
Q6~-ER-RllR----CODCS, BOARD 13t1G-o-lAGNOT-I-C-S-,
AND EXTERNAL SPECS. FOR Q64 DIAGNOSTICS

Start Up
Sequence Codes

064 ERroR a:>DES

00 Start of Diagnostic (IPL light is lit)
Micro flag test running

01 ALU & AUX test pass (non-conclusive)
Stop switch stuck on or Depressed

02 Stop switch ok, not on (start light on)-test passed
Power fail or IPL warning occurring

03 No power fail or IPL warning-test passed
" Base reg ister test running

Address register test running

04 ~~ry address register and Base register test passed
Merrory test for power on (cold start only) running

05 Board set passed start-up sequence (IPL light is turned off)

- FF (7F) Clock or pipeline problem

S .-6~-ft..5, aJf-e rr 2JP L sI. <> '" ("j

Failure Table

/
be

If the following start-up sequence is constant on the diagnostic panel, use
the table for troubleshooting.

Codes displayed
on panel

00

01

02

03

"AI U'*

FF (7F)

A
L
U

X

X

X

* 05 System checkd ok - no errors

-1-

A
U
X

X

X

X

X

M
A
o
o

X

V
Ill.

r-1
o
A
T

X

V
,,~

M
E
f.1

X

System Level

EO

El

E2

E3

BO

Bl

138

'System Level
IJ.b Screen

E4

E5

E6 .. _.

J!3

E8

~ device 0 detected (halt light on)

Power fail detected

IPL warning detected

Seek to non disk device

Ser ial Port in use

Serial Port used

Breakpoint set

* aMEN PAR ERR-

* DINDIRECl'"

* aTT.I·FGAL-

'!his will also display the physical address
of the error

16 levels of indirecting has occurred

An illegal instruction has cx:curred

An illegal condition has occurred

..

- , . ' I' l'1",e<k (\
An illegal fetch vector occurred .t~ ~ ~ C j.-. .. or, ... r:V J/lo ~ V"'\

These Error Ccxles also display the address of the error.

' ... " " ..

* 'Ihe only escape for' these errors is to IPL

...

-2-

064 DIAGI:SI'IC PANEL OPERATlCE

An improved version of this panel will be released in the near future.

Hex Display ~rations

Port A Display

Hex displays II am IV are
the byte set displaying the

I.SB

KSB rer of : test in pr:T
I II III IV

/7 B B B
1 2 3 4 5 6

\ ~rtBDi~ 1
Hex displays I and III are

the byte set displaying what
was ent:ered from the key pad

7 8

Decimal Points: the decimal points, when illuminated, indicate various
states of the machine .

1 MINT = nacro interrupt

2 HELP = macro interrupt, usually on

3 = not used

4 = not used

5 ro~ = clocks are running

6 HALT = clocks halted

7 PARR = parity error, usually on (off indicates error)

8 STOP = executions stopped (Start/Stop)

If the liB" display is blanked out this will indiate that clocks are
not running. AUX board is fX)ssible failure. 3

"B" set of display will display what was entered from the key pad, shifting
LSB to MSB and new entry to the LSB

* (Key pad operations are currently supported only under the 064 diagnostic
ReM set.)

Switches: Not currently supported

St.n = CCNr

'!he ron' will restart the clocks after the HALT m:x1e

Si2 = HALT

The HALT will hold clock functions - it freezes
the state of the machine (it is not a Start/Stop).

SN3 = IPL (initial program load) - same IPL as key switch

SW4 = Start/Stop - stop macro enulation - same as control
pod Start/Stop

Key Pad: the keyboard is set up a matrix as per diagram

HEX DISPLAY
~ ,,-..,

I.: ~
,-, , I I I
'-f .I I Jl

I I
u~~~",e .ij:..Jt

001 100° 4 8 c
DOl I I I 1 5 9 0

I 1 1tJC(2 6 A E
D 01 ,

B F c:::::::l 3 7 ~

c:::::::l c:::::::l I .;~Is~ I II
-------------~--------------Q 64 DIAGNOSTIC PANEL

HEX
KEY PAD

064 BOARD BU; DIAGNOSTIC RCMS OPERATICNS

.The Q64 diagnostic Rei"! set is used in lieu of the real macro emulation Ra,J
set, to test individual circuits of the Q64 CPU board set •

. The purpose of ti1ese Ra~ is to:

1)
2)

Field:
In-House:

to aid in fault isolation to a signal boarc
bO aid technicians in repair

Each test has a code number it will send out to the diagnostic panel hex
display at the start of each test. EaCh time a test passes, the display
-... lill be incremented and tJ.'1e next test run.

