the name of which occurs in a
gormals parameten: List
6. fpoumula 3.1 3.22 3.3 3.33 3.35 3.36 3.51
3.55 3.T4 3.75 5.6
Te boolean: fomuia 3,36
8. dual s forumula 3.34
9. entry: foruula 3.32
10, <Literal:founula
1. hollerith: formmula 3,32
12, thansmission: code: formula 3.32
13. rnumendic: fovula 3.33
1k, status:forula 3,32
15. function 2.6 3.1 3,31 3.3 3.36 3.51 3.75
L2 5.4 5,5 5.6
16, invocation of a function:declaration
by name
17. function:declaration (context will
make it clear when this usage is
intended)
18, function:call 3.31 3.76 L. 5.5 5.6
19. function 3,31
20. gunction:declaration 3,31 3.51 3.54 3.75 3.76 L.1 L.,2
5.1 5.4 5.5 5.6 6.4 6.5
21, function:heading 5,6
22, function:name 3.31 6.5
23. name following PROC in a
gunction:declaration
2, gunctional :modifien 2.4 3.1 3.24 3.25 3.27
25, ABS
26. ALL
27. BIT
28. BYTE
29. CHAR
30. ENT
31. ENTRY
32. '10C
33. MANT
34, NENT
35. WWDSEN
36, ODD

37. POS

16 March 1964 116 TM-555/002/02

1. global 4.3 6,5
2. defined within the main:progham and

those procedures without a conflicting

local definition

3. go:to:statement 3.5 3,53 3.54 3.75 3.77T 5.1 5.2
5.3 5.31 5.32 5.4 5,5 6.5

L, GOTO name $
5. GOTO name ($ index $)$
6. directs the sequence of statemnent

executions elsewhere
T. GOTO 2.5 2.7 3.53 3.6 3.72 3.73 3.7k

5.3 5.31 5.32
8. GQ 2.5 3.35
9. GR 2.5 3.35 3.36 3.73 3.7k
10. hollenith 2,61 2.63 3.2 3.23 3.26 3.31 3.35
3.51 3.58 L.6

11. pertaining to the computer-dependent

internal encoding of 44{gns; the normal

encoding scheme for the computer
12, hollerith:constant ‘ 2.2 2.61 2.63 3.32
13. awnberH(s4igns)
1k, the number of 44gns is numben
15, hollenith: §ile : 4.6
16, f44le, declared with H following the §ile:name, :

in which data are represented as strings

of s4gns coded in hollenith
17. holRerith: formula 3.32

18, hollernitiizconsiant 2,63
19. hollerith: function
20. hollerith:variable
21. octal:constant 2.63
22, hollenith: function 3.32
23. invocation of a junction:declaration with a

hol&ernith output value

~N
W

oh, hollerith:item:description 4,41
25. H number

26. hollerith:variable 3.2 3.32 4.6
27. hollerdthsitem

28. {tem specified by Ltem:declaration

in which H follows the Aitem:name
29. BYTE ($ andex $) (hollenith:item)

30. ideogram 2.4 2,5 2.7 3.33 3.56 L.
3L, 17 2.5 2.7 3.k 3.72 L.58
32. {f:clause 3,72 3.T3 3.Th 3.77

33. IF boolean:fowmkla $
4. statement:name . L4:clause

24 July 196k 117 TM=555/002/02A

1. 4f:eithen:clause 3,73
2, IFEITH boolean:formula $

3. IFEITH 2.5 3.73
L, incomplete:for:clause 3.74

5. FOR Loop:variable = numeric: forvmula $
6. FOR Loop:variable = numerdics: formula , numenic: formula $

T. 4ncomplete:Loop:statement 3.74 3.77
8. Loop: statement headed by Ancomplete:forn:clauses
9. A4ndependent:data:sequence 4.43

10. a string of 4s4mple:item:names, table:names,
and auay:names separated by commas
11. part of an {ndependent:overlay:declaration
12, independent:overlay L .43
13. the arrangement of tabfes, arrays, and
ddmplesitems specified by an
independent:overlay:declaration

1k, 4<ndependent:overlay:declaration 4.43 4.55 L.56

15. {ndependent:overlay: specification 4.43

16. a string of .ndependent:data:sequences

separated by equals:signs

17. part of an mdepandmt.avmcag.dedam,twn

18. independent:statement 3.4 3.72 3.73 3.74 3.75

19. compound:statement 3.6

20, BEGIN 4tatement:List END

21. sdmple:statement 3.5

22, index 3,22 3.2k 3,26 3.28 3.53 3.56 L.5
k.52 L4.55 L,57 L4,58 5.3 5,31 5.32

23. numenic: formula 3.33

2k, index , nwmeric:gorumula

25. Andex:switch 5.31

26, switch specified by an {index:switch:declaration

27. 4Andex:switch:declaration 5.3 5.31

28. SWITCH switch:name = (4index:switch:fist) $

29, Andex:switch:List 5,31

24 July 1964 118 TM-555/002/024

1. 4ndexed:{tem L.,53 5.32
2. auays Ltem
3. table:item

L, degdined: entrys: item

5. orndinany:tables Ltem

6. stning : item

T. 4ndexed:item:declaration 4.4
8. array: Ltem:declaration

9. Lable: item:declaration

10. 4ndexed:variable 3.2 3.27 3.23 3.24
11. name ($ <ndex $)

