~ Q64 ERROR CODES, BOARD BUG DIAGNOTICS,
AND EXTERNAL SPECS. FOR Q64 DIAGNOSTICS

Start Up

Sequence Codes

00

0l

02

03

05

- FF

(7F)

064 ERROR CODES

Start of Diagnostic (IPL light is lit)
Micro flag test running

ALU & AUX test pass (non-conclusive)
Stop switch stuck on or Depressed

Stop switch ok, not on (start light on)-test passed
Power fail or IPL warning occurring

No power fail or IPL warning-test passed
Base register test running
Address register test running

Memory address register and Base register test passed
Memory test for power on (cold start only) running

Board set passed start-up sequence (IPL light is turned off)

Clock or pipeline problem

§“I?74Cf&5 after LPL Hould be coos

Failure Table

If the following start-up sequence is constant on the diagnostic panel, use
the table for troubleshooting.

A A M M M
Codes displayed L U A D E
on panel U X D A M
D T
60 X X
01 X X
02 X
03 X X
04 x £» £
FF (7F) X X
* 05 System checkd ok - no errors

System Level

' e
EO No device 0 detected (halt light on) = eontrelle ™ 0
El Power fail detected
E2 IPL warning detected
E3 Seek to non disk device
BO Serial Port in use
Bl Serial Port used
BB Breakpoint set
o : 6‘%/\”}%
‘System Level ﬂe_p/ﬂ’ 7
To Screen
E4 * "MEM PAR ERR" This will also display the physical address
of the error ‘
ES * " INDIRECT" 16 levels of indirecting has occurred
E6__ * "TLIBGAL" - An illegal instruction has occurred
| ET * "EARDWARE ERROR® An illegal condition has occurred |
. © o . Y . V P Zz\‘?(,{(
E8 * "FETCH ERROR®" - 2An illegal fetch vector occurred & ¢b% EGGF,T,}:)
M 2

These Error Codes also display the address of the error.

* The only escape for these errors is to IPL

Q64 DIAGNOSTIC PANEL CPERATION

An improved version of this panel will be released in the near future.

Hex Display Operations
Port A Display

Hex displays II and IV are -
the byte set displaying the
number of the test in progress

i I 111 v
VA A A
1 2 3 4 5 6 78

Port B Display

Hex displays I and III are
the byte set displaying what
was entered from the key pad

Decimal Points: the decimal points, when illuminated, indicate various
states of the machine '

1 MINT = micro interrupt

2 HELP = macro interrupt, usually on

3 = not used

4 = not used

5 OONT = clocks are running

6 HALT = clocks halted)

7 PARR

parity error, usually on (off indicates error)

8 STCP = executions stopped (Start/Stop)

If the "B" display is blanked out this will indiate that clocks are
not running. AUX board is possible failure. 3

"B" set of display will display what was entered from the key pad, shifting

LSB to MSB and new entry to the LSB

* (Key pad operations are currently supported only under the 064 diagnostic

ROM set.)

Switches: - Not currently supported

SWl = CONT

The ONT will restart the clocks after the HALT mode

SW2 = HALT
The HALT will hold clock functions - it freezes
the state of the machine (it is not a Start/Stop).
SW3 = IPL (initial program locad) - same IPL as key switch
SW4 = Start/Stop - stop macro emulation - same as control

pod Start/Stop

Key Pad: the keyboard is set up a matrix as per diagram

HEX DISPLAY

N
[O

o [S]

s thfg
216
r

8
9
A
B

MMmMjoOo

|

Sl] -] 1”QUL(|
| e |

|)

| | R

e

Q6% DIAGNOSTIC PANEL

L/.

HEX
KEY PAD

Q64 BOARD BUG DIAGNOSTIC ROMS OPERATICNS

The Q04 diagnostic ROM set is used in lieu of the real macro emulation ROM
set, to test individual circuits of the Q64 CPU boara set.

