
Bus Management for DOS

Programmer•s Reference

Guide

07-0157-02

RadiSys® Corporation

15025 S.W. Koll Parkway

Beaverton, OR 97006

Phone: (503) 646-1800

FAX: (503) 646-1850

December 1994

Bus Management for DOS Programmer's Guide

EPC and RadiSys are registered trademarks and EPConnect is a trademark of RadiSys
Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation and
Windows is a trademark of Microsoft Corporation.

National Instruments is a registered trademark of National Instruments Corporation
and NI-488 and NI-488.2 are trademarks of National Instruments Corporation.

IBM and PC/AT are trademarks of International Business Machines Corporation.

August 1990

Copyright © 1990, 1994 by RadiSys Corporation

All rights reserved.

Page ii

Bus Management for DOS Programmer's Reference Guide

Software License and Warranty
YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND
CONDITIONS BEFORE OPENING THE DISKETIE OR DISK UNIT PACKAGE.
BY OPENING THE PACKAGE, YOU INDICATE THAT YOU ACCEPT THESE
TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THESE TERMS
AND CONDITIONS, YOU SHOULD PROMPTLY RETURN THE UNOPENED
PACKAGE, AND YOU WILL BE REFUNDED.

LICENSE

You may:

I. Use the product on a single computer;

2. Copy the product into any machine-readable or printed form for backup or
modification purposes in support of your use of the product on a single
computer;

3. Modify the product or merge it into another program for your use on the single
computer-any portion of this product merged into another program will
continue to be subject to the terms and conditions of this agreement;

4. Transfer the product and license to another party if the other party agrees to
accept the terms and conditions of this agreement-if you transfer the product,
you must at the same time either transfer all copies whether in printed or
machine-readable form to the same party or destroy any copy not transferred,
including all modified versions and portions of the product contained in or
merged into other programs.

You must reproduce and include the copyright notice on any copy, modification, or
portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PRODUCT OR
ANY COPY, MODIFICATION, OR MERGED PORTION, IN WHOLE OR IN
PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION, OR
MERGED PORTION OF THE PRODUCT TO ANOTHER PARTY, YOUR
LICENSE IS AUTOMATICALLY TERMINATED.

Page iii

Bus Management for DOS Programmer's Guide

TERM

The license is effective until terminated. You may terminate it at any time by
destroying the product and all copies, modifications, and merged portions in any
form. The license will also terminate upon conditions set forth elsewhere in this
agreement or if you fail to comply with any of the terms or conditions of this
agreement. You agree upon such termination to destroy the product and all copies,
modifications, and merged portions in any form.

LIMITED WARRANTY

RadiSys Corporation ("RadiSys") warrants that the product will perform in
substantial compliance with the documentation provided. However, RadiSys does
not warrant that the functions contained in the product will meet your requirements or
that the operation of the product will be uninterrupted or error-free.

RadiSys warrants the diskette(s) on which the product is furnished to be free of
defects in materials and workmanship under normal use for a period of ninety (90)
days from the date of shipment to you.

LIMIT A TIO NS OF REMEDIES

RadiSys' entire liability shall be the replacement of any diskette that does not meet
RadiSys' limited warranty (above) and that is returned to RadiSys.

IN NO EVENT WILL RADISYS BE LIABLE FOR ANY DAMAGES,
INCLUDING LOST PROFITS OR SA VIN GS OR OTHER INCIDENT AL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY
TO USE THE PRODUCT EVEN IF RADISYS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

GENERAL

You may not sub license the product or assign or transfer the license, except as
expressly provided for in this agreement. Any attempt to otherwise sublicense,
assign, or transfer any of the rights, duties, or obligations hereunder is void.

This agreement will be governed by the laws of the state of Oregon.

Page iv

Bus Management for DOS Programmer's Reference Guide

If you have any questions regarding this agreement, please contact RadiSys by
writing to RadiSys Corporation, 15025 SW Koll Parkway, Beaverton, Oregon 97006.

YOU ACKNOWLEDGE THAT YOU HA VE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US WHICH
SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR
WRITTEN, AND ANY OTHER COMMUNICATION BETWEEN US RELATING
TO THE SUBJECT MA TIER OF THIS AGREEMENT.

Page v

Bus Management for DOS Programmer's Guide

NOTES

Page vi

Bus Management for DOS Programmer's Reference Guide

Table of Contents

1. Introducing Bus Management for DOS .. 1-1

1.1 How This Manual is Organized .. 1-2
1.2 What is Bus Management for DOS? ... 1-2

1.2. l Bus Management Library and BusManager
Device Driver .. 1-3
1.2.2 SURM .. 1-4

1.3 Programming, Compiling and Linking ... 1-4
1.3.l Header Files ... 1-4
1.3.2 Programming Interface .. 1-5

Calling Bus Management for DOS From MS "C"
and QuickC ... 1-6
Calling EPConnect From Borland Turbo C 1-6
Calling EPConnect from MS BASIC 1-6
Calling Bus Management for DOS From Assembly
Language ... 1-7

1.3.3 Compiling and Linking Applications 1-7
Compiling and Linking .MS BASIC Applications 1-8

1.4 What to do Next. ... 1-8

2. Function Descriptions ... 2-1

2.1 Introduction ... 2-1
2.2 Functions by Category .. 2-1

2.2. l Bus Access Functions .. 2-2
2.2.2 Byte-Swapping Functions .. 2-2
2.2.3 Block Copy Functions ... 2-3
2.2.4 Interrupt and Error Handling Functions 2-4
2.2.5 Bus Control Functions ... 2-5
2.2.6 Commander Functionality ... 2-6
2.2.7 Event/Response Functions ... 2-7
2.2.8 Servant Functionality ... 2-8
2.2.9 Other Functions .. 2-9

2.3 Functions By Name .. 2-10
EpcBiosVer ... 2-11
EpcBmVer .. 2-12
EpcCkBm .. 2-13
EpcCkintr .. 2-14
EpcDisErr ... 2-15
EpcDisintr ... 2-17

Page vii

Bus Management for DOS Programmer1s Guide

EpcEnErr ... 2-18
EpcEnlntr .. 2-20
EpcErGet. .. 2-22
EpcErQue .. 2-23
EpcErRedir ... 2-24
EpcErServlntr ... 2-26
EpcErServSig .. 2-28
EpcErUnredir .. 2-29
EpcErrStr .. 2-30
EpcElwsCmd .. 2-31
EpcFromVme .. 2-33
EpcFromVmeAm .. 2-37
EpcGetAccMode ... 2-41
EpcGetAmMap ... 2-43
EpcGetError .. 2-45
EpcGetlntr. .. 2-46
EpcGetSlaveAddr ... 2-48
EpcGetSiaveBase .. 2-50
EpcGetUla ... 2-52
EpcHwVer .. 2-53
EpcLwsCmd .. 2-54
EpcMapBus ... 2-56
EpcMemSwapL .. 2-57
EpcMemSwapW ... 2-58
EpcRestState ... 2-59
EpcSaveState .. 2-60
EpcSetAccMode ... 2-61
EpcSetAmMap .. 2-63
EpcSetError ... 2-65
EpcSetlntr ... 2-67
EpcSetSlaveAddr .. 2-70
EpcSetSiaveBase ... 2-72
EpcSetUla ... 2-74
EpcSiglntr ... 2-75
EpcSwapL ... 2-77
EpcSwapW .. 2-78
EpcTo V me .. 2-79
EpcToVmeAm .. 2-82
EpcVmeCtrl .. 2-86
EpcVxiCtrl .. 2-88
EpcWaitlntr ... 2-90

Page viii

Bus Management for DOS Programmer's Reference Guide

EpcWsCmd ... 2-93
EpcWsRcvStr .. 2-95
EpcWsServArm .. 2-97
Epc W sServ Peek .. 2-99
EpcWsServRcv ... 2-101
EpcWsServSend .. 2-103
EpcWsSndStr .. 2-105
EpcWsSndStrNe ... 2-107
EpcWsStat. .. 2-109

3. OLRM Functions .. 3-1

3.1 Calling the OLRM From MS C and QuickC 3-2
3.2 Calling the OLRM From MS BASIC and QuickBASIC 3-3
3.4 Functions by Name ... 3-4

OLRMAllocate ... 3-5
OLRMDeallocate .. 3-7
OLRMGetBoolAttr ... 3-8
OLRMGetList ... 3-11
OLRMGetNumAttr ... 3-13
OLRMGetStringAttr ... 3-16
OLRMRename : ... 3-18

4. Advanced Topics ... 4-1

4.1 Byte Ordering and Data Representation .. .4-1
5. I. I Byte Swapping Functions4-2
4.1.2 Correcting Data Structure Byte Ordering4-2

4.2 EPConnect Handler Execution Under DOS4-3
4.3 Writing Device Drivers .. .4-4

4.3. l General Information4-4
4.3.2 Using the VMEbus Window .. .4-5
4.3.3 Interrupts 4-6

Waiting for Interrupts .. .4-6
Interrupt Handlers .. .4-7

4.3.4 Building Resident Drivers .. .4-7
4.3.5 Writing Device Drivers In MSC and QuickC4-7

Using the MS C EPConnect Interface4-7
Using the MS QuickC EPConnect Interface4-8

Example 1: Using the VMEbus Window4-8
Example 2: Waiting for Interrupts .. .4-10
Example 3: Implementing Interrupt Handlers4-11

Page ix

Bus Management for DOS Programmer's Guide

4.3.6 Writing Device Drivers In Turbo C4-14
Using the Turbo "C" EPConnect Interface4- 14

4.3.7 C Optimization4-17

5. Error Messages ... 5-1

6. Support and Servivce ... 6-1

lndex ... 1-1

Page x

1. Introducing Bus
Management for DOS

This manual is intended for programmers using the Bus Management for DOS
programming interface to develop programs that control VXI I/O modules via the
VXI expansion interface on an EPC.

The Bus Management library is one of the application programming interfaces (APls)
that are part of EPConnect. You are expected to have read the EPConnectNXl for
DOS & Windows User's Guide for an understanding of what is in EPConnect, to learn
the terms and conventions used in this manual set, and how to install and configure the
Bus Management for DOS API for use on your system. You are not expected to have
in-depth knowledge of DOS.

The Bus Management for DOS API provides a powerful interface for interacting with
the VXIbus. RadiSys offers considerable flexibility by supplying interfaces for several
high-level languages. By observing the MS Pascal binding conventions, you can use
EPConnect with these languages. See Chapter 4, Advanced Topics, for more
information on programming.

Chapter 1 introduces you to the RadiSys Bus Management for DOS environment. In
it you will find the following:

• What is in this manual and how to use it

• What is Bus Management for DOS?

• Programming, Compiling and Linking

• What to do next

1-1

Bus Management for DOS Programmer's Reference Guide

1.1 How This Manual is Organized

This manual has five chapters:

Chapter 1, Introduction, introduces Bus Management for DOS and this manual.

Chapter 2, Function Descriptions, describes the major categories of functions and
gives complete descriptions of each function. Function descriptions are alphabetic by
function name.

Chapter 3, Advanced Topics, provides information for developing advanced
applications.

Chapter 4, Error Messages, contains an alphabetic listing of error messages generated
by EPConnect device drivers.

Chapter 5, Support and Service, describes how to contact RadiSys Technical Support
for support and service.

1.2 What is Bus Management for DOS?

Bus Management for DOS consists of those portions of the EPConnect software
package that are required by "CIC++" and Basic programmers developing VXI
applications that run under DOS on a RadiSys Embedded Personal Computer (EPC).
Figure 1-1 is a diagram of the Bus Management for DOS software architecture that
shows how the architecture relates to the VXlbus.

1-2

Introduction

Start-Up Resource

Manager (SURM.EXE)

Application

Programs

Bus Management Library
(EPCMSC.LIB)

BusManager (BIMGR.SYS)

VXlbus Hardware

Figure 1-1. Bus Management for DOS Architecture

1.2.1 Bus Management Library and BusManager Device
Driver

Bus Management for DOS consists of an application interface library
(EPCMSC.LIB) and a device driver (BIMGR.SYS). User-written DOS applications
access the VXIbus hardware by calling the functions supported by the interface
library, which in turn call the BusManager device driver. These functions allow DOS
applications to do the following:

• Handle VME interrupts and system errors.

• Transfer blocks of data to and from VXIbus devices, with BERR
detection.

• Control VXIbus word serial registers.

• Control EPC slave memory

• Query EPC driver, firmware, and hardware version or type.

The Bus Management library supports MS Basic compilers and ANSI-standard "C"
compilers, such as Microsoft CIC++ and Borland CIC++.

1-3

Bus Management for DOS Programmer's Reference Guide

The Bus Management Library is fully reentrant.

1.2.2 SURM

The Start-Up Resource Manager (SURM) is a DOS application that determines the
physical content of the system and configures the devices. It is typically the first
program to run after DOS boots. The SURM is the EPConnect implementation of
resource manager defined in the VXlbus specification. However, SURM extends the
specification definition to include non-VXIbus devices, such as VME devices and
GPIB instruments. The SURM uses the DEVICES file to obtain device information
not directly available from the devices. SURM accesses VXIbus devices in the
system directly.

1.3 Programming, Compiling and Linking

This section contains information about programming with Bus Management for
DOS. Included is a list of the header files provided, the programming interfaces, and
compiling and linking hints.

1.3.1 Header Files

Bus Management for DOS provides the following header files:

BMBLIB.BI

BUSMGR.H

An MS BASIC header file containing constant and function
declarations required for using EPConnect with MS BASIC.

A "C" header file containing the constant definitions, macro
definitions, and function prototypes required to compile applications
using any Microsoft or Borland "C" or C++ compiler.

BUSMGR.INC A copy of BUSMGR.H that's been converted so that it is suitable
for inclusion into an assembly language source file.

1-4

Introduction

EPC_OBM.H A "C" header file containing the constant definitions, macro
definitions, structure definitions, and function prototypes required to
compile EPConnect applications for DOS.

EPCSTD.H

EPC_OBM.H should never be included in a source file directly.
BUSMGR.H includes EPC_OBM.H.

A "C" header file containing macro definitions to standardize non­
ANSI, compiler-dependent keywords. By using the macros defined
here, an application can compile successfully using any revision of
Microsoft or Borland "C" or C++ compiler without modifying the
source file.

EPCSTD.H should never be included tn a source file directly.
BUSMGR.H includes EPC_OBM.H.

VMEREGS.H A "C" header file containing constant and macro definitions for
accessing the EPC VMEbus control registers.

VMEREGS.INCA copy of VMEREGS.H that has been converted so that it is
suitable for inclusion into an assembly language source file.

All Bus Management for DOS header files contain an #if/#endif pair surrounding the
contents of the header file so that the file can be included multiple times without
causing compiler errors.

All "C" header files also contain extern "C"{} bracketing for C++ compilers.
Because extern "C" is strictly a C++ keyword, it is also bracketed and only visible
when compiling under C++ and not standard "C."

1-5

Bus Management for DOS Programmer's Reference Guide

1.3.2 Programming Interface

Bus Management for DOS functions are accessible through interfaces for assembly
language, "C", and BASIC languages. The following table shows the interface
libraries and definition files for each of the language interfaces.

Language

MS "C"

Borland "C"

MS BASIC

Assembly

Library files

EPCMSC.LIB

EPCMSC.LIB

EPCMSC.LIB

EPCMSC.LIB

Definition files

BUSMGR.H

BUSMGR.H

BMBLIB.BI

BUSMGR.INC

The use of these files is discussed in the following sections.

Calling Bus Management for DOS From MS "C" and QuickC

The "C" language interface ·is designed to work with Version 5.1 and later versions of
the Microsoft "C" compiler and libraries. The libraries are created for the large
memory model (far code and far data). This is sufficient for linking programs of any
model size, due to the prototyping of all library functions in the include files. The
include files provide strong type checking and convert near code and data to far code
and data for programs using the small (near code and near data), compact (near code
and far data), or medium (far code and near data) memory models.

Calling EPConnect From Borland Turbo C

Bus Management for DOS was designed to work with the Microsoft "C" compilers
and can be used with the Borland "C" compilers as well.

Calling EPConnect from MS BASIC

The BASIC language interface is designed to work with Version 7.0 and later versions
of the Microsoft BASIC compiler and libraries. The libraries are created for the large
memory model (far code and far data). This is sufficient for linking programs of any
model size, due to the prototyping of all library functions in the include files. The
include files provide strong type checking and convert near code and data to far code
and data for programs using the small (near code and near data), compact (near code
and far data), or medium (far code and near data) memory models.

1-6

Introduction

Calling Bus Management for DOS From Assembly language

Assembly language programs can use Bus Management for DOS functions through
the BMINT interrupt (interrupt 66h). Include the file BUSMGR.INC, which
contains a set of data definitions needed to call Bus Management for DOS functions,
in your assembly language program.

1.3.3 Compiling and Linking Applications

NOTE: For specific compiler and/or linker options, refer to your compiler's
documentation.

The following examples assume that EPConnect software has been installed in the
C:\EPCONNEC directory.

Compiling and Linking CIC++ Applications

When compiling Bus Management for DOS applications, ensure that the Bus
· Management for DOS header files are in the compiler search path. by doing one of the
following:

1. Specify the entire header file pathname when including the header file in the
source file.

2. Specify C:\EPCONNEC\INCLUDE as part of the header file search path at
compiler invocation time.

3. Specify C:\EPCONNEC\INCLUDE as part of the header file search path
environment variable.

Also, ensure that Bus Management for DOS libraries are in the linker search path by
doing one of the following:

1. Specify the entire library pathname when linking object files.

2. Specify C:\EPCONNEC\LIB as part of the linker library search path.

1-7

Bus Management for DOS Programmer's Reference Guide

Compiling and Linking MS BASIC Applications

When compiling Bus Management for DOS BASIC applications, ensure that the
BMBLIB.BI header file is in the compiler search path by doing one of the following:

1. Specify the entire header file pathname when including the header file in the
source file.

2. Specify C:\EPCONNEC\INCLUDE as part of the header file search path at
compiler invocation time.

3. Specify C:\EPCONNEC\INCLUDE as part of the header file search path
environment variable INCLUDE.

Also, ensure that Bus Management for DOS libraries are in the linker search path by
doing one of the following:

1. Specify the entire library pathname when linking object files.

2. Specify C:\EPCONNEC\LIB as part of the linker library search path.

1.4 What to do Next

1-8

I. If Bus Management for DOS software is not pre-installed on your system,
install and configure your system using the procedures in Chapter 2 of the
EPConnectNX!for DOS & Windows User's Guide.

2. Refer to the error messages in Chapter 5 of this manual for corrective
action information about device driver installation errors.

3. Refer to the function descriptions in Chapter 2 of this manual for details
about a function and/or its parameters to develop applications.

4. Refer to the sample programs included with EPConnect software under
the C:\EPCONNEC\SAMPLES\BUSMGR.DOS directory.

2. Function Descriptions

2.1 Introduction

This chapter lists the Bus Management for DOS functions by category and by name.
It is for the programmer who needs a particular fact, such as what function performs a
specific task or what a function's arguments are.

The first section lists the functions categorically by the task each performs. It also
gives you a brief description of what each function does. The second section lists the
functions alphabetically and describes each function in detail.

2.2 Functions by Category

The categorical listing provides an overview of the operations performed by the
EPConnect functions. Included with each category is a description of the operations
performed, a listing of the functions in the category, and a brief description of each
function.

The categories of the Bus Management for DOS library functions include:

• Bus Access

• Byte-Swapping
• Block Copy

• Interrupt and Error Handling
• Bus Control

• Commander Functionality

• Servant Functionality

• Event/Response Functions
• Other Functions

2-1

I

Bus Management for DOS Programmer's Reference Guide

2.2.1 Bus Access Functions

Bus Access functions allow Bus Management applications to access VXIbus registers
and VMEbus memory. Bus Access functions include the following:

EpcGetAccMode

EpcGetAmMap

EpcMapBus

EpcRestState

EpcSaveState

EpcSetAccMode

EpcSetAmMap

Queries the current bus access mode.

Queries the current access mode and bus window
base address.

Maps the bus window onto the VMEbus.

Restores an access mode and a bus window base
that were previously saved by a call to
EpcSaveState.

Preserves the current access mode and bus
window in a caller-supplied area.

Defines the current bus access mode.

Defines the bus access mode and bus window
base.

2.2.2 Byte-Swapping Functions

Byte-swapping functions convert data from Intel (80x86) format to Motorola (68xxx)
format and vice versa. Byte-swapping functions include the following:

EpcMemSwapL Byte-swaps an array of 32-bit values.

EpcMemSwapW Byte-swaps an array of 16-bit values.

EpcSwapL Byte-swaps a single 32-bit value.

EpcSwapW Byte-swaps a single 16-bit value.

2-2

EpcBiosVer

2.2.3 Block Copy Functions

The block copy functions efficiently copy blocks of memory between EPC memory
and VMEbus memory.

