NeXTstep Reference
Volume 1

NeXT Developer’s Library

NeXTstep

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts

A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXTstep Application Kit software.

Sound, Music, and Signal Processing

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts

An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference

Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

NeXT Operating System Software

A description of NeXT’s operating system, Mach. In addition, other low-level
software is discussed.

Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

NeXT Technical Summaries

Brief summaries of reference information related to NeXTstep, sound, music, and
Mach, plus a glossary and indexes.

Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

NeXTstep Reference
Volume 1

@

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2909.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries. NeXT, NeXTbus,
Digital Librarian, Digital Webster, Interface Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Display
PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T.
Helvetica and Times are registered trademarks of Linotype AG and/or its subsidiaries and are used herein pursuant to license.
WriteNow is a registered trademark of T/Maker Company. All other trademarks mentioned belong to their respective owners.

Notice to U.S. Government End Users:
Restricted Rights Legends
For civilian agencies: This software is licensed only with “Restricted Rights” and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software—Restricted Rights clause at
52.227-19 of the Federal Acquisition Regulations.

Unpublished—rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Don Larkin, Matt Morse, Jim Inscore, Sam Streeper, and Jackie Neider

Edited by Caroline Rose, Kathy Walrath, Roy West, Helen Casabona, Adrienne Wong, and Jeremy Brest
Book design by Eddie Lee

Ilustrations by Jeff Yaksick and Don Donoughe

Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs

Publications management by Cathy Novak

Reorder Product #N6007B

Contents

1-3
1-8

2-1
2-3

2-11
2-63

3-3

3-148

4-1

5-1

Introduction

Chapter 1: Constants and Data Types
Constants
Data Types

Chapter 2: Class Specifications
How to Read the Specifications
Common Classes

Application Kit Classes

Chapter 3: C Functions
NeXTstep Functions

Run-Time Functions

Chapter 4: PostScript Operators
Chapter 5: Data Formats

Index

Introduction

3 Using Documented API

4 How This Manual is Organized

=

Conventions
4 Syntax Notation

Intro-1

Intro-2

Introduction

This manual describes the Application Programming Interface (API) for the N%}d(Tstep®
development environment. It’s part of a collection of manuals called the NeXT
Developer’s Library; the illustration on the first page of this manual shows the complete set
of manuals in this Library.

In two volumes, this manual provides detailed descriptions of all classes, functions,
operators, and other programming elements that make up the API, listed alphabetically
within each category for easy reference. Some topics discussed here aren’t covered in
detail; instead, you’re referred to a generally available book on the subject, or to an on-line
source of the information (see “Suggested Reading” in the NeXT Technical Summaries
manual.

For many programmers, only a fraction of the information in this manual will have to be
learned; the more sophisticated the application, the more you’ll need to understand.

This manual assumes you’re familiar with the standard NeXT user interface. Some
experience using a NeXT application, such as the WriteNow® word processor, would be
helpful.

A version of this manual is stored on-line in the NeXT Digital Library (which is described
in the user’s manual NeXT Applications). The Digital Library also contains Release Notes
that provide last-minute information about the latest release of the software.

Using Documented API

The API described in this manual provides all the functionality you need to make full use
of the NeXTstep software. If you have questions about using the API, this documentation
and the NeXT Technical Support Department can help you use it correctly. If a feature in
the API doesn’t work as described, it’s considered a bug which NeXT will work to fix. If
API features change in future releases, these changes will be described in on-line release
notes and printed documentation.

Undocumented features are not part of the API. If you use undocumented features, you run
several risks. First, your application may be unreliable, because undocumented features
won’t work the way you expect them to in all cases. Second, NeXT Technical Support can’t
provide full assistance in fixing problems that arise, other than to recommend that you use
documented API. Finally, your application may be incompatible with future releases, since
undocumented features can and will change without notice.

Intro-3

How This Manual is Organized

The chapters in this manual are as follows:

» Chapter 1, “Constants and Data Types,” lists constants and data types used by the
methods, instance variables, and functions described in the remaining chapters. Not
listed in this chapter are constants and data types specific to a particular class; these are
documented with the associated class in Chapter 2.

» Chapter 2, “Class Specifications,” describes the classes defined in the Application Kit
as well as those that come with the NeXT implementation of the Objective-C language.
Each class specification details the instance variables the class declares, the methods it
defines, and any special constants and defined types it uses. There’s also a general
description of the class and its place in the inheritance hierarchy.

» Chapter 3, “C Functions,” describes in detail the C functions provided by NeXT (except
for Mach functions). It lists the functions in two groups, NeXTstep functions and
run-time functions. Each function’s calling sequence, its return value, and any
exceptions it raises are given, in addition to a description of what the function does.

» Chapter 4, “PostScript® Operators,” describes NeXT’s extensions to the Display
PostScript® system. It also lists the standard PostScript operators that have different or
additional effects in the NeXT implementation.

» Chapter 5, “Data Formats,” describes the standard data formats recognized by the
pasteboard.

Volume 1 includes the introductory material, all of Chapter 1, and Chapter 2 through the
OpenPanel class in the Application Kit. Volume 2 continues Chapter 2, beginning with the
PageLayout class; it includes Chapters 3, 4, and 5 and the index.

Conventions

Intro-4

Syntax Notation
Where this manual shows the syntax of a method, function, or other programming element,
the use of bold, italic, square brackets [|, and ellipsis has special significance, as described

here.

Bold denotes words or characters that are to be taken literally (typed as they appear). [ralic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they’re bold [],
in which case they’re to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer [filename]
means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax Allows

pointer ... One or more pointers

pointer [, pointer] ... One or more pointers separated by commas

pointer |filename ...] A pointer optionally followed by one or more file names
pointer |, filename] ... A pointer optionally followed by a comma and one or more

file names separated by commas

Intro-5

Intro-6

Chapter 1
Constants and Data Types

1-3 Constants

1-8 Data Types

1-1

Constants

Chapter 1
Constants and Data Types

Name

CLS_CLASS
CLS_META
CLS_INITIALIZED
CLS_POSING
CLS_MAPPED
DPS_ALLCONTEXTS
DPS_ARRAY
DPS_BOOL
DPS_DEF_TOKENTYPE
DPS_ERRORBASE
DPS_EXEC
DPS_EXT_HEADER_SIZE
DPS_HEADER_SIZE
DPS_HI_IEEE
DPS_HI_NATIVE
DPS_IMMEDIATE
DPS_INT
DPS_LITERAL
DPS_LO_IEEE
DPS_LO_NATIVE
DPS_MARK
DPS_NAME

This chapter lists many of the constants and data types used in developing NeXTstep
applications. This list includes constants and types defined in the /usr/include
subdirectories objc, dpsclient, appkit, and streams. Not included are constants and types
defined in the header files for the common classes and Application Kit classes: these are
listed with the class descriptions in Chapter 2.

Defined In

objc/objc-class.h
objc/objc-class.h
objc/objc-class.h
objc/objc-class.h
objc/objc-class.h
dpsclient/dpsNeXT.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsclient.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h

Constants

Constants and Data Types are presented in separate sections of this chapter. Each listing
includes a reference to the class header file where the constant or type is defined.

In most cases, the value defined for a constant is arbitrary; you don’t need to know the value
to use the constant. In cases where a constant provides access to a meaningful value, the
definition of that value is included in parentheses next to the constant’s name.

1-3

DPS_NEXTERRORBASE
DPS_NULL

DPS_REAL
DPS_STRING
DPSSYSNAME

FALSE

NBITSCHAR
NBITSINT

nil

Nil

NO

NX_ABOVE
NX_ALLEVENTS
NX_ALLOC_ERROR
NX_ALPHAMASK
NX_ALPHASHIFTMASK
NX_ALTERNATEMASK
NX_APPBASE
NX_APPDEFINED
NX_APPDEFINEDMASK
NX_APPKITERRBASE
NX_ASCIISET
NX_BAD_TIFF_FORMAT
NX_BELOW
NX_BIGENDIAN
NX_BLACK (0.0)
NX_BROADCAST
NX_BUFFERED
NX_BYPSCONTEXT
NX _BYTYPE
NX_CANREAD
NX_CANSEEK
NX_CANWRITE
NX_CLEAR
NX_COLORBLACK
NX_COLORBLUE
NX_COLORBROWN
NX_COLORCLEAR
NX_COLORCYAN
NX_COLORDKGRAY
NX_COLORGRAY
NX_COLORGREEN
NX_COLORLTGRAY
NX_COLORMAGENTA
NX_COLORMASK
NX_COLORORANGE
NX_COLORPURPLE
NX_COLORRED
NX_COLORWHITE
NX_COLORYELLOW

Chapter 1: Constants and Data Types

dpsclient/dpsclient.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
appkit/nextstd.h
appkit/nextstd.h
appkit/nextstd.h
objc/objc.h
objc/objc.h
objc/objc.h
dpsclient/dpsNeXT.h
dpsclient/event.h
appkit/tiff.h
appkit/graphics.h
dpsclient/event.h
dpsclient/event.h
appkit/errors.h
dpsclient/event.h
dpsclient/event.h
appkit/errors.h
dpsclient/event.h
appkit/tiff.h
dpsclient/dpsNeXT.h
appkit/tiff.h
appkit/graphics.h
dpsclient/event.h
dpsclient/dpsNeXT.h
dpsclient/event.h
dpsclient/event.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsNeXT.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/graphics.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h

NX_COMMANDMASK

dpsclient/event.h

NX_COMPRESSION_NOT_YET_SUPPORTED

NX_CONTROLMASK
NX_COPY
NX_CURSORUPDATE
NX_CURSORUPDATEMASK
NX_DATA

NX_DATOP
NX_DEFAULTBUFSIZE (16 * 1024)
NX_DIN
NX_DINGBATSSET
NX_DKGRAY (1.0/3.0)
NX_DOUT

NX_DOVER

NX_EOS
NX_EVENTCODEMASK
NX_EXPLICIT
NX_FILE_IO_ERROR
NX_FIRSTEVENT
NX_FIRSTWINDOW
NX_FLAGSCHANGED
NX_FLAGSCHANGEDMASK
NX_FONTCHARDATA
NX_FONTCOMPOSITES
NX_FONTHEADER
NX_FONTKERNING
NX_FONTMETRICS
NX_FONTWIDTHS
NX_FOREVER
NX_FORMAT NOT_YET SUPPORTED
NX_FREEBUFFER
NX_FROMCURRENT
NX_FROMEND
NX_FROMSTART
NX_HIGHLIGHT
NX_IMAGE_NOT_FOUND
NX_JOURNALEVENT
NX_JOURNALEVENTMASK
NX_KEYDOWN
NX_KEYDOWNMASK
NX_KEYUP
NX_KEYUPMASK
NX_KITDEFINED
NX_KITDEFINEDMASK
NX_LASTEVENT
NX_LASTKEY
NX_LASTLEFT
NX_LASTRIGHT
NX_LITTLEENDIAN

appkit/tiff.h
dpsclient/event.h

dpsclient/dpsNeXT.h

dpsclient/event.h
dpsclient/event.h

dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h

streams/streamsimpl.h

dpsclient/dpsNeXT.h

dpsclient/event.h
appkit/graphics.h

dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h

streams/streams.h
dpsclient/event.h
dpsclient/event.h
appkit/tiff.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h

dpsclient/dpsNeXT.h

appkit/tiff.h

streams/streams.h
streams/streams.h
streams/streams.h
streams/streams.h

dpsclient/dpsNeXT.h

appkit/tiff.h

dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/tiff.h

Constants

1-5

NX_LMOUSEDOWN
NX_LMOUSEDOWNMASK
NX_LMOUSEDRAGGED
NX_LMOUSEDRAGGEDMASK
NX_LMOUSEUP
NX_LMOUSEUPMASK
NX_LTGRAY (2.0/3.0)
NX_MESHED
NX_MONOTONICMASK
NX_MOUSEDOWN
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGED
NX_MOUSEDRAGGEDMASK
NX_MOUSEENTERED
NX_MOUSEENTEREDMASK
NX_MOUSEEXITED
NX_MOUSEEXITEDMASK
NX_MOUSEMOVED
NX_MOUSEMOVEDMASK
NX_MOUSEUP
NX_MOUSEUPMASK
NX_MOUSEWINDOW
NX_NEXTCTRLKEYMASK
NX_NEXTLALTKEYMASK
NX_NEXTLCMDKEYMASK
NX_NEXTLSHIFTKEYMASK
NX_NEXTRALTKEYMASK
NX_NEXTRCMDKEYMASK
NX_NEXTRSHIFTKEYMASK
NX_NEXTWINDOW
NX_NOALPHA

NX_NOBUF
NX_NONRETAINED
NX_NOWINDOW
NX_NULLEVENT
NX_NULLEVENTMASK
NX_NUMERICPADMASK
NX_ONES

NX_OUT

NX_PAGEHEIGHT
NX_PLANAR

NX_PLUS

NX_PLUSD

NX_PLUSL

NX_READFLAG
NX_READONLY
NX_READWRITE
NX_RETAINED
NX_RMOUSEDOWN
NX_RMOUSEDOWNMASK

Chapter 1: Constants and Data Types

dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/graphics.h
appkit/graphics.h
appkit/graphics.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/color.h
streams/streams.h
dpsclient/dpsNeXT.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
appkit/tiff.h
appkit/graphics.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsNeXT.h
dpsclient/event.h
dpsclient/event.h

NX_RMOUSEDRAGGED
NX_RMOUSEDRAGGEDMASK
NX_RMOUSEUP
NX_RMOUSEUPMASK
NX_SATOP

NX_SAVEBUFFER
NX_SHIFTMASK

NX_SIN

NX_SOUT

NX_SOVER
NX_STREAMERRBASE
NX_SYMBOLSET
NX_SYSDEFINED
NX_SYSDEFINEDMASK
NX_TIFF_CANT_APPEND
NX_TIFF_COMPRESSION_CCITFAX3
NX_TIFF_COMPRESSION_JPEG
NX_TIFF_COMFRESSION_LZW
NX_TIFF_COMPRESSION_NEXT
NX_TIFF_COMPRESSION_NONE
NX_TIFF_COMPRESSION_PACKBITS
NX_TIMER

NX_TIMERMASK
NX_TOPWINDOW
NX_TRANSMIT
NX_TRUNCATEBUFFER
NX_UNIQUEALPHABITMAP
NX_UNIQUEBITMAP
NX_USER_OWNS_BUF
NX_WHITE (1.0)
NX_WRITEFLAG
NX_WRITEONLY

NX_XMAX

NX_XMIN

NX_XOR

NX_YMAX

NX_YMIN

NXSYSTEMVERSION
NXSYSTEMVERSIONO0S2
NXSYSTEMVERSIONO0S3
NXSYSTEMVERSION090
NXSYSTEMVERSION0900
NXSYSTEMVERSION0901
NXSYSTEMVERSION0905
NXSYSTEMVERSION0930

TRUE
TYPEDSTREAM_ERROR_RBASE
YES

dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/dpsNeXT.h
streams/streams.h
dpsclient/event.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
streams/streams.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
dpsclient/event.h
streams/streams.h

appkit/obsoleteBitmap.h
appkit/obsoleteBitmap.h

streams/streams.h
appkit/graphics.h
streams/streams.h
streams/streams.h
appkit/graphics.h
appkit/graphics.h
dpsclient/dpsNeXT.h
appkit/graphics.h
appkit/graphics.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
appkit/nextstd.h
objc/typedstream.h
objc/objc.h

Constants

1-7

Data Types

1-8

Chapter 1:

BOOL

DEFINED IN objc/objc.h

typedef char BOOL;

Cache

DEFINED IN objc/objc-class.h

typedef struct objc_cache *Cache;

Category
DEFINED IN objc/objc-class.h

typedef struct objc_category *Category;

Class

DEFINED IN objc/objc.h

typedef struct objc class *Class;

DPSBinObjRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
union {
long int integerval;
float realVal;
long int nameVal; /* offset or index */
long int booleanVal;
long int stringVal; /* offset */
long int arrayVal; /* offset */
} val;
} DPSBinObjRec, *DPSBinObij;

Constants and Data Types

DPSBinObjGeneric
DEFINED IN dpsclient/dpsfriends.h

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
long int wval;
} DPSBinObjGeneric;

DPSBinObjReal
DEFINED IN dpsclient/dpsfriends.h

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
float realval;
} DPSBinObjReal;

DPSBinObjSeqRec
DEFINED IN dpsclient/dpsfriends.h

typedef struct {
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBinObjRec objects[l];

} DPSBinObjSegRec, *DPSBinObjSeq;

Data Types

1-9

DPSContextRec
DEFINED IN dpsclient/dpsfriends.h

typedef struct _t DPSContextRec ({
char *priv;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct _t DPSProcsRec const * procs;
void (*textProc) ();
void (*errorProc) ();
DPSResults resultTable;
unsigned int resultTablelLength;
struct _t DPSContextRec *chainParent, *chainChild;
DPSContextType type; /* NeXT addition - denotes type of context */
} DPSContextRec, *DPSContext;

DPSContextType
DEFINED IN dpsclient/dpsfriends.h
typedef enum { /* NeXT addition */

dps _machServer,/* a mach binary connection to a window server */
dps_fdServer, /* a socket binary connection to a window server */

dps_stream /* an ascii NXStream */
} DPSContextType;
DPSDefined Type
DEFINED IN dpsclient/dpsfriends.h

typedef enum {
dps_tBoolean,
dps_tChar, dps_tUChar,
dps_tFloat, dps_tDouble,
dps_tShort, dps_tUShort,
dps_tInt, dps_tUInt,
dps_tLong, dps_tULong } DPSDefinedType;

1-10 Chapter 1: Constants and Data Types

DPSErrorCode

DEFINED IN dpsclient/dpsclient.h

typedef enum DPSErrorCode {
dps _err ps = DPS ERRORBASE,
dps_err_nameToolLong,
dps_err resultTagCheck,
dps_err_resultTypeCheck,
dps_err invalidContext,
dps_err select = DPS_NEXTERRORBASE,
dps err connectionClosed,
dps_err_ read,
dps_err write,
dps_err_invalidFD,
dps_err invalidTE,
dps_err invalidPort,
dps_err outOfMemory,
dps_err cantConnect

} DPSErrorCode;

DPSErrorProc

DEFINED IN dpsclient/dpsclient.h

typedef void (*DPSErrorProc) (
DPSContext ctxt,
DPSErrorCode errorCode,
long unsigned int argl,
long unsigned int arg2);