12, 4ndexed:ditem

13. INPUT 2.5 3.57
1Lk, input:operand 3.56 3.57
15. anmayiname 4.43

16, table:name

17. Zable:name ($ Andex $)

18, table:name ($ index ... 4ndex $)
19, vaudiable

24 July 1964 119 TM-555/002/02A

1. A4input:parameten 3.76 5.5 5.6
2. actual : input : parameten
3. gormal s input: parnameten
L, the values and structures, specified or
to be specified, for a pwcedure:declaration
or gunction:declaration to work with

5. Anput:parametersList 1.2 3.55
6, actuak s input s parameten: List 3.55
T gormal : inputs parameter:s List 5.5
8. input:statement 3.5 3.56 3,57 3.58 L.56
9. INPUT §4iLe:name input:operand $

10. integen 2,61 3.2 3.23 3.33 3.51 L.

11. a whole number
12, having whole number values
13, 4integen:constant 3.71 L.kl s,
1k, integer:.item L, 42 4,
15. 4tem specified by declaration

in which the {item:name is

followed by an integer:item:description

or an {nteger:constant

~N
°

(<)Y
w

16. integen:item:descniption 4,41
17. 4integern:specdifien 4.41
18, 4integern:variable 3.2 3,24 3.33 3.7 3.75
19. 4integen:.item

20. Loop:variable 2,5

21. BIT ($ 4index $) (item)
22, CHAR (gLoating:item)

23. POS (44ile:name)

24, NENT (name)

25, ITEM 2.5 b,42 4,55 4,56 L,57
26, Ltem 3.1 3.2 3.21 3.22 3.24 3,26 3.28
3.33 3.55 3.74 k4.2 4,3 L,h1 L,L2
L.4k3 k.5 4,53 4,55 L,56 4,57 L4.58

L.59 5.3 5.32 5.6 6.4

27. Alem may be subdivided in two
independent ways shown in groups 1
and 2 below. Even finer division is possible
by choosing adjectives from both groups as in
sdmple: boolean: {tem '

28, Group 1

29. boolLean: item

30. dual: {tem

2k July 1964 120 TM=555/002/02A

1. Literals Ltem

2, holleniths item

3. ransmission:codes Ltem

L, numerde s Ltem

5. fixed: Ltem

6. gLoating: Ltem

Te Antegens:item

8. status s Ltem

9. Group 2

10, Aindexed:item

11. auay s LLem

12, table:item

13. defined:entry:item

1k, orndinary:table: item

15. stning:Ltem

16. simplesitem

17. data structure specified by an .tem:declaration

18, 4item:declaration 3.2 3.21 4,4 L1 4,55

19, 4ndexed:item:declaration 4.4

20. avay s item: declaration 4,52

21, table:item:declaration -

22, degined: entry: item:declaration _ 4,57

23. ondinany:table: item:declaration 4,55

2k, stnuing:item:declaration 4,57

25, asdmple:item:declaration E

27. Atem:description L1 boh2 k.52 4,53 4,55 k4,57 6.4

28. boolean:item:description 4,41

29, B

30. dual:item:descrniption 4,41

31, f4xed:Ltem:descniption 4,41

32, floatingsitemsdescription 4,41

33. hollendith: item:descniption 4,41

34, H number

35. dntegern: Ltem:description 4.41

36, thansmissdon:code:Ltemsdescription 4,41

37. T nunber

38. part of an {tem:declaration

39. item:name 2.63 3.1 3.33 3.55 k.5 k.55 k.57
L.59 4.6 5.32 6.5

40. name following ARRAY or ITEM
or STRING in an Ltem:declaration

2k July 1964 ' 121 TM~555/002/02A

1., Atem:switch) 5.31 5.32
2. switch specified by an ifem:switch:declaration
3. Atem:switch:declaration 5.3 5,32

L, SWITCH switch:name
(§4Lezname) = (item:switch:fist) $
5. SWITCH switch:name
(Ltemspame) = (Ltem:switch:€ist) $
6. Atem:switch:List 5,32
T constant = sequence:designaton
8. Atemsswitehs £ist , Atem:switeh:List