~ile test number entered DRied with hex $80, entered on keypad, is echoed on
one set of hex display. The ot.~er hex display, under CPU control, displays
the test number •. If the test failed, the test nu!nber OR'ed vlith hex $80 is
displayed.

Tne diagnostic set has 5 modes of operation:

l-lcde 1) Sequential: (mentioned above) increments through each test
sequentially. Sequential m:xie is entered by placing
$00 on the display and then turning the IPL key

I-lCx:le 2) Signal Test Execution r.tlc1e:

Hcx1e 3)

this mode will loop on a signal test

to run in this nx:Xie the $80 bit is set, $40 to $00
bits are the test number, e.g. test $15 would be $95.
This value is entered on key pad and turn the IPL key.

Halt on Error Iyme Freezes State of r.'~chine:

runs in mode 1 order but will halt the clocks on a test
\that an error occurred on. To run this no:1e the $40
bit is set (enter a $40 on key pad) and turn IPL key.

runs in mcc1e 1 order and stops execution after one
complete pass of all tests. If error occurs then the
test number OR'ed with the $80 bit will be displayed on
the hex display. If all is good, then a $7F will be
displayed. To run this rcode the $20 bit is set (enter
a $20 in key pad) and IPL.

;·!cC.e 5) r"!cx::es 3 and 4 may be corrbined for a loop till error aJ'lo halt (enter
$60 on key pad) and IPL.

For test descriptions and running sequences see "BOARD BUG DIAQ~OSTIC CODES"
switch definitions

The diagnostic panel is used to enter test nurnbers. :Reference "G6~
DIAG\'OSTIC PJl.l:rl:.L OPZPATIG:J".

BOARD BU:;. DIAGNOSTIC (DOES

The follaving is a list of the tests per formed dur ing theBRDBUG diagnostic
test and the codes which \,/ill be placed out to the front diagnostic panel at
the start.

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
1B
Ie
lD
lE
IF
20
21
22
23
24
25
26
27
28
29
2A

TEST IESCRIPl'ICN

Kernal Test (Stack, ALU's, Address Bus)
CPU Live Flag Test
Shift ~bde 0 Test
Shift Mode 1 Test
Shift ~tJde 2 Test
Shift ~krle 3 Test
General Purpose Counter Zero Test
4 Bit GPC Test
8 Bi t GPC Test
12 Bit GPC Test
16 Bit GPC Test
4 Bit GPC Flag Test
4~iay (GPCl and GPC2) Test
4-Way (GPCl and GPC2) Test
FFFF and THREE Test
Swap Register Test
Local Control Register Test
Programmable Interval Timer Test
Pit Readback Test
Pit Interrupt Test
Branch Reg ister IoNer Test
Branch Register upper Test
Y Branch IDwer Test
Y Branch upper Test
Branch Register Test (256~ay)
Y Branch Test (256-Hay)
BC) Zone Test
Bel) Adder Test
BCD Subtracter Test
Global Interrupt/Micro Interrupt Test
"Real" Flag Test
Base Register Data Test
Base Pegister Address Test
Logical Address Register A Test
Logical Address Register B Test
Logical Address Register P Test
Real Address Register/parity Latch Test
RAR/Perr Upper 8 Bit Test
Physical Address Register P Test
Physical Address R-agister A Test
Physical Address Register B Test
Fetch Register Test
Code lL 16-Way Branch Test