DPSEventFilterFunc

DEFINED IN dpsclient/dpsNeXT.h

typedef int (*DPSEventFilterFunc) (NXEvent *ev);

DPSExtendedBinObjSeq

DEFINED IN dpsclient/dpsfriends.h

typedef struct {
unsigned char tokenType;
unsigned char escape; /* zero 1f this is an extended sequence */
unsigned short nTopElements;
unsigned long length;
DPSBinObjRec objects[1l];
} DPSExtendedBinObjSegRec, *DPSExtendedBinObjSeq;

Data Types 1-11

DPSFDProc

DEFINED IN dpsclient/dpsNeXT.h:

typedef void (*DPSFDProc) (int fd, void *userData);

DPSNameEncoding
DEFINED IN dpsclient/dpsfriends.h

typedef enum {
dps_indexed,
dps_strings
} DPSNameEncoding;

DPSNumberFormat

DEFINED IN dpsclient/dpsNeXT.h

typedef enum _DPSNumberFormat {
dps_float = 48,
dps_long = 0,
dps_short = 32

} DPSNumberFormat;

DPSPortProc

DEFINED IN dpsclient/dpsNeXT.h

typedef void (*DPSPortProc) (msg_header_t *msg, void *userData);

DPSProcs

DEFINED IN dpsclient/dpsfriends.h

typedef struct _t DPSProcsRec {

void (*BinObjSegWrite) (
DPSContext ctxt,
const void *buf,
unsigned int count);

void (*WriteTypedObjectArray) (
DPSContext ctxt,
DPSDefinedType type,
const void *array,
unsigned int length);

1-12 Chapter 1: Constants and Data Types

DEFINED IN

DEFINED IN

void (*WriteStringChars) (
DPSContext ctxt,
const char *buf,
unsigned int count);

void (*WriteData) (
DPSContext ctxt,
const void *buf,
unsigned int count);

void (*WritePostScript) (
DPSContext ctxt,
const void *buf,
unsigned int count);

void (*FlushContext) (DPSContext ctxt);
void (*ResetContext) (DPSContext ctxt);

void (*UpdateNameMap) (DPSContext ctxt
void (*AwaitReturnValues) (DPSContext ctxt
void (*Interrupt) (DPSContext ctxt);

void (*DestroyContext) (DPSContext ctxt);
void (*WaitContext) (DPSContext ctxt);

void (*Printf) (
DPSContext ctxt,
const char *fmt,
va_ list argList);

} DPSProcsRec, *DPSProcs;

DPSProgramEncoding

typedef enum {

dps_ascii,
dps_binObjSeq,
dps_encodedTokens

} DPSProgramEncoding;

DPSResultsRec

typedef struct {

DPSDefinedType type;

int count;

char *value;

} DPSResultsRec, *DPSResults;

);

dpsclient/dpsfriends.h

dpsclient/dpsfriends.h

Data Types

1-13

1-14

DPSSpaceRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct {
int lastNameIndex;
struct _t_ DPSSpaceProcsRec const * procs;
} DPSSpaceRec, *DPSSpace;

DPSSpaceProcsRec

DEFINED IN dpsclient/dpsfriends.h
typedef struct t DPSSpaceProcsRec {
void (*DestroySpace) (DPSSpace space);

/* See DPSDestroySpace() in dpsclient.h */
} DPSSpaceProcsRec, *DPSSpaceProcs;

DPSTextProc

DEFINED IN dpsclient/dpsclient.h

typedef void (*DPSTextProc) (
DPSContext ctxt,
const char *buf,
long unsigned int count);

DPSTimedEntry

DEFINED IN dpsclient/dpsNeXT.h

typedef struct _ DPSTimedEntry *DPSTimedEntry;

Chapter 1: Constants and Data Types

DPSUserPathAction

DEFINED IN

dpsclient/dpsNeXT.h

typedef enum DPSUserPathAction {
dps_uappend = 176,
dps ufill = 179,
dps_ueofill = 178,
dps_ustroke = 183,

dps_ustrokepath =
dps_inufill = 93,

dps_inueofill =
dps_inustroke

dps_def = 51,

dps_put

= 120

} DPSUserPathAction;

DPSUserPathOp

DEFINED IN

typedef enum DPSUserPathOp {

dps_setbbox = 0,

} DPSUserPathOp;
id
DEFINED IN
typedef struct objc object {
Class isa;
} o*id;
IMP
DEFINED IN
typedef id (*IMP) (id, SEL,

dps_moveto,
dps_rmoveto,
dps_lineto,
dps_rlineto,
dps_curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,
dps_ucache

364,

92,
312,

dpsclient/dpsNeXT.h

objc/objc.h

objc/objc.h

)

Data Types

1-15

Ivar

DEFINED IN

objc/objc-class.h

typedef struct objc ivar *Ivar;

Method

DEFINED IN

objc/objc-class.h

typedef struct objc method *Method;

Module

DEFINED IN

objc/objc-runtime.h

typedef struct objc module *Module;

NXAppkitErrorTokens

DEFINED IN

appkit/errors.h

typedef enum NXAppkitErrorTokens ({
NX longLine = NX APPKITERRBASE,

NX_nullsSel,

NX wordTablesWrite,
NX wordTablesRead,
NX textBadRead,
NX textBadWrite,
NX powerOff,
NX pasteboardComm,
NX mallocError,
NX printingComm,
NX abortModal,
NX_ abortPrinting,
NX illegalSelector,
NX_ appkitVMError,
NX badRtfDirective,
NX badRtfFontTable,
NX badRtfStyleSheet,
NX newerTypedStream,
NX tiffError

} NXAppkitErrorTokens;

1-16 Chapter 1: Constants and Data Types

/~k

/*
/~k
/*
/*
/*
/*
/*
/*
/*
/*
/~k
/*

Text, operation attempted on empty
selection */

error while writing word tables */
error while reading word tables */
Text, error reading from file */
Text, error writing to file */
poweroff */

communications prob with pbs server */
malloc problem */

sending to npd problem */

used to abort modal panels */

used to abort printing */

bogus selector passed to appkit */
error from vm_call */

NXAtom
DEFINED IN objc/hashtable.h

typedef const char *NXAtom;

NXCharMetrics

DEFINED IN appkit/afm.h

typedef struct { /* per character info */
short charCode;
unsigned char numKernPairs;
unsigned char reserved;
float xWidth;
int name;
float bbox[4];
int kernPairIndex;
} NXCharMetrics;

NXChunk
DEFINED IN appkit/chunk.h
typedef struct NXChunk ({
short growby; /* increment to grow by */
int allocated; /* how much is allocated */
int used; /* how much is used */
} NXChunk;
NXColor
DEFINED IN appkit/color.h

typedef struct NXColor ({
unsigned short colorField([8];
} NXColor;

Data Types

1-17

NXColorSpace

DEFINED IN appkit/graphics.h

typedef enum NXColorSpaceType {
NX_ ONEISBLACK_COLORSPACE = O, /* monochrome, 1 is black */
NX ONEISWHITE_ COLORSPACE = 1, /* monochrome, 1 is white */
NX RGB_ COLORSPACE = 2,
NX CMYK COLORSPACE = 5

} NXColorSpace;

NXCompositeChar
DEFINED IN appkit/afm.h
typedef struct { /* a composite char */

int numParts;
int firstPartIndex;
} NXCompositeChar;

NXCompositeCharPart

DEFINED IN appkit/afm.h

typedef struct { /* elements of the composite char array */
int partIndex;
float dx;
float dy;

} NXCompositeCharPart;

NXCoord

DEFINED IN dpsclient/event.h

typedef float NXCoord

1-18 Chapter 1: Constants and Data Types

NXDefaultsVector

DEFINED IN appkit/defaults.h

typedef struct NXDefault {
char *name;
char *value;

} NXDefaultsVector[];

NXEncodedLigature

DEFINED IN appkit/afm.h

typedef struct { /* elements of the encoded ligature array */
unsigned char firstChar;
unsigned char secondChar;
unsigned char ligatureChar;
unsigned char reserved;
} NXEncodedLigature;

NXErrorReporter

DEFINED IN appkit/errors.h

typedef void NXErrorReporter (NXHandler *errorState);

NXEvent

DEFINED IN dpsclient/event.h

typedef struct NXEvent ({
int type; /* An event type from above */
NXPoint location;
/* Base coordinates in window, from lower-left */

long time /* vertical intervals since launch */
int flags; /* key state flags */

unsigned int window; /* window number of assigned window */
NXEventData data; /* type-dependent data */

DPSContext ctxt; /* context the event came from */

} NXEvent, *NXEventPtr;

Data Types

NXEventData
DEFINED IN dpsclient/event.h

typedef union {

struct { /* For mouse-down and mouse-up events */
short reserved;
short eventNum; /* unique identifier for this button */
int click; /* click state of this event */
int unused;
} mouse;
struct { /* For key-down and key-up events */
short reserved;
short repeat; /* for key-down: nonzero if really a repeat */

/*
/~k

character set code */
character code in that set */

unsigned short charSet;
unsigned short charCode;

unsigned
short
} key;
struct {
short
short

int

int

} tracking;
struct { /*
short
short
union {
float
long
short
char

r
S

} misc;
} compound;
} NXEventData;

NXExceptionRaiser

DEFINED IN

/*
/*

short keyCode; device-dependent key number */

keyData; device-dependent info */

/* For mouse-entered and mouse-exited events */
reserved;
eventNum;

/* unique identifier from mouse down event */
trackingNum; /* unique identifier from
settrackingrect */
userData; /* uninterpreted integer from

settrackingrect */

For appkit-defined,
events */

sys-defined, and app-defined
eserved;

ubtype; event subtype for compound events */
*/
*/
*/
*/

F[2]
L[2]
S[4]
Cl8];

/*
/*
/*
/*

; for use in compound events
; for use in events

’

compound

; for use in compound events

for use in compound events

objc/error.h

typedef void NXExceptionRaiser (int code,

1-20 Chapter 1: Constants and Data Types

const void *datal,

const void *data2);

NXFontMetrics

DEFINED IN

typedef struct _NXFontMetrics

char *formatVersion;
*name;
*fullName;

*familyName;

char
char
char
char *weight;

float italicAngle;
isFixedPitch;
isScreenFont;

char
char
short
float
float
float underlineThickness;

screenFontSize;
fontBBox[4];
underlinePosition;

char *version;

char *notice;

char *encodingScheme;
float capHeight;
float xHeight;

float
float

ascender;

descender;

short hasYWidths;

float *widths;

unsigned int widthsLength;

char *strings;

appkit/afm.h

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

unsigned int stringsLength;

char hasXYKerns;
char reserved;
short *encoding;
float *yWidths;

/7\'

/* character widths in y.

version of afm file format */
name of font for findfont */
full name of font */

"font family" name */

weight of font */

degrees ccw from vertical */
is the font mono-spaced? */
is the font a screen font? */
If it is, how big is it? */
bounding box (llx 1lly urx ury) */
dist from basline for underlines */
thickness of underline stroke */
version identifier */

trademark or copyright */

default encoding vector */

top of 'H' */
top of 'x’ */
top of 'd’ */
bottom of "p’
do any

*/
chars have non-0 y width? */
character widths in x */

table of strings and other info */

/* Do any of the kern pairs have nonzero dy? */

256 offsets into charMetrics */

NOT in encoding */

/* order, but a parallel array to the charMetrics array */

NXCharMetrics *charMetrics; /* array of NXCharMetrics */

int numCharMetrics; /* num elements */

NXLigature *ligatures; /* array of NXLigatures */

int numLigatures; /* num elements */

NXEncodedLigature *encLigatures; /* array of
NXEncodedLigatures */

int numEncLigatures; /* num elements */

Data Types 1-21

union {

NXKernPair *kernPairs; /* array of NXKernPairs */

NXKernXPair *kernXPairs; /* array of NXKernXPairs */
} kerns;
int numKernPairs; /* num elements */
NXTrackKern *trackKerns; /* array of NXTrackKerns */
int numTrackKerns; /* num elements */
NXCompositeChar *compositeChars; /* array of

NXCompositeChar */

int numCompositeChars; /* num elements */

NXCompositeCharPart *compositeCharParts; /* array of
NXCompositeCharPart */
int numCompositeCharParts; /* num elements */
} NXFontMetrics;

NXHandler
DEFINED IN objc/error.h
typedef struct NXHandler { /* a node in the handler chain */
jmp_buf JjumpState; /* place to longjmp to */
struct NXHandler *next; /* ptr to next handler */
int code; /* error code of exception */
const void *datal, *data2; /* blind data for describing */
} NXHandler; /* error */
NXHashState
DEFINED IN objc/hashtable.h

typedef struct {int i; int j;} NXHashState;

NXHashTablePrototype

DEFINED IN objc/hashtable.h

typedef struct {
unsigned (*hash) (const void *info, const void *data);

int (*isEqual) (const void *info, const void *datal,
const void *dataZ2);
void (*free) (const void *info, void *data);
int style; /* reserved for future expansion; currently 0 */
} NXHashTablePrototype;

1-22 Chapter 1: Constants and Data Types

NXImagelnfo

DEFINED IN appkit/tiff.h
typedef struct NXImageInfo {

int width; /* image width in pixels */
int height; /* image height in pixels */
int bitsPerSample; /* number of bits per data channel */
int samplesPerPixel; /* number of channels per pixel */
int planarConfig; /* NX MESHED for mixed data channels */
/* NX PLANAR for separate data planes */
int photolnterp; /* various bits set for various photometric */

/* interpretations, as in the table below */
} NXImageInfo;

NXKernPair

DEFINED IN appkit/afm.h

typedef struct { /* elements of the kern pair array */
int secondCharIndex;
float dx;
float dy;

} NXKernPair;

NXKernXPair

DEFINED IN appkit/afm.h

typedef struct { /* elements of the kern X pair array */
int secondCharIndex;
float dx;

} NXKernXPair;

NXLigature

DEFINED IN appkit/afm.h

typedef struct { /* elements of the ligature array */
int firstCharIndex;
int secondCharIndex;
int ligaturelIndex;

} NXLigature;

Data Types 1-23

NXPoint
DEFINED IN dpsclient/event.h

typedef struct NXPoint ({ /* point */
NXCoord x, y;
} NXPoint;

NXPrintfProc

DEFINED IN streams/streams.h

typedef void NXPrintfProc (NXStream *stream, void *item,
void *procData);

NXRect

DEFINED IN appkit/graphics.h

typedef struct _NXRect {
NXPoint origin;
NXSize size;

} NXRect;
NXScreen
DEFINED IN appkit/screens.h
typedef struct NXScreen {
int screenNumber; /* Screen number (may be used as */
/* argument to framebuffer op). */
NXRect screenBounds; /* Bounds of the screen. */
short _reservedShort[6]; /* Don’t use these. */
NXWindowDepth depth; /* Depth of the frame buffer */
int _reserved[3]; /* Don’t use these either. */

} NXScreen;

NXSize

DEFINED IN dpsclient/event.h

typedef struct NXSize ({ /* size */
NXCoord width, height;
} NXSize;

1-24 Chapter 1: Constants and Data Types

NXStream

DEFINED IN streams/streams.h
typedef struct NXStream {

unsigned int magic_number;/* to check stream validity */
unsigned char *buf base; /* data buffer */
unsigned char *buf ptr; /* current buffer pointer */
int buf size; /* size of buffer */
int buf left; /* # left till buffer operation */
long offset; /* position of beginning of buffer */
int flags; /* info about stream */
int eof;

const struct stream functions *functions; /* functions to
implement stream */

void *info; /* stream specific info */
} NXStream;
NXStreamErrors
DEFINED IN streams/streams.h

typedef enum NXStreamErrors {
NX illegalWrite = NX STREAMERRBASE,
NX illegalRead,
NX_illegalSeek,
NX_ illegalStream,
NX_streamVMError
} NXStreamErrors;

NXTIFFInfo

DEFINED IN appkit/tiff.h

typedef struct NXTIFFInfo {
int imageNumber;
NXImageInfo image;
int subfileType; /* only subfileType = 1 is supported */
int rowsPerStrip;
int stripsPerImage;

int compression; /* compression id, 1 = no compression */

int numlImages; /* number of images in tiff */

int endian; /* either NX BIGENDIAN or NX LITTLEENDIAN */
int wversion; /* tiff version */

int error;
int firstIFD; /* offset of first IFD entry */
unsigned int stripOffsets[NX PAGEHEIGHT];
unsigned int stripByteCounts[NX PAGEHEIGHT];
} NXTIFFInfo;

Data Types ~ 1-25

NXTopLevelErrorHandler

DEFINED IN appkit/errors.h

typedef void NXTopLevelErrorHandler (NXHandler *errorState);

NXTrackingTimer
DEFINED IN appkit/timer.h

typedef struct NXTrackingTimer {
double delay;
double period;
DPSTimedEntry te;
BOOL freeMe;
BOOL firstTime;
NXHandler *errorData;
int reservedl;
int reserved2;
} NXTrackingTimer;

NXTrackKern

DEFINED IN appkit/afm.h

typedef struct { /* elements of the track kern array */
int degree;
float minPointSize;
float minKernAmount;
float maxPointSize;
float maxKernAmount;
} NXTrackKern;

NXTypedStream

DEFINED IN objc/typedstream.h

typedef void NXTypedStream;

NXUncaughtExceptionHandler
DEFINED IN objc/error.h

typedef void NXUncaughtExceptionHandler (int code,
const void *datal,
const void *data2);

1-26 Chapter 1: Constants and Data Types

typedef struct objc selector *SEL;

STR

DEFINED IN objc/objc.h

typedef char *STR;

Symtab

DEFINED IN objc/objc-runtime.h

typedef struct objc symtab *Symtab;

TypedstreamErrors
DEFINED IN objc/typedstream.h

enum TypedstreamErrors {
TYPEDSTREAM CALLER ERROR = TYPEDSTREAM ERROR RBASE,
TYPEDSTREAM FILE INCONSISTENCY,
TYPEDSTREAM CLASS ERROR,
TYPEDSTREAM TYPE DESCRIPTOR ERROR,
TYPEDSTREAM WRITE REFERENCE_ERROR,
TYPEDSTREAM INTERNAL ERROR

Data Types 1-27

1-28

Chapter 2
Class Specifications

Volume 1:

2-3
2-3
2-7
2-8
2-8
2-9
2-10

2-11
2-13
2-19
2-27
2-31
2-53
2-59

2-63

2-65

2-71

2-105
2-113
2-123
2-141
2-167
2-179
2-195
2-205
2-217
2-225
2-235
2-241
2-267
2-295
2-303
2-307
2-323
2-345
2-349
2-353

How to Read the Specifications

Organization

Method Descriptions
Implementing Your Own Version of a Method
Retaining the Kit’s Version of a Method
Designated Initializer Methods
Sending a Message to Perform a Method

Common Classes
HashTable

List

NXStringTable
Object

Storage
StreamTable

Application Kit Classes
ActionCell
Application

Box

Button

ButtonCell

Cell

ClipView

Control

Font

FontManager
FontPanel

Form

FormCell

Listener

Matrix

Menu

MenuCell
NXBitmapImageRep
NXBrowser
NXBrowserCell
NXCachedImageRep
NXColorPanel

2-1

2-363
2-369
2-375
2-379
2-385
2-411
2-417
2-423
2-429
2-433

NXColorWell
NXCursor
NXCustomImageRep
NXEPSImageRep
NXImage
NXImageRep
NXJournaler
NXSplitView

Object Methods
OpenPanel

Volume 2:

2-437
2-437
2-445
2-451
2-459
2-465
2-477
2-483
2-491
2-499
2-509
2-521
2-525
2-529
2-537
2-557
2-625
2-633
2-639
2-681

Application Kit Classes (continued)
PageLayout
Panel
Pasteboard
PopUpList
PrintInfo
PrintPanel
Responder
SavePanel
Scroller
ScrollView
SelectionCell
Slider
SliderCell
Speaker

Text
TextField
TextFieldCell
View
Window

This chapter describes each of the classes defined in the Application Kit, as well as the
classes that come with the NeXT compiler for the Objective-C language. The classes that
come with the compiler can be used with any kit (and in programs that don’t use the kits).