9. JOVIAL 2.5 3.71
10, k:dimensional:constant:List L,51
11. BEGIN string of k:mimus:one:dimensional:

sconstant:Lists END
12, k:plus:one:dimensional:constant:List 4.51
13. BEGIN string of hk:dimensional:constant:

sLi8ts END
1k, Zeét:paflenthu»éé 2,3 2.4 2,63 3.71
15.
16. Letter 1.2 2,3 2.5 2,62 2,63 3.Th

h056 l‘059 6.5

17. library 4,2
18. a collection of subroutines which may

be incorporated in new programs
19, Likestable 4.59
20, table declared by Like:table:declaration
21, Like:stable:declaration L,54 4,59
22, List 3.55 k4.6
23. constant:List
2k, parameter:list
25. Atatement:List 3.6
26. status:list 4,6
2T. etc.
28, Lternal 2.61 2.63 3.35 3.52
29. holkenith 2,61
30, octal, depending on context
31. transmission:code 2,61
32, Literal:assignment: statement 3.51
33. Litewd:variable = Literal: jorvula $
3h., Literal:constant 2.7 2.8 6.5
35. hollernith:constant 2,63
36. octal:constant 2,63

37. trhansmissdon: code:constant 2,63

24 July 196k 122 TM-555/002/02A

1. Literal:gormula 3.32 3.35 3.36 3.51
2. hollerith: jorumula 3,32
3. transmissdion:code: gorumula 3,32
L, Literal:item 3.26 L4.43

5. Atem specified by Ltem:declaration
in which the item:name is followed
by H (for hollenith) or T (for

thansmission:code)
6. Literal:nelation:list 3,35 3.36
Te list of nelational:operatons and

Litenal: forvmulas
8. Literal:varniable 3.2 3,26 3.51 3.52

9. - hollenith:variable
10. trhansmission:code:variable

11, 'LOC 2.5 2.7 3.33
12, local L.3 6.5
13. defined only within a procedure
1k, Logical:operatorn 2. 3,36
15. AND
16, KNOT
17. OR
18. Loop:statement 3.5 3.7 3,74 3.75 3.76 3.T7 L.s58
: 5.1 5.3 5.4 5.5 5.6
19. a string of fon:clauses

followed by an {ndependent:statement

or special:compound
20. Loop:varniable 2.4 2,5 2.63 2.7 3.24 3.27 3.5k

3,74 3.75 3.76 3.7T 5.2 5.5 6.5

21. [Letten following FOR in

a fon:clause
22. LQ 2.5 3.35
23. LS 2.5 3.35 3.36 3.72 3.73
2k, main:program 4,3 5.1 5.5 6.2 6.4 6.5

25. all of the phogham which is not part of any
procedunre:declaration or function:declaration

26, MANT 2.5 3.25

27. mantissa

28, fractional part of a logarithm

29. signicand, by analogy with logarithms

30. mark 2.3 2.5

2L July 196k 123 TM-555/002/02A

1. metalanguage 1.1 1.2
2. a mode of expression which transcends

language
3. a language used to explain or describe

another language
b, minus:sign 2,3
S5 -
6. MODE 2.5 6.4
T. mode:sdinective 3.51 6.3 6.4
8. MODE {item:descriiption $
9. MODE item:description P constant $
10. modigdien 3.2k 3,26 3.74
11, gunctional :modifLen
12, nln L.h 4,56 L.,58

13. a numben 2,62
1k, the (maximum) number of entries :
specified for a table

15. nn : L4 4,56 L4,58
16. a numben 2,62
17. the nominal number of words per eniry

of a table
18. n3n b,y 4,57 4,58
19. a numben 2,62
20. the index of the word of the entry

containing an {tem, or in which the

item vegins
2l. nédn hh h4,57
22, a numben 2,62
23. the index of the bit of the word in which

an {tem begins
2k, ndn L4 k.57
25. a numben 2,62
26, the increment from word to word of an

entry containing beads of a stning:item
27. nén L,L h,57
28. a numben 2,62
29, the number of beads in each of the words of an

entry containing beads of a strnding:item
30. n7n L4 4,41 4,43
31. a numben 2,62

32. the number of bits or bytes specified for
an Ltem or for each component of an <tem

2k July 196k 12h TM-555/002/02A

1. nén hoh o 4L
2. a numben 2.6
3. the number of fractional bits specified

for an 4tem or for each component of an item
ke n9n Ly L4,6
50 a Wnbm 2 6
6. the estimated maximum number of necords

in a 4le

2k July 1964 125 TM-555/002/02A

1. nlgn Ly 4.6

2. a numben 2,62

3. the (estimated maximum) number of bits

or bytes in a recond

L., name 2.4 2,5 2.63 2.7 2.8 3.1 3.21 3,22
3.24 3.28 3.31 3.33 3.k 3.53 3.55 3.73
3.T4 3.75 3.76 3.77 k4.1 k4,2 L,3 L.k
L,k2 4,43 k4,52 L,5h k4,55 L,56 k4,57 L,58
L,59 L6 5.1 5.2 5,31 5.32 5.4 5.5
5.6 6.2 6.3 6.5

