

NeXT Developer’s Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts

A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal ProcesSihg

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts

An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference

Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

NeXT Operating System Software

A description of NeXT’s operating system, Mach. In addition, other low-level
software is discussed.

Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

> Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

Supplemental Documentation

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2915.00]

The NeXT logo is a registered trademark of NeXT Computer, Inc., in the U.S. and other countries. NeXT is a trademark of NeXT
Computer, Inc. Adobe, Display PostScript, and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a
registered trademark of AT&T. Times is a registered trademark of Linotype AG and/or its subsidiaries and is used herein pursuant
to license. Sun and NFS are registered trademarks of Sun Microsystems, Inc. All other trademarks mentioned belong to their
respective owners.
Notice to U.S. Government End Users:
Restricted Rights Legends
For civilian agencies: This software is licensed only with “Restricted Rights” and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software—Restricted Rights clause at
52.227-19 of the Federal Acquisition Regulations.

Unpublished—rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Production by Jennifer Yu and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

Introduction

Adobe Font Metric Files Specification, Version 2.0
Adobe Systems Incorporated

Character Bitmap Distribution Format Specification, Version 2.1
Adobe Systems Incorporated

Display PostScript System: Client Library Reference Manual
Adobe Systems Incorporated

Display PostScript System: Perspective for Software Developers
Adobe Systems Incorporated

Display PostScript System: pswrap Reference Manual
Adobe Systems Incorporated

Encapsulated PostScript Files Specification, Version 2.0
Adobe Systems Incorporated

PostScript Language: Color Extensions
Adobe Systems Incorporated

PostScript Language: Composite Font Extensions
Adobe Systems Incorporated

PostScript Language: Extensions for the Display PostScript System
Adobe Systems Incorporated

Rich Text Format Specification
Microsoft Corporation

Introduction

This r%danual, Supplemental Documentation, is part of a collection of manuals called the
NeXT = Developer’s Library; the illustration on the first page shows the complete set of
manuals in this Library.

Primarily, Supplemental Documentation contains a series of papers from Adobe Systems
Incorporated, describing various aspects of the PostScript® system. The manual also
contains the Rich Text Format® Specification from Microsoft Corporation.

The specification for one of the file formats used with NeXT computers—TIFF—isn’t
contained in this manual. If you’re interested in learning more about the TIFF format, the
Aldus TIFF Developer’s Toolkit (which includes the Tag Image File Format Specification
and supplementary documentation, as well as sample files and utility software on disk) is
available from Aldus Corporation. For more information, contact the Aldus Developers
Desk at (206)628-6593.

Copyright © 1987-1990 by Adobe Systems Incorporated.
All rights reserved.
Reprinted with permission of Adobe Systems Incorporated.

ADOBE® FONT METRIC FILES
Specification
Version 2.0

POSTSCRIPT

January 16, 1989
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5004

Copyright © 1989, 1988, 1987 by Adobe Systems Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

PostScript and Adobe are registered trademarks of and the PostScript logo is a trademark of Adobe
Systems Incorporated.

The information herein is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.
The software described in this book is furnished under license and may only be used or copied in ac-
cordance with the terms of such license.

POSTSCRIPT

ADOBE FONT METRIC FILES
Specification
Version 2.0

January 16, 1989
PostScript® Developer Support Group
(415) 961-4111

INTRODUCTION

This document describes a standard interchange format for communicating font metric
information to people and programs. The format is ASCII encoded (for both human and
machine readability), machine independent, and extensible. Files in this format are known
as Adobe® Font Metrics (AFM) files and are available for all of Adobe Systems’s
PostScript fonts.

PARSING DETAILS

Each AFM file contains the information for one PostScript printer font. The file begins with
global information pertaining to the font as a whole, followed by sections with character
metrics, kerning data (optional) and composite character data (optional). The file format is
line-oriented, each line beginning with a property (key) name, followed by the values for
that property. Keys and values are separated by one or more white space characters (space
or tab).

The format is:

Key value value ...
Key names are case-sensitive. All keys beginning with a capital letter are reserved for use
by Adobe Systems; user-defined non-standard entries should begin with a lowercase letter.

The Adobe Systems standard keys are detailed below, but other keys are allowed and
should be ignored by programs not recognizing them.

Values will be one of the following: string, name, number, integer or boolean.

* Strings are terminated by the end of line.

» Names are similar to strings except that they may not contain any white space characters;
they are terminated by white space characters or by a special termination character (see
section on ‘‘Character Metrics’’ below).

* Numbers, integers and booleans are separated by white space characters, which may be
space, newline, or tab.

* A number can be either a real number or an integer, and both must be allowed for.

¢ A boolean is either the value true or false.

©1988 Adobe Systems Incorporated. All rights reserved. 3

2.1

3.1

COMMENTS

Comments may be present in a font metric file. They are introduced by the keyword
Comment, and are terminated by the end of line. Lines should be no longer than 255
characters under any circumstances.

Comment string
The text is arbitrary, and should be ignored.

FILE STRUCTURE

An AFPM file has several sections, each of which is delimited by a Start and End keyword.
The main section contains a “header” of global font information, and each of the other
sections of the file is hierarchically one level down from the main section.

StartFontMetrics version
EndFontMetrics

These comments delimit the entire font metrics file. The StartFontMetrics line should be
the first line in the file, and the EndFontMetrics keyword should be the last line in the file.

GLOBAL FONT INFORMATION

The following global font keys are the same as those in the top level or FontInfo
subdictionary of an Adobe Systems PostScript font dictionary. Their meanings are
described in the chapter on fonts in the PostScript Language Reference Manual. Please note
that although some of the keys in the PostScript FontInfo subdictionary begin with a
lowercase letter (e.g., isFixedPitch, version) all keys listed here begin with uppercase
letters to distinguish them as keys reserved for use by Adobe Systems. All numeric values
are in the character coordinate system (1000 units per em).

FontName string

Name of the font as presented to the PostScript findfont operator.
Example: Garamond-Light.

FullName string
The full text name of the font. Example: ITC Garamond Light.

FamilyName string

The name of the *‘font family’* to which the font belongs.
Example: ITC Garamond.

Weight string
Weight of the font. Example: Roman, Bold, Light, etc.

ItalicAngle number

Angle (in degrees counter-clockwise from the vertical) of the dominant vertical strokes of
the font.
Example: -12.

©1988 Adobe Systems Incorporated. All rights reserved.

IsFixedPitch boolean
If boolean is true, this indicates that the font is a fixed pitch (monospaced) font. A value
of false indicates a proportionally spaced font.

FontBBox /Ix lly urx ury

Four numbers giving the lower left corner and the upper right corner of the font bounding
box. Note: the bounding box given here is that of the flattened paths, not the Bezier curve
descriptions. These values are all integers, and should be rounded off if necessary.

UnderlinePosition number
Distance from the baseline for centering underlining strokes.

UnderlineThickness number

This is the stroke width for underlining, expressed in character coordinate space
(proportional to the font characters). It should be adjusted for point size by any application
wishing to perform underlining.

Version string
Font version identifier. Matches the string found in the FontInfo dictionary of the font itself.

Notice string
Font name trademark or copyright notice.

EncodingScheme string
String indicating the default encoding vector for this font. The most common one is
AdobeStandardEncoding. Special fonts may simply state FontSpecific.

CapHeight number

Top of capital H, measured in character coordinate system.

XHeight number

Top of lower case x, measured in character coordinates.

Ascender number
Top of lower case d.

Descender number
Bottom of lower case p.

INDIVIDUAL CHARACTER METRICS

Each character’s metrics consists of a list of keys and values separated by semicolons; the
metrics for a given character will always be contained in one line. The characters are sorted
by numerically ascending character code. Unencoded characters follow the encoded
characters and are identified by character codes of -1.

Example: A character metric data line might look like this:

C 102; WX 333; Nf; B210382685; Lifi; L Ifl,

©1988 Adobe Systems Incorporated. All rights reserved. 5

5.1

StartCharMetrics integer
EndCharMetrics

These comments introduce (and conclude) the character metrics section of the file. The
integer value indicates how many individual characters to expect.

C integer
Decimal value of defauit PostScript character code (-1 if unencoded).

WX number
Character width in x (y is 0).

w numberx numbery

Character width vector (x,y)

N name
PostScript character name.

B lix lly urx ury

Character bounding box where llx, lly, urx, and ury are all numbers.

L successor ligature

Ligature sequence where successor and ligature are both names. The current character may
join with the character named successor to form the character named ligature. Note that
characters may have more than one such entry. (See example above.)

KERNING DATA

The kerning data section is optional; it may or may not be present for a given font. The
section is surrounded by the lines StartKernData and EndKernData. Kerning data is
supplied in two forms: track kerning and pair-wise kerning. Track kerning is applied to all
characters uniformly whereas pair-wise kerning is applied to specific character pairs. Track
kerning and pair-wise kerning may be used independently or together (i.e., it is possible to
apply track kerning to a line of text and then to apply pair-wise kerning on top of that). The
two forms of kerning data are treated as subsections within the kerning data section and
both sections need not be present.

StartKernData
EndKernData

These comments introduce (and conclude) the kerning section of the file.

TRACK KERNING
The track kerning data is surrounded by the lines:

StartTrackKern integer
EndTrackKern

Where integer indicates how many different sets of track kerning data are present.

©1988 Adobe Systems Incorporated. All rights reserved.

Normally track kerning is provided in different degrees of tightness. Within a track (a
degree of tightness), the amount to decrease (or possibly increase) the amount of space
between characters increases (or possibly decreases) with the point size of the font (e.g., for
tight track kerning, the amount to decrease the space between characters at 6 point might
be 0.1 points and at 72 point it might be 3.78 points).

The data itself begins with the key TrackKern and is followed by the track kerning
information:

TrackKern degree min-ptsize min-kern max-ptsize max-kern

The degree is an integer where increasingly negative degrees represent tighter track kerning
and increasingly positive degrees represent looser track kerning. min-pt-size, min-kern-
amt, max-pt-size and max-kern-amt are all numbers. Since the track kerning is a linear
function, the minimum and maximum cut-off values (point sizes) are provided along with
the amount to track kern by at the point size. The kerning amounts are given relative to the
point size. From those 4 values, the track kerning function can be derived. The track
kerning function is a linear function. The equation for the line can be determined from the
data provided and, therefore, the track kerning values for any point size can be determined.
The track kerning values for any point size below/above the minimum/maximum point size
are constant (the minimum kerning amount/maximum kerning amount).

In general the track kerning function is as follows:

TrackKern degree p, k, p; k;

Where x = current point size

Where k 1= max-kern-amt, k0 = min-kern-amt
Where p 1= max-pt-size, Py= min-pt-size

fx)=k, forx < p,

Sfix) = (kj-ko)*x+(k0*p1—k1*p0) forpy < x < p;
(PI _po) (PI "Po)

flx)=k; forx>p,

See the last section of this document for a good example of these keywords in use.
Below is a sample of text printed using these track kerning values.

©1988 Adobe Systems Incorporated. All rights reserved. 7

Figure 1: Track Kerning

6 pt
no kerning An iﬁ’umﬁon of how track kerning works.
light kerning An illustration of how track kerning works.
medium kerning An illustration of how track kerning works.
tight kerning An jllustration of how track kerning works.

12 pt
wkeming An illustration of how track kerning works.
ismkerming AN illustration of how track kerning works.
medumkerming AN illustration of how track kerning works.
ugkerming AN illustration of how track kerning works.

18 pt
«eans AN illustration of how track kerning works.
wenns AN 11lustration of how track kerning works.
nawnienns ALl 11lustration of how track kerning works.
aenns AN illustration of how track kerning works.

©1988 Adobe Systems Incorporated. All rights reserved.

5.2

PAIR-WISE KERNING

The pair-wise kerning data is surrounded by the lines:

StartKernPairs integer
EndKernPairs
Where integer indicates how many pairs to expect.

There will be one kerning pair per line. Each line will begin with a keyword of the form KP
or KPX.

KP name y name, numberx numbery

Name of the first character in the kerning pair followed by the name of the second character
followed by the kerning vector specified as an (x,y) pair. The kerning vector is the amount
to move the second character by relative to the first character to position it properly. The
kerning vector is specified in the character coordinate system. In order to use this vector it
is necessary to transform it into user space and scale it by the point size in use. The best
way to do this is to use the FontMatrix entry in the current font dictionary.

KPX name ; name, number,,

Name of the first character in the kerning pair followed by the name of the second character
followed by the kerning amount in the x direction (y is zero). The kerning amount is
specified in the units of the character coordinate system.
A character pair kerning line might look like this:

KPXV A -129

Below is an example of pair-wise kerning applied to 100 point characters:

Figure 2: Pair-wise kerning

VA VA

P u—
-12.9
Characters printed without kerning Pair-wise kerning applied

COMPOSITE CHARACTER DATA

The composite character data section is also optional. Composite characters are new
characters that are made up of characters already existing in the font, such as accented
characters. Character metric information for composite characters is found in the Character
Metrics section of the AFM file. Although most PostScript fonts available from Adobe

©1988 Adobe Systems Incorporated. All rights reserved. 9

Systems include a rather extensive set of composite characters, some applications may wish
to generate their own. This section provides the data necessary for accurate positioning of
the individual pieces. All units are expressed in the 1000 unit-per-em character coordinate
system.

StartComposites integer
EndComposites
Where integer indicates how many pairs to expect.

The data for each composite character is represented as a list of keys and values separated

by semicolons. Each composite character gets one line of description. The standard keys
are:

CC name integer
The composite character name followed by the number of parts that make up the composite.

PCC name deltax deltay

One of the parts of the composite character. The character name is given followed by the x
and y displacement from the origin.

A composite character line might look like this:

CC Aacute 2; PCC A0 0; PCC acute 194 214;

Figure 3: Example of positioning for a composite charactei"

. -
s

Positioning of Positioning of Composite Aacute
character A character acute

©1988 Adobe Systems Incorporated. All rights reserved.

7. EXAMPLE FILE

The following is an example of an AFM file for Times Roman, although some of the data
have been omitted to keep it short.

StartFontMetrics 2.0

Comment Copyright (c) 1984 Adobe Systems Incorporated.
Comment All Rights Reserved.

FontName Times-Roman

FullName Times Roman

FamilyName Times

Weight Medium

ItalicAngle 0.0

IsFixedPitch false

UnderlinePosition -98

UnderlineThickness 54

Version 001.000

Notice Times is a trademark of Allied Corporation.
EncodingScheme AdobeStandardEncoding
FontBBox -167 -252 1004 904

CapHeight 673

XHeight 445

Descender -219

Ascender 686

StartCharMetrics 210
C32;WX250;Nspace;B0000;

C 33; WX 333; N exclam ; B 128 -17 240 673 ;
C 34 ; WX 408 ; N quotedbl ; B 46 445 313685 ;
C 35; WX 500 ; N numbersign ; B 20 -17 481 673 ;
C 36 ; WX 500 ; N dollar ; B 45 -92 456 726 ;

C 37 ; WX 833 ; N percent ; B 63 -36 771 655 ;

. . . == lines omitted for brevity --
C101;WX444;Ne;B24-17 416 469;
C102; WX333;Nf;B210382685;Lifi;LIfl;
C 103 ; WX 500; N g; B 24 -220 469 468 ;

C 104 ; WX500;Nh;B 110487 686;
C105;WX278;Ni;B250255685;

C 106 ; WX 278 ;Nj;B-56-217 205 685 ;

C 107 ; WX 500;Nk;B70496 686 ;

... == lines omitted for brevity --

C 248 ; WX 278 ; N islash ; B0 0283 685 ;

C 249 ; WX 500 ; N oslash ; B 30 -104 469 566 ;
C 250 ; WX 722;Noe;B30-10684 462 ;

C 251 ; WX 500 ; N germandbls ; B 13 0 468 686 ;
C-1; WX 722 ;N Aacute ; B22 0702 873 ;

C -1; WX 722 ; N Acircumflex ; B 22 0 702 875 ;
C-1; WX 722 ;N Adieresis ; B22 0702 819 ;

.. . - lines omitted for brevity --

EndCharMetrics
StartKernData

StartTrackKern 3

Comment Light kerning

©1988 Adobe Systems Incorporated. All rights reserved. 1

12

TrackKern -1 14 072 -1.89
Comment Medium kerning
TrackKern-280 72 -3.2
Comment Tight kerning
TrackKern-36 -.1 72 -3.78
EndTrackKern
StartKernPairs 2

KPXV A -129

KPXAY -92
EndKernPairs
EndKernData
StartComposites 1

CC Aacute 2; PCC A 0 0; PCC acute 194 214;
EndComposites
EndFontMetrics

©1988 Adobe Systems Incorporated. All rights reserved.

CHARACTER BITMAP DISTRIBUTION FORMAT
Specification
Version 2.1

POSTSCRIPT

January 16, 1989
PostScript® Developer Support Group

Adobe Systems Incorporated

Corporate Headquarters One New England

1585 Charleston Road PO Box 7900 Executive Park

Mountain View, CA 94039-7900 Burlington, MA 01803

(415) 961-4400 (617) 273-2120

Adobe Systems Europe B.V. Adobe Systems Japan

Office Centre Aoyama Dai-ichi Tanaka Bldg. 5F
Jozef Israélskade 48¢ 2-1-5 Shibuya, Shibuya-ku

1072 SB Amsterdam, Netherlands Tokyo 150, Japan

31-20-767-661 03-486-4656

PN LPS5005

Copyright © 1989, 1988, 1987 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Systems Incorporated.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

POSTSCRIPT

1.1

1.2

CHARACTER BITMAP DISTRIBUTION FORMAT
Specification
Version 2.1

January 16, 1989
PostScript® Developer Support Group
(415) 961-4111

INTRODUCTION

This document describes Adobe Systems’s character bitmap distribution format. The
format is intended to be easily understood by both humans and computers. The format
described in this document is subject to change without prior notification.

TAPE FORMAT

These character bitmaps are typically distributed on magnetic tape. Each tape is 1600 BPI,
nine track, unlabeled, and contains two or more files. Each file is followed by an EOF mark.
The last file on the tape is followed by two EOF marks. Physical records contain 512 bytes.
The last physical record in a file (preceding an EOF mark) may contain fewer than 512
bytes.

Each file is encoded in the printable characters (octal 40 through 176) of USASCII plus
carriage return and linefeed. Each file consists of a sequence of variable-length lines. Each
line is terminated by a carriage-return (octal 015) and line-feed (octal 012). The first file on
the tape is the Adobe Systems Copyright notice. Following files are font files. The format
of font files is described in the following sections.

Note:
Font tapes may also be obtained in UNIX tar format. Be sure to specify tar format
if desired. No other tape formats are currently supported by Adobe Systems.

FILE FORMAT

Character bitmap information is distributed in an USASCII encoded, human readable form.
The information about a particular family and face at one size and orientation is contained
in one file. The file begins with information pertaining to the face as a whole, followed by
the information and bitmaps for the individual characters.

A font bitmap description file has the following general form, where each item is contained
on a separate line of text in the file. Items on a line are separated by spaces.

GLOBAL HEADER INFORMATION

¢ The word STARTFONT followed by a version number indicating the exact file format
used (for example, 2.1)

¢ One or more lines beginning with the word COMMENT. These lines may be ignored by
any program reading the file.

¢ The word FONT followed by the family name and the face name separated by a
hyphen. This should exactly match the PostScript outline font name.

©1989 Adobe Systems Incorporated. All rights reserved. 3

» The word SIZE followed by the point size of the characters, the x resolution, and the y

resolution of the device for which these characters were intended. All are represented
as integers.

The word FONTBOUNDINGBOX followed by the width in x, height in y, and the x
and y displacement of the lower left corner from the origin. (See the examples in
section 1.3). These are all integers.

Optionally the word STARTPROPERTIES followed by the number of properties (p)
that follow. This is a recent addition to the format. Within the properties list, there may
be p lines consisting of a word for the property name followed by either an integer or
string surrounded by ASCII double quotes (ASCII octal 042). Internal quote characters
are indicated (or “quoted”) by using two in a row. The property section, if it exists, is
terminated by ENDPROPERTIES

THE INDIVIDUAL CHARACTER INFORMATION

The character section is introduced by the word CHARS followed by the number of
character segments (c) that follow. This is an integer value. Error checking is recommended
at the end of the file, to make sure that ¢ characters were actually read and processed. Each
of the ¢ characters is then represented by the following:

The word STARTCHAR followed by up to 14 bytes (no blanks) containing the name of
the glyph. This should correspond to its name in the PostScript outline font’s encoding
vector.

The word ENCODING followed by a positive integer representing the Adobe Standard
Encoding value. If the character is not a member of the Adobe Standard Encoding,
ENCODING is followed by -1 and optionally by another integer specifying the glyph
index.

The word SWIDTH followed by the scalable width in x and y of character. Scalable
widths are in units of 1/1000th of the size of the character, and correspond to the widths
found in AFM files (for outline fonts). If the size of the character is p points, the width
information must be scaled by p/1000 to get the width of the character in printer’s points.
This width information should be considered as a vector indication the position of the
next character’s origin relative to the origin of this character. To convert the scalable
width to the width in device pixels, multiply SWIDTH times p/1000 times r/72 where r
is the device resolution in pixels per inch. The result is a real number giving the ideal
print width in device pixels. The actual device width must of course be an integral
number of device pixels and is given in the next entry.

The word DWIDTH followed by the width in x and y of the character in device units
(pixels). Like the SWIDTH, this width information is a vector indicating the position of
the next character’s origin relative to the origin of this character.

The word BBX followed by the width in x (BBw), height in y (BBh) and x and y
displacement (BBxoff, BByoff) of the lower left corer of the bitmap from the origin of
the character.

The word BITMAP. This introduces the hexadecimal data for the character bitmap.

From the BBX value for A, find A lines of hex-encoded bitmap, padded on the right with
zero’s to the nearest byte (i.e., multiple of 8). Hex data can be turned into binary by

©1989 Adobe Systems Incorporated. All rights reserved.

1.3

taking two bytes at a time, each of which represents 4 bits of the 8-bit value. For
example, the byte 01101101 is two hex digits: 6 (0110 in hex) and D (1101 in hex).

¢ The word ENDCHAR.

¢ The entire file is terminated with the word ENDFONT. If this is encountered before ¢
characters have been read, it is an error condition.

METRIC INFORMATION

The font metrics include both the scalable width (really the width of the corresponding
printer font character) and the character width of the screen font glyph, expressed in pixels.
The scalable width is more accurate, and can be used by applications for keeping track of
roundoff error and compensating in placement.

The following figures best illustrate the bitmap format and character metric information:

STARTCHAR |
ENCODING 106
SWIDTH 3550 &— BBxoff
DWIDTH 8 0 ¢

BBX 922-2 -6

A4

Bw

The Bounding Box is
expressed differently than
other PostScript language
files; the first two are the
width and height, the second
two are the offsets in x and y.
This can bee seen in the
illustration at right.

AL I L3 I IO IR

The character width from the

origin (between + indicators) BByo

is 8 pixels, which has nothing

to do with the actual bits, but

is how far the current point

moves after rendering the BBh
character.)

The bounding box of the bitmap character can be used to predict how much data to read in
the BITMAP section; the first two numbers give the width and height of the bitmap, and
correspond exactly to how much data is supplied. The offset then allows positioning
without repeating lots of white bits (look at the following quoteright character, which
doesn’t have very many bits, but is located far above the baseline. That is what the offset
fields are for):

©1989 Adobe Systems Incorporated. All rights reserved. 5

STARTCHAR quoteright
ENCODING 39
SWIDTH 223 0
DWIDTH S50

BBX 45212

Here the actual bitmap is
much smaller, and the offset
(2 in x, 12 in y) positions the
glyph with respect to its
origin. These bitmaps are
actually both from an italic
font; notice that the character
width of the quoteright leaves
the origin still to the left of
the actual bits after the
character is drawn. Since all
the characters are slanted, the
next one will not interfere.

The bitmap itself is started by the BITMAP keyword and finished with the ENDCHAR
keyword. It is best to “predict” the amount of data needed (using the BBX information) and
use the ENDCHAR as an error-checking method: if you have consumed what you think is
the appropriate amount of data, the very next thing in the file should be ENDCHAR. If not,

RN BBxoff

EBBw5

B W .

.

iEE

nE

BBh |
e

BByoff + _|._

either your parser is in error or the file is not complete (or is incorrect).

The bitmap itself is represented as hexadecimal digits, where each row corresponds to one
row of the character bitmap. The bits are padded out to the nearest byte boundary with 0’s,
and the BBX bounding box information should be carefully consulted to determine how to

extract the data.

©1989 Adobe Systems Incorporated. All rights reserved.

The following is an abbreviated example of a bitmap file containing the specification of two
characters (the j and quoteright from the previous examples):

STARTFONT 2.1
COMMENT This is a sample font in 2.1 format.
FONT Helvetica-BoldOblique
SIZE 8 200 200
FONTBOUNDINGBOX 9 24 -2 -6
STARTPROPERTIES 2
MinSpace 4

Copyright "Copyright (c) 1987 Adobe Systems, Inc."
ENDPROPERTIES
CHARS 2
STARTCHAR j
ENCODING 106
SWIDTH 355 0
DWIDTH 80
BBX922-2-6

BITMAP

0380

0380

0380

0380

0000

0700

0700

0700

0700

OEOO0

OEO0O

0EO00

OE0O0

0EO00

1C00

1C00

1C00

1C00

2C00

7800

F000

E000

ENDCHAR
STARTCHAR quoteright
ENCODING 39
SWIDTH 223 0
DWIDTH50

BBX 45212

BITMAP

70

ENDCHAR
ENDFONT

©1989 Adobe Systems Incorporated. All rights reserved. 7

@ST@@EUE@T

STEM :

Client Library
Reference Manual

ADOBE SYSTEMS
INCORPORATED

Client Library Reference Manual
January 23, 1990

Copyright© 1988-1990 Adobe Systems Incorporated.
All rights reserved.

PostScript and Display PostScript are registered trademarks of
Adobe Systems Incorporated.

Macintosh is a registered trademark of Apple Computer
Incorporated. UNIX is a registered trademark of AT&T
Information Systems. X Window System is a trademark of the
Massachusetts Institute of Technology.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software
described in this document is furnished under license and may only be
used or copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

Written by Amy Davidson.

N

Contents

About This Manual 1

1.1 System-Specific Documentation 2

1.2 Typographical Conventions 2

About The Client Library 4

Overview of the Client Library 6

3.1 Phases of an Application 6

3.2 Header Files 7

3.3 Wrapped Procedures 8

Basic Client Library Facilities 10

4.1 Contexts and Context Data Structures 10
4.2 System-Specific Context Creation 11

4.3 Example of Context Creation 11

4.4 The Current Context 14

45 Sending Code and Data to a Context 14
4.6 Spaces 19

4.7 Interrupts 19

4.8 Destroying Contexts 20

Handling Output From the Context 21

5.1 Call-Back Procedures 21

5.2 Text Handlers 23

5.3 Example Text Handler 23

5.4 Error Handlers 25

5.5 Error Recovery Requirements 26

5.6 Backstop Handlers 27

Additional Client Library Facilities 28

6.1 Chained Contexts 28

6.2 Encoding and Translation 30

6.2.1 Encoding PostScript Language Code 30
6.2.2 Translation 30

6.3 Buffering 31

6.4 Synchronizing Application and Context 32
6.5 Forked Contexts 33

Programming Tips 35

7.1 Using the Imaging Model 37

Example Application Program 39

8.1 Example C Code 40

8.2 Example Wrap 43

8.3 Description of the Example Application 43

9 The dpsclient.h Header File 46
9.1 dpsclient.h Data Structures 46
9.2 dpsclient.h Procedures 48
10 Single-Operator Procedures 56
10.1 Setting the Current Context 57
10.2 Types in Single-Operator Procedures 57
10.2.1 Rules of Thumb 58
10.2.2 Special Cases 60
10.3 dpsops.h Procedure Declarations 61
11 Runtime Support for Wrapped Procedures 73
11.1 More About Sending Code For Execution 73
11.2 Receiving Results 74
11.3 Managing User Names 76
11.4 Binary Object Sequences 77
11.5 Extended Binary Object Sequences 79
11.6 dpsfriends.h Data Structures 80
11.7 dpsfriends.h Procedures 84
A Changes Since Last Publication Of This Document 89
B Example Error Handler 91
B.1 Error Handler Implementation 91
B.2 Description of the Error Handler 93
B.3 Handling PostScript Language Errors 95
C Exception Handling 97
C.1 Recovering From PostScript Language Errors 101
C.2 Example Exception Handler 103
Index 107

List of Figures

Figure 1: The Client Library Link to the Display PostScript System 4

Figure2: Creating an Application 40

1 ABOUT THIS MANUAL

This manual provides the application programmer with descrip-
tions of Client Library procedures and conventions; these con-
stitute the programming interface to the Display PostScript® sys-
tem. The sections of the manual are listed below:

e Section 2 introduces the Client Library and provides a
diagram of its relationship to the Display PostScript sys-
tem.

e Section 3 provides a brief overview of the Client Library;
describes the phases of an application program interacting
with the Display PostScript system; introduces the C header
files that represent the Client Library interface; and dis-
cusses the use of wrapped procedures.

o Section 4 describes the basic concepts an application pro-
grammer needs to know before writing a simple application
for the Display PostScript system.

e Section 5 discusses call-back procedures of various kinds,
including text and error handlers.

e Section 6 contains advanced Client Library concepts in-
cluding context chaining, encoding and translation, buffer-
ing, application/context synchronization, and forked con-
texts.

e Section 7 provides programming tips and summarizes notes
and warnings.

e Section 8 lists and documents an application program that
illustrates how to communicate with the Display PostScript
system using the Client Library.

e Section 9 documents the basic Client Library data struc-
tures and procedures found in dpsclient.h.

e Section 10 describes the single-operator procedures that

implement PostScript® operators and lists the dpsops.h
header file in which they are declared.

e Section 11 describes the dpsfriends.h header file and its
support of C-callable procedures produced by the pswrap
translator.

¢ Appendix A lists changes to the manual since the previous
version.

1 ABOUT THIS MANUAL 1

2

1.1

1.2

¢ Appendix B provides an example error handler for the X
Window System™ implementation of the Display
PostScript system.

e Appendix C describes how an application can recover from
PostScript language errors and provides an example of an
exception handler.

For more information about the PostScript language, see the
PostScript Language Reference Manual and PostScript Lan-
guage Extensions for the Display PostScript System. For more
information about using the pswrap translator to embed
PostScript language code in C programs, see the pswrap Refer-
ence Manual.

SYSTEM-SPECIFIC DOCUMENTATION

The term "system specific” is used throughout this manual. It
refers to areas of the Client Library implementation that are
necessarily customized to fit a given machine and operating-
system environment. The Client Library Reference Manual
describes those aspects of the Client Library that are common to
all Display PostScript system implementations.

You will find notes and comments in this manual alerting you to
system-specific issues. For more information about these system-
specific aspects of your Client Library implementation, see the
documentation provided by your Display PostScript system ven-
dor.

TYPOGRAPHICAL CONVENTIONS

The typographical conventions used in this manual are as fol-
lows:

Client Library Reference Manual / Version of January 23, 1990

Item

Example of Typographical Style

file

variable, typedef, code fragment
procedure

PostScript operator rectfill

new term

dpsclient.h
‘ctxt’, ‘DPSContextRec’, ‘DPSrectstroke(ctxt, 0.0, 0.0, 10.0, 20.0)’

DPSSetContext

‘A wrapped procedure (wrap for short) consists of""

1 ABOUT THIS MANUAL

3

2 ABOUT THE CLIENT LIBRARY

The Client Library is the application programmer’s link to the
Display PostScript system, which makes the imaging power of
the PostScript interpreter available for online displays as well as
for printing. An application program can display text and images
on the user’s screen by calling Client Library procedures. These
procedures are written with a C language interface. They
generate PostScript language code and send it to the PostScript
interpreter for execution, as shown in Figure 1.

Figure 1 The Client Library Link to the Display PostScript System

Application

Display
Display
. PostScript
Client
Window System

4

Application programmers can customize and optimize their ap-
plications by writing PostScript language programs. The pswrap
translator, described in the pswrap Reference Manual, produces
application-defined PostScript language programs with C-
callable interfaces.

Client Library Reference Manual / Version of January 23, 1990

Note: In this manual, the terms ‘‘input’’ and ‘‘output’’ apply to
the execution context in the PostScript interpreter, not to the ap-
plication. An application ‘‘sends input’’ to a context and
‘“‘receives output’’ from a context. This usage prevents the am-
biguity that would otherwise exist, since input with respect to the
context is output with respect to the application, and vice versa.

2 ABOUT THE CLIENT LIBRARY

5

6

3 OVERVIEW OF THE CLIENT LIBRARY

3.1

The Client Library is a collection of procedures that provide an
application program with access to the PostScript interpreter.
The Client Library includes procedures for creating, communi-
cating with, and destroying PostScript execution contexts. A
context consists of all the information (or ‘‘state’’) needed by the
PostScript interpreter to execute a PostScript language program.
In the Client Library interface, each context is represented by a
‘DPSContextRec’ data structure pointed to by a ‘DPSContext’
handle. PostScript execution contexts are described in PostScript
Language Extensions for the Display PostScript System.

To the application programmer, it appears that Client Library
procedures directly produce graphical output on the display. In
fact, these procedures generate PostScript language statements
and transmit them to the PostScript interpreter for execution; the
PostScript interpreter then produces graphical output that is dis-
played by device-specific procedures in the Display PostScript
system. In this way, the Client Library makes the full power of
the PostScript interpreter and imaging model available to a C
language program.

The recommended way of sending PostScript language code to
the interpreter is to call wrapped procedures generated by the
pswrap translator; these procedures are described in Section 3.3.
For simple operations, an application program can send
PostScript language fragments to the interpreter by calling
single-operator procedures — each one the equivalent of a
single PostScript operator — as described in Section 10. It is
also possible for an application program to send PostScript lan-
guage programs as ASCII text, as if to a laser printer with a
PostScript interpreter. This technique can be used for develop-
ment and debugging or for displaying PostScript language code
imported by the application — for instance, from an EPS file.

PHASES OF AN APPLICATION

Here is how a typical application program, written in C, uses the
Client Library in the different phases of its operation:

Client Library Reference Manual / Version of January 23, 1990

3.2

Initialization. First, the application establishes communication

Execution.

Termination.

with the Display PostScript system. Then it calls
Client Library procedures to create a context for
executing PostScript language programs. It also
performs other window-system-specific in-
itialization. Some higher-level facilities, such as
toolkits, do all of this initialization automati-
cally.

Once an application is initialized, it displays text
and graphics by sending PostScript language
programs to the interpreter. These programs may
be of any complexity from a single-operator pro-
cedure to a program that previews a full-color
illustration. The Client Library sends the
programs to the PostScript interpreter and
handles the results received from the interpreter.

When the application is ready to terminate, it
calls Client Library procedures to destroy its
contexts, free their resources, and end the com-
munication session.

HEADER FILES

The Client Library procedures that an application can call are
defined in C header files, also known as include files or interface
files. There are four Client Library-defined header files and one
or more system-specific header files. The Client Library inter-
face represented by these header files may be extended in a given
implementation, but the extensions are compatible with the
definitions given in this manual.

e dpsclient.h provides support for managing contexts and
sending PostScript language programs to the interpreter. It
supports applications as well as application toolkits. Al-
ways present.

e dpsfriends.h provides support for wrapped procedures
created by pswrap as well as data representations, conver-
sions, and other low-level support for context structures.
Always present.

e dpsops.h provides the single-operator procedures that re-
quire an explicit context parameter. Optional; at least one

3 OVERVIEW OF THE CLIENT LIBRARY 7

8

single-operator header file must be present; that is,
dpsops.h or psops.h or both.

e psops.h provides the single-operator procedures that im-
plicitly derive their context parameter from the current con-
text. Optional; see dpsops.h.

¢ One or more system-specific header files provide support
for context creation. These header files may also provide
system-specific extensions to the Client Library, such as
additional error codes.

3.3 WRAPPED PROCEDURES

The most efficient way for an application program to send
PostScript language code to the interpreter is to use the pswrap
translator to produce wrapped procedures — that is, PostScript
language programs that are callable as C procedures. A wrapped
procedure (wrap for short) consists of a C language procedure
declaration enclosing a PostScript language body. There are
several advantages to using wraps:

e Complex PostScript programs can be invoked by a single
procedure call, avoiding the overhead of a series of calls to
single-operator procedures.

e You can insert C arguments into the PostScript language
code at runtime instead of having to push the C arguments
onto the PostScript operand stack in separate steps.

e Wrapped procedures can efficiently produce custom graph-
ical output by combining operators and other elements of
the PostScript language in a variety of interesting ways.

e The PostScript language code sent by a wrapped procedure
is interpreted faster than ASCII text.