Each class specification details the instance variables the class declares, the methods it
defines, and any special constants and defined types it uses. There’s also a general
description of the class and its place in the inheritance hierarchy. However, you won’t find
a discussion of any Kkit’s design or an explanation of how to go about using the kit to
program an application. You may occasionally encounter terms that assume some prior
knowledge about the kits, Mach, the Display PostScript system, or object-oriented
programming. These topics are covered in other volumes of the NeXT Developer’s Library.

How to Read the Specifications

The class specifications are organized in two groups: common classes and Application Kit
classes. Within each of these groups, the specifications are arranged in alphabetical order
by class.

Organization

Information about a class is presented under the following headings:

INHERITS FROM

The first line of a class specification lists the classes that the class being described
inherits from. For example:

Panel : Window : Responder : Object
The first class listed (Panel, in this example) is the class’s superclass. The last class
listed is always Object, the root of all inheritance hierarchies. The classes between

show the chain of inheritance from Object to the superclass. (This particular example
shows the inheritance hierarchy for the Menu class of the Application Kit.)

How to Read the Specifications 2-3

DECLARED IN
Each class lists the directory and header file in which its interface is declared.

In the Application Kit, a master header file includes almost all the other header files you
need to program with the kit:

[usr/include/appkit/appkit.h
There’s also a master header file for the classes that come with the compiler:
/usr/include/objc/objc.h

If you include the master header file for the Application Kit, you don’t need to also
include this file; it’s included by the kit file.

Because the kits are written in the Objective-C language, they make use of constants
and types defined in the principal header file for Objective-C, objc.h. Only a handful
of these constants and types are used by the kits, but they’re used pervasively. For
convenience, they re listed below.

Defined Types:
id An object.
STR A Cstring. STR is a shorthand for (char *). It’s used only for an

array of characters that’s terminated by the null character.

SEL A method selector. SEL is another shorthand for (char *), where
the character string can be thought of as a method name. However,
SEL is used only as a unique code for a method name, rather than
as a pointer to an actual occurrence of the name in memory.
Values should be assigned to SEL variables only with the
@selector operator:

SEL aMethod;
aMethod = @selector (moveTo::);

This allows selectors to be tested by matching the value of a SEL
code, rather than by comparing all the characters in a string.

BOOL A char that holds one of two values: YES (true) or NO (false).
Constants:

nil A null object id, (id)0.

YES Boolean true, (BOOL)1.

NO Boolean false, (BOOL)O.

2-4 Chapter 2: Class Specifications

CLASS DESCRIPTION

[N

This section gives a generai description of ihe class. Ii tells how the clas
general design of its kit and how your application can make use of it.

73}
73}
-
o
-t
7
-t
=
ot
Q
ot
s
-
(¢}

* Some classes define “off-the-shelf” objects: Your program can create direct
instances of the class, or modify it in a subclass definition.

* Other classes are “abstract superclasses”: You wouldn’t create an instance of the
class itself, but only of its subclasses. The kits define some subclasses for each
abstract superclass; others can be defined by your application.

Occasionally, the class description will recommend that you define a subclass of a kit
class, even though the kit class isn’t abstract. The subclass allows you to customize an
object to the needs of your application.

INSTANCE VARIABLES

The instance variables that are incorporated into each object belonging to the class,
including instance variables inherited from other classes, are listed next. The first
instance variable in all the lists is one inherited from the Object class, isa. isa identifies
the class that an object belongs to for the run-time system; it should never be altered or
read directly.

After all the instance variables are listed, those declared in the class being described are
explained.

However, instance variables that are for the internal use of the class are neither listed
nor explained. These instance variables all begin with an underscore (_) to prevent
collisions with names that you might choose for instance variables in a subclass you
define.

METHOD TYPES

Methods are next listed by name and grouped by type—for example, methods used to
draw are listed separately from methods used to handle events. This directory includes
all the principal methods defined in the class and some that are defined in classes it
inherits from. Inherited methods are followed by the name of the class where theyre
defined; they 're included in the directory to let you know which inherited methods you
might commonly use with instances of the class and where to look for a description of
those methods.

How to Read the Specifications 2-5

2-6

CLASS METHODS
INSTANCE METHODS .

A detailed description of each method defined in the class follows the classification by
type. Methods that are used by class objects are presented first; if a class has no class
methods, this section is left out. Methods that are used by instances (the objects
produced by the class) are presented next. The descriptions within each group are
ordered alphabetically by method name.

Each description begins with the syntax of the method’s arguments and return values,
continues with an explanation of the method, and ends, where appropriate, with a list
of other related methods. Where a related method is defined in another class, it’s
followed by the name of the other class within parentheses.

Some methods listed in a class specification are prototypes for methods that you may
want to implement in a subclass. A prototype is declared in the header file, but not
actually implemented by the class. The description for such methods states that they
are prototypes and describes the behavior and return value you should implement for
the method.

All methods except prototypes have reliable return values which are included in the
method description. Many methods return self; this allows you to chain messages
together:

[[[receiver messagel] message2] message3];

Internal methods used to implement the class aren’t listed. Since you shouldn’t
override any of these methods, or use them in a message, they’re excluded from both
the method directory and the method descriptions. However, you may encounter them
when looking at the call stack of your program from within the debugger. A private
method is easily recognizable by the underscore (_) that begins its name.

METHODS IMPLEMENTED BY ANOTHER OBJECT

If a class lets you define another object—a delegate—that can intercede on behalf of
instances of the class, the methods that the delegate can implement are described in a
separate section. These are not methods defined in the class; rather, they’re methods
that you can define to respond to messages sent to the delegate.

If you define one of these methods, the delegate will receive automatic messages to
perform it at the appropriate time. For example, if you define a
windowDidBecomeKey: method for a Window’s delegate, the delegate will receive
windowDidBecomeKey: messages whenever the Window becomes the key window.

Messages are sent only if the delegate has a method that can respond. If you don’t
define a windowDidBecomeKey: method, no message will be sent.

Chapter 2: Class Specifications

Only certain classes provide for a delegate. In the Application Kit, they are:

Applicaiion
Listener
NXBrowser
Speaker
Text
Window

You can set a delegate for instances of these classes or for instances that inherit from
these classes.

Some class specifications have separate sections with titles such as “Methods
Implemented by the SuperView” or “Methods Implemented by the Owner.” The
methods described in these sections need to be implemented by another object, such as
the superview of an instance of that class or, in the case of the Pasteboard, the owner of
the Pasteboard instance. For example, the ClipView’s superview needs to define the
scrollClip:to: method to coordinate scrolling of multiple ClipViews. The owner of the
Pasteboard should define provideData: if certain promised data types won’t be
immediately written to the Pasteboard. As is the case with the delegate methods, you
won’t invoke these methods directly; messages to perform them will be sent
automatically when needed and only if they’ve been defined.

CONSTANTS AND DEFINED TYPES
If a class makes use of symbolic constants or defined types that are specific to the class,
theyre listed in the last section of the class specification. Defined types are likely to
show up in instance variable declarations, and as return and parameter types in method

declarations. Symbolic constants typically define permitted return and argument
values.

Method Descriptions
By far, the major portion of each class specification is the description of methods defined
in the class. When reading these descriptions, be especially attentive to four kinds of
information that affect how the method can be used:
e Whether you should implement your own version of the method

* Whether you should have your version of the method include the kit-defined version

* Which method is a class’s designated initializer, the method to override if you
implement a subclass that performs initialization

* Whether you should ever send a message to an object to perform the method

The next four sections examine these questions.

How to Read the Specifications 2-7

2-8

Implementing Your Own Version of a Method

For the most part, the methods in a class definition act as a private library for objects
belonging to that class. Just as programmers generally don’t replace functions in the
standard C library with their own versions, you generally wouldn’t write your own versions
of the methods provided for a class.

However, to add specific behavior to your application, you must override some of the
methods that are defined in the kits. Often, the kit-defined method will do little or nothing
that’s of use to your application, but it will appear in messages initiated by other methods.
To give content to the method, your application must implement its own version.

To override a kit method with one of your own design, simply define a subclass of the
appropriate class and redefine the method. For example, the interface declaration for the
CircleView class illustrated below shows that it does nothing more than override the View
class’s drawSelf:: method.

@interface CircleView : View { }
- drawSelf: (NWRect *)drawRects : (int)rectCount;
@end

CircleView objects will perform its version of drawSelf:: rather than the empty default
version defined in View.

In contrast to methods that must be overridden, some methods should never be changed by
the application. The kit depends on these methods doing just what they’re currently
programmed to do—nothing more and nothing less. While your application can use these
methods, it’s important that you don’t override them when defining a subclass.

Most methods fit between these two extremes: They can be overridden, but it’s not
necessary for you to do so. If a method description is silent on the question of overriding
the kit method, you can be certain that it fits into this middle category. It’s a method that
you can override, but like a function in the C library, you normally would have no reason to.

If a method is designed to be overridden, or if it should never be overridden, the method
description explicitly says so.

Retaining the Kit’s Version of a Method

Some methods can be overridden, but only to add behavior, not to alter the default actions
of the kit-defined method. When your application overrides one of these methods, it’s

important that it incorporate the very method it overrides. This is done by messaging super
to perform the kit-defined version of the method. For example, if you write a new version

Chapter 2: Class Specifications

of the kit method that moves a Window, you’d most likely still want it to move a Window.
The easiest way to have it do that is to include the old method in the new one through a

mAacQaga

i1ics8age 1o super.

- moveTo: (NWCoord)x : (NWCoord)y {
[super moveTo:x :yl;
/* your code goes here */

You may occasionally be required to implement a new version of a method while preserving
the behavior of the method you override. An example is the write: method, which archives
an object by writing it to a typed stream. When you define a kit subclass, you may need to
implement a version of this method that can archive the instance variables your subclass
declares. So that a write: message will archive all of an object’s instance variables, not just
those declared in the subclass, your version of the method should begin by incorporating
the version used by its superclass.

- write: (NXTypedStream *)stream {
[super write:stream];
/* your code goes here */

Method descriptions explicitly mention that you should incorporate a method you override
only when it’s not obvious that you should preserve the default behavior in the new method.

Designated Initializer Methods

Initializer methods (those that begin with init...) initialize a new instance of a class by
setting values for instance variables, creating support objects, and so on. Before a new
instance receives class-specific initialization, it must be initialized as an instance of each
class from which it inherits, in order, beginning with Object. To maintain this sequence,
each common and Application Kit class has designated initializers, init... methods that
invoke a designated initializer in the superclass before doing their work. Since Object is
the root of the inheritance hierarchy, its designated initializer, the init method, is always the
first method to initialize an object. The designated initializer for most other classes is the
init... method with the most arguments (some classes have more than one designated
initializer to perform different types of initialization). Other init... methods for a class
initialize objects by invoking a designated initializer. Designated initializers are identified
in their method descriptions.

In its discussion of the alloc and init methods, the Object class specification provides more

detail on how new instances are allocated and initialized. This discussion includes some
guidelines to follow when writing initializer methods in a subclass.

How to Read the Specifications 2-9

2-10

Sending a Message to Perform a Method

Some methods should never appear as messages in the code you write; you should never
directly ask an object to perform the method. Typically, these are methods that your
application will use indirectly, through other methods.

Most of these methods begin with a underscore and are treated as class-internal methods.
However, some don’t have an underscore and are included in the method descriptions.
These are methods that your application can implement, even though it won’t directly use
them in a message. The messages to perform these methods originate in the kit.

The most notable example of this is the drawSelf:: method that draws a View. Although
you must implement a drawSelf:: method for each View subclass you define, your code
should never send a drawSelf:: message. Instead, you send a display message; the display
method (such as display, displayIfNeeded, or display:::) sees to it that the drawing context
is properly set before initiating a drawSelf:: message to the View.

The methods that respond to event messages (such as mouseUp:, keyDown:, and
windowExposed:) also fall into this category. Event messages are initiated by the
Application Kit when it receives events from the Window Server; you shouldn’t initiate
them in your own code.

The write: and read: methods for archiving and unarchiving are other examples of methods
that shouldn’t be sent directly to objects. They’re generated by functions, such as
NXWriteObject() and NXReadObject().

If a method is designed to respond to messages generated by other methods or by a kit, the
method description will generally say so. If there’s a penalty for generating the message
within the code you write (as there is for drawSelf::), the description will include an
explicit warning.

Chapter 2: Class Specifications

Common Classes

A handful of classes come with the NeXT compiler for the Objective-C language. They
include, most prominently, the Object class, which defines the basic functionality inherited
by all objects. The Object class is at the root of all inheritance hierarchies.

The other classes that come with the compiler are similar in that they also define
functionality that can serve a wide variety of applications. They can be used with any kit.
The five common classes are shown in Figure 2-1.

Figure 2-1. Inheritance Hierarchy of the Common Classes

Common Classes 2-11

2-12

HashTable

INHERITS FROM Object
DECLARED IN objc/HashTable.h
CLASS DESCRIPTION

The HashTable class defines objects that store associations of keys and values. You use
a HashTable object when you need a convenient and efficient way to store and access
unordered data. Hash tables double as their number of associations increase, thus
guaranteeing both constant average access time and linear size.

HashTable objects are convenient to use, but when even greater efficiency of storage
and access is required, consider using the C function interface to hash tables (see
NXCreateHashTable()). Two alternatives to the HashTable class are NXStringTable
and List. An NXStringTable is a HashTable that’s designed to store associations
between keys and values that are both character strings. List is useful when you need
to store a collection of objects; however, it doesn’t provide for storage of key/value
pairs. Also, the time required to access an element in a List object grows linearly with
the number of elements.

In a HashTable object, keys and values can be of type id, int, void *, char *, or any
other 32-bit quantity that can be described by a type string. The following outlines the
usage of key and value descriptions:

Hashing: A hash message is sent for object keys, a string hashing function is used for
string keys, and a generic integer hashing function is used for all other cases.

Equality: AnisEqual: message is sent for object keys, and a string comparison is used
for string keys.

Descriptions must be invariant strings and are restricted to encode 32-bit quantities,
typically the following:

“@” (id) “*” (char *) “i” (int) “!” (other)

Two other restrictions that a HashTable must satisfy are:

1. Keys must be invariant. In particular, when keys are strings, no copy is made, and
the string is assumed to never change until the association is removed from the
table.

2. If two keys are equal in the sense of isEqual:, then their hashed values must be
equal. If you're creating a HashTable of List or Storage objects, note that these

classes have an isEqual: method but no hash method; you can either subclass or
define a hash method.

Common Classes: HashTable 2-13

When freeing a HashTable, only object keys or object values are freed. Data is archived
according to its type description. When description is “%”, hashing and equality are
same as for “*”. On reading, however, the string is uniqued, using the
NXUniqueString() function.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in HashTable unsigned count;
const char *keyDesc;
const char *valueDesc;
count Current number of associations
keyDesc Description of keys
valueDesc Description of values
METHOD TYPES

Initializing and freeing a HashTable
— init
— initKeyDesc:
— initKeyDesc:valueDesc:
— initKeyDesc:valueDesc:capacity:
— free
— freeObjects
— freeKeys:values:
— empty

Copying a HashTable — copy
— copyFromZone:

Manipulating table associations — count
— isKey:
— valueForKey:
— insertKey:value:
—removeKey:

Iterating over all associations — initState
— nextState:key:value:

Archiving —read:
— write:

2-14 Chapter 2: Class Specifications

INSTANCE METHODS

Copy

— copy

Returns a new HashTable. Keys nor values are copied.
copyFromZone:

— copyFromZone:

Returns a new HashTable. Memory for the new HashTable is allocated from zone.
Keys nor values are copied.

count

— (unsigned)count

Returns the number of objects in the table.
empty

—empty

Empties the HashTable but retains its capacity.

free

— free

Deallocates the table, but not the objects that are in the table.
freeKeys:values:

— freeKeys:(void (*)(void *))keyFunc values:(void (*)(void *))valueFunc

Conditionally deallocates the HashTable’s associations but does not deallocate the table
itself.

freeObjects
— freeObjects

Deallocates every object in the HashTable, but not the HashTable itself. Strings are not
recovered.

Common Classes: HashTable 2-15

2-16

init

— init
Initializes a new HashTable to map object keys to object values. Returns self.

See also: — initKeyDesc:key:value:capacity:

initKeyDesc:

+ initKeyDesc:(const char *)aKeyDesc

Initializes a new HashTable to map keys as described by aKeyDesc to object values.
Returns self.

See also: — initKeyDesc:key:value:capacity:

initKeyDesc:valueDesc:

— initKeyDesc:(const char *)aKeyDesc valueDesc:(const char *)aValueDesc

Initializes a new HashTable to map keys and values as described by aKeyDesc and
aValueDesc. Returns self.

See also: — initKeyDesc:key:value:capacity:

initKeyDesc:valueDesc:capacity:

— initKeyDesc:(const char *)aKeyDesc
valueDesc:(const char *)aValueDesc
capacity:(unsigned)aCapacity

Initializes a new HashTable. This is the designated initializer for HashTable objects:
If you subclass HashTable, your subclass’s designated initializer must maintain the
initializer chain by sending a message to super to invoke this method. See the
introduction to the class specifications for more information.