5. named:boolLean:variable 3.27

6. boolean: Ltem

T. named:{§ixedsvariable 3.25

8. §4ixeds item

9. named:integer:variable 3.2

10. 4ntegen:item

11, named:Literal:variable 3.26

12, LZiteral:item

13. named:muwnerdic:variable 3.27

14, fixed:item

15. f4loating:itenm

16, 4integer:item

17. named:statement 3.33 3,4 6.2
18, name , statement

19. named:variable 3,2 3.23 3.24 3,26 3.T1
20. boolean: Ltem

21 dual:item

22, f4xed:item

23. gloating:.item

2k, integen:item

25. Liternal:item

26, status:iten

27 . NENT 2,5 3.24 3,33 3.7k L4,56 L4.58
28, NOT 2.5 3.36
29. NQ 2.5 3.35 3.36
30. numben 2,62 2,63 L., b 4, b1 L,43 L,52 4,6 5.2

31. a string of nuwnm

2k July 196k 126 TM-555/002/024

L ’“"gw 2,3 2.5 2,62 2.63 L,59 6.5

3. 1

L, 2

5 3

6. N

Te 5

8. 6

9. T

10. 8

11, 9

12, numerndic 2,61 2,63 3,33 3.34 3.35 3.52 3.71

4,57

li. gixed 2,61

1k, gLoating]

15. integen ziﬁ?

16, octal, depending on context

17. numerdic:assignmentsstatement 3,51

18. numericivarniable = numerdic: jormula $

19. numerdic:constant 3.33

20, §ixed:constant 2.63

21. fLoating:constant 2,63

22, integen:constant 2,63

23. octal:constant 2,63

2h, numeric: foumula 3.1 3.22 3,33 3.34 3.35 3.36 3.51
3.7h 3,75 b.56 L.s5T

25. numerdie: function 3.33

26, invocation of a function:declaration

with a numeric output value
27. numerdic:nelation:£ist 3.35 3.36
28, list of nelational:operatons

and numesrdic: fomulas

29. nuwnedicivartiable 3,2 3.33 3.51 3.52 L.,56
30. gAixed:variable 3,25
31. fAxed: Ltem

32. MANT ({4Loating:Aitem)

33. fLoating:varniable

3h, §Loating: Ltem

35. integen:varndiable ‘ 3.24
36. integen:iton

37.. Loop:varuiable 2.5 3.74
38, BIT ($ Andex %) (Aitem)

39. CHAR (4Loating:item)

ko, POS (44LLesname)

L1 UEHT (name)

Lo, IWDERN 2.5 3.33

2L July 1964 127 TM-555/002/02A

1. octal 2,61 3.33 3.35 3.51
2. represented by octal:numerals

3. octal:constant 2,63 3.32 b2 L,43 5,2
L, O(string of octal:numerals)

g. ac,ga.ﬁznummﬁ 2,3 2.61 2.63
7. 1

8. 2

9. 3

10, L

11. 5

12, 6

13. 7

15, ODD 2.5 3.27
16, one:dimensional:constantslist 4,51 L4.55 L,57

17. BEGIN string of consfants END

18. one:facton:forsclause ~ 3,74 3.77
19. FOR Loopsvarndiable = numernic:formula $

20, OPEN 2.5 3.57 3.58
21, open:input:statement 3.5 3,57

22, OPEN INPUT §4ile:name $

23, OPEN INPUT {ilLe:name input:operand $

2k, open:output:statement 3.5 3,58
25, OPEN OUTPUT §<{Le:name $

26, OPEN OUTPUT §4ile:name output:operand $

27. opensstatement 3.58
28, opensinput:statement 3,57
29. open:output:statement 3,58
30. operand 3.56 3.58
31. 4nput:operand 3,56
32, output:operand 3,56

33. there are no other references in this document,
but operand also means constant or variable

34, operaton 3.36
35. {Logdical:operator is the only reference in this
document
36. optionakl 2,62 3.71 bL,b1 L,56 4,57 L.58 h.Zg
5.5 5.