A
L
U

A M
U D
X B

M M
A E
D lwi

x X
X X
X X
X X
X X
X X

X
X
X
X
X
X
X
X
X
X
X
X X
X X
X X
X
X
X
X
X
X
X
X
X
X

X
X X
X X
X
X
X
X X
X X
X X
X X
X X
X
X

PRIl-1ARY BOMIlS
- TES'l'ED

A A
'!EST L U

NOIv1BER TEST DESCRIPl'ICN U X

2B Merrory Data Bus Test (to array 0)
2C Menory Bit Test
2D ~~mory Address Test (address 0 - 7)
2E Logical Address Register A tv'errory Check
2F IDgical Address Register B i'4enory Check
30 IDgical Address Register P MemJry Check
31 A Plus 1 Increnenter/8 Byte ~vrite Test
32 Barrel Shifter Test
33 Lara InCrenent/Decrenent Test
34 Larb Increment/Decrernent Test
35 Larp Increment/Decreme-nt Test
36 Base/Bank Hazard Test X
37 cascade Register Test
38 Fetch Register/Shifter Test
39 "REAL" Branch Test
3A Indirect OVerflai Test
3B Hazard On Instruction Test
3C Base Fault on Indirect Resolution Test
3D Single Operand Instruction Test 1
3E Single ~ranc1 Instruction Test 2
3F touble Operand Fetcher Test (no indirects)
40 Ibuble Operand Fetcher Test (A indirect)
41 touble Operand Fetcher Test (B indirect)
42 Ibuble Operand Fetcher Test (AlB indirect)
43 Triple Operand Fetcher Test (all cases)
44 Fetcher $OOOF to LARA

**46 LvlenDry Test
7F All Finished With Test(s) or Illegal Test NUITi:>er
FF Stack Error D.lring Kernal Test X X

Any other test nuni::>er is invalid

** '!his test is not run during the normal execution of the
diagnostic. It can only be accessed by entering $C6
on t.he panel

This test requires an IOU-39Q set at address 0 and a
VT3 be installed with the system.

M
D
B

X
X
X
X
X
X

X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

If an error oCcurs, the test nunt>er 'ORED' \-lith 80 will be put out
to the diagnostic panels hex display.

/ lee ('" / C

~7

M
A

'D

X
X
X
X
X
X
X

X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

M
E
M

X
X
X
X
X
X
X

X

aO-lF

20-3F

40-SF

6Q-7F

aQ-FF

BI'IS

7 6 543 2 1 a

o a a x x x x x

a 0 1 X X X X X

010 X X X X X

a 1 1 X X X X X

1 T T T T T T T

DISPIAY DEFINITIOOS

HEX BITS

7 6 5 4 3 2 1 a

00-7F o x x x x x x x
80-FF 1 T T T T T T T

NOl'E:
T = test number
X = don't care

ImP CN HALT CN ICOP
AT END A TEST ERROR

NO

NO

NO

YES

NO YES MJde 1

NO NO M:rle 3

YES

00 lb:1e 5

xx M:Xie2

Test Passed

Test Failed (Bit 7 On)
Bits 6-0 define test no.

that failed.

NOT..£~ UNLESS OTHeRWISE SPECIFIED

PROPRJET ARY
CE TO PERSONS RECEIVING THIS
'rVING: MOS-QANTEL. INC.
IdS PROPRIETARY RIGHTS TO ALL
~MATION CONTAINED HEREIN.
-fER THIS ORAWING. NOR ANY
OOUCTJONS THEREOF. MAY BE
OR DISCLOSED TO ANY THIRD,

rES WITHOUT THE EXPRESS
TEN PERMISSION OF MOS-
"- INC.

(,t~ ___ -.:a.",

AEV. DESCRIPT10N

I PPR-0382-22
A PR-0382-27

NEXT ASSEMBLY AlM.44D79
APPROVALS DATE

CRFTS I P.&at
CHK ~
PROJ
EHGR

MFO
ENGR

PROJI
lIGR/'

DO NOT SCALE D~WINQ

r~' "~ ~~ QANTEL U n f~ . ~ BUSINESS
11 W iii .. ~ COMPUTERS

a Mohawk Data SCe ICeS Company

EXTERNAL "SPECIF!CATION

Q64 OrAGNOSTIC. (BRDDBGL
OWG NO.

52084-oor

sc.\U SHEET I 0' It.

REV.

A

r.1DS5:.
....... a. s-a.c:.-..

1.0 SCOPE

This document is intended to provide the user with an understanding
of the micro-diagnostics that are used to bring a Q64 CPO up to the
point where a macro-diagnostic may be loaded.