A HashTable initialized by this method maps keys and values as described by aKeyDesc
and aValueDesc. aCapacity is given only as a hint; you can use O to create a table of

minimal size. As more space is needed, it will be allocated automatically. Returns self.

See also: — initKeyDesc:key:value:capacity:

Chapter 2: Class Specifications

initState
— (NXHashState)initState

Returns an NXHashState structure that’s required when iterating through the
HashTable. Iterating through all associations of a HashTable involves setting up an
iteration state, conceptually private to HashTable, and then progressing until all entries
have been visited. An example of counting associations in a table follows:

unsigned count = 0;
const void “*key;
void *value;
NXHashState state = [table initStatel;
while ([table nextState: &state key: &key value: &valuel)
count++;

See also: — nextState:key:value:
insertKey:value:
— (void *)insertKey:(const void *)aKey value:(void *)aValue
Adds or updates a key and value pair, as specified by aKey and aValue. If aKey is
already in the hash table, it’s associated with aValue and its previously associated value
is returned. Otherwise, insertKey:value: returns nil.
See also: — removeKey:
isKey:
— (BOOL)isKey:(const void *)aKey
Returns YES if aKey is in the table, otherwise NO.
See also: — valueForKey:

nextState:key:value:

— (BOOL)nextState:(NXHashState *)aState
key:(const void **)aKey
value:(void **)aValue

Moves to the next entry in the HashTable and provides the addresses of pointers to its
key/value pair. No insertKey: or removeKey: should be done while iterating through
the table. Returns NO when there are no more entries in the table; otherwise, returns
YES.

See also: — initState

Common Classes: HashTable 2-17

2-18

read:
—read:(NXTypedStream *)stream

Reads the HashTable from the typed stream stream. Returns self.
See also: — write:
removeKey:
— (void *)removeKey:(const void *)aKey
Removes the hash table entry identified by aKey. Always returns nil.

See also: — insertKey:value:

valueForKey:
— (void *)valueForKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.
See also: — isKey:
write:
— write:(NXTypedStream *)stream
Writes the HashTable to the typed stream stream. Returns self.

See also: —read:

Chapter 2: Class Specifications

List

INHERITS FROM Obiect
DECLARED IN objc/List.h
CLASS DESCRIPTION

A List is a collection of objects. The class provides an interface that permits easy
manipulation of the collection as a fixed or variable-sized list, a set, or an ordered
collection. Lists are implemented as arrays to allow fast random access using an index.
Indices start at 0.

A List array contains object ids. An object isn’t copied when it’s added to a List; only
its id is. There are no empty slots within the array. nil objects can’t be inserted in a
List, and the collection is contracted to fill in the empty space when an object is
removed.

Lists grow dynamically when new objects are added. The default mechanism
automatically doubles the capacity of the List when it becomes full, thus ensuring an

average constant time for insertions, independent of the size of the List.

For manipulating sets of structures that aren’t objects, see the Storage class.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in List id *dataPtr;
unsigned int numElements;
unsigned int maxElements;

dataPtr The data managed by the List object (the array of
objects).

numElements The actual number of objects in the array.

maxElements The total number of objects that can fit in

currently allocated memory.

Common Classes: List 2-19

METHOD TYPES

Initializing a new List object — init
— initCount:

Copying and freeing a List — copy
— copyFromZone:
— free

Manipulating objects by index — insertObject:at:
— addObject:
— removeObjectAt:
— removeLastObject
— replaceObjectAt:with:
— objectAt:
— lastObject
— count

Manipulating objects by id — addObject:
— addObjectIfAbsent:
—removeObject:
- replaceObject:with:
— indexOf:

Comparing Lists —isEqual:

Emptying a List — empty
— freeObjects

Sending messages to the objects — makeObjectsPerform:
— makeObjectsPerform:with:

Managing the storage capacity — capacity
— setAvailableCapacity:

Archiving —read:

— write:

INSTANCE METHODS

addObject:
—addObject:anObject

Inserts anObject at the end of the List, and returns self. However, if anObject is nil,
nothing is inserted and nil is returned.

See also: — insertObject:at:

2-20 Chapter 2: Class Specifications

addObjectIfAbsent:
— addObjectIfAbsent:anObject
Inserts anObject at the end of the List and returns self, provided that anObject isn’t
already in the List. If anObject is in the List, it won’t be inserted, but self is still
returned.

If anObject is nil, nothing is inserted and nil is returned.
See also: — insertObject:at:

capacity
— (unsigned int)capacity
Returns the maximum number of objects that can be stored in the List without
allocating more memory for it. When new memory is allocated, it’s taken from the
same zone that was specified when the List was created.
See also: — count, — setAvailableCapacity:

copy
— copy
Returns a new List object with the same contents as the receiver. The objects in the List
aren’t copied; therefore, both Lists contain pointers to the same set of objects. Memory
for the new List is allocated from the same zone as the receiver.
See also: — copyFromZone:

copyFromZone:
— copyFromZone:(NXZone *)zone
Returns a new List object, allocated from zone, with the same contents as the receiver.
The objects in the List aren’t copied; therefore, both Lists contain pointers to the same
set of objects.
See also: — copy

count
— (unsigned int)count

Returns the number of objects currently in the List.

See also: — capacity

Common Classes: List 2-21

2-22

empty
— empty

Empties the List of all its objects without freeing them, and returns self. The current
capacity of the List isn’t changed.

See also: — freeObjects
free

— free

Deallocates the List object and the memory it allocated for the array of object ids.
However, the objects themselves aren’t freed.

See also: — freeObjects
freeObjects
— freeObjects

Removes every object from the List, sends each one of them a free message, and returns
self. The List object itself isn’t freed and its current capacity isn’t altered.

The methods that free the objects shouldn’t have the side effect of modifying the List.
See also: — empty

indexOf:
— (unsigned int)indexOf:anObject

Returns the index of the first occurrence of anObject in the List, or
NX NOT_IN_LIST if anObject isn’t in the List.

init
— init
Initializes the receiver, a new List object, but doesn’t allocate any memory for its array
of object ids. It’s initial capacity will be 0. Minimal amounts of memory will be
allocated when objects are added to the List. Or an initial capacity can be set, before

objects are added, using the setAvailableCapacity: method. Returns self.

See also: — initCount:, — setAvailableCapacity:

Chapter 2: Class Specifications

initCount:

— initCount:(unsigned int)numsSlots

Initializes the receiver, a new List object, by allocating enough memory for it to hold
numsSlots objects. Returns self.

This method is the designated initializer for the class. It should be used immediately
after memory for the List has been allocated and before any objects have been assigned
to it; it shouldn’t be used to reinitialize a List that’s already in use.
See also: — capacity

insertObject:at:
— insertObject:anObject at:(unsigned int)index
Inserts anObject into the List at index, moving objects down one slot to make room. If
index equals the value returned by the count method, anObject is inserted at the end of
the List. However, the insertion fails if index is greater than the value returned by count

or anObject is nil.

If anObject is successfully inserted into the List, this method returns self. If not, it
returns nil.

See also: — count, — addObject:
isEqual:
— (BOOL)isEqual:anObject

Compares the receiving List to anObject. If anObject is a List with exactly the same
contents as the receiver, this method returns YES. If not, it returns NO.

Two Lists have the same contents if they each hold the same number of objects and the
ids in each List are identical and occur in the same order.

lastObject
— lastObject

Returns the last object in the List, or nil if there are no objects in the List. This method
doesn’t remove the object that’s returned.

See also: — removeLastObject

Common Classes: List 2-23

2-24

makeObjectsPerform:

— makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the List in reverse order (starting with the
last object and continuing backwards through the List to the first object), and returns
self. The aSelector method must be one that takes no arguments. It shouldn’t have the
side effect of modifying the List.

makeObjectsPerform:with:

— makeObjectsPerform:(SEL)aSelector with:anObject

Sends an aSelector message to each object in the List in reverse order (starting with the
last object and continuing backwards through the List to the first object), and returns
self. The message is sent each time with anObject as an argument, so the aSelector
method must be one that takes a single argument of type id. The aSelector method
shouldn’t, as a side effect, modify the List.

objectAt:

— objectAt:(unsigned int)index

Returns the id of the object located at slot index, or nil if index is beyond the end of the
List.

See also: — count

read:

—read:(NXTypedStream *)stream
Reads the List and all the objects it contains from the typed stream stream.

See also: — write:

removeLastObjéct

—removeLastObject

Removes the object occupying the last position in the List and returns it. If there are
no objects in the List, this method returns nil.

See also: — lastObject, — removeObjectAt:

Chapter 2: Class Specifications

removeQObject:
— removeObject:anObject

Removes the first occurrence of anObject from the List, and returns it. If anObject isn’t
in the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so there’s no gap.

See also: — removeLastObject, — removeObjectAt:

removeObjectAt:

— removeObjectAt:(unsigned int)index

Removes the object located at index and returns it. If there’s no object at index, this
method returns nil.

The positions of the remaining objects in the List are adjusted so there’s no gap.
See also: — removeLastObject, — removeObject:
replaceObject:with:
— replaceObject:anObject with:newObject
Replaces the first occurrence of anObject in the List with newObject, and returns
anObject. However, if newObject is nil or anObject isn’t in the List, nothing is replaced
and nil is returned.
See also: — replaceObjectAt:with:
replaceObjectAt:with:

—replaceObjectAt:(unsigned int)index with:newObject

Returns the object at index after replacing it with newObject. If there’s no object at
index or newObject is nil, nothing is replaced and nil is returned.

See also: — replaceObject:with:

Common Classes.: List 2-25

setAvailableCapacity:
— setAvailableCapacity:(unsigned int)numSiots

Sets the storage capacity of the List to at least numSlots objects and returns self.
However, if the List already contains more than numsSlots objects (if the count method
returns a number greater than numSlots), its capacity is left unchanged and nil is
returned.
See also: — capacity, — count

write:
— write:(NXTypedStream *)stream

Writes the List, including all the objects it contains, to the typed stream stream.

See also: —read:

2-26 Chapter 2: Class Specifications

NXStringTable

INHERITS FROM HashTable : Object
DECLARED IN objc/NXStringTable.h
CLASS DESCRIPTION

NXStringTable defines an object that associates a key with a value. Both the key and
the value must be character strings. For example, these keys and values might be
associated in a particular NXStringTable:

Key Value
IIYeSII IVOuiH
NNOH "Nonll

By using an NXStringTable object to store your application’s character strings, you can
reduce the effort required to adapt the application to different language markets.
Interface Builder give you direct access to NXStringTables, letting you create and
initialize a string table and connect it into your application.

A new NXStringTable instance can be created either through Interface Builder’s
Classes window or through the inherited alloc... and init... methods. Similarly, you can
establish the contents of an NXStringTable either directly through Interface Builder or
programmatically through NXStringTable methods that read keys and values that are
stored in a file (see readFromkFile: and readFromStream:). Each assignment in the
file can be of either of these formats:

"key" = "yalue" ;
"key" :

If only key is present for a particular assignment, the corresponding value is taken to be
identical to key.

A valid key or value—a valid token—is composed of text enclosed in double quotes.
The text can’t include double quotes or the null character. It can include the escape
sequences: \a,\b, \f, \n, \r, \t, \v, and \". The backslash is stripped for any other
character; consequently, numeric escape codes aren’t interpreted. White space between
tokens is ignored. A key or value can’t exceed MAX_NXSTRINGTABLE_LENGTH
characters.

The file can also include standard C-language comments which the NXStringTable

ignores. However, these comments can provide valuable information for a person
who’s translating or documenting the application.

Common Classes: NXStringTable 2-27

To retrieve the value associated with a specific key, send a valueForStringKey:
message to the NXStringTable. For example, assuming myStringTable is an
NXStringTable containing the appropriate keys and values, this call would display an
attention panel announcing a problem opening a file:

NXRunAlertPanel ([myStringTable valueForStringKey:"openTitle"],
[myStringTable valueForStringKey:"openError"],
"OK",
NULL,
NULL) ;

If you’re accessing NXStringTables through Interface Builder, please note the
following. For efficiency, use several NXStringTables—each in its own interface file—
rather than one large one. By using several NXStringTables, your application can load
only those strings that it needs at a particular time. For example, you might place all
the strings associated with a help system in an NXStringTable in one interface file and
those associated with error messages in another NXStringTable in another file. When
the user accesses the help system for the first time, the application can load the
appropriate NXStringTable. Also, instantiate only one copy of any individual
NXStringTable. Don’t put an NXStringTable object in an interface file that will be
loaded more than once, since multiple copies of the same table will result.

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from HashTable unsigned count;
const char *keyDesc;
const char *valueDesc;
Declared in NXStringTable (none)
METHOD TYPES

Initializing and freeing an NXStringTable

— init

— free
Querying an NXStringTable — valueForStringKey:
Reading and writing elements — readFromPFile:

— writeToFile:

— readFromStream:
— writeToStream:

2-28 Chapter 2: Class Specifications

INSTANCE METHODS

free

— free

Frees the string table and its strings. You should never send a freeObjects (HashTable)
message to an NXStringTable.

init
— init

Initializes a new NXStringTable. This is the designated initializer for the
NXStringTable class. Returns self.

readFromFile:

— readFromkFile:(const char *)fileName

Reads an ASCII representation of the NXStringTable’s keys and values from fileName.
The NXStringTable opens a stream on the file and then sends itself a
readFromStream: message to load the data. See “Class Description” above for the
format of the data. Returns nil on error; otherwise, returns self.

See also: —readFromStream:
readFromStream:
— readFromStream:(NXStream *)stream
Reads an ASCII representation of the NXStringTable’s keys and values from stream.
See “Class Description” above for the format of the data. Returns nil on error;
otherwise, returns self.
See also: — readFromFile:
valueForStringKey:
— (const char *)valueForStringKey:(const char *)aString
Searches the string table for the value that corresponds to the key aString. Returns

NULL if and only if no value is found for that key; otherwise, returns a pointer to the
value.

Common Classes: NXStringTable — 2-29

writeToFile:
— writeToFile:(const char *)fileName
Writes an ASCII representation of the NXStringTable’s keys and values to fileName.
The NXStringTable opens a stream on the file and then sends itself a writeToStream:
message. See “Class Description” above for the format of the data. Returns nil if an
error occurs; otherwise, returns self.

See also: — writeToStream:

writeToStream:
— writeToStream:(NXStream *)stream

Writes an ASCII representation of the NXStringTable’s keys and values to stream. See
“Class Description” above for the format of the data. Returns self.

See also: — writeToFile:

CONSTANTS AND DEFINED TYPES

#define MAX NXSTRINGTABLE LENGTH 1024

2-30 Chapter 2: Class Specifications

Object

INHERITS FROM none (Object is the root ciass.)
DECLARED IN objc/Object.h
CLASS DESCRIPTION

Object is an abstract superclass that defines a basic interface to the Objective-C
run-time system that other classes use and build upon. It’s the root of all Objective-C
inheritance hierarchies, the only class that has no superclass. All other classes inherit
from Object.

Among other things, the Object class provides its subclasses with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for
performing methods selected at run-time, for querying an object about its methods and
its position in the inheritance hierarchy, and for forwarding messages to other objects.
For example, to query an object about what class it belongs to, you’d send it a class or
a name message. To find out whether it implements a particular method, you’d send it
a respondsTo: message.

This type of information is obtained through the object’s isa instance variable, which
points to a class structure that describes the object to the run-time system. Because all
objects directly or indirectly inherit from the Object class, they all have this variable.
The installation of the class structure (the initialization of isa) is one of the
responsibilities of the alloc, allocFromZone:, and new methods, the same methods
that create (allocate memory for) new instances of a class. The defining characteristic
of an “object” is that its first instance variable is an isa pointer to a class structure.

INSTANCE VARIABLES

Declared in Object Class isa;

isa A pointer to the instance’s class structure.
METHOD TYPES

Initializing the class + initialize

Common Classes: Object 2-31

Creating, copying, and freeing instances

+ alloc

+ allocFromZone:
+ new

— copy

— copyFromZone:
—zone

— free

+ free

Initializing a new instance — init

Identifying classes —class
+ class
—name
— superClass
+ superClass

Identifying and comparing instances
—hash
—isEqual:
— self

Testing inheritance relationships ~ — isKindOf:
— isKindOfGivenName:
— isMemberOf:
— isMemberOfGivenName:

Testing class functionality + instancesRespondTo:
— respondsTo:

Sending messages determined at run time
— perform:
— perform:with:
— perform:with:with:

Forwarding messages — forward::
— performv::
Obtaining method handles + instanceMethodFor:
— methodFor:
Posing + poseAs:
Enforcing intentions — notImplemented:

— subclassResponsibility:

Error handling — doesNotRecognize:
— error:

2-32 Chapter 2: Class Specifications

Dynamic loading + finishLoading:
+ startUnloading

Archiving —read:
— write:
— startArchiving:
— awake
— finishUnarchiving
+ setVersion:
+ version
CLASS METHODS
alloc
+ alloc

Returns a new instance of the receiving class. The isa instance variable of the new
object is initialized to a data structure that describes the class; otherwise the object isn’t
initialized. A version of the init method should be used to complete the initialization
process. For example:

id newObject = [[TheClass alloc] init];
Subclasses shouldn’t override alloc to add code that initializes the new instance.
Instead, class-specific versions of the init method should be implemented for that
purpose. Versions of the new method can also be implemented to combine allocation
and initialization.

Note: The alloc method doesn’t invoke allocFromZone:. The two methods work
independently.

See also: + allocFromZone:, — init, + new
allocFromZone
+ allocFromZone:(NXZone *)zone
Returns a new instance of the receiving class. The isa instance variable of the new
object is initialized to a data structure that describes the class; its other instance

variables aren’t initialized. Memory for the new object is allocated from zone.

This method is always used in conjunction with an init method that completes the
initialization of the new instance. For example:

id newObject = [[TheClass allocFromZone:someZone] init];

Common Classes: Object 2-33

2-34

The allocFromZone: method shouldn’t be overridden to include any initialization
code. Instead, class-specific versions of the init method should be implemented for tha

purpose.
When one object creates another, it’s often a good idea to make sure they 're both
allocated from the same region of memory. The zone method can be used for this

purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone: [self zone]] init];

See also: + alloc, — zone, — init

class

+ class
Returns self. Since this is a class method, it returns the class object.