37. optwonally 2,62 2,63 3.71L bL,b1 L4.42 L,51 6.4
38. OR 2.5 3.36
39. orn:dif:clause 3,73

40, ORIF boofean:jornmula $

2k July 196k 128 TM-555/002/02A

1. onddinary:entry 4,55
2. entry of an ondinary:table
3. ondinany:entryidescription 4,55 4,56

L, the set of Ltem:declarations and
overlay:declarations in an

ondinary: table:declaration
5. ondinary:table 4,56
6. table specified by an ordinary:table:

sdeclaration
T. ondinary:table:declaration L,sh 4,56
8. ondinary:table:item:declaration 4,55 k4,57
9. ITEM name Aitem:description $

10, ITEM name JA{tem:descriiption $
one:dimensional:consdtant: List

11. ondinany:table:item:name 4,55
12, name following ITEM in an ordinary:

stable:item:declaration
13. ORIF 2.5 3.73
14, OUTPUT 245 3.58
15. output:operand 3,56 3.58
16, arvay: name 4.43

17. constant

18. Zable:name

19, table:name ($ 4index $)

20, table:name ($ index ... index $)
21, variable

22, output:parameten 5.5 5.6
23, actual s output: parameten

2k, gormal: output: parameten

k

25, the values and structures for a

proceduwre:declaration to produce
26. output:parameten: List 1.2 3.55
2T, actual: output: parametens List 3,00
28, gomal s output: parametens £L4ist 2.5
29. output:parameter: statement: name 55
30, statement:name in owtput: parametern: List
31, name which is followed by perdiod in

output: parameten: List
32, output:statement 3.5 3.56 3.58
33. OUTPUT 44Le:name output:operand $
34, OVERLAY 2.5 L.,43 L,55 L.56
35. overlay:declaration L,43 4,55 L,57
36, independent:overlay: declaration 4,43

:

37, subondinate:overla::declaration 4455

2k July 196k 129 TM-555/002/02A

1. packing 4,59
2. the sharing of computer words by disjunct

Atems, This is done only for table:{tems and

may be prescribed by packing:specifications

3. packing:specigication 4.56 L4.57 k4,59
R D

5 M

6. N

7. parallel 4,56 4,58
8. table structure in which there are several

blocks, one for each word of an entry. The

words of a particular enthy are distributed

over these blocks, one per block, and similarly

placed in each block
9. varameten 3.36 3.55
10. Anput: parameten
11, output: parameten
12, parameten:list b1
13, Anput: parameten: List
14, output: parameten: List

15, parenthesis 2,4 2,63 3.31 3.33 3.34 3.36 2.71
o5

16, (

17.)

18, period 2.3 2.7 3.33 3.55 3.7b ki1 L1 5.5

19. .

20. plus:sdian 2,3

21. +

22, POS 2.5 3.24 3,56

23. precision 2,61

ok, number of bits after the binary point

22. pLime 2,3 2,5 2.8 5.2

26. '

27. wumitive 2.4 2,5 2.7 2.8 3.1 3.24 3.35
3.36 4,4 4,43 k4,51 5,2 5,32 5.6

28, PROC 2.5 5.5 5.6

29. procedure 3.55 3.75 4.2 5.4 5.5 6.5

30. subroutine defined by a procedure:
:declaration;sometimes (not in this
document) also by a function:declaration

2k July 1964 130 TM-555/002/02A

1. procedure:body 5,5 5.6
2, BEGIN statement:List END
3. procedune:cald: 3.31 3.5 3,55 3.76 k.1 5.5 5.6
:statement 6.5
bo procedure:declaration 3.54 3,55 3,75 3.76 4.1 h,2 4,3
5.1 5.4 5,5 5.6 6.4 6.5
5. procedunre: heading 5,5
6. procedure:name 355 5,5 6.5
T. name following PROC in a
procedure :declaration
8. processing:declaration 2.1 3,53 3.54 3,76 5,1 5.§ 543
5e 545
9. closesdeclaration 2.4
10. gunction:declaration 5.6
11. procedure:declaration 2.2
12, progham: declaration 5.2
13. switch:declaration 5.3
1k, 'PROGRAM 2.5 5.2
15, program 1.3 1. 2,1 2.4 2,5 2,7 2.8
3.1 3.33 3.53 3.54 3.71 3.73 3.75
b1 b,2 b4 4,58 5.1 5.2 5.k
6.1 6,2 6.4 6.5

16, START statement:List TERM $
17. START Atatement:list TERM statement:name $

18. program:declaration L2 5.1 5,2 5.5
19. 'PROGRAM name $
20. '"PROGRAM name number $
21, "PROGRAM name octal:constant $
22, program:npame 3,33 3.53 3.75 5.3 5.31 5.32 6.5
23. name following 'PROGRAM in a
progham: declaration

2k, recond 3.1 3.24 3,56 3.57 3.58 L.6
25, the unit of data in a 44ife

3 for input or output at one time
26. recursive 5. 5.5

2T with respect to subroutines, one which calls
itself, either directly or indirectly by
calling other subroutines which call it
in turn