Block Copy functions include the following:

EpcFromVme

EpcFromVmeAm

EpcToVme

EpcToVmeAm

Copies consecutive VMEbus locations to
consecutive EPC locations using the current
access mode.

Copies consecutive VMEbus locations to
consecutive EPC locations using the specified
access mode.

Copies consecutive EPC locations to consecutive
VMEbus locations using the current access mode.

Copies consecutive EPC locations to consecutive
VMEbus locations using the specified access
mode.

2-3

Bus Management for DOS Programmer's Reference Guide

2.2.4 Interrupt and Error Handling Functions

A handler is a subroutine that is called when an interrupt or error occurs. This
comparatively low-level passing of control requires that the handler obey some rather
strict rules, but it allows quick response to other devices. Refer to Chapter 4,
Advanced Topics, for more information about interrupt and error handling.

Interrupt and error handling functions include the following:

EpcCklntr

EpcDisErr

EpcDislntr

EpcEnErr

EpcEnlntr

EpcGetError

EpcGetlntr

EpcSetError

EpcSetlntr

EpcSiglntr

EpcWaitlntr

2-4

Queries the VMEbus interrupt being asserted by
this EPC.

Disables a specified error without affecting
handler assignment.

Disables a specified interrupt without affecting
handler assignment.

Enables a specified error without affecting
handler assignment.

Enables a specified interrupt without affecting
handler assignment.

Queries a specified error's current handler
function and stack.

Queries an interrupt's current handler function and
stack.

Defines a specified error's handler function and
stack.

Defines a specified interrupt's handler function
and stack.

Signals (asserts or deasserts) a VMEbus interrupt.

Waits for an interrupt to occur.

EpcBiosVer

2.2.5 Bus Control Functions

Bus control functions give applications access to EPC and VXlbus control and
configuration parameters. Bus Control functions include the following:

EpcGetSlaveAddr Queries the current address space and base
address of the EPC's slave memory.

EpcGetSlaveBase

EpcGetUla

EpcSetSiaveAddr

EpcSetSlaveBase

EpcSetUla

EpcVmeCtrl

EpcVxiCtrl

Queries the current base address of the EPC's
slave memory.

Queries the unique logical address (ULA) of the
EPC.

Defines the current address space and base
address of the EPC's slave memory.

Defines the current base address of the EPC's
slave memory.

Defines the unique logical address (ULA) of the
EPC.

Queries or defines VMEbus interface control bits.

Queries or defines VXIbus interface control bits.

2-5

Bus Management for DOS Programmer's Reference Guide

2.2.6 Commander Functionality

Commander functions control the EPC's message registers. When two devices on the
system communicate directly, one device is the commander and the other device is the
servant. A device may be the commander to any number of servants, but each device
may be a servant to only one commander. At the root of this tree there is one device
that has no commander, only zero or more servants. This device is called the top-level
commander.

Commander functions include the following:

EpcElwsCmd

EpcLwsCmd

EpcWsCmd

EpcWsRcvStr

EpcWsSndStr

EpcWsSndStrNe

EpcWsStat

2-6

Sends an extended longword serial command.

Sends a longword serial command.

Sends a word serial command.

Receives a series of bytes.

Sends a series of bytes, setting the END bit on the
last byte.

Sends a series of bytes without setting the END
bit on the last byte.

Returns the word-serial status of a device.

EpcBiosVer

2.2.7 Event/Response Functions

VXIbus events and responses (collectively called E/Rs) get special handling. They
arrive either in the signal register or as the Status/ID returned in response to an
interrupt acknowledge for a VMEbus interrupt. All E/Rs are queued, to preserve the
sequence of responses and events.

When a value is placed in the signal register, the signal FIFO is emptied into the
BusManager-maintained E/R queue. The BusManager uses the hardware signal
interrupt internally to maintain this queue. VMEbus interrupts may be designated as
sources of events and responses so that the Status/IDs returned in response to interrupt
acknowledges are recognized as E/Rs and placed in the E/R queue as well.

Event and Response functions include the following:

EpcErGet

EpcErQue

EpcErRedir

EpcErUnredir

Dequeues and returns the oldest event/response.

Queues the supplied value as the newest element
in the event/response queue.

Assigns a VMEbus interrupt as a VXIbus
event/response interrupt.

De-assigns a VMEbus interrupt as a VXIbus
event/response interrupt.

2-7

Bus Management for DOS Programmer's Reference Guide

2.2.8 Servant Functionality

EPConnect provides support for using an EPC as a message-based servant device in a
VXIbus system. This functionality is specific to the VMEbus extension for
instrumentation (VXI) and is not supported by most VMEbus modules.

Servant functions include the following:

EpcWsServArm

EpcWsServPeek

EpcWsServRcv

EpcWsServSend

EpcErServlntr

EpcErServSig

2-8

Arms the EPC so that it can receive a command.

Waits for a command to arrive without removing
the incoming command.

Waits for a command to arrive and receives the
incoming command.

Sends a response to the EPC's commander.

Sends an event/response to a commander using a
VMEbus interrupt.

Sends an event/response to a commander using a
VXIbus signal.

EpcBiosVer

2.2.9 Other Functions

This section describes functions that allow you to get information about the version of
the BusManager software, the EPC hardware, and the BIOS. A function that indicates
whether the BusManager device driver is currently loaded in the system and a function
to obtain descriptive error strings are also provided.

"Other" functions include the following:

EpcBiosVer

EpcBmVer

EpcCkBm

EpcErrStr

EpcHwVer

Queries the BIOS version number.

Queries the BusManager software version
number.

Determines whether the BusManager software is
currently loaded.

Returns a string describing the specified
BusManager error:

Queries the EPC's hardware version number.

2-9

I

Bus Management for DOS Programmer's Reference Guide

2.3 Functions By Name

This section contains an alphabetical listing of the BusManager library functions.
Each listing describes the function, gives its invocation sequence and arguments,
discusses its operation, and lists its returned values.

Each Bus Management program should call EpcCkBm once, and test for
EPC_SUCCESS to verify that the BusManager is operational.

2-10

EpcBiosVer

Description

C Synopsis

EpcBiosVer

Queries the BIOS version number.

short FAR PASCAL
EpcBiosVer(void);

MS BASIC Synopsis

Remarks

See Also

DECLARE FUNCTION EpcBiosVer%
biosversion% = EpcBiosVer%

This function returns the version number of the EPC BIOS. The
BIOS version number consists of the major and minor version
numbers of the BIOS that is installed in the EPC. The BIOS version
number is returned with the major version number in the high-order
byte and the minor version number in the low-order byte.

EpcBmVer, EpcCkBm, EpcHwVer.

2-11

Bus Management for DOS Programmer's Reference Guide

EpcBmVer

Description

C Synopsis

Queries the Bus Manager for DOS software version number.

short FAR PASCAL
EpcBmVer(void);

MS BASIC Synopsis

Remarks

See Also

2-12

DECLARE FUNCTION EpcBmVer%
bmversion% = EpcBm Ver%

The function returns the version number of the Bus Manager for
DOS software. The Bus Manager for DOS version number consists
of a major version and minor version number assigned to the Bus
Manager software running on the EPC. The Bus Manager version
number is returned with the major version number in the high-order
byte and the minor version number in the low-orde,r byte.

EpcBiosVer, EpcCkBm, EpcHwVer.

EpcCkBm

Description

C Synopsis

EpcCkBm

Determines whether the Bus Manager for DOS software is currently
loaded.

short FAR PASCAL
EpcCkBm(void);

MS BASIC Synopsis

DECLARE FUNCTION EpcCkBm%
ok% = EpcCkBm%

Remarks The function determines whether the BusManager driver is installed
in the system, is in operation, and is able to communicate with the
calling application.

Return Value The following return values are supported:

See Also

Constant

ERR_FAIL

EPC_SUCCESS

Description

The library was unable to access the
BusManager driver.

Successful function completion.

EpcBiosVer, EpcBmVer, EpcHwVer.

2-13

I

Bus Management for DOS Programmer's Reference Guide

EpcCklntr

Description

C Synopsis

Queries the VMEbus interrupt being asserted by this EPC.

short FAR PASCAL
EpcCklntr(void);

MS BASIC Synopsis

Remarks

Return Value

See Also

2-14

DECLARE FUNCTION EpcCklntr%
interrupt% = EpcCklntr%

This function returns the number of the VMEbus interrupt being
asserted by this EPC. If no interrupt is being asserted (that is, if the
last interrupt has been acknowledged) then zero is returned.
Interrupt acknowledgment is simply a hardware handshake and not
an indication that the remote interrupt handling code has been
executed.

The following return values are supported:

Constant

0

BM_ VME_INTRI

BM_ VME_INTR7

EpcSiglntr.

Description

No VMEbus interrupts are asserted.

The EPC is currently asserting VMEbus
interrupt I.

The EPC is currently asserting VMEbus
interrupt 7.

EpcDisErr

Description

C Synopsis

EpcDisErr

Disables a specified error without affecting handler assignment.

short FAR PASCAL
EpcDisErr(short error);

error Error number

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcDisErro/o(BYV AL error%)
ok% = EpcDisErro/o(erroro/o)

The function disables the specified error without affecting the
handler assignment. If the specified error condition occurs, the
associated handler is not called. Use EpcEnErr to enable a disabled
error.

The parameter error specifies the error condition to disable. The
following constants define valid values for error:

Constant Description

BM_SYSF AIL_ERR SYSFAIL assertion.

BM_BERR_ERR VMEbus BERR.

BM_ACFAIL_ERR ACFAIL assertion.

BM_ WATCHDOG_ERR Watchdog timer expiration.

2-15

Bus Management for DOS Programmer's Reference Guide

Return Value The following return values are supported:

See Also

2-16

Constant

ERR_FAIL

EPC_SUCCESS

Description

The library was unable to access the
BusManager driver.

Successful function completion.

EpcEnErr, EpcGetError, EpcSetError.

EpcDislntr

Description

C Synopsis

EpcDislntr

Disables a specified interrupt without affecting handler assignment.

short FAR PASCAL
EpcDislntr(short interrupt);

interrupt Interrupt number.

MS BASIC Synopsis

Remarks

Return Value

See Also

DECLARE FUNCTION EpcDislntr%(BYVAL interrupt%)
ok% = EpcDislntr%(inte rrupto/o)

The parameter interrupt specifies the interrupt condition to disable.
The following constants define valid values for interrupt:

Constant
BM_MSG_INTR

BM_ VME-_INTRl

BM_ VME_INTR7

BM_ER_INTR

Description
Message interrupt.

VMEbus interrupt I.

VMEbus interrupt 7.

Event/Response interrupt.

BM_TTLTRGO_INTR TTL trigger interrupt 0 (EPC-7 only).

BM_TTLTRG7_1NTR TTL trigger interrupt 7 (EPC-7 only).

The function is used to temporarily mask off an interrupt. Use
EpcEnlntr to enable a disabled interrupt.

The following return values are supported:

Constant

ERR_FAIL

EPC_SUCCESS

Description

The library was unable to access the
BusManager driver.

Successful function completion.

EpcEnlntr, EpcGetlntr, EpcSetlntr, EpcWaitlntr.

2-17

I

Bus Management for DOS Programmer's Reference Guide

EpcEnErr

Description

C Synopsis

Enables a specified error without affecting handler assignment.

short FAR PASCAL
EpcEnErr(short error);

error Error number.

MS BASIC Synopsis

Remarks

2-18

DECLARE FUNCTION EpcEnErr%(BYV AL error%)
ok% = EpcEnErr%(error%)

The parameter error specifies the error condition to enable. The
following constants define valid values for error:

Constant Description

BM_SYSF AIL_ERR SYSFAIL assertion.

BM_BERR_ERR Bus error (BERR).

BM_ACFAIL_ERR ACFAIL assertion.

BM_ WATCHDOG_ERR Watchdog timer expiration.

The function enables reception of an error condition. EpcEnErr
should only be used to reverse the effect of a previous EpcDisErr,
because no check is made to make sure a handler is assigned to the
specified error. If no handler is assigned for the specified error, the
error is associated with a default handler. This default handler
disables the error when it occurs.

EpcEnErr enables the specified error unconditionally -- there is no
nesting of EpcDisErr/EpcEnErr pairs.

Calling EpcSetError to assign a handler to an error immediately
enables the specified error, and a call to EpcEnErr is unnecessary.

Return Value

See Also

EpcEnErr

The following return values are supported:

Constant

ERR_FAIL

EPC_SUCCESS

Description

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

EpcDisErr, EpcGetError, EpcSetError.

2-19

I

Bus Management for DOS Programmer's Reference Guide

EpcEnlntr

Description

C Synopsis

Enables a specified interrupt without affecting handler assignment.

short FAR PASCAL
EpcEnlntr(short interrupt);

interrupt Interrupt number.

MS BASIC Synopsis

Remarks

2-20

DECLARE FUNCTION EpcEnlntr%(BYV AL interrupt%)

ok% = EpcEnintr%(interrupt%)

The parameter interrupt specifies the interrupt condition to enable.
The following constants define valid values for interrupt:

Constant

BM_MSG_INTR

BM_ VME_INTRl

BM_ VME_INTR7

BM_ER_INTR

Description

Message interrupt.

VMEbus interrupt I.

VMEbus interrupt 7.

EvenUResponse interrupt.

BM_TTLTRGO_INTR TIL trigger interrupt 0 (EPC-7 only).

BM_TTLTRG7_1NTR TIL trigger interrupt 7 (EPC-7 only).

The function enables reception of an interrupt condition.
EpcEnlntr function should only be used in conjunction with
EpcDislntr, because no check is made to make sure a handler is
assigned to the specified interrupt.

EpcEnlntr enables the specified interrupt unconditionally - there is
no "nesting" of EpcDislntr!EpcEnlntr pairs.

Return Value

See Also

EpcEnlntr

Calling EpcSetlntr to assign a handler to a bus interrupt
immediately enables the specified interrupt; a call to EpcEnlntr is
unnecessary.

The following return values are supported:

Constant

ERR_FAIL

EPC_SUCCESS

Description

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

EpcDislntr, EpcGetlntr, EpcSetlntr, EpcWaitlntr.

2-21

I

Bus Management for DOS Programmer's Reference Guide

EpcErGet

Description

C Synopsis

Dequeues and returns the oldest event/response.

short FAR PASCAL
EpcErGet(unsigned short FAR* er _pointer);

er_pointer Location where the dequeued
event/response will be placed ..

MS BASIC Synopsis

NONE

Remarks This function dequeues and returns the oldest event/response. If the
returned value is the last entry in the queue, the E/R interrupt is
deasserted.

Return Value This function returns TRUE if the queue is non-empty.

See Also EpcErRedir, EpcErQue, EpcErUnredir.

2-22

EpcErQue

Description

C Synopsis

EpcErQue

Queues the supplied value as the newest element in the
event/response queue.

short FAR PASCAL
EpcErQue(unsigned short er);

er Event/response value to be queued.

MS BASIC Synopsis

NONE

Remarks This function queues er as the newest element in the event/response
queue. The E/R interrupt is asserted (since the queue is now non­
empty). If the handler is installed for the E/R interrupt and the E/R
interrupt is enabled, the installed handler will be called before this
function returns.

Return Value This function returns FALSE if the queue is full.

See Also EpcGetError.

2-23

I

Bus Management for DOS Programmer's Reference Guide

EpcErRedir

Description

C Synopsis

Assigns a VMEbus interrupt as a VXlbus interrupt.

short FAR PASCAL
EpcErRedir(short interrupt);

interrupt VMEbus interrupt from which to redirect E/Rs

MS BASIC Synopsis

Remarks

2-24

DECLARE FUNCTION EpcErRedir%(BYV AL interrupt%)

ok% = EpcErRedir%(interrupt%)

This function allows a commander to redirect the designated
interrupt as a source for receipt of events and responses from
servants.

The following constants define valid values for interrupt:

Constant
BM_ VME_INTRl

BM_ VME_INTR7

Description
VMEbus interrupt I.

VMEbus interrupt 7.

When an interrupt is redirected, the interrupt is enabled.

At system restart no interrupts are redirected. Any number of
VMEbus interrupts may be redirected.

There must be a redirected interrupt any time there is a slave-only
VXIbus interrupter device, because slave-only devices cannot write
to the signal register and must then communicate using interrupts.

An interrupt may not both be redirected and have a handler assigned
to it; if it does, ERR_FAIL is returned.

EpcErRedir

After a redirected interrupt is asserted and acknowledged, the low
16 bits of the returned Status/ID are placed in the E/R queue. An
E/R interrupt is then asserted (because the queue is no longer
empty).

Return Value The following return values are supported:

See Also

Constant

ERR_FAIL

EPC_SUCCESS

Description

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

EpcErGet, EpcErUnredir.

2-25

I

Bus Management for DOS Programmer's Reference Guide

EpcErServlntr

Description

C Synopsis

Sends an event/response to a commander using a VMEbus interrupt.

short FAR PASCAL
EpcErServlntr(short interrupt, unsigned short er);

interrupt

er

VMEbus interrupt to assert to send the
event/response.

Event/response value to send.

MS BASIC Synopsis

Remarks

2-26

DECLARE FUNCTION EpcErServlntr%(BYVAL interrupt%,
BYVALer%)

ok% = EpcErServlntr%(i!lferrupt%, er%)

Sends an event/response to a commander device using a VMEbus
interrupt. This function is used to implement a VXIbus servant
interface on the EPC.

The following constants define valid values for interrupt:

Constant
BM_ VME_INTRl

BM_ VME_INTR7

Description
VMEbus interrupt 1 (EPC-2 and EPC-7
only).

VMEbus interrupt 7 (EPC-2 and EPC-7
only).

If a word serial command from the commander is present in the
EPC's message register, that command is saved before the register is
used. If the register contains outgoing data, this function waits until
the commander has read the data before signaling the interrupt.

EpcErServlntr

Return Value The following return values are supported:

Constant

ERR_FAIL

EPC_SUCCESS

See Also EpcErServSig.

Description

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

2-27

Bus Management for DOS Programmer's Reference Guide

EpcErServSig

Description Sends an event/response to a commander using a VXlbus signal.

C Synopsis

short FAR PASCAL
EpcErServSig(unsigned short ula, unsigned short er);

ula ULA of the commander to which the signal is sent.

er Event/response value to send.

MS BASIC Synopsis

DECLARE FUNCTION EpcErServSig%(BYV AL ulao/o, BYV AL
ero/o)

oko/o = EpcErServSig%(u/a%, ero/o)

Remarks Signals the EPC's commander by placing a value in the
commander's signal register. This function is used in implementing
a VXIbus servant interface on the EPC.

Return Value The following return values are supported:

Constant

ERR_BERR

ERR_FAIL

EPC_SUCCESS

See Also EpcErServlntr.

2-28

Description

Commander has no signal register, or its
signal queue is full.

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

EpcErUnredir

EpcErUnredir

Description

C Synopsis

Deassigns a VMEbus interrupt as a VXIbus Event/Response
interrupt.

short FAR PASCAL
EpcErUnredir(short interrupt);

interrupt VMEbus interrupt from which to stop
redirecting ERs

MS BASIC Synopsis

Remarks

Return Value

See Also

DECLARE FUNCTION EpcErUnrediro/o(BYVAL interrupt%)

oko/o = EpcErUnrediro/o(interrupto/o)

This function deassigns interrupt as a VXlbus Event/Response
interrupt and makes it available as a regular VMEbus interrupt.

The following constants define valid values for interrupt:

Constant Description

BM_ VME_INTRl VMEbus interrupt I.

BM_ VME_INTR7 VMEbus interrupt 7.

The following return values are supported:

Constant

ERR_FAIL

EPC_SUCCESS

EpcErGet, EpcErRedir.

Description

A failure occurred while attempting to
unredirect an interrupt that is not
redirected.

Successful function completion.

2-29

I

Bus Management for DOS Programmer's Reference Guide

EpcErrStr

Description

C Synopsis

Queries a string describing a specified BusManager error.

char FAR* FAR PASCAL
EpcErrStr(int retcode);

retcode BusManager return value.

MS BASIC Synopsis

Remarks

Return Value

See Also

2-30

NONE

The function returns a pointer to a string describing the BusManager
return value retcode:

short retcode;
if ((retcode = EpcCkBm() !=EPC_SUCCESS)

printf("Error: %\n", EpcErrStr(retcode));
exit(l);

NONE

EpcCkBm.

EpcElwsCmd

EpcElwsCmd

Description

C Synopsis

Sends an extended longword serial command.

short FAR PASCAL
EpcElwsCmd(unsigned short ula, unsigned short FAR*
command, unsigned short wait);

ula Servant's unique logical address.

command Command to send.

wait Timeout, in milliseconds.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcElwsCmd%(BYVAL ula%, SEG
cmd%, BYVALwait%)

DIM cmd%[3]

ok% = EpcEiwsCmd%(u/a%, cmd%, wait%)

Send one extended longword serial command. A command will be
sent only when the servant device's WRDY bit is set.