An application developer prepares a PostScript language
program for inclusion in the application by writing a wrap and
passing it through the pswrap translator. The output of pswrap is
a procedure written entirely in the C language. It contains the
PostScript language body as data. This body has been compiled
into a binary object sequence (an efficient binary encoding), with
placeholders left for arguments to be inserted at execution time.
The translated wraps can then be compiled and linked into the
application program.

Client Library Reference Manual / Version of January 23, 1990

When a wrapped procedure is called by the application, the
procedure’s arguments are substituted for the placeholders in the
PostScript language body of the wrap.

Example: A wrap that draws a black box could be defined as
follows:

defineps PSWBIlackBox(float x, y)
gsave
0 0 0 setrgbcolor
xy 72 72 rectfill
grestore
endps

pswrap produces a procedure that can be called from a C lan-
guage program as follows (the values shown are merely
examples):

PSWBIlackBox(12.32, -56.78);

This procedure replaces the x and y operands of rectfillwith the
corresponding procedure arguments, producing executable
PostScript language code:

gsave
0 0 0 setrgbcolor
12.32 -56.78 72 72 rectfill
grestore

Any wrapped procedure works the same way as the above ex-
ample: the arguments of the C language procedure must cor-
respond in number and type to the operands expected by the
PostScript operator(s) in the body of the wrap. For instance, a
procedure argument declared to be of type ‘float’ corresponds to
a PostScript real object; an argument of type ‘char *’ cor-
responds to a PostScript string object; and so on.

The normal outcome of calling a wrapped procedure is the trans-
mission of PostScript language code to the interpreter for execu-
tion, normally resulting in display output. The Client Library
may also provide means, on a system-specific basis, to divert
transmission to another destination, such as a printer or a text
file.

For more information about how wraps are defined and used, see
the pswrap Reference Manual.

3 OVERVIEW OF THE CLIENT LIBRARY 9

4 BASIC CLIENT LIBRARY FACILITIES

This section introduces the concepts needed to write a simple
application program for the Display PostScript system, includ-
ing:

o Creating a context.

¢ Sending code and data to a context.
¢ Destroying a context.

The basic facilities provided by the Client Library to application
programs are described in this section.

The Client Library procedures and data structures that are
referred to in this introduction are documented in the following
places:

Section 9. Header file dpsclient.h. Provides general support
for contexts; includes procedures that send
PostScript language programs for execution and
receive results. General applications and appli-
cation support software (that is, toolkits) make
use of this header file.

Section 10. Header files dpsops.h and psops.h. Declarations
for single-operator procedures.

System-specific documentation.
Support for creating context records. An ex-
ample of context creation is provided in Section
4.3.

4.1 CONTEXTS AND CONTEXT DATA STRUCTURES

An application creates, manages, and destroys one or more con-
texts. A typical application creates a single context in a single
private VM (space). It then sends PostScript language code to
the context to display text, graphics, and scanned images on the
screen.

The context is represented by a record of type ‘DPSContextRec’;
see Section 9.1 for the type definition. A handle to this record
— a pointer of type ‘DPSContext’ — is passed explicitly or

10 Client Library Reference Manual / Version of January 23, 1990

4.2

4.3

implicitly with every Client Library procedure call. In essence,
to the application programmer, the ‘DPSContext’ handle is the
context.

A context can be thought of as a destination to which PostScript
language code is sent. The destination is set when the context is
created. In most cases, the code draws graphics in a window or
specifies how a page will be printed. Other possible destinations
include a file (for execution at a later time) or the standard out-
put; multiple destinations are permitted. The execution by the
interpreter of PostScript language code sent to a context may be
immediate or deferred, depending on which context creation pro-
cedure was called and on the setting of certain ‘DPSContextRec’
variables.

SYSTEM-SPECIFIC CONTEXT CREATION

The system-specific interface! contains, at minimum, procedures
for creating the ‘DPSContextRec’ record for the given im-
plementation of the Client Library. The system-specific interface
also provides support for certain extensions to the Client Library
interface, such as additional error codes.

Every context is associated with a system-specific object such as
a window or a file. The context is created by calling a procedure
in the system-specific interface. Once the context has been
created, however, a set of standard Client Library operations
may be applied to it; these operations, including context destruc-
tion, are defined in the standard header file dpsclient.h.

EXAMPLE OF CONTEXT CREATION

Context creation facilities are necessarily system specific. This is
because they often need data objects that represent system-
specific entities such as windows and files. However, most con-
text creation facilities share a number of common attributes. In
the text that follows, procedure parameters that are common to
most systems are described in some detail, while system-specific
parameters are listed without further discussion. The procedures

IIn Adobe’s sample X11/DPS extension implementation, the system-specific
header file is dpsXclient.h.

4 BASIC CLIENT LIBRARY FACILITIES 11

described here were designed for the X Window System. They
provide an example of an actual sysiem implementation while at
the same time demonstrating basic functions that all window
systems must provide for context creation.

The creation of a ‘DPSContextRec’ data structure is usually part
of application initialization. Contexts persist until they are
destroyed; see DPSDestroyContext and DPSDestroySpace in
Section 9.2.

/* EXAMPLE CONTEXT CREATION FOR THE X WINDOW SYSTEM */
DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, X, y, textProc, errorProc, space)

Display *dpy;

Drawable drawable;

GC gc;

intx,y;

DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

typedef void (*DPSTextProc)(/*
DPSContext ctxt,
char *buf,
long unsigned int count */);

typedef void (*DPSErrorProc)(/*
DPSContext ctxt,
DPSErrorCode errorCode,

long unsigned int arg1, arg2 */);

12

XDPSCreateSimpleContext is a system-specific procedure that
creates an execution context in the PostScript interpreter. The
arguments ‘dpy’, ‘gc’, ‘x’, and ‘y’ have specific uses in the X
Window System; discussion of these arguments is beyond the
scope of this manual. The ‘drawable’ argument associates the
’DPSContextRec’ data structure with a system-specific imaging
object — in this case, an X drawable object, which could be a
window or a pixmap. ‘DPSTextProc’ and ‘DPSErrorProc’ are
standard procedures types declared in dpsclient.h; their type
definitions are included here for ease of reading.

‘space’ identifies the private PostScript VM in which the new
context executes. If ‘space’ is ‘NULL’, a new space is created for
the context; otherwise, it will share the specified space with con-

Client Library Reference Manual / Version of January 23, 1990

texts previously created in the space. A simple application that
creates one space and one context can pass ‘NULL’ for the
‘space’ argument. See the PostScript Language Reference
Manual for a definition of VM. See Section 4.6 for more infor-
mation about spaces.

‘textProc’ and ‘errorProc’ point to customizable facilities for
handling text and errors sent by the interpreter. Passing ‘NULL’
for these arguments is allowed but means that text and errors are
ignored. For simple applications, it is sufficient to specify the
system-specific default text procedure (DPSDefaultTextBackstop
in the X Window System implementation) and
DPSDefaultErrorProc. Use DPSGetCurrentTextBackstop to get
the current default text procedure. See Section 5 for more infor-
mation on text handlers and error handlers.

XDPSCreateSimpleContext creates a context for which the
PostScript interpreter is the destination of code and data sent to
the context. It is sometimes useful to send the code and data
elsewhere, such as to a file, to a terminal (UNIX® stdout), or to a
printer; see DPSCreateTextContext.

DPSContext DPSCreateTextContext(textProc, errorProc)
DPSTextProc textProc;
DPSErrorProc errorProc;

DPSCreateTextContext creates a context whose input is con-
verted to ASCII encoding (text that is easily transmitted and
easily read by humans); see Section 6.2. The ASCII-encoded text
is passed to the ‘textProc’ procedure rather than to the PostScript
interpreter. Since the application provides the implementation of
the ‘textProc’ procedure, it determines where the ASCII text
goes from there. The text can be sent to a file, to a terminal, or
perhaps to a printer’s communication port.

The ‘errorProc’ associated with a context handles errors that
arise when a wrap or Client Library procedure is called with that
context. The ‘textProc’ should call the ‘errorProc’ to handle an
error only when an appropriate error code is defined. See the
discussion of text and error handlers in Section 5.

4 BASIC CLIENT LIBRARY FACILITIES 13

14

4.4

4.5

THE CURRENT CONTEXT

The current context is the one that was specified by the last call
to DPSSetContext. If the application has only one context,
DPSSetContext may be called once when the application is
initialized. If the application manages more than one context, it
must explicitly set the current context when necessary.

Many Client Library procedures do not require the application to
specify a context; they assume the current context. This is true of
all of the single-operator procedures defined in the psops.h
header file as well as any wrapped procedures that were defined
to use the current context implicitly.

An application can find out which is the current context by call-
ing DPSGetCurrentContext.

SENDING CODE AND DATA TO A CONTEXT

Once the context has been created, the application can send
PostScript language code to it by calling procedures such as:

e Wraps (custom wrapped procedures developed for the
application).

e Single-operator procedures defined in dpsops.h and
psops.h.

e DPSPrintf, DPSWritePostScript, and DPSWriteData —
Client Library procedures provided for writing to a context.

A wrapped procedure is a PostScript language program encoded
as a binary object sequence; binary object sequences are
described in Section 11.4 and in PostScript Language Extensions
for the Display PostScript System. The creation of wrapped
procedures is discussed in the pswrap Reference Manual. Once
the PostScript language program has been embedded in the body
of a wrap by using the pswrap translator, it can be called like any
other C procedure.

Example 1: Consider a wrap that draws a small colored circle
around the point where the mouse was clicked, given an RGB
color and the x,y coordinate returned by a mouse-click event.
The exact PostScript language implementation is left as an ex-

Client Library Reference Manual / Version of January 23, 1990

ercise for the reader, but the C declaration of the wrap might
look like this:

extern void PSWDrawSmaliCircle(/*
DPSContext ctxt; int x, y; floatr, g, b */);

An application might call this procedure as part of the code that
handles mouse clicks. Suppose the struct ‘event’ contains the x,y
coordinate. To draw a bright green circle around the spot, call
the wrapped procedure with the following arguments:

PSWDrawSmallCircle(ctxt, event.x, event.y, 0.0, 1.0, 0.0);

Example 2: If a wrap returns values, the procedure that calls it
must pass pointers to the variables into which the values will be
stored. Consider a wrap that, given a font name, tells whether the
font is in the SharedFontDirectory. Define the wrap like this:

defineps PSWFontLoaded(
DPSContext ctxt; char *fontName | boolean *found)

The corresponding C declaration is:

extern void PSWFontLoaded(/*
DPSContext ctxt; char *fontName; int *found */);

Note that booleans are of C type ‘int’. Call the wrapped proce-
dure by providing a pointer to a variable of type ‘int’:

int fontFound;

PSWFontLoaded(ctxt, "Courier*, &fontFound);

Wraps are the most efficient way to specify any PostScript lan-
guage program as a C-callable procedure.

Example 3: Occasionally, a very small PostScript language
program — on the order of one operator — is needed. This is a
case where a single-operator procedure is appropriate. For ex-
ample, to get the current gray level, simply provide a pointer to a
float and call the single-operator procedure equivalent of the
PostScript currentgray operator:

4 BASIC CLIENT LIBRARY FACILITIES 15

16

float gray;
DPScurrentgray(ctxt, &gray);

See Section 10.3 for a complete listing of single-operator proce-
dure declarations.

Example 4: DPSPrintf is one of the Client Library facilities
provided for writing PostScript language code directly to a con-
text.

DPSPrintf is similar to the Standard C Library routine printf. It
formats arguments into ASCII text and writes this text to the
context. Small PostScript language programs or text data may be
sent in this way. Here is an example that sends formatted text to
the show operator to represent an author’s byline:

struct {
int x, y; /* location on page for byline */
char *titleString; /* title of document */
char *authorsName; /* name of author */
} byline;
DPSPrintf(ctxt, "%d %d moveto (%s by %s) show\n",
byline.x,
byline.y,
byline.titleString,
byline.authorsName);

The x,y coordinate is formatted in place of the two ‘%d’ field
specifiers, the title replaces the first ‘%s’, followed by ‘‘by’’ fol-
lowed by the author’s name in place of the second ‘%s’.

Client Library Reference Manual / Version of January 23, 1990

Warning: When using DPSPrintf, it’s important to leave some
whitespace (newline with ‘\n’, or just a space) at the very end of
the format string if the string ends with an operator. PostScript
language code written to a context appears as a continuous
stream. Thus, consecutive calls to DPSPrintf will appear as if all
the text were sent at once. For example, suppose the following
calls were made:

DPSPrintf(ctxt, "gsave");
DPSPrintf(ctxt, "stroke");
DPSPrintf(ctxt, "grestore");

The context will receive a single string ‘gsavestrokegrestore’,
with all the operators run together. Of course, this effect may be
useful for constructing a long string that isn’t a part of a
program. But when sending operators to be executed, don’t for-
get to put whitespace at the end of each format string; for ex-
ample:

DPSPrintf(ctxt, "gsave\n");

Example 5: The DPSWritePostScript procedure is a facility
provided for writing PostScript language code of any encoding
to a context. If DPSChangeEncoding is provided by the system-
specific interface, DPSWritePostScript can be used to convert a
binary-encoded PostScript language program into another binary
form (for instance, binary object sequences to binary-encoded
tokens) or into ASCII text. Code destined for immediate execu-
tion by the interpreter should be sent as binary object sequences.
Code that’s intended to be read by a human should be sent as
ASCII text. See Section 6.2 for a discussion of language encod-
ings.

4 BASIC CLIENT LIBRARY FACILITIES 17

18

Warning: Although PostScript language of any encoding may
be written to a context, unexpected results can occur when inter-
mixing code of different encodings. This is particularly impor-
tant when ASCII encoding is mixed with binary encoding. (See
PostScript Language Extensions for the Display PostScript
System for a discussion of encodings.)

The following code, which looks correct, may fail with a syntax
error in the interpreter, depending on the contents of the buffer:

while (/* more buffers to send */) {
count = GetBuffer(file, buffer);
DPSWritePostScript(ctxt, buffer, count);
MyWrap(ctxt);

}

GetBuffer reads a PostScript language program in the ASCII en-
coding from a file. The call to MyWrap generates a binary ob-
ject sequence. If the program in the buffer passed to
DPSWritePostScript is complete, with no partial tokens,
MyWrap works correctly. Imagine, however, that the end of the
buffer contains a partial token, ‘mov’, and the next buffer starts
with ‘eto’. In this instance, the binary object sequence represent-
ing MyWrap will be inserted immediately after the partial token,
resulting in a syntax error.

This warning applies to all procedures that send code or data to a
context, including the Client Library procedures DPSPrintf,
DPSWritePostScript, DPSWriteData, and DPSWaitContext.

Example 6: To send any type of data to a context (such as
hexadecimal image data), or to avoid the automatic conversion
behavior built into DPSWritePostScript, use DPSWriteData. See
Section 9.2 for details on DPSWritePostScript and
DPSWriteData.

The following example reads hexadecimal image data line by
line from a file and sends the data to a context:

Client Library Reference Manual / Version of January 23, 1990

4.6

4.7

while (feof(fp)) {
fgets(buf, BUFSIZE, fp);
DPSWriteData(ctxt, buf, strlen(buf));

}

SPACES

A context is created in a space. The space is either shared with a
previously created context or is created when a new context is
created. Multiple contexts in the same space share all data; care-
ful coordination is required to ensure that they don’t interfere
with each other. Contexts in different spaces can operate more or
less independently and still share data by using shared VM. See
the discussion of VM and spaces in the PostScript Language
Reference Manual.

Destroying a space automatically destroys all of the contexts
within it. DPSDestroySpace calls DPSDestroyContext for each
context in the space.

The parameters that define a space are contained in a record of
type ‘DPSSpaceRec’.

INTERRUPTS

An application may need to interrupt a PostScript language
program running in the PostScript interpreter. Call
DPSInterruptContext for this purpose. (Note that although this
procedure returns immediately, an indeterminate amount of time
may pass before execution is actually interrupted.)

An interrupt request causes the context to execute an interrupt
error. Since the implementation of the interrupt error can be
changed by the application, the exact results of requesting an
interrupt cannot be defined here. The default behavior is that the
stop operator will execute. For a discussion of the interrupt er-
ror, see the PostScript Language Reference Manual, for a discus-
sion of error handling in the Client Library, see Section 5.4.

4 BASIC CLIENT LIBRARY FACILITIES 19

4.8 DESTROYING CONTEXTS

An application should destroy all the contexts it creates by call-
ing DPSDestroyContext or DPSDestroySpace when they are no
longer needed. Destroying a context does not destroy the space it
occupies, but destroying a space destroys all of its contexts; see
Section 4.6.

If an application terminates abnormally, the PostScript inter-
preter detects that the application has terminated and destroys
any spaces and contexts that the application had created.

20 Client Library Reference Manual / Version of January 23, 1990

5 HANDLING OUTPUT FROM THE CONTEXT

5.1

Output is information returned from the PostScript interpreter to
the application. In the Display PostScript system, three kinds of
output are possible:

e Qutput parameters (results) from wrapped procedures.

e ASCII text written by the context (for example, by the
print operator).

e Errors.

Each kind of output is handled by a separate mechanism in the
Client Library. The handling of results is discussed in Section
11. The handling of text and errors is discussed in the remainder
of this section.

Note: You may not get text and error output when you expect
it.

For example, a wrap that generates text to be sent back to the
application (for instance, with the print operator) may return be-
fore the application actually receives the text. Unless the appli-
cation and the interpreter are synchronized (see Section 6.4), the
text may not appear until some other Client Library procedure or
wrap is called. This is due to delays in the communication chan-
nel or delays in scheduling execution of the context in the
PostScript interpreter.

These kinds of delays are a particularly important consideration
for handling errors, since the notification of the error may be
received by the application long after the code that caused the
error was sent.

Keep these issues in mind while reading the remainder of Sec-
tion 5.

CALL-BACK PROCEDURES

The application programmer must specify call-back procedures
to handle text and errors. A call-back procedure is code provided
by an application and called by a system function.

5 HANDLING OUTPUT FROM THE CONTEXT 21

22

A text handler is a call-back procedure that handles text output
from the context. It is specified in the ‘textProc’ field of the
‘DPSContextRec’. A system-specific default text handler may be
provided; in the Display PostScript system extension for the X
Window System, the default text handler s
DPSDefaultTextBackstop.

An error handler is a call-back procedure that handles errors
arising when the context is passed as a parameter to any Client
Library procedure or wrap. It is specified in the ‘errorProc’ field
of the ‘DPSContextRec’. DPSDefaultErrorProc is the default er-
ror handler provided with every Client Library implementation.

Text and error handlers are associated with a given context when
the context is created, but the DPSSetTextProc and
DPSSetErrorProc procedures, described in Section 9.2, give the
application the flexibility to change these handlers at any time.

Using a call-back procedure reverses the normal flow of control,
which is as follows:

¢ An application that is active calls the system to provide ser-
vices; for example, to get memory or open a file.

e The application then gives up control until the system has
provided the service.

e The system procedure returns control to the' application,
passing it the result of the service that was requested.

In the case of call-back procedures, the application wants a cus-
tom service provided at a time when it is not in control. It does
this as follows:

e The application notifies the system, often but not neces-
sarily at initialization time, of the address of the call-back
procedure to be invoked when the system recognizes a cer-
tain condition, say, an error condition.

o When the error is raised, the system gets control.

¢ The system passes control to the error handler specified by
the application — thus ‘‘calling back’’ the application.

e The error handler does processing on behalf of the appli-
cation.

Client Library Reference Manual / Version of January 23, 1990

5.2

5.3

e When the error handler completes, it returns not to the ap-
plication but to the system.

In the Display PostScript system, the text and error handlers in
the Client Library interface are designed to be used this way.

Note: Client Library procedures and wraps should not be called
from within a call-back procedure. This restriction protects the
application against unintended recursion.

TEXT HANDLERS

A context generates text output with operators such as print,
writestring, and ==. The application handles this text output
with a text handler, which is specified in the ‘textProc’ field of
the ‘DPSContextRec’. The text handler is passed a buffer of text
and a count of the number of characters in the buffer; what is
done with this buffer is up to the application. The text handler
may be called several times to handle large amounts of text. Note
that the Client Library just gets buffers; it doesn’t provide any
logical structure for the text and it doesn’t indicate (or know)
where the text ends.

The text handler may be called as a side effect of calling a wrap,
a single-operator procedure, or a Client Library procedure that
takes a context. You can’t predict when the text handler for a
context will be called unless the application is synchronized (see
Section 6.4).

EXAMPLE TEXT HANDLER

Consider an application that normally displays a log window to
which it appends plain text or error messages received from the
interpreter. The handlers for this window were associated with
the context when it was created. Occasionally, the application
calls a wrapped procedure that generates a block of text intended
for a file. Before calling the text-generating procedure, the appli-
cation must install a temporary text handler for its output. The
temporary text handler stores the text it receives in a file instead
of in the log window. When the text-generating procedure com-
pletes, the application restores the original text handler.

5 HANDLING OUTPUT FROM THE CONTEXT 23

An example of such an application, written for the X Window
System, is shown below.

/* EXAMPLE TEXT HANDLER FOR AN X WINDOW SYSTEM APPLICATION */
/* wrapped procedure that generates text */

defineps WrapThatGeneratesText(DPSContext ctxt | boolean *done)
% send a text representation of the contents of mydict
mydict {== ==} forall
% returning a value flushes output as a side-effect
true done
endps

/* normal text proc appends to a log window */

void LogTextProc(ctxt, buf, count)
DPSContext ctxt;
char *buf;
long unsigned int count;
{
/* ... code that appends text to a log window ... */

}
/* special text proc stores text to a file */

void StoreTextProc(ctxt, buf, count)
DPSContext ctxt;
char *buf;
long unsigned int count;
{
/* ... code that appends text to a file ... */
}

/* application initialization */

ctxt = XDPSCreateSimpleContext(dpy, drawable, gc, x, y,
LogTextProc, DPSDefaultErrorProc, NULL);

/* main loop for application */

while (XPending(dpy)) > 0 {

/* get an input event */

XNextEvent(dpy, &event);

/* react to event */

switch (event.type) {
/* any text that comes from processing EVENT_A or EVENT_B is logged */
case EVENT_A: ...
case EVENT_B: ...
/* but EVENT_C means store the text in a file */
case EVENT_C: {

24 Client Library Reference Manual / Version of January 23, 1990

int done;
DPSTextProc tmp = ctxt -> textProc;

/* make sure interpreter is ready */
DPSWaitContext(ctxt);
/* temporarily install the other text proc */
DPSSetTextProc(ctxt, StoreTextProc);
/* call the wrapped procedure */
WrapThatGeneratesText(ctxt, &done);
[* since wrap returned a value, we know the interpreter is
ready when we get here; restore original textProc */

DPSSetTextProc(ctxt, tmp);
/* close file by calling textProc with count =0 */
StoreTextProc(ctxt, NULL, 0);
break;

}

/st

default:;

}
}

5.4 ERROR HANDLERS

The ‘errorProc’ field in the ‘DPSContextRec’ contains the ad-
dress of a call-back procedure for handling errors. The error call-
back procedure is called when there is a PostScript language er-
ror or when an error internal to the Client Library, such as use of
an invalid context identifier, is encountered. The standard error
codes are listed under DPSErrorProc in Section 9.2.

When the interpreter detects a PostScript language error, it in-
vokes the standard handleerror procedure to report the error,
then forces the context to terminate. The error call-back proce-
dure specified in the ‘DPSContextRec’ is called with the
‘dps_err_ps’ error code.

After a PostScript language error, the context becomes invalid;
further use of it will cause another error. See Section 5.5 for a
discussion of error recovery issues. See Appendix B for an ex-
ample of an error handler. See the Note on page 21 for a discus-
sion of when error output is actually received.

5 HANDLING OUTPUT FROM THE CONTEXT 25

26

5.5 ERROR RECOVERY REQUIREMENTS

For many applications, error recovery may not be considered an
issue because an unanticipated PostScript language error or
Client Library error represents a bug in the program that will be
fixed during development. However, since applications do some-
times go into production with undiscovered bugs, it is prudent to
provide an error handler that allows the application to exit grace-
fully.

There are a small number of applications that require error
recovery more sophisticated than simply exiting. If an applica-
tion falls into one of the following categories, it is likely that
some form of error recovery will be needed:

e Applications that read and execute PostScript language
programs generated by other sources (for example, a
previewer application for PostScript language documents
generated by a word-processing program). Since the exter-
nally provided PostScript language program may have er-
rors, the application must provide some sort of error
recovery.

e Applications that allow the user to enter PostScript lan-
guage programs. This category is a subset of the one
above.

e Applications that generate PostScript language programs
dynamically in response to user requests (for example, a
graphics art program that generates an arbitrarily long path
description of a graphical object). Since there are system-
specific resource limitations on the interpreter, such as
memory and disk space, the application should be able to
back away from an error caused by exhausting a resource,
and perhaps attempt to acquire new or reclaim used
resources.

Error recovery is complicated because both the Client Library
and the context can be left in unknown states. For example, the
operand stack may have unused objects on it.

In general, if an application needs to intercept and recover from
PostScript language errors, keep it simple. For some applica-
tions, the best strategy when an error occurs is either to destroy
the space and construct a new one with a new context or to res-
tart the application.

Client Library Reference Manual / Version of January 23, 1990

5.6

A given implementation of the Client Library may provide more
sophisticated error recovery facilities; consult your system-
specific documentation. Your system may provide the general-
purpose exception-handling facilities described in Appendix C,
which can be used in conjunction with DPSDefaultErrorProc.

BACKSTOP HANDLERS

Backstop handlers handle output when there is no other ap-
propriate handler. The Client Library automatically installs back-
stop handlers.

To get a pointer to the current backstop text handler, call
DPSGetCurrentTextBackstop. To install a new backstop text
handler, call DPSSetTextBackstop. The text backstop may be
used as a default text handler implementation. The exact defini-
tion of what the default text handler does is system specific. For
instance, for UNIX systems, it writes the text to stdout.

To get a pointer to the current backstop error handler, call
DPSGetCurrentErrorBackstop. To install a new backstop error
handler, call DPSSetErrorBackstop. The backstop error handler
processes errors internal to the Client Library, such as a lost
server connection. These errors have no specific ‘DPSContext’
handle associated with them and therefore have no error handler.

5 HANDLING OUTPUT FROM THE CONTEXT 27

6 ADDITIONAL CLIENT LIBRARY FACILITIES

The Client Library includes a number of utilities and support
functions for applications. This section describes:

¢ Sending the same code and data to a group of contexts by
chaining them.

¢ Encoding and translating PostScript language code.
¢ Buffering and flushing the buffer.
¢ Synchronizing an application with a context.

¢ Communicating with a forked context.

6.1 CHAINED CONTEXTS

It is sometimes useful to send the same PostScript language
program to several contexts. This is accomplished most con-
veniently by chaining the contexts together and sending input to
one context in the chain; for example, by calling a wrap with that
context.

Two Client Library procedures are provided for managing con-
text chaining:

o DPSChainContext links a context to a chain.

o DPSUnchainContext removes a child context from its
parent’s chain.

One context in the chain is specified as the parent context, the
other as the child context. The child context is added to the
parent’s chain. Subsequently, any input sent to the parent is sent
to its child, and the child of the child, and so on. Input sent to a
child is not passed to its parent. A context can appear on only
one chain. If the context is already a child on a chain,
DPSChainContext returns a nonzero error code. However, you
can chain a child to a context that already has a child.

28 Client Library Reference Manual / Version of January 23, 1990

Note: A parent context always passes its input to its child con-
text. However, for a chain of more than two contexts, the order
in which the contexts on the chain receive the input is not
defined. = Therefore an application should not rely on
DPSChainContext to create a chain whose contexts process input
in a particular order.

For chained contexts, output is handled differently from input,
and text and errors are handled differently from results. If a con-
text on a chain generates text or error output, the output is
handled by that context only. Such output is not passed to its
child. When a wrap that returns results is called, all of the con-
texts on the chain get the wrap code (the input), but only the
context with which the wrap was called receives the results.

The best way to build a chain is to identify one context as the
parent. Call DPSChainContext to make each additional context
the child of that parent. For example, to chain contexts A, B, C,
and D, choose A as the parent and make the following calls to
DPSChainContext:

DPSChainContext(A,B);
DPSChainContext(A,C);
DPSChainContext(A,D);

Once the chain is built, send input only to the designated parent,
A.

The most common use of chained contexts is in debugging. A
log of PostScript operators executed may be kept by a child con-
text whose purpose is to convert PostScript language programs
to ASCII text and write the text to a file; this child is chained to a
parent context that sends normal application requests to the inter-
preter. The parent’s calls to wrapped procedures will then be
logged in human-readable form as a debugging audit trail.

Chained contexts may also be used for duplicate displays. An
application may want several windows, or even several different
display screens, to show the same graphics without having to
explicitly call the wrapped procedure in a loop for all of the con-
texts.

6 ADDITIONAL CLIENT LIBRARY FACILITIES 29

30

6.2 ENCODING AND TRANSLATION

PostScript language code may be sent to a context in three ways:

¢ As a binary object sequence — typically for immediate
execution on behalf of a context.

¢ As binary-encoded tokens — typically for deferred execu-
tion from a file.

e As ASCII text — typically for debugging, display, or
deferred execution from a file.

PostScript Language Extensions for the Display PostScript
System describes the encodings available in the PostScript lan-
guage.

Since the application and the PostScript interpreter can be on
different machines, the Client Library automatically ensures that
the binary representation of numeric values, including byte order
and floating-point format, are correctly interpreted.

6.2.1 Encoding PostScript Language Code

On a system-specific basis, the Client Library supports a variety
of conversions to and from the encodings and formats defined
for the PostScript language:

¢ Binary object sequence to binary object sequence. For ex-
panding user name indices back to their printable names.

e Binary object sequence to ASCII encoding. For backward
compatibility with printers, for interchange, and for debug-
ging.

e Binary object sequence to binary-encoded tokens. For
long-term storage.

¢ Binary-encoded tokens to ASCII. For backward com-
patibility and interchange.

‘DPSProgramEncoding’ defines the three encodings available to
PostScript language programs. ‘DPSNameEncoding’ defines the
two possible encodings for user names in PostScript language
programs. See Section 11.6 for the type definitions.

6.2.2 Translation

Client Library Reference Manual / Version of January 23, 1990

6.3

Translation means the conversion of program encoding or name
encoding from one form to another.

Any code sent to the context is converted according to the setting
of the encoding fields. For a context that was created with the
system-specific routine DPSCreateTextContext, code is
automatically converted to ASCII encoding.

An application sometimes exchanges binary object sequences
with another application. Since binary object sequences have
user name indices by default, the sending application must
provide name-mapping information to the receiving application;
this information can be lengthy. Instead, some implementations
allow the application to translate name indices back into user
names by changing the ‘nameEncoding’ field to ‘dps_strings’. In
many implementations, DPSChangeEncoding performs this
function.

BUFFERING

For optimal performance, programs and data sent to a context
may be buffered by the Client Library. For the most part, the
application programmer need not be concerned with this buffer-
ing. Flushing of the buffer happens automatically as required,
such as just before waiting for input events.

However, in certain unusual situations, the application may ex-
plicitly flush a buffer (see example below). DPSFlushContext al-
lows the application to force any buffered code or data to be sent
to the context. Note that flushing does not guarantee that code is
executed by the context, only that any buffered code is sent to
the context. See Section 6.4 and DPSWaitContext for informa-
tion on how to force code to be executed.

Unnecessary flushing is inefficient. It is unusual for the appli-
cation to flush the buffer explicitly. Cases where the buffer
might need to be flushed include the following:

¢ Nothing to send to the interpreter for a long time (for ex-
ample, ‘‘going to sleep’’ or doing a long computation).

¢ Nothing expected from the interpreter for a long time.
(Note that getting input automatically flushes the output
buffers.)

6 ADDITIONAL CLIENT LIBRARY FACILITIES 31

32

6.4

When the client and the server are separate processes and the
buffered code need not be executed immediately, the application
can flush the buffers with flush rather than synchronizing with
the context; synchronizing is described in Section 6.4.

SYNCHRONIZING APPLICATION AND CONTEXT

The PostScript interpreter can run as a separate operating-system
process (or task) from the application; it can even run on a
separate machine. When the processes are separate, an applica-
tion programmer must take into account the communication be-
tween the application and the PostScript interpreter. This is im-
portant when time-critical actions must be performed based on
the current appearance of the display. Also, errors arising from
the execution of a wrapped procedure may be reported long after
the procedure returns.

The application and the context are synchronized when all code
sent to the context has been executed and it is waiting to execute
more code. When the two are not synchronized, the status of
code previously sent to the context is unknown to the applica-
tion. Synchronization can be effected in two ways: as a side ef-
fect of calling wraps that return values, or explicitly, by calling
the DPSWaitContext procedure.

A wrapped procedure that has no result values returns as soon as
the wrap body is sent to the context. The data buffer is not neces-
sarily flushed in this case. Sometimes, however, the application’s
next action depends on the completed execution of the wrap
body by the PostScript interpreter. The following example
describes the kind of problem that can occur when the assump-
tion is made that a wrap’s code has been executed by the time it
returns:

Example: An application calls a wrapped procedure to draw a
large and complex picture into an offscreen buffer (such as an
X11 pixmap). The wrapped procedure has no return value, so it
returns immediately, although the context may not have finished
executing the code. At this point, the application calls procedures
to copy the screen buffer to a window for display. If the context
has not finished drawing the picture into the buffer, only part of
the image will be displayed on the screen. This is not what the
application programmer had in mind.

Client Library Reference Manual / Version of January 23, 1990

6.5

Wrapped procedures that return results flush any code waiting to
be sent to the context and then wait until all results have been
received. Therefore they automatically synchronize the context
with the application. The wrapped procedure will not return until
the interpreter indicates that all results have been sent.2 In this
case, the application knows that the context is ready to execute
more code as soon as the wrapped procedure returns.

The preceding discussion describes the side effect of calling a
wrap that returns a value, but it is not always convenient, or
indeed correct, to write wrapped procedures that return values.
Forcing the application to wait for a return result for every wrap
is inefficient and may degrade performance.

If an application has a few critical points where synchronization
must occur, and a wrap that returns results is not needed,
DPSWaitContext may be used to synchronize the application
with the context. DPSWaitContext flushes any buffered code,
and then waits until the context finishes executing all code that
has been sent to it so far. This forces the context to finish before
the application continues.

Like wraps that return results, DPSWaitContext should be used
only when necessary. Performance may be degraded by exces-
sive synchronization.

FORKED CONTEXTS

When the fork operator is executed in the PostScript interpreter,
a new execution context is created, but the application has no
way to communicate with it. In order to communicate with a
forked context, it must create a ‘DPSContextRec’ for it. For ex-
ample, DPSContextFromContextID is an X Window System pro-
cedure that creates a ‘DPSContextRec’ for a forked context.

2But the wrapped procedure may return prematurely if an error occurs, depend-
ing on how the error handler works; see Section 5.4.

6 ADDITIONAL CLIENT LIBRARY FACILITIES 33

DPSContext DPSContextFromContextlD(ctxt, cid, textProc, errorProc)

DPSContext ctxt;

long int cid,
DPSTextProc textProc,
DPSErrorProc errorProc;

34

‘ctxt’ is the context that executed the fork operator.

‘cid’ is the integer value of the new context’s identifier. ‘NULL’
is returned if ‘cid’ is invalid.

If ‘textProc’ or ‘errorProc’ are ‘NULL’,
DPSContextFromContextID copies the corresponding procedure
pointer from ‘ctxt’ to the new ‘DPSContext’; otherwise the new
context gets the specified ‘textProc’ and ‘errorProc’.

All other fields of the new context are initialized with values
from ‘ctxt’, including the space field.

Client Library Reference Manual / Version of January 23, 1990

7 PROGRAMMING TIPS

This section contains tips for avoiding mistakes commonly made
by programmers using the Client Library interface. Some of the
items listed here are brief summaries of Notes and Warnings
emphasized elsewhere in this document. Section 7.1 contains
some pointers on how to make the best use of the PostScript
language imaging model.