2k July 1964 131 TM-555/002/02A

1. recursive definition 3422
2. definition in which an element of the definition

is the term to be defined, perhaps indirectly

through a chain of two or more definitions. To

be meaningful a recursive definition must incorporate

alternative definitions, at least one of which is

not recursive. The recursive element then defines

structures of arbitrary length
3. relation:€ist 3.35 3.36
L, dual :neletion: £ist 3,35
5. Literal s nelation: List 3,35
6. nunerde snelation: List 3,35
T. nelational 3.35
8. pertaining to relationships of equality or

ordering between forniwlas
9. relational:operaton 2.4 3,35 3.36
10. EQ
1. GQ
12, GR
1L, LS
15. 1Q
16. RETURN 2.5 3.5k4
17. nretwwn:statement 3.5 3,54 5.5
18, RETURN $
19. night:parnenthesds 2,3 2.4 2,63
20.)
21, 4cakle 2,62 2.63 k,53
22, numben 2,62
23. scope 645
2k, sequence L,43 L,55
25. independent:data:sequence 4,43
26. subordinate:data:sequence 4,55
27. parts of cverlay:declarations
28. sequence:desdgnaton 3,53 5.3 5.31 5.32
29, close: nane 2.4
30. PROGRWN S NANR
31, statenent: nane 3.4
32. suwitch: nane 5,31 5,32

33. switchsname ($ Andex 3)

2L July 1964 132 TM-555/002/02A

1. serial (tabfe structure) 4,56 b4.58
2. table structure in which there is a

block for each enthy, all the words

of an enthy being in the same block

3. SHUT 2.5 3.5T7 3.58

b, shut:input:statement 3.5 3,57

5. SHUT INPUT 44Le:name $

6. SHUT INPUT 44le:name input:operand $

T. shut:output:statement 3.5 3,58

8. SHUT OUTPUT 4ifLe:name $

9. SHUT OUTPUT {ilLe:name output:operand $

10, shut:statement 3.58

11, shut: input: statement 3.57

12, shut:output: statement 3.58

13, 44gn 1.3 2.1 2.2 2,3 2.4 2,5 2.6
2,63 2.8 3,26 3.51 3.71 3.75

14, Letten 2.3

15, mark 2,3

16. numenal. 2,3

17. 4s4gned 2.2 2,61 2,62 2,63 3.71 L,bk1 kL2

4,51 6.k

18, being preceded by + or - without
any intervening 4paces
19, signicand 2,61
20, the significant digits in floating
representations of numbers : ‘
21, sdmple 3.6

22, in the reference, the property of a
statement of being a s4mple:statement
23, Admple:item 3.33 4.3 L4,k2 4,43 4,5 4,53
2k, data structure specified by
simple: {tem:declaration
25. Admple:item:declaration L4 4,42 k4,55 5.6 6.5

26. ITEM name Ltem:descrniption $
27. ITEM name Ltem:descniption P constant $
28. ITEM name constant $

29, Adrmle:item:name 4.3 L.3 5,5 6.4

30. name following ITEM in a sdmple:item:declaration

31, Admple:statement 2.1 3.h 3,5 3.5h 3.71 3.7T2 3.73
32, Admplesvarniable 3.2 3,21 3.23 3.2k
33. samples item

34, single letter subscript 2.5

35. Loon:vatiable 2.5 3,74

24 July 196k

ll.
12,
13.
1k,
15.
16,
17.

18.
19.
20,
21,
22,
23,
2k,
25,
26,
27.
28,
29.
30.
31.
32.
33,
3k,
35.

s4ze:specification
table:size:specification
R numben
V numben
slash
/
space 2,2

the matk represented with no ink

on the paper
special: compound

BEGIN statement:List 4f:clause END

AspecdfLeation
basic:stwucture: specificatio
packing: specification
table:size:specification

Atan
*

START

statement

complexsstatement
alternative:statement
conditional: statement
dinect: statement
Loop: statement
independent: statement
compound : statement
BEGIN statement:List END
samples statement
named: statement
name . statement
Atatenent:List
Atatement
declarnation statement:List
dinective statement:List
statement:List declaration
statement: Lirt directive
stateent: List statement

133

2,3

n

3.8

TM-555/002/02A

2,4 2,5 2,63

3,74
3.51 3.53 3.54
3.73 3.74 3.75
5.2 5.3 5.31
6.4 6.5

3.7 3.75 5.4

4,56

55

2k July 196k 13k TM=555/002/02A

21,
22,
23,
2k,
25,
26,
27,
28,
290

statement: name . 3.4

3.33 3453
3.7 3.75 L.l

=
U W
;1

s W\

status

status sassignment:statement :
statussvarniable = status:forvula $
Atatus:constant 2,63 2.8 3.32 3.51 3.55

E

V (Lettern)
V (name)
statuss gormula 3432 3.35
status sconstant
status s function
status svariable
status: fjunction
invocation of a function:declaration
with a sfatus output value
Atatus s Ltem
Aitem specified by declaration in which the
Atem:pame is followed by S
status:item:deserniption
S string of atatus:constants
S number string of Astatus:constants
status s Ltem: name
name following ARRAY or ITEM or STRING and
followed by S in an {tem:declaration
status:List
string of Aftatud:constants
Atatus :variable 2.61 3.32 3.36 3.51
status: {tom
STOP 2.5 3.b
stop: statenent 3.4 3.5
STOP $
STOP statement:name 3
STRING

b2

2,63

16 March 1964 135 TM=-555/002/02

8.
9.