Note: Extended longword serial commands do not generate a reply.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-31

I

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-32

The following return values are supported:

Constant

EPC_SUCCESS

ERR_BERR

ERR_FAIL

ERR_RBERR

ERR_RTIMEOUT

ERR_ TIMEOUT

ERR_WS

Description

Successful function completion.

A bus error occurred sending a word
serial command.

A failure occurred while the library was
communicating with the BusManager
driver.

A bus error occurred receiving a word
serial command response.

A timeout occurred receiving a word
serial command response.

A timeout occurred sending a word serial
command.

A word serial protocol error occurred.

EpcLwsCmd, EpcWsCmd.

EpcFromVme

EpcFromVme

Description

C Synopsis

Copies data from consecutive VMEbus locations to consecutive
EPC locations using the current access mode.

unsigned short FAR PASCAL
EpcFromVme(short width, unsigned long source, char FAR

*dest, unsigned short count);

width

source

de st

count

Number of data bits to copy per bus
access.

Source address on the VMEbus.

Destination address in EPC memory.

Number of bytes to transfer.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcFrom Vme%(BYV AL width%,
BYV AL source&, SEG desto/o, BYV AL count%)

DIM source%[...]

ok% = EpcFromVme%(width%, source&, desto/o, count%)

This function copies data from consecutive VMEbus locations to
consecutive EPC locations using the current access mode. The
current access mode is the address modifier and byte order set by
the most recent EpcRestState or EpcSctAmMap call. The bus
window is saved, altered as necessary during the copy, and restored
upon completion of the copy. This function is intended for use in
transferring large amounts of data to consecutive locations.

The count parameter should always express the number of bytes to
be transferred regardless of the copy width specified. Setting count
to zero specifies a transfer of zero bytes and nothing is transferred.

2-33

I

Bus Management for DOS Programmer's Reference Guide

2-34

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. Transfers are always aligned on natural
boundary; 16-bit quantities are written to the VMEbus only at even
addresses, and 32-bit quantities are written to the VMEbus only at
addresses evenly divisible by 4.

Valid values for the width parameter are as follows:

Constant Description

BM_ W8 8-bit copy width

BM_ W80 8-bit copy width, odd-only copy

BM_ W16 16-bit copy width

BM_ W32 32-bit copy width

BM_F ASTCOPY Don't check for intermediate bus errors. This
constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion - a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred. Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

EpcFromVme

• This "read-modify-write" sequence is done in software,
and is not a RMW bus cycle.

• If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

When you specify 8-bit, odd-only transfers (BM_ W80), the
VMEbus address "spins" twice as fast as the EPC address. That is,
for i = 0 to (count - 1), dest + i receives
src + (i x 2) + 1.

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width parameter with BM_F ASTCOPY before
calling the copy function, BERR is checked only after transfers to
nonaligned locations. Fast copying uses "Move String" instructions
to quickly copy blocks of data. By taking advantage of pipelining in
the processor and the VMEbus interface hardware, fast copy
transfers are five times faster than transfers without
BM_FASTCOPY. There are risks, however: a BERR may go
undetected, or the BERR error handler may be called erroneously (if
a transfer - still in the pipeline when the function returns - causes a
BERR). Generally you should select the fast copy option.

BM_FASTCOPY is ignored when you specify 8-bit, odd-only
transfers (BM_ W80).

2-35

II

Bus Management for DOS Programmer's Reference Guide

Return Value The following return values are supported:

See Also

2-36

Constant

ERR_BERR

EPC_SUCCESS

Description

The function returns the number of bytes
not transferred.

Successful function completion.

EpcFromVmeAm, EpcRestState, EpcSetAmMap, EpcToVme,
EpcToVmeAm.

EpcFromVmeAm

EpcFromVmeAm

Description

C Synopsis

Copies consecutive VMEbus locations to consecutive EPC locations
using the specified access mode.

unsigned short FAR PAS CAL
EpcFromVmeAm(short mode, short width, unsigned long source,

char FAR *dest, unsigned short count);

mode

width

source

de st

count

Access mode.

Number of data bits to copy per bus
access.

Source address on the VMEbus.

Destination address in EPC memory.

Number of bytes to transfer.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcFromVmeAm%(BYVAL mode%,
BYV AL width%, BYV AL source&, SEG desto/o,
BYVAL count%)

DIM src%[...]

ok% = EpcFromVmeAm%(mode%, width%, source&, desto/o,
count%)

This function copies data from consecutive VMEbus locations to
consecutive EPC locations using the specified access mode. The
current access mode and bus window are saved, altered as specified
during the copy, and restored upon completion of the copy.

The parameter mode is an OR'd combination of a byte order
constant and an address modifier constant.

2-37

Bus Management for DOS Programmer's Reference Guide

2-38

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant:

addrmod

The following constants are valid byte order constants:

Constant

BM_ IBO

BM_MBO

Description

Little-endian (Intel 386-style) byte order

Big-endian (Motorola 68000-style) byte order

The following constants define valid address modifier constants:

Constant Description

A16N A16 non privileged address modifier

Al6S Al6 supervisor address modifier

A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier

A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier

A32ND A32 non privileged data address modifier

A32NP A32 non privileged program address modifier

A32SD A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. VMEbus transfers are always aligned on
natural boundary; 16-bit quantities are written to the VMEbus only
at even addresses, and 32-bit quantities are written to the VMEbus
only at addresses evenly divisible by 4.

EpcFromVmeAm

Valid values for the width parameter are defined as follows:

Constant Description

BM_ W8 8-bit copy width

BM_ W80 8-bit copy width, odd-only copy

BM_ W16 16-bit copy width

BM_ W32 32-bit copy width

BM_FASTCOPY Don't check for intermediate bus errors. This
constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion - a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred. Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

• This "read-modify-write" sequence is done in software,
and is not a RMW bus cycle.

• If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

When you specify 8-bit, odd-only transfers (BM_ W80), the
VMEbus address "spins" twice as fast as the EPC address. That is,
for i 0 to (count - 1), dest + i receives
src + (i x 2) + 1.

2-39

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-40

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width with BM_F ASTCOPY before calling the copy
function, BERR is checked only after transfers to nonaligned
locations. Fast copying uses "Move String" instructions to move
"blocks" of data. By taking advantage of pipelining in the processor
and the VMEbus interface hardware, fast copy transfers are five
times faster than transfers without BM_FASTCOPY. There are
risks, however: a BERR may go undetected, or the BERR error
handler may be called erroneously (if a transfer - still in the pipeline
when the function returns - causes a BERR). Generally, however,
you should select the fast copy option.

The Fast Copy flag (BM_FASTCOPY) is ignored when you
specify 8-bit, odd-only transfers (BM_ W80).

The function returns EPC_SUCCESS on successful completion.
Otherwise, the function returns the number of bytes not transferred.
This indicates there was a VMEbus error (BERR).

EpcFromVme, EpcToVme, EpcToVmeAm.

EpcGetAccMode

EpcGetAccMode

Description

C Synopsis

Queries the current bus access mode.

short FAR PASCAL
EpcGetAccMode(void);

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcGetAccMode%
oldmode% = EpcGetAccMode%

The function returns the EPC's current access mode.

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant:

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I :;;,II 0 H addnnod

The following constants are valid byte order constants:

Constant

BM_IBO

BM_MBO

Description

Little-endian (Intel 386-style) byte order

Big-endian (Motorola 68000-style) byte order

2-41

I

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-42

The following constants define valid address modifier constants:

Constant Description

Al6N AI6 non privileged address modifier

A16S A 16 supervisor address modifier

A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier

A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier

A32ND A32 non privileged data address modifier

A32NP A32 non privileged program address modifier

A32SD A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

Although still supported, EpcGetAccMode functionality has been
superseded by EpcGetAmMap.

If successful, the function returns the bus' current access mode.
Otherwise, the function returns ERR_F AIL.

EpcGetAmMap, EpcRestState, EpcSaveState, EpcSetAccMode,
EpcSetAmMap.

EpcGetAmMap

EpcGetAmMap

Description

C Synopsis

Queries the current access mode and bus window base address.

short FAR PASCAL
EpcGetAmMap(unsigned short FAR *accessmode, unsigned

long FAR *busaddress);

accessmode

busaddress

Location where the current access mode
will be placed.

Location where the current bus window
address will be placed.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcGetAmMap%(SEG accessmode%,
SEG busaddress&)

returncode% = EpcGetAmMap%(accessmode%, busaddress&)

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant, as follows:

addrmod

The following constants are valid byte order constants:

Constant

BM_IBO

BM_MBO

Description

Little-endian (Intel 386-style) byte order

Big-endian (Motorola 68000-style) byte order

2-43

I

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-44

The following constants define valid address modifier constants:

Constant Description

A16N Al6 non privileged address modifier

A16S Al 6 supervisor address modifier

A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier

A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier

A32ND A32 non privileged data address modifier

A32NP A32 non privileged program address modifier

A32SD A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

The following return values are supported:

Constant

EPC_SUCCESS

ERR_FAIL

Description

Successful function completion.

A failure occurred while the library was
communicating with the BusManager
driver.

EpcGetAccMode, EpcMapBus, EpcRestState, EpcSaveState,
EpcSetAccMode, EpcSetAmMap.

EpcGetError

Description

C Synopsis

EpcGetError

Queries a specified error's current handler function and stack.

void (FAR CDECL *FAR PASCAL
EpcGetError(short error, char FAR* FAR* stack)(unsigned

long error);

error

stack

Error number.

Location where a pointer to the current
stack will be placed.

MS BASIC Synopsis

Remarks

Return Value

See Also

NONE

The function returns the addresses of the specified error's current
handler function and stack.

The following constants define valid values for error:

Constant

BM_SYSF AIL_ERR

BM_BERR_ERR

BM_ACFAIL_ERR

Description

SYSFAIL assertion.

VMEbus BERR.

ACFAIL assertion.

BM_ WA TCHDOG_ERR Watchdog timer expiration.

An error handler function has the following calling semantics:

void FAR CDECL
error _handler (unsigned long error);

If stack is NULL, the current stack pointer is not returned.

If successful, the function returns the address of the current error
handler. Otherwise, the function returns ERR_F AIL.

EpcDisErr, EpcEnErr, EpcSetError.

2-45

I

Bus Management for DOS Programmer's Reference Guide

EpcGetlntr

Description

C Synopsis

Queries a specified interrupt's current handler function and stack.

void (FAR CDECL *FAR PASCAL
EpcGetlntr(short interrupt, char FAR *FAR stack))(unsigned

long data);

interrupt

stack

Interrupt number.

Location where a pointer to the current
stack will be placed.

MS BASIC Synopsis

Remarks

2-46

NONE

The function returns the addresses of the specified interrupt's
current handler function and stack.

The following constants define valid values for interrupt:

Constant

BM_MSG_INTR

BM_ VME_INTRI

BM_ VME_INTR7

BM_ER_INTR

Description

Message interrupt.

VMEbus interrupt I.

VMEbus interrupt 7.

Event/Response interrupt.

BM_TTLTRGO_INTR TTL trigger interrupt 0 (EPC-7 only).

BM_TTLTRG7_INTR TTL trigger interrupt 7 (EPC-7 only).

Return Value

See Also

EpcGetlntr

An interrupt handler function has the following calling semantics:

void FAR CDECL
interrupt_handler (unsigned long data);

If stack is NULL, the current stack pointer is not returned.

If successful, the function returns the address of the current interrupt
handler. Otherwise, the function returns ERR_F AIL.

EpcDislntr, EpcEnlntr, EpcSetlntr, EpcWaitlntr.

2-47

I

Bus Management for DOS Programmer's Reference Guide

EpcGetSlaveAddr

Description

C Synopsis

Queries the current address space and base address of the EPC's
slave memory.

short FAR PASCAL
EpcGetSiaveAddr(unsigned short FAR *addrspace, unsigned

long FAR *slavebase);

add rs pace

slavebase

Pointer to a location where the current
address space will be placed.

Pointer to a location where the current
base address will be placed.

MS BASIC Synopsis

Remarks

2-48

DECLARE FUNCTION EpcGetSlaveAddro/o(SEG
addrspaceptro/o, SEG slavebaseptr&)

returncode% = EpcGetSlaveAddr%(addrspace%, slavebase&)

The slave memory base address defines where the EPC's slave
memory appears on the VMEbus (if it is enabled). Return values
for the variables *slavebase and *addrspace are as follows:

EPC type
EPC-2

EPC-7

EPC-8

*slavebase
Ox 18000000, Ox 19000000, ... , Ox 1 FOOOOOO
EPC_SLA VE_MEMORY _DISABLED
OxOOOOOO, Ox400000, ... , OxCOOOOO
OxOOOOOOOO, OxOlOOOOOO, ... , OxFFOOOOOO
EPC_SLA VE_MEMORY _DISABLED
EPC_SLA VE_MEMORY _DISABLED

*addrspace
BM_A32
NIA
BM_A24
BM_A32
NIA
NIA

A24 base addresses are aligned on a 4 MByte boundary, and only
the first 4 MBytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

If the EPC's slave memory is disabled, a slave memory base address
of EPC_SLA VE_MEMORY _DISABLED is returned.

EpcGetSlaveAddr

Return Value The following return values are supported:

See Also

Constant

ERR_FAIL

EPC_SUCCESS

Description

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

EpcGetSlaveBase, EpcSetSlaveAddr, EpcSetSlaveBase.

2-49

I

Bus Management for DOS Programmer's Reference Guide

EpcGetSlaveBase

Description

C Synopsis

Queries the current base address of the EPC's slave memory.

unsigned long FAR PASCAL
EpcGetSlaveBase(void);

MS BASIC Synopsis

Remarks

2-50

DECLARE FUNCTION EpcGetSlaveBase&

slavebase& = EpcGetSlaveBase&

The slave base address for each EPC type and address space
supported is one of the following:

EPC type
EPC-2

EPC-7

EPC-8

Slave Base
Ox 18000000, Ox 19000000, ... , Ox I FOOOOOO
EPC_SLA VE_MEMORY _DISABLED
OxOOOOOO, Ox400000, ... , OxCOOOOO
OxOOOOOOOO, OxO I 000000, ... , OxFFOOOOOO
EPC_SLA VE_MEMORY _DISABLED
EPC_SLA VE_MEMORY _DISABLED

Address Space
BM_A32
NIA
BM_A24
BM_A32
NIA
NIA

A24 base addresses are aligned on a 4 MByte boundary, and only
the first 4 MBytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

If the EPC's slave memory is disabled, a slave memory base address
of EPC_SLA VE_MEMORY _DISABLED is returned.

EpcGetSlaveBase

Return Value This function returns the current base address where the EPC
memory appear on the VMEbus. The address space is not returned
by this function. If not successful, the function returns
ERR_FAIL.

See Also EpcGetSlaveAddr, EpcSetSlaveAddr, EpcSetSlaveBase.

2-5 I

Bus Management for DOS Programmer's Reference Guide

EpcGetUla

Description

C Synopsis

Queries the unique logical address (ULA) of the EPC.

short FAR PAS CAL
EpcGetUla(void)

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcGetUla%

ula% = EpcGetUla%

The ULA is used to determine the base address of the VMEbus
registers in A 16 space, as follows:

A16_Address = (ULA<<6)+0xC000;

Return Value If successful, the function returns the EPC's current ULA.
Otherwise, the function returns ERR_F AIL.

See Also EpcSetUla.

2-52

EpcHwVer

Description

C Synopsis

EpcHwVer

Queries the EPC hardware version number.

short FAR PASCAL
EpcHwVer(void);

MS BASIC Synopsis

Remarks

Return Value

See Also

DECLARE FUNCTION EpcHwVer%
hwversion% = EpcHwVer%

The function returns the version number of the EPC hardware.

If successful, the function returns the version number of the EPC
hardware. Otherwise, the function returns ERR_FAIL.

EpcBiosVer, EpcBmVer, EpcCkBm.

2-53

Bus Management for DOS Programmer's Reference Guide

EpclwsCmd

Description

C Synopsis

Sends a longword serial command.

short FAR PASCAL EpcLwsCmd(unsigned short ula, unsigned
long command, unsigned long FAR * result_ptr, unsigned short
wait);

ula

command

result_ptr

wait

Servant's unique logical address.

Command to send.

Address of result.

Timeout, in milliseconds.

MS BASIC Synopsis

Remarks

2-54

DECLARE FUNCTION EpcLwsCmdo/o(BYV AL ulao/o, BYVAL
cmd&, SEG result&, BYVAL wait%)

oko/o = EpcLwsCmd%(ula%, cmd&, result&, wait%)

DECLARE FUNCTION EpcLwsCmdNro/o(BYV AL ula%,
BYVAL cmd&, BYVAL wait%)

ok% = EpcLwsCmdNr%(ula%, cmd&, wait%)

Sends one longword serial command. A command will be sent only
when the servant device's WRDY bit is set.

In the C interface, if result_ptr is non-NULL, the function waits for
a result and returns it in the location pointed to by result_ptr.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

EpclwsCmd

Return Value The following return values are supported:

See Also

Constant

EPC_SUCCESS

ERR_BERR

ERR_FAIL

ERR_RBERR

ERR_RTIMEOUT

ERR_ TIMEOUT

ERR_WS

Description

Successful function completion.

A bus error occurred sending a word
serial command.

A failure occurred while the library was
communicating with the BusManager
driver.

A bus error occurred receiving a word
serial command response.

A timeout occurred receiving a word
serial command response.

A timeout occurred sending a word serial
command.

A word serial protocol error occurred.

EpcElwsCmd, EpcWsCmd.

2-55

II

Bus Management for DOS Programmer's Reference Guide

EpcMapBus

Description

C Synopsis

Maps the bus window onto the VMEbus.

char FAR* FAR PASCAL
EpcMapBus(unsigned long busaddr);

busaddr Desired bus address.

MS BASIC Synopsis

Remarks

Return Value

See Also

2-56

DECLARE FUNCTION EpcMapBus&(BYVAL busaddr&)
Vmeptr& = EpcMapBus&(busaddr&)

DECLARE SUB EpcMapBusB(BYV AL busaddr&, SEG
busseg%, SEG busofj%)

CALL EpcMapBusB(busaddr&, busseg%, busofj%)

This function is provided for compatibility with ex1stmg
applications. EpcSetAmMap is the preferred method of mapping
the bus.

Given a bus address, EpcMapBus sets the VMEbus mapping
registers and returns a pointer to the bus window. Within the context
of the current access mode, you can use this pointer to get to the
bus. You must remap the bus, however, when an address range
extends beyond the 64 KB-aligned bus window.

Because the bus window is 64 KB in size and aligned on a 64 KB
boundary, the BusManager uses only the high-order 16 bits of the
address to set the mapping. The low-order 16 bits are passed back to
the caller unchanged. The segment portion of the return value is set
to the physical location of the VMEbus window. It is not guaranteed
that this implementation will be retained in future versions of the
bus mapping hardware.

If successful, the function returns a pointer to the specified bus
address. Otherwise, it returns a null pointer.

EpcGetAmMap, EpcRestState, EpcSaveState, EpcSetAmMap.

EpcMemSwapL

EpcMemSwapl

Description

C Synopsis

Byte-swaps an array of 32-bit values.

void FAR PASCAL
EpcMemSwapL(unsigned long FAR *buffer, unsigned short

entrycount);

buffer

entrycount

Array of 32-bit elements to be swapped.

Number of 32-bit elements in buffer.

MS BASIC Synopsis

Remarks

See Also

DECLARE SUB EpcMemSwapL(SEG buffer&, BYV AL
entrycount%)

CALL EpcMemSwapL(buffer&, entrycount%)

This function swaps the bytes in each 32-bit element in the buffer
such that 32-bit values stored in Intel byte order are transformed to
the Motorola byte order and vice versa.

For example, given:

unsigned long value[] =
{0x11223344L, Ox55667788L};

the following call:

EpcMernSwapL(buffer, 2);

results in this output:

value[O] Ox44332211L
value[l] = Ox88776655L

EpcMemSwapW, EpcSwapL, EpcSwapW.

2-57

Bus Management for DOS Programmer's Reference Guide

EpcMemSwapW

Description

C Synopsis

Byte-swaps an array of 16-bit values.

void FAR PASCAL
EpcMemSwapW(unsigned short FAR *buffer, unsigned short

entrycount);

buffer

entrycount

Array of 16-bit elements to be swapped.

Number of 16-bit elements in buffer.

MS BASIC Synopsis

Remarks

See Also

2-58

DECLARE SUB EpcMemSwapW(SEG buffer%, BYVAL
entrycount%)

CALL EpcMemSwapW(buffer%, entrycount%)

This function swaps the bytes in each J6-bit element in the buffer.

For example, given the following:

unsigned short buffer[]
{ Ox1122, Ox3344, Ox5566, Ox7788 };

this call:

EpcMemSwapW(buffer, 4);

returns the following:

buffer[O)
buffer[l]
buffer[2]
buffer[3]

Ox2211
Ox4433
Ox6655
Ox8877

EpcMemSwapL, EpcSwapL, EpcSwapW.