¢ Don’t guess what the arguments to a single-operator proce-
dure call are — look them up in the listing. See Section
10.

o Make sure that variables passed to wrapped procedures and
single-operator procedures are of the correct C type. A
common mistake is to pass a pointer to a ‘short int’ (only
16 bits wide) to a procedure that returns a boolean. A
boolean is defined as an ‘int’, which can be 32 bits wide on
some systems.

e Make sure that PostScript language code is properly
separated by whitespace when using DPSPrintf. Make sure
that variables passed to DPSPrintf are of the right type.
Passing type ‘float’ to a format string of ‘%d’ will yield
unpredictable results. See Section 4.5.

o There are two means of synchronizing the application with
the context: either call DPSWaitContext, which causes the
application to wait until the interpreter has executed all the
code sent to the execution context, or call a wrap that
returns a result, which causes synchronization as a side ef-
fect. If synchronization is not required, use a wrap that
returns results only when results are needed. Unnecessary
synchronization by either method will degrade perfor-
mance. See Section 6.4.

e Use of DPSFlushContext is usually not necessary. See
Section 6.3.

eDo not read from the file returned by the operator
currentfile from within a wrap. In general, do not read
directly from the context’s standard input stream %stdin
from within a wrap. Since a binary object sequence is a
single token, the behavior of the code is different from
what it would be in another encoding, such as ASCIL. This
will lead to unpredictable results. See the pswrap Refer-

7 PROGRAMMING TIPS 35

36

ence Manual and PostScript Language Extensions for the
Display PostScript System.

o If the context is an execution context for a display, do not
write PostScript language programs, particularly in wraps,
that depend on reading the end-of-file (EOF) indicator.
Support for EOF on the communication channel is system
specific, and should not be relied upon. However,
PostScript language programs that will be written to a file
or spooled to a printer can make use of EOF indications.

e Be careful when sending intermixed encoding types to a
context. In particular, it’s best to avoid mixing ASCII en-
coding with binary encoding. See the warning on page 18
for an example; see also the following tip on
DPSWaitContext.

¢ Before calling DPSWaitContext, make sure that code that
has already been sent to the context is syntactically com-
plete, such as a wrap or a correctly terminated PostScript
operator or composite object.

e Use of the fork operator requires understanding of a given
system’s support for handling errors from the forked con-
text. A common error while developing multiple context
applications is to fail to handle errors arising from forked
contexts. See Section 5.4.

¢ To avoid unintended recursion, do not call Client Library
procedures or wraps from within a call-back procedure.

¢ To avoid confusion about which context on a chain will
handle output, don’t send input to a context that’s been
made the child of another context; send input only to the
parent. (This doesn’t apply to text contexts, since they
never get output.)

e Program wraps carefully. Copying the entire prologue
from a PostScript printer driver into a wrap without change
is probably not going to result in efficient code.

¢ Avoid the temptation to do all of your programming in the
PostScript language. Because the PostScript language is
interpreted, not compiled, the application can generally do
arithmetic computation and data manipulation such as sort-
ing more efficiently in C. Reserve the PostScript language
for what it does best — displaying text and graphics.

Client Library Reference Manual / Version of January 23, 1990

7.1

USING THE IMAGING MODEL

The device-independent and resolution-independent imaging
model defined by the PostScript language is described in the
PostScript Language Reference Manual. For general advice on
how to use the PostScript language efficiently and detailed ad-
vice on how to write page descriptions, see PostScript Language
Program Design. Although that book is primarily concerned
with printer applications, much of its information on the imaging
model can be applied to writing applications for the Display
PostScript system. A thorough understanding of the imaging
model is essential to writing efficient Display PostScript system
applications.

The imaging model helps make your application device and
resolution independent. Device independence ensures that your
application will work and look as you intended on any display or
print media. Resolution independence lets you use the power of
the PostScript language to do scaling, rotation, and transfor-
mation of your graphical display without loss of quality. Use of
the imaging model will automatically give you the best possible
rendering for any device.

Design your application with the imaging model in mind. Con-
sider issues like converting coordinate systems, representing
paths and graphics states with data structures, rendering colors
and patterns, setting text, and accessing fonts (to name just a
few).

A few specific tips are listed below:

¢ Coordinates sent to the PostScript interpreter should be in
the user coordinate system (user space). Although it may
be more convenient to express coordinates in the window
coordinate system, this makes your code resolution depend-
ent. Your application will run more efficiently if you com-
pute the coordinate conversions to and from user space in C
code, rather than letting the interpreter do it.

¢ Think in terms of color. Avoid programming to the lowest
common denominator (low-resclution monochrome). The
imaging model will always give the best rendering possible
for a device, so use colors even if you expect that your
application may be run on monochrome or gray-scale

7 PROGRAMMING TIPS 37

devices. Avoid using setgray unless you really want black,
white, or a gray level. Use setrgbcolor for all other cases.
The imaging model will use a gray level or halftone pattern
if the device does not support color, so objects of different
colors will be distinguishable from one another.

e Don’t use setlinewidth with a width of zero to get thin
lines. On high-resolution devices, the lines will be prac-
tically invisible. To get lines narrower than one point, use
fractions of 1 such as 0.3 or 0.25.

38 Client Library Reference Manual / Version of January 23, 1990

8 EXAMPLE APPLICATION PROGRAM

This section provides a simple example of how to use the Dis-
play PostScript system through the Client Library. The example:

o Establishes communication with an X11 server.

e Creates a window and a context.

e Draws an ochre rectangle in the window.

e Waits for a mouse-button click.

¢ Terminates when the button is pressed.
To use the PostScript imaging model, an application must
describe its graphical operations in the PostScript language.

Therefore an application using the Display PostScript system is a
combination of C code and PostScript language code.

The pswrap program generates a C code file and a C header file
that defines the interface to the procedures in the code file. The
application source code and the pswrap output file are compiled
and linked together with the program libraries of the Client
Library to form the executable application program. Figure 2 il-
lustrates the complete process.

8 EXAMPLE APPLICATION PROGRAM 39

Figure 2 Creating an Application

examplewraps.psw

pswrap
translator

examplewraps.h

example.c examplewraps.c

C compiler

Example
Application
ogram

8.1 EXAMPLE C CODE

The following code is used in conjunction with the wrap in the

next section. See the description that follows.

/i
example.c - simple X Window System application. Uses Display Postscript
to draw an ochre box and uses X primitives to wait for a mouse click before

terminating.
*/
#include <stdio.h> /* Standard C library I/O routines */
#include <string.h> /* Standard C library string routines */
#include <X11/X.h> /* X definitions */
#include <X11/Xlib.h> /* Interface to X library */
#include <X11/Intrinsic.h> /* X toolkit definitions */
#include "psops.h" /* Interface to PostScript single-op wraps */

40 Client Library Reference Manual / Version of January 23, 1990

#include "dpsXclient.h" /* Interface to the DPS Client Library */
#include "examplewraps.h" /* Interface to user-defined "wrap" procedures */

/* Window geometry definitions */
#define XWINDOW_X_ORIGIN 100
#define XWINDOW_Y_ORIGIN 100
#define XWINDOW_WIDTH 500
#define XWINDOW_HEIGHT 500

void main(argc, argv)
int argc;
char *argv[];
{
Display *dpy; /* X display structure */
int screen; /* screen on display */
DPSContext ctxt; /* DPS drawing context */
DPSContext txtCtxt; /* DPS text context for debugging */
Window xWindow; /* window where drawing occurs */
int blackPixel, whitePixel;
int debug = { FALSE };
GC gc;
XSetWindowAttributes attributes;
unsigned long mask;
DPSSpace space;
float x, y, width, height;

/* Connect to the window server by opening the display. Most of command
line is parsed by XtOpenDisplay, leaving any options not recognized by
the X toolkit: look for local -debug switch */

XtToolkitInitialize();
dpy = XtOpenDisplay(NULL, (String) NULL, "example®, "example®,
(XrmOptionDescRec *) NULL, 0, &argc, argv);
screen = DefaultScreen(dpy);
if (argc ==2)
if (strcmp(argv[1], "-debug") == 0)
debug = TRUE;
else {
printf(*"Usage: example [-display xx:0] [-sync] [-debug]\n");
exit(1);
}

/* Create a window to draw in: register interest in mouse button events. */

blackPixel = BlackPixel (dpy, screen);

whitePixel = WhitePixel (dpy, screen);

attributes.background_pixel = whitePixel;

attributes.border_pixel = blackPixel;

attributes.bit_gravity = SouthWestGravity;

attributes.event_mask = ButtonPressMask | ButtonReleaseMask;

mask = CWBackPixel | CWBorderPixel | CWBitGravity | CWEventMask;

8 EXAMPLE APPLICATION PROGRAM

41

xWindow = XCreateWindow(dpy, DefaultRootWindow(dpy),
XWINDOW_X_ORIGIN, XWINDOW_Y_ORIGIN, XWINDOW_WIDTH, XWINDOW_HEIGHT,
1, CopyFromParent, InputOutput, CopyFromParent, mask, &attributes);

XMapWindow(dpy, xWindowy);

gc = XCreateGC(dpy, RootWindow(dpy, screen), 0, NULL);
XSetForeground(dpy, gc, blackPixel);
XSetBackground(dpy, gc, whitePixel);

/* Create a DPS context to draw in the window we just created. If the
user has asked for debugging, create a text context chained to the
"drawing’ context. */

ctxt = XDPSCreateSimpleContext(dpy, xWindow, gc, 0, XWINDOW_HEIGHT,
DPSDefaultTextBackstop, DPSDefaultErrorProc, NULL);
if (ctxt == NULL) {
fprintf(stderr, "Error attempting to create DPS context\n");
exit(1);
}

DPSSetContext(ctxt);

if (debug) {
txtCtxt = DPSCreateTextContext(DPSDefaultTextBackstop, DPSDefaultErrorProc);
DPSChainContext(ctxt, txtCtxt);
}

/* Convert the X Window System coordinates at the lower right corner
of the window to get the width and height in user space. */

PSitransform(
(float) XWINDOW_WIDTH,
(float) -XWINDOW_HEIGHT,
&width,
&height);

/* Locate the box in the middle of the window. */

x = width / 4.0;
y = height / 4.0;

/* Paint an ochre box. */
PSWDrawBox(0.77, 0.58, 0.02, x, y, width / 2.0, height / 2.0);
/* Wait for a mouse click on any button then terminate */

while (NextEvent() = ButtonPress);
while (NextEvent() = ButtonRelease);

space = DPSSpaceFromContext(ctxt);
DPSDestroySpace(space);
exit(0);

42 Client Library Reference Manual / Version of January 23, 1990

}/* main */
int NextEvent()
{

XEvent event;

XtNextEvent(&event);
return(event.type);

}

8.2 EXAMPLE WRAP

This wrap provides the PostScript language routine used by the
example application. It is shown as examplewraps.psw in Figure
2 on page 40.

/* wrap for example application */

defineps PSWDrawBox(float r, g, b, x, y, width, height)

gsave
r g b setrgbcolor
x y width height rectfill
grestore
endps

8.3 DESCRIPTION OF THE EXAMPLE APPLICATION

The example application demonstrates the use of Client Library
functions and custom wraps in the X11 environment. The appli-
cation is simple: it draws a rectangle in the middle of a window,
waits for a mouse button click in the window, and terminates.

The program starts by initializing the toolkit and connecting to
the display device. Command-line options can include all op-
tions recognized by the X Intrinsics resource manager plus a lo-
cal ‘~debug’ option, which demonstrates the use of a chained
text context for debugging.

The program creates a window that will contain the drawing
produced by the PostScript operators. The window’s attributes
are set to indicate interest in mouse button events in that win-
dow.

8 EXAMPLE APPLICATION PROGRAM 43

44

The program creates a context with ‘xWindow’ as its ‘drawable’.
The system-specific default handlers DPSDefaultTextBackstop
and DPSDefaultErrorProc are specified in the
XDPSCreateSimpleContext call. These handlers are adequate for
this application.

If the ‘~debug’ option was selected, the program creates a con-
text that converts binary-encoded PostScript language programs
into readable text. The text is passed to ‘PrintProc’. This context
is then chained to the drawing context. The result is that any
code sent to the drawing context will be also sent to the text
context and displayed on stdout. This is a common technique for
debugging wrapped procedures.

Now that the application is completely initialized, PostScript lan-
guage code can be executed to draw a rectangle into the window.
This is done by using both a single-operator procedure and a
customized wrapped procedure.

The single-operator procedure PSitransform determines the
bounds of the window in terms of PostScript user space; this
allows the program to scale the size of the rectangle ap-
propriately.

The wrap procedure PSWDrawBox takes red, green, and blue
levels to specify the color of the rectangle. It also takes x,y coor-
dinates for the bottom left corner of the rectangle, and it takes
the rectangle’s width and height. Simple arithmetic computation
is most efficiently done in C code by the application, rather than
in PostScript language code by the interpreter.

PSWDrawBox is called to draw a colored square. If the display
supports color, you’ll see a square painted in ochre (a dark shade
of orange). The values 0.77 for red, 0.58 for green, and 0.02 for
blue approximate the color ochre. If the display supports only
gray scale or monochrome, you’ll see a square painted in some
shade of gray.

The program now waits for events. Since the only events regis-
tered in this window are mouse-button events, events such as
window movement and resizing are not directed to the appli-
cation. When a button-press event is followed by a button-
release event, the program destroys the space used by the draw-

Client Library Reference Manual / Version of January 23, 1990

ing context. This destroys the context and its chained text con-
text as well. The program then terminates normally.

8 EXAMPLE APPLICATION PROGRAM 45

46

9 THE DPSCLIENT.H HEADER FILE

DPSContext

9.1

This section documents the dpsclient.h procedures that constitute
the core of the Client Library. They are system independent.

DPSCLIENT.H DATA STRUCTURES
This section documents:

e The standard context record.

o The standard error codes.

The context record, ‘DPSContextRec’, is shared by the appli-
cation and the PostScript interpreter. Except for its ‘priv’ field,
this data structure should not be altered directly. The dpsclient.h
header file provides procedures to alter it.

When calling Client Library procedures, refer to the context
record by its handle, ‘DPSContext’.

/* handle for context record */

See ‘DPSContextRec’.

Client Library Reference Manual / Version of January 23, 1990

DPSContextRec

typedef struct _t_DPSContextRec {
char *priv;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
DPSProcs procs;
void (*textProc)();
void (*errorProc)();
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_DPSContextRec *chainParent, *chainChild;
} DPSContextRec, *DPSContext;

defines the data structure pointed to by ‘DPSContext’.

Note: This record is used by dpsclient.h procedures but is ac-
tually defined in the dpsfriends.h header file.

‘priv’ is provided for use by application code. It is initialized to
‘NULL’ and is not touched thereafter by the Client Library im-
plementation.

Warning: Although it is possible to read all the fields of the
‘DPSContextRec’ record directly, they should not be modified
directly except for ‘priv’. Data structures internal to the Client
Library depend on the values in these fields and must be notified
when they change. Call the procedures provided for this pur-
pose, such as DPSSetTextProc. ‘

‘space’ identifies the space in which the context executes.

‘programEncoding’ and ‘nameEncoding’ describe the encoding
of the PostScript language that is sent to the interpreter. The
values in these fields are established when the context is created.
Whether or not the encoding fields can be changed after creation
is system specific.

‘procs’ points to a ‘struct’ containing procedures that implement
the basic context operations, including writing, flushing, inter-
rupting, and so on.

The Client Library implementation calls the ‘textProc’ and

9 THE DPSCLIENT.H HEADER FILE 47

48

DPSErrorCode

9.2

‘errorProc’ procedures to handle interpreter-generated ASCII
text and errors.

‘resultTableLength’ and ‘resultTable’ define the number, type,
and location of results expected by a wrap. They are set up by
the wrap procedure before any values are returned; see
DPSSetResultTable in Section 11.7.

‘chainParent’ and ‘chainChild’ are used for chaining contexts.
‘chainChild’ is a pointer to the context that automatically
receives code and data sent to the context represented by this
‘DPSContextRec’. ‘chainParent’ is a pointer to the context that
automatically sends code and data to the context represented by
this ‘DPSContextRec’. See the discussion of chained contexts in
Section 6.1 for more information.

typedef int DPSErrorCode;

defines the type of error code used by the Client Library. Here
are the standard error codes:

e ‘dps_err_ps’ identifies standard PostScript interpreter er-
Tors.

e ‘dps_err_nameToolLong’ flags user names that are too
long. 128 characters is the maximum length for PostScript
language names.

e ‘dps_err_resultTagCheck’ flags erroneous result tags, most
likely due to erroneous explicit use of the printobject
operator.

o ‘dps_err_resultTypeCheck’ flags incompatible result types.

e ‘dps_err_invalidContext’ flags an invalid ‘DPSContext’ ar-
gument. An attempt to send PostScript language code to a
context that has terminated is the most likely cause of this
error.

For more information, see DPSErrorProc in Section 9.2.

DPSCLIENT.H PROCEDURES

This section contains descriptions of the procedures in the Client
Library header file dpsclient.h, listed alphabetically.

Client Library Reference Manual / Version of January 23, 1990

DPSChainContext

int DPSChainContext(parent, child);
DPSContext parent, child;

links ‘child’ onto the context chain of ‘parent’. This is the chain
of contexts that automatically receive a copy of any code or data
sent to ‘parent’. A context appears on only one such chain.

DPSChainContext returns zero if it successfully chains ‘child’ to
‘parent’. It fails if ‘child’ is on another context’s chain; in that
case it returns —1.

See Section 6.1 for more information.

DPSDefaultErrorProc

DPSDestroyContext

void DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2);
DPSContext ctxt;
DPSErrorCode errorCode;
long unsigned int arg1, arg2;

is a sample DPSErrorProc for handling errors from the
PostScript interpreter. See Appendix B for a listing of the code
and a description of the procedure.

The meaning of ‘argl’ and ‘arg2’ depend on ‘errorCode’. See
DPSErrorProc.

void DPSDestroyContext(ctxt)
DPSContext ctxt;

destroys the context represented by ‘ctxt’. The context is first
unchained if it is on a chain.

What happens to buffered input and output when a context is
destroyed is system specific; in the X Window System it is dis-
carded.

Destroying a context does not destroy its space; see
DPSDestroySpace.

9 THE DPSCLIENT.H HEADER FILE 49

DPSDestroySpace
void DPSDestroySpace(spc)
DPSSpace spc;

destroys the space represented by ‘spc’. This is necessary for
application termination and clean-up. It also destroys all contexts
within ‘spc’.

50 Client Library Reference Manual / Version of January 23, 1990

DPSErrorProc

typedef void (*DPSErrorProc)(/*
DPSContext ctxt;
DPSErrorCode errorCode;
long unsigned int arg1, arg2;*/);

handles errors caused by the context. These can be PostScript
language errors reported by the interpreter or errors that occur
when the Client Library is called with a context. ‘errorCode’ is
one of the predefined codes that specify the type of error encoun-
tered; see ‘DPSErrorCode’ in Section 9.1 for its type definition.
‘errorCode’ determines the interpretation of ‘arg1’ and ‘arg2’.

The following list shows how ‘arg1’ and ‘arg2’ are handled for
each ‘errorCode’:

‘dps_err_ps’ PostScript language error. ‘argi’ is the address
of the binary object sequence sent by the
handleerror operator to report the error. The se-
quence has one object, which is an array of four
objects. ‘arg2’ is the number of bytes in the en-
tire binary object sequence.

‘dps_err_nameToolLong’
Error in wrap argument. The PostScript user
name and its length are passed as ‘argl’ and
‘arg2’. A name of more than 128 characters
causes an error.

‘dps_err_resultTagCheck’
Error in formulation of wrap. The pointer to the
binary object sequence and its length are passed
as ‘arg1’ and ‘arg2’. There is one object in the
sequence.

‘dps_err_resultTypeCheck’
Incompatible result types. A pointer to the bi-
nary object is passed as ‘arg1’; ‘arg2’ is unused.

‘dps_err_invalidContext’
Stale context handle (probably terminated).
‘arg1’ is a context identifier; ‘arg2’ is unused.

9 THE DPSCLIENT.H HEADER FILE 51

DPSFlushContext void DPSFlushContext(ctxt)
DPSContext ctxt;

forces any buffered code or data to be sent to ‘ctxt’. Some Client
Library implementations use buffering to optimize performance.

DPSGetCurrentContext
DPSContext DPSGetCurrentContext();

returns the current context.

DPSGetCurrentErrorBackstop
DPSErrorProc DPSGetCurrentErrorBackstop();

returns the ‘errorProc’ passed most recently to
DPSSetErrorBackstop, or ‘NULL’ if none was set.

DPSGetCurrentTextBackstop
DPSTextProc DPSGetCurrentTextBackstop();

returns the ‘textProc’ passed most recently to
DPSSetTextBackstop, or ‘NULL’ if none was set.

DPSinterruptContext
void DPSinterruptContext(ctxt)
DPSContext ctxt;

notifies the interpreter to interrupt the execution of the context,
resulting in the PostScript language interrupt error. The proce-
dure returns immediately after sending the notification.

DPSPrintf void DPSPrintf(ctxt, fmt, [, arg ...]);
DPSContext ctxt;
char *fmt;

sends string ‘fmt’ to ‘ctxt’ with the optional arguments converted,
formatted, and logically inserted into the string in a manner iden-
tical to the Standard C Library routine printf. It is useful for
sending formatted data or a short PostScript language program to
a context.

52 Client Library Reference Manual / Version of January 23, 1990

DPSResetContext void DPSResetContext(ctxt)

DPSSetContext

DPSContext ctxt;

resets the context after an error occurs. It ensures that any buf-
fered I/O is discarded and that the context is ready to read and
execute more input. DPSResetContext works in conjunction with
resynchandleerror.

void DPSSetContext(ctxt)
DPSContext ctxt;

sets the current context. Call DPSSetContext before calling any
procedures defined in psops.h.

DPSSetErrorBackstop

DPSSetErrorProc

void DPSSetErrorBackstop(errorProc)
DPSErrorProc errorProc;

establishes ‘errorProc’ as a pointer to the backstop error handler.
This error handler handles errors that are not handled by any
other error handler. ‘NULL’ will be passed as the ‘ctxt’ argument
to the backstop error handler.

void DPSSetErrorProc(ctxt, errorProc)
DPSContext ctxt;
DPSErrorProc errorProc;

changes the context’s error handler.

DPSSetTextBackstop

DPSSetTextProc

void DPSSetTextBackstop(textProc)
DPSTextProc textProc;

establishes the procedure pointed to by ‘textProc’ as the handler
for text output for which there is no other handler. The text hand-
ler acts as a backstop for text output.

void DPSSetTextProc(ctxt, textProc)
DPSContext ctxt;
DPSTextProc textProc;

changes the context’s text handler.

9 THE DPSCLIENT.H HEADER FILE 53

54

DPSSpaceFromContext
DPSSpace DPSSpaceFromContext(ctxt)
DPSContext ctxt;

returns the space handle for the specified context. It returns
‘NULL’ if ‘ctxt’ does not represent a valid execution context.

DPSTextProc typedef void (*DPSTextProc)(/*
DPSContext ctxt;
char *buf;
long unsigned int count; */);

handles text emitted from the interpreter — for example, by the
== operator. ‘buf’ is a pointer to ‘count’ characters.

DPSUnchainContext
void DPSUnchainContext(ctxt)
DPSContext ctxt;

removes ‘ctxt’ from the chain that it is on, if any. The parent and
child pointers of the unchained context are set to ‘NULL’.

DPSWaitContext void DPSWaitContext(ctxt)
DPSContext ctxt;

flushes output buffers belonging to ‘ctxt’ and then waits until the
interpreter is ready for more input to ‘ctxt’. It is not necessary to
call DPSWaitContext after calling a wrapped procedure that
returns a value.

Before calling DPSWaitContext, you must ensure that the last
code sent to the context is syntactically complete, such as a wrap
or a correctly terminated PostScript operator or composite ob-
ject.

Client Library Reference Manual / Version of January 23, 1990

DPSWriteData void DPSWriteData(ctxt, buf, count)
DPSContext ctxt;
char *buf;
unsigned int count;

sends ‘count’ bytes of data from ‘buf’ to ‘ctxt’. ‘ctxt’ specifies
the destination context. ‘buf’ points to a buffer that contains
‘count’ bytes of data. The contents of the buffer will not be con-
verted according to the context’s encoding parameters.

DPSWritePostScript
void DPSWritePostScript(ctxt, buf, count);
DPSContext ctxt;
char *buf;
unsigned int count;

sends PostScript language to a context in any of the three lan-
guage encodings. ‘ctxt’ specifies the destination context. ‘buf’
points to a buffer that contains ‘count’ bytes of PostScript lan-
guage code. The code in the buffer will be converted according
to the context’s encoding parameters as needed; refer to the
system-specific documentation for a list of supported conver-
sions.

9 THE DPSCLIENT.H HEADER FILE 55

10 SINGLE-OPERATOR PROCEDURES

For each operator defined in the PostScript language, the Client
Library provides a procedure to invoke the most common usage
of the operator. These are called the single-operator procedures.
(See the PostScript Language Reference Manual and PostScript
Language Extensions for the Display PostScript System for com-
plete information about how these PostScript operators work.) If
the predefined usage is not the one you need, it’s easy to write
wraps for variant forms of the operators.

There are two Client Library header files for single-operator
procedures: dpsops.h and psops.h. The name of the Client
Library single-operator procedure is the name of the PostScript
operator preceded by either DPS or PS3:

DPS prefix Used when the context is explicitly specified; for
example, DPSgsave. The first argument must be
of type ‘DPSContext’. These single-operator
procedures are defined in dpsops.h.

PS prefix Used when the context is assumed to be the cur-
rent context; for example, PSgsave. These
single-operator procedures are defined in
psops.h. The procedure DPSSetContext, defined
in dpsclient.h, sets the current context.

For example, to execute the PostScript operator translate, the
application can call

DPStranslate(ctxt, 1.23, 43.56)

where ‘ctxt’ is a variable of type ‘DPSContext’, the handle that
represents a PostScript execution context.

The DPStranslate procedure sends the binary encoding of
1.23 43.56 translate

to execute in ‘ctxt’.

3Most PostScript operator names are lowercase, but some contain uppercase
letters; for example FontDirectory. In either case, the name of the correspond-
ing single-operator procedure is formed simply by prefixing PS or DPS.

56 Client Library Reference Manual / Version of January 23, 1990

10.1

10.2

SETTING THE CURRENT CONTEXT

The single-operator procedures in psops.h assume the current
context. The DPSSetContext procedure, defined in dpsclient.h,
sets the current context. When the application deals with only
one context it is convenient to use the procedures in psops.h
rather than those in dpsops.h. In this case, the application would
set the current context during its initialization phase:

DPSSetContext(ctxt);

In subsequent calls on the procedures in psops.h, ‘ctxt’ is used
implicitly. For example:

PStranslate(1.23, 43.56);
has the same effect as

DPStranslate(ctxt, 1.23, 43.56);

The explicit method is preferable for situations that require inter-
mingling of calls to multiple contexts.

Note: It is important to pass the correct C types to the single-
operator procedures. (See Section 10.3 for the procedure
declarations.) In general, if a PostScript operator takes operands
of arbitrary numeric type, the corresponding single-operator pro-
cedure takes parameters of type ‘float’. Coordinates are always
type ‘float’. Passing an integer literal to a procedure that expects
a floating-point literal is a common error:

incorrect: PSlineto(72, 72);
correct: PSlineto(72.0, 72.0);

Procedures that appear to have no input arguments may actually
take their operands from the operand stack — for example,
PSdef and DPSdef.

TYPES IN SINGLE-OPERATOR PROCEDURES

When using single-operator procedures, be sure to inspect the
calling protocol (that is, order and types of formal parameters)
for every procedure to be called; these are listed in Section 10.3.

10 SINGLE-OPERATOR PROCEDURES 57

58

Note: Throughout Section 10.2, references to single-operator
procedures with a DPS prefix are equally applicable to the equiv-
alent procedures with a PS prefix.

10.2.1 Rules of Thumb

There is no completely consistent system for associating data
types with particular single-operator procedures. In general, it’s
safest to look up the definition in Section 10.3 or in the header
file. However, there are a few rules of thumb that can be applied.
Note that all of these rules have exceptions.

¢ Coordinates are specified as type ‘float’. For example, all
of the standard path construction operators (moveto, lineto,
curveto, and so on), take type ‘float’.

® Booleans are always type ‘int’. The comment ‘/* int *b */’
or ‘/* int *it */’ in the header file means that the procedure
returns a boolean.

o If the operator takes either integer or floating-point num-
bers, the corresponding procedure takes type ‘float’. If the
operator specifies a number type (such as rand and
vmreclaim), then the procedure takes arguments of that
type (typically type ‘int’).

e Operators that return values must always be specified with
a pointer to the appropriate data type. For example,
currentgray returns the current gray value of the graphics
state. You must pass DPScurrentgray a pointer to a vari-
able of type ‘float’.

o If an operator takes a data type that does not have a directly
analogous C type, such as dictionaries, graphic states, and
executable arrays, the single-operator procedure takes no
arguments. It is assumed that the programmer will arrange
for the appropriate data to be on the operand stack before
calling the procedure; see DPSsendchararray and
DPSsendfloat, among others.

o If a single-operator procedure takes or returns a matrix, the
matrix is specified as ‘float m[}’, which is an array of six
floating-point numbers.

e In general, the integer parameter ‘size’ is used to specify

Client Library Reference Manual / Version of January 23, 1990

the length of a variable-length array; see, for example,
DPSxshow. For single-operator procedures that take two
variable-length arrays as parameters, the length of the first
array is specified by the integer ‘n’; the length of the
second array is specified by the integer ‘I’; see, for ex-
ample, DPSustroke.

The following operators are worth noting for unusual order and
types of arguments, or for other irregularities. After reading
these descriptions, inspect the declarations in the listing in this
document or in the header file:

e DPSdefineuserobject takes no arguments. One would ex-
pect it to take at least the index argument, but because of
the requirement to have the arbitrary object on the top of
the stack, it is probably better to send the index down
separately, perhaps via DPSsendint.

e DPSgetchararray, DPSgetfloatarray, and other ‘‘get
array’’ operators specify the length of the array first, fol-
lowed by the array. (Mnemonic: Get the array last.)

e DPSsendchararray, DPSsendfloatarray, and other ‘‘send
array’’ operators specify the array first, followed by the
length of the array. (Mnemonic: Send the array first.)

e DPSinfill, DPSinstroke, and DPSinufill support only the
x,y-coordinate version of the operator. The optional second
userpath argument is not supported.

e DPSinueofill, DPSinufill, DPSinustroke, DPSuappend,
DPSueofill, DPSufill, DPSustroke, and DPSustrokepath
take a userpath in the form of an encoded number string
and operator string. Note that the lengths of the strings
follow the strings themselves, as arguments. See
PostScript Language Extensions for the Display PostScript

System for details.

e DPSsetdash takes an array of numbers of type ‘float’ for the
dash pattern.

e DPSselectfont takes type ‘float” for the font scale
parameter. ’

o DPSsetgray takes type ‘float’. (‘DPSsetgray(1)’ is wrong.)

e DPSxshow, DPSxyshow, DPSyshow take an array of num-
bers of type ‘float’ for specifying the coordinates of each
character.

10 SINGLE-OPERATOR PROCEDURES 59

e DPSequals is the procedure equivalent to the = operator.

e DPSequalsequals is the procedure equivalent to the ==
operator.

e DPSversion returns the version number in a character array
‘buf[]” whose length is specified by ‘bufsize’.

10.2.2 Special Cases

A few of the single-operator procedures have been optimized to
take user objects for arguments, since they are most commonly
used in this way. In the listing in Section 10.3, these user object
arguments are specified as type ‘int’, which is the correct type of
a user object.

e DPScurrentgstate takes a user object that represents the
gstate object into which the current graphics state should be
stored. The gstate object is left on the stack.

e DPSsetfont takes a user object that represents the font dic-
tionary.

e DPSsetgstate takes a user object that represents the gstate
object that the current graphics state should be set to.

60 Client Library Reference Manual / Version of January 23, 1990

10.3 DPSOPS.H PROCEDURE DECLARATIONS

The procedures in dpsops.h and psops.h are identical except for
the first argument. dpsops.h procedures require the ‘ctxt’ argu-
ment; psops.h procedures do not. The procedure name is the
lowercase PostScript operator name preceded by ‘‘DPS’’ or
““PS’’ as appropriate. For the sake of brevity, only the dpsops.h
procedures are listed here.

