
DEVELOPMENT TOOLS
AND TECHNIQUES

Object- Oriented Software

NemTEpTM
DMLOPMENT
TOOlS AND
TECHNIQUES

NeXTSTEP Developer's Library
NeXT Computer, Inc.

Addison-Wesley Publishing Company
Reading, Massachusetts· Menlo Park, California· New York· Don Mills, Ontario
Wokingham, England· Amsterdam· Bonn· Sydney· Singapore· Tokyo· Madrid
San Juan· Paris· Seoul· Milan· Mexico City· Taipei

Release 3

NeXT and the publishers have tried to make the information contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty
of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to
notify the purchaser.

NeXTSTEP Development Tools Copyright © 1990-1992 by NeXT Computer, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or copyright owner. Printed in the United States of
America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, Inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. No. 4,982,343. Other Patents Pending.

NeXT, the NeXT logo, NeXTSTEP, Application Kit, Database Kit, Digital Librarian, Digital Webster, Interface
Builder, Sound Kit, and Workspace Manager are trademarks of NeXT Computer, Inc. Display PostScript
and PostScript are registered trademarks of Adobe Systems Incorporated. ORACLE is a registered
trademark of Oracle Corporation. UNIX is a registered trademark of UNIX Systems Laboratories, Inc. All
other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-861.

This manual describes NeXTSTEP Release 3.

Written by NeXT Publications.

This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT
400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT optical
disk to film using NeXT computers and an electronic imagesetter.

345678910-CRS-96959493
Third printing, November 1993

ISBN 0-201-63249-7

Contents

Introduction

1-1 Chapter 1: Putting Together a NeXTSTEP Application
1-4 The Application Development Process

2-1 Chapter 2: The Project Builder Application
2-5 Creating and Maintaining Projects in Project Builder
2-19 Running and Debugging an Application
2-22 Project Builder Command Reference

3-1 Chapter 3: The Interface Builder Application
3-5 The Basics
3-12 Using Interface Builder
3-28 Interface Builder Command Reference

4-1 Chapter 4: The Edit Application
4-4 Starting Edit
4-5 Setting Preferences
4-12 Performing Basic Operations
4-17 Contracting and Expanding Text in a File Window
4-20 U sing the Ruler
4-22 Adding Linked Graphics
4-23 Adding Help Links
4-24 Using Templates
4-26 Using Keyboard Editing Commands
4-26 Interacting with UNIX
4-29 Interacting with the GDB Debugger
4-29 Edit Command Reference

5-1 Chapter 5: The Terminal Application
5-4 Introduction to Terminal
5-4 Setting Preferences
5-12 Saving a Terminal Configuration for Later Use
5-13 Printing the Contents of a Terminal Window
5-13 Finding Text in a Terminal Window
5-14 Defining Services for Use in Other Applications
5-16 Terminal Command Reference

6-1 Chapter 6: The Icon Builder Application
6-4 Creating, Opening, and Saving Documents
6-5 Editing Icon Documents
6-13 Icon Builder Command Reference

7-1 Chapter 7: The DBModeler Application
7 -4 Creating, Opening, and Saving Models
7 -6 Working with Entities and Properties
7 -9 Setting Preferences
7-10 DBModeler Command Reference

8-1 Chapter 8: The MallocDebug Application
8-3 Preparing Your Application
8-4 Using MallocDebug
8-6 Identifying Damaged Nodes
8-6 Finding Memory Leaks
8-7 Measuring Memory Usage
8-7 MallocDebug Command Reference

9-1 Chapter 9: The Process Monitor Application
9-3 Selecting a Process: The Processes Panel
9-4 Inspecting a Process: The Inspector Panel
9-7 Monitoring Memory Usage: The Mach Monitor
9-8 Process Monitor Command Reference

10-1 Chapter 10: The PostScript Previewers: Yap and pft
10-3 Using Yap
10-4 Yap Command Reference
10-5 The NeXTSTEP Window Server Interface: pCt

11-1 Chapter 11: The GNU C Compiler
11-3 GNU CC Command Options
11-23 C Programming Notes
11-26 GNU Extensions to the C Language
11-37 Additional Information about GNU CC
11-41 Legal Considerations

12-1 Chapter 12: The GNU C Preprocessor
12-4 Global Transformations
12-5 Preprocessor Commands
12-6 Header Files
12-9 Precompiled Header Files
12-13 Macros
12-33 Conditionals
12-38 Pragmas
12-39 Combining Source Files
12-40 C Preprocessor Output
12-40 Invoking the C Preprocessor

13-1 Chapter 13: The GNU Source-Level Debugger
13-6 Summary ofGDB
13-6 Compiling Your Program for Debugging
13-7 Running GDB
13-13 Startup Files
13-14 GDB Commands for Specifying and Examining Files
13-15 Running Your Program under GDB
13-20 Stopping and Continuing
13-34 Examining the Stack
13-37 Examining Source Files
13-41 Examining Data
13-50 Examining the Symbol Table
13-59 Debugging PostScript Code
13-60 Debugging Objective C Code
13-64 Debugging Mach Threads
13-64 Debugging NeXTSTEP Core Files
13-64 Altering Execution
13-66 Defining and Executing Sequences of Commands
13-69 Miscellaneous Commands
13-69 Legal Considerations

14-1 Chapter 14: Mach Object Files
14-4 The Mach Header
14-5 The Load Commands
14-14 Relocation Information
14-15 The Makeup of Executable Object Files

15-1 Chapter 15: Building a Simple Application
15-4 Creating a Project
15-8 Creating the User Interface
15-10 Adding and Editing Objects
15-16 Laying Out the Interface
15-19 Testing the Interface
15-20 Preparing to Compile the Application
15-23 Compiling the Application
15-24 Running the Application

16-1 Chapter 16: Building a One-Button Calculator
16-3 Creating the Interface
16-5 Defining the Calculator Class
16-9 Connecting the Objects
16-11 Writing the Calculator Class Definition Files
16-13 Testing the Application
16-13 Modifying the Calculator
16-14 Adding a Submenu
16-16 Modifying Calculator.h
16-17 Modifying Calculator.m
16-19 Adding an Icon
16-21 Adding Sound

17-1 Chapter 17: Building a Text Editor using Multiple Nib Files
17-4 Adding an Info Panel to Your Application
17 -8 The Text Editor's Design
17-11 Modifying the Application's Interface
17 -11 Modifying the Distributor Class
17-12 Editing the Class Files
17-13 Connecting the Objects
17 -14 Creating the Module's Interface
17 -14 Defining the Document Class
17-15 Editing the Class Files
17-16 Connecting the Objects
17 -16 Compiling and Running the Application

18-1 Chapter 18: Building a Custom Palette
18-4 Custom Palettes and Interface Builder
18-5 The Custom Object's Design
18-6 Creating the Interface
18-7 Defining the Progress View Class
18-8 Providing An Image for the Palette's Button
18-9 Writing the ProgressView Class Files
18-13 Updating the palette.table File
18-14 Compiling and Loading the Palette
18-15 Testing the Palette
18-15 Using Custom Palette Objects in Other Applications
18-16 Adding a ProgressView Inspector
18-19 Designing the ProgressView Inspector
18-20 Designing the ProgressViewInspector Class
18-21 Connecting the Objects
18-21 Editing the ProgressViewInspector Class Files
18-25 Modifying the ProgressView Class Files
18-25 Compiling and Testing the Inspector

Index

Introduction

NeXTSTEPTOA Development Tools and Techniques describes the essential tools for
developing a NeXTSTEP application-these tools include the Project Builder, Interface
BuilderTOA

, Terminal, and Edit applications, miscellaneous developer applications, and the
GNU C compiler, preprocessor, and debugger. The manual is part of a collection of
manuals called the NeXTSTEP Developer's Library.

This manual assumes you're familiar with the standard NeXTSTEP user interface.
Experience using a variety of NeXTSTEP applications would also be helpful. Some topics
that are discussed here aren't covered in detail; instead, you're referred to a generally
available book on the subject, or to an on-line source of the information.

A version of this ·manual is stored on-line in the NeXTOA Digital Library (which is described
in the User's Guide). The Digital Library also contains release notes, which provide
last-minute information about the latest release of the software.

Intro-1

How This Manual is Organized

Intro-2

The first 14 chapters of this manual concentrate on the tools used in building a
NeXTSTEP application. The last four chapters contain step-by-step instructions for
creating several simple applications, thereby providing a hands-on overview of the
application development process.

• Chapter 1, "Putting Together a NeXT Application," provides an overview of the tools
and techniques that you'll use to assemble a working application. The tools introduced
in this chapter are discussed in greater detail in other chapters of this manual.

• Chapter 2, "The Project Builder Application," describes the central control point for
application development in NeXTSTEP. Project Builder helps you with each stage of
application development, from inception to installation.

• Chapter 3, "The Interface Builder Application," describes the tool that lets you assemble
your application's user interface (and other parts) from predefined building blocks, and
lets you create new building blocks of your own design.

• Chapter 4, "The Edit Application," describes the NeXTSTEP text editor you'll be using
to edit and debug your application's source files.

• Chapter 5, "The Terminal Application," describes the application you'll use to interact
with a UNIX® shell from the NeXTSTEP workspace.

• Chapter 6, "The Icon Builder Application," describes a simple graphic editor for
creating and editing application icons.

• Chapter 7, "The DBModeler Application," describes an application for building
data models based on the structure of an existing relational database. The resulting
models can be used in Interface Builder to construct applications that access the data
in the database.

• Chapter 8, "The MallocDebug Application," describes an application for measuring the
dynamic memory usage of the applications you develop.

• Chapter 9, "The Process Monitor Application," describes an application that lets you
examine running processes, and pause or kill any of the processes and applications
running on your computer.

• Chapter 10, "The PostScript® Previewers Yap and pft," describes two tools: an
application for developers who want to write and test PostScript code, and a shell-based
interface to the PostScript Window Server.

• Chapter 11, "The GNU C Compiler," describes GNU CC, the ANSI-standard
C compiler used on NeXT computers. The chapter also describes how to compile
a C program using the GNU compiler.

• Chapter 12, "The GNU C Preprocessor," describes the macro preprocessor that's used
to transform your C program or application before actual compilation. The chapter
provides information about standard and precompiled header files, macros, and
conditionals. It also lists the options that can be used with the cpp (C preprocessor)
command.

• Chapter 13, "The GNU Source-Level Debugger," describes GDB, the primary tool
you'll use to debug the applications that you develop.

• Chapter 14, "Mach Object Files," describes the format of Mach object (also known as
Mach-O) files, which NeXT computers use instead of the UNIX 4.3BSD a.out format.

• Chapter 15, "Building a Simple Application," provides a tutorial introduction to the
process of application development in NeXTSTEP. It gives you an introduction to
Project Builder and Interface Builder, while showing you some of the basic features of
the Application Kit.

• Chapter 16, "Building a One-Button Calculator," continues the tutorial introduction to
the major development tools in NeXTSTEP and gives you further insight into
object-oriented programming with the Application Kif".

• Chapter 17, "Building a Text Editor Using Multiple Nib Files," shows how Interface
Builder and the Application Kit are used to tackle more advanced issues of
object-oriented application design.

• Chapter 18, "Building a Custom Palette," the final tutorial in the series, shows you
how Interface Builder itself can be modified to include the objects and tools you find
most useful.

Intro-3

Conventions

Intro-4

Syntax Notation

Where this .manual shows the syntax of a function, command, or other programming
element, the use of bold, italic, square brackets, and ellipsis has special significance, as
described here.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [],
in which case they're to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer [filename]

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer [filename ...]

pointer [,filename] ...

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or more
file names separated by commas

Special Characters

In general, notation like

Alternate-x

represents the character you get when you hold down the Alternate key while typing x.
Because the modifier keys Alternate, Command, and Control interpret the case of letters
differently, their notation is somewhat different:

Notation

Alternate-x

Alternate-X

Alternate-Shift -x

Command-d

Command-Shift-D

Control-X

Meaning

Hold down Alternate while typing lowercase x.

Hold down Alternate while typing uppercase X (with either
Shift or Alpha Lock).

Same as Alternate-X.

Hold down Command while typing lowercase d; if Alpha
Lock is on, pressing the D key will still produce lowercase d
when Command is held down.

Hold down Command and Shift while pressing the D key.
Alpha Lock won't work for producing uppercase D in
this case.

Hold down Control while pressing the X key, with or
without Shift or Alpha Lock (case doesn't matter with
Control).

Notes and Warnings

Note: Paragraphs like this contain incidental information that may be of interest to curious
readers but can safely be skipped.

Warning: Paragraphs like this are extremely important to read.

Intro-5

1

c=::cr;:=r:r =

Putting Together a NeXTSTEP
Application

1-4 The Application Development Process
1-4 Design Your Application
1-4 Create a Project
1-5 Write Code for Your Application
1-5 Connect Objects with Interface Builder
1-5 Add Other Resource Files
1-6 Choose Document Extensions for Your Application
1-6 Compile Your Program
1-7 Debug Your Program
1-8 Add Help to Your Application
1-8 Translate Your User Interface
1-8 Make Your Application Available to Users

1-1

1 Putting Together a NeXTSTEP
Application

There are a number of ways you might draw the line between programs and applications.
Programs are simple; applications are complicated. Programs are small; applications are
big. Programs run from a command line; applications have a graphic user interface. A
program has just a few source files; an application may have lots and lots.

No matter how you draw the line, as you move from writing programs to developing
applications, you need to focus increasing attention on project management. If the
application is the end result, the project is how you get there. The project can be thought
of as both the steps you go through and the source files you use to construct an application.

A complete project management strategy includes strategies for creating, organizing, and
maintaining source files, building the application from its sources, running and debugging
the application, revising the source files to fix bugs, and installing the finished
application-or preparing it for others to install.

In NeXTSTEP, the hub of application development is Project Builder-a project manager
that is itself a NeXTSTEP application. Project Builder isn't the only tool you use to
manage your project and develop your application. Instead, it's like a control center from
which you switch from one application development task to another, and from one tool
to another.

This chapter takes a brief look at the components of a NeXTSTEP application. It
explains the path that Project Builder and other NeXTSTEP tools offer you for going from
a set of source files to a working application. It looks at the application development
process in terms of resources and tasks that you, the developer, must provide and those that
Project Builder and other NeXTSTEP tools provide for you. Subsequent chapters present
detailed reference for each of the tools introduced here. The last four chapters present
step-by-step tutorials that offer you a chance to explore the NeXTSTEP development
process for yourself.

Putting Together a NeXTSTEP Application 1-3

The Application Development Process

The process of developing an application can be divided into three general tasks:
designing, coding, and debugging. These tasks are never performed entirely sequentially.
You may decide after some coding that you need to change some aspect of design.
Debugging always reveals code that needs rewriting, and occasionally exposes design
flaws. When you develop an application with NeXTSTEP, you can move easily among
these tasks.

The following sections enumerate the components of the NeXTSTEP application
development process, describing those portions for which you're responsible and those
which Project Builder, Interface Builder, and other NeXTSTEP development tools handle
for you. For more information on Project Builder, see Chapter 2; for more on Interface
Builder, see Chapter 3.

Design Your Application

Before you write any code, you should spend some time thinking about design. Some
components of application design to consider are functionality, program structure, and user
interface. You should think about the goals of your application and the techniques you
might use to meet those goals. You should determine the unique classes that your
application will require and think about how to divide your program into separate modules.
You should sketch out user interface ideas, and use Interface Builder to prototype and test
those ideas.

Create a Project

With the basic design determined, you can use Project Builder to start a new project.

In NeXTSTEP, a project is physically represented by a directory under the control of
Project Builder; all of the components of the project must reside in this directory. When
you start a new project, Project Builder automatically generates the project directory and a
set of source files common to all applications, including a main file, a nib file, a makefile,
and others. The main file includes the standard mainO function required in all C programs.
The nib file is used by Interface Builder to archive the application's user interface (nib is an
acronym for "NeXTSTEP Interface Builder"). The makefile is updated by Project Builder
to keep track of all the source files from which your application is built. Another file in the
project directory, PB.project, is used by Project Builder itself to keep track of various
project components.

1-4 Chapter 1: Putting Together a NeXTSTEP Application

Throughout the life of the project, you will add to and update the files in the project
directory. NeXTSTEP development tools, including Project Builder and Interface Builder
may add to and maintain other files in this directory as your project grows.

Write Code for Your Application

To establish the unique workings of your application, you create class interface and
implementation files that include code for the appropriate methods and instance variables.
Interface Builder can help in this process by creating skeletal code for a class if you list the
methods in the Inspector panel. If you create the source files first, Interface Builder can
parse them to learn about their id instance variables and action methods.

Project Builder lets you add source files to your project at any time. You can create
other source files using standard C, Objective C, and C++ code. Project Builder can also
know about and manage other files, such as pswrap files containing PostScript code within
C function wrappers.

Connect Objects with Interface Builder

In Interface Builder, you can interconnect objects in your application. For example, you
can establish the target and action for a control in the interface.

Interface Builder puts information about the classes used by your application in the nib file;
included are Application Kit classes and other classes provided by NeXTSTEP, as well as
the custom classes you define. The nib file contains all the information required to generate
the objects in your application at run time: specifications for objects, connections between
objects, icons, sounds, and other features. A NeXTSTEP application can have one or more
nib files for each application you create.

Add Other Resource Files

Resource files are frequently used to customize the user interface for your application.
Project Builder allows you to add icons for both your application and its documents.
Interface Builder allows you to add icons and sounds for the buttons in your user interface.
You can put other images in your application using Application Kit classes and PostScript
code. You can add other sounds using Sound Kif" methods. Project Builder provides a
drag-and-drop interface for adding sounds, images, and other resource files to your project,
including unique icons for your application and its document files.

The Application Development Process 1-5

Choose Document Extensions for Your Application

If your application reads and writes documents, you'll need to take measures to see to it that
the Workspace ManagerTM knows about and can work with those files. First, you need to
write file management code that saves the documents with a unique extension. You also
need to use the Project Builder application's Attributes display to specify document
extensions for an application. Project Builder adds these extensions to the appropriate file
to assure that your application is invoked by Workspace Manager when the user
double-clicks a file with the specified extensions.

If you plan to distribute your software, or want to avoid future collisions with file extensions
used by other applications, register the document file extensions with the NeXT Extension
Registry. A list of currently registered names and the address for the extension registry is
included in the User Interface Guidelines.

Compile Your Program

As you add source files to your application, Project Builder lists them in the project
makefile. When you use its Build command, Project Builder starts the make program
which in tum reads the project makefile and generates the executable file from the sources.
As make runs, it issues system commands to compile and link your application's source
files into an executable file. The project Makefile, generated by Project Builder, provides
the information make needs to do this job. The warnings generated by the compiler and
link editor provide information to help you locate and fix bugs detected at compile time.

In building your project, make keeps track of source updates. Each time you run make,
only the source files that have been updated since the last make are regenerated; the rest are
used as is. This minimizes the time required to generate your executable file.

Once you start building your application, Project Builder provides an interactive interface
to Edit for locating source code problems detected by the compiler and link editor. Anytime
the compiler encounters an error, Edit can locate the code with a single click-you can then
edit out the problem and begin compiling again.

1-6 Chapter 1: Putting Together a NeXTSTEP Application

Debug Your Program

After you successfully compile your program, you're ready to try running it. The easiest
way to do so is by choosing Debug in the Project Builder application's Builder display.
This selection builds your application (if necessary), then starts GDB in a Terminal shell.
You can then run your application with GDB in a couple of ways:

• Use Edit's Gdb panel to step through your application while looking at the code being
executed. The Gdb panel provides an easy-to-use, interactive interface that integrates
GDB and Edit; it's described in Chapter 2, "The Project Builder Application."

• Run the program from the Terminal shell by issuing GDB commands. The GDB
debugger and its commands are described in Chapter 13, "The GNU Source-Level
Debugger."

Along with the compiler and GDB, the NeXTSTEP development environment includes
several applications and features that can help you trace your program and pinpoint errors.
Other developer applications-including MallocDebug (Chapter 8), ProcessMonitor
(Chapter 9), and Yap (Chapter 10)-provide additional insights into the workings of your
program. ProcessMonitor lets you examine various characteristics of any process's
activities: memory use, PostScript graphic states, the run-time environment, and so on.
MallocDebug measures the dynamic memory use of an application. Yap lets you enter,
edit, and execute PostScript code on the fly and allows you to read and write text files so
the code can be used elsewhere.

Two tools are available to track off-screen drawing, which may affect what you see-or
don't see-on-screen. The NXShowPS argument writes all PostScript code and values
from the PostScript interpreter to the standard error stream. The NXShow AllWindows
argument displays all of an application's windows, including those generated for off-screen
imaging. Both of these are command-line arguments. To use them, start your program
from a Terminal shell. On the command line, enter the program name followed by the
parameter. For example

/me/MyApps/NewApp/NewApp.app -NXShowAllWindows

starts the application NewApp.app, displaying all its windows as it runs.

The Application Development Process 1· 7

Add Help to Your Application

Using Project Builder, Interface Builder, and Edit, you can create context sensitive help for
your application. The standard help template provided by Interface Builder includes
general information on the NeXTSTEP environment. You can add to this template to
include application-specific help, and you can create links between the controls in your
application and the help system to provide the user with context-specific assistance .

. Translate Your User Interface

When the application is complete and help is available, you can create alternate versions
with translated text for windows, panels, menu items, and buttons, as well as any help
information you've added. NeXTSTEP application programming interface (API) provides
ways of accessing bundles in your application containing the text and user interface in
various languages you wish to support. "The Project Builder Application," Chapter 2,
provides information on how to make a project localizable.

Make Your Application Available to Users

Once an application is debugged, you can install it in an application directory using Project
Builder. Project Builder lets you determine which directory to install the application in and
provides a way to automatically install the application when you build it.

When the user double-clicks a document file, the Workspace Manager has to locate and
start the executable file for that application. Workspace Manager looks for the executable
file in a systematic sequence of directory paths. This search sequence is contained in an
environmental variable path. You can place an application in any of the directories
specified in path.

Because of the search sequence specified by path, you can replace an application located
later in the sequence with one of the same name earlier in the sequence. For example,
$(HOME)/Apps occurs before /NextApps in path; if you place an application in the
directory $(HOME)/Apps with the same name as an application in the /NextApps
directory, the Workspace Manager finds and starts the version in $(HOME)/Apps (the
Apps subdirectory in your home directory). You should consider the path when naming and
installing applications.

If your application is intended for distribution on multiple floppy disks, you should
configure it so that a user can install it using the Installer application. Tools for doing so
are documented in /NextLibrarylDocumentation/NextDev/Concepts/Installer.rtf.

1-8 Chapter 1: Putting Together a NeXTSTEP Application

=

2 The Project Builder Application

2-5 Creating and Maintaining Projects in Project Builder
2-5 Creating a New Project
2-7 Opening an Existing Project
2-7 Opening and Converting a Pre-3.0 Project
2-8 Setting Project Attributes
2-8 Application Attributes
2-10 Bundle Attributes
2-11 Palette Attributes
2-11 Managing Project Files
2-14 Building the Project
2-15 Build Targets
2-17 The Preamble File
2-17 Setting Preferences

2-19 Running and Debugging an Application
2-19 Running
2-19 Debugging

2-22 Project Builder Command Reference
2-22 Commands in the Project Menu
2-23 Commands in the Files Menu

2·1

2 The Project Builder Application

Project Builder is the hub of application development in NeXTSTEP. It manages the
components of your application and gives you access to the other development tools you
use to create and modify these components. Project Builder is involved in all stages of the
development process, from providing you with the basic building blocks for a new
application to installing the application when it's finished.

Project Builder's unit of organization is the project. A project can be defined in two ways:
conceptually and physically. Conceptually, a project comprises a number of source
components and is intended to produce a given end product, such as an application. (Other
types of end products are possible, as described below.) Physically, a project is a directory
containing source files and Project Builder's controlling file, PB.project. This file records
the components of the project, the intended end product, and other information. For a file
to be part of a project, it must reside in the project directory and be recorded in the project's
PB.project file. You don't edit PB.project directly; your actions in the Project Builder
application-adding source files, modifying the project name or installation directory, and
so on-have the effect of updating this file.

The ProJect Builder Application 2-3

Project Builder can be used to create and maintain the following standard types of
NeXTSTEP projects:

Type of Project

application

subproject

bundle

palette

Description

A stand-alone NeXTSTEP application, such as those found in
lNextApps or /LocaIApps.

A project within a project. With larger applications, it's often
convenient to group components into subprojects, which can be
built independently from the main project. In building a project,
Project Builder builds the subprojects as needed and then uses
their end products-usually" .0" files-to build the main project.

A directory containing resources that can be used by one or more
application. These resources might include such things as images,
sounds, character strings, nib files, or executable code. For more
information, see the class specification for the NXBundle class in
NeXTSTEP General Reference. A bundle can be a stand-alone
project, or contained within another project.

A loadable palette that can be added to Interface Builder's Palettes
window. See "Adding Custom Palettes, Inspectors, and Editors"
in the next chapter for more information.

Project Builder also helps you prepare your application (or other type of project) for
various language markets, a process called "localization". It does this by helping you
group language-dependent components of your application-TIFF and nib files, for
example-in subdirectories of the project. These subdirectories are named for a language
and have a ".lproj" extension (for example, Spanish.Iproj), and so are commonly called
".lproj" directories. Through the facilities of the NXBundle class, your application can
load the appropriate, language-dependent components depending on the user's preferred
language. (See the NXBundle class specification in NeXTSTEP General Reference and
the file lNextLibraryillocumentation/NextDev/Concepts/Localization.rtfd for
more information.)

You can start Project Builder (located in IN extDeveloperl Apps) from the workspace as you
would any other application, by double-clicking its icon in the workspace. When it starts
up, only the main menu is visible. Once Project Builder is running, you can create a new
project or open an existing project as described below.

2-4 Chapter 2: The Project Builder Application

Creating and Maintaining Projects in Project Builder

This section describes how to create a new project in Project Builder and how to convert a
pre-3.0 project to the 3.0 project format. You'll also find information here about
maintaining your project.

Creating a New Project

To create a new project, choose the New command in the Project menu. A panel appears
in which you specify a pathname and name for the project. Specify a new directory on the
Name line, or choose an existing directory in the browser (and leave the name PB.project
in the Name field) if you want to use that directory as the root of the new project.

~ New Project
~
MtWfiMiftlMli!J 6{~~t!itttlmG'fp; J
I;,> Apps r-

.•...... Library r-
.··.Mal~s r-
;) PrOj~E.~_, ____ ..'::J

Creating and Maintaining Projects in Project Builder 2-5

By default, the new project is a stand-alone application. A pop-up list in the panel lets you
create a bundle or a palette instead. No matter what type of project you create, a project
window for the new project appears.

I~ My-AfIfI - -/Projects ~

Classes
Headers

~ '~';i;\' l'!Myj\pp.nib
f'

You'll use this project window to maintain, build, and debug the project, as described in the
rest of this chapter. For now, note the three modes of operation indicated by the three
buttons in the upper right portion of the panel:

Mode

Attributes
Files
Builder

Purpose

Set attributes of your project.
Add, remove, or open project files.
Build the project.

2-6 Chapter 2: The Project Builder Application

Opening an Existing Project

To open an existing project, choose the Open command in the Project menu. A standard
Open panel appears in which you specify the project to open. Select the file named
PB.project in the project directory and click Open to open the project.

When you open a project, its project window appears in Project Manager.

Opening and Converting a Pre-3.0 Project

To open an existing project that hasn't been converted to the 3.0 project format, choose the
Open command in the Project menu. A standard Open panel appears in which you specify
the project to open. Select the file named IB.proj in the project directory and click Open
to open the project.

., Converting IB.proj
~ ,

HelioWorld is an old style IB.proj~P·rojectElulider will
convert it into a PB.project In addition, it will
overwrite Makefile, HelloWorld maln.mand
HelloWorld.lconheader. You may need to modiry your
Makefile.preamble and Makefile.postamble file5~

'if~'i':C~~~~i"':~~'~J f('~'~~'~B~~k~~~'~-I' jr87~~~;FT~:tgl

A panel appears warning you that the project file is an "old style IB.proj" which needs to
be converted to a PB.project. (Note: Be sure to convert the project if you'll be continuing
to maintain it in Release 3.0.) Since the conversion process overwrite several project files,
you're asked if you want to back up those files first before converting the project. Unless
you're sure you don't need to do this, you should click Backup First (or Cancel if you
decide not to continue)-this causes a copy of the entire project directory to be made, with
the name CopyOfProjectDirectory.

Once the project is converted, its project window appears in Project Manager. When you
save the resulting project, it will be saved as a PB.project file in the same directory. This
is the file you'll open in the future when you work with the project.

Creating and Maintaining Projects in Project Builder 2·7

Setting Project Attributes

To bring up the Attributes display, click the Attributes button in the project window.

,..---------r ,.,...-.......-,-- Main File Info . .'

Generate Main File on Sa.veJEI .

App. Class:' Application

App. nib Flle:l~w:~I~~~.~"~I~"T.",_~.w",J

The contents of the Attributes display varies depending on the type of project-application,
bundle, or palette. The contents of these three types of Attributes display are shown below.

Application Attributes

If the project is an application, the Attributes display contains the following controls for
defining application attributes.

PrOjElctTYRe: I Application .~ .II
pr()j~ct NamelA'~~ii~";ti~~~T-" .. , ',,",V"_' .. II

.Language: t:I;:g'ii;t;'"'''' -,,_ _ ... '. ····It
'In ~tall rn:'$('HOME)/A~~~""=",T'_"'_"'~-'

This group of controls includes fields for specifying the project name, the primary language
(that is, the language in which the project is being developed), and the target directory.

2-8 Chapter 2: The Project Builder Application

r---~-------~-'---

=~-,-..,,-.,..... Main File Info ------,.

Generate Main File on Save'lkJ

App. class:1 Application

, App. nib File: 1~.ePI-:-ic-:-:at-:-io--::n-:-l.,---:--:-~

This group of controls includes fields for specifying the application class and the
application's main nib file, plus an option for regenerating the Main file whenever you save
the project. (Project Builder maintains this file and you aren't expected to change it;
therefore you should leave this option checked, unless there's a reason why you need to
maintain the Main file yourself)

r--'--~"- .. " .. ---~ .. -.. ~-I Application Icon.

The Application Icon well displays the application icon. The default application (shown
here) is used if you don't provide one of your own choosing. To associate a new icon with
the application, drag its TIFF file from the workspace into the well. The file is copied to
the project directory, although it doesn't appear in any of the categories shown in the
File display.

Document Icons and

The Document Icons and Extensions well is where you indicate what types of documents
your application is able to deal with. If you're creating your own document type, create a
document icon for it and drag the TIFF file containing that icon into the well. Once the icon
is in the well, change its label to match the document extension.

Creating and Maintaining Projects in Project Builder 2-9

compressed

System File Types lists NeXTSTEP file types (as identified by their standard NeXTSTEP
file extensions), any of which you may choose to have your application handle by selecting
the file type in the scrolling list. When you select a file type by clicking it, a check mark
appears next to its name, and it gets added to the Document Icons and Extensions well.
Click the file type again if you want to deselect it and remove it from the well.

Bundle Attributes

If the project is a bundle (or subproject), the Attributes display contains the following
controls for defining project attributes.

This pop-up list contains a Subproject item that lets you convert the bundle to a subproject.
Note, however, that this is possible only with a bundle that's part of another project, not
with a stand-alone bundle.

Name. :.1 Bundle 1 II
""'~ "_"",,<O",,~~" ~~=~""'''" ~ .. ""'=.-.-vw''''_''''',..-w""",,,.,,, "">«<<<'--'''''_~''''' __ ''''~'''O''~'~%'~'O _"',""'_, _O~, ''''_~'''= _o"~",,.,_ ,

This group of controls includes fields for changing the project name and the primary
language.

2-10 Chapter 2: The Project Builder Application

Palette Attributes

If the project is a palette, the Attributes, display contains the following controls for defining
project attributes.

::;:t:~~---------'--~ 1
Language:L~.-!!..glish . I'

This group of controls includes fields for changing the project name and the primary
language.

Managing Project Files

The Files display of the project window is used to manage the files in the project. You can
use this display to add or delete project files, as well as open them for viewing or editing.

To bring up the Files display, click the Files button in the project window.

='·l '~ Debug

The Files display provides a file viewer similar to the Workspace Manager's File Viewer,
with categories of project components displayed in the left-hand column and project files
for each category displayed to the right. Note that these project categories don't correspond
to project subdirectories-the categories are logical rather than physical groupings of files.

Creating and Maintaining Projects in Project Builder 2-11

The project directory provides you and Project Builder with a convenient way to organize
the files used in putting together your application. As shown here, files in the project
directory are grouped by Project Manager into a number of categories. These categories
are represented with a suitcase icon (and are frequently referred to as "suitcases"). Briefly,
these categories are:

Category

Classes

Headers

Other Sources

Interfaces

Images

Other Resources

Subprojects

Supporting Files

Libraries

2-12 Chapter 2: The Project Builder Application

Description

Files containing code for custom classes used by an
application.

Files containing declarations of methods and functions
used by an application

Files containing code (other than class code) for an
application. These may include" .m" files (containing
Objective C code), ".c" files (containing standard C code),
".psw" files (containing PostScript code), and other
sources. Project Builder automatically adds the file
ApplicationName_main.m to Other Sources.

Nib files for each application and for each new module
added to an application. The flag icon next to a file name
in the Interfaces suitcase indicates that the file is
localizable (that is, the file is in the Language.lproj
subdirectory in the project directory, rather than in the
project directory itself).

Files containing images (other than icons) used by an
application, including TIFF or EPS files.

Files (such as sound files) for other resources used by an
application.

Directories containing subprojects used by an application

Files not used directly by the application but that should
be kept with the application.

Libraries referenced by an application. NeXTSTEP
libraries (including the default entries libNeXT_s and
libMedia_s) are referenced but not copied into the project
directory. Other libraries, such as those you create, may
be added to the project directory.

You can use Project Builder's file viewer to:

• Browse the project and the files it contains.

• Add files to the project (as described below).

• Remove files from the project by selecting the file in the browser and then choosing
Remove in the Files menu.

• Open a project file by double-clicking its name or icon (or, selecting the file in the
browser and then choosing Open in Workspace in the Files menu).

There are in fact several ways to add an existing file to a project. The file can be already
located in the project directory, or it can be somewhere else. To add it, use one of the
following methods:

• Drag the file from the File Viewer into the project window. If you drag it to the suitcase
it belongs in, that suitcase will open up. If you let it go, it will be added to that suitcase.
If instead you drag it to the project suitcase, the project suitcase will open up and the file
will be added to it. The Classes suitcase takes" .m" files, the Headers takes" .h" files,
and so on. "Other Sources" refers to files that are not headers or classes, but need to be
compiled and linked into the target of the project (application, bundle or palette). "Other
Resources" refers to files that need to be copied into the target. "Supporting Files" refers
to files that are necessary to maintain the project, but don't end up in the target.

• Select a suitcase and choose the Add command in the Files menu (or simply
double-click the suitcase). A panel will appear, in which you specify a file to add to the
selected suitcase.

• Use the service that Project Builder supplies to other applications. Relevant applications
have a command named Project in their Services menu. This command brings up a
submenu containing two commands: Add To and Build. Add To can be used to add
the current file to the project (in this case, the file must already be located in the
project directory).

Also note the following shortcuts available in the File display:

• Control-dragging in a file list allows you to reorder the files. This can be especially
important in dealing with libraries, since the file order determines the link order.

• Alternate-double-clicking the icon of a selected file selects that file in the workspace File
Viewer, instead of opening it.

• Command-double-clicking a source file opens both the file and its associated header file,
if it exists.

Creating and Maintaining Projects in Project Builder 2-13

Building the Project

When you instruct Project Builder to build the project, the project is compiled by the make
program using the project's makefile. The project's source files are compiled and linked
into an executable file. The project makefile provides the information make needs to do
this job. The warnings generated by the compiler and link editor provide information to
help you locate and fix bugs detected at compile time.

To build the project, first bring up the Builder display by clicking the Builder button in the
project window.

HelioWorld.app

The Args field is for specifying build arguments to be passed to make; the Host field is for
specifying a remote host machine on which to build the project. Leave these fields blank if
you don't have anything to specify. If you want to specify make arguments or a host name,
be sure to do so first before starting to build the project.

Note: If you build the project on a remote host, be sure you know what version of
NeXTSTEP the host is running.

2-14 Chapter 2: The Project Builder Application

When you're ready to build the project, click the Build button. As the build progresses, the
two views at the bottom of the window inform you of any warnings or error messages that
occur-the upper Summary view is more selective in what it chooses to display, so you may
choose to hide the lower Detail view and only refer to its output when you need to.

'a'Hello '1!J'" :;~ :: World , :1
I Run "Debug

~
.. -- '.~.'"

'fI:t-~·,:" , =-=;;.,
a

Attributes Files Builder

"-I He, lIoWorld.app - BU,ild fanedZ~1
.J I Args:/ __________ J Hostt ___ J ~.

I.. WorldView.h ;,
Illegal declaration: missing ';' after 'drawHello' I;

.. World!&,.J!'.:Lll.- .;
_J!!~g~lJ>gt,~~~t.'!)l~~J.!}9,:;:en.~!:.1:... ___ . __ ••. ______________ j~

. illeqal keyword selector: mlssinq 'identifier' after':' "
t- ~ .. ,,;'

!] WorldView.h:52: illegal declaration, missing ';' after'drawHello'
'" .. WorldView.m:69: illegal statement, missing ';' after ']'
"i' WorldView.m:74: illegal keyword selector, missing 'identifier' after ':'

1~1:'t:~Xit 1

If an error is encountered during the build process, a message appears in both the Summary
view and the Detail view, as shown here. Click a line in the Summary view to open the
specified file; if you click a line containing an error message (shown in red on color displays
and bold on monochrome displays), the file opens in Edit and scrolls to display the line that
contains the error.

Build Targets

app.make (the shared makefile used to generate the executable file for all applications
created with Project Builder) defines a number of alternate targets to perform specific tasks
at various phases of the application development process. To run make using the alternate
targets, enter the corresponding argument in the Args text field of the Builder display.

Creating and Maintaining Projects in Project Builder 2-15

The following table lists various targets and the tasks they perform.

Target

none

debug

clean

install

installsrc

depend

profile

help

Task

If no target is specified, compiles and links a debuggable, optimized
version of the executable file. This is the default target used when you
give the Build command without an argument.

Compiles (with all warnings and -DDEBUG on) and links a
debuggable, unoptimized version of the executable file with the
extension ".debug".

Removes all derived files, such as object and executable files, from the
project directory, returning the project to its precompiled state.

Builds (if needed) and copies the application into the installation
directory specified in Project Builder, setting permissions and owners
as appropriate. The default is $(HOME)/Apps, the Apps directory in
the user's home directory.

Installs the source files for the project into the directory specified in the
SRCROOT variable in a command-line argument (you must specify
the target directory on the command line). If the directory exists it
(and its contents) will be deleted, and then be recreated before the
source files are moved there. This option is useful for archiving
completed projects.

Generates an optional Makefile.dependencies file, containing a
complete dependency graph for the project, including headers. Once
this file exists in the project directory, it's conditionally included by
your project makefile.

Generates (with all warnings and -DPROFILE on) the file
ApplicationName.profile, an executable containing code to generate a
gprof report. This option is useful when you are performance tuning
an application. See the UNIX manual page gprof for details on
profiling.

Lists these targets with their parameters.

2-16 Chapter 2: The Project Builder Application

The Preamble File

Sometimes it's necessary to alter the standard build process as defined by the project
makefile. You do this by adding to the project a Makefile.preamble file that overrides the
macros defined in the project makefile. To override a macro definition in the project
makefile, include a definition for the same macro in Makefile.preamble. For example, the
following definition for the macro INSTALLDIR always appears in the project makefile:

INSTALLDIR = $(HOME)/Apps

This macro causes the make install target to place the executable in the Apps subdirectory
of your home directory. To have install place the executable in another directory, define the
following macro in Makefile.preamble:

INSTALLDIR = /LocalApps

To use one of the macros listed above in app.make, you first define it in
Makefile.preamble. You can, for example, define link editor flags to add segments to your
executable file. For example, an application might defines the following macro in its
Makefile.preamble:

LDFLAGS = -segcreate EXTRA document extra. rtf

U sing this macro definition, the link editor will create a segment named "EXTRA" in the
executable file; that segment will have a section named "document" containing the
document file extra.rtf.

See the makefiles in /NextDeveloper/Makefiles for more information.

Setting Preferences

You can specify preferences for a variety of options using the Preferences panel. To bring
up the panel, choose the Preferences command in the Info menu.

Enter values or click buttons to specify new preferences, as described below. Then click
Set to set the new preferences (or click Revert to restore the previous settings). Note that
the settings on the Preferences panel are global-they apply to all projects, not just the
current project.

Creating and Maintaining Projects in Project Builder 2-17

Defaults =~~=~~3

The controls in the Build Defaults group let you specify build arguments to be passed to
make, a remote host on which to build the project, and an alternative to /bin/make, the
standard make program.

The controls in the Build Service group let you specify what (if anything) you want to have
happen after building your project (specifically, after building your project by choosing
Project Builder's Build command on the Services menu)-Build only, Build and Run, or
Build and Debug.

,.,..--,-.---,...; Save Options ~ ,

Auto -saverD

Backup·Filerg

The controls in the Save Options group let you specify whether projects should be
auto-saved, and whether the most recent backup file is automatically deleted or retained.

2-18 Chapter 2: The Project Builder Application

Running and Debugging an Application

In addition to maintaining and building a project, you can use Project Builder to run or
debug the resulting application, as described in this section ..

Running

~1
~
To run the project application, click the Run button in the project window. If the project
hasn't been built yet, it's built and then the application is run. The Run button's icon is the
same as the application icon-the icon shown here is the default application icon that's used
if no other icon is specified in the Attributes display.

lip: Alternate-clicking the Run button runs the application without building it first.

Debugging

To debug the project application, click the Debug button in the project window. If the
project hasn't been built yet, it's built first and then the application is run in debug mode.

lip: Alternate-clicking the Debug button runs the application under the debugger without
building it first.

Running and Debugging an Application 2-19

When you indicate that you want to debug an application in Project Builder, the following
steps occur:

• The project is built (unless it's already up to date).

• Terminal creates a new window to run the GDB process in.

• As GDB starts, it's instructed to read the PB.gdbinit file in the project directory.

• The view command in the PB.gdbinit file is executed and causes a command named
Gdb to appear in Edit's main menu.

Choose the Gdb command from Edit's main menu to display the GDB control panel.
This panel has the application name as its title, and contains four groups of controls for
interacting with GDB as you debug the application. (GDB commands that aren't
accessible through the panel can still be executed manually in the shell window in which
GDB is running.)

The first group (labeled either Running or Stopped) contains the following buttons for
controlling the execution of the application.

Button

Run

Continue

Finish

Quit

Step

Next

Description

Starts the application being debugged.

Continues the application being debugged, after a signal or
breakpoint.

Executes until the selected stack frame returns. (Upon return, the
returned value is printed and put in the value history.)

Exits GDB.

Steps the application until it reaches a different source line.

Steps the application, proceeding through subroutine calls. The Next
command is like the Step command as long as there are no subroutine
calls; if there are, the call is treated as one instruction.

2-20 Chapter 2: The Project Builder Application

The Line group contains controls for setting breakpoints in source files and running until a
breakpoint is reached. These controls use Edit's current file and line as their argument.
Click the Break At button to set a breakpoint at the line containing the insertion point in the
main Edit window. Click the Run Until button to run the application until it reaches the
next breakpoint.

r-·~ri~71ICtl~;Hf
~

The Selection group contains controls for evaluating and printing the value of a C or
Objective C expression. These controls use Edit's current selection as their argument.
Click the Print button to display the value of the selected expression. Click the Print*
button to display the value that the expression points to.

The Stack group contains controls for browsing the data in the program being debugged.
Clicking the Browse button causes the following browser panel to appear:

Variable: argc

You can use this browser to select and inspect particular stack frames and their variables.

Running and Debugging an Application 2-21

Project Builder Command Reference

Project Builder's main menu contains the standard Info, Edit, Windows, Services, Hide,
and Quit commands. All commands unique to Project Builder are located in the Project
and Files submenus-these menus and the commands they contain are described below.

Commands in the Project Menu

The Project menu contains commands for creating and maintaining your projects.

Command

New

Open

Open Makefile

Save

New Subproject

Add Help Directory

2-22 Chapter 2: The Project Builder Application

Description

Creates a new project.

Opens an existing project.

Opens a window for just the Makefile of a project and
displays the Builder view in the window. To build the
project, click Build.

Saves the current project.

Creates a new subproject. A panel appears in which you
specify the name and type of subproject. The type can be
either Subproject or Bundle.

M'New Subproject I Bundle

11

Type: Subproject "'1
iSundie" " ;1 ,,,,,,'

;1 Cancel I :1'o:K:<:f1

Specify a name and type, and then click OK to add the
subproject or bundle to the current project.

Adds a Help directory to the current project. A template
Table of Contents file and Index file are placed in the Help
directory. For more information on adding help to an
application, see Chapter 3.

Run Application

Debug Application

Build Application

Runs the application associated with the project, just as if
you had clicked the Run button in the project window.

Debugs the application associated with the project, just as
if you had clicked the Debug button in the project window.

Builds the application associated with the project, just as
if you had clicked the Build button in the project window.

Commands in the Files Menu

The Files menu contains commands that affect the files that make up a particular project.
Commands in this menu are enabled only when the Files view for the project is selected.

Command

Add

Open in Workspace

Select in Workspace

Remove

Sort

Make Global

Make Localizable

Description

Adds a file to the selected suitcase in the current project.
Be sure to select the appropriate suitcase in the File view
before choosing the command.

Opens the selected file in the application that's registered
with the Workspace Manager as the default application for
files of that type.

Displays and highlights the selected file in the Workspace
Manager's File Viewer window.

Removes the selected file from the current project
(without deleting it from the project directory).

Alphabetically sorts the files in the current suitcase.

Makes the selected file global (that is, moves it from the
Language.lproj directory into the project directory).

Makes the selected file localizable (that is, moves it from
the project directory into the Language.lproj directory).

Project Builder Command Reference 2-23

The Interface Builder
Application

3-5 The Basics
3-5 An Orientation
3-6 Building an Application with Interface Builder
3-7 The Nib File
3-8 The Nib File's Owner
3-9 The First Responder Object
3-9 The Nib File at Run Time
3-10 Step 1: Unarchiving Objects
3-10 Step 2: Instantiating Custom Objects
3-11 Step 3: Establishing Connections
3-12 Step 4: Sending awakeFromNib Messages

3-12 Using Interface Builder
3-12 Manipulating View Objects
3-13 Using the Layout Commands
3-13 U sing the Alignment Panel
3-14 Inspecting Objects
3-14 Setting Attributes
3-16 Setting Connections
3-18 Setting Size Characteristics
3-19 Reviewing Help Attachments
3-20 Defining New Classes
3-22 Attaching Help to Objects
3-24 Running Your Application in Test Mode
3-25 Setting Preferences
3-25 General Preferences
3-26 Palettes Preferences
3-26 Adding Custom Palettes, Inspectors, and Editors

3-1

3-28 Interface Builder Command Reference
3-28 Commands in the Documents Menu
3-29 Commands in the New Module Menu
3-30 Commands in the Edit Menu
3-30 Commands in the Format Menu
3-31 Commands in the Layout Menu
3-33 Commands in the Tools Menu

3-2

The Interface Builder
Application

.-==

Interface Builder is a tool that helps you design and build applications. It speeds the
creation of applications by letting you define an interface (and in some cases, an entire
application) graphically rather than by writing C and Objective C code. With Interface
Builder, you drag objects from palettes of NeXTSTEP objects directly into the application
you're building. Once there, an object can be modified in ways that are specific to its class:
You can set a Button object's title or set the minimum and maximum values of a Slider
object, for example. After you've gathered and edited the objects that will make up your
application, Interface Builder lets you define the interactions among them and associate
help messages with each of them. Even before you write a line of code, you can run your
application within Interface Builder to check the operation of its interface.

Interface Builder's technique of direct manipulation of programming objects isn't limited
to objects defined in NeXTSTEP. Interface Builder's palettes are extensible, letting you
load palettes containing objects that you or other developers have created.

In many ways, using Interface Builder to create an application is much like using a graphics
editor to create a drawing. However, Interface Builder is not a simple "screen painter" or
form-generation tool. When you build an application with Interface Builder, you are
interacting with the actual programming code that will be executed when your application
runs on its own. The objects you manipulate in Interface Builder are the objects that will
appear in the working version of your application. If your application runs correctly in
Interface Builder, it will run correctly on its own.

The Interface Builder Application 3-3

The work you do in Interface Builder is saved in a nib file (a file package having aname
ending in ".nib", which stands for "NeXTSTEP Interface Builder"). This file contains
archived versions of the objects you assembled for your application, information about
connections between these objects, and other information. When an application begins
running, it unarchives these objects and associated information from one or more nib files.
Nib files are discussed in more detail late in this chapter, but for now it's important to note
that projects in NeXTSTEP contain at least one nib file and that Interface Builder lets you
create and modify these nib files.

As pointed out in the previous two chapters, the central tool for developing applications in
NeXTSTEP is Project Builder. When you start a new project in Project Builder, you're
provided with several standard components, one being a nib file. When you want to modify
this standard nib file, Project Builder invokes Interface Builder as the nib file's editor.
Interface Builder and Project Builder are interlinked in other ways as well. As you define
new classes, import images or sounds, or create new nib files, Interface Builder and Project
Builder work together to keep each other aware of the state of the project.

Even if you're new to this computing environment, you'll find that with Project Builder and
Interface Builder, you'll be able to create applications with a minimum of time and effort.
This efficiency results from working directly with the application's objects, rather than with
files of programming code. However, the more you know about the Application Kit and the
more comfortable you are with programming in the Objective C language, the easier
application development will be for you. Thus, we recommend that you familiarize
yourself with the material in NeXTSTEP Object-Oriented Programming and the Objective
C Language and at least scan the class specifications (located in Chapter 2 of the
NeXTSTEP General Reference manual) for the major Application Kit classes before
attempting to take your work with these tools beyond the experimental stage.

This chapter provides general reference information on Interface Builder. It first introduces
Interface Builder's major components and then discusses some of the common tasks that
you use Interface Builder to accomplish. A final section provides a quick reference for each
of Interface Builder's commands.

For a tutorial-based introduction to this tool-and to programming in NeXTSTEP in
general-see Chapters 15 through 18 of this manual. Interface Builder's application
programming interface (API), which allows you to create custom palettes, is described in
detail in Chapter 8 of the NeXTSTEP General Reference manual.

3-4 Chapter 3: The Interface Builder Application

The Basics

Your application

An Orientation

When you use Interface Builder, its windows-and the windows of the application under
construction-share the screen. The illustration gives you an idea how this looks.

Main menu

F!r~t R€:spon,:i2r MalnMenu

File window

Palettes window

~ Title .:.:.;lte;.;;.:.Mo:-.'_..;.J

~ [BOXl ~l Fleldl:r-:-,

~ FleldZ:r

SWltch.Jr-1 1_
~ ~:::~ r.:m:::::=J I· " ..

1
- Bac~lng .-~ C Controls -:-­

r Nonretained j Miniaturize.ld J
r Retained Close.ld
(" Buffered Resize bar.id

- .. -~.--------- --------.---
r------ Options ------;

Free when closed.J
Hide on deactlvate.J

Visible at launch time.ld
Deferred.,d
One ~hot.J

D~mamic depth Iimil.J
Wants 10 be cOlor.J

Inspector window

Interface Builder's windows frame an area of the workspace where you build your
application. At the upper left is the main menu, which gives you access to Interface
Builder's tools and commands, and at the upper right is the Palettes window. The Palettes
window is the source of objects (Buttons, Sliders, Windows, and so on) that you can drag
into your application. Below the Palettes window is the Inspector window. You use this
window to set the attributes of an object, to connect it to other objects, and to review the
attachments between objects and help messages. At the bottom left is the File window.

The Basics 3-5

The File window displays your application's top-level objects (its windows, main menu,
and so on) and gives you access to the image, sound, and class resources that are available
to your application.

Building an Application with Interface Builder

The Application Kit defines a library of user-interface objects that you can select from
for your application. Interface Builder makes the selection process a graphical one:
You simply drag the object you need from the Palettes window into the application
you're building. By building an application in this way, you can be sure that its interface
will work properly and will, in a broad sense, conform to the interface standards for
NeXTSTEP applications.

(Other NeXTSTEP software kits, such as the Database Kif\ can supply user interface
objects in the form of Interface Builder palette objects. This discussion applies to those as
well, but for simplicity this discussion focuses on the Application Kit since it provides the
preponderance of user-interface objects.)

Once an object is added to your application, you can adjust the values of many of its
instance variables directly. For example, to change the size of a button, you drag one or
more of its sides to a new position. Changing the image on the screen changes the value of
the Button object's frame instance variable. For attributes that aren't easily represented
graphically, Interface Builder provides the Inspector window that lets you set the values for
particular instance variables. You set the maximum and minimum values of a slider with
the Slider Inspector, for example.

Interface Builder also lets you interconnect objects so that they can communicate with one
another. For example, a button can be connected to the window it appears in so that when
the button is clicked, the window closes. Such connections are made through an object's
outlets. An outlet is an instance variable that identifies another object in the application.
Common examples of outlets include a Control's target or an Application or Window
object's delegate.

The objects in the Application Kit are general-purpose and fill the needs of a wide
cross-section of applications. What makes your application unique is the code you write.
For example, the Application Kit provides the Buttons and other Views you need to
implement an interface for a calculator, but you have to create the computational engine.
Interface Builder helps you declare classes that encapsulate the code that's unique to
your application.

3-6 Chapter 3: The Interface Builder Application

Interface Builder and the Objective C language encourage a style of programming that puts
your application's unique code in one or more objects of your own design. The
application's user-interface objects handle routine business, such as displaying the main
menu or hiding the application, and also serve to interpret the user's actions for the objects
you design. If the user clicks the calculator's Add button, the Application Kit highlights
the button and then sends a message to your calculator object to perform the addition.

Using this style of programming, your application will generally contain a number of
standard Application Kit objects and one or more subclasses of Object and View. Most
often, the subclasses of Object embody the logic that's unique to your application, and the
View subclasses contain the drawing code that's unique to your application. You'll rarely
need to create subclasses of other Application Kit classes.

The Nib File

The work you do in Interface Builder is saved in a nib file-actually, a file package whose
name ends in ".nib". This file contains:

• Archived objects. The Buttons, NXBrowsers, TextFields, and other objects that you
dragged into your application's windows while designing your application's
user-interface are archived in the nib file. The archived information includes the object's
class and other attributes, such as its size, location, and position in the view hierarchy
(for View objects).

• Class interface information for any subclasses that you define. At run time, the
Application Kit sends messages to create objects of these classes.

• Information about how outlets should be initialized at run time.

• Information about action messages and their targets.

• Sound and icon data.

• A reference to an owner object. (The nib file's owner is.described in the next section.)

NeXTSTEP applications have at least one nib file, the main nib file. This file contains the
specifications for the application's main menu and perhaps other objects. An application
can have only one main nib file.

More complex applications may have other nib files in addition to the main nib file. For
example, an application might have two nib files, one containing the archive for the main
menu and other primary interface objects and the other containing an archive for a Find

The Basics 3-7

panel. If a user issues a search command, the Find panel is created by loading the objects
from the secondary nib file. Since the Find panel isn't created unless it's needed, the Find
panel's objects don't consume system memory or add to the application's start-up time.

Interface Builder's File window gives you a summary view of the contents of a nib file.
Each window in the nib file is represented by a window icon in the File window. By
double-clicking a window icon, you can bring the window it represents to the front so
that the objects it contains are visible. The File window also contains icons that represent
the file's owner object and a "First Responder" object, objects that are discussed in the
next sections.

The Nib File's Owner

The nib file's owner is an object that's external to the nib file and that is the conduit for
messages between the objects that will be unarchived from the nib file at run time and the
other objects in your application. In general, the core objects in your application access the
objects unarchived from the nib file indirectly through owner object. In tum, the
un archived objects communicate with the other objects in your application by sending
messages to the owner object.

Each nib file has one-and only one-owner. For small applications, the owner is
generally NXApp, the Application object itself, although it can be an object of any class.
The owner is the only external object that may be the explicit target of action messages from
Controls within the nib file. The owner may also have outlets that will be initialized at run
time to point to the objects within the nib file.

The owner must exist before the interface objects are loaded. For example, Project Builder
generates a main file that follows this sequence of messaging to create the owner, load the
interface information, and then run:

[Application new] ;

if ([NXApp loadNibSection: "HelloWorld.nib" owner:NXApp withNames:NO])

[NXApp run];

Note: NXApp is a global variable that identifies the Application object, the object that's
created by the message in the first line of the example above. (For more information on the
loadNibSection:owner:withNames: method-and especially on the search path it uses
for locating the appropriate nib file to load-see the specification for the Application class.)

What happens when the nib file is loaded at run time is described in "The Nib File at Run
Time," later in this chapter.

3-8 Chapter 3: The Interface Builder Application

The First Responder Object

The First Responder icon in the File window represents the object within a window that will
be the first to receive keyboard events, mouse-moved events, and action messages from
Controls that don't have an explicit target.

In most cases, a window's first responder will be chosen from the window's Text objects
(or objects that use Text objects such as Form, TextField, and ScrollView objects). Clicking
one of these objects generally makes it that window's first responder. Over time, many
different objects can become the first responder, but at anyone time, only one object has
this status. The First Responder icon stands for the object that has this status, no matter
which actual object it is within your application. In this respect, the First Responder icon
is really a fiction since it identifies no one particular object, but rather any object having a
particular status. This fiction, however, is very useful.

Having First Responder in the File window lets you connect an object, such as the
MenuCell that sends the copy: message, so that it sends its action message to a target whose
identity changes over time. Thus, for example, the Copy command can be set up to work
with any TextField in a window, as long as the TextField is the first responder. If you create
a new application in Project Builder, open its nib file, and check the connections in the
application's Edit menu, you'll discover that all Edit commands are connected to the
First Responder.

(Incidentally, the ability to let the target of a message be defined at run time rather than
at compile time is an example of dynamic binding in Objective C. For more information
on Objective C, see NeXTSTEP Object-Oriented Programming and the Objective C
Language.)

The Nib File at Run lime

As pointed out previously, the standard main file generated by Project Builder includes
these messages:

[Application new] i

if ([NXApp loadNibSection: "HelloWorld.nib" owner:NXApp withNames :NO])

[NXApp run] i

The loadNibSection:owner:withNames: messages invokes code within the Application
Kit that unarchives the nib file's objects, instantiates custom objects, establishes
connections between objects, and finally informs these new objects that they have been
loaded. The following sections describe these steps in more detail.

The Basics 3-9

Step 1: Unarchiving Objects

The first step the system takes in loading a nib file is to unarchive the objects it contains.
An object archive records the class and salient data structure of a particular object. To
unarchive an object, the system allocates memory for the object (by sending the class object
an alloe message) and then sends the newly allocated object a read: message to read in the
applicable data that was preserved in the nib file. For example, to un archive a Button
object, a new Button object is allocated and then sent a read: message to read information
such as its title, size, identity of its superview, and so on from the nib file. As part of the
unarchiving system, all objects receive an awake message after they have been unarchived.
(See the Object class specification in the NeXTSTEP General Reference manual for more
information on archiving.)

Step 2: Instantiating Custom Objects

A nib file can also contain references to objects that you have defined. (See "Defining New
Classes" later in this chapter for more information.) For example, you could use the Classes
display of the File window to define a sU~class of Button called RepeatButton.
(Presumably, when pressed, a RepeatButton sends its action message repeatedly at a given
interval.) To add a RepeatButton to your application, you drag a CustomView object into
your application's window, set its size and location, and reassign its class to be
RepeatButton. When you save the nib file, Interface Builder records that an object of the
RepeatButton class is of a certain size and location within your application's window. The
object itself isn't archived since the code for the class isn't accessible to Interface Builder;
in fact it may not yet exist!

As the nib fil~ is loaded at run time, the system will attempt to instantiate this RepeatButton
object. Assuming you have linked the code for the RepeatButton class into your
application, the RepeatButton class object will receive an alloe message and then an
initFrame: message, and the object will be instantiated.

The initFrame: message is used only for custom objects that inherit from View. For
non-View objects, an init message is sent instead. (Custom objects that don't inherit from
View are represented by a sphere icon in the File window.)

Note the distinction between the messages a custom object receives and the messages an
archived object receives. When a nib file is loaded, a custom object receives an init ...
message but not a read: or awake message. Conversely, an unarchived object receives
read: and awake messages but not an init ... message. (However, objects of both types can
receive awakeFromNib messages, as described later in this chapter.)

3-10 Chapter 3: The Interface Builder Application

This distinction becomes important when you create custom palettes for objects that you
have defined. (The section "Setting Preferences" discusses custom palettes.) For example,
using a CustomView, you might add a RepeatButton to an application and find that the
application operates properly when executed. Then, you might create a custom palette
containing a RepeatButton object. An application built using a RepeatButton from this
custom palette may not operate properly unless a RepeatButton's unarchiving methods can
establish its state as completely as its init .•. method does.

Step 3: Establishing Connections

As the next step in loading the nib file, code in the Application Kit establishes connections
between the objects that were created in the previous steps.

You make connections between objects in Interface Builder using the Connections
inspector. (Connections are described in more detail in "Setting Connections" later in this
chapter.) When you establish a connection, you identify a source object, an outlet of that
object, and a destination object. For example, the source could be a Window object, the
outlet could be the Window's delegate instance variable, and the destination object could
be a custom object. By establishing this connection, you are specifying that, at run time,
the custom object will be the Window's delegate, and thus capable of receiving any of the
messages that a Window sends to its delegate. (As described later, some connections are
more constrained in that they specify not only an outlet and a destination object, but a
specific message to be sent to that object.)

After the nib file's archived objects are unarchived and its custom objects instantiated, the
connections that were established in Interface Builder are reestablished with these run-time
objects. Using the example above, the Window is unarchived, the custom object
instantiated, and then the Window's delegate outlet is set to the id of the custom object.

Connections to and from the file's owner object are also established at this time. This is
possible since the method that loads the nib file takes as one of its arguments the id of the
file's owner:

[NXApp loadNibSection:"HelloWorld.nib" owner:NXApp withNames:NO]

Connections· between objects are established in one of two ways. If the source object
responds to a setMyOutlet: message, it will be sent that message. So, using the example
above, the Window object would receive a setDelegate: message. (Note that the system
determines the message to send by capitalizing the first letter of the outlet's name and
prepending "set".) If the object doesn't respond to such a message, the value of its outlet
instance variable is set directly, without a message being sent. Thus, you don't have to
implement a setMyOutlet: method for each outlet you declare for a custom object.

The Basics 3-11

Step 4: Sending awakeFromNib Messages

As the last step in loading the nib file, the system sends awakeFromNib messages to the
objects that were derived from the information in nib file. Any object that was created from
the nib file can receive this message if it implements the corresponding method.

The awakeFromNib message signals that the loading process is complete. It's guaranteed
that when an object receives an awakeFromNib message, all of the nib file's archived
objects have been unarchived, all of its custom objects instantiated, and all connections
recorded in the nib file established.

Using Interface Builder

Manipulating View Objects

In general, in Interface Builder you interact with View objects through direct mouse
manipulation. To select an object in your application's window, click it. An object
indicates that it's selected by displaying eight small squares-or control points-around its
perimeter. You can select multiple objects by holding down the Shift key while clicking
each one in tum. You can also select multiple objects in a window by "rubberbanding"
them. That is, you position the cursor to one side of the objects, press the mouse .button,
and drag diagonally across the objects. Your motion with the mouse describes a rectangular
area marked with a fine, dotted outline. When you release the mouse, any object contained
in the area, or intersected by the outline, becomes selected.

Once an object is selected, you can resize it by dragging one of its control points. To
reposition the object, drag anywhere within the object, but not on one of the control points.

Double-clicking an object selects some feature within it. For example, single-clicking
a button selects it, but double-clicking the button moves the focus of selection to the
button's title.

For more complex Views, double-clicking lets you move the focus of selection down the
view hierarchy. For example, if you double-click a Box object that contains Button
subviews, the focus of selection moves to the Button objects. Now that the focus in within
the Box, double-clicking one of the Buttons selects the text within it.

3-12 Chapter 3: The Interface Builder Application

The mouse can also be used to resize the document view of a ScrollView. Imagine that you
have selected one or more objects in a window and then issued the Group in ScrollView
command. To manipulate these newly grouped objects, you double-click within the area of
the ScrollView. Now, if you move the cursor to the top or right edge of the ScrollView, the
cursor changes to a double headed arrow indicating that you can resize the ScrollView's
document view. By pressing the mouse button and dragging away from the center of the
ScrollView, you simultaneously increase the size of the document view and scroll the
ScrollView to make the new portion of the document view visible. Scroll buttons and a
scroll knob appear to indicate that the document view exceeds the dimensions of the
ScrollView. Using this technique, you can specify which portion of the ScrollView will be
visible at run time.

Using the Layout Commands

The commands in the Layout menu help you arrange objects in a window. You'll find it
easiest to learn their operation through experimentation. For example, add two buttons to
an application window, select both, and then experiment with the Layout commands. See
the command descriptions at the end of this chapter for more information.

Using the Alignment Panel

This panel lets you set the spacing of the alignment grid, the grid that help you position
objects accurately within a window. It also lets you set the reference point by which objects
are aligned to the grid.

r:------.,..- AUg n-.,.-.,..-.,..-;-::::--;'
Cl Left edges I Bottom edges

r Centers

r: Right edges ITop edges

Using Interface Builder 3-13

The three radio buttons let you set whether an object's lower left comer, center, or upper
right comer are constrained to an intersection of the grid. The grid size field displays the
value used for the vertical and horizontal spacing of the grid. You can adjust this value
either by the slider or by entering a value in the grid size field. The value must be an integer
in the range from 4 to 32. The area above the slider displays the current setting of the
grid spacing.

lip: Although in general it's best to leave the grid on and align your interface objects to it,
at times, you may want to position an object off the grid for aesthetic reasons. To do this,
tum the grid off, position the object, and then tum the grid back on. Interface Builder will
leave the object where you put it despite the grid setting, as long as you don't try to move
the object when the grid is on.

Inspecting Objects

You use the Inspector panel to edit the properties of both View and non-View objects in
your application. The Inspector panel appears when you click the Inspector command in
Interface Builder's Tools menu.

The panel has many personalities. Its contents are determined by Interface Builder's
selection: If a Button object is selected, the Inspector panel displays the Button Inspector;
if a Window is selected, the panel displays the Window inspector. (The Inspector
panel's title announces the class of the selected object.) In addition, the panel itself has
four displays-Attributes, Connections, Size, and Help-which are accessible through
the pop-up list at the top of the panel. These four displays are discussed in the following
sections.

Setting Attributes

The Attributes display of the Inspector panel lets you set the selected object's basic
characteristics. For example, the illustration shows the Attributes display of the
Button Inspector.

3-14 Chapter 3: The Intet/ace Builder Application

I Button Inspector ~

Title: I Button
An. Title: I r

Icon:1 I'
AIt.lcon:1 I;

Sound:1 I:
Tag:lo . J Key:(.I:

r==Type 1~·~Ii~~·n~··~1
I~;Y Push-"'Lf'IHn~l,

~ Options ' .• -.,.--•• [.' "'~'C~l.p..or"'O~ll • Bordered!i1 •. i: °lof [] I .
Transparent.:.J . ;,
Continuous:.J ,'.10 -:-0 - •

, DisabledU :[fi Pixels "Inset:.
: . Selected:.J qillTZ~6:~;~'~~~-"~IJ

Conceptually, each of the characteristics in the Attributes display corresponds to an
Objective C message that the selected object responds to. For example, this table shows the
correspondence between some of the attributes displayed in the illustration above and
messages that a Button object understands:

Attribute

Title
Alt. Title
Icon
Sound
Icon Position

Message

setTitle:
setAltTitle:
setImage:
setSound:
setIconPosition:

If you have questions about any of the attributes displayed for a selected object, you should
consult the class specification (in NeXTSTEP General Reference) for that object.

The Attributes display for the File's Owner, for Custom Views, and for custom objects that
you instantiate in the File window lets you set the class of these objects.

Using Interface Builder 3-15

The Attributes display for images in the File window's Images suitcase shows the image
and its dimensions. This display doesn't allow you to edit the image or the dimensions. It's
primarily used to examine bitmaps that are too large to be displayed in the Images display
of the File window.

If you select a sound icon in the Sounds display of the File window, the Inspector panel
displays the Sound inspector. This inspector lets you display, record, play, and make
limited modifications to sounds. The inspector is divided into three areas. The top portion
shows a graphical representation of the sound's waveform. The middle portion displays a
horizontal sound meter much like one found on a stereo amplifier. The bottom contains a
series of buttons that control the recording and playback of sounds. To play the entire sound
depicted by the waveform, click Play. To playa portion of the sound, select some portion
of the sound's waveform and click Play. The standard editing commands, Cut, Copy, and
Paste, operate on the selected portion of the waveform-for editable sounds. The Record
button starts recording through the microphone. If a segment of the waveform is selected
when you click Record, the new recording replaces the part of the current recording
represented by the selected segment. If a point on the waveform is selected when you click
Record, the new recording is inserted at that location in the current recording. The Pause
button halts the recording you're currently creating or playing back. (The bars on the button
are highlighted during a pause.) Press Pause again to restart at the point where you paused.
The Stop button stops the recording you're currently creating or playing back.

Setting Connections

The Connections display of the Inspector panel lets you establish and review
connections between objects. You create a connection by Control-dragging a line
from the source object to the destination object. When the destination has been
unambiguously identified, Interface Builder draws a rectangle around it. Releasing
the mouse button completes the operation. If the Inspector panel isn't already open,
it opens and shows the Connections display.