EpcRestState

EpcRestState

Description

C Synopsis

Restores an access mode and a bus window base that were
previously saved by a call to EpcSaveState.

short FAR PASCAL
EpcRestState(unsigned long FAR* state_stash);

state_stash Pointer to a 4-byte area in which the
mapping state will be saved.

MS BASIC Synopsis

Remarks

Return Value

See Also

DECLARE FUNCTION EpcRestState(SEG state_stash&)

Ok%= EpcRestState(state_stash&)

This function does not check the validity of the internal format.

If successful, the function restores the specified access mode and
bus window. Otherwise, the function returns ERR_FAIL.

EpcGetAccMode, EpcGetAmMap, EpcMapBus, EpcSaveState,
EpcSetAccMode, EpcSetAmMap.

2-59

I

Bus Management for DOS Programmer's Reference Guide

EpcSaveState

Description

C Synopsis

Preserves the current access mode and bus window base in a caller­
supplied area.

void FAR PASCAL
EpcSaveState(unsigned long FAR* state_stash);

state_stash Pointer to a 4-byte area in which the
mapping state has been saved.

MS BASIC Synopsis

DECLARE SUB EpcSaveState(SEG state_stash&)

CALL EpcSaveState(state_stash&)

Remarks This function preserves the current access mode and bus window
base in a caller-supplied area·. This function does not check the
validity of the internal format.

Return Value NONE

See Also EpcGetAccMode, EpcGetAmMap, EpcMapBus, EpcRestState,
EpcSetAccMode, EpcSetAmMap.

2-60

EpcSetAccMode

EpcSetAccMode

Description

C Synopsis

Defines the current bus access mode.

short FAR PASCAL
EpcSetAccMode(short mode);

mode Desired access mode.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcSetAccMode%(BYV AL mode%)

ok% = EpcSetAccMode%(mode%)

The function defines the EPC's current access mode.

The returned access mode is an OR'd combination of a byte order
cCYnstant and an address modifier constant.

Valid byte order constants are the following:

Constant

BM_IBO
BM_MBO

Description

Intel (80x86-style) byte ordering
Motorola (68000-style) byte ordering

addnnod

2-61

I

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-62

Valid address modifier constants are the following:

Constant

Al6N
Al6S
A24ND
A24NP
A24SD
A24SP
A32ND
A32NP
A32SD
A32SP

Description

A16 non-privileged address modifier
A 16 supervisor
A24 non-privileged data address modifier
A24 non-privileged program address modifier
A24 supervisor data address modifier
A24 supervisor program address modifier
A32 non-privileged data address modifier
A32 non-privileged program address modifier
A32 supervisor data address modifier
A32 supervisor program address modifier

Note that EpcSetAmMap is the preferred method of setting the bus
access parameters.

The following return values are supported:

Constant

EPC_SUCCESS

ERR_FAIL

Description

The function completed successfully.

A failure occurred while the library was
communicating with the BusManager
driver.

ERR_UNSUPPORTED_FNCT

The function requires unsupported
functionality (most likely, Motorola
68000 [big-endian] byte swapping).

EpcGetAccMode, EpcGetAmMap, EpcRestState, EpcSaveState,
EpcSetAmMap.

EpcSetAmMap

EpcSetAmMap

Description

C Synopsis

Defines the current bus access mode and bus window base.

short FAR PASCAL
EpcSetAmMap(unsigned short accessmode, unsigned long

busaddress, void FAR * FAR * mapped_ptr);

access mode

busaddress

mapped_ptr

Desired access mode.

Desired bus address.

Returned pointer to desired address
space.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcSetAmMap%(BYV AL accessmode%,
BYVAL busaddress&, SEG mapped_ptr&).

returncode% = EpcSetAmMapo/o(accessmodeo/o, busaddress&,
mapped_ptr&)

DECLARE FUNCTION EpcSetAmMapB%(BYV AL
accessmode%, BYV AL busaddress&, SEG
busseg%, SEG busojj%)

returncode% = EpcSetAmMapB%(accessmode%, busaddress&,
busseg%, busofj%)

The function defines the EPC's current bus access mode and bus
window base address.

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant.

addrmod

2-63

Bus Management for DOS Programmer's Reference Guide

Valid byte order constants are the following:

Constant

BM_IBO
BM_MBO

Description

Intel (80x86-style) byte ordering
Motorola (68000-style) byte ordering

Valid address modifier constants are the following:

Constant

A16N
A16S
A24ND
A24NP
A24SD
A24SP
A32ND
A32NP
A32SD
A32SP

Description

A 16 non-privileged address modifier
A 16 supervisor
A24 non-privileged data address modifier
A24 non-privileged program address modifier
A24 supervisor data address modifier
A24 supervisor program address modifier
A32 non-privileged data address modifier
A32 non-privileged program address modifier
A32 supervisor data address modifier
A32 supervisor program address modifier

Return Value The following return values are supported:

See Also

2-64

Constant

EPC_SUCCESS

ERR_FAIL

Description

The function completed successfully.

A failure occurred while the library was
communicating with the BusManager
driver.

ERR_UNSUPPORTED_FNCT

The function requires unsupported
functionality, most likely Motorola
68000 (big-endian) byte swapping.

EpcMapBus, EpcSetAccMode, EpcSaveState.

EpcSetError

Description

C Synopsis

EpcSetError

Defines a specified error's handler function and stack.

void (FAR CDECL * FAR PASCAL
EpcSetError(short error,

void (FAR CDECL * new_handler)(unsigned long error)
char FAR* new_stack, char FAR* FAR*
prev_stack))(unsigned long error);

error

new _handler

new_stack

prev_stack

Error number.

Address of new error handler.

Base address of new stack.

Location where the base address of the
current stack will be placed.

MS BJ1SIC Synopsis

NONE

Remarks The function defines the handler and stack addresses for an error
and returns the current handler and stack addresses.

The following constants define valid values for error:

Constant

BM_SYSFAIL_ERR

BM_BERR_ERR

BM_ACFAIL_ERR

Description

SYSFAIL assertion.

VMEbus BERR.

ACFAIL assertion.

BM_ WATCHDOG_ERR Watchdog timer expiration.

An error handler function has the following calling semantics:

void FAR CDECL
new_handler (unsigned long error);

2-65

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-66

Error handling works similarly to interrupt handling, with two
exceptions:

l) Where an interrupt handler is passed the Status/ID of the
VMEbus interrupter, an error handler is passed the error
number.

2) The BusManager clears all error conditions before
calling the handler.

If prev_stack is null, the previous stack pointer is not returned.

To remove an assigned handler, call this function with new_handler
set to null. The BusManager will assign the "do-nothing" function
and disable the interrupt.

This function returns the address of the handler previously assigned
to the specified interrupt. If no handler has been assigned (or if the
interrupt . was last connected to the "do-nothing" function), this
function returns the address of the "do-nothing" function.

Calling EpcSetError to assign a handler to a VMEbus error
immediately enables the specified interrupt.

If successful, the function returns the address of the current error
handler. Otherwise, the function returns ERR_F AIL.

EpcDisErr, EpcEnErr, EpcGetError.

EpcSetlntr

Description

C Synopsis

EpcSetlntr

Defines a specified interrupt's handler function and stack.

void (FAR CDECL *FAR PASCAL
EpcSetlntr(short interrupt,

void (FAR CDECL * new_handler)(unsigned long data),
char FAR* new_stack,
char FAR* FAR* prev_stack))(unsigned long data);

MS BASIC Synopsis

Remarks

NONE

The function defines the handler and stack addresses for an
interrupt and returns the current handler and stack addresses.

The parameter interrupt specifies the interrupt condition to disable.
The following constants define valid values for interrupt:

Constant

BM_MSG_INTR

BM_ VME_INTRl

BM_ VME_INTR7

BM_ER_INTR

Description

Message interrupt.

VMEbus interrupt 1.

VMEbus interrupt 7.

Event/Response interrupt.

BM_TTLTRGO_INTR TTL trigger interrupt 0 (EPC-7 only).

BM_TTLTRG7_INTR TTL trigger interrupt 7 (EPC-7 only).

2-67

Bus Management for DOS Programmer's Reference Guide

2-68

An interrupt handler function has the following calling semantics:

void FAR CDECL
new_handler (unsigned long data)

The following actions are taken when the specified interrupt occurs:

1) Disable processor interrupt.

2) Acknowledge the programmable interrupt controllers (PICs).

3) If this is a VMEbus interrupt, acknowledge it. If it is a message
interrupt, disabled it. (Message interrupts are enabled by the
message-passing functions, described elsewhere in this chapter.)

4) Push the bus state (access mode and bus window) onto the stack.

5) Switch to the handler's stack.

6) If this is a VMEbus interrupt, zero-extend the 16-bit Status/ID
value from the interrupt acknowledgment to a long (32-bit)
value. Note that a 16-bit Status/ID is always requested - it is
up to the handler to know the actual size (8 or 16 bits) of the
Status/ID that the device returns.

7) The interrupt handler is invoked by means of a FAR call, and is
passed a 32-bit parameter. It returns with a RET instruction to
the BusManager.

8) The BusManager switches to its own stack, restores the saved
bus state, and enables processor interrupts.

If the BusManager detects an interrupt that has no handler assigned,
the BusManager invokes a "do-nothing" function.

To remove an assigned handler, call this function with new_handler
set to null. The BusManager will assign the "do-nothing" function
and disable the interrupt.

Return Value

See Also

EpcSetlntr

This function returns the address of the handler previously assigned
to the specified interrupt. If no handler has been assigned (or if the
interrupt was last connected to the "do-nothing" function), this
function returns the address of the "do-nothing" function.

If prev _stack is null, then it is not set to the previous stack pointer
by this function. If prev _stack is not null, then the value at the
location to which it points is set to null by this function.

Calling EpcSetlntr to assign a handler to a bus interrupt
immediately enables the specified interrupt. A call to EpcEnlntr is
unnecessary.

If successful, the function returns the address of the current interrupt
handler. Otherwise, the function returns ERR_F AIL.

EpcDislntr, EpcEnlntr, EpcGetlntr.

2-69

I

Bus Management for DOS Programmer's Reference Guide

EpcSetSlaveAddr

Description

C Synopsis

Defines the address space and base address of the EPC's slave
memory.

short FAR PAS CAL
EpcSetSlaveAddr(unsigned short addrspace, unsigned long

slavebase);

add rs pace

slave base

New address space.

New slave base address.

MS BASIC Synopsis

Remarks

2-70

DECLARE FUNCTION EpcSetSlaveAddr%(BYV AL
addrspace%, BYV AL slavebase&)

returncode% = EpcSetSiaveAddr%(addrspace%, slavebase~)

The function defines the address space and base address of the
EPC's slave memory. Valid values for addrspace and slavebase are
the following:

EPC type
EPC-2

EPC-7

EPC-8

*slavebase
Ox 18000000, Ox 19000000, ...• Ox I FOOOOOO
EPC_SLAVE_MEMORY_DISABLED
OxOOOOOO, Ox400000, OxCOOOOO
OxOOOOOOOO, OxOIOOOOOO, OxFFOOOOOO
EPC_SLA VE_MEMORY _DISABLED
EPC_SLA VE_MEMORY _DISABLED

*addr space
BM_A32
NIA
BM_A24
BM_A32
NIA
NIA

A24 base addresses are aligned on a 4 MByte boundary, and only
the first 4 MBytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

To disable slave memory, call this function with a slave base
address of EPC_SLA VE_MEMORY _DISABLED.

EpcSetSlaveAddr

Return Value The following return values are supported:

See Also

Constant

ERR_FAIL

EPC_SUCCESS

Description

The slave base address is not supported
on this EPC.

Successful function completion.

EpcGetSlaveAddr, EpcGetSlaveBase, EpcSetSiaveBase.

2-71

Bus Management for DOS Programmer's Reference Guide

EpcSetSlaveBase

Description

C Synopsis

Defines the current base address of the EPC's slave memory.

short FAR PASCAL
EpcSetSlaveBase(unsigned long slavebase);

slave base New slave base address.

MS BASIC Synopsis

Remarks

2-72

DECLARE FUNCTION EpcSetSlaveBaseo/o(BYV AL slavebase&)
returncode% = EpcSetSlaveBaseo/o(slavebase&)

The function defines the base address of the EPC's slave memory.
Valid values for slavebase and the implied address space are the
following:

EPC trne Slave Base Address I mu lied Slave
Address Suace

EPC-2 Ox 18000000, Ox 19000000, ... , Ox I FOOOOOO BM_A32
EPC_SLAVE_MEMORY_DISABLED NIA

EPC-7 OxOOOOOO, Ox400000, ... , OxCOOOOO BM_A24
OxOOOOOOOO, OxO I 000000, ... , OxFFOOOOOO BM_A32
EPC_SLAVE_MEMORY_DISABLED NIA

EPC-8 EPC_SLAVE_MEMORY_DISABLED NIA

A24 base addresses are aligned on a 4 Mbyte boundary, and only
the first 4 Mbytes of the EPC's slave memory is mapped to the bus.
A32 base addresses are aligned on a 16 MByte boundary, and only
the first 16 MBytes of the EPC's slave memory is mapped to the
bus.

To disable slave memory, call this function with a slave base
address of BM_SLA VE_MEMORY _DISABLED.

EpcSetSlaveBase

Return Value The following return values are supported:

See Also

Constant

EPC_SUCCESS

ERR_FAIL

Description

Successful function completion.

The slave base address is not supported
on this EPC.

EpcGetSlaveAddr, EpcGetSlaveBase, EpcSetSlaveAddr.

2-73

I

Bus Management for DOS Programmer's Reference Guide

EpcSetUla

Description

C Synopsis

Defines the EPC's unique logical address (ULA).

short FAR PASCAL
EpcSetUla(unsigned short ula);

ula New unique logical address.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcSetUla%(BYV AL ula%)
returncode% = EpcSetUla%(ula%)

The ULA is used to determine the base address of the EPC
configuration registers in A 16 space, as follows:

Al6_Address =(ULA<<6)+0xC000;

Return Value The following return values are supported:

Constant

ERR_FAIL

EPC_SUCCESS

See Also EpcGetUia.

2-74

Description

A failure occurred while the library was
communicating with the BusManager
driver.

Successful function completion.

EpcSiglntr

Description

C Synopsis

EpcSiglntr

Signals (asserts or deasserts) a VMEbus interrupt.

short FAR PASCAL
EpcSiglntr(short interrupt);

interrupt Interrupt number.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcSiglntr%(B YV AL interrupt%)
ok% = EpcSiglntr%(interrupt%)

The function asserts or deasserts a VMEbus interrupt.

The parameter interrupt specifies the VMEbus to assert or deassert.
The following values are valid:

0

Description

Deassert the currently asserted VMEbus
interrupt.

BM_ VME_INTRl Assert VMEbus interrupt 1.

BM_ VME_INTR7 Assert VMEbus interrupt 7.

If interrupt is non-zero and the EPC is not asserting an interrupt,
then the appropriate VMEbus interrupt (I through 7) is asserted. If
the interrupt is non-zero and the EPC is asserting an interrupt, then
the function fails. If interrupt is zero and the EPC is already
asserting an interrupt, then the bus interrupt is deasserted and the
function succeeds. It is not an error to deassert an interrupt when no
interrupt is asserted - this function always succeeds if interrupt is set
to zero.

2-75

I

Bus Management for DOS Programmer's Reference Guide

Return Value The following return value is supported:

See Also

2-76

Constant

EPC_SUCCESS

ERR_FAIL

Description

Successful function completion.

A failure occurred while the library was
communicating with the BusManager
driver.

EpcDislntr, EpcEnlntr, EpcGetlntr, EpcSetlntr.

EpcSwapL

Description

C Synopsis

EpcSwapL

Byte-swaps a single 32-bit value.

unsigned long FAR PASCAL
EpcSwapL(unsigned long value);

value 32-bit value to be swapped.

MS BASIC Synopsis

Remarks

See Also

DECLARE FUNCTION EpcSwapL&(BYVAL value&)
newvalue& = EpcSwapL&(value&)

This function swaps the bytes in the supplied 32-bit value and
returns the result.

For exampl.e, the following call:

EpcSwapL(Oxll223344);

returns the value Ox4 4 3 3 2 211.

EpcMemSwapL, EpcMemSwapW, EpcSwapW.

2-77

Bus Management for DOS Programmer's Reference Guide

EpcSwapW

Description

C Synopsis

Byte-swaps a single 16-bit value.

unsigned short FAR PASCAL
EpcSwapW(unsigned short value);

value 16-bit value to be swapped.

MS BASIC Synopsis

Remarks

See Also

2-78

DECLARE FUNCTION EpcSwapWo/o(BYVAL value%)

newvalueo/o = EpcSwapWo/o(valueo/o)

This function swaps the bytes in the supplied 16-bit value and
returns the result.

For example, the following call: ·

EpcSwapW(Oxll22);

returns the value Ox2 211.

EpcMemSwapL, EpcMemSwapW, EpcSwapL.

EpcToVme

Description

C Synopsis

EpcToVme

Copy consecutive EPC locations to consecutive VMEbus locations
using the current access mode.

unsigned short FAR PASCAL
EpcToVme(short width, char FAR *source, unsigned long dest,

unsigned short count);

width

source

dest

count

Number of data bits to copy per bus
access.

Source address in EPC memory.

Destination VMEbus address.

Number of bytes to transfer.

MS BASIC Synopsis .

Remarks

DECLARE FUNCTION EpcToVme%(BYVAL width%, SEG
source%, BYVAL dest&, BYVAL count%)

DIM src%[...]

ok% = EpcToVme%(width%, source%, dest&, count%)

This function copies data from consecutive EPC locations to
consecutive VMEbus locations using the current access mode. The
current access mode set by the most recent EpcRestState or
EpcSetAmMap is saved, the bus window is altered as necessary
during the copy, and the access mode is restored.

This function is intended for transferring large amounts of data to
consecutive locations.

The count parameter always specifies the number of bytes to
transfer, regardless of the specified width. Setting count to zero
specifies a transfer of zero bytes.

2-79

Bus Management for DOS Programmer's Reference Guide

2-80

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. Transfers are always aligned on natural
boundary; 16-bit quantities are written to the VMEbus only at even
addresses, and 32-bit quantities are written to the VMEbus only at
addresses evenly divisible by 4.

Valid values for the width parameter are the following:

Constant Description

BM_ WS 8-bit copy width

BM_ WSO 8-bit copy width, odd-only copy

BM_ W16 16-bit copy width

BM_ W32 32-bit copy width

BM_FASTCOPY Don't check for intermediate bus errors.
This constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion - a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred. Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

• This "read-modify-write" sequence is done in software,
and is not an RMW bus cycle.

• If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

Return Value

See Also

EpcToVme

When you specify 8-bit, odd-only transfers (BM_ W80), the
VMEbus address "spins" twice as fast as the EPC address. That is,
for i = 0 to (count - 1), dest + (i x 2) + 1 receives
src + i.

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width parameter with BM_FASTCOPY before
calling the copy function, BERR is checked only after transfers to
nonaligned locations. Fast copying uses "Move String" instructions
to copy "blocks" of data. By taking advantage of pipelining in the
processor and the VMEbus interface hardware, fast copy transfers
are five times faster than transfers without BM_FASTCOPY.
There are risks, however: a BERR may go undetected, or the BERR
error handler may be called erroneously (if a transfer - still in .the
pipeline when the function returns - causes a BERR). In general,
you should select the fast copy option.

The fast copy flag (BM_FASTCOPY) is ignored when you specify
8-bit, odd-only transfers (BM_ W80).

The function returns EPC_SUCCESS on successful completion.
Otherwise, the function returns the number of bytes not transferred.
This indicates there was a VMEbus error (BERR).

EpcFromVme, EpcFromVmeAm, EpcRestState,
EpcSetAmMap, EpcTo VmeAm.

2-81

I

Bus Management for DOS Programmer's Reference Guide

EpcToVmeAm

Description

C Synopsis

Copies consecutive EPC locations to consecutive VMEbus locations
using a specified access mode.

unsigned short FAR PAS CAL
EpcToVmeAm(short mode, short width, char *source, unsigned

long dest, unsigned short count);

mode Access mode.

width Number of data bits to copy per bus
access.

source Source address in EPC memory.

de st Destination VMEbus address.

count Number of bytes to transfer.

MS BASIC Synopsis

Remarks

2-82

DECLARE FUNCTION EpcTo VmeAmo/o(BYV AL modeo/o,
BYV AL widtho/o, SEG source%, BYV AL dest&,
BYVAL count%)

DIM source%[...]

oko/o = EpcToVmeAm%(mode%, width%, source%, dest&,
count%)

This function copies data from consecutive EPC locations to
consecutive bus locations using the specified access mode. The
current access mode and bus window are saved, altered as specified
during the copy, and restored upon completion of the copy.