See also: — name, — class

finishLoading:

+ finishLoading:(struct mach_header *)header

Implemented by subclasses to integrate a newly loaded class or category into a runniny
program. A finishLoading: message is sent to the class object immediately after the
class, or a category of the class, has been dynamically loaded—if the newly loaded
class or category implements a method that can respond. header is a pointer to the
structure that describes the modules that were just loaded.

Once a dynamically loaded class is used, it will also receive an initialize message.
However, because the finishLoading: message is sent immediately after the class is
loaded, it always precedes the initialize message, which is sent only when the class
receives its first message from the program.

A finishLoading: method is specific to the class or category where it’s defined, and
isn’t inherited by subclasses or shared with the rest of the class. Thus a class that ha:
four categories can define a total of five finishLoading: methods, one in each categor:
and one in the main class definition. The method that’s performed is the one defined i1
the class or category just loaded.

There’s no default finishLoading: method. The Object class declares a protocol for
this method, but doesn’t implement it.

See also: + startUnloading

Chapter 2: Class Specifications

free

+ free

Returns nil. This method is implemented to prevent class objects, which are “owned”
by the Objective-C run-time system, from being accidentally freed. To free an instance,
use the instance method free.

See also: — free

initialize
+ initialize
Initializes the class before it’s used (before it receives its first message). The
Objective-C run-time system generates an initialize message to each class just before
the class, or any class that inherits from it, is sent its first message from within the

program. Each class object receives the initialize message just once. Superclasses
receive it before subclasses do.

For example, if the first message your program sends is this,

[Application alloc]
the run-time system will generate these three initialize messages,

[Object initialize];

[Responder initialize];

[Application initialize];
since Application is a subclass of Responder and Responder is a subclass of Object. All
the initialize messages precede the alloc message and are sent in the order of
inheritance, as shown.
If your program later begins to use the Text class,

[Text instancesRespondTo:someSelector]

the run-time system will generate these initialize messages,

[View initialize];
[Text initialize];

since the Text class inherits from Object, Responder, and View. The
instancesRespondTo: message is sent only after all these classes are initialized. Note
that the initialize messages to Object and Responder aren’t repeated; each class is
initialized only once.

You can implement your own versions of initialize to provide class-specific
initialization as needed.

Common Classes: Object 2-35

2-36

Because initialize methods are inherited, it’s possible for the same method to be
invoked many times, once for the class that defines it and once for each inheriting class.
To prevent code from being repeated each time the method is invoked, it can be
bracketed as shown in the example below:

+ initialize
{
if (self == [MyClass class]) {
/* put initialization code here */

}

return self;

See also: — init, — class

instanceMethodFor:

+ (IMP)instanceMethodFor:(SEL)aSelector
Locates and returns the address of the implementation of the aSelector instance
method. An error is generated if instances of the receiver can’t respond to aSelector

messages.

This method, and the function pointer that it returns, are subject to the same constraints
as those described for the instance method methodFor:.

See also: — methodFor:

instancesRespondTo:

+ (BOOL)instancesRespondTo:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages,
and NO if they’re not. The application is responsible for determining whether a NO
response should be considered an error.

If an instance can successfully forward aSelector messages to other objects, it will be

able to receive the message without error even though instancesRespondTo: returns
NO.

See also: — respondsTo:

Chapter 2: Class Specifications

new

+ new

Creates a new instance of the receiving class, sends it an init message, and returns the
initialized object returned by init.

As defined in the Object class, new is essentially a combination of alloc and init. Like
alloc, it initializes the isa instance variable of the new object so that it points to the class
data structure; it leaves the initialization of other instance variables up to the init
method.

Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a
class-specific initialization method. If the init method includes arguments, they’re
typically reflected in the new method. For example:

+ newArg: (int)tag arg: (struct info *)data
{
return [[self alloc] initArg:tag arg:datal;

However, there’s little point in implementing new... methods if they’re simply
shorthand for alloc and init..., like the one shown above. Often new... methods will do
more than just allocation and initialization. In some classes, they manage a set of
instances, returning the one with the requested properties if it already exists, allocating
and initializing a new one only if necessary. For example:

+ newArg: (int)tag arg: (struct info *)data
{
id theInstance;
if (theInstance = findTheObjectWithTheTag(tag))

return thelInstance;
return [[self alloc] initArg:tag arg:datal;

Although it’s appropriate to define new new... methods in this way, the alloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: — init, + alloc, + allocFromZone:

Common Classes: Object 2-37

2-38

poseAs:

+ poseAs:aClassObject

Permits the receiver to “pose as” the aClassObject class. All messages to aClassObject
will actually be sent to the receiver. The receiver should be defined as a subclass of
aClassObject and shouldn’t declare any instance variables of its own. A poseAs:
message should be sent before any instances of aClassObject are created.

This facility allows you to add methods to an existing class by defining them in a
subclass and having the subclass pose as the existing class. The new method definitions
will be inherited by all subclasses of the existing class. Care should be taken to ensure
that this doesn’t generate errors.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes.

Posing has only one feature that categories lack: The methods added by a posing class
can override methods already defined for the existing class. You can therefore use

posing to replace existing methods with new versions.

Returns self.

setVersion:

+ setVersion:(int)aVersion

Sets the class version number to aVersion, and returns self. The version number is
helpful when instances of the class are to be archived and reused later.

See also: + version

startUnloading

+ startUnloading

Implemented by subclasses to prepare for the class or category being unloaded from a
running program. A startUnloading message is sent to the class object immediately
before the class, or category of the class, is unloaded—if a method that can respond is
implemented in the class or category about to be unloaded.

A startUnloading method is specific only to the class or category where it’s defined,
and isn’t inherited by subclasses or shared with the rest of the class. Thus a class that
has four categories can define a total of five startUnloading methods, one in each
category and one in the main class definition. The method that’s performed is the one
defined in the class or category that will be unloaded.

There’s no default startUnloading method. The object class declares a protocol for
this method but doesn’t implement it.

See also: + finishLoading:

Chapter 2: Class Specifications

superClass
+ superClass

Returns the class object for the receiver’s superclass.
See also: + class, — superClass

version
+ (int)version

Returns the version number assigned to the class. If no version has been set, this will
be 0.

See also: + setVersion:

INSTANCE METHODS

awake

— awake

Implemented by subclasses to reinitialize the receiving object after it has been
unarchived (by read:). An awake message is automatically sent to every object after
it has been unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely returns self.

You can implement an awake method in any class to provide for more initialization
than can be done in the read: method. Each implementation of awake should limit the
work it does to the scope of the class definition, and incorporate the initialization of
classes farther up the inheritance hierarchy through a message to super. For example:

- awake

{
[super awake];
/* class-specific initialization goes here */
return self;

All implementations of awake should return self.

See also: —read:, — finishUnarchiving

Common Classes: Object 2-39

2-40

class

~ class
Returns the class object for the receiver s class.

See also: + class

copy

— Copy

Returns a new instance that s an exact copy of the receiver. This method creates only
one new object. If the receiver has instance variables that point to other objects, the
instance variables in the copy will point to the same objects. The values of the instance
variables are copied, but the objects they point to aren t.

See also: — copyFromZone:

copyFromZone:

— copyFromZone:(NXZone *)zone

Returns a new instance that s an exact copy of the receiver. Memory for the new
instance is allocated from zone. This method creates only one new object; it works
exactly like the copy method, except that it allows you to determine where the copy will
reside in memory.

See also: — copy, — zone

doesNotRecognize:

— doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn t recognize. The Objective-C
run-time system invokes this method whenever an object receives an aSelector message
that it can t respond to or forward. It, in turn, invokes the error: method to generate an
error message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although
they re sometimes used in program code to prevent a method from being inherited, it s
better to use the error: method directly. For example, an Object subclass might
renounce the copy method by reimplementing it to include an error: message as
follows:

- copy
{
[self error:" %s objects should not be sent %s messages\n",
[self name], sel getName(cmd)];

Chapter 2: Class Specifications

This code prevents instances of the subclass from recognizing or forwarding copy
messages although the respondsTo: method will still report that the receiver has
access to a copy method.

(The _cmd variable identifies to the current selector; in the example above, it identifies
the selector for the copy method. The sel_getName() function returns the method
name corresponding to a selector code; in the example, it returns the name copy .)
See also: — error:, — subclassResponsibility:, — name

error:

—error:(STR)aString, ...

Generates a formatted error message, in the manner of printf(), from aString followed
by a variable number of arguments. For example:

[self error:"index %d exceeds limit %d\n", index, limit];

The message specified by aString is preceded by this standard prefix (where <class>
is the name of the receiver s class):

"error: <class> "

This method doesn t return. After generating the error message, it calls abort() to
create a core file and terminate the process. It works through the Objective-C run-time
_error function.

See also: — subclassResponsibility:, — notImplemented:, — doesNotRecognize:

finishUnarchiving

— finishUnarchiving

Implemented by subclasses to replace an unarchived object with a new object if
necessary. A finishUnarchiving message is sent to every object after it has been
unarchived (using read:) and initialized (by awake), but only if a method has been
implemented that can respond to the message.

The finishUnarchiving message gives the application an opportunity to test an
unarchived and initialized object to see whether it s usable, and, if not, to replace it with
another object that is. This method should return nil if the unarchived instance (self) is
OK; otherwise, it should free the receiver and return another object to take its place.

There s no default implementation of the finishUnarchiving method. The Object class
declares this method, but doesn t define it.

See also: —read:, — awake, — startArchiving:

Common Classes: Object 2-41

2-42

forward::

— forward:(SEL)aSelector :(marg_list)argFrame

Implemented by subclasses to forward messages to other objects. When an object is
sent an aSelector message, and the run-time system can’t find an implementation of the
method for the receiving object, it sends the object a forward:: message to give it an
opportunity to delegate the message to another object. (If that object can’t respond to
the message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other
objects that will, for certain messages, act on its behalf. The forwarding object is, in a
sense, able to “inherit” some of the characteristics of the object it forwards the message
to.

A forward:: message is generated only if the aSelector method isn’t implemented by
the receiving object’s class or by any of the classes it inherits from.

An implementation of the forward:: method can do more than just forward messages.
It can, for example, locate code that responds to a variety of different messages, thus
avoiding the necessity of having to write a separate method for each selector. A
forward:: method might also involve several other objects in the response to a
message, rather than forward it to just one.

If implemented to forward messages, a forward:: method has two tasks:

» Tolocate an object that can respond to the aSelector message. This need not be the
same object for all messages.

» To send the message to that object, using the performv:: method.

In the simple case, in which an object forwards messages to just one destination (such
as the hypothetical friend instance variable in the example below), a forward:: method
could be as simple as this:

- forward: (SEL) aSelector :(marg list)argFrame
{
if ([friend respondsTo:aSelector])
return [friend performv:aSelector :argFrame];
return [self doesNotRecognize:aSelector];

argFrame is a pointer to the arguments included in the original aSelector message. It’s
passed directly to performv:: without change.

The default version of forward:: implemented in the Object class simply invokes the
doesNotRecognize: method. It doesn’t forward messages. Thus if you choose not to
implement forward:: methods, unrecognized messages will be handled in the usual
way.

See also: — performv::, — doesNotRecognize:

Chapter 2: Class Specifications

free
—free

Frees the memory occupied by the receiver and returns nil. This method also sets the
isa pointer of the freed object to nil, so that subsequent messages to the object will
generate an error indicating that a message was sent to a freed object.

This method uses object_deallocate() to free the receiver’s memory.

hash
— (unsigned int)hash

Returns an unsigned integer that’s guaranteed to be the same for any two objects which
are equal according to the isEqual: method. The integer is derived from the id of the
receiver.

See also: — isEqual:

init

— init

Implemented by subclasses to initialize a new object (the receiver) immediately after
memory for it has been allocated. An init message is generally coupled with an alloc
or allocFromZone: message in the same line of code:

id newObject = [[TheClass alloc] init];

Subclass versions of this method should return the new object (self) if it has been
successfully initialized. If it can’t be initialized, they should free the object and return
nil. The version of the method defined here simply returns self.

Every class must guarantee that the init method returns a fully functional instance of
the class. This typically means overriding the method to add class-specific
initialization code. Subclass versions of the method need to incorporate the
initialization code for the classes they inherit from, through a message to super:

- init

{
[super init];
/* class-specific initialization goes here */
return self;

Note that the message to super precedes the initialization code added in the method.
This ensures that initialization proceeds in the order of inheritance.

Common Classes: Object 2-43

2-44

Subclasses often add arguments to the init method to allow specific values to be set.
The more arguments a method has, the more freedom it gives you to determine the
character of initialized objects. Classes often have a set of init... methods, each with a
different number of arguments. For example:

- init;
- initArg: (int)tag;
- initArg: (int)tag arg: (struct info *)data;

The convention is that at least one of these methods, usually the one with the most
arguments, includes a message to super to incorporate the initialization of classes
higher up the hierarchy. This method is the designated initializer for the class. The
other init... methods defined in the class directly or indirectly invoke the designated
initializer through messages to self. In this way, all init... methods are chained together.
For example:

- init
{

return [self initArg:-1];

- initArg: (int)tag
{
return [self initArg:tag arg:NULL];

- initArg: (int)tag arg: (struct info *)data
{
[super init. . .1;
/* class-specific initialization goes here */

In this example, the initArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated
initializer. This method should begin by sending a message to super to perform the
designated initializer of its superclass. Suppose, for example, that the three methods
illustrated above are defined in the B class. The C class, a subclass of B, might have
this designated initializer:

- initArg: (int)tag arg: (struct info *)data arg:anObject
{

[super initArg:tag arg:datal;

/* class-specific initialization goes here */

If inherited init... methods are to successfully initialize instances of the subclass, they
must all be made to (directly or indirectly) invoke the new designated initializer. To
accomplish this, the subclass is obliged to cover (override) only the designated
initializer of the superclass. For example, in addition to its designated initializer, the C
class would also implement this method:

Chapter 2: Class Specifications

- initArg: (int)tag arg: (struct info *)data
{

return [self initArg:tag arg:data arg:nil];
This ensures that all three methods inherited from the B class also work for instances
of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links, and ensure that the new
method and all inherited init... methods return usable, initialized objects. They also
prevent the possibility of an infinite loop wherein a subclass method sends a message
(to super) to perform a superclass method, which in turn sends a message (to self) to
perform the subclass method.

The Object class also has a designated initializer—this init method. Subclasses that do
their own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:
isEqual:
— (BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO if it isn’t. This is
determined by comparing the id of the receiver to the id of anObject.

The hash method is guaranteed to return the same integer for both objects when this
method returns YES.

See also: hash
isKindOf:
— (BOOL)isKindOf:aClassObject
Returns YES if the receiver is an instance of aClassObject or an instance of any class

that inherits from aClassObject. Otherwise, it returns NO. For example, in this code
isKindOf: would return YES:

id aMenu = [[Menu alloc] init];
if ([aMenu isKindOf:[Window class]])

In the Application Kit, the Menu class inherits from Window.

See also: — isMemberOf:

Common Classes: Object 2-45

2-46

isKindOfGivenName:
— (BOOL)isKindOfGivenName:(STR)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class
that inherits from aClassName. This method is the same as isKindOf:, except it takes
the class name, rather than the class id, as its argument.

STR is defined, in objc/objc.h, as a character pointer (char *).

See also: — isMemberOfGivenName:

isMemberOf:
— (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO.
For example, in this code, isMemberOf: would return NO:

id aMenu = [[Menu alloc] init];
if ([aMenu isMemberOf: [Window class]])

See also: — isKindOf:

isMemberOfGivenName:
— (BOOL)isMemberOfGivenName:(STR)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn’t. This
method is the same as isMemberOf:, except it takes the class name, rather than the
class id, as its argument.

STR is defined, in objc/objc.h, as a character pointer (char *).

See also: — isKindOfGivenName:

methodFor:
— (IMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver’s implementation of the aSelector
method. An error is generated if the receiver has no implementation of the method (if
it can’t respond to aSelector messages).

IMP is defined (in the objc/objc.h header file) as a pointer to a function that takes a
variable number of arguments and returns an id. It’s the only prototype provided for
the function pointer that methodFor: returns. Therefore, if the aSelector method takes
any arguments or returns anything but an id, its function counterpart will be
inadequately prototyped. Lacking a prototype, the compiler will promote floats to
doubles and chars to ints, which the implementation won’t expect. It will therefore

Chapter 2: Class Specifications

behave differently (and erroneously) when called as a function than when performed as
a method.

To remedy this situation, it’s necessary to provide your own prototype. In the example
below, IMPEqual is used to prototype the implementation of the isEqual: method. It’s
defined as pointer to a function that returns a BOOL and takes an id in addition to the
two “hidden” arguments (self, the current receiver, and _cmd, the current selector) that
are passed to every method implementation.

typedef BOOL (*IMPEqual) (id, SEL, id);
IMPEqual tester;

tester = (IMPEqual) [target methodFor:@selector (isEqual:)];

while (!tester(target, @selector(isEqual:), someObject)) {

Note that turning a method into a function by obtaining the address of its
implementation “unhides” the self and _cmd arguments.

See also: + instanceMethodFor:

name

— (const char *)name

Returns a character string with the name of the receiver’s class. This information is
often used in error messages or debugging statements.

See also: + class

notImplemented:
— notImplemented:(SEL)aSelector

Used in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time being. aSelector is the selector
for the unimplemented method; notImplemented: messages are sent to self. For
example:

- methodNeeded

{

[self notImplemented: cmd];

When a methodNeeded message is received, notImplemented: will invoke the error:
method to generate an appropriate error message and abort the process. (In this
example, _cmd refers to the methodNeeded selector.)

See also: — subclassResponsibility:, — error:

Common Classes: Object 2-47

2-48

perform:

— perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This
allows you to send messages that aren’t determined until run time. For example, all
three of the following messages do the same thing:

id myClone = [anObject copy];
id myClone = [anObject perform:@selector (copy)];
id myClone = [anObject perform:sel getUid("copy")]:

aSelector should identify a method that takes no arguments. If the method returns
anything but an object, the return must be cast to the correct type. For example:

char *myClass;
myClass = (char *)[anObject perform:@selector (name)];

Casting works for any integral type (char, short, int, long, or enum) or any pointer.
However, it doesn’t work if the return is a floating type (float or double) or a structure
or union. This is because the C language doesn’t permit a pointer (like id) to be cast to
these types.