3-16 Chapter 3: The Interface Builder Application

1

----- ------- ------------------

Blltton Inspector _ ~

1 :~;, l~'r:,:"': \i@tifii.i!~"'~~:i'
I ~..,.------: deminiaturize:

faxPSCode:
makeKeyAndOrc
miniaturize:
orderBack:
orderFront:
orderOut:
performClose:
performMiniaturii
printPSCode:
smartFaxPSCodE
smartPrintPSCod

Note: The rectangle that appears around the destination object is black if the destination
object is discrete (such as a single slider or button) and gray if it's a matrix of objects. For
example, if you Control-drag a connection toward a Matrix of ButtonCells, a gray rectangle
appears around the group of objects when the cursor first intersects the perimeter of the
Matrix. As you continue dragging into the Matrix the gray rectangle disappears to be
replaced by a black rectangle around the ButtonCell that the cursor is within. Thus,
Interface Builder lets you connect to the member or the group. Remember that a Form
(being a subclass of Matrix) is a matrix even if it has only one FormCell.

The left column of the display lists the outlets of the source. If the outlet is named "target"
(in other words, the source object is a Control) the right column lists the action messages
that the destination object can respond to. By selecting an outlet in the left column and, for
sources that are Controls, selecting an action message in the right column and clicking the
Connect button, you establish a connection between the source and destination objects.
That connection is listed in the lower portion of the panel.

Tip: By clicking the entry in the Connections list, you can have Interface Builder display
the connection line between the source and destination objects.

After you click the Connect button, the button's title changes to Disconnect, allowing you
to remove the connection. If you cut or copy a connected object and then paste it, its
connections are severed.

Using Interface Builder 3-17

Setting Size Characteristics

The Size display lets you set the precise dimensions and location of the selected object and
specify how the object will respond to resizing.

r

- ----- ----- - - - - -- -- ----- --- -- ---
Button Inspector ~

The Frame fields let you set the object's location, width, and height. Normally, you set
these attributes through direct mouse manipulation of the object. These fields are provided
for those situations in which more precision is required.

The Autosizing portion of the display presents a schematic of the selected object and its
surroundings. The small square represents the selected object and the area around it
represents its superview or other surroundings. (If the selected object is a window, the
small square is replaced with a window image.) The horizontal and vertical lines that bisect
the squares are the controls that let you set resizing behavior.

Clicking the horizontal line inside the small square changes the line to a spring shape,
indicating that when the superview or window is resized horizontally, the object will also
resize to maintain its distance from the left and right margins. In the same way, clicking
the vertical line within the object causes the object to become vertically resizable.

The lines outside the object represent the constraints on the object's distance from the top,
bottom, left, and right edges of its superview. A straight line indicates that this dimension

3-18 Chapter 3: The Interface Builder Application

will remain fixed, if at all possible. A spring shape means that this dimension is resizable.
Clicking toggles the image from line to spring shape.

You can create an impossible resizing relationship, such as specifying as fixed the object's
dimensions and its distance from the window's edges. In cases of conflict, an object's fixed
dimension is given precedence over its fixed distance from a border. If all dimensions are
made resizable, changes to the window or superview's dimensions are shared by the object
and its distance from a border.

Reviewing Help Attachments

The Help display lets you review attachments between objects in your application and help
text. It also gives you access to Interface Builder's Help Builder panel.

r-------------
I. .. . _ Menu.CeIl Inspector ~

MainMenu ChooseCommat
~~--------------------~! Edit(Menu Item) DetachSubmen.

Marker:

File: Tasks/GettingStarted/ChooseCominan

It~:H~~~B~i'd:~~:·:"~~1 .If'~~'''~ta~h~~~~~1

The Help display is used in conjunction with the Help Builder panel. See "Attaching
Help to Objects" later in this chapter for information on associating help text with objects
in your application.

Assuming you have attached help to objects in your application, the Help display of the
Inspector panel will list those attachments. Each entry in the list has two parts. The left
half of the entry identifies the object, and the right half displays the file name for the

Using Interface Builder 3-19

attached help. Below the Help Attachments list are two text fields. The Marker field names
the marker that the object is attached to within the help file. If the object isn't attached to
any marker in the file, the Marker field is blank. The File field displays the path of the help
file relative to the application's Help directory. If the entire path isn't visible, scroll the text
field horizontally to reveal the hidden portion.

You can remove an attachment by selecting it in the list and clicking the Detach button.

Defining New Classes

The Classes display of the File window shows the classes that are available to your
application. It also lets you define new classes. You open this display by clicking the
Classes suitcase in the File window.

jliJ HelloWorld.nih - -/HelioWorld ~

Sounds·

[
'~ .

.mlJ
Classes

Each class is displayed in proper relationship to the other classes: A class's superclass is
displayed to its left and its subclass is displayed to its right. NeXTSTEP classes are
displayed in gray, indicating that they can't be edited. The classes you define, being
editable, are displayed in black. The Find field helps you locate classes in the hierarchy.
Simply enter a class name and press Return. The browser will scroll to the class and
select it.

You can add classes to this hierarchy in two ways:

• Drag the icon for a class interface file from the Workspace Manager File Viewer to the
File window. When you do, the Classes resource icon in the File window opens to
accept the interface definition. Interface Builder parses the interface file and places the
new class in its proper place in the class hierarchy.

. 3-20 Chapter 3: The Interface Builder Application

• Drag to the Subclass button in the pull-down list as described in the next section.

The pull-down list in the Classes display lets you operate on new or existing classes. The
commands are described in the following sections.

I: Subclass'

This button creates a new class as the subclass of the class that's currently selected in the
browser. New classes are named MySuperClassName. The Class Inspector panel opens
when you create a subclass allowing you to rename the class and edit its outlets and actions.

Finstantiate

This button creates an object of the selected class and places an icon representing that
object in the File window. The object's name refers to its class. For example, if you define
the Gauge class and then choose Instantiate, the object that appears in the File window is
named Gauge. If you instantiate additional Gauge objects, they'll be named Gaugel,
Gauge2, and so on.

lip: Although you can instantiate View objects using the Instantiate button, it's generally
a better idea to use the CustomView object for this purpose. By dragging a CustomView
into your application and reassigning its class, you have an object that can be positioned
and sized within a specific window of your application.

PJ'ir'se -.. " " .. " I
The Parse button displays an Open panel that lets you specify the class interface file you
want Interface Builder to parse. Interface Builder reads the specified interface data from
the file and then displays the name of the class in its proper location in the browser. Using
this command is equivalent to dragging the icon for the interface file into the File window,
as described earlier.

IfOn'p"ar's'e' '" ".' 'I
The Unparse button generates template class interface and implementation files for a class
you've created with the Subclass command. It writes the interface file based on the
outlets and action methods you defined for the class using the Class Inspector. It writes a
template implementation file, providing skeletal implementations for each of the class's
action methods.

Warning: If you edit the files Interface Builder generates and then reissue the Unparse command,
Interface Builder can overwrite the edited files with new template files. Of course, Interface
Builder asks for verification before doing so.

Using Interface Builder 3-21

Attaching Help to Objects

The Help Builder panel makes it easy to associate help text with any object in your
application's user interface. (To learn about the design of the NeXTSTEP help system, see
the NXHelpPanel class specification in the NeXTSTEP General Reference manual.)

The Help Builder panel is a slightly modified version of the standard Help panel.

Choose Commands

'" Click the command. Or '" Drag through a menu to the
command. Or. t8Q!.!:LdO\li.n the Command key and type t@
character shown next to the command.

The command
is highlghted h
white until it's
carried out.

A~marks a

PM ellipsis (...)
marks a command

~~~:;::;:::;::::t-- that opens a panel. 

The submenu 
contains more 
commands. 

Attaching help to an object involves selecting an object in your application, displaying the 
help text in the Help Builder panel, optionally selecting a help marker within the text, and 
clicking the Attach ... button. Thereafter, when the application runs and the user Help-clicks 
the object (that is, holds down the Help key and clicks the object), the specified help text 
will appear in the application's Help panel. However, before you begin attaching help text 
to your application's objects, you must provide your application with two components: a 
Help menu item and a Help directory. 

3·22 Chapter 3: The Interface Builder Application 



Interface Builder's Menu palette supplies an Info menu item that, when dragged to your 
application's main menu, reveals a submenu containing a Help menu item. This menu item 
is preconfigured to open the Help panel. (If you inspect the Help item's connections, you'll 
see that it sends a showHelpPanel: message to the First Responder object.) 

Project Builder can provide your application with the required Help directory. Choose the 
Add Help Directory command in Project Builder's Project menu to create this directory. 
Project Builder creates the directory within the" .lproj' , directory of your chosen 
development language (for example, English.lproj/Help). It copies into this directory 
generic table-of-contents and index files. 

The next step is to customize these files and to add content files of your own. The generic 
help text that's accessed through the supplied table-of-contents and index files gives help 
on basic operations, such as using the mouse and choosing commands. You'll want to add 
files that describe the operations that are unique to your application. You can also override 
or eliminate any of the generic help text that isn't applicable to your application. 

You create help files using Edit. (Make sure that Edit is in Developer Mode so that the Help 
commands can be accessed from the Format menu.) Perhaps the easiest way to ensure that 
the files you add agree in style and formatting with the generic help files is to display a 
generic file, copy its contents, and paste it into a new Edit document. Be sure to resize 
the new document's window to the same width as the original so that the text will wrap 
to the same margins. You can then modify the contents of the new help document and 
save it in the Help directory. If you think you'll want to associate objects with specific 
passages within the file, rather than to the file in general, you can place help markers within 
the document. 

Each file you add should be represented by a new entry in the table-of-contents file. 
(However, see the NXHelpPanel class specification for an exception to this rule.) After 
adding content files, you'll also probably have to update the index. 

Once the table-of-contents, content, and index files for your help system are finished, you 
can begin attaching help to your application's user-interface objects. Display the Help 
Builder panel by choosing the Help Builder command from Interface Builder's Tools menu 
or by clicking the Help Builder button in the Help display of the Inspector panel. Select an 
object in your application's user interface, locate the relevant help text in the Help Builder 
panel, and click the Attach ... button. If the Help inspector is open, it displays this new 
association in its Help Attachments list. 

The Help Builder panel offers several ways to locate specific portions of help text. First, 
you can use the table-of-contents or index displays to locate a file. In addition, the pop-up 
list below the Find field lets you search for help files by name, for marker names within the 
help files, or for any string. 

Using Interface Builder 3-23 



Running Your Application in Test Mode 

The Test Interface command puts Interface Builder in test mode. When you choose 
this command, Interface Builder's supporting windows disappear, leaving only those 
windows that belong to your application. You can then test the operation of most objects 
in your application. 

Only those objects whose code has been linked into Interface Builder-primarily those 
objects defined in the Application Kit and those coming from custom palettes--can be 
exercised in test mode. This means that objects such as Windows, Buttons, and the 
PrintPanel will operate as they would in a finished application. In test mode, your 
application's windows can be miniaturized, buttons will highlight when clicked, the 
Print panel will operate as it should. Objects dragged from custom palettes will also 
operate normally, since their code is dynamically loaded into Interface Builder when the 
palette is loaded. 

However, objects that have been declared in Interface Builder but whose code hasn't been 
linked into the Interface Builder application will not work as they would in a finished 
application. For example, suppose you use Interface Builder's Classes display to create a 
new class, say the Gauge View class, and then assign the class of a Custom View in your 
application to be the Gauge View class. When you run the application in test mode, the 
Gauge View object will not appear since only its Objective C interface-not its code-is 
available to Interface Builder. 

When your application is operating in test mode, Interface Builder's application icon 
changes to display a large switch. 

To exit test mode, either choose the Quit command in your application's main menu (if 
present) or double-click this switch icon. 

3-24 Chapter 3: The Interface Builder Application 



Setting Preferences 

You open the Preferences panel by choosing the Preferences command in the Info menu. 
This panel has two displays; you use the pop-up list at the top of the panel to access 
these displays. 

General Preferences 

These preferences control which panels appear when Interface Builder is launched and also 
whether a backup file is created when the nib file is saved. 

! - -------~erfaceBuilder Preferences ----~-

General -..:..1 

[

CCCC c_ Startup Options_-__ -
c Show palettes\±::I 

Show inspectorL) 

,-----.,---.,-c-:-c Save Option c c I 
Create backup file when savingid 

If the Save Option box is checked, Interface Builder will create a backup file whenever you 
save a nib file that's been modified. Assuming the box is checked, if you open a nib file 
named FindPanel.nib, make changes, and then save the modified file, Interface Builder 
will rename the original file FindPanel.nib- before saving the modified file as 
FindPanel.nib. Because of the safety of having a backup file, it's generally better to leave 
this box checked. 

Using Interface Builder 3·25 



Palettes Preferences 

This display of the Preferences panel shows you which palettes are available to Interface 
Builder and lets you control which palettes are installed in the Palettes window. 

I Interface Builder ~eferenc~~ -. - ~ 

Double-click to instailluninstall. 

lr~,~"rl II ,,,.,"-"",< 

V/indows \liev.;s Te::-1Viev./s 

Each palette is represented by an icon. The palettes that are already installed in the Palettes 
window display their titles in gray; those that haven't been installed display their titles in 
black. Double-clicking the icon toggles the state of the palette: If it was installed, it's 
removed from the panel; if it was uninstalled, it's installed in the panel. 

When Interface Builder begins running, it loads the standard palettes (those displayed in 
the top row of the illustration above) and then loads any palettes it finds in 
lNextDeveloperlPalettes. It also adds to the Preferences display any palettes the user has 
previously loaded using the Load Palette command. (Note: The information about these 
manually loaded palettes is stored in -1.NeXT/defaults.nibd.) 

Adding Custom Palettes, Inspectors, and Editors 

Interface Builder's primary value as a development tool is that it lets you interact directly 
with the objects that will make up your application. In general, these objects are defined 
by the NeXTSTEP system software. However, it's possible to extend Interface Builder's 
library of objects by creating custom palettes, thus letting you interact directly with objects 
that you or other developers have created. 

3-26 Chapter 3: The Interface Builder Application 



A custom palette can contain objects of various sorts. Most commonly, a custom palette 
contains View objects, objects that the user instantiates by dragging into a standard window. 
It's also possible to create custom palettes that contain MenuCells (which are instantiated 
by dragging into a menu), Windows (which are instantiated by dragging into the 
workspace), and other non-View objects (which are instantiated by dragging into the 
File window). 

For any custom palette object, you can provide one or more inspectors. A custom object's 
inspector appears in the Inspector panel when the user selects the object. Most custom 
objects will require an Attributes inspector. For example, the fictitious RepeatButton class 
mentioned earlier would probably require an Attributes inspector to let the user set the 
repeat rate for a given button. It could also supply its own Connections, Size, and 
Help inspectors, although the standard versions of these inspectors are generally adequate 
for most uses. 

Finally, a more complex custom object may require its own editor. An editor controls how 
a user can interact with a selected object. Interface Builder itself supplies editors for the 
objects it knows about. For example, when you double-click a window icon in the File 
window, Interface Builder's window editor is invoked and brings the actual window to the 
front. Or, when you double-click a Form object in an application window, Interface 
Builder's matrix editor is invoked, letting you drag cells to new positions. 

An editor that you provide must open its own window when the user double-clicks the 
custom object. (In this respect, your editor will be like the one provided by the Database 
Kit for the DB Module object. For a demonstration, load the palette 
lNextDeveloperlPalettes/DatabaseKit.palette, drag a DBModule object into the File 
window, and double-click the object.) Since each custom object can have its own 
editor window, editors make copy and paste or drag and drop operations between editor 
windows possible. 

Creating custom palettes, inspectors, and editors involves working with Interface Builder's 
application programming interface (API). This API is described in detail in Chapter 8 of 
the NeXTSTEP General Reference manual. You should also consult Chapter 18 of this 
manual for a tutorial describing the process of making a custom palette and inspector. 

Using Interface Builder 3-27 



Interface Builder Command Reference 

The remainder of this chapter gives short descriptions of Interface Builder's commands. 
Only those commands that are unique to Interface Builder are listed; for information on 
commands that are common to all NeXTSTEP applications see the User's Guide. 

Commands in the Document Menu 

These commands act to open, create, save, or test an Interface Builder document. (Interface 
Builder documents are generally referred to as "nib files," since that's how they are stored 
on disk. However, until a document is saved, no file exists, so referring to the document as 
a "nib file" isn't strictly correct. Even so, for simplicity, Interface Builder documents are 
referred to as nib files throughout, unless to do so would cause confusion.) 

Command 

Open 

New Application 

New Module 

Save 

Save As 

Description 

Opens an existing nib file. 

Creates a new Interface Builder nib file containing the basic 
components of an application: a main menu, a standard window, 
and other resources. You rarely use this command since it's 
generally more convenient have Project Builder create the nib file 
for a new application. See the description of Project Builder's 
New command in the previous chapter for more information. 

Opens the New Module menu, which offers commands for 
creating various sorts of Interface Builder nib files other than the 
type used for an application's main nib file. See "Commands in 
the New Module Menu" later in this chapter for more information. 

Saves the current nib file. You can edit more than one Interface 
Builder nib file at a time. Each open nib file is represented by a 
File window: The File window that has main or key window status 
identifies the current nib file. 

Saves the current nib file under a different file name. 

3-28 Chapter 3: The Interface Builder Application 



Save All 

Revert to Saved 

Test Interface 

Saves all open nib files. 

Restores the current nib document to the state represented in the 
nib file. All changes made since the file was last saved are lost. 

Puts Interface Builder in test mode. When you choose this 
command, Interface Builder's supporting windows disappear, 
leaving only those windows that belong to your application. You 
can then test the operation of the objects in your application. See 
"Running Your Application in Test Mode" earlier in this chapter 
for more information. 

Commands in the New Module Menu 

These commands let you create auxiliary nib files of various sorts. (The main nib file is 
generally created by Project Builder.) 

Command 

New Empty 

New Info Panel 

New Attention Panel 

New Inspector 

New Palette 

Description 

Creates the simplest sort of nib file, one that includes references 
only to a File's Owner object and a First Responder object. 

Creates an auxiliary nib file containing a panel that's 
preconfigured as a standard Info panel. 

Creates an auxiliary nib file containing a panel that's 
preconfigured as a standard Attention panel. 

Creates an auxiliary nib file containing the components you need 
when creating an inspector for a custom palette project. 

Creates an auxiliary nib file containing the components you need 
for a custom palette project. You rarely issue this command 
directly, since Project Builder provides this nib for you when you 
create a new inspector project. 

Interface Builder Command Reference 3-29 



Commands in the Edit Menu 

Except for the Set Name command, this menu contains the standard editing commands: 
Cut, Copy, Paste, Delete, and Select All. These commands work in the expected ways. 
(See Chapter 15 for a tutorial introduction to Interface Builder's basic commands.) 

Command 

Set Name 

Description 

Displays a panel that lets you set the name of the selected object. 
With this name, and the NXGetNamedObjectO function, you can 
access objects by name within your application. However, it's 
generally a better idea to access objects through the use of outlets, 
since outlets can be connected and disconnected in Interface 
Builder, eliminating the need to alter your application's code. 

Commands in the Format Menu 

This menu lets you set the font and formatting attributes of the selected object. It also gives 
you access to the Layout menu and to the Page Layout panel. 

Command 

Font 

Text 

Layout 

Page Layout 

Description 

Opens the Font menu. Interface Builder's use of the Font menu 
is entirely standard. By setting the font of a TextField or the 
Text object within the ScrollView (for example), you are 
determining which font the user will use in those objects when the 
application runs. 

Opens the Text menu. Interface Builder's use of the Text menu is 
entirely standard. By setting the text alignment or tab settings of 
an object in Interface Builder, you are determining the alignment 
and tab settings for those objects at run time. Note that the ruler 
commands work only with a Text object that is the document view 
of a ScrollView. 

Opens the Layout menu, which is described in the next section. 

Opens the standard Page Layout panel. This panel lets you specify 
how the window you print using Interface Builder's Print 
command will appear on paper. Since a screen pixel is 
approximately 75 precent of the size of a printer pixel, the image 
of a window appears larger on paper than it does on the screen. To 
compensate, set the scaling factor to 75 percent in the Page Layout 
panel's Scale field. 

3-30 Chapter 3: The Interface Builder Application 



Commands in the Layout Menu 

This menu offers commands that help you manage the placement, size, and alignment of 
View objects that you drag into your application's windows. 

Command 

Bring to Front 

Send to Back 

Size to Fit 

Same Size 

Group 

Group in ScrollView 

Ungroup 

Description 

Establishes the selected object as the frontmost object in the 
window. If the selected object intersects other objects, the selected 
one is drawn over the others. If more than one object is selected 
when you choose this command, the entire group of objects is 
brought in front of all other objects in the window. 

Puts the selected object or objects behind all other objects in 
the window. 

Resizes the selected object to the minimum size required to 
display its, contents. If more than one object is selected, each is 
resized to its own minimum size. For an object of a given class, 
minimum size may depend on the font used to display the title, the 
alignment and location of the title, and the distance the content 
area is offset from other areas of the object. 

Forces one or more selected objects to assume the dimensions of 
another selected object. The first object you select establishes the 
dimensions that the other selected objects will assume. 

Groups the selected object or objects in a titled box. The box is 
sized so that it just accommodates the objects in the group. 
Groupings are often used within panels to organize the display of 
similar items. The grouped objects become the subviews of the 
Box object that contains them. 

Groups the selected object or objects in a ScrollView. The 
ScrollView is sized so that it just accommodates the objects in the 
group. The grouped objects are made subviews of the ScrollView. 

Removes the grouping established by the Group or Group in 
ScrollView commands. 

( continued) 

Interface Builder Command Reference 3-31 



Command 

Make Row 

Make Column 

Tum Grid On / Off 

Description 

Aligns the selected objects horizontally. The row extends to the 
right of the selected object that's nearest the top left comer of the 
window. The spacing between objects is determined by the 
original spacing between the two objects nearest the window's top 
left comer. If these objects originally overlapped, the objects in 
the resulting row abut each other. 

Aligns the selected objects vertically. The column forms below 
the object that's nearest the top left comer of the window. The 
spacing between objects is determined by the original vertical 
spacing between the two objects nearest the window's top left 
comer. If these objects originally overlapped, the objects in the 
resulting column abut each other. 

Enables and disables the alignment grid in all windows of all open 
nib files. When the grid is enabled, View objects dragged into a 
window are constrained in their location and dimensions to the 
units defined by the grid. 

By default, the intersections of the grid are aligned, both vertically 
and horizontally, on every eighth pixel in a window. Also by 
default, an object's lower left comer is the reference point for 
alignment with the grid. (The grid spacing and the object's 
reference point can be changed using the Alignment panel.) 

Setting the grid on has no immediate effect on objects placed in the 
window when the grid was off. Their location and dimensions are 
unchanged until you attempt to move or resize them. 

Show Grid / Hide Grid Displays and hides the alignment grid in all windows of all 

Alignment 

open nib files. The grid is displayed as a rectangular array of dark 
gray dots. 

Opens the Alignment panel, which is described in the "Using the 
Alignment Panel" section earlier in this chapter. 

3-32 Chapter 3: The Interface Builder Application 



Resize Window Makes any application window resizable. During application 
development, windows that will be resizable at run time display a 
resize bar. To establish the run-time size of such a window, simply 
adjust it using the resize bar. Windows that won't be resizable at 
run time don't display this bar. The Resize Window command lets 
you adjust the size of such windows by making them temporarily 
resizable. 

When you choose this command (or click the resize button [!] in 
a window's title bar), the window's resize button highlights and 
the window can be resized. For windows that won't be resizable 
at run time, a resize bar temporarily appears so that you can adjust 
the window's size. After you resize the window (or click 
anywhere within it), the bar disappears. 

Commands in the Tools Menu 

This menu's commands open or bring to the front the named panel. 

Command 

Colors 

Inspector 

Palettes 

Load Palette 

Help Builder 

Description 

Displays the Colors panel. 

Displays the Inspector panel. 

Displays the Palettes panel. 

Presents an Open panel, enabling you to load additional palettes 
into Interface Builder's Palette window. See "Setting 
Preferences" earlier in this chapter for more information. 

Displays the Help Builder panel. This panel will be empty unless 
your application is part of a project containing a Help directory. 
See "Attaching Help to Objects" earlier in this chapter for 
information on using the Help Builder panel. 

Interface Builder Command Reference 3-33 





4 The Edit Application 

4-4 Starting Edit 

4-5 Setting Preferences 
4-6 User Options 
4-7 Global Options 
4-8 Temporary Settings 
4-9 Text Options 
4-10 C Options 

4-12 Performing Basic Operations 
4-12 Opening Edit Files 
4-12 Using File Windows and Folder Windows 
4-13 Selecting Text 
4-14 Finding and Replacing Text 
4-16 Checking Spelling 

4-17 Contracting and Expanding Text in a File Window 

4-20 Using the Ruler 
4-21 Margins 
4-21 Indentation 
4-22 Tabs 

4-22 Adding Linked Graphics 

4-23 Adding Help Links 

4-24 Using Templates 

4-1 



4-26 Using Keyboard Editing Commands 

4-26 Interacting with UNIX 
4-27 Piping UNIX Output to a File 
4-28 U sing a Tags File 

4-29 Interacting with the GOB Debugger 

4-29 Edit Command Reference 
4-29 Commands in the Main Menu 
4-30 Commands in the File Menu 
4-31 Commands in the Edit Menu 
4-31 Commands in the Link Menu 
4-32 Commands in the Find Menu 
4-32 Commands in the Format Menu 
4-33 Commands in the Font Menu 
4-33 Commands in the Text Menu 
4-34 Commands in the Help Menu 
4-35 Commands in the Structure Menu 
4-35 Commands in the Utilities Menu 
4-38 Commands in the Expert Menu 

4·2 



4 The Edit Application 

In addition to the standard UNIX editing tools (vi, ex, ed, and GNU Emacs), the 
NeXTSTEP development environment provides a mouse-based text editor named Edit for 
creating and editing ASCII or RTF (Rich Text Format®) text files. 

Edit has all the standard features of a text editor: You can type paragraphs of text without 
pressing the Return key (the text wraps automatically at the end of each line, and if you 
change fonts or resize the window, the text rewraps accordingly). You can use the mouse 
to select where text will be entered and to select text you want to edit. And you can find 
and replace text, move and copy it, and so on. 

While Edit has the functionality of a good text editor, it's particularly suited for writing 
programming code and performing other application-development tasks. It lacks many 
of the capabilities found in similar applications, but it has many features specifically 
designed for programmers. For example, Edit supports name expansion, folder browsing, 
block nesting in program listings, and a structured editing facility. It also provides 
interapplication functionality with Project Builder, Terminal, and the GDB debugger. 

The Edit Application 4-3 



Starting Edit 

You can start Edit from the workspace as you would start up any other application. 
Alternatively, you can start up Edit from a shell window by typing the following command 
at the UNIX prompt: 

Edit [file name ... ] & 

Several command-line options allow you to override various default characteristics of Edit 
for the work session you're about to start-characteristics such as the number of lines and 
columns in new windows, the font family used, and the font size. For example: 

Edit -NXFont Times-Roman Fruit.m & 

These command-line options can be specified in any order, as long as they precede any file 
names. Several options are listed below. 

Option 

IndentWidth 

NXFont 

NXFontSize 

Tags 

DeleteBackup 

NXMenuX 

NXMenuY 

4-4 Chapter 4: The Edit Application 

Effect 

Specifies the width of indentation for block nesting. The default 
value is 4. 

Specifies the font family. The default font is Helvetica®. 

Specifies the font size, in points. The default value is 12. 

Specifies one or more pathnames to tags files that will be searched 
by the Source command. The pathnames should be separated by 
a colon, as in a standard UNIX path list. The default is "tags," 
which indicates that the tags file in the current folder will be 
searched. See the description of using tags files under "Interacting 
with UNIX" later in this chapter for more information about using 
tags files in Edit. 

Specifies whether the previous version of a file is deleted or 
retained as a backup when you save changes to the file. The 
default value is YES, which means that the previous version is 
deleted. If the previous version is saved as a backup, its name is 
the same as the original file name, but with a tilde ( .... ) appended to 
the name. 

Specifies the (positive) distance in pixels from the left edge of the 
screen to the left edge of the main menu. 

Specifies the (positive) distance in pixels from the bottom of the 
screen to the top of the main menu. 



Edit will use the default value for each option unless you override it with a command-line 
option. The value specified in the command line will remain in effect only for the 
work session you're about to start. The next time you use Edit, the defaults will go back 
into effect. 

You can set new default values for each of the above characteristics (except for screen 
coordinates) using the Preferences panel, which is described in the following section. Most 
defaults set with the Preferences panel remain in effect until you change them. 

Setting Preferences 

The Preferences command in the Info menu displays the Preferences panel, shown below. 
The Preferences panel lets you set default values for various Edit options. For example, 
you can set default font properties or specify the size of new windows. 

[ 

..... ' StartupEditin:-... -.. -. -; 

. r. User Mode 

. '. .. 0 Developer Mode 

[.

:'. '.. ope.n new d. ocum. ents in: -: 0 Rich Text Format (RTF) 
G Plain Text (ASCII) 

~.
'.'." ...••. RiCh.Tex. t F~t. ~ ; ~ ;":'1 Name. Helvetica 
.. SeL. Size: 12 

, e, ~ , , '> 

~
... '.' ASCII Font 

'.' ~"~;'I Name: Ohlfs 
;. SeL . Size: 10 

~~~~~~.' 

Enter values and click buttons to specify new preferences, as described below. Then click
Set to set the new preferences (or click Revert to restore the previous settings). In general,
the new settings remain in effect until you change them. However, you can temporarily
override some of the defaults by starting up Edit from a shell window and specifying one
or more command-line options (as described earlier under "Starting Edit").

Setting Preferences 4-5

User Options IiiII
rGlo'barOptiOnS-~~ ,=~'~M,

IITem'p'orary~seftk;g's"~" ':r '

rfexf6~ptfo'ng:"~':"""""',

Irc'o'plfon's:'~-"" ":""""
You can press the button labeled User Options and, in the list that appears, choose from
several other sets of options that are available. These other options are described below,
after the user options.

User Options

Choose User Options in the Preferences panel's pop-up list to see the user options that can
be specified. User options are saved in your defaults database and continue to be used until
you specify different values for them.

By default Edit starts up in User mode, which presents just a subset of the commands
available in Developer mode. If you're using Edit for application development be sure to
click the Developer Mode button.

Open new documents in:

OtRich Text Format(RTF)
G:!Plain Text (ASCII)

Click one of these buttons to specify whether new documents are created in RTF (Rich Text
Format) or ASCII format.

lip: After you've created or opened a document, you can change its format by choosing
the Make Rich Text command or the Make ASCII command in the Text menu.

4·6 Chapter 4: The Edit Application

~r~"""'--- Rich Text Font ---,.---.,.---,.,.

!;lifs~t~:1 Name: Helvetica
. Size: 12

Click the Set Button in the Rich Text Font field to set a default font for Edit windows that
are in RTF format. Specify the font family, typeface, and size in the Font panel that appears,
and click the Set button in the Font panel when you're done. After you save these settings,
all subsequently created RTF documents will by default display text in the specified font.

i ASCII Font

I .. Ws-::":'~t;~;·:1 Name: Ohlfs
'I e .0. Size: 10

..

Click the Set Button in the ASCII Font field to set a default font for Edit windows that are
in ASCII format. Specify the font family, typeface, and size in the Font panel that appears,
and click the Set button in the Font panel when you're done. After you save these settings,
all subsequently opened Edit windows that containing ASCII files will display text in the
specified font.

lip: When working with code or UNIX command output, it's best to use a fixed-width font
family, such as Courier.

Global Options

Choose Global Options in the Preferences panel's pop-up list to see the global options that
can be specified. Global options are saved in your defaults database and continue to be used
until you specify different values for them.

- '---... ~
0.'.1 .. ' o~i·e. ~a. bva.~k.o.U. ~tifi.~:. s &:.4~.; .. ··:.·.·.~.< .• ·.1.:••..
O'Oon"t delete backup file ; .. ' I
!Dsave Files Writeable '. H.';

When the "Delete backup file" option is selected, Edit automatically deletes the previous
version of a file when the current version is saved. Click "Don't delete backup file" to retain
the previous version of a file when you save the current version (if the previous version of
a file is saved). This backup file is saved under the original file name, but with a tilde (...)
appended to the name.

Setting Preferences 4-7

If you try to save a file that's write-protected, you can do so by responding affirmatively to
the confirmation panel that appears (as long as you own the file). Check the Save Files
Write able button if you want such write-protected files to lose their write-protected status
when they're saved.

To set a default size for Edit file windows, enter a width (in number of characters) in the
Width field and a height (in number of lines) in the Height field. Edit files that you open
after saving these settings will be displayed in windows with the dimensions you specify.
(Note that since these dimensions are specified in characters and lines, the default window
size will be affected by the default font.)

Click one of the buttons in the Emacs Key Bindings field to specify whether or not Emacs
key bindings are enabled. For a list of the Emacs key bindings available in Edit, see "Using
Keyboard Editing Commands."

Temporary Settings

Choose Temporary Settings in the Preferences panel's pop-up list to see the temporary
settings that can be specified. These are called temporary settings because they're not saved
in your defaults database.

f'-~ •• H'~'"'~~':"'1.WraplInes on,;.,~~&" .• ,w !
I:Oiwordboundar,es: , .',!
j y:character bound~rles l
i , QlDon't wnip> " I
"'."<N"*""""M~~""#",,,~,~~,,,,,1>j·',""'~;>3+<»'1'W'~~r-"I:_~f' "'~~"'~'''%'!M~'1'''''''''''~~

When the "Word boundaries" option is selected, text wraps onto the following line at the
end of each full line, but no words are split across lines. Clicking "Character boundaries"
also causes text to be wrapped at the end of each line, but words can be split across lines.
Clicking "Don't wrap" causes text to not wrap at all.

4-8 Chapter 4: The Edit Application

[]

'" Rich Text Options -, -. -:

I 0 Edit Rich Text Format '

, r Ignore Rich Text Format:

When the Edit Rich Text Format option is selected, RTF files that you open are displayed
as formatted text. Click Ignore Rich Text Format to view RTF files as unformatted text with
the format commands visible. Because other applications use Edit to view formatted text,
you should normally leave the Edit Rich Text Format option selected.

Text Options

Choose Text Options in the Preferences panel's pop-up list to see the text options that can
be specified. Text options are saved in your defaults database and continue to be used until
you specify different values for them.

~
.. , ,. Automatic Indenting
: C .. 1 Automatically indent
; C Don't auto-indent lines

'" '0 ~ , < ,

When the "Automatically indent lines" option is selected, Edit indents each new line the
same as the line above it (automatic indentation is useful for typing indented lines of code).
Click "Don't auto-indent lines" if you want each new line to start at the left margin.

[
~. Structure Level of Blank Lines .,-(;' o Same as previous line
L . .5'?: Determined by indentation

When the "Same as previous line" option is selected, Edit assigns each "blank" line (that
is, each line that contains no visible text) the same structure level as the previous line. Click
"Determined by indentation" if you want the structure level of blank lines to be determined
by the amount of indentation (that is, tabs and spaces) on that line, rather than by the
indentation of the previous line.

In the Indent field, enter the number of characters you want to shift right or left with the
Text menu's Nest and Dnnest commands. In the Tabs field, enter the number of characters
you want between tab stops.

Setting Preferences 4-9

In the ASCII and RTF fields, enter a number between 0 and 99 to specify how many levels
of structure will be visible in a newly opened file of that type. A 0 indicates that only the
top level of text (that is, text that's flush left) will be visible, a 1 indicates that the first
sublevel of text should also be visible, and so on.

In addition to the default Text mode, there are two editing modes for C and Lisp source files
(these modes optimize some minor aspects of Edit's behavior for use with each of these
programming languages). You can specify in the Modes field any additional file extensions
that you want associated with either of these two modes.

C Options

Choose C Options in the Preferences panel's pop-up list to see the C source code options
that can be specified. C options are saved in your defaults database and continue tq be used
until you specify different values for them.

I ~ striICiure for Top level .. -""- ,
Determin~dby ',1 st character I
Independemt Of 1 stcharacter !

~~""W"~'~~"""?".'~""W""",'_"" __ "'.':''''M''_' ~.~t

When the "Independent of 1 st character" option is selected, commands in the Structure
menu operate solely on the basis of indentation, independent of particular characters. Click
"Determined by 1 st character" if you want Structure menu commands to treat C
preprocessor directives (lines whose first character is #) specially-that is, as second-level
text, rather than top-level.

4-10 Chapter 4: The Edit Application

[

" Structure Level of Blank Unes, -1
1

" ,C!Same as previous line i
• 'Q:IDetermined by indentation :

#,,, ... ,- ',"""'" , ', ':C" " , , ,

When the "Same as previous line" option is selected, Edit assigns each "blank" line (that
is, each line that contains no visible text) the same structure level as the previous line. Click
"Determined by indentation" if you want the structure level of blank lines to be determined
by the amount of indentation (that is, tabs and spaces) on that line, rather than by the
indentation of the previous line.

In the Path field, enter the pathname of one or more tags files that you want Edit to search
when you choose the Source command in the Utilities menu. A tags file, which you create
using the UNIX ctags cori:unand, contains the locations of program object definitions
among a given group of files. The Source command searches the tags files specified here
for the location of an object definition and then opens the file containing the definition.

If you leave the default entry of "tags: . .ftags" in this field, Edit will search only the tags files
in the current folder (the folder containing the file in the main window) and in the current
folder's parent folder. You can replace or add to the default, however, by entering the
pathnames of one or more other tags files; you separate multiple pathnames with a colon
as in a standard UNIX path list.

See the description of the Source command in "Commands in the Utilities Menu" later in
this chapter for more information about using Edit's Source command with tags files.

Include Path
,,> ,

ff:: lu s r/i n c Iud e :/N extD eve lop e rl

! Headers:/NextDeveloper/Hea

~
de rs/an s i :/N extD eve lop e r/H e

J! ad e rs/b s d :/L 0 c aiDe vel 0 p e r/H

:','"

The Include Path field displays your default include path (the path the preprocessor uses to
search for system header files). You can redefine this path by editing the text and'then
clicking the Set button.

Setting Preferences 4-11

Performing Basic Operations

This section summarizes several basic Edit concepts and operations. For more information
about basic operations common to Edit and other standard NeXTSTEP applications, see the
User's Guide.

Opening Edit Files

In addition to opening Edit files from the workspace, you can open them from within Edit
by using the Open or Open Selection commands in the File menu. (These commands are
described later in the chapter.)

An alternate way to open one or more files is to use Edit's openfile command at the UNIX
prompt in a shell window. You can specify one or more file names (or pathnames), which
are interpreted relative to the shell window's current folder. For example, the following
command would open all the files in the current folder that end with a ".c" extension, plus
all the files in a subfolder called headers that end with a ".h" extension:

openfile *.c headers/*.h

Each file is opened in its own Edit window. Note that the openfile command can be used
only when Edit is running.

Using File Windows and Folder Windows

Edit provides two types of standard windows: file windows andfolder windows. As in
other applications, there are also panels and menus.

Note: Unless otherwise specified, folder windows mentioned in this chapter are Edit folder
windows, not Workspace Manager folder windows.

An Edit file window displays a document file that you can view and edit. When you make
changes to text displayed in a file window, the version of the file on the disk isn't affected
until you save the file with the File menu's Save command. When a file contains unsaved
changes, the window's title bar displays a partially drawn close button. If you miniaturize
a window containing unsaved changes, its miniwindow is highlighted in gray.

4-12 Chapter 4: The Edit Application

An Edit folder window displays a list of the files and subdirectories contained in a folder.
You don't edit the contents of a folder window; instead, you use the displayed folder listing
to find and select other files or directories to open.

Two special features are available in Edit folder windows:

• You can type a character to find and select the first item starting with that character. Each
additional character you type deselects the previously selected item and finds the first
item starting with the newly typed character. The commands in the Find menu can also
be used to find and select items in a folder window.

• You can double-click a file or folder name to open an Edit window displaying that file
or folder. This is equivalent to selecting the name and choosing the Open Selection
command in the File menu.

You can also open an Edit folder window by choosing the Open Folder command in the File
menu. The command displays a panel in which you enter the pathname of a folder to be
opened.

Selecting Text

Most operations in Edit are performed on the current selection, which appears either as the
insertion point (a blinking vertical bar) or as highlighted text.

You make selections using the standard selecting techniques: Position the insertion point
by clicking, and select a block of text either with multiple-clicks or by dragging with the
mouse, as outlined below.

Method

Clicking

Dragging

Shift-clicking

Double-clicking

Triple-clicking

Effect

Positions the insertion point where you click.

Selects text that you drag across. To select beyond what's
currently displayed, drag past the edge of the window. The
contents scroll automatically and text continues to be selected.

Selects from the insertion point, or extends or shortens a selection.

Selects a word. If you double-click one of a pair of matching
delimiters (parentheses, braces, or square brackets) the pair of
delimiters and the enclosed text are selected.

Selects a line or paragraph.

Performing Basic Operations 4-13

Finding and Replacing Text

The Find Panel command opens a panel that lets you locate the next occurrence of a
specified text string and optionally replace it with another string.

I Rnd ~

In the Find field, specify the text to be located. You can't type tab or return characters in
the Find field, because of their other functions: Pressing tab moves the insertion point to
the "Replace with" field, and pressing Return begins the search for the text. To specify a
tab character in the text, type Alternate-Tab. Likewise, type Alternate-Return to specify a
carriage return character.

In the "Replace with" field, you may specify a replacement string. Then click one of the
panel's buttons to perform the exact search operation you want, as described below. If the
end of the document is reached during a search, Edit continues searching from the
beginning of the document. When searching backward and reaching the beginning of the
document, Edit continues searching from the end.

~.And Options ... ~;" ... ,
Uf2jlgnore Case .~ I
! IORegula.rExpression ! i «.' • •• I
>_~_O''''*'''''~'''"''r''~fc_:;;''!'4<O>X:,,,,,!·\>x ,""""~_" "" ,~"":~N",>-

When Ignore Case is checked, Edit doesn't distinguish between uppercase and lowercase
letters when finding a match during the search. If Ignore Case is not checked, the search is
case-sensitive.

If the Regular Expression box is checked, Edit interprets the text in the Find field as a UNIX
regular expression (see the UNIX manual page for ed for information on regular
expressions). If this box is unchecked, the Find entry is taken as a literal string of text.

4-14 Chapter 4: The Edit Application

[,
' n."., Ie",' e AI Scope-:,: , , ,Q Entire File :

, 6, Selection ~
,;:, !

. ":"".''':' ",,,,,, '

The Replace All Scope options specify whether Replace All applies to the entire document
(Entire File) or only to the current text selection (Selection).

![Repi~ce"Aiq

In the area that you specify, the Replace All button replaces all occurrences of the text
entered in the Find field with the text entered in the "Replace with" field. If the "Replace
with" field is blank, Replace All deletes all occurrences of the text. After a search with
Replace All, the Find panel reports the number of occurrences that were replaced.

![RePlaCe""'
After text has been found, click Replace if you want to replace the current selection with
the text in the "Replace with" field (or if the "Replace with" field is blank and you want to
delete the current selection).

IrRepiace&F'j'nd ~I
Click this button to replace the current selection and find the next match. This button is a
shortcut to using the Replace button and then the Next button.

![pre~ious'71

Click the Previous button to find the first occurrence of the Find entry searching backward
from the insertion point or the beginning of the current text selection.

!fN8xi~1
Click the Next button to find the first occurrence of the Find entry searching forward from
the insertion point or from the end of the current selection. (Pressing the Return key has
the same effect, but with one difference: If you used the Find Panel command's keyboard
alternative to display the panel, pressing the Return key causes the panel to disappear
instead of remaining on the screen.)

Performing Basic Operations 4-15

Checking Spelling
,----------------
I..... Spelling ~

The Spelling command opens a panel that lets you check the spelling of words, choose from
possible corrections, and modify the spelling dictionary. As a convenience, Edit doesn't
open the Spelling panel as the key window, so that you can type to correct a misspelling
without having to click in the file window first.

To begin a spelling check from this panel, click Find Next. Spelling locates and selects the
next word not contained in the spelling dictionary. (Edit uses a systemwide lOO,OOO-word
spelling dictionary that's shared by other applications, such as Mail.)

The search for misspelled words is circular, so that all the text in the main window is
searched. The search starts at the word containing the insertion point, or at the last word
in the current selection, and goes to the end of the text. If no potentially misspelled words
are found, the search continues at the beginning of the text until it comes back to the
starting point.

The Spelling panel displays a list of possible corrections to the last word selected as
misspelled (unless the word is completely unrecognizable). Double-clicking one of them
will replace the selected word in the main window with the desired correction.

~OJ Ip:·~~g"~r)

The Learn and Forget buttons let you remove or add words from the spelling dictionary. If
a correctly spelled word is identified as misspelled, you can add it to the dictionary by
clicking Learn. You can also remove any word you've added to the dictionary, by selecting
it and clicking Forget.

\rFihd NeXt I
To search for the next misspelled word, click Find Next (or choose the Check Spelling
command from the menu).

4-16 Chapter 4: The Edit Application

Contracting and Expanding Text in a File Window

Edit provides a Structure capability that lets you quickly move around in C files (as well as
in any other type of file where levels of structure are represented by varying degrees of
indentation-outlines, for example). Commands in the Structure menu can be used to
"contract" text in the main window, displaying only the text at a particular level of
indentation. Text that's indented beyond that level is hidden. Figure 4-1 shows a document
that's been contracted-only the top-level lines (those that are flush left) are visible. Notice
the two white text arrows, which indicate the presence of contracted text.

II drawSource creates the source image in the source bitmap. Note that
II drawSource does not render in the view; it renders in the bitmap only.

II drawDestination creates the destination image in the destination bitmap.
II Like drawSource, drawDestination only draws in the bitmap, notthe view.

Figure 4-1. File Window with Just First-Level Text Expanded

When text is contracted, only the display is changed-the document itself (including font
changes and text properties) remains unchanged. However, while some Edit commands
affect both the expanded and the contracted portions of the document (for example, Cut and
Paste), other commands affect only the portions of the document that are expanded (for
example, commands that change the font).

Commands in the Structure menu let you expand or contract either the entire contents of
the window, or just the current selection. The rest of this section describes some mouse
shortcuts that you'll probably use even more frequently than the menu commands.

Contraetingand Expanding Text in a File Window 4-17

Clicking a text arrow expands (that is, displays) the text that the arrow represents.
Control-clicking a text arrow expands just the top level of the text that the arrow represents.
For example, Figure 4-2 shows what the drawSource definition looks like after
Control-clicking the first of the two text arrows shown in Figure 4-1. Notice that the
drawSource definition has expanded, but the drawDestination definition is still
contracted. Also notice that the drawSource definition hasn't expanded completely-the
switch statement contains yet another level of contracted text.

[source lockFocusj;
PScompositerect (0.0, 0.0, sRect.sizewidth, sRect.size.height, NX_CLEAR);
PSsetgray(sourceGray);
PSsetalpha(sourceAlpha);
PSnewpathO;
switch (sourcePicture) { t=)

}
PSclosepathO;
PSfiIlO;
[source unlockFocusj;

return self;

II drawDestination creates the destination image in the destination bitmap.
II Like drawSource, drawDestination only draws in the bitmap, not the view.

Figure 4-2. File Window with Some Second-Level Text Expanded

4·18 Chapter 4: The Edit Application

Figure 4-3 shows the drawSource definition after Control-clicking the switch statement's
text arrow. Each case statement in the switch contains an additional level of contracted
text. The text for CIRCLE, however, isn't contracted-it's already been expanded by
clicking (or Control-clicking) its text arrow.

[source lockFocus);
PScompositerect(o.o, 0.0, sRect.size.width, sRect.size.height, NX_CLEAR);
PSsetgray(sourceGray);
PSsetalpha(sourceAlpha);
PSnewpathO;
switch (sourcePicture) {

case TRIANGLE: ~
case CIRCLE:

PSscale (sRect.size.width, sRect.size.height);
PSarc (0.5,0.5,0.4,0.0,360.0); II diameter is 80% of area
break;

case DIAMOND: ~
case HEART: ~
case FLOWER: ~
default: ~

}
PSclosepathO;
PSfiIlO;
[source unlockFocus);

Figure 4-3. File Window with Some Third-Level Text Expanded

If you want to recursively expand all the sublevels of text represented by a text arrow, click
the arrow instead of Control-clicking it.

Control-clicking anywhere within an indented block of text contracts the text.

Contracting and Expanding Text in a File Window 4-19

Using the Ruler

Edit provides a ruler that can be used to alter the format (margins, indentation, and tab
stops) of text in a file window. The Text menu (a submenu of the Format menu) contains
commands for showing the ruler and copying ruler settings, as well as commands for
centering or otherwise aligning text between the margins.

left margin
marker

ind~~~~!:g~ ---LI ~--;-.. ~ .~ I ~ I ',: ~. I: ~ I ' ~ , ·1 ~ I ,~ -
marker _ fa -j I "I !'= ,r- T ~ • _ ~ Ji: 1. It 1 • ~l14

body indentation
marker

tab marker

right margin
marker

1':-:;5:: -;::--16:-'!::~

To display the ruler, choose the Show Ruler command from the Text menu (this command
is enabled only if the file window contains text in RTF format). The ruler settings show
the format of the paragraph that contains the insertion point or the beginning of the
selected text.

You can move margin, indentation, and tab markers by dragging them along the scale of the
ruler. When you move a marker in the ruler, a vertical gray line appears, running from the
marker to the bottom of the window. This line makes it easier for you to determine the
position of the marker relative to the text.

There are two important things to note about the margin settings:

• The left and right margin settings affect the entire text. Thus the margin settings,
whatever they may be, will always be uniform throughout a file.

• The right margin adjusts to match the width of the window: If you resize the window
wider, the right margin marker moves to the right and the lines of text become longer;
narrowing the window moves the right margin marker to the left.

Tab stops and indentation may be customized for individual paragraphs. Unless you
specifically change the tab stops and indentation, each new paragraph you type will
have the same tab stops and indentation as the preceding one. If you move or copy a
paragraph (including the Return at the end of it), the paragraph will keep its original tab
stops and indentation.

If you want to change the tab stops or indentation of a single paragraph, you need only click
in the paragraph; you don't have to select the entire paragraph. After you make your
changes, the paragraph becomes selected. When you're ready to type again, just position
the insertion point where you want to enter text.

4-20 Chapter 4: The Edit Application

When several paragraphs are selected, the ruler displays the format of the first one. If you
then change a ruler setting, the selected paragraphs will receive not only that ruler setting,
but all the formatting of the first paragraph. You can also copy the format of one paragraph
to other paragraphs with the Copy Ruler and Paste Ruler commands in the Text menu.

Note: If you copy formatted text from Edit into another application, the formatting will be
copied along with the text only if the application can interpret RTF.

Margins r 1

The margin markers determine the left and right margins of the entire Edit file. To set the
left or right margin, drag the corresponding margin marker to the desired position on the
ruler. As you drag the left margin marker, the tab and indentation markers move with it,
remaining the same distance relative to the left margin.

Indentation T.

There are two indentation markers:

i The first -line indentation marker indents the first line of a paragraph .
.. The body indentation marker· indents all the rest of the lines of the paragraph.

The two indentation markers move independently; adjusting one does not affect the other.
Initially, both indentation markers are aligned with the left margin marker. Neither
indentation marker can be moved to the left of the left margin marker.

The relative positions of the two indentation markers determine the style of paragraph
indentation:

• Dragging the first-line indentation marker to the right of the body indentation marker
creates a regular paragraph indentation.

• Dragging the first-line indentation marker to the left of the body indentation marker
creates a hanging indent.

• Dragging both the first-line and the body indentation markers to the same position
indents the entire paragraph.

Changing the left margin of the text doesn't affect indentation. Both indentation markers
move with the left margin marker, maintaining the same distance from it.

Using the Ruler 4-21

Tabs ~

Tab markers set the locations of tab stops-the positions that the insertion point will
advance to if you press the Tab key. Typing proceeds normally (from left to right) after the
tab, which lets you align columns of text vertically along the left side.

Initially, the ruler displays ten tab markers set eight spaces apart. Note that these initial tab
markers may not line up exactly with the calibration marks on the ruler's scale.

To reposition a tab stop, drag the tab marker to the desired position on the ruler. To create
a new tab marker, click below the scale of the ruler: The marker will appear on the ruler
above where you clicked. You can remove a tab marker by dragging it off the left or right
end of the ruler.

Like indentation, tab stops adjust accordingly when you move the left margin marker.

Adding Linked Graphics

You can add linked graphic images to an Edit document, so that whenever the original
images are modified, the linked copies you added can be updated automatically.

To link graphics from another application into Edit, the application used to create the
graphic image must be able to supply linked information. The Draw application (in
lNextDeveloperlDemos) is an example of such an application. (Some applications can
supply linked information that is"n't a graphic image, such as text or database information.
You add this information to a document in the same way that you add linked graphics.)

To paste a linked graphic in an Edit document, copy the graphic in the source application
and then choose the Paste and Link command in Edit's Link menu.

The Link Inspector command (also on the Link menu) opens the following panel, which
you use to maintain and update the links you create. U sing this panel you can open the
source document, update the linked graphic, break the selected link, or break all links. In
addition, you can specify how to update the link when changes to the source graphic occur.

4-22 Chapter 4: The Edit Application

Source: Ime/Example.draw ..
~.:: ti.t:T' ;,'

Open j' Break Break All
Source Link Links

I
~ ====~====~U~Pda~te~==~====~
:l:~v1~~~aIlY";"1 Last Update: May 26 11:01 I

For more information about working with linked graphics, see Chapter 11, "Working with
Graphics," in the User's Guide.

Adding Help Links

The Help menu in Edit provides commands that are used to add or edit Help links.
Although Help links are designed for use within an application's on-line Help system, they
can also be used more generally (for example, the Contents file for the on-line developer
release notes contains links to the various release note files). For information about adding
a Help system to an application you're developing, see Chapter 3.

To work with Help links and markers, use the following commands in the Help menu
(choose the Help command in the Format menu):

• Choose Insert Link to insert a Help link at the current insertion point. In the Link
Inspector that appears, specify the name of a file and (optionally) a marker in that file.

• Choose Insert Marker to insert a Help marker at the insertion point in the main window.
A Marker panel appears in which you specify a name to associate with the marker.
When you insert a link to the marker, you'll identify it by this name.

• Choose Show Markers to show all the markers in the main window, or Hide Markers to
hide them.

If you want to edit a link or marker you've created, Command-click it to bring up the
Inspector panel. To delete a link or marker, select it and press the Delete key, just as you
would with text.

Adding Help Links 4-23

Using Templates

Three commands on the Expert menu-Expansion Dictionary, Insert Field, and Next
Field-let you for create and use glossary entries. Glossary entries are abbreviations for
commonly used text strings or templates that you can type and then expand into the full text
entry with a single keystroke.

To define a glossary entry, open the Expansion Dictionary·panel by choosing Expansion
Dictionary in the Expert menu.

[
-- ---- ----- -------- - -- --- - --------- ------ --- - - --------- ---- ----- -- ---------

_ ExpaJl~iot~ Dictionary . . f!1

'Ke~:~~i--"-"--'----~----------------------------~I!

Expansion 1=====================
;f~"::;~d:~~::::Z:;~'I- -It'~;~~~~i':7f ;!: ;~;~~~;~:;;;:;;'I'~X'~;:;II~f;=;~r i~;Z::~~i~~;;::;;1

In the Key field, enter an abbreviation for the text string or template. In the Expansion field,
enter the expanded text that you want the abbreviation to represent. If you want the
expansion to occupy more than one line, press Alternate-Return while typing in the
Expansion field to insert Return characters between lines. Note that when you press
Alternate-Return, the line of expanded text you just typed disappears from the field, leaving
room to type the next line.

To use a glossary entry, type the abbreviation in a document and then press the Escape key;
the abbreviation is replaced by its expansion. For example, if you frequently need to type
setOutputForm, you could use the Expansion Dictionary command to associate the
abbreviation "sof' with the longer declaration. To enter setOutputForm, you would only
have to type sof and press Escape. The abbreviation doesn't even have to be typed in
full for the expansion to occur, as long as what you do type refers unambiguously to a
glossary entry.

4-24 Chapter 4: The Edit Application

If you're using the Expansion Dictionary window to create a template containing fields
you'll be editing after the text is expanded, surround each field with European quotes (<<»),
as described below. For example:

Subject: «subject»
To: «recipient»
cc: «cc»»

«message»

You can enter European quotes in the Expansion field by choosing the Insert Field
command, or you can enter them directly from the keyboard by typing Altemate-(and
Altemate-). After inserting the template into a document, you can quickly find each
editable field by choosing the Next Field command, which positions the insertion point at
the next field in the template.

CAdd-~~-l

After entering the abbreviation and the expanded text it stands for in the Key and
Expansion fields, click the Add button to accept the new glossary entry.

r"'""save' 'I
Then to actually save the entry (so that it's there for the next work session), click Save.

r-R~m~~-e' ---I

To remove a glossary entry, type its abbreviation in the Key field and click the
Remove button.

[}hO~~~1

You can view the expanded text associated with an abbreviation by entering the
abbreviation in the Key field and then clicking Show.

E:USil
Click List to view a list of all available glossary entries.

Using Templates 4-25

Using Keyboard Editing Commands

In addition to letting you edit text using menu commands (and their keyboard equivalents),
Edit also supports several Emacs-style editing commands that can be typed from the
keyboard. The table below lists the key combination corresponding to each of these
commands and a description of what the command does.

Command

Control-B
Control-F
Altemate-b
Altemate-f
Control-A
Control-E
Control-D
Control-H
Altemate-d
Altemate-h
Control-K
Altemate-<
Altemate->
Control-N
Control-P

Action

Moves back one character
Moves forward one character
Moves back one word
Moves forward one word
Moves to beginning of line
Moves to end of line
Deletes next character
Deletes previous character
Deletes to end of current (or next) word
Deletes to beginning of current (or previous) word
Deletes forward to end of line
Moves to beginning of text
Moves to end of text
Moves down one line
Moves up one line

Interacting with UNIX

Edit provides some useful commands for using UNIX utilities from within Edit.
These include:

• Two commands for piping output from UNIX commands directly into Edit files

• A Source command that you can use with one or more tags files to locate program
objects in a group of files

4-26 Chapter 4: The Edit Application

Piping UNIX Output to a File

Edit lets you pipe the output of a UNIX command directly into an Edit window. This is a
useful technique for inserting output from other applications into your own programs.

For example, to produce a 1992 calendar in an empty window, choose Command in' the
Utilities menu, enter

cal 1992

in the panel that appears, and press Return. The output appears in an untitled window.

If instead you wanted the calendar to appear in the main window, position the insertion
point where you want the calendar to appear (or select what you want it to replace). Then
choose Pipe in the Utilities menu. Enter the same command as before and press Return.
This time the output appears in the main window at the insertion point or in place of the
current selection.

You can also use the Pipe command to manipulate the current text selection with another
UNIX program. If the command accepts input, the selection will be used as input-for
example, you could sort the selection with the sort command.

If there are Command and Pipe commands that you use frequently, you can define them as
menu items in the User Commands and User Pipes submenus in the Utilities menu. To do
this, enter a definition for each command in a file named .commanddict or .pipedict in
your home folder.

Each command definition contains at least two fields, separated by tabs:

command name<tab>command definition

For example, the following entry defines a Pipe command called Sort Selection, which runs
the UNIX sort command using the current selection as input:

Sort Selection sort -

One additional field (inserted between the two required fields and separated from them by
tabs) can be used to specify a keyboard alternative for the command. For example, this
definition of the Sort Selection command assigns to it the keyboard alternative
Command-5:

Sort Selection 5 sort -

Interacting with UNIX 4-27

If you make changes to your .commanddict or .pipedict file while Edit is running, you
must quit and restart Edit in order for your changes to appear in the User Commands or
User Pipes menu.

Two special variables can be used as arguments to the UNIX commands you specify:

$file

$selection

This refers to the file that's displayed in the main window (which
may be different from the contents of the window).

This refers to the contents of the current selection, which can be
either text that's selected in a file window or a file that's selected
in a folder window.

Here are some examples of how these variables might be used in a .commanddict
definition:

Print Two Up
GrepAppkit

P
A

en script -2r $file
fgrep -n "$selection" /usr/include/appkitl*.h

The first example prints the contents of the file that's displayed in the main window.
The second example searches for occurrences of the selected text in the Application Kit
header files.

Using a Tags File

If you're maintaining a large number of files as part of a programming project, you can use
Edit's Source command with a tags file to quickly locate the definition of an object in that
group of files. A tags file (which you create with the UNIX ctags command) lists the
locations of program objects (such as functions, procedures, global variables, and typedefs)
that are in a specified group of files.

To locate an object definition, simply select it and choose Source (or choose Source and
type the object name in the panel that appears). Edit searches one or more tags files for the
location of the object definition and then opens the file containing the definition. Normally,
Edit searches the tags file in the current folder (the folder containing the file in the main
window). However, you can specify other tags files to be searched either with the
Preferences command or by specifying the Tags option when starting up Edit from a
shell window.

More information on tags files is given in the ctags UNIX manual page. For more
information on using the Source command, see the command description in "Commands
in the Utilities Menu" later in this chapter.

4-28 Chapter 4: The Edit Application

Interacting with the GOB Debugger

A command named Gdb appears in the Edit main menu whenever you execute the GDB
view command (note that view is executed automatically by Project Builder when you ask
it to debug a project).

r:--::--- stopped -. -.-
Stop I

Run 1 Quit I

'Continue I Step I
. Finish '1" Next . I

r:==-: Une -~
1~I.Rununtilll
r--= Selection --

l~pri~tXII

]J~:~
[]

Stack-

'.. Browse {:':' I rs:oJ;
--..II ...•.

The Gdb command opens the panel shown here, which lets you perform basic debugging
operations on a project and its source files .. Commands not contained in the Gdb panel can
still be accessed by using the GDB debugger directly, as described in Chapter 13.

Since the Gdb command is visible only under certain conditions and has more to do with
debugging a project than with editing a document, the Gdb panel is described in the section
"Debugging" in Chapter 2, "The Project Builder Application."

Edit Command Reference

The following sections summarize the menus and commands available in Edit.

Commands in the Main Menu

Edit's main menu contains the standard Info, Print, Windows, Services, Hide, and Quit
commands. The other commands and the submenus they open are described in the sections
that follow. Several standard com.mands are discussed here only in terms of their particular
use in Edit.

Interacting with the GDB Debugger 4-29

Commands in the File Menu

Edit's File menu contains the standard Open, New, Revert to Saved, and Close commands.
The other commands are described here.

Command

Save, Save As, Save To,
Save All

Open Selection

Open Folder

4-30 Chapter 4: The Edit Application

Description

These are the standard commands for saving the contents
of the main window on the disk.

When you save a file, Edit first moves the contents of the
old version to a temporary backup file, which has the same
name as the previous file but with a tilde (-) appended to
it (for example, the backup file corresponding to Fruit.m
would be Fruit.m). Next, Edit writes the new version of
the file and then it (normally) deletes the backup file. If
something happens that prevents Edit from saving the file,
however, the backup file remains so you can recover its
contents. Or, if you always want the backup file to remain
(even after the new version is successfully saved), you can
set the "Don't delete backup file" option in the
Preferences panel.

While the file is being saved, "saving:" appears before the
file name in the title bar of the window (in the case of
small files, it appears only for an instant). Until "saving:"
has disappeared, don't use the file (for example, don't try
to compile or copy it).

Opens the file or folder currently selected in the main
window. Normally, you use this command on a selection
in a folder window. However, it also works on selected
text in a file window. The selected text must be either a
full pathname, or a file name or pathname relative to the
current folder (the folder containing the file in the main
window).

Displays a panel in which you enter the pathname of a
folder to be opened. When you click OK, the folder opens
in an Edit folder window. When the panel appears, Edit
displays the name of the current folder in the "Folder
name" field.

Commands in the Edit Menu

Edit's Edit submenu contains the standard Cut, Copy, Paste, Delete, and Select All
commands, plus commands for opening the Link menu and the Find menu described below.
Other commands are described here.

Command

Undelete

Spelling

Check Spelling

Description

Reinserts the most recently deleted text, even if the text
hasn't been put on the pasteboard. You can insert the
deleted text at a new location by positioning the insertion
point where you want to insert the text (or selecting text
that you want it to replace) and then choosing Undelete.

Opens the Spelling Panel for checking the spelling of
words in the main window. See "Checking Spelling."

Has the same effect as clicking Find Next in the Spelling
panel-that is, it finds the next word not contained in the
spelling dictionary. See "Checking Spelling."

Commands in the Link Menu

Edit's Link menu provides the following commands for working with linked documents.
For more information, see "Adding Linked Graphics."

Command

Paste and Link

Show Links, Hide Links

Link Inspector

Description

Pastes a copy of a graphic contained on the pasteboard,
but creates a link to the document that the graphic came
from, so that future changes to the original graphic will
affect the copy in the Edit document as well.

Shows (or hides) whether or not graphics are linked
by displaying a linked chain around the border of each
linked graphic.

Opens the Link Inspector panel.

Edit Command Reference 4-31

Commands in the Find Menu

Edit's Find menu contains the standard Find Panel, Find Next, Find Previous, and Enter
Selection commands. Other commands are described here.

Command

Jump to Selection

Line Range

Description

Scrolls the insertion point or current text selection
into view.

Opens a panel that identifies by number the line or line
range containing the current selection in the main
window. If the Character option in this panel is selected
instead of the Line option, then the character range is
displayed instead of the line range.

You can also use the panel to search for a particular line,
line range, character, or character range in the main
window. Enter a number or a range (a range is two
numbers separated by a colon) in the Range field. Click
the Select button to select that character, line, or range of
the file.

Commands in the Format Menu

The Format menu contains commands for displaying the standard Font and Text menus, as
well as Edit-specific Help and Structure menus. Commands on these menus are described
later in the sections that follow.

Command

Page Layout

4-32 Chapter 4: The Edit Application

Description

Displays the standard Page Layout panel for choosing
among various paper sizes, scaling factors, and
orientations for text printed from the main window.

When you print text that's displayed in a window, the
printed words wrap exactly as they're wrapped on the
screen. Therefore, if you change the page layout, the
width of the window may also need to be changed in order
for the text to print correctly. Changing the page layout
doesn't affect the size of the main window, so you'll need
to make this adjustment.

Commands in the Font Menu

The Font menu contains the standard Font commands, plus a few additional commands that
let you change the font properties of the text displayed in the main window-for example,
the Colors command opens the standard Colors panel, which you can use to change the
color of the selected text.

In an RTF file, font changes apply to the current selection and are saved when you save the
contents of the window. In an ASCII file, font changes are applied to the entire contents of
the main window-font changes in non-RTF files aren't saved when you save the contents
of the window.

Commands in the Text Menu

Edit's Text menu contains commands that let you change properties of the text displayed in
the main window. Some of these commands work only on text in RTF files; use the Make
Rich Text command if you want to change the contents of the main window from ASCII to
RTF.

Command

Align Left, Center,
Align Right

Make Rich Text,
Make ASCII

Nest, Unnest

Description

These align the text with the left margin (ragged right),
center it between both margins, or align it with the right
margin (ragged left).

Changes the format of the text in the main window from
RTF to ASCII, or vice versa. In an RTF file, font changes
and other text properties (such as superscripting and
subscripting) can be saved as part of the file and displayed
along with the text.

These help you indent blocks of program code. Select the
program lines you want to indent and then choose Nest.
Each line in the selected program text will be indented the
default amount (four characters, unless you've specified a
different default value in the Preferences panel or
overridden the default when you started up Edit from a
shell window).

Unnest moves the selected lines the default number of
characters to the left, thus counteracting the effect of Nest.

(continued)

Edit Command Reference 4-33

Command

Show Ruler, Hide Ruler

Copy Ruler, Paste Ruler

Description

Show Ruler displays a ruler at the top of the main window,
and the Hide Ruler command removes it. With this ruler
you can set margins, tabs, and paragraph indentation. See
"Using the Ruler" for details.

Copy Ruler copies the ruler settings of the paragraph
containing the insertion point or the beginning of the
current selection, so that you can subsequently paste them
with Paste Ruler. It's as though there's a separate
pasteboard for the ruler, and Copy Ruler replaces what's
already on it, just as Copy does for text.

Paste Ruler affects the paragraph containing the insertion
point or the current selection. It replaces the paragraph's
ruler settings with the last ones you copied with Copy
Ruler. If the current selection spans more than one
paragraph, Paste Ruler replaces the ruler settings of all the
selected paragraphs.

These commands don't require the ruler to be showing,
and they don't change the contents of the pasteboard.

Commands in the Help Menu

The Help menu provides the following commands, which are used to add or edit Help links.
Note that although Help links are designed for use within an application's on-line Help
system, they can also be used more generally (for example, the Contents file for the on-line
developer release notes contains links to the various release note files). For more
information about working with Help links and markers, see "Adding Help Links." For
information about adding a Help system to an application you're developing, see Chapter 3.

Command

Insert Link

Insert Marker

Show Markers,
Hide Markers

4-34 Chapter 4: The Edit Application

Description

Inserts a Help link at the insertion point in the main
window.

Inserts a Help marker at the insertion point in the
main window.

Shows (or hides) all the markers in the main window.

Commands in the Structure Menu

The Structure menu provides commands that control whether certain portions of the text in
the main window are expanded (that is, visible) or contracted (that is, hidden). These
commands are useful for working with files that have a regular multilevel structure, in
which the various levels of structure are represented by varying degrees of indentation (for
example, an outline or Objective C language source code). See "Contracting and
Expanding Text in a File Window" earlier in the chapter for a detailed introduction to this
Edit feature.

Command

Contract All, Expand All

Contract Sel, Expand Sel

Description

These contract or expand all the text in the main window.

These contract or expand the selected text in the main
window.

Commands in the Utilities Menu

Commands in the Utilities menu perform a variety of functions, such as providing an
interface to the UNIX shell and looking up information in a UNIX manual page. There are
also two customizable submenus-User Commands and User Pipes-to which you can add
commands that you've defined yourself.

Command

Command

Description

Displays a panel in which you specify a UNIX
command to be executed. The output of the command
appears in a window titled UNTITLED, rather than in
the main window.

Two variables can be used as arguments to the UNIX
command you specify:

$file refers to the file that's displayed in the main window.

$selection refers to the contents of the current selection,
which must be single file specification (wildcards can be
used). Normally this will be a file that's selected in a
folder window.