_The purpose of these ROMs is to:

1) Fiela: to aid in fault isolation to a signal board
2) In-House: to aid technicians in repair

Ezch test has a code number it will send out to the diagnostic panel hex
display at the start of each test. Each time a test passes, the display
will be incremented and the next test run.

The test number entered OR'ed with hex $80, entered on keypad, is echoed on
one set of nex display. The other hex display, under CPU control, displays
the test number. "~ If the test failed, the test number OR‘ed with hex $80 is
displayed.

Tne diagnostic set has 5 modes of operation:

tMode 1) Sequential: (mentioned above) increments through each test
sequentially. Sequential mode is entered by placing
$00 on the display and then turning the IPL key

tiode 2) Signal Test Execution Mode:
this mode will loop on a signal test

to run in this mode the $80 bit is set, $40 to $00
bits are the test number, e.g. test $15 would be $95.
This value is entered on key pad and turn the IPL key.

Mode 3) Halt on Error Mode Freezes State of Machine:

runs in mode 1 order but will halt the clocks on a test
‘that an error occurred on. To run this mode the $40
bit is set (enter a $40 on key pad) and turn IPL key.

Mode 4) Loop:

runs in mode 1 order and stops execution after one
complete pass of all tests. If error occurs then the
test number OR'ed with the $80 bit will be displayed on
the hex display. If all is good, then a $7F will be
displayed. To run this moce the $20 bit is set (enter
a $20 in key pad) and IPL.

Mode 5) Moces 3 anc 4 may be combined for a loop till error and halt (enter
$60 on key pad) and IPL.

For test cdescriptions and running sequences see "BOARD BUG DIAGICSTIC CODES"
switch definitions

The diagnestic panel is used to enter test numbers. Reference "(Go4
DIAGNOSTIC PANEL OP=ZRATION".

5

BOARD BUG. DIAGNOSTIC COD=ES

The following is a list of the tests performed during the BRDBUG diagnostic
" test and the codes which will be placed out to the front diagnostic panel at

the start.

PEBNRRRERNEBEEERER R

TEST DESCRIPTION

Kernal Test (Stack, ALU's, Address Bus)
CPU Live Flag Test

Shift Mode 0 Test

Shift Mode 1 Test

Shift Mode 2 Test

Shift Mode 3 Test

General Purpose Counter Zero Test
4 Bit GPC Test

8 Bit GPC Test

12 Bit GPC Test

16 Bit GPC Test

4 Bit GPC Flag Test

4-Way (GPCl and GPC2) Test
4-Way (GPCl and GPC2) Test

FFFF and THREE Test

Swap Register Test

Iocal Control Register Test
Programmable Interval Timer Test
Pit Readback Test

Pit Interrupt Test

Branch Register Lower Test
Branch Register Upper Test

Y Branch Lower Test

Y Branch Upper Test

Branch Register Test (256-Way)

Y Branch Test (256-Way)

BCD Zone Test

BCD Adder Test

BCD Subtracter Test

Global Interrupt/Micro Interrupt Test
"Real" Flag Test

Base Register Data Test

Base Pegister Address Test
Logical Address Register A Test
Logical Address Register B Test
Logical Address Register P Test
Real Address Register/Parity Latch Test
RAR/Perr Upper 8 Bit Test
Physical Address Register P Test
Physical Address Register A Test
Physical Address Register B Test
retch Register Test

Code 1L 1l6-Way Branch Test

b

PRIMARY BOARDS
TESTED

ar

Ll -

»xay

PUDE MDD DI DR DI D DA DI DI DA D D DG DA DA DA DC D4 D4 DX D¢ e DE D¢ ¢ ¢

Wwo =

i]