The parameter mode is an OR'd combination of a byte order
constant and an address modifier constant:

EpcToVmeAm

The returned access mode is an OR'd combination of a byte order
constant and an address modifier constant:

addrmod

The following constants define valid byte order constants:

Constant

BM_ IBO

BM_MBO

Description

Little-endian (Intel 386-style) byte order

Big-endian (Motorola 68000-style) byte order

The following constants define valid address modifier constants:

Constant Description

A16N A16 non privileged address modifier

A16S Al6 supervisor address modifier

A24ND A24 non privileged data address modifier

A24NP A24 non privileged program address modifier

A24SD A24 supervisor data address modifier

A24SP A24 supervisor program address modifier

A32ND A32 non privileged data address modifier

A32NP A32 non privileged program address modifier

A32SD A32 supervisor data address modifier

A32SP A32 supervisor program address modifier

The width parameter specifies whether data is to be moved in 8-bit,
16-bit, or 32-bit chunks. VMEbus transfers are always aligned on
natural boundary; 16-bit quantities are written to the VMEbus only
at even addresses, and 32-bit quantities are written to the VMEbus
only at addresses evenly divisible by 4.

2-83

I

Bus Management for DOS Programmer's Reference Guide

2-84

Valid values for the width parameter are the following:

Constant

BM_WS
BM_WSO
BM_Wl6
BM_W32
BM_FASTCOPY

Description

8-bit copy width
8-bit copy width, odd-only copy
16-bit copy width
32-bit copy width
Don't check for intermediate bus errors.
This constant can be OR'd with one of the
previous constants to increase copy speed.

Transfers to non-aligned locations are done in a read-modify-write
fashion - a chunk is read from the destination, the bytes to be
transferred are copied to the corresponding bytes in the chunk, and
the chunk is replaced. For example, a copy of 32-bit chunks to a
non-aligned address would occur in the following manner. The
leading 32-bit word would be read from the destination, modified,
and written back. Next, all whole (aligned) 32-bit values would be
transferred: Finally, the trailing 32-bit word would be read from the
destination, modified, and replaced.

Notes:

• This "read-modify-write" sequence is done in software,
and is not a RMW bus cycle.

• If an unmodified byte in the leading or trailing word of a
non-aligned transfer contains a semaphore that is
signaled while the copy is taking place, the signal may
be lost.

When you specify 8-bit, odd-only transfers (BM_ W80), the
VMEbus address "spins" twice as fast as the EPC address. That is,
for i = 0 to (count - 1), dest + (i x 2) + 1 receives
src + i.

EpcToVmeAm

By default, BERR is checked after every transfer. If there is an
error, the copy is aborted but the BERR error handler is not called.
This eliminates the requirement that the calling program coordinate
with the BERR handler. Errors are reflected by a non-zero return
value.

If you OR the width with BM_FASTCOPY before calling the copy
function, BERR is checked only after transfers to nonaligned
locations. Fast copying uses "Move String" instructions to copy
"blocks" of data. By taking advantage of pipelining in the processor
and the VMEbus interface hardware, fast copy transfers are five
times faster than transfers without BM_FASTCOPY. There are
risks, however: a BERR may go undetected, or the BERR error
handler may be called erroneously (if a transfer - still in the pipeline
when the function returns - causes a BERR). In general, you should
select the fast copy option.

The Fast Copy flag (BM_FASTCOPY) is ignored when you
specify 8-bit, odd-only transfers (BM_ W80).

Return Value The function returns EPC_SUCCESS on successful completion.
Otherwise, the function returns the number of bytes not transferred,
indicating a bus error (BERR).

See Also EpcFromVme, EpcFromVmeAm, EpcToVme.

2-85

Bus Management for DOS Programmer's Reference Guide

EpcVmeCtrl

Description

C Synopsis

Queries or defines VMEbus interface control bits.

short FAR PASCAL
EpcVmeCtrl(unsigned short opcode, unsigned short flag);

opcode

flag

Read, assert or deassert flag.

Possible flags are described below.

MS BASIC Synopsis

Remarks

2-86

DECLARE FUNCTION EpcVmeCtrlo/o(BYVAL code%, BYVAL
flag%)

value%= EpcVmeCtrl%(code%,flag%)

The furction reads, asserts or deasserts VMEbus interface control
bits. The parameter flag defines the desired control bit and opcode
defines whether to read, assert, or deassert the bit.

Valid values for opcode are the following:

Code
CTRL_READ
CTRL_ASSERT
CTRL_DEASSERT

Description
read flag
assert flag
deassert flag

Valid values for flag are the following:

Flag

VME_SYSFAIL_EN
VME_SYSRESET _EN
VME_SYSRESET
VME_PASSTEST
VME_EXTTEST
VME_ WATCHDOG

VME_ACFAIL_IN

Description

SYSFAIL out enable
SYSRESET in enable
SYSRESET out
self test pass
in extended self test
watchdog timer expired (read
only)
ACFAIL asserted (read only)

EpcVmeCtrl

Code
VME_BERR_IN
VME_SYSFAIL_IN
VME_A24_SLA VE
VME_ACCESS
VME_WRITE
VME_PIPELINE_BUSY
VME_STICKY _BERR
VME_SIGNAL
VME_SLA VE_EN

Description
BERR asserted (destructive read)
SYSFAIL asserted (read only)
A24 slave (always zero on EPC-8)
VME access
VMEwrite
VME pipeline busy
sticky BERR
SIGNAL register available
VME slave enable (always zero on
EPC-8)

Return Value When opcode is CTRL_READ, the function returns zero if the
control bit specified by flag is deasserted and if it is asserted. Note
that the function hides whether the logic of the control bit is
negative-TRUE or positive-TRUE.

For opcode values of CTRL_ASSERT and CTRL_DEASSERT,
the following values are returned:

ERR_FAIL

EPC_SUCCESS

The specified opcode or flag value 1s
invalid.

Successful function completion.

2-87

Bus Management for DOS Programmer's Reference Guide

EpcVxiCtrl

Description Queries or defines VXlbus interface control bits.

C Synopsis

short FAR PASCAL
EpcVxiCtrl(unsigned short code, unsigned short flag);

code Read, assert, or deassert flag

flag Possible flags are described below.

MS BASIC Synopsis

Remarks

2-88

DECLARE FUNCTION EpcVxiCtrl%(BYVAL code%, BYV AL
flag%)

value%= EpcVxiCtrl%(code%, flag%)

The function reads, asserts or deasserts VXIbus interface control
bits. The parameter flag defines the desired control bit and opcode
defines whether to read, assert, or deassert the bit.

Valid values for opcode are the following:

Code
CTRL_READ
CTRL_READ _ST A TE
CTRL_ASSERT
CTRL_DEASSERT

Description
read flag
read trigger
assert flag
deassert flag

Valid values for flag are the following:

0
1
2
OLRM_TTLTRGO

OLRM_TTLTRGl

Description

Data Input Ready (DIR)
Data Output Ready (DOR)
ERR Flag
TTL Trigger Line 0 (EPC-2 and EPC-7
only)
TTL Trigger Line I (EPC-2 and EPC-7
only)

EpcVxiCtrl

OLRM_TTLTRG2

OLRM_TTLTRG3

OLRM_TTLTRG4

OLRM_TTLTRGS

OLRM_TTLTRG6

OLRM_TTLTRG7

OLRM_ECLTRG 1

OLRM_ECLTRG2

TIL Trigger Line 2 (EPC-2 and EPC-7
only)
TfL Trigger Line 3 (EPC-2 and EPC-7
only)
TIL Trigger Line 4 (EPC-2 and EPC-7
only)
TIL Trigger Line 5 (EPC-2 and EPC-7
only)
TTL Trigger Line 6 (EPC-2 and EPC-7
only)
TTL Trigger Line 7 (EPC-2 and EPC-7
only)
ECL Trigger Line 1 (EPC-2 and EPC-7
only)
ECL Trigger Line 2 (EPC-2 and EPC-7
only)

Return Value When opcode is CTRL_READ or CTRL_READ_STATE, the
function returns zero if the control bit specified by flag is deasserted
and if it is asserted. Note that the function hides whether the logic of
the control bit is negative-TRUE or positive-TRUE.

For opcode values of CTRL_ASSERT and CTRL_DEASSERT,
the following values are returned:

ERR_FAIL

EPC_SUCCESS

The specified opcode or flag value 1s
invalid.

Successful function completion.

2-89

I

Bus Management for DOS Programmer's Reference Guide

EpcWaitlntr

Description

C Synopsis

Waits for an interrupt to occur.

short FAR PASCAL
EpcWaitlntr(unsigned short mask, unsigned long FAR* status,

unsigned long waittime);

short FAR PASCAL
EpcWaitlntr2(unsigned short mask, unsigned long FAR* status,

unsigned long FAR* memwaittime);

mask

memwaittime

waittime

status

Mask of interrupts to await.

Address location containing the number
of milliseconds to wait before returning.

Number of milliseconds to wait before
returning.

Returned Status/ID.

MS BASIC Synopsis

Remarks

2-90

DECLARE FUNCTION EpcWaitlntr%(BYVAL mask%, SEG
status&, BYV AL waittime&)

ok% = EpcWaitlntr%(mask%, status&, waittime&)

DECLARE FUNCTION EpcWaitlntr2%(BYV AL mask%, SEG
status&, SEG memwaittime&)

ok% = EpcWaitlntr2%(mask%, status&, memwaittime&)

These functions wait up to waittime (or *memwaittime) milliseconds
for one of the interrupts specified by mask to occur.

EpcWaitlntr

The parameter mask specifies the interrupt(s) to await. It is an OR'd
combination of the following:

Value
1 «BM_MSG_INTR
l«BM_ VME_INTRl

l«BM_ VME_INTR7
1 «BM_ER_INTR

Description
Message interrupt.
VMEbus interrupt I.

VMEbus interrupt 7.
Event/Response interrupt.

Both EpcWaitlntr and EpcWaitlntr2 return the mask of the
highest priority interrupt that occurs, zero if the timer expires before
any of the awaited interrupts occur, and ERR_FAIL if some other
error occurs. Functions EpcWaitlntr and EpcWaitlntr2 differ in
that EpcWaitlntr takes milliseconds as a parameter, while
EpcWaitlntr2 takes a pointer to milliseconds as a parameter and
modifies the contents of that location to reflect the number of
milliseconds remaining when an jnterrupt occurs.

The timer value is expressed in milliseconds. If waittime (or the
value stored at the location specified by memwaittime) is zero, only
one check will be made before returning. If no interrupt handler
exists for this interrupt, EpcWaitlntr sends the appropriate
interrupt acknowledgment before returning to the caller. The bus
state is not saved or restored.

Upon function completion, status contains the status/ID of the
interrupt. A 16-bit interrupt acknowledge (JACK) cycle is
performed when a VMEbus interrupt arrives. It is up to the calling
program to know whether the device generating the interrupt returns
an 8-bit or 16-bit Status/ID. For compatibility with future products,
this value is zero-extended to 32 bits.

If an interrupt also has a handler assigned to it, then that handler is
executed before this call returns (see EpcSetlntr).

2-91

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-92

Whenever an interrupt occurs, that fact is remembered and will be
returned by EpcWaitlntr. This behavior eliminates the race
condition that would otherwise exist between the device generating
the interrupt and the program waiting for the interrupt. However, it
can cause the BusManager to remember "stale" interrupts. To avoid
this problem, repeatedly call EpcWaitlntr with a timeout of zero
milliseconds before using a device, until no interrupts are returned.
This clears out any stale interrupts for that device.

Notes:

• To use the DOS clock for tracking elapsed time, this
function enables processor interrupts for the duration of
its execution.

Only the highest-priority interrupt is handled within a
given call, where VMEbus interrupt 7 is highest and the
message interrupt is lowest. Other interrupts are left
pending.

If successful, the function returns a non-negative value. Otherwise,
the function returns ERR_FAIL.

EpcSetlntr, EpcEnlntr.

EpcWsCmd

Description

C Synopsis

EpcWsCmd

Sends a word serial command.

short FAR PASCAL
EpcWsCmd(unsigned short ula, unsigned short command,

unsigned short FAR * result_ptr, unsigned short wait);

ula

command

result_ptr

wait

Servant's unique logical address.

Command to send

Address of result

Timeout, in milliseconds.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcWsCmd%(BYV AL ula%, BYV AL
cmdo/o, SEG result%, BYVAL wait%)

ok% = EpcWsCmdo/o(ulao/o, cmdo/o, result%, waito/o)

DECLARE FUNCTION EpcWsCmdo/o(BYVAL ula%, BYVAL
cmdo/o, BYVAL waito/o)

ok% = EpcWsCmdo/o(ulao/o, cmdo/o, wait%)

Sends a word serial command. A command will be sent only when
the servant device's WRDY bit is set.

In the C interface, if result_ptr is non-NULL, waits for a result and
returns it in the location pointed to by result_ptr.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-93

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-94

The following return values are supported:

Constant

EPC_SUCCESS

ERR_BERR

ERR_FAIL

ERR_RBERR

ERR_RTIMEOUT

ERR_ TIMEOUT

ERR_WS

EpcLwsCmd.

Description

Successful function completion.

A bus error occurred sending a word
serial command.

A failure occurred while the library was
communicating with the BusManager
driver.

A bus error occurred receiving a word
serial command response.

A timeout occurred receiving a word
serial command response.

A timeout occurred sending a word serial
command.

A word serial protocol error occurred.

EpcWsRcvStr

EpcWsRcvStr

Description

C Synopsis

Receives a series of bytes.

short FAR PASCAL
EpcWsRcvStr(unsigned short ula, char FAR* msg_ptr, short

Len, short FAR * bytecnt_ptr, unsigned short
wait);

ula Servant's unique logical address

msg_ptr Message buffer

fen Message buffer length

bytecnt_ptr Number of bytes received

wait Timeout, in milliseconds

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcWsRcvStr%(u/a%, msg$, bytecnto/o,
waito/o)

ok% = EpcWsRcvStr%(u/a%, msg$, bytecnto/o, waito/o)

Receives a series of bytes via the word serial BYTE REQUEST
command. BYTE REQUEST commands are sent only when the
device's DOR (Data Output Ready) and WRDY (Write Ready) bits
are set.

If bytecnt_ptr is non-NULL, the C interface returns the number of
bytes received in the location pointed to by bytecnt_ptr.

The MS BASIC interface uses a fixed internal buffer of 512 bytes to
construct strings, and received messages are limited to that size.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

2-95

I

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-96

The MS BASIC interface doesn't require a length parameter-it
passes the length of the message as part of the string descriptor.

This function terminates successfully when a byte with the END bit
set is received. It will also terminate when the buffer is full, when a
timeout occurs, when a VXIbus error occurs, or when a Word Serial
Protocol error is detected.

If the buffer fills before the set END bit is detected, this function
returns ERR_BUFFER_FULL. Subsequent calls retrieve more
data; so you can use a series of calls to EpcWsRcvStr to receive
long strings.

The following return values are supported:

Constant Description

EPC_SUCCESS Successful function completion.

ERR_BERR A bus error occurred sending a word
serial command.

ERR_FAIL A failure occurred while the library was
communicating with the BusManager
driver.

ERR_BUFFER_FULL The specified buffer is full.

ERR_RBERR A bus error occurred receiving a word
serial command response.

ERR_RTIMEOUT A timeout occurred receiving a word
serial command response.

ERR_ TIMEOUT A timeout occurred sending a word serial
command.

ERR_ WS A word serial protocol error occurred.

EpcWsSndStr, EpcWsSndStrNe.

EpcWsServArm

EpcWsServArm

Description

C Synopsis

Arms the EPC so that it can receive a command.

short FAR PASCAL
EpcWsServArm(short code);

code Arming code.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION EpcWsServArm%(BYVAL code%)
ok% = EpcWsServArm%(code%)

Valid code values are the following:

Constant Description
BM_ WS~CV _DISARM Disarm commander reception.
BM_ WSRCV _ARM Arm command reception.
BM_ WSRCV _ARMandENABLE Arm command reception and

enable the message interrupt.
BM_ WSRCV _FDISARM Forcefully disarm command

reception.
BM_ WSRCV _FARM Forcefully arm command

reception.
BM_ WSRCV _FARManctENABLE

Forcefully arm command
reception and enable the
message interrupt.

2-97

I

Bus Management for DOS Programmer's Reference Guide

Return Value

See Also

2-98

Arming for command receipt sets the VMEbus-readable bit WRDY
(write ready), indicating that a command can be accepted. In
addition, the message interrupt may be enabled to inform the
program when the command arrives. You must call this function
before trying to receive a command.

Arming codes BM_ WSRCV _DISARM, BM_ WSRCV _ARM,
and BM_ WSRCV _ARMandENABLE obey the EPC locking
protocol, allowing multiple controllers to communicate with the
same device. This protocol requires that the VMEbus response
register not be touched by a controller unless they are going to send
a command. In environments where this rule may not be obeyed,
use the "force" versions of these sub functions
(BM_ WSRCV _FDISARM, BM_ WSRCV _FARM, and
BM_ WSRCV _F ARMandENABLE).

The function returns the following return values:

Constant

EPC_SUCCESS

ERR_FAIL

Description

Successful function completion.

A failure occurred while the library was
communicating with the BusManager
driver.

EpcWsServPeek, EpcWsServRcv, EpcWsServSend.

EpcWsServPeek

EpcWsServPeek

Description

C Synopsis

Waits for a command to arrive without removing the incoming
command.

short FAR PASCAL
EpcWsServPeek(unsigned long FAR* command, unsigned long

waittime);

short FAR PASCAL
EpcWsServPeek2(unsigned long FAR* command, unsigned

long FAR* memwaittime);

command

waittime

memwaittime

Word serial command received.

Number of milliseconds to wait before
returning.

Address of the number of milliseconds to
wait before returning.

MS BASIC Synopsis
DECLARE FUNCTION EpcWsServPeek%(SEG command&,

BYVAL waittime&)
ok% = EpcWsServPeek%(command&, waittime&)

DECLARE FUNCTION EpcWsServPeek2%(SEG command&,
SEG memwaittime&)

ok% = EpcWsServPeek2%(command&, memwaittime&)

2-99

Bus Management for DOS Programmer's Reference Guide

Remarks Both EpcWsServPeek and EpcWsServPeek2 wait for a command
to arrive and return it to the caller. The command stays available for
subsequent EpcWsServPeek and EpcWsServRcv calls.
EpcWsServPeek and EpcWsServPeek2 differ m that
EpcWsServPeek takes a timeout parameter while
EpcWsServPeek2 takes a pointer to a timeout parameter and
modifies the value to reflect the number of milliseconds remaining
when a command arrives.

You must call EpcWsServArm before calling this function.
Otherwise, EpcWsServPeek returns invalid data.

The command size may be 2 or 4 bytes on an EPC-2 or EPC-7 or 2
bytes on an EPC-6. When a 2-byte command is received, the two
unused high-order bytes are undefined.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

Return Value The function returns the size of the command (in bytes) if a
command arrives. If no command arrives with the specified time,
the function returns zero. Otherwise, the function returns
ERR_FAIL.

See Also EpcWsServArm, EpcWsServRcv.

2-100

EpcWsServRcv

EpcWsServRcv

Description

C Synopsis

Waits for a command to arrive and receive the incoming command.

short FAR PAS CAL
EpcWsServRcv(short code, unsigned long FAR* command,

unsigned long waittime);

short FAR PASCAL
EpcWsServRcv2(short code, unsigned long FAR* command,

unsigned long FAR* memwaittime);

code

command

waittime

memwaittime

Arming code.

Word serial command received.

Number of milliseconds to wait before
returning.

Address of the number of milliseconds to
wait before returning.

MS BASIC Synopsis

DECLARE FUNCTION EpcWsServRcv%(BYVAL code%, SEG
command&, BYV AL waittime&)

ok% = EpcWsServRcv%(code%, command&, waittime&)

DECLARE FUNCTION EpcWsServRcv2%(BYVAL code%, SEG
command&, SEG memwaittime&)

ok% = EpcWsServRcv2%(code%, command&, memwaittime&)

2-10 I

Bus Management for DOS Programmer's Reference Guide

Remarks

Return Value

See Also

2-102

EpcWsServRev and EpcWsServRev2 wait for a command to
arrive and returns the command to the caller. EpcWsServRcv and
EpcWsServRcv2 differ in that EpcWsServRcv takes a timeout as a
parameter, while EpcWsServRcv2 takes a pointer to a timeout
parameter and modifies the timeout to reflect the number of
milliseconds remaining when a command is received.

The parameter code specifies the arming option to perform after
receiving the command. Valid values for code are the following:

Constant Description

BM_ WSRCV _DISARM Disarm command reception.
BM_ WSRCV _ARM Arm command reception.
BM_ WSRCV _ARMandENABLE

Arm command reception and
enable the message.

If a command is received, the action specified in code is performed
after the receipt and before EpcWsServRcv returns. That action is
an integral part of the receipt, so race conditions are avoided.

You must call EpcWsServArm before calling this function.
Otherwise, EpcWsServRcv returns invalid data.