Note: DPSSetContext must have been called before calling any
procedure in psops.h.

extern void DPSFontDirectory(/* DPSContext ctxt; */);

extern void DPSISOLatin1Encoding(/* DPSContext ctxt; */);

extern void DPSSharedFontDirectory(/* DPSContext ctxt; */);

extern void DPSStandardEncoding(/* DPSContext ctxt; */);

extern void DPSUserObjects(/* DPSContext ctxt; */);

extern void DPSabs(/* DPSContext ctxt; */);

extern void DPSadd(/* DPSContext ctxt; */);

extern void DPSaload(/* DPSContext ctxt; */);

extern void DPSanchorsearch(/* DPSContext ctxt; int *truth; */);

extern void DPSand(/* DPSContext ctxt; */);

extern void DPSarc(/* DPSContext ctxt; float x, y, r, angle1, angle2; */);
extern void DPSarcn(/* DPSContext ctxt; float x, y, r, angle1, angle2; */);
extern void DPSarct(/* DPSContext ctxt; float x1, y1, x2, y2, r; */);
extern void DPSarcto(/* DPSContext ctxt; float x1, y1, x2, y2, r; float *xt1, *yt1, *xt2, *yt2; */);
extern void DPSarray(/* DPSContext ctxt; int len; */);

extern void DPSashow(/* DPSContext ctxt; float x, y; char *s; */);

extern void DPSastore(/* DPSContext ctxt; */);

extern void DPSatan(/* DPSContext ctxt; */);

extern void DPSawidthshow(/* DPSContext ctxt; float cx, cy; int c; float ax, ay; char *s; */);
extern void DPSbanddevice(/* DPSContext ctxt; */);

extern void DPSbegin(/* DPSContext ctxt; */);

10 SINGLE-OPERATOR PROCEDURES 61

extern void DPSbind(/* DPSContext ctxt; */);

extern void DPSbitshift(/* DPSContext ctxt; int shift; */);

extern void DPSbytesavailable(/* DPSContext ctxt; int *n; */);
extern void DPScachestatus(/* DPSContext ctxt; */);

extern void DPSceiling(/* DPSContext ctxt; */);

extern void DPScharpath(/* DPSContext ctxt; char *s; int b; */);
extern void DPSclear(/* DPSContext ctxt; */);

extern void DPScleardictstack(/* DPSContext ctxt; */);

extern void DPScleartomark(/* DPSContext ctxt; */);

extern void DPSclip(/* DPSContext ctxt; */);

extern void DPSclippath(/* DPSContext ctxt; */);

extern void DPSclosefile(/* DPSContext ctxt; */);

extern void DPSclosepath(/* DPSContext ctxt; */);

extern void DPScolorimage(/* DPSContext ctxt; */);

extern void DPSconcat(/* DPSContext ctxt; float m[]; */);
extern void DPSconcatmatrix(/* DPSContext ctxt; */);

extern void DPScondition(/* DPSContext ctxt; */);

extern void DPScopy(/* DPSContext ctxt; int n; */);

extern void DPScopypage(/* DPSContext ctxt; */);

extern void DPScos(/* DPSContext ctxt; */);

extern void DPScount(/* DPSContext ctxt; int *n; */);

extern void DPScountdictstack(/* DPSContext ctxt; int *n; */);
extern void DPScountexecstack(/* DPSContext ctxt; int *n; */);
extern void DPScounttomark(/* DPSContext ctxt; int *n; */);
extern void DPScurrentblackgeneration(/* DPSContext ctxt; */);
extern void DPScurrentcacheparams(/* DPSContext ctxt; */);
extern void DPScurrentcmykcolor(/* DPSContext ctxt; float *c, *m, *y, *k; */);
extern void DPScurrentcolorscreen(/* DPSContext ctxt; */);
extern void DPScurrentcolortransfer(/* DPSContext ctxt; */);
extern void DPScurrentcontext(/* DPSContext ctxt; int *cid; */);

62 Client Library Reference Manual / Version of January 23, 1990

extern void DPScurrentdash(/* DPSContext ctxt; */);

extern void DPScurrentdict(/* DPSContext ctxt; */);

extern void DPScurrentfile(/* DPSContext ctxt; */);

extern void DPScurrentflat(/* DPSContext ctxt; float *flatness; */);
extern void DPScurrentfont(/* DPSContext ctxt; */);

extern void DPScurrentgray(/* DPSContext ctxt; float *gray; */);

extern void DPScurrentgstate(/* DPSContext ctxt; int gst; */);

extern void DPScurrenthalftone(/* DPSContext ctxt; */);

extern void DPScurrenthalftonephase(/* DPSContext ctxt; float *x, *y; */);
extern void DPScurrenthsbcolor(/* DPSContext ctxt; float *h, *s, *b; */);
extern void DPScurrentlinecap(/* DPSContext ctxt; int *linecap; */);
extern void DPScurrentlinejoin(/* DPSContext ctxt; int *lingjoin; */);
extern void DPScurrentlinewidth(/* DPSContext ctxt; float *width; */);
extern void DPScurrentmatrix(/* DPSContext ctxt; */);

extern void DPScurrentmiterlimit(/* DPSContext ctxt; float *limit; */);
extern void DPScurrentobjectformat(/* DPSContext ctxt; int *code; */);
extern void DPScurrentpacking(/* DPSContext ctxt; int *b; */);

extern void DPScurrentpoint(/* DPSContext ctxt; float *x, *y; */);

extern void DPScurrentrgbcolor(/* DPSContext ctxt; float *r, *g, *b; */);
extern void DPScurrentscreen(/* DPSContext ctxt; */);

extern void DPScurrentshared(/* DPSContext ctxt; int *b; */);

extern void DPScurrentstrokeadjust(/* DPSContext ctxt; int *b; */);
extern void DPScurrenttransfer(/* DPSContext ctxt; */);

extern void DPScurrentundercolorremoval(/* DPSContext ctxt; */);
extern void DPScurveto(/* DPSContext ctxt; float x1, y1, x2, y2, x3, y3; */);
extern void DPScvi(/* DPSContext ctxt; */);

extern void DPScvlit(/* DPSContext ctxt; */);

extern void DPScvn(/* DPSContext ctxt; */);

extern void DPScvr(/* DPSContext ctxt; */);

extern void DPScvrs(/* DPSContext ctxt; */);

10 SINGLE-OPERATOR PROCEDURES

63

extern void DPScvs(/* DPSContext ctxt; */);

extern void DPScvx(/* DPSContext ctxt; */);

extern void DPSdef(/* DPSContext ctxt; */);

extern void DPSdefaultmatrix(/* DPSContext ctxt; */);

extern void DPSdefinefont(/* DPSContext ctxt; */);

extern void DPSdefineusername(/* DPSContext ctxt; int i; char *username; */);
extern void DPSdefineuserobject(/* DPSContext ctxt; */);

extern void DPSdeletefile(/* DPSContext ctxt; char *filename; */);

extern void DPSdetach(/* DPSContext ctxt; */);

extern void DPSdeviceinfo(/* DPSContext ctxt; */);

extern void DPSdict(/* DPSContext ctxt; int len; */);

extern void DPSdictstack(/* DPSContext ctxt; */);

extern void DPSdiv(/* DPSContext ctxt; */);

extern void DPSdtransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);
extern void DPSdup(/* DPSContext ctxt; */);

extern void DPSecho(/* DPSContext ctxt; int b; */);

extern void DPSend(/* DPSContext ctxt; */);

extern void DPSeoclip(/* DPSContext ctxt; */);

extern void DPSeofill(/* DPSContext ctxt; */);

extern void DPSeoviewclip(/* DPSContext ctxt; */);

extern void DPSeq(/* DPSContext ctxt; */);

extern void DPSequals(/* DPSContext ctxt; */);

extern void DPSequalsequals(/* DPSContext ctxt; */);

extern void DPSerasepage(/* DPSContext ctxt; */);

extern void DPSerrordict(/* DPSContext ctxt; */);

extern void DPSexch(/* DPSContext ctxt; */);

extern void DPSexec(/* DPSContext ctxt; */);

extern void DPSexecstack(/* DPSContext ctxt; */);

extern void DPSexecuserobject(/* DPSContext ctxt; int userObjindex; */);
extern void DPSexecuteonly(/* DPSContext ctxt; */);

64 Client Library Reference Manual / Version of January 23, 1990

extern void DPSexit(/* DPSContext ctxt; */);

extern void DPSexp(/* DPSContext ctxt; */);

extern void DPSfalse(/* DPSContext ctxt; */);

extern void DPSfile(/* DPSContext ctxt; char *name, *access; */);
extern void DPSfilenameforall(/* DPSContext ctxt; */);

extern void DPSfileposition(/* DPSContext ctxt; int *pos; */);
extern void DPSill(/* DPSContext ctxt; */);

extern void DPSfindfont(/* DPSContext ctxt; char *name; */);
extern void DPSflattenpath(/* DPSContext ctxt; */);

extern void DPSfloor(/* DPSContext ctxt; */);

extern void DPSflush(/* DPSContext ctxt; */);

extern void DPSflushfile(/* DPSContext ctxt; */);

extern void DPSfor(/* DPSContext ctxt; */);

extern void DPSforall(/* DPSContext ctxt; */);

extern void DPSfork(/* DPSContext ctxt; */);

extern void DPSframedevice(/* DPSContext ctxt; */);

extern void DPSge(/* DPSContext ctxt; */);

extern void DPSget(/* DPSContext ctxt; */);

extern void DPSgetboolean(/* DPSContext ctxt; int *it; */);

extern void DPSgetchararray(/* DPSContext ctxt; int size; char s[]; */);
extern void DPSgetfloat(/* DPSContext ctxt; float *it; */);

extern void DPSgetfloatarray(/* DPSContext ctxt; int size; float a[]; */);
extern void DPSgetint(/* DPSContext ctxt; int *it; */);

extern void DPSgetintarray(/* DPSContext ctxt; int size; int a[]; */);
extern void DPSgetinterval(/* DPSContext ctxt; */);

extern void DPSgetstring(/* DPSContext ctxt; char *s; */);

extern void DPSgrestore(/* DPSContext ctxt; */);

extern void DPSgrestoreall(/* DPSContext ctxt; */);

extern void DPSgsave(/* DPSContext ctxt; */);

extern void DPSgstate(/* DPSContext ctxt; */);

10 SINGLE-OPERATOR PROCEDURES

65

extern void DPSgt(/* DPSContext ctxt; */);

extern void DPSidentmatrix(/* DPSContext ctxt; */);

extern void DPSidiv(/* DPSContext ctxt; */);

extern void DPSidtransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);

extern void DPSif(/* DPSContext ctxt; */);

extern void DPSifelse(/* DPSContext ctxt; */);

extern void DPSimage(/* DPSContext ctxt; */);

extern void DPSimagemask(/* DPSContext ctxt; */);

extern void DPSindex(/* DPSContext ctxt; int i; */);

extern void DPSineofill(/* DPSContext ctxt; float x, y; int *b; */);

extern void DPSinfill(/* DPSContext ctxt; float x, y; int *b; */);

extern void DPSinitclip(/* DPSContext ctxt; */);

extern void DPSinitgraphics(/* DPSContext ctxt; */);

extern void DPSinitmatrix(/* DPSContext ctxt; */);

extern void DPSinitviewclip(/* DPSContext ctxt; */);

extern void DPSinstroke(/* DPSContext ctxt; float x, y; int *b; */);

extern void DPSinueofill(/* DPSContext ctxt; float x, y; char nums[]; int n; char ops[J; int I; int *b; */);
extern void DPSinufill(/* DPSContext ctxt; float x, y; char numsl[}; int n; char opsl}; int |; int *b; */);
extern void DPSinustroke(/* DPSContext ctxt; float x, y; char nums[J; int n; char ops[J; int I; int *b; */);
extern void DPSinvertmatrix(/* DPSContext ctxt; */);

extern void DPSitransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);

extern void DPSjoin(/* DPSContext ctxt; */);

extern void DPSknown(/* DPSContext ctxt; int *b; */);

extern void DPSkshow(/* DPSContext ctxt; char *s; */);

extern void DPSle(/* DPSContext ctxt; */);

extern void DPSlength(/* DPSContext ctxt; int *len; */);

extern void DPSlineto(/* DPSContext ctxt; float x, y; */);

extern void DPSIn(/* DPSContext ctxt; */);

extern void DPSload(/* DPSContext ctxt; */);

extern void DPSlock(/* DPSContext ctxt; */);

66 Client Library Reference Manual / Version of January 23, 1990

extern void DPSlog(/* DPSContext ctxt; */);

extern void DPSloop(/* DPSContext ctxt; */);

extern void DPSIt(/* DPSContext ctxt; */);

extern void DPSmakefont(/* DPSContext ctxt; */);

extern void DPSmark(/* DPSContext ctxt; */);

extern void DPSmatrix(/* DPSContext ctxt; */);

extern void DPSmaxlength(/* DPSContext ctxt; int *len; */);
extern void DPSmod(/* DPSContext ctxt; */);

extern void DPSmonitor(/* DPSContext ctxt; */);

extern void DPSmoveto(/* DPSContext ctxt; float x, y; */);
extern void DPSmul(/* DPSContext ctxt; */);

extern void DPSne(/* DPSContext ctxt; */);

extern void DPSneg(/* DPSContext ctxt; */);

extern void DPSnewpath(/* DPSContext ctxt; */);

extern void DPSnoaccess(/* DPSContext ctxt; */);

extern void DPSnot(/* DPSContext ctxt; */);

extern void DPSnotify(/* DPSContext ctxt; */);

extern void DPSnull(/* DPSContext ctxt; */);

extern void DPSnulldevice(/* DPSContext ctxt; */);

extern void DPSor(/* DPSContext ctxt; */);

extern void DPSpackedarray(/* DPSContext ctxt; */);
extern void DPSpathbbox(/* DPSContext ctxt; float *lix, *lly, *urx, *ury; */);
extern void DPSpathforall(/* DPSContext ctxt; */);

extern void DPSpop(/* DPSContext ctxt; */);

extern void DPSprint(/* DPSContext ctxt; */);

extern void DPSprintobject(/* DPSContext ctxt; int tag; */);
extern void DPSprompt(/* DPSContext ctxt; */);

extern void DPSpstack(/* DPSContext ctxt; */);

extern void DPSput(/* DPSContext ctxt; */);

extern void DPSputinterval(/* DPSContext ctxt; */);

10 SINGLE-OPERATOR PROCEDURES

67

extern void DPSquit(/* DPSContext ctxt; */);

extern void DPSrand(/* DPSContext ctxt; */);

extern void DPSrcheck(/* DPSContext ctxt; int *b; */);

extern void DPSrcurveto(/* DPSContext ctxt; float x1, y1, x2, y2, x3, y3; */);
extern void DPSread(/* DPSContext ctxt; int *b; */);

extern void DPSreadhexstring(/* DPSContext ctxt; int *b; */);
extern void DPSreadline(/* DPSContext ctxt; int *b; */);

extern void DPSreadonly(/* DPSContext ctxt; */);

extern void DPSreadstring(/* DPSContext ctxt; int *b; */);

extern void DPSrealtime(/* DPSContext ctxt; int *i; */);

extern void DPSrectclip(/* DPSContext ctxt; float x, y, w, h; */);
extern void DPSrectfill(/* DPSContext ctxt; float x, y, w, h; */);
extern void DPSrectstroke(/* DPSContext ctxt; float x, y, w, h; */);
extern void DPSrectviewclip(/* DPSContext ctxt; float x, y, w, h; */);
extern void DPSrenamefile(/* DPSContext ctxt; char *old, *new; */);
extern void DPSrenderbands(/* DPSContext ctxt; */);

extern void DPSrepeat(/* DPSContext ctxt; */);

extern void DPSresetfile(/* DPSContext ctxt; */);

extern void DPSrestore(/* DPSContext ctxt; */);

extern void DPSreversepath(/* DPSContext ctxt; */);

extern void DPSrlineto(/* DPSContext ctxt; float x, y; */);

extern void DPSrmoveto(/* DPSContext ctxt; float x, y; */);

extern void DPSroll(/* DPSContext ctxt; int n, j; */);

extern void DPSrotate(/* DPSContext ctxt; float angle; */);

extern void DPSround(/* DPSContext ctxt; */);

extern void DPSrrand(/* DPSContext ctxt; */);

extern void DPSrun(/* DPSContext ctxt; char *filename; */);

extern void DPSsave(/* DPSContext ctxt; */);

extern void DPSscale(/* DPSContext ctxt; float x, y; */);

extern void DPSscalefont(/* DPSContext ctxt; float size; */);

68 Client Library Reference Manual / Version of January 23, 1990

extern void DPSscheck(/* DPSContext ctxt; int *b; */);

extern void DPSsearch(/* DPSContext ctxt; int *b; */);

extern void DPSselectfont(/* DPSContext ctxt; char *name; float scale; */);
extern void DPSsendboolean(/* DPSContext ctxt; int it; */);

extern void DPSsendchararray(/* DPSContext ctxt; char s[); int size; */);
extern void DPSsendfloat(/* DPSContext ctxt; float it; */);

extern void DPSsendfloatarray(/* DPSContext ctxt; float aJ; int size; */);
extern void DPSsendint(/* DPSContext ctxt; int it; */);

extern void DPSsendintarray(/* DPSContext ctxt; int a[]; int size; */);
extern void DPSsendstring(/* DPSContext ctxt; char *s; */);

extern void DPSsetbbox(/* DPSContext ctxt; float lIx, lly, urx, ury; */);
extern void DPSsetblackgeneration(/* DPSContext ctxt; */);

extern void DPSsetcachedevice(/* DPSContext ctxt; float wx, wy, lix, lly, urx, ury; */);
extern void DPSsetcachelimit(/* DPSContext ctxt; float n; */);

extern void DPSsetcacheparams(/* DPSContext ctxt; */);

extern void DPSsetcharwidth(/* DPSContext ctxt; float wx, wy; */);

extern void DPSsetcmykcolor(/* DPSContext ctxt; float ¢, m, y, k; */);
extern void DPSsetcolorscreen(/* DPSContext ctxt; */);

extern void DPSsetcolortransfer(/* DPSContext ctxt; */);

extern void DPSsetdash(/* DPSContext ctxt; float pat(]; int size; float offset; */);
extern void DPSsetfileposition(/* DPSContext ctxt; int pos; */);

extern void DPSsetflat(/* DPSContext ctxt; float flatness; */);

extern void DPSsetfont(/* DPSContext ctxt; int f; */);

extern void DPSsetgray(/* DPSContext ctxt; float gray; */);

extern void DPSsetgstate(/* DPSContext ctxt; int gst; */);

extern void DPSsethalftone(/* DPSContext ctxt; */);

extern void DPSsethalftonephase(/* DPSContext ctxt; float x, y; */);

extern void DPSsethsbcolor(/* DPSContext ctxt; float h, s, b; */);

extern void DPSsetlinecap(/* DPSContext ctxt; int linecap; */);

extern void DPSsetlinejoin(/* DPSContext ctxt; int linejoin; */);

10 SINGLE-OPERATOR PROCEDURES

69

extern void DPSsetlinewidth(/* DPSContext ctxt; float width; */);
extern void DPSsetmatrix(/* DPSContext ctxt; */);

extern void DPSsetmiterlimit(/* DPSContext ctxt; float limit; */);
extern void DPSsetobjectformat(/* DPSContext ctxt; int code; */);
extern void DPSsetpacking(/* DPSContext ctxt; int b; */);
extern void DPSsetrgbcolor(/* DPSContext ctxt; float r, g, b; */);
extern void DPSsetscreen(/* DPSContext ctxt; */);

extern void DPSsetshared(/* DPSContext ctxt; int b; */);

extern void DPSsetstrokeadjust(/* DPSContext ctxt; int b; */);
extern void DPSsettransfer(/* DPSContext ctxt; */);

extern void DPSsetucacheparams(/* DPSContext ctxt; */);
extern void DPSsetundercolorremoval(/* DPSContext ctxt; */);
extern void DPSsetvmthreshold(/* DPSContext ctxt; int i; */);
extern void DPSshareddict(/* DPSContext ctxt; */);

extern void DPSshow(/* DPSContext ctxt; char *s; */);

extern void DPSshowpage(/* DPSContext ctxt; */);

extern void DPSsin(/* DPSContext ctxt; */);

extern void DPSsqrt(/* DPSContext ctxt; */);

extern void DPSsrand(/* DPSContext ctxt; */);

extern void DPSstack(/* DPSContext ctxt; */);

extern void DPSstart(/* DPSContext ctxt; */);

extern void DPSstatus(/* DPSContext ctxt; int *b; */);

extern void DPSstatusdict(/* DPSContext ctxt; */);

extern void DPSstop(/* DPSContext ctxt; */);

extern void DPSstopped(/* DPSContext ctxt; */);

extern void DPSstore(/* DPSContext ctxt; */);

extern void DPSstring(/* DPSContext ctxt; int len; */);

extern void DPSstringwidth(/* DPSContext ctxt; char *s; float *xp, *yp; */);
extern void DPSstroke(/* DPSContext ctxt; */);

extern void DPSstrokepath(/* DPSContext ctxt; */);

70 Client Library Reference Manual / Version of January 23, 1990

extern void DPSsub(/* DPSContext ctxt; */);

extern void DPSsystemdict(/* DPSContext ctxt; */);

extern void DPStoken(/* DPSContext ctxt; int *b; */);

extern void DPStransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);
extern void DPStranslate(/* DPSContext ctxt; float x, y; */);

extern void DPStrue(/* DPSContext ctxt; */);

extern void DPStruncate(/* DPSContext ctxt; */);

extern void DPStype(/* DPSContext ctxt; */);

extern void DPSuappend(/* DPSContext ctxt; char nums[J; int n; char ops[]; int I; */);
extern void DPSucache(/* DPSContext ctxt; */);

extern void DPSucachestatus(/* DPSContext ctxt; */);

extern void DPSueofill(/* DPSContext ctxt; char nums[J; int n; char ops[]; int I; */);
extern void DPSufill(/* DPSContext ctxt; char nums[]; int n; char ops[J; int I; */);
extern void DPSundef(/* DPSContext ctxt; char *name; */);

extern void DPSundefinefont(/* DPSContext ctxt; char *name; */);

extern void DPSundefineuserobject(/* DPSContext ctxt; int userObjindex; */);
extern void DPSupath(/* DPSContext ctxt; int b; */);

extern void DPSuserdict(/* DPSContext ctxt; */);

extern void DPSusertime(/* DPSContext ctxt; int *milliseconds; */);

extern void DPSustroke(/* DPSContext ctxt; char nums[J; int n; char opsl]; int [; */);
extern void DPSustrokepath(/* DPSContext ctxt; char nums[J; int n; char ops[}; int I; */);
extern void DPSversion(/* DPSContext ctxt; int bufsize; char buf[]; */);

extern void DPSviewclip(/* DPSContext ctxt; */);

extern void DPSviewclippath(/* DPSContext ctxt; */);

extern void DPSvmreclaim(/* DPSContext ctxt; int code; */);

extern void DPSvmstatus(/* DPSContext ctxt; int *level, *used, *maximum; */);
extern void DPSwait(/* DPSContext ctxt; */);

extern void DPSwcheck(/* DPSContext ctxt; int *b; */);

extern void DPSwhere(/* DPSContext ctxt; int *b; */);

extern void DPSwidthshow(/* DPSContext ctxt; float x, y; int ¢; char *s; */);

10 SINGLE-OPERATOR PROCEDURES

71

extern void DPSwrite(/* DPSContext ctxt; */);

extern void DPSwritehexstring(/* DPSContext ctxt; */);

extern void DPSwriteobject(/* DPSContext ctxt; int tag; */);

extern void DPSwritestring(/* DPSContext ctxt; */);

extern void DPSwtranslation(/* DPSContext ctxt; float *x, *y; */);

extern void DPSxcheck(/* DPSContext ctxt; int *b; */);

extern void DPSxor(/* DPSContext ctxt; */);

extern void DPSxshow(/* DPSContext ctxt; char *s; float numarray(]; int size; */);
extern void DPSxyshow(/* DPSContext ctxt; char *s; float numarray(]; int size; */);
extern void DPSyield(/* DPSContext ctxt; */);

extern void DPSyshow(/* DPSContext ctxt; char *s; float numarray(]; int size; */);

72 Client Library Reference Manual / Version of January 23, 1990

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES

This section describes the procedures in the dpsfriends.h header
file that are called by wrapped procedures — the C-callable
procedures that are output by the pswrap translator. This infor-
mation is not normally required by the application programmer.

A description of the dpsfriends.h header file is provided for ap-
plication or toolkit programmers who need finer control over
these areas:

e Transmission of code for execution.
e Handling of result values.

e Mapping of user names to user name indices.

This section also contains a discussion of the structure of binary
object sequences.

MORE ABOUT SENDING CODE FOR EXECUTION

One of the primary purposes of the Client Library is to provide
runtime support for the code generated by pswrap. Each wrapped
procedure builds a binary object sequence that represents the
PostScript language code to be executed. Since a binary object
sequence is structured, the procedures for sending a binary object
sequence are designed to take advantage of this structure.

The following procedures efficiently process binary object se-
quences generated by wrapped procedures:

¢ DPSBinObjSeqWrite sends the beginning of a new binary
object sequence generated by a wrapped procedure. This
initial part includes, at minimum, the header and the entire
top-level sequence of objects. It can also include sub-
sidiary array elements and/or string characters if those ar-
rays and strings are static — that is, if their lengths are
known at compile time and there are no intervening arrays
or strings of varying length. DPSBinObjSeqWrite may
convert the binary object sequence to another encoding,
depending upon the ‘DPSContextRec’ encoding variables.
For a particular wrapped procedure, DPSBinObjSeqWrite is
called exactly once.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 73

e DPSWriteTypedObjectArray sends arrays (excluding
strings) that were specified as input arguments to a
wrapped procedure. It writes PostScript language code
specified by the context’s format and encoding variables,
doing appropriate conversions as needed. For a particular
wrapped procedure, DPSWriteTypedObjectArray is called
zero or more times — once for each input array specified.

® DPSWriteStringChars sends the text of strings or names. It
appends characters to the current binary object sequence.
For a particular wrapped procedure, DPSWriteStringChars
is called zero or more times to send the text of names and
strings.

The overall length of arrays and strings sent by
DPSWriteTypedObjectArray and DPSWriteStringChars must be
consistent with the length information specified in the binary ob-
ject sequence header sent by DPSBinObjSeqWrite. In particular,
don’t rely on ‘sizeof()’ to return the correct size value of the
binary object sequence.

11.2 RECEIVING RESULTS

Each wrapped procedure with output arguments constructs an
array containing elements of type ‘DPSResultsRec’. This array
is called the result table. The index position of each element cor-
responds to the ordinal position of each output argument as
defined in the wrapped procedure: the first table entry (index 0)
corresponds to the first output argument, the second table entry
(index 1) corresponds to the second argument, and so on. Each
entry defines one of the output arguments of a wrapped proce-
dure by specifying a data type, a count, and a pointer to the
storage for the value. DPSSetResultTable registers the result
table with the context.

The interpreter sends return values to the application as binary
object sequences. Wrapped procedures that have output argu-
ments use the printobject operator to tag and send each return
value. (See the discussion of the printobject operator in
PostScript Language Extensions for the Display PostScript
System.) The tag corresponds to the index of the output argument
in the result table. After the wrapped procedure finishes sending
the PostScript language program, it calls DPSAwaitReturnValues
to wait for all of the results to come back.

74 Client Library Reference Manual / Version of January 23, 1990

As the Client Library receives results from the interpreter, it
places each result into the output argument specified by the
result table. The tag of each result object in the sequence is used
as an index into the result table. When the Client Library
receives a tag that is greater than the last defined tag number,
DPSAwaitReturnValues returns. This final tag is called the ter-
mination tag.

Certain conventions must be followed to handle return values for
wrapped procedures properly:

¢ The tag associated with the return value is the ordinal of the
output parameter as listed in the definition of the wrapped
procedure, starting from O and counting from left to right
(see example below).

o If the ‘count’ field of the ‘DPSResultsRec’ is -1, the ex-
pected result is a single element, or ‘‘scalar,”’ and return
values with the same tag overwrite previous values. Other-
wise, the ‘count’ indicates the number of array elements
that remain to be received. In this case, a series of return
values with the same tag are stored in successive elements
of the array. If the value of ‘count’ is zero, further array
elements of the same tag value are ignored.

o DPSAwaitReturnValues returns when it notices that the
‘resultTable’ pointer in the ‘DPSContextRec’ data object is
‘NULL’. The code that handles return values should note
the reception of the termination tag by setting the
‘resultTable’ to ‘NULL’ to indicate that there are no more
return values to receive for this wrapped procedure.

Here is an example of a wrap with return values:

defineps Example(l int *x, *y, *2)
102030xyz
endps

The code generated for this wrapped procedure is actually:

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 75

76

1020 30
0 printobject
% pop integer 30 off the operand stack,
% use tag = O (result table index = 0, first parameter 'x’)
% write binary object sequence
1 printobject
% pop integer 20 off the operand stack,
% use tag = 1 (result table index = 1, second parameter ’y’)
% write binary object sequence
2 printobject
% pop integer 10 off the operand stack,
% use tag = 2 (result table index = 2, third parameter 'z’)
% write binary object sequence
0 3 printobject
% push dummy value 0 on operand stack
% pop integer 0 off operand stack,
% use tag = 3 (termination tag)
% write binary object sequence
flush
% make sure all data is sent back to the application

11.3 MANAGING USER NAMES

Name indices are the most efficient way to specify names in a
binary object sequence; refer to PostScript Language Extensions
for the Display PostScript System for a full description. The
Client Library manages the mapping of user names to indices.
Wrapped procedures map user names automatically. The first
time a wrapped procedure is called, it calls DPSMapNames to
map all user names specified in the wrapped procedure into in-
dices. The application may also call DPSMapNames directly to
obtain name mappings.

A name map is stored in a space. All contexts associated with
that space have the same name map. The name mapping for the
context is automatically kept up to date by the Client Library in
the following way:

e Every wrapped procedure calls DPSBinObjSeqWrite,
which, in addition to sending the binary object sequence,
checks to see if the user name map is up to date.

¢ DPSBinObjSeqWrite calls DPSUpdateNameMap if the
name map of the space does not agree with the Client
Library’s name map. DPSUpdateNameMap may send a

Client Library Reference Manual / Version of January 23, 1990

11.4

series of defineusername operators to the PostScript inter-
preter.

DPSNameFromlIndex returns the text for the user name with the
given index. The string returned is owned by the Client Library;
treat it as read-only.

BINARY OBJECT SEQUENCES

Syntactically, a binary object sequence is a single token. The
structure is described in detail in PostScript Language Exten-
sions for the Display PostScript System. The definitions in this
section correspond to the components of a binary object se-
quence.

#define DPS_HEADER_SIZE 4

#define DPS_HI_IEEE 128
#define DPS_LO_IEEE 129
#define DPS_HI_NATIVE 130
#define DPS_LO_NATIVE 131

#ifndef DPS_DEF_TOKENTYPE
#define DPS_DEF_TOKENTYPE DPS_HI_IEEE
#endif DPS_DEF_TOKENTYPE

typedef struct {
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBIinObjRec objects[1];

} DPSBinObjSeqRec, *DPSBinObjSeq;

A binary object sequence begins with a four-byte header. The
first byte indicates the token type. A binary object is defined by
one of the four token type codes listed above.
‘DPS_DEF_TOKENTYPE’ defines the default token type for bi-
nary object sequences generated by a particular implementation
of the Client Library. ‘DPS_DEF_TOKENTYPE’ must be consis-
tent with the machine architecture upon which the Client Library
is implemented.

The ‘nTopElements’ byte indicates the number of top-level ob-
jects in the sequence. A binary object sequence can have from 1
to 255 top-level objects. If more top-level objects are required,
use an extended binary object sequence (described in Section
11.5).

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 77

78

The next two bytes form a nonzero 16-bit integer that is the total
byte length of the binary object sequence.

The header is followed by a sequence of objects.

#define DPS_NULL 0
#define DPS_INT

#define DPS_REAL
#define DPS_NAME
#define DPS_BOOL
#define DPS_STRING
#define DPS_IMMEDIATE
#define DPS_ARRAY
#define DPS_MARK

S OO HBON =

0

The first byte of an object describes its attributes and type. The
types are listed above and correspond to the PostScript language
objects that pswrap generates.

#define DPS_LITERAL 0
#define DPS_EXEC 0x080

The high-order bit indicates whether the object has the literal (0)
or executable (1) attribute.

The next byte is the tag byte, which must be zero for objects sent
to the interpreter. Result values sent back from the interpreter
will use the tag field, as described in Section 11.2.

The next two bytes form a 16-bit integer that is the length of the
object. The unit value of the length field depends upon the type
of the object. For arrays, the length indicates the number of ele-
ments in the array. For strings, the length indicates the number of
characters.

The last four bytes of the object form the value field. The inter-
pretation of this field depends upon the type of the object.

Client Library Reference Manual / Version of January 23, 1990

typedef struct {
unsigned char attributedType;
unsigned char tag;
short length;
long int val;
} DPSBinObjGeneric; /* boolean, int, string, name and array */

typedef struct {
unsigned char attributedType;
unsigned char tag;
short length;
float realVal;
} DPSBinObjReal; /* float */

‘DPSBInObjGeneric’ and ‘DPSBinObjReal’ are defined for the
use of wraps. They make it easier to initialize the static portions
of the binary object sequence.

typedef struct {
unsigned char attributedType;
unsigned char tag;
short length;
union {
long int integerVal;
float realVal;
long int nameVal; /* offset or index */
long int booleanVal;
long int stringVal; /* offset */
long int arrayVal; /* offset */
} val;
} DPSBinObjRec;

‘DPSBIinObjRec’ is a general-purpose variant record for inter-
preting an object in a binary object sequence.

11.5 EXTENDED BINARY OBJECT SEQUENCES

An extended binary object sequence is required if there are more
than 255 top-level objects in the sequence. The extended binary
object sequence is represented by
‘DPSExtendedBinObjSeqRec’, as follows:

Byte O Same as for a normal binary object sequence; it
represents the token type.

Byte 1 Set to zero; indicates that this is an extended bi-
nary object sequence. (In a normal binary object

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 79

sequence, this byte represents the number of top-
level objects.)

Bytes 2-3 A 16-bit value representing the number of top-
level elements.

Bytes 4-7 A 32-bit value representing the overall length of
the extended binary object sequence.

The byte order in numeric fields is according to the number rep-
resentation specified by the token type.

The layout of the remainder of the extended binary object se-
quence is identical to that of a normal binary object sequence.
11.6 DPSFRIENDS.H DATA STRUCTURES

This section describes the data structures used by the pswrap
program as part of its support for wrapped procedures.

Note: The ‘DPSContextRec’ data structure and its handle,
‘DPSContext’, are part of the dpsfriends.h header file. They are
documented in Section 9.1 because they are also used by
dpsclient.h procedures.

DPSBinObjGeneric
typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
long int val;
} DPSBinObjGeneric; /* boolean, int, string, name and array */

is defined for the use of wraps. It is used to initialize the static
portions of the binary object sequence. See ‘DPSBinObjReal’ for
type ‘real’.

80 Client Library Reference Manual / Version of January 23, 1990

DPSBinObjReal

DPSBInObjRec

DPSBinObjSeqRec

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
float realVal;
} DPSBinObjReal; I* float */

is similar to ‘DPSBinObjGeneric’, but represents a real number.

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
union {
long int integerVal;
float realVval;
long int nameVal; /* offset or index */
long int booleanVal;
long int stringVal; /* offset */
long int arrayVal; /* offset */
} val;
} DPSBinObjRec;

is a general-purpose variant record for interpreting an object in a
binary object sequence.

typedef struct {
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBinObjRec objects[1];

} DPSBinObjSeqRec, *DPSBinObjSeq;

This data type is provided as a convenience for accessing a bi-
nary object sequence copied from an 1/0 buffer.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 81

DPSDefinedType typedef enum {
dps_tBoolean,
dps_tChar, dps_tUChar,
dps_tFloat, dps_tDouble,
dps_tShort, dps_tUShort,
dps_tint, dps_tUInt,
dps_tLong, dps_tULong } DPSDefinedType;

enumerates the C data types used to describe wrap arguments.

DPSExtendedBinObjSeqRec

typedef struct {
unsigned char tokenType;
unsigned char escape; /* zero if this is an extended sequence */
unsigned short nTopElements;
unsigned long length;
DPSBinObjRec objects[1];

} DPSExtendedBinObjSeqRec, *DPSExtendedBinObjSeq;

This data type has a purpose similar to ‘DPSBinObjSeqRec’, but
is used for extended binary object sequences.

DPSNameEncoding
typedef enum {
dps_indexed, dps_strings
} DPSNameEncoding;

defines the two possible encodings for user names in the
‘dps_binObjSeq’ and ‘dps_encodedTokens’ forms of PostScript
language programs.

DPSProcs /* pointer to procedures record */

See ‘DPSProcsRec’.

82 Client Library Reference Manual / Version of January 23, 1990

DPSProcsRec typedef struct {
void (*BinObjSeqWrite)(/* DPSContext ctxt, char *buf, unsigned int count */);
void (*WriteTypedObjectArray)(/*
DPSContext ctxt,
DPSDefinedType type;
char *array,
unsigned int length */);
void (*WriteStringChars)(/* DPSContext ctxt; char *buf; unsigned int count; */);
void (*WriteData)(/* DPSContext ctxt, char *buf, unsigned int count */);
void (*WritePostScript)(/* DPSContext ctxt, char *buf, unsigned int count */);
void (*FlushContext)(/* DPSContext ctxt */);
void (*ResetContext)(/* DPSContext ctxt */);
void (*UpdateNameMap)(/* DPSContext ctxt */);
void (*AwaitReturnValues)(/* DPSContext ctxt */);
void (*Interrupt)(/* DPSContext ctxt */);
void (*DestroyContext)(/* DPSContext ctxt */);
void (*WaitContext)(/* DPSContext ctxt */);
} DPSProcsRec, *DPSProcs;

defines the data structure pointed to by ‘DPSProcs’.

This record contains pointers to procedures that implement all of
the operations that can be performed on a context. These
procedures are analogous to the instance methods of an object in
an object-oriented language.

Note: Application developers need not be concerned with the
contents of this data structure. Do not change the ‘DPSProcs’
pointer. Do not change the contents of ‘DPSProcsRec’.

DPSProgramEncoding
typedef enum {
dps_ascii, dps_binObjSeq, dps_encodedTokens
} DPSProgramEncoding;

defines the three possible encodings of PostScript language
programs: ASCII encoding, binary object sequence encoding,
and binary token encoding.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 83

84

DPSResultsRec

DPSSpace

DPSSpaceRec

11.7

typedef struct {
DPSDefinedType type;
int count;
char *value;
} DPSResultsRec, *DPSResults;

Each wrapped procedure constructs an array called the result
table, which consists of elements of type ‘DPSResultsRec’. The
index position of each element corresponds to the ordinal posi-
tion of each output parameter as defined in the wrapped proce-
dure; for example, index O (the first table entry) corresponds to
the first output parameter, index 1 corresponds to the second out-
put parameter, and so on.

‘type’ specifies the formal type of the return value. ‘count’
specifies the number of values expected; this supports array for-
mals. ‘value’ points to the location of the first value; the storage
beginning there must have room for ‘count’ values of type
‘type’. If ‘count’ is —1, ‘value’ points to a scalar (single) result
argument. If ‘count’ is zero, any subsequent return values are
ignored.

/* handle for space record */

See ‘DPSSpaceRec’.

typedef struct {
DPSSpaceProcs procs;
} DPSSpaceRec, *DPSSpace;

typedef struct {
void (*DestroySpace)(/* DPSSpace space */);
} DPSSpaceProcsRec, *DPSSpaceProcs;

provides a representation of a space. See also DPSDestroySpace
in Section 9.2.

DPSFRIENDS.H PROCEDURES

The following is an alphabetical listing of the procedures in the
Client Library header file dpsfriends.h. These procedures are for
experts only; most application programmers don’t need them.
The pswrap translator inserts calls to these procedures when it

Client Library Reference Manual / Version of January 23, 1990

creates C-callable wrapped procedures specified by the applica-
tion programmer.

DPSAwaitReturnValues
void DPSAwaitReturnValues(ctxt)
DPSContext ctxt;

waits for all results described by the result table; see
‘DPSResultRec’. It uses the tag of each object in the sequence to
find the corresponding entry in the result table. When
DPSAwaitReturnValues receives a tag that is greater than the last
defined tag number, there are no more return values to be
received and the procedure returns. This final tag is called the
termination tag. DPSSetResultTable must be called to set the
result table before any calls to DPSBinObjSeqWrite.

DPSAwaitReturnValues can call the context’s error procedure
with ‘dps_err_resultTagCheck’ or ‘dps_err_resultTypeCheck’. It
will return prematurely if it encounters a ‘dps_err_ps’ error.