Therefore, perform: shouldn’t be asked to perform any method that returns a floating
type, structure, or union. An alternative is to get the address of the method

implementation (using methodFor:) and call it as a function. For example:

float grayValue;
grayValue = ((float (*) ()) [anObject methodFor:@selector (gray)]) ()

See also: — perform:with:, — perform:with:with:, — methodFor:

perform:with:

— perform:(SEL)aSelector with:anObject
Sends an aSelector message to the receiver with anObject as an argument. This method
is the same as perform:, except that you can supply an argument for the aSelector

message. aSelector should identify a method that takes a single argument of type id.

See also: — perform:

Chapter 2: Class Specifications

perform:with:with:

— perform:(SEL)aSelector
with:objecii
with:object2

Sends the receiver an aSelector message with object] and object2 as arguments. This
method is the same as perform:, except that you can supply two arguments for the
aSelector message. aSelector should identify a method that can take the two arguments
of type id.

See also: — perform:

performv::

— performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the arguments in argFrame. performv::
messages are used within implementations of the forward:: method. Both arguments,
aSelector and argFrame, are identical to the arguments the run-time system passes to
forward::. They can be taken directly from that method and passed through without
change to performv::.

performv:: should be restricted to implementations of the forward:: method.
Although it may seem like a more flexible way of sending messages than perform:,
perform:with:, or perform:with:with:, in that it doesn’t restrict the number of
arguments in the aSelector message or their type, it’s not an appropriate substitute for
those methods. First, it’s more expensive than they are. The run-time system must
parse the arguments in argFrame based on information stored for aSelector. Second,
in future releases performv:: may not work in contexts other than the forward::
method.

See also: — forward::, — perform:

Common Classes: Object 2-49

2-50

read:

—read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver’s instance variables from the typed
stream stream. You need to implement a read: method for any class you create, if you
want its instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class
in a manner that matches they way they were archived by write:. In each class, the
read: method should begin with a message to super:

- read: (NXTypedStream *)stream
{
[super read:stream];
/* class-specific code goes here */
return self;
This ensures that all inherited instance variables will also be unarchived.

All implementations of the read: method should return self.

After an object has been read, it’s sent an awake message so that it can reinitialize
itself, and may also be sent a finishUnarchiving message.

See also: — awake, — finishUnarchiving, — write:

respondsTo:

— (BOOL)respondsTo:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to
aSelector messages, and NO if it doesn’t. The application is responsible for
determining whether a NO response should be considered an error.

Note that if the receiver is able to forward the aSelector message to another object, it
will be able to respond to the message (albeit indirectly), even though this method

returns NO.

See also: — forward::, + instancesRespondTo:

self

— self

Returns the receiver.

See also: + class

Chapter 2: Class Specifications

startArchiving:
— startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archived—that is, for being
written to the typed stream stream. A startArchiving: message is sent to an object just
before it’s archived—but only if it implements a method that can respond. The message
gives the object an opportunity to do anything necessary to get itself, or the stream,
ready before a write: message begins the archiving process.

There’s no default implementation of the startArchiving: method. The Object class
declares the method, but doesn’t define it.

See also: — awake, — finishUnarchiving, — write:
subclassResponsibility:
— subclassResponsibility:(SEL)aSelector
Used in an abstract superclass to indicate that its subclasses are expected to implement
aSelector methods. If a subclass fails to implement the method, the method is inherited

from the superclass and an error is generated.

For example, if subclasses are expected to implement doSomething methods, the
superclass would define this version of the method:

—doSomething
{
[self subclassResponsibility: cmd];

‘When this method is invoked, subclassResponsibility: will, working through Object’s
error: method, abort the process and generate an appropriate error message.

The _cmd variable identifies the current method selector, just as self identifies the
current receiver. In the example above, it identifies the selector for the doSomething

method.

Subclass implementations of the aSelector method shouldn’t include messages to
super to incorporate the superclass version. If they do, they’ll also generate an error.

See also: — doesNotRecognize:, — notlmplemented:, — error:

superClass

— superClass
Returns the class object for the receiver’s superclass.

See also: + superClass

Common Classes: Object 2-51

2-52

write:

— write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver’s instance variables to the typed stream
stream. You need to implement a write: method for any class you create if you want
to be able to archive its instances (or instances of classes that inherit from it).

The methods you implement should archive only the instance variables defined in the
class, but should begin with a message to super so that all inherited instance variables
will also be archived:

- write: (NXTypedStream *)stream

{
[super write:stream];
/* class-specific archiving code goes here */
return self;

All implementations of the write: method should return self.

During the archiving process, write: methods may be performed twice, so they
shouldn’t do anything other than write instance variables to a typed stream.

See also: — read:, — startArchiving:

zone

— (NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZone().

See also: + allocFromZone:, + alloc, + copyFromZone:

Chapter 2: Class Specifications

Storage

INHERITS FROM Object
DECLARED IN objc/Storage.h
CLASS DESCRIPTION

The Storage class implements a general storage allocator. Each Storage object
manages an array containing data elements of an arbitrary type. When an element is
added to the object, it’s copied into the array.

As is the case with List objects, Storage arrays grow dynamically when necessary.
Their capacity doesn’t need to be explicitly adjusted.

Because a Storage object holds elements of an arbitrary type, you don’t have to define
a special class for each type of data you want to store. When setting up a new instance
of the class, you specify the size of the elements and a description of their type. The
type description is needed for archiving the object and must agree with the specified
element size. It’s encoded in a string using the descriptor codes listed below:

Type Code Type Code

char c Class #

char * * id @

NXAtom % SEL

int i int (ignored) !

short S structure {<types>}

float f array [<count><types>]
double d

For example, “[15d]” means an array of fifteen doubles, and “{csi*@ }” means a
structure containing a char, a short, an int, a character pointer, and an object. The
descriptor “%” specifies a unique string pointer. When it’s unarchived, the
NXUniqueString() function is used to make sure that it’s also unique within the new
context. The “!” descriptor requires that the data be the same size as an int; the data
won’t be archived.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Storage void *dataPtr;
const char *description;
unsigned int numElements;
unsigned int maxElements;
unsigned int elementSize;

Common Classes: Storage — 2-53

dataPtr
description

numElements

maxElements

elementSize

METHOD TYPES

Initializing a new Storage instance

Copying and freeing Storage objects

A pointer to the data stored by the object.
A string encoding the type of data stored.

The number of elements actually in the Storage
array.

The total number of elements that can fit within
currently allocated memory.

The size of each element in the array.

— init
— initCount:elementSize:description:

— copy
— copyFromZone:
— free

Getting, adding, and removing elements

Comparing Storage objects

— addElement:

— insert:at:

— removeAt:

— removelLastElement
— replace:at:

— empty

— elementAt:

—isEqual:

Managing the storage capacity and type

Archiving

2-54 Chapter 2: Class Specifications

— count

— description

— setAvailableCapacity:
— setNumSlots:

—read:
— write:

INSTANCE METHODS
addElement:
— addElement:(void *)anElement

Adds anElement at the end of the Storage array and returns self. The size of the array
is increased if necessary.

See also: — insert:at:
copy
— copy
Returns a new Storage object containing the same data as the receiver. The data as well
as the object is copied, but the two objects share the same description string. Memory
for the copy is taken from the same zone as the receiver.
See also: — copyFromZone:
copyFromZone:
— copyFromZone:(NXZone *)zone
Returns a new Storage object containing the same data as the receiver. The data as well
as the object is copied, and memory for both is taken from zone. The two objects share
the same description string.
See also: — copy
count
— (unsigned)count
Returns the number of elements currently in the Storage array.
See also: — setNumSlots:
description
— (const char *)description

Returns the string encoding the data type of elements in the Storage array.

See also: — initCount:elementSize:description:

Common Classes: Storage 2-55

2-56

elementAt:

— (void *)elementAt:(unsigned)index

Returns a pointer to the element at index in the Storage array. If no element is stored at
index (index is beyond the end of the array), a NULL pointer is returned.

Before using the pointer that’s returned, you must convert it into the appropriate type
by a cast. The pointer can be used either to read the element at index or to alter it.

See also: — replace:at:, — insert:at:

empty

—empty

Empties the Storage array of all its elements and returns self. The current capacity of
the array remains unchanged.

See also: — free

free

— free

Frees the Storage object and all the elements it contains. Pointers stored in the object
will be freed, but the data they point to won’t be (unless the data is also stored in the
object). You might want to free the data before freeing the Storage object. The
description string isn’t freed.

See also: — empty

— init

Initializes the Storage object so that it’s ready to store object ids. The initial capacity
of the array isn’t set. In general, it’s better to store object ids in a List object. Returns
self.

See also: — initCount:elementSize:description:, — initCount: (List)

Chapter 2: Class Specifications

initCount:elementSize:description:

— initCount:(unsigned)count
eiementSize:(unsigned)size/nBytes
description:(const char *)string

Initializes the Storage object so that it will have room for at least count elements. Each
element is of size size/nBytes and of the type described by string. If string is NULL,
the object won’t be archivable. Once set, the description string should never be
modified. Returns self.

This method is the designated initializer for the class. It’s used to initialize Storage

objects immediately after they have been allocated; it should never be used to
reinitialize a Storage object that’s already been used.

insert:at:
— insert:(void *)anElement at:(unsigned)index
Puts anElement in the Storage array at index. All elements between index and the last
element are shifted to make room. The size of the array is increased if necessary.
Returns self.
See also: — addElement:, — setNumSlots:
isEqual:
— (BOOL)isEqual:anObject
Compares the receiver with anObject, and returns YES if they’re the same and NO if

they’re not. Two Storage objects are considered to be the same if they have the same
number of elements and the elements at each position in the array match.

read:
— read:(NXTypedStream *)stream

Reads the Storage object and the data it stores from the typed stream stream.
See also: — write:

removeAt:
— removeAt:(unsigned)index

Removes the element located at index from the Storage array and returns self. All
elements between index and the last element are shifted to close the gap.

See also: — removeLastElement

Common Classes: Storage 2-57

removeLastElement

— removeLastElement
Removes the last element from the Storage array and returns self.
See also: — removeAt:

replace:at:
— replace:(void *)anElement at:(unsigned)index
Replaces the data at index with the data pointed to by anElement. However, if no
element is stored at index (index is beyond the end of the array), nothing is replaced.
Returns self.
See also: — elementAt:, — insert:at:

setAvailableCapacity:
— setAvailableCapacity:(unsigned)numsSiots
Sets the storage capacity of the array to at least numSlots elements and returns self. If
the array already contains more than numsSlots elements, its capacity is left unchanged
and nil is returned.
See also: — setNumSlots:, — count

setNumSlots:
— setNumSlots:(unsigned)numSlots
Sets the number of elements in the Storage array to numSlots and returns self. If
numSlots is greater than the current number of elements in the array (the value returned
by count), the new slots will be filled with zeros. If numSlots is less than the current
number of elements in the array, access to all elements with indices equal to or greater

than numSlots will be lost.

If necessary, this method increases the capacity of the storage array so there’s room for
at least numSlots elements.

See also: — setAvailableCapacity:, — count
write:
— write:(NXTypedStream *)stream
Writes the Storage object and its data to the typed stream stream.

See also: —read:

2-58 Chapter 2: Class Specifications

StreamTable
INHERITS FROM

DECLARED IN

CLASS DESCRIPTION

HashTable : Object

objc/StreamTable.h

This class reads and writes a set of independent data structures on streams. Its goal is
to provide incremental saving of files, as a cheap way to implement very primitive data
bases. Both read and write operations are lazy, e.g., reading a StreamTable file only

implies reading of the directory.

Although StreamTable inherits from HashTable, very few methods can be directly

inherited because internal representations of values differ. Nevertheless, the HashTable

abstraction is retained, and StreamTable is described as an object class in order to

simplify usage and implementation. The only inherited methods are count and isKey:.
In order to read and write a StreamTable, the usual read: and write: methods can be

performed.

INSTANCE VARIABLES
Inherited from Object

Inherited from HashTable

Declared in StreamTable

METHOD TYPES

Creating and freeing a StreamTable

Manipulating table elements

Iterating over all elements

Archiving

Class isa;
unsigned count;

const char *keyDesc;
const char *valueDesc;
(none)

— free

— freeObjects

+ new

+ newKeyDesc:
— insertStreamKey:value:
— removeStreamKey:

— valueForStreamKey:

— initStreamState
— nextStreamState:key:value:

—read:
— write:

Common Classes: StreamTable

2-59

2-60

CLASS METHODS

new

+ new

Returns a new StreamTable with objects as keys.

newKeyDesc:

+ newKeyDesc:(const char *)aKeyDesc

Returns a new StreamTable. Keys must be 32-bit quantities described by aKeyDesc.

INSTANCE METHODS

free

—free

Deallocates the table, but not the objects that are in the table.

freeObjects
— freeObjects

Deallocates every object in the StreamTable, but not the StreamTable itself. Strings are
not recovered.

initStreamState
— (NXHashState)initStreamState

Iterating over all elements of a StreamTable involves setting up an iteration state,
conceptually private to StreamTable, and then progressing until all entries have been
visited. An example of counting elements in a table follows:

unsigned count = 0;

const void *key;

void *value;

NXHashState state = [table initStreamState];

while ([table nextStreamState:&state key:&key value: &value])
count++;

initState begins the process of iteration through the StreamTable.

See also: nextStreamState:key:value:

Chapter 2: Class Specifications

insertStreamKey:value:

— (id)insertStreamKey:(const void *)aKey value:(id)aValue

Adds or updates akey/avalue pair.

nextStreamState:key:value:

— (BOOL)nextStreamState:(NXHashState *)aState
key:(const void **)aKey
value:(id *)aValue

Moves to the next entry in the StreamTable. No insertStreamKey: or
removeStreamKey: should be done while iterating through the table.

See also: initStreamState

read:
—read:(NXTypedStream *)stream

Reads the StreamTable from the typed stream stream.

removeStreamKey:
— (idyremoveStreamKey:(const void *)aKey
Removes akey/avalue pair. Always returns nil.
valueForStreamKey:

— (id)valueForStreamKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

write:

— write:(NXTypedStream *)stream

Writes the StreamTable to the typed stream stream.

Common Classes: StreamTable

2-61

2-62

Application Kit Classes

The class specificaiions for the Application Kii describe over 50 classes. The inheritance
hierarchy for these classes is shown in Figure 2-2.

Application Kit Classes ~ 2-63

Figure 2-2. Application Kit Inheritance Hierarchy

2-64 Chapter 2: Class Specifications

ActionCell

INHERITS FROM Cell: Object
DECLARED IN appkit/ActionCell.h
CLASS DESCRIPTION

An ActionCell defines the active area inside a control (an instance of Control or one of
its subclasses). You can set an ActionCell’s control only by sending the
drawSelf:inView: message to the ActionCell, passing the control as the second
argument.

A single control may have more than one ActionCell. An integer tag, provided as the
instance variable tag, is used to identify an ActionCell object; this is of particular
importance to controls that contain more than one ActionCell. Note, however, that no
checking is done by the ActionCell object itself to ensure that the tag is unique. See
the Matrix class for an example of a subclass of Control that contains multiple
ActionCells.

ActionCell defines the target and action instance variables and methods for setting
them. These define the ActionCell’s target object and action method. As the user
manipulates a control, ActionCell’s trackMouse:inRect: of View: method (inherited
from Cell) sends the action message to the target object with the id of the Control object
as the only argument.

Many of the methods that define the contents and look of an ActionCell, such as
setFont: and setBordered:, are reimplementations of methods inherited from Cell.
They’re subclassed to ensure that the ActionCell is redisplayed if it’s currently in a

control.
INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Cell char *contents;
id support;
struct _cFlags1 cFlagsl;
struct _cFlags2 cFlags2;
Declared in ActionCell int tag;
id target;
SEL action;
tag Reference number for the object.
target The object’s notification target.
action The message to send to the target.

Application Kit Classes: ActionCell — 2-65

METHOD TYPES

Configuring the ActionCell — setAlignment:
— setBezeled:
— setBordered:
— setEnabled:
— setFloatingPointFormat:left:right:
— setFont:
— setlcon:

Manipulating ActionCell values — doubleValue
— floatValue
— intValue
— setString Value:
— setString ValueNoCopy:shouldFree:
— string Value

Displaying — control View
— drawSelf:inView:

Target and action — action
— setAction:
— setTarget:
— target

Assigning a tag —setTag:
—tag

Archiving —read:

— write:

INSTANCE METHODS

action
— (SEL)action
Returns the selector for the receiver’s action method. Keep in mind that the argument
to an ActionCell’s action method is the object’s Control (the object returned by

controlView).

See also: — setAction:

2-66 Chapter 2: Class Specifications

controlView
- controlView
Returns the Control object in which the receiver was most recently drawn. In general,
you should use the object returned by this method only to (indirectly) redisplay the
receiver. For example, the subclasses of ActionCell defined by the Application Kit
invoke this method in order to send the returned object a message such as
updateCelllnside:.

The Control in which an ActionCell is drawn is set through the drawSelf:inView:
method (only).

See also: — drawSelf:inView:

doubleValue
— (double)doubleValue

Returns the receiver’s contents as a double.
See also: — setDoubleValue:(Cell), — doubleValue (Cell)
drawSelf:inView:
— drawSelf:(const NXRect *)cellFrame inView:controlView
Displays the ActionCell by sending
[super drawSelf:cellFrame inView:controlView];
Sets the receiver’s Control (the controlView instance variable) to controlView if and
only if controlView is a Control object (in other words, an instance of Control or a

subclass thereof).

See also: — drawSelf:inView: (Cell)

floatValue
— (float)floatValue

Returns the receiver’s contents as a float.

See also: — setFloatVélue:(Cell), — floatValue (Cell)

Application Kit Classes: ActionCell — 2-67

2-68

intValue
— (int)int Value

Returns the receiver’s contents as an int.
See also: — setIntValue:(Cell), — intValue (Cell)
read:
—read:(NXTypedStream *)stream
Reads and returns an object of class ActionCell from stream.
setAction:
— setAction:(SEL)aSelector
Sets the receiver’s action method to aSelector. Keep in mind that the argument to an
ActionCell’s action method is the object’s Control (the object returned by
controlView). Returns self.
See also: — setTarget:, — sendAction:to: (Control)
setAlignment:
— setAlignment:(int)mode
If the receiver is a text Cell (type NX_TEXTCELL), this sets its text alignment to mode,

which should be NXLEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.
If it’s currently in a Control view, the receiver is redisplayed. Returns self.

setBezeled:
— setBezeled:(BOOL)flag
Adds or removes the receiver’s bezel, as flag is YES or NO. Adding a bezel will remove
the receiver’s (flat) border, if any. If it’s currently in a Control view, the receiver is
redisplayed. Returns self.
See also: — setBordered:

setBordered:
— setBordered:(BOOL)flag
Adds or removes the receiver’s border, as flag is YES or NO. The border is black and
has a width of 1.0. Adding a border will remove the receiver’s bezel, if any. If it’s

currently in a Control view, the receiver is redisplayed. Returns self.