10,

11.
12.
13.

14,
15,
16.
17,
18,
19.
20.
210

String 3158 3.6 3071
in reference to some sort of element,
one such element or an arrangement of
more than one with one element following
another
in strings of 44gns used to form symbols,
there is, in general, no separation between
the 44gns
in strings of &ymbols, they are separated by
spaces or comments
string 3.1
collection of data declared by a
stning: item:declaration
essentially equivalent to Atning:item
but sining has the connotation of the
oup of data
AMQ Ltem 3.31 k.5 1“57 4,58
collection of data declared by
a stnuing:item:declaration
essentially equivalent to stning, but
Atnung:ilem has the connotation of a
member of the group
stiing: item: declaration
Atning s {tem: name
name following STRING in a
string:item:declaration
subond.inate:data:sequence
part of an ordinary:entry:descrniption
suborndinate:overlay:declaration
part of an ondinary:entry:descriiption
subordinate: overlays: specd fication
part of an oadinary:entry:description
subroutine 5.h
a piece of programming which can be utilized
at various points in a program. In a
JOVIAL progham subroutines can be set up by
means of close:declarations, function:declarations,
and procedure:declarations

.

-~
o

o
~

3.7k

k.57

5.31

16 March 1964 136 TM-555/002/02

1. subscript

2. Lndex 3,22
3. Loop:varniable 2.5
L, because of ambiguity it is recommended that

this term not be used unless the meaning is

clear from context. This is usually not the

case since Loop:variables are often used

as Andices
5. SWITCH 2,5 5.31 5.32
6. switch 3.75 5.3 5.31 5.32 5.4 5,5
T. Andex: switeh
8. Ltem: switeh
9. switch:declaration 3.53 3.75 3.76 4,6 5.1 5,3 5.32

5.k

10. 4ndex:switch:declaration - 5,31
11, {tem:switch:declaration 5,32
12, switch: st 5.31 5.32
13, indexs switehs L4462 5,31

1k, Atem: switeh: List

\Nn
.
w
Ut
o
—
1)]
o
W
~N
°
n

15. switceh:name 3.75 De31 5,32
16, name following SWITCH in a
switch:declaration

17. synbol 2.1 2.2 2,4 2.5 2.62 2,63 2.7
2.8 3.71 3.75 6.3

18. abbrev.iation 2,5

19. comment 2,5

20. constant 2,63

21. Adeogham 2,5

22, Loopsvarniable 2,5 3,74

23, name 2,5

2k, prmitive 2,5

16 March 1964 137 TM-555/002/02

1. TABLE 2.5 L,56 4,58 L4,59
2. Ztable 3.1 3.22 3.24 3,28 3.33 3.55 3.56
3.76 k.2 4,43 4,5 L,51 L,5h k4,55
L.56 k4,57 k4,58 L.,59
3. data structure, a collection
of «tems organized by a
table:declaration
L, ztable:declaration 3.2 bW 4,54 L4.55 L,56 L,57
5. degined:entry: tablesdeclaration 4,58
6. Likestable:declaration 4,59
T. orndinany: table:declaration 4,56
8. table:entrny 3.56 4,5 4,55
9. the set of all the {tems of a fable
with the same second compounent of
the {ndex in the case of 4tnings and
the same {ndex in the case of other {tems
10. Ztable:item 3.33 4,58
11. {tem specified by a table:item:declaration
12, Ztable:.item:declaration 4.4 k4,55
13. defined:entrysitemsdeclaration 4,57
1k, ondinanys table: item:declaration 4,55
15. sting: item:declaration 4,57
16, table:item:name L, k3
17. name following ITEM or STRING in a
table:itemsdeclaration
18, Zablesname 3.33 3.55 3.56 3.7k L.43 4,56 Z.S
)

19, the name, if there is onme,

immediately following TABLE in a fable:declaration
20, Ztable:size 4.59
21, number of ent/ies in a table
22. Ztable:sdizesspecification
23. R numben
2k, vV numben

&~

56 k4,58 4,59

25, TERM 2.5 6.2 6.4
26, TEST 2.5 3.5 3.77
27. test:statement 3.5 3.54 3.77
28, TEST $
29, TEST Loop:variable §
30. threesdimensional:constant:List 4,51
31. BEGIN string of fwo:dimensional:constant:

sXAists END
32, trhansmissdion:code 2,61 2,63 3.2 3.26 3.35 3.51 k.6
33. pertaining to the computer-

independent encoding of A4gns
which is a standard for JOVIAL

16 March 196k 138 TM=555/002/02

1. thansmission:code:constant 2.2 2,63 3.32
2, numbenT (84gns)