DC Qe DK DN DE DA D4 XK X ¢ D4 ¢

o» =

Ll

Ve K MR

Rl o I

PRIMARY BOARDS

TESTED
A A M M
TEST L U D A
NUMBER TEST DESCRIPTICN U X B 'D
28 Memory Data Bus Test (to array 0) X X
2C Memory Bit Test X X
2D Memory Address Test (address 0 - 7) X X
2E Logical Address Register A Memory Check X X
2F Logical Address Register B Memory Check X X
30 Logical Address Register P Memory Check X X
31 A Plus 1 Incrementer/8 Byte Write Test X
32 Barrel Shifter Test X
33 Lara Increment/Decrement Test X X
34 Larb Increment/Decrement Test X X
35 Larp Increment/Decrement Test : X X
36 Base/Bank Hazard Test X X
37 Cascade Register Test X
38 Fetch Register/Shifter Test X
39 "REAL" Branch Test X X
3a Indirect Overflow Test X X
3B Hazard On Instruction Test X X
3C Base Fault on Indirect Resclution Test X X
3D Single Operand Instruction Test 1 X X
3E Single Operand Instruction Test 2 X X
3F Double Operand Fetcher Test (no indirects) X X
40 Double Operand Fetcher Test (A indirect) X X
41 Double Operand Fetcher Test (B indirect) X X
42 Double Operand Fetcher Test (A/B indirect) X X
43 Triple Operand Fetcher Test (all cases) X X
44 Fetcher $000F to LARA X X
**46 Memory Test ’ X X
¥ All Finished With Test(s) or Illegal Test Number
FF Stack Error During Kernal Test X X

Any other test number is invalid

** This test is not run during the normal execution of the
diagnostic. It can only be accessed by entering $C6
on the panel

This test recuires an IOU-39Q set at address 0 and a
VT3 be installed with the system.

i

If an error occurs, the test number 'ORED' with 80 will be put out
to the diagnostic panels hex display.
> P

o S o /

o,
FACE)

/70 ¢ /¢

= m

< D4 DX D4 DX M

. LOOP ON HALT ON LOOP
HEX | BITS A TEST ERROR AT END

00-1F 0- 0 0 X X X X X NO NO YES Mode 1
20-3F 0 0 1 X X X X X NO NO NO Mode 3
40-5F 0 1l 0 X X X X X NO YES YES Mode 4
60-7F 0 1 1 X X X X X 10 YES NO Mode 5
80-FF 1 7T T T T T T T YES NO XX Mode 2
DISPLAY DEFINITIONS
HEX BITS
7 6 5 4 3 2 1 0
00-7F 0 X X X X X X X Test Passed
80-FF 1 T T T T T T T Test Failed (Bit 7 On)
Bits 6-0 define test no.
that failed.
NOTE: .
T = test nurber
X = don't care ;

NOTES;, UNLESS OTHERWISE SPECIFIED

. -
REV. DESCRIPTION Dﬂzl"n mmms ;%1:! “‘e,-. .
m— # g ~
I PPR-0382-22 EYA 3/:’7’;! 1 Q‘}af 7%]
- - b —_
A PR-0382-27 4-:3‘1?3 ,

PRQPRIETARY

CE TO PERSONS RECEIVING THIS
WING: MDS—QANTEL, INC.
AS PROPRIETARY RIGHTS TO ALL
AMATION CONTAINED HEREIN.
4ER THIS DRAWING, NCR ANY
QDUCTIONS THEREOF, MAY BE

OR DISCLOSED TO ANY THIRD.

IES WITHOUT THE EXPRESS
TEN PERMISSION OF MDs-
= INC,

NEXT ASSEMBLY A/MA44079 = >, £ QANTEL
o Tore| | HOHEDS 2ess,,

SRFTS | JZoad ‘;//4%95 a Mohawk Data Sciences Company

cue | g4e 4%/ _

— = EXTERNAL SPECIFICATION

enar | Hde | o/iynl

wea 1] 771 75| 164 DIAGNOSTIC (BR0DEG)

ENGR J /1 ,’:/9”57 SizE DWG NO. REV.