DPSBInObjSeqWrite
void DPSBinObjSeqWrite(ctxt, buf, count)
DPSContext ctxt;
char *buf;
unsigned int count;

sends the beginning of a binary object sequence generated by a
wrap. ‘buf’ points to a buffer containing ‘count’ bytes of a binary
object sequence. ‘buf’ must point to the beginning of a sequence,
which includes at least the header and the entire top-level se-
quence of objects.

DPSBinObjSeqWrite may also include subsidiary array elements
and/or strings. It writes PostScript language as specified by the
format and encoding variables of ‘ctxt’, doing appropriate con-
versions as needed. If the buffer does not contain the entire bi-
nary object sequence, one or more calls to
DPSWriteTypedObjectArray and/or DPSWriteStringChars must
follow immediately; ‘buf’ and its contents must remain valid un-
til the entire binary object sequence has been written.
DPSBinObjSeqWrite ensures that the user name map is up to
date.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 85

DPSMapNames void DPSMapNames(ctxt, nNames, names, indices)
DPSContext ctxt;
unsigned int nNames;
char **names;
long int **indices;

maps all specified names into user name indices, sending new
defineusername definitions as needed. ‘names’ is an array of
strings whose elements are the user names. ‘nNames’ is the
number of elements in the array. ‘indices’ is an array of pointers
to ‘(long int *)’ integers, which are the locations in which to store
the indices. DPSMapNames is normally called automatically
from within wraps. The application can also call this procedure
directly to obtain name mappings.

DPSMapNames calls the context’s error procedure with
‘dps_err_nameToolLong’.

Note: The caller must ensure that the string pointers remain
valid after the procedure returns. The Client Library becomes
the owner of all strings passed to it with DPSMapNames.

The same name may be used several times in a wrap. To reduce
string storage, these duplicates can be eliminated by using an
optimization recognized by DPSMapNames. If the pointer to the
string in the array ‘names’ is null — that is, ‘(char *)0° —
DPSMapNames uses the nearest non-null name that precedes the
‘(char *)0’ entry in the array. The first element of ‘names’ must
be non-null. This optimization works best if you sort the names
so that duplicate occurrences are adjacent.

Example: DPSMapNames treats the following arrays as equiv-
alent, but the one on the right saves storage.

{ {

"boxes", "boxes",
"drawMe", ‘drawMe",
"drawMe”", (char *)0,
“init", “init",
"makeAPath", *makeAPath",
"returnAClip", “returnAClip",
*returnAClip", (char *)0,
"returnAClip" (char *)0

} }

86 Client Library Reference Manual / Version of January 23, 1990

DPSNameFromindex
char *DPSNameFromIndex(index)
long int index;

returns the text for the user name with the given index. The
string returned must be treated as read-only. ‘NULL’ will be
returned if ‘index’ is invalid.

DPSSetResultTable
void DPSSetResultTable(ctxt, tbl, len)
DPSContext ctxt;
DPSResults tbl;
unsigned int len;

sets the result table and its length in ‘ctxt’. This operation must
be performed before a wrap body that can return a value is sent
to the interpreter.

DPSUpdateNameMap
void DPSUpdateNameMap(ctxt)
DPSContext ctxt;

sends a series of defineusername commands to the interpreter.
This procedure is called if the name map of the context’s space is
not synchronized with the Client Library name map.

DPSWriteStringChars
void DPSWriteStringChars(ctxt, buf, count);
DPSContext ctxt;
char *buf;
unsigned int count;

appends strings to the current binary object sequence. ‘buf’ con-
tains ‘count’ characters that form the body of one or more strings
in a binary object sequence. ‘buf’ and its contents must remain
valid until the entire binary object sequence has been sent.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 87

DPSWriteTypedObjectArray
void DPSWriteTypedObjectArray(ctxt, type, array, length)
DPSContext ctxt;
DPSDefinedType type;
char *array;
unsigned int length;

writes PostScript language code as specified by the format and
encoding variables of ‘ctxt’, doing appropriate conversions as
needed. ‘array’ points to an array of ‘length’ elements of type
‘type’. ‘array’ contains the element values for the body of a sub-
sidiary array that was passed as an input argument to pswrap.
‘array’ and its contents must remain valid until the entire binary
object sequence has been sent.

88 Client Library Reference Manual / Version of January 23, 1990

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT

Changes to the Client Library Reference Manual from the docu-
ment dated October 25, 1989, are noted in the paragraphs below.

Input sent to a child context is not passed to its parent.

In calls to DPSWriteData, the contents of the buffer will not be
converted according to the context’s encoding parameters.

A few additional minor amplifications and corrections have been
made.

Changes to the Client Library Reference Manual from the docu-
ment dated October 7, 1988, are noted in the paragraphs below.

The manual has been completely reorganized and rewritten.

An example error handler program, DPSDefaultErrorProc, has
been provided in Appendix B. This is the default error handler in
the Display PostScript extension for the X Window System.

The synchronization example in Section 6.4 has been replaced
by an X-specific example.

The specifications for dpsclient.h and dpsfriends.h procedures
are now in separate chapters.

Listings of the header files have been removed, except for
dpsops.h (representing itself and psops.h), whose procedure
declarations are not listed elsewhere in this manual.

Numerous inconsistencies in the arguments to some of the
single-operator procedures have been cleaned up.

The document has been updated to be consistent with the latest
versions of dpsfriends.h, dpsclient.h, dpsops.h, and psops.h. The
following are no longer defined by Adobe:

e DPSGetLastNamelndex

e DPSLastNamelndex

o DPSLastObjectindex

e DPSNewUserObject

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 89

References to system-specific issues have been added throughout
the manual, including the following:

¢ Context creation routines.

® Behavior of default and backstop error and text handlers.

¢ Automatic encoding translation (for example, binary object
sequence to tokens).

¢ Additional error codes.
¢ Exception handling and error recovery.

¢ Programming examples and code fragments.
A section on programming tips has been added.

The index has been enhanced.

90 Client Library Reference Manual / Version of January 23, 1990

B EXAMPLE ERROR HANDLER

An error handler must deal with all errors defined in dpsclient.h
as well as any additional errors defined in system-specific header
files.

This appendix contains an example of an error handler for the X
Window System extension of the Display PostScript system.

B.1 ERROR HANDLER IMPLEMENTATION

An example implementation of an error handler,
DPSDefaultErrorProc, follows. The code is followed by ex-

planatory text.
#include “dpsclient.h”
void
DPSDefaultErrorProc(ctxt, errorCode, argi, arg2)
DPSContext ctxt;

DPSErrorCode errorCode;
long unsigned int arg1, arg2; {

DPSTextProc textProc = DPSGetCurrentTextBackstop();

char *prefix = "%%| Error: *;
char *suffix = * 1%%\n";

char *infix = *; OffendingCommand: *;

char *nameinfix = "User name too long; Name: *;
char *contextinfix = "Invalid context: *;

char *taginfix = "Unexpected wrap result tag: *;

char *typeinfix = "Unexpected wrap result type; tag: *;

switch (errorCode) {
case dps_err_ps: {

char *buf = (char *)arg1;
DPSBinObj ary = (DPSBInObj) (buf+DPS_HEADER_SIZE);
DPSBInObj elements;
char *error, *errorName;
integer errorCount, errorNameCount;
boolean resyncFlg;

Assert((ary->attributedType & 0x7f) == DPS_ARRAY);
Assert(ary->length == 4);

elements = (DPSBInObj)(((char *) ary) + ary->val.arrayVal);

B.1 ERROR HANDLER IMPLEMENTATION 91

92

errorName = (char *)(((char *) ary) + elements[1].val.nameVal);
errorNameCount = elements[1].length;

error = (char *)(((char *) ary) + elements[2].val.nameVal);
errorCount = elements[2].length;

resyncFlg = elements[3].val.booleanVal;

if (textProc != NIL) {
(*textProc)(ctxt, prefix, strien(prefix));
(*textProc)(ctxt, errorName, errorNameCount);
(*textProc)(ctxt, infix, strien(infix));
(*textProc)(ctxt, error, errorCount);
(*textProc)(ctxt, suffix, strlen(suffix));

}

if (resyncFlg && (ctxt = dummyCitx)) {
RAISE(dps_err_ps, ctxt);
CantHappen();
}

break;
}
case dps_err_nameToolLong:
if (textProc != NIL) {
char *buf = (char *)arg1;
(*textProc)(ctxt, prefix, strlen(prefix));
(*textProc)(ctxt, nameinfix, strlen(nameinfix));
(*textProc)(ctxt, buf, arg2);
(*textProc)(ctxt, suffix, strlen(suffix));
}
break;
case dps_err_invalidContext:
if (textProc != NIL) {
char m[100];
(void) sprintf(m, "%s%s%d%s", prefix, contextinfix, arg1, suffix);
(*textProc)(ctxt, m, strlen(m));
}
break;
case dps_err_resultTagCheck:
case dps_err_resultTypeCheck:
if (textProc != NIL) {
char m[100];
unsigned char tag = *((unsigned char *) arg1+1);
(void) sprintf(m, "%s%s%d%s", prefix, typeinfix, tag, suffix);
("textProc)(ctxt, m, strlen(m));
}
break;
case dps_err_invalidAccess:
if (textProc != NIL)
{
char m[100];

Client Library Reference Manual / Version of January 23, 1990

(void) sprintf (m, “%slInvalid context access.%s", prefix, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;
case dps_err_encodingCheck:
if (textProc != NIL)
{
char m[100];
(void) sprintf (m, “%slnvalid name/program encoding: %d/%d.%s",
prefix, (int) arg1, (int) arg2, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;
case dps_err_closedDisplay:
if (textProc != NIL)
{
char m[100];
(void) sprintf (m, "%sBroken display connection %d.%s",
prefix, (int) arg1, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;
case dps_err_deadContext:
if (textProc != NIL)
{
char m[100];
(void) sprintf (m, "%sDead context 0x0%x.%s", prefix,
(int) arg1, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;
default:;

}
} /* DPSDefaultErrorProc */

B.2 DESCRIPTION OF THE ERROR HANDLER

DPSDefaultErrorProc handles errors that arise when a wrap or
Client Library procedure is called for the context. The error code
indicates what error occurred. Interpretation of the ‘arg1’ and
‘arg2’ values is based on the error code.

The error handler initializes itself by getting the current backstop
text handler and assigning string constants that will be used to
formulate and report a text message. The section of the program

B.2 DESCRIPTION OF THE ERROR HANDLER 93

94

that deals with the various error codes begins with the ‘switch’
statement. Each error code can be handled differently.

If a ‘textProc’ was specified, the error handler calls the text
handler to formulate an error message, passing it the name of the
error, the object that caused the error, and the string constants
used to format a standard error message. For example, a
typecheck error reported by the cvn operator would be reported
as a ‘dps_err_ps’ error code and printed as follows:

%%][Error: typecheck; OffendingCommand: cvn %%

The following error codes are common to all Client Library im-
plementations:

e ‘dps_err_ps’ represents all PostScript language errors
reported by the interpreter; that is, the errors listed under
each operator in the PostScript Language Reference
Manual and PostScript Language Extensions for the Dis-
play PostScript System. See Section B.3 for more infor-
mation about this error code.

* ‘dps_err_nameToolLong’ arises if a binary object sequence
or encoded token has a name whose length exceeds 128
characters. ‘arg1’ is the PostScript user name; ‘arg2’ is its
length.

e ‘dps_err_invalidContext’ arises if a Client Library routine
was called with an invalid context. This can happen if the
client is unaware that the execution context in the inter-
preter has terminated. ‘arg1’ is a context identifier; ‘arg2’
is unused.

o ‘dps_err_resultTagCheck’ occurs when an invalid tag is
received for a result value. There is one object in the se-
quence. ‘argl’ is a pointer to the binary object sequence;
‘arg2’ is the length of the binary object sequence.

o ‘dps_err_resultTypeCheck’ occurs when the value returned
is of a type incompatible with the output parameter (for
example, a string returned to an integer output parameter).
‘arg1’ is a pointer to the binary object (the result with the
wrong type); ‘arg2’ is unused.

The remainder of the error codes are specific to the X Window
System:

Client Library Reference Manual / Version of January 23, 1990

e ‘dps_err_invalidAccess’ indicates that a shared context is
being used improperly. For example, result values were
erroneously sent to a sharing client other than the creator of
the context. ‘argl’ and ‘arg2’ are unused.

e ‘dps_err_encodingCheck’ indicates that an undefined en-
coding value has been passed to DPSChangeEncoding or
that the application is trying to change the name encoding
of a shared context. ‘arg1’ is the new name encoding;
‘arg2’ is the new program encoding.

o ‘dps_err_closedDisplay’ indicates that the connection to
the server has been lost. ‘arg1’ is the index number of the
display; ‘arg2’ is unused.

e ‘dps_err_deadContext’ indicates that a context has ter-
minated in the interpreter, but the resources assigned to the
context have not been freed. ‘arg1’ is the ‘DPSContext’
handle; ‘arg2’ is unused.

B.3 HANDLING POSTSCRIPT LANGUAGE ERRORS

The following discussion applies only to the ‘dps_err_ps’ error
code. This error code represents all possible PostScript operator
errors. Because the interpreter provides a binary object sequence
containing detailed information about the error, more options are
available to the error handler than for other client errors.

‘arg1’ points to a binary object sequence that describes the error.
The binary object sequence is a four-element array consisting of
the name ‘Error’, the name that identifies the specific error, the
object that was executed when the error occurred, and a boolean
indicating whether the context expects to be resynchronized. For
further details of the format of the binary object sequence, see
PostScript Language Extensions for the Display PostScript
System.

The type and length of the array are checked with assertions. The
body of the array is pointed to by the ‘elements’ variable. Each
element of the array is derived and placed in a variable.

DPSDefaultErrorProc raises an exception only if the context ex-
ecuted resyncstart to install resynchandleerror. The
‘resyncFlag’ variable contains the value of the fourth element of

B.3 HANDLING POSTSCRIPT LANGUAGE ERRORS 95

the binary object sequence array, the boolean that indicates
whether resynchronization is needed. ‘resyncFlag’ will be false
if the handleerror operator handled the error; it will be true if
resynchandleerror handled the error.

If ‘resyncFlag’ is true and the context handling the error is a
context created by the application, the error handler raises the
exception by calling RAISE. This call never returns. See Appen-
dix C for a discussion of how RAISE works.

96 Client Library Reference Manual / Version of January 23, 1990

C EXCEPTION HANDLING

This appendix describes a general-purpose exception-handling
facility. It provides help for a narrowly defined problem area —
handling PostScript language errors that arise from the con-
ditions listed on page 26. Most application programmers need
not be concerned with exception handling. These facilities can be
used in conjunction with PostScript language code and a sophis-
ticated error handler such as DPSDefaultErrorProc to provide a
certain amount of error recovery capability. Consult the system-
specific documentation for alternative means of error recovery.

Note: Avoid using exception handling with the X Window Sys-
tem because lower levels of software, such as Xlib, are not
prepared to handle exceptions or to have control taken away
from them.

An exception is an unexpected condition such as a PostScript
language error that prevents a procedure from running to normal
completion. The procedure could simply return, but data struc-
tures might be left in an inconsistent state and returned values
might be incorrect. Instead of returning, the procedure can raise
the exception, passing a code that indicates what has happened.
The exception is intercepted by some caller of the procedure that
raised the exception (any number of procedure calls deep); ex-
ecution then resumes at the point of interception. As a result, the
procedure that raised the exception is terminated, as are any in-
tervening procedures between it and the procedure that inter-
cepted the exception, an action which is called ‘‘unwinding the
call stack.”

The Client Library provides a general-purpose exception-
handling mechanism in dpsexcept.h. This header file provides
facilities for placing exception handlers in application sub-
routines to respond cleanly to exceptional conditions.

C EXCEPTION HANDLING 97

98

Note: Application programs may need to contain the following
statement:

#include "dpsexcept.h”

As an exception propagates up the call stack, each procedure en-
countered can deal with the exception in one of three ways:

e It ignores the exception, in which case the exception con-
tinues on to the caller of the procedure.

¢ It intercepts the exception and handles it, in which case all
procedure calls below the handler are unwound and dis-
carded.

¢ It intercepts, handles, and then reraises the exception, al-
lowing handlers higher in the stack to notice and react to
the exception.

The body of a procedure that intercepts exceptions is written as
follows:

DURING
statement1;
statement2;

HANDLER
statement3
statement4;

END_HANDLER

The statements between ‘HANDLER’ and ‘END_HANDLER’
comprise the exception handler for exceptions occurring between
‘DURING’ and ‘HANDLER’. The procedure body works as fol-
lows:

e Normally, the statements between ‘DURING’ and
‘HANDLER?’ are executed.

o If no exception occurs, the statements between ‘HANDLER’
and ‘END_HANDLER’ are bypassed; execution resumes at
the statement after ‘END_HANDLER’.

o If an exception is raised while executing the statements be-
tween ‘DURING’ and ‘HANDLER’ (including any proce-

Client Library Reference Manual / Version of January 23, 1990

dure called from those statements), execution of those
statements is aborted and control passes to the statements
between ‘HANDLER’ and ‘END_HANDLER’.

In terms of C syntax, you must treat these macros as if they were
C code brackets, as follows:

Macro C Equivalent
‘DURING’ {
‘HANDLER’ H
‘END_HANDLER’ B

In general, exception-handling macros should either entirely
enclose a code block (the preferred method — see Example 1
below) or should be entirely within the block (see Example 2).

DURING
while (/* Example 1 *) {

}
HANDLER

END_HANDLER

while (/* Example 2 */) {
DURING

HANDLER

END_HANDLER
}

When a procedure detects an exceptional condition, it can raise
an exception by calling RAISE. RAISE takes two arguments. The
first is an error code (for example, one of the values of
‘DPSErrorCode’). The second is a pointer, ‘char *’, which may
point to any kind of data structure, such as a string of ASCII text
or a binary object sequence.

The exception handler has two local variables, ‘Exception.Code’
and ‘Exception.Message’. When the handler is entered, the first

C EXCEPTION HANDLING 99

100

argument that was passed to RAISE get assigned to
‘Exception.Code’ and the second argument gets assigned to
‘Exception.Message’. These variables have valid contents only
between ‘HANDLER’ and ‘END_HANDLER’.

If the exception handler executes ‘END_HANDLER’ or returns,
propagation of the exception ceases. However, if the exception
handler calls RERAISE, the exception — along with
‘Exception.Code’ and ‘Exception.Message’ — is propagated to
the next outer dynamically enclosing occurrence of ‘DURING ...
HANDLER’.

A procedure may choose not to handle an exception, in which
case one of its callers must handle it. There are two common
reasons for wanting to handle exceptions:

¢ To deallocate dynamically allocated storage and clean up
any other local state, then allow the exception to propagate
further. In this case, the handler should perform its cleanup,
then call RERAISE.

e To recover from certain exceptions that might occur, then
continue normal execution. In this case, the handler should
compare ‘Exception.Code’ against the set of exceptions it
can handle. If it can handle the exception, it should per-
form the recovery and execute the statement that follows
‘END_HANDLER’; if not, it should call RERAISE to
propagate the exception to a higher-level handler.

Warning: It is illegal to execute a statement between ‘DURING’
and ‘HANDLER’ that would transfer control outside of those
statements. In particular, ‘return’ is illegal: an unspecified error
will occur. This restriction does not apply to the statements be-
tween ‘HANDLER’ and ‘END_HANDLER’. To return from the
exception handler, call ‘E_RETURN_VOID()’; to perform
‘return(x)’, call ‘E_RETURN(x)’.

Client Library Reference Manual / Version of January 23, 1990

C.1 RECOVERING FROM POSTSCRIPT LANGUAGE ERRORS

The example DPSDefaultErrorProc procedure can be used with
the PostScript operator resyncstart to recover from PostScript
language errors. If you use this strategy, an exception can be
raised by any of the Client Library procedures that write code or
data to the context: any wrap, any single-operator procedure,
DPSWritePostScript, and so on. The strategy is as follows:

¢ Send the operator resyncstart to the context immediately
after it is created. resyncstart is a simple read-evaluate-
print loop enclosed in a stopped clause which, on error,
executes resynchandleerror. resynchandleerror reports
PostScript errors back to the client in the form of a binary
object sequence of a single object: an array of four ele-
ments as described in PostScript Language Extensions for
the Display PostScript System. The fourth element of the
binary object sequence, a boolean, is set to true to indicate
that resynchandleerror is executing. The stopped clause
itself executes within an outer loop.

e When a PostScript language error is detected,
resynchandleerror writes the binary object sequence
describing the error, flushes the output stream %stdout,
then reads and discards any data on the input stream
% stdin until EOF (an end-of-file marker) is received. This
effectively clears out any pending code and data, and
makes the context do nothing until the client handles the
error.

e The binary object sequence sent by resynchandleerror is
eventually received by the client and passed to the
context’s error handler. The error handler formulates a text
message from the binary object sequence and displays it,
perhaps by calling the backstop text handler. It then in-
spects the binary object sequence and notices that the
fourth element of the array, a boolean, is true. This means
that resynchandleerror is executing and is waiting for the
client to recover from the error. At this point, the error
handler may raise an exception by calling RAISE with
‘dps_err_ps’ and the ‘DPSContext’ pointer, in order to al-
low some exception handler to do specific error recovery.

e The ‘dps_err_ps’ exception is caught by one of the hand-
lers in the application program. This causes the C stack to

C.1 RECOVERING FROM POSTSCRIPT LANGUAGE ERRORS 101

102

be unwound, and the handler body to be executed. To
handle the exception, the application can reset the context
that reported the error, discarding any waiting code.

¢ The handler body calls DPSResetContext, which resets the
context after an error occurs. This procedure guarantees
that any buffered I/O is discarded and that the context is
ready to read and execute more input. Specifically,
DPSResetContext causes EOF to be put on the context’s
input stream.

e We have come full circle now. EOF is received by
resynchandleerror, which causes it to terminate. The
outer loop of resyncstart then reopens the context’s input
stream %stdin, which clears the end-of-file indication and
resumes execution at the top of the loop. The context is
now ready to read new code.

Although the above strategy works well enough for some appli-
cations, it leaves the context and the contents of its private VM
in an unknown state. For example, the dictionary and operand
stacks may be cluttered, or free-running forked contexts may
have been created, or the contents of userdict may have been
changed. Clearing the state of such a context may be very com-
plicated.

Note: You may not get PostScript language error exceptions
when you expect them. Because of various delays related to
buffering and scheduling, a PostScript language error may be
reported long after the C procedure responsible for the error has
returned. This makes it difficult to write an exception handler
for a given section of code. If this code can cause a PostScript
language error and will therefore cause DPSDefaultErrorProc to
raise an exception, you can ensure that you get the exception in a
timely manner by using synchronization, which is discussed in
Section 6.4.

Client Library Reference Manual / Version of January 23, 1990

Warning: In multi-context applications that require error
recovery, the code to recover from PostScript errors can get quite
complicated. An exception reporting a PostScript error caused by
one context can be raised by any call on the Client Library, even
one on behalf of some other context, including calls made from
wraps. Although DPSDefaultErrorProc does pass the context
that caused the error as an argument to RAISE, it is difficult in
general to deal properly with an exception from one context that
arises while the application is working with another.

When the standard handleerror procedure is called to report an
error, no recovery is possible except to display an error message
and destroy the context.

C.2 EXAMPLE EXCEPTION HANDLER

A typical application might have the following main loop. As-
sume that a context has already been created with
DPSDefaultErrorProc as its error procedure, and that
resyncstart has been executed by the context.

C.2 EXAMPLE EXCEPTION HANDLER 103

#include <dpsexcept.h>

while (/* the user hasn’t quit */) {
/* get an input event */
event = GetEventFromQueue();
/* react to event */
DURING
switch (event) {
case EVENT_A:
UserWrapA(context, ...);
break;
case EVENT_B:
UserWrapB(context, ...);
break;
case EVENT_C:
ProcThatCallsSeveralWraps(context);
break;
r.
default;;

}
HANDLER
/* the context's error proc has already posted an
error for this exception, so just reset.
Make sure the context we're using is the
one that caused the error! */
if (Exception.Code == dps_err_ps)
DPSResetContext((DPSContext)Exception.Message);
END_HANDLER

}

Most of the calls in the ‘switch’ statement are either direct calls
to wrapped procedures or indirect calls (that is, calls to
procedures that make direct calls to wrapped procedures or to the
Client Library). All of the procedure calls between ‘DURING’
and ‘HANDLER'’ can potentially raise an exception. The code be-
tween ‘HANDLER’ and ‘END_HANDLER’ is executed only if an
exception is raised by the code between ‘DURING’ and
‘HANDLER'’. Otherwise, the handler code is skipped.

Suppose ProcThatCallsSeveralWraps is defined as follows:

104 Client Library Reference Manual / Version of January 23, 1990

void ProcThatCallsSeveralWraps(context)
DPSContext context;

{

char *s = ProcThatAllocsAString(...);
int n;

DURING
UserWrapC1(context, ...);
UserWrapC2(context, &n); /* user wrap retums a value */
DPSPrintf(context, “/%s %d def\n", s, n); /* client lib proc */
HANDLER
if ((DPSContext)Exception.Message == context)

/* clean up the allocated string */
free(s);
s = NULL;

/* let the caller handle resetting the context */
RERAISE;
END_HANDLER

/* clean up, if we haven't already */
if (s != NULL) free(s);

This procedure unconditionally allocates storage, then calls
procedures that may raise an exception. If there were no handler
here and the exception simply propagated to the main loop, the
storage allocated for the string would never be reclaimed. The
solution is to define a handler that frees the storage and then calls
RERAISE to allow another handler to do the final processing of

the exception.

C.2 EXAMPLE EXCEPTION HANDLER

105

%stdin 35, 102

= 60
== 23,60

abnormal termination 20
advanced facilities 28
ASCII conversion 29
ASCII encoding 13, 30, 31
ASCII text 16

backstop error handler 52, 53
backstop handler 27

backstop text handler 53

basic facilities 10

binary object sequence 30, 73, 77, 80
binary object sequence, extended 79, 82
binary object sequence, writing 85
binary-encoded tokens 30

boolean 35

buffer 32

buffer, flushing 51

buffering code and data 31

byte order 30

Ctypes 57

call stack, unwinding 97
call-back procedures 21
chaining contexts 28, 43, 47, 48
changing the text handler 53
child context 28, 47

Client Library, introduction to 4
code, sending 14

code, writing 87
communicating with a context 14
communication channel 36
context 6

context creation 11

context data structures 10
context handle 10

context record 46

Index

contexts
chaining 28, 43, 47, 48
child 28,47
communicating with 14
current 14, 52, 53, 57
destination for code 11
destroying 20, 49
forked 33
invalid 25
multiple 57
output from 21
parent 28, 47
resetting 52
sendingto 14
setting 14, 53
synchronizing 21, 32, 54, 102
unchaining 54
writing to 14, 54
conversion 18,30
coordinate systems 37
coordinates 58
current context 14, 52, 53, 57
currentfile 35
currentgray 58
curveto 58
cvn 94

data, sending 14

debugging 6, 29, 35, 43, 58

default error procedure 49

default text procedure 13
defineusername 76, 87

destination for PostScript language code 11
destroying a context 49

destroying a space 49

destroying contexts 20

device independence 37

Display PostScript system 4
displays, multiple 29
DPS_DEF_TOKENTYPE 77
dps_err_ps error 25, 49, 50, 85, 101

107

dps_strings 31 dpsops.h 7, 56, 61

DPSAwaitReturnValues 74, 75, 85 DPSPrintf 16, 17, 35, 52
DPSBinObjGeneric 80 DPSProcs 82
DPSBinObjReal 81 DPSProcsRec 83
DPSBinObjRec 81 DPSProgramEncoding 30, 83
DPSBinObjSeqRec 81 DPSResetContext 53, 102
DPSBinObjSeqWrite 73, 74, 76, 85 DPSResultsRec 74, 84
DPSChainContext 28, 49 DPSselectfont 59
DPSChangeEncoding 17,95 DPSsendchararray 58, 59
dpsclient.h 7, 46, 48, 80, 91 DPSsendfloat 58
DPSContext 46 DPSsendfloatarray 59
DPSContextFromContextID 33, 34 DPSsendint 59
DPSContextRec 33, 48 DPSSetContext 14, 53, 56, 57, 61
DPSCreateTextContext 13, 31 DPSsetdash 59
DPScurrentgray 58 DPSSetErrorBackstop 27, 53
DPScurrentgstate 60 DPSSetErrorProc 22, 53
DPSDefaultErrorProc 13, 22, 44, 49, 91, 95, 102 DPSsetfont 60
DPSDefaultTextBackstop 13, 22, 44 DPSsetgray 59
DPSDefinedType 82 DPSsetgstate 60
DPSdefineuserobject 59 DPSSetResultTable 74, 85, 87
DPSDestroyContext 20, 49 DPSSetTextBackstop 27,53
DPSDestroySpace 20, 49, 50 DPSSetTextProc 22, 53
DPSequals 60 DPSSpace 84
DPSequalsequals 60 DPSSpaceFromContext 54
DPSErrorCode 48 DPSSpaceRec 19, 84
DPSErrorProc 12, 49, 51 DPSTextProc 12, 54
dpsexcepth 97 DPSuappend 59
DPSExtendedBinObjSeqRec 82 DPSueofill 59
DPSFlushContext 31, 35, 52 DPSufill 59

dpsfriends.h 7, 46, 84 DPSUnchainContext 28, 54
DPSgetchararray 59 DPSUpdateNameMap 76, 87
DPSGetCurrentContext 52 DPSustroke 59
DPSGetCurrentErrorBackstop 27, 52 DPSustrokepath 59
DPSGetCurrentTextBackstop 13, 27, 52 DPSversion 60
DPSgetfloatarray 59 DPSWaitContext 17, 31, 32, 33, 35, 54
DPSGetLastNameIndex 89 DPSWriteData 17, 18, 55
DPSinfill 59 DPSWritePostScript 17, 18, 55
DPSinstroke 59 DPSWriteStringChars 74, 85, 87
DPSInterruptContext 19, 52 DPSWriteTypedObjectArray 73, 74, 85, 88
DPSinueofill 59 DPSxshow 58, 59

DPSinufill 59 DPSxyshow 59
DPSinustroke 59 DPSyshow 59
DPSLastNameIndex 89 drawable object 12
DPSLastObjectIndex 89 DURING 98

DPSMapNames 76, 86

DPSNameEncoding 30, 82 E_RETURN(x) 100
DPSNameFromIndex 77, 87 E_RETURN_VOID 100
DPSNewUserObject 89 encoding 17, 30

108 INDEX January 23, 1990

encoding PostScript language 30

encoding, name 82
encoding, program 83
END_HANDLER 98
EOF (end of file) 36
error codes 25, 48, 50

error handler 13, 21, 22, 25, 49, 50, 53
error handler, backstop 27, 52,53

error handler, X example 91
error messages 23, 49

error procedure 85

error recovery 26, 101

errors commonly made by programmers 35

example code
context creation 11
error handler 91
exception handler 103
generated by wrap 75

HANDLER...END_HANDLER 98

sample application 39

text handler 23

wrap 43

wrap with return values 75
examples

buffer with partial token 17

calling a wrap 9

converting the encoding 17

DPSPrintf 16

DPSWriteData and DPSWritePostScript 18

draw into buffer 32
drawing a black box 9
mouse-click event 14
returning fontinfo 15
sending formatted text 16

single-operator procedure 15

synchronizing 32
exception handler 97
exception, raising 97, 102
Exception.Code 99, 100
Exception.Message 99
execution context 6, 10

extended binary object sequence 79, 82

facilities, basic 10

file, as system-specific object 11

files 7
dpsclient.h 7, 46, 48, 80, 91
dpsexcept.h 97

dpsfriends.h 7, 46, 84
dpsops.h 7, 56, 61
psops.h 8, 53, 56, 61
stdout 44
system-specific 11

floating-point format 30

flow of control 22

flush 32

flushing a buffer 31, 33, 51

font dictionary 60

fork 33,34,36

forked context 33

format string 16

GetBuffer 17
graphics state 60

handleerror 25, 96, 103
HANDLER 98
handler, backstop 27
handler, error 50
handler, text 23, 53
handlers 21

handling errors 21, 25
handling exceptions 97
header files 7

help 35, 58

imaging model 37
initialization 7, 12, 14,22
interface 7

interrupt 19, 52
interrupts 19, 52

invalid context 25
invalid context error 50

lineto 58
linking the application 39

moveto 58

multiple calls to DPSPrintf 16
multiple contexts 57
multiple displays 29
multiple windows 29
MyWrap 17

name encoding 30, 31, 82
name mapping 31, 76, 85, 87

109

name too long error 50, 85

Notes 4, 21, 23, 28, 46, 57, 58, 61, 80, 82, 85, 97, 102
See also Warnings

Notes and Warnings 97

numeric literals 57

numeric representation 30

operand stack 57

operator arguments 57

operators 56

output from a wrapped procedure 74
output from context 21

parent context 28, 47

pixmap 12,32

pointer to context record 10

PostScript
destination for code 11
encoding and translating 30
execution context 6
interpreter errors 48
language errors 25, 50, 85, 97
operand stack 57
operator arguments 57
operators 56

previewer application 26

print 23

printers 30

printf 16, 52

printobject 48,74

private VM 12

ProcThatCallsSeveralWraps 104

program encoding 30, 83

programming tips 35, 58

PSoperator single-operator procedures are indexed un-
der DPSoperator.

PSitransform 44

psops.h 8, 53, 56, 61

PSWDrawBox 44

pswrap translator 8

RAISE 96, 99, 101

raising an exception 97

rand 58

rectfill 9

removing context from a chain 54
RERAISE 100

resetting a context 52

110 INDEX January 23, 1990

resolution independence 37

resource limitations 26

result table 74, 83, 85

result table, setting 87

result values 32

results 15, 33,74
resynchandleerror 52,95, 96, 101
resyncstart 101

return values 15, 74

returning from exception handler 100
rules of thumb 58

runtime support for wrapped procedures 73

sample application 39

sample wrap 43

sending code 73

sending data to a context 18, 54

sending to a context 14, 52

server connection, lost 27

setgray 37

setlinewidth 38

setrgbcolor 38

setting the current context 14, 53, 57

setting the result table 87

shared VM 19

Single-operator procedures prefixed by PS are indexed
under DPS.

single-operator procedure, example of 15

single-operator procedures 56

sizeof 74

space 12,19

space record 19, 84

space, destroying 49

standard error codes 25, 48

stdout 44

stop 19

stopped 101

string, writing 87

synchronization 21, 32, 54, 102

synchronization of name maps 87

system-specific context creation 11

system-specific documentation 2

system-specific interface 11

tag 74

tag check error 50, 85
temporary text handler 23
termination 7, 20

termination tag 75, 85
text 13, 16, 29

text handler 13, 22, 23, 53
text handler, backstop 27
tips 58

tips for appplication programmers 35
token 77

tokens, binary-encoded 30
translation 30
troubleshooting 35

type check error 50, 85
typecheck 94

types 57

unchaining a context 54
unwinding the call stack 97
user name indices 30, 31, 84
user names 76, 82, 84, 86
user objects 60

user space 37

userdict 102

VM, private 12
VM, shared 19
vmreclaim 58

waiting 33
Warnings 16, 17, 46, 100, 102
See also Notes
whitespace 16
window, as system-specific object 11
windows, multiple 29
word-processing program 26
wrap 8
See also wrapped procedure

wrapped procedure

advantages of 8

defined 14

example code 43

output from 74

runtime support for 73

with return values 75
writestring 23
writing a binary object sequence 85
writing a string 87
writing code 87
writing data to a context 54
writing to a context 14, 52

X Window System 97
context creation 11, 12,13
DPSCreateTextContext 13
drawable object 12
error handler 91
example code 11, 12,23
pixmap 12
XDPSCreateSimpleContext 12, 44
X11 example application 39
XDPSCreateSimpleContext 12, 13, 44

111

ST

T E M

SonT

Perspective
for Software Developers

ADOBE SYSTEMS
INCORPORATED

Perspective for Software Developers

January 23, 1990

Copyright © 1988-1990 Adobe Systems Incorporated.
All rights reserved.

PostScript and Display PostScript are registered trademarks of
Adobe Systems Incorporated.

X Window System is a trademark of the Massachusetts
Institute of Technology.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software described
in this document is furnished under license and may only be used or
copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

Written by Amy Davidson.