3. number is the number of 44gns

L, transmission:code: fornmula 3,32
5. octal:constant 2,63
6. transmissionscodesconstant 2,63
T. trhansmission:code: fjunction

8. transmission:codesvariable

9. transmission:code:function 3.32

10. invocation of a ﬁunction:declaﬂatian
with a thansmisédion:code
output value

11, transmissdion:code:item:descrniption 4,41
12, T numben

13, transmission:code:varniable 3.2 3.32 L.,6
1k, transmissionzcode: Ltem

15, Atem specified by Ltem:declaration

in whieh T follows the {tem:name

16, BYTE ($ 4ndex $) (transmission:code:item)
17. truncated 3.22
18, part removed from the left or right
19. with numesic values, if left or right is not

stated, usually from the right
20, with numeric values truncated on the right,

care will usually be taken to insure that the

remaining value will be the same as if the

computer representation were "sign on the left

followed by magnitude bits"
21, two:dimensional:constant:List 4,51 k4,52 L,57
22. BEGIN string of one:dimensional:

sconstant: £ists END
23, two:facton:for:clause 3.74 3.77
2k, FOR Loop:variable = numeric: fjormula,

numeric: fjonula $

25, vaniable 2.6 2,61 3.1 3.2 3.21 3.,22 3.23
3.24 3,25 3.26 3.27 3.3 3.33 3.51
3.52 3.55 3.56 3.T1L L.,41 L,56 4.6

26. boolLean:variable 3,27

270 duaﬂ:i/tem

28. entrhy:variable 3.2¢

29. Liternal svariable 3.2 3,26

|
|

30. holRernith:varniable
31. Transmissionscodesvarniable

16 March 1964 139

(140 blank) TM-555/002/02
1. numesic:variable 3,2

2. §4xed:variable 3.25

3. fLoating:item

b, integensvariable 3.2

5. status: item «

6. variable:length:table 3.33

Ts table specified by a table:declaration
in which V follows the table:name
or the puimitive TABLE

16 March 1964 1h1 TM=555/002/02
(142 blank)

APPENDIX

The complete specification of a procedure-oriented programming language
seems to be a difficult task. At any rate all attempts, so far, to write
specifications for languages as complex as JOVIAL, ALGOL, or COBOL have

not been particularly successful. That is not to say such writeups have
failed to please anyone. Indeed, some such descriptions have been well
received by some workers in the field, but in each case' there has been

a significant segment of the computing community that has been dissatisfied.

The author of this document is interested in knowing how close he has
come to producing an easily understood and complete description of JOVIAL
(J3). The following page may be torn out and returned with an indication
of the reader's opinions., Lengthier responses, in the form of letters,
will be most welcome.

16 March 1964 143 TM=-555/002/02
(1ast page)

To: Millard H., Perstein

System Development Corporation Room 2328
2500 Colorado Avenue
Santa Monica, California

The over-all presentation of the language is: Very clear and orderly
Clear enough for tutorial purposes Confused or confusing

Complete but difficult to grasp Extremely garbled

Other remarks:

The use of the special metalanguage is: Very helpful
An obstacle to understanding Of some value

Other remarks:

In comparison with other metalanguages used in describing programming
languages (JOVIAL or others) the present one:

Is a happy blend of brevity and clarity
Is too long-winded Is too cryptic

Other remarks:

The special type face for metalanguage phrases is: Very heloful

Not as good as special brackets A strain on the eyes

Other remarks:

General remarks and suggestions for improvement:

Changes or corrections which should be issued immediately as modifications
to this document:

Name Position

Organization

16 March 1964 143

TM-555/002/02
(last page)

To: Millard H. Perstein

System Development Corporation Room 2328
2500 Colorado Avenue
Santa Monica, California

The over-all presentation of the language is: Very clear and orderly
Clear enough for tutorial purposes Confused or confusing
Complete but difficult to grasp Extremely garbled

Other remarks:

The use of the special metalanguage is: Very helpful

An obstacle to understanding Of some value

Other remarks:

In comparison with other metalanguages used in describing programming
languages (JOVIAL or others) the present one:

Is a happy blend of brevity and clarity
Is too long=-winded Is too cryptic

Other remarks:

The special type face for metalanguage phrases is: Very helpful

Not as good as special brackets A strain on the eyes

Other remarks:

General remarks and suggestions for improvement:

Changes or corrections which should be issued immediately as modifications
to this document:

Nane Position

Organization

SYSTEM DEVELOPMENT CORPORATION / 2500 COLORADO AVENUE / SANTA MONICA, CALIFORNIA