See also: — setBezeled:

Chapter 2: Class Specifications

setEnabled:
— setEnabled:(BOOL)flag

Enables or disables the receiver’s ability to receive mouse events as flag is YES or NO.
If it’s currently in a Control view, the receiver is redisplayed. Returns self.

setFloatingPointFormat:left:right:

— setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)/eftDigits
right:(unsigned int)rightDigits

Sets the receiver’s floating point format. If it’s currently in a Control view, the receiver
is redisplayed. Returns self.

See also: — setFloatingPointFormat:left:right: (Cell)
setFont:
— setFont:fontObj

If the receiver is a text Cell (type NX_TEXTCELL), this sets its font to fontObj. In
addition, if it’s currently in a Control view, the receiver is redisplayed. Returns self.

setlcon:
— setIcon:(const char *)iconName

Sets the receiver’s icon to iconName and sets its Cell type to NX_ICONCELL. If it’s
currently in a Control view, the receiver is redisplayed. Returns self.

See also: — setIcon: (Cell)
setStringValue:
— setStringValue:(const char *)aString

Sets the receiver’s contents to a copy of aString. If it’s currently in a Control view, the
receiver is redisplayed. Returns self.

See also: — setStringValue: (Cell)

Application Kit Classes: ActionCell — 2-69

setStringValueNoCopy:shouldFree:
— setStringValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Sets the receiver’s contents to a aString. If flag is YES, aString will be freed when the
receiver is freed. Ifit’s currently in a Control view, the receiver is redisplayed. Returns
self.
See also: — setStringValueNoCopy:shouldFree: (Cell)

setTag:

— setTag:(int)anlnt

Sets the receiver’s tag to anint. Returns self.

setTarget:
— setTarget:anObject

Sets the receiver’s target to anObject. Returns self.

See also: — setAction:

stringValue

— (const char *)stringValue
Returns the receiver’s contents as a string. Returns self.
See also: — setStringValue:, — stringValue (Cell)
tag
— (int)tag
Returns the receiver’s tag.
target
— target
Returns the receiver’s target.
write:
— write:(NXTypedStream *)stream

Writes the receiver to stream. Returns self.

2-70 Chapter 2: Class Specifications

Application

INHERITS FROM Responder : Object
DECLARED IN appkit/Application.h
CLASS DESCRIPTION

The Application class provides the framework for program execution; every program
must have exactly one Application object. Creating the object connects the program to
the Window Server and initializes its PostScript environment. The Application object
maintains a list of all the Windows in the application, thereby allowing it to retrieve
every View in the application. To make it readily accessible to other objects, the
Application object for your program is assigned to the global variable NXApp.

The main task of the Application object is to receive events from the Window Server
and distribute them to the proper Responders. - System events are handled by the
Application object itself. Window events are translated into event messages for the
affected Window object. Key-down events that occur when the Command key is
pressed are translated into commandKey: messages that every Window has an
opportunity to respond to. Other keyboard and mouse events are sent to the Window
associated with the event; the Window then distributes them to the objects in its view
hierarchy.

Subclassing the Application class is discouraged. Instead of placing the functionality
of your program in an Application object, you should place that functionality in one or
more modules which are subclasses of the Object class. Your program will then tend
to be more reusable, and can be invoked from a small dispatcher object rather than
being closely tied to the Application code.

The Application object can be assigned a delegate that responds to notification
messages on the Application object’s behalf. The easiest way to make your own object
the Application object’s delegate is to Control-drag a connection from the File’s Owner
icon to your object in Interface Builder, and connect it as the delegate. Many of the
notification methods are sent back to the Application object if the delegate doesn’t
respond, but the preferred technique is to have the delegate respond to these messages.
The notification messages are listed below, divided into two categories:

Delegate Only Delegate or Application subclass
appDidHide: appAcceptsAnotherFile:
appDidUnbhide: app:openFile:type:
appWillUpdate: app:openTempFile:type:
appDidUpdate: appDidInit:
appDidBecomeActive: app:powerOffIn:andSave:
appDidResignActive: app:unmounting:

powerOff: applicationDefined:

Application Kit Classes: Application — 2-71

Note that of the methods in the second category the Application class implements only
the applicationDefined: method, and that it implements that method only to forward

the message to the delegate.

Since an application must have one and only one Application object, you must use new
to create it. You can’t use alloc, allocFromZone:, or init to create or initialize an

Application object.

INSTANCE VARIABLES

Inherited from Object
Inherited from Responder

Declared in Application

appName

currentEvent

windowList

keyWindow

Chapter 2: Class Specifications

Class
id

char

NXEvent

id

id

id

id

int

int

const char

DPSContext

int

id

id

port_t

NXSize

short

struct __appFlags {
unsigned int
unsigned int
unsigned int

}

isa;
nextResponder;

*appName;
currentEvent;
windowList;
keyWindow;
mainWindow;
delegate;
*hiddenList;
hiddenCount;
*hostName;
context;
contextNum;
appListener;
appSpeaker;
replyPort;
screenSize;
running;

hidden:1;

autoupdate:1;

active:1;
appFlags;

The name of your application; used by the
defaults system and the application’s Listener

object.

The event most recently retrieved from the event

queue.

A List of all the windows belonging to the

application.

The Window that receives keyboard events.

mainWindow

delegate

hiddenList

hiddenCount

hostName

context

contextNum

appListener
appSpeaker

replyPort

screenSize

running

appFlags.hidden

appFlags.autoupdate

appFlags.active

The Window that receives menu commands and
action messages from a Panel.

The object that responds to delegated messages.

The Window Server’s List for Windows in the
application at the time the application is hidden.

The number of windows referred to by
hiddenList.

The name of the machine running the Window
Server.

The Display PostScript context connected to the
Window Server.

A number identifying the application’s Display
PostScript context.

The Application object’s Listener.
The Application object’s Speaker.

A general purpose reply port for the Application
object’s Speakers.

The size of the screen that this application is
running on.

The nested level of run and runModalFor:.

YES if the application’s windows are currently
hidden.

YES if the Application object is to send an
update message to each Window after an event

has been processed.

YES if the application is the active application.

Application Kit Classes: Application 2-73

METHOD TYPES
Initializing the class

Creating and freeing instances

Setting up the application

Changing the active application

Running the event loop

Getting and peeking at events

2-74 Chapter 2: Class Specifications

+ initialize

+ new
— free

— loadNibFile:owner:

— loadNibFile:owner:withNames:

— loadNibFile:owner:withNames:fromZone:

— loadNibSection:owner:

— loadNibSection:owner:withNames:

— loadNibSection:owner:withNames:
fromHeader:

— loadNibSection:owner:withNames:
fromZone:

— loadNibSection:owner:withNames:
fromHeader:fromZone:

— appName

— setMainMenu:

— mainMenu

— activate:

— activateSelf:

— activeApp

— becomeActiveApp
— deactivateSelf

— isActive

— resignActive App

—run
— stop:

— runModalFor:

— stopModal

— stopModal:

— abortModal

— beginModalSession:for:
— runModalSession:

— endModalSession:

— delayedFree:

— isRunning

— sendEvent:

— currentEvent

— getNextEvent:

— getNextEvent:waitFor:threshold:

— peekAndGetNextEvent:

— peekNextEvent:into:

— peekNextEvent:into: waitFor:threshold:

Journaling — isJournalable
— setJournalable:
mm ot neT

— masterJournaler
— slaveJournaler

Handling user actions and events ~ — applicationDefined:
— hide:
— isHidden
— unhide
— unhide:
— unhide WithoutActivation:
— powerOff:
— powerOffIn:andSave:
— rightMouseDown:
— unmounting:ok:

Sending action messages - sendAction:to:from:
— tryToPerform:with:
— calcTargetForAction:

Remote messaging — setAppListener:
— appListener
— setAppSpeaker:
— appSpeaker
— appListenerPortName
— replyPort

Managing Windows — applcon
— findWindow:
— getWindowNumbers:count:
— keyWindow
— mainWindow
— makeWindowsPerform:inOrder:
— setAutoupdate:
— updateWindows
— windowList

Managing the Windows menu — setWindowsMenu:
— windowsMenu
— arrangelnFront:
— addWindowsltem:title:filename:
— remove Windowsltem:
— changeWindowsltem:title:filename:
— updateWindowsltem:

Managing the Services menu — setServicesMenu:
— servicesMenu
— registerServicesMenuSendTypes:
andReturnTypes:
— validRequestorForSendType:andReturnType:

Application Kit Classes: Application 2-75

Managing screens — mainScreen
— colorScreen
— getScreens:count:
— getScreenSize:
Querying the application — context
— focusView
— hostName

Language - — systemLanguages

Opening files — openFile:ok:
— openTempFile:ok:

Printing — setPrintInfo:
— printInfo
— runPageLayout:
Color — orderFrontColorPanel:
Terminating the application — terminate:
Assigning a delegate — setDelegate:

— delegate

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create an Application
object. Use new instead.

See also: + new

allocFromZone:

Generates an error message. This method cannot be used to create an Application
object. Use new instead.

See also: + new
initialize
+ initialize

Registers defaults used by the Application class. You never send this message directly;
it’s sent for you when your application starts. Returns self.

2-76 Chapter 2: Class Specifications

new

+ new

Creates a new Application object and assigns it to the global variable NXApp. A
program can have only one Application object, so this method just returns NXApp if
the Application object already exists. This method also makes a connection to the
Window Server, loads the PostScript procedures the application needs, and completes
other initialization. Your program should generally invoke this method as one of the
first statements in main(); this is done for you if you create your application with
Interface Builder. The Application object is returned.

See also: — run

INSTANCE METHODS

abortModal
— (void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught
by runModalFor:, the method that started the modal loop. Since this method raises an
exception, it never returns; runModalFor:, when stopped with this method, returns
NX_RUNABORTED. This method is typically invoked from procedures registered
with DPSAddTimedEntry(), DPSAddPort(), or DPSAddFD(). Note that you can’t
use this method to abort modal sessions, where you control the modal loop and
periodically invoke runModalSession:.

See also: —runModalFor:, — stopModal, — stopModal:

activate:
— (int)activate:(int)contextNumber
Makes the application identified by contextNumber the active application.
contextNumber is the PostScript context number of the application to be activated.
Normally, you shouldn’t invoke this method; the Application Kit is responsible for
proper activation. The previously active application’s PostScript context number is

returned.

See also: — isActive, — activateSelf:, — deactivateSelf

Application Kit Classes: Application 2-77

2-78

activateSelf:

— (int)activateSelf:(BOOL)flag

Makes the receiving application the active application. If flag is NO, the application is
activated only if no other application is currently active. Normally, this method is

invoked with flag set to NO. When the WorkSpace Manager launches an application,
it deactivates itself, so activateSelf:NO allows the application to become active if the
user waits for it to launch, but the application remains unobtrusive if the user activates
another application. If flag is YES, the application will always activate. Regardless of
the setting of flag, there may be a time lag before the application activates; you should
not assume that the application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the
active application; when you send a makeKeyWindow message to a Window, you
simply ensure that the Window will be the key window when the application is active.

You should rarely have a need to invoke this method. Under most circumstances the
Application Kit takes care of proper activation. However, you might find this method
useful if you implement your own methods for inter-application communication. This
method returns the PostScript context number of the previously active application.

See also: — activeApp, — activate:, — deactivateSelf, — makeKeyWindow (Window)

activeApp

— (int)activeApp

Returns the active application’s PostScript context number. If no application is active,
returns zero.

See also: — isActive, — activate:

addWindowsltem:title:filename:

— addWindowsItem:aWindow title:(const char *)aString
filename:(BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window aWindow. If
isFilename is NO, aString appears literally in the menu. If isFilename is YES, aString
is assumed to be a converted name with the filename preceding the path, as placed in a
Window title by Window’s setTitleAsFilename: method. If an item for aWindow
already exists in the Windows menu, this method has no effect. You rarely invoke this
method because an item is placed in the Windows menu for you whenever a Window’s
title is set. Returns self.

See also: — changeWindowsItem:title:filename:, — setTitle: (Window),
— setTitleAsFilename: (Window)

Chapter 2: Class Specifications

applcon
— applcon

Returns the Window that represents the application in the Workspace Manager.

applicationDefined:
— applicationDefined:(NXEvent *)theEvent

Handles the application-defined (NX_APPDEFINED) event theEvent. The default
implementation forwards the message to the receiver’s delegate (if the delegate
responds to the message). You should either provide a delegate implementation or
override this method in your subclass of Application if you want to handle such events.
If the delegate responds to this message, the delegate’s return value is returned;
otherwise returns self.

appListener
— appListener

Returns the Application object’s Listener—the object that will receive messages sent
to the port that’s registered for the application’s name. If you don’t send a
setAppListener: message before your application starts running, an instance of
Listener is created for you.

See also: — setAppListener:, — appListenerPortName, — run
appListenerPortName
— (const char *)appListenerPortName
Returns the name used to register the Application object’s Listener. The default is the
same name that’s returned by the Application object’s appName method. If a different
name is desired, this method should be overridden. Messages sent by name to
appListenerPortName will be received by your Application object.
See also: — checkInAs: (Listener), — appName, NXPortFromName()
appName
— (const char *)appName
Returns the name under which the Application object has been registered for defaults.
This name is also used for messaging unless the messaging name was changed with an

override of appListenerPortName.

See also: — appListenerPortName

Application Kit Classes: Application 2-79

2-80

appSpeaker

— appSpeaker

Returns the Application object’s Speaker. You can use this object to send messages to
other applications.

See also: — setSendPort: (Speaker)

arrangelnFront:

— arrangelnFront:sender
Arranges all of the windows listed in the Windows menu in front of all other windows.
Windows associated with the application but not listed in the Windows menu are not

ordered to the front. Returns self.

See also: — removeWindowsltem:, — makeKeyAndOrderFront: (Window)

becomeActiveApp

— becomeActiveApp

Sends the appDidBecomeActive: message to the Application object’s delegate. This
method is invoked when the application is activated. You never send a
becomeActiveApp message directly, but you can override this method in a subclass.
Returns self.

See also: — activateSelf:, — appDidBecomeActive: (delegate)

beginModalSession:for:

— (NXModalSession *)beginModalSession:(NXModalSession *)session
for:theWindow

Prepares the application for a modal session with theWindow. In other words, prepares
the application so that mouse events get to it only if they occur in theWindow. If session
is NULL, a NXModalSession is allocated; otherwise the given storage is used. (The
sender could declare a local NXModalSession variable for this purpose.) theWindow
is made the key window and ordered to the front.

beginModalSession:for: should be balanced by endModalSession:. If an exception
is raised, beginModalSession:for: arranges for proper cleanup. Do NOT use
NX_DURING constructs to send an endModalSession: message in the event of an
exception. Returns the NXModalSession pointer that’s used to refer to this session.

See also: — runModalSession:, — endModalSession:

Chapter 2: Class Specifications

calcTargetForAction:
— calcTargetForAction:(SEL)theAction

Returns the first object in the responder chain that responds to the message theAction.
The message isn’t actually dispatched. Note that this method doesn’t test the value that
the responding object would return should the message be sent; specifically, it doesn’t
test to see if the responder would return nil. Returns nil if no responder is found.

See also: — sendAction:to:from:

changeWindowsltem:title:filename:

— changeWindowsItem:aWindow title:(const char *)aString
filename:(BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString. If aWindow doesn’t
have an item in the Windows menu, this method adds the item. If isFilename is NO,
aString appears literally in the menu. If isFilename is YES, aString is assumed to be a
converted name with the filename preceding the path, as placed in a Window title by
Window’s setTitleAsFilename: method. Returns self.

See also: — addWindowsltem:title:filename:, — setTitle: (Window),
— setTitleAsFilename: (Window)

colorScreen

— (const NXScreen *)colorScreen

Returns the screen that can best represent color. This method will always return a
screen, even if no color screen is present.

See also: NXBPSFromDepth()

context
— (DPSContext)context

Returns the Application object’s Display PostScript context.

currentEvent

— (NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue.
A pointer to the current event is also passed with every event message.

See also: — getNextEvent:waitFor:threshold:,
— peekNextEvent:waitFor:threshold:

Application Kit Classes: Application — 2-81

deactivateSelf
— deactivateSelf

Deactivates the application if it’s active. Normally, you shouldn’t invoke this method;
the Application Kit is responsible for proper deactivation. Returns self.

See also: — activeApp, — activate:, — activateSelf:

delayedFree:
— delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding

to the current event and before it gets the next event. If this method is performed during
a modal loop, theObject is freed after the modal loop ends. Returns self.

delegate
— delegate

Returns the Application object’s delegate.
See also: — setDelegate:
endModalSession:
— endModalSession:(NXModalSession *)session

Cleans up after a modal session. session should be from a previous invocation of
beginModalSession:for:.

See also: — runModalSession:, — beginModalSession:for:

findWindow:
— findWindow:(int)windowNum
Returns the Window object that corresponds to the window number windowNum. This
method is of primary use in finding the Window object associated with a particular

event.

See also: — windowNum (Window)

focusView

— focusView
Returns the View that is currently focused on, or nil if no View is focused on.

See also: — lockFocus (View)

2-82 Chapter 2: Class Specifications

free

— free

Closes all the Application object’s windows, breaks the connection to the Window
Server, and frees the Application object.

getNextEvent:
— (NXEvent *)getNextEvent:(int)mask

Gets the next event from the Window Server and returns a pointer to its event record.
This method is similar to getNextEvent:waitFor:threshold: with an infinite timeout
and a threshold of NX _MODALRESPTHRESHOLD.

See also: — getNextEvent:waitFor:threshold, — run, — runModalFor:,
— currentEvent

getNextEvent:waitFor:threshold:

— (NXEvent *)getNextEvent:(int)mask
waitFor:(double)timeout
threshold:(int)level

Gets the next event from the Window Server and returns a pointer to its event record.
Only events that match mask are returned; getNextEvent:waitFor:threshold: goes
through the event queue, starting from the head, until it finds an event matching mask.
Events that are skipped are left in the queue. Note that
getNextEvent:waitFor:threshold: doesn’t alter the window event masks that
determine which events the Window Server will send to the application.

If an event matching the mask doesn’t arrive within timeout seconds, this method
returns a NULL pointer.