The command size may be 2 or 4 bytes on an EPC-2 or EPC-7, or
2 bytes on an EPC-6. When a 2-byte command is received, the two
unused high-order bytes are undefined.

To use the DOS clock for tracking elapsed time, this function
enables processor interrupts while it operates.

The function returns the size of the command (in bytes) if a
command is received. If no command is received within the
specified time, the function returns zero. Otherwise, the function
returns ERR_FAIL.

EpcWsServArm, EpcWsServSend, EpcWsServPeek.

EpcWsServSend

EpcWsServSend

Description

C Synopsis

Sends a response to the EPC's commander.

short FAR PASCAL
EpcWsServSend(short code, void FAR* command, unsigned

long waittime);

short FAR PASCAL
EpcWsServSend2(short code, void FAR* command, unsigned

long FAR* memwaittime);

code

command

waittime

memwaittime

Send operation code.

Word serial response to send.

Number of milliseconds to wait before
returning.

Address of the number of milliseconds to
wait before returning.

MS BASIC Synopsis

DECLARE FUNCTION EpcWsServSend%(BYV AL code%, SEG
command&, BYV AL waittime&)

ok% = EpcWsServSend%(code%, command&, waittime&)

DECLARE FUNCTION EpcWsServSend2%(BYVAL code%,
SEG command&, SEG memwaittime&)

ok% = EpcWsServSend2%(code%, command&, memwaittime&)

2-103

Bus Management for DOS Programmer's Reference Guide

Remarks

Return Value

2-104

EpcWsServSend and EpcWsServSend2 send a word serial
command response to this EPC's commander. EpcWsServSend and
EpcWsServSend2 differ in that EpcWsServSend takes a timeout
parameter, while EpcWsServSend2 takes a pointer to a time-out
parameter and modifies the timeout to reflect the number of
milliseconds remaining when the response was received by the
EPC's commander. Before the command is sent, however, the
VMEbus data register must be cleared (that is, RRDY and WRDY
must both be false). The register is cleared only when it is read by
the commander, and the waittime (or memwaittime) parameter lets
you prevent the function from waiting indefinitely.

The parameter code specifies the send operation. Valid values are
the following:

Value
0

2
3

4

5

Description
Send no command response -- wait for the previous
command response to be received.
Send no command response -- wait for the previous
command response to be received and enable the
message interrupt.
Send a 16-bit command response.
Send a 16-bit command response and enable the
message interrupt.
Send a 32-bit command response. (EPC-2 and EPC-7
only)
Send a 32-bit command response and enable the
message interrupt. (EPC-2 and EPC-7 only)

To use the DOS clock for tracking elapsed time, this function
enables processor interrupts while it operates.

The function supports the following return values:

Constant

EPC_SUCCESS

ERR_FAIL

Description

Successful function completion.

A failure occurred while the library was
communicating with the BusManager
driveL

EpcWsServSend

See Also EpcWsServArm, EpcWsServPeek, EpcWsServRcv.

2-105

Bus Management for DOS Programmer's Reference Guide

EpcWsSndStr

Description

C Synopsis

Sends a series of bytes setting the END bit on the last byte.

short FAR PASCAL
EpcWsSndStr(unsigned short ula, char FAR* msg_ptr, short
len, short FAR* bytecnt_ptr, unsigned short wait);

ula

msg_ptr

len

bytecnt_ptr

wait

Servant's unique logical address.

Address of string to send.

Message length.

Number of bytes sent.

Timeout, in milliseconds.

MS BASIC Synopsis

Remarks

2-106

DECLARE FUNCTION EpcWsSndStr%(BYV AL ula%, msg$,
SEG bytecnt%, B YV AL wait%)

ok% = EpcWsSndStr%(ula%, msg$, bytecnt%, wait%)

Sends a series of bytes via the word serial BYTE AVAILABLE
command. BYTE AVAILABLE commands are sent only when the
device's DIR (Data Input Ready) and WRDY bits are set. This
function sets the END bit in the last command of the series.

Using the C interface, if bytecnt_ptr is non-NULL, this function
returns the number of bytes sent in the location pointed to by
bytecnt_ptr.

The BASIC interface doesn't require a length parameter-it passes
the length of the message as part of the string descriptor.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

Return Value

See Also

EpcWsSndStr

The following return values are supported:

Constant

EPC_SUCCESS

ERR_BERR

ERR_FAIL

ERR_ TIMEOUT

ERR_WS

Description

Successful function completion.

A bus error occurred sending a word
serial command.

A failure occurred while the library was
communicating with the BusManager
driver.

A timeout occurred sending a word serial
command.

A word serial protocol error occurred.

EpcWsStat, EpcWsSndStrNe.

2-107

Bus Management for DOS Programmer•s Reference Guide

EpcWsSndStrNe

Description

C Synopsis

Sends a series of bytes without setting the END bit on the last byte.

short FAR PASCAL
EpcWsSndStr(unsigned short ula, char FAR* msg_ptr, short
ten, short FAR * bytecnt_ptr, unsigned short wait);

ula

msg_ptr

len

bytecnt_ptr

wait

Servant's unique logical address.

Address of string to send.

Message length.

Number of bytes sent.

Timeout, in milliseconds.

MS BASIC Synopsis

Remarks

2-108

DECLARE FUNCTION EpcWsSndStrNe%(BYVAL ula%, msg$,
SEG bytecnt%, BYVAL wait%)

oko/o = EpcWsSndStrNe%(ula%, msg$, bytecnto/o, wait%)

This function works the same as EpcWsSndStr, except that it does
not set the END bit in the last command of the series.

To use the DOS clock for tracking elapsed time, the function
enables processor interrupts for the duration of its execution.

Return Value

See Also

EpcWsSndStrNe

The following return values are supported:

Constant

EPC_SUCCESS

ERR_BERR

ERR_FAIL

ERR_ TIMEOUT

ERR_WS

Description

Successful function completion.

A bus error occurred sending a word
serial command.

A failure occurred while the library was
communicating with the BusManager
driver.

A timeout occurred sending a word serial
command.

A word serial protocol error occurred.

EpcWsStat, EpcWsSndStrNe.

2-109

Bus Management for DOS Programmer•s Reference Guide

EpcWsStat

Description

C Synopsis

Returns the word serial status of the designated device.

short FAR PASCAL
EpcWsStat(unsigned short ula);

ula Servant's unique logical address.

MS BASIC Synopsis

DECLARE FUNCTION EpcWsStat%(BYVAL ula%)

status%= EpcWsStat%(u/a%)

Remarks Returns the status of the designated device or a negative number
(indicating failure). Bits 14-8 of the returned status an~ set to bits
14-8 of the servant's Response Register. These bits are: a reserved
bit (14), DOR, DIR, ERR*, Read Ready, Write Ready, and FHS*.

Return Value NONE

See Also EpcWsCmd.

2-l IO

EpcWsStat

NOTES

2-111

3. OLRM Functions

The On-Line Resource Manager (OLRM) gives application programs a high-level
language interface to the devices on the VXIbus, and manages serially reusable
resources such as interrupt and trigger lines. The OLRM allows non-VXIbus devices
to be viewed in the same way as VXIbus devices.

The OLRM is attribute oriented, and allows devices to be addressed by either
symbolic device name or logical address. It consists of the following functions:

OLRMAllocate

0 LRMDeallocate

Allocates trigger and interrupt line resources.

Places the specified resources in the deallocated
state.

OLRMGetBoolAttr Returns boolean information about a specified
device.

OLRMGetList Returns a list of information and the number of
elements in the list.

OLRMGetNumAttr Returns numeric information about the specified
device.

OLRMGetStringAttr Returns ASCII information about a specified
device.

OLRMRename Changes the symbolic name of a device.

For all but OLRMAllocate and OLRMDeallocate, the first two parameters are an
ASCII device name and a numeric logical address. One or the other is used to refer to
the device. In the C interface, the ASCII device name is used if the parameter is non­
null-the second parameter is ignored. If the ASCII device name is null, the second
parameter is used. In the Basic interface, an empty string indicates that the second
parameter is to be used.

3-1

I

Bus Management for DOS Programmer's Reference Guide

Unless otherwise noted, these functions return meaningless results when called with
inappropriate parameters (such as asking for the memory speed of a register-based
VXlbus device).

3.1 Calling the OLRM From MS C and QuickC

The C language interface is designed to work with Microsoft C compilers (versions
5.1 and later).

Your C application can be compiled in any of the memory models. To make OLRM
independent of the memory models, all calls to OLRM are of type far Pascal.

The following examples show how the MS C functions are used:

Example I
if (OLRMGetBoolAttr("scannerl",0,0LRM_SIGREG))

Tests device scannerl for a signal register.

Example 2
i = OLRMGetNumAttr ("Wavegen", 0, OLRM_SLOT) ;

Gets the slot number of device Wavegen.

Example 3
i = OLRMGetNumAttr("globalmem", 0,0LRM_ADDRESS_BASE);

Gets the memory base address of device globalmem.

Example4
manufname = OLRMGetStringAttr("Wavegen" ,0, OLRM_MANUFACTURER,

manufname);

Gets the symbolic manufacturer's name of device Wavegen.

Example 5
OLRMGetList(NULL,0,0LRM_DEVICES,256,lalist);

Gets a list of logical addresses of all devices.

Example6

OLRMRename(NULL,25,"Mill553");

Renames the device with logical address 25 as Mi 115 5 3.

3-2

OLRM Functions

Example 7
i = OLRMAllocate(OLRM_TTLTRGANY2);

Allocates any two adjacent TIL trigger lines.

3.2 Calling the OLRM From MS BASIC and
QuickBASIC

The BASIC interface is designed to work with Microsoft QuickBASIC and Compiled
BASIC. The following examples show how the MS BASIC functions are used:

Example I
IF OLRMGetBoolAttr% ("scannerl", 0, OLRM_SIGREG) <> 0 ...

Tests device scannerl for a signal register.

Example 2
i % = OLRMGetNwnAt tr% ("Wavegen" , 0, OLRM_SLOT)

Gets the slot number of device Wavegen.

Example 3
i% = OLRMGetNwnAttr%("globalmem",0,0LRM_ADDRESS_BASE)

Gets the memory base address of device globalmem.

Example 4
CALL OLRMGetStringAttr("Wavegen" ,0, OLRM_MANUFACTURER, manufname$)

Gets the symbolic manufacturer's name of device Wavegen.

Example 5
retval% = OLRMGetList%("",0,0LRM_DEVICES,256,lalist$)

Gets a list of logical addresses of all devices.

Example 6
triggers% = OLRMAllocate%(0LRM_TTLTRGANY2)

Allocates any two adjacent TTL trigger lines.

3-3

Bus Management for DOS Programmer's Reference Guide

3.4 Functions by Name

This section contains an alphabetical listing of the SICL library functions. Each
listing describes the function, gives its invocation sequence and arguments, discusses
its operation, and lists its returned values. Where usage of the function may not be
clear, an example with coI_Ilments is given. Each function description begins on a new
page.

3-4

OLRM Functions

OLRMAllocate

Description Allocates trigger and interrupt line resources.

C Synopsis

unsigned short FAR PASCAL
OLRMAllocate(unsigned short resource);

resource Trigger and interrupt line to be allocated.

MS BASIC Synopsis

Remarks

DECLARE FUNCTION OLRMAllocate%(BYV AL resource%)

ok% = OLRMAllocate%(resource%)

Allocates trigger and interrupt line resources. Resources can be
allocated specifically ("give me TTL trigger line 4") and generically
("give me two TTL trigger lines").

The resource parameter may be one of the following:

OLRM_TTLTRGO
OLRM_TTLTRGl
OLRM_TTLTRG2
OLRM_TTLTRG3
OLRM_TTLTRG4
OLRM_ TTLTRGS
OLRM_TTLTRG6
OLRM_TTLTRG7
OLRM_TTLTRGOl
OLRM_TTLTRG23
OLRM_TTLTRG45
OLRM_ TTLTRG67

OLRM_ TTL TRG0123
OLRM_ TTL TRG4567
OLRM_ TTL TRGANY
OLRM_TTLTRGANY2
OLRM_TTLTRGANY4
OLRM_ECL TRGO
OLRM_ECL TRG 1
OLRM_ECLTRG2
OLRM_ECLTRG3
OLRM_ECL TRG4
OLRM_ECLTRGS
OLRM_ECLTRGOl

OLRM_ECLTRG23
OLRM_ECLTRG450L
OLRM_ECL TRGANY
OLRM_ECLTRGANY2
OLRM_IRQl
OLRM_IRQ2
OLRM_IRQ3
OLRM_IRQ4
OLRM_IRQS
OLRM_IRQ6
OLRM_IRQ7
OLRM_IRQANY

You can request the allocation of specific resources, groups of
resources (such as TTL triggers 0 and 1), and "any" resources. To
accommodate D-size systems, the available resources include the
extra four ECL triggers (Jines 2-5) on the P3 connector.

3-5

Bus Management for DOS Programmer's Reference Guide

To permit computation with these resource values, the encodings
are numerically equivalent to the lowest-numbered resource of a
class. For example, OLRM_TTLTRGl is equal to
OLRM_TTLTRGO + l, and OLRM_IRQ3 is equal to
OLRM_IRQl + 2.

Notes:

• Since the OLRM_ECLTRGANY and
OLRM_ECLTRGANY2 parameters could allocate ECL
triggers 2-5 (nonexistent in a C-size system), one should avoid
using these in a C-size system.

• All resources are not necessarily available for allocation when
the system is initialized. Specifically, the SURM allocates
interrupt lines as described through the Configurator.

Return Value If the resource was allocated, the resource number is returned. In
the case of multiple allocations
(OLRMA11ocate(OLRM_TTLTRGANY2), for example), the
value returned is' that of the lowest-numbered of the resources
allocated. The returned value is 0 if the function fails (that is, if the
resource is already allocated, insufficient resources are available, or
the resource is unknown).

See Also OLRMDeallocate.

3-6

OLRM Functions

OLRMDeallocate

Description

C Synopsis

Places the specified resources in the deallocated state.

void FAR PASCAL
OLRMDeallocate(unsigned short resource);

resource Trigger or interrupt to be deallocated.

MS BASIC Synopsis

DECLARE SUB OLRMDeallocate(BYV AL resource%)

CALL OLRMDeallocate(resource%)

Remarks Places the specified resource(s) in the deallocated state, making
them available for allocation. The resource parameters can be any
of those specified under OLRMAllocate (except for the *ANY
values).

Return Value None.

See Also OLRMAllocate.

3-7

I

Bus Management for DOS Programmer's Reference Guide

OLRMGetBoolAttr

Description

C Synopsis

Returns boolean information about the specified device.

unsigned short FAR PASCAL
OLRMGetBoolAttr(char FAR *devname, unsigned short ula,
unsigned short attr);

devname

ula

attr

Device name.

Unique logical address

Attribute

MS BASIC Synopsis

Remarks

3-8

DECLARE FUNCTION OLRMGetBoolAttr%(devname$,
BYV AL ula%, BYV AL attr%)

value%= OLRMGetBoolAttr%(devname$, ula%, attr%)

Returns requested information about specified device. The device
can be addressed by its symbolic name or logical address.

Attr may be one of the following. The VXIbus source "devtab" is
the internal device table maintained by the SURM and OLRM.

OLRM Functions

Attr Source

OLRM_REGISTER_DEVICE ID register
OLRM_MEMORY _DEVICE ID register
OLRM_EXTENDED_DEVICE ID register
OLRM_MESSAGE_DEVICE devtab
OLRM_A16_0NLY ID register
OLRM_A16_A24 ID register
OLRM_A16_A32 ID register
OLRM_A24A32_ENABLED status register
OLRM_MODID status register
OLRM_EXTENDED_TEST status register
OLRM_PASSED status register
OLRM_SUPVSR_ONLY memory attribute register
OLRM_BT memory attribute register
OLRM_N_P memory attribute register
OLRM_D32 memory attribute register
OLRM_CMDR message protocol register
OLRM_SIGREG message protocol register
OLRM_MASTER message protocol register
OLRM_INTERRUPTER message protocol register
OLRM_FHS message protocol register
OLRM_SHMEM message protocol register
OLRM_DOR message response register
OLRM_DIR message response register
OLRM_ERR message response register
OLRM_RRDY message response register
OLRM_WRDY message response register
OLRM_FHS_ACTIVE message response register
OLRM_LOCKED message response register
OLRM_FAILED devtab
OLRM_NOTVXI devtab
OLRM_MEM_ALLOCATED devtab
OLRM_EXISTS devtab
OLRM_HAS_SERV ANTS devtab

If the device is a VXlbus device, most of these attributes cause a
VXIbus access.

3-9

I

Bus Management for DOS Programmer's Reference Guide

Return Value The boolean value returned is always of positive logic, regardless
of the polarity of the actual VXIbus-defined bit. For instance, the
attribute OLRM_MODID returns TRUE if the device's MODID
bit is O; OLRM_N_P returns TRUE if a RAM device is nonvolatile
or a ROM device electrically programmable.

See Also

3-10

Most of the attributes are named the same way as in the VXlbus
specification. The OLRM_FAILED attribute denotes whether the
SURM reported the device as failed and placed the device in the
safe state. The OLRM_NOTVXI attribute denotes whether the
device is not a VXIbus device. The
OLRM_MEM_ALLOCATED attribute denotes whether address
space for the device was reserved or allocated in the A24 or A32
address space. The OLRM_EXISTS attribute denotes whether the
device (specified by symbolic name or logical address) is a known
device. The OLRM_HAS_SERV ANTS attribute denotes whether
the device has been assigned any servants by the SURM.

In ~he event of an error, such as specifying a nonexistent device or
calling this function with a VXIbus attribute for a VMEbus device,
this function returns 0.

OLRMGetNumAttr, OLRMGetList, OLRMGetStringAttr.

OLRM Functions

OLRMGetlist

Description

C Synopsis

Returns a list of information and the number of elements in the list.

unsigned short FAR PASCAL
OLRMGetList(char FAR *devname, unsigned short ula,
unsigned short attr, unsigned short size, char FAR* list);

devname

ula

attr

size

list

Device name.

Unique logical address.

Attribute.

Maximum list size, in bytes.

Pointer to a buffer where the attribute
list will be placed.

MS BASIC Synopsis

DECLARE FUNCTION OLRMGetListo/o(devname$, BYVAL
ula%, BYV AL attro/o, value$)

retval% = OLRMGetList%(devname$, ulao/o, attro/o, value$)

Returns a list of information (as bytes in a character array) and the
number of elements in list. The size parameter specifies the
maximum number of bytes returned in list (the return value is not
influenced by size and thus may be greater than size).

Attr may be either of the following. The source devtab 1s the
internal device table maintained by the SURM and OLRM.

Attr

OLRM_DEVICES
OLRM_SERV ANTS

Source

devtab
devtab

If the attribute is OLRM_DEVICES, the devname and ula
arguments are ignored. The logical addresses of all VXIbus and
pseudo-VXlbus devices in the system are returned in the list.

3-11

I

Bus Management for DOS Programmer's Reference Guide

If the attribute is OLRM_SERVANTS, the logical addresses of the
specified device's servants are returned in the list. The device can
be addressed by symbolic name (devname) or logical address.

Return Value The function returns the number of byte elements in the attribute
list. If an error occurs, this function returns 0.

See Also OLRMGetBoolAttr, OLRMGetNumAttr,
OLRMGetStringAttr.

3-12

OLRM Functions

OLRMGetNumAttr

Description

C Synopsis

Returns requested numeric information about the specified device.

unsigned short FAR PASCAL
OLRMGetNumAttr(char FAR *devname, unsigned short ula;
unsigned short attr);

devname

ula

attr

Device name.

Unique logical address

Attribute

MS BASIC Synopsis

Remarks

DECLARE FUNCTION OLRMGetNumAttr%(devname$,
BYVAL ulao/o, BYVAL attro/o)

value%= OLRMGetNumAttr%Clfevname$, ulao/o, attr%)

Returns requested numeric information about the specified device.
The device can be addressed by its symbolic name or logical
address.

Attr may be one of the following. The source "devtab" is the
internal device table maintained by the SURM and OLRM.

3-13

I

Bus Management for DOS Programmer's Reference Guide

3-14

OLRM_CLASS
OLRM_ADDRESS_MODE
OLRM_MANUFACTURER
OLRM_REQ_MEMORY
OLRM_MODEL
OLRM_ADDRESS_BASE
OLRM_MEMORY _TYPE

OLRM_SPEED

OLRM_LOG_ADDR
OLRM_SLOT
OLRM_CMDR
OLRM_BID
OLRM_BDT
OLRM_BSC
OLRM_BSO
OLRM_BAT

OLRM_BPR

OLRM_BRE

OLRM_BMH

OLRM_BML

Source

VXIbus ID register
VXIbus ID register
VXIbus ID register
VXIbus device-type register
VXIbus device-type register
VXIbus offset register
VXIbus memory attribute
register
VXIbus memory attribute
register
devtab
devtab
devtab
VXIbus ID register
VXIbus device-type register
VXIbus status register
VXIbus offset register
VXIbus memory attribute
register
VXIbus message protocol
register
VXIbus message response
register
VXIbus message data-high
register
VXIbus message data-low
register

If the device is a VXIbus device, most of these attributes cause a
VXlbus access.