e |\ By A (o ‘A | s2084-00r A
DO NOT SCALE DRAWING | Scatx — SHEET / OF Il

moS=

This document is intended to provide the user with an understanding
of. the micro-diagnostics that are used to bring a Q64 CPU up to the
point where a macro-diagnostic may be loaded. _

2.0 _ INTRODUCTION AND GENERAL DESCRIPTION

2.1 The diagnostics currently consists of several modules. Each with
che intent of debugging several main and where possible, distinct
ireas of the cpu. :
These areas are as follows.
l) The ALU and AUX Boards.
2) The MDAT and MADD Boards.
3) The main memory modules.

1.2 This. dlagnostlc will be resident in the ROM space on the board
Since a minimum of hardware need be operational in order to access
this. The diagnostic currently £ills up about all of the 8k address
space. User communication will be wvia several paths. The primary mode
~f communication will be done with a logic analyzer connected to the
.crostore Address Bus and the "Y" bus. Secondary communicationm will
oe done through .the "Halt® logic and through the hex displays on the

front panel.

).3 Communication from the user will occur via the front panel
switches and to a very small extent, through the " Cont " logic.

1.4 The diagnbstic is intended to debug a machine from a working
hardcore state to a point where higher level diagnostics may be
loaded. The goal is to be able to isolate faults down to the circuit

and if possible, the node level,

1.5 This diagnostic starts out by verifing that a small kernel of the
machine is operational. As the diagnostic progresses, the kernel will
enlarge thus allowing for more specific pinfpointing of faults.

s ¥

a~CLT ORAWING NO.
2 o 16| A52084-001

REV

=)
0
gig

3.1 There are two approaches to consider: -

1) To debug with the aid of a Rom Simulator.
2} To debug with the aid of diagnostic roms.

ﬁ‘Z Boths methods will achieve the same results,

Method 1) allows for greater flexibility to the user however it is
also at a greater cost in terms of hardware regquirements and space

requirements.

Method 2) does not give the user as much flexibility , however , a

great deal less must be expended as far

concerned.
3.3 ROM _SIMULATOR
DV .
CPU EXTENDER BOARD
OSCILLOSCOPE

LOGIC AMNALYZER
7.5 OR Q29 SYSTEM:
ROM SIMULATOR
48K MAIN MEMORY (min)
VIDEC TERMINAL
PRINTER :
ROM RECEIVER/DRIVER BOARD

as eguipment and space are

DVH

CPU EXTEMNDER BOARD
OSCILLOSCOPE
LOGIC ANALYZER

SHEELT
3 gr 16

ORAWING NO.
A52084-001

| REW

N

A4Q,nQEEBAIIHG_IHEIRHQIIQHS

4.1 1 ROM SIMULATOR METHOD
a) install rom simulator connections to the Rom Rec/Drv board.

b) install jumper at (SWEXT) to disable roms.
C¢) logic analyzer connections should be made to the MSA bus and
the "Y” bus. The clock should be connected to the "TOH" .
d) From the Q29 system, run Q64LOAD.
1) enter the hex address for the Rom Simulator.
2) enter the hex address for the Serial Port communications
device (not used in the diagnostic)
3) a menu should now appear,

for the diagnostic enter s LW _BRDDBG

e) When the P2 _TO CONTINUE prompt comes up , press P2 on the
keyboard and IPL on the Q64. o

4,1.1 At this point the diagnostic is running, the number for the
last completed test will be displayed to the front panel if it is
installed. A lookup table or a source listing will be required at
this time to find out where the cpu has failed. The logic analyzer
can be set to trigger on the trap address to determine the machine

history leading up to this event.

4.2.0 The "Diagnostic Rom " method
a) install the "Roms® on the Cpu.
b) install the SHEXT jumper.
c) power the CPU up and press IPL.