(continued)

Edit Command Reference 4-35

Command

User Commands

Pipe

User Pipes

Source

4-36 Chapter 4: The Edit Application

Description

Displays a menu of commands you've defined and saved
in a file named .commanddict in your home folder. Any
changes you make to the .commanddict file don't take
effect until the next time you start Edit. The
.commanddict file format is described in "Piping UNIX
Output to a File" earlier in this chapter.

Works the same as Command, with one important
difference: The output of the UNIX command that you
specify isn't displayed in another window-instead, the
output (including any error messages that might be
generated) appears in the main window at the insertion
point or in place of the current selection.

Displays a menu that contains pipe commands you've
defined and saved in a file named .pipedict in your home
folder. These commands may be similar to commands
you define in the User Commands menu, but the output
appears in the main window at the insertion point or in
place of the current selection, rather than in a separate
window.

The .pipedict file format is described earlier in "Piping
UNIX Output to a File."

Opens the file containing the definition of the program
object (such as a function, procedure, global variable, or
typedef) selected in the main window. This command
searches one or more tags files for the location of the
object definition and then opens the file containing the
definition. Normally, Edit searches the tags file in the
current folder (the folder containing the file in the main
window). However, you can specify other tags files to be
searched either in the Preferences panel or when starting
up Edit from a shell window.

Manual

Match

To locate an object definition, select the function name,
macro, or other program object in the file you're working
in and choose Source. Edit opens the file containing the
required information and highlights the first occurrence of
the object in the text. If you choose Source without
selecting text, Edit displays a panel that prompts you to
enter the program object you want defined. If Edit can't
locate the object, it informs you that no such tags file
entry for the object exists. (If this happens, use the
Preferences command to make sure that the pathname of
the tags file listing the location of the object is specified.)

A tags file is a file you create with the UNIX ctags
command. The file lists the locations of specified
program objects (such as functions, procedures, global
variables, and typedefs). More information on tags files
is given in the ctags UNIX manual page.

Displays a UNIX manual page in an Edit window. First
select the manual page subject in the main window and
then choose Manual. If there's no selection, a panel
appears prompting you for an entry.

If you select one of a matching pair of delimiters
(parentheses, braces, or square brackets) and choose
Match, the pair of delimiters and the enclosed text become
selected. You can also invoke this command by
dOlible-clicking either of the delimiters.

Edit Command Reference 4-37

Commands in the Expert Menu

The Expert menu provides the following advanced commands.

Command

Update Folder

CopyPS

Expansion Dictionary

Insert Field

Next Field

Close Ancestors

Close Descendants

4-38 Chapter 4: The Edit Application

Description

Updates the contents of the main window, which must be
a folder window. Folder windows aren't automatically
updated, so this command is useful when files in a folder
have been created, deleted, or renamed.

Copies the contents of the main window onto the
pasteboard as an Encapsulated PostScript (EPS) image.
Once pasted into an application that accepts EPS images,
the pasted copy of the text can no longer be edited.

Opens the Expansion Dictionary panel for managingtext
expansion definitions. See "Using Templates" for a
complete description of this panel.

Creates a new field in an expansion template. See "Using
Templates."

Moves the insertion point to the next field in an expansion
template. See "Using Templates."

Closes all Edit windows associated with each folder
that's neither the main window's folder nor one of its
subfolders.

Closes all Edit windows associated with each folder that's
a subfolder of the main window's folder. If the main
window is a folder window it will remain open, but if the
main window is a file window it will be closed as well.

=- - =

5 The Terminal Application

5-4 Introduction to Terminal

5-4 Setting Preferences
5-5 Window Preferences
5-6 Title Bar Preferences
5-7 VT100 Emulation Preferences
5-8 Display Preferences
5-9 Activity Monitor Preferences
5-10 Shell Preferences
5-11 Startup Preferences

5-12 Saving a Terminal Configuration for Later Use

5-13 Printing the Contents of a Terminal Window

5-13 Finding Text in a Terminal Window

5-14 Defining Services for Use in Other Applications

5-16 Terminal Command Reference
5-16 Commands in the Main Menu
5-16 Commands in the Info Menu
5-16 Commands in the Shell Menu
5-18 Commands in the Edit Menu
5-19 Commands in the Find Menu
5-20 Commands in the Font Menu

5-1

-= =

The Terminal Application

Although you can run standard UNIX programs and commands on a NeXTSTEP computer,
such programs aren't designed to be run directly from the workspace. Traditional UNIX
constructs such as standard input and standard output, which many UNIX-style programs
depend on, aren't part of the workspace interface.

To run these programs, you can use the Terminal application. Terminal offers a number of
useful features:

• Scrollers let you scroll backward to text that has already disappeared from the window.

• Text can be copied and pasted within a Terminal window, between windows, or to and
from other applications that support cutting and pasting, such as Mail and Edit.

• Terminal has a Print command to let you print the contents of a window, and a Find
command to let you search for text.

• Terminal's Services menu lets you make interapplication requests, such as defining a
word in Digital Webster™ or searching for references in the Digital Librarian™. You can
also define your own Terminal services for use in other appications.

• Terminal's Preferences command allows you to change the size, title bar text, emulation
characteristics, and font properties of one or more Terminal windows.

• Terminal provides strict VT 1 00'" terminal emulation. Every UNIX program or utility
you run (such as Emacs or vi) should work as intended.

The rest of this chapter describes Terminal in more detail.

The Terminal Application 5-3

Introduction to Terminal

A UNIX shell is a program that functions as an intermediary between you and the UNIX
operating system. As the shell runs, it prompts you for commands, interprets what you
type, and passes the commands to the operating system for execution. For more
information about the two most common UNIX shells, the Bourne Shell and the C Shell,
see their UNIX manual pages (sh(1) and csh(l».

You start Terminal (located in /NextApps) from the workspace as you would any other
application, by double-clicking its icon in the workspace or by using the Workspace
Manager's Preferences command to make Terminal start up when you log in. When
Terminal starts up, it will (if configured to do so) create a new Terminal window using the
default Preferences settings. You can create additional Terminal windows as you need them
using the New Shell command. To change a window's characteristics, select the
appropriate settings in the Preferences panel as described in the following section.

Setting Preferences

The Preferences command in the Info menu displays the Preferences panel, shown below.
The Preferences panel lets you change values and set new default values for various
Terminal options. For example, you can set the font properties of a particular window, or
specify different default font properties to be used for new windows. This section describes
the various preferences. The illustrations show the settings you start out with the first time
you use the Terminal application. As you click in shell windows, the Preferences panel
shows the settings for the main window.

Enter values and click buttons to specify new preferences, as described below. You may
need to click Set Window to set the new preferences (or, click Set Default to make the new
settings be the default settings or Show Default to show the currently defined default
settings). New settings remain in effect until you change them. However, some Preferences
settings affect only new windows but others affect existing Terminal windows as well.
(Specifically, when no buttons appear at the bottom of the panel, settings are global and
apply to all shell windows.)

5-4 Chapter 5: The Terminal Application

[

' Window Size - ,..,---- When Shell Exits

I· j C Alwaysclose the "'ndow " Columns: .B.-!!.._i' r Close the window if shell exits cleanly
, Rows: I ~c-I r Never close the window

I--------~~---~~~~'

jl:""'-Pt-, . ---Font

:: Set Default I' Show Default I. Set Window '61

Preferences options are divided into the following seven groups:

• Window preferences
• Title Bar preferences
• VT 1 00 Emulation preferences
• Display preferences
• Activity Monitor preferences
• Shell preferences
• Startup preferences

Each group of options is displayed in its own view in the Preferences panel. Select the view
you want by clicking the button labeled Window at the top of the panel and dragging.

Window Preferences

You can use the Window Preferences panel to set the size and font of one or more Terminal
windows. If you click Set Window, the settings are applied to the Terminal window
that's currently the main window. If you want the settings to apply to new windows, click
Set Default.

The Columns and Rows fields specify values for the number of columns and rows. Even
after setting the number of columns and rows, you can still resize the window, thereby
changing the number of columns and rows for that window.

Setting Preferences 5-5

iCc'"'" -'1' "'"',' •. When Shell E:xitS:p,'1"~' ::',;h"",:' f
fQ,Always close the windoW ".'. ." :'>',>

l'G~'C'lose the window if shell exits cleanly
t G!Never close the window . ' *' ,<»,,'

This field lets you specify what you want to have happen to a window when the shell
running in it exits. In some special situations, a window might not obey the default setting.
For example, double-clicking a command in the workspace results in a window that stays
open even after the command finishes executing.

Use the Font field to specify a font for one or more Terminal windows as follows:

• Click the Set button to open the Font paneL

• In the Font panel, select a font (note that only fixed-width fonts are listed) and font size.
Click the Set button in the Font panel to enter the settings in the Font field of the
Preferences paneL

• Click Set Window in the Preferences panel to set the font for just the main window, or
click Set Default to make this font the default for new windows.

Title Bar Preferences

You can use the Title Bar view of the Preferences panel to configure the title bar of one or
more Terminal windows. If you click Set Window, the new settings you specify are applied
to the Terminal window that's currently the main window. If you want the settings to apply
to new windows you create, click Set Default.

This field provides a number of elements that you can include in the title bar of Terminal
windows, including a "custom title" elerp,ent that you define yourself. Any combination of
elements can be used. If no elements are selected, the title that's used is simply Terminal.

5-6 Chapter 5: The Terminal Application

To specify a custom title, enter it in the Custom Title field. The custom title is used in the
title bar, however, only if you click the Custom Title box in the Elements field above.

As you experiment with various combinations of elements, the sample title bar displayed
in the Preferences panel is updated to show the effect of the current settings.

VT100 Emulation Preferences

The VT100 Emulation view is used to set the VT100 characteristics of Terminal windows.

Translate newlines to carriage returns when pasting

Generate VT100 codes from the keypad

Perform strict VT 100 emulation (not normally desirable)

"Translate newlines to carriage returns when pasting" should normally be checked. It's
required by some other operating systems, and it works correctly for most UNIX programs.

If "Generate VT 1 00 codes from the keypad" is checked, the keys on the numeric keypad
generate VT100 keypad sequences. Otherwise, the keys on the numeric keypad generate
the characters shown on the keys. Holding down the Alternate key while pressing a key on
the numeric keypad toggles the interpretation temporarily.

If "Perform strict VT100 emulation" is checked, some additional (and normally
undesirable) aspects of VT100 emulation are strictly enforced:

• If you type a Delete character at the left edge of a Terminal window, the command-line
cursor won't wrap around to the end of the previous line. This may make it difficult to
edit long command lines that wrap.

• Strict DECCOLM handling is enforced. Otherwise, the DECCOLM escape code to
change the window's size is obeyed only if the new size is larger than the old size.

• The + key on the numeric keypad generates a comma (,) character.

Setting Preferences 5-7

Qenerat1es Escape sequences
key generates special characters

When "Alternate key generates Escape sequences" is selected, typing a character while you
hold down the Alternate key causes a two-character sequence to be generated-an Escape
character followed by the character you typed. (This is useful when running Emacs, so you
can use the Alternate key as a Meta key). Click "Alternate key generates special characters"
if you want Alternate key combinations to generate a single character with the high bit set.

Note: If necessary, you can specify a character other than Escape as the first character in
a two-character sequence. To do so, use the dwrite shell command to set the value of the
Terminal Meta variable to the decimal value of the desired character.

Display Preferences

The Display view of the Preferences panel is used to set various display characteristics of
one or more Terminal windows. If you click Set Window, the new settings you specify are
applied to the Terminal window that's currently the main window. If you want the settings
to apply to new windows you create, click Set Default.

Length: ·OiUnlimited r;~! L,w,~."*',, d' ."I} lines

If the Enabled box is checked, windows retain text that scrolls off the top of the window
in a scrollback buffer, allowing text that's scrolled off the window to be scrolled back
into view, copied, or printed. Otherwise, text that scrolls off the top of the window can't
be retrieved.

If you enable the scrollback buffer, you can choose to let it grow without limit or you can
specify the maximum number of lines that you want saved. Whichever you choose, you
can use the Edit menu's Clear Buffer command at any time to clear the buffer.

Although it's often useful, the scrollback buffer adds to the amount of memory that's used
by the Terminal program, and is unnecessary in some Terminal windows (for example, one
that's running a text editor such as Emacs rather than a UNIX shell).

5-8 Chapter 5: The Terminal Application

I·..,.,.."""""':"'~=~,....,...,..~,..,,,.. Other Optlons-." _.:"' ... _:~ ;. ..•. _n., ... ,

:~ Wrap lines that are too long (rewrap when window resized)

J]fj Scroll to the bottom of the window when input is received

If the "Wrap lines that are too long" box is checked, characters that would extend beyond
the right edge of the window wrap around to the beginning of the following line.
Otherwise, each line of text occupies only one line in the window-the last character that
fits on a line gets overwritten by subsequent characters that appear on that line.

If the "Scroll to the bottom of the window when input is received" box is checked, typing
in the Terminal window causes the window to scroll to the end of the buffer and display the
insertion point (of course, if the insertion point happens to be already visible and positioned
at the end of the buffer, no scrolling occurs). Otherwise, typing never causes the window
to scroll automatically.

Activity Monitor Preferences

Normally, Terminal tries to determine whether your Terminal windows are in active use
(busy) by keeping tabs on the processes inside them. If Terminal thinks something
interesting is going on inside a window, it marks the window with a broken X. As with
unsaved document windows in other applications, you'll be prompted for confirmation
before closing a busy window or quitting Terminal when there are busy windows.)

To determine whether a window is clean (not busy), Terminal looks at information about
processes it considers relevant. For example, Terminal considers shells and a few other
processes such as su to be innocuous and in general will not mark windows busy on account
of them. Occasionally Terminal may be wrong about whether a window is clean or not.

You can designate additional clean command names in the Clean Commands list (likely
candidates are r10gin and telnet, shown here). Commands you specify in this list aren't
used in determining whether a window is busy or clean.

Setting Preferences 5-9

[(feIActiY"itY iTI()flrtorenabre~"l
Click this button if you want to enable or disable activity monitoring. When activity
monitoring is off, Terminal always asks for confirmation before letting you quit.

~grOUndProces~:.. are "clean']

Click this button if you want to specify whether or not background processes are considered
relevant in determing whether a window is clean. For example, a window running a
background process could be considered clean, as long as the process is running happily in
the background. (The current process or one that you've explicitly suspended with
Control-z will always cause the window to be classified as busy.)

Note: Terminal can't respond to processes running on other machines, so you shouldn't
rely on Terminal's process monitor when logged into a remote system.

Shell Preferences

The Shell view of the Preferences panel is used to specify a shell or other program to be run
in Terminal windows.

Ibin/csh

Use the Shell field to specify the absolute pathname of a shell or program to run on startup.
Possible values include Ibinlcsh, Ibinlsh, Ibinlgdb, lusrlbinlemacs, and lusr/ucb/vi.

Note: You must press the Return key after entering the pathname in order for the new value
to be set.

Il£I.Read login script I
If the "Read login script" box is checked (and you're using csh), Terminal runs your .login
file for each new Terminal window you open. Otherwise, the .login file is ignored.

5-10 Chapter 5: The Terminal Application

Startup Preferences

The Startup view of the Preferences panel lets you specify what happens when Terminal
starts up.

1'-. When Terminal St. arts Up
; G Do nothing r (!·Open the startup file
I 0 Create a new shell window ! .. ,
..., ... , ... _,,' v, .~'" _ •• , ,~" •• ' < "'<" . ,

When Terminal starts up you can have it do nothing (that is, create no windows), create one
new shell window, or open a startup file (that is, a configuration file that specifies a
collection of windows to open). If you select "Open the startup file," you need to make sure
a startup file is specified in the Startup File portion of the panel, described below.

For information about how to create a startup tile, see "Saving a Terminal Configuration for
Later Use."

r------------

E
O,'.'."" ', •. Auto-,LaunCh ~,'."" , ... ", ~ . !,

l Hide on Auto-Launch1l] .
: ' ~

v.' '" . > • , , • >, ,. ~ v"

Click here if you auto-launch the Terminal application and want it to be hidden initially.
This button has no effect if you don't auto-launch Terminal.

-. ~~---- ~~--

I
i.' ...• , •. ",' ' .•. ' .•.. ". ,.' .•• Startup File .. , - ~.~. '".'- ' ...• ".' .:.~. 'I'
~ "_"'_ lI'_"ik~~_ !

I' Path: I I! If" seL-·1 I
~ . ,._......,. """"'",,,,,,, ... -,",,, _,,,o~~,,.,,A._"",,,,,~_,,,»~ ~"'_ _* >'l'<_ ~,,.,It; ,,_,~~ .. ~'"".. "'''~

"*~~'o"''' '_'""'" ''''~ -, ,,,,' <-.-~ ,N,_,,'_" , ~,""''';-v'''W'''r'''+~·''''''''''''~'''''''"'<r,_'''.'''',,:<_''_'''~"<''''''''~'''''' ""1f"""''''~~'''*'''"''' ~.

Although you can have any number of Terminal configuration files in your
-lLibrarylTerminal directory, you can specify only one as the startup file. To specify a
particular Terminal configuration file as the startup file, type its pathname in the Path field
or click Set to open an Open panel in which to select the pathname.

Note: The pathname you enter must be an absolute pathname beginning with a slash (/);
characters such as,... won't work.

Setting Preferences 5-11

Saving a Terminal Configuration for Later Use

Information about a window or set of windows can be saved to a file, allowing you to save
your preferred configurations for later use. Everything about each window is saved except
the contents of the scrollback buffer-this includes the shell, the size and location of the
window on the screen, the title bar and font characteristics, and whether or not the window
is miniaturized. To save a configuration, choose Save (or Save As) in the Shell menu.
Terminal appends a .term file extension to the file name you specify. Since Terminal looks
for configuration files in your lLibrarylTerminal directory, this is where you should
save them.

When you first save the configuration (or whenever you choose Save As), you can choose
whether you want just the main window or all windows saved to the file.

Once a window is associated with a file, you can use the Save command to flush the settings
out again without seeing a Save Panel, just as with other documents. However, if more
than one window belongs with that file, all the relevant windows will be resaved (the menu
item indicates this by changing to Save Set). This allows you to open your favorite set of
files, rearrange the windows, then just choose Save to save them all back into the file. There
is no way to select a subset of the currently open windows to go into a new file.

To open a configuration file, choose Open in the Shell menu. To have a configuration file
open automatically each time you start up Terminal, either check the box in the Save or
Save As panel, or specify the filename in the Startup view of the Preferences panel.

5-12 Chapter 5: The Terminal Application

Printing the Contents of a Terminal Window

To print all or part of the text in a Terminal window, open the Print panel by choosing Print
in the main menu. Terminal's Print panel is similar to the standard NeXTSTEP Print panel,
but there are two options not contained on the standard panel.

Ir-. Text Attributes

i Q'Print III
l_~.:~:~' p~int, .~

Click the Print button or the Don't Print button to specify whether or not text attributes
(underlining and highlighting) are included in the printed output. Print indicates that text
attributes appear in the output; Don't Print indicates that the text attributes won't appear.

""'" "'-Ranger-:-_~ .. '. i

Q;Visible :::= =- i

Q Selectlon C!!-:~j .. :.'
GiAIi ."":.=-=; - . . _.

Click one of the three Range buttons to specify the range of text to be printed. All indicates
that the entire contents of the scrollback buffer should be printed. Selection indicates that
the selected text, whether visible or not, should be printed. Visible indicates that the text
that's visible in the window should be printed.

Finding Text in a Terminal Window

The Find panel lets you search for text in the main Terminal window. To open the Find
panel, choose Find Panel in the Find menu.

I 'Rnd -.--.-------.. ~

The Find panel locates the next occurrence of a specified string, and can search either
forwards or backwards. In the Find field, enter the string to search for. The controls in the
Find panel have these effects:

Printing the Contents of a Terminal Window 5-13

Control

Next

Previous

Ignore Case

Effect

Selects the first occurrence of the Find string following
the current selection or insertion point. (Pressing the
Return key has the same effect, but with one difference: If
you've used the keyboard alternative to display the panel,
pressing Return causes the panel to disappear instead of
remaining on the screen.)

Selects the first occurrence of the Find string, searching
backward from the current selection or insertion point.

Makes the find operation case-insensitive (that is,
capitalization is ignored when determining a match). If
this box is unchecked, the search is case-sensitive.

If the end of the text is reached, Find continues searching from the beginning (conversely,
when searching backward, if the beginning of the text is reached, Find continues searching
from the end).

If no instance of the Find string is located, Terminal beeps and the message "Not Found"
appears in the Find panel.

Commands in the Find menu (which is in the Edit menu) provide alternatives and shortcuts
to using the Find panel. There's also a Jump to Selection command for scrolling the
insertion point into view. For more information, see "Terminal Command Reference" at
the end of this chapter.

Defining Services for Use in Other ·Applications

Although by default Terminal doesn't make services available to other applications via the
Services menu, Terminal does contain a Terminal Services panel that you can use to define
any services you want Terminal to provide.

To open the Terminal Services panel, choose Terminal Services in the Info menu. If no
Terminal services are defined, you'll see a panel asking if you want to load a set of example
services. You may find it useful to load and examine this set of examples, and then remove
any you don't want to keep.

5·14 Chapter 5: The Terminal Application

....... , Tennlnal serVices "l~

if' Sort " ___ ._.~_~;
I~fime U
:JJ Evaluate Arithmetic l!
.!l Enscrlpt File . l\

l~r~:::~~;::::~::J:b1
~
'. ~ccePt.:~ 0'. .. U. se sec lectlon .-. ,,-
, PI~1n text~ '. r. On Cmd Line
; Rich text.u; O' A I t
• Files:~, .,,1 s npu,

, .. , ~ ,• ~xecutlon -.~.,~ .. ~~
; ;'Run~:rer\iic'ein' the 'Background .. ':~I

, (') Return Output 0 No Shell
, r Discard Output n.Default Shell.

r Fast C-shell
" .. "

;·;:S'~~~:··-:WR~~~~~·11·:'-:·N~~c··'lfOC:~1

Currently defined services are listed in the list at the top of the panel. You can add new
services, as well as redefine or delete existing commands.

• To add a service, click the New button. A new entry named New Service #1 is added to
the service list. Type the name that you'd like to appear in the Services menu, and then
configure the service using the controls in the Tenrunal Services panel. When you're
done, click OK.

• To delete a service, select it and click the Remove button.

• To modify a service definition, select its name and then redefine the service using the
controls on the Terminal Services panel. When you're done, click OK.

The Accept field lets you specify what type of data the service accepts. Click one or more
of these buttons as appropriate.

The Use Selection field lets you specify whether the selected text should be used as a
command-line argument, or as input to the service. Click one or the other as appropriate.

The Execution field lets you specify various options that affect the execution of the service,
such as whether the output is returned or discarded.

When defining the service, you can use the tokens %s and %p to refer to the locations
where the selection and prompted input are inserted, respectively. Prompted input isn't
requested unless % p appears in the definition.

Defining Services for Use in Other Applications 5·15

Terminal Command Reference

The following sections summarize the menus and commands available in Terminal.

Commands in the Main Menu

Terminal's main menu contains the standard Print, Windows, Services, Hide, and Quit
commands. The other commands and the submenus they open are described in the sections
that follow. Several standard commands are discussed here only in terms of their particular
use in Terminal.

Commands in the Info Menu

Terminal's Info menu provides the standard Info Panel command, plus the following
commands.

Command

Preferences

Terminal Services

Description

Opens the Preferences panel. See "Setting Preferences."

Opens the Terminal Services panel. See "Defining
Services for Use in Other Applications."

Commands in the Shell Menu

Terminal's Shell menu provides the following commands.

Command

Open

New

5-16 ChapterS: The Terminal Application

Description

Opens an existing shell window or set of shell windows
that have previously been saved in a file using the Save (or
Save As) command.

Opens a new shell window, using the default settings.

Run Command

Save, Save As

Set Title

Steal Keys

Page Layout

Displays a panel in which you enter a UNIX command to
be run. The command is run in a new Terminal window.
(The command is displayed as the title of the window;
when the process running in the window has completed,
the title changes to "Dead Terminal.")

Saves a window or set of windows to a file, allowing you
to save and reuse your preferred configurations. See
"Saving a Terminal Configuration for Later Use."

Displays a panel for you to edit and set the current title of
the window. The Preferences panel allows greater control
over this-you can combine your own text with
Terminal's automatically updated information. See "Title
Bar Preferences" for more information.

Allows you to effectively debug an application from a
shell window in which the GNU debugger is running. The
debugging process frequently involves alternately
activating Terminal (to type debugger commands) and the
other application (to test the application being debugged).
However, clicking to alternatively activate and deactivate
the application being debugged causes the application to
change its state in unpredictable ways.

To let you get around this problem, the Steal Keys
command puts Terminal in a special debugging mode. In
this mode, Terminal can be activated or deactivated
simply by moving the cursor into or out of the Terminal
shell window. Therefore, you can easily activate Terminal
whenever you want to type a debugger command, without
clicking and thus affecting the state of the application
you're debugging.

When you're ready to exit debugging mode, click in the
Terminal window to make the Terminal main menu
reappear, and then choose this command again (its name
will have changed to Yield Keys).

Displays the standard Page Layout panel, which lets you
choose among various paper sizes, scaling factors, and
orientations for text printed from the main window.

Terminal Command Reference 5-17

Commands in the Edit Menu

Tenninal's Edit menu provides the standard editing and text-searching commands, which
can be used for finding and editing text in a Terminal window.

Command

Cut, Copy, Paste

Find

Clear Buffer

Select All

5-18 Chapter 5: The Terminal Application

Description

These commands let you copy or move text, either
between Tenninal windows or between a Terminal
window and another window that supports copying and
pasting. To duplicate text, select the text and choose
Copy. To insert the most recently cut or copied text at the
Terminal window's command-line cursor location,
choose Paste.

Copy puts a copy of the selected text onto the pasteboard,
from where it can be pasted with the Paste command. The
pasteboard holds just one selection; each Copy operation
overwrites the previous contents of the pasteboard.

Note: Cut is always disabled. The only way to remove
text from a Tenninal window is to use the Clear Buffer
command.

Displays a menu that contains commands for finding text,
as described below in "Commands in the Find Menu."

Removes text from the scrollback buffer, leaving just the
current command line.

Selects all the text in the main window. This is useful, for
example, when you want to copy the entire range of text
to another application, such as Edit.

Commands in the Find Menu

The Find menu contains commands that let you search for text in the main Terminal
window.

Command

Find Panel

Find Next, Find Previous

Enter Selection

Jump to Selection

Description

Opens the Find panel, which allows you to locate the next
occurrence of a specified string. For more information,
see "Finding Text in a Terminal Window."

These are the standard Find menu commands. The Find
Next command performs the same function as the Next
button in the Find panel, and Find Previous is the same as
the Find panel's Previous button.

Copies the selected text in the main window into the Find
panel's Find field, even if the Find panel isn't open or the
key window.

When the insertion point or current text selection isn't
showing in the main window, the Jump to Selection
command scrolls it into view. If there's no insertion point
or current text selection, this command scrolls to the end
of the buffer.

Note: Clicking in a Terminal window positions the
-insertion point where you clicked. However, the insertion
point isn't visible since it's not possible to perform any
copy or paste operation on it. This may cause some
confusion, since the Jump to Selection command may
sometimes jump to a location that doesn't appear to have
any selected text associated with it.

Terminal Command Reference 5-19

Commands in the Font Menu

The Font menu contains the standard Font menu commands described in the User's
Reference Manual. However, these commands apply to the entire contents of the Terminal
window, not just to selected text.

Command

Font Panel

Bold, Italic

Larger, Smaller

Copy Font, Paste Font

5-20 Chapter 5: The Terminal Application

Description

Displays the standard Font panel, which lets you choose
among various fonts, typefaces, and font sizes. However,
only fixed-width fonts, such as Courier and Ohlfs, can be
used in Terminal. Also note that Ohlfs is strictly a screen
font-text displayed in Ohlfs prints as Courier instead.

Makes the text in the main Terminal window become bold
or italic.

Makes the text in the main Terminal window become
larger or smaller.

Copy Font copies the font settings of the main window, so
that you can paste them into another window with the
Paste Font command.

= =

6 The Icon Builder Application

6-4 Creating, Opening, and Saving Documents
6-4 Creating a New Document
6-5 Opening an Existing Document
6-5 Saving a Document

6-5 Editing Icon Documents
6-5 Using Icon Builder Tools
6-7 Using the Tools Inspector
6-8 The Brush Inspector
6-8 The Line Inspector
6-9 The Oval Inspector
6-9 The Pencil Inspector
6-9 The Rectangle Inspector
6-10 The Selection Inspector
6-11 The TextTool Inspector
6-11 Zooming In on a Document
6-12 Changing the Attributes of a Document
6-12 Working with Multiple-Icon Documents

6-13 Icon Builder Command Reference
6-13 Commands in the Main Menu
6-14 Commands in the Document Menu
6-14 Commands in the Format Menu
6-15 Commands in the Tools Menu

6-1

rr:==73==

The Icon Builder Application

The Icon Builder application is a simple yet effective tool-either alone or in combination
with a more powerful drawing application-for creating application icons. Although Icon
Builder itself isn't intended to be a full-featured drawing application, it offers not only
integration with other drawing applications, but also the ability to create and edit
multiple-icon documents.

You can start Icon Builder (located in /NextDeveJoper/Apps) from the workspace as you
would any other application, by double-clicking its icon in the workspace. When Icon
Builder starts up, it displays a panel of tools used to edit icon documents.

The Icon Builder Application 6-3

Creating, Opening, and Saving Documents

When Icon Builder starts up, it creates one new Icon Builder window using the default
Preferences settings. You can create additional Icon Builder windows as you need them, as
described in the following section.

Creating a New Document

To create a new document, choose the New command in the Document menu. This creates
a document with the default attributes (typically, the document contains a single 48-pixel
by 48-pixel, non-alpha, 2-bit gray image with a white background). You can change the
attributes of the document after it's been created, as described later in the section
"Changing the Attributes of a Document."

To create a new document with nondefault attributes:

1. Bring up the New Document panel by choosing the New Layout command in the
Document menu.

2. Set options in the New Document panel, and then click OK to create a new document.
If you want to change the default attributes for all documents created with the New
command, click Set Default instead.

For example, if you want to create an icon for use on both color and black and white
displays, you would check the "2 bit gray" box as well as the "12 bit color" box ("8 bit
gray" and "24 bit color" could also be used). Check the "Has alpha" box if you'll be using
alpha. To change the background color, pick a color in the Colors panel (accessed in the
Tools menu) and drag the color into the Background Color color well.

6-4 Chapter 6: The Icon Builder Application

Opening an Existing Document

To open an existing document, choose the Open command in the Document menu and use
the Open panel to find the document.

The document you open may be an icon you're working on, or it may simply contain an
image that you want to copy a selection from in order to paste it into another document. In
addition to TIFF files, Icon Builder can open GIF and EPS files.

Saving a Document

To save a document to a file, choose the Save command in the Document menu. If the
document hasn't been saved yet, a Save panel appears prompting you to specify a name and
location for the file.

Even if the file you're saving was opened as something.other than a TIFF file (a GIF file,
for instance), it will be saved as a TIFF file.

Icon Builder saves TIFF files in uncompressed format, so before making the file part of
your application project, you should use the tiffutil utility to compress the file. See the
tiffutil(1) UNIX manual page for more information.

Editing Icon Documents

This section describes various ways to edit an icon document, including the set of Icon
Builder tools and an inspector for fine-tuning those tools. Other editing techniques
described involve zooming in and out, changing the attributes of a document, and working
with multiple-icon documents.

Standard cut, copy, and paste techniques can also be used, although these aren't
described here.

Using Icon Builder Tools

A variety of drawing tools are available and accessible from the Tools panel, which appears
automatically when you start Icon Builder. If you close or misplace the panel, you can
retrieve it by choosing the Tools command in the Tools menu.

Editing Icon Documents 6-5

To use a tool, select it by clicking its icon in the Tools panel. Once you've selected a tool,
use it to edit the contents of the document window.

Note: When using the Tools panel, you should have the Colors panel open as well. All the
drawing tools draw using the color (or shade of gray) that's currently displayed in the
Colors panel. You can also use the Colors panel to specify the degree of alpha coverage
(that is, opacity), as well as whether or not painting is done in overlay mode.

The following paragraphs describe the tools on the Tools panel.

The Brush tool is useful for filling in large areas with a particular color. Click once to
deposit a brushful of color, or click and drag to cover a larger surface area.

The Line tool draws straight lines. Click to mark the start point, and drag to the end point.
The line you see being drawn as you drag is only for guidance-the final line is drawn only
when you release the mouse.

The Oval tool draws circles and ovals. Click and drag to determine the position, size, and
shape. It's hard to predict the start and end point with accuracy, so you may want to use
another document window as a scratch area and then copy and paste the oval once you're
satisfied with it.

The PaintBucket tool changes the color of a contiguous, identically colored group of pixels.
The color they're changed to is the color that's currently in the Colors panel. Before using
the PaintBucket tool, you may want to use the ObeseBits panel to be sure that all the pixels
are in fact identical in color-if minor gradations in color are used to achieve the
appearance of a particular shade, the new color won't spread from pixel to pixel.

The Pencil tool draws freehand lines. Click to start the line, and drag to indicate the path
of the line. Unlike the Line tool, the Pencil tool draws the final line as you drag. If you
don't like the result, use the Undo command in the Edit menu to undo it.

6-6 Chapter 6: The Icon Builder Application

The Rectangle tool draws squares and rectangles. Click to position a comer point, and then
drag in any direction to form the rectangle.

The Selection tool selects a rectangular area for further editing. For example, after
selecting an area you might go on to copy the selection to the pasteboard, or even delete
the selection.

The Text tool is used to add text to an image. If you select the Text tool and then click the
cursor in a document window, the contents of the TextTool inspector (by default, the word
Text-probably not what you want in your icon!) are copied to the cursor location. As long
as you don't release the mouse button you can drag the text to reposition it, but once you
let go the text becomes fixed in that position.

In order to use the Text tool effectively, you should first enter the desired text in the
TextTool inspector. Set the font attributes and font size as you wish. Then use the Text tool
to insert the text in the document window, or-to be on the safe side-insert the text first
in a temporary scratch document, and then cut and paste the text into the document window.

Other tools besides the Text tool have default attributes that you can change using the Tools
Inspector, as described in the next section.

Using the Tools Inspector

The Tools inspector is a panel that gives you greater control over the characteristics of the
tools available in the Tools panel.

To bring up the Tools inspector, choose the Inspector command from the Tools menu. To
display the inspector for a particular tool, click the tool's icon in the Tools panel.

Note: There is no inspector available for the PaintBucket tool.

Editing Icon Documents 6-7

The Brush Inspector

The Brush inspector appears in the Inspector panel when you select the Brush tool in the
Tools panel.

Click a button to change the shape and orientation of the brushstrokes you make.

The Line Inspector

The Line inspector appears in the Inspector panel when you select the Line tool in the Tools
panel. You can use this inspector to change the width and end shape of the lines you draw.

Use the slider or the text field to set the line width to any value between 1 and 50 pixels.

Click one of the three Line Cap buttons to determine how the ends of lines are drawn. The
setting becomes less critical as the line width decreases-a one-pixel line is drawn the same
no matter what style of line cap is selected.

6-8 Chapter 6: The Icon Builder Application

The Oval Inspector

The Oval inspector appears in the Inspector panel whep. you select the Oval tool in the
Tools panel.

Click one of the five buttons to change the appearance of the circles and ovals you draw.

The Pencil Inspector

The Pencil inspector appears in the Inspector panel when you select the Pencil tool in the
Tools panel. You can use this inspector to change the width of the freehand lines you draw.

Q
........ n •• :. Width

1 '. '. ··I .. ~. __ ._ J
l __ .l .. I:.!.r ~~!~~t!~~;:Jl~;'~; 60

Use the slider or the text field to set the line width to any value between 1 and 50 pixels.
Thicker lines cause the drawing speed to decrease, so you may need to move the mouse
more slowly in order for the drawing process to keep up with it.

The Rectangle Inspector

The Rectangle inspector appears in the Inspector panel when you select the Rectangle tool
in the Tools panel. You can use this inspector to change the appearance of the squares and
rectangles you draw.

Click one of the seven buttons to change the appearance of the squares and rectangles
you draw.

Editing Icon Documents 6-9

The Selection Inspector

The Selection inspector appears in the Inspector panel when you select the Selection tool
in the Tools panel. You can use this inspector to change the orientation of (that is, flip or
rotate) the current selection.

Choose Flip or Rotate in the pop-up list at the top of the panel. The available options vary
depending on which you choose.

:.OVertical
,; ,.,

Horizontal

If you choose Flip, you'll see these Flip filter attributes. Click either Vertical or Horizontal
to indicate the direction in which you want the selection to be flipped.

If you choose Rotate, you'll see these Rotate filter attributes. Specify a value between 0
and 360 using either the slider or the text field. This value represents the number of degrees
the selection will be flipped in a clockwise direction.

Once you've selected the options, click Apply to flip or rotate the selection. If you don't
like the results, click Revert to return the selection to its former orientation.

6-10 Chapter 6: The Icon Builder Application

The TextTool Inspector

The TextTool inspector appears in the Inspector panel when you select the Text tool in the
Tools panel. You use this inspector to input the text to be inserted in the document window,
as well as to change the font attributes and formatting of the text prior to inserting it.

Type the text you want to insert in the document window. Use the Font panel to set the font
attributes and size of the text. (You may also want to use commands in the Text menu to
format the text.) Then select the Text tool and click in the document window to insert the
text in the document.

Zooming In on a Document

When you're doing detail work on an image that's only 48 pixels across, you may find
yourself wishing you had a magnifying glass. If you start feeling this way, choose the
ObeseBits command in the Tools menu to bring up the ObeseBits panel.

This panel magnifies the image in the main window, and lets you zoom in or out (that is,
increase or decrease the degree of magnification). The buttons along the top of the panel

Editing Icon Documents 6-11

give you the control you need-use the plus and minus buttons to zoom in or out, and the
arrow buttons to change the portion of the image being displayed.

There are actually two ObeseBits panels, as shown in the figure. The big panel is for
editing; the small panel sits over the document window and shows the exact portion of the
image that's contained in the big panel. You can drag the small panel by its title bar, thereby
changing the portion of the image being displayed in the panel.

The ObeseBits panel associates itself with whatever window is the main window. Clicking
the document containing the Webster icon in the figure, for example, would cause the small
ObeseBits panel to jump to that document window. The contents of the big panel would
change accordingly.

Note: Although the drawing tools in the Tools panel can be used directly in the ObeseBits
panel, the result isn't always intuitive. For example, the size of the Brush cursor doesn't
accurately represent the brush size that's used when stroking the brush. Use the Undo
command in the Edit menu to undo any changes that you regret making.

Changing the Attributes of a Document

After you've created a document or opened an existing document, you may find it necessary
to change its size, format, or other characteristics. For example, you might decide to add
alpha to a document that doesn't have it.

To make such changes, first click the document window to make sure it's the main window.
Then open the Document Layout panel by choosing the Document Layout command in the
Format menu.

The Document Layout panel is identical to the New Document layout panel that was
described earlier. The only difference is that this panel is used to change the attributes of
an existing document, rather than determine the attributes of a new document.

Note: If you set new default attributes in the Document Layout panel, these become the
default attributes for the New Document layout panel as well.

Working with Multiple-Icon Documents

One Icon Builder document (that is, one TIFF file) can contain more than one icon. This
is typically the case, for example, when you want to have one icon for color monitors and
another for grayscale monitors-if the two icons are in the same TIFF file, the appropriate
icon is displayed automatically on each type of monitor, without any work on your part.

6-12 Chapter 6: The Icon Builder Application

To create a multiple-icon document (or to change an existing single-icon document to a
multiple-icon document), select the desired depth settings in the New Document panel (or
the Document Layout panel). Then click OK.

Use the pop-up list that appears in the lower right comer of a multiple-icon document
window to access the various icons.

If you create a mUltiple-icon document, remember that you have to edit each icon. When
you save the document, all the icons in the document are saved-not just the one that's
currently visible in the document window.

Icon Builder Command Reference

This section describes the application-specific menus and commands available in Icon
Builder. For descriptions of standard menus and commands, see the User's Guide.

Commands in the Main Menu

Icon Builder's main menu contains the standard Edit, Windows, Print, Services, Hide, and
Quit commands. The Document, Format, and Tools commands display submenus that are
described in the following sections.

Document

Format

Tools

Displays a menu of commands for creating, opening, and
saving document windows. See "Commands in the
Document Menu."

Contains commands for opening the standard Font and
Text menus, plus the Document Layout command for
specifying the layout of the document in the main
window. See "Commands in the Format Menu."

Contains commands for opening a panel containing the
tools available for use in creating an icon. See
"Commands in the Tools Menu."

Icon Builder Command Reference 6·13

Commands in the Document Menu

Icon Builder's Document menu provides the following commands.

Command

Open

New

New Layout

Save, Save As

Revert to Saved

Description

Opens an existing document window. See "Opening an
Existing Document."

Opens a new document window using the default
attributes. See "Creating a New Document."

Displays a panel that lets you change the default attributes
used in creating a new document. See "Creating a New
Document."

Saves a document (consisting of one or more TIFF
images) to a TIFF file. See "Saving a Document."

Undoes the changes that have been made since the last
time the document was saved.

Commands in the Format Menu

Icon Builder's Format menu contains menus of standard font and text commands, which
can be used to affect the appearance of text used in Icon Builder.

Command

Font

Text

Document Layout

6-14 Chapter 6: The Icon Builder Application

Description

Opens a menu of standard Font commands, which you use
to set the font characteristics of the selected text in the
TextTool inspector.

Opens a menu of standard Text commands, which you use
to set the attributes of the selected text in the TextTool
inspector.

Displays the Document Layout panel, which you use to
change the attributes of a document window. See
"Changing the Attributes of a Document."

Commands in the Tools Menu

The Tools menu contains commands for accessing the primary tools provided in
Icon Builder.

Command

Inspector

Tools

Colors

Obese Bits

Load Tool

Description

Opens the Inspector panel, which you use to change the
appearance and behavior of the available tools. See
"Using the Tools Inspector."

Opens the Tools panel, which you use to select among
available tools. See "Using Icon Builder Tools."

Opens the standard Colors panel, which you use to choose
color or grayscale values.

Opens the ObeseBits panel, which you use to magnify the
. contents of a document window. See "Zooming In on a
Document."

Opens the Load Tool panel, which you use to load a
nonnative tool located somewhere on the file system.

Icon Builder Command Reference 6-15

=

7 The DBM odeler Application

7-4 Creating, Opening, and Saving Models
7-5 Creating a New Model
7 -6 Opening an Existing Model
7 -6 Saving a Model

7-6. Working with Entities and Properties
7 -7 Entities
7 -8 Properties

7-9 Setting Preferences

7-10 DBModeler Command Reference
7 -10 Commands in the Main Menu and the Model Menu
7 -10 Commands in the Entity Menu
7 -10 Commands in the Property Menu

7-1

=

The DBModeler Application

With the DBModeler application, you can quickly and easily build data models based on
the structure of your relational databases. DBModeler derives information about the
database's structure or schema through an adaptor, and then uses that information to
generate a default model (in essence, the DBModeler translates a database's
table-and-column view of the data elements into logical hierarchies of related elements).
You can then use DB Modeler to enhance the structural foundation provided by the default
model-for example, by specifying relationships between data elements and between
tables.

The resulting model of the data structure more closely represents the real world
relationships that exist between data elements. It also allows navigational access across
data source entities.

The models you create can then be used in Interface Builder (and by DBDatabase objects)
to construct applications that access the data in the source databases. By incorporating
models into the development process, you no longer have to worry about the semantics of
accessing specific data elements, or constantly reconstructing these relationships for every
new application as it is built.

Note: DBModeler is designed for application developers who have a working knowledge
of object-oriented application development and database systems. This chapter
presupposes that you are already familiar with the high-level dynamics of the Database Kit,
and with your external source of data (that is, the database you'll be creating the model
from). It's also essential for you to understand the nature of the application you're
developing, and the requirements of the end-users for whom you're developing it.

The DBModeler Application 7-3

You can start DB Modeler (located in /NextDeveloper/Apps) from the workspace as you
would any other application, by double-clicking its icon in the workspace. When it starts
up, only the main menu is visible. Once DBModeler is running, you can create a new
model or open an existing model as described below.

Creating, Opening, and Saving Models

Model-management commands are located in DBModeler's Model menu. To create, open,
save, or close a model, use the New, Open, Save, and Close commands on this menu.

When you work in DB Modeler, you'll occasionally see an authentication panel identical to
or similar to the one shown here. When you see this panel (or one like it), fill in the fields
and then click the OK (or Login) button.

This authentication panel, which may appear at various points in working with a model,
won't be discussed again. Each time the panel appears, simply provide the requested
information and click Login or OK to continue.

7·4 Chapter 7: The DBModeler Application

Creating a New Model

To create a new model, choose the New command in the Model menu. The following New
Model panel appears.

1'--- ---- - --- ----------------- -------

I New Model

'iaDefault Model

First, click to select the desired adaptor, and then click OK to create the new model. When
the model is created, a model window similar to the one shown here will appear:

Adaptor: I OracleAdaptor

Login String: t~cott~T:~le~andria:SjOrac!:

For information about how to access and modify the new model through its model window,
see the section "Working with Entities and Properties."

Creating, Opening, and Saving Models 7-5

Opening an Existing Model

To open an existing model, choose the Open command in the Model menu and use the Open
panel to find the model. The model must have a ".dbmodel" extension in order to appear
in the Open panel. When the model opens, a model window similar to the one shown in the
previous section appears.

Saving a Model

To save a new model to a file or to save changes to an existing model, choose the Save
command in the Model menu. If the model hasn't been saved yet, a Save panel appears
prompting you to specify a name and location for the file. The default location for models
is in -lLihrary/Models. The file is saved with the standard" .dbmodel" extension, even if
you don't specify it as part of the name.

Working with Entities and Properties

This section describes how to use DBModeler to work with entities and properties in a
model. Entities and properties are derived from the database dictionary as follows:

• tables in the database correspond to entities in the model
• table names in the database correspond to entity names in the model
• columns in the database correspond to attributes in the model
• column names in the database correspond to attribute names in the model

The following sections describe how you can perform the following types of operations:

• change entity or attribute names
• set the C type to be associated with a database attribute type
• designate attributes as "key"
• set read-only status for attributes
• create relationships between attributes
• designate a relationship as one-to-one or one-to-many
• designate a relationship as an inner or outer join

7·6 Chapter 7: The DBModeler Application

Entities

The center part of the model window, labeled Entities, contains a list of the entities
contained in the model.

Adaptor: 19~~C~~~E!~ __ :-~ __ . ~.-.-.. -.-J;
login String: I scotl@T:alexandria:sjOracle I;

",,-;-:-;-;-;;:-;-.-;:;---;;:-=-~-::;;;;:-:::-..... ~, .. ;.~;;;-.::;:;::;;;~:;-:: ... -::;:;;.

Name:! DEPARTMENT I:
Internal Name: li~.~·~~i~.~~I:··: ~~:·.·~·~.~··~~:~.·:w~.·~::~· -~=!:

'" "'.;,! "' Properties." ift: "'.... ,", :

Click an entity to select it. Once selected, information about the entity is displayed in the
lower part of the model window. In addition to editable text fields for the name and the
internal name, there's a list of the properties that belong to the entity.

Add, hide, or delete entities by choosing the Add Entity, Hide Entity, and Delete Entity
commands in the Entity menu. If you choose the Choose Entities command in the Entity
menu, the following panel appears; select the tables you want to build the model from, and
then click Build Model.

Working with Entities and Properties 7-7

. ·.,Bl.lil~.ftv1C;d~1 fr6~'
Selected Tables

. .. Tables t _

Properties

The lower part of the model window, labeled Properties, contains a list of the properties
(attributes and relationships) contained in the selected entity.

Click a property to select it. Once selected, information about the property is displayed in
the Inspector panel, which appears when you choose Inspector in the main menu. The
contents and appearance of the Inspector panel varies, depending on whether the selected
property is an attribute or a relationship.

If the selected property is an attribute, the Attribute Inspector appears. This panel can be
used to change the name, data type, and other properties of the selected attribute.

7-8 Chapter 7: The DBModeler Application

Relatiollshill 1llSllect';r ~

DEPARTMENT, , EMP. i~" ,1",

LjLazy Join

If the selected property is a relationship, the Relationship Inspector appears. This panel can
be used to change the name or definition of the selected relationship.

In addition to modifying properties with the Inspector panel, you can add, hide, or delete
properties by choosing the Add Attribute, Add Relationship, Hide Property, and Delete
Property commands in the Property menu.

Setting Preferences

Choose the Preferences command in the Info menu to bring up the Preferences panel. This
panel contains a list of available adaptors-the default adaptor is highlighted. Select a
different adaptor to make it the default adaptor.

There are also controls for determining whether smart-joins and auto-naming of
relationships are enabled or disabled.

Setting Preferences 7-9

DBModeler Command Reference

This section describes the application-specific menus and commands available in
DB Modeler. For descriptions of standard menus and commands, see the User's Guide.

Commands in the Main Menu and the Model Menu

DBModeler's main menu contains the standard Info, Edit, Windows, Services, Hide, and
Quit commands. The Model command displays a submenu of standard Open, New, Save,
Save As, Revert to Saved, and Close commands. The Inspector command brings up the
Inspector panel, which is described in the section "Properties." The Entity and Property
commands display submenus that are described in the following sections.

Commands in the Entity Menu

The Entity menu provides commands for working with entities.

Command

Add Entity
Hide Entity
Delete Entity
Choose Entities

Description

Add an entity to the current mode.
Hide an entity in the current model without deleting it.
Delete an entity from the current model.
Choose one or more entities in the current model.

Commands in the Property Menu

The Property menu provides commands for working with the properties of an entity.

Command

Add Attribute
Add Relationship
Hide Property
Delete Property

7-10 Chapter 7: The DBModeler Application

Description

Add an attribute to the selected entity.
Add a relationship to the selected entity.
Hide a property in the selected entity, without deleting it.
Delete a property from the selected entity.

= ==

8· The MallocDebug Application

8-3 Preparing Your Application

8-4 Using MallocDebug

8-6 Identifying Damaged Nodes

8-6 Finding Memory Leaks

8-7 Measuring Memory Usage

8-7 MallocDebug Command Reference
8-7 Commands in the Main Menu
8-8 Commands in the Application Menu

8-1

8

,.- =

The MallocDebug Application

The Malloc Debugger measures the dynamic memory usage of applications. You can use
it to measure all allocated memory in an application, or to measure the memory allocated
since a given point in time. The Malloc Debugger also provides a garbage detector that you
can use to detect memory leaks.

The Malloc Debugger actually consists of two components:

• A library containing a version of malloe that gathers statistics on memory use
• The MallocDebug application, which you use to examine those statistics

Preparing Your Application

Before using the Malloc Debugger, you must first link your application with a library
containing a special version of malloe that can communicate with the MallocDebug
application. To do this, link with the library lusrlliblIibMalloeDebug.a using the linker
option -IMalloeDebug. The -IMalloeDebug option must be placed before the -lsys_s
option to ensure that malloe is overridden properly. If your application is built with
Interface Builder, you can simply add lusrlliblIibMalloeDebug.a to the "Other libs"
section of the Project Inspector.

The MallocDebug Application 8-3

Using MallocDebug

To use the Malloc Debugger, you must first select an application to monitor. Choose the
Open command in the Application menu to bring up the Select panel. Only currently
running applications that have been configured for use with MallocDebug appear in the
panel. Once you select an application by double-clicking its icon, MallocDebug opens an
application panel for the selected application.

8-4 Chapter 8: The MallocDebug Application

'C '" :~~ij'';"~": I i,":,t -o::~N~ew ':-' '_" ..J

I
,,'

: ... Zone:
default
default
default
default
default
default
default
default
default

NXApp
NXApp
NXApp
NXApp
NXApp
NXApp
NXApp
NXApp

Menu
NXApp
NXApp

Menu
Menu
Menu
Menu
Menu
Menu
Menu

Leaks, i_" _M_ar_k_

Address:
Ox0014a114
Ox0015a700
Ox0016f388
Ox0014a260
Ox0015afdc
Ox0017356c
Ox0014a138
Ox001591c4
Ox00159154
OxOOl728b4
OxOOl728cc
Ox0017dae8
Ox00187c30
Ox001659d8
Ox00173d70
Ox00187d10
Ox0016eb8c
Ox0017dc54
Ox0017281c
Ox0017d588
Ox00169070
Ox00169268
Ox00169274
OxOG16edd8
Ox0016eef4
Ox0016fd8c
Ox0016fddO
Ox00173ef8

Size:
28
28
28
5
6
5

16
48

8
16

8
16
16
56
32

124
12
12

4
4
4
4
4
4
4
4
4
4

Nodes: 190_~ ___ ".\ 0 Sort by Caller
~ r Sort by Time

Bytes: I~?.s ..!~ __ J r Sort by Zone

Function: i
_NXCreateZone, objc create zon
_NXCreateZone, +[Application ne:
_NXCreateZone, + [Menu menuZone]1
_NXNameZone, _objc_create_zone'i
_NXNameZone, + [Application new] I

NXNameZone, + [Menu menuZone], '
::::NXPortListen, initmallOCthrea~
+ [PeeplnListener initialize], c
- [HashTable ini tKeyDesc: valueDe'
- [HashTable _insertKeyNoRehash: I
- [HashTable _insertKeyNoRehash:,
- [HashTable _insertKeyNoRehash: i
- [HashTable _insertKeyNoRehash: I
- [HashTable insertKey:value: L
-[List initCount:], -[Cell ini'
- [List ini tCount:], - [NameT~le
- [List initCount:], freeTempFoc:
- [List insertObj ect: at:], - [LiS'
- [List insertObject: at:], - [Lis:
-[List insertObject:at:], -[Lis;
- [List insertObject: at:], - [Lis
- [List insertObj ect: at:], - [Lis
-[List insertObject:at:], -[Lis'
- [List insertObject: at:], - [Lis:
- [List insertObject: at:], - [Lis
- [List insertObject: at:], - [Lis'
- [List insertObj ect: at:], - [Lis'
- [L~st ~nsertob~ect: at:], - [L~s:

The name of the application and the process number appear in the title bar of the application
panel. Initially, the panel is empty.

r~:-' "A'li"'''-:-''',

Click the All button to display a list of all currently allocated nodes in your application.
These nodes have been allocated by one of the standard C allocation functions (malloc,
realloc, calloc, or vallo c) or a NeXTSTEP zone allocation function (NXZoneMalloc,
NXZoneRealloc, NXZoneCalloc). As shown in above, each row displays the zone in
which the node was allocated, the address and the size of the node, and the function or
method that allocated the node.

"QJsort by Caller
Q~sortby Time
Qsort by Zone

You can sort the nodes by caller, by time of allocation, or by zone.

Using MallocDebug 8-5

Identifying Damaged Nodes

MallocDebug detects nodes that have been written to incorrectly. If your application has
written past the end of a node, a right arrow (» appears by the node. Similarly, if your
application has written before the start of a node, a left arrow «) appears by the node.
Many of these errors are caused by giving mallocO the result of strlen(s) as the argument
for a string instead of strlen(s) + 1.

Note: Damaged nodes are always listed first, regardless of the sorting mode.

Finding Memory Leaks

MallocDebug contains a conservative garbage detector, which is useful in finding
memory leaks.

IF'--iLeaks;~~~1

When you click the Leaks button, MallocDebug searches through your program's memory
for pointers to each node. Any node that can't be referenced is displayed as a memory leak.

Since the garbage detector doesn't know which words in memory are pointers, it's possible
that an integer has the same value as a pointer to a given node. In this case, the node doesn't
show up as a leak even though it really is (this is why the garbage detector is called
conservative). In practice, this problem is very rare.

Note: The garbage detector only searches for references to the beginning of each node. If
your program doesn't retain a pointer to the start of a node, but instead retains a pointer into
the middle of it, that node will show up as a leak even though it really isn't one.

8-6 Chapter 8: The MallocDebug Application

Measuring Memory Usage

You can use MallocDebug to determine the memory usage of a given portion of
your program.

Ir-- Mark-'-:--I
To begin measuring, click the Mark button.

[~c.--=I

After exercising a portion of your program, click the New button to see the nodes allocated
since the mark. MallocDebug always shows you the nodes that are still currently allocated,
so you will see only those nodes allocated since the mark that haven't been freed.

MallocDebug Command Reference

This section describes the application-specific menus and commands available in
MallocDebug. For descriptions of standard menus and commands, see the User's Guide.

Commands in the Main Menu

MallocDebug's main menu contains the standard Info, Edit, Windows, Services, Hide, and
Quit commands. The Application command displays the Application menu described in
the following section.

Measuring Memory Usage 8-7

Commands in the Application Menu

The Application menu contains the following commands for opening and closing
applications:

Command

Open

Close

8·8 Chapter 8: The MallocDebug Application

Effect

Displays the Select panel, from which you select and open a
running application. See "Using MallocDebug" for a description
of this panel.

Closes the Application panel for the selected application. The
debugged application remains running.

The Process Monitor Application

9-3 Selecting a Process: The Processes Panel

9-4 Inspecting a Process: The Inspector Panel
9-5 The Control Inspector
9-5 The Mach Inspector
9-6 The Display PostScript Inspector
9-6 The Malloc Inspector
9-7 The Objective C Inspector

9-7 Monitoring Memory Usage: The Mach Monitor

9-8 ProcessMonitor Command Reference
9-8 Commands in the Main Menu
9-8 Commands in the Processes Menu
9-9 Commands in the Monitor Menu

9-1

9 The Process Monitor Application

Process Monitor can be used to examine any running process. Process Monitor lets
you pause or kill a process, and provides several types of infonnation about a running
process or application, including: Mach memory usage, Display PostScript®, and the
run-time environment.

Selecting a Process: The Processes Panel

When Process Monitor starts up, the Processes panel appears. This panel contains an
icon for each of the applications running on the machine. You can also see processes that
aren't associated with applications by choosing the Show Non Apps command in the
Processes menu.

The Process Monitor Application 9-3

You can select any process shown in the Processes panel by clicking its icon. Once you
select a process, an inspector panel appears that lets you see various types of infonnation
about the process.

You can update the contents of the Processes panel to include any processes that have
been started since the panel was displayed by choosing the Update command in the
Processes menu.

Inspecting a Process: The Inspector Panel

The inspector panel is actually a generic name for five different Inspectors that
are available.

Control
rMach·:Memory-~:~'·~(... ~.?:
IDTspray~postscripr'~"·~

Press the button at the top of the inspector panel and drag to choose the desired Inspector.
These Inspectors are described in the following sections.

9-4 Chapter 9: The Process Monitor Application

The Control Inspector

b
" Process -, ~,. -,-, ,

i . Pld:I~~_~J i
:, S~$p~nd count:E.Jl

EIDJ
"J;J" "'." ,~c,OP!rp,I, I:"-~ '."" ' , :;' r> :' [] if 00

: Play : Stop ': Pause
.' . ~ . .

The Control Inspector displays the process ID of the selected process and indicates whether
the process is suspended (paused) or running. You can use the Pause and Play buttons to
pause and resume the process. Click the Stop button if you want to kill the selected process.

The Mach Inspector

The Mach Inspector displays information about the Mach memory usage of the selected
process. Whenever the Mach Inspector is active, the Start Monitor command on the
Monitor menu becomes enabled. The Start Monitor command opens the Mach Monitor
panel, which can be used to provide a dynamic record of Mach memory usage. For more
information, see "Monitoring Memory Usage: The Mach Monitor."

Inspecting a Process: The Inspector Panel 9-5

The Display PostScript Inspector

The Display PostScript Inspector displays infonnation about the amount of backing store
and virtual memory currently used by the selected process.

The Malloc Inspector

The Malloc Inspector displays infonnation about the dynamic memory usage and memory
allocation efficiency of the selected process.

9-6 Chapter 9: The Process Monitor Application

The Objective C Inspector

I

(if Objective C Inspect.or

Image:::Alr~'7:-'-':'----'--'~'--~'":'-~1

Classes
Defined:I.?~~_--' 8ytes:I~_!72 ___ 1

In Use:L!~~ ___ I; pages:l~ _____ J "
categories:~ Refs:~'.

r:----'O----:---- Methods ---~-:-;I

Instance:I~_~~_J Class:! ~~~ ___ J
cache'" cache ' . "

. Number:! 109 I. Number:! 12-:1 h I'
% FUII:13~.60981 i, % FUII:h_4._!9§4~_j:
8ytes:k18_5_2 ___ J 8ytes:!~~~ ____ .. _Ii

pages:b___ __ i pages:I~ _____ .1
.' -, Total cache '..- ,

8ytes: I ~782~. L Pages: 14.

The Objective C Inspector displays information about the run-time system characteristics
of the selected process.

Monitoring Memory Usage: The Mach Monitor

The Mach Monitor panel appears when you choose the Monitor menu's Start Monitor
command (this command is enabled only when the Mach Inspector or the Display
PostScript Inspector is open). The Mach Monitor provides a running record of information
about the memory usage of the monitored application or process.

To clear the contents of the Mach Monitor display, choose the Clear Monitors command
from the Monitor menu.

Monitoring Memory Usage: The Mach Monitor 9-7

Process Monitor Command Reference

This section describes the application-specific menus and commands available in Process
Monitor. For descriptions of standard menus and commands, see the User's Guide.

Commands in the Main Menu

Process Monitor's main menu contains the standard Info, Edit, Windows, Print, Hide, and
Quit commands. The Process and Monitor commands display submenus that are described
in the following sections.

Commands in the Processes Menu

The Processes menu contains the following commands for interacting with the
Processes panel:

Command

Update

Show Non Apps,
Hide Non Apps

9-8 Chapter 9: The Process Monitor Application

Effect

Updates the contents of the Processes panel to include any
processes that have been started since the panel was
displayed. See "Selecting a Process: The Processes
Panel" for a description of this panel.

Show Non Apps causes the Processes panel to show all
processes, not just those processes associated with
applications. Hide Non Apps causes the panel to show
just application processes.

Commands in the Monitor Menu

The Monitor menu contains the following commands for displaying and using the Mach
Monitor panel:

Command

Start Monitor

Clear Monitors

Effect

Displays the Mach Monitor panel, which monitors the
memory usage of the monitored application (see
"Monitoring Memory Usage: The Mach Monitor"). This
command is enabled only when the Mach Inspector or the
Display Postscript Inspector is open.

Clears the contents of the Mach Monitor panels.

Process Monitor Command Reference 9-9

&:~-'"' ... -- ,.- '" - ~--~ ••• -- ""'''''T'-~' =

10 The PostScript Previewers:
Yapandpft

10-3 Using Yap

10-4 Yap Command Reference
10-4 Commands in the Main Menu
10-4 Commands in the Document Menu

10-5 The NeXTSTEP Window Server Interface: pft
10-5 Starting the pft Program
10-6 Executing PostScript Code from a File
10-6 Setting Up a Window
10-8 Flushing the Server's Output Buffer
10-8 Summary Example

10-1

.. -----... --...• --~-- ... --.-----

The PostScript Previewers:
Yapandpft

Yap is an interactive PostScript previewer for developers who want to write and test
PostScript code. Yap lets you enter, edit, and execute PostScript code on the fly and allows
you to read and write text files so the code can be used elsewhere. Yap is intended for
experimenting with short, hand-created segments of PostScript. It's not useful for
previewing page-oriented documents, because it ignores all Encapsulated PostScript
comments (such as % % BoundingBox and % % Page). For viewing page-oriented
documents, use the Preview application located in lNextApps.

The chapter also contains information about a related program, pft, which you can use if
you need to communicate with the PostScript Window Server. pft is a command-line utility
that runs in a Terminal window, so for general-purpose PostScript editing and viewing it's
easier to use Yap.

Using Yap

Yap is straightforward to use. Choose the Open or New command in the Document menu
to open a document window. Select the Execute command in the Document menu to
execute the PostScript code that's in the main window.

The result is displayed in the Output window, and PostScript errors are reported in the title
bar of the Output window. If there are no errors in the execution of your code, the execution
time is reported in the title bar instead.

The PostScript Previewers: Yap and pit 10-3

There's only one Output window. Its PostScript rendering area can be resized using the
Preferences panel (choose the Preferences command in the Info menu). The Preferences
panel also contains options for showing and clearing the PostScript cache.

If you change the font in a Yap window, that font will be used in Yap windows created after
that as well. The font will also be written to your defaults database and be used the next
time you launch Yap. .

Yap can paste PostScript from the pasteboard; this is useful when debugging programs that
write PostScript on the pasteboard. The Paste menu command first checks the pasteboard
for PostScript data, then for text data.

You can find some sample PostScript programs in the following directory:

/NextDeveloper/Examples/PostScript

The following directory contains the source code for Yap:

/NextDeveloper/Examples/Yap

Feel free to modify the source code and create your own custom version of the application.

Yap Command Reference

This section describes the application-specific menus and commands available in Yap. For
descriptions of standard menus and commands, see the User's Guide.

Commands in the Main Menu

Yap's main menu contains the standard Info, Edit, Windows, Print, Services, Hide, and Quit
commands. The Format menu contains the Font command for bringing up the Font menu,
and the Page Layout command.

Commands in the Document Menu

The Document menu provides the standard Open, New, Save, and Save As commands for
working with PostScript document windows, plus the Execute command described here.

10-4 Chapter 10: The PostScript Previewers: Yap and pit

Command

Execute

Description

Executes the PostScript code contained in the main
window and displays the results in the Output window.

The NeXTSTEP Window Server Interface: pft

pft is a simple shell-based utility for communicating with the NeXTSTEP Window Server.
You start up the pCt program by typing the program name in a shell window. pft first forms
a connection to the Window Server. pft then sends the Window Server PostScript code that
you type in the shell window, and prints out data received from the Window Server. (pft
displays both err~r messages and values returned by the Window Server on the standard
output, in the same window where you type.) Use Control-D to quit pCt.

The following command-line options are available:

-NXHost hostname

-fjile

-s

-NXPSName string

Directs pft to connect to the Window Server running on
the machine hostname. If this option isn't used, the local
Window Server is assumed.

Causes the contents ofjile to be sent to the Window Server
before user input is accepted.

Causes pft to exit after a file specified with -C is sent to the
Window Server.

Sets the string that pft uses to find the Window Server that
it will connect to. This should be the name that the
Window Server used to register itself with nmserver, the
Network Message Server. If this option isn't used, the
default Window Server name is assumed.

pft sends one line of PostScript to the Window Server at a time, and each line is interpreted
by the Window Server immediately after you press Return.

Starting the pft Program

To run the pft program, enter its name in a shell window:

pCt

The NeXTSTEP Window Server Interface: pit 10-5

When pft responds with "Connection to PostScript established," it's ready to accept
PostScript code. If you're running pft in a Terminal window, you can cut and paste
PostScript code from another application.

When you're finished, quit by typing Control-D (or Control-C) in the shell window that pft
is running in.

Executing PostScript Code from a File

To execute PostScript commands that are contained in a file, you can start pft using the
-f option:

pft -fjile

Thefile argument must be an absolute pathname (that is, starting with either I or -), as
shown in these two examples:

pft -f /me/myProgram.ps

pft -f -/myProgram.ps

Alternatively, once you've started running pft the contents of a PostScript file can be
I

executed using the PostScript run operator:

(file) run

In this case, the file name must be an absolute pathname that doesn't start with-:

(/me/myProgram.ps) run

Setting Up a Window

The first thing you'll probably want to do in pft, once it has established a connection to the
Window Server, is set up a window to draw in. There are two ways to do this:

• Obtain the window number of a window the Server has already set up for some
other application (usually one you are using pft to debug), and do your drawing in
that window.

• Set up a new window using the PostScript window operator.

10-6 Chapter 10: The PostScript Previewers: Yap and pft

To create a window with the window operator, pass it arguments for its origin, size,
and type:

x y width height type window window

where type is one of Retained, Nonretained, or Buffered:

Retained (0)
N onretained (1)
Buffered (2)

The window operator returns a unique ID number for the window, and places this number
on the operand stack. You'll need this number in order to refer to the window; for ease of
reference you can assign the returned window number to a variable, as follows:

/myWindow
100 100 500 500 Buffered window
def

The new window isn't in the screen lIst yet, and therefore doesn't appear on the screen and
doesn't receive user events. You can add the window to the screen list with the
orderwindow operator:

place otherwindow window orderwindow -

The location of the window in the screen list is specified by place, which can be one of
Below, Out, or Above:

Below
Out
Above

(-1)
(0)
(1)

otherwindow should be another window number, or 0 if you want to place the new window
above or below all windows currently in the window list.

Once the window is in the screen list it appears on the screen, but before you can draw in
the window you need to use the windowdeviceround operator to make the window the
current window:

window windowdeviceround -

The NeXTSTEP Window Server Inter/oce:p/t 10-7

Once the window is the current window, the results of any drawing code you enter will
be displayed:

newpath
20 20 moveto
40 40 lineto
stroke
flushgraphics % necessary if window is buffered

Flushing the Server's Output Buffer

The connection between pft and the Window Server is buffered in both directions. pft
flushes its input buffer, so none of the PostScript you send to the Window Server is ever
caught in the buffer. However, you must flush the Window Server's output buffer yourself
using the PostScript flush operator.