2 .0 INTRODUCTION ANn GENERAL PESCRIPTIOU

~ The diagnostics currently consists of several modules. Each with
:he intent of debu9gin9 several main and where possible, distinct
lreas of the cpu.

These areas are as follows:
1) The ALO and AUX Boards.
2) The MDAT and MADD Boards.
3) The main memory modules.

(

~ This. diagnostic will be resident in the BaH space on the board
Si~ce a minimum of hardware need be operational in order to access
this. The diagnostic currently fills up about all pf the Sk address
space. Dser communication will be via several paths. The primary mode
n~ communication will be done with a logic analyzer connected to the
.. crostore Address Bus and the ·Y· bus. Secondary communication will ~I

we done through .the -Balt· . logic and through the hex displays on the '"
front panel.

~ Commun~cation from the user will occur via the front panel
switches an~ to a very small extent, through the • Cont - logic.

~ The diagnostic is intended to debug a machine fram a working
hardcore state to a point where higher level diagnostics may be
loaded. The goal is to be able to isolate faults down to the circuit
and if possible, the node level.

~ This diagnostic starts out by verifing that a small kernel of the
machine is' operational. As the diagnostic progresses, the kernel will
enlarge thus allowing for more specific pin-pOinting of faults •

SHEET 1 ORAWINQ NO.

2 cur 16 I A52084-001
1

. "

REV

A

~

~ .
./'''-1

(

(

(---

-

3 • Q BARDWAR E REQ Q IE EI·1ENTS

~ There are two approaches to consider:

1) To debug with the aid of a Rom Simulator.
2) To debug with the aid of diagnostic roms.

~ Boths methods will achieve the same results,

Method 1) ~llows for greater flexibility to the use~ however it is
also at a greater cost in terms of hardware requirements and space
requirements.

Method 2) does not give the user as much flexibility , however , a
great deal less must be expended as far as equipment and space are
concerned.

BOl:l SIMUI.ATQR

DVloI
CPU EXTENDER BOARD
OSCILLOSCOPE
LOGIC ~lALYZER

7.5 OR Q29 SYSTEM:
ROI~ SIl·mLATOR
48K IrlAIN l·1EI·lORY (min)
VIDEO TERI-IINAL
PRINTER
ROIst RECEIVER/DRIVER BOARD

·PIAGl.jOSTIC BQriS

DVI·I
CPU EXT~IDER BOARD
OSCILLOSCOPE
LOGIC ANALYZER

SHEET DRAWINQ NO. REV

3 a.. 16 A52084-001 A

"

~R'" 0402

mD5:::"
• ___ 0. &.-. c:a......,

LJ2 OPERATING INSTRUCTIQlIS

4,1 1 ROM SIlIDLATOR METHOD
a) LDstall rom simulator connections to the Rom Rec/Drv board.
b) install jumper at (SWEXT) to disable roms.
c) logic analyzer connections should be made to the MSA bus- and

the ·Y· bus. The clock should be connected to the DTOa D •
d) From the Q29'system, run Q64LQAp.

1) enter the hex address for the Rom Simulator.
2) enter the hex address for the Serial Port communications

device (not used in the diagno'stic) .
3) a menu should now appear,

for the diagnostic enter : LW BBDDBG

e) t"lhen the P2 TO CONTINUE prompt comes up , press P2 on the
keyboard and IPL on the Q64.

4.1,1 At this point the diagnostic is running, the nucber for the
last completea test will be displayed to the front panel if it is
installed. A lookup table or a source listing will be required at
this time to find out where the cpu has failed. The logic analyzer ("
can be set to trigger on the trap address to determine the machine 'i '

history leading up to this event.

4.2.0 The -Diagnostic Rom • method
a) install the DRoms· on the Cpu.
b) install the SIiEXT jumper.
c) power the CPO up and press IPL.