4.2.1 at this point the diagnostic is running, the DIAGNOSTIC panel
will display the number of the last completed test. Also the lights
on the Rom board should be changing at a very fast rate, a stable

state on the lights will indicate a trap caused by an error.
The data on the lights will directly correspond to the address
currently on the MSA bus (similar- to the logic analyzer)

4.3 The Diagnostic Panel switches will also define several modes in

(

which the diagnostic will run in. The modes that are currently defined

are as follows:

'Default, no switches pressed ..LOOP AT END
SWITCH $20 4 eeeHALT OM ERROR

On = halt on error.... Off = Loop on error

SWITCH $80 eee . LOOP ON TEST
On = loop on a test Off = don't loop

other switches = test number

SWITCE $40Halt at end
micro program will halt when complete

SHCET | ORAWING NO.
4 gy 16 A52084-001

REY

1AM 402

2.1 BRDBUG

5.1.1 This is the first test that should be run .There are several

things that should be known about the program.
1) Throughout the program, a test number is displayed to the front
panel. Normally this register is incremented as the program

progresses.
2) The front panel will be read to determine what paths will be

taken during the execution of the test.
3) Register 2 will be the location of the halt command to the
local control register. This will be used in the halt on

error mode.,
4) It is assumed that ‘the machine can reset to MSA $0000

The main clocks are running (TOH,T3BH) _
The "D" source LITERAL decode and Y destination LOCAL CONTROL

decode is operational.
The 216 flag out of the alu is connected to the two-way branch

logic. _
5.1.2 KERNAL TEST 1
This will verify that a portion of the literal register and a portion
of the Local Control Register are functional. Also ,this will tell us

that the BALT logic is working.

5.1.3 CONFIDENCE HALT 2
This will tell us that the Continue logic is worklng, the INCREMENT
the microstore address on literal, and that some jump logic is

. working.

SHEET ORAWING NG. . R
5 - 16| A52084-001
aor -

>3

b 4

Mo

14

5.1.4 CONFIDENCE HALT 3

This will happen after %16 logic has been tested in both states. At

this point in the diagnostic, we have a mechanism which gives us the
ability to test the rest of the machine.

5.1.5 JUMP TEST

This test will check the independence of the Microstore

address lines by doing unconditional jumps through memory and back
again. There are two failure paths on this test, the first is to
jump out to a wrong location, this can only be tested with a logic
analyzer. The second is to skip a jump , this is tested by

incrementing a register at each jump (jump counter) and testing it
upen returning to the main routine.

: o

This is a quick test to check the independence of the bits in the
literal register. Unfortunately, since we don’t have a great deal
of resources available to use at this time, we have to use it to
®"check itself" this is done by loading the literal register into
Register 0 and reloading the literal register and adding it to
Register 0 looking for a result of 0.

SAAAA + $5555 + 1 = 50000

5.1.7 ALU FUNCTIONAL TEST

At this'point we load Register 1 and Q via the literal register.
‘We then will test the add, subtract, or, and, complement, xor

functions on the alu. This will verify that the 2901 function lines
from the pipeline are operational.

6 ar 16 AS2084-001 - A .

AS-CET DRAWING NQG. REV '

5.1.8 REGISTER _TEST

This routine will load a value into each register. The algorithm
for this is to load a constant into the Q register, place g into
register 2 (writing in reg 2) . Next take Register 2, add it to Q
and place the result in register 3 (reading from 2, writing toc 3).
This is continued up to register F. The process is then reversed and
the registers are now compared with their calculate values (calc-
ulated using the Q Register and Register 0). , . '

5.1.9 FLAG TEST

This exercise will verify the ALU related 2-way branch functionms.
Among them are the 28, Z4, Cl6, C8, C4, Y15, and YO.

Each branch is exercised at both polarltles. The inverted functlon
of each branch need only be tested once since the hardware path of
each case is the same (all go through the same XOR gate).