The available attributes cover both fields as well as entire registers.
The encoding is the same as defined in the VXIbus specification
(for example, OLRM_CLASS returns a value in the range 0-3).

OLRM Functions

The OLRM_LOG_ADDR attribute denotes the logical address of
the device. The OLRM_SLOT attribute denotes the slot in which
the device resides. The OLRM_CMDR attribute denotes the
logical address of the device's commander. Every device has a
commander. The commander of the top level commander is itself.
The OLRM_BID, OLRM_BDT, OLRM_BSC, OLRM_BSO,
OLRM_BAT, OLRM_BPR, OLRM_BRE, OLRM_BMH, and
OLRM_BML attributes denote the value of the entire VXIbus
register.

Return Value In the event of an error, such as calling this function with a VXlbus
attribute for a VMEbus device, this function returns OxFFFF.

See Also OLRMGetBoolAttr, OLRMGetList, OLRMGetStringAttr.

3-15

Bus Management for DOS Programmer's Reference Guide

OLRMGetStringAttr

Description

C Synopsis

Returns ASCII information about the specified device.

char FAR* FAR PASCAL
OLRMGetStringAttr(char FAR *devname, unsigned short ula,
unsigned short attr, char FAR string);

devname

ula

attr

string

Device name.

Unique logical address

Attribute

String

MS BASIC Synopsis

Remarks

DECLARE SUB OLRMGetStringAttr%(devname$, BYVAL
ula%, BYV AL attr%, value$) .

CALL OLRMGetStringAttr%(devname$, ulao/o, attr%, value$)

Returns requested ASCII information about a specific device. The
device can be addressed by symbolic name or logical address.

Attr may be one of the following. The source "devtab" is the
internal device table maintained by the SURM and OLRM.

OLRM_DEVICE_NAME
OLRM_MANUFACTURER
OLRM_MODEL

Source

devtab
devtab
devtab

These attributes are the symbolic values as reported by the SURM.
The caller is responsible for allocating at least 13 bytes for the
fourth parameter (the output string). The value of the attribute is
placed in this string and the address of this string is returned.

Return Value If an error occurs, this function returns a null pointer.

3-16

OLRM Functions

See Also OLRMGetBoolAttr, OLRMGetList, OLRMGetNumAttr.

I

3-17

Bus Management for DOS Programmer's Reference Guide

OLRMRename

Description

C Synopsis

Changes the symbolic name of a device.

char FAR * FAR PASCAL
OLRMRenarne(char FAR* devname, unsigned short ula, char*
FAR newname);

MS BASIC Synopsis

Remarks

Return Value

3-18

NONE

Changes the symbolic name of a device. The device can be
addressed by its symbolic name or logical address. If the device is
found, its name is changed to that of newname (or the first 12
characters of newname) and the returned value is identical to the
newname parameter. If the device cannot be found, or if any other
error occurs, the function returns NULL.

The name change is Jost when the machine is shut down or
rebooted.

If the device cannot be found, or if any other error occurs, the
function returns NULL.

4. Advanced Topics

This chapter discusses topics of interest to advanced application programmers.
Topics include:

• Byte Ordering and Data Representation

• Handler Operations

• Programming Interface

• Writing Device Drivers

• "C" Optimization

4.1 Byte Ordering and Data Representation

Byte ordering adds complexity to the VMEbus interface. Many VMEbus devices use
the data formats of Motorola microprocessors. Others, including RadiSys EPC
controllers, use the data format of Intel microprocessors. Although the Motorola and
Intel microprocessors use the same data types, the hardware representations of these
data types differ.

Figure 4-1 shows how the same sequence of bytes in memory is interpreted by Intel
and Motorola microprocessors. Memory value 11 is at the lowest address and
memory value 88 is at the highest address. The data widths shown correspond to the
data operand sizes found on both microprocessors.

4-1

Bus Manager for DOS Programmer's Reference Guide

Memory
Value

11

22

33

44
55

66

77

88

Intel
Order

11

2211

44332211

8877665544332211

Data
Width

8 bits

16 bits

32 bits

64 bits

Figure 4-1. Byte Order Example

5.1.1 Byte Swapping Functions

Motorola
Order

11

1122

11223344

1122334455667788

The EpcMemSwapW and EpcSwapW functions convert 16-bit data between Intel
and Motorola byte orders. The EpcSwapL and EpcMemSwapL functions convert
32-bit data between Intel and Motorola byte orders. Note that 8-bit data does not
require conversion.

The block transfer functions (EpcFromVme, EpcFromVmeAm, EpcToVme, and
EpcToVmeAm) conditionally perform byte-swapping.

4.1.2 Correcting Data Structure Byte Ordering

Even if byte-swapping occurs during a block transfer function, byte ordering problems
occur when data is copied between Motorola and Intel memory using a different data
width than the width of the operand itself. This situation occurs when a data structure
containing mixed-type fields is copied in a single operation.

4-2

Advanced Topics

The following code fragment illustrates how to use the EpcMemSwapL or the
EpcMemSwapW functions to correct the byte order in the local copy of the data
structure:

struct DataStructure
{

data;

char
short
long

fieldS;
fieldl6;
field32;

/* Copy the data structure to local memory from the VMEbus. */

EpcFromvme(BM_WS, address, (char FAR*) &data, sizeof (struct
DataStructure));

/*Byte-swap the individual structure fields (data.fields is an
8-bit field, so it is already correct).
*/

EpcMemSwapW(&data.fieldl6,l);
EpcMemSwapL(&data.field32,l);

In the above example, the data structure was copied from VMEbus memory one byte
at a time. To copy data from EPC memory to Motorola-ordered memory, byte-swap
the fields of the structure in local memory (using the above byte swapping functions)
and copy the data using the EpcToVme or EpcToVmeAm function.

It is sometimes more efficient to copy blocks of data using a data transfer width
greater than the expected data width. If you use a greater data transfer width to copy
data structures containing mixed-type fields to/from Motorola-order memory, do not
use the byte-swapping feature. Swap the data structure fields individually.

4.2 EPConnect Handler Execution
DOS

Under

Installed interrupt and error handler functions execute as part of a separate thread
under DOS. This feature implies that an EPConnect handler function can only call
fully reentrant "C" library and EPConnect library functions. Also, an EPConnect
handler can only invoke fully reentrant DOS functionality.

4-3

Bus Manager for DOS Programmer•s Reference Guide

These conditions must be true before an application's handlers can execute:

• The application must use EpcSetError or EpcSetlntr to install a handler
function.

• An error or interrupt must occur.

EPConnect discards all interrupts and errors that occur before the application installs a
handler and enables interrupt or error reception.

When an application installs a handler and enables interrupt or error reception, the
handler processes the interrupt or error as soon as they are received. Under DOS, the
installed handler executes as part of an interrupt thread, with processor interrupts
disabled, and using the installed handler's stack.

4.3 Writing Device Drivers

This chapter describes how you use the EPConnect programming interface in drivers
for VXIbus devices connected to EPCs. You are assumed to have some experience
writing DOS device drivers and to have read the BusManager documentation.

4.3.1 General Information

VMEbus device drivers fall into one of two categories:

• Program-specific drivers. These are drivers that are a part of a program.
Typically, a program-specific driver consists of a set of functions. Most device
drivers fall into this category.

• Resident drivers. These are drivers that are loaded at boot time. A resident driver
is usually built as a DOS driver and loaded in the CONFIG.SYS file. A resident
driver can also be built as a terminate-and-stay-resident program (TSR) and loaded
in the AUTOEXEC.BAT file.

Program-specific drivers have a totally flexible applications interface - calls may be
added easily. Such a driver is relatively easy to implement, but controls the device
only while the program is running.

4-4

Advanced Topics

Resident drivers can make a device accessible to all programs by designating it as a
DOS device or by defining a service accessible through a DOS interrupt. Resident
drivers are much more difficult to write: they are typically written in assembly
language and often require the creation of an interface library to give higher-level
languages access to device services. The BusManager is an example of a resident
driver. It must be loaded before any other resident driver that uses BusManager
functions.

4.3.2 Using the VMEbus Window

Access to a device is gained primarily through its control and status registers. These
registers are addressable locations, usually in the VMEbus Al6 address space,
accessible through the EPC VMEbus window. The VMEbus window is a 64KB
region of memory which can be mapped to any section of the Al6, A24, or A32
address spaces that starts on a 64KB boundary. The bus window is only a VMEbus
master - it has no slave address and cannot be the destination of an access by other
boards. This means, for instance, that a VMEbus device cannot do a direct memory
access into the bus window.

The mapping of the bus window onto the VMEbus address space is controlled by the
BusManager device driver (BUSMGR.SYS). The BusManager provides all the
services necessary to use the bus window. BusManager functions that pertain to the
bus window include:

• EpcSetAmMap. Sets the mapping of the bus window into VMEbus space and sets
the address modifier (Al6, A24, or A32) and the byte order (either Intel-style or
Motorola-sty le).

• EpcSaveState. Stores the bus window mapping, address modifier, and byte order
(collectively know as the state) in a caller-specified location.

• EpcRestState Restores a previously saved state, using the internal representation
created by a EpcSaveState call.

Several drivers may simultaneously use the bus window, each mapping it to a different
location, so take care to save and restore the state used by each driver.

4-5

Bus Manager for DOS Programmer's Reference Guide

4.3.3 Interrupts

It is often desirable to use the seven VMEbus interrupts generated by a device to
control its operation. Several devices may trigger the same interrupt, but all the
drivers responding to a given interrupt must run on the same processor and coordinate
among themselves. Put another way, each VMEbus interrupt must be handled by
exactly one processor.

When the BusManager detects an interrupt for which it is enabled, it issues a 16-bit
interrupt acknowledge (IACK) cycle on the VMEbus and gets back an 8-bit or 16-bit
Status/ID response from the interrupting device. This Status/ID information is made
available to the driver, but the BusManager cannot detect the actual size of the
response - it is up to the driver to know whether the response contains 8 or 16
significant bits.

BusManager functions for dealing with interrupts include:

• EpcWaitlnt. Causes the caller to wait until one of a specified set of interrupts
occurs or until a timer expires.

• EpcSetlntr. Declares the routine that is called when the specified interrupt occurs.

• EpcDislntr. Tells the BusManager to ignore the specified interrupt.

• EpcEnlntr. Tells the BusManager to react to the specified interrupt.

Waiting for Interrupts

The easiest way to deal with device interrupts is to use the EpcWaitlntr function. No
interrupt handler needs to be set up and no stack needs to be established. This
function waits for one of a set of interrupts to occur (or for a specified amount of time
to elapse). You poll an interrupt by calling the EpcWaitlntr function with a timer
duration of 0.

If the "awaited" interrupt is enabled and has an assigned handler, that handler is
invoked before control returns from the EpcWaitlntr call.

By keeping track of interrupts that have occurred before the call to EpcWaitlntr, the
BusManager assures that no race condition arises. A side effect of "remembering" an
interrupt is that old interrupts may still be recorded long after they are significant. As
a consequence, drivers that use this function should include in their initialization
phase a call to EpcWaitlntr with a timer duration of zero (O) to remove any
remembered interrupts.

4-6

Advanced Topics

Interrupt Handlers

Polling interrupts is easy for single devices and gives reasonable response time. In a
multi-tasking environment, however, it may be more appropriate to install interrupt
handlers.

Interrupt handlers are described in more detail in the language-specific sections of this
chapter.

4.3.4 Building Resident Drivers

There is much more to know about writing resident device drivers than can be covered
in this guide. The Microsoft MS-DOS Operating System Programmer's Guide has an
excellent section on building resident drivers.

4.3.5 Writing Device Drivers In MS C and QuickC

The Microsoft "C" and QuickC EPConnect interfaces provides access to all
B usManager functions. This section· is designed for use by readers experienced in
writing drivers and interrupt code and familiar with the Microsoft C (version 5.1 or
later) compiler, linker, and (where necessary) assembler, and with Microsoft QuickC.

Note: If you are using version 6.0 of the Microsoft "C" compiler, please read the
section C Optimization.

Using the MS C EPConnect Interface

To use EPConnect functions in a driver, include the appropriate header files in the
modules in which the functions are used, and link your driver object files with the
library files. The header files contain function prototypes, structure definitions, and
constants associated with the EPConnect BusManager functions. (See the section
Programming Interface for a description of the EPConnect definition files.)

Note: By default, the Microsoft linker allows a program to have 128 segments. The
MS "C" library has over 100 segments. If the linker reports "too many segments" you
should instruct the linker to allocate more space for segment information. To do so,
include the option I SE: nn on the linker command line, where nn is some value
greater than 128. (The greater the value you specify, the more space the linker
allocates and the slower the linking phase becomes.) Start by specifying 150 for nn,
then adjust the value to suit your time and space requirements.

4-7

Bus Manager for DOS Programmer's Reference Guide

If you request more space than the linker can allocate, it will report "requested
segment limit too high." Specify a smaller value for nn in the /SE command line
option.

Using the MS QuickC EPConnect Interface

The Microsoft QuickC EPConnect interface is the same as that for Microsoft "C".

You may link your applications in the QuickC programming environment with the "C"
libraries by specifying them in the Program List for the applications through the
QuickC Program List facility.

Example 1: Using the VMEbus Window

Access to a device is gained primarily through its control and status registers. These
registers are addressable locations, usually in the VMEbus Al6 address space,
accessible through the EPC VMEbus window. The VMEbus window is a 64KB
region of memory which can be mapped to any section of the A16, A24, or A32
address spaces that starts on a 64KB boundary. The bus window is only a VMEbus
master - it has no slave address and cannot be the destination of an access by other
boards. This means, for instance, that a VMEbus device cannot do a direct memory
access into the bus window.

The mapping of the bus window onto the VMEbus address space is controlled by the
BusManager device driver (BUSMGR.SYS). The BusManager provides all the
services necessary to use the bus window. BusManager functions that pertain to the
bus window include:

• EpcSetAmMap. Sets the mapping of the bus window into VMEbus space and sets
the address modifier (A 16, A24, or A32) and the byte order (either Intel-style or
Motorola-style).

• EpcSaveState. Stores the bus window mapping, address modifier, and byte order
(collectively know as the state) in a caller-specified location.

• EpcRestState. Restores a previously saved state, using the internal representation
created by a EpcSaveState call.

Several drivers may simultaneously use the bus window, each mapping it to a different
location, so take care to save and restore the state used by each driver. The following
code fragment demonstrates how this is done.

include "\epconnec\include\busmgr.h"

4-8

Advanced Topics

long MyState; /*my bus window state */

/*
* Device Registers
*/

struct my_device {
unsigned short status; /* status register */
unsigned short data[4]; /*data I/O */

} ;

/* point to device registers */

struct my_device FAR *MyDev;

/*
* InitMyDriver -- Initialization entry point for my driver
*/

InitMyDriver ()
{

long old_state;

/* save state on entry */
EpcSaveState(&old_state);

/* set to big endian and A24 space, and map the bus */
EpcSetAmMap(BM_MBO I A24N, Ox400340L, &MyDev);

/* speed later access */
EpcSaveState(&MyState);

/* restore entry state */
EpcRestState(&old_state);

/*
* MyDoOp -- Do an operation on My device
*/

short MyDoOp(op, arg)
short op;
short arg;
{

long old_state;

/* save entry state */
EpcSaveState(&old_state);

/*restore device state */
EpcRestState(&MyState);

[manipulate device registers pointed to by MyDevJ

/* restore entry state */

I

4-9

Bus Manager for DOS Programmer's Reference Guide

EpcRestState(&old_state);

Note how the EpcSaveState and EpcRestState operations are used to speed the setup
of the bus window.

Example 2: Waiting for Interrupts

The easiest way to deal with device interrupts is to use the EpcWaitlntr function. No
interrupt handler needs to be set up and no stack needs to be established. This
function waits for one of a set of interrupts to occur (or for a specified amount of time
to elapse). You poll an interrupt by calling the EpcWaitlntr function.

The following code fragment shows an example of waiting for an interrupt.

long status; /* returned Status/ID */

EpcEnintr(MY_INTR)
EpcSaveState(&old_state);
EpcRestState(&MyState);
MyDev->data[O) = DATAl; /* load up data ports */
MyDev->data[l) = DATA2;
MyDev->status I= DEV_GO; /* turn on go bit */
if (EpcWaitintr((l<<MY_INTR), &status, 0) != (l<<MY_INTR))

/*
* No interrupt!
*/

EpcRestState(&old_state);
return (FAILURE);

/*
* Process interrupt
*/

EpcRestState(&old_state);
return (SUCCESS);

Hint: To increase parallelism, consider designing your application so that,
instead of issuing a command to the VMEbus device and waiting for
it to finish, you wait for the previous device command to complete
and then issue the new command.

4-10

Advanced Topics

If the "awaited" interrupt is enabled and has an assigned handler, that handler ts
invoked before control returns from the EpcWaitlntr call.

By keeping track of interrupts that have occurred before the call to EpcWaitlntr, the
BusManager assures that no race condition arises. A side effect of "remembering" an
interrupt is that old interrupts may be recorded long after they are significant. As a
consequence, drivers that use this function should include in their initialization phase
a call to EpcWaitlntr with a timer duration of zero (0) to remove any remembered
interrupts.

Example 3: Implementing Interrupt Handlers

Polling interrupts is easy for single devices and gives reasonable response time. In a
multi-tasking environment, however, it may be more appropriate to install interrupt
handlers.

The BusManager handles only those VMEbus interrupts to which handlers are
assigned. Interrupts that have no assigned handlers are ignored by the BusManager
when they occur, on the assumption that some other-processor on the VMEbus system
will handle those interrupts.

When an interrupt that has a handler assigned to it is detected, the BusManager
performs the following operations:

I) Disables processor interrupts

2) Acknowledges the processor interrupt (to eliminate race conditions)

3) Determines which VMEbus interrupt was detected

4) Performs the IACK cycle to get the Status/ID and clear the interrupt

5) Saves the current bus state on the BusManager's stack

6) Switches to the handler's stack

7) Performs an ordinary FAR call to the handler, passing it the Status/ID

8) Switches back to the BusManager's stack

9) Restores the saved bus state

10) Scans for another interrupt; (if found, continues at step 3)

11) Returns to the interrupted DOS routine and enables processor interrupts.

4-1 I

Bus Manager for DOS Programmer's Reference Guide

Each interrupt handler has its own stack, which should have been allocated previously.
This stack must have sufficient capacity to store the actual parameters and local
variables within the interrupt handler as well as those of subsequent functions which it
may call. A stack size of 256 bytes is suitable in most applications. This stack is not
where the C compiler expects it to be, so the interrupt handler must be compiled using
the following flags:

/Gs Turn off stack checking. Without this option, the handler will immediately
report a stack overflow.

I Auxx Tell the compiler that SS ! = DS, and to reload DS upon entry. The xx
signifies the desired memory model, as described in the following table.

Model Flag Address size

Small /Ausn Near data, near code
Medium /Auln Near data, far code
Compact /Ausf Far data, near code
Large /Aulf Far data, far code

Using the /Auxx flag means that only a far pointer can take the address of a
location or variable on the stack.

If the array for the stack is a near array (compiled with the small or medium model, or
explicitly declared as such), the /Auxx flag is unnecessary, because the BusManager
sets DS equal to SS. In other words, if the array used for the stack has the same
segment value as your near data, then the BusManager will correctly set the data
segment register when entering the handler.

In any case, the handler function itself must be declared far, so that the function
entry/exit properly matches the way it is called.

Because Microsoft does not supply libraries that match custom memory models,
Microsoft "C" library functions cannot be called from the handler. Moreover, DOS is
not reentrant so no DOS operations can be used within the handler.

The handler must return to the BusManager - that is, setjmp() and longjmp()
constructs are not allowed. However, any BusManager function may be called by the
handler. At the very least, most handlers will use EpcRestState to reset their device
registers.

4-12

Advanced Topics

The following example shows how to set up an interrupt handler:

include "\epconnec\include\busmgr.h"

ifndef NULL
define NULL ((char far *)0)
endif

define STKSIZE 256 /* size of intr handler stack */
char MyStack[STKSIZE]; /*interrupt stack*/
extern void far Myintr(); /*interrupt handler*/

/*
* Set Up Interrupt Handler
* Don't worry about previous handler for now
*/

(void)EpcSetintr(MY_INTR, Myintr, &MyStack[STKSIZE), NULL);

The handler for interrupt number MY_INTR has been set to the function Mylntr()
and will be called using MyStack. Note that MyStack is statically allocated (not put
on the stack), and that the value passed for the initial stack pointer is the location just
beyond the end of the array. The first push will fill the last element of the array, and
so on.

For this example, information about the previous handler is not saved - the return
value of EpcSetlntr() is discarded. The null pointer is specified as the address m
which to return the previous stack so it, too, is discarded.