~ Contents

About This Document 1

About the Display PostScript System 1
Application Building Blocks 2

Using pswrap 3

The Client Library Interface 4

Support for Application Developers 5

6.1 The Adobe Developer Support Line 5
6.2 Manuals for Application Developers 6
6.3 Classes for Application Developers 8

6.4 The Adobe Developer Association 8

6.5 PostScript Standards and Conventions 9
6.6 The Public Access File Server 10

A Changes Since Last Publication Of This Document 11

OO s WND =

Index 13

iii

Figure 1: The Display PostScript System 2

Figure 2: Creating a Display PostScript Application 3

1 ABOUT THIS DOCUMENT

This document is your introduction to application development
using the text and graphics imaging resources of the Display
PostScript® system.

This overview for the application programmer describes:

¢ The Display PostScript system environment you’ll be inter-
acting with.

¢ The Client Library interface you’ll be programming for.

e The use of the pswrap translator to prepare C-callable
procedures containing PostScript® language programs.

¢ The manuals you’ll need.

2 ABOUT THE DISPLAY POSTSCRIPT SYSTEM

The Display PostScript system provides a device-independent
imaging model for displaying information on a screen. This im-
aging model is fully compatible with the imaging model used in
PostScript printers. By allowing you to use the PostScript lan-
guage to display text, graphics, and sampled images, it frees you
from display-specific details such as screen resolution and num-
ber of available colors.

You can look at the Display PostScript system as part of the
window system. Your application will use window system fea-
tures for window placement and sizing, menu creation, and event
handling, while using Display PostScript system features to take
care of imaging inside the window.

Display PostScript system components include the Client
Library, the PostScript interpreter, and the pswrap translator.
These components are described in the accompanying set of
manuals. If you are a new PostScript language programmer,
you’ll also need copies of the PostScript language manuals. See
Section 6.2 for a discussion of documentation required by appli-
cation developers.

Figure 1 shows the relationship between your application and the

2 ABOUT THE DISPLAY POSTSCRIPT SYSTEM 1

Display PostScript system. The Client Library contains data
structures and procedures your application will use to send re-
quests to the PostScript interpreter. No matter what operating
system you’re dealing with, you can send PostScript language
programs to the interpreter in the same way, using the same pro-
cedure calls. Therefore portability issues are minimized if you’re
developing an application for more than one environment.

Figure 1 The Display PostScript System

Application

PostScript

Window

R Disp!
Pl PostScript splay

Language ~ Interpreter

Data & Events

System

Keyboard

Operating System

2

3 APPLICATION BUILDING BLOCKS

Most of your application will be written in C or another high-
level languge. You’ll call Client Library procedures to start a
PostScript execution context, send programs and data to the
PostScript interpreter, and get results from the the interpreter.
The Client Library is the application’s primary interface to the
Display PostScript system.

In addition, you’ll call wraps — PostScript language procedures
developed specifically for your application. Wraps, short for
wrapped procedures, are created by the pswrap translator from
PostScript language programs written to meet application needs.
Figure 2 on page 3 shows how an application program is built.

Perspective for Software Developers / Version of January 23, 1990

4 USING PSWRAP

Your application will perform calculations, communicate with
the window system, read and write files, and do other application
processing in C or another high-level language. It will perform
imaging tasks by calling wrapped procedures to send PostScript
language programs to the interpreter. The pswrap translator
creates these wraps from PostScript language input.

Figure 2 shows how an application is built of C source code and
PostScript language code translated into C-callable procedures
by pswrap.

Figure 2 Creating a Display PostScript Application

Wrap
Definitions

v

pswrap
Translator

v

C-Callable
Wrap

Display PostScript
Client Library

Application

C Source Code

COMPILE

Application
Object Code

LINK

v

(Application)

4 USING PSWRAP 3

Consider a wrap, PSWDisplayText, that places text on the screen
at a particular x,y coordinate. A call to PSWDisplayText from the
application program might look something like this:

PSWDisplayText(72.0, 100.0, *Hello World");

The body of the PSWDisplayText procedure, is actually written
in the PostScript language. It was defined to pswrap as follows:

defineps PSWDisplayText(float X,Y; char *text)
XY moveto
(text) show

endps

In the wrap definition, the ‘defineps’ and ‘endps’ keywords tell
pswrap where a given PostScript language program begins and
ends. The ‘defineps’ statement defines the resulting procedure
call. The pswrap translator processes this input and produces a C
language source-code file. When compiled and linked with the
application, the PSWDisplayText procedure sends a PostScript
language program to the interpreter (binary-encoded for more ef-
ficient processing), causing the specified text to be displayed.

To summarize, pswrap takes a PostScript language program as
input and gives you back a C language program. After you com-
pile the resulting C program and link it into your application,
calling the wrap will transmit a stream of PostScript language
binary objects to the interpreter. See the pswrap Reference
Manual for further information.

5 THE CLIENT LIBRARY INTERFACE

The Client Library is a linkable library of compiled C procedures
that provides an interface between the application and the Dis-
play PostScript system. It creates an environment for handling
imaging calls to specific Client Library procedures like
DPSmoveto and custom wraps written for the application.

The Client Library is tailored by the Display PostScript system
vendor for your particular operating environment. The Client
Library Reference Manual describes a generic interface; your
system vendor may add additional features or slightly modify the
interface to suit your hardware and software. See your vendor’s
system-specific documentation for details.

Perspective for Software Developers / Version of January 23, 1990

6 SUPPORT FOR APPLICATION DEVELOPERS

6.1

Adobe supports application developers by means of the follow-
ing services:

Adobe Developer Support Line
A voice mailbox that puts you in touch with
Adobe’s support services for developers. See
Section 6.1.

Technical Literature Catalog
A free catalog of documentation, available on
request.

Documentation
PostScript language manuals (see Section 6.2),
developer reference manuals (included with this
release), and additional technical literature
defining conventions and standards for
PostScript language applications (see Section
6.5).

Adobe Developer Association
A membership program for developers, provid-
ing access to technical resources and monthly
mailings. See Section 6.4.

Public Access File Server
Contains technical documents, code examples,
AFM files, and documentation updates. See Sec-
tion 6.6.

THE ADOBE DEVELOPER SUPPORT LINE

You can call the Adobe Developer Support Line,
(415) 961-4111, for the following kinds of support:

6 SUPPORT FOR APPLICATION DEVELOPERS 5

6

6.2

¢ To receive a free Technical Literature Catalog.

o To order technical literature. (See Section 6.2 for the toll-
free number to use when ordering PostScript language
manuals.)

e To find out how to become a member of the Adobe
Developer Association.

¢ To request technical assistance (for members of the Adobe
Developer Association only).

If you prefer, you can write to us for information. Our mailing
address is:

PostScript Developer Support

Adobe Systems Incorporated

1585 Charleston Road, P.O. Box 7900
Mountain View, CA 94039-7900

MANUALS FOR APPLICATION DEVELOPERS

The accompanying set of developer reference manuals contains
information needed by a programmer developing an application
for the Display PostScript system. If you’re new to the
PostScript language, you should first read the following manuals
(published by Addison-Wesley and available from Adobe by
calling 1-800-344-8335 or through your technical bookstore):

PostScript Language Reference Manual
The standard reference for the PostScript lan-
guage. Describes the PostScript imaging model
and the concepts and facilities of the PostScript
interpreter. Documents the PostScript language.
Required reading.

PostScript Language Tutorial and Cookbook
Introduction to the PostScript language in an in-
formal, interactive style. Contains a collection of
example programs that illustrate the PostScript
imaging model.

PostScript Language Program Design
Guidelines for the advanced developer to use in
designing and debugging PostScript language
programs. Printer-oriented, but most of the in-
formation is relevant to writing a Display
PostScript application.

Perspective for Software Developers / Version of January 23, 1990

Once you’re up to speed in the PostScript language, read the
following manuals:

PostScript Language Extensions for the Display PostScript
System
Describes the extensions to the PostScript lan-
guage that were made for the Display PostScript
system, such as alternative PostScript language
encodings, multiple execution contexts, user
paths, window system support, and memory
management. Introduces important system con-
cepts and documents additional PostScript
operators.

Client Library Reference Manual

Describes the procedural interface to the Display
PostScript system. Tells how to send programs
and data to a PostScript execution context, how
to handle context output, how to create and ter-
minate a context. Contains procedure defini-
tions, programming tips, and a sample applica-
tion program.

pswrap Reference Manual
Describes how to define C-callable procedures
that contain PostScript language programs. Tells
how to declare input arguments and output to be
received from the interpreter. Documents the
pswrap command line options.

PostScript Language Color Extensions
Describes color extensions to the PostScript lan-
guage, including multiple color images, color
halftone screen definitions, color correction, and
CMYK color specification.

Because the Display PostScript system has been implemented on
various system platforms, some of the information required by
application programmers is necessarily system-specific. There-
fore in addition to the manuals listed above you’ll need to con-
sult the documentation provided by your system software ven-
dor. The following system-specific documentation is available
from Adobe:

6 SUPPORT FOR APPLICATION DEVELOPERS 7

8

6.3

6.4

X Window System Programmer’s Supplement to the Client
Library Reference Manual
Describes information about the Client Library
interface that is specific to the X Window

System', such as context creation and addition-
al error codes.

CLASSES FOR APPLICATION DEVELOPERS
Adobe offers regularly scheduled classes in:

¢ Programming in the PostScript language.
¢ The Display PostScript environment.
These classes are held in our East Coast and West Coast facilities

and in our European office. Classes in Japan are planned for the
future.

To receive a schedule of Adobe classes, please call our Training
Support Line at (415) 961-4949.

THE ADOBE DEVELOPER ASSOCIATION

The Adobe Developer Association is a fee-based membership
program for active developers using the PostScript page descrip-
tion language or the Display PostScript system to enhance their
application products.

You must be a member of the Adobe Developer Association in
order to take advantage of the following offerings:

¢ Technical support.

e Monthly mailings.

¢ Discounts on Adobe Systems application products.

¢ Free technical literature.

You can request a membership application by calling the Adobe
Developer Support Line.

Perspective for Software Developers / Version of January 23, 1990

6.5 POSTSCRIPT STANDARDS AND CONVENTIONS

The following documents define important conventions and stan-
dards that promote compatibility, efficiency, and quality for all
PostScript language applications. These documents are available
through the Adobe Developer Support Line or the public access
file server.

Document Structuring Conventions Specification

Replaces Appendix C of the PostScript Lan-
guage Reference Manual (Version 1.0 of the
PostScript language document structuring
conventions). These conventions are important
for generating page description files suitable for
print spoolers, previewer applications, and post-
processors, as well as PostScript printers.

Encapsulated PostScript File Format (EPSF)
Specifies the document format required for ex-
change of PostScript language files. This
specification suggests a standard for importing
PostScript language files in all environments.
Applications that support EPSF can exchange
graphical output with each other.

PostScript Printer Description Files Specification
Describes the Adobe Systems PostScript Printer
Description (PPD) files and their usage. PPD
files are text files in a format that can be read by
people and parsed by computers. They are useful
for determining and using the special features
available on printers with PostScript interpreters.

Adobe Font Metric Files Specification
Describes the Adobe standard interchange for-
mat for communicating font metric information
to people and programs.

6 SUPPORT FOR APPLICATION DEVELOPERS 9

6.6 THE PUBLIC ACCESS FILE SERVER

If you have access to Internet or UUCP electronic mail, you can
use Adobe’s public access file server to obtain the following in-
formation:

¢ Code examples.
o AFM files.
¢ Documentation updates.

e Conventions and standards documents listed in Section 6.5.

The public access file server is a mail-response program. That is,
you send it a request by electronic mail and it mails back a
response. (The ‘‘Subject:’’ line is treated as part of the message
by the file server.)

To send mail to the file server, use one of the following ad-
dresses:

Internet ps-file-server@adobe.com
UucCp ...Idecwrlladobe!ps-file-server

To receive a quick summary of file server commands, send the
following message:

help

To receive detailed information on how to use the file server,
send the following message:

send Documents long.help

10 Perspective for Software Developers / Version of January 23, 1990

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT

The changes to Perspective for Software Developers from the
document dated October 25, 1989, are noted in the paragraphs
below.

A section has been added to describe support services available
from Adobe Systems, including the Adobe Developer Support
Line, the Technical Literature Catalog, the Adobe Developer As-
sociation, and the public access file server.

The changes to Perspective for Software Developers from the
document dated October 10, 1988, are noted in the paragraphs
below.

The manual has been rewritten and reorganized. A list of sug-
gested reading for software developers has been added.
Diagrams have been provided to illustrate the following:

e The relationship of the Client Library and the PostScript
interpreter to application and system software.

o The creation of a Display PostScript system application.

A CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 11

Adobe Developer Association 8 telephone support 5
application developers 5
voice mailbox 5

classes 8
Client Library 4 window system 1
conventions 9 wraps 2,3

device independence 1

Display PostScript components 1
document structuring conventions 9
DPSmoveto 4

Encapsulated PostScript Files Specification 9
EPSF 9

file format for PostScript files 9
file server 10
font metric information 9

help line 5

imaging model 1,6
interchange format for fonts 9

manuals 6

portability 2

PostScript file format 9

PostScript fonts interchange format 9
PostScript imaging model 1,6
PostScript Printer Description files 9
PostScript standards and conventions 9
PPD files 9

PSWDisplayText 4

pswrap translator 3

public access file server 10

registered developers 8

standards 9
support 5

13

pswrap
Reference Manual

ADOBE SYSTEMS
INCORPORATED

pswrap Reference Manual

August 30, 1990

Copyright© 1988-1990 Adobe Systems Incorporated.
All rights reserved.

PostScript, Display PostScript, and Sonata are registered
trademarks of Adobe Systems Incorporated.

Serifa is a registered trademark of Fundicion Tipografica
Neufville S.A.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software
described in this document is furnished under license and may only be
used or copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

Written by Amy Davidson.

N =

Contents

About this Manual 1

About pswrap 1

Using pswrap 2

3.1 Command-Line Options 3

3.2 ‘#line’ Directives 4

Writing a Wrap 5

4.1 The Wrap Definition 5

4.2 Comments 6

4.3 The Wrap Body 7

4.4 Arguments 8

45 Input Arguments 8

4.6 Output Arguments 9

Declaring Input Arguments 12

5.1 Sending Boolean Values 13

5.2 Sending User Object Values 13

5.3 Sending Characters 15

5.3.1 Text Arguments 15

5.4 Sending Numbers 17

5.5 Sending Arrays of Numbers or Booleans 17
5.6 Sending a Series Of Numeric or Boolean Values 18
5.6.1 Specifying the Size of an Input Array 19
5.7 Sending Encoded Number Strings 20
5.8 Specifying the Context 23

Declaring Output Arguments 24

6.1 Receiving Numbers 25

6.2 Receiving Boolean Values 26

6.3 Receiving a Series of Output Values 26
6.3.1 Receiving a Series of Array Elements 27
6.3.2 Specifying the Size of an Output Array 28
6.4 Receiving Characters 28

6.5 Communication and Synchronization 29
Error Messages from the pswrap Translator 31
Syntax 33

Semantic Restrictions 34

2 Clarifications 34

Changes Since Last Publication Of This Document 35

Index 37

1 ABOUT THIS MANUAL

This manual is the programmer’s reference manual for the
pswrap translator. It tells you how to use pswrap to create C-
callable procedures that contain PostScript® language code.

Section 2 introduces the pswrap translator.

Section 3 tells you how to run pswrap and documents the options
in the pswrap command line.

Section 4 tells you how to write wrap definitions for pswrap.
Section 5 tells you how to declare input arguments.

Section 6 tells you how to declare output arguments.
Appendix A lists error messages from the pswrap translator.
Appendix B describes the syntax used in wrap definitions.

Appendix C lists changes to the manual since the previous
version.

This manual does not provide information on the PostScript lan-
guage, the Display PostScript® system, or the Client Library (the
programming interface to the Display PostScript system). For
more information regarding these topics, see the following
manuals:

e PostScript Language Reference Manual

o PostScript Language Extensions for the Display PostScript
System

e PostScript Language Color Extensions
e Client Library Reference Manual

2 ABOUT PSWRAP

The pswrap translator provides a natural way for an application
developer or toolkit implementor to compose a package of C-
callable procedures that send PostScript language code to the
PostScript interpreter. These C-callable procedures are known as

2 ABOUT PSWRAP 1

wrapped procedures or wraps. (A wrap is a procedure that con-
sists of a C declaration with a PostScript language body. A wrap
body is the PostScript language program fragment in a wrap.)

Here’s how pswrap fits into the Display PostScript system:

¢ You write the PostScript language programs required by
your application, using the pswrap syntax described in this
manual to define a C-callable procedure and specify input
and output arguments.

® You run pswrap to translate these PostScript language
programs into wrapped procedures.

e You compile and link these wraps with the application
program.

e When a wrap is called by the application, it sends encoded
PostScript language to the PostScript interpreter and
receives the values returned by the interpreter.

A pswrap source file associates PostScript language code with
declarations of C procedures; pswrap writes C source code for
the declared procedures, in effect wrapping C code around the
PostScript language code. Wrapped procedures can take input
and output arguments:

e Input arguments are values a wrap sends to the PostScript
interpreter as PostScript objects.

¢ Output arguments are pointers to variables where the wrap
stores values returned by the PostScript interpreter.

Wraps are the most efficient way for an application to commu-
nicate with the PostScript interpreter.

3 USING PSWRAP

The form of the pswrap command line (UNIX- and C-specific)
is:

pswrap [-apr] [-o0 outputCfile] [-h outputHfile] [-s maxstring] [inputFile]

where square brackets [] indicate optional items.

pswrap Reference Manual / Version of August 30, 1990

3.1

COMMAND-LINE OPTIONS

The pswrap command-line options are described below.

inputFile

A file that contains one or more wrap defini-
tions. pswrap transforms the definitions in
inputFile into C procedure definitions. If no in-
put file is specified, the standard input (which
can be redirected from a file or pipe) is used.
The input file can include text other than proce-
dure definitions. pswrap converts procedure
definitions to C procedures and passes the other
text through unchanged; therefore, it is possible
to intersperse C-language source code with wrap
definitions in the input file.

Note: Although C code is allowed in a pswrap input file, it is
not allowed within a wrap body. In particular, C ‘#define’ mac-
ros cannot be used inside a wrap.

-a

Generates ANSI C procedure prototypes for pro-
cedure declarations in outputCfile and, option-
ally, outputHfile. (See the -h option.) The -a op-
tion allows compilers that recognize the ANSI C
Standard to do more complete typechecking of
parameters. To save space, the -a option also
causes pswrap to generate ‘const’ declarations.

Note: ANSI C procedure prototype syntax is not recognized by
most non-ANSI C compilers, including many compilers based
on the Portable C Compiler. Use the -a option only in
conjunction with a compiler that conforms to the ANSI C Stan-

dard.

-h outputHFile Generates a header file that contains ‘extern’

declarations for nonstatic wraps. This file may
be used in ‘#include’ statements in modules that
use wraps. If the -a option is specified, the
declarations in the header file are ANSI C proce-
dure prototypes. If the -h option is omitted, a
header file is not produced.

3 USING PSWRAP 3

-0 outputCFile Specifies the file to which the generated wraps
and passed-through text are written. If omitted,
the standard output is used. If the -a option is
also specified, the procedure declarations
generated by pswrap are in ANSI C procedure

prototype syntax.

-p Specifies that strings passed by wraps are
padded so that the next field begins on a long
word (four-byte) boundary.

-r Generates reentrant code for wraps that are

shared by more than one process (as in shared
libraries). Since the -r options causes pswrap to
generate extra code, use it only when necessary.

-s maxstring Sets the maximum allowable length of a
PostScript string object or PostScript hex string
object in the wrap body input. A syntax error
will be reported if a string is not terminated with
‘)’ or ‘>’ within maxstring characters. maxstring
cannot be set lower than 80. The default is 200.

3.2 ‘#LINE’ DIRECTIVES

Since the C source code generated for wrapped procedures
usually contains more lines than the input wrap body does,
pswrap inserts ‘#line’ directives into the output wrap. These
directives record input line numbers in the output wrap source
file so that a source-code debugger can display them. Since a
debugger displays C source code, not the PostScript language
code in the wrap body, pswrap inserts #line directives for both
the inputFile and the outputCfile.

Note: Unless both the input and output files are named on the
command line, the ‘#line’ directives will be incomplete; in the
latter case, they will lack the name of the C source file pswrap
produces. Use of the standard input and standard output streams
is discouraged for this reason.

pswrap writes diagnostic output to the standard error if there are
errors in the command line or in the input. If pswrap encounters

pswrap Reference Manual / Version of August 30, 1990

errors during processing, it reports the error and exits with a non-
zero termination status.

4 WRITING A WRAP

41

Here is a sample wrap definition. It declares the PSWGrayCircle
procedure, which creates a solid gray circle with a radius of 5.0
centered at (10.0, 10.0):

Wrap definition:

defineps PSWGrayCircle()
newpath
10.0 10.0 5.0 0.0 360.0 arc
closepath
0.5 setgray
fill

endps

Procedure call:
PSWGrayCircle();
PostScript language code equivalent:

newpath

10.0 10.0 5.0 0.0 360.0 arc
closepath

0.5 setgray

fill

The rules for defining a wrapped procedure are given in the next
section.

THE WRAP DEFINITION
Each wrap definition consists of four parts:

‘defineps’ Begins the definition; must appear at the begin-
ning of a line, without any preceding spaces or
tabs.

Declaration of the C-callable procedure
The name of the procedure followed by a list in

4 WRITING A WRAP 5

parentheses of the arguments it takes. The argu-
ments are optional; the parentheses are required
even for a procedure without arguments. (Note
that wraps do not return values; they are
declared ‘void’.)

Wrap body PostScript language program fragment. This
fragment is sent to the PostScript interpreter. It
includes a series of PostScript operators and
operands separated by spaces, tabs, and newline
characters.

‘endps’ Ends the definition. Like ‘defineps’, ‘endps’
must appear at the very beginning of a line.

By default, wrap definitions introduce external (that is, global)
names that can be used outside the file in which the definition
appears. To introduce private (local) procedures, declare the
wrapped procedure as static. For example, the PSWGrayCircle
wrap shown above can be made static by substituting the follow-
ing statement for the first line:

defineps static PSWGrayCircle()

Note: It is helpful for the application to use a naming conven-
tion for wraps that identifies them as such; for example,
PSWDrawBox, PSWShowTitle, PSWDrawSlider, and so on.

42 COMMENTS

C comments can appear anywhere outside a wrap definition.
PostScript language comments can appear anywhere after the
procedure is declared and before the definition ends. pswrap
strips PostScript language comments from the wrap body. Com-
ments cannot appear within PostScript string objects:

[*This is a C comment*/

defineps PSWNoComment()
(/*This is not a comment*/)show
(%Nor is this.)length
%This is a PS comment

endps

pswrap Reference Manual / Version of August 30, 1990

4.3

Wraps cannot be used to send PostScript language comments
that contain structural information (% % and %!). Use another
Client Library facility such as DPSWriteData for this purpose.

THE WRAP BODY

pswrap accepts any valid PostScript language code as specified
in the PostScript Language Reference Manual, PostScript Lan-
guage Extensions for the Display PostScript System, and
PostScript Language Color Extensions. If the PostScript lan-
guage code in a wrap body includes any of the following sym-
bols, the opening and closing marks must balance.

Y Braces (to delimit a procedure)

‘IT Square brackets (to define an array)

‘) Parentheses (to enclose a string)

‘<>’ Angle brackets (to mark a hexdecimal string)

Parentheses within a string body must balance or be quoted with
‘\’ according to standard PostScript language syntax.

Note: pswrap does not check a wrap definition for valid or sen-
sible PostScript language code.

pswrap attempts to wrap whatever it encounters. Everything be-
tween the closing parenthesis of the procedure declaration and
the end of the wrap definition is assumed to be an element of the
PostScript language unless it is part of a comment or matches
one of the wrap arguments.

Note: pswrap does not support the // PostScript language syntax
for immediately evaluated names. See the PostScript Language
Reference Manual for more information about immediately
evaluated names.

4 WRITING A WRAP 7

4.4 ARGUMENTS

Argument names in the procedure header are declared using C
types. For instance, the following example declares two vari-
ables, ‘x’ and ‘y’, of type ‘long int’.

defineps PSWMyFunc(long int x,y)

There can be any number of input and output arguments. Input
arguments must be listed before output arguments in the wrap
header. Precede the output arguments, if any, with a vertical bar
‘I’. Separate arguments of the same type with a comma. Separate
arguments of differing types with a semicolon. A semicolon is
optional before a vertical bar or a right parenthesis; the two ex-
amples below are equivalent:

defineps PSWNewFunc(float x,y; int a | int *i)
defineps PSWNewFunc(float x,y; int a; | int *i;)

4.5 INPUT ARGUMENTS

Input arguments describe values that the wrap converts to en-
coded PostScript objects at run time. When an element within
the wrap body matches an input argument, the value that was
passed to the wrap replaces the element in the wrap body. Input
arguments represent placeholders for values in the wrap body.
They are not PostScript language variables (names). Think of
them as macro definitions that are substituted at run time.

For example, the PSWGrayCircle procedure defined on page 5
can be made more useful by providing input arguments for the
radius and center coordinates:

pswrap Reference Manual / Version of August 30, 1990

4.6

Wrap definition:

defineps PSWGrayCircle(float x,y, radius)
newpath
x y radius 0.0 360.0 arc
closepath
0.5 setgray
fill
endps

Procedure call:
PSWGrayCircle(25.4, 17.7, 40.0);
PostScript language code equivalent:

newpath

25.4 17.7 40.0 0.0 360.0 arc
closepath

0.5 setgray

fill

The value of input argument ‘x’ replaces every occurrence of ‘x’
in the wrap body. This version of PSWGrayCircle draws a circle
of a specified size at a specified location.

OUTPUT ARGUMENTS

Output arguments describe values that PostScript operators
return. For example, the standard PostScript operator
currentgray returns the gray-level setting in the current graphics
state. PostScript operators return values by placing them on the
top of the operand stack. To return the value to the application,
place the name of the output argument in the wrap body at a time
when the desired value is on the top of the operand stack. For
example, the following wrap gets the value returned by
currentgray:

4 WRITING A WRAP 9

10

Wrap definition:

defineps PSWGetGray(| float *level)
currentgray level
endps

Procedure call:

float aLevel;
PSWGetGray(&alLevel);

PostScript language code equivalent:

currentgray
% Pop current gray level off operand stack
% and store in aLevel. !

When an element within a wrap body matches an output argu-
ment in this way, pswrap replaces the output argument with code
that returns the top object on the operand stack. For every output
argument, the wrap will perform the following operations:

¢ Pop an object off the operand stack.

¢ Send it to the application.

¢ Convert it to the correct C data type.

e Store it at the place designated by the output argument.
Each output argument must be declared as a pointer to the loca-
tion where the procedure stores the returned value. To get a ‘long

int’ back from a pswrap-generated procedure, declare the output
argument as ‘long int *’, as in the following example:

ISee the ‘‘Runtime Support’’ section of the Client Library Reference Manual
for a discussion of how pswrap uses the printobject operator to return results.

pswrap Reference Manual / Version of August 30, 1990

Wrap definition:

defineps PSWCountExecStack(| long int *n)
countexecstack n
endps

Procedure call:

long int aNumber;
PSWCountExecStack(&aNumber);

PostScript language code equivalent:

countexecstack
% Pop count of objects on exec stack
% and return in aNumber.

To receive information back from the PostScript interpreter, use
only the syntax for output arguments described here. Do not use
operators that write to the standard output (such as =, ==, print,
or pstack). These operators send ASCII strings to the application
that pswrap-generated procedures cannot handle.

4 WRITING A WRAP 11

12

Warning: For an operator that returns results, the operator
description shows the order in which results are placed on the
operand stack, reading from left to right. (See the ‘‘Operators’’
chapters of the PostScript Language Reference Manual and
PostScript Language Extensions for the Display PostScript
System.) When you specify a result value in a wrap body, the
result is taken from the top of the operand stack. Therefore the
order in which wrap results are stated must be the reverse of their
order in the operator description.

For instance, the PostScript operator description for
currentpoint returns two values, x and y:

— currentpoint xy
The corresponding wrap definition must be written:

defineps PSWcurrentpoint (I float *x, *y)
currentpoint y x % Note: y before x.
endps

Sections 5 and 6 discuss the details of input and output argu-
ments, respectively.

5 DECLARING INPUT ARGUMENTS

This section defines the data types allowed as input arguments in
a wrap. In the following list, square brackets indicate optional
elements:

pswrap Reference Manual / Version of August 30, 1990

5.1

5.2

¢ ‘DPSContext’. If the wrap specifies a context, it must ap-
pear as the first input argument. (‘DPSContext’ is a handle
to the context record; see the Client Library Reference
Manual for more information.)

* One of the following pswrap data types (equivalent to C
data types except for ‘boolean’, ‘userobject’, and
‘numstring’, which are special to pswrap):

‘boolean’ ‘userobject’

‘int’ ‘unsigned [int]’
‘short[int]’ ‘unsigned short [int]’
‘long[int] ‘unsigned long [int]’
‘float’ ‘double’

‘numstring’

¢ An array of a pswrap data type
e A character string (‘char *’ or ‘unsigned char *’)

e A character array (‘char []’ or ‘unsigned char [J) (The
square brackets are part of C syntax.)

A string (‘char *’) passed as input may not be more than 65,535
characters. An array may not contain more than 65,535 elements.

SENDING BOOLEAN VALUES

If an input argument is declared as ‘boolean’, the wrap expects
to be passed a variable of type ‘int’. If the variable has a value of
zero, it is translated to a PostScript boolean object with the value
false. Otherwise it is translated to a PostScript boolean object
with the value true.

SENDING USER OBJECT VALUES

Input parameters declared as type ‘userobject’ should be passed
as type ‘long int’. The value of a ‘userobject’ argument is an
index into the UserObjects array. See PostScript Language Ex-
tensions for the Display PostScript System for a description of
user objects.

When pswrap encounters an argument of type userobject, it will
generate PostScript language code to obtain the object associated
with the index. For example:

5 DECLARING INPUT ARGUMENTS 13

14

Wrap definition:

defineps PSWAccessUserObject(userobject x)
X
endps

Procedure call:

long int aUserObject;

/* assume aUserObject = 6 */
PSWAccessUserObject(aUserObject);

PostScript language code equivalent:
6 execuserobject

If the object is executable, it will be executed; if it’s not ex-
ecutable, it will be pushed on the operand stack.

If you want to pass the index of a user object without having it
translated by pswrap as described above, declare the argument to
be of type ‘long int’ rather than type ‘userobject’. Here is an
example of a wrap that defines a user object:

Wrap definition:

defineps PSWDefUserObject(long int d)
d 10 dict defineuserobject
endps

Procedure call:

long int anindex;

/* assume anindex = 12 */
PSWDefUserObject(anindex);

PostScript language code equivalent:

12 10 dict defineuserobject

pswrap Reference Manual / Version of August 30, 1990

5.3 SENDING CHARACTERS

An input argument composed of characters is treated as a
PostScript name object or string object. The argument can be
declared as a character string or as a character array.

pswrap expects arguments that are passed to it as character
strings (‘char *’ or ‘unsigned char *’) to be null terminated
(\0’). Character arrays are not null terminated. The number of
elements in the array must be specified as an integer constant or
as an input argument of type ‘int’. In either case, the integer
value must be positive. See Section 5.5 for an example of this
rule.

5.3.1 Text Arguments

An input argument declared as a character string or character
array is converted to a single PostScript name object or string
object. Such an argument is referred to as a text argument.

The PostScript interpreter does not process the characters of text
arguments. It assumes that any escape sequences (‘\n’, \t’, and
so on) have been processed before the wrap is called.

To make pswrap treat a text argument as a PostScript literal
name object, precede it with a slash, as in the PSWReadyFont
wrap definition below. (Only names and text arguments can be
preceded by a slash.)

5 DECLARING INPUT ARGUMENTS 15

16

Wrap definition:

defineps PSWReadyFont(char *fontname; int size)
ffontname size selectfont
endps

Procedure call:
PSWReadyFont("Sonata", 6);

PostScript language code equivalent:
/Sonata 6 selectfont

To make pswrap treat a text argument as a PostScript string ob-
ject, enclose it within parentheses. The PSWPutString wrap defi-
nition below shows a text argument, ‘(str)’:

Wrap definition:

defineps PSWPutString(char *str; float x, y)
X y moveto
(str) show

endps

Procedure call:
PSWPutString("Hello World", 72.0, 72.0);
PostScript language code equivalent:

72.0 72.0 moveto
(Hello World) show

Note: Text arguments are recognized within parentheses only if
they appear alone, without any surrounding whitespace or addi-
tional elements. In the following wrap definition, only the first
string is replaced with the value of the text argument. The
second and third strings are sent unchanged to the interpreter.

defineps PSWThreeStrings(char *str)
(str) (str) (astr)
endps

pswrap Reference Manual / Version of August 30, 1990

5.4

5.5

If a text argument is not marked by either a slash or parentheses,
pswrap treats it as an executable PostScript name object. In the
following example, ‘mydict’ is treated as executable:

Wrap definition:

defineps PSWDoProcedure(char *mydict)
mydict /procedure get exec
endps

Procedure call:
PSWDoProcedure("lexicon");
PostScript language code equivalent:

lexicon /procedure get exec

SENDING NUMBERS

An input argument declared as one of the ‘int’ types is converted
to a 32-bit PostScript integer object before it is sent to the inter-
preter. A ‘float’ or ‘double’ input argument is converted to a 32-
bit PostScript real object. These conversions follow the usual C
conversion rules.?

Note: Since the PostScript language does not support unsigned
integers, unsigned integer input arguments are converted to
signed integers in the body of the wrap.

SENDING ARRAYS OF NUMBERS OR BOOLEANS

Each element in the wrap body that names an input array argu-
ment represents a PostScript literal array object that has the same
element values. In the PSWSetMyMatrix wrap definition below,
the current transformation matrix is set using an array of six
floating-point values:

2See The C Programming Language, R. W. Kernighan and D. M. Ritchie
(Englewood Cliffs, NJ: Prentice-Hall, 1978) or C: A Reference Manual,
S. P. Harbison and G. L. Steele, Jr. (Englewood Cliffs, NJ: Prentice-Hall,
1984).

5 DECLARING INPUT ARGUMENTS 17

18

5.6

Wrap definition:

defineps PSWSetMyMatrix (float mtx[6])
mix setmatrix
endps

Procedure call:

static float anArray[] = {1.0, 0.0, 0.0, -1.0, 0.0, 0.0};
PSWSetMyMatrix(anArray);

PostScript language code equivalent:
[1.00.0 0.0 -1.0 0.0 0.0] setmatrix

The PSWDefineA wrap below sends an array of variable length
to the PostScript interpreter:

Wrap definition:

defineps PSWDefineA (int data[x]; int x)
/A data def
endps

Procedure call:

static intd1[] = {1, 2, 3};
static int d2[] = {4, 5};

PSWDefineA(d1, 3);
PSWDefineA(d2, 2);

PostScript language code equivalent:
/A [1 2 3] def
/A [4 5] def

SENDING A SERIES OF NUMERIC OR BOOLEAN VALUES

Occasionally, it is useful to group several numeric or boolean
values into a C array and pass the array to a wrap that will send
the individual elements of the array to the PostScript interpreter,
as in the following example:

pswrap Reference Manual / Version of August 30, 1990

Wrap definition:

defineps PSWGrayCircle(float nums[3], gray)
newpath
\nums[0] \nums[1] \nums[2] 0.0 360.0 arc
closepath
gray setgray
fill

endps

Procedure call:

static float xyRadius = {40.0, 200.0, 55.0};
PSWGrayCircle(xyRadius, .75);

PostScript language code equivalent:

newpath

40.0 200.0 55.0 0.0 360.0 arc
closepath

.75 setgray

fill

In the example above, ‘\nums[i]’ identifies an element of an
input array in the wrap body, where ‘nums’ is the name of an
input boolean array or numeric array argument, { is a non-
negative integer literal, and no whitespace is allowed between ‘\’
and J’.

5.6.1 Specifying the Size of an Input Array

As the foregoing examples illustrate, you can specify the size of
an input array in two ways:

¢ Give an integer constant as the size when you define the
procedure, as in the PSWGrayCircle wrap definition.

¢ Give an input argument that evaluates to an integer at run
time as the size, as in the PSWDefineA wrap definition on
page 18.

In either case, the size of the array must be a positive integer
with a value not greater than 65,535.