3.1.10 SHIPT TEST

This test will test the shifter (Q and RAM) connections in between
the 4 2901's. Also the connections between Q (Qo, Ql5, Ramo, Ramls)
are tested. This is accomplished by sending alternate, adjacent

and single bits patterns through the shifters. (alternate=$AAAA or
$5555) (adjacent= $3333,86666,..etc) (single= $1111,52222,54444..etc)
Care is taken to make sure that Q doesn't shift during a single shift
and that it does shift during a double shift. Polarity changes for
the msb and the 1lsb of each nibble has also been accounted for.

The patterns are modified somewhat in order to test each of the four

shift modes.

VAW . o v e b~ o

ol 4 - -

' SHCET Iouuwma CT-B . rntv
-

AR L I

..... .‘»-'-._,

mOSE

S.1.1 ~ STACK TEST

This first 4-way branch condition is tested here. This routine first
starts out by popping the stack 16 times to insure emptyness. After
that , 16 call's are made to insure fullness. At this time a simple
call and return is made over a very confined address space (in case
of error, hopefully it will be trapped in this space by the micro-
code. After this is successful, 16 call's are made through the
address space. At each return, a "return counter" is incremented in
a manner similar to the jump test. Upon return to the main routine
this counter is compared to the calculated number of returns to see
if the stack had made the correct insertions on to the Microstore

Address bus.

S.1.12 ~ GPC TEST

This routine keeps in mind the physical construction of the GPC. It
starts out by loading the GPC with a 0 and then 1 microcycle later
it tests it for 0 (it takes 1 microcycle to latch the GPC). The
next test is to test it as a 4 bit counter, then an 8 bit counter,
etc. This will allow the user to trouble shoot down to the chip
level since each counter in the GPC is 4 bits wide. An ALU register
is also run in parallel with this to insure that the GPC does not
bottom out too soon or too late.

This same technique is used for GPC2, the test is only for a 4 bit
counter. This can only be tested by a 4-way branch.

'5.1.13 D-SOURCE TEST

This is actually three tests in one since they are very short. The
D-Source THREE is compared to a literal $3. The D-Source FFFF is
compared to the literal $FFFF . In swap an alternating bit pattern

$55AA in placed into SWAP , read back and checked, if correct, the
read back value if placed back into SWAP and checked for the original

value,

SHEET CRAWING NQ. REV

8 orlé A52084-001 A

S——

5.1.14 LOCAT, CONTROL. READBACK)

Due to some of the effects that the Local Control Register has on some
of the portions of the CPU, care is taken during the testing of each
bit. For example, HALT is skipped completely since is is previously
used during the Confidence Halts. Another this to consider is that

the readback inputs to bits 2**2, 2%*3, 2**5, 2%**xg, 2*%*7 are tied low
and they are tested as such.

A shifting bit pattern is used to test the individuality of each line.

S.1,15 PROGRAMMABLE INTERVAL TIMER TEST

The technique used in this routine is similar to the GPC test
since the physical construction of this counter is.the same. One
precaution must be made in that this clock in accordance to TO and
not TOE. The refresh HOLD memory control must be made in order to
keep the ALU running in synchronous fashion to the PIT. Since the
counter’ is readable, is is counted down along side a. parallel
register which periodically checks the value of the timer and
compares it with itself.

After this functionallity is verified, HOLD is removed and PIT
interrupt is allowed to check the interrupting circuitry.

- SHECET ORAWING NQ.
9 gr 16 A52084-001

EEE%;;;::EE_
& Morees Onse Scsrces Carpery

5.1.16 BCD _ADDFR TEST

This routine basically tests the BCD ADDER rom more than anything
else. The circuit must be tested in an add and subtract mode. The
first thing that is checked is that the zone bit of the result

is $3 . Next, the number 9 is added to 9, 9+8, 94+7.....8+9,8+8,...
0+0). Carry from the previous operation is added to the present
operation to check the carry logic. The subtract test is done in a
similar manner. The alu also does the operation in a somewhat slower
fashion to test the results from the adder. In that routine, the
state of the carry bit must be read from the previous operation,
added or subtracted in accordance to the mode and the state of the

carry flags must be predicted by the alu to be checked after the
cperation

S.1.17 SPRCTIAL BRANCH TEST

The Special Branch test to check the ability of the Brancii Register
and the "Y" bus to place an addéress on the Micro-stcre Address Bus.
Tnis is done in a l6-way and a 256-way fashion. The bits are individ-

ually tested ie: a branch of +1, a branch of +2, a branch of +4, a
branch of +8, etCe... .