Here's a one-line example showing how to create a 500-pixel by 500-pixel window whose
lower left comer is at the lower left comer of the screen. This example removes the window
number from the stack and flushes the Window Server's output buffer:

a a 500 500 Buffered window = flush

Summary Example

In summary, this simple series of PostScript commands demonstrates how to create a
window, draw in the window, and then remove the window:

/myWindow % Create a variable called my Window

100 100 50 50 Buffered window % Create a window, and assign the returned
def % window number to the my Window variable

Above a myWindow orderwindow % Order my Window at front of screen list

my Window windowdeviceround % Make my Window the current window

newpath

25 25 15 a 360 arc
fill
flushgraphics

my Window termwindow
nulldevice

10-8 Chapter 10: The PostScript Previewers: Yap and pit

----~------------

% Now draw something to my Window

% Flushing is required for buffered windows

% Mark myWindow for destruction
% Remove references to my Window

11

n: r=

The GNU C Compiler

11-3
11-4
11-6
11-8
11-13
11-15
11-19
11-20
11-21
11-21

11-23
11-23
11-23
11-25
11-25
11-26

11-26
11-26
11-27
11-28
11-28
11-28
11-29
11-30
11-31

GNU CC Command Options
Controlling the Kind of Output
Specifying a Dialect of the C Language
Requesting or Suppressing Warnings
Preparing Your Program for Debugging
Controlling Optimization
Controlling the Preprocessor
Linking
Specifying Directories to be Searched
Specifying Code Generation Conventions

C Programming Notes
String Constants and Static Strings
Function Prototyping
Automatic Register Allocation
Declarations of External Variables and Functions
typedef and Type Modifiers

GNU Extensions to the C Language
Casts as Lvalues
Arrays of Length Zero
Arithmetic on void-Pointers and Function Pointers
Non-Constant Initializers
Constructor Expressions
Declaring Attributes of Functions
Dollar Signs in Identifier Names
The Character ESC in Constants

11-1

11-2

11-31 Specifying Attributes of Variables
11-32 An Inline Function is As Fast As a Macro
11-33 Assembler Instructions with C Expression Operands

11-37 Additional Information about GNU CC
11-37 Known Causes of Trouble with GNU CC
11-38 Incompatibilities of GNU CC

11-41 Legal Considerations
11-41 GNU GENERAL PUBLIC LICENSE
11-42 Preamble
11-43 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION
11-47 Appendix: How to Apply These Terms to Your New Programs

The GNU C Compiler

The C compiler used on NeXTSTEP computers is GNU CC, an ANSI-standard C compiler
produced by the Free Software Foundation. This compiler has been modified and extended
as a compiler for the Objective C language by NeXT Computer, Inc. for use on NeXTSTEP
computers. This chapter describes how to compile a C program using the GNU compiler.

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section Legal Considerations at the end of the chapter for important
related information.

This chapter Copyright © 1988, 1989, 1990 by Free Software Foundation, Inc. and
Copyright © 1991, 1992 by NeXT Computer, Inc.

The following sections describe command options available when compiling a C program
with GNU CC, incompatibilities between GNU CC and non-ANSI versions of C, GNU
extensions to the C language, and implementation-specific details related to using C on a
NeXT computer.

GNU CC Command Options

When you invoke GNU CC with the ce command, it normally performs the following
operations in the order shown here:

• Preprocessing (epp)
• Compilation (eel)
• Assembly (as)
• Linking (ld)

The GNU C Compiler 11-3

Some options described below allow you to stop this process at an intermediate stage. For
example, the -c option says not to run the linker. Then the output consists of object files
output by the assembler.

Other options are passed on to one stage of processing. Some options control the
preprocessor and others the compiler itself. Yet other options control the assembler and
linker; most of these aren't documented here, since you rarely need to use any of them.

The GNU C compiler uses a command syntax much like the UNIX C compiler. The gcc
program accepts options and file names as operands. Multiple single-letter options may not
be grouped: -dr is very different from -d -r.

Many options have long names starting with -f (-fforce-mem, -fstrength-reduce, and so
on). Most of these have both positive and negative forms; the negative form of -ffoo would
be -fno-Coo. This manual documents only one of these two forms-whichever one isn't
the default.

Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. The first three stages apply to an individual source file,
and end by producing an object file; the fourth stage-linking-combines all the object
files (those newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done.
For example, a ".c" file is C source code which must be preprocessed, a ".i" file is C source
code which shouldn't be preprocessed, a ".cc" file is C++ source code which must be
preprocessed, a ".s" file is assembler code, and an unrecognized file name is considered an
object file and is fed straight into linking.

You can specify the input language explicitly with the -x option:

-x language

-x none

Specify that the following input files are in the language language. This option
applies to all following input files until the next -x option. Possible values of
language are c, objective-c, c-header, C++, cpp-output, assembler, and
assembler-with-cpp.

Tum off any specification of a language, so that subsequent files are handled
according to their file-name suffixes (as they are if -x has not been used at all).

11-4 Chapter 11: The GNU C Compiler

The point at which the compilation process stops is controlled by various options:

-c Compile or assemble the source files, but don't link. The linking stage simply
isn't done. The ultimate output is in the form of an object file for each source
file. By default, the object file name for a source file is made by replacing the
suffix ".c", "j", ".s", and so on, with ".0". Unrecognized input files, not
requiring compilation or assembly, are ignored.

-8

-E

-0 file

-v

-vpath

-vspec

-pipe

Stop after the stage of compilation proper; don't assemble. The output is in the
form of an assembler code file for each non-assembler input file specified. By
default, the assembler file name for a source file is made by replacing the suffix
".c", "j", etc., with ".s". Input files that don't require compilation are ignored.

Stop after the preprocessing stage; don't run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.
Input files which don't require preprocessing are ignored.

Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file or preprocessed C code. (Since only one output file can be specified, it
doesn't make sense to use -0 when compiling more than one input file, unless
you are producing an executable file as output.)

If -0 isn't specified, the default is to put an executable file in a.out, the object
file for source.suffix in source.o, its assembler file in source.s, and all
preprocessed C source on the standard output.

Print (to standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Print (to standard error output) all attempts at finding files, tracing how the -B,
-b, and -V options interact. Also, print the commands executed to run the
stages of compilation and version numbers, like the -v option.

Print (to standard error output) all spec's processed by the do_spec_lO
function in gcc.c. Also, print the commands executed to run the stages of
compilation and version numbers, like the -v option.

Use pipes rather than temporary files for communication between the various
stages of compilation.

GNU CC Command Options 11-5

-Bpath Compiler driver program tries path (which must end in /) as the directory prefix
for each program it tries to run. These programs are epp, eel, as, and Id.

For each subprogram to be run, the compiler driver first tries the -B prefix, if
any. If that name isn't found, or if -B wasn't specified, the driver tries two
standard prefixes, /bini and /lib/. If neither of those results in a file name that's
found, the unmodified program name is searched for using the directories
specified in your PATH environment variable.

Specifying a Dialect of the C Language

The following options control the dialect of C that the compiler accepts:

-ansi Support all ANSI C programs. This turns off certain features of GNU C that
are incompatible with ANSI C, such as the asm, inline and typeof keywords,
and predefined macros such as unix and vax that identify the type of system
you are using. It also enables the undesirable and rarely used ANSI trigraph
feature.

-ObjC

-bsd

The alternate keywords _asm_, _extension_, _inline_, and
typeof continue to work despite -ansi. You wouldn't want to use them
in an ANSI C program, of course, but it useful to put them in header files
that might be included in compilations done with -ansi. Alternate
predefined macros such as _unix_ and _ vax_ are also available, with
or without -ansi.

The -ansi option doesn't cause non-ANSI C programs to be rejected
gratuitously. For that, -pedantic is required in addition to -ansi. See the
section Requesting or Suppressing Warnings for more information.

The macro _STRICT _ANSI_ is predefined when the -ansi option is used.
Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ANSI standard doesn't call for;
this is to avoid interfering with any programs that might use these names for
other things.

Compile a source file that contains Objective C language code (the file can
have either a ".c" or an ".m" extension).

Enforce strict BSD semantics. When the -bsd option is used, the macro
_STRICT_BSD_ is predefined in the preprocessor. Some header files may
notice this macro and refrain from declaring certain functions or defining
certain macros.

11-6 Chapter 11: The GNU C Compiler

-trigraphs Support ANSI C trigraphs. The -ansi option implies -trigraphs.

-traditional
Attempt to support some aspects of traditional C compilers. Specifically:

• All extern declarations take effect globally even if they are written inside a
function definition. This includes implicit declarations of functions.

• The keywords typeof, inline, signed, const, and volatile aren't recognized.
(You can still use the alternative keywords such as _typeof_, _inline_,
and so on.)

• Comparisons between pointers and integers are always allowed.

• Integer types unsigned short and unsigned char promote to unsigned int.

• Out-of-range floating point literals aren't an error.

• String "constants" aren't necessarily constant; they are stored in writable
space, and identical-looking constants are allocated separately. (This is the
same as the effect of -fwritable-strings.)

• All automatic variables not declared register are preserved by longjmpO.
Ordinarily, GNU C follows ANSI C: automatic variables not declared
volatile may be clobbered.

• In the preprocessor, comments convert to nothing at all, rather than to a
space. This allows traditional token concatenation.

• In the preprocessor, macro arguments are recognized within string
constants in a macro definition (and their values are stringified, though
without additional quotation marks, when they appear in such a context).
The preprocessor always considers a string constant to end at a newline.

• The predefined macro _STDC_ isn't defined when you use -traditional,
but _GNUC_ is (since the GNU extensions which _GNUC_ indicates
aren't affected by -traditional). If you need to write header files that work
differently depending on whether -traditional is in use, by testing both of
these predefined macros you can distinguish four situations: GNU C,
traditional GNU C, other ANSI C compilers, and other old C compilers.

-gnu-cpp Use the GNU C preprocessor instead of the NeXTSTEP C preprocessor.

-fno-asm Don't recognize asm, inline or typeof as a keyword. These words may then
be used as identifiers. You can use _asm_, _inline_, and _typeof_
instead. -ansi implies -fno-asm.

GNU CC Command Options 11-7

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void.

-funsigned -char
Let the type char be the unsigned, like unsigned char. (Note that each type of
computer has a default for what char should be-it's either like unsigned char
by default or like signed char by default. The type char is always a distinct
type from either signed char or unsigned char, even though its behavior is
always just like one of those two.)

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

-fsigned-char
Let the type char be signed, like signed char. Note that this is equivalent to
-fno-unsigned-char, which is the negative form of -funsigned-char.
Likewise, -fno-signed-char is equivalent to -funsigned-char.

-fsigned-bitfields, -funsigned-bitfields, -fno-signed-bitfields, -fno-unsigned-bitfields
Similar to the above flags, these options control whether a bitfield is signed or
unsigned, when the declaration doesn't use either signed or unsigned. By
default, such a bitfield is signed, because this is consistent: the basic integer
types such as int are signed types. However, when -traditional is used,
bitfields are all unsigned no matter what.

-fwritable-strings
Store string constants in the writable data segment and don't uniquize them.
This is for compatibility with old programs which assume they can write into
string constants. -traditional also has this effect. (Note that writing into string
constants is a bad idea; "constants" should be constant.)

Requesting or Suppressing Warnings

Warnings are diagnostic messages that report constructions that aren't inherently
erroneous, but which are risky or suggest there may have been an error.

These options control the amount and kinds of warnings produced by GNU CC:

11-8 Chapter 11: The GNU C Compiler

-w Inhibit all warning messages.

-pedantic Issue all the warnings demanded by strict ANSI C; reject all programs that use
forbidden extensions.

Valid ANSI C programs should compile properly with or without this option
(though a rare few will require -ansi). However, without this option, certain
GNU extensions and traditional C features are supported as well. With this
option, they are rejected. There's no reason to use this option; it exists only to
satisfy pedants.

-pedantic doesn't cause warning messages for use of the alternate keywords
whose names begin and end with _. Pedantic warnings are also disabled in
the expression that follows _extension_. However, only system header files
should use these escape routes; application programs should avoid them.

-pedantic-errors
Like -pedantic, except that errors are produced rather than warnings.

-w Print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmpO.
These warnings as well are possible only in optimizing compilation.

• The compiler sees only the calls to setjmpO. It cannot know where
longjmpO will be called; in fact, a signal handler could call it at any point
in the code. As a result, you may get a warning even when there's in fact
no problem because longjmpO cannot in fact be called at the place which
would cause a problem.

• A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example,
this function would evoke such a warning:

faa (a)

if (a > 0)

return ai

Spurious warnings can occur because GNU CC doesn't realize that certain
functions (including abortO and longjmpO) will never return.

• An expression-statement contains no side effects.
• An unsigned value is compared against zero with> or <=.

GNU CC Command Options 11-9

-Wimplicit
Warn whenever a function or parameter is implicitly declared.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to into
Also warn about any return statement with no return value in a function whose
return type isn't void.

-Wunused Warn whenever a local variable is unused aside from its declaration, whenever
a function is declared static but never defined, and whenever a statement
computes a result that is explicitly not used.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a
case for one or more of the named codes of that enumeration. (The presence
of a default label prevents this warning.) Case labels outside the enumeration
range also provoke warnings when this option is used.

-Wcomment
Warn whenever a comment-start sequence 1* appears in a comment.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are enabled).

-Wformat Check calls to printfO, scanfO, and so on, to make sure that the arguments
supplied have types appropriate to the format string specified.

-Wuninitialized
Warn if an automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they
require data flow information that is computed only when optimizing. If you
don't specify -0, you simply won't get these warnings.

These warnings occur only for variables that are candidates for register
allocation. Therefore, they don't occur for a variable that is declared volatile,
or whoseaddress is taken, or whose size is other than 1,2,4 or 8 bytes. Also,
they don't occur for structures, unions, or arrays, even when they are in
registers.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data flow analysis before the warnings are printed.

11-10 Chapter 11: The GNU C Compiler

-Wall

These warnings are made optional because GNU CC isn't smart enough to see
all the reasons why the code might be correct despite appearing to have an
error. Here's one example of how this can happen:

int x;
switch (y)

case 1: x 1;
break;

case 2: x 4;

break;
case 3: x 5;

faa (x);

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC
doesn't know this. Here's another common case:

int save-y;

if (change-y) save-y = y, y = neW-Yi

if (change-y) y = save-y;

This has no bug because save-y is used only if it's set.

Some spurious warnings can be avoided if you declare as volatile all the
functions you use that never return.

All of the above -W options combined. These are all the options which pertain
to usage that we recommend avoiding and that we believe is easy to avoid, even
in conjunction with macros.

The remaining -W options aren't implied by -Wall because they warn about constructions
that we consider reasonable to use, on occasion, in clean programs.

GNU CC Command Options 11-11

-Wtraditional

-Wshadow

Warn about certain constructs that behave differently in traditional and
ANSI C:

• Macro arguments occurring within string constants in the macro body.
These would substitute the argument in traditional C, but are part of the
constant in ANSI C.

• A function declared external in one block and then used after the end of the
block.

• A switch statement has an operand of type long.

Warn whenever a local variable shadows another local variable.

-Wid-clash-len
Warn whenever two distinct identifiers match in the first len characters. This
may help you prepare a program that will compile with certain obsolete
compilers.

-Wpointer-arith
Warn about anything that depends on the "size of' a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with
void * pointers and pointers to functions.

-Weast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Weast-align
Warn whenever a pointer. is cast such that the required alignment of the target
is increased. For example, warn if a char * is cast to an int * on machines
where integers can only be accessed at two-byte or four-byte boundaries.

11-12 Chapter 11: The GNU C Compiler

-Wwrite-strings
Give string constants the type const char[length] so that copying the address
of one into a non-const char * pointer will get a warning. These warnings will
help you find at compile time code that can try to write into a string constant,
but only if you have been very careful about using const in declarations and
prototypes. Otherwise, it will just be a nuisance; this is why we did not make
-Wall request these warnings.

-W conversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except when the same as the
default promotion.

Preparing Your Program for Debugging

GNU CC has various special options that are used for debugging either your program
or GCC:

-g Produce debugging information for use with GDB.

Unlike most other C compilers, GNU CC allows you to use -g with -0. The
shortcuts taken by optimized code may occasionally produce surprising
results: some variables you declared may not exist at all; flow of control may
briefly move where you did not expect it; some statements may not be executed
because they compute constant results or their values were already at hand;
some statements may execute in different places because they were moved out
of loops.

Nevertheless it proves possible to debug optimized output. This makes it
reasonable to use the optimizer for programs that might have bugs.

-pg Generate extra code to write profile information suitable for the analysis
program gprof.

GNU CC Command Options 11-13

-dletters Make debugging dumps during compilation at times specified by letters. This
is used for debugging the compiler. The file names for most of the dumps are
made by appending a word to the source file name (e.g., foo.c.rtl or
foo.c.jump). Here are the possible letters:

y Dump debugging information during parsing, to standard error.

r Dump after RTL generation, to file.rtl.

x Just generate RTL for a function instead of compiling it. Usually used
with r.

j Dump after first jump optimization, to file.jump.

s Dump after CSE (including the jump optimization that sometimes
follows CSE), to file.cse.

L Dump after loop optimization, to file.loop.

t Dump after the second CSE pass (including the jump optimization that
sometimes follows CSE), to file.cse2.

f Dump after flow analysis, to file.flow.

c Dump after instruction combination, to file.combine.

S Dump after the first instruction scheduling pass, to file.sched.

I Dump after local register allocation, to file .lreg.

g Dump after global register allocation, to file.greg.

R Dump after the second instruction scheduling pass, to file.sched2.

J Dump after last jump optimization, to file.jump2.

d Dump after delayed branch scheduling, to file.dbr.

k Dump after conversion from registers to stack, to file .stack.

m Print statistics on memory usage to standard error, at the end of the run.

p Annotate the assembler output with a comment indicating which pattern
and alternative was used.

11-14 Chapter 11: The GNU C Compiler

-fpretend-float
When running a cross-compiler, pretend that the target machine uses the same
floating-point format as the host machine. This causes incorrect output of the
actual floating constants, but the actual instruction sequence will probably be
the same as GNU CC would make when running on the target machine.

-save-temps
Store the usual "temporary" intermediate files permanently; place them in the
current directory and name them based on the source file. Thus, compiling
foo.c with -c -save-temps would produce files foo.cpp and foo.s, as well
as foo.o.

Controlling Optimization

These options control various sorts of optimizations:

-0 Optimize. Optimizing compilation takes somewhat more time, and a lot more
memory for a large function.

Without -0, the compiler's goal is to reduce the cost of compilation and to
make debugging produce the expected results. Statements are independent: if
you stop the program with a breakpoint between statements, you can then
assign a new value to any variable or change the program counter to any other
statement in the function and get exactly the results you would expect from the
source code. Also, only variables declared register are allocated in registers.

With -0, the compiler tries to reduce code size and execution time; also,
-fthread-jumps and -fdelayed-branch are turned on.

-02 Highly optimize. All supported optimizations that don't involve a space-speed
tradeoff are performed. As compared to -0, this option will increase both
compilation time and the performance of the generated code. All-fflag options
that control optimization are turned on when -02 is specified.

Options of the form -fjlag specify Inachine-independent flags. Most flags have both
positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table
below, only one of the forms is listed-the one which isn't the default. You can figure out
the other form by either removing no- or adding it.

GNU CC Command Options 11-15

-ffloat-store
Don't store floating point variables in registers. This prevents undesirable
excess precision on machines such as the 68000 where the floating registers (of
the 68881) keep more precision than a double is supposed to have.

For most programs, the excess precision does only good, but a few programs
rely on the precise definition of IEEE floating point. Use -ffloat-store for
such programs.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function
returns. Normally the compiler (when optimizing) lets arguments accumulate
on the stack for several function calls and pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on
them. This may produce better code by making all memory references
potential common subexpressions. When they aren't common subexpressions,
instruction combination should eliminate the separate register-load.

-fforce-addr
Force memory address constants to be copied into registers before doing
arithmetic on them. This may produce better code just as -fforce-mem may.

-fomit-frame-pointer

-finline

Don't keep the frame pointer in a register for functions that don't need one.
This avoids the instructions to save, set up and restore frame pointers; it also
makes an extra register available in many functions. It also makes debugging
impossible on most machines.

Pay attention to the inline keyword. Normally the negation of this option
-fno-inUne is used to keep the compiler from expanding any functions inline.
However, the opposite effect may be desirable when compiling with -g, since
-g normally turns off all inline function expansion.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically
decides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static,
then the function is normally not output as assembler code in its own right.

11-16 Chapter 11: The GNU C Compiler

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function
calls, by emitting extra instructions to save and restore the registers around
such calls. Such allocation is done only when it seems to result in better code
than would otherwise be produced.

This option is enabled by default on certain machines, usually those which
have no call-preserved registers to use instead.

-tkeep-inline-functions
Even if all calls to a given function are integrated and the function is declared
static, nevertheless output a separate run-time callable version of the function.

-fno-function-cse
Don't put function addresses in registers; make each instruction that calls a
constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option isn't used.

The following options control specific optimizations. The -02 option turns on all of these
optimization except -funroll-loops and -funroll-all-loops. The -0 option usually turns on
the -fthread-jumps and -fdelayed-branch options, but specific machines may change the
default optimizations.

You can use the following flags in the rare cases when "fine-tuning" of optimizations to be
performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of
iteration variables.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch
is redirected to either the destination of the second branch or a point
immediately following it, depending on whether the condition is known to be
true or false.

-funroll-loops
Perform the optimization of loop unrolling. This is only done for loops whose
number of iterations can be determined at compile time or run time.

GNU CC Command Options 11-17

-funroll-all-Ioops
Perform the optimization of loop unrolling. This is done for all loops. This
usually makes programs run more slowly.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions in
certain cases. This isn't as powerful as completely global eSE, but not as slow
either.

-frerun-cse-after-Ioop
Re-run common subexpression elimination after loop optimizations has been
performed.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit
instruction slots available after delayed branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines
that have slow floating point or memory load instructions by allowing other
instructions to be issued until the result of the load or floating point instruction
is required.

-fschedule-insns2
Similar to -fschedule-insns, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load
instructions take more than one cycle.

11-18 Chapter 11: The GNU C Compiler

Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before
actual compilation.

If you use the -E option, nothing is done except preprocessing. Some of these options make
sense only together with -E, because they cause the preprocessor output to be unsuitable
for actual compilation.

-ifile Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated fromfile is discarded, the only
effect of -ifile is to make the macros defined infile available for use in the main
input.

-nostdinc Don't search the standard system directories for header files. Only the
directories you have specified with -I options (and the current directory,
if appropriate) are searched. See the section Specifying Directories to be
Searched for more information on -I.

Between -nostdinc and -1-, you can eliminate all directories except those
specified explicitly from the search path for header files.

-E Run only the C preprocessor. Preprocess all the C source files specified and
output the results to standard output or to the specified output file.

-c Tell the preprocessor not to discard comments. Used with the -E option.

-p Tell the preprocessor not to generate #line commands. Used with the
-E option.

-M Tell the preprocessor to output a rule suitable for make describing the
dependencies of each object file. For each source file, the preprocessor outputs
one make rule whose target is the object file name for that source file and
whose dependencies are all the files #included in it. This rule may be a single
line or may be continued with backs lash-newline if it's long. The list of rules
is printed on standard output instead of the preprocessed C program.

-M implies -E.

-MM Like -M but the output mentions only the user header files included
with #include "file". System header files included with #include <.file>
are omitted.

GNU CC Command Options 11-19

-MD Like -M but the dependency information is written to files with names made
by replacing" .c" with" .d" at the end of the input file names. This is in addition
to compiling the file as specified-note that -MD doesn't inhibit ordinary
compilation the way -M does.

The Mach utility md can be used to merge the ".d" files into a single
dependency file suitable for using with the make command.

-MMD Like -MD except mention only user header files, not system header files.

-H Print the name of each header file used, in addition to other normal activities.

-Dmacro Define macro macro with the string 1 as its definition.

-Dmacro=defn
Define macro macro as defn.

-Umacro Undefine macro macro.

-trigrapbs Support ANSI C trigraphs. The -ansi option also has this effect.

Linking

These options come into play when the compiler links object files into an executable output
file. They are meaningless if the compiler isn't doing a link step.

object-file-name
A file name that doesn't end in a special recognized suffix is considered to
name an object file or library. (Object files are distinguished from libraries by
the linker according to the file contents.) If linking is done, these object files
are used as input to the linker.

-c, -S, -E If any of these options is used, then the linker isn't run, and object file names
shouldn't be used as arguments. See the section Controlling the Kind of
Output for more information.

-nostdlib Don't use the standard system libraries and startup files when linking. Only
the files you specify will be passed to the linker.

Additional linker options are described in the Id(1) UNIX manual page.

11-20 Chapter 11: The GNU C Compiler

Specifying Directories to be Searched

These options specify directories to search for header files, for libraries and for parts of
the compiler:

-Idir Search directory dir for include files.

-1- Any directories specified with -I options before the -1- option are searched only
for the case of #include "file"; they aren't searched for #include <.file>.

If additional directories are specified with -I options after the -1-, these
directories are searched for all #include directives. (Ordinarily all-I
directories are used this way.)

In addition, the -1- option inhibits the use of the current directory (where the
current input file came from) as the first search directory for #include "file".
There's no way to override this effect of -1-. With -I. you can specify searching
the directory which was current when the compiler was invoked. That isn't
exactly the same as what the preprocessor does by default, but it's often
satisfactory.

-1- doesn't inhibit the use of the standard system directories for header files.
Thus, -1- and -nostdinc are independent.

-Ldir Add directory dir to the list of directories to be searched for-I.

Specifying Code Generation Conventions

These machine-independent options control the interface conventions used in code
generation.

Most of them have both positive and negative forms; the negative form of -ffoo would be
-fno-foo. In the table below, only one of the forms is listed-the one which isn 'tthe default.
You can figure out the other form by either removing no- or adding it.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range
of possible values. Specifically, the enum type will be equivalent to the
smallest integer type which has enough room.

GNU CC Command Options 11-21

-fno-common
Alocate even uninitialized global variables in the bss section of the object file,
rather than generating them as common blocks. This has the effect that if the
same variable is declared (without extern) in two different compilations, you'll
get an error when you link them.

-fvolatile Consider all memory references through pointers to be volatile.

-ffixed-reg Treat the register named reg as a fixed register; generated code should never
refer to it (except perhaps as a stack pointer, frame pointer or in some other
fixed role).

reg must be the name of a register. The register names accepted are
machine-specific and are defined in the REGISTER_NAMES macro in the
machine description macro file.

This flag doesn't have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocatable register that is clobben~d by
function calls. It may be allocated for temporaries or variables that don't
live across a call. Functions compiled this way won't save and restore the
register reg.

Use of this flag for a register that has a fixed pervasive role in the machine's
execution model, such as the stack pointer or frame pointer, will produce
disastrous results.

This flag doesn't have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocatable register saved by functions. It
may be allocated even for temporaries or variables that live across a call.
Functions compiled this way will save and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine's
execution model, such as the stack pointer or frame pointer, will produce
disastrous results. A different sort of disaster will result from the use of this
flag for a register in which function values may be returned.

This flag doesn't have a negative form, because it specifies a three-way choice.

11-22 Chapter 11: The GNU C Compiler

C Programming Notes

This section contains miscellaneous notes about programming in C on a NeXTSTEP
computer. It also describes some incompatibilities between GNU C and traditional
non-ANSI versions of C.

String Constants and Static Strings

GNU CC normally makes string constants read-only, and if several identical string
constants are used, GNU CC stores only one copy of the string.

Some C libraries incorrectly write into string constants. The best solution to this problem
is to use character array variables with initialization strings instead of string constants. If
this isn't possible, use the -fwritable-strings flag, which directs GNU CC to handle string
constants the way most C compilers do.

Also note that initialized strings are normally put in the text segment by the GNU compiler,
and attempts to write to them cause segmentation faults. If your program depends on being
able to write initialized strings, there are two ways to get around this problem:

• Compile your program with the -fwritable-strings compiler option.

• Declare your string as an unbounded array of chars, which will force it to appear in the
data segment:

char *non_writable = "You can't write this string";
char writable[] = "You can write this string";

Function Prototyping

Function prototypes are a new and important feature of the ANSI standard. You should use
function prototypes in your C programs, so the compiler can generate more efficient code
(because it knows what the called function is expecting). The compiler can also warn you
when, you pass the wrong number or wrong type of arguments to a function.

C Programming Notes 11-23

Extra care must be taken in using function prototypes. Be sure to follow these rules:

• Each function must be declared explicitly (with a prototype) before calling the function.
Multiple declarations must agree exactly. Incorrect code can be generated by a call that
isn't prototyped if the function itself is declared as a prototype.

• The parameter declarations for the proto typed function must be in the same fonn as the
prototype declaration.

Here are a few points about prototyping that might cause you some trouble.

• You might think it's a bug when GNU CC reports an error for code like this:

int foo (short) i

int foo (x)

short Xi

{ }

The error message is correct. The code is wrong because the old-style nonprototype
definition passes subword integers in their promoted types. In other words, the argument
is really an iot, not a short. The correct prototype is this:

int foo (int)

• You might think it's a bug when GNU CC reports an error for code like this:

int foo (struct mumble *) i

struct mumble { . . . } i

int foo (struct mumble *x) i

{ .

This code is also wrong. Because of the scope of struct mumble, the prototype is
limited to the argument list containing it. It doesn't refer to the struct mumble defined
with file scope immediately below-they are two unrelated types with similar names in
different scopes. But in the definition of foo, the file-scope type is used because that is
available to be inherited. Thus, the definition and the prototype don't match and you get
an error. You can make the code work by simply moving the definition of struct
mumble above the prototype.

"Suggested Reading" lists several C books that provide detailed infonnation about the use
(and abuse) of function prototypes.

11-24 Chapter 11: The GNU C Compiler

Automatic Register Allocation

When you use setjmpO and longjmpO, the only automatic variables guaranteed to remain
valid are those declared volatile. This is a consequence of automatic register allocation. If
you use the -W option with the -0 option, you'll get a warning when GNU CC thinks such
a problem is possible. For example:

faa ()

int a, b;

a = fun1 ();
if (set j mp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */

return a + fun3 ();

Here, a mayor may not be restored to its first value when the longjmpO function is called.
If a is allocated in a register, its first value is restored; otherwise, it keeps the last value
stored in it.

Declarations of External Variables and Functions

Declarations of external variables and functions within a block apply only to the block
containing the declaration (in some C compilers, such declarations affect the whole file).
ANSI C states that external declarations should obey normal scoping rules. For example:

extern int a;

a = 0;

a 1; /* Illegal */

You can use the -traditional option if you want all extern declarations to be treated
as global.

C Programming Notes 11-25

typedef and Type Modifiers

In traditional C, you can combine unsigned, for example, with a typedef name as
shown here:

typedef long int Int32i
unsigned Int32 ii /* Illegal in ANSI C*/

In ANSI C this isn't allowed: unsigned and other type modifiers require an explicit int.
Because this criterion is expressed by Bison grammar rules rather than C code, the
-traditional flag can't alter it.

The same difficulty applies to typedef names used as function parameters .

. GNU Extensions to the C Language

GNU C provides several language features not found in ANSI C. (The -pedantic option
directs GNU CC to print a warning message if any of these features is used.) To test for the
availability of these features in conditional compilation, check for a predefined macro
GNUC, which is always defined under GNU CC.

Note: You should avoid the use of these GNU C extensions to the ANSI C language, since
they aren't guaranteed to be supported in future releases of NeXTSTEP.

Casts as Lvalues

In GNU C, casts are allowed as lvalues provided their operands are lvalues. This means
that you can store values into them.

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand
side is a cast works by converting the right-hand side first to the specified type, then to the
type of the inner left-hand side expression. After this is stored, the value is converted back
to the specified type to become the value of the assignment. Thus, if a has type char *, the
following two expressions are equivalent:

(int)a = 5
(int) (a = (char *) (int) 5)

11-26 Chapter 11: The GNU C Compiler

An assignment-with-arithmetic operation such as += applied to a cast performs the
arithmetic using the type resulting from the cast, and then continues as in the previous case.
Therefore, these two expressions are equivalent:

(int)a += 5

(int) (a = (char *) (int) ((int) a + 5))

You cannot take the address of an lvalue cast, because the use of its address wouldn't
work out coherently. Suppose that &(int)f were permitted, where f has type float. Then
the following statement would try to store an integer bit-pattern where a floating point
number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do; that would convert 1 to floating point
and store it. Rather than cause this inconsistancy, we think it's better to prohibit use of &
on a cast.

If you really do want an int * pointer with the address of f, you can simply write (int *)&f.

Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a
structure which is really a header for a variable-length object:

struct line {

int length;

char contents [0] ;
} ;

struct line *thisline

= (struct line *) malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

In standard C, you would have to give contents a length of 1, which means either you waste
space or complicate the argument to malloc.

GNU Extensions to the C Language 11-27

Arithmetic on void-Pointers and Function Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeofO is also allowed on void and on function types, and
returns 1.

The option -Wpointer-arith requests a warning if these extensions are used.

Non-Constant Initializers

The elements of an aggregate initializer for an automatic variable aren't required to be
constant expressions in GNU C. Here's an example of an initializer with run-time varying
elements:

faa (float f, float g)
{

float beat_freqs[2J = { f-g, f+g };

Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an
initializer. Its value is an object of the type specified in the cast, containing the elements
specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo and structure are declared
as shown:

struct faa {int a; char b[2J;} structure;

Here's an example of constructing a struct foo with a constructor:

structure = ((struct faa) {x + y, 'a', O})i

11-28 Chapter 11: The GNU C Compiler

-------------.. _--------------

This is equivalent to writing the following:

struct foo temp = {x + y, 'a', O}i

structure = tempi

You can also construct an array. If all the elements of the constructor are made up of simple
constant expressions, suitable for use in initializers, then the constructor is an lvalue and
can be coerced to a pointer to its first element, as shown here:

char **foo = (char * []) { "x", "y", "Z" } i

Array constructors whose elements aren't simple constants aren't very useful, because the
constructor isn't an lvalue. There are only two valid ways to use it: to subscript it, or
initialize an array variable with it. The former is probably slower than a switch statement,
while the latter does the same thing an ordinary C initializer would do. Here's an example
of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input]i

Constructor expressions for scalar types and union types are is also allowed, but then the
constructor expression is equivalent to a cast.

Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help
the compiler optimize function calls.

A few functions, such as abortO and exitO, cannot return. These functions should be
declared volatile. For example,

extern void volatile abort ()i

tells the compiler that it can assume that abortO won't return. This makes slightly better
code, but more importantly it helps avoid spurious warnings of uninitialized variables. It
doesn't make sense for a volatile function to return anything other than void.

GNU Extensions to the C Language 11-29

Many functions don't examine any values except their arguments, and have no effects
except the return value. Such a function can be subject to common subexpression
elimination and loop optimization just as an arithmetic operator would be. These functions
should be declared const. For example,

extern int canst square () i

says that the hypothetical function squareO is safe to call fewer times than the
program says.

Note that a function that has pointer arguments and examines the data pointed to must not
be declared const. Likewise, a function that calls a non-const function usually must not be
const. It doesn't make sense for a const function to return void.

We recommend placing the keyword const after the function's return type. It makes no
difference in the example above, but when the return type is a pointer, it's the only way to
make the function itself const. For example,

canst char *mincp (int)i

says that mincpO returns const char *-a pointer to a const object. To declare mincpO as
const, you must write this:

char * canst mincp (int) i

Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because many traditional
C implementations allow such identifiers.

Dollar signs are allowed on certain machines if you specify -traditional. On a few systems
they are allowed by default, even if -traditional isn't used. But they are never allowed if
you specify -ansi.

There are certain ANSI C programs (obscure, to be sure) that would compile incorrectly if
dollar signs were permitted in identifiers. For example:

#define faa (a) #a

#define lose(b) faa (b)

#define testS

lose (test)

11-30 Chapter 11: The GNU C Compiler

The Character ESC in Constants

In GNU C, you can use the sequence \e in a string or character constant to stand for the
ASCII character ESC.

Specifying Attributes of Variables

In GNU C, the keyword _attribute_ allows you to speCify special attributes of
variables or structure fields. The only attributes currently defined are the aligned and
format attributes.

The aligned attribute specifies the alignment of the variable or structure field. For example,
the declaration

int x _attribute __ ((aligned (16))) = OJ

causes the compiler to allocate the global variable x on a 16-byte boundary. On a 68000,
this could be used in conjunction with an asm expression to access the move16 instruction,
which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a double-word
aligned int pair, you could write:

struct faa { int x[2] __ attribute __ ((aligned (8)))j }j

This is an alternative to creating a union with a double member that forces the union to be
double-word aligned.

It isn't possible to specify the alignment of functions; the alignment of functions is
determined by the machine's requirements and cannot be changed.

The format attribute specifies that a function takes printfO or scanfO style arguments
which should be type-checked against a format string. For example, the declaration:

extern int
my-printf (void *my_object, canst char *my_format, ...)

__ attribute __ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my _printfO for consistency with the
printf-style format string argument my_format.

GNU Extensions to the C Language 11-31

The first parameter of the format attribute determines how the format string is interpreted,
and should be either printf or scanf. The second parameter specifies the number of the
format string argument (starting from 1). The third parameter specifies the number of the
first argument which should be checked against the format string. For functions where the
arguments aren't available to be checked (such as vprintfO), specify the third parameter as
zero. In this case the compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second argument to my _printO
and the arguments to check start with the third argument, so the correct parameters for the
format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format strings as
arguments, so that GNU CC can check the calls to these functions for errors. The compiler
always checks formats for the ANSI C library functions printfO, fprintfO, sprintfO,
scanfO, fscanfO, sscanfO, vprintfO, vfprintfO, and vsprintfO whenever such warnings
are requested (using -Wformat), so there's no need to modify the header file stdio.h.

An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that function's code into
the code for its callers. This makes execution faster by eliminating the function-call
overhead; in addition, if any of the actual argument values are constant, their known values
may permit simplifications at compile time so that not all of the inline function's code needs
to be included.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)

(*a)++;

If you are writing a header file to be included in ANSI C programs, write _inline_ instead
of in line.

You can also make all "simple enough" functions inline with the option -finline-functions.
Note that certain usages in a function definition can make it unsuitable for inline
substitution.

When a function is both inline and static, if all calls to the function are integrated into the
caller and the function's address is never used, then the function's own assembler code is
never referenced. In this case, GNU CC doesn't actually output assembler code for the

11-32 Chapter 11: The GNU C Compiler

---~-.-.--- ... -------------

function, unless you specify the option -!keep-inUne-functions. Some calls cannot be
integrated for various reasons (in particular, calls that precede the function's definition
cannot be integrated, and neither can recursive calls within the definition). If there's a
nonintegrated call, then the function is compiled to assembler code as usual. The function
must also be compiled as usual if the program refers to its address, because that can't
be inlined.

When an inline function isn't static, the compiler must assume that there may be calls from
other source files; since a global symbol can be defined only once in any program, the
function must not be defined in the other source files, so the calls therein cannot be
integrated. Therefore, a non-static inline function is always compiled on its own in the
usual fashion.

If you specify both inUne and extern in the function definition, the definition is used only
for inlining. In no case is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as if you had only
declared the function and hadn't defined it.

This combination of inUne and extern has almost the effect of a macro. The way to use it
is to put a function definition in a header file with these keywords, and put another copy of
the definition (lacking inUne and extern) in a library file. The definition in the header file
will cause most calls to the function to be inlined. If any uses of the function remain, they
will refer to the single copy in the library.

Assembler Instructions with C Expression Operands

In an assembler instruction using aSID, you can now specify the operands of the instruction
using C expressions. This means no more guessing which registers or memory locations
will contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here's how to use the 68881 's fsinx instruction:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the
output operand. Each has f as its operand constraint, saying that a floating point
register is required. The = in =f indicates that the operand is an output; all output
operands' constraints must use =. The constraints use the same language used in the
machine description.

GNU Extensions to the C Language 11-33

Each operand is described by an operand-constraint string followed by the C expression in
parentheses. A colon separates the assembler template from the first output operand, and
another separates the last output operand from the first input, if any. Commas separate
output operands and separate inputs. The total number of operands is limited to the
maximum number of operands in any instruction pattern in the machine description.

If there are no output operands, and there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go.

Output operand expressions must be lvalues; the compiler can check this. The input
operands need not be lvalues. The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed. It doesn't parse the assembler
instruction template and doesn't know what it means, or whether it's valid assembler input.
The extended asm feature is most often used for machine instructions that the compiler
itself doesn't know exist.

The output operands must be write-only; GNU CC will assume that the values in these
operands before the instruction are dead and need not be generated. Extended asm doesn't
support input-output or read-write operands. For this reason the constraint character +,
which indicates such an operand, may not be used.

When the assembler instruction has a read-write operand or an operand in which only some
of the bits are to be changed, you must logically split its function into two separate
operands, one input operand and one write-only output operand. The connection between
them is expressed by constraints which say they need to be in the same location when the
instruction executes. You can use the same C expression for both operands, or different
expressions. For example, here we write the (fictitious) combine instruction with bar as
its read-only source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (faa) : "0" (faa), "g" (bar));

The constraint 0 for operand 1 says that it must occupy the same location as operand O. A
digit in the constraint is allowed only in an input operand, and it must refer to an output
operand.

Only a digit in the constraint can guarantee that one operand will be in the same place as
another. The mere fact that foo is the value of both operands isn't enough to guarantee
that they will be in the same place in the generated assembler code. The following
wouldn't work:

asm (" combine %2, %0" "=r" (faa) "r" (faa), "g" (bar));

11-34 Chapter 11: The GNU C Compiler

Various optimizations or reloading could cause operands 0 and 1 to be in different registers;
GNU CC knows no reason not to do so. For example, the compiler might find a copy of
the value of foo in one register and use it for operand 1, but generate the output operand 0
in a different register (copying it afterward to foo's own address). Of course, since the
register for operand 1 isn't even mentioned in the assembler code, the result won't work,
but GNU CC can't tell that.

Unless an output operand has the & constraint modifier, GNU CC may allocate it in the
same register as an unrelated input operand, on the assumption that the inputs are consumed
before the outputs are produced. This assumption may be false if the assembler code
actually consists of more than one instruction. In such a case, use & for each output
operand that may not overlap an input.

You can put multiple assembler instructions together in a single asm template, separated
either with newlines (written as \n) or with semicolons if the assembler allows such
semicolons. The GNU assembler allows semicolons, and all UNIX assemblers seem to do
so. The input operands are guaranteed not to use any of the clobbered registers, and neither
will the output operands' addresses, so you can read and write the clobbered registers as
many times as you like. Here's an example of multiple instructions in a template; it
assumes that the subroutine _foo accepts arguments in registers 9 and 10:

asm ("movl %O,r9;movl %l,r10;eall foo"
/* no outputs */

"g" (from), "g" (to)

" r9 ", " r1 0") ;

If you want to test the condition code produced by an assembler instruction, you must
include a branch and a label in the asm construct, as follows:

asm ("elr %O;frob %l;beq Of;mov #1,%0;0:"
"g" (result)

: "g" (input));

This assumes that your assembler supports local labels, as the GNU assembler and most
UNIX assemblers do.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \
({ double __ value, __ arg = (x); \

asm ("fsinx %1,%0": "=f" (__ value): "f" (__ arg)); \
__ value; })

GNU Extensions to the C Language 11-35

Here the variable _arg is used to make sure that the instruction operates on a proper
double value, and to accept only those arguments x which can convert automatically to
a double.

Another way to make sure the instruction operates on the correct data type is to use a cast
in the asm. This is different from using a variable _arg in that it converts more different
types. For example, if the desired type were int, casting the argument to int would accept
a pointer with no complaint, while assigning the argument to an int variable named _arg
would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes that the
instruction has no side effects except to change the output operands. This doesn't mean that
instructions with a side effect cannot be used, but you must be careful, because the compiler
may eliminate them if the output operands aren't used, or move them out of loops, or
replace two with one if they constitute a common sUbexpression. Also, if your instruction
does have a side effect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined,
by writing the keyword volatile after the asm. For example:

#define set-priority(x) \
asm volatile (" set-priority %0": /* no outputs * / : "g" (x))

An instruction without output operands won't be deleted or moved significantly, regardless,
unless it's unreachable.

Note that even a volatile asm instruction can be moved in ways that appear insignificant
to the compiler, such as across jump instructions. You can't expect a sequence of volatile
asm instructions to remain perfectly consecutive. If you want consecutive output, use a
single asm.

It's a natural idea to look for a way to give access to the condition code left by the
assembler instruction. However, when we attempted to implement this, we found no
way to make it work reliably. The problem is that output operands might need reloading,
which would result in additional following "store" instructions. On most machines, these
instructions would alter the condition code before there was time to test it. This problem
doesn't arise for ordinary "test" and "compare" instructions because they don't have any
output operands.

11-36 Chapter 11: The GNU C Compiler

Additional Information about GNU CC

This section describes a few areas that commonly cause problems for users of GNU CC,
and points out incompatibilities between GNU C and some other existing versions of C.

Known Causes of Trouble with GNU CC

Here are some of the things that have caused trouble for people installing or using GNU CC.

• Users often think it's a bug when GNU CC reports an error for code like this:

int faa (short) i

int faa (x)
short Xi

{. . .}

The error message is correct: this code really is erroneous, because the old-style
non-prototype definition passes subword integers in their promoted types. In other
words, the argument is really an int, not a short. The correct prototype is this:

int faa (int);

• Users often think it's a bug when GNU CC reports an error for code like this:

int faa (struct mumble *);

struct mumble { ... }i

int faa (struct mumble *x)
{ .

This code really is erroneous, because the scope of struct mumble the prototype is
limited to the argument list containing it. It doesn't refer to the struct mumble defined
with file scope immediately below-they are two unrelated types with similar names in
different scopes.

But in the definition of Coo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype don't match, and you get an error.

This behavior may seem silly, but it's what the ANSI standard specifies. It's easy
enough for you to make your code work by moving the definition of struct mumble
above the prototype. It's not worth being incompatible with ANSI C just to avoid an
error for the example shown above.

Additional Information about GNU CC 11-37

Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and most existing
(non-ANSI) versions of C. The -traditional option eliminates most of these
incompatibilities-but not all-by telling GNU C to behave like the other C compilers.

• GNU CC normally makes string constants read-only. If several identical-looking string
constants are used, GNU CC stores only one copy of the string.

One consequence is that you cannot call mktempO with a string constant argument.
The function mktempO always alters the string its argument points to.

Another consequence is that sseanfO doesn't work on some systems when passed a
string constant as its format control string or input. This is because sseanfO incorrectly
tries to write into the string constant. This is also true of fseanfO and seanfO.

The best solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants. But if this isn't
possible, you can use the -fwritable-strings flag, which directs GNU CC to handle
string constants the same way most C compilers do. -traditional also has this effect,
among others.

• GNU CC doesn't substitute macro arguments when they appear inside string constants.
For example, the following macro in GNU CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.

The -traditional option directs GNU CC to handle such cases (among others) in the
old-fashioned (non-ANSI) fashion.

11-38 Chapter 11: The GNU C Compiler

• When you use setjrnp() and longjrnp(), the only automatic variables guaranteed to
remain valid are those declared volatile. This is a consequence of automatic register
allocation. Consider this function:

faa ()
{

int a, bi

a = funl () i

if (setjmp (j))

return ai

a = fun2 ()i
/* @r{longjmp (j) may occur in fun3.} */

return a + fun3 () i

Here a mayor may not be restored to its first value when the longjrnp() occurs. If a is
allocated in a register, its first value is restored; otherwise, it keeps the last value stored
in it.

If you use the -W option with the -0 option, you'll get a warning when GNU CC thinks
such a problem might be possible.

The -traditional option directs GNU C to put variables in the stack by default, rather
than in registers, in functions that call setjrnp(). This results in the behavior found in
traditional C compilers.

• Declarations of external variables and functions within a block apply only to the block
containing the declaration. In other words, they have the same scope as any other
declaration in the same place.

In some other C compilers, an extern declaration affects all the rest of the file even if it
happens within a block.

The -traditional option directs GNU C to treat all extern declarations as global, like
traditional compilers.

Additional Information about GNU CC 11-39

• In traditional C, you can combine long, etc., with a typedef name, as shown here:

typedef int faa;
typedef long faa bar;

In ANSI C, this isn't allowed: long and other type modifiers require an explicit int.
Because this criterion is expressed by Bison grammar rules rather than C code, the
-traditional flag cannot alter it.

• PCC allows typedef names to be used as function parameters. The difficulty described
immediately above applies here too.

• PCC allows whitespace in the middle of compound assignment operators such as +=.
GNU CC, following the ANSI standard, doesn't allow this. The difficulty described
immediately above applies here too.

• GNU CC will flag unterminated character constants inside preprocessor conditionals
that fail. Some programs have English comments enclosed in conditionals that are
guaranteed to fail; if these comments contain apostrophes, GNU CC will probably report
an error. For example, this code would produce an error:

#if 0
You can't expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment delimited
by 1* ... *1. However, -traditional suppresses these error messages.

• When compiling functions that return float, PCC converts it to a double. GNU CC
actually returns a float. If you are concerned with PCC compatibility, you should
declare your functions to return double.

• When compiling functions that return structures or unions, GNU CC output code
normally uses a method different from that used on most versions of UNIX. As a result,
code compiled with GNU CC cannot call a structure-returning function compiled with
PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union which is 1, 2, 4 or 8
bytes long is returned like a scalar. A structure or union with any other size is stored into
an address supplied by the caller (usually in a special fixed register, but on some
machines it's passed on the stack). The machine-description macros
STRUCT_ VALUE and STRUCT_INCOMING_ VALUE tell GNU CC where to pass
this address.

11-40 Chapter 11: The GNU C Compiler

By contrast, PCC on most target machines returns structures and unions of any size by
copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory
area to the place where the value is wanted. GNU CC doesn't use this method because
it's slower andnonreentrant.

I

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GNU CC on most of these machines uses a compatible convention when
returning structures and unions in memory, but still returns small structures and unions
in registers.

Legal Considerations

Permission is granted to make and distribute verbatim copies of this chapter provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the
conditions for verbatim copying, provided also that the section entitled "GNU General
Public License" is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that the section entitled
"GNU General Public License" and this permission notice may be included in translations
approved by the Free Software Foundation instead of in the original English.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Legal Considerations 11-41

Preamble

The licenses for most software are designed.to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software-to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to
any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
• rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the original
authors'reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

11-42 Chapter 11: The GNU C Compiler

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work based
on the Program" means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term "modification".) Each licensee is addressed
as "you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that
is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

4. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

5. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

6. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but does not

Legal Considerations 11-43

normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

7. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

8. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

9. Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

10. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include anything that is normally

11-44 Chapter 11: The GNU C Compiler

distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

11. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

12. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

13. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose any
further restrictions on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

14. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

Legal Considerations 11-45

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose
of protecting the integrity of the free software distribution system, which is implemented
by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

15. This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

16. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in
the body of this License.

17. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

18. Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and "any later version", you have the
option of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the Free
Software Foundation.

19. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

20. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

11-46 Chapter 11: The GNU C Compiler

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

21. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it f~ee software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program's name and a briefidea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

Legal Considerations 11-47

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Also add information on how to contact you by electronic arid paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w' .
This is free software, and you are welcome to redistribute it under certain conditions;
type 'show c' for details.

The hypothetical commands show wand show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show wand show c; they could even be mouse-clicks or menu items-whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the program, if necessary. Here's a sample; alter
the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision'
(which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do, use
the GNU Library General Public License instead of this License.

11-48 Chapter 11: The GNU C Compiler

= =--

The GNU C Preprocessor

12-4

12-5

12-6
12-6
12-6
12-8

12-9
12-9
12-10
12-11

12-13
12-13
12-15
12-17
12-19
12-20
12-22
12-23
12-24

Global Transformations

Preprocessor Commands

Header Files
Uses of Header Files
The #include Command
Multiple Inclusion of Header Files

Precompiled Header Files
Using Precompiled System Header Files
Creating Your Own Precompiled Header Files
Troubleshooting

Macros
Simple Macros
Macros that Take Arguments
Predefined Macros
Nonstandard Predefined Macros
S tringification
Concatenation
Undefining Macros
Redefining Macros

12-1

12-2

12-24 Pitfalls and Subtleties of Macros
12-24 Improperly Nested Constructs
12-25 Unintended Grouping of Arithmetic
12-26 Swallowing the Semicolon
12-27 Duplication of Side Effects
12-28 Self-Referential Macros
12-29 Separate Expansion of Macro Arguments
12-31 Cascaded Use of Macros
12-32 Inability to Define a Macro that Produces a # Character
12-32 Macro Arguments inside String Constants

12-33 Conditionals
12-33 Syntax of Conditionals
12-34 The #if Command
12-35 The #eIse Command
12-35 The #elif Command
12-36 Keeping Deleted Code for Future Reference
12-36 Conditionals and Macros
12-37 The #error and #warning Commands

12-38 Pragmas

12-39 Combining Source Files
12-39 Miscellaneous Preprocessor Commands

12-40 C Preprocessor Output

12-40 Invoking the C Preprocessor

-~----------------------------

12

..... rr;==.

The GNU C Preprocessor

The GNU C preprocessor is a macro processor the C compiler uses to transform your
program before actual compilation. It's called a macro processor because it allows you
to define macros, which are brief abbreviations for longer constructs.

The C preprocessor provides the following four facilities:

• Inclusion of header files. These are files of declarations that can be substituted into
your program.

• Macro expansion. You can define and use macros, which are abbreviations for arbitrary
fragments of C code. The C preprocessor will replace the macros with their definitions
throughout the program.

• Conditional compilation. Using special preprocessor commands, you can include or
exclude parts of the program according to various conditions.

• Line control. If you use a program to combine or rearrange source files into an
intermediate file which is then compiled, you can use line control to inform the compiler
of where each source line originally came from.

C preprocessors vary in their implementation details. This section describes the GNU C
preprocessor, which provides a superset of the features of ANSI-standard C.

ANSI-standard C requires the rejection of many harmless constructs commonly used by
today's C programs. Such incompatibility would be inconvenient for users, so the GNU C
preprocessor is configured to accept these constructs by default. To get ANSI-standard C
you would use the options -trigraphs, -undef, and -pedantic, although in practice the
consequences of having strict ANSI Standard C may make it undesirable to do this. See
the section "Invoking the C Preprocessor" for more information.

The GNU C Preprocessor 12-3

Global Transformations

Most C preprocessor features are inactive unless you give specific commands to request
their use. But there are three transformations that the preprocessor always makes on all the
input it receives, even in the absence of commands:

• C comments (and Objective C comments) are replaced with single spaces.

• Backslash-newline sequences are deleted. This feature allows you to break long lines
for cosmetic purposes without changing their meaning.

• Predefined macro names are replaced with their expansions (see the section "Predefined
Macros").

The first two transformations are done before nearly all other parsing and before
preprocessor commands are recognized. Thus, for example, you can split a line
cosmetically with backslash-newline anywhere (except when trigraphs are in use; see
below).

/*

/ # /

*/ defi\
ne FO\
o 10\
20

is equivalent to #define FOO 1020. You can even split an escape sequence with
backslash-newline. For example, you can split "foo\bar" between the backslash and the b
to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a backslash can be inserted in a string
constant as an ordinary character by writing a double backslash, and this creates an
exception. But the ANSI C standard requires it. (Strict ANSI C doesn't allow newlines in
string constants, so this isn't considered a problem.)

There are a few exceptions to all three transformations:

• C comments and predefined macro names aren't recognized inside an #include
command in which the file name is delimited with < and >.

12-4 Chapter 12: The GNU C Preprocessor

• C comments and predefined macro names are never recognized within a character or
string constant. (Strictly speaking, this is the rule rather than an exception.)

• Backslash-newline may not safely be used within an ANSI trigraph (trigraphs are
converted before backslash-newline is deleted). If you write what looks like a trigraph
with a backslash-newline inside, the backslash-newline is deleted as usual, but it is then
too late to recognize the trigraph.

This exception is relevant only if you use the -trigraphs option to enable trigraph
processing.

Preprocessor Commands

Most preprocessor features are active only if you use preprocessor commands to request
their use.

Preprocessor commands are lines in your program that start with #. The # is followed by
an identifier that's the command name. For example, #define is the command that defines
a macro. White-space characters are allowed before and after the #.

The set of valid command names is fixed. Programs can't define new preprocessor
commands.

Some command names require arguments; these make up the rest of the command line
and must be separated from the command name by one or more white-space characters.
For example, #define must be followed by a macro name and the intended expansion of
the macro.

A preprocessor command normally can't be more than one line. It may be split
cosmetically with backslash-newline, but that has no effect on its meaning. Comments
containing newlines can also divide the command into multiple lines, but the comments are
changed to spaces before the command is interpreted. The only way a significant newline
can occur in a preprocessor command is within a string constant or character constant.
(Note that most C compilers that might be applied to the output from the preprocessor do
not accept string or character constants containing newlines.)

The # and the command name can't come from a macro expansion. For example, iffoo
is defined as a macro expanding to define, that doesn't make #Coo a valid preprocessor
command.

Preprocessor Commands 12-5

Header Files

Header files can contain C declarations and macro definitions that are to be shared by more
than one source file. You request the inclusion of a header file in a source file by using the
C preprocessor command #include (or more typically in the NeXTSTEP environment, the
Objective C preprocessor command #import).

Uses of Header Files

Header files serve two kinds of purposes:

• System header files declare the interfaces to parts of the operating system. You
include them in your program to supply the definitions you need to invoke system calls
and libraries.

• Your own header files contain declarations for interfaces between the source files of your
program. Each time you have a group of related declarations and macro definitions, all
or most of which are needed in several different source files, it's a good idea to create a
header file for them.

Including a header file produces the same results in C compilation as copying the header
file into each source file that needs it. But such copying would be time-consuming and
error-prone. With a header file, the related declarations appear in only one place. If they
need to be changed, they can be changed in one place, and programs that include the header
file will automatically use the new version when recompiled.

By convention, names of header files end with the extension ".h".

The #include Command

Both user and system header files are included using the preprocessor command #include.
It has three variants:

#include <file>
This variant is used for system header files. It searches for a file named file in
a list of directories specified by you, then in a standard list of system
directories. You specify directories to search for header files with the
command option -I (see the section "Invoking the C Preprocessor"). The
option -nostdinc inhibits searching the standard system directories; in this case
only the directories you specify are searched.

12-6 Chapter 12: The GNU C Preprocessor

The parsing of this form of #include is slightly special because comments are
not recognized within the <.file> argument. Thus, in #include <x1*y> the 1*
doesn't start a comment and the command specifies inclusion of a system
header file named x1*y. (Of course, a header file with such a name is unlikely
to exist on a UNIX-based system, where shell wildcard features would make it
hard to manipulate.)

The file argument may not contain a > character, although it may contain a <
character.

#include ''file''
This variant is used for header files of your own program. It searches for a file
named file first in the current directory, then in the same directories used for
system header files. The current directory is tried first because it's presumed
to be the location of the files of the program being compiled. (If the -1- option
is used, the special treatment of the current directory is inhibited.)

The file argument may not contain "characters. If backslashes occur within
file, they are considered ordinary text characters, not escape characters. None
of the character escape sequences appropriate to string constants in C are
processed. Thus, #include "x\n\\y" specifies a file name containing three
backslashes. It isn't clear why this behavior is ever useful, but the ANSI
standard specifies it.

#include anything else
This variant is called a computed #include. Any #include command whose
argument doesn't fit the above two forms is a computed #include. The text
anything else is checked for macro calls, which are expanded. When this is
done, the result must fit one of the above two variants.

This feature allows you to define a macro that controls the file name to be used
at a later point in the program. One application of this is to allow a
site-configuration file for your program to specify the names of the system
header files to be used. This can help in porting the program to various
operating systems in which the necessary system header files are found in
different places.

The #include command directs the C preprocessor to scan the specified file as input before
continuing with the rest of the current file. The output from the preprocessor will contain
the output already generated, followed by the output resulting from the included file,
followed by the output that comes' from the text after the #include command. Included files
can themselves contain #include commands to include other files.

Header Files 12-7

Included files are not limited to declarations and macro definitions, although those are the
typical uses. Any fragment of a C program can be included from another file. The include
file could even contain the beginning of a statement that is concluded in the containing file,
or the end of a statement that was started in the including file. However, a comment or a
string or character constant may not start in the included file and finish in the including file.
An unterminated comment, string constant or character constant in an included file is
considered to end (with an error message) at the end of the file.

The line following the #include command is always treated as a separate line by the
C preprocessor, even if the included file lacks a final newline.

Note: The Objective C language equivalent of #include is #import; the only difference
is that #import doesn't include a file more than once, no matter how many #import
commands try to include it. You should feel free to use #import in your code, but be aware
that it isn't defined as part of ANSI-standard C.

Multiple Inclusion of Header Files

Very often one header file includes another, which can result in a certain header file being
included more than once. This may lead to errors if the header file defines structure types
or typedefs, and in any event is wasteful. For these reasons, you should try to avoid multiple
inclusion of a header file.

The standard way to prevent multiple inclusion of a file is to enclose the entire real contents
of the file in a conditional, like this:

#ifndef FILE_FOO_SEEN
#define __ FILE_FOO_SEEN __
the entire file
#endif /* __ FILE_FOO_SEEN __ */

The macro __ FILE_FOO _SEEN __ indicates that the file has been included once already;
its name begins with __ to avoid conflicts with user programs, and it contains the name of
the file and some additional text to avoid conflicts with other header files.

Alternatively (if compatibility with non-NeXT platforms isn't an issue), you can ensure that
each file is included only once simply by using the Objective C #import command instead
of the #include command.

12-8 Chapter 12: The GNU C Preprocessor

Precompiled Header Files

A precompiled header is a C header file that has been preprocessed and parsed,
thereby improving compile time and reducing symbol table size. The macros and
external declarations from the original header are sorted to enable fast lookup. A new
implementation of the C preprocessor can use precompiled headers in place of
standard headers.

In most cases, the use of precompiled headers is transparent. Precompiled headers are
simple enough to use that most projects require no conversion at all, or can be converted in
a day or less.

Using Precompiled System Header Files

The precompiled version of a header file has a ".p" extension, rather than the standard ".h"
extension. You should not refer to appkit.p in your source files; just use appkit.h and the
preprocessor will use the precompiled form if it's available and appropriate.

When the preprocessor encounters an include directive, it automatically looks for a
precompiled version of the header. If one is found, it checks whether the context is
equivalent to the context in which the precompiled header was built-if it is, the
precompiled header is used. However, if any of the following problems occur, the
non-precompiled form is included instead:

• A header which was included by the precompiled header could not be found in the
filesystem to verify its modification time, or the modification time did not match. In
practice, this never occurs for precompiled headers that are part of the release, and
occurs only rarely when programmers build their own precompiled headers.

• A macro was defined when the precompiled header was built, but is not defined in the
current context. This is only a problem if the macro was actually referenced somewhere
in the precompiled header.

• A macro was undefined when the precompiled header was built, but is defined in the
current context. This is only a problem if there might have been an invocation of the
macro in the precompiled header.

Compile-time warnings (described at the end of this file) indicate the nature of any
problems that occur. However, you need to compile with the -Wprecomp option in order
for these warnings to be displayed.

Precompiled Header Files 12-9

If you're developing a small project, you don't need to bother building you own
precompiled headers-just use the precompiled system headers appkit.p and mach.p. It's
easy to create your own precompiled headers if you wish to do so, however, as described in
the next section.

Creating Your Own Precompiled Header Files

You create a precompiled header by passing the new -precomp switch to cc. Depending on
the context(s) in which the header is used, -D switches should also be passed to cc, as
explained below.

% cc -precomp foo.h -0 foo.p

We say a header is "context dependent" if the definitions in the header may change
depending on the context in which it is included. Most uses of conditional compilation and
macro expansions cause context dependence. For instance, the following header is context
dependent:

#ifdef DEBUG

int ai

#else

int bi
#endif

The context at any point is detennined by the macros that are defined there. A precompiled
header must be created in a context equivalent to that where it is used. By passing switches
to the preprocessor, any set of macros can be predefined, creating a context in which
the precompiled header is built. This is done by passing a -D switch for each macro in
the context.

A precompiled header built from "system headers" typically requires no -D switches,
because programmers usually include system headers in a context independent way. For
instance, the public appkit headers contain almost no preprocessor conditionals; clients
cannot change declarations in headers by defining macros. So the command to build a
precompiled header from appkit.h is:

% cc -precomp appkit.h -0 appkit.p

But if you must use a header bar.h in a context where Faa is defined, you should build the
precompiled header as follows:

% cc -precomp -DFOO bar.h -0 bar.p

You should also pass any preprocessor switches, such as -I, that you use in your project.

12-10 Chapter 12: The GNU C Preprocessor

By making precompiled headers bigger (that is, containing more headers), a given C file
may include fewer precompiled headers, and will generally compile faster. However, the
bigger a precompiled header is, the more likely that name conflicts will occur.

For example, if you were to combine all the headers for a project, including system headers,
into a single precompiled header, it is quite possible that there would be a name conflict.
There may be a macro defined that happens to match one of your local identifiers, or there
may be a public struct declared that happens to match one of your private struct names.
Such conflicts manifest themselves as preprocessing errors, syntax errors, or semantic
errors. The conflicts may be resolved by renaming identifiers, or removing a conflicting
header from the precompiled header.

Another disadvantage to big precompiled headers is file dependencies. If all of the C files
in a project depend on a single precompiled header which in tum depends on all headers in
the project, then changing a header requires recompilation of the entire project. A better
approach is to build a precompiled header containing all the system headers used by a
project, and perhaps also a separate precompiled header for the local headers in the project.
We recommend that during development, while local headers are changing, precompiled
headers be used only for system files. When local headers have stabilized, they may be
combined into a precompiled header.

A precompiled header is dependent on all the files it includes. A Make dependency rule
can be constructed similar to the way rules are constructed for source files (see the Make
rule for depend: in Makefile.common). The following rule builds a precompiled header
from a header:

.h.p:
cc -precornp $ (CFLAGS) $*.h $*.p

A precompiled header records absolute path names for all the headers that went into it.
These paths are then checked when the precompiled header is used. Therefore a
precompiled header should be built in the same directory in which it is to be used, and all
the headers that went into the precompiled header must not be moved or modified.

Troubleshooting

The Release 3.0 preprocessor and parser are required in order to use precompiled headers,
and there are several incompatibilities with the Release 2.0 preprocessor and parser. For
example, preprocessing errors and syntax errors are in a slightly different format.

Only rarely will you have trouble building a precompiled header. The most common
problem you might encounter is that the header doesn't parse; this is often because the

Precompiled Header Files 12-11

header does not include other headers it depends on, so that there are undefined types.
Another typical problem is conflicting definitions, which can be solved by renaming
identifiers or removing a header from the precompiled header.

The following list describes the compile-time warnings that may occur when using a
precompiled header (currently you must compile with the -Wprecomp option in order for
these warnings to be displayed):

• could not use precompiled header 'header.p'

The precompiled header could not be used for one of the reasons below.

• macro' macro' undefined

The macro was defined when the precompiled header was built, but is not defined in the
current context.

• macro 'macro' defined

The macro was undefined when the precompiled header was built, but is defined in the
current context. This error can often be avoided by importing precompiled headers in the
source file before any other headers.

• macro 'macro' defined by 'header.p' conflicts with precomp

A previously included precompiled header defines a macro differently than does the
current precompiled header being processed.

• macro 'macro' defined on command line conflicts with precomp .

Similar to the previous warning, except that the earlier definition of the macro occurred
on the command line.

• macro 'macro' redefined, locations of the conflict are:
header 1.h:23
header2.h:47 (within the precompiled header)

The macro has been defined in two different ways in two different precompiled headers

• #ifdef 'SYM' not defined when precompiled

A symbol was defined for the inclusion of this precompiled header, but was not when
the header was precompiled. Since this symbol is used in an #ifdef, the precompiled
header does not contain all the source code desired by the including context.

12·12 Chapter 12: The GNU C Preprocessor

Macros

• 'header.h' has different date than in precomp

The modification time of the header on the disk does not match the modification time of
the header when the precompiled header was built.

• could not find 'header.h'

The header which was included by the precompiled header could not be found on the
disk to verify its modification time.

• could not use precomp 'header.p' (incorrect version)

It was discovered that the version of the referenced precompiled header is incompatible
with the compiler, possibly signifying a corruptor obsolete header.p.

• explicit reference to precompiled 'header.p' failed

Although the inclusion of headers with a ".p" suffix is discouraged due to portability
considerations, it is legal to explicitly reference precompiled headers. The above error
is generated if the precompiled header could not be typechecked properly.

A macro is an abbreviation you define once and then use later. This section describes some
important features associated with macros in the C preprocessor.

Simple Macros

A simple macro is a kind of abbreviation-it's a name that stands for a fragment of code.
Simple macros are sometimes referred to as manifest constants.

Before you can use a macro, you must define it explicitly with the #define command.
#define is followed by the name of the macro and then the code it should be an abbreviation
for. For example,

#define BUFFER_SIZE 1020

defines a macro named BUFFER_SIZE as an abbreviation for the text 1020. With this
definition in effect, the C preprocessor would expand the following statement

faa = (char *) xmalloc (BUFFER_SIZE);

Macros 12-13

to

faa = (char *) xmalloc (1020) i

The definition must be a single line; however, it may not end in the middle of a multiline
string constant or character constant.

For readability, uppercase is used for macro names by convention. Programs are easier to
read when it's possible to tell at a glance which names are macros.

Normally, a macro definition must be a single line (although you can always split a long
macro definition cosmetically with backslash-newline). There's one exception: Newlines
can be included in the macro definition if they're within a string or character constant. It
isn't possible for a macro definition to contain an unbalanced quote character; the definition
automatically extends to include the matching quote character that ends the string or
character constant. Comments within a macro definition may contain newlines (which
make no difference, since the comments are entirely replaced with spaces regardless of
their contents).

Aside from the above, there is no restriction on what can go in a macro body. Parentheses
need not balance, and the body need not resemble valid C code. (Of course, you might get
error messages from the C compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro definitions take effect at the
place you write them. Therefore, the following input to the C preprocessor

faa = Xi

#define X 4

bar = Xi

produces as output:

faa = Xi

bar = 4i

After the preprocessor expands a macro name, the macro's definition body is appended to
the front of the remaining input, and the check for macros continues. Therefore, the macro
body can contain other macros. For example, after the following definitions

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

the name TABLESIZE when used in the program would go through two stages of
expansion, resulting ultimately in 1020.

12-14 Chapter 12: The GNU C Preprocessor

This isn't the same as defining TABLESIZE to be 1020. The #define for TABLESIZE
uses exactly the body you specify-in this case, BUFSIZE-and doesn't check to see
whether it too is the name of a macro. It's only when you use TABLESIZE that the result
of its expansion is checked for more macro names. See the section "Cascaded Use
of Macros."

Macros that Take Arguments

A simple macro always stands for exactly the same text, ~ach time it's used. Macros can
be more flexible when they accept arguments. Arguments are fragments of code that you
supply each time the macro is used. These fragments are included in the expansion of the
macro according to the directions in the macro definition.

To define a macro that takes arguments, you use the #define command with a list of
parameters in parentheses after the name of the macro. The parameters may be any valid
C identifiers separated by commas (and optionally, by white-space characters). The left
parenthesis must follow the macro name immediately, with no space in between.