4.2.1 at this point ~e diagnostic is running, the DIAGNOSTIC panel
will display the number of tOe last completed test. Also the lights

on the Rom board should be changing at a very fast rate, a stable
state on the lights will indicate a trap caused by an error.
The data on the lights will directly correspond to the address
currently on the MSA bus (s·imilar· to the logic analyzer)

~ The Diagnostic Panel switches will also define several modes in
which the diagnostic will run in. The modes that are currently defined
are as follows:

Default, no switches pressed •• LOOP AT ~lD
~qITCB $20 •••• HAL'll O~l ERROR

On = halt on error.~ •• Off = Loop on error
St'lITCB $80 •••• LOOP ON TEST

On = loop on a test Off ~ don't loop
other switches = test number .

St\'ITCB $40 •••• Halt at end
micro program will halt when complete

.~EET ., CRAWINO Ha.

4 ar 16 1 A520S4-001 ~

(
5.0 TEST PESCRIPTIQUS

5.1 BEDBUG

5.1.1 This is the first test that should be run .There are several
things that should be known about the program.
1) Throughout the program, a test number is displayed to the front

panel. Normally this register is incremented as the program
progresses. . .

2) The front panel will be ~ead to determine what paths will be
taken d~ring the execution of the test.

3) Register 2 will be the location of the balt command to the
local control register. This will be used in the halt on
error mode.

4) It is assumed that·the machine can reset to JmA SOOOO
The main' clocks are running (TOB,T3H)

5.1.2

The -DR source LITERAL decode and Y destination LOCAL CONTROL
decode is operational.
The Zl6 flag out of the alu is connected to the two-way branch
logic.

KERNAL TEST 1

(This will verify that a portion of the literal register and a portion
of the Local Control Register are functional. Also ,this will tell us
that the B~T logic is working.

(

CONFIPENCE HALT 2

This will tell us that the Continue l"ogic is working, the mCREl·~ENT
the microstore address on literal, and that some jump logic is

. working.

SHEET DRAWINQ Ha.
S 16 A52084-001

a ..

AD
A

mD$~
...... 0.. s-...c--.

, 5.1.4 CONFIDENCE HALT 3

This will happen after Z16 logic has been tested in both states. At
this point in the diagnostic, we have a mechanism which gives us the
ability to test the rest of the machine.

5.1.5 JUr·IP TEST

This test will check the independence of the Microstore
address lines by doing uncondition~l jumps through memory and back
again. There are two failure paths on this test, the first is to
jump out to a wrong location, this can only be tested with a logic
analyzer. The second is to skip a jump, this is tested by
incrementing a register at each jump (jump counter) and testing it
upon returning to the main routine.

S.1.6 LITERAL REGISTER TEST
,

This.is a quick test to check the independence of the bits in the
literal regist~r •. Unfortunately, since we don't·have a gr.eat deal
of resources available to use at this time, we have to use it to
-check itself- this is done by loading the literal register into
Register 0 and reloading the literal register and adding it to
Register 0 looking for a result of O.

SAAAA + $5555 + 1 • $0000

5.1.7 ALa FUNCTIOUAI, TEST

"At this" point we load Register land Q via the literal register.
"lie "then will test the add, subtract, or, and, complement, xor
functions on the alu. This will verify that the 2901 fUnction lines
from the pipeline are.-operational.

I
t~J

\

\
I
I

I

j I :" ... ~ I
t i

SHEET I QAAW,NG NO. I RON . b·'··~.·. ~: I
6 or 16 AS2084-001 " ~' .. t··. i -- ... ~ ~

(

(-

S.1.8 BFGTSTEB TEST

This routine will load a value into each register. The algorithm
for this is to load a constant into the Q register, place q into
register 2 (writing in reg 2) • Next take Register 2, add it to Q
and place the result in register 3 (reading from 2, writing to 3).
This is continued up to register F. The process is then reversed and
the registers are nO'tl compared· wi th their calculate values (calc­
ulated using the Q Register and Register 0).

5.1.9 FLAG TES1'

This exercise -will ver·ify the ALO related 2-\tay branch functions.
Among them are the Z8, Z4, 'elG, CS, C4, Y1S, and YO. .
Each branch is exercised at both polarities. The inverted function
of each branch need only be tested once since the hardware path of
each case is the' same (all go through the same XOR gate).