- TR m

Since some of the states of the elements in these 2 registers cannot
be controlled, oniy the predictable elements will be tested.
Start/Stop is the. only bit that is tested on the Global "Register”.

Power Pail and Ipl-Warnlng are the only two bits that are tested in
the micro lnterrupt ®"register”

GHELT CRAWING NQ. REV

10 ar 16 A52084-001 | a

ESE

»

I) ,
5.1.19 BASE REGISTER TEST : :

This is the first time that the TEMP register is used. The BASE
FILE is treated as memory and tested as such.

The patterns used are all SARAA for odd numbered base registers
and $5555 for the even numbered base registers. On each write
the base pointer is reloaded thus bypassing the auto—increment
on write function. On the shorted address line section, the
base address is either written into the upper or lower section
of the ram ie:

base reg 1 baseu= $0100 basel=$01
2 baseu= $0002 basel=S$02
3 baseu= $0300 basel=$03

etc LR BN B BN R AN J

2.1.20 LOGICAL ADDRESS TEST

This is the same for LARA,LARB, and LARP since the registers are
read-writable ,S$FFFF is loaded into a an ALU register and also to _
the LARX and then read back, this is decremented and repeated until

0 is reached. -
5.1.21 REAL ADDRESS REGISTER TEST
This is more complicated for 2 reasons. 1) The register is 24 bits

wide instead of 16 (alu width). 2) There is no direct readback

path for this. _ .
Problem 1 is solved by testing the real address register in two parts
The upper 8 bits and then the lower 16 bits.

Problem 2 is taken care of through the D-Source PERR this will latch
the adéress and save it until the next memory access. This

is controlled by bits in the local control register.

SHEZT ODRAWING NC. RV

11 or 1§ A52084-001 A

DS

2.1.22 ~ PHYSTICAL ADDRESS REGISTER TEST . : '
The physical address test consists of three subsections. Each is
identical except that each will test one of the three physical
address registers (PARP, PARA, PARB).

To simplify circuit debugging, each subsection is divided into two
parts. One part will check the upper 12 bits of the physical address
(which is derived through the base adder adding $0000 to the upper
12 bits of the base value). The other part will exercise the lower
12 bits of the physical address register (which adds the base value
to the logical address).

The second portion of the test loads the base registers with a
shifting pairs pattern. The values are as follows:

5.1.23 'BASE REGISTER VALUE

000000
000001
000003
000006.
00000C
000018
000030
000060
0000C0 , . !
000180 €
000300
000600
000C00
001800
003000
006000

MqEumoQuihvo~NIaTLI:WNHO

This pattern will give the routine the ability to test for the
independence of bits in the base adder and the physical address

registers.

SHEET CRAWING NO. REVY
12 or 16| A52084-001 A

< a2

i

5.1.24 MEMORY TEST

This should find catastrophic errors in memory . It assumes that there
is 64K in the machine and it does a stuck high and a stuck low bit
test. It also will do a quick shorted address line test. All this is
done through the REAL ADDRESS REGISTER in order to avoid using
the mapping circuitry. After the memory is verified, the LOGICAL
ADDRESS REGISTERS are used in order to access memory. This is done
to test and verify the mapping circuitry.