The interrupt handler is compiled separately with the following command:

cl /c /Gs /G2 /Ausn myintr.c

The interrupt handler code follows:

include "\epconnec\include\busmgr.h"

extern long MyState; /* window setting for driver */
extern struct my_device far *MyDev; /* point to dev regs */

void far Myintr(sid)
long sid;
{

short stat;

EpcRestState(&MyState); /* restore window */
stat = MyDev->status;

4-13

Bus Manager for DOS Programmer's Reference Guide

Note that since the BusManager saves and restores the state in the process of calling
and returning from the interrupt handler, there is no need for the handler to save and
restore the state.

Resident drivers remain installed for as long as DOS is running; however, program­
specific drivers leave memory when the program terminates, so they must deassign
their interrupt handlers. Your device driver applications must deassign their interrupt
handlers before they terminate. Otherwise, the memory pointed to by those interrupt
handlers will be unassigned or overwritten after the program terminates and the
corresponding interrupt will cause the computer to crash.

The following code segment shows how to deassign the handler for a program-specific
driver:

(void) EpcSetintr(MY_INTR, (void (CDECL FAR*) ())NULL,
(char FAR *)NULL, NULL);

Setting a null interrupt handler causes an internal do-nothing handler to be set and the
interrupt to be disabled. This is preferable to a simple EpcDislntr because it sets the
handler address to a "safe" value.

4.3.6 Writing Device Drivers In Turbo C

The Borland Turbo "C" EPConnect interface provides access to all BusManager
functions. This section is designed for use by readers experienced in writing drivers
and interrupt code and familiar with the Turbo "C" (version 1.5 or 2.0) compiler,
linker, and (where necessary) assembler.

Using the Turbo "C" EPConnect Interface

To use EPConnect functions in a driver, include the appropriate header files in the
modules in which the functions are used, and link your driver object files with the
library files. The header files contain function prototypes, structure definitions, and
constants associated with the EPConnect BusManager functions. (See the section
Programming Interface for a description of the EPConnect definition files.)

Turbo "C" programs must not be compiled with the "-A" option, which forces strict
ANSI compatibility - the EPConnect interface library uses Pascal calling conventions,
which are disabled by this flag.

4-14

Advanced Topics

Each interrupt handler has its own stack, which should have been allocated previously.
This stack must have sufficient capacity to store the actual parameters and local
variables within the interrupt handler as well as those of subsequent functions which it
may call. A stack size of 256 bytes is suitable in most applications. This stack is not
where the "C" compiler expects it to be, so you must take the following steps:

• Compile your program with the -ml flag, specifying the large memory model. This
tells the compiler that SS ! = DS and specifies a far entry point. (For speed,
individual arrays may be typed near.)

• Let the following two lines be the first executable statements in your interrupt
handler:

asm mov ax,DGROUP
asm mov ds,ax

These lines reload the data segment register with the environment in which the
program was linked, allowing access to string constants and global variables.

Note: Initialization of automatic variables (as in int a = j +l;) constitutes
executable statements, and cannot precede the asm statements.

Most Turbo "C" library routines are not reentrant, and reentrancy bugs are difficult to
track down, so you are advised not to cail library functions from your handler.
Moreover, DOS is not reentrant, so no DOS operations can be used within the
handler.

The handler must return to the BusManager - that is, setjmp() and longjmp()
constructs are not allowed. However, any BusManager function may be called by the
handler. At the very least, most handlers will use EpcRestState to reset their device
registers.

The following example shows how to set up an interrupt handler:
include "\epconnec\include\busmgr.h"

i fnde f NULL
define NULL ((char far *)0)
endif

define STKSIZE 256 /* size of intr handler stack */
char MyStack[STKSIZE); /*interrupt stack*/
extern void far Myintr(); /*interrupt handler*/

/*
* Set Up Interrupt Handler

Don't worry about previous handler for now
*/

(void)EpcSetintr(MY_INTR, Myintr, &MyStack[STKSIZE], NULL);

4-15

Bus Manager for DOS Programmer's Reference Guide

The handler for interrupt number MY _INTR has been set to the function Mylntr()
and will be called using MyStack. Note that MyStack is statically allocated (not put
on the stack), and that the value passed for the initial stack pointer is the location just
beyond the end of the array. The first push will fill the last element of the array, and
so on.

For this example, information about the previous handler is not saved - the return
value of EpcSetlntr() is discarded. The null pointer is specified as the address in
which to return the previous stack so it, too, is discarded.

The interrupt handler code follows:

include "\epconnec\include\busmgr.h"

extern long MyState; /* window setting for driver */
extern struct my_device far *MyDev; /*point to dev regs */

void far Myintr(sid)
long sid;
{

short stat;

asm rnov ax,DGROUP
asm mov ds,ax

EpcRestState(&MyState); /*restore window*/
stat = MyDev->status;

Note that since the BusManager saves and restores the state in the process of calling
and returning from the interrupt handler, there is no need for the handler to save and
restore the state.

Resident drivers remain installed for as long as DOS is running; however, program­
specific drivers leave memory when the program terminates, so they must deassign
their interrupt handlers. Your device driver applications must deassign their interrupt
handlers before they terminate. Otherwise, the memory pointed to by those interrupt
handlers will be unassigned or overwritten after the program terminates and the
corresponding interrupt will cause the computer to crash.

The following code segment shows how to deassign the handler for a program-specific
driver:

4-16

(void) EpcSetXntr(MY_INTR, (void (far *)())NULL,
(char far *)NULL, NULL);

Advanced Topics

Setting a null interrupt handler causes an internal do-nothing handler to be set and the
interrupt to be disabled. This is preferable to a simple EpcDislntr because it sets the
handler address to a "safe" value.

4.3.7 C Optimization

Under certain circumstances, your "C" compiler may introduce an error into your
application. In the following example, variable vmeptr points to a 16-bit value that is
ANDed with 8000h:

int far * vmeptr;

EpcSetArnMap(A32SD I BM_MBO, vmeaddress, &vmeptr);
if (*vmeptr & Ox8000) ...

Some compilers eliminate the and of 00 with the low-order byte of the value pointed
to by vmeptr (because 0 and any value returns 0). Such compilers generate the
following assembly language for the second statement:

les bx,dword ptr [vmeptr]
test byte ptr es: [bx+l],80

; load es:bx with address of vmeptr
; look only at high byte of vmeptr

This seemingly reasonable optimization has serious implications for hardware that
requires full-word accesses to invoke needed side effects.

The EPC hardware allows word and double-word references to VMEbus memory to
specify byte order as "big-endian" (Motorola style) or "little-endian" (Intel style). For
big-endian references, the hardware swaps the bytes so the application receives them
in the right order. In the example just shown, however, the compiler eliminates the
comparison of the low-order byte. As a result, no full-word access is made, the byte
swapping does not occur, and the wrong byte of *vmeptr is compared to Ox80. (This
optimization also causes an obvious problem for hardware that responds only to full­
word access.)

According to the ANSI specification of the "C" language, declaring a variable as
volatile should prevent the compiler from optimizing memory references; that is,
references to memory for volatile variables must be made exactly as they are written
in the source code. This solution does not always have the desired effect, however.
The MS "C" compiler 6.0, for example, generates the assembly language shown for
the second statement, even when executed with the /Od flag to disable optimization.

4-17

Bus Manager for DOS Programmer's Reference Guide

You can avoid these problems altogether by making a temporary version of the value
pointed to by vmeptr and using the temporary version for the AND and the
comparison. Modified in this way, the example code becomes

int wordcache;
int far * vmeptr;

EpcSetAmMap(A32SD I BM_MBO, vmeaddress, &vmeptr);
if ((wordcache = *vmeptr) & Ox8000) ...

This solution has been tested successfully for versions 5.1 and 6.0 of the
Microsoft "C" compiler.

4-18

5. Error Messages

This chapter contains an alphabetic listing of error messages that may be generated by
the Bus Manager Device Driver (BIMGR.SYS).

The error messages listed in this chapter are system-level errors, not application errors
returned by EPConnect function calls. Errors that may be returned by a function call
are listed in the description of that function in Chapter 2, Function Descriptions.

All error messages appear only on the console.

Accompanying each error message is the probable cause of the error, a suggested
action to take to correct the error, and the source of the error.

5-1

Bus Management for DOS Programmer's Reference Guide

Bad parameter /parameter-- Missing"=" or":"

Cause

Corrective
Action

Source

Parameter specified on the BIMGR.SYS installation line of
the CONFIG.SYS file is incorrectly formatted.
BIMGR.SYS was not installed.

Correct parameter format (refer to EPConnectNXI for DOS
and Windows User's Guide for a list of valid options) and
reboot.

BIMGR.SYS

Bad value for parameter /parameter-- should be valid_vafue

Cause

Corrective
Action

Source

The value of parameter on the BIMGR.SYS installation line
in the CONFIG.SYS file is not valid. BIMGR.SYS was not
installed.

Change value of parameter to valid_value and reboot.

BIMGR.SYS

*** EPConnect BusManager NOT INSTALLED due to configuration errors***

5-2

Cause

Corrective
Action

Source

One or more parameters on the BIMGR.SYS installation
line of the CONFIG.SYS file is not valid.

Correct invalid parameter (refer to EPConnectNXI for DOS
and Windows User's Guide for a list of valid options) and
reboot.

BIMGR.SYS

Error Messages

ERROR: Unknown EPC Hardware!

Cause BIMGR.SYS does not recognize the EPC hardware.
BIMGR.SYS was not installed.

Corrective Verify that BIMGR.SYS version supports EPC model
Action number. Install correct BIMGR.SYS version, update

CONFIG.SYS installation line, and reboot.

Source BIMGR.SYS

ERROR: VXI hardware not responding!

Cause CONFIG.SYS tried to load BIMGR.SYS on a non-EPC
computer, or there is a problem with the VXlbus interface
registers on the EPC. BIMGR.SYS was not installed.

Corrective Verify the state of the hardware by rebooting the system and
Action checking the EPC power-on self-test (Posn results.

Source BIMGR.SYS

Interrupt Stack Overflow Detected in BusManager ***
--Hit CTRL-AL T-DEL to reboot

Cause BIMGR.SYS detected an overflow in the BIMGR.SYS
stack.

Corrective
Action

Correct nesting error in BIMGR.SYS calls by user-installed
VXlbus interrupt handlers.

Source BIMGR.SYS

5-3

Bus Management for DOS Programmer's Reference Guide

Unrecognized flag: /flag_ value

5-4

Cause Flag_value specifies an unrecognized BIMGR.SYS
installation parameter in the CONFIG.SYS file.
BIMGR.SYS was not installed.

Corrective Correct or delete flag_value (refer to EPConnectNXJ for
Action DOS Programmer's Reference for a list of valid options) and

reboot.

Source BIMGR.SYS

6. Support and Service

6.1 In North America

6.1.1 Technical Support

RadiSys maintains a technical support phone line at (503) 646-1800 that is staffed
weekdays (except holidays) between 8 AM and 5 PM Pacific time. If you have a
problem outside these hours, you can leave a message on voice-mail using the same
phone number. You can also request help via electronic mail or by FAX addressed to
RadiSys Technical Support. The RadiSys FAX number is (503) 646-1850. The
RadiSys E-mail address on the Internet is support@radisys.com. If you are sending
E-mail or a FAX, please include information on both the hardware and software
being used and a detailed description of the problem, specifically how the problem
can be reproduced. We will respond by E-mail, phone or FAX by the next business
day.

Technical Support Services are designed for customers who have purchased their
products from RadiSys or a sales representative. If your RadiSys product is part of a
piece of OEM equipment, or was integrated by someone else as part of a system,
support will be better provided by the OEM or system vendor that did the integration
and understands the final product and environment.

6.1.2 Bulletin Board

RadiSys operates an electronic bulletin board (BBS) 24 hours per day to provide
access to the latest drivers, software updates and other information. The bulletin board
is not monitored regularly, so if you need a fast response please use the telephone or
FAX numbers listed above.

The BBS operates at up to 14400 baud. Connect using standard settings of eight data
bits, no parity, and one stop bit (8, N, 1). The telephone number is (503) 646-8290.

6-1

Bus Management for DOS Programmer's Reference Guide

6.2 Other Countries

Contact the sales organization from which you purchased your RadiSys product for
service and support.

6-2

Index

"C" optimization, 4-1

8-bit data
no swapping needed, 4-2

A 16, 4-5, 4-8
A24, 4-5, 4-8
A32, 4-5, 4-8

A

address modifiers, 2-62
advanced application programming
topics, 4-1
ANSI C specification, 4-17
ANSI compatibility, Turbo C, 4-14
application development

compiling, paths, 1-6, 1-7
Arm Command Receive, 2-102
Assembly Language, 1-6
Assembly language, 1-5
Autoexec.bat, 4-4
Automatic variables, 4-15
Auxx flag, 4-12

B
BERR, 2-35, 2-40, 2-81, 2-85
Big-endian, 4-17
BIOS version, 2-9
Block Copy Functions, 2-3
block transfer function, 4-2
bmclib.lib, 1-3
BMINT, 1-6
Borland Turbo C, 1-6
Building Resident Drivers, 4-7
Building your own drivers, 4-1

Bus Access Functions, 2-2
Bus Control Functions, 2-5
Bus interface hardware, 2-35, 2-40, 2-
81, 2-85
Bus state, 2-68
Bus window, 4-5
BusManager

Other Functions, 2-9
BusManager stack, 4-11
busmgr.h, 1-4
busmgr.inc, 1-4, 1-6
busmgr.sys, 1-3
byte ordering, 2-6, 4-1
byte ordering problems, 4-2
Byte swapping, 4-2, 4-17
byte-swapping, 4-2

with greater data transfer widths,
4-3

Byte-swapping Functions, 2-2
byte swapping functions, 4-2

c
C Optimization, 4- I 7
Command size, 2-102
Compact memory model, 1-6, 4-12
compiling under C++, 1-5
compiling, applications, 1-6, 1-7
Constants, 4-7, 4-14
Control and status registers, 4-5, 4-8
Custom memory model, 4-12

D
data representation, 4-1
Data segment register, 4- I 5
data structure

byte ordering, 4-3
data widths, 4-1
Definition files, 1-5
Device driver, 4-4
Direct memory access, 4-5, 4-8
Disable Interrupt, 4-6

I-1

DOS
not reentrant, 4-12

DOS applications
capabilities, 1-3

DOS clock, 2-102, 2-104
DOS device, 4-5
DOS interrupt, 4-5
Double-word references, 4-17

E
Enable Interrupt, 4-6
epc_obm.h, 1-4
EpcBiosVer, 2-9

function, 2-11
EpcBmVer, 2-9

function, 2-12
EpcCkBm, 2-9, 2-10

function, 2-13
EpcCklntr, 2-4

function, 2-14
EpcDisErr, 2-4

function, 2-15
EpcDisintr, 2-4

function, 2-17, 3-13
EpcEnErr, 2-4

function, 2-18
EpcEnintr, 2-4

function, 2-20
EpcErrStr, 2-9

function, 2-30
EpcFromVme, 2-3, 4-2

function, 2-33
EpcFromVmeAm, 2-3, 4-2

function, 2-37
EpcGetAccMode, 2-2, 3-1

function, 2-41
EpcGetAmMap, 2-2, 3-1

function, 2-43
EpcGetErr

function, 2-45
EpcGetError, 2-4

I-2

Index

EpcGetlntr, 2-4
function, 2-46

EpcGetSlaveAddr, 2-5
function, 2-48

EpcGetSlaveBase, 2-5
function, 2-50

EpcGetUla, 2-5
function, 2-52

EpcHwVer, 2-9
function, 2-53

EpcMapBus, 2-2, 3-1
function, 2-56

EpcMemSwapL, 2-2, 4-2
function, 2-57

EpcMemSwapW, 2-2, 4-2
function, 2-58

EPConnect functions, 1-5
EPConnectNME for DOS

what is it?, J-2
EpcRestState, 2-2, 3-1

function, 2-59
EpcSaveState, 2-2, 3-1

function, 2-60
EpcSetAccl\1ode,2-2,3-l

function, 2-61
EpcSetAml\1ap, 2-2. 2-63
EpcSetError, 2-4, 4-4

function, 2-65
EpcSetintr, 2-4, 2-67, 4-4
EpcSetSlaveAddr, 2-5

function, 2-70
EpcSetSlaveBase, 2-5

function, 2-72
EpcSetUla, 2-5

function, 2-74
EpcSigintr, 2-4

function, 2-75
epcstd.h, 1-4
EpcSwapL, 2-2, 4-2, 4-3

function, 2-77
EpcSwapW, 2-2, 4-2, 4-3

Bus Management for DOS Programmer's Reference

function, 2-78
EpcToVme, 2-3, 4-2, 4-3

function, 2-79
EpcToVmeAm, 2-3, 4-2, 4-3

function, 2-82
EpcVmeCtrl, 2-5

function, 2-86
EpcWaitintr, 2-4, 4-6

function, 2-90
EpcWsServArm, 2-8

function, 2-97
EpcWsServPeek,2-8

function, 2-99
EpcWsServRcv, 2-8

function, 2-101
EpcWsServSend, 2-8

function, 2-103
Error Handling Functions, 2-4
error messages, 1-8, 5-1

system-level errors, 5-1
Error string, 2-9

F
Fast Copy, 2-35, 2-40, 2-81, 2-85
fully reentrant functions, 4-3
function descriptions, 1-8
Functions By Name, 2-10

H
Handler, 2-4
handler functions, 4-3
handler operations, 4-1
handlers

interrupt execution, 4-4
Hardware version, 2-9
header files, 1-4
High-level programming languages, 1-
5

IACK, 2-91, 4-6, 4-11

Implementing Interrupt Handlers, 4-11
installation and configuration, 1-8
Intel, byte ordering, 4-1
Interface library, 1-5, 4-5
interrupt

handler execution, 4-4
Interrupt acknowledge cycle, 2-91, 4-
6
Interrupt acknowledgement, 2-91
Interrupt and Error Handling
Functions, 2-4
Interrupt handler, 4-13, 4-15
interrupt handler

installation, 4-4
Interrupt Handlers, 4-7
interrupt thread, 4-4
Interrupts, 4-6
Interrupts, Waiting for, 4-10
Interrupts, waiting for, 4-6

L
Large memory model, 1-6, 4-12, 4-15
library files, 1-5
Little-endian, 4-17
Locking protocol, 2-98

M
manual organization, 1-2
Master, 4-5, 4-8
Medium memory model, 1-6, 4-12
Memory model, 4-12
Memory reference optimization, 4-17
Message interrupt, 2-92
Ml flag, 4-15
Motorola, byte ordering, 4-1
MS C and QuickC, 1-6
MS C and QuickC, Writing Device
Drivers In, 4-7
MS C EPConnect Interface, 4-7
MS QuickC EPConnect Interface, 4-8
Mui ti-tasking, 4-7, 4-11

1-3

0
Odd-only, 2-35, 2-39, 2-40, 2-81, 2-
84, 2-85
Optimizing memory references, 4-17
Other Functions, BusManager, 2-9

p
Pipelining, 2-35, 2-40, 2-81, 2-85
Poll, 4-6, 4-10
Program-specific drivers, 4-4, 4-16
programming interface, 4-1
Prototype, 4-7, 4-14
Prototyping, 1-6

R
Race condition, 2-92, 2-102, 4-11
RadiSys EPC controllers, 4-l
Read-modify-write, 2-34, 2-39, 2-80,
2-84
Reentrancy, 4-15
Resident device drivers, 4-7
Resident drivers, 4-4, 4-16
Response register, 2-98
Restore State, 4-8

s
Save State, 4-5, 4-8
SE option, 4-7
Segment, 4-7, 4-15
Set Access Mode and Map Bus, 4-5,
4-8
Set Interrupt Handler, 4-6
Slave address, 4-5, 4-8
Small memory model, 1-6, 4-12
Software version, 2-9
Stack checking, 4-12
State, 4-8, 4-11
Status registers, 4-5, 4-8
Strong type checking, l-6
Structure definitions, 4-7, 4-14

I-4

Index

T
Technical Support, 6-1

E-mail, 6-1
E-mail address, 6-1
electronic bulletin board (BBS),
6-1
FAX, 6-1

Terminate-and-stay-resident program,
4-4
Too many segments, 4-7
TSR, 4-4
Turbo C, 1-6

ANSI compatibility, 4-14
Turbo C EPConnect Interface, 4-14
Turbo C, Writing Device Drivers In,
4-14

u
Using the VMEbus Window, 4-5

v
VMEbus interrupts, 4-6
VMEbus Window, 4-8
vmeregs.h, 1-5
Volatile, 4-17
VXlbus devices, 4-1

w
Waiting for Interrupts, 4-6, 4-10
Word and double-word references, 4-
17
Word serial command, 2-104
WRDY, 2-104
Writing Device Drivers, 4-4

General Information, 4-4

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	I-01
	I-02
	I-03
	I-04