5 DECLARING INPUT ARGUMENTS 19

20

5.7 SENDING ENCODED NUMBER STRINGS

A number sequence in the PostScript language may be
represented either as an ordinary PostScript array object whose
elements are to be used successively or as an encoded number
string. Encoded number strings are described in the ‘Alternative
Language Encodings’ section of PostScript Language Extensions
for the Display PostScript System.

The encoded number string format efficiently passes sequences
of numbers, such as coordinates, to PostScript operators that take
arrays of operands (xyshow and rectfill, among others). In this
form, the arrays take up less space in PostScript VM. In addition,
the operator that consumes them executes faster because the data
in an encoded number string, unlike a PostScript array object,
does not have to be scanned by the PostScript scanner.

To simplify passing encoded number strings in a wrap, pswrap
syntax provides the ‘numstring’ data type. ‘numstring’ lets you
pass PostScript operands as numeric elements in a normal C
array. The pswrap translator generates code that produces the
encoded number string corresponding to this C array.

Note: ‘numstring’ may be used only for input. It is invalid as
an output parameter in a wrap definition.

pswrap Reference Manual / Version of August 30, 1990

The syntax of the ‘numstring’ data type is as follows; optional
items are in curly brackets:

{modifier} numstring variablenamelarraysize] {:scale; sizetype arraysize; scaletype scale};

The modifier is one of the following:

Modifier C array Encoded number string equivalent
‘int’ int fixed (native integer size) — the default
‘long’ long int fixed (32-bit fixed-point number)

‘short’ short int fixed (16-bit fixed-point number)

“float’ float real (32-bit floating-point number)

Here are some examples of wrap definitions that pass an encoded
number string. In these wraps, ‘c’ is a constant and ‘n’ and ‘s’
are integer variables representing the number of elements and the
scale, respectively. Scale refers to the number of digits to the
right of the decimal point. Scale applies only to fixed-point num-
bers; if not specified, it defaults to zero.

5 DECLARING INPUT ARGUMENTS 21

22

defineps PSWNums1(numstring a[5];)
% Array of 5 elements of default format
% (native integer size, zero scale).

defineps PSWNums2(float numstring a[c];)
% Array size is constant.

defineps PSWNums3(float numstring a[n]; int n;)
% Array size is variable.

defineps PSWNums4(int numstring a[n]:s; int n, s;)
% Native integer size, non-zero scale.

defineps PSWNums5(long numstring a[n]:s; int n, s;)
% 32-bit fixed point, non-zero scale.

defineps PSWNums6(short numstring a[n]:c; int n;)
% 16-bit fixed point, non-zero scale.

pswrap Reference Manual / Version of August 30, 1990

PSWXShowChars is an example of a wrap that uses the
‘numstring’ data type to pass an array of user-defined widths to
the xshow operator.

Wrap definition:

defineps PSWXShowChars(char str[4]; long numstring widths[4]:0)
/Times-Roman 30 selectfont
100 100 moveto
str widths xshow

endps

Procedure call:

char str[4] = "test";
long widths[4] = {7, 10, 9, 7};

PSWXShowChars(str, widths);
PostScript language code equivalent:

/Times-Roman 30 selectfont
/str (test) def
/widths <95800400070000000A0000000900000007000000> def
% encoded number string, hex format,
% preceded by 4-byte generated header
100 100 moveto
str widths xshow

SPECIFYING THE CONTEXT

Every wrap communicates with a PostScript execution context.
The current context is normally used as the default. The Client
Library provides operations for setting and getting the current
context for each application. To override the default, declare the
first argument as type ‘DPSContext’ and pass the appropriate
context as the first parameter whenever the application calls the
wrap. Here is an example of a wrap definition that explicitly
declares a context:

5 DECLARING INPUT ARGUMENTS 23

24

Wrap definition:

defineps PSWGetGray(DPSContext ¢ | float *level)
currentgray level
endps

Procedure call:

DPSContext myContext;
float aLevel;

PSWGetGray(myContext, &alLevel);
PostScript language code equivalent:

currentgray
% Pop current gray level off operand stack
% and store in aLevel

Warning: Do not refer to the name of the context in the wrap
body.

6 DECLARING OUTPUT ARGUMENTS

To receive information back from the PostScript interpreter, the
output arguments of a wrap must refer to locations where the
information can be stored. An output argument can be declared
as one of the following:

¢ A pointer to one of the pswrap data types listed on page 13,
except for ‘userobject’.

¢ An array of one of these types.

¢ A character string (‘char *’ or ‘unsigned char **).

¢ A character array (‘char []’ or ‘unsigned char []’).

If an output argument is declared as a pointer or character string,
the procedure writes the returned value at the location pointed to.

For an output argument declared as a pointer, previous return
values are overwritten if the output argument is encountered

pswrap Reference Manual / Version of August 30, 1990

6.1

more than once in executing the wrap body. For an output argu-
ment declared as a character string (‘char *’), the value is stored
only the first time it is encountered.

If an output argument is declared as an array of one of the
pswrap data types (see page 13 for a list) or as a character array,
the wrap fills the slots in the array (see Section 6.3).

Note: Whenever an array output argument is encountered in the
wrap body, the values on the PostScript operand stack are placed
in the array in the order in which they would be popped off the
stack. When no empty array elements remain, no further storing
of output in the array is done. No error is reported if elements
are returned to an array that is full.

You can specify output arguments in the ‘defineps’ statement in
any order that is convenient. The order of the output arguments
has no effect on the execution of the PostScript language code in
the wrap body.

pswrap does not check whether the wrap definition provides
return values for all output arguments, nor does it perform type
checking for declared output arguments.

RECEIVING NUMBERS

PostScript integer objects and real objects are 32 bits long. When
returned, these values are assigned to the variable provided by
the output argument. On a system where the size of an ‘int’ or
‘float’ is 32 bits, pass a pointer to an ‘int’ as the output argument
for a PostScript integer object; pass a pointer to a ‘float’ as the
output argument for a PostScript real object:

defineps PSWMyWrap (| float *f; int *i)

A PostScript integer object or real object can be returned as a
‘float’ or ‘double’. Other type mismatches cause a typecheck er-
ror (for example, attempting to return a PostScript real object as
an ‘int’).

6 DECLARING OUTPUT ARGUMENTS 25

26

6.2

6.3

RECEIVING BOOLEAN VALUES

A procedure can declare a pointer to a ‘boolean’ as an output
argument:

Wrap definition:

defineps PSWKnown(char *Dict, *x | boolean *ans)
Dict /x known ans
endps

Procedure call:

int found;

PSWKnown("statusdict", "duplex”, &found);
PostScript language code equivalent:
statusdict /duplex known found

This wrap expects to be passed the address of a variable of type
‘int’ as its output argument. If the PostScript interpreter returns
the value true, the wrap places a value of 1 in the variable
referenced by the output argument. If the interpreter returns the
value false, the wrap places a value of zero in the variable.

RECEIVING A SERIES OF OUTPUT VALUES

To receive a series of output values as an array, declare an array
output argument; then write a wrap body in the PostScript lan-
guage to compute and return its elements, one or more elements
at a time. The example below declares a wrap that returns the
256 font widths for a given font name at a given font size:

pswrap Reference Manual / Version of August 30, 1990

Wrap definition:

defineps PSWGetWidths(char *fn; int size | float wide[256])
/fn size selectfont
01255
(X) dup 0 4 -1 roll put
stringwidth pop wide
} for
endps

Procedure call:

float widths[256];
PSWGetWidths("Serifa", 12, widths);

PostScript language code equivalent:

/Serifa 12 selectfont
01255 {
(X) dup 0 4 -1 roli put
stringwidth pop
% Pop width for this character and insert width
% into widths array at current element;
% point to next element.
} for

In the above example, the loop counter is used to assign succes-
sive ASCII values to the scratch string ‘(X)’. The stringwidth
operator then places both the width and height of the string on
the PostScript operand stack. (Here it operates on a string just
one character long.) The pop operator removes the height from
the stack, leaving the width at the top. The occurrence of the
output argument ‘wide’ in this position triggers the width to be
popped from the stack, returned to the application, and inserted
into the output array at the current element. The next element
then becomes the current element.

The for loop (the procedure enclosed in braces followed by for)
repeats these operations for each character in the font, beginning
with the Oth and ending with 255th element of the font array.

6.3.1 Receiving a Series of Array Elements

A PostScript array object can contain a series of elements to be

6 DECLARING OUTPUT ARGUMENTS 27

28

6.4

stored in an output array. The output array is filled in, one ele-
ment at a time, until it’s full. Therefore the PSWTest wrap
defined below will return ‘{1, 2, 3, 4, 5, 6}’:

defineps PSWTest(l int Array[6])
[1 2 3] Array
[4 5 6] Array

endps

The PSWTestMore wrap defined below will return {1, 2, 3, 4}’:

defineps PSWTestMore(l int Array[4])
[1 2 3] Array
[4 5 6] Array

endps

6.3.2 Specifying the Size of an Output Array

The size of an output array is specified in the same manner as the
size of an input array. Use a constant in the wrap definition or an
input argument that evaluates to an integer at run time. If more
elements are returned than fit in the output array, the additional
elements are discarded.

RECEIVING CHARACTERS

To receive characters back from the PostScript interpreter,
declare the output argument either as a character string or as a
character array.

If the argument is declared as a character string, the wrap copies
the returned string to the location indicated. Be careful to
provide enough space for the maximum number of characters
that might be returned, including the null character (\0’) that
terminates the string. Only the first string encountered will be
returned. For example, in the PSWStrings procedure defined
below, the string ‘123’ will be returned:

defineps PSWStrings(l char *str)
(128) str
(456) str

endps

pswrap Reference Manual / Version of August 30, 1990

6.5

Character arrays, on the other hand, are treated just like arrays of
numbers. In the PSWStrings2 procedure, the value returned for
‘str’ will be ‘123456’:

defineps PSWStrings2(l char str[6])
(123) str
(456) str

endps

If the argument is declared as a character array (for example,
‘char s’[num]), the procedure copies up to num characters of the
returned string into the array. Additional characters are dis-
carded. The string is not null terminated.

COMMUNICATION AND SYNCHRONIZATION

The PostScript interpreter can run as a separate process from the
application; it can even run on a separate machine. When the
application and interpreter processes are separated, the applica-
tion programmer must take communication into account. This
section alerts you to communication and synchronization issues.

A wrap that has no output arguments returns as soon as the wrap
body is transferred to the client/server communication channel.
In this case, the communication channel is not necessarily
flushed. Since the wrap body is not executed by the PostScript
interpreter until the communication channel is flushed, errors
arising from the execution of the wrap body can be reported long
after the wrap returns.

In the case of a wrap that returns a value, the entire wrap body is
transferred to the client/server communication channel, which is
then flushed. The client-side code awaits the return of output
values followed by a special termination value. Only then does
the wrap return.

See the Client Library Reference Manual for information con-
cerning synchronization, run-time errors, and error handling.

6 DECLARING OUTPUT ARGUMENTS 29

30 pswrap Reference Manual / Version of August 30, 1990

A ERROR MESSAGES FROM THE PSWRAP TRANSLATOR

The following is a list of error messages the pswrap translator
can generate:

input parameter used as a subscript is not an integer
output parameter used as a subscript

char input parameters must be starred or subscripted
hex string too long

invalid characters

invalid characters in definition

invalid characters in hex string

invalid radix number

output arguments must be starred or subscripted

out of storage, try splitting the input file

-s 80 is the minimum

can’t allocate char string, try a smaller -s value

can’t open file for input

can’t open file for output

error in parsing

string too long

usage: pswrap [-s maxstring] [-ar] [-h headerfile] [-o ouffile] [infile]
endps without matching defineps

errors in parsing

A ERROR MESSAGES FROM THE PSWRAP TRANSLATOR 31

32

errors were encountered

size of wrap exceeds 64K

parameter reused

output parameter used as a subscript
non-char input parameter

not an input parameter

not a scalar type

wrong type

parameter index expression empty
parameter index expression error

end of input file/missing endps

pswrap Reference Manual / Version of August 30, 1990

B SYNTAX

Square brackets [] mean that the enclosed form is optional. Curly
brackets {} mean that the enclosed form is repeated, possibly
zero times. A vertical bar | separates choices in a list.

Unit =
ArbitraryText {Definition ArbitraryText}

Definition =
NLdefineps ["static"] Ident "(" [Args] ["I" Args]")" Body NLendps

Body =
{Token}

Token =
Number | PSIdent | SlashPSIdent
| "("StringLiteral")"
| "<"StringLiteral">"
l "{l' Body "}"
I "[" Body "]"
| Input Element

Args =
ArgList {";" ArgList} [";"

ArgList =
Type ItemList

Type =
"DPSContext" | "boolean" | "float" | "double"
| ["unsigned"] "char" | ["unsigned"] ["short" | "long"] "int"
[{"int" | "long" | "short" | "float"] "numstring"

ItemList =
Item {"," Item}
Item =
"*" Ident | Ident ["["Subscript"]"]
| Ident "["SubScript"]" [Scale]

Subscript =
Integer | Ident

Scale =
":"Integer | ":"Ident

B SYNTAX 33

34

B.1

SEMANTIC RESTRICTIONS

¢ DPSContext must be the first input argument if it appears at
all.

¢ A simple char argument (char Ident) is never allowed (must
be *or[]).

e A simple Ident item is not allowed in an output item list
(must be * or [].

B.2 CLARIFICATIONS

¢ NLdefineps matches the terminal defineps at the beginning
of a new line.

o NLendps matches the terminal endps at the beginning of a
new line.

e Ident follows the rules for C names; PSIdent follows the
rules for PostScript language names.

o SlashPSIdent is a PostScript language name preceded by a
slash.

o StringLiteral tokens follow the PostScript language conven-
tions for string literals.

¢ Number tokens follow the PostScript language conventions
for numbers.

e Integer subscripts follow the C conventions for integer con-
stants.

o Input Element is \n[i] where #n is the name of an input array
argument, i is a non-negative integer literal, and no white
space is allowed between \ and].

pswrap Reference Manual / Version of August 30, 1990

C CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT

Changes to the pswrap Reference Manual from the document
dated January 23, 1990, are noted in the paragraphs below.

A new pswrap data type, ‘numstring’, has been added to
facilitate the sending of encoded number strings.

A new command-line option, —p, specifies that strings passed by
wraps will be padded to the next long word (four-byte) bound-
ary.

Changes to the pswrap Reference Manual from the document
dated October 25, 1989, are noted in the paragraphs below.

A string (‘char *’) passed as input may not be more than 65,535
characters. An array may not contain more than 65,535 elements.

The examples were expanded to include, in each case, the wrap
definition, the corresponding procedure call, and the equivalent
PostScript language code.

Changes to the pswrap Reference Manual from the document
dated October 6, 1988, are noted in the paragraphs below.

The manual was rewritten and reorganized. Numerous technical
clarifications and corrections were made.

C CHANGES SINCE LAST PUBLICATION OF THIS DOCUMENT 35

#define 3
#include 3
#line directives 4

%! 1
%% 1

07
I/

= 11
== 11

(17

angle brackets 7
ANSIC 3
arguments 8
context 12
declaring 12
input 2,8,9
names 8
output 2,9, 10, 24, 29
text 15
array object 20
array size, output 28
arrays 17,27
ASCII strings 11

boolean 13
booleans 17, 18, 26

C code not allowed in wrap 3
C, ANSI 3
character array 29
characters 15
characters,
receiving 28
command line 2
comments 6

sending 7
communication 29
context 23
context, as wrap argument 12
context, specifying 23
currentgray 9
currentpoint 11

data types 13

debugging, with #line directives 4
declaration 5

defineps 5

delimiters in wrap body 7
DPSContext 13,23
DPSWriteData 7

encoded number string 20
endps 6

execution context 23
extern declarations 3

flushing 29
font widths 26
for 27

for 27

grouping values 18

immediately evaluated names 7
input
arguments 2,9
input arguments 8
input array,
size 19
input data types 13
input file 3
integer 25

names, immediately evaluated 7
naming convention 6
nonstatic wraps 3

37

Notes and Warnings 3,4, 6,7, 11, 16, 17, 24, 25 scale 21

numbers 17, 25 size of output array 28
numeric values 18 square brackets 7
numstring 20 standard error 4
standard input 4
options 3 standard output 4, 11
-a 3 static procedures 6
-h 3 string length 4
0 4 stringwidth 27
-p 4 synchronization 29
-r 4 syntax 7
-s 4
output text arguments 15, 16
arguments 2,9, 10 ' typecheck 25
diagnostic 4
output arguments 9, 24,29 unsigned integers 17
output C file 4 user objects 13
output header file 3 userobject 24
output, receiving 26 UserObjects 13
padding strings in wraps 4 values,
parentheses 7 returning 9
pointer, for output argument 10
pop 27 whitespace 16
PostScript array object 20 wrap 1
PostScript array, returning 27 wrap body 2,6,7
PostScript operators 9 wrap definition 5
print 11 wrap header 8
printobject 10 wrap that returns a value 29
procedure writing a wrap 5
definition 5
example definition 5 xshow 22
pswrap-generated 24 xyshow 20
procedure prototypes in ANSIC 3
pstack 11 {} 7

PSWGrayCircle 5,6
pswrap data types 13
PSWSetMyMatrix 17
PSWXShowChars 22

real 25

receiving a series of output values 26
receiving boolean values 26
receiving characters 28

receiving numbers 25

rectfill 20

reentrant wraps 4

result values 11

38 INDEX August 30, 1990

ENCAPSULATED POSTSCRIPT® FILES
Specification
Version 2.0

POSTSCRIPT

June 5, 1989
PostScript® Developer Support Group

Adobe Systems Incorporated

Corporate Headquarters One New Engiand

1585 Charleston Road PO Box 7900 Executive Park

Mountain View, CA 94039-7900 Burlington, MA 01803

(415) 961-4400 (617) 273-2120

Adobe Systems Europe B.V. Adobe Systems Japan

Office Centre Aoyama Dai-ichi Tanaka Bldg. 5F
Jozef Israélskade 48c 2-1-5 Shibuya, Shibuya-ku

1072 SB Amsterdam, Netherlands Tokyo 150, Japan

31-20-767-661 03-486-4656

PN LPS5002

Copyright © 1989, 1988, 1987 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior writ-
ten consent of the publisher. Any software referred to herein is furnished under license and may only
be used or copied in accordance with the terms of such license.

PostScript, Adobe and the PostScript logo are registered trademarks of Adobe Systems Incorporated.
Macintosh is a registered trademark of and QuickDraw is a trademark of Apple Computer, Inc. Mi-
crosoft is a registered trademark of Microsoft Corporation.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporat-
ed assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes and noninfringment of third party rights.

POSTSCRIPT

ENCAPSULATED POSTSCRIPT® FILES
Specification
Version 2.0

June 5, 1989
PostScript® Developer Support Group
(415) 961-4111

This document specifies the format required for import of Encapsulated PostScript (EPS)
Files into an application. This specification suggests a standard for importing PostScript
language files in all environments, and contains specific information about both the
Macintosh® and MS-DOS environments. This format conforms to Adobe Systems’
Document Structuring Conventions, Version 2.0.

The rules that should be followed in creating importable PostScript language files are a
subset of the structuring conventions proposed by Adobe Systems Incorporated; refer to the
PostScript Language Reference Manual, Appendix C, and Document Structuring
Conventions, version 2.0, available from Adobe Systems. Files must also be "well-
behaved" in their use of certain PostScript language operators, manipulation of the graphics
state, and manipulation of the PostScript interpreter’s stacks and any global dictionaries.
These conventions are designed to allow cooperative sharing of files between many
systems using the PostScript language.

Fundamentally, an EPS file is a standard PostScript language file with a bitmap screen
preview included optionally in the format. The purpose of an EPS file is to be included into
other document makeup systems as an illustration, and the screen representation is intended
to aid in page composition. The bitmap is normally discarded when printing, and the
PostScript language segment of the file is used instead. Typically any manipulation of the
screen image that is performed by the user (such as scaling, translating, or rotation on
screen) should be tracked by the page layout application and an appropriate transformation
should precede the EPS file when it is sent to the printer.

EPS FILE FORMAT GUIDELINES

An EPS file should conform to at least Version 2.0 of the Adobe Document Structuring
Conventions. This does not explicitly require any of the structuring comments to be
employed, but if used, they should be in accordance with that specification. Additionally,
an EPS file is required to contain the %%BoundingBox comment, and is required to be
"well-behaved" (see pages 3-4). An EPS file may optionally contain a bitmap image
suitable for WYSIWYG screen display, as discussed herein.

The structure of an EPS file is marked by PostScript language comments, according to the
PostScript Document Structuring Conventions. These are covered briefly here for
reference. Structuring comment lines must begin with "%!" or "%%" and terminate with
a newline (either return or linefeed) character. EPS file conventions require that a comment
line be no longer than 256 bytes. A comment line may be continued by beginning the
continuation line with "% %+". The EPS file should begin with a header of structuring
comments, as specified in the PostScript Structuring Conventions.

©1989 Adobe Systems Incorporated. All rights reserved. 3

2.1

2.2

REQUIRED PARTICIPATION

In order to support Encapsulated PostScript files effectively, some cooperation is required
on the parts of those who produce EPS files and those who use EPS files (typically by
including them into other documents).

WHEN PRODUCING EPS FILES

There are certain required comments and several recommended ones that must be provided
in the EPS file. These are detailed in Section 3. The file must also be a single page (not a
multiple-page document) and must be a conforming PostScript language document.
Conformance requirements are mostly detailed here, but for the full specification, please
refer to the Document Structuring Conventions from Adobe Systems.

WHEN READING AND USING EPS FILES

When including an EPS file into your document, you should basically think of that piece of
code as having been generated by your program. After all, that is what all programs (and
users) who encounter your print file will think. In particular, you must find out enough
about the file to intelligently make it part of your document. The only tricky part of this
relates to font usage. This is also the most difficult part of this specification to understand.
Basically, you just have to figure out what the requirements of the illustration are and
incorporate them into your own requirements (pass them downstream). Then all issues of
font management are essentially the same as they were before you included the illustration
{and are beyond the scope of this document).

As long as you don’t remove relevant information from a file, and as long as you update
your global view of font usage and resource requirements to reflect those that you just
imported, the rest is fairly easy. The intent behind the EPS specification, in fact, is to make
the most of cooperation between producers and consumers of PostScript language files so
that neither has to do much, but the combined advantage is great.

REQUIRED COMMENTS

The first comment in the header (and the first line in the file) should be the version
comment:

%!PS-Adobe-2.0 EPSF-2.0

This indicates to an application that the PostScript language file conforms to this standard.
The version number following the word ""Adobe-"" indicates the level of adherence to the
standard PostScript Document Structuring Conventions. The version number following the
word "EPSF" indicates the level of EPSF-specific comments.

The following comment must be present in the header; if it is not present then an importing
application may issue an error message and abort the import:

%%BoundingBox: LLx LLy URx URy

The values are in the PostScript default user coordinate system, in points (1/72 of an inch,
or 0.3527 mm), with the origin at the lower left corner. The bounding box must be
expressed in default user coordinate space. This seems to be a big question among
implementors of this specification. Regardless of the coordinate system in which your

©1989 Adobe Systems Incorporated. All rights reserved.

4.1

application operates, here is a foolproof way of determining the correct bounding box:
print the page, get out a point ruler, and measure first to the lower left corner, then to the
upper right corner, using the lower-left corner of the physical paper as your origin. This
works because it measures the end result (the marks on the page), and none of the
computation matters.

OPTIONAL COMMENTS

The following header comments are strongly recommended in EPS files. They provide
extra information about the file that can be used to identify it on-screen or when printing.

%%Title: included_document_title
%%Creator: creator_name
%%CreationDate: date_and_time

The % % Creator, % %Title, and % % CreationDate comments may be used by an
application or spooler to provide human-readable information about a document, or to
display the file name and creator on the screen if no bitmapped screen representation was
included in the EPS file.

%%EndComments

This comment indicates an explicit end to the header comments, as specified in the
structuring conventions.

HOW TO USE THESE COMMENTS (PHILOSOPHY)

All of the comments in EPS files provide information of some sort or another. Exactly how
you use this information is up to you, but you are encouraged not to reduce the amount of
information in a file (when you import it or include it, for example) by removing or altering
comments. In general, the comments tell you what fonts and files are used, and where. Not
everybody cares about these things, but if you do care, then the information is available.

The whole issue of Encapsulated PostScript files is that they are “final form” print files that
may be far from the printer that they will actually be imaged on. If they have specific needs,
particularly in terms of font usage, these needs must be carefully preserved and passed on
downstream, and the program that actually prints the composite document must take pains
to make sure the fonts are available at print time.

Any piece of software that generates PostScript language code is potentially both a
consumer and a producer of Encapsulated PostScript files. It is probably best not to think
that you are at either end of the chain. In particular, if you import an Encapsulated
PostScript file, integrate it into your document somehow, and then go to print your
document, you are responsible for reading and understanding any of the font needs of the
EPS file you imported. These should then be reflected in your own font usage comments.
If the illustration on page 3 uses the Bodoni font but the rest of your document is set in
Times, suddenly your document now also uses the Bodoni font (you included the
illustration, after all). This should be reflected in the outermost % % DocumentFonts
comments and any other appropriate ones.

©1989 Adobe Systems Incorporated. All rights reserved. 5

4.2

FONT MANAGEMENT COMMENTS

If fonts are used, the following two comments (which are defined in version 2.0 of the
PostScript Document Structuring Conventions) should be included in the header of the EPS
file. The % %IncludeFont and % % Begin/% % EndFont comments should be thought of
as inverses of one another. That is, if you encounter an % %IncludeFont comment and
actually include a font file at that point, you should enclose the font in % % BeginFont and
% %EndFont comments. Conversely, if you see fit to remove a font from a print file (one
that presumably had been delimited with comments), you should always replace it with an
% %IncludeFont comment rather than completely stripping it. This guarantees the
reversibility of your actions.

%%DocumentFonts: font1 font2
%%+ font3 font4

The % %DocumentFonts comment provides a full list of all fonts used in the file. Font
names should refer to non-reencoded printer font names and should be the valid PostScript
language names (without the leading slashes). An application that imports an EPS file
should be responsible for satisfying these font needs, or at least updating its own
% %0 DocumentFonts list to reflect any new fonts.

%%DocumentNeededFonts: font1 font2

The % %DocumentNeededFonts comment lists all fonts that are to be included at specific
points within the EPS file as a result of the % %IncludeFont comment. These fonts must
also be listed in the % %DocumentFonts comment, but an application may or may not pre-
load these at the beginning of the job. The responsibility should be taken, however, by any
program that thinks it is actually printing the file, to make sure the fonts requested will be
available when the file is printed. This may mean that the individual % %IncludeFont
comments may be satisfied and the fonts placed in-line, or they may simply be ignored, if
the fonts are determined to be already available on the printer. As a third possibility, there
may be enough memory to download all the fonts in front of the job and avoid processing
the individual requests. This % %DocumentNeededFonts comment provides
foreshadowing of the % %IncludeFont comments to follow, to give printing managers
enough information to make these choices intelligently.

%%lIncludeFont: fontname

The % %IncludeFont comment signals to an application that the specified font is to be
loaded at that precise location in the file. It is analogous to the familiar #include syntax in
the C language. An application should load the specified font regardless of whether the
same font has been loaded already by other preceding % % IncludeFont comments, since
the font may have been embedded within a PostScript language save and restore construct.
However, if the font is determined to be available prior to the entire included EPS file (for
instance, it may be in ROM in the printer or might have been downloaded prior to the entire
print job) the % % IncludeFont comment may be ignored by printing manager software.

When an application satisfies an % % IncludeFont request, it should always bracket the
font itself with the % % BeginFont and % %EndFont comments.

A font that is wholly contained, defined, and used within the EPS file (a downloaded font)
should be noted in the % %DocumentFonts comment, but not the
% % DocumentNeededFonts comment. The font should follow conventions listed in the
Document Structuring Conventions in order to retain full compatibility with print spoolers.

©1989 Adobe Systems Incorporated. All rights reserved.

4.3

4.4

%%BeginFont: fonthame
%%EndFont

The % % BeginFont and % % EndFont comments bracket an included downloadable font.
The fontname is the simple PostScript language name for the font. These fonts may be
stripped from the included file if they are determined to be available (but should be replaced
by an % %IncludeFont comment).

FILE MANAGEMENT COMMENTS

%%IncludeFile: filename

This comment, which can occur only in the body of an EPS file, allows a separate file to be
inserted at any point within the EPS file. The file might not be searched for or inserted until
printing actually occurs, so user care is required to ensure its availability. If it is used, the
%%DocumentFiles comment should be used as well. See the Structuring Conventions for
more information.

%%BeginFile: filename
%%EndFile

The % %BeginFile and % %EndFile comments bracket an included file. They are the
“inverse” of the % % IncludeFile comment. The filename is evaluated in the context of the
local file system. These files may not be stripped from the included file at print time,
because they undoubtedly contain executable code. However, they may be temporarily
removed, or “factored out” to save space during storage. They should always be replaced
by the % %IncludeFile comment.

COLOR COMMENTS

%%DocumentProcessColors: keyword keyword ...

This comment marks the use of process colors within the document. Process colors are
defined to be cyan, magenta, yellow, and black. These four colors are indicated in this
comment by the keywords Cyan, Magenta, Yellow, and Black. This comment is used
primarily when producing color separations. The (atend) conventions is allowed.

%%DocumentCustomColors: name name ...

This indicates the use of custom colors within a document. These colors are arbitrarily
named by an application, and their CMYK or RGB approximations are provided through
the % % CMY KCustomColor or % % RGBCustomColor comments within the body of
the document. The names are specified to be any arbitrary PostScript language string except
(Process Cyan), (Process Magenta), (Process Yellow), and (Process Black), which need to
be reserved for custom color implementation by applications. The (atend) specification is
permitted.

%%BeginProcessColor: keyword

%%EndProcessColor

The keyword here is either Cyan, Magenta, Yellow, or Black. During color separation,
the code between these comments should only be downloaded during the appropriate pass
for that process color. Intelligent printing managers can save considerable time by omitting
code within these bracketing comments on the other three separations. Extreme care must
be taken by the document composition software to correctly control overprinting and
“knockouts” if these comments are employed, since the code may or may not actually be
executed.

©1989 Adobe Systems Incorporated. All rights reserved. 7

5.1

5.2

%%BeginCustomColor: keyword
%%EndCustomColor

The keyword here is any PostScript language string except (Process Cyan), (Process
Magenta), (Process Yellow), and (Process Black). During color separation, the code
between these comments should only be downloaded during the appropriate pass for that
custom color. Intelligent printing managers can save considerable time by omitting code
within these bracketing comments on the other three separations. Extreme care must be
taken by the document composition software to correctly control overprinting and
knockouts if these comments are employed, since the code may or may not be executed.

%%CMYKCustomColor: cyan magenta yellow black keyword
This provides an approximation to the custom color specified by keyword. The four
components of cyan, magenta, yellow, and black must be specified as numbers from 0 to
1 representing the percentage of that process color. These numbers are exactly analogous
to the arguments to the setcmykcolor PostScript language operator. The keyword follows
the same custom color naming conventions for the % % DocumentCustomColors
comment.

%%RGBCustomColor: red green blue keyword

This provides an approximation to the custom color specified by keyword. The three
components of red, green, and blue must be specified as numbers from 0 to 1 representing
the percentage of that process color. These numbers are exactly analogous to the arguments
to the setrgbcolor PostScript language operator. The keyword follows the same custom
color naming conventions for the % %DocumentCustomColors comment.

“WELL-BEHAVED” RULES

An application should encapsulate the imported EPS code in a save / restore construct,
which will allow all printer VM (memory) to be recovered and all graphics state restored.
Since the code in the imported EPS file will be embedded within the PostScript language
that an application will generate for the current page, it is necessary that it obey the
following rules, in order to keep from disrupting the enclosing document:

OPERATORS TO AVOID

The following PostScript operators should not be included in a PostScript language file for
import; the result of executing any of these is not guaranteed (see the PostScript Document
Structuring Conventions for more on this):

grestoreall initgraphics initmatrix initclip
erasepage copypage banddevice framedevice
nulldevice renderbands setpageparams note
exitserver setscreen* settransfer*

THE ‘SETSCREEN’ AND ‘SETTRANSFER’ OPERATORS

The setscreen operator is troublesome when one file is included within another. setscreen
is a system-level command that is appropriate for changing the halftone machinery to
compensate for marking engine tendencies, but when used for “special effects” can cause
problems. For EPS files, the setscreen and settransfer operators are permitted only under
restricted terms.

©1989 Adobe Systems Incorporated. All rights reserved.

5.3

THE ‘SETTRANSFER’ AND ‘SETCOLORTRANSFER’
OPERATORS

The settransfer operator changes the gray-level and color response curves over the interval
from 0 to 1. There are two basic uses of it: to invert an image (typically flipping blacks and
whites, less often colors), or to adjust the response curve for a particular output device.

The best (and required) approach for using settransfer is to combine your function with
the existing one. Here is the recommended way to do this:

{ dummy exec 1 exch sub } dup O currentransfer put settransfer

In this example, the desired transfer function is the code 1 exch sub. The dummy exec
essentially executes the existing transfer function before executing the new code. The name
dummy is replaced by the actual procedure body from the existing transfer function
through the put instruction. The result is conceptually equivalent to this:

{ { original proc } exec 1 exch sub } settransfer

This approach is better than “concatenating” procedures because it does not require the
existing transfer function to be duplicated (consuming memory).

THE ‘SHOWPAGE’ OPERATOR

The showpage operator is permitted in EPS files primarily because it is present in so many
PostScript language files. It is reasonable for an EPS file to use the showpage operator if
needed (although it is not necessary if the file is truly imported into another document). It
is the including application’s responsibility to disable showpage if needed. The
recommended method to accomplish this is as follows:

TEMPORARILY DISABLING ‘SHOWPAGFE’

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray O setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash
newpath
/showpage { } def
} bind def
/ENDEPSFILE { %def
EPSFsave restore
} bind def

BEGINEPSFILE
100 300 translate
.5 .5 scale
% include the EPS file here, which may execute showpage with no effect

ENDEPSFILE % restore state and continue

This method will only disable the showpage operator during the execution of the EPS file,
and will restore the previous semantics of showpage afterward. It is the responsibility of
the EPS file itself to avoid the operators listed in the previous section that might cause
unexpected behavior when imported. They need not be redefined along with showpage,
although it is permissible to do so.

©1989 Adobe Systems Incorporated. All rights reserved. 9

5.4

5.5

10

STACKS AND DICTIONARIES

All of the PostScript interpreter’s stacks (including the dictionary stack) should be left in
the state that they were in before the imported PostScript language code was executed. This
is normally the case for well-written PostScript language programs, and this is still the best
way to keep unanticipated side-effects to a minimum. Please avoid unnecessary clear and
"countdictstack 2 sub { end } repeat" cleanup techniques. If you have accidentally left
something on one of the stacks, it is best to understand your program well enough to get rid
of it, rather than issuing a wholesale cleanup instruction at the end, which will not only clear
your operands from the stack, but perhaps will clear other objects as well.

It is recommended that the imported EPS file create its own dictionary instead of writing
into whatever the current dictionary might be. Make sure that this dictionary is removed
from the dictionary stack when through (using the PostScript language end operator) to
avoid the possibility of an invalidrestore error. Also, no global string bodies should be
changed (with either put or putinterval).

If a special dictionary (like statusdict) is required in order for the imported PostScript
language code to execute properly, then it should be included as part of the EPS file.
However, it should be enclosed in very specific % %BeginFeature and % %EndFeature
comments as specified in the Document Structuring Conventions. No dictionary should be
assumed to be present in the printer, and fonts should be reencoded as needed by the EPS
file itself.

THE GRAPHICS STATE

When a PostScript language program is imported into the middle of another executing
program, the state of the interpreter may not be exactly in its default state. The EPS file
should assume that the graphics state is in its default state, even though it may not be. An
importing application may choose to scale the coordinate system or to change the transfer
function to change the behavior of the EPS file somewhat. If the EPS file makes
assumptions about the graphics state (like the clipping path) or explicitly sets something it
shouldn’t (the transformation matrix), the results may not be what were expected.

The importing application is responsible for returning the color to be black, the current dash
pattern, line endings, and other miscellaneous aspects of the graphics state to their default
condition (as specified in the PostScript Language Reference Manual). This can be done in
either of two ways: the initial graphics state can be restored from variables, or the state can
be explicitly set:

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray O setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] O setdash
newpath
/showpage { } def
} bind def

/ENDEPSFILE { %def

EPSFsave restore
} bind def

©1989 Adobe Systems Incorporated. All rights reserved.