T AMCET ORAWING NG. REV

13 ar 16 A52084-001 A

oS

6.0 PETCHER TEST

8.1.1 The Fetcher test takes up from where the quick memory test in
the Q64 Diagnostic leaves off. It does make the assumption that the

actual memory module is operating correctly. The approach that this
diagnostic takes is to check that the fetch logic performs the

correct functions.,

6.1.2 The first section of the test will check that the memory cont-

ol can correctly do the various increment and decrement controls on

the logical address registers. This is done without any alteratlon to

memory.

6.1.3 After this the Cascade Reglsters are checked.

(LCAS and RCAS).

This is done by driving SFOOF through the registers and checking and
then by driving $OFFO0 through the registers. :

§.1.4 The D—Sources associated with the Petch Register are checked
by writing the pattern $0123456789ABCDEF out to memory and then read-
ing it back in through the Petch Register. After doing this the con-
tents of OPl, OP2, OP3, CODEl, CODE2, RWORD2, RWORD3, RWORD4, and
MOVLEN are checks for the correct values, If successful, the pattern

_is reversed (to check for bit errors) and the process is repeated.

(

SHEET

14 or 1§

ORAWING NQ.

A52084~-001

REV

mDS=:

ﬁ‘l‘i The branch logic is checked next, the followxng sequence is '
loaded into memory:

PCTR sode MNEMONICS
0600 000020 , NOP $0000
0003 25A5A7 BRU $25A5
0006 5A5AA2 BMI S5A5A
0009 7FFFA3 BNZ S7FEFF
600C . 000024 Bz $0000
000F 333345 BNM $3333
0012 4CCCA6 "BNO $4CCC
0015 5DDDAL BOV $5DDD
. 0018) 3BBBAA - BP $3BBB
001B 0000AF BNP $0000

8.1.6 The P-counter is then set to 0 and a "Start the Fetcher”™ and
a "Set Single Step Mode®” is set to the Local Control Register. This
will allow us to exercise the first branch and monitor the P-Counter.
The Decode branch is then monitored checking for either of three
conditions 1) Running (which will allow us to loop), 2) Complete and
single step_ (which will exit the routine) 3) anything else is illegal
and is.considered an error at this point.)

6,1.7 LARP and LARPO are checked after each operation for validity.
If correct LARP and FLAGS are set to check the following condition.
Each condition is checked in a "Branch Taken® and "Branch Mot Taken"”

mode.

SMEET | ORAWING NO. ' REV
15 or 16 A52084-001 - A

mOSE=-

& y i .
° i
° €

i

'5‘1‘3 Next the indirect decrementer is tested. First in an overflow

state and then in an non-overflow state. The first is accomplished
by generating a branch instruction that will indirect to itself.

The second part is accomplished by generating an indirect chain
which is resolved at the fifteenth level (a non-overflow condition).
Upon completion LARP is now checked to see if the resolved address

is correct.

6.1.9 A Hazard on Instruction generated next by placzng LARP within
8 bytes of the end of bank Q.

6.1.10 A similar method is used to generate Hazard on Indirect P and
Hazard on Indirect B vectors.

5‘1‘11 It is assumed that at this point that the Fetcher can resoclve
an indirect address on "A®" so these test cases are not generated '
for the single operand vector test. This routine in simple terms
‘generates "CODE 1”® values , calculates decode vectors, writes
®*CODE 1" into memory, sets the pcounter, starts the fetcher and

finally checks the decode vector.
§.1.12 Double and triple operand instructions are generated and

tested in a similar manner. The diagnostic generates a pattern of data

that . fulfills the requirements of the Fetcher (a counterfeit macro
instruction). The macro instruction is loaded into memory, the
p—~counter is set to it and a fetch is initiated. Upon completion,
the decode vector is first tested. -After passing this LARP and LARPO
are tested (LARP will increment either by 6 or 8). The resolving and
identifying of indirects is also con51dered for each double and

triple operand instruction.

o oakt

lr;ttf ORAWING NO. : REVY
16 orlé 252084-001

L)