For example, here's a macro that computes the minimum of two numeric values:

#define min (X, Y) ((X) < (Y) ? (X) : (Y))

Note that this isn't the best way to define a "minimum" macro in GNU C (see the section
"Duplication of Side Effects" for more information).

To use a macro that takes arguments, you write the name of the macro followed by a list of
arguments in parentheses, separated by commas. The number of arguments you give must
match the number of parameters in the macro definition. The following examples show the
use of the macro min:

min (1, 2)

min (x + 28, *p)

The expansion text of the macro depends on the arguments you use. Each of the macro's
parameters is replaced, throughout the macro definition, with the corresponding argument.
U sing the same macro min defined above, min (1, 2) expands to

((1) < (2) ? (1) : (2))

where 1 has been substituted for X and 2 for Y.

Likewise, min (x + 28, *p) expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Macros 12-15

Parentheses in the arguments must balance; a comma within parentheses doesn't end an
argument. However, there's no requirement for brackets or braces to balance; thus, if you
want to supply

array[x = y, x + 1]

as an argument, you would write it as

array [(x = y, x + 1)]

After the arguments are substituted into the macro body, the entire result is appended to the
front of the remaining input, and the check for macros continues. Therefore, the arguments
can contain other macros, either with or without arguments, or even the same macro. The
macro body can also contain other macros. For example, min (min (a, b), c) expands into

((((a) < (b) ? (a) : (b))) < (c)

? (((a) < (b) ? (a) : (b)))

: (c))

Line breaks shown here for clarity wouldn't actually be generated.

If you use the macro name followed by something other than a left parenthesis (after
ignoring any spaces, tabs, and comments that follow), it isn't considered a macro
invocation, and the preprocessor doesn't change what you've written. Therefore, it's
possible for the same name to be a variable or function in your program as well as a macro,
and you can choose in each instance whether to refer to the macro (if an argument list
follows) or the variable or function (if an argument list doesn't follow).

Such dual use of one name could be confusing and should be avoided except when the two
meanings are effectively synonymous: that is, when the name is both a macro and a
function and the two have similar effects. You can think of the name simply as a function;
use of the name for purposes other than calling it (such as, to take the address) will refer to
the function, while calls will expand the macro. For example, you can use a function named
min in the same source file that defines the macro. If you write &min with no argument
list, you refer to the function. If you write min (x, bb), with an argument list, the macro is
expanded. If you write (min) (a, bb), where the name min isn't followed by a left
parenthesis, the macro isn't expanded; rather, the function min is called.

A name can't be defined as both a simple macro and a macro with arguments.

In the definition of a macro with arguments, the list of argument names must follow the
macro name immediately with no space in between. If there is a space after the macro
name, the macro is defined as taking no arguments, and the rest of the name is taken to be
the expansion. The reason for this is that it's often useful to define a macro that takes no

12-16 Chapter 12: The GNU C Preprocessor

arguments and whose definition begins with an identifier in parentheses. This rule about
spaces makes it possible for you to do either this (which defines FOO to take an argument
and expand into minus the reciprocal of that argument)

#define FOO(x) - 1 / (x)

or this (which defines FOO to take no argument and always expand into (x) - 1/ (x)):

#define FOO (x) - 1 / (x)

It matters only in the macro definition whether there's a space before the left pareJ;1thesis;
when you use the macro, it doesn't matter if there are spaces there or not.

Predefined Macros

Several standard macros are predefined, some by ANSI C and some as extensions. Their
names all start and end with double underscores.

The following predefined macros are part of the ANSI C standard:

This macro expands to the name of the current input file, in the form of a C
string constant.

_BASE_FILE_
This macro expands to the name of the main input file, in the form of a C string
constant. This is the source file that was specified as an argument when the C
compiler was invoked.

This macro expands to the current input line number, in the form of a decimal
integer constant. (Note that although this is considered a predefined macro, its
definition changes with each new line of source code.)

This and _FILE_ are useful in generating an error message to report an
inconsistency detected by the program; the message can state the source line at
which the inconsistency was detected. For example:

fprintf (stderr,

"Internal error: negative string length"
"%d at is, line %d."
length, __ FILE __ , __ LINE __);

Macros 12-17

An #include command changes the expansions of _FILE_ and _LINE_
to correspond to the included file. At the end of that file, when processing
resumes on the input file that contained the #include command, the expansions
of _FILE_ and _LINE_ revert to the values they had before the #include
(but _LINE_ is then incremented by one as processing moves to the line
after the #include).

The expansions of both _FILE_ and _LINE_ are altered if a #line
command is used. See the section "Combining Source Files."

This macro expands to a string constant that describes the date on which the
preprocessor is being run. The string constant contains 15 characters and looks
like "Tue Jun 02 1992".

This macro expands to a string constant that describes the time at which the
preprocessor is being run. The string constant contains 12 characters and looks
like "23:59:01 EDT".

This macro expands to the constant 1, to signify that this is ANSI-standard C.
(Whether that's actually true depends on what C compiler will operate on the
output from the preprocessor.)

The following predefined macros are GNU C extensions to the ANSI C standard:

GNUC
This macro is defined if and only if this is GNU C. Moreover, it's defined only
when the entire GNU C compiler is in use; if you invoke the preprocessor
directly, _GNUC_ is undefined.

_STRICT_ANSI_
This macro is defined if and only if the -ansi switch was specified when GNU
C was invoked. Its definition is the null string. This macro exists primarily to
direct certain GNU header files not to define traditional UNIX constructs that
are incompatible with ANSI C.

VERSION
This macro expands to a string describing the version number of the compiler.
The string is normally a sequence of decimal numbers separated by periods,
such as "1.18". The main use of this macro is to incorporate the version
number into a string constant.

12-18 Chapter 12: The GNU C Preprocessor

OPTIMIZE
This macro is defined in optimizing compilations. It causes certain GNU
header files to define alternative macro definitions for some system library
functions. It's unwise to refer to or test the definition of this macro unless you
make sure that programs will execute with the same effect regardless.

_CHAR_UNSIGNED_
This macro is defined if and only if the data type char is unsigned on the target
machine. Its purpose is to cause the standard header file limit.h to work
correctly. It's bad practice to refer to this macro yourself; instead, refer to the
standard macros defined in limit.h.

The following macros are defined in NeXTSTEP:

This macro is defined when compiling Objective C ".m" files.

This macro is defined when compiling ".m", ".c",- or ".s" files.

ASSEMB~ER

This macro is defined when compiling ".s" files.

_STRICT_BSD_
This macro is defined if and only if the -bsd switch was specified when GNU
C was invoked.

MACH
This macro is defined if Mach system calls are supported.

Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that vary between machines
because their purpose is to indicate what type of system and machine is in use. This section
lists some that are useful on NeXTSTEP computers.

Some nonstandard predefined macros describe the operating system in use. For example:

unix Predefined on UNIX systems.

BSD Predefined on versions of Berkeley UNIX 4.3BSD.

Macros 12-19

Other nonstandard predefined macros describe the kind of CPU. For example:

mc68000 Predefined on most computers whose CPU is a Motorola 68000, 68010, 68020,
68030, or 68040.

Yet other nonstandard predefined macros describe the manufacturer of the system.
For example:

NeXT Predefined on a NeXT computer.

These predefined symbols aren't only nonstandard, they're contrary to the ANSI standard
because their names don't start with underscores. The -ansi option, which requests
complete support for ANSI C, inhibits the definition of these predefined symbols.

This tends to make -ansi useless, since many programs depend on the customary
nonstandard predefined symbols. Even system header files check them and will generate
incorrect declarations if they do not find the names that are expected. You might think that
the header files supplied for the U glix computer would not need to test what machine they
are running on, because they can simply assume it is the U glix; but often they do, and they
do so using the customary names. As a result, very few C programs will compile with
-ansi. We intend to avoid such problems on the GNU system.

What, then, should you do in an ANSI C program to test the type of machine it will run on?

GNU C offers a parallel series of symbols for this purpose, whose names are made from the
customary ones by adding _ at the beginning and end. Thus, the symbol_ vax_ would
be available on a VAX, and so on.

The set of nonstandard predefined names in the GNU C preprocessor is controlled (when
cpp is itself compiled) by the macro CPP _PREDEFINES, which should be a string
containing -D options, separated by spaces. For example, on the Sun 3, we use the
following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

This macro is usually specified in tm.h.

Stringification

"Stringification" means turning a code fragment into a string constant whose contents are
the text for the code fragment. For example, stringifying Coo (z) results in "Coo (z)".

12-20 Chapter 12: The GNU C Preprocessor

In the C preprocessor, stringification is an option available when macro arguments are
substituted into the macro definition. In the body of the definition, when an argument name
appears, the character # before the name specifies stringification of the corresponding
argument when it's substituted at that point in the definition. The same argument may be
substituted in other places in the definition without stringification if the argument name
appears in those places with no #.

Here's an example of a macro definidon that uses stringification:

#define WARN_IF(EXP) \
do { if (EXP) fprintf (stderr, "Warning: " #EXP "\n"); }

while (0)

Here the argument for EXP is substituted once as given, into the if statement, and once as
stringified, into the argument to fprintf. The do and while (0) make it possible to write
WARN_IF (ARG); (see the section "Swallowing the Semicolon").

The stringification feature is limited to transforming one macro argument into one string
constant: There's no way to combine the argument with other text and then stringify it all
together. But the example above shows how an equivalent result can be obtained in
ANSI-standard C using the feature that adjacent string constants are concatenated as one
string constant. The preprocessor stringifies EXP's argument into a separate string
constant, resulting in text like

do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n"); }
while (0)

but the C compiler then sees three consecutive string constants and concatenates them into
one, producing:

do { if (x == 0) fprintf (stderr, "Warning: x
while (0)

o \n"); }

Stringification in C involves more than putting double quotes around the fragment; it's
necessary to put backslashes in front of all double quotes, and all backslashes in string and
character constants, in order to get a valid C string constant with the proper contents. Thus,
stringifying p = "foo\n"; results in "p = \"foo\\n\";". However, backslashes that aren't
inside string or character constants aren't duplicated: \n by itself stringifies to "\n".

White-space characters (including comments) in the text being stringified are handled
according to the following rules:

• All leading and trailing White-space characters are ignored.

• Any sequence of white-space characters in the middle of the text is converted to a single
space in the stringified result.

Macros 12-21

Concatenation

Concatenation means joining two strings into one. In the context of macro expansion,
concatenation refers to joining two lexical units into one longer one. Specifically, an
argument to the macro can be concatenated with another argument or with fixed text to
produce a longer name. The longer name might be the name of a function, variable or
type, or a C keyword; it might even be the name of another macro, in which case it will
be expanded.

When you define a macro, you request concatenation with the special operator ## in the
macro body. When the macro is invoked, arguments are substituted. Then all ## operators
are deleted, along with any white-space characters next to them (including White-space
characters that are part of an argument). The result is to concatenate the syntactic tokens
on either side of the ##.

Consider a C program that interprets named commands. There probably needs to be a table
of commands, perhaps an array of structures declared as follows:

struct command

char *narnei

void (* function) () i

} i

struct command commands[] =

} i

"quit", quit_command},
"help", help_command},

It would be cleaner not to have to give each command name twice, once in the string
constant and once in the function name. A macro that takes the name of a command
as an argument can make this unnecessary. The string constant can be created with
stringification, and the function name by concatenating the argument with "_command":

#define COMMAND (NAME) {#NAME, NAME ## _command

struct command commands[]

} i

COMMAND (quit),
COMMAND (help),

12-22 Chapter 12: The GNU C Preprocessor

------------------- ------------ -----

The usual case of concatenation is concatenating two names (or a name and a number) into
a longer name. But this isn't the only valid case. It's also possible to concatenate two
numbers (or a number and a name, such as 1.5 and e3) into a number. Also, multicharacter
operators such as += can be formed by concatenation. In some cases it's even possible to
piece together a string constant. However, two pieces of text that don't together form a
valid lexical unit cannot be concatenated. For example, concatenation with x on one side
and + on the other isn't meaningful because those two characters can't fit together in any
lexical unit of C. Although the ANSI standard says that such an attempt at concatenation
is undefined, the GNU C preprocessor handles it as follows: it puts the x and + side by side
with no particular special results.

The C preprocessor converts comments to whitespace before macros are even considered.
Therefore, you cannot create a comment by concatenating 1 and *: the 1* sequence that
starts a comment is not a lexical unit, but rather the beginning of a "long" space character.
You can freely use comments next to a ## in a macro definition, or in arguments that will
be concatenated, because the comments will be converted to spaces at first sight, and
concatenation will later discard the spaces.

Undefining Macros

To undefine a macro means to cancel its definition. This is done with the #Undef command.
#Undef is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and it applies
starting from that point. The name ceases to be a macro name, and from that point on it's
treated by the preprocessor as if it had never been a macro name.

For example,

#define Faa 4
x = Faa;
#undef Faa
x = Faa;

expands into

x 4;
x Faa;

In this example, FOO must be a variable or function as well as (temporarily) a macro, in
order for the result of the expansion to be valid C code.

Macros 12-23

The same form of #Undef command will cancel definitions with arguments or definitions
that don't expect arguments. The #Undef command has no effect when used on a name not
currently defined as a macro.

Redefining Macros

Redefining a macro means defining (with #define) a name that is already defined as
a macro.

A redefinition is trivial if the new definition is transparently identical to the old one.
You probably wouldn't deliberately write a trivial redefinition, but they can happen
automatically when a header file is included more than once (see the section "Header
Files"), so they're accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a warning message
from the preprocessor. However, sometimes it's useful to change the definition of a macro
in mid-compilation. You can inhibit the warning by undefining the macro with #Undef
before the second definition.

In order for a redefinition to be trivial, the new definition must exactly match the one
already in effect, with two possible exceptions:

• Whitespace may be added or deleted at the beginning or the end.

• Whitespace may be changed in the middle (but not inside strings). However, it may not
be eliminated entirely, and it may not be added where there was no whitespace
previously. Remember, comments count as whitespace.

Pitfalls and Subtleties of Macros

This section describes some special rules that apply to macros and macro expansion, and
points out certain cases in which the rules have counterintuitive consequences that you must
watch out for.

Improperly Nested Constructs

Recall that when a macro is invoked with arguments, the arguments are substituted into
the macro body and the result is checked, together with the rest of the input file, for
more macros.

12-24 Chapter 12: The GNU C Preprocessor

It's possible to piece together a macro invocation coming partially from the macro body and
partially from the arguments. For example,

#define double (x) (2* (x))
#define call_with_1(x) x(l)

would expand call_ with_l (double) into (2*(1)).

Macro definitions don't have to have balanced parentheses. By writing an unbalanced left
parenthesis in a macro body, it's possible to create a macro invocation that begins inside the
macro body but ends outside it. For example:

#define strange(file) fprintf (file, "is %d",

strange (stderr) p, 35)

This bizarre example expands to

fprintf (stderr, "is %d", p, 35)

Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition examples shown above, each
occurrence of a macro argument name has parentheses around it. In addition, another pair
of parentheses usually surround the entire macro definition. This section discusses why it's
best to write macros that way.

Suppose you define a macro

#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is to compute
how many iot's are needed to hold a certain number of chars.) Then suppose it's used
as follows:

a = ceil_div (b & c, sizeof (int))i

This expands into

a = (b & c + sizeof (int) - 1) / sizeof (int)i

which doesn't do what's intended. The operator-precedence rules of C make this
equivalent to:

a = (b & (c + sizeof (int) - 1)) / sizeof (int)i

Macros 12-25

But what we want is:

a = ((b & c) + sizeof (int) - 1)) I sizeof (int);

Defining the macro as follows provides the desired result:

#define ceil_div(x i y) ((x) + (y) - 1) I (y)

However, unintended grouping can happen in another way. Consider sizeof ceil_div(l, 2).
This has the appearance of a C expression that would compute the size of the type of
ceil_div (1, 2), but in fact it means something very different. Here's what it expands to:

sizeof ((1) + (2) - 1) I (2)

This would take the size of an integer and divide it by 2. The precedence rules have put the
division outside the sizeofO when it was intended to be inside.

Parentheses around the entire macro definition can prevent such problems. Here's the
recommended way to define ceil_div:

#define ceil_div(x i y) (((x) + (y) - 1) I (y))

Swallowing the Semicolon

Often it's desirable to define a macro that expands into a compound statement. Consider,
for example, the following macro, which advances a pointer across space characters:

#define SKIP_SPACES (P, limit) \
{ register char *lim = (limit); \

while (p != lim) { \
if (*p++ ! = I ') { \

p-; break; }}}

Here backslash-newline is used to split the macro definition, which must be a single line,
so that it resembles the way such C code would appear if not part of a macro definition.

An invocation of this macro might be SKIP_SPACES (p, lim). Strictly speaking, the
invocation expands to a compound statement, which is a complete statement with no need
for a semicolon to end it. But it looks like a function call. So it minimizes confusion if you
can use it like a function call, writing a semicolon afterward:

SKIP_SPACES (P, lim);

12-26 Chapter 12: The GNU C Preprocessor

But this can cause trouble before else statements, because the semicolon is actually a null
statement. Suppose you write

if (*p ! = 0)
SKIP_SPACES (P, lim);

else ...

The presence of two statements-the compound statement and a null statement-in
between the if condition and the else makes invalid C code.

The definition of the macro SKIP_SPACES can be altered to solve this problem, using a
do ... while statement:

#define SKIP_SPACES (P, limit) \
do { register char *lim = (limit); \

while (p != lim) { \
if (*p++ ! = I ') { \

p-; break; }}} \
while (0)

Now SKIP_SPACES (p, lim); expands into one statement:

do {. . .} while (0);

Duplication of Side Effects

Many C programs define a macro min (for "minimum"), like this:

#define min (X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect (as shown here)

next = min (x + Y, faa (z));

it expands as follows:

next = ((x+y) < (faa (z))? (x+Y): (faa (z)));

where x + y has been substituted for X and foo (z) for Y.

The function foo is used only once in the statement as it appears in the program, but the
expression foo (z) has been substituted twice into the macro expansion. As a result, foo
might be called two times when the statement is executed. If it has side effects or if it takes
a long time to compute, the results might not be what you intended. Therefore min is an
"unsafe" macro.

Macros 12-27

One way to solve this problem is to define min in a way that computes the value of foo (z)
only once. The C language offers no standard way to do this, but it can be done with GNU
C extensions as follows:

#define min (X, Y)
(@{ typeof (X) __ x

(__ x < ---Y) ? __ x
(X), ---Y = (Y);

: ---Y; @})

\
\

If you don't wish to use GNU C extensions, the only solution is to be careful when using
the macro min. For example, you can calculate the value of foo (z), save it in a variable,
and use that variable in min:

#define min (X, Y) ((X) < (Y) ? (X) (Y))

int tern = faa (z);

next = min (x + y, tern);

Self-Referential Macros

A self-referential macro is one whose name appears in its definition. A special feature of
ANSI-standard C is that the self-reference isn't considered a macro invocation. It's passed
into the preprocessor output unchanged.

Consider the following example (assume that foo is also a variable in your program):

#define faa (4 + faa)

Following the ordinary rules, each reference to foo will expand into (4 + foo); then this will
be rescanned and will expand into (4 + (4 + foo»; and so on until it causes a fatal error
(memory full) in the preprocessor.

However, the special rule about self-reference cuts this process short after one step, at (4 +
foo). Therefore, this macro definition has the possibly useful effect of causing the program
to add 4 to the value of foo wherever foo is referred to.

In most cases, it's a bad idea to take advantage of this feature. A person reading the
program who sees that foo is a variable won't expect that it's a macro as well. The reader

12-28 Chapter 12: The GNU C Preprocessor

will come across the identifier foo in the program and think its value should be that of the
variable foo, whereas in fact the value is 4 greater.

The special rule for self-reference applies also to indirect self-reference. This is the case
where a macro X expands to use a macro y, and y's expansion refers to the macro x. The
resulting reference to x comes indirectly from the expansion of x, so it's a self-reference
and isn't further expanded. Thus, after

#define x (4 + y)
#define y (2 * x)

x would expand into (4 + (2 * x)).

But suppose y is used elsewhere, not from the definition of x. Then the use of x in the
expansion of y isn't a self-reference because x isn't in progress. So it does expand.
However, the expansion of x contains a reference to y, and that's an indirect self-reference
now because y is in progress. The result is that y expands to (2 * (4 + y)).

Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the substituted arguments, is
scanned over again for macros to be expanded.

What really happens is more subtle: First each argument text is scanned separately for
macros. Then the results of this are substituted into the macro body to produce the macro
expansion, and the macro expansion is scanned again for macros to expand.

The result is that the arguments are scanned twice to expand macros in them.

Most of the time, this has no effect. If the argument contained any macros, they're
expanded during the first scan. The result therefore contains no macros, so the second scan
doesn't change it. If the argument were substituted as given, with no prescan, the single
remaining scan would find the same macros and produce the same results.

You might expect the double scan to change the results when a self-referential macro is
used in an argument of another macro (see the section "Self-Referential Macros" above);
the self-referential macro would be expanded once in the first scan, and a second time in
the second scan. But this isn't what happens. The self-references that don't expand in the
first scan are marked so that they won't expand in the second scan either.

Macros 12-29

The prescan isn't done when an argument is stringified or concatenated. (More precisely,
stringification and concatenation use the argument as written, in unprescanned form. The
same argument would be used in prescanned form if it's substituted elsewhere without
stringification or concatenation.) Thus,

#define str(s) #s
#define faa 4
str (faa)

expands to "foo". Once more, prescan has been prevented from having any noticeable
effect.

The prescan does make a difference in three special cases:

• Nested invocations of a macro
• Macros that invoke other macros that stringify or concatenate
• Macros whose expansions contain unshielded commas

Nested invocations of a macro occur when a macro's argument contains an invocation of
that very macro. For example, if f is a macro that expects one argument, f (f (1» is a nested
pair of invocations of f. The desired expansion is made by expanding f (1) and substituting
that into the definition of f. The prescan causes the expected result to happen. Without the
prescan, f (1) itself would be substituted as an argument, and the inner use of f would appear
during the main scan as an indirect self-reference and wouldn't be expanded. Here, the
prescan cancels an undesirable side effect of the special rule for self-referential macros.

But prescan causes trouble in certain other cases of nested macro calls. For example:

#define faa a,b
#define bar (x) lose(x)
#define lose (x) (1 + (x))

bar (faa)

We would like bar(foo) to tum into (1 + (foo», which would then tum into (1 + (a,b». But
instead, bar(foo) expands into lose(a,b), and you get an error because lose requires a single
argument. In this case, the problem is easily solved by the same parentheses that ought to
be used to prevent misnesting of arithmetic operations:

#define faa (a,b)
#define bar(x) lose((x))

12-30 Chapter 12: The GNU C Preprocessor

The problem is more serious when the operands of the macro aren't expressions (for
example, when they are statements). Then parentheses are unacceptable because they
would make for invalid C code:

#define faa { int a, bi ... }

In GNU C you can shield the commas using the ({ ... }) construct, which turns a compound
statement into an expression:

#define faa ({ int a, bi ... })

Or you can rewrite the macro definition to avoid such commas:

#define faa { int ai int bi ... }

There's also one case where prescan is useful. It's possible to use prescan to expand an
argument and then stringify it-if you use two levels of macros. Let's add a new macro
xstr to the example shown above:

#define xstr(s) str(s)
#define str(s) #s
#define faa 4
xstr (faa)

This expands to "4", not "foo". The reason for the difference is that the argument of xstr
is expanded at prescan (because xstr doesn't specify stringification or concatenation of the
argument). The result of prescan then forms the argument for str. str uses its argument
without prescan because it performs stringification; but it can't prevent or undo the
prescanning already done by xstr.

Cascaded Use of Macros

A cascade of macros occurs when one macro's body contains a reference to another macro
(a very common practice). For example:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

This isn't at all the same as defining TABLE SIZE to be 1020. The #define for
TABLESIZE uses exactly the body you specify-in this case, BUFSIZE-and doesn't
check to see whether it too is the name of a macro.

Macros 12-31

It's only when you use TABLESIZE that the result of its expansion is checked for more
macro names.

This makes a difference if you change the definition of BUFSIZE at some point in the
source file. TABLESIZE, defined as shown, will always expand using the definition of
BUFSIZE that's currently in effect:

#define BUFSIZE 1020

#define TABLESIZE BUFSIZE

#undef BUFSIZE

#define BUFSIZE 37

Now TABLESIZE expands in two stages to 37.

Inability to Define a Macro that Produces a # Character

You can't use the GNU C preprocessor to define macros that produce # characters. For
instance, the following is illegal:

#define linkmacro(nurnBytes) link #nurnBytes,a6

Note that you can use the # character inside a string or character constant, as shown here:

#define PrintSharp() printf("#")

Macro Arguments inside String Constants

The GNU C preprocessor doesn't substitute macro arguments that appear inside string
constants. For example, the following macro will produce the output "a" no matter what
the argument a is:

#define foo(a) "a"

The -traditional option directs GNU CC to handle such cases (among others) in the
traditional non-ANSI way.

12-32 Chapter 12: The GNU C Preprocessor

Conditionals

In a macro processor, a conditional is a command that allows part of the program to be
ignored during compilation, on some conditions. In the C preprocessor, a conditional can
test either an arithmetic expression or whether a name is defined as a macro.

A conditional in the C preprocessor resembles an if statement in C, but it's important to
understand the difference between them. The condition in an if statement is tested during
the execution of your program. Its purpose is to allow your program to behave differently
from run to run, depending on the data it's operating on. The condition in a preprocessor
conditional command is tested when your program is compiled. Its purpose is to
allow different code to be included in the program depending on the situation at the time
of compilation.

There are three reasons to use a conditional:

• A program may need to use different code depending on the target machine or operating
system. In some cases, the code for one operating system may be erroneous on another
operating system; for example, it might refer to library routines that don't exist on the
other system. When this happens, it isn't enough to avoid executing the invalid code:
Merely having it in the program makes it impossible to link the program and run it. With
a preprocessor conditional, the offending code can be effectively excised from the
program when it isn't valid.

• You may want to be able to compile the same source file into two different programs.
Sometimes the difference between the programs is that one makes frequent
time-consuming consistency checks on its intennediate data while the other doesn't.

• A conditional whose condition is always false is a good way to exclude code from the
program but keep it for future reference.

Most programs intended to run only on a NeXT computer won't need to use preprocessor
conditionals.

Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional command: #if, #ifdef, or
#ifndef. These and a few related commands are described in the following sections.

Conditionals 12-33

The #if Command

The #if command in its simplest form consists of

#if expression
conditional-text
#endif 1* expression *1

The comment following the #endif isn't required, but it makes the code easier to read. Such
comments should always be used, except in short conditionals that aren't nested. (Although
you can put anything at all after the #endif and it will be ignored by the GNU C
preprocessor, only comments are acceptable in ANSI Standard C.)

expression is a C expression of type int, subject to stringent restrictions. It may contain:

• Integer constants, which are all regarded as long or unsigned long.

• Character constants, which are interpreted according to the character set and
conventions of the machine and operating system on which the preprocessor is running.
The GNU C preprocessor uses the C data type char for these character constants;
therefore, whether some character codes are negative is determined by the C compiler
used to compile the preprocessor. If it treats char as signed, then character codes large
enough to set the sign bit will be considered negative; otherwise, no character code is
considered negative.

• Character constants. The GNU C preprocessor uses the C data type char for these
character constants.

• Arithmetic operators for addition, subtraction, multiplication, division, bitwise
operations, shifts, comparisons, &&, and II.

• Identifiers that aren't macros, which are all treated as O.

• Macro invocation. All macros in the expression are expanded before actual computation
of the expression's value begins.

sizeof operators and enum-type values aren't allowed. enum-type values, like all other
identifiers that aren't taken as macro invocations and expanded, are treated as O.

The controlled text inside a conditional can include preprocessor commands. Then
the commands inside the conditional are obeyed only if that branch of the conditional
succeeds. The text can also contain other conditional groups. However, the #ifs and
#endifs must balance.

12-34 Chapter 12: The GNU C Preprocessor

The #else Command

The #else command can be added to a conditional to provide alternative text to be used if
the condition is false:

#if expression
text-if-true
#else /* not expression */
text-if-false
#endif /* not expression */

If expression is nonzero, text-if-true is included; then #else acts like a failing conditional
and text-if-false is ignored. If expression is 0, the #if conditional fails and text-if-false
is included.

The #elif Command

A common use of nested conditionals is to check for more than two possible alternatives:

#if X 1

#else /* x != 1 */

#if x 2

#else /* x != 2 */

#endif /* x != 2 */

#endif /* x != 1 */

The conditional command #elif (which stands for "else if') can be used to abbreviate this
as follows:

#if x == 1

#elif x == 2

#else /* x != 2 and X != 1*/

#endif /* x != 2 and X != 1*/

Like #else, #elif goes in the middle of a #if-#endifpair and subdivides it; it doesn't
require a matching #endif of its own. Like #if, the #elif command includes an expression
to be tested.

Conditionals 12-35

The text following the #elif is processed only if the original #if-condition failed and the
#elif condition succeeds. More than one #elif can go in the same #if-#endif group. Then
the text after each #elif is processed only if the #elif condition succeeds after the original
#if and any previous #elif's within it have failed. #else is allowed after any number of
#elifs, but #elif may not follow a #else.

Keeping Deleted Code for Future Reference

If you replace or delete part of the program but want to keep the old code around as a
comment for future reference, you can simply put #if 0 before it and #endif after it.

This works even if the code being turned off contains conditionals, but they must be entire
conditionals (balanced #if and #endif).

Conditionals and Macros

Conditionals are rarely useful except in connection with macros. A #if command whose
expression uses no macros is equivalent to #if 1 or #if 0; you may want to determine which
one by computing the value of the expression yourself, thus simplifying the code. But when
the expression uses macros, its value can vary from compilation to compilation.

For example, here's a conditional that tests the expression BUFSIZE == 1020, where
BUFSIZE must be a macro:

#if BUFSIZE == 1020
printf ("Large buffers!\n");

#endif /* BUFSIZE is large */

The special operator defined may be used in #if expressions to test whether a certain name
is defined as a macro. Either defined NAME or defined (NAME) is an expression whose
value is 1 if NAME is defined as macro at the current point in the program, and 0 otherwise.
For the defined operator it makes no difference what the definition of the macro is; all that
matters is whether there's a definition. Thus, for example,

#if defined (vax) defined (ns16000)

will include the following code if either vax or ns16000 is defined as a macro.

If a macro is defined and later undefined with #Undef, subsequent use of the defined
operator will return 0, because the name is no longer defined. If the macro is defined again
with another #define, defined will again return 1.

12-36 Chapter 12: The GNU C Preprocessor

Conditionals that test just the definedness of one name are very common, so there are two
special short conditional commands for this case:

• #ifdef name is equivalent to #if defined (name).
• #ifndef name is equivalent to #if! defined (name).

Macro definitions can vary between compilations for any of the following reasons:

• Some macros are predefined on each kind of machine. For example, on a NeXT
computer the name NeXT is a nonstandard predefined macro. On other machines,
it isn't defined.

• Many more macros are defined by system header files. Different systems and
machines define different macros, or give them different values. It's useful to test
these macros with conditionals to avoid using a system feature on a machine where
it isn't implemented.

• Macros are a common way for you to customize a program for different machines or
applications. For example, the macro BUFSIZE might be defined in a configuration file
for your program that's included as a header file in each source file. You would use
BUFSIZE in a preprocessor conditional in order to generate different code depending
on the chosen configuration.

• Macros can be defined or undefined with -D and -U command options when you
compile the program. You can arrange to compile the same source file into two different
programs by choosing a macro name to specify which program you want, writing
conditionals to test whether or how this macro is defined, and then controlling the
state of the macro with compiler command options. See the section "Invoking the
C Preprocessor."

The #error and #warning Commands

The #error command causes the preprocessor to report a fatal error. The rest of the line
that follows #error is used as the error message.

You would use #error inside a conditional that detects a combination of parameters that
you know the program doesn't support.

For example, if you know that the program won't run properly on a VAX, you might write

#ifdef vax
#error Won't work on Vaxen. See comments at get_last_object.
#endif

Conditionals 12-37

Pragmas

Similarly, if you have several configuration parameters that must be set up by the
installation in a consistent way, you can use conditionals to detect an inconsistency and
report it with #error. For example:

#if HASH_TABLE_SIZE % 2 == a HASH_TABLE_SIZE % 3 == a \
HASH_TABLE_SIZE % 5 == a

#error HASH_TABLE_SIZE shouldn't be divisible by a small prime

#endif

The #warning command is like the #error command, but causes the preprocessor to issue
a warning and continue preprocessing. The rest of the line that follows #Warning is used
as the warning message.

You might use #Warning in obsolete header files, with a message directing the user to the
header file which should be used instead.

The #pragma command is specified in the ANSI standard to have an arbitrary
implementation-defined effect. For example, a #pragma might be used to indicate to the
translator the best way to generate code, optimize, or diagnose errors. It may also pass
information to the translator about the environment, or add debugging information.

The effect of anything specified in a #pragma is currently limited to the outermost
declaration (that is, a function or a global data declaration).

The following pragmas are implemented in the GNU C Preprocessor:

#pragma CC_OPT_ON

#pragma CC_OPT_OFF

#pragma CC_OPT_RESTORE

Force optimization on.

Force optimization off.

Restore optimization to what was
specified on the command line (on if
-0 was specified, off if not).

Place strings in the data segment.

#pragma CC_NON_ WRITABLE_STRINGS Place strings in the text segment.

The #pragma command is specified in the ANSI standard to have an arbitrary
implementation-defined effect. In the GNU C preprocessor, #pragma commands are
ignored, except for #pragma once.

12-38 Chapter 12: The GNU C Preprocessor

Combining Source Files

One of the jobs of the C preprocessor is to tell the C compiler the source file and line
number that each line of C code came from.

C code can come from multiple source files if you use #include or #import. If you include
header files, or if you use conditionals or macros, the line number of a line in the
preprocessor output may be different from the line number of the same line in the original
source file. Normally you would want both the C compiler (in error messages) and the
GDB debugger to use the line numbers of your source file.

The C preprocessor offers a #line command by which you can control this feature
explicitly. #line specifies the original line number and source file name for subsequent
input in the current preprocessor input file. #line has three variants:

#line linenum
linenum is a decimal integer constant. This resets the current line number in
the source file to linenum.

#line linenum ''file''
linenum is a decimal integer constant and "file" is a string constant. This resets
the line number to linenum and changes the name of the file referred to by file.

#line macros
macros should be one or more macros that have been defined by earlier
preprocessing directives. When the macros have been expanded by the
preprocessor, the #line instruction will then resemble one of the first two forms
and be interpreted appropriately.

#line commands alter the results of the _FILE_ and _LINE_ predefined macros from
that point on. See the section "Predefined Macros."

Miscellaneous Preprocessor Commands

This section describes two additional preprocessor commands. They aren't very useful, but
are mentioned for completeness.

• The null command consists of a # followed by a newline, with only whitespace
(including comments) in between. A null command is understood as a preprocessor
command but has no effect on the preprocessor output. The significance of the null
command is that an input line consisting of just a # will produce no output, rather than
a line of output containing just a #. Some old C programs might contain such lines.

Combining Source Files 12-39

• The #ident command is supported for compatibility with certain other systems. It is
followed by a line of text. On some systems, the text is copied into a special place in the
object file; on most systems, the text is ignored and this directive has no effect. Typically
#ident is only used in header files supplied with those systems where it is meaningful.

C Preprocessor Output

The output from the C preprocessor looks much like the input, except that all preprocessor
command lines have been replaced with blank lines and all comments with spaces.
White-space characters within a line aren't altered; however, a space is inserted after the
expansions of most macros. Also, pragmas are passed through verbatim.

Source file name and line number information is conveyed by lines of the form

linenum file {digit}

which are inserted as needed into the middle of the input (but never within a string or
character constant). Such a line means that the following line originated in file file at line
linenum. Digit is 1 if this is the start of a new include file, and 2 if this marks the completion
of an include file (this is how the compiler reports the path of inclusion to a given error).

Invoking the C Preprocessor

Usually you won't have to invoke the C preprocessor explicitly, because the C compiler
does so automatically. However, there may be times when you want to use the preprocessor
by itself by invoking the cpp command.

The cpp command expects two file names as arguments, infile and outfile. The
preprocessor reads infile together with any other files that infile specifies by means
of #include or #import. All the output generated by the combined input files is written
in outfile.

Either infile or outfile may be ., which as infile means to read from the standard input and
as outfile means to write to the standard output. Also, if outfile or both file names are
omitted, the standard output and standard input are used for the omitted file names.

12-40 Chapter 12: The GNU C Preprocessor

Here's a list of command options accepted by the C preprocessor. Most of them can also
be given when compiling a C program; they're passed along automatically to the
preprocessor when it's invoked by the compiler.

-p Inhibit generation of # lines with line-number information in the output from
the preprocessor (see the section "C Preprocessor Output"). This might be
useful when running the preprocessor on something that isn't C code and that
will be sent to a program which might be confused by the # lines.

-c Don't discard comments: Pass them through to the output file. Comments
appearing in arguments of a macro invocation will be copied to the output
before the expansion of the macro.

-trigraphs Process ANSI standard trigraph sequences.

-pedantic Issue warnings required by the ANSI C standard in certain cases, such as when
text other than a comment follows #else or #endif.

-Idir Add the directory dir to the end of the list of directories to be searched for
header files (see the section "The #include Command"). This can be used to
override a system header file, substituting your own version, since these
directories are searched before the system header file directories. If you use
more than one -I option, the directories are scanned in left-to-right order; the
standard system directories come later.

-1- Any directories specified with -I options before the -1- option are searched only
for the case of #include ''file''; they aren't searched for #include <.file>.

If additional directories are specified with -I options after the -1-, these
directories are searched for all #include directives.

In addition, the -1- option inhibits the use of the current directory as the first
search directory for #include ''file''. Therefore, the current directory is
searched only if it's requested explicitly with a -I. option. Specifying both -l­
and -I. allows you to control precisely which directories are searched before
the current one and which are searched after.

-nostdinc Don't search the standard system directories for header files. Only the
directories you specify with -I options (and the current directory, if
appropriate) are searched.

-Dname Predefine name as a macro, with definition 1.

Invoking the C Preprocessor 12-41

-Dname=definition

-Uname

-under

-d

-M

-MD

-MM

-MMD

-H

-ifile

Predefine name as a macro, with definition definition.

Don't predefine name. If both -U and -D are specified for one name, the name
won't be predefined.

Don't predefine any nonstandard macros.

Produce a list of #define commands for all the macros defined during the
execution of the preprocessor, instead of producing the normal preprocessing
output.

Produce a rule suitable for make describing the dependencies of the main
source file, instead of outputting the result of preprocessing. The preprocessor
produces one make rule containing the object file name for that source file, a
colon, and the names of all the included files. If there are many included files
then the rule is split into several lines using backs lash-newline.

This feature is used in automatic updating of makefiles.

This is similar to -M, but the dependency information is written to files with
names made by replacing ".c" with ".d" at the end of the input file names. This
is in addition to compiling the file as specified; -MD doesn't inhibit ordinary
compilation the way -M does.

This is similar to -M, but mentions only the files included with #include "file".
System header files included with #include <file> are omitted.

This is similar to -MM, but mentions only user header files, not system header
files.

Print the name of each header file used, in addition to other normal activities.

Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated fromfile is discarded, the
only effect of -ifile is to make the macros defined infile available for use in
the main input.

12-42 Chapter 12: The GNU C Preprocessor

= .. '. =~="ff===== :;;

The GNU Source-Level Debugger

13-6

13-6

13-7
13-8
13-9
13-9
13-9
13-10
13-10
13-12

13-13

13-14

13-15
13-16
13-17
13-17
13-18
13-18

Summary of GDB

Compiling Your Program for Debugging

Running GDB
Specifying Files to Debug
Specifying GDB Modes
Editing GDB Commands

Expansion of Variable, Function, and Method Names
History Substitution in Commands
Emacs Command-Line Editing

Running GDB in a GNU Emacs Buffer

Startup Files

GDB Commands for Specifying and Examining Files

Running Your Program under GDB
Your Program's Arguments
Your Program's Environment
Your Program's Working Directory
Your Program's Input and Output
Debugging an Already Running Process

13-1

13-20 Stopping and Continuing
13-20 Signals
13-22 Breakpoints
13-23 Setting Breakpoints
13-24 Clearing Breakpoints
13-24 Disabling Breakpoints
13-26 Break Conditions
13-28 Executing Commands at a Breakpoint
13-29 Continuing
13-30 Stepping
13-31 Data Breakpoints

13-34 Examining the Stack
13-34 Stack Frames
13-35 Backtraces
13-35 Selecting a Frame
13-36 Information about a Frame

13-37 Examining Source Files
13-37 Viewing Files in Edit
13-38 Printing Source Lines
13-40 Searching Source Files
13-40 Specifying Source Directories

13-41 Examining Data
13-42 Expressions
13-42 Program Variables
13-43 Artificial Arrays
13-43 Output Formats
13-44 Examining Memory
13-46 Automatic Display
13-47 Value History
13-48 Convenience Variables
13-49 Registers
13-50 Miscellaneous Commands

13-50 Examining the Symbol Table
13-52 Setting Variables
13-54 Status Inquiries

13-2

13-59

13-60
13-60
13-61
13-61
13-62
13-63
13-63

13-64

13-64

13-64
13-65
13-65
13-66

13-66
13-67
13-68
13-68

13-69

13-69
13-70
13-71
13-71
13-73

Debugging PostScript Code

Debugging Objective C Code
Method Names in Commands
Command Descriptions

The info Command
The print Command
The set Command
The step Command

Debugging Mach Threads

Debugging NeXTSTEP Core Files

Altering Execution
Assignment to Variables
Continuing at a Different Address
Returning from a Function

Defining and Executing Sequences of Commands
User-Defined Commands
Command Files
Commands for Controlled Output

Miscellaneous Commands

Legal Considerations
Distribution
GDB General Public License

Copying Policies
No Warranty

13-3

13

,...

The GNU Source-Level Debugger

This chapter describes how to debug a C program using the GNU debugger from the Free
Software Foundation (the GNU debugger has been extended in NeXTSTEP to support the
use of Objective C and Mach).

This chapter provides an overview of the GOB debugger and how to use it. The
chapter ends with a discussion of NeXTSTEP-specific extensions to GOB. These
NeXTSTEP extensions provide full compatibility with standard GOB, while offering
the following additional features useful for developing programs within the NeXTSTEP
software environment:

• Additional debugger commands
• Extensions to existing debugger commands
• Support for debugging Objective C code

This chapter is a modified version of documentation provided by the Free Software
Foundation; see the section "Legal Considerations" at the end of the chapter for important
related information.

This chapter Copyright © 1988 by Free Software Foundation, Inc. and Copyright © 1990,
1991,1992 by NeXT Computer, Inc.

The GNU Source-Level Debugger 13-5

Summary of GOB

The purpose of a debugger such as GDB is to allow you to execute another program while
examining what's going on inside it. We call the other program "your program" or "the
program being debugged."

GDB can do four kinds of things (plus other things in support of these):

• Start the program, specifying anything that might affect its behavior.

• Make the program stop on specified conditions.

• Examine what has happened-when the program has stopped-so you can see
bugs happen.

• Change things in the program, so you can correct the effects of one bug and go on to
learn about another without having to recompile first.

Compiling Your Program for Debugging

To debug a program effectively, you need to ask for debugging information when you
compile it. This information in the object file describes the data type of each variable or
function and the correspondence between source line numbers and addresses in the
executable code.

To request debugging information, specify the -g option when you run the compiler. We
recommend that you always use -g when you compile a program. You may think the
program is correct, but there's no sense in pushing your luck.

Unlike the UNIX C compiler, the GNU C compiler supports debugging with optimization
(by using the -0 compiler option). Although GDB provides the capability to debug
programs compiled with optimization, the debugger may provide confusing or misleading
information when debugging optimized programs. The intention is to provide some
recourse in those situations where debugging optimized programs is necessary. However,
debugging optimized programs should not be done routinely.

With these warnings in mind, it can still be useful to debug optimized programs, provided
that you're aware of the limitations of the debugger in these circumstances. Most
importantly, the debugger should be able to provide correct backtraces of your program's
function call stack. This is often all that is needed to find the problem. Printing the values
of variables, however, may give incorrect results, since the debugger has insufficient

13-6. Chapter 13: The GNU Source-Level Debugger

information to be sure where a variable resides at any given time. Variables declared
volatile will always have correct values, and global variables will almost always be correct;
local variables, however, are likely to be incorrectly reported.

Variables declared register are optimized by the compiler even when optimizing is not
requested with the -0 compiler option-these may also give misleading results. To ensure
a completely predictable debugging environment, it's best to compile without the -0 flag
and with the compiler option "-Dregister=". This option causes the C preprocessor to
effectively delete all register declarations from your program for this compilation. (In fact,
with the GNU C compiler, there's no need to declare any variables to be register variables.
When optimizing, the GNU C compiler may place any variable in a register whether it's
declared register or not. On the other hand, declaring variables to be register variables
may make it more difficult to debug your program when not optimizing. Therefore, the use
of the register declaration is discouraged.)

Running GOB

On a NeXTSTEP computer, you're likely to use GDB by running it within a shell window
using a conventional command-line interface-you enter commands at the GDB prompt,
and debugger output appears on subsequent lines. (You can also run GDB as a subprocess
in the GNU Emacs editor, as described later in this chapter.)

To start GDB from within a shell window, enter the following command:

gdb name [core]

name is the name of your executable program, and core, if specified, is the name of the core
dump file to be examined. See the rest of this section for information about optional
command-line arguments and switches. Once started, GDB reads commands from the
terminal until you quit by giving the quit command.

A GDB command is a single line of input. There's no limit to how long it can be. It
starts with a command name, optionally followed by arguments (some commands don't
allow arguments).

GDB command names may always be abbreviated if the abbreviation is unambiguous.
Sometimes even ambiguous abbreviations are allowed. For example, s is equivalent to step
even though there are other commands whose names start with s. Possible command
abbreviations are stated in the documentation of the individual commands.

A blank line as input to GDB means to repeat the previous command verbatim. Certain
commands don't allow themselves to be repeated this way; these are commands for which

Running GDB 13-7

unintentional repetition might cause trouble and which you're unlikely to want to repeat.
Certain others (list and x) act differently when repeated because that's more useful.

A line of input starting with # is a comment;.it does nothing. This is useful mainly in
command files (see the section "Command Files").

GDB prompts for commands by displaying the (gdb) prompt. You can change the prompt
with the set prompt command (this is most useful when debugging GDB itself):

set prompt newprompt

To exit GDB, use the quit command (abbreviated q). Control-C won't exit from GDB, but
rather will terminate the action of any GDB command that is in progress and return to GDB
command level. It's safe to type Control-C at any time because GDB doesn't allow it to
take effect until it's safe. If your program is running, typing Control-C will interrupt the
program and return you to the GDB·prompt.

Specifying Files to Debug

GDB needs to know the file name of the program to be debugged. To debug a core dump
of a previous run, GDB must be told the file name of the core dump.

The simplest way to specify the executable and core dump file names is with two command
arguments given when you start GDB. The first argument is used as the file for execution
and symbols, and the second argument (if any) is used as the core dump file name. Thus,

gdb progm core

specifies progm as the executable program and core as a core dump file to examine. (You
don't need to have a core dump file if you plan to debug the program interactively.)

If you need to specify more precisely the files to debugged, you can do so with the following
command-line options:

-sfile

-efile

-sefile

-cfile

-x file

Read symbol table fromfile.

Usefile as the executable file to execute when appropriate, and for examining
pure data in conjunction with a core dump.

Read symbol table from file and use it as the executable file.

Use file as a core dump file to examine.

Execute GDB commands fromfile.

13-8 Chapter 13: The GNU Source-Level Debugger

-d directory
Add directory to the path to search for source files.

All the options and command line arguments given are processed in sequential order. The
order makes a difference when the -x command is used.

Specifying GOB Modes

The following additional command-line options can be used to affect certain aspects of the
behavior of GDB:

-nx

-q

-batch

Don't execute commands from the .gdbinit init files. Normally, the commands
in these files are executed after all the command options and arguments have
been processed. (See the section "Command Files" for more information.)

Quiet. Don't print the usual introductory messages.

Run in batch mode. Exit with code 1 after processing all the command files
specified with -x (and .gdbinit, if not inhibited). Exit also if, due to an error,
GDB would otherwise attempt to read a command from the terminal.

-fullname This option is used when Emacs runs GDB as a subprocess. It tells GDB to
produce the full file name and line number each time a stack frame is displayed
(which includes each time the program stops).

Editing GOB Commands

GDB provides a history buffer that stores previously executed commands. You can call any
of these commands back to the command line for editing and reexecution. For example, by
pressing the up-arrow key repeatedly, you can step back through each of the commands that
were issued since the beginning of the session; the down-arrow key steps forward through
the history buffer.

Expansion of Variable, Function, and Method Names

GDB supports command-line expansion of variable, function and method names. Type
Esc-Esc or Tab to expand the current word on the command line to a matching name. If
there is more than one match, the unique part is expanded and a beep occurs. Type Esc-l to
display all possible completions.

Running GDB 13-9

History Substitution in Commands

GDB supports the csh history substitution mechanism. For example, !foo retrieves the last
command you typed that begins with foo. History substitution is supported across gdb
sessions by writing the command history to a .gdb_history file in the current directory.
Automatic creation of this history file can be disabled with the command:

set history save off

History substitution can be contolled with the set history filename, set history size, set
history save, and set history expansion commands. Also see the section on history
substitution in the csh(l) UNIX manual page for more information.

Emacs Command-line Editing

You can use standard Emacs editing commands to edit the contents of the command line.
All the basic Emacs command sequences work, as well as the arrow keys. The left and right
arrow keys move the cursor along the command line, and the up and down arrow keys take
you backward and forward through the command history.

The following list of Emacs commands shows the default key combination associated with
each command and a description of what that command does. The name in parentheses can
be used to associate a different key combination with the command, as described later in
this section.

Insertion-Point Motion Commands

Control-B Move back one character
Control-F
Escb
Esc f
Control-A
Control-E

Move forward one character
Move back one word
Move forward one word
Move to beginning of line
Move to end of line

Deletion and Restoration Commands

Control-D Delete current character
Delete or Control-H
Escd
Esch
Control-K
Control-W
Control-Y

13-10 Chapter 13: The GNU Source-Level Debugger

Delete previous character
Delete current word
Delete previous word
Kill forward to end of line
Kill region
Restore previous kill from buffer

Search Commands

Control-S
Control-R
Esc

History Commands

Esc <
Esc>
Control-N
Control-P

Miscellaneous Commands

Control-C
Control-L
Control-R
Control-Q
Control-I
Control-T
Control-U n
Control-Z
Control-@

Search forward
Search backward
Exit search mode

Move to beginning of history file
Move to end of history file
Go to next history file entry
Go to previous history file entry

Interrupt a program started by the Workspace
Clear screen
Redisplay current command line
Insert a literal character
Insert a Tab
Transpose characters
Repeat following command n times
Suspend debugger, return to shell
Set mark

Most of these commands are self-explanatory; the ones requiring more discussion are
presented below.

Both delete commands and kill commands erase characters from the command line. Text
that's erased by a kill key (Control-K or Control-W) is placed in the "kill buffer." If you
want to restore this text, use the "yank" command, Control-Y. The yank command inserts
the restored text at the current insertion point. In contrast, text that's erased by one of the
delete commands (Control-D, Control-H, Esc d, and Esc h) isn't placed in the kill buffer,
so it can't be restored by the yank command.

To enter a character that would otherwise be interpreted as an editing command, you must
precede it with Control-Q. For example, to enter Control-D and have it interpreted as a
literal rather than as the command to delete the current character, type:

Control-Q Control-D

Editing commands can be repeated by typing Control-U followed by a number and then the
command to be repeated. For example, to delete the last 15 characters typed, enter:

Control-U 15 Control-H

Running GDB 13-11

If you want to suspend the operation of GDB temporarily and return to the UNIX prompt,
type Control-Z. To return to GDB, type %gdb (a variant of the shell fg command; for more
information, see the UNIX manual page for csh(l».

Running GDB in a GNU Emacs Buffer

You can use GNU Emacs to run GDB, as well as to view (and edit) the source files for the
program you're debugging with GDB.

To use the Emacs GDB interface, give the command Esc x gdb in Emacs. Specify the
executable file you want to debug as an argument. This command starts a GDB process as
a subprocess of Emacs, with input and output through a newly created Emacs buffer. You
can run more than one GDB subprocess by giving the command Esc x gdb more than once.

Running GDB as an Emacs subprocess is just like using GDB in a Shell or Terminal
window, except for two things:

• All terminal input and output goes through the Emacs buffer. This applies both to GDB
commands and their output, and to the input and output done by the program you're
debugging. You can copy the text of previous commands and use them again; you can
even use parts of the output in this way (all the facilities of Emacs's Shell mode are
available for this purpose).

• GDB displays source code through Emacs. Each time GDB displays a stack frame,
Emacs automatically finds the source file for that frame and puts an arrow (=» at the
left margin of the current line.

Explicit GDB list or search commands still produce output as usual, but you'll probably
have no reason to use them.

You can use these special Emacs commands in the GDB buffer:

Escs

Escn

Execute to another source line, like the GDB step command.

Execute to the next source line in this function, skipping all function calls, like
the GDB next command.

13-12 Chapter 13: The GNU Source-Level Debugger

Esci

Escu

Escd

Execute one instruction, like the GDB stepi command.

Move up one stack frame (and display that frame's source file in Emacs), like
the GDB up command.

Move down one stack frame (and display that frame's source file in Emacs),
like the GDB down command. (You can't use Esc d to delete words in the
usual fashion in the GDB buffer.)

Control-C Control-F
Execute until exit from the selected stack frame, like the GDB finish
command.

In any source file, the Emacs command Control-X space (gdb-break) tells GDB to set a
breakpoint at the source line the point is on.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting the
source files in the usual way. You can edit the files in these buffers if you wish; but keep in
mind that GDB communicates with Emacs in terms of the line numbers as they were at
compile time. If you add or delete lines from the text, the line numbers that GDB knows
will no longer correspond properly to the code.

Startup Files

At startup, GDB reads configuration information from startup files in the following order:

1.I.gdbinit (your home directory startup file)
2 . .I.gdbinit (the current directory's startup file)

To make your own customizations to GDB, put GDB commands in your home directory's
.gdbinit startup file. To make further customizations required for any specific project, put
commands in a .gdbinit startup file within that project's directory.

For more information about making customizations to GDB, see the section "Defining and
Executing Sequences of Commands" later in this chapter.

Startup Files 13-13

GDB Commands for Specifying and Examining Files

Usually you specify the files for GDB to work with by giving arguments when you invoke
GDB. But occasionally it's necessary to change to a different file during a GDB session.
Or you may run GDB and forget to specify the files you want to use. In these situations the
GDB commands to specify new files are useful.

add-symbol-file file addr
Load the symbols fromfile, assuming file has been dynamically loaded. The
second argument provides the starting address of the file's text.

core-file [file]
Specify a core dump file to be used as the contents of memory. Note that the
core dump contains only the writable parts of memory; the read-only parts
must come from the executable file. core-file with no argument specifies that
no core file is to be used.

This command has been superseded by the target core and detach commands.

exec-file [file]
Use file as program for getting contents of pure memory. Iffile cannot be found
as specified, your execution directory path is searched for a command of that
name. No argument means have no executable file.

file [file] Use file as program to be debugged. It is read for its symbols, for getting the
contents of pure memory, and it is the program executed when you use the run
command. If file cannot be found as specified, your execution directory path
($PATH) is searched for a command of that name. No argument means to have
no executable file and no symbols.

info files Print the names of the executable and core dump files currently in use by GDB,
and the file from which symbols were loaded.

kill Cancel running the program under GDB. This could be used if you want to
debug a core dump instead. GDB ignores any core dump file if it's actually
running the program, so the kill command is the only sure way to go back to
using the core dump file.

13-14 Chapter 13: The GNU Source-Level Debugger

load file Dynamically loadfile into the running program, and record its symbols for
access from GDB.

load-file file

path path

Dynamically load the specified file into the debugged program. Any symbols
are also added to GDB, so you can communicate with the new object file
through the use of functions and variables.

Add one or more directory to the beginning of the search path for object files.
$cwd in the path means the current working directory. This path is like the
$PATH shell variable; it is a list of directories, separated by colons. These
directories are searched to find fully linked executable files and separately
compiled object files as needed.

symbol-file ffile]
Read symbol table information from filefile. The environment variable PATH
is searched when necessary. Usually you'll use both the exec-file and
symbol-file commands on the same file.

symbol-file with no argument clears GDB's symbol table.

While file-specifying commands allow both absolute and relative file names as arguments,
GDB always converts the file name to an absolute one and remembers it that way.

The symbol-file command causes GDB to forget the contents of its convenience variables,
the value history, and all breakpoints and auto-display expressions. This is because they
may contain pointers to the internal data recording symbols and data types, which are part
of the old symbol table data being discarded inside GDB.

Running Your Program under GOB

To start your program under GDB, use the run command. The program must already have
been specified using the exec-file command or with an argument to the gdb command (see
the section "Specifying Files to Debug"); what run does is create an inferior process, load
the program into it, and set it in motion.

Running Your Program under GDB 13-15

The execution of a program is affected by certain types of information it receives from its
superior. GDB provides ways to specify these, which you must do before starting the
program. (You can change them after starting the program, but such changes don't affect
the program unless you start it over again.) The types of information are:

The arguments

The environment

The working directory

You specify the arguments to give the program by passing
them as arguments to the run command. You can also use
the args command.

The program normally inherits its environment from
GDB, but you can use the GDB commands set
environment and delete environment to change parts of
the environment that will be given to the program.

The program inherits its working directory from GDB.
You can set GDB's working directory with the cd
command in GDB.

After the run command, the debugger does nothing but wait for your program to stop. See
the section "Stopping and Continuing" for more information.

Your Program's Arguments

You specify the arguments to give the program by passing them as arguments to the run
command. They're first passed to a shell, which expands wildcard characters and performs
redirection of 110, and then passed to the program.

The run command with no arguments uses the same arguments used by the previous run.

With the args command you can specify the arguments to be used the next time the program
is run. If args has no arguments, it means t6 use no arguments the next time the program
is run. If you've run your program with arguments and want to run it again with no
arguments, this is the only way to do so.

13-16 Chapter 13: The GNU Source-Level Debugger

Your Program's Environment

Your program's environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as your user name, your home
directory, your terminal type, and your search path for programs to run. Usually you set up
environment variables with the shell and they're inherited by all the other programs you
run. When debugging, it can be useful to try running the program with different
environments without having to start the debugger over again.

set environment varname value
Set the environment variable varname to value (for your program only, not for
GDB itself). value may be any string; any interpretation is supplied by your
program itself.

unset environment varname
Cancel the variable varname from the environment passed to your program
(thereby making the variable not be defined at all, which is different from
giving the variable an empty value). This doesn't affect the program until the
next run command.

Your Program's Working Directory

Each time you start your program with run, the program inherits its working directory from
the current working directory of GDB. GDB's working directory is initially whatever it
inherited from its superior, but you can specify the working directory for GDB with the cd
command.

The GDB working directory also serves as a default for the commands that specify files for
GDB to operate on. See the section "Specifying Files to Debug."

cd dir

pwd

Set the working directory for GDB and the program being debugged to dir.
The change doesn't take effect for the program being debugged unit! the next
time it is started.

Print GDB's working directory.

Running Your Program under GDB 13-17

Your Program's Input and Output

By default, the program you run under GDB uses as its source of input and output the same
terminal that GDB uses.

You can redirect the program's input and/or output using standard redirection commands
with the run command. For example,

run > outfile

starts the program, diverting its output to the file outfile.

Another way to specify what the program should use as its source of input and output is
with the tty command. This command accepts a file name as its argument, and causes that
file to be the default for future run commands. For example,

tty /dev/ttyb

causes processes started with subsequent run commands to default to using the terminal
Idev/ttyb as their source of input and output. An explicit redirection in run overrides the
tty command.

When you use the tty command or redirect input in the run command, the input for your
program comes from the specified file, but the input for GDB still comes from your
terminal. The program's controlling terminal is your terminal, not the terminal that the
program is reading from; so if you want to type Control-C to stop the program, you must
type it on your (GDB's) terminal. Control-C typed on the program's terminal is available
to the program as ordinary input.

Debugging an Already Running Process

The NeXTSTEP operating system allows GDB to begin debugging an already running
process that was started outside GDB. To do this you must use the attach command instead
of the run command.

The attach command requires one argument, which is the process ID of the process you
want to debug.

13-18 Chapter 13: The GNU Source-Level Debugger

attach [arg]
Attach to a process or file outside of GDB. This command attaches to another
target, of the same type as your last target command (info files will show your
target stack). The command may take as argument a process id or a device file.
(The usual way to find out the process ID of the process is with the ps utility.)
For a process id, you must have permission to send the process a signal, and it
must have the same effective uid as the debugger. When using attach, you
should use the file command to specify the program running in the process, and
to load its symbol table.

The first thing GDB does after arranging to debug the process is to stop it. You can examine
and modify an attached process with all the GDB commands that are ordinarily available
when you start processes with run. You can insert breakpoints; you can step and continue;
you can modify storage. If you would rather the process continue running, use the cont
(continue) command after attaching.

When you're finished debugging the attached process, you can use the detach command to
detach the debugger from the attached process and resume execution of the process (or you
can use Control-C to interrupt the process). After you give the detach command, that
process and GDB become completely independent, and you're ready to attach another
process or start one with run.

detach Detach a process or file previously attached. If a process, it is no longer traced,
and it continues its execution. If you were debugging a file, the file is closed
and GDB no longer accesses it.

If you exit GDB or use the run command while you have an attached process, you kill that
process. You'll be asked for confirmation if you try to do either of these things.

The following commands are for connecting to a target machine or process.

target [args]

target child

Connect to a target machine or process. The first argument is the type or
protocol of the target machine. Remaining arguments are interpreted by the
target protocol. For more information on the arguments for a particular
protocol, type help target followed by the protocol name.

Unix child process (started by the run command).

Running Your Program under GDB 13-19

target core file
Use a core file as a target. Specify the filename of the core file.

target exec file
Use an executable file as a target. Specify the filename of the executable file.

target remote device
Use a remote computer via a serial line, using a GDB-specific protocol.
Specify the serial device it is connected to (for example, /dev/ttya).

The following commands are for kernel debugging.

kattach hostname
Attach to a kernel on a remote host.

kreboot args
Reboot an attached kernel.

Stopping and Continuing

When you run a program normally, it runs until exiting. The purpose of using a debugger
is so that you can stop it before that point, or so that if the program runs into trouble you
can find out why.

Signals

A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For
example, SIGINT is the signal a program gets when you type Control-C; SIGSEGV is the
signal a program gets from referencing a place in memory far away from all the areas in
use; SIGALRM occurs when the alarm clock timer goes off (which happens only if the
program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of the program.
Others, such as SIGSEGV, indicate errors; these signals are fatal (that is, they kill the
program immediately) if the program hasn't specified in advance some other way to handle
the signal. SIGINT doesn't indicate an error in the program, but it's normally fatal, so it
can carry out the purpose of Control-C: to kill the program.

13-20 Chapter 13: The GNU Source-Level Debugger

GDB can detect any occurrence of a signal in the program running under GDB's control.
You can tell GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to
interfere with their role in the functioning of the program) but to stop the program
immediately whenever an error signal happens. You can change these settings with the
handle command. You must specify which signal you're talking about with its number.

info signals [signalnum]
Print a table of all the kinds of signals and how GDB has been told to handle
each one. You can use this to see the signal numbers of all the defined types
of signals. Specify a signal number in order to print information about that
signal only.

handle signalnum keywords
Change the way GDB handles signal signalnum. The keywords say what
change to make.

To use the handle command you must know the code number of the signal you're
concerned with. To find the code number, type info signal; this prints a table of signal
names and numbers.

The keywords allowed by the handle command can be abbreviated. Their full names are:

stop GDB should stop the program when this signal happens. This implies the
print keyword as well.

print GDB should print a message when this signal happens.

nos top GDB shouldn't stop the program when this signal happens. It may still print a
message telling you that the signal has come in.

noprint GDB shouldn't mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass GDB should allow the program to see this signal; the program will be able to
handle the signal, or may be terminated if the signal is fatal and not handled.

nopass GDB shouldn't allow the program to see this signal.

When a signal has been set to stop the program, the program can't see the signal until
you continue. It will see the signal then, if pass is in effect for the signal in question at that
time. In other words, after GDB reports a signal, you can use the handle command with
pass or nopass to control whether that signal will be seen by the program when you later
continue it.

Stopping and Continuing 13-21

You can also use the signal command to prevent the program from seeing a signal, to cause
it to see a signal it normally wouldn't see, or to give it any signal at any time. See the
section "Continuing" below.

Breakpoints

A breakpoint can be used to make your program stop whenever a certain point in the
program is reached. You set breakpoints explicitly with GDB commands, specifying the
place where the program should stop by line number, function name, or exact address in the
program. You can add various other conditions to control whether the program will stop.

Each breakpoint is assigned a number when it's created; these numbers are successive
integers starting with 1. In many of the commands for controlling various features of
breakpoints, you use the breakpoint number to say which breakpoint you want to change.
Each breakpoint may be "enabled" or "disabled;" if disabled, it has no effect on the
program until you enable it again.

The info breakpoints command prints a list of all breakpoints set and not cleared, showing
their numbers, their location in the program, and any special features in use for them.
Disabled breakpoints are included in the list, but marked as disabled. info breakpoints
with a breakpoint number as its argument lists only that breakpoint. The convenience
variable $_ and the default address for the x command are set to the address of the last
breakpoint listed (see the section "Examining Memory"). The info breakpoints command
can be abbreviated as info break.

Breakpoints can't be used in a program if any other process is running that program.
Attempting to run or continue the program with a breakpoint in this case will cause GDB
to stop it. When this happens, you have two ways to proceed:

• Remove or disable the breakpoints, then continue.

• Suspend GDB, and copy the file containing the program to a new name. Resume GDB
and use the exec-file command to specify that GDB should run the program under that
name. Then start t~e program again.

13-22 Chapter 13: The GNU Source-Level Debugger

Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). There are several ways to
specify where the breakpoint should go:

break function
Set a breakpoint at entry to function. You can also set a breakpoint at the entry
to a method, as described in the section "Method Names in Commands."

break linenum
Set a breakpoint at linenum in the current source file (the last file whose source
text was printed). This breakpoint will stop the program just before it executes
any of the code from that line.

break file: linenum
Set a breakpoint at linenum infile.

breakfile:function
Set a breakpoint at entry to function found infile. Specifying a file name as
well as a function name is superfluous except when multiple files contain
identiCally named functions.

break *address

break

Set a breakpoint at address. You can use this to set breakpoints in parts of the
program that don't have debugging information or source files.

Set a breakpoint at the next instruction to be executed in the selected stack
frame (see the section "Examining the Stack"). This is a pointless thing to do
in the innermost stack frame because the program would stop immediately
after being started, but it's very useful with another stack frame, because it will
cause the program to stop as soon as control returns to that frame.

break [args] if cond
Set a breakpoint with condition cond; evaluate the expression cond each time
the breakpoint is reached, and stop only if the value is nonzero. args stands for
one of the possible arguments described above (or no argument) specifying
where to break. See the section "Break Conditions" for more information.

tbreak [args]
Set a breakpoint enabled only for one stop. args are the same as in the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically "disabled" the first time it's hit.

GDB allows you to set any number of breakpoints at the same place in the program. This
can be useful when the breakpoints are conditional (see the section "Break Conditions").

Stopping and Continuing 13-23

Clearing Breakpoints

It's often necessary to eliminate a breakpoint once it has done its job and you no longer
want the program to stop there. This is called clearing (or deleting) the breakpoint. A
breakpoint that has been cleared no longer exists in any sense.

With the clear command you can clear breakpoints according to where they are in the
program. With the delete command you can clear individual breakpoints by specifying
their breakpoint numbers.

It isn't necessary to clear a breakpoint to proceed past it. GDB automatically ignores
breakpoints in the first instruction to be executed when you continue execution at the same
address where the program stopped.

clear Clear any breakpoints at the next instruction to be executed in the selected
stack frame (see the section "Selecting a Frame"). When the innermost frame
is selected, this is a good way to clear a breakpoint that the program just
stopped at.

clear function
clear file:function
Clear any breakpoints set at entry to the function.

clear linenum
clear file:linenum
Clear any breakpoints set at or within the code of the specified line.

delete bnum ...
Clear the breakpoints whose breakpoint numbers are specified as arguments.
A deleted breakpoint is forgotten completely.

Disabling Breakpoints

Rather than clearing a breakpoint, you might prefer to disable it. This makes the breakpoint
inoperative as if it had been cleared, but remembers the information about the breakpoint
so that you can enable it again later.

You enable and disable breakpoints with the enable and disable commands, specifying one
or more breakpoint numbers as arguments. Use info breakpoints to print a list of
breakpoints if you don't know which breakpoint numbers to use.

13-24 Chapter 13: The GNU Source-Level Debugger

A breakpoint can have any of four states of enablement:

• Disabled. The breakpoint has no effect on the program.

• Enabled. The breakpoint will stop the program. A breakpoint made with the break
command starts out in this state.

• Enabled once. The breakpoint will stop the program, but when it does so it will become
disabled. A breakpoint made with the tbreak command starts out in this state.

• Enabled for deletion. The breakpoint will stop the program, but immediately afterward
it will be deleted permanently.

You can change the state of enablement of a breakpoint with the following commands:

enable bnum ...
Enable the specified breakpoints. They become effective once again in
stopping the program, until you specify otherwise.

enable once bnum ...
Enable the specified breakpoints temporarily. Each will remain enabled only
until the next time it stops the program (unless you use one of these commands
to specify a different state before that time comes). Also see the tbreak
command, which sets a breakpoint and enables it once.

enable delete bnum ...
Enable the specified breakpoints to work once and then die. Each of the
breakpoints will be deleted the next time it stops the program (unless you use
one of these commands to specify a different state before that time comes).

disable delete bnum ...
Disable the specified breakpoints. A disabled breakpoint has no effect but isn't
forgotten. All options such as ignore counts, conditions, and commands are
remembered in case the breakpoint is enabled again later. This command may
be abbreviated disable ..

delete breakpoints [bnum ...]
Delete some breakpoints or auto-display expressions. Arguments are
breakpoint numbers with spaces in between. To delete all breakpoints, give no
argument. This command may be abbreviated delete.