71

FILE TYPES AND FILE NAMING

APPLE MACINTOSH FILES

The Macintosh file type for application-created PostScript language files is EPSF. Files of
type TEXT will also be allowed, so that users can create EPS files with standard editors,
although the Structuring Conventions must still be strictly followed. A file of type EPSF
should contain a PICT resource in the resource fork of the file containing a screen
representation of the PostScript language code. The file name itself may follow any naming
convention as long as the file type is EPSF. If the file type is TEXT, the extensions .epsf
and .epsi, respectively, should be used for the Macintosh-specific format and EPSI
interchange format.

MS-DOS AND PC-DOS FILES

The recommended file extension is .EPS. For EPSI files, the extension should be .EPI.
Other file extensions also can be used, but it will be assumed that these files are text-only
files with no screen metafile included in them.

OTHER FILE SYSTEMS

In general, the extension .epsf is the preferred way to name an EPS file, and .epsi for the
interchange format. In systems where lower-case letters are not recognized or are not
significant, all upper-case can be used.

SCREEN REPRESENTATIONS

The EPS file will usually have a graphic screen representation so that it can be manipulated
and displayed on a workstation’s screen prior to printing. The user may position, scale,
crop or rotate this screen representation, and the composing software should keep track of
these manipulations and reflect them in the PostScript language code that is ultimately sent
to the printing device.

The exact format of this screen representation is machine-specific. That is, each computing
environment may have its own preferred bitmap format, and that is typically the appropriate
screen representation for that environment. An interchange representation is specified that
should be implemented by everyone, and any environment-specific formats can be
supported in addition, as deemed appropriate.

APPLE MACINTOSH: PICT RESOURCE

A QuickDraw™ representation of the PostScript language file can be created and stored as
a PICT in the resource fork of the file. It should be given resource number 256. If the PICT
exists, the importing application may use it for screen display. If the picframe is
transformed to PostScript language coordinates, it should agree with the
% % BoundingBox comment.

Given the size limitations on PICT images, this may not always agree for large illustrations.
If there is a discrepancy, the % % BoundingBox always should be taken as the "truth”,
since it accurately describes the area that will be imaged by the PostScript language code
itself. In this situation, applications producing the preview PICT must all take the same
action so that the importing application knows what to do.

©1989 Adobe Systems Incorporated. All rights reserved. 11

7.2

12

Since it is more important to have a reasonable facsimile of the image than it is to have any
particular part of it be high quality, the PICT image should be scaled to fit within the
constraints of the PICT format. That is, the picture will all be there (it will not be cropped),
but it will actually be smaller than the real image. The importing application should then
scale the PICT to a size which matches the bounding box as expressed in the
% % BoundingBox comment.

PC/DOS: WINDOWS METAFILE OR TIFF FILE

Either a Microsoft® Windows Metafile or a TIFF (Tag Image File Format) section can be
included as the screen representation of an EPS file.

The EPS file itself has a binary header added to the beginning that provides a sort of “table
of contents” to the file. This is necessary since there is not a second “fork” within the file
system as there is in the Macintosh file system.

NOTE:

It is always permissible to have a pure ASCII PostScript language file as an EPS
file in the DOS environment, as long as it does not contain the preview section.
The importing application should check the first three bytes of the file. If they
match the header as shown below, the binary header should be expected. If the
first two match %!, it should be taken to be an ASCII PostScript language file.

DOS EPS Binary File Header

Bytes Description
0-3 Must be hex C5DOD3C6 (byte 0=C5)
4-7 Byte position in file for start of
PostScript language code section.
8-11 Byte length of PostScript language section
12-15 Byte position in file for start of Metafile
screen representation.
16-19 Byte length of Metafile section (PSize)
20-23 Byte position of TIFF representation
24-27 Byte length of TIFF section
28-29 Checksum of header (XOR of bytes 0-27)

NOTE: if Checksum is FFFF then it is to be ignored.

Note:
It is assumed that either the Metafile or the TIFF position and length fields are
zero; that is, only one or the other of these two formats is included in the EPS file.

The Metafile should follow the guidelines set forth by the Windows specification. In
particular, it should not set the viewport or mapping mode, and it should set the window
origin and extent. The application should scale the picture to fit within the
% % BoundingBox comment specified in the PostScript language file.

DEVICE-INDEPENDENT INTERCHANGE FORMAT

This last screen representation is intended as an interchange format between widely varied
systems. In particular, the bitmap preview section of the file is very simple and is
represented as ASCII hexadecimal in order to be more easily transportable. This format is
dubbed Encapsulated PostScript Interchange format, or “EPSI.”

©1989 Adobe Systems Incorporated. All rights reserved.

8.1

This format wins no prizes for compactness, but it should be truly portable and requires no
special code for decompressing or otherwise understanding the bitmap portion, other than
the ability to understand hexadecimal notation.

It is expected that applications that support EPSF will gradually head toward supporting
only two formats: the first is the “native” format for the environment in which the
application runs (where the preview section is Macintosh PICT or TIFF or Sun raster files
or whatever); the second format should simply be this interchange format. Then files can
be interchanged between widely varying systems without each having to know the
preferred bitmap representation of the others.

%%BeginPreview: width height depth lines
%%EndPreview

These comments bracket the preview section of an EPS file in Interchange format (EPSI).
The width and height fields provide the number of image samples (pixels) for the preview.
The depth field provides how many bits of data are used to establish one sample pixel of
the preview (1, 2, 4, or 8). An image which is 100 pixels wide will always have 100 in the
width field, although the number of bytes of hexadecimal needed to build that line will vary
if depth varies. The lines field tells how many lines of hexadecimal are contained in the
preview, so that they may be easily skipped by an application that doesn’t care. All the
arguments are integers.

SOME RULES AND GUIDELINES FOR “EPSI” FILES

The following guidelines attempt to clarify a few basic assumptions about the EPSI format.
It is intended to be extremely simple, since its purpose is interchange. No system should
have to do much work to decipher one of these files, and the preview section is mostly just
a convenience to begin with. This format is accordingly deliberately kept simple and
option-free.

* The preview section must be after the header comment section but before the document
prologue definitions. That is, it should immediately follow the % % EndComments line
in the EPS file.

In the preview section, 0 is white and 1 is black, in deference to the majority. Arbitrary
transfer functions and “flipping” black and white are not supported.

The Preview image can be of any resolution. The size of the image is determined solely
by its bounding box, and the preview data should be scaled to fit that rectangle. Thus, the
width and height parameters from the image are not its measured dimensions, but
simply describe the amount of data supplied for the preview. The dimensions are
described only by the bounding rectangle.

* The hexadecimal lines must never exceed 255 bytes in length. In cases where the preview
is very wide, the lines must be broken. The line breaks can be made at any even number
of hex digits, since the dimensions of the finished preview are established by the width,
height, and depth values.

 All non-hexadecimal characters should be ignored when collecting the data for the

preview, including tabs, spaces, newlines, percent characters, and other stray ASCII
characters. This is analogous to the PostScript language readhexstring operator.

©1989 Adobe Systems Incorporated. All rights reserved. 13

14

¢ Each line of hexadecimal will begin with a percent sign (‘%’). This makes the entire

preview section into a PostScript language comment, so that the file can be printed
without modification.

If the % %IncludeFile or % % BeginFile / % %EndFile comments are ever used to
extract the preview section from the EPS file, then the lines argument to the
% % BeginPreview comment must be adjusted accordingly. The lines value specifies
only the number of lines to skip if you’re not the least bit interested.

« If the width of the image is not a multiple of 8 bits, the hexadecimal digits are padded
out to the next highest multiple of 8 bits.

©1989 Adobe Systems Incorporated. All rights reserved.

EXAMPLE “EPSI” FILE

Here is a sample file showing the EPS Interchange (EPSI) format. The preview section is
expressed in user space and the correct comments are included. Remember that there are 8
bits to a byte, and that it requires 2 hexadecimal digits to represent one binary byte.
Therefore the 80-pixel width of the image requires 20 bytes of hexadecimal data, which is
(80 / 8) * 2. The PostScript language segment itself simply draws a box, as can be seen in
the last few lines.

%! PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 80 24
%%Pages: 0
%%Creator: Glenn Reid
%%CreationDate: September 19, 1988
%%EndComments
%%BeginPreview: 80 24 1 24
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFEFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FF0000000000000000FF
FF0000000000000000FF
FFO0000000000000000FF
FF0000000000000000FF
FF0000000000000000FF
FFO000000000000000FF
FFO0000000000000000FF
FF0000000000000000FF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFEFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFF
$ FFFFFFFFFFFFFFFFFFFF
%%EndPreview
%%EndProlog
%%Page: "one" 1

4 4 moveto 72 0 rlineto 0 16 rlineto -72 O rlineto closepath

8 setlinewidth stroke
%% Trailer

O 00 OO O OF O° O° O° I OP OP dP OO O° OF P OP OP OO OP OP OP OP

©1989 Adobe Systems Incorporated. All rights reserved. 15

OSTSCRIPT®

LANGUAGE

s

COLOR
EXTENSIONS

ADOBE SYSTEMS

INCORPORATED

PostScript Language Color Extensions
January 23, 1990

Copyright © 1988-1990 by Adobe Systems Incorporated.
All rights reserved.

PostScript is a registered trademark of Adobe Systems
Incorporated.

The information in this document is furnished for informational use
only, is subject to change without notice, and should not be construed
as acommitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software described
in this document is furnished under license and may only be used or
copied in accordance with the terms of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
permission of Adobe Systems Incorporated.

Revised by Amy Davidson.

____ Contents

1 About This Manual 1
About the PostScript Language Color Extensions 1
3 New Features 3
3.1 Conversion of RGB Values to CMYK 3
3.2 Black Generation and Undercolor Removal 4
3.3 Direct CMYK Color Specification 6
3.4 Color Screens, Transfer Functions, and Images 7
3.5 The colorimage Operator 8
3.6 Color Implementations 13
4 Operators 14
A Changes Since Last Publication Of This Document 25

Index 27

1 ABOUT THIS MANUAL

This document contains:

e A description of the extensions to the PostScript® language
that support new color functionality.

e Detailed information on the associated color operators.

Section 2 provides a general introduction to color functionality
in the PostScript language.

Section 3 discusses the extended color capabilities of the
PostScript language.

Section 4 contains an alphabetical listing of descriptions for all
color operators that have been added to the PostScript language.

Appendix A lists changes to the manual since the previous
version.

2 ABOUT THE POSTSCRIPT LANGUAGE COLOR EXTENSIONS

The PostScript language has been extended to provide more
complete color functionality. This includes cyan-magenta-
yellow-black (CMYK) color specification, black generation and
undercolor removal functions, screen and transfer functions for
four separate color components, and extension of the image con-
cept to a colorimage operator that accepts multiple color com-
ponents.

Earlier versions of the PostScript language support color using
the setrgbcolor and sethsbcolor operators, which enable the
PostScript interpreter to paint filled regions, strokes, image
masks, and characters in color. On black-and-white machines,
these operators generate an equivalent gray shade, which is
printed or displayed.

To support color more fully, the PostScript language has been
extended to provide the following functions:

¢ Most significantly, multiple color images: the colorimage
operator renders a multiple color image; it functions

2 ABOUT THE POSTSCRIPT LANGUAGE COLOR EXTENSIONS 1

2

analogously to the the image operator, but uses red-green-
blue (RGB) or cyan-magenta-yellow-black (CMYK) color
input and generates full-color output.

e Halftone screen definitions: the setcolorscreen operator
specifies halftone screen definitions for red, green, blue,
and gray, or cyan, magenta, yellow, and black concurrently;
it is the logical expansion of setscreen as it takes the same
three arguments to define each screen for each printing ink.

¢ Color correction: the setcolortransfer operator sets the
transfer function parameters for red, green, blue, and gray;
it is an expansion of settransfer to four color components.
The setblackgeneration operator provides a black genera-
tion function that establishes a black component from a
cyan, magenta, and yellow specification. The
setundercolorremoval operator provides undercolor
removal from the cyan, magenta, and yellow components to
compensate for the addition of black by the black genera-
tion function.

¢ CMYK color specification: the setcmykcolor operator al-
lows the user to set the current color in the graphics state to
a cyan-magenta-yellow-black color directly, bypassing the
color correction operators.

The PostScript language supports one-color, three-color, and
four-color output devices. The color devices can be binary (one-
bit-per-pixel per color component) or grayscale (multiple-bits-
per-pixel per color component, representing a range of intensities
of each color component). A binary device uses halftoning to
produce intermediate shades of its color components. A device
that has eight-bits-per-pixel per component, called a full
grayscale device, does not use halftoning. Devices with more
than one and fewer than eight bits per pixel use a combination of
built-in intensities and halftoning to produce the full range of
desired shades of their color components. Three-color devices
may be either red-green-blue (RGB), typically for displays and
film recorders, or cyan-magenta-yellow (CMY) for printers.
Four-color devices are cyan-magenta-yellow-black (CMYK) for
color printers and color separation making devices.

The color operators described in this document are available in
two forms. Some new versions of the PostScript interpreter have
these operators built in. For other versions of the PostScript in-

PostScript Language Color Extensions / Version of January 23, 1990

terpreter, a package of PostScript language programs that emu-
late these operators is available.

3 NEW FEATURES

3.1

The color extensions to the PostScript language include CMYK
color specification, black generation, and undercolor removal.
Because black generation and undercolor removal use
procedures, they allow you to adjust the conversion from RGB to
CMYK values, for example, by producing less black in black
generation.

Operators are provided that allow full color input and output for
screens, transfer functions, and images. The new color features
are described conceptually in Sections 3.1 through 3.6. The cor-
responding operators are documented in Section 4. The new
operators are identified on first mention by an asterisk; for ex-
ample, colorimage”.

CONVERSION OF RGB VALUES TO CMYK

Colors are formed either by adding light to black or by subtract-
ing light from white. Computer displays and film recorders typi-
cally add colors, while printing inks typically subtract colors.
These two methods for forming colors give rise to the two major
complementary color specifications, the additive RGB specifica-
tion and the subtractive CMYK specification.

Accordingly, a color component in these specifications either in-
dicates the amount of light it reflects or the amount of light it
absorbs. Each one of three standard printing process colors,
cyan, magenta, and yellow, absorb one of the standard light com-
ponents, red, green, and blue, respectively. Black, a fourth stan-
dard printing process color, absorbs all components of light. In
the red-green-blue (RGB) color specification, each of its red,
green, and blue components is associated with a real number be-
tween 0.0 and 1.0, inclusive, where 0.0 represents dark (no light)
and 1.0 represents full light. In the cyan-magenta-yellow-black
(CMYK) color specification, each of the four components is as-
sociated with real numbers between 0.0 and 1.0 inclusive, where

3 NEW FEATURES 3

4

3.2

0.0 represents full light (no ink), and 1.0 represents dark (full
ink).

The following equations demonstrate the relationship between
the RGB and CMYK color specifications. Since cyan is the ab-
sence of red light, magenta is the absence of green light, and
yellow is the absence of blue light,

cyan=1.0 —red
magenta = 1.0 — green
yellow = 1.0 — blue

A color that is 0.2 red, 0.7 green, and 0.4 blue can also be ex-
pressed as 1.0 — 0.2 = 0.8 cyan, 1.0 — 0.7 = 0.3 magenta, and 1.0
— 0.4 = 0.6 yellow. To improve the fidelity of blacks and grays, a
fourth process color, black, is often available on color printers.
Just as red in the RGB specification is the opposite of cyan in the
CMYK specification, a black value is the opposite to a
PostScript language gray value; that is,

black = 1.0 - gray.

BLACK GENERATION AND UNDERCOLOR REMOVAL

Logically, cyan, magenta, and yellow are all that are needed to
generate a printing color completely. Thus an equal percentage
of cyan, magenta, and yellow should create the equivalent per-
centage of black. In reality, colored printing inks do not mix per-
fectly, and such combinations often form dark brown shades in-
stead. Thus, it is often desirable to substitute real black ink for
the mixed-black portion of a color to obtain a truer color ren-
dition on a printer.

Black generation is the process of calculating the amount of
black to be used when trying to print a particular color.
Undercolor removal is the process of reducing the amount of
cyan, magenta, and yellow components to compensate for the
amount of black that was added by the black generation.
Flexibility in performing these functions is important for achiev-
ing good results under different printing conditions.

The setblackgeneration® operator provides the functionality to
generate extra black, no black, or a black value equal to all or a

PostScript Language Color Extensions / Version of January 23, 1990

fraction of the minimum values of cyan, magenta and yellow. Its
argument is a procedure that takes one numeric argument, the
minimum value of user cyan, magenta, and yellow color com-
ponents, and returns a single numeric result, the user black value
(where a user color component value is that specified in the
PostScript language program before application of the cor-
responding transfer function). This procedure is automatically
applied whenever setrgbcolor, the three-color case of
colorimage”, or sethsbcolor specifies a color. This user black
value is then mapped to a device black value by applying the
gray transfer function to its difference from 1.0 and subtracting
the result from 1.0 (see setcolortransfer®). The black generation
function is not applied when setgray, setcmykcolor®, or the one-
or four-color cases of colorimage specifies colors. This com-
puted black value is used only when producing output on four-
color devices.

The setundercolorremoval” operator provides functionality to
remove some amount of color from each of the cyan, magenta,
and yellow components. This amount could be exactly the same
amount as was generated to make the black component, zero (so
no color is removed from the cyan, magenta and yellow
components), some fraction of the black amount, or even a nega-
tive amount. Like setblackgeneration, this operator permits
considerable flexibility in color correction.

The argument to setundercolorremoval is a procedure that takes
one numeric argument, the minimum value of user cyan,
magenta, and yellow color components, and returns a single
numeric result that is subtracted from each of these original user
color components. This procedure is applied whenever
setrgbcolor, the three-color case of colorimage, or sethsbcolor
specifies a color. After subtracting the value generated in the
above mapping from the color components and resetting nega-
tive values to 0.0 and values greater than 1.0 to 1.0, each com-
ponent is subtracted from 1.0 to yield red, green, and blue com-
ponents. Each of these components is mapped into a device color
component using its respective transfer function (see
setcolortransfer). Undercolor removal is not applied when
setgray, setcmykcolor, or the one- or four-color cases of
colorimage specifies a color. Undercolor removal is used only
when outputting on four-color devices.

3 NEW FEATURES 5

6

The following three sets of equations define the complete color
transformation process from RGB to CMYK. In the first set of
equations, the values red,, grn,, and blu, are supplied by the
user. gry, and blk, are assigned the values 1.0 and 0.0, respec-
tively.

cyn,=1.0-red,
mag, =1.0-gm,,
yel, =1.0-blu
gry,=1.0

blk, = 0.0

In the second set of equations, k is the minimum value of cyn,
mag,, and yel . u is the amount of undercolor removal; it is
determined by the applying the undercolor removal procedure to
the value of k. UCR() is the undercolor removal procedure.

k = Min(cyn,, mag,, yel,)
u = UCR(k)

In the third set of equations, BG() is the black generation proce-
dure. RedT, GrnT, BluT, and GryT are the red, green, blue, and
gray transfer functions (see setcolortransfer), respectively. The
result of applying these equations is to produce CMYK output
values for the device.

The values red;, grn,, blu, and gry, are intermediate values
used to compute cyn,, mag,, yel,, and blk,, which can be sent to
a CMYK device.

redy = RedT(1.0 - Min(1.0, Max(0.0, cyn , - u)))
grng = GrnT(1.0 - Min(1.0, Max(0.0, mag , - u)))
bluy = BluT(1.0 - Min(1.0, Max(0.0, yel , - u)))
gryy = GryT(1.0 - BG(k))

cyng=1.0-red

magy =1.0-gmg

yely=1.0-bluy

blky=1.0-gry4

3.3 DIRECT CMYK COLOR SPECIFICATION

For the most demanding cases, color matching can require more
complicated methods than those described above. The

PostScript Language Color Extensions / Version of January 23, 1990

3.4

setcmykcolor operator and the four-color case of the
colorimage operator bypass the black generation and undercolor
removal operations, allowing the knowledgeable user to specify
the cyan, magenta, yellow, and black color components for a
particular device. These operators do not provide correction
other than the transfer functions that setcolortransfer specifies;
the results are device dependent.

The following equations define the complete color transfor-
mation process for the setcmykcolor operator and the four-color
case of the colorimage operator. They are equivalent to those
given in Section 3.2 except for the omission of the black genera-
tion and undercolor removal steps. The values are the same as
those defined in Section 3.2.

red,=1.0-cyn,
g, =1.0-mag,
blu, =1.0-yel,
gry, =1.0- bk,
redy = RedT(red)
grny = GrnT(grn,)
bluy = BluT(blu,)
gryq = GryT(gry,)
cyny =1.0-redy
magy=1.0-gmy
yely=1.0 - blu 4
blky=1.0-gry4

COLOR SCREENS, TRANSFER FUNCTIONS, AND IMAGES

The operators setcolorscreen, currentcolorscreen,
setcolortransfer, and currentcolortransfer provide an expan-
sion of the operators setscreen, currentscreen, settransfer, and
currenttransfer, respectively, by setting up a screen and a trans-
fer function for each color component. The colorimage operator
provides an expansion of the image operator to allow samples of
one, three, or four color components.

3 NEW FEATURES 7

8

3.5 THE COLORIMAGE OPERATOR

colorimage is the logical expansion of image to handle sampled
images whose samples are composed of color components rather
than gray values. The initial arguments to colorimage are the
same as those for image. The final arguments differ according to
the number of color components per sample and according to the
encoding method.

The arguments to colorimage are shown below; see Section 4
for precise definitions of these arguments:

width height bits/component matrix proc [...proc, .41 multiproc ncolors

ncolors describes the number of color components in each
sample. Legal values for ncolors are 1 (gray-level samples only),
3 (RGB samples), or 4 (CMYK samples). multiproc is a boolean
that distinguishes between encoding methods. When multiproc is
false, there is a single procedure and color components are
bunched together; when muitiproc is true, there are muitiple
procedures, one per color, and components are separated into
strings of like colors.

The legal variations of ncolors and multiproc allow the follow-
ing possibilities (where proc subscripts have been changed to
words to indicate the purpose of each procedure):

w h b/c matrix proc gray false 1

w h b/c matrix proc ., true 1

w h b/c matrix proc ., false 3

w h b/c matrix proc 4 Procy,eq, Procy,q true 3
w h b/c matrix proc .,.,., false 4

w h b/c matrix proc cyan ProC PrOCygjiow PrOChiack true 4

magenta

The first two variations here are both equivalent to

w h b/s matrix proc image

gray

Data formats for colorimage operator. As indicated above, the
colorimage operator has two forms, distinguished by its
multiproc argument.

The single-procedure form is most useful if sample input is taken
from a source that has already merged the color components.
This form provides samples for which each RGB triple or

PostScript Language Color Extensions / Version of January 23, 1990

CMYK quadruple is packed together in the string result of the
procedure, using one of the following bit formats (where the
high-order bit is shown on the left):
Bits/
comp. RGB Format
1 RGBRGBRG BRGBRGBR GBRGBRGB RGBRGBRG
RRGGBBRR GGBBRRGG BBRRGGBB RRGGBBRR

2
4 RRRRGGGG BBBBRRRR GGGGBBBB RRRRGGGG
8 RRRRRRRR GGGGGGGG BBBBBBBB RRRRRRRR

or

Bits/

comp. CMYK Format

1 CMYKCMYK CMYKCMYK CMYKCMYK CMYKCMYK
2 CCMMYYKK CCMMYYKK CCMMYYKK CCMMYYKK
4 CCCCMMMM YYYYKKKK CCCCMMMM YYYYKKKK
8 ccecececcecec MMMMMMMME YYYYYYYY KKKKKKKK

The multiple-procedure form expects each procedure to return a
string of values for only one color component per sample, using
the same format as strings returned by the proc argument of the
image operator. For a three-color image, proc, returns red
values, proc, returns green values, and proc, returns blue values.
For a four-color image, proc, returns cyan values, proc; returns
magenta values, proc, returns yellow values, and procs returns
black values. The colorimage operator calls each of these
procedures in turn, starting with proc, and continuing with
procy, proc,, and, if available, proc;. When the colorimage
operator needs more samples, it calls these procedures again in
the same order. The color procedures must use separate strings
for the three or four results of the three or four procedures; that
is, reusing the red string for the green values may cause some of
the red values to be lost. Also, the three or four procedures must
return strings of identical lengths within each cycle of three or
four calls.

The multiple-procedure form is most useful when color sample
data are taken from separate color scanner passes. The
colorimage operator requires the color data to be interleaved,
since the operator requires all three or four components of any
sample at the same time in order to do its work. The single-
procedure form interleaves the data at the sample level; this may
be convenient only if the data are already in that form when
preparing the PostScript language page description. The

3 NEW FEATURES 9

multiple-procedure form allows interleaving at a much coarser
level. Typically, each procedure of the multiple-procedure form
returns components for some number of scan lines of samples,
where the number of components returned at each call is limited
by the string storage available in the PostScript interpreter.

Examples of colorimage operator. The following examples il-
lustrate the use of the colorimage operator:

EXAMPLE 1:
Irgbstr 192 string def % string to hold 256 two-bit samples
% each of red, green, and blue data

45 140 translate % locate lower left corner of image

132 132 scale % map image to 132 point square

256 256 2 % dimensions of source image

[256 0 0 -256 0 256] % map unit square to source

{currentfile % read image data from program file
rgbstr readhexstring pop}

false 3 % single proc, 3 colors, bit format:

% rrggbbrr ggbbrrgg bbrrggbb ...
colorimage
94a1bec8cOb371a3a5c4d281 ... (98304 hex digits of image data)

The code fragment above shows a one-procedure, 2-bit RGB image.
The base-4 representation of the hexadecimal data is

21102201 2332 ...
which is composed of the following color samples:

=2g=1b=1r=0 g=2b=2r=0g=1 b=2r=3g=3b=2...

10 PostScript Language Color Extensions / Version of January 23, 1990

EXAMPLE 2:

/rstr 256 string def % string to hold 256 8-bit red samples

/gstr 256 string def % string to hold 256 8-bit green samples
% (distinct from rstr)

/bstr 256 string def % string to hold 256 8-bit blue samples

% (distinct from rstr and bstr)
% locate lower left corner of image
% map image to 132 point square
256 256 8 % dimensions of source image
[256 0 0 —256 0 256] % map unit square to source
{currentfile rstr readhexstring pop}

% read red data from program file
{currentfile gstr readhexstring pop}

% read green data from program file
{currentfile bstr readhexstring pop}

% read blue data from program file
true 3 % multiple proc, 3 colors
colorimage
7b5e60696961536555626a66 ...
88868d848a92878578787a82 ...

45 140 translate
132 132 scale

(512 hex digits of red data)
(512 hex digits of green data)

62717¢c7b736e707d7b6a7c79 ...
7d8b8d8c837d8b8e9284878e ...
2788b838b8e8e86868988908 ...

(512 hex digits of blue data)
(512 hex digits of red data)
(512 hex digits of green data)

81817d857185858290949487 ... (512 hex digits of blue data)
... (390144 more hex digits of RGB data, cycling as above)

The code fragment above shows a three-procedure, 8-bit RGB image.
The initial samples for each color, in hexadecimal representation, are

red: 7b 5e 60 69
green: 88 86 8d 84
blue: 62 71 7¢ 7b

3 NEW FEATURES 11

EXAMPLE 3:

/cstr 128 string def % string to hold 256 4-bit cyan samples

/mstr 128 string def % string to hold 256 4-bit magenta samples
% (distinct from cstr)

lystr 128 string def % string to hold 256 4-bit yellow samples
% (distinct from cstr and mstr)

/kstr 128 string def % string to hold 256 4-bit black samples
% (distinct from cstr, mstr, and ystr)

45 140 translate % locate lower left corner of image
132 132 scale % map image to 132 point square
256 256 4 % dimensions of source image

[256 0 0 —256 0 256] % map unit square to source
{currentfile cstr readhexstring pop}

% read cyan data from program file
{currentfile mstr readhexstring pop}

% read magenta data from program file
{currentfile ystr readhexstring pop}

% read yellow data from program file
{currentfile kstr readhexstring pop}

% read black data from program file
true 4 % multiple proc, 4 colors
colorimage
e1d8caa57b655b6779606b72 ... (256 hex digits of cyan data)
6bdbb867b9fb6a4859569989 ... (256 hex digits of magenta data)
996796e639cc0b29f94736¢7 ... (256 hex digits of yellow data)
¢9c0cad0d3cad2b7c9e2d7d8 ... (256 hex digits of black data)
5d2d6d7d4d3d1d4d6c9d4dad ... (256 hex digits of cyan data)

4cdcfd4ded1dsd7d5d4d2dad ... (256 hex digits of magenta data)
d2b7c¢9e2d7d8d8cbbac2d9ds ... (256 hex digits of yellow data)
88ae96632a70f6f4d8d9d9d8 ... (256 hex digits of black data)

... (260096 more hex digits of CMYK data, cycling as above)

The code fragment above shows a four-procedure, four-bit CMYK
image. The initial samples for each color, in hexadecimal represen-
tation, are

cyan:
magenta:
yellow:
black:

O OO0
© OT =
oo Q
ONT ®
O O©OT o
O O 00
QO O,
oOOONO

12 PostScript Language Color Extensions / Version of January 23, 1990

EXAMPLE 4:
/estr 1024 string def % string to hold 1024 8-bit cyan samples
/mstr 1024 string def % string to hold 1024 8-bit magenta samples
% (distinct from cstr)
lystr 1024 string def % string to hold 1024 8-bit yellow samples
% (distinct from cstr and mstr)
/kstr 1024 string def % string to hold 1024 8-bit black samples
% (distinct from cstr, mstr, and ystr)
/cfile (img/smp.c) (r) file def % binary file containing 1048576 8-bit
% cyan samples
/mfile (img/smp.m) (r) file def % binary file containing 1048576 8-bit
% magenta samples
lyfile (img/smp.y) (r) file def % binary file containing 1048576 8-bit
% yellow samples
/kfile (img/smp.k) (r) file def % binary file containing 1048576 8-bit
% black samples

36 126 translate % locate lower left corner of image
540 540 scale % map image to 540 point square
1024 1024 8 % dimensions of source image

[1024 0 0 —1024 0 1024] % map unit square to source

{cfile cstr readstring pop} % read cyan data from img/smp.c
{mfile mstr readstring pop} % read magenta data from img/smp.m
{yfile ystr readstring pop} % read yellow data from img/smp.y
{kfile kstr readstring pop} % read black data from img/smp.k
true 4 % multiple proc, 4 colors

colorimage

The code fragment above shows a four-procedure, 8-bit CMYK
image, with cyan, magenta, yellow, and black samples taken
from the files img/smp.c, img/smp.m, img/smp.y, and img/smp.k,
respectively. This example only applies to a PostScript inter-
preter that has a file system.

COLOR IMPLEMENTATIONS

Each PostScript interpreter uses default color output methods
that correspond to its target printer. If the printer is a direct-color
binary device, the standard output method produces three- or
four-color output. If the printer is a grayscale color device, the
PostScript interpreter uses a grayscale three- or four-color output
method. If the printer is a black-and-white device, the default
output method produces a single black-and-white rendition of
each page described.

Some printers can also be used to produce coior separations. A

3 NEW FEATURES 13

color separation consists of three or four black-and-white com-
ponent pages for each color page to be described, with each
black-and-white page corresponding to the output for one color
component. Separations are normally prepared for use in a sub-
sequent printing process in which a single page is overprinted
three or four times to form the intended full-color output, each
time using a different black-and-white component page and the
ink color associated with it.

4 OPERATORS

The following pages contain an alphabetical listing of the new
PostScript color operators.

14 PostScript Language Color Extensions / Version of January 23, 1990

colorimage width height bits/component matrix proc, [...proc

ncolors—1] Multiproc

ncolors colorimage —

renders a sampled image on the current page. The samples can
contain one, three, or four color components. The first four argu-
ments are the same as those for the image operator. The
bits/component argument applies equally to all color com-
ponents. colorimage permits its proc; arguments to return RGB
or CMYK sample values rather than the single-color (gray)
values returned by the proc argument of the image operator.

The ncolors argument (1, 3, or 4) is the number of color com-
ponents represented in the samples. If ncolors is 1, the samples
have only one component, a gray component, and the operation
of colorimage is equivalent to that of image with the same five
initial arguments. If the ncolors argument is 3, the colorimage
operator takes RGB (light-high) samples. If the ncolors argu-
ment is 4, the colorimage operator takes CMYK (dark-high)
samples. On a four-color (CMYK) machine, the PostScript inter-
preter converts a three-color (RGB) image to CMYK using the
black generation and undercolor removal procedures; a four-
color (CMYK) image bypasses these operations.

The multiproc argument is a boolean that distinguishes between
two forms of the colorimage operator: false indicates the single-
procedure form, which requires one procedure argument (proc);
true indicates the multiple-procedure form, which requires one
procedure argument per sample color (procy ... proc, . jors-1) —
three procedure arguments for RGB samples or four-procedure
arguments for CMYK samples. If the ncolors argument is 1,
there is only one procedure argument, proc, regardless of the
value of the multiproc argument. For a detailed description of the
data formats and how the proc; procedures are called, see ‘‘Data
formats for colorimage operator’’ on page 8.

Use of setcolorscreen, setcolortransfer, setscreen, or
settransfer by any of the proc; procedures causes unpredictable
results. Use of the colorimage operator after a setcachedevice
within the context of a BuildChar procedure is not permitted (an
undefined error results).

ERRORS:
limitcheck, rangecheck, stackunderflow, typecheck,
undefined, undefinedresult

4 OPERATORS 15

16

currentblackgeneration

currentcmykcolor

currentcolorscreen

- currentblackgeneration proc

returns the current black generation function in the graphics state
(see setblackgeneration).

ERRORS:
stackoverflow

— currentcmykcolor cyan magenta yellow black

returns the four components of the current color in the graphics
state according to the cyan-magenta-yellow-black color model
(see setcmykcolor).

Note that the currentgray operator returns a weighted average
of all four color components. Applying it is the equivalent of the
following use of currentcmykcolor:

1.0 currentcmykcolor 4 1 roll 0.11 mul 3 1 roll 0.59 mul
exch 0.30 mul add add add sub dup 0.0 It {pop 0.0} if

ERRORS:
stackoverflow

— currentcolorscreen r/c-frequency r/c-angle r/c-proc g/m-frequency
g/m-angle g/m-proc b/y-frequency b/y-angle b/y-proc g/k-frequency
g/k-angle g/k-proc

returns all 12 current halftone screen parameters in the graphics
state (see setcolorscreen). In the notation used here and in
setcolorscreen, r/c is red/cyan, g/m is green/magenta, bly is
blue/yellow, and g/k is gray/black.

The currentcolorscreen operator is the logical expansion of
currentscreen to four color components. Applying the
currentscreen operator returns the three parameters describing
the gray/black screen. It is the equivalent of the following use of
currentcolorscreen:

currentcolorscreen 12 3 roll 9 {pop} repeat

ERRORS:
stackoverflow

PostScript Language Color Extensions / Version of January 23, 1990

currentcolortransfer

currentundercolorremoval

— currentcolortransfer redproc greenproc blueproc grayproc

returns the current transfer functions in the graphics state for
each of the four color components (see setcolortransfer).

The currentcolortransfer operator is the logical expansion of
currenttransfer to four color components. Applying the
currenttransfer operator returns the gray transfer function. It is
the equivalent of the following use of currentcolortransfer:

currentcolortransfer 4 1 roll pop pop pop

ERRORS:
stackoverflow

— currentundercolorremoval proc

returns the current undercolor removal function in the graphics
state (see setundercolorremoval).

ERRORS:
stackoverflow

4 OPERATORS 17

18

setblackgeneration

proc setblackgeneration —

sets the current black generation function parameter in the
graphics state. The proc operand must be a PostScript language
procedure that can be called with a number in the range 0.0 to
1.0 (inclusive) on the operand stack and that returns a number in
the same range. This procedure maps the minimum of the user
cyan, magenta, and yellow color components to user black
values.

For additional information, see Section 3.2.

EXAMPLE:
{dup .75 le {pop 0.0} {.75 sub 4.0 mul} ifelse} setblackgeneration

This PostScript language code fragment sets the black component to
zero when the minimum of cyan, magenta, and yellow is less than or
equal to .75. Minima greater than .75 produce a black component that
increases linearly from 0.0 (at a minimum of .75) to 1.0 (when user
cyan, magenta, and yellow all have values of 1.0).

The use of setblackgeneration after a setcachedevice operat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>