5.1.10 SHIFT TEST

This test will test the shifter ~Q and RAM) connections in between
the 4 2901' s. Also the connections between Q (Qo·, QlS, Ramo, RamlS)
are tested. This is accomplished by sending alternate, adjacent
and single bits patterns through the shifters. (alternate=SAAAA or
$5555) (adjacent= $3333r.$6666, •• etc) (single= Sllll,$2222,S4444 •• etc)
Care is taken to make sure that 0 doesn't shift during a single shift
and that it does shift during a double shift. Polarity changes for
the msb and the lsb of each nibble has also been accounted for.
The patterns a.re modified somewbat in order to test· each of the four
s:hift modes.

SHEET DRAWING NO • AIV

.. ,. .. --

t
1-

f:
f -
I

.
!.

R~ .&02

mi)$=-..
........ a.. sa.....c::c.....

S.1.1J STACK TEST

This first 4-way branch condition is tested here. This routine f"irst
starts out by popping the stack 16 times to insure emptyness. After
that, 16 call's are made to insure fullness. At this time a simple
cal1 and return is made over a very confined address space (in case
of error, hopefully it will be trapped in this space by the micro­
code. After this is successful, 16 call's are made through the
address space. At each return, a -return counter- is incremented in
a manner similar to the jump test. Upon return to the main routine
this counter is compared to the calculated number of returns to see
if the stack had made the correct insertions on to the lticrostore
Address bus.

5.1.12 GPe TEST

(I

This routine- keeps i~ mind the physical construction of the GPC. It
starts out by loading the GPe with a a and then 1 microcycle later
it tests it for 0 (it takes 1 microcycle to latch the GPC). The
next test is to test it as a 4 bit counter, then an 8 bit counter,
etc. This will. allow the user to trouble shoot down to the chip
level since each counter in the GPC is 4 bits wide. An ALO register
is also run in parallel with this to insure that the GPe does not
bottom out too soon or too late.
This same technique is used for GPC2, the test is only for a 4 bit ('" "
coanter. This can only be tested by a 4-way branch. ' ,"

5.1,13 P-SOQRCE TEST

This is actually three tests in one since they are very short. The
o-Source THREE is compared to a literal $3. The D-Source FFFF is
compared to the literal $FFFF • In swap an alternating bit pattern
$55~ in placed into SiAP , read back and checked, if correct, the
read back value if placed back into SW~ and checked for the original
value.

- ." (,

• MEET ORAWING HO • An I
8 Dr 16 AS2Q84-001 A 11

(

(,

mDS==-
....... o.sa....c:a....

5.1.14 T,OeAT. CONTROT, READBACK

Due to some of the effects that the Local Control Register has on some
of the portions of the CPO, care is taken during the testing of each
bit. Por example, HALT is skipped completely since is is previously
used during the Confidence Halts. Another this to consider is that
the readback inputs to bits 2**2, 2**3, 2**5, 2**6, 2**7 are tied low
and. they are tested as such.
A shifting bit pattern is used to test the individuality of each line.

5.1.15 PRQGBAMrmsLE INTERVAL TIMER TEST

The technique used in this routine is similar to the GPC test
since the physical construction' of this counter is.the same. One
precaution must be made in that this clock in accordance to TO and
not TOB. The refresh HOLD memory control must be made in order to
keep the ALO running in syn~ronous fashion to the PIT. Since the
counter'is readable, is is counted down along side a· parallel
register which periodically checks the value of ~e timer and
compares it with itself.
After this functionallity is verified, HOLD is removed and PIT
interrupt is allowed to check the interrupting circuitry.

.... eET CRAWINQ NO.

9 or 16 A52084-001

REV

A

I.

I
I
f
'" i

=. --,....
~"4.. ••
I- t: .. ~.

~~~-:;. 

t
":" ~:: .......... 
..,.-":.,. 

0" . "".~..;. -- .--..... ~ 
"".a.~ 



~~~~ I 
ISfUb~= :=:.
...... c..s-...~

I·

5.1.16 BCD ADpE.R TES'T'I

This routine basically tests the BCD ADDER rOQ more than anything
else. The circuit must be tested in an add and subtract mode. The
first thing that is checked is that the zone bit of the result
is $3 • Next, -the number 9 is added to 9, 9+8, 9+7 ••••• 8+9,8+8. e •