Stopping and Continuing 13·25

enable display [arg ...]
Enable some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to resume displaying. No argument
means enable all automatic-display expressions. Do info display to see the
current list of code numbers.

disable display [arg ...]
Disable some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to stop displaying. No argument
means disable all automatic-display expressions. Do info display to see the
current list of code numbers.

delete display [arg ...]
Cancel some expressions to be displayed when the program stops. Arguments
are the code numbers of the expressions to stop displaying. No argument
means cancel all automatic-display expressions. Do info display to see the
current list of code numbers.

catch [arg ...]
Set breakpoints to catch exceptions that are raised. Argument may be a
single exception to catch, multiple exceptions to catch, or the default
exception default. If no arguments are given, breakpoints are set at all
exception handlers catch clauses within the current scope.

A condition specified for the catch applies to all breakpoints set with
this command.

Aside from the automatic disablement or deletion of a breakpoint when it stops the
program, which happens only in certain states, the state of enablement of a breakpoint
changes only when one of the above commands is used.

Break Conditions

The simplest sort of breakpoint breaks every time the program reaches a specified place.
You can also specify a condition for a breakpoint. A condition is simply a boolean
expression. A breakpoint with a condition evaluates the expression each time the program
reaches it, and the program stops only if the condition is true.

Break conditions may have side effects, and may even call functions in your program.
These may sound like strange things to do, but their effects are completely predictable
unless there's another enabled breakpoint at the same address. (In that case, GDB might
see the other breakpoint first and stop the program without checking the condition of this
one.) Note that breakpoint commands are usually more convenient and flexible than break

13-26 Chapter 13: The GNU Source-Level Debugger

conditions for the purpose of performing side effects when a breakpoint is reached (see the
section "Executing Commands at a Breakpoint").

Break conditions can be specified when a breakpoint is set, by using if in the arguments to
the break command (see the section "Setting Breakpoints"). They can also be changed at
any time with the condition command:

condition bnum expression
Specify expression as the break condition for breakpoint number bnum. From
now on, this breakpoint will stop the program only if the value of expression is
true (nonzero, in C). expression isn't evaluated at the time the condition
command is given.

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special feature is provided for one kind of condition: to prevent the breakpoint from
doing anything until it has been reached a certain number of times. This is done with
the "ignore count" of the breakpoint. When the program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements the ignore count
by 1 and continues.

ignore bnum count

continue n

Set the ignore count of breakpoint number bnum to count. The next count
times the breakpoint is reached, it won't stop.

To make the breakpoint stop the next time it's reached, specify a count of O.

Continue execution of the program, setting the ignore count of the breakpoint
that the program stopped at to n minus 1. Continuing through the breakpoint
doesn't itself count as one of n. Thus, the program won't stop at this
breakpoint until the nth time it's hit.

This command is allowed only when the program stopped due to a breakpoint.
At other times, the argument to cont is ignored.

If a breakpoint has a positive ignore count and a condition, the condition isn't checked.
Once the ignore count reaches 0, the condition will start to be checked.

You could achieve the effect of the ignore count with a condition such as $foo--<= 0 using
a debugger convenience variable that's decremented each time. That's why the ignore
count is considered a special case of a condition. See the section "Convenience Variables."

Stopping and Continuing 13-27

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute when the program stops due
to that breakpoint. For example, you might want to print the values of certain expressions,
or enable other breakpoints.

commands bnum
Specify commands for breakpoint number bnum. The commands themselves
appear on the following lines. Type a line containing just end to terminate
the commands.

To remove all commands from a breakpoint, use the command commands and
follow it immediately by end; that is, give no commands.

Breakpoint commands can be used to start up the program again. Simply use the continue
command, or step, or any other command that resumes execution. However, any remaining
breakpoint commands are ignored. When the program stops again, GDB will act according
to why that stop took place.

If the first command specified is silent, the usual message about stopping at a breakpoint
isn't printed. This may be desirable for breakpoints that are to print a specific message and
then continue. If the remaining commands also print nothing, you'll see no sign that the
breakpoint was reached at all. silent isn't really a command; it's meaningful only at the
beginning of the commands for a breakpoint.

The commands echo and output, which allow you to print precisely controlled output, are
often useful in silent breakpoints. See the section "Commands for Controlled Output."

Here's how you could use breakpoint commands to print the value of x at entry to foo
whenever it's positive. We assume that the newly created breakpoint is number 4; break
will print the number that's assigned.

break faa if x>O
commands 4
silent
echo x is\040
output x
echo \n
cant
end

One application for breakpoint commands is to correct one bug so you can test another. Put
a breakpoint just after the erroneous line of code, give it a condition to detect the case in

13-28 Chapter 13: The GNU Source-Level Debugger

which something erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the cont command so that the program doesn't
stop, and start with the silent command so that no output is produced. Here's an example:

break 403
commands 5
silent
set x = y + 4
cont
end

One deficiency in the operation of breakpoints that continue automatically appears when
your program uses raw mode for the terminal. GDB reverts to its own terminal modes (not
raw) before executing commands, and then must switch back to raw mode when your
program is continued. This causes any pending terminal input to be lost.

You could get around this problem by putting the actions in the breakpoint condition
instead of in commands. For example,

condition 5 (x = y + 4), 0

is a condition expression that will change x as needed, then always have the value 0 so the
program won't stop. Loss of input is avoided here because break conditions are evaluated
without changing the terminal modes. When you want to have nontrivial conditions for
performing the side effects, the operators &&, \I , and ?: may be useful.

Continuing

After your program stops, most likely you'll want it to run some more if the bug you're
looking for hasn't happened yet. You can do this with the continue command:

continue Continue running the program at the place where it stopped.

If the program stopped at a breakpoint, the place to continue running is the address of the
breakpoint. You might expect that continuing would just stop at the same breakpoint
immediately. In fact, continue takes special care to prevent that from happening. You
don't need to clear the breakpoint to proceed through it after stopping at it.

You can, however, specify an ignore count for the breakpoint that the program stopped
at, by means of an argument to the continue command. See the section "Break
Conditions" above.

Stopping and Continuing 13-29

If the program stopped because of a signal other than SIGINT or SIGTRAP, continuing will
cause the program to see that signal. You may not want this to happen. For example, if the
program stopped due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more execution; but the
program would probably terminate immediately as a result of the fatal signal once it sees
the signal. To prevent this, you can continue with signal O. You can also act in advance to
prevent the program from seeing certain kinds of signals, using the handle command (see
the section "Signals").

Stepping

Stepping means setting your program in motion for a limited time, so that control will
return automatically to the debugger after one line of code or one machine instruction.
Breakpoints are active during stepping and the program will stop for them even if it hasn't
gone as far as the stepping command specifies.

step [count]
Proceed the program until control reaches a different line, then stop it and
return to the debugger. If an argument is specified, proceed as in step, but do
so count times. If a breakpoint or a signal not related to stepping is reached
before count steps, stepping stops right away. You can abbreviate this
command as s. .

next [count]

finish

Similar to step, but any function calls appearing within the line of code are
executed without stopping. Execution stops when control reaches a different
line of code at the stack level which was executing when the next command
was given. An argument is a repeat count, as in step. You can abbreviate this
command as n.

Continue running until just after the selected stack frame returns (or until
there's some other reason to stop, such as a fatal signal or a breakpoint).
Upon return, the value returned is printed and put in the value history.
Contrast this with the return command, described in the section "Returning
from a Function."

13-30 Chapter 13: The GNU Source-Level Debugger

untillinenum
Continue running until line number linenum is reached or the current stack
frame returns. This is equivalent to setting a breakpoint at linenum, executing
a finish command, and deleting the breakpoint.

stepi [count]
Proceed one machine instruction, then stop and return to the debugger. It's
often useful to do display/i $pc when stepping by machine instructions. This
will cause the next instruction to be executed to be displayed automatically at
each stop (see the section "Automatic Display"). An argument is a repeat
count, as in step. You can abbreviate this command as si.

nexti [count]

watch exp

Proceed one machine instruction, but if it's a subroutine call, proceed until the
subroutine returns. An argument is a repeat count, as in next. You can
abbreviate this command as ni.

Single-step the program until exp is true. This method is slow, but accurate.
For a similar method that's faster but less accurate, see the section on data
breakpoints.

A typical technique for using stepping is to put a breakpoint at the beginning of the function
or the section of the program in which a problem is believed to lie, and then step through
the suspect area examining interesting variables until the problem happens.

The cont command can be used after stepping to resume execution until the next breakpoint
or signal.

Data Breakpoints

Data breakpoints are implemented using a scheme that involves calling a handler function
at the end of every function. This allows the program to break at the end of the function
that changed the data, thereby narrowing the search for the offending line to a space
between the last function called within a function and the last line of that function. The
offending line is somewhere before the stopping point-specifically, somewhere between
the end of the last function that was called and the end of this function.

Stopping and Continuing 13-31

The following commands provide support for data breakpoints:

data-break [address size]
data-break [expression]

Causes the program to break at the end of the function that changes the
specified data. The first form specifies that the data starts at address for size
bytes. The second form specifies that the data starts at &expression and
continue for the size of expression (an Objective C object is considered to be
the size that its class dictates at the time of the data-break command). With
no arguments, data-break removes any data-break condition currently in
effect.

set-exit-handler [function-name]
Causes function-name to be called every time a function is exited. The
prototype of the function is int (handlerFunction)(void). If a non-zero value is
returned, the program will break at the end of the last function that was called.
With no arguments, this command removes the exit handler.

There are two caveats. First, functions without frame pointers are exempt from checking.
Second, the address being checked must be readable at all times that the data breakpoint
handler will be called. Otherwise an exception will be generated inside the inferior
program. gdb will catch this, and you'll have to tum off checking by using the data-break
command with no arguments.

The following examples illustrate the use of the data-break command.

• The program will stop if anything in the range OxlOOO through OxlOOb changes:

data-break Ox1000 12

• An assigment to foo will cause the program to stop:

char *foo;
data-break foo

• An assigment to foo[O] will cause the program to stop:

char *foo;
foo = malloc(20);
data-break *foo

• An assigment to any of the characters from foo[O] through foo[19] will cause the
program to stop:

char *foo;
data-break foo 20

13-32 Chapter 13: The GNU Source-Level Debugger

• An assigment to foo will cause the program to stop:

int fOOi

data-break faa

• An assignment to foo will cause the program to stop.

struct faa
int ai

int bi

} i

struct faa *fOOi

data-break faa

• An assignment to foo->a will cause the program to stop:

struct faa
int ai

int bi

} i

struct faa *fOOi

faa = malloc(sizeof(*foo))i
data-break foo->a

• An assignment to foo->a or foo->b will cause the program to stop:

struct faa
int ai

int bi

} i

struct faa *fOOi

faa = malloc(sizeof(*foo))i
data-break *foo

• An assignment to foo will cause the program to stop:

id fOOi

data-break faa

• An assigment to foo->appSpeaker will cause the program to stop:

id faa = [Application new] i

data-break foo->appSpeaker

• An assignment to any of the instance variables of foo will cause the program to stop:

id fOOi

data-break *foo

Stopping and Continuing 13-33

Examining the Stack

When your program has stopped, the first thing you need to know is where it stopped and
how it got there.

Each time your program performs a function call, the information about where in the
program the call was made from is saved in a block of data called a stackframe. The frame
also contains the arguments of the call and the local variables of the function that was
called. All the stack frames are allocated in a region of memory called the call stack.
When your program stops, the GDB commands for examining the stack allow you to see
all this information.

Stack Frames

The call stack is divided into contiguous pieces called frames; each frame is the data
associated with one call to one function. The frame contains the arguments given to the
function, the function's local variables, and the address at which the function is executing.

When your program is started, the stack has only one frame, that of the function mainO.
This is called the initial frame, or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for the same function. The
frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist. .

Inside your program, stack frames are identified by their addresses. A stack frame consists
of many bytes, each of which has its own address; each kind of computer has a convention
for choosing the address of one of those bytes to serve as the address of the frame. Usually
this address is kept in a register called the frame pointer register while execution is going
on in that frame.

GDB assigns numbers to all existing stack frames, starting with 0 for the innermost frame,
1 for the frame that called it, and so on upward. These numbers don't really exist in your
program; they simply give you a way of talking about stack frames in GDB commands.

At any given time, one of the stack frames is selected by GDB; many GDB commands refer
implicitly to this selected frame. In particular, whenever you ask GDB for the value of a
variable in the program, the value is found in the selected frame. You can select any
frame using the frame, up, and down commands; subsequent commands will operate
on that frame.

13-34 Chapter 13: The GNU Source-Level Debugger

When the program stops, GDB automatically selects the currently executing frame
and describes it briefly, as the frame command does (see the section "Information about
a Frame").

Backtraces

A backtrace is a summary of how the program got where it is. It shows one line per frame,
for many frames, starting with the currently executing frame (frame 0) followed by its caller
(frame 1), and on up the stack.

Each line in a backtrace shows the frame number, the program counter, the function and its
arguments, and the source file name and line number (if known). For example:

(gdb) backtrace
#0 Ox3eb6 in fflush ()

#1 Ox24bO in fwalk ()

#2 Ox2500 in _cleanup ()

#3 Ox2312 in exit ()

backtrace [n]
Print a backtrace of the entire stack: one line per frame for all frames in the
stack. You can stop the backtrace at any time by typing the system interrupt
character, normally Control-C. With a positive argument, the command prints
the innermost n frames; with a negative argument, it prints the outermost n
frames. You can abbreviate this command as bt. An alias for this command is
where.

Selecting a Frame

Most commands for examining the stack and other data in the program work on whichever
stack frame is selected at the moment. Below are the commands for selecting a stack frame.

framen

frameaddr

Select and print frame number n. Recall that frame 0 is the innermost
(currently executing) frame, frame 1 is the frame that called the innermost one,
and so on. The highest-numbered frame is main's frame.

Select and print the frame at address addr. This is useful mainly if the chaining
of stack frames has been damaged by a bug, making it impossible for GDB to
assign numbers properly to all frames. In addition, this can be useful if the
program has multiple stacks and SWitches between them.

Examining the Stack 13-35

up n Select and print the frame n frames up from the frame previously selected. For
positive numbers n, this advances toward the outermost frame, to higher frame
numbers, to frames that have existed longer. n defaults to 1.

up-silently n

downn

Same as the up command, but doesn't print anything (this is useful in
command scripts).

Select and print the frame n frames down from the frame previously selected.
For positive numbers n, this advances toward the innermost frame, to lower
frame numbers, to frames that were created more recently. n defaults to 1.

down-silently n
Same as the down command, but doesn't print anything (this is useful in
command scripts).

All these commands (except up-silently and down-silently) end by printing some
information about the frame that has been selected: the frame number, the function name,
the arguments, the source file and line number of execution in that frame, and the text of
that source line. For example:

#3 main (argc=3, argv=??, env=??) at main.c, line 67
67 read_input_file (argv[i]);

After such a printout, the list command with no arguments will print ten lines centered on
the point of execution in the frame. See the section "Printing Source Lines."

Information about a Frame

There are several other commands to print information about the selected stack frame.

frame [n] This command prints a brief description of the selected stack frame. With an
argument, this command is used to select a stack frame (the argument can be a
stack frame number or the address of a frame); with no argument, it doesn't
change which frame is selected, but still prints the same information. You can
abbreviate this command as f.

13-36 Chapter 13: The GNU Source-Level Debugger

info frame
This command prints a verbose description of the selected stack frame,
including the address of the frame, the addresses of the next frame down
(called by this frame) and the next frame up (caller of this frame), the address
of the frame's arguments, the program counter saved in it (the address of
execution in the caller frame), and which registers were saved in the frame.
The verbose description is useful when something has gone wrong that has
made the stack format fail to fit the usual conventions.

info frame addr
Print a verbose description of the frame at address addr, without selecting that
frame. The selected frame remains unchanged by this command.

info args Print the arguments of the selected frame, each on a separate line.

info locals Print the local variables of the selected frame, each on a separate line.

Examining Source Files

GDB knows which source files your program was compiled from, and can print parts of
their text. When your program stops, GDB spontaneously prints the line it stopped in.
Likewise, when you select a stack frame (see the section "Selecting a Frame"), GDB prints
the line in which execution in that frame has stopped. You can also print parts of source
files by explicit command.

Viewing Files in Edit

To be able to dynamically open and view source files in Edit, use the view command.
This command is executed automatically when you start GDB from the Project Builder
application.

view [host]

unview

Cause source files to be viewed in Edit, either on the local machine or on a
remote host . . When you first execute this command, a Gdb command is added
to Edit's main menu. This command brings up a control panel that allows you
to control some of GDB's basic functions from within Edit (see Chapter 4
for details).

Cause source files not to be viewed in Edit.

Examining Source Files 13-37

Printing Source Lines

To print lines from a source file, use the list command (abbreviated I). There are several
ways to specify what part of the file you want to print.

Here are the most commonly used forms of the list command:

list linenum
Print ten lines centered around linenum in the current source file.

list function
Print ten lines centered around the beginning of function.

list Print ten more lines. If the last lines printed were printed with a list command,
this prints ten lines following the last lines printed; however, if the last line
printed was a solitary line printed as part of displaying a stack frame (see the
section "Examining the Stack"), this prints ten lines centered around that line.

list - Print ten lines just before the lines last printed.

You can repeat a list command by pressing the Return key; however, any argument that was
used is discarded, so this is equivalent to typing simply list. An exception is made for an
argument of -; that argument is preserved in repetition so that each repetition moves up in
the file.

In general, the list command expects you to supply zero, one, or two linespecs. Linespecs
specify source lines; there are several ways of writing them but the effect is always to
specify some source line. The possible arguments for list are as follows:

list ,last Print ten lines ending with last.

Iistjirst, Print ten lines starting withjirst.

list + Print ten lines just after the lines last printed.

list - Print ten lines just before the lines last printed.

list linespec
Print ten lines centered around the line specified by linespec (described below).

list jirst,last
Print lines fromjirst to last. Both arguments are linespecs.

13-38 Chapter 13: The GNU Source-Level Debugger

Here are the possible ways to specify a value for linespec:

linenum

+offset

-offset

file:linenum

function

Specifies line linenum of the current source file. When a list command has two
linespecs, this refers to the same source file as the first linespec.

Specifies the line offset lines after the last line printed. When used as the
second linespec in a list command, this specifies the line offset lines down from
the first linespec.

Specifies the line offset lines before the last line printed.

Specifies line linenum in the source file file.

Specifies the line of the left brace ({) that begins the body of function.

file:function

*addr

Specifies the line of the left brace ({) that begins the body of function in file.
The file name is needed with a function name only for disambiguating
identically named functions in different source files.

Specifies the line containing the program address addr. addr may be any
expression.

The info line command is used to map source lines to program addresses:

info line [line]
Print the starting and ending addresses of the compiled code for source line
line, which can be specified as:

linenum, to list around that line in current file,
file:linenum, to list around that line in that file,
function, to list around beginning of that function, or
file:function, to distinguish among like-named static functions.

With no argument, the command describes the last source line that was listed.

The default address for the x command is changed to the starting address of the
line, so that xli is sufficient to begin examining the machine code (see the
section "Examining Memory"). Also, this address is saved as the value of the
convenience variable $_ (see the section "Convenience Variables").

Examining Source Files 13-39

Searching Source Files

The forward-search command (or its alias, search) and the reverse-search command are
useful when you want to locate text within the current source file.

forward-search regexp
This command checks each line, starting with the one following the last line
listed, for a match for regexp, which must be a UNIX regular expression (see
the UNIX manual page for ed). It lists the line that's found. You can
abbreviate this command as fo.

reverse-search regexp
The command checks each line, starting with the one before the last line listed
and going backward, for a match for regexp. It lists the line that's found. You
can abbreviate this command as rev.

Specifying Source Directories

Executable programs don't record the directories of the source files they were compiled
from, just the names. GDB remembers a list of pathnames of directories in which it will
search for source files; this list is called the source path (note that GDB doesn't use the
environment variable PATH to search for source files). Each time GDB wants a source file,
it tries each directory in the list, starting from the beginning, until it finds a file with the
desired name.

When you start GDB, its source path is set to $cdir:$cwd (the current working directory,
and the directory in which the source file was compiled into object code). To add other
directories, use the directory command:

directory dirname
Add directory with the pathname dirname to the beginning of the source path.

directory Reset the source path to $cdir:$cwd, the default.This requires confirmation.

13-40 Chapter 13: The GNU Source-Level Debugger

-~~----.---.-~---------

Examining Data

The most common way to examine data in your program is with the print command
(abbreviated p):

print exp This command evaluates and prints the value of any valid expression of the
language the program is written in (currently, only C and Objective C).
Variables accessible are those of the lexical environment of the selected stack
frame, plus all those whose scope is global or an entire file.

exp is any valid expression, and the value of exp is printed in a format
appropriate to its data type. To print data in another format, you can cast exp
to the desired type or use the x command.

$num gets previous value number num. $ and $$ are the last two values.
$$num refers to the num'th value back from the last one. Names starting with
$ refer to registers (with the valuesthey would have if the program were to
return to the stack frame now selected, restoring all registers saved by frames
farther in) or else to debugger convenience variables (any such name that isn't
a known register). Use assignment expressions to give values to convenience
variables.

{type}adrexp refers to a datum of data type type, located at address adrexp. @

is a binary operator for treating consecutive data objects anywhere in memory
as an array. foo@num gives an array whose first element isfoo, whose second
element is stored in the space following where faa is stored, etc. faa must be
an expression whose value resides in memory.

exp may be preceded with /fmt, where fmt is a format letter but no count or size
letter (see the description of the x command).

print-object object

set exp

Print object by sending printForDebugger: to it.

The set command works like the print command, except that the expression's
value isn't displayed. This is useful for modifying the state of your program.
For example:

set x=3
set close_all_files()

Another way to examine data is with the x command (see "Examining Memory" below). It
examines data in memory at a specified address and prints it in a specified format.

Examining Data 13-41

Expressions

Many different GDB commands accept an expression and compute its value. Any kind of
constant, variable, or operator defined by the programming language you're using is legal
in an expression in GDB. This includes conditional expressions, function calls, casts, and
string constants.

GDB supports three kinds of operator in addition to those of programming languages:

file-or-function: : variable-name
:: allows you to specify a variable in tenns of the file or function it's defined in.

@ @ is a binary operator for treating parts of memory as arrays. See the section
"Artificial Arrays" below for more information.

{type} addr
Refers to an object of type type stored at address addr in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around nonunary operators, just as in a cast). This construct is
allowed no matter what kind of data is officially supposed to reside at addr ..

Program Variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see the section
"Selecting a Frame"); they must be either global (or static) or visible according to the scope
rules of the programming language from the point of execution in that frame. This means
that in the function

faa (a)
int ai

bar (a) i

int b = test ();
bar (b);

the variable a is usable whenever the program is executing within the function fooO, but
the variable b is usable only while the program is executing inside the block in which b
is declared.

13-42 Chapter 13: The GNU Source-Level Debugger

Artificial Arrays

It's often useful to print out several successive objects of the same type in memory (for
example, a section of an array, or an array of dynamically determined size for which only
a pointer exists in the program).

This can be done by constructing an "artificial array" with the binary operator @. The left
operand of @ should be the first element of the desired array, as an individual object. The
right operand should be the length of the array. The result is an array value whose elements
are all of the type of the left argument. The first element is actually the left argument; the
second element comes from bytes of memory immediately following those that hold the
first element, and so on. For example, if a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of @ must reside in memory. Array values made with @ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when used
in expressions.

Output Formats

GDB normally prints all values according to their data types. Sometimes this isn't what
you want. For example, you might want to print a number in hexadecimal, or a pointer in
decimal. Or you might want to view data in memory at a certain address as a character
string or an instruction. These things can be done with output formats.

The simplest use of output formats is to specify how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:

x

d

u

o

a

Regard the bits of the value as an integer, and print the integer in hexadecimal.

Print as integer in signed decimal.

Print as integer in unsigned decimal.

Print as integer in octal.

Print as an address, both absolute in hexadecimal and then relative to a symbol
defined at an address below it.

Examining Data 13-43

c

f

Regard as an integer and print as a character constant.

Regard the bits of the value as a floating-point number and print using typical
floating-point syntax.

For example, to print the program counter in hexadecimal (see the section "Registers"),
type

pix $pc

No space is required before the slash because command names in GDB can't contain
a slash.

To reprint the last value in the value history with a different format, you can use the print
command with just a format and no expression. For example, pIx reprints the last value in
hexadecimal.

Examining Memory

The command x (for "examine") can be used to examine memory under explicit control of
formats, without reference to the program's data types.

x is followed by a slash and an output format specification, followed by an expression for
an address:

xlftntaddr

The expression addr doesn't need to have a pointer value (though it may); it's used as an
integer, as the address of a byte of memory.

The output formatftnt in this case specifies both how big a unit of memory to examine and
how to print the contents of that unit. It's done with one or two of the letters listed below.

These letters specify the size of unit to examine:

b Examine individual bytes.

h Examine halfwords (two bytes each).

w Examine words (four bytes each).

g Examine giant words (eight bytes).

13-44 Chapter 13: The GNU Source-Level Debugger

These letters specify how to print the contents:

x

d

u

o

a

c

f

s

i

Print as integers in unsigned hexadecimal.

Print as integers in signed decimal.

Print as integers in unsigned decimal.

Print as integers in unsigned octal.

Print as an address, both absolute in hexadecimal and then relative to a symbol
defined as an address below it.

Print as character constants (this implies size b).

Print as floating point. This works only with sizes wand g.

Print a null-terminated string of characters. The specified unit size is ignored;
instead, the unit is however many bytes it takes to reach a null character
(including the null character).

Print a machine instruction in assembler syntax (or nearly). The specified unit
size is ignored; the number of bytes in an instruction varies depending on the
type of machine, the opcode and the addressing modes used.

If neither the manner of printing nor the size of unit is specified, the default is the same
as was used last. If you don't want to use any letters after the slash, you can omit the slash
as well.

You can also omit the address to examine. Then the address used is just after the last unit
examined. This is why string and instruction formats actually compute a unit-size based on
the data: so that the next string or instruction examined will start in the right place. The
print command sometimes sets the default address for the x command; when the value
printed resides in memory, the default is set to examine the same location. info line also
sets the default for x, to the address of the start of the machine code for the specified line
and info breakpoints sets it to the address of the last breakpoint listed.

When you repeat an x command by pressing the Return key, the address specified
previously (if any) is ignored; instead, the command examines successive locations in
memory rather than the same one.

Examining Data 13-45

You can examine several consecutive units of memory with one command by writing a
repeat count after the slash (before the format letters, if any). The repeat count must be a
decimal integer. It has the same effect as repeating the x command that many times except
that the output may be more compact with several units per line.

x/10i $pc

Prints ten instructions starting with the one to be executed next in the selected frame. After
doing this, you could print another ten following instructions with

x/10

in which the format and address are allowed to default.

The addresses and contents printed by the x command aren't put in the value history
because there's often too much of them and they would get in the way. Instead, GDB makes
these values available for subsequent use in expressions as values of the convenience
variables $_ and $_ (that is, $ followed by one or two underscores).

After an x command, the last address examined is available for use in expressions in the
convenience variable $_. The contents of that address, as examined, are available in the
convenience variable $_.

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this isn't the same as the last address printed if several units were
printed on the last line of output.

Automatic Display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the "automatic display list" so that GDB will print its
value each time the program stops. Each expression added to the list is given a number to
identify it; to remove an expression from the list, you specify that number. The automatic
display looks like this:

2: faa = 38

3: bareS] = (struct hack *) Ox3804

showing item numbers, expressions, and their current values.

displayexp
Add the expression exp to the list of expressions to display each time the
program stops.

13-46 Chapter 13: The GNU Source-Level Debugger

displayljint exp
Add the expression exp to the automatic display list, and display it in the format
fmt. fmt should specify only a display format, p.ot a size or count.

displayljint addr
Add the expression addr as a memory address to be examined each time the
program stops. fmt should be either i or s, or it should include a unit size or a
number of units. See the section "Examining Memory."

undisplay [n ...]

display

Remove item number n from the list of expressions to display. With no
argument, cancels all automatic-display expressions.

Display the current values of the expressions on the list, just as is done when
the program stops.

info display
Print the list of expressions to display automatically, each one with its item
number, but without showing the values.

Value History

Every value printed by the print command is saved for the entire session in GDB's "value
history" so that you can refer to it in other expressions.

The values printed are given "history numbers" for you to refer to them by. These are
successive integers starting with 1. print shows you the history number assigned to a value
by printing $n = before the value, where n is the history number.

To refer to any previous value, use $ followed by the value's history number. The output
printed by print is designed to remind you of this. $ alone refers to the most recent value
in the history, and $$ refers to the value before that.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It's enough to type

p *$

If you have a chain of structures where the component next points to the next one, you can
print the contents of the next one with

p *$.next

It might be useful to repeat this command many times by pressing the Return key.

Examining Data 13-47

Note that the history records values, not expressions. If the value of x is 4 and you type

print x

set x=5

then the value recorded in the value history by the print command remains 4 even though
x's value has changed.

Convenience Variables

GDB provides "convenience variables" that you can use within GDB to hold a value for
future reference. These variables exist entirely within GDB; they aren't part of your
program, and setting a convenience variable has no effect on further execution of your
program. That's why you can use them freely.

Convenience variables have names starting with $. Any name starting with $ can be used
for a convenience variable, unless it's one of the predefined set of register names (see the
section "Registers").

You can save a value in a convenience variable with an assignment expression, just as you
would set a variable in your program. For example:

set $foo = *object-ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Convenience variables don't need to be explicitly declared; using a convenience variable
for the first time creates it. However, its value is void until you assign it a value. You can
alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable any type
of value, even if it already has a value of a different type. The convenience variable as an
expression has whatever type its current value has.

One way to use a convenience variable is as a counter to be incremented or a pointer to be
advanced. For example:

set $i = a
print bar[$i++]->contents

repeat that command by typing RET.

13·48 Chapter 13: The GNU Source-Level Debugger

Some convenience variables are created automatically by GDB and given values likely to
be useful.

$_ The variable $_ (single underscore) is automatically set by the x command to
the last address examined (see the section "Examining Memory"). Other
commands which provide a default address for x to examine also set $_ to that
address; these commands include info line and info breakpoint.

$_ The variable $_ (two underscores) is automatically set by the x command to
the value found in the last address examined.

Registers

Machine register contents can be referred to in expressions as variables with names starting
with $.

The names $pc and $sp are used for the program counter register and the stack pointer. $fp
is used for a register that contains a pointer to the current stack frame. To see a list of all
the registers, use the command info registers.

Some registers have distinct "raw" and "virtual" data formats. This means that the data
format in which the register contents are saved by the operating system isn't the same one
that your program normally sees. For example, the registers of the 68882 floating-point
coprocessor are always saved in "extended" format, but all C programs expect to work with
"double" format. In such cases, GDB normally works with the virtual format only (the
format that makes sense for your program), but the info registers command prints the data
in both formats.

Register values are relative to the selected stack frame (see the section "Selecting a
Frame"). This means that you get the value that the register would contain if all stack
frames farther in were exited and their saved registers restored. In order to see the real
contents of all registers, you must select the innermost frame (with frame 0).

Some registers are never saved (typically those numbered 0 or 1) because they're used for
returning function values; for these registers, relativization makes no difference.

info registers [regname]
With no argument, print the names and relativized values of all registers.
With an argument, print the relativized value of register regname. regname
may be any register name valid on the machine you're using, with or without
the initial $.

Examining Data 13~49

For example, you could print the program counter in hexadecimal with

pix $pc

or print the instruction to be executed next with

xli $pc

or add 4 to the stack pointer with

set Ssp += 4

The last is a way of removing one word from the stack. This assumes that the innermost
stack frame is selected. Setting $sp isn't allowed when other stack frames are selected.

Miscellaneous Commands

call arg Call a function in the inferior process. The argument is the function name and
arguments, in standard C notation. The result is printed and saved in the value
history, if it isn't void.

disassemble [arg [arg]]
Disassemble a specified section of memory. The default is the function
surrounding the pc of the selected frame. With a single argument, the function
surrounding that address is dumped. Two arguments are taken as a range of
memory to dump.

whereis variable
Print the location of the specified variable.

Examining the Symbol Table

The commands described in this section allow you to make inquiries for information about
the symbols (names of variables, functions, and types) defined in your program. GDB finds
this information in the symbol table contained in the executable file; it's inherent in the text
of your program and doesn't change as the program executes.

13-50 Chapter 13: The GNU Source-Level Debugger

whatis [exp]
With no argument, print the data type of $, the last value in the value history.
With an argument, print the data type of expression expo exp isn't actually
evaluated, and any operations inside it that have side effects (such as
assignments or function calls) don't take place.

info address symbol
Describe where the data for symbol is stored. For register variables, this says
which register. For other automatic variables, this prints the stack-frame offset
at which the variable is always stored. Note the contrast with print &symbol,
which doesn't work at all for register variables, and which for automatic
variables prints the exact address of the current instantiation of the variable.

info functions [regexp]
With no argument, print the names and data types of all defined functions.
With an argument, print the names and data types of all defined functions
whose names contain a match for regular expression regexp (for information
about regular expressions, see the UNIX manual page for ed). For example,
info fun step finds all functions whose names include step; info fun Astep
finds those whose names start with step.

info sources
Print the names of all source files in the program for which there is debugging
information.

info types [regexp]
With no argument, print all data types that are defined in the program. With an
argument, print all data types that are defined in the program whose names
contain a match for regular expression regexp.

info variables [regexp]
With no argument, print the names and data types of all top-level variables that
are declared outside functions. With an argument, print the names and data
types of all variables declared outside functions, whose names contain a match
for regular expression regexp.

printsyms file
Write a complete dump of the debugger's symbol data into the file file.

ptype typename
Print a description of data type typename. typename may be the name of a
type, or for C code it may have the form struct struct-tag, union union-tag or
enum enum-tag. The selected stack frame's lexical context is used to look up
the name.

Examining the Symbol Table 13-51

Setting Variables

set Perfonn an assignment var = expo You must type the =. var may be a debugger
convenience variable (a name starting with $), a register (one of a few standard
names starting with $), or an actual variable in the program being debugged.
exp is any expression. Use set variable for variables with names identical to
set subcommands.

With a subcommand listed below, the set command modifies parts of the GDB
environment (you can see these environment settings with show and its
subcommands). In general, use on (or no argument) to enable a feature, and
off to disable it.

set args arg ...
Set arguments to give the program being debugged when it is started. Follow
this command with any number of arguments to be passed to the program.

set autoload-breakpoints on/off
Set automatic resetting of breakpoints in dynamic code.

set autoload-symbols on/off
Set automatic loading of symbols of dynamic code.

set catch-user-commands-errors on/off
Set whether to ignore errors in user commands.

set complaints num
Set the maximum number of complaints about incorrect symbols.

set confirm on/off
Set whether to confirm potentially dangerous operations.

set editing on/off
Set command-line editing.

set environment var value
Set environment variable and value to give the program. Arguments are var
value where var is the variable name and value is the value. Values of
environment variables are uninterpreted strings. This command does not affect
the program until the next run command.

set history expansion on/off
Set history expansion on command input.

13-52 Chapter 13: The GNU Source-Level Debugger

set history filename file
Set the filename in which to record the command history (the list of previous
commands of which a record is kept).

set history save on/off
Set whether the history record is saved when you exit gdb.

set history size size
Set the size of the command history (the number of previous commands to
keep a record of).

set lazy-read on/off
Set whether inferior's memory is read lazily.

set print address on/off
Set printing of addresses.

set print array on/off
Set pretty printing of arrays.

set print asm-demangle on/off
Set demangling of C++ names in disassembly listings.

set print demangle on/off
Set demangling of encoded C++ names when displaying symbols.

set print elements size
Set limit on string chars or array elements to print. The value 0 causes there to
be no limit.

set print object on/off
Set printing of object's derived type based on vtable info.

set print sevenbit-strings on/off
Set printing of 8-bit characters in strings as \nnn.

set print vtbl on/off
Set printing of C++ virtual function tables.

set print union on/off
Set printing of unions interior to structures.

set print pretty on/off
Set pretty printing of structures.

Examining the Symbol Table 13-53

set prompt string
Set GDB's prompt. The argument is an unquoted string.

set radix on/off
Set the default input and output number radix.

set unload-symbols on/off
Set whether symbols from dynamically loaded code are forgotten for future
loads.

set verbose on/off
Set whether verbose printing of informational messages is enabled or disabled.

set view-host host
Set the host to connect to when viewing.

set view-program name
Set the name of the program to connect to when viewing.

set variable var = exp
Same as set; use set variable in cases where var is identical to one of the set
subcommands.

Status Inquiries

info address var
Describe where the specified variable is stored.

info args Provide information about the argument variables of the current stack frame.

info breakpoints [num]

info catch

Provide information about the status of all breakpoints, or of breakpoint
number num. The second column displays y for enabled breakpoints, n for
disabled, 0 for enabled once (disable when hit), or d for enabled but delete
when hit. The address and the file/line number are also displayed.

The convenience variable $_ and the default examine address for x are set to
the address of the last breakpoint listed. The convenience variable $bpnum
contains the number of the last breakpoint set.

Provide information about the exceptions that can be caught in the current
stack frame.

13-54 Chapter 13: The GNU Source-Level Debugger

info classes
Show all Objective C classes.

info copying
Show conditions for redistributing copies of GDB.

info display
Show expressions to display ~hen program stops, with code numbers.

info files Show the names of targets and files being debugged. Shows the entire stack of
targets currently in use (including the exec-file, core-file, and process, if any),
as well as the symbol file name.

info float Show the status of the floating point unit.

info frame [addr]
Provide information about the selected stack frame, or the frame at addr.

info functions [regexp]
Show all function names, or those matching regexp.

info line [line_spec]

info locals

Core addresses of the code for a source line. line_spec can be specified as

linenum, to list around that line in current file,
file:linenum, to list around that line in that file,
junction, to list around beginning of that function, or
fileifunction, to distinguish among like-named static functions.

The default is to describe the last source line that was listed.

This sets the default address for x to the line's first instruction so that xli
suffices to start examining the machine code. The address is also stored as the
value of $_.

Provide information about the local variables of the current stack frame.

info program
Show the execution status of the program.

info registers [register _name]
Show a list of registers and their contents for the selected stack frame. A
register name as argument means describe only that register.

Examining the Symbol Table 13-55

info selectors
Show all Objective C selectors.

info set Show all GDB settings.

info signals [sig_num]
Show what GDB does when the program gets various signals. Specify a signal
number to print information about that signal only.

info sources
Show the names of source files in the program.

info source
Provide information about the current source file.

info stack [count]
Provide a backtrace of the stack, or of the innermost count frames.

info target
Same as info files.

info terminal
Print inferior's saved terminal status.

info types [regexp]
Show all type names, or those matching regexp.

info user [command]
Show the definition of a user-defined command. With no argument, show the
definitions of all user-defined commands.

info variables [regexp]
Show all global and static variable names, or those matching regexp.

info warranty
Show information pertaining to warranty.

info watchpoints [num]
Provide information about the status of all watchpoints, or of watchpoint
number num. The second column displays y for enabled watchpoints or n for
disabled ones.

show autoload-breakpoints
Show automatic reseting of breakpoints in dynamic code.

13-56 Chapter 13: The GNU Source-Level Debugger

show autoload-symbols
Show automatic loading of symbols of dynamic code.

show args Show arguments to give program being debugged when it is started.

show catch-user-commands-errors
Show whether to ignore errors in user commands.

show commands
Show the status of the command editor.

show complaints
Show the maximum number of complaints about incorrect symbols.

show confirm
Show whether to confirm potentially dangerous operations.

show convenience
Show the debugger convenience variables. These variables are created when
you assign them values; thus, print $foo=l gives $foo the value 1. Values may
be of any type.

A few convenience variables are given values automatically: $_ holds the last
address examined with x or info lines, and $_ holds the contents of the last
address examined with x.

show directories
Current search path for finding source files. $cwd in the path means the current
working directory. $cdir in the path means the compilation directory of the
source file.

show editing
Show command-line editing.

show environment [var]
Show the environment to give the program, or one variable's value. With an
argument var, prints the value of environment variable var to give the program
being debugged. With no arguments, prints the entire environment to be given
to the pro gram.

show history expansion
Show history expansion on command input.

Examining the Symbol Table 13-57

show history filename
Show the filename in which to record the command history (the list of previous
commands of which a record is kept).

show history save
Show saving of the history record on exit.

show history size
Show the size of the command history (that is, the number of previous
commands to keep a record of).

show lazy-read

show paths

Show if inferior's memory is read lazily.

Show the current search path for finding object files. $cwd in the path
means the current working directory. This path is like the $PATH shell
variable; that is, a list of directories separated by colons. These directories are
searched to find fully linked executable files and separately compiled object
files as needed.

show print address
Show printing of addresses.

show print array
Show prettyprinting of arrays.

show print asm-demangle
Show demangling of C++ names in disassembly listings.

show print demangle
Show demangling of encoded C++ names when displaying symbols.

show print elements
Show limit on string chars or array elements to print.

show print object
Show printing of object's derived type based on vtable info.

show print pretty
Show pretty printing of structures.

show print seven bit-strings
Show printing of 8-bit characters in strings as \nnn.

13-58 Chapter 13: The GNU Source-Level Debugger

show print union
Show printing of unions interior to structures.

show print vtbl
Show printing of C++ virtual function tables.

show prompt
Show GDB's prompt.

show radix
Show the default input and output number radix.

show unload-symbols
Show whether symbols from dynamically loaded code are forgotten for
future loads.

show values [idx]
Elements of value history around item number idx (or last ten).

show verbose
Show whether verbosity is on or off.

show version
Report what version of GDB this is.

show view-host
Show host to connect to when viewing.

show view-program
Show name of program to connect to when viewing.

Debugging PostScript Code

This section describes three commands "that are useful when debugging PostScript
source files.

These commands aren't built-in commands; rather, the NeXTSTEP environment defines
them in a system .gdbinit file located in the directory lusrllib. This file is read when you
start running GDB (the contents of this file are shown later in this chapter).

Debugging PostScript Code 13-59

showps

flush

shownopsThe showps and shownops commands turn on and off
(respectively) the display of PostScript code being sent from your application
to the Window Server. Your application must be running before you can issue
either of these commands.

The flush command sends pending PostScript code to the Window Server.
This command lets you flush the application's output buffer, causing any
PostScript code waiting there to be interpreted immediately. Your application
must be running before you can issue this command.

Debugging Objective C Code

This section provides infonnation about some commands and command options that are
useful for debugging Objective C code.

Method Names in Commands

The following commands have been extended to accept Objective C method names as line
specifications:

clear
break
info line
jump
list

For example, to set a breakpoint at the create instance method of class Fruit in the program
currently being debugged, enter:

break [Fruit create]

It's also possible to specify just a method name:

break create

If your program's source files contain more than one create method, you'll be presented
with a numbered list of classes that implement that method. Indicate your choice by
number, or type 0 to exit if none apply. To narrow the scope of GDB 's search, you can use

13-60 Chapter 13: The GNU Source-Level Debugger

a preceding plus or minus sign to specify whether you're referring to a class or an instance
method. For example, to list the ten program lines around the initialize class method, enter

list +[Text initialize]

or

list +initialize

You must specify the complete method name, including any colons. For example, to
clear a breakpoint established at the orderWindow:relativeTo: method of the Window
class, enter:

clear [Window orderWindow:relativeTo:]

Command Descriptions

This section describes commands and options that are useful in debugging Objective C
code. Some of these are new commands that have been implemented in NeXT STEP, and
some are previously existing GDB commands that have been extended in NeXT STEP.

The info Command

The info command takes three additional options:

info classes [regexp]
Display all Objective C classes in your application, or those matching the
regular expression regexp.

info selectors [regexp]
Display all Objective C selector names (or those matching the regular
expression regexp), and also each selector's unique number.

If you don't limit the command's scope by entering a regular expression, the resulting
listing can be quite long. To terminate a listing at any point and return to the GDB prompt,
type Control-C.

Two standard info command options have been extended. The info types command
recognizes and lists the Objective C id type. The info line command recognizes
Objective C method names as line specifications.

Debugging Objective C Code 13-61

13-62

The print Command

The print command has been extended to allow the evaluation of Objective C objects and
message expressions. Consider, for example, this program excerpt:

@implementation Fruit : Object

char *color;

int diameter;

+ create

@end

id newInstance;

newInstance = [super new];
[newInstance color:"green"];
[newInstance diameter:1];

return newInstance;

II
II
II
II

creates instance of Fruit

set the color
set the diameter
return the new instance

Once this code has been executed, you can use GDB to examine newlnstance by entering:

print newInstance

The output looks something like this (of course, the address wouldn't be the same):

$1 = (id) Ox1a020

As declared, newlnstance is a pointer to an Objective C object. To see the structure this
variable points to, enter:

print *newInstance

GDB displays:

$3 = {
isa = Ox120b4;

color = Ox26bf "green";

diameter = 1;

This structure contains the instance variables defined above for objects of the Fruit class. It
also contains a pointer, called isa, that points to its class object. To see the identity of this
class, enter:

print *newInstance->isa

GDB displays:

$4 = {
isa = Ox12090;
super_class = Ox124a4;
name = Ox125a2 "Fruit";
version = 0;
info = 17;
instance_size = 12;
ivars = Ox1203c;
methods = Ox120ec;
cache = Ox22080;

The instance variable name verifies that this is an instance of the Fruit class.

You can also evaluate a message expression with the print command. As a by-product of
the evaluation, the message is sent to the receiving object. For example, the following
command sets the color of the Fruit object to red:

print [newInstance color: "red"]

The set Command

The set command can be used to evaluate and send a message expression. For example, the
following command sets the color of the Fruit object to red:

set [newlnstance color: "red"]

The step Command

The step command has been extended to let you step through the execution of an Objective
C message. By repeatedly executing the step command, you can watch the chain of events
that make up the execution of a message.

If you step into a message and don't want to follow the details of its execution, enter:

finish

This command completes the execution of the message and stops the program at the next
statement. To avoid stepping into the message in the first place, use the next command
rather than step. The next command instructs GDB to execute the current command and
stop only when control returns to the current stack frame.

Debugging Objective C Code 13-63

Debugging Mach Threads

The following commands have been provided in the NeXTSTEP version of GDB to support
the debugging of Mach threads.

thread-list thread
List all threads that exist in the program being debugged (abbreviated tl).

thread-select thread
Select a thread (abbreviated ts). For example, ts 2 selects thread 2.

tsuspend thread
Suspend execution of thread.

tresume thread
Resumes execution of a particular thread.

Debugging NeXTSTEP Core Files

NeXTSTEP GDB has been extended to allow debugging of NeXTSTEP core files, which
are in the Mach-O file format. Core files are generated in the Icores directory, if it exists;
otherwise, they're generated in the current working directory.

The info files command lists information about the contents of the core file. This tells you
what segments of address space exist in the core file, how many threads exist in the core
image, and what the program counter is for each thread. Thread 0 is selected by default, so
if you do a ht it will apply to thread O. The thread-list and thread-select commands,
documented in the section "Debugging Mach Threads" above, work with core files. All the
normal debugger commands can also be used while debugging the core image.

Altering Execution

There are several ways to alter the execution of your program with GDB commands.

13-64 Chapter 13: The GNU Source-Level Debugger

Assignment to Variables

To alter the value of a variable, evaluate an assignment expression. For example:

print x=4

would store the value 4 into the variable x, and then print the value of the assignment
expression (which is 4).

If you aren't interested in seeing the value of the assignment, use the set command instead
of the print command. set is the same as print except that the expression's value isn't
printed and isn't put in the value history. The expression is evaluated only for side effects.

GDB allows more implicit conversions in assignments than C does; you can freely store an
integer value into a pointer variable or vice versa, and any structure can be converted to any
other structure that's the same length or shorter.

All the other C assignment operators such as += and ++ are supported as well.

To store into arbitrary places in memory, use the { ... } construct to generate a value of
specified type at a specified address. For example:

set {int}Ox83040 = 4

Continuing at a Different Address

jump linenum
Resume execution at line number linenum. Execution may stop immediately
if there's a breakpoint there.

The jump command doesn't change the current stack frame, or the stack
pointer, or the contents of any memory location or any register other than
the program counter. If linenum is in a different function from the one
currently executing, the results may be wild if the two functions expect
different patterns of arguments or of local variables. For this reason, the jump
command requests confirmation if the specified line isn't in the function
currently executing.

jump *address
Resume execution at the instruction at address address.

Altering Execution 13-65

A somewhat similar effect can be obtained by storing a new value into the register $pc.
For example:

set $pc = Ox485

specifies the address at which execution will resume, but doesn't resume execution. That
doesn't happen until you use the cont command or a stepping command.

Returning from a Function

return [exp]
You can make any function call return immediately by using the return
command.

First select the stack frame that you want to return from (see the section
"Selecting a Frame"). Then type the return command. If you want to specify
the value to be returned, give that as an argument.

The selected stack frame (and any other frames inside it) is popped, leaving its
caller as the innermost remaining frame. That frame becomes selected. The
specified value is stored in the registers used for returning values of functions.

The return command doesn't resume execution; it leaves the program stopped
in the state that would exist if the function had just returned. Contrast this with
the finish command, which resumes execution until the selected stack frame
returns naturally.

Defining and Executing Sequences of Commands

GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

13-66 Chapter 13: The GNU Source-Level Debugger

User-Defined Commands

A "user-defined command" is a sequence of GDB commands to which you assign a new
name as a command. This is done with the define command.

define commandname
Define a command named commandname. If there's already a command by
that name, you're asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines,
which are given following the define command. The end of the command
definition is marked by a line containing just the command end. For example:

define w
where

end

document commandname
Create documentation for the user-defined command commandname. The
command commandname must already be defined. This command reads lines
of documentation just as define reads the lines of the command definition.
After the document command is finished, help on command commandname
will print the docmnentation you have specified.

You may use the document command again to change the documentation of a
command. Redefining the command with define doesn't change the
documentation, so be sure to keep the documentation up to date.

User-defined commands don't take arguments. When they're executed, the commands of
the definition aren't printed. An error in any command stops execution of the user-defined
command.

Commands that would ask for confirmation if used interactively proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they're doing omit the messages when used in a user-defined
command.

Defining and Executing Sequences of Commands 13-67

Command Files

A command file for GDB is a file of lines that are GDB commands. Comments (lines
starting with #) may also be included. An empty line in a command file does nothing; it
doesn't cause the last command to be repeated, as it would from the terminal.

When GDB starts, it automatically executes its "init files" (command files named .gdbinit).
GDB first reads the init file (if any) in your home directory and then the init file (if any) in
the current working directory. (The init files aren't executed if the -nx option is given.) You
can also request the execution of a command file with the source command:

source file
Execute the command file file.

The lines in a command file are executed sequentially. They aren't printed as they're
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without asking
when used in a command file. Many GDB commands that normally print messages to say
what they're doing omit the messages when used in a command file.

Commands for Controlled Output

During the execution of a command file or a user-defined command, the only output that
appears is what's explicitly printed by the commands of the definition. This section
describes three additional commands useful for generating exactly the output you want.

echo text Print text. Nonprinting characters can be included in text using C escape
sequences, such as \n to print a newline. No newline will be printed unless you
specify one.

A backslash at the end of text is ignored. It's useful for producing a string
ending in spaces, since trailing spaces are trimmed from all arguments. A
backslash at the beginning preserves leading spaces in the same way, because
the escape sequence backslash-space stands for a space. Thus, to print
" variable foo = ", do

echo \ variable foo \

output expression
Print just the value of expression. A newline character isn't printed, and the
value isn't entered in the value history.

13-68 Chapter 13: The GNU Source-Level Debugger

--------~----~-----------

output/fint expression
Print the value of expression in formatfint. See the section "Debugging
PostScript Code" for more information.

printfformat-string, arg [, arg] ...
Print the values of the arguments, under the control of format-string. This
command is identical in its operation to its C library equivalent (see the UNIX
manual page for printfO for format codes).

Miscellaneous Commands

browse [object]
Browse an object

dump-me
Produce a fatal error and make GDB dump its core.

dump-strings [file]
Dump all the strings seen into file.

make [args]
Run the make program using the rest of the line as arguments.

select-frame
Select the frame at fp, pc.

shell [command]
Execute the rest of the line as a shell command. With no arguments, run an
inferior shell.

Legal Considerations

Permission is granted to make and distribute verbatim copies of this chapter provided its
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under the
conditions for verbatim copying, provided also that the section entitled "GDB General
Public License" (below) is included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to
this one.

Miscellaneous Commands 13-69

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that the section entitled
"GDB General Public License" may be included in a translation approved by the author
instead of in the original English.

Distribution

GNU software is/ree; this means that everyone is free to use it and free to redistribute it on
a free basis. GNU software is not in the public domain; it is copyrighted and there are
restrictions on its distribution, but these restrictions are designed to permit everything that
a good cooperating citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of GNU software that they might get from you. The
precise conditions are found in the GNU General Public License that appears following
this section. '

You may obtain a complete machine-readable copy of any NeXTSTEP-modified source
code for Free Software Foundation software under the terms of Free Software foundation's
general public licenses, without charge except for the cost of media, shipping and handling,
upon written request to Technical Services at NeXT Computer, Inc.

When making a request, please specify which GNU software programs you're interested in
receiving. GNU programs released by NeXT currently include:

gee
gdb
gas
emaes

GNU compiler
GNU debugger
GNU assembler
GNU text editor

If you want an unmodified, verbatim copy of any GNU software (including GNU software
that's not part of the NeXTSTEP software release), you can order it from the Free Software
Foundation. Though GNU software itself is free, the distribution service is not. For further
information, write to:

Free Software Foundation
675 Mass. Ave.
Cambridge, MA 02139

Income that Free Software Foundation derives from distribution fees goes to support the
Foundation's purpose: the development of more free software to distribute.

13-70 Chapter 13: The GNU Source-Level Debugger

GOB General Public License

The license agreements of most software companies keep you at the mercy of those
companies. By contrast, our general public license is intended to give everyone the right to
share GDB. To make sure that you get the rights we want you to have, we need to make
restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights.
Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of GDB, that
you receive source code or else can get it if you want it, that you can change GDB or use
pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of GDB, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for GDB. If GDB is modified by someone else and passed on, we want its
recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the
following terms which say what you must do to be allowed to distribute or change GDB.

Copying Policies

1. You may copy and distribute verbatim copies of GDB source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice "Copyright (c) 1988 Free Software Foundation, Inc." (or with
whatever year is appropriate); keep intact the notices on all files that refer to this License
Agreement and to the absence of any warranty; and give any other recipients of the GDB
program a copy of this License Agreement along with the program. You may charge a
distribution fee for the physical act of transferring a copy.

2. You may modify your copy or copies of GDB or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

• cause the modified files to carry prominent notices stating that you changed the files
and the date of any change; and

Legal Considerations 13-71

• cause the whole of any work that you distribute or publish, that in whole or in part
contains or is a derivative of GDB or any part thereof, to be licensed at no charge to
all third parties on terms identical to those contained in this License Agreement
(except that you may choose to grant more extensive warranty protection to some or
all third parties, at your option).

• You may charge a distribution fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative) on
a volume of a storage or distribution medium does not bring the other program under the
scope of these terms.

3. You may copy and distribute GDB (or a portion or derivative of it, under Paragraph 2)
in object code or executable form under the terms of Paragraphs 1 and 2 above provided
that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third party
free (except for a nominal shipping charge) a complete machine-readable copy of the
corresponding source code, to be distributed under the terms of Paragraphs 1 and 2
above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form alone.)

For an executable file, complete source code means all the source code for all modules
it contains; but, as a special exception, it need not include source code for modules
which are standard libraries that accompany the operating system on which the
executable file runs.

4. You may not copy, sublicense, distribute or transfer GDB except as expressly provided
under this License Agreement. Any attempt otherwise to copy, sublicense, distribute or
transfer GDB is void and your rights to use the program under this License agreement
shall be automatically terminated. However, parties who have received computer
software programs from you with this License Agreement will not have their licenses
terminated so long as such parties remain in full compliance.

13-72 Chapter 13: The GNU Source-Level Debugger

5. If you wish to incorporate parts of GDB into other free programs whose distribution
conditions are different, write to the Free Software Foundation at 675 Mass. Ave.,
Cambridge, MA 02139. We have not yet worked out a simple rule that can be stated
here, but we will often permit this. We will be guided by the two goals of preserving the
free status of all derivatives of our free software and of promoting the sharing and reuse
of software.

Your comments and suggestions about our licensing policies and our software are
welcome! Please contact the Free Software Foundation, Inc., 675 Mass. Ave., Cambridge,
MA 02139, or call (617)876-3296.

No Warranty

BECAUSE GDB IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY NO
WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE
FOUNDATION, INC, RICHARD M. STALLMAN AND/OR OTHER PARTIES
PROVIDE GDB ''AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
GDB IS WITH YOU. SHOULD GDB PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M.
STALLMAN, THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER
PARTY WHO MAY MODIFY AND REDISTRIBUTE GDB AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST
MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS) GDB, EVEN IF YOU HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

Legal Considerations 13-73

Mach Object Files

14-4 The Mach Header

14-5 The Load Commands
14-6 The LC_SEGMENT Load Command
14-10 The LC_SYMTAB Load Command
14-12 The LC_ THREAD and LC_UNIXTHREAD Load Commands
14-13 The LC_LOADFVMLIB and LC_IDFVMLIB Commands
14-13 The LC_LOADFVMFILE Command

14-14 Relocation Information

14-15 The Makeup of Executable Object Files

14-1

Mach Object Files

This chapter describes the format of Mach object files. This format is used by default,
rather than the UNIX 4.3BSD a.out format, for object files on NeXTSTEP computers.

The current Mach object format is still evolving at Carnegie Mellon, and enhancements in
NeXTSTEP are part of this evolving process. These enhancements refine the design and
clean up some implementation details. The concepts of the original design are still present,
but names have been changed for consistency.

The Mach object file format has two components:

• A static header containing information common to all files

• A variable number of load commands that provide information about the structure of
the file

The load commands provide the following types of information:

• The layout of the run-time memory image
• The symbol table information
• The initial thread execution state
• The names of any referenced shared libraries

The layout of the file is determined by the file type:

• For types MH_EXECUTE and MH_FVMLIB the segments are padded out and aligned
on a segment alignment boundary for efficient demand paging. Both these file types also
have the headers included as part of their first segment.

• The type MH_OBJECT is a compact format (the ".0" format). It's intended only as
output of the assembler and input (or possibly output) of the link editor. All sections are
in one unnamed segment with no padding.

Mach Object Files 14-3

• The type MH_PRELOAD is an executable format intended for files that aren't executed
under the kernel (such as PROMs, standalone programs, and kernels).

• The type MH_ CORE is for core files.

The structures of a Mach object file are defined in the header file mach-olloader.h, and are
described below. The structures and what they're used for are described first, followed by
a list of what structures make up Mach object files.

The Mach Header

The Mach header appears at the beginning of the object file. Only information that's truly
general to the file is contained in the Mach header. Other information is put in the load
commands that follow.

The format of the Mach header is:

struct mach_header
unsigned long
cpu_type_t
cpu_subtype_t
unsigned long
unsigned long
unsigned long
unsigned long

} ;

{

magic;
cputype;
cpusubtype;
filetype;

ncmdsi
sizeofcmds;
flags;

/*

/*

/*

/*

/*

/*

/*

Mach magic number identifier */

cpu specifier */

machine specifier */

type of file */

number of load commands */

size of all load commands */

flags */

The value for the magic field of the mach_header structure is:

#define MH_MAGIC Oxfeedface /* the Mach magic number */

The values for the cputype and cpusuhtype fields are defined as follows in the header file
sys/machine.h:

#define CPU_TYPE_MC680xO ((cpu_type_t) 6)
#define CPU_SUBTYPE_MC68030 ((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC68040 ((cpu_subtype_t) 2)

14-4 Chapter 14: Mach Object Files

The values for the filetype field are defined as follows in the header file syslloader.h:

#define MH_OBJECT Oxl /* relocatable object file */

#define MH_EXECUTE Ox2 /* executable object file */

#define MH_FVMLIB Ox3 /* fixed vm shared library file */

#define MH_CORE Ox4 /* core file */

#define MH_PRELOAD Ox5 /* preloaded executable file */

The ncmds field contains the number of load_command structures that follow the Mach
header. The load_command structures directly follow the Mach header in the object file.

The sizeofcmds field contains the total size in bytes of all of the load commands that
follow it.

The following constants are used for the flags field:

#define MH_NOUNDEFS Oxl /* object file has no undefined references;
can be executed */

#define MH_INCRLINK Ox2 /* object file is the output of an
incremental link against a base file;
can't be link-edited again */

The Load Commands

The load commands appear directly after the Mach header. They are variable in size. The
number of load commands and the total size of the commands are given in the ncmds and
sizeofcmds fields of the mach_header structure.

All load commands must have as their first two fields cmd and cmdsize:

• The cmd field contains a constant for that command type. Each command type has a
specific structure corresponding to it.

• The cmdsize field is the size in bytes of the particular load_command structure plus
anything that follows it that's a part of the load command (for example, section
structures or strings). To advance to the next load command, the value of the cmdsize
field can be added to the offset or pointer of the current load command.

The value of the cmdsize field must be a multiple of sizeof(long). This is the maximum
alignment of any load command. The padded bytes must be zero-filled. Because the file
will be memory mapped, all tables in the object file must also follow these rules; otherwise
the pointers to these tables are not guaranteed to work. With all padding zero-filled, like
objects will compare byte for byte.

The Load Commands 14-5

The following structure is the minimum form of a load command:

struct load_command {
unsigned long cmd;
unsigned long cmdsize;

} ;

/* type of load command */
/* total size of command in bytes */

Constants for the cmd field of the load_command structure are:

#define LC_SEGMENT Oxl /* file segment to be mapped */
#define LC_SYMTAB Ox2 /* link-edit stab symbol table info

(obsolete) */
#define LC_SYMSEG Ox3 /* link-edit gdb symbol table info */
#define LC_THREAD Ox4 /* thread */
#define LC_UNIXTHREAD Ox5 /* UNIX thread (includes a stack) */
#define LC_LOADFVMLIB Ox6 /* load a fixed VM shared library */
#define LC_IDFVMLIB Ox7 /* fixed VM shared library id */
#define LC_IDENT Ox8 /* object identification information

(obsolete) */
#define LC_FVMFILE Ox9 /* fixed VM file inclusion */

A variable-length string in a load command is represented by an Ic_str union. The string
is stored just after the load_command structure, and the offset is from the start of the
load_command structure. The size of the string is reflected in the cmdsize field of the load
command. Any padded bytes to bring the cmdsize field to a multiple of sizeof(long) must
be zero-filled.

union lc_str
unsigned long offset;
char *ptr;

} ;

/* offset to the string */
/* pointer to the string */

The LC_SEGMENT Load Command

The LC_SEGMENT load command indicates that a part of this file is to be mapped into the
task's address space. The size of this segment in memory, vmsize, can be equal to or larger
than the amount to map frOln this file, filesize. The file, starting at fileoff, is mapped to the
beginning of the segment in memory at vmaddr. The rest of the memory of the segment,
if any, is allocated zero-fill on demand.

14-6 Chapter 14: Mach Object Files

------------- --------------

struct segment_command {
unsigned long cmdi

unsigned long cmdsizei

} ;

char segname[16]i
unsigned long vrnaddri
unsigned long vrnsizei
unsigned long fileoffi
unsigned long filesize;
vrn-prot_t maxprot;
vrn-prot_t initprot;
unsigned long nsects;
unsigned long flags;

/* LC_SEGMENT */

/* includes size of section
structures */

/* segment's name */

/* segment's memory address */

/* segment's memory size */

/* segment's file offset */

/* amount to map from file */

/* maximum VM protection */

/* initial VM protection */

/* number of sections */

/* flags */

The segment's maximum virtual memory protection and initial virtual memory protection
are specified by the maxprot and initprot fields. The values for these fields are set to some
combination of the constants defined in the header file vrnlvm_prot.h:

#define VM_PROT_NONE ((vrn-prot_t) OxOO)
#define VM_PROT_READ ((vrn-prot_t) OxOl) /* read permission */

#define VM_PROT_WRITE ((vrn-prot_t) Ox02) /* write permission */

#define VM_PROT_EXECUTE ((vrn-prot_t) Ox04) /* execute permission

/* The default protection for newly created virtual memory */

#define VM_PROT_DEFAULT \
(VM_PROT_READ I VM_PROT_WRITE I VM_PROT_EXECUTE)

/* Maximum privileges possible, for parameter checking. */

#define VM_PROT_ALL \
(VM_PROT_READ I VM_PROT_WRITE I VM_PROT_EXECUTE)

A segment's address and virtual memory protection are set at link edit time.

*/

The following constants can be used for the flags field of the segment_command structure:

#define SG_HIGHVM Oxl
#define SG_FVMLIB Ox2
#define SG_NORELOC Ox3

SG_HIGHVM indicates that the file contents for this segment occupy the high part of the
virtual memory space; the low part is zero-filled (for stacks in core files). SG_FVMLIB
indicates that the segment is the virtual memory that's allocated by a fixed virtual memory
library for overlap checking in the link editor. SG_NORELOC indicates that the segment
has nothing that was relocated in it and nothing relocated to it (that is, it may be safely
replaced without relocation).

The Load Commands 14-7

A segment is made up of zero or more sections. If the segment contains sections, the
section structures directly follow the segment command and their size is reflected in the
cmdsize field.

If sections have the same section name and are going into the same segment, they're
combined by the link editor. The resulting section is aligned to the maximum alignment of
the combined sections and is the new section's alignment. The combined sections are
aligned to their original alignment in the combined section. Any padded bytes used to get
the specified alignment are zero-filled.

Only non-MH_OBJECT files have all their segments with the proper sections in each
padded to the specified segment alignment. The default segment alignment for the link
editor is the page size. The first segment of an executable or shared library always contains
the Mach header and load commands of the object file before its first section. The
zero-filled sections are always last in their segment, allowing the zeroed segment padding
to be mapped into memory where zero-filled sections might be.

struct section {
char sectname[16]i
char segname[16]i

/* section's name */

/* segment the section is in */

/* section's memory address */

/* section's size in bytes */

/* section's file offset */

/* section's alignment */

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

addri
size;
offset;
align;
reloff;
nreloc;

/* file offset of relocation entries */

/* number of relocation entries */

} ;

unsigned long flags; /* flags */

unsigned long reservedl; /* reserved */

unsigned long reserved2; /* reserved */

Flags currently defined for the flags field of a section structure are the following:

#define S_ZEROFILL Oxl /* zero-filled on demand */

#define S_CSTRING_LITERALS Ox2 /* section has only literal C
strings */

#define S_4BYTE_LITERALS Ox2 /* section has only 4-byte literals
#define S_SBYTE_LITERALS Ox2 /* section has only S-byte literals
#define S_LITERAL_POINTERS Ox2 /* section has only pointers to

literals */

*/

*/

S_ZEROFILL is used for the uninitialized data sections; sections with literal flags cause the
link editor to coalesce redundant literals into sections and perform the proper relocation,
resulting in a smaller file.

14-8 Chapter 14: Mach Object Files

The format of the relocation entries referenced by the reloff and nreloc fields is described
in the header file reloc.h.

Although the names of segments and sections in them are mostly meaningless to the link
editor, there are a few things to support traditional UNIX executables that will require the
link editor and assembler to use some agreed-upon names.

The link editor will allocate common symbols at the end of the _common section in the
_DATA segment, creating the section and segment if needed. The _common section
must be a zero-fill section (marked with S_ZEROFILL).

The default maxprot and initprot (maximum and initial virtual memory protection) will
always be read, write, and execute. If there's a _TEXT or _LINKED IT segment its
initprot won't be writable by default.

The following are constants for the conventional segment and section names:

#define SEG_PAGEZERO

#define SEG_TEXT
#define SECT_TEXT

_PAGEZERO" /* pagezero segment; has no
protections; catches NULL
references for MH_EXECUTE
files */

_TEXT" /* traditional UNIX text segment */

_text" /* real text part of the text
section; no headers and
padding */

#define SECT_FVMLIB_INITO" fvmlib_initO" /* fvmlib initialization
section */

#define SECT_FVMLIB_INITl "_fvmlib_initl" /* the section following
the fvmlib

#define SEG_DATA
#define SECT_DATA

#define SECT_BSS

#define SECT_COMMON

#define SEG_OBJC

initialization
section */

_DATA" /* traditional UNIX data segment */

_data" /* real initialized data section;
no padding, no bss overlap */

_bss" /* real uninitialized data
section; no padding */

_common" /* the section common symbols
are allocated in by the link
editor */

#define SECT OBJC_SYMBOLS "_symbol_table"
/* run-time segment */

/* symbol table */

#define SECT_OBJC_MODULES "_module_info" /* (obsolete!) */

#define SECT_OBJC_STRINGS "_selector_strs" /* string table */

#define SECT_OBJC_REFS
#define SEG_ICON
#define SECT_I CON_HEADER
#define SECT_ICON_TIFF

selector_refs" /* string table */

_ICON" /* NeXT icon segment */

_header" /* icon headers */

_tiff" /* icons in TIFF format */

The Load Commands 14-9

The LC_SYMTAB Load Command

The LC_SYMTAB command specifies the location and size of the symbol table
information created by the compiler used for link editing and debugging. This
UNIX 4.3BSD stab-style symbol table information is defined in the header files nlist.h
and stabs.h:

struct symtab_command
unsigned long cmdi /* LC - SYMTAB */

unsigned long cmdsizei /* sizeof(struct symtab_command) */

unsigned long symoffi /* symbol table offset */

unsigned long nsymsi /* number of symbol table entries */

unsigned long stroffi /* string table offset */

unsigned long strsizei /* string table size in bytes */

} i

The LC_SYMTAB command contains the offsets for both the symbol table entries and the
string table used by those entries. This format is different from the UNIX 4.3BSD a.out
format: The string table offset and size are explicitly defined, and the symbol table and
string tables are located at the end of the file (not after the LC_SYMTAB command).