0+0). Carry from the previous operation is added to the present
operation to check the carry logic. The subtract test is done in a
similar manner. The alu also does the operation in a- somewhat slower
fashion to test the results from the adder. In that routine, the
state of the carry bit must be read from the previous operation,
added or subtracted in accordance to the mode and the state of the
carry flags must be predicted by the alu to be checked afte~ the
operation

5,1,17 SPECIAL BRANCH TEST

The Special_ Branch test to check the ability of the Bran~l Register
and the -Y· bus to place an aacres3 on the Micro-sto~e Address Bus.
Tnis is done in a 16-way and a 2S6-way fashion. The bits are individ­
ually tested ie: a branch of +1, a branch of +2, a branch of +4, a
branch of'+8, etc •••

5.1.18 GLOBAL AND HICEO-INTERRUPT TEST

Since some of the states of the elements in these 2 registers cannot
be controlled, only the predictable elements will be tested.
Start/Stop is the. only bit that is.tested on the Global -Register-.
Power Fail and Ipl-~arning 'are the only two bits that are tested in
the micro interr~pt -register-

SHeeT I ORAWINQ ,,",0. REV

10 c,. 16. AS2084-001 A

(
f

,

,:

\
I

i
~

~ \
I
I

. I
.... i ,

(

(

~ ; : . ;..", .

5,1.19 BASE REGISTER TEST

This is the first time that the TEMP register is used. The BASE
FILE is treated as memory and tested as such.
The patterns ~sed are all $AAAA for odd numbered base ,registers
and $5555 for the even numbered base registers. On each write
the base pointer is reloaded thus bypassing the auto-increment
on write function. On the shorted address line section, the
base address is either written into the upper or lower section
of the ram ie:

base reg 1
2
3

etc

baseu= $.Q.l.00
baseu= $00.0.2
baseu= $.Q.l00

•••••••

5.1.2Q LOGICAL ADPRESS TEST

basel=$Ol
basel=$02
basel=S03

This is the same for LARA,LARB,'and LARP since the registers are
read-writable ,$FFFF is loaded into a an ALD register and also to
the LARX and then read back, this is decremented and, repeated until
o is reached.

5.1,21 REAL' ADDRESS REGISTER TEST

This is more complicated for 2 reasons. 1) The register is 24 bits
wide instead of 16 (alu width). 2) There is no' direct readback
path for this.
Problem 1 is solved QY testing the 'real address register in two parts
The upper 8 bits and'then the lower 16 bits.
Problem 2 is taken care of through the D-Source PERR this will" 1a"teh
the address and save it until the next memory access. This
is controlled by bi ts in the local control register.'

O C::T CRAWINQ NO. AtV

11 a,. 16 A52084-001 A

:1

• u.Q2

mi)$?'_
....... o..~~

5.1.22 PHYSICAl, ADPRESS REGISTER TEST

The physical address test consists of three subsections. Each is
identical except that each will test one of the three physical
address registers (PARP, PARA, PARB).
To simplify circuit debugging8 each subsection is divided into two
parts. One part will check the upper 12 bits of the physical address
(which is derived through the base adder adding $0000 to the upper
12 bits of the base value). The other part will exercise the lower
12 bits of the physical address register (which adds the base value
to the logical address).
The second portion of the test loads the base registers with a
shifting pairs pattern. The values are as follows:

5.1.23 "BASE REGISTER VALUE

a 000000
1 000001
2 000003
3 000006.
4 oooooe
5 000018
6 000030
7 000060
8 ooaoed
9 000180
A 000300
B 000600
C oOO~OO
D 001800
E 003000'
F 006000

This pattern will give the routine the ability to test for the
independence of bits in the base adder and the physical address
registers.

- ..
.HEET eRA-WINO NC. REV .

12 Dr 16 A52084-001 A
-

Ii

(
I .

,-
~

(

(

5 .. 1 .24 MEl-lORY TEST

This should find catastrophic errors in memory • It assumes that there
is 64K in the machine and it does a stuck high and a stuck low bit
test. It also will do a quick shorted address. line test. All this is
done through the REAL ADDRESS' REGISTER in order to avoid using
the mapping circuitry. After the memory is verified, the LOGICAL
ADDRESS REGISTERS' are used in order to access memory. This is done
to test and ~erify the mapping circuitry.

SHEET C"AWIHQ Ha.