The fonnat of a symbol table entry is defined in the header file n1ist.h:

struct nlist
union {

} i

char
long

} n_uni
unsigned char
unsigned char
short
unsigned

n_namei /

n_strxi /*

n_typei /*

n_secti /*

n_desci /*

n_valuei /*

for use when in-core */

index into file string table */

type flagi see below */

section number or NO_SECT */

see the header file stab.h */

value of this symbol table entry
(or stab offset) */

Symbols with an index into the string table of zero (n_un.n_strx == 0) are defined to
have a null ("") name. Therefore, all string indexes to non-null names must not have a zero
string length.

In the file, a symbol's n_un.n_strx field gives an index into the string table. An n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The
field n_un.n_name can be used to refer to the symbol name only if the program sets this
up using D_strx and appropriate data from the string table.

14-10 Chapter 14: Mach Object Files

The flag values that distinguish symbol types are defined in the header file DUst.h. The
D_type field actually contains three fields, and if declared as such would be:

unsigned char N_STAB:3,
N_TYPE:4,
N_EXT:li

These fields are used by specifying the following masks:

#define N_STAB OxeO /* if any bits are set, this is a symbolic
debugging entry */

#define N_TYPE Oxle /* mask for the type bits */

#define N_EXT OxOl /* external symbol bit; set for external
symbols */

Some of the N_STAB bits will be set if and only if the entry is a symbolic debugging entry
(an stab)-in this case, the values for the N_ TYPE bits of the D_type field (the entire field)
are as shown in the header file stab.h. Normal values for the N_TYPE bits of the D_type
field are:

#define N_UNDF OxO /* undefined; n - sect == NO_SECT */

#define N_ABS Ox2 /* absolute; n_sect == NO - SECT */

#define N_SECT Oxe /* defined in section number n_ sect */

#define N_INDR Oxa /* indirect */

If the type is N_SECT, the D_sect field contains an ordinal of the section the symbol is
defined in. The sections are numbered from 1 and refer to sections in the order in which
they appear in the load commands for the file they're in. Therefore the same ordinal may
refer to different sections in different files. This is the most common type of symbol.

If the type is N_INDR, the symbol is defined to be the same as another symbol. In this case
the D_ value field is an index into the string table of the other symbol's name. When the
other symbol is defined, they both take on the defined type and value.

The D_value field for all symbol table entries (including N_STABs) gets updated by the
link editor based on the value of the D_sect field and where the section's D_sect references
get relocated. If the value of the D_sect field is NO_SECT, its D_ value field isn't relocated
by the link editor.

#define NO_SECT 0
#define MAX_SECT 255

/* the symbol isn't in any section */

/* 1 through 255 inclusive */

Common symbols are represented by undefined (N_ UNDF) external (N_EXT) types
whose values (D_value) are nonzero. In this case the value of the D_value field is the size
in bytes of the common symbol, and the value of the D_sect field is NO_SECT.

The Load Commands 14-11

The LC_ THREAD and LC_UNIXTHREAD Load
Commands

Thread commands contain machine-specific data structures suitable for use in the thread
state primitives. The machine-specific data structures follow the struct thread_command
or struct unixthread_command as follows: Each flavor of machine-specific data structure
is preceded by an unsigned long constant for the flavor of that data structure and an
unsigned long that's the count of longs of the size of the state data structure, and then the
state data structure follows that. This triple may be repeated for many flavors.

The constants for the flavor, count, and state data structure definitions are expected to be
in the header file machine/thread_status.h; these machine-specific data structure sizes
must be multiples of sizeof(long). The cmdsize reflects the total size of the
thread_command structure and all of the sizes of the constants for the flavor, count, and
state data structures.

struct thread_command
unsigned long cmd;
unsigned long cmdsize;
/* unsigned long flavor
/* unsigned long count

/* LC_THREAD or LC_UNIXTHREAD */

/* sizeof(struct thread_command) .*/
flavor of thread state */

/* struct XXX_thread_state state

/* . . . * /

count of longs in thread state */

flavor's thread state */

} ;

The LC_UNIXTHREAD command specifies an initial thread execution state for a UNIX
process. For an executable object that's a UNIX process, there's one
unixthread_command created by the link editor. A stack is created based on the UNIX
rlimit for the stack. This stack will contain the command arguments and environment
variables when the program is executed. The entry point is placed in the program counter
in the thread state. The stack address is placed in the stack pointer by the kernel when this
program is executed. The stack is created as a zero-fill on demand region when the object
is launched. Then the command line and environment arguments are placed on the stack
and the stack pointer in the thread state is modified.

14-12 Chapter 14: Mach Object Files

The LC_LOADFVMLIB and LC~IDFVMLIB Commands

A fixed virtual shared library has the file type MH_FVMLIB in the Mach header, and
contains the fvmlib_command LC_IDFVMLIB to identify the library. An object that uses
a fixed virtual shared library contains the fvmlib_command LC_LOADFVMLIB for each
library it uses:

struct fvmlib_command {
unsigned long cmd;
unsigned long cmdsize;
struct fvmlib fvmlib;

/* LC_IDFVMLIB or LC_LOADFVMLIB */

/* includes pathname string */

/* the library identification */

} ;

Fixed virtual memory shared libraries are identified by the target pathname (the name of
the library as found for execution) and the minor version number:

struct fvmlib {
union lc_str name;
unsigned long minor_version;

} ;

/* library's target pathname */

/* library's minor version
number */

The LC_LOADFVMFILE Command

The LC_LOADFVMFILE command contains a reference to a file to be loaded at the
specified virtual address:

struct fvmfile_command
unsigned long cmd;
unsigned long cmdsize
union lc_str name;
unsigned long header_addr;

} ;

/* LC_FVMFILE */ .

/* includes pathname string */

/* files pathname */

/* files virtual address */

The Load Commands 14-13

Relocation Information

The value of a byte in a section that isn't a portion of a reference to an undefined external
symbol is exactly the value that will appear in memory when the file is executed. If a byte
in a section involves a reference to an undefined external symbol, as indicated by the
relocation information, the value stored in the file is an offset from the associated external
symbol. When the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes for each relocatable entry.
The structure of a relocation entry as given in the header file reloc.h is as follows:

struct relocation_info {
int /* offset in the section to what is

being relocated */

unsigned r_symbolnum:24, /* symbol index if r_extern == 1 or

} ;

r-pcrel:l,
r_length:2,
r_extern:l,

r_reserved:4;

section ordinal if r_extern == 0 */

/* was relocated pc-relative already */

/* O=byte, l=word, 2=long */

/* doesn't include value of symbol
referenced */

/* reserved */

#define R_ABS 0 /* absolute relocation type for Mach-O files */

The r_address is an offset rather than an address. For Mach-O object files this offset is
from the start of the section the relocation entry is for.

If r_extem is 0, r_symbolnum is an ordinal representing the section that contains the
symbol being relocated. These ordinals refer to the sections in the object file in the order
in which their section structures appear in the headers of the object file they're in. The first
section has the ordinal 1, the second has the ordinal 2, and so on. Therefore the same
ordinal in two different object files could refer to two different sections. Furthermore, the
ordinals could change when combined by the link editor. The value.R_ABS is used for
relocation entries of absolute symbols that need no further relocation.

To make scattered loading by the link editor work correctly, "local" relocation entries can't
be used when the item to be relocated is the value of a symbol plus an offset (where the
resulting expression is outside the block the link editor is moving, blocks are divided at
symbol addresses). If the item is a symbol value plus offset, the link editor needs to know
more than just the section in which the symbol was defined. What is needed is the actual
value of the symbol without the offset, so the link editor can do the relocation correctly

14-14 Chapter 14: Mach Object Files

based on where the value of the symbol got relocated to, not the value of the expression
(with the offset added to the symbol value). For Release 2.0, no "local" relocation entries
are ever used when there is a nonzero offset added to a symbol. The "external" and "local"
relocation entries remain unchanged.

It's assumed that a section will never be bigger than 2**24 - 1 (OxOOffffff or 16,777,215)
bytes. This assumption allows the r_address (which is really an offset) to fit into 24 bits,
and for the high bit of the r _address field in the relocation_info structure to indicate that
it's really a scattered_relocation_info structure. Since these are only used in places where
"local" relocation entries are used and not where "external" relocation entries are used, the
r_extern field has been removed.

#define R_SCATTERED Ox80000000 /* mask to be applied to r_address
field of a relocation_info struct
to tell that it is really a
scattered_relocation_info struct */

struct scattered_relocation_info
unsigned int r_scattered:l, /* l=scattered, O=non-scattered */

long

} ;

r-pcrel:l, /* was relocated pc relative already */

r_length:2, /* O=byte, l=word, 2=long */
r_reserved:4, /* reserved */

r_address:24; /* offset in the section to what is
being relocated */

/* the value the item to be relocated
refers to (with no offset added) */

The MaD(eulJ) of lEl{eclJl'8:able Object Files

A typical executable (that is, with the filetype MH_EXECUTE) Mach-O object file
produced by the link editor would contain the following components, in the order
shown here:

• A Mach header

• An LC_SEGMENT load command for the _PAGEZERO segment

• An LC_SEGMENT load command for the _TEXT segment, followed by section
headers for the sections in that segment. These section headers could include _text,
_fvmlib_initO, _fvmlib_initl, _const, _string, _literalS, and _literaI4.

The Makeup of Executable Object Files 14-15

• An LC_SEGMENT load command for the _DATA segment, followed by the section
headers for the sections in that segment. These section headers could include _data,
_bss, and _common.

• An LC_SEGMENT load command for the _OBJC segment, followed by the section
headers for the sections in that segment. These section headers could include _class,
_meta_class, _cat_inst_meth, _els_meth, _inst_meth, _message_refs,
_symbols, _category, _cIass_vars, _module_info, and _selector_strs.

• An LC_SEGMENT load command for the _LINKEDIT segment

• An LC_SYMTAB load command

• An LC_UNIXTHREAD load command

• An LC_LOADFMVLIB load command for each shared library it uses

• The _TEXT segment rounded out to the segment alignment

• The _DATA segment rounded out to the segment alignment

• The _OBJC segment rounded out to the segment alignment

• All the relocation entries, if saved (normally not saved)

• All the stab symbol and string tables, if not stripped

You can use the otool command to print the contents of object files· and libraries that are in
Mach-O format or in UNIX 4.3BSD a.out format. Various options allow you to specify
certain portions of the Mach-O file. For example:

-h Print the Mach header
-I Print the load commands
-t Print the contents of the text section

(used with the -v flag, this disassembles the text;
with the -V flag it also symbolically disassembles the operands)

-d Print the contents of the _data section
-r Print the relocation entries

Complete documentation for the otool command is contained in a UNIX manual page,
which you can access through the Digital Librarian.

14-16 Chapter 14: Mach Object Files

Additional information related to the Mach-O file format is contained in section 1
(commands), section 3 (subroutines), and section 5 (file formats and conventions) of the
UNIX manual pages. You can use the following list and the Digital Librarian to find the
documentation you need:

atom(1)
gdb(l)
Id(l)
nm(1)
otool(1)
size(l)
strip(1)
getmachheaders(3)
getsectbyname(3)
getsegbyname(3)
nlist(3)
Mach-O(5)
stab(5)

Converts an object file from a.out to Mach-O format
Debugs using the GNU debugger
Links using the link editor
Prints a symbol table
Prints parts of an object file or library
Prints the size of an object file
Removes symbols and relocation bits
Gets the Mach headers for an executable
Gets the section information for a section
Gets the segment command for a segment
Gets entries from a name list
Describes Mach-O assembler and link editor output
Describes symbol table types

The Makeup of Executable Object Files 14-17

Building a Simple Application

15-4 Creating a Project

15-8 Creating the User Interface

15-9 Adding and Editing Objects

15-16 Laying Out the Interface

15-19 Testing the Interface

15-20 Preparing to Compile the Application
15-21 Makefile
15-22 Simple_main.m

15-23 Compiling the Application

15-24 Running the Application

15-1

Building a Simple Application

Even the simplest application that presents the user with a graphic interface represents a
staggering amount of programming effort. If each developer had to begin at the beginning,
few applications would make it to completion. Fortunately, NeXTSTEP-through its
integrated software kits and programming tools-dramatically reduces your workload in
creating such applications.

NeXTSTEP's object-oriented software kits let your application benefit from numerous
years of software development and testing, providing you with the elements (windows,
buttons, text- and image-handling objects, and so on) that most applications require.
Interface Builder dramatically simplifies the task of assembling and interconnecting these
elements and helps you create new, reusable elements of your own. Overseeing the entire
development process is Project Builder. Project Builder keeps track of the elements that
make up your application, gives you access to other development tools, builds your
application, and helps you with many other details.

The proj ect presented in this chapter will give you a taste of application development using
NeXT STEP. You'll create a complete, though content-free, application using Interface
Builder to assemble "off-the-shelf' objects from the Application Kit and then build the
application using Project Builder. The objectives of this project are twofold:

• To introduce NeXTSTEP's main development tools: Interface Builder and
Project Builder.

• To give you an understanding of your part in the application-development process
by showing you which parts can be done entirely with Project Builder and
Interface Builder.

Building a Simple Application 15-3

Creating a Project

The first step in building any NeXTSTEP application is to use Project Builder to create a
project. A project is a directory of files under the control of Project Builder.

Start Project Builder from the Workspace Manager, either from its location in
/NextDeveloper/AppslProjectBuilder or from the dock, if its icon is there. When the
application starts, it displays its main menu.

Choose New from the Project menu. The Open panel that appears has two points of
interest. First is the Name field, which suggests "PB.project". This is the standard project
file that Project Builder uses to record the elements and dependencies within a project.
Second is the pop-up list that indicates that the type of project being built is an application.

For clarity, a new project should be created in its own directory, so let's create a directory
for this project. Enter "Simple" in the Name field-overwriting "PB.project"-and press
Return. (You don't have to specify PB.project. By default Project Builder adds this file to
a new project directory.)

A Project window titled "Simple" appears.

II.iI - Simple - --- - - -- - -- ~

ders
Other Sources
Interfaces
Images
Other Resources
SubproJects'
Supporting File,s
Llblali~$' " , '-

Figure 15-1. The Project Window

15-4 Chapter 15: Building a Simple Application

The five buttons at the top of the window give you access to Project Builder's main
commands and displays. The buttons have these functions:

r~rl l3EJ
"[
Debug

~
i~

Builder

Builds the application (if necessary) and then runs it.

Builds the application (if necessary) and then runs it in debugging mode
using GDB and Edit.

Shows the Attributes display, which lets you set the application's name,
associated icon, installation directory, and other attributes.

Shows the Files display, which gives you access to the files that make up
the project.

Shows the Builder display. This display lets you specify compiler and
linker options and view messages generated during the build process.

Let's take a look at the three different displays.

Creating a Project 15-5

Click the Attributes button. This display lets you set some of the global attributes of your
project, such as its name, the icon the application displays in the workspace, where the
finished application will be installed in the file system, and other features:

addresses
bundle
chunk
clr
compressed

Figure 15-2. Project Builder's Attributes Display

You'll learn more about the Attributes display during the course of this project and the
others in the following chapters.

Click the Files button. The Files display gives you an organized view of the files that make
up your application. (See Figure 15-1 above for an illustration.) The left column lists the
types of source files, and, for a selected type, the right column (or columns) displays the
names of any files of that type that your project contains.

Finally, click the Builder button.

15-6 Chapter 15: Building a Simple Application

~-~---~----------

~.:. rr=m 'JJ;)·T.~ ...
;~.' ~
:: Run Debug ~. ~"C'- ~.-r ~&~~.:;:; .. .' ~. i.:>. ---,. ,) "

,) ,)

Attributes Files Builder

,.

it I
~ I Args:j

Simple.app ~I
r---------: Host:r-"I ---!. '~

Figure 15-3. Project Builder's Builder Display

You use this display to control how your application is built. For example, using the Args
field, you can specify whether a debugging or an optimized version of the application will
be built. Using the Host field, you can specify that the application be compiled and linked
on some other computer on the network, thus reducing the load on your computer.

Return to the Files display by clicking the Files button. If you click the different entries in
the Files display, you'll notice that Project Builder has already created these files for the
Simple project:

Type

Other Sources
Interfaces
Supporting Files

File

Simple_main.m
Simple.nib
Makefile

In addition, the standard shared libraries, Media_s and NeXT_s, are listed under Libraries.
Their entries are listed in gray since you can't remove them.

Simple_main.m is the project's main program file, the source file that contains the entry
point (that is, the mainO function) for the Simple application. You can open this (or any)
file listed in the Files display by double-clicking the file name in the browser. Double-click
Simple_main.m in the browser to see how this works. Leave the file unchanged, however,
since Project Builder maintains it for you. When you're through viewing the file, close the
Edit window.

Creating a Project 15-7

Simple.nib is a template interface file that Project Builder has added to the project. In
"Creating the User Interface" below, we'll examine and edit this file, so don't open it yet.
The flag image next to the file's name indicates that its contents may require "localization,"
that is, adaptation of its text, images, and sounds for speakers of different languages.
Project Builder helps you create and maintain localized versions of your application.

Finally, Makefile, a specification file for the UNIX make utility, lists the files and
dependencies for building your project. As with Simple_main.m, don't modify the
contents of this file; Project Builder maintains it for you.

With this short introduction to Project Builder's main features, you are ready to move on to
the next step: assembling your application's user interface.

Creating the User Interface

As a starting point for an application's userinterface, Project Builder supplies new projects
with a template user interface file. In our case, this file is listed as Simple.nib under the
Interfaces entry of Project Builder's Files display. You use Interface Builder to modify the
contents of this file.

Switch to Project Builder's Files display and double-click Simple.nib to start Interface
Builder. Interface Builder starts and displays several windows. Before beginning work on
the interface, let's take a short look at Interface Builder itself.

As an application that helps you build applications, Interface Builder displays both its own
windows and those of the application under construction. In this case, the window titled
"My Window" and the menu titled "Simple" belong to your application; the other windows
are Interface Builder's. At the upper left of the screen is Interface Builder's main menu, at
the upper right is the Palettes window, and at the lower left is a window titled "Simple.nib".
This last window is referred to as the File window, since it has the title of the nib file and it
gives you access to the contents of that file.

15-8 Chapter 15: Building a Simple Application

,1iJ Silllille.nib - -/Silllflle/English.lflrOj ~

f fill .. li]
"objects Images

~ 1,:;]
1L

Sounds

'=-cl :JD
Classes

File's O\'/ner First Respof1[ler MalnMenu

iral
L~y.~~~i

Figure 15-4. The File Window

A File window's title displays the name of the nib file and its directory location. Below the
title is a row of icons. These icons correspond to the objects and resources in the nib file.
The four icons give you access to these displays:

Display

Objects

Images

Sounds

Classes

Use

Shows the top-level objects within your application

Displays the image resources available to your application.

Displays the sound resources available to your application.

Displays a hierarchical listing of the classes available to your
application.

Initially, the first icon is highlighted, indicating that the File window shows the Objects
display. In the upper left corner of the display is an icon representing the nib file's owner.
The two objects named "MainMenu" and "MyWindow" correspond to the Menu and
Window objects in the nib file. The object titled "First Responder" represents the object
that at run time has first responder status within MyWindow.

Within the File window, you can edit an object's name by selecting the object and then
clicking its name. Only object names that are displayed in black can be edited, however.
Changing an object's name has no effect on the object's class; it only changes the name
Interface Builder uses to keep track of the various objects within your application. For now,
however, leave the default names.

Creating the User Interface 15-9

Adding and Editing Objects

Perhaps the easiest operation in Interface Builder is adding objects to an application: You
simply drag the object from the Palettes window to the desired destination in your
application. Before beginning, let's look at some features of the Palettes window.

The Palettes window by default has four distinct displays, represented by the four buttons
near the top. (Note, however, that more palettes can be loaded into the Palettes window­
see Chapter 18 for more information.) The left button gives you access to Menus and
MenuCells, the next to Windows, the next to Basic Views, and the last to Scrolling Views:

Palettes

Figure 15-5. Menu Palette

Palettes

Window object :;Window Panel
11

Figure 15-6. Window Palette

15-10 Chapter 15: Building a Simple Application

i2SJ

-+---+- Panel object

TextField objects

Box object

Button object

Button configured as switch

Matrix of ButtonCelis

-

-
-
-

---·-·-PaJettes----~

:~ .~ j, ... iJj I~ .~
---,

I
Ilrext I' Titlel IItem1 ~I-I--

~. Button I ~
-:'

Field 1:1)
-:- Field2:f

-;Switch J .:...
c:::J

-~ Radi~1
.~ II~I ,...1--

r Radio II I f:

NXColorWell
object

Slider
objects

Figure 15-7. Basic Views Palette

PopUpList object

Form object

CustomViewobject

NXBrowser object -+--+-~- ;'-1-- ScoliView containing
a Text object

Figure 15-8. Scrolling Views Palette

Let's add some objects to the application. First, make sure the Basic Views palette is
displayed. Drag a Button object from the Palettes window into your application's
standard window.

Adding and Editing Objects 15-11

Figure 15-9. Adding a Button to Your Application

Notice that as you drag the button over the destination window, the cursor changes to the
copy cursor, indicating that if you release the mouse button, the object will be copied into
the window. Release the mouse button, and the Button object drops into the window. Eight
small gray squares, or control points, appear around the button. These control points
indicate that the button is selected. You can manipulate these points to change the object's
shape and size. Dragging a corner control point adjusts the object's width and height
simultaneously. Dragging a side control point adjusts only its width or height, depending
on the point.

Grab its edge drag it and release

Figure 15-10. Resizing an Object

To move the entire object, press the mouse button while the cursor is within the rectangular
area delimited by the object's control points and drag-taking care not to drag one of the
control points. You can constrain the object to move only vertically or horizontally by
Command-dragging it. If you start Command-dragging vertically, for example, no
horizontal motion is possible until you release the mouse button and begin dragging again.

15-12 Chapter 15: Building a Simple Application

Let's add another button to the window. You could drag a second button from the Palettes
window, but instead, try copying and pasting the existing button. First make sure the button
is selected (its control points should be visible) and then choose the Copy and then Paste
commands from the Edit menu. A second button appears overlapping the first. Notice that
the second button is now selected and the first is not. Drag the second button to one side of
the first.

When you select one object within the window, its control points appear and the previously
selected object's control points disappear. To select all the objects in a window, use the
Select All command in the Edit menu. You can also select a group of objects in a window
by "rubberbanding," dragging out a rectangular area that includes or intersects the objects.

Button

.~.

Rubberband the objects then release the mouse button

Figure 15-11. Selecting Objects by Rubberbanding

Selected objects can be moved as a group by moving anyone of them, and they can be cut,
copied, or pasted by using the corresponding commands in the Edit menu. The Cut, Copy,
and Paste commands work within a single window, between windows in the same project,
and even between windows in different projects.

You can edit the text displayed by an object by double-clicking the text. Edit the title of
one button to read "On".

Double-click the title then type the new title

Figure 15-12. Editing an Object's Text

To edit an object's attributes that can't be easily manipulated graphically, Interface Builder
provides an Inspector panel for the particular object. The Button Inspector, for example,
lets you set the type and appearance of a button, among other things.

Adding and Editing Objects 15-13

To display the Button Inspector, first make sure the On button is selected and then choose
the Inspector command from the Tools menu. The Inspector panel appears. This panel's
title changes to reflect the object that is being inspected; it reads "B utton Inspector" since
the button is selected. The Inspector panel has multiple displays accessed by the pop-up
list at the top of the panel. The other displays will be discussed in this and later chapters;
for now, let's work with the Attributes display.

Using the Button Inspector, let's configure the On button to be a button that toggles between
two states labeled "On" and "Off'.

Figure 15-13. The Button Inspector

In the Inspector panel, type "Off' in the text field labeled "Alt. Title" (Alternate Title).
Next, set the button type by pressing the Type pop-up list and dragging to the Toggle option.
You can check the operation of this button in a moment when you test the interface.

15-14 Chapter 15: Building a Simple Application

Before leaving the Inspector panel, let's use it to change the title of the application's
standard window. Select the window titled "MyWindow" (by clicking anywhere within its
boundaries or by double-clicking its icon in the File window). The display in the Inspector
panel changes from the Button Inspector to the Window Inspector. Notice that the Window
Inspector (as shown in Figure 15-13) lets you set the window's title, class, and
other attributes.

.,. \Ilindow hlSI)ector ~-
";~~1Jt., _ ""","_.~'--_"""'" ~ _______ _ ~_.. _ ••

Attributes ...hI

Title: I Jvly Win dov.}, ____________ . ___ ._.J

U
Backing - C Controls -

r ... Nonretained Miniaturize id
r Retained Close Jd
n Buffered Resize bar id

r------- Options -...,.---------.,.

Free when closed.:j
Hide on deactivate.:J

Visible at launch time1d
DeferrediiJ
One shot.:J

Dynamic depth dimit.:j

Wants to be color.:J

Figure 15-14. The Window Inspector

Change the window's title to "Test Window" or another title of your choice. Notice that
when you begin to alter the window's title, the Inspector panel's close button changes to
display a partially drawn "X," indicating that your changes haven't yet been applied to your
application's window. When you press Return, Interface Builder applies the changes to the
window's title.

Before continuing, choose the Save command from the Document menu to save the work
you've done so far to the nib file, Simple.nib.

Adding and Editing Objects 15-15

Laying Out the Interface

You can arrange the top-level components of your application-its windows and panels­
through direct manipulation. For example, to specify where a window will appear at run
time, simply drag it to that position within Interface Builder. (Menus don't obey this
system, however. No matter where you place the menu during development, wh~n the
application runs, the menu follows the NeXT user interface guidelines by appearing at the
upper left comer of the screen-unless the user specifies a different location using the
Preferences application.) To change a window's size, you use one of two methods, based
on whether the window will be resizable when the program runs. If it will be, resize it with
the resize bar as you normally would. If at run time its size is fixed (as with an application's
Info panel), you have to make it temporarily resizable within Interface Builder by clicking
the resize button [!J in the title bar.

Interface Builder provides a large selection of layout tools to help you arrange objects
within your application's windows. To experiment with these tools, arrange the two buttons
in your application's window so that one partially covers the other, and then open the
Layout menu (choose Format from the main menu, and then choose Layout). Select one
button and then alternately select Bring to Front and Send to Back to see what these
commands do. Next, choose Size to Fit. This command resizes an object so that it just
accommodates it contents.

Select both buttons (you could "rubberband" them or click one button and then hold down
Shift while you click the other) and choose Same Size. One button is resized to match the
other button. (The object you select last is resized to match the size of the object that's
selected first, unless this would cause it to be resized to less than its minimum size.)

Now, with both buttons selected, choose Group: This command has two effects: It visually
groups selected objects by surrounding them with a box, and it makes the selected objects
subviews oft~e surrounding box. Notice that if you move the surrounding box, the buttons,
being subviews, move with it whether or not they're selected. To move a button within the
box, double-click within the box. A gray border appears indicating that the editing focus
is now within the box. Once the focus is on the box's contents, you can manipulate the
individual buttons as you normally would. This is the pattern for editing grouped objects.
For example, if a button is grouped in a box that in tum is grouped within another box, you
can edit the button's title by double-clicking the outer box, then the inner box, and then the
button itself. To remove a surrounding box without destroying its contents, select the box
and then choose the Ungroup command.

You can also group objects within a ScrollView. Select both buttons again and choose the
Group in ScrollView command from the Layout menu. A ScrollView appears around the
two buttons; however, no scroll knobs are visible. Again, double-clicking within the
ScrollView allows you to manipulate the grouped objects individually.

15-16 Chapter 15: Buiidinga Simple Application

Double-clicking within the ScrollView changes the editing focus to the ScrollView's
document view within the ScrollView. Once the focus is on the document view, you can
manipulate the grouped objects individually and you can resize the document view. Notice
that as you move the cursor toward the top or right side of the ScrollView, the cursor's
image changes to that of the resizing cursor. When this cursor image is displayed, you can
press the mouse button and drag the side of the document view to change the view's size.
Experiment with this feature and notice how resizing the document view affects the sized
of the scroll knobs.

The Make Rowand Make Column commands align a series of selected objects vertically
or horizontally. If you select several objects and then click Make Row, the objects form a
row to the right of the object that was nearest the left edge of the window. Similarly,
clicking Make Column causes the objects to line up under the object that was nearest the
top edge of the window. Add three or four switches from the Palettes window to your
application's window and experiment with these commands.

The Tum Grid On command turns on an alignment feature in all your application's
windows, making it easier to create pleasing layouts. Choose the Tum Grid On command
and then drag one of the switches. Notice that the switch moves in small increments both
vertically and horizontally. Click Show Grid to make the alignment grid visible as a
rectangular pattern of gray dots. You'll notice that when you move an object, the object's
lower left comer jumps from dot to dot. The grid is visible only while you're building the
application. It has no effect on your application's appearance in test mode or at run time.
Both of these commands toggle, so a second click turns the feature off.

The Alignment command opens a panel that affects how the alignment commands in the
Layout menu work.

Align . ~ 'j' o Left edges I Bottom edge es·. .
r Centers ..
r Right edges I Top edges

r------- Grid .

m···················· "

: : : : : : : : : : : : : : : : : : :~ ~
••••••••••••• ' ••. • i"

... , , ,
. : , , . . , '~ •.. ,.::; ... ,:;:

... ..

Figure 15-15. The Alignment Panel

The radio buttons let you set the part of an object's frame rectangle that's used as the
reference point by the Make Column and Make Row commands. By default, objects are

Laying Out the Interface 15-17

aligned according to their lower left comers. However, by clicking one of the other choices,
you can align them according to their centers or their top right comers. Using the slider in
the Grid group, you can set the spacing of the alignment grid. Experiment with these
controls, if you wish.

Any of the Controls in the Views palette-in other words, the Slider, TextField, and Button
objects-can be made into matrices of objects by holding down Alternate while dragging
one of the object's control points. For example, drag a Button into the window. While
holding Alternate down, drag one of the comer control points diagonally across the
window. When you've dragged the point far enough to make room for more Buttons, these
objects appear. Try dragging the point vertically and then horizontally. In this way, you
can make a row, column, or two-dimensional array of buttons. You can manipulate a Slider
or TextField in the same way, but you can drag a Form only into a column. If you need a
row or two-dimensional configuration of a Form object, you must create it
programmatically.

The objects in a matrix act as a unit: Dragging one drags the entire matrix. To eliminate
one or more objects from a matrix, hold down Alternate and resize the matrix so that the
object or objects you want to eliminate fall outside the new limits of the matrix.

The spacing between objects in a matrix can be controlled by dragging a control point of a
matrix while holding Command down. Experiment by dragging out a column of buttons
and then stretching the matrix by holding down Command and dragging a control point.

To select one of the objects in a matrix, double-click the object. The object's highlighting
indicates that it's selected. By double-clicking a second time, you can edit the text
displayed in the object.

Editing the text in each of the objects in a matrix is made easier by the use of Tab to move
from object to object. For example, edit the text in one button in the matrix of buttons.
Press Tab, and you can immediately edit the text of the next button in the matrix. By
repeatedly pressing Tab, you can access each of the objects in the matrix. Shift-Tab
reverses the direction of motion so that the selection moves to the previous object.

Add examples of the other Application Kit objects from the Basic Views palette, but don't
add a CustomView. The CustomView object is a proxy for a View subclass you write. By
supplying this proxy, Interface Builder lets you specify the size, placement, and other
parameters of a View subclass you'll supply. A later project will demonstrate the use of a
CustomViewobject. Also for now, don't take anything from the other palettes; you'll use
these palettes in the later projects.

Note: Remember that you can remove an object from the application's window by
selecting it and choosing the Cut command.

15~18 Chapter 15: Building a Simple Application

Testing the Interface

To run the application in test mode, choose the Test Interface command from the Document
menu. All of Interface Builder's windows disappear, leaving your application's windows
on the screen. To indicate that it's in test mode, Interface Builder's application icon changes
to display a large switch. Finally, your application's main menu moves to the upper left
comer of the screen.

Your application's interface can now be tested. Even though it's running under Interface
Builder, it should behave-with two small exceptions-as if it were a stand-alone program.

The exceptions are in the way the Hide and Quit menu commands operate. When your
application is running in test mode, it doesn't display its application icon. Consequently,
after you choose the Hide command, there's no way to recall your application's windows
to the screen. To make your application's windows visible again, double-click Interface
Builder's application icon. This restores your application to the screen and exits test mode.
The Quit command, rather than quitting your application, exits test mode.

In all other respects, your application's interface operates normally. Buttons highlight
when you click them, text in text fields can be edited, radio buttons work as you
would expect.

In the normal course of application development, you'll probably pass through the build
and test modes several times until you're sure your application's interface is perfect. After
that, you'll write the code for any custom objects your application requires, compile the
application, and then run it. In the next section, you'll see how to compile and run this
sample application.

Before going on, choose the Save command from the Document menu to save your work.

Testing the Interface 15-19

Preparing to Compile the Application

Before compiling the application, let's take a look at the pieces Project Builder has
provided. If you look in the project directory, you'll see these entries:

• language.lproj(A directory where language is English, French, or another language.)
• Makefile
• PB.gdbinit
• PB.project
• Simple.iconheader
• Simple_main.m

The" .lproj' , directory contains files that are specific to a particular language or cultural
context. In the case of the Simple application, only its nib file, Simple.nib, has elements
(menu commands and button titles, for instance) that would have to change if the
application were to be in a different language environment. Thus, this directory contains
only the nib file. (It may also contain a backup file. A backup file is marked with a trailing
tilde character (-) and contains the previous version of the file. For example, the backup
file for Simple.nib is Simple.nib-.)

Makefile, the file that coordinates the compilation process, is constructed from information
in PB.project. Don't make changes to this file; Project Builder maintains this file for you.
(However, by adding a Makefile.preamble or Makefile.postamble file, you can
supplement the instructions in the standard makefile.)

PB.gdbinit contains initialization commands for the debugger, GDB. Again, don't alter
this file since Project Builder maintains it for you.

PB.project contains a simple ASCII listing of your project's attributes, such as its name,
installation directory, and source files. Project Builder uses this information to construct
the makefile, among other things.

Simple.iconheader contains information that the Workspace Manager will use to relate
icons with the application and its documents.

The last file, Simple_main.m, is the main program file. This file contains the mainO
function, the entry point for execution. You may, on occasion, need to edit this file directly.

Let's take a closer look at Makefile and the main program file.

15-20 Chapter 15: Building a Simple Application

Makefile

IVIakefile controls the compilation and linking of the elements that make up your
application. Project Builder generates the makefile and fills in the names of your
application's source files in the appropriate spots:

Generated by the NeXT Project Builder.

NOTE: Do NOT change this file -- Project Builder maintains it.

Put all of your customizations in files called Makefile.prearnble
and Makefile.postarnble (both optional), and Makefile will

include them.

NAME = Simple

PROJECTVERSION = 1.1
LANGUAGE = English

LOCAL_RESOURCES = Simple.nib

MFILES = Simple_main.m

OTHERSRCS = Makefile

MAKEFILEDIR = /NextDeveloper/Makefiles/app

INSTALLDIR = $(HOME)/Apps
INSTALLFLAGS = -c -s -m 755

SOURCEMODE = 444

ICONSECTIONS = -sectcreate __ ICON app
/usr/lib/NextStep/Workspace.app/application.tiff

LIBS = -lMedia_s -lNeXT_s

DEBUG_LIBS = $(LIBS)
PROF_LIBS = $(LIBS)

-include Makefile.prearnble

include $(MAKEFILEDIR)/app.make

-include Makefile.postarnble
-include Makefile.dependencies

Preparing to Compile the Application 15-21

You shouldn't alter this makefile; Project Builder maintains it for you. Notice that it lists
the name of your application and the source files that are specific to it. It lists the libraries
that the linker uses to create the finished application, and it defines the Apps directory
(within your home directory) as the installation directory for the finished application.

The last four lines let this makefile include as many as four other files:

• Makefile.preamble
• app.make
• Makefile.postamble
• Makefile.dependencies

app.make is always included; the other files are included only if they're present. No error
occurs if they're not. app.make is the standard NeXT makefile. The ability to include
other files lets you add additional rules to this standard makefile.

Simple_main.m

This file contains your application's mainO function:

/* Generated by the NeXT Project Builder

NOTE: Do NOT change this file -- Project Builder maintains it.
*/

#import <appkit/Application.h>

void main(int argc, char *argv[])
[Application new] ;

if ([NXApp loadNibSection:"Simple.nib" owner:NXApp withNames:NO)
[NXApp run];

[NXApp free];
exit (0) ;

This file starts by importing appkitl Application.h for its declaration of the Application
class and the NXApp global variable, which refers to the Application object.

Note: A fast way to determine where a specific constant, function, or method is declared
is to use Digital Librarian to search the files in lNextDeveloperlHeaders.

15-22 Chapter 15: Building a Simple Application

It then creates a new Application object and sends a loadNibSection:owner:withNames:
message to it to load the nib file. The loadNibSection:owner:withNames: method locates
the correct nib file based on the user's current language preference. (See the Application
class description for more information.) Assuming the nib file is found, the objects
archived in it are loaded, and then the Application object is sent a run message. At this point
the application becomes responsive to the user. When the user chooses the Quit command,
the event loop terminates and the final message is sent, freeing the application's objects.
The last statement calls exitO, a standard C library function that terminates the process.

Compiling the Application

Compiling the application is the next step. You can compile and run the application in one
step by clicking Project Builder's Run button.

When you click the Run button, Project Builder switches to the Builder display and begins
building your application. While the build proceeds, its progress is reflected in various
ways, as indicated in Figure 15-16.

ilif.-, --:-. --~--- -_. Simille -::::.--: ---- -.------ - - ... - ... -- . --~.

fi]
---:.~; ' .. ~

'£.[j.';- , i£,c,". ,)

. :!..)j

Attributes Ale3 Builder

. 'it .' . '1 Simple. app - Build succeeded
::'(t" '/ Args:jr-_.---------r

Announces each major step
of the build process

Lists any errors or warnings.
-:-----------++- Clicking an entry opens the

source file at the appropriate line.

cc -g -0 -Wall -c Simple_main.m -0 objiSimple_main.o
cc -g -0 -Wall -ObjC -sectcreate _ICON _header Simple.iconheader -segprot

r r -sectcreate _ICON app
lusr/lib/NextStep/Workspace.app/application.tiff -0 Simple.app/Simple
obj/Simple_main.o -IMedia_s -INeXT_s

Figure 15-16. Building Simple.app

----,.;+- Lists each command executed
during the build process.

Compiling the Application 15-23

Running the Application

When the building process is finished, your application begins running. When your
application's windows appear, you can verify its operation.

Although limited in scope, this simple application incorporates many of the attributes of a
larger program. It responds to mouse and keyboard input and allows simple text editing.
In addition, its window can be dragged and resized, and the application can hide itself when
the user chooses the Hide command.

Before going on to the next project, you might try altering the interface and then rebuilding
the application. Rebuilding will take little time, since changing the interface alters only the
nib file, not any files that must be recompiled.

15-24 Chapter 15: Building a Simple Application

t'"~··--·--·"-;;'_····':';:;;':--·=-·-=""=-=·---=···-=======-GG.l.:'=-============7=;=======-=:c.::I

Building a One-Button
Calculator

16-3 Creating the Interface

16-5 Defining the Calculator Class

16-9 Connecting the Objects

16-11 Writing the Calculator Class Definition Files
16-12 Calculator.h
16-12 Calculator.m

16-13 Testing the Application

16-13 Modifying the Calculator

16-14 Adding a Submenu

16-16 Modifying Calculator.h

16-17 Modifying Calculator.m

16-19 Adding an Icon

16-21 Adding Sound

16-1

Building a One-Button
Calculator

This chapter describes how to build a simple calculator using many of the techniques
introduced in the previous chapter. In addition, it shows how to define a custom object,
Calculator, for the application and connect the interface to this object. The calculator's
abilities will grow over the course of this project, but its first task will be to convert Celsius
temperatures to Fahrenheit. As a temperature converter, the application's calculator
window looks like this:

[
------------- --- - - ---- ---- - -

IiA~" '" ' '. ~ , ,. , _ "Y,!iversaJ caJcul!ltny ~

Input
celsius: L~~J

Figure 16-1. The Universal Calculator

The user enters a Celsius temperature in the left text field, then presses Return or clicks the
Calculate button, and the Fahrenheit equivalent appears in the right field. What happens
internally is that when the user signals that the input is complete, the Calculator object takes
the input value from the left TextField object, performs the calculation, and then sends a
message to the right TextField object to set its value to the result.

Creating the Interface

As you did in the first project, create a new project by choosing New from Project Builder's
Project menu. Name this new project "Calculator" and save it in your home directory.

Building a One-Button Calculator 16-3

When the project window appears, double-click Calculator. nib to open the interface file.
(Calculator.nib is listed under Interfaces in Project Builder's Files display.)

Interface Builder becomes active and opens the template file for this new project. If the
interface file for the previous project is still open you'll notice that Calculator's File window
opens and overlaps the File window for Simple. By allowing multiple nib files to be open
at the same time, Interface Builder makes it easy to copy and paste objects from one to
the other.

Clicking a File window-or any application window that has an icon in that File window­
makes the nib file associated with the File window the current nib file. In Interface Builder,
commands such as Save or Close operate on the current nib file.

Since Simple's nib file is finished, close it by making it current and then choosing the Close
command from the File menu.

Next, drag the interface objects shown in Figure 16-1 above from the Basic Views palette to
the application's standard window. (You'll find it easier to align the different objects if you
first turn on the grid.) You'll be using only two types of objects-Buttons and TextFields­
although the TextFields will be configured as both titles and editable text fields:

Title text field

Editable text field

Since the input and output fields are nearly identical, it's fastest to configure one first, then
duplicate it and modify the copy to create the other field. Drag an editable text field into
the window and stretch it a bit horizontally. Delete the word "Text" by double-clicking it
and pressing the Delete key. Now drag in two title text fields and place one above and the
other to the left of the editable text field. Edit the titles to match those in Figure 16-1 by
double-clicking them in turn. You can also change their fonts and sizes using the Font
panel, which is accessible through Interface Builder's Format menu.

Resize the window so that it resembles the window in Figure 16-1 above. Now open the
Window Inspector by dragging to Attributes in the Inspector panel's pop-up list. Change
the window's title to "Universal Calculator."

With the exception of the Return icon in the Calculate button, the Universal Calculator
window in your application should look identical to the one in the figure above. To add the
icon, open the Images display (shown in Figure 16-2) by clicking the Images button in the
File window.

16-4 Chapter 16: Building a One-Button Calculator

Objects Images Sounds Classes

c
t',l){[.;;turnSi!]n

1'1 ;.~ ·:.',,',"~c hH

Figure 16-2. The Images Display of the File Window

This display shows the images that are used throughout the Application Kit and lets you
add new images by dragging them in from the File Viewer. Once an image is displayed in
this window, you can drag it onto Button objects in your application.

Drag an NXretumSign image from the File window to the Calculate button in the Universal
Calculator. When the cursor intersects some part of the button, it changes to the link cursor,
indicating that releasing the mouse button will assign the image to the button. Release the
mouse button and notice that the button resizes to accommodate the title and the icon.

The Button Inspector now lists the name of the button's icon. You can alter the position of
the icon in relation to the button's text by using the buttons that are grouped in the Icon
Position cluster. Try several different placements if you ljke. If you place the icon above
or below the title, the Calculate button grows so that both the icon and the title are visible.
It doesn't shrink, however, if the extra area is no longer needed. In that case, you have to
resize it by hand or use the Size to Fit command.

\Defining the Calculator Class

The Calculator object is this application's control center. The Calculate button in the
interface sends a message to the Calculator object to perform the calculation; in other
words, the Calculator object is the target of the Button's action method. The Calculator
object must then send messages to the two TextField objects to ascertain the input value and
set the output value. We'll use the Classes display of the File window to design the
Calculator class to handle these tasks. Click the Classes icon at the top of the File window.

Defining the Calculator Class 16-5

Figure 16-3. The Classes Display

This display shows a hierarchy of the classes available to your application. With the
exception of the First Responder entry, class names are displayed in gray, indicating that
these classes can't be edited. (First Responder, as mentioned previously, is not a particular
class, but the class of an object that has first-responder status in a window.)

Notice that the Inspector panel that you opened previously now displays the Class
Inspector. With this inspector, you can examine (and edit, for classes you build) the outlets
and action methods of the class.

Returning to the File window, select the Application class entry. (A quick way to locate a
class is to type its name in the Find ,field and press Return.) Its superclass, Responder, is
displayed as the title of one browser column.

With the Application class selected in the Classes window, the Class Inspector displays an
Application object's outlet (delegate) and action methods (such as hide: and terminate:).
Again, these entries are displayed in gray since they aren't editable.

U sing the File window and the Class Inspector, you can define the class name, superclass,
action methods, and outlet instance variables of a custom object. You start defining the
new class by selecting where it will go in the class hierarchy. Since a Calculator object has
very limited functionality and won't be displayed, we'll make the Calculator class a
subclass of Object.

Scroll the browser in the File window to the extreme left so that the Object class appears.
Click Object, making sure that only this class is selected. The class you define will become
a subclass of Object. Now, drag to the Subclass button in the pull-down list. When you
release the mouse button, a new class called "MyObject" appears in the right column. The
class name also appears in the text field in the Class inspector. Edit this field to read

16-6 Chapter 16: Building a One-Button Calculator

"Calculator" and press Return. Notice that the File window now displays the name of the
new class in its proper position in the class hierarchy. The name is in black since this class
is editable.

Warning: Always check that the intended superclass is selected before you add a subclass. It's easy
to inherit from the wrong class.

The next step in defining the Calculator class is to add two outlets corresponding to the
TextField objects a Calculator object sends messages to. Make sure the Outlets button in
the Class Inspector is highlighted and then enter "inputField" in the text field below the
button. Click the Add Outlet button; the new outlet appears in the Outlets list. Again, it's
in black, indicating that you can rename or remove this outlet. In the same way add an
outlet named "outputField".

A Calculator object also needs to respond to an action message from the Calculate button
in the application. Let's specify this new action method. Click the Actions radio button so
that it is highlighted and then enter "calculate:" in the text field at the bottom of the panel.
Click Add Action to add this method name to those displayed in the Actions list. (Since all
action methods take one argument, the id of the sender, the method name mu~t end with a
colon. If you forget to add a colon, Interface Builder will add one for you.)

This completes the definition of the Calculator class. The Class Inspector should look
like this:

Attributes ~I

r Outlets

inputField
outputField

C Actions

Figure 16-4. Calculator Class Interface

Defining the Calculator Class 16-7

Interface Builder can now create Objective-C interface and implementation files for the
Calculator class. These files will only be templates; we'll fill them in shortly.

In the File window, drag to the Unparse button in the pull-down list. A panel opens asking
if you want to create CaIcuIator.[hm] (a shorthand for CalcuIator.h and CaIculator.m).
Confirm that you do, and the template files are written into the project directory. Another
panel opens asking if you want to add CaIcuIator.[hm] to the project. Again, confirm that
you do. Project Builder's window comes forward and shows you that the Calculator class
has been added to the project.

In this project, you defined a class and had Interface Builder write template files for it.
Interface Builder's File window can also be·used to import the class declaration from class
files that already exist. Although we won't try this here, you'd simply drag the icon for the
class's interface file from the File Viewer into the File window. Interface Builder then
parses the file and adds the name of the class in the appropriate position in the class
hierarchy. If the new class conflicts with an existing one, Interface Builder gives you the
choice of replacing the existing one or canceling the operation. If you want to make this
new class part of the project, you must also drag the class files into the Files display of
Project Builder's project window.

Warning: Once you've edited a template file, don't use Unparse again for that class unless you want
to overwrite the edited file with a new template file. Interface Builder will warn you before
carrying out such an operation.

Now that the Calculator class is defined, you can create an instance of this class-a
Calculator object. Verify that the Calculator class is selected in Interface Builder's File
window and then drag to the Instantiate button in the pull-down list. When you release the
mouse button, the File window switches to the Objects display, and a new object appears.
This icon, titled "Calculator," represents your application's Calculator object. In the next
section, you'll use this icon to make connections between interface objects and the
Calculator object.

16-8 Chapter 16: Building a One-Button Calculator

Connec1l:ong the Objects

After gathering the interface objects and creating a Calculator object, you need to
interconnect them. To gain an understanding of how objects are interconnected in Interface
Builder, let's first look at one of the predefined connections.

When a user chooses the Hide command, an application removes all but its application icon
from the screen. The MenuCell titled "Hide" sends the message and the Application
object's hide: method performs the operation. To see this connection, click the Hide
command in Calculator's main menu. Drag to Connections in the Inspector panel's pop-up
list to reveal the Connections display for a MenuCell:

Connections ...1;1

C=:mHilir"
target ..

I C l~olltilW
[>; 9:r!~I')U€1JDE!JlJJL~-.

hide: rl
6FderFr·orilColoir··'
orderFrontDataL
runPageLayoul:
showHelpPanel:
stop:
terminate:
unhide:
unhideWithoulAc

Figure 16-5. The Connections Display

The left column shows the MenuCell's sole outlet, target. The right column lists the
action messages that the target object-in this case an Application object-recognizes.
Notice that the entry hide: is highlighted and is marked with a small dimple. The dimple
indicates that a connection using this action message has been previously established. The
list titled "Connections" near the bottom of the panel summarizes the connections for the
inspected object.

Connecting the Objects 16-9

To see a graphic depiction of the connection, click the entry in the Connections list. The
connection is displayed in the workspace by a black line drawn between the MenuCell that
sends the action message and the File's Owner. Figure 16-6 shows this connection.

Sounds

First F:esponder MyWindow

Figure 16-6. Displaying a Connection

Warning: A single click in the Connections displays shows the connection; a double-click removes
the connection. Be careful not to remove a connection that you only want to display.

Now that you've seen how connections are indicated, let's create some in the calculator
application. First, let's connect the Celsius TextField to the Calculate button so that when
the user presses Return after entering a Celsius value, the button will act as if it had been
clicked. Control-drag from the Celsius TextField toward the Calculate button. You'll
notice that a black line trails from the cursor. When the cursor overlaps the Calculate
button, a box appears around the button. Release the mouse button. The source and
destination of the connection are now identified, and the TextField Inspector lists the
TextField's outlets and the action messages that a Button object responds to. Select the
target outlet in the first column and the performClick: action method in the second
column. Finally, click the Connect button to establish the connection. The new connection
is listed in the lower part of the Inspector panel.

16-10 Chapter 16: Building a One-Button Calculator

When the user clicks the Calculate button (or it receives a performClick: message), the
Calculator object should receive a calculate: message. To identify the source and
destination of this connection, Control-drag a connecting line from the Calculate button to
the Calculator icon in the File window. In the Button Inspector, establish that the Button's
target receives a calculate: action message.

Next, you have to connect the Calculator object's outlets to the appropriate TextField
objects. Control-drag a line from the Calculator icon in the File window toward the Celsius
TextField object.

The CustomObject Inspector shows a Calculator object's two outlets, inputField and
outputField. Select inputField and click Connect. Notice that a dimple appears next to
the inputField listing in the Inspector panel, indicating that the connection has been made.

Following the same steps, connect the outputField outlet to the Fahrenheit TextField.

If you want to review the target/action connections within your application, select a Control
object and then, in the Connections display, click the action message that's marked with a
dimple. Connection lines will appear on the screen to identify the object that will receive
this message. To review outlet assignments, select the object whose outlets you want to
review and click the outlet names in the Connections display. Again, lines will appear on
the screen for each connection that's been established.

Save the nib file by choosing the Save command from the File menu. You can now test the
interface by choosing the Test Interface command in the File menu. The controls should
operate correctly (for example, pressing Return after you enter a number in the Celsius field
highlights the Calculate button), but of course no calculation takes place. For that, we have
to define the Calculator class and then compile the application.

Wra1l:ing tDle Calculator Class Definition Files

Interface Builder has given you template files for the Calculator class; now you can add the
code that converts from one temperature scale to the other. To open the files, return to
Project Builder and double-click Calculator.h and Calculator.m, which you'll find in the
Files display under Header and Classes. The Edit application opens these files. The
Calculator class template files and the alterations you need to make to them are described
in the next sections.

Writing the Calculator Class Definition Files 16-11

Calculator.h

The interface to the Calculator class is defined in Calculator.h:

#import <appkit/appkit.h>

@interface Calculator:Object
{

id inputField;
id outputField;

- calculate: sender;

@end

Calculator is a subclass of Object. As you specified in the class editor, a Calculator object
has two instance variables that can be used to store the ids of the calculator window's input
and output TextFields. Also, as listed in the class editor, a Calculator object declares the
calculate: action method.

Calculator.m

Calculator.m will contain the implementation of ~e Calculator class:

#import "Calculator.h"

@implementation Calculator

- calculate:sender

return self;

@end

The calculate: method must send a message to the object referred to by its inputField
variable to retrieve the Celsius value, calculate the Fahrenheit equivalent, and then send a
message to the object referred to by its outputField variable to set the value it displays.
One implementation of this method looks like this:

16-12 Chapter 16: Br:ilding a One-Button Calculator

- calculate:sender

float degreesF;

[inputField selectText:self];
degreesF = ((9.0 * [inputField floatValue])/ 5.0) + 32.0;
[outputField setFloatValue:degreesF];
return self;

The first message in this method implementation selects the text in the input field. We
select the text so that the user can immediately enter a new value after finishing a previous
calculation. The function of the next two lines should be self-evident. (These lines could
be combined into one message, eliminating the degreesF variable, but are broken out into
two lines for clarity.)

Edit the Calculator.m file to include this method implementation. Finally, save the file.
You're now ready to compile and test the application.

Testing the Application

To compile and run the calculator application, click Run in Project Builder's project
window.

If any errors are detected while the application is being built, they will be listed in the
summary view of the Project window. Click an entry and Edit opens the file to the
appropriate line, making it convenient to correct the problem. (You may want to introduce
an error, just to see how this works!)

Once the application has been successfully compiled and linked, it begins to run. Test its
features to verify that they all work properly.

Modifying the Calculator

So far, the Universal Calculator can handle any calculation-as long as it's converting
degrees Celsius to Fahrenheit. The rest of this chapter describes how to add to the
calculator's functionality and, in passing, introduces several features concerning menus and
submenus. The final sections of this project demonstrate how to add icons and sounds to
an application.

Testing the Application 16-13

Adding a Submenu

Since the calculator has only one button, extending its functionality beyond temperature
conversion means redefining the meaning of the button. (Of course, you could add buttons,
but that would be too easy-and wouldn't require a submenu!) The modified calculator
application will allow the user to select the type of calculation-either temperature
conversion or square root calculation-from a submenu. The titles of the input and output
fields will change to reflect the type of calculation selected.

Click the menu button at the top of the Palettes window to display the menu palette. Drag
the menu item titled "Submenu" from the Palettes window to the main menu of your
application and release the mouse button. The menu item inserts itself within the list of
other menu items, and the menu resizes to accommodate the width of the new item. You
can reposition a menu item by dragging it vertically within the menu. A submenu
containing one menu item appears to the side of the main menu.

MenuCell selection is indicated by highlighting: black text on a white background.
Selected MenuCells can be cut, copied, and pasted within a menu or between menus using
the standard editing commands.

You can edit the text a MenuCell displays by double-clicking it. Similarly, you can edit the
keyboard equivalent for the item by double-clicking the right part of the MenuCell. A
square appears indicating that a keyboard equivalent can be added or edited.

Edit the text in the new main menu item so that it reads "Calculations" and press Return.
The main menu resizes to accommodate the menu item's text, and the submenu's title
changes to match the text. Now add another item to the submenu by dragging the MenuCell
titled "Item" from the Palettes window to your application's submenu.

Finally, edit the text of the submenu's two items to read "Temperature" and "Square Root".
The finished menus should look like those shown in Figure 16-7.

Figure 16-7. The Menu and Submenu

16·14 Chapter 16: Building a One-Button Calculator

Now, select the Calculator class in the Classes display of the File window. To edit the class
definition, open the Class Inspector (by choosing the Inspector command from Interface
Builder's Tools menu). The revised Calculator object must respond to action messages
from the new submenu, so let's add convertToTemp: and convertToSqRoot: methods. It
will also need to send messages to the TextFields that titles the input and output fields, so
let's add inputTitle and outputTitle outlets. Figure 16-8 shows how the Class Inspector
should look after you make these changes to the Calculator class interface.

"Attributes ..,JJI

n Outlets (' Actions

Figure 16-8. Revising the Calculator Class Description

Next, establish the connections from the submenu items to the Calculator object. While
holding down Control, drag the cursor from the Temperature submenu item to the
Calculator object in the Objects display of the File window. Double-click the
convertToTemp: entry in the Inspector panel to establish the connection. Likewise,
specify that the Square Root submenu item sends a convertToSqRoot: message to the
Calculator object.

Now, connect the Calculator's inputTitle and outputTitle outlets to the proper TextFields
in the Calculator window. (The Calculator object will send messages to these objects to
change their text from "Celsius" and "Fahrenheit" to "x" and "sqrt(x)", as the user picks
one or the other type of calculation.) Control-drag from the Calculator object in the File

Adding a Submenu 16-15

window to the TextField that reads "Celsius". Double-click inputTitle in the Connections
inspector to establish the connection. Follow the same process to connect the outputTitle
outlet to the TextField currently titled "Fahrenheit".

Finally, use the TextField inspector's alignment buttons to specify that the text in these
fields is right aligned. In this way, although a title's text may change from "Celsius" to "x",
it will stay visually associated with the input field it labels.

The revised interface is complete; the only changes that remain affect the Calculator class
files. The next two sections describe the changes you need to make.

Modifying Calculator.h

The new calculator is designed either to convert temperatures or to calculate square roots;
in other words, the calculator has two states. One way to keep track of the current state of
the calculator is to add an instance variable that can have either of two values. We'll add
the integer variable calcType for this purpose. For convenience, let's also define the
constants TEMP and SQROOT to correspond to the two states. The inputTitie and
outputTitie instance variables also need to be declared. These changes add eight lines to
the Calculator.h file. The lines you need to add are shown in bold:

#irnport <appkit/appkit.h>

#define TEMP 1
#define SQROOT 2

@interface Calculator Object

id inputField;

id outputField;
id inputTitle;
id outputTitle;

int calcType;

- init;
- calculate:sender;

- convertToTemp:sender;

- convertToSqRoot:sender;

@end

16-16 Chapter 16: Building a One-Button Calculator

Modifying Calculator.m

The implementation file must be modified in three ways. It needs an initialization method
to establish the value of the calcType instance variable (and thus the calculator's initial
state). The init method below handles this initialization. When the calculator first appears,
it will be configured to perform temperature conversions. It also must be modified so that
the calculate: method performs the proper calculation according to the calculator's current
state. Finally, it needs to implement the convertToTemp: and convertToSqRoot: action
methods. These methods set the value of calcType and change the titles of the input and
output fields.

Make these changes to the Calculator.m file. As before, each line you need to add or alter
is shown in bold.

#import "Calculator.h"

@implementation Calculator

- init

[super init] i
calcType = TEMPi

return self;

- calculate:sender

[inputField selectText:self];
if (calcType == TEMP) {

float degreesF;
degreesF = «9.0 * [inputField floatValue])/S.O} + 32.0;
[outputField setFloatValue:degreesF];

} else if (calcType == SQROOT) {
double sqRoot;
sqRoot = sqrt([inputField doubleValue]);
[outputField setDoubleValue:sqRoot];

}

return self;

Modifying Calculator.m 16-17

- convertToTemp:sender

}

calcType = TEMP;

[inputTitle setStringValue:"Celsius:"];

[outputTitle setStringValue:"Fahrenheit:"];

[outputField setStringValue:" II
];

[inputField selectText: s.elf] ;

return self;

- convertToSqRoot:sender
{

@end

calcType = SQROOT;

[inputTitle setStringValue:"x:"];

[outputTitle setStringvalue:"sqrt(x) :"];
[outputField setStringValue:""];

[inputField selectText:self];

return self;

After you edit and save these files, compile the application. Watch for error messages from
the compiler. In most cases, they will signal typographical errors in the source code. Make
the necessary corrections and recompile the application. Finally, run the application and
test its new features.

Note: If the application fails at run time, the problem is probably caused by an
inconsistency between the method and instance variable names you declared in the Class
inspector and those in the Calculator class definition files. Use Interface Builder to check
the method and variable names in the Class Inspector panel against those in Calculator.h
and Calculator.m.

16-18 Chapter 16: Building a One-Button Calculator

Adding an Icon

With the Images display of the File window, you can access existing system images, as
illustrated earlier in this project, or you can create images from data in either TIFF (Tag
Image File Format) or EPS (Encapsulated PostScript) file format. Once you import the
image, it can be assigned to Button objects in your application. Figure 16-9 shows some
examples of buttons that display icons.

! ,~:~\ : ~ i 'I::;;:;; I
I I

Figure 16-9. Icons and Buttons

To see how this works, click the Images suitcase in the File window to display a variety of
icons used in the Application Kit. The titles under the icons are displayed in gray to
indicate that these icons can't be deleted nor can their names be edited. However, you can
copy and paste any icon that appears in this window.

Let's add an image to this window. Using the File Viewer, switch to
lNextLibrarylDocumentationINextDevlExampleslIBThtoriaIlImages. You'll notice
that this directory contains the TIFF file willy. tiff. Drag the file icon from the File Viewer
to Interface Builder's File window. When you release the mouse button, Interface Builder
displays a panel asking if you want to add willy. tiff to the project. Click Yes, and Project
Builder's window comes forward to show you that the file has been added under Images in
the Files browser.

(In general, it's best to add TIFF or EPS format files to a project rather than use them to
create local images. By adding the image file to the project you make one copy of the image
data available to all nib files in the project. If, on the other hand, you ask Interface Builder
to create an image with the data, the image data is copied from the image file into the
nib file. Thus, each nib file that requires the image would have to have a separate copy
of the data.)

Adding an Icon 16-19

If the image that you add to the File window is no larger than 48 by 48 pixels, the Images
display shows the actual image. Larger images (as in this case) are displayed by Interface
Builder's Image Inspector.

The Image Inspector has two uses: It gives you the dimensions of the image in pixels, and
it lets you see the actual icon image even for icons larger than 48 by 48 pixels. Figure 16-10
shows a detail of the Image Inspector.

Figure 16-10. The Image Inspector

To place the image on a button in your application, simply drag the icon from the File
window to a Button object in your application's window. (The cursor must be over the
button when you release the mouse button; otherwise, the image isn't transferred.)

16-20 Chapter 16: Building a One-Button Calculator

Adding Sound

To manipulate the sounds in your application, Interface Builder provides two tools, the
Sounds display of the File window and the Sound Inspector. The Sounds display is the
repository for your application's sound resources. By dragging a sound icon from the
Sounds display onto a Button object in your application, you can associate a sound with
that object. The Sound Inspector lets you play sounds from sound files on disk and lets you
record your own sounds. It also gives you a graphic display of the sound and allows you
basic editing capability.

Open the Sounds display by clicking the Sounds suitcase in the File window. Each of the
icons in the Sounds window represents a sound. The gray titles indicate that these sounds
can't be edited since they are system sounds. You select a sound by clicking its icon. A
selected sound can be copied, pasted, and (except for system sounds) deleted. In fact, it's
common to create a new sound for editing by copying an existing sound.

Make a copy of the Basso sound in the Sound window. The new sound icon is labeled
"Sound." Now, open the Sound Inspector by double-clicking the new sound's icon.

The Sound Inspector shows a graphic representation of the selected sound's wavefonn. The
graph plots the change of the sound's amplitude over time. You can play the entire sound
by clicking the Play button, or you can select and play only a portion of the displayed sound.
For a demonstration, drag horizontally across a portion of the graph and click Play. Notice
that the sound meter below the wavefonn shows the instantaneous and peak volumes for
the sound that's played.

Using your computer's microphone, you can replace the selection in the Sound Inspector
with sound you record. Click the Record button to start recording. When you're through
recording, click Stop to end the recording session and display the wavefonn. Clicking
Pause halts the recording until the next time Pause is clicked.

You can add sounds to the Sounds window by dragging the sounds file icon from the File
Viewer to the File window. Interface Builder will ask if you want to add the sound file to
the project.

U sing the File Viewer, switch to the
lNextLibrarylDocumentationINextDevlExampleslIBThtoriallSounds directory.
Within this directory there are three sound files: druml.snd, drum2.snd, and drum3.snd.
Drag druml.snd into the Sounds window. The graph in the Sound Inspector shows the
sound's wavefonn. Click Play to hear the sound.

Adding Sound 16-21

Now, let's create a sound for the Calculate button in the Calculator application. Select a
portion of the drum sound. For example, you might find that the decay portion of one of
the louder drum beats, as shown in Figure 16-11, makes a satisfying button-click sound.

Sound Inspect{)r f!'i

Figure 16-11. The Sound Inspector

Once you've found a portion of the waveform that you want for the Calculate button, select
and then delete the portions that precede and follow it. Click OK to save the modified
sound.

Let's associate the sound with the Calculate button. Drag the sound icon from the Sounds
window to the Calculate button and release the mouse button. The sound is played and the
button becomes selected to confirm that the sound has been assigned to the button. If you
look at the button's attributes in the Button Inspector, you'll see that drum! is listed. By
deleting this name, you can remove the association of the sound with the button. You can
check the operation of the button by putting Interface Builder in test mode and then clicking
Calculate.

This ends the Universal Calculator project. Save the project and then compile and run the
application to test its operation. You might try adding other features to the calculator to test
your understanding of the concepts introduced so far.

16-22 Chapter 16: Building a One-Button Calculator

Building a Text Editor Using
Multiple Nib Files

17-4 Adding an Info Panel to Your Application

17-8 The Text Editor's Design

17-11 Modifying the Application's Interface

17-11 Modifying the Distributor Class

17-12 Editing the Class Files

17-13 Connecting the Objects

17-14 Creating the Module's Interfa'ce

17-14 Defining the Document Class

17-15 Editing the Class Files

17-16 Connecting the Objects

17-16 Compiling and Running the Application

17-1

===========~==~=--=~~~=~=====-==========-=.=~~============-~~

Building a Text Editor Using
Multiple Nib Files

Most larger applications benefit from storing different parts of their interface in separate nib
files. The primary elements of the interface-the main menu and perhaps a window or
two-are contained in one nib file, and the other parts of the interface are contained in one
or more auxiliary nib files. When the application starts, its primary interface objects are
created immediately. Objects specified in its auxiliary nib files are created only on demand,
as when a user requests an Info panel.

This program design is a consequence of the way nib files are accessed by an application.
As you've seen in the earlier projects, all objects described in a nib file are created at the
same time:

[NXApp loadNibSection: I Interface.nib" owner:NXApp];

There's no way to load a subset of a nib file's objects. However, the same functionality can
be gained by using multiple nib files.

Using multiple nib files can improve your application's perceived performance. If at
start-up time, an application creates only those objects a user will need immediately, the
time it takes to start the application can be reduced. Of course, when users attempt to access
other parts of the application, they will experience small delays as new objects are created
from the auxiliary nib files. However, these delays are minimal and are incurred only when
a user requests a specific part of the interface, rather than being imposed indiscriminately
on all users when the application starts.

An equally important reason to have more than one nib file is to let an application replicate
a piece of its interface any number of times. The document windows in Edit provide a good
example. Since it can't be predicted how many document windows a user might need, the
application must offer a way to create an unlimited number of them. By putting the
document window interface in a separate nib file, each time a user requests another window,
a new set of objects can be created from the file.

Building a Text Editor Using Multiple Nib Files 17-3

This project demonstrates how to use multiple nib files in an application. Before tackling
the more advanced problem of using auxiliary nib files to replicate a piece of an
application's interface, let's see how to use such a nib file to store an infrequently accessed
user-interface object, the Info panel.

Adding an Info Panel to Your Application

An Info panel is an important component of your application's user interface; however, in
practice users rarely access it. By putting the Info panel in a separate nib file, you can
reduce your application's start-up time and memory usage. Let's see how this is done.

Close any other projects you may still have open and then choose the New command from
Project Builder's Project menu. Save the new project in your home directory under the
name "TextEditor". In Project Builder's Files display, locate the entry for the interface file
TextEditor.nib and double-click it to start Interface Builder. When Interface Builder starts,
the new application's main menu and standard window appear. For now, these two
components will constitute the application's primary user interface.

Next, let's create a class, the Distributor class, that defines an object to manage the
Info panel. A Distributor object will be the target of an action message from the Info menu
item. When it receives the Info item's message, the Distributor object will load the Info
panel's interface.

To create the Distributor class, switch to the Classes display of Interface Builder's File
window and scroll to the left to reveal the Object class. Click the Object class so it's the
only class that's selected in the browser. Now, create a subclass of Object by dragging to
Subclass in the pull-down list. When you release the mouse button, a new class is inserted
in the class hierarchy. U sing the Class Inspector, change the name of this class to
"Distributor" .

The next step is to declare the Distributor class's single outlet and action method. Make
sure the Outlets button in the Class Inspector is highlighted and then enter infoPanel in the

17-4 Chapter 17: Building a Text Editor Using Multiple Nib Files

text field. Click Add Outlet. Next, click the Actions button and then enter showlnfoPanel:
in the text field. Click Add Action. The Attributes display should now look like this:

Attributes .",1.\

Class: I Distributor ,H., .•.

C Outlets r Actions

infoPanel showlnfoPanel:

~.N.

L" ...
i\dd

Figure 17-1. Attributes Display for the Distributor Class

To create template source code files for the Distributor class, drag to Unparse in the File
window's pull-down list. Two panels open in succession: The first asks you to confirm that
you want to create these class files, and the second asks whether these class files should be
added to the project. Click OK in each panel. If you look at the Files display in the Project
Inspector, you'll notice that Distributor.h is listed under Headers and Distributor.m is
listed under Classes. We'll defer writing the showlnfoPanel: method until the nib file that
contains the Info panel has been created.

Now, let's create an object of the Distributor class and make it the target of the Info
command. With the Distributor class selected in the File window, drag to Instantiate
in the pull-down list. When you release the mouse button, the File window switches
to the Objects display to display the icon for the new custom object. This icon is
titled "Distributor".

Control-drag a connection from the Info command in your application's main menu to the
Distributor icon. The Inspector panel shows the Connections display for the MenuCell
Inspector. Double-click the showlnfoPanel: action to make the connection. Now,
whenever the user chooses the Info command, a showlnfoPanel: action message will be

Adding an Info Panel to Your Application 17-5

sent to the Distributor object. The Distributor object will then have to load the auxiliary nib
file that contains the Info panel. Save the TextEditor nib file before proceeding.

To build the auxiliary nib file (which is known as a "module"), choose the New Module
command from the Document menu. This command opens a submenu of module types.
Choose the New Info Panel command. A new File window opens and a template Info
panel appears.

I~ .. ._- --~ - . Info - -. - --- ~:------- --:--~

My Application.
by .. ;

Figure 17-2. Info Panel Template

Customize the text in the panel by changing the application name to "TextEditor" and by
adding your name to the byline. Save the interface you've created in a file named Info.nib,
in the same directory that holds TextEditor.nib. (For example, if your language preference
is set to English, this directory will be rrextEditorlEnglish.lproj). Answer Yes to the
panel that asks whether you want to add this nib file to the project.

The auxiliary nib file is complete except for connecting the user interface it provides to a
Distributor object, the owner of this interface. Before we can connect these two, we must
make the Distributor class known within the Info nib file. (So far, the interface to the
Distributor class is known only within the TextEditor nib file, where it was declared.)

To make the interface to the Distributor class known within the Info nib file, Interface
Builder must parse the class interface file, Distributor.h. Switch to the Classes display in
the File window for Info.nib. Drag to Parse in the pull-down list. In the Open panel that
appears, select Distributor.h and click OK. The class appears in its proper place in the File
window's class hierarchy, and you can view its interface using the Class Inspector.

Now that the Distributor class is known, you can make a Distributor object the owner of the
Info nib file. Switch to the Objects display of the File window and select the File's Owner
object. The File's Owner Inspector reveals that the file's owner is an instance of the Object
class. To reassign the class of the file's owner, click the Distributor entry in the inspector.

Now, connect the Distributor object (the File's Owner object) in the File window to the Info
panel. Control-drag a connection from the file's owner to the title bar of the Info panel. In

17-6 Chapter 17: Building a Text Editor Using Multiple Nib Files

the Connections display of the File's Owner Inspector, double-click the infoPanel outlet to
establish the connection .. Save Info.nib.

The graphic part of the interface is done; let's write the showInfoPanel: method for the
Distributor class. Open Distributor.m. (You can do this by double-clicking the class's
entry in Interface Builder's class hierarchy browser.) In Distributor.m, make the changes
that are listed in bold below:

#import <appkit/appkit.h>
#import "Distributor.h"

@implementation Distributor

- showlnfoPanel:sender

if (! infoPanel)

[NXApp loadNibSection:"Info.nib" owner:self];

[infoPanel makeKeyAndOrderFront:self];

return self;

@end

The showInfoPanel: method above checks whether an Info panel has already been created.
If not, a new one is unarchived from the Info.nib file. As the Info panel and the objects are
unarchived from the nib file, the Application Kit initializes the Distributor object's
infoPanel outlet to the id of the new Info panel. Finally, this method sends a message to
the Info panel (through the infoPanel instance variable) to become the key window and
order itself to the front of its window tier.

After you save the Distributor.m file, the program is ready to compile and test. Click the
Run button in Project Builder's project window. When the application begins running,
check the operation of the Info command. Notice that the first time you choose the Info
command, there's a slight pause before the Info panel appears. However, if you close the
panel and choose the Info command a second time, the panel appears instantly. The
first time you summon the panel, it must be unarchived from the nib file; thereafter, the
panel is simply being ordered on and off the screen list. (If the Info panel doesn't appear
when you choose the Info command, quit the program and recheck the connections in
Interface Builder.)

So far, this project has demonstrated how to isolate rarely used interface objects in a nib file
of their own. The following sections expand on the program to show how to use a separate
nib file as a source of document windows for the text editor. Let's take a look at the design
of the text editor.

Adding an Info Panel to Your Application 17-7

The Text Editor's Design

The text editor has a simple user interface: Through the application's Document menu, a
user can open any number of document windows. Text entered in a document window can
be cut, copied, and pasted using the Edit menu. With one document window open, the
application presents this interface:

Figure 17-3. The Text Editor

The interface you see in Figure 17-3 is created using two nib files. The main nib file
contains the specification for the application's main menu and its submenus. An auxiliary
nib file contains the specification for a document window and its scrolling text area. The
two interfaces are linked by two custom objects (one of the Distributor class and one of the
Document class), as shown in Figure 17-4.

17-8 Chapter 17: Building a Text Editor Using Multiple Nib Files

Owner

NXApp

Application Core

Interface

MainMenu
First Responder

Distributor

t
Distributor 1

...
- createDocument: sender

1
·1······ .. ·-
I
I
•

TextEditor. nib

{

}

...
[[Document alloc] init];
...

...

Interface Files

Figure 17-4. The Application'S Design

,.

~

,
I

I
;
I

I
i ~ I

I .

Modules

Owner

Document1

Owner

Document2

Owner

Document3

Interface

Window
ScroliView

Interface

Window
ScroliView

Interface

Window
ScroliVip'N

,
1
1
1
1
1
1
1
1
1

4
1
1
1
1
I
1
I
1
1

~
I
a '" ·--"'""-'·~~"~-·--'--··--'·I·

.. '" _ > ••• _ ••• __ __ _., - •••••• _ ... _. __ .-----.. ·.·1
1
1

'---___ ---'LJ _ Document.nib . r--

The Text Editor's Design 17-9

When the application starts, the primary interface objects are created from the specification
in TextEditor.nib and connected to their owner, NXApp. An object of the Distributor class
is also created. So far, only the main menu appears on the screen, although the objects that
make up the submenus have also been created. When a user clicks the New command in
the Document menu, a createDocument: action message is sent to the Distributor object.
As you can see in the figure, this object in tum creates and initializes a new object of the
Document class, a class you'll define in the process of building this application.

The init method in the Document class contains these lines:

- init

[super init);

[NXApp loadNibSection: I Document.nib" owner:self);

return self;

Each Document object, as it's initialized, is made the owner of a set of objects specified in
the Document.nib file. Thus, each time the user clicks the New command, a new
Document object along with a new window and scrolling text area are created.

The design introduced here is common for applications that replicate pieces of their user
interface. The application's core has its own interface. Similarly, each module minimally
consists of a custom object and its interface. When a new module is required, an object
within the application's core creates the module's custom object, which loads its own
interface. In this way, a module can be independent of the application's core objects,
storing any pertinent state information in its owner. If the application needs information
about a module's state, it can query the module's owner.

In contrast, recall how the Info panel is implemented. With the Info panel, an object within
the application's core, the Distributor object, loads the auxiliary nib file. However, the
interface module isn't designed to be replicated (in fact, quite the opposite) nor is there any
state information that needs to be retained by the module.

17·10 Chapter 17: Building a Text Editor Using Multiple Nib Files

Modifying the Application's Interface

Let's implement the design described above by modifying the TextEditor application
created so far. First, since the Info nib file is no longer needed, close it by selecting the File
window titled "Info.nib" and choosing the Close command in Interface Builder's
Document menu.

Next, modify the TextEditor nib file by removing the window object. As explained
previously, the application's main nib file doesn't include a document window-document
windows are provided by the auxiliary nib file. Remove the window by selecting it (either
by clicking it or by selecting its icon in the File window) and then choosing the Cut
command. Since most applications have at least one standard window, a panel opens asking
if you really want to remove this window. Confirm that you do.

Now, let's add some commands to the main menu. Click the menu button in the Palettes
window and drag a Document menu item to your application's main menu. Position this
item immediately above Edit. The Document menu that opens displays more commands
than you'll need in this project. Cut all but the New and Close commands from the menu.

This completes the visible part of the interface for the application's core. Save the nib file.
Next, we'll modify the Distributor class.

Modifying the Distributor Class

The Distributor class must be modified so that new document windows are created
whenever a user chooses the New command from the application's Window menu. When
a Distributor object creates each new document window module, it temporarily stores the
identity of the module's owner. In a more robust application, the Distributor object would
keep track of each module's owner so that it could later "distribute" messages from the
application's core objects to anyone of the modules.

To modify the Distributor class, switch to the Classes display of the File window and select
the Distributor class. Next, open the Class Inspector, if it isn't open already. Now, add
another action message by clicking the Actions button in the Class Inspector and then
entering createDocument: in the text field. Click Add Action. Now that the new method
has been declared in the nib file, you must add it to the class files.

Modifying the Application s Interface 17-11

Editing the Class Files

Double-click the Distributor entry in the Files window to open both Distributor.h and
Distributor.m. Add the lines that appear in bold in the listings below. An explanation of
these additions follows the listings.

Make these changes to the class interface file, Distributor.h:

#import <appkit/appkit.h>

@interface Distributor:Object

id infoPanel;

id newDocument;

- showInfoPanel:sender;

- createDocument:sender;

@end

Also, make these changes to the class implementation file, Distributor.m:

#import "Distributor.h"

#import "Document.h"

@implementation Distributor

- showInfoPanel:sender

if (! infoPanel)

[NXApp loadNibSection:"Info.nib" owner:self];

[infoPanel makeKeyAndOrderFront:self];

return self;

- createDocument:sender
{

newDocument = [[Document alloc] init];
[newDocument show:self];

return self;

@end

17-12 Chapter 17: Building a Text Editor Using Multiple Nib Files

Each time a Distributor object receives a createDocument: message, it creates a new
Document object (the owner of the document window module) and stores the object's id in
its newDocument variable. Next, it sends a show: message to the new Document object.
As you'll see when you define the Document class, this message brings the module's
document window to the front of its tier on the screen and makes it the key window.

As suggested earlier, in a more complex application, the Distributor object might keep track
of each Document object it creates so that it can send messages to anyone of them. For
example, it might use an object of the List or HashTable class to record the ids of each of
the Document objects it creates.

After you've made these changes to the class files, save them and close the Edit windows.

Connecting the Objects

Now, let's connect the New command to the Distributor object. First, notice that the New
command is disabled.:...-its title is in gray. Interface Builder disables menu items from the
menu palette that aren't already connected to some target. To enable the New item, select
it and switch to the Attributes Inspector. Click the button titled "Disabled" to remove the
check mark. The New command is now displayed in black.

Next, in the File window, switch to the Objects display. Control-drag a connection from
the New command in your application's Document menu to the Distributor object in the
File window. The Inspector panel shows the Connections display for the MenuCell
Inspector. Make sure the target outlet and the createDocument: action are selected and
click Connect. Now, whenever. the user chooses New, a createDocument: action message
will be sent to the Distributor object.

This completes the main nib file; next you'll create the application's document module.
Before going on, save your work and, if you like, clean up the workspace by closing the
TextEditor.nib file. (Choose Close from the Document menu.) You can also close the
Inspector panel.

Connecting the Objects 17-13

Creating the Module's Interface

A module consists of a window, a scrolling text area, and a custom object that owns this
interface. The custom object will be of the Document class, a subclass of Object that you'll
define shortly.

Choose the New Module command from the Document menu. From the New Module
menu that appears, choose New Empty. This command produces a nib file containing only
the most basic components. You can see from the File window that appears that this
module consists only of an owner object and a First Responder.

Drag a window from the Palettes window into the workspace and open the Window
Inspector. Change the title of the window to "Document". Now, drag a ScrollView from
the Scrolling Views display of the Palettes window into the document window and resize it
so that it covers most of the window's area. Save the nib file you've created so far in a file
named Document.nib. Also, in the attention panel that appears, confirm that this file
should be added to the TextEditor project.

The visible portion of the module's interface is complete; the next job is to define the
owner object.

Defining the Document Class

In the File window, switch to the Classes display. Create a new subclass of Object by
selecting the Object entry and dragging to the Subclass command in the pull-down list.
Using the Class Inspector, name this new class the "Document" class.

The next step is to define the outlets and actions of the Document class. Following the same
general steps you took with the Distributor class, give the Document class a my Window
outlet and a show: action method. Create class definition files for the Document (that is,
drag to the Unparse button in the File window) and add these files to the project.

17-14 Chapter 17: Building a Text Editor Using Multiple Nib Files

Editing the Class Files

As before, edit the class interface file Document.h by adding the line that appears in bold:

#import <appkit/appkit.h>

@interface Document:Object

id my Window;

- init;

- show: sender;

@end

Also, make these changes to the class implementation file Document.m:

#import <appkit/appkit.h>

#import "Document.h"

@implementation Document

- init
{

[super init];

[NXApp loadNibSection:"Document.nib" owner:self];

return self;
}

- show:sender

@end

[myWindow makeKeyAndOrderFront:self];

return self;

The init method initializes a new Document object and makes it the owner of the module's
interface. The show: method sends a makeKey AndOrderFront: message to the window
in the interface through the Document's my Window outlet.

Editing the Class Files 17-15

Connecting the Objects

A Document object owns the user-interface objects that are unarchived from
Document.nib. Before you can connect the owner to its interface, you must specify that
the owner is of the Document class. Switch to the Objects display in the File window and
select the File's Owner object. Using the Inspector panel, click "Document" to assign the
class of the owner object.

The owner object is connected to the other objects in the application in two ways: through
the show: action message that it will receive from the Distributor object and through the
my Window outlet that will be initialized to the id of the window in the module's interface.
You've already written the code in Distributor.m that sends the show: message to a
Document object; that connection is complete.

Connect the owner object's my Window outlet by Control-dragging a connection from the
owner's icon in the File window to the title bar of the document window. Select
my Window in the Inspector panel's Connections display and click Connect. Finally, save
the finished nib file.

Now that the pieces are in place and the connections are established, it's time to compile
and test the application. Before you do, you may want to clean up the workspace by closing
any of Interface Builder's windows you no longer need.

Compiling and Running the Application

Click Run in Project Builder's project window. If the project file needs to be saved, Project
Builder asks if you want to save it before proceeding.

When that application begins running, test its operation. Each time you choose the New
command, a new window opens directly on top of the old one. If you click in the scrolling
text area, a blinking vertical bar appears, marking the insertion point.

Check other features such as text entry and editing, pasting text between windows of this
application (and between this and other applications), and window resizing.

Although this completes the text editor project, this application provides a good basis for
exploring other features of the Application Kit. Perhaps the easiest improvement would be
to add a Font command to the main menu. You could also, for example, implement the
Close command or the Document commands that you previously deleted, such as Open and
Save. Or you might make it so each new Document window opens in a location offset from
the previous one so that old windows aren't obscured by new ones.

17-16 Chapter 17: Building a Text Editor Using Multiple Nib Files

~(6) u CQ) Building a Custom Palette

18-4

18-5

18-6

18-7

18-8

18-9
18-9
18-10

18-13

18-14

18-15

18-15

18-16

18-19

18-20

18-21

Custom Palettes and Interface Builder

The Custom Object's Design

Creating the Interface

Defining the ProgressView Class

Providing An Image for the Palette's Button

Writing the ProgressView Class Files
Progress View.h
Progress View.m

Updating the palette. table File

Compiling and Loading the Palette

Testing the Palette

Using Custom Palette Objects in Other Applications

Adding a ProgressView Inspector

Designing the ProgressView Inspector

Designing the ProgressViewlnspector Class

Connecting the Objects

..... :;::'1

18-1

18-2

18-21 Editing the ProgressViewlnspector Class Files
18-22 ProgressViewlnspector.h
18-22 Progress Viewlnspector.m

18-25 Modifying the ProgressView Class Files

18-25 Compiling and Testing the Inspector

Building a Custom Palette

As you've seen, Interface Builder gives you convenient access to objects defined in the
Application Kit: You can drag objects directly from the Palettes window into your
application. Through custom palettes, Interface Builder lets you extend this pattern of
access to classes of your own design.

A custom palette is a display that can be added to Interface Builder's Palettes window. Each
custom palette is represented by its own button at the top of the Palettes window. When the
button is clicked, the palette's object or objects appear in the lower portion of the window.
Custom palettes can contain subclasses of:

Class

View
Object
Window
MenuCell

Comment

Must be dragged into a window
Must be dragged to the File window
Can be dragged and dropped anywhere
Must be dragged into a menu

You can manipulate these objects just as you would the objects on the standard palettes.
They can be dragged into the application under construction, resized and relocated through
direct mouse actions (if they are View or Window objects), and inspected using the
Inspector panel. When Interface Builder is put in test mode, objects from custom palettes
are fully functional. For example, View objects draw themselves and react to mouse events
just as they would in a real application. (This is in contrast to Custom Views, as described
in more detail later in this project.)

Building a Custom Palette 18-3

Custom palettes let you tailor your development environment to suit your needs. They
also provide a convenient way to distribute classes to other developers. It's important to
note, however, that only classes that meet the following criteria are good candidates for
custom palettes.

• The class should be designed for reusability. That is, it should be easily adapted for use
in a wide range of applications. An object that must be the delegate of the Application
object, for example, will be difficult to accommodate in many applications.

• The class should define objects that are useful in a variety of applications. There's little
advantage in creating a custom palette for an object that will be used infrequently.

• The class should be thoroughly debugged. The best approach to creating a custom
palette for a new class is to first debug the class by building test applications and then,
when it's debugged, build the custom palette.

This project first describes how to create a simple custom palette and then shows you how
to add an inspector for the custom object that the palette contains. Before starting, let's look
at how custom palettes fit into the overall structure of Interface Builder.

Custom Palettes and Interface Builder

The previous projects have demonstrated that you build a NeXTSTEP application by
designing its interface, defining your own classes as needed, connecting the components,
and then compiling the application. This creates an application that consists of executable
code and archived data. At run time, some objects are instantiated directly (such as the
Application object) and others are un archived from nib files.

Interface Builder is no different in the way it is constructed. For example, the first time you
click the Scrolling Views button in the Palettes window, Interface Builder loads a bundle
containing executable code and archived data for the appropriate objects and displays these
objects in the Palettes window. (For information on bundles, see the class specification for
NXBundle, a common class.)

18-4 Chapter J 8: Building a Custom Palette

Adding a new palette to the Palettes window, then, involves creating a type of bundle
that Interface Builder can load into itself at run time. This bundle is called a palette file
and has a ".palette" extension. Palette files contain archived versions of the objects to be
displayed in the Palette window and compiled code to support these objects. A palette
file can also contain archived data and object modules for the Inspector associated with
a custom palette object.

Custom palettes are loaded into Interface Builder dynamically. That is, when a user
chooses the Load Palette command from the Tools menu and specifies a palette file,
Interface Builder opens the palette file, loads the object modules it contains and then
unarchives the objects that will appear in the Palette window. Thereafter, the classes of
these custom objects are known to Interface Builder: Their names appear in the proper
places in the Classes window, their outlets and actions appear in the Connections Inspector,
and Interface Builder can create new objects of these classes as needed. Using Interface
Builder's Preferences panel you can have one or more custom palettes loaded automatically
whenever Interface Builder is launched.

The Custom Olbjecit's fOesign

The palette we'll create in this project contains a single custom objeCt, a ProgressView. A
ProgressView reflects the progress of a long-running operation by filling with dark gray an
ever increasing proportion of its horizontal extent:

f ''''''1

fr=.... pr0

9
r8S.SV. '.i.8.\.!.I. .. I lk=' 100%11

Figure 18-1. Progress View, Box, and TextField Objects

You could use such an object to inform the user of the status of a long-running calculation,
file operation, or other process. A ProgressView responds to an increment: message
by increasing the length of the gray bar a predetermined amount. We'll take a closer
look at the implementation of the Progress View class after creating the interface for the
custom palette.

The Custom Object's Design 18-5

Creating the Inte,rface

The primary component of a custom palette project is a nib file. This file contains the
archived object (or objects) that will appear in the palette and a TIFF image that will be used
for the button at the top of the Palettes window.

To begin the palette project, start Project Builder and, from the Project menu, choose New.
In the panel that appears, drag to Palette in the Project Type pop-up list. Give the project
the name "ProgressPalette" and save it in your home directory. The Project window for this
project appears.

If you browse the Files display of the Project window, you'll find that Project Builder has
added these files:

File

ProgressPalette. [hm]

ProgressPalette.nib

palette. table

Makefile

Description

Subclass of IBPalette (which is declared in
/NextDeveloperlHeaders/Apps). For palettes that contain
only View objects, nothing must be done to these files. For
other types of palettes, one or more methods must be
implemented.

Interface archive for the palette project. You'll use Interface
Builder to modify this template file by adding the objects that
will be part of your palette.

Loading instructions for Interface Builder. This file becomes
part of the palette file package. It tells Interface Builder which
icon to display for the palette and which classes to add to the
Classes display of the File window, among other things.

Standard makefile for palette projects. Project Builder
maintains this file; you shouldn't change its contents directly.

Double-click the ProgressPalette.nib entry. Interface Builder starts and displays the
contents of this template file: a File's Owner object, the first responder, and a window titled
"Palette View". Using Interface Builder's Inspector window, you can verify that the File's
Owner object in the File window is an object of the ProgressPalette class. If you switch to
the Connections display, you'll see that the originalWindow outlet, which the File's Owner
inherits from its parent class, is already attached to the panel. When Interface Builder loads
a palette file, it uses this connection to find the View objects that it must extract from the
nib file and position within the Palette window.

18-6 Chapter 18: Building a Custom Palette

The next step is to put a Progress View object in this panel; however, at this point the
ProgressView class is unknown to Interface Builder. Interface Builder provides a generic
View, the Custom View object, for these situations. A Custom View object records the
location, width, height, and class of a View of your own design. At run time, when objects
are unarchived from the nib file, an object of the class you specified is created in place of
the CustomView. The View that's created is positioned and resized to match the position
and dimensions of the Custom View in the nib file, and its drawS elf: : method is invoked to
cause it to display itself.

Drag a CustomView (from the Basic Views palette) into the panel and resize it to look
like this:

Figure 18-2. Building the Custom Palette

N ow add a label to this Custom View by dragging a TextField titled "Title" from the Palette
window into the panel. Change the TextField to read "0%" and use the Font panel to
decrease the font size. Make a second label by copying and pasting the one you've just
created and then change the title to read "100%". Position these titles at opposite ends of
the Custom View. Finally, create a box around the Custom View and the titles by selecting
the three objects and choosing the Group command from the Layout menu. Change the title
of the box to read "Progress View".

Defining the ProgressView Class

The next step is to reassign the class of the Custom View to the as-yet-unwritten
Progress View class. To do this, you must first use the Classes display of the File window
to define the Progress View class.

Switch to the Classes display and select View in the class hierarchy. Create a subclass of
View by dragging to Subclass in the Operations pull-down list. A new class titled
"MyView" appears in the hierarchy. Using the Class inspector, change the name of this
class to "Progress View" and press Return.

Defining the ProgressView Class 18-7

A ProgressView responds to a single action method: increment:. Using the Class
inspector, add this method to those listed under the Actions button.

Now, let's create template source files for the ProgressView class. Drag to Unparse in the
Operations pull-down list in the File window. In the first panel that appears, confirm that
you want to create ProgressView.h and ProgressView.m. In the second panel, confirm that
you want these files added to the project. We'll fill in these template files later.

Finally, reassign the class of the Custom View in the panel. Select the Custom View. Note
that the CustomView is grouped within a Box object (that is, it's within the Box's view
hierarchy). Clicking the box selects the Box object. To move the focus of selection to the
objects inside the box, double-click within the box. Now select the Custom View by
clicking it. Using the Attributes display of the Custom View Inspector, locate Progress View
in the list of classes it contains. Click this entry, and the label in the Custom View changes
to "Progress View" .

Providing An Image for the Palette's Button

The Progress View custom palette needs an image for its button in the Palettes window. You
can either use the IconBuilder application (in lNextDeveloper/Apps) to create a new one,
or you can use ProgressPalette.tiff, which you'll find in
lNextLibrarylDocumentationINextDevlExampleslIBThtoriallImages. (If you create
your own image, make sure it's no larger than 48 by 48 pixels and that its background is
transparent.)

Drag the image's file icon from the Workspace Manager File Viewer into Project Builder's
Project window. As you drag the icon into the window, a suitcase opens to accept it. When
you release the icon, the image is added under Images in the Files display. Now save the
project. When the project is saved, Interface Builder is alerted to any changes it contains.
Now if you look in the Images display of Interface Builder's File window, you'll see the
new image.

The custom palette's interface is complete. The next step is to write the class definition
files for the Progress View class. Before continuing to the next step, save the nib file
you've created.

18-8 Chapter 18: Building a Custom Palette

Writing the ProgressView Class Files

The files that Interface Builder has created for the Progress View class contain only template
code for the increment: action method. You'll have to finish this method's implementation
and add the other methods described in this section. (If you're reading an electronic version
of this tutorial, you can simply copy the code listed below and paste it into the appropriate
ProgressView source file in your project.)

ProgressView.h

This file declares the interface to the Progress View class.

#import <appkit/appkit.h>

#define DEFAULTSTEPSIZE 5

#define MAXSIZE 100

@interface ProgressView:View

int total, count, stepSize;

float ratio;

- initFrame:(const NXRect *)frameRect;

- drawSelf:(const NXRect *)rects :(int)rectCount;

- setStepSize:(int)value;

- (int)stepSize;

- setRatio:(float)newRatio;

- increment:senderi

- read: (NXTypedStrearn*) stream;

- write: (NXTypedStream*) stream;

@end

The file starts by importing the standard header file for the Application Kit. Then,
two constants are defined. DEFAULTSTEPSIZE is the value that's added to a running
total each time an increment: message is received. MAXSIZE is the maximum length
of the bar.

Writing the ProgressView Class Files 18-9

Next, the ProgressView class declares four instance variables:

Variable

total
count
stepSize
ratio

Description

Total length of bar; MAXSIZE in this example
Running total; incremented by each increment: message
Amount to add to count upon receiving an increment: message
Proportional length of dark gray portion of bar (count/total)

Finally, ProgressView's methods are declared. These methods are discussed in the
next section.

ProgressView.m

This file contains the implementation of the methods declared in ProgressView.h.

#import "ProgressView.h"

@implementation ProgressView

- initFrame: (const NXRect *)frameRect

[super initFrame:frameRect];
total = MAXSIZE;

stepSize = DEFAULTSTEPSIZE;
return self;

- drawSelf: (const NXRect *)rects : (int)rectCount

PSsetgray(NX_LTGRAY);

NXRectFill(&bounds) ;
if (ratio> 0) {

NXRect r = bounds;
r.size.width = bounds.size.width * ratio;
PSsetgray(NX_DKGRAY) ;

NXRectFill(&r) ;

PSsetgray(NX_BLACK) ;

NXFrameRect(&bounds) ;

return self;

18-10 Chapter 18: Building a Custom Palette

- setStepSize: (int)value

stepSize = value;

return self;

- (int)stepSize

return stepSize;

- setRatio: (float)newRatio

if (newRatio > 1.0) newRatio 1.0;

if (ratio != newRatio)

ratio = newRatio;
[self display];

return self;

- increment:sender

count += stepSize;

[self s~tRatio: (float)count/(float)total];

return self;

- read: (NXTypedStream*) stream

[super read:stream];

NXReadTypes(stream, "ii", &total, &stepSize);

return self;

- write: (NXTypedStream*) stream

@end

[super write: stream] ;

NXWriteTypes(stream, "ii", &total, &stepSize);

return self;

Writing the ProgressView Closs Files 18-11

ProgressView.m starts by importing ProgressView.h for the interface to its own class. The
rest of the file contains the implementation of ProgressView's methods:

Method

initFrame:

drawSelf::

setStepSize:

stepSize:

setRatio:

increment:

read:

write:

Description

Initializes a newly allocated Progress View by setting the values of its
total and stepSize variables. Its count and ratio instance variables are
automatically initialized to O.

Draws the Progress View by first filling its entire bounds rectangle with
light gray, determining which portion of the bounds should be filled
with dark gray and painting that portion, and finally drawing a black
border around the entire Progress View.

Sets the amount to be added to count when the Progress View receives
an increment: message. (This method will be used in the next
project.)

Returns the amount to be added to count when the Progress View
receives an increment: message. (This method will be used in the
next project.)

Sets the ratio variable and then redisplays the Progress View (thus
causing the drawSelf:: method to be invoked).

Increases the value of the count variable by adding stepSize to it. This
method then invokes the setRatio: method, using the ratio of count to
total as the argument.

Reads the archived values of the total and step Size variables from a
typed stream.

Writes the values of the total and stepSize variables to a typed stream.

At a minimum, a custom palette object must be able to draw, archive, and un archive itself;
thus, the drawSelf::, write:, and read: methods above. The other methods are peculiar to
the ProgressView class and aren't required by all custom palette objects.

The drawS elf: : method is invoked when the palette is first loaded, to draw the
ProgressView in the Palettes window. It's also invoked when you put Interface Builder in
test mode and there's a Progress View object in your application's window. Of course, when
an application that contains a Progress View is run, drawS elf: : is invoked whenever the
Progress View needs to draw itself, such as after it receives an increment: message.

18-12 Chapter 18: Building a Custom Palette

The read: and write: methods are needed so that the Progress View can be archived. When
you create the custom palette, the Progress View object must archive itself into the palette
file. When the custom palette is loaded into Interface Builder, the ProgressView is
unarchived from the palette file.

The process of unarchiving involves allocating enough memory for the object and then
sending it a read: message so that it can initialize its variables from the values stored in the
archive. In unarchiving, the initFrame: method, which would normally establish the
values of the total and stepSize variables, isn't invoked. Thus, the read: method must
establish those values. The matching write: method records the values of total and
stepSize in the archive file when the palette is created. Without these methods, a newly.
unarchived Progress View would have 0 as the values of total and stepSize. Whenever you
create a class that you intend to use in a custom palette, remember to implement read: and
write: methods to archive the variables whose values you want to store along with the
object.

Updating the palette.table File

Before you can compile the palette project, you must update the palette. table file.
Interface Builder consults this table when it loads a palette file. It uses the information from
the table to identify and instantiate the nib file's owner, to display the proper image for the
button in the Palette window, and to insert class names within the Classes display of the File
window, among other things.

Locate palette.table under Other Resources in Project Builder's Project window.
Double-click the entry to reveal the file's contents:

Class = ProgressPalette; /* (a subclass of IBPalette) */

NibFile = ProgressPalette; /* (a nib file name) */

/* Icon -, (a tiff/eps file name) */

/* ExportClasses = () ; (a list of class names) */

/* Export Images (); (a list of icon names) */

/* ExportSounds = () ; (a list of sound names) */

The first two lines identify the names of the class of the nib file's owner and of the nib file
itself. The remaining lines can be used to identify other elements of the palette file. For
this project, you need to specify the name of the image to be used for the Palette window

Updating the palette. table File 18-13

button and to specify the name of the class, ProgressView, that should be added to the
Classes browser. Make the changes that appear in bold below:

Class = ProgressPalettej /* (a subclass of IBPalette) */

NibFile = ProgressPalettei /* (a nib file name) */

Icon = ProgressPalettej /* (a tiff/eps file name) */

ExportClasses = (ProgressView) j /* (a list of class names) */

/* Exportlmages ()j (a list of icon names) */

/* ExportSounds = ()j (a list of sound names) */

After you've made these changes, save and close palette.table.

Compiling and Loading the Palette

You're now ready to compile the custom palette. Switch to Project Builder's Builder
display and click the Build button. When the process is finished, a file with the name
ProgressPalette.palette is added to the project directory.

To load the custom palette, choose Interface Builder's Load Palette command from its Tools
menu. In the Open panel that appears, select that palette file and click OK. After a moment,
Interface Builder's Palette window is updated to show the new palette.

Figure 18-3. ProgressView Custom Palette

Notice that a horizontal scroller appears to give you access to palette buttons that no longer
fit within the Palettes window.

18-14 Chapter 18: Building a Custom Palette

Testing the Palette

Now that a ProgressView is available from within Interface Builder, it's easy to test its
operation. Close the palette project by closing the Project window for the ProgressPalette
project. Now, start a new project by choosing New in Project Builder's Project menu. In
the panel that appears, name the project "Test" and make sure the Project Type button reads
"Application". Finally, open the nib file.

In Interface Builder, drag a Progress View object from the Palettes window into the
application's window. To test the ProgressView's operation, you have to send it increment:
action messages. Add a button to the window and change its title to "Increment".
Control-drag a connection from the button to the ProgressView. (Make sure the connection
is made to the Progress View and not to the Box that surrounds it-check the Connections
list in the Connections Inspector to confirm the identity of the destination object.) Using
the Connections Inspector, specify that the Button sends an increment: message to the
Progress View.

Finally, test the Progress View by putting Interface Builder in test mode and clicking the
Increment button. The gray bar should step across the Progress View with each click. If
nothing happens, quit the test mode, recheck the connection between the button and the
Progress View, and try again.

Using Custom Palette Objects in Other Applications

Building an application using a custom palette object is in most respects identical to
building one using the standard objects that are available within Interface Builder; the few
differences are described here.

You've demonstrated that the Progress View custom object works within Interface Builder's
test mode. However, if you compile the new application and attempt to run it, this error
appears in the Workspace Manager Console window:

> objc: class 'ProgressView' not linked into application
> An uncaught exception was raised
> Typed streams library error: class error for 'ProgressView': class
not loaded

The problem is that although the application's nib file contains an archived ProgressView
object, the Progress View class hasn't been linked into the application. Thus, none of the
ProgressView's methods can be invoked.

Testing the Palette 18-15

There are several ways to ensure that the Progress View class is linked into an application.
The easiest is to add the ProgressView class files (ProgressView.h and ProgressView.m)
to the list of class files in Project Builder's Files window. For your own applications, this
is a reasonable solution. If, however, you don't want to distribute source code along with
the custom palettes you develop, you can either distribute object files (in this case,
ProgressView.o) or a library containing object modules for your custom classes. The
object files or library can be added to the appropriate list in Project Builder.

Another consideration when developing applications using custom palettes concerns the
editing of nib files. If you create a nib file that contains a custom palette object, that
interface file can be opened only by a similarly configured Interface Builder application. In
other words, if the nib file contains a ProgressView, then you will have to load the
ProgressView palette"before you'll be able to open the nib file. As normally configured,
Interface Builder won't have access to the class information for the custom object.'

Adding a ProgressView Inspector

A palette file can provide Attribute, Connection, Size, and Help inspectors for the custom
objects it contains. (Custom Connection and Help inspectors are rarely needed, however.)
For example, when a user attempts to display the Attributes inspector associated with the
custom object (say, by selecting the object and choosing Inspector from the Tools menu),
Interface Builder loads the inspector and uses it as the Attributes display of the Inspector

18-16 Chapter 18: Bui/dinga Custom Palette

window. For example, an Attributes Inspector for the Progress View class might look
like this:

r
-- -- --- -------------- ------ -------------------

__ _ '!ogressYie~l/lnsp~ct~r __ ~

: Attributes ...tl

G
St[ijze--

! jrJ] ~
o 10

Figure 18-4. Progress View Inspector

An Attributes Inspector typically lets a user set an object's characteristics that can't be set
through direct mouse manipulation. For example, the Progress View Inspector pictured
above lets the user adjust a ProgressView's stepSize variable, thus determining the amount
the dark gray bar advances across the Progress View with each increment: message.

Inspectors can have OK and Revert buttons, although they aren't required. If the user
adjusts the controls in an inspector and then clicks Revert, the changes are discarded and

Adding a ProgressView Inspector 18-17

the previous values are reestablished; if the user clicks OK, the new values are sent to the
object that's being inspected.

Interface Builder identifies the appropriate inspector to display for a selected object by
sending the object one of these messages, depending on the setting of the pop-up list in the
Inspector window:

getlnspectorClassName

getConnectlnspectorClassName
getSizelnspectorClassName

getHelplnspectorClassName

The getInspectorClassName message is sent to determine the name of the class of the
Attributes inspector. For example, the Progress View class could implement this method
this way:

- (const char *)getlnspectorClassName

return "ProgressViewlnspector";

Since each custom object can identify its inspector, a custom palette file can contain
mUltiple classes of objects, each with its own inspector.

Another benefit of this system of identifying an object's inspector is that inspectors are
inherited. Interface Builder provides inspectors for each of the classes represented in the
Palettes window. If you create a subclass of one of these classes and don't implement the
inspectorName: method, Interface Builder will display the superclass's inspector
whenever the custom object is inspected.

For debugging purposes, it's often better to create the inspector for an object only after the
object itself has been debugged and placed in a custom palette. This is the approach we
take in this project. Now that ProgressView objects are available through a custom palette,
we'll create a simple inspector for the ProgressView class.

18-18 Chapter 18: Building a Custom Palette

Designing the ProgressView Inspector

Creating an inspector for a custom palette object is much like creating the custom palette
itself. You start by assembling an interface for the custom object inspector. The owner of
this nib file is an object you define that translates actions taken on this interface into
messages to send to the object that's being inspected. The class files for the owner object
and the inspector's nib file are added to the palette project and compiled into the palette file
along with the custom palette object. Let's start by assembling the inspector's user
interface.

Interface Builder provides a New Inspector command for our purposes. Choose the New
Module command in the Document menu and, in the menu that appears, choose New
Inspector. A new File window and a panel titled "Inspector" appear.

Now, let's add some objects to the panel. Drag a horizontal slider into the panel and then
add labels for each end (as in Figure 18-4 above). Edit the left label to read "0" and the
right one" 1 0". Calibrate the slider to these values by using the Slider Inspector to set its
minimum value to 0 and the maximum value to 10. Set the current value to 5 and click OK
in the Slider Inspector.

Add an editable text field above the center of the slider. This text field will read out the
slider's current setting. Resize the text field to accommodate two-digit numbers and then
edit its contents to read "5". Using the Alignment group of buttons in the TextField
Inspector, specify that the TextField's display is right aligned:

Figure 18-5. Setting the Alignment of the TextField

Finally, select all the objects in the panel and choose the Group command from the Layout
menu to surround them in a box. Edit the box's title to read "Step Size".

The interface to the Progress View inspector is complete. Save the interface in a file called
ProgressViewlnspector.nib-the Open panel will suggest saving the nib file in the proper
language directory of the ProgressPalette project-and, when the attention panel appears,
confirm that you want the file added to the proj ect.

Designing the ProgressView Inspector 18-19

Designing the ProgressViewlnspector Class

The interface that you just created will act on a selected object through the intervention of
a ProgressViewInspector object, which we will now define.

Inspectors inherit from Interface Builder's IBInspector class, a subclass of Object. (See
/NextDeveloperlHeaders/appslInterfaceBuilder.h for the class interface to the
IBInspector class.) The IBInspector class has these important outlets:

Outlet

object
window
okButton
revertB utton

Description

id of the object that's being inspected
id of the Panel that contains the inspector's user interface
id of the OK button, if present
id of the Revert button, if present

The IBInspector class adopts the IBInspectors protocol, which declares these methods:

Method

ok:

revert:

wantsButtons:

Description

Sets the inspected object to reflect the user's choices in the
Inspector panel.

Cancels any pending changes to the inspected object. This method
is also invoked when the Inspector is first instantiated.

Invoked by Interface Builder to determine if OK and Revert
buttons should be displayed for this inspector.

Let's create a subclass of IBInspector for our inspector. The IBInspector class is listed
under Object in Interface Builder's Classes browser. Select this entry and drag to Subclass
in the Operations pull-down list. In the Class inspector, rename this new class
"ProgressViewInspector". Note that the Class Inspector reports that the
Progress ViewInspector class inherits the window outlet and ok: and revert: methods of its
superclass. A ProgressViewInspector needs two more outlets, which it will use to
communicate with the slider and text field in its user interface. Add these outlets and name
them theSlider and theTextField.

Now, create template source files for the ProgressViewInspector class. Drag to Unparse in
the Operations pull-down list of the Classes display. In the first panel that appears, confirm
that you want to create ProgressViewlnspector.h and ProgressViewlnspector.m. In the
second panel, confirm that you want to add these files to the project. We'll fill in these
template flIes later.

18-20 Chapter 18: Building a Custom Palette

Next, reassign the class of the File's Owner object to the ProgressViewInspector class.
Select the File's Owner object in the Objects display of the File window. In the File's
Owner Inspector panel, select ProgressViewInspector. Finally, save the nib file.

Con.necting the Objects

The File's Owner, a Progress View Inspector, must be connected to its user interface objects.
Control-drag a connection from the File's Owner to the Slider and connect the two using
the theSlider outlet. Similarly, connect the File's Owner to the TextField using the
theTextField outlet. Notice that Interface Builder has already connected the File's Owner
and the inspector panel using the window outlet. All inspectors are connected to their user
interfaces through this outlet.

The Slider and the TextField must also be connected to the File's Owner so that actions
taken on these controls are reflected in the object being inspected. Control-drag a
connection from the Slider to the File's Owner, and using the Connections inspector, make
the File's Owner the target of an ok: message from the Slider. Similarly, make the
TextField send an ok: message to its target, the File's Owner.

These are the only connections you need to make. When the inspector is being used in
Interface Builder, its object outlet will be set automatically to the id of the object that's
currently being inspected. When the user clicks OK or Revert in an inspector that has
these buttons, Interface Builder will send the appropriate message to the
Progress View Inspector object.

Editing the ProgressViewlnspector Class Files

The next step is to fill in the template class files that Interface Builder has added to
the project. The finished files are listed here. (If you're reading this on-line, you can
copy the listings into the template files in your project.) A description of the files follows
each listing.

Connecting the Objects 18-21

ProgressViewlnspector.h

This file declares the interface to the ProgressViewInspector class.

#import <apps/InterfaceBuilder.h>

@interface ProgressViewInspector:IBInspector <IBInspectors>

id theSliderj
id theTextFieldj

- initj

@end

The file starts by importing InterfaceBuilder.h, which contains the declaration of the
IBInspector class, ProgressViewInspector's superclass. Note that the
ProgressViewInspector class adopts the IBInspectors protocol, which declares the ok:,
revert: and wantsButtons: methods.

This interface file then declares two instance variables, theSlider and theTextField. These
variables correspond to the two outlets that you added using Interface Builder's Class
Inspector. Finally, the file declares the init method, which is described in the next section.

ProgressViewlnspector.m

This file contains the implementation of the methods declared in
Progress ViewInspector.h.

#import "ProgressViewInspector.h"
#import "ProgressView.h"

@implementation ProgressViewInspector

18·22 Chapter 18: Building a Custom Palette

- init

char buf[MAXPATHLEN + 1];
id bundle;

[super init];

bundle = [NXBundle bundleForClass: [ProgressView class]];
[bundle getPath:buf

forResource:"ProgressViewlnspector"
of Type : "nib"] ;

[NXApp loadNibFile:buf
owner: self
withNarnes:NO
frornZone: [self zone]];

return self;

- ok:sender

if (sender == theSlider) {
[object setStepSize: [theSlider intValue]];
[theTextField setlntValue: [theSlider intValue]];

else if (sender == theTextField) {
[object setStepSize: [theTextField intValue]];
[theSlider setlntValue: [theTextField intValue]];

return [super ok: sender] ;

- revert:sender

int step;

step = [object stepSize];
[theSlider setlntValue:step];
[theTextField setlntValue:step];
return [super revert:sender];

- (BOOL)wantsButtons

return NO;

Editing the ProgressViewlnspector Class Files 18-23

The init method initializes a newly allocated ProgressViewInspector. As in all init ••.
methods, the chain of initializations is maintained through a message to the superclass
(IBInspector) to initialiie itself.

Next, the inspector's user interface is loaded from the appropriate nib file; however, since
the palette file could be located anywhere, you have to enlist the services of an NXBundle
object to find the proper directories to search. The NXBundle object is initialized on the
directory that provided the code for the ProgressViewInspector class. Given the user's
language preferences, the nib file will be sought in one of its subdirectories (for example,
English.lproj, French.lproj, etc.). In contrast, if you were to try to load the nib file by
sending a loadNibFile: .•. message, Interface Builder's file package would be searched for
the nib file. (See the NXBundle class specification for more information.)

When the nib file is loaded, the inspector's theSlider and theTextField outlets are
automatically initialized to the id's of the appropriate objects from the nib file. (In addition,
the ProgressViewInspector's object outlet is set to the id of the ProgressView that the user
has selected.)

The ok: and revert: methods synchronize the values in the inspector panel with each other
and with the object being inspected. When a user acts on the slider, for example, an ok:
message is sent to the ProgressViewInspector. The inspected object's step size is set to the
value of the Slider object, and then the TextField's value is made to match that of the Slider.

The revert: method asks the selected Progress View for its current step size and then sends
messages to the Slider and TextField to reflect this value. The implementation of each
method ends by invoking the IBInspector class's implementation of the identical method:

return [super ok: sender] ;

return [super revert:sender];

In the ok: and revert: methods of inspector classes you write, remember to invoke the
IBInspector class's ok: and revert: methods, as demonstrated here. This is required for the
correct operation of inspectors.

Besides being sent when the user clicks Revert, a revert: message is sent to the
ProgressViewInspector whenever the user selects a ProgressView and the inspector is
open. This lets the inspector update its controls so that they reflect the state of the
inspected object.

Interface Builder sends a wantsButtons: message to the ProgressViewInspector to
determine if OK and Revert buttons should appear in the Inspector panel. Most Inspectors
won't need these buttons; rather, a user's actions in the panel will immediately and visibly
change the state of the inspected object, as in this example.

18-24 Chapter 18: Building a Custom Palette

Modifying the ProgressView Class Files

As mentioned earlier, Interface Builder identifies the inspector for a selected object by
sending the object an inspectorName message. Since you've created an inspector for
Progress View objects, it's time to add this method to the Progress View class files.

In Progress View.h, add this declaration:

- (canst char *)getlnspectarClassName;

In Progress View.m, add the implementation of the inspectorN arne method:

- (canst char *)getlnspectarClassName

return "PragressViewlnspectar";

Compiling and Testing the Inspector

After saving the class and nib files, use Project Builder's Build command to compile the
project. When the process is finished, you can load the new palette file,
ProgressPaiette.paiette. (Remember that only one version of a given palette can be loaded
at a time. If you already have an older version of the Progress View palette loaded, you'll
have to restart Interface Builder in order to load the new version.)

Once the custom palette is loaded, test its operation by creating a new application that
contains a Progress View and a button, as illustrated here:

Figure 18-6. Testing the Progress yiew Inspector

Modifying the ProgressView Closs Files 18-25

Use the Progress View Inspector to set the step size, and then put the application in test
mode to test the ProgressView's operation.

If the inspector doesn't appear when you attempt to inspect a ProgressView, recheck the
connections in the ProgressViewInspector nib file. (Especially check that the window
outlet is connected to the panel that contains the inspector's user interface).

18-26 Chapter 18: Building a Custom Palette

Index

preprocessor directive 12-22
$ convenience variable indicator 13-48
$_ convenience variable 13-49
$ convenience variable 13-49
@ binary operator 13-43

Add command in Project Builder 2-23
Add Help Directory command in Project Builder

2-22
add-symbol-file GDB command 13-14
Align Left command in Edit 4-33
Align Right command in Edit 4-33
Alignment command in Interface Builder 3-32
alignment in Edit

paragraph 4-33
tab stop 4-22

ANSI C support 11-6
application

adding sound 16-21
building in Interface Builder 3-6
compiling in Interface Builder 15-23
debugging 2-19,8-3, 13-5
development process 1-4
directory 1-8
document extension 1-6
Info panel 17-4
installation 1-8
project in Project Builder 2-4

running 15-24
running in Project Builder 2-19
search path 1-8
See also project

Application menu in MallocDebug 8-8
args GDB command 13-16
arrays, zero-length 11-27
artificial arrays in GDB 13-43
assembler instructions with C expression operands

11-33
attach GDB command 13-18, 13-19
automatic register allocation 11-25

backtrace 13-35
backtrace GDB command 13-35
break GDB command 13-23
breakpoints in GDB

clearing 13-24
conditional 13-26
continuing program execution 13-29
disabling 13-24
executing commands at 13-28
setting 13-23

Bring to Front command in Interface Builder 3-31
browse GDB command 13-69
Build Application command in Project Builder 2-23
bundle project in Project Builder 2-4

Index-1

C compiler 11-3
cc command options See C compiler options
compiling your program for debugging 13-6
GNU extensions to the C language 11-26
GNU general public license 11-41
incompatibilities of GNU CC 11-38
legal considerations 11-41
string constants 11-38

C compiler options 11-3
controlling optimization 11-15
controlling the kind of output 11-4
controlling the link editor 11-20
controlling the preprocessor 11-19
debugging 11-13
requesting or suppressing warnings 11-8
specifying a C dialect 11-6
specifying code-generation conventions 11-21
specifying directories to be searched 11-21

C preprocessor 12-3
commands 12-5
conditionals 12-33
global transformations 12-4
invoking 12-40
options to C compiler 11-19
output 12-40

C programming notes 11-23
automatic register allocation 11-25
external declarations 11-25
function prototypes 11-23
static strings 11-23
string constants 11-23
typedef and type modifiers 11-26

call GDB command 13-50
call stack See stack
casts as Ivalues 11-26
catch GDB command 13-26
cc shell command 11-3
cd GDB command 13-17
Center command in Edit 4-33
Check Spelling command in Edit 4-31
classes

defining in Interface Builder 16-5
Clear Buffer command in Terminal 5-18

Index-2

clear GDB command 13-24
Clear Monitors command in Process Monitor 9-7,

9-9
Close Ancestors command in Edit 4-38
Close command in MallocDebug 8-8
Close Descendants command in Edit 4-38
Command command in Edit 4-27,4-35
commands GDB command 13-28
compiler See C compiler
condition GDB command 13-27
conditional, C preprocessor

with macro 12-36, 12-33
syntax 12-33

constructor expressions 11-28
continue GDB command 13-27, 13-29
Contract All command in Edit 4-35
Contract Sel command in Edit 4-35
convenience variables in GDB 13-48
Copy command in Terminal 5-18
Copy PS command in Edit 4-38
Copy Ruler command in Edit 4-34
core-file GDB command 13-14
core files

debugging 13-64
specifying in GDB 13-14

Cut command in Terminal 5-18

damaged nodes 8-6
data breakpoints in GDB 13-31
data-break GDB command 13-32
DB Modeler application 7-3

command reference 7-10
Debug Application command in Project Builder

2-23
debugging

an already running process 13-18
an application 1-7,8-3,13-5
core files 13-64
Mach threads 13-64
Objective-C 13-60
PostScript code 13-59

define GDB command 13-67
#define preprocessor directive 12-13, 12-15

delete GDB command 13-24
delete breakpoints GDB command 13-25
delete display GDB command 13-26
detach GDB command 13-19
directory GDB command 13-40
disable GDB command 13-25
disable display GDB command 13-26
disassemble GDB command 13-50
display GDB command 13-46
document extension 1-6
document GDB command 13-67
Document Layout command in Icon Builder 6-14
Document menu

in Icon Builder 6-14
in Interface Builder 3-28
in Yap 10-4

down GDB command 13-36
down-silently GDB command 13-36
dump-me GDB command 13-69
dump-strings GDB command 13-69

echo GDB command 13-68
Edit application 4-3

command reference 4-29
command-line options 4-4
and UNIX 4-26
windows 4-12

Edit menu
in Edit 4-31
in Interface Builder 3-30
in Terminal 5-18

#elif preprocessor directive 12-35
#else preprocessor directive 12-35
Emacs

commands in Edit 4-26
GDB interface 13-12
mode in GDB 13-10

enable display GDB command 13-26'
enable GDB command 13-25
end GDB command 13-28, 13-67
entities in DBModeler 7-7

. Entity menu in DBModeler 7-10
environment variables 13-17

#error preprocessor directive 12-37
exec-file GDB command 13-22, 13-14
executable object file 14-15
Execute command

in Yap 10-5
Expand All command in Edit 4-35
Expand Sel command in Edit 4-35
Expansion Dictionary command in Edit 4-38
expression initialization 11-28
expressions in GDB 13-42
extension 1-6
external declarations and the C compiler 11-25

file extension 1-6, 11-4
file GDB command 13-14
File window in Interface Builder 3-5, 3-8, 15-9,

16-4
Classes display 3-10,3-20, 16-5
First Responder icon 3-9
Images display 3-16, 16-4, 16-19
Sounds display 3-16, 16-21

file's owner object 3-8
Files menu in Project Builder 2-23
Find menu

in Edit 4-32
in Terminal 5-19

Find Panel command
in Edit 4-14

finish GDB command 13-30
First Responder object in Interface Builder 3-9
flush

GDB command 13-60
PostScript operator 10-8

Font command in Interface Builder 3-30
Font menu

in Edit 4-33
in Terminal 5-20

Font Panel command in Terminal 5-20
Format menu

in Edit 4-32
in Icon Builder 6-14
in Interface Builder 3-30

forward-search GDB command 13-40

Index-3

frame GDB command 13-35,13-36
function

inline 11-32
non-static inline 11-33
pointer arguments 11-30
pointer to 11-28

function prototypes 11-23

garbage detection 8-6
GDB 13-5

breakpoints See breakpoints in GDB
convenience variables 13-48
customizing 13-13, 13-66
data breakpoints 13-31
data display 13-41, 13-46
and Edit 4-29
Emacs editing mode 13-10
files to debug, specifying 13-8, 13-14
legal considerations 13-69
memory, examining 13-44
output format 13-43
program execution 13-15, 13-29, 13-64
registers 13-49
signals 13-20
source files 13-37, 13-40
stack See stack and stack frame
stepping 13-30
value history 13-47
variable assignment 13-65
See also debugging

GDB command in Edit 4-29
gdb shell command 13-7
.gdbinit file 13-13

preventing execution of 13-9
GNU C preprocessor See C preprocessor
GNU CC See C compiler
GNU debugger See GDB
GNU Emacs See Emacs
GNU general public license 11-41
gprof shell command 11-13
Group command in Interface Builder 3-31
Group in ScrollView command in Interface Builder

3-31

Index-4

handle GDB command 13-21
hanging indent in Edit 4-21
header files 12-6

multiple inclusion of 12-8
precompiled 12-9

Help Builder command in Interface Builder 3-33
Help Builder panel in Interface Builder 3-22
help GDB command 13-67
Help menu in Edit 4-34
help, providing in applications 3-19,3-22
Hide Grid command in Interface Builder 3-32
Hide Links command in Edit 4-31
Hide Markers command in Edit 4-34
Hide Non Apps command in Process Monitor 9-8
Hide Ruler command in Edit 4-34

icon
adding in Interface Builder 16-19
creating 6-3
editing 6-5

Icon Builder application 6-3
command reference 6-13

identifier names 11-30
#if preprocessor directive 12-33
ignore GDB command 13-27
image files in Project Builder 2-12
Image Inspector in Interface Builder 16-20
#import preprocessor directive 12-6
#include preprocessor directive 12-6
indentation in Edit 4-9,4-21
info GDB command

address 13-51, 13-54
args 13-37, 13-54
breakpoints 13-22, 13-54
catch 13-54
classes 13-55, 13-61
copying 13-55
display 13-47, 13-55
files 13-14, 13-55, 13-64
float 13-55
frame 13-37, 13-55
functions 13-51, 13-55

line 13-39, 13-55, 13-61
locals 13-37, 13-55
program 13-55
registers 13-49, 13-55
selectors 13-56, 13-61
set 13-56
signals 13-21, 13-56
source 13-56
sources 13-51, 13-56
stack 13-56
target 13-56
terminal 13-56
types 13-51, 13-56, 13-61
user 13-56
variables 13-51, 13-56
warranty 13-56
watchpoints 13-56

Info menu in Terminal 5-16
Info panel

adding to an application 17-4
initializer, non-constant 11-28
Insert Field command in Edit 4-38
Insert Link command in Edit 4-34
Insert Marker command in Edit 4-34
Inspector command in Icon Builder 6-15
Inspector panel in Interface Builder 3-5

Button Inspector 15-14
Class Inspector 16-6, 16-15
Image Inspector 16-20
Sound Inspector 16-21
Window Inspector 15-15

Interface Builder application 3-3
alignment grid 15-17
Alignment panel 3-13
application, building 3-6
application, compiling 15-23
application, running 15-24
application, testing 3-24, 15-19
application programming interface 3-4
attributes, setting 3-14
Button Inspector 15-14
class, defining 3-20, 16-5
Class Inspector 16-6, 16-15

command reference 3-28
connections, setting 3-16
custom palette, adding 3-26
custom palette, building 18-3
File window 3-5, 3-8
file's owner object 3-8
First Responder object 3-9
help, attaching 3-22
help attachments, reviewing 3-19
icon, adding 16-19
Image Inspector 16-20
Info panel, adding 17-4
Inspector panel 3-5, 15-14
interface, testing 15-19
layout commands 3-13
layouttools 15-16
makefiles 15-21
matrix, editing 15-18
multiple nib files 17-3
nib file 3-7
object, adding and editing 15-10
object, attaching help 3-22
object, editing text of 15-13
object, inspecting 3-14
objects, connecting 16-9
overview 3-5
Palettes window 3-5, 15-10
preferences, setting 3-25
project components 15-20
sound, adding 16-21
Sound Inspector 16-21
Sounds window 16-21
subclass, defining 16-5
submenu, adding 16-14
tutorials 15-3, 16-3, 17-3, 18-3
view objects, manipulating 3-12
view objects, setting size and position of 3-18
Window Inspector 15-15

interface files in Project Builder 2-12

jump GDB command 13-65
Jump to Selection command in Terminal 5-19

Index-5

kattach GDB command 13-20
kill GDB command 13-14"
kreboot GDB command 13-20

Layout menu in Interface Builder 3-31
LC_IDFVMLIB load command 14-13
LC_LOADFVMLIB load command 14-13
LC_SEGMENT load command 14-6
LC_SYMTAB load command 14-10
LC_THREAD load command 14-12
LC_UNIXTHREAD load command 14-12
ld shell command See link editor
Line Range command in Edit 4-32
Link Inspector command in Edit 4-31
Link Menu in Edit 4-31
list GDB command 13-38
load commands in object file

LC_IDFVMLIB 14-13
LC_LOADFVMLIB 14-13
LC_SEGMENT 14-6
LC_SYMTAB 14-10
LC_THREAD 14-12
LC_UNIXTHREAD 14-12

load GDB command 13-15
Load Palette command in Interface Builder 3-33
Load Tool command in Icon Builder 6-15
load-file GDB command 13-15
localization 2-4
lvalues 11-26

Mach
debugging threads 13-64
Inspector in Process Monitor 9-5
object file 14-3

Mach-O file format 14-3
macro arguments, C preprocessor

inside string constants 11-38
macro, C preprocessor

arguments See macro arguments
cascaded use 12-31
with conditional 12-36
duplication of side effects 12-27

Index-6

expansion 12-13, 12-15
pitfalls and subtleties 12-24
predefined 12-17, 12-19
redefining 12-24
self-referential 12-28
simple 12-13
stringification 12-20
undefining 12-23
unsafe 12-27

macro arguments, C preprocessor 12-15
concatenation 12-22
inside string constants 12-32
separate expansion of 12-29

Make ASCII command in Edit 4-33
Make Column command in Interface Builder 3-32
make GDB command 13-69
Make Global command in Project Builder 2-23
Make Localizable command in Project Builder 2-23
make program 1-6,2-15

dependencies 11-19
Make Rich Text command in Edit 4-33
Make Row command in Interface Builder 3-32
makefile 1-6, 15-21

preamble and postamble 2-17, 15-22
Malloc Inspector in Process Monitor 9-6
MallocDebug application 8-3

command reference 8-7
manifest constants 12-13
Manual command in Edit 4-37
margins in Edit 4-20,4-21
Match command in Edit 4-37
memory

examining in GDB 13-44
finding leaks 8-6
usage 8-7,9-7

Model menu in DBModeler 7-10
models in DB Modeler 7-4
Monitor menu in Process Monitor 9-9

Nest command in Edit 4-33
New Application command in Interface Builder

3-28

New Attention Panel command in Interface Builder
3-29

New command
in Terminal 5-16

New command in Project Builder 2-22
New Empty command in Interface Builder 3-29
New Info Panel command in Interface Builder 3-29
New Inspector command in Interface Builder 3-29
New Layout command in Icon Builder 6-14
New Module command in Interface Builder 3-28
New Palette command in Interface Builder 3-29
New Subproject command in Project Builder 2-22
Next Field command in Edit 4-38
next GDB command 13-30
nexti GDB command 13-31
nib file 3-4, 3-7

multiple 17-3
owner 3-8
run-time behavior 3-9

Obese Bits command in Icon Builder 6-15
object file 14-3

executable 14-15
header 14-4
relocation infonnation 14-14

Objective-C
debugging 13-60

objects in Interface Builder
adding and editing 15-10
connecting 16-9
editing text of 15-13

Open command
in MallocDebug 8-8
in Project Builder 2-22

Open Folder command in Edit 4-30
Open in Workspace command in Project Builder

2-23
Open Makefile command in Project Builder 2-22
Open Selection command in Edit 4-30
openfile shell command 4-12
optimization 11-15
orderwindow PostScript operator 10-7
otool shell command 14-17

output fonnat in GDB 13-43
output GDB command 13-68

Page Layout command
in Edit 4-32
in Interface Builder 3-30

palette project in Project Builder 2-4
Palettes window in Interface Builder 3-5, 15-10
Paste and Link command in Edit 4-31
Paste command in Terminal 5-18
Paste Ruler command in Edit 4-34
path environment variable 1-8
path GDB command 13-15
pft utility 10-5
Pipe command in Edit 4-27,4-36
PostScript code

debugging 13-59
Display PostScript Inspector in Process

Monitor 9-6
previewing 10-3

#pragma preprocessor directive 12-38
preamble file 2-17
precompiled header files 12-9

creating 12-10
troubleshooting 12-11

Preferences command in Edit 4-5
C options 4-10
global options 4-7
temporary settings 4-8
text options 4-9
user options 4-6

Preferences command in Terminal 5-4
emulation preferences 5-7
shell preferences 5-10
window preferences 5-5

preprocessor SeeCpreprocessor
print GDB command 13-41

extended for Objective C 13-62
output fonnats 13-43
value history 13-47

printf GDB command 13-69
print-object GDB command 13-41
printsyms GDB command 13-51

Index-7

process
10 9-5
inspecting 9-4
Mach memory usage 9-5
monitoring 9-3
selecting 9-3

Process Monitor application 9-3
command reference 9-8

Processes menu in Process Monitor 9-8
project 2-3

building 2-14
components 15-20
converting earlier version 2-7
creating 2-5
debugging 2-19
development process 1-4
directory 2-12
files, managing 2-11
Info panel 17-4
makefile 1-6, 15-21
opening 2-7
resource files 1-5
running 2-19
See also application

project attributes 2-8
application 2-8
bundle 2-10
palette 2-11
subproject 2-10

Project Builder application 2-3
build targets 2-15
command reference 2-22
preferences, setting 2-17
project attributes, setting 2-8
project files, managing 2-11

Project menu in Project Builder 2-22
project window in Project Builder 2-6

Attributes display 2-8
Builder display 2-14
Files display 2-11

properties in OBModeler 7-8
Property menu in OBModeler 7-10
prototype, function 11-23

Index-8

ptype GOB command 13-51
pwd GOB command 13-17

quit GOB command 13-8

registers
in GOB 13-49

relocation information in object file 14-14
Remove command in Project Builder 2-23
Resize Window command in Interface Builder 3-33
resource files 1-5
return GOB command 13-66
reverse-search GOB command 13-40
Rich Text Format in Edit 4-9, 4-33
RTF See Rich Text Format in Edit
ruler in Edit 4-20
Run Application command in Project Builder 2-23
run GOB command 13-15

redirecting input and output 13-18

Same Size command in Interface Builder 3-31
Save All command in Edit 4-30
Save As command in Edit 4-30
Save command in Edit 4-30
Save To command in Edit 4-30
search GOB command 13-40
Select in Workspace command in Project Builder

2-23
select-frame GOB command 13-69
Send to Back command in Interface Builder 3-31
set GOB command 13-41, 13-52, 13-63

args 13-52
autoload-breakpoints 13-52
autoload-symbols 13-52
catch-user-commands-errors 13-52
complaints 13-52
confirm 13-52
editing 13-52
environment 13-17, 13-52
history expansion 13-52
history filename 13-53
history save 13-53
history size 13-53

lazy-read 13-53
print address 13-53
print array 13-53
print asm-demangle 13-53
print demangle 13-53
print elements 13-53
print object 13-53
print pretty 13-53
print sevenbit-strings 13-53
print union 13-53
print vtbl 13-53
prompt 13-8, 13-54
radix 13-54
unload-symbols 13-54
variable 13-54
verbose 13-54
view-host 13-54
view-program 13-54

Set Name command in Interface Builder 3-30
set-exit-handler GDB command 13-32
shell GDB command 13-69
Shell menu in Terminal 5-16
show GDB command

args 13-57
autoload-breakpoints 13-56
autoload-symbols 13-57
catch-user-commands-errors 13-57
commands 13-57
complaints 13-57
confirm 13-57
convenience 13-57
directories 13-57
editing 13-57
environment 13-57
history expansion 13-57
history filename 13-58
history save 13-58
history size 13-58
lazy-read 13-58
paths 13-58
print address 13-58
print array 13-58
print asm-demangle 13-58

print demangle 13-58
print elements 13-58
print object 13-58
print pretty 13-58
print sevenbit-strings 13-58
print union 13-59
print vtbl 13-59
prompt 13-59
radix 13-59
unload-symbols 13-59
values 13-59
verbose 13-59
version 13-59
view-host 13-59
view-program 13-59

Show Grid command in Interface Builder 3-32
Show Links command in Edit 4-31
Show Markers command in Edit 4-34
Show Non Apps command in Process Monitor 9-3,

9-8
Show Ruler command in Edit 4-34
shownops GDB command 13-60
showps GDB command 13-60
signal GDB command 13-22
signals in GDB 13-20
silent GDB command 13-28
Size to Fit command in Interface Builder 3-31
Sort command in Project Builder 2-23
sound files in Project Builder 2-12
Sound Inspector in Interface Builder 16-21
Sounds window in Interface Builder 16-21
Source command in Edit 4-36
source files

combining 12-39
examining in GDB 13-37
searching in GDB 13-40
specifying directories in GDB 13-40

source GDB command 13-68
Spelling command in Edit 4-16,4-31
stack

backtrace 13-35
examining 13-34
selecting a frame 13-35

Index-9

stack frame 13-34
information about 13-36
returning from 13-66
selecting 13-35

Start Monitor command in Process Monitor 9-7, 9-9
startup files for GDB 13-13
static strings and the C compiler 11-23
Steal Keys command in Terminal 5-17
step GDB command 13-30

extended for Objective C 13-63
stepi GDB command 13-31
stepping in GDB 13-30
string constants and the C compiler 11-23, 11-38
stringification and macros 12-20
Structure menu in Edit 4-17,4-35
subclass, defining in Interface Builder 16-5
submenu, adding in Interface Builder 16-14
subproject, project in Project Builder 2-4
symbol-file GDB command 13-15
symbol table

examining in GDB 13-50
specifying in GDB 13-15

tabs in Edit 4-22
tags file 4-28, 4-36
target GDB command 13-19

child 13-19
core 13-20
exec 13-20
remote 13-20

tbreak GDB command 13-23
Templates command in Edit 4-24
Terminal application 5-3

command reference 5-16
Test Interface command in Interface Builder 3-29,

15-19
Text command in Interface Builder 3-30
Text menu in Edit 4-33
thread-list GDB command 13-64
thread-select GDB command 13-64
Tools menu in Interface Builder 3-33
tresume GDB command 13-64
tsuspend GDB command 13-64

Index-10

tty GDB command 13-18
Tum Grid On command in Interface Builder 3-32
typedef and type modifiers 11-26

#Undef preprocessor directive 12-23
Undelete command in Edit 4-31
undisplay GDB command 13-47
Ungroup command in Interface Builder 3-31
UNIX

displaying manual pages in Edit 4-37
piping output into Edit 4-27
shell 5-4
using a tags file in Edit 4-28
utility commands in Edit 4-35

Unnest command in Edit 4-33
unset environment GDB command 13-17
until GDB command 13-31
unview GDB command 13-37
up GDB command 13-36
Update command in Process Monitor 9-4,9-8
Update Directory command in Edit 4-38
up-silently GDB command 13-36
User Commands menu in Edit 4-27,4-36
User Pipes menu in Edit 4-27,4-36
Utilities menu in Edit 4-35

value history in GDB 13-47
variable attributes 11-31
variables in GDB

altering values 13-65
convenience variables 13-48
environment variables 13-17
program variables 13-42

view GDB command 13-37
void, pointer to 11-28
VT100 emulation 5-3

#Warning preprocessor directive 12-37
watch GDB command 13-31
whatis GDB command 13-51
where GDB command 13-35
whereis GDB command 13-50
Window Inspector in Interface Builder 15-15

window PostScript operator 10-6
Window Server interface 10-5
windowdeviceround PostScript operator 10-7

x GDB command 13-44

Yap application 10-3
command reference 10-4

Index-11

NeXTSTEP Programming

NEXTSIEP DEVELOPMENT TOOlS AND TECHNIQUES:
RELEASE 3

NeXTSTEP is the object-oriented programming environment that speeds the development of all kinds of software-from mission­

critical custom applications for business to advanced research projects for academia. NeXTSTEP offers building blocks that

implement essential behavior in a variety of application areas-including database management, telecommunications and

networking, and high-quality 20 and 3D graphics.

NeXTSTEP Development Tools and Techniques provides an overview of the appl ication development process and describes the

essential tools found in the NeXTSTEP development environment:

• Project Builder and Interface Builder • Program analysis tools

• The NeXT compiler, preprocessor, and debugger • Yap, the interactive PostScript previewer

• Edit, the NeXT mouse-based editor • Terminal, the NeXT VT100 terminal emulator

• Icon Builder, the application icon editor • Mach object fi les

The NeXTSTEP Developer's library is essential reading for every NeXTSTEP enthusiast, providing authoritative, in-depth

descriptions of the NeXTSTEP programming environment. Other titles in the NeXTSTEP Developer's Library include:

• NeXTSTEP General Reference: Release 3, Volumes 1 and 2 • NeXTSTEP Operating System Software: Release 3

• NeXTSTEP User Interface Guidelines: Release 3 • NeXTSTEP Programming Interface Summary: Release 3

• NeXTSTEP Object-Oriented Programming and the

Objective C Language: Release 3

• NeXTSTEP Network and System Administration: Release 3

NeXT develops and markets the industry-acclaimed NeXTSTEP object-oriented software for industry-standard computer architectures.

NEXTSTEP
Obj ec t Or ie 1lt e d Soft ware

9 780201 632491
ISBN 0-201 -63249-7

Addison-Wesley Publishing Company
US $30.95
CANADA $39.95