13 al" 16 . A52084~oal A

-~

-~ -......

AM .a:z

mi)$::=:-_
...... a-s..-c:-...

6.0 FETCHER TEST

6.1.1 The Fetcher test takes up from where the quick memory test in
the Q64 Diagnostic leaves off. It does make the assumption that the
actual memory module is operating correctly. The approach that this
diagnostic takes is to check that the fetch logic perfocns the
correct functions.

0.1.2 The first section of the test will check that the memory, cont-
01 can correctly do the various increment and decrement controls on
the logical address registers. This is done without any alteration to
memory ..

6.1.3 After this the Cascade Registers are checked. (LCAS and RCAS).
This is done by driving.$POOF through the registers and checking and
then by driving SOFPO through the regist~rs.

6.1.4 The D-Sources associated with the Fetch Register are checked .
by writing the pattern S0123456789ABCDEP out to memory and then read­
ing it back in through the Petch Register. After doing this the con­
tents of OPl, OP2, OP3, CODEl, CODEl, RWORD2, RNORD3, m~ORD4, and
MOVLEN are checks for the correct values. If successful, the pattern
is reversed (to check for bit errors) and the process is repeated.

aHCET CRAWINQ NO. AR

('

c:

,
_L~~ __ a .. 16 AS2084-001 A

~'! ...

.
; mD$:::'

........ DIIa~c::..,..,

6.1.5 The branch logic is checked next, .. the following is i sequence
loaded into memory:

~ ~ ttNEr10NICS
0000 OOOOAO Nap $0000
0003 2SASA7 BOO $25AS
0006 SASAA2 BIll $SASA
0009 7FFFAJ BHZ $7FFF
OOOC OOOOA4 BZ SOOOO
OOOF 3333AS BNM $3333
0012 4CCCA6 "BNO $4CCC
0015 SDDDAl BOV $5DDD

" 0018 3BBBAA BP S3BBB
OOIB OOOOM BNP $0000 . .

6.1.6 T.he P-counter is then set to 0 and a ·start the Fetcher· and
a ·Set Singl-e Step Mode- is set to the Local Control Register. This
will allow us to exercise the first branch and monitor the P-Counter.
~e Decode branch is then monitored checking for either of three
conditions 1) Running (which will allow ~s to -loop), 2) Complete and
single step. (which will exit the routine) 3) anything else is illegal

and is. considered an error at this paint.

6.1.7 LARP and LARPO are checked after each operation for validity.
If correct LARP and FLAGS are set to check the following condition.
Each condition is checked in a ·Branch Taken· and -Branch Mot Taken­
mode.

SHEET DRAWINQ HO.

15 ar 16 A52084-001 A

-
-- -~. .

6.1.8 Next the indirect dearementer is tested. Pirst in. an overflow
state and then in an non-overflow state. The first is accomplished
by generating a branch instruction that will indirect to itself.
The second part is accomplished by generating an indirect chain
which is resolved at the fifteenth level (a non-overflow condition).
Opon completion LARP is now checked to see if the resolved address
is correct.

6.1.9 A Hazard on Instruction generated next by placing LARP within
8 bytes of the end of bank O.

6.1.1Q A similar method is used to generate Hazard on Indirect P and
Hazard on Indirect B v~ctors.

6.1.11 It is assumed that at this point that the Petcher can resolve.
an indirect address on -A- SG these test cases are not generated "
for the single operand vector test. This routine in simple terms
generates ·CODE 1· values , calculates decode vectors, writes
·CODE 1- into memory, sets the pcounter, starts the fetcher· and
finally checks the decode vector.

6.1.12 Double and triple operand instructions are generated and
tested in a aimilar manner. T.he "diagnostic generates a pattern of data
that. fulfills the requirements of the Petcher (a counterfeit macro (!.:.
instruction). The macro instruction is loaded into memory, the
p-counter is set to it and a fetch is initiated. opon completion,
the decode vector is first tested. ·After passing this LARP and LARPO
are tested (LARP will increment either by 6 or 8). The resolving and
identifyinq of indirects is also considered for each double and
triple operand instruction. :

(

. • MCET O"AWI"Q Ha • RKY

16 a,. 16 A52084-001 A