You can use this method to short circuit normal event dispatching and get your own

events. For example, you may want to do this in response to a mouse-down event in
order to track the mouse while it’s down. In this case, you would set mask to accept
mouse-dragged, mouse-entered, mouse-exited, or mouse-up events.

level determines what other tasks should be performed when the event queue is
examined. Tasks that may be performed include procedures to deal with timed-entries,
procedures to handle messages received on ports, or procedures to read new data from
files. Any such procedure that needs to be called will be called if its priority (specified
when the procedure is registered) is equal to or higher than Jevel.

In general, modal responders should pass NX_MODALRESPTHRESHOLD for level.
The main run loop uses a threshold of NX_BASETHRESHOLD, allowing all
procedures (except those registered with priority 0) to be checked and invoked if
needed.

See also: — peekNextEvent:waitFor:threshold:, — run, — runModalFor:

Application Kit Classes: Application — 2-83

2-84

getScreens:count:

— getScreens:(const NXScreen **)/ist count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array
of NXScreen structures is placed in the variable indicated by /isz, and the number of
NXScreen structures in that array is placed in the variable indicated by numScreens.
Returns self.

getScreenSize:

— getScreenSize:(NXSize *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and places it
in the structure pointed to by theSize. Returns self.

getWindowNumbers:count:

— getWindowNumbers:(int **)/ist count:(int *)numWindows

Gets the window numbers for all the Application object’s Windows. A pointer to a
non-NULL-terminated int array is placed in the variable indicated by /ist. The number
of entries in this array is placed in the integer indicated by numWindows. The order of
window numbers in the array is the same as their order in the Window Server’s screen
list, which is their front-to-back order on the screen. The application is responsible for
freeing the list array when done. Returns self.

See also: NXWindowList()

hide:

— hide:sender
Collapses the application’s graphics—including all its windows, menus, and panels—
into a single small window. The hide: message is usually sent using the Hide command

in the application’s main menu. Returns self.

See also: — unhide:

hostName

— (const char *)hostName

Returns the name of the host machine on which the Window Server that serves the
Application object is running. This method returns the name that was passed to the
receiving Application object through the NXHost default; this name is set either from
its value in the defaults database or by providing a value for NXHost through the
command line. If a value for NXHost isn’t specified, NULL is returned.

Chapter 2: Class Specifications

isActive
— (BOOL)isActive

Returns YES if the application is currently active, and NO if it isn’t.

See also: — activateSelf:, — activate:

isHidden
— (BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn’t.

isJournalable
— (BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can’t. By default,
applications can be journaled.

See also: — setJournalable:
isRunning
— (BOOL)isRunning

Returns YES if the application is running, and NO if the stop: method has ended the
main event loop.

See also: — run, — stop:, — terminate:
keyWindow
— keyWindow

Returns the key window—the Window that receives keyboard events. If there is no key
window, or if the key window belongs to another application, this method returns nil.

See also: — mainWindow, — isKeyWindow (Window)

loadNibFile:owner:
— loadNibFile:(const char *)filename owner:anOwner
Loads objects from the specified interface file. This method is a cover for
loadNibFile:owner:withNames:fromZone:. The objects and their names are read
from the specified interface file into storage allocated from the default zone. Returns

non-nil if the file filename is successfully opened and read; otherwise it returns nil.

See also: — loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZone()

Application Kit Classes: Application — 2-85

2-86

loadNibFile:owner:withNames:

— loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag

Loads objects from the specified interface file. This method is a cover for
loadNibFile:owner:withNames:fromZone:. The objects are read from the specified
interface file into storage allocated from the default zone. Returns non-nil if the file
filename is successfully opened and read; otherwise it returns nil.

See also: — loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZone()

loadNibFile:owner:withNames:fromZone:

— loadNib£ile:(const char *)filename
owner:anObject
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads objects from the specified interface file into memory allocated from zone. This
method returns non-nil if the file filename is successfully opened and read; otherwise it
returns nil.

anObject is the object that corresponds to the “File’s Owner” object in Interface
Builder’s File window. As the objects are loaded, the outlet initialization methods in
anObject are invoked to bind the outlets.

If flag is YES, the names of the objects are loaded. If you use only the outlet
mechanism to get to objects in the interface file, you can save some memory by
specifying NO as the value of flag. However, you won’t be able to use
NXGetNamedObject() to get at the objects.

See also: — loadNibSection:owner:withNames:fromZone:

loadNibSection:owner:

— loadNibSection:(const char *)sectionName owner:anObject

Loads objects and their names from the specified section of the application’s executable
file into memory allocated from the default zone. This method returns non-nil if the
section is successfully loaded; otherwise it returns nil.

See also: — loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZone()

Chapter 2: Class Specifications

loadNibSection:owner:withNames:

— loadNibSection:(const char *)name
owner:anObject
withNames:(BOOL)flag

Loads objects from the interface data in the specified section in the __NIB segment of
the executable file into memory allocated from the default zone. This method returns
non-nil if the section is successfully loaded; otherwise it returns nil (for example if
section name doesn’t exist).

See also: —loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZone()

loadNibSection:owner:withNames:fromHeader:

— loadNibSection:(const char *)name
owner:anObject
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header

Loads objects from a dynamically loaded header into memory allocated from the
default zone. A class can use this method in its + finishLoading method to load
associated interface data.

See also: — loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZone()

loadNibSection:owner:withNames:fromHeader:fromZone:

—loadNibSection:(const char *)name
owner:anObject
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

Loads objects from a dynamically loaded header into memory allocated from the
specified zone. A class can use this method in its + load method to load associated

interface data.

See also: — loadNibSection:owner:withNames:fromZone:

Application Kit Classes: Application — 2-87

2-88

loadNibSection:owner:withNames:fromZone:

— loadNibSection:(const char *)name
owner:anObject
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads objects from the interface data in the specified section in the __NIB segment of
the executable file into memory allocated from the specified zone. This method returns
non-nil if the section is successfully loaded; otherwise it returns nil (for example if
section name doesn’t exist).

anObject is the object that corresponds to the “File’s Owner” object in the Interface
Builder’s File window. As the objects are loaded, the outlet initialization methods in
anObject are performed to bind the outlets.

If flag is YES, the names of the objects are loaded. If you use only the outlet
mechanism to get to objects in the interface section, you can save some memory by
specifying NO as the value of flag. In that case you won’t be able to use
NXGetNamedObject() to get the id of objects.

See also: — loadNibSection:owner:withNames:fromZone:

mainMenu

— mainMenu

Returns the Application object’s main menu.

mainScreen

— (const NXScreen *)mainScreen

Returns the main screen. If there is only one screen, that screen is returned. Otherwise,
this method attempts to return the key window’s screen. If there is no key window, it
attempts to return the main menu’s screen. If there is no main menu, this method
returns the screen that contains the screen coordinate system origin.

See also: — screen (Window)

mainWindow

— mainWindow

Returns the main window. This method returns nil if there is no main window, if the
main window belongs to another application, or if the application is hidden.

See also: — keyWindow, — isMainWindow (Window)

Chapter 2: Class Specifications

makeWindowsPerform:inOrder:
— makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag

Sends the Application object’s Windows a message to perform the aSelector method.
The message is sent to each Window in turn until one of them returns YES; this method
then returns that Window. If no Window returns YES, this method returns nil.

If flag is YES, the Application object’s Windows receive the aSelector message in the
front-to-back order in which they appear in the Window Server’s window list. If flag is
NO, Windows receive the message in the order they appear in the Application object’s
window list. This order generally reflects the order in which the Windows were
created.

The aSelector method can’t take any arguments.
masterJournaler
— masterJournaler
Returns the Application object’s master journaler.
See also: — slaveJounaler
openFile:ok:
— (int)openkFile:(const char *)fullPath ok:(int *)flag
Responds to a remote message requesting the application to open a file. The
openFile:ok: message is typically sent to the application from the Workspace
Manager, although other applications can send it directly to a specific application. The
Application object’s delegate is queried with the appAcceptsAnotherFile: message
and if the result is YES, it’s sent the app:openFile:type: message. If the delegate
doesn’t respond to either of these messages, they’re sent to the Application object (if it
implements them).
The variable pointed to by flag is set to YES if the file is successfully opened, NO if the
file is not successfully opened, and (—1) if the application does not accept another file.
Returns zero.
See also: — app:openFile:type: (Application delegate), — openFile:ok: (Speaker)
openTempkFile:ok:
— (int)openTempFile:(const char *)fullPath ok:(int *)flag

Same as the openFile:ok: method, but app:openTempFile:type: is sent. Returns zero.

See also: — app:openTempFile:type: (Application delegate),
— openTempFile:ok: (Speaker)

Application Kit Classes: Application — 2-89

2-90

orderFrontColorPanel:

— orderFrontColorPanel:sender

Displays the color panel. Returns self.

peekAndGetNextEvent:
— (NXEvent *)peekAndGetNextEvent:(int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and
a threshold of NX_MODALRESPTHRESHOLD.

See also: — getNextEvent:waitFor:threshold, — run, — runModalFor:,
— currentEvent

peekNextEvent:into:
— (NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)eventPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero
timeout and a threshold of NX_MODALRESPTHRESHOLD.

See also: — peekNextEvent:into:waitFor:threshold, — run, — runModalFor:,
— currentEvent

peekNextEvent:into:waitFor:threshold:

— (NXEvent *)peekNextEvent:(int)mask
into:(NXEvent *)eventPtr
waitFor:(float)timeout
threshold:(int)/evel

This method is similar to getNextEvent:waitFor:threshold: except the matching
event isn’t removed from the event queue nor is it placed in currentEvent; instead, it’s
copied into storage pointed to by eventPtr.

If no matching event is found, NULL is returned; otherwise, eventPtr is returned.

See also: — getNextEvent:waitFor:threshold:, —‘run, — runModalFor:,
— currentEvent

Chapter 2: Class Specifications

powerOff:
— power Off:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window
Server. If the application was launched by the Workspace Manager, this method does
nothing; instead, the Application object will wait for the powerOffIn:andSave:
message from the Workspace Manager. If the application wasn’t launched from the
Workspace Manager, this method sends the delegate a powerOff: message, assuming
there’s a delegate and it implements the method. Returns self.

powerOffIn:andSave:
— (int)power OffIn:(int)ms andSave:(int)aFlag

You never invoke this method directly; it’s sent from the Workspace Manager. The
delegate or your subclass of Application will be given the chance to receive the
app:powerOffIn:andSave message. This method raises an exception, so it never
returns.

See also: — app:powerOffIn:andSave: (delegate)

printInfo
— printInfo

Returns the Application object’s global PrintInfo object. If none exists, a default one
is created.

registerServicesMenuSendTypes:andReturnTypes:

— registerServicesMenuSend Types:(const char *const *)sendTypes
andReturnTypes:(const char *const *)returnTypes

Registers pasteboard types that the application can send and receive in response to
service requests. If the application has a Services menu, a menu item is added for each
service provider that can accept one of the specified send types or return one of the
specified return types. This method should typically be invoked at application startup
time or when an object that can use services is created. It can be invoked more than
once; its purpose is to ensure that there is a menu item for every service that may be
used by the application. The individual items will be dynamically enabled and disabled
by the event handling mechanism to indicate which services are currently appropriate.
An application (or object instance that can cut or paste) should register every possible
type that it can send and receive. Returns self.

See also: — validRequestorForSendType:andReturnType: (Responder),

—readSelectionFromPasteboard: (Object method),
— writeSelectionToPasteboard: (Object method)

Application Kit Classes: Application — 2-91

2-92

removeWindowsltem:

— removeWindowsItem:aWindow
Removes the item for aWindow in the Windows menu. Returns self.

See also: — changeWindowsItem:title:filename:

replyPort

— (port_t)replyPort

Returns the Application object’s reply port. This port is allocated for you automatically
by the run method, and is the default reply port which can be shared by all the
Application object’s Speakers.

See also: — setReplyPort: (Speaker)

resignActiveApp

— resignActiveApp

This method is invoked immediately after the application is deactivated. You never
send resignActiveApp messages directly, but you could override this method in your
Application object to notice when your application is deactivated. Alternatively, your
delegate could implement appDidResignActive:. Returns self.

See also: — deactivateSelf:, — appDidResignActive: (delegate)

rightMouseDown:

— rightMouseDown:(NXEvent *)theEvent

Pops up the main menu. Returns self.

run

—run

Initiates the Application object’s main event loop. The loop continues until a stop: or
terminate: message is received. Each iteration through the loop, the next available
event from the Window Server is stored, and is then dispatched by sending the event to
the Application object using sendEvent:

A run message should be sent as the last statement from main(), after the application’s
objects have been initialized. Returns self if terminated by stop:, but never returns if
terminated by terminate:.

See also: — runModalFor:, — sendEvent:, — stop:, — terminate:,
— appDidInit: (delegate)

Chapter 2: Class Specifications

?unModalFor:
— (int)runModalFor:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a
stopModal, stopModal:, or abortModal message, the application won’t respond to
any mouse, keyboard, or window-close events unless they’re associated with
theWindow. If stopModal: is used to stop the modal event loop, this method returns
the argument passed to stopModal:. If stopModal is used, it returns the constant
NX_RUNSTOPPED. If abortModal is used, it returns the constant
NX_RUNABORTED. This method is functionally similar to the following:

NXModalSession session;
[NXApp beginModalSession:&session for:theWindow];
for (;7) |
if ([NXApp runModalSession:&session] != NX RUNCONTINUES)
break;
}
[NXApp endModalSession:é&session];

See also: — stopModal, — stopModal:, — abortModal, — runModalSession:

runModalSession:

— (int)runModalSession:(NXModalSession *)session

Runs a modal session represented by session, as defined in a previous invocation of
beginModalSession:for:. A loop using this method is similar to a modal event loop
run with runModalFor:, except that with this method the application can continue
processing between method invocations. When you invoke this method, events for the
window of this session are dispatched as normal; this method returns when there are no
more events. You must invoke this method frequently enough that the window remains
responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If
stopModal was invoked as the result of event procession, NX_RUNSTOPPED is
returned. If stopModal: was invoked, this method returns the value passed to
stopModal:. The NX_abortModal exception raised by abortModal isn’t caught.

See also: — beginModalSession:, — endModalSession, — stopModal:, — stopModal,
—runModalFor:

runPageLayout:

— runPageLayout:sender

Brings up the Application object’s Page Layout panel, which allows the user to select
the page size and orientation. Returns self.

Application Kit Classes: Application — 2-93

2-94

sendAction:to:from:

— (BOOL)sendAction:(SEL)aSelector to:alarget from:sender

Sends an action message to an object. If aTarget is nil, the message is sent down the
responder chain. Returns YES if the action is applied; otherwise returns NO.

sendEvent:

—sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages
directly although you might want to override this method to perform some action on
every event. sendEvent: messages are sent from the main event loop (the run method).
sendEvent is the method that dispatches events to the appropriate responders; the
Application object handles application events, the Window indicated in the event
record handles window related events, and mouse and key events are forwarded to the
appropriate Window for further dispatching. Returns self.

See also: — setAutoupdate:

servicesMenu

— servicesMenu

Returns the Application object’s Services menu. Returns nil if no Services menu has
been created.

See also: — setServicesMenu:

setAppListener:

— setAppListener:aListener

Sets the Listener that will receive messages sent to the port that’s registered for the
application. If you want to have a special Listener reply to these messages, you must
either send a setAppListener: message before the run message is sent to the
Application object, or send this message from the delegate method app Willlnit:, so
that aListener is properly registered. This method doesn’t free the Application object’s
previous Listener object. Returns self.

See also: — appListenerPortName, — appWilllnit: (delegate)

Chapter 2: Class Specifications

setAppSpeaker:
— setAppSpeaker:aSpeaker

Sets the Application object’s Speaker. If you don’t send a setAppSpeaker: message
before the Application object initializes, a default Speaker is created for you. This
method doesn’t free the Application object’s previous Speaker object.
See also: — appWillInit: (delegate)

setAutoupdate:
— setAutoupdate:(BOOL)flag
Turns on or off automatic updating of windows. If automatic updating is on, update is
sent to each of the application’s Windows after each event has been processed. This

can be used to keep the appearance of menus and panels synchronized with your
application. Returns self.

setDelegate:
— setDelegate:anObject
Sets the Application object’s delegate. The notification messages that a delegate can
expect to receive are listed at the end of the Application class specifications. The
delegate doesn’t need to implement all the methods. Returns self.
See also: — delegate

setJournalable:

— setJournalable:(BOOL)flag

Sets whether the application is journalable. Returns self.

setMainMenu:

— setMainMenu:aMenu
Makes aMenu the Application object’s main menu. Returns self.

See also: — mainMenu

setPrintInfo:

— setPrintInfo:info

Sets the Application object’s global PrintInfo object. Returns the previous PrintInfo
object, or nil if there was none.

Application Kit Classes: Application — 2-95

setServicesMenu:
— setServicesMenu:aMenu

Makes aMenu the Application object’s Services menu. Returns self.
setWindowsMenu:

- setWindowsMenu:aMenu

Makes aMenu the Application object’s Windows menu. Returns self.
slaveJournaler

- slaveJournaler

Returns the Application object’s slave journaler.
stop:

— stop:sender

Stops the main event loop. This method will break the flow of control out of the run

method, thereby returning to the main() function. A subsequent run message will

restart the loop.

If this method is applied during a modal event loop, it will break that loop but not the
main event loop. Returns self.

See also: — terminate:, — run, — runModalFor:, — runModalSession:

stopModal
— stopModal

Stops a modal event loop. This method should always be paired with a previous
runModalFor: or beginModalSession:for: message. When runModalFor: is
stopped with this method, it returns NX_RUNSTOPPED. This method will stop the
loop only if it’s executed by code responding to an event. If you need to stop a
runModalFor: loop from a procedure registered with DPSAddTimedEntry(),
DPSAddPort(), or DPSAddFD(), use the abortModal method. Returns self.

See also: — runModalFor:, — runModalSession:, — abortModal

2-96 Chapter 2: Class Specifications

stopModal:
— stopModal:(int)returnCode

Just like stopModal except argument returnCode allows you to specify the value that
runModalFor: will return. Returns self.

See also: — stopModal, — runModalFor:, — abortModal

systemLanguages

— (const char *const *)systemLanguages

Returns a NULL-terminated list of NULL-terminated strings which specify the user’s
preferred languages (human languages, not computer languages) in order of
preference. If this method returns NULL, the user has no preference. This should be
used to do any localization of your application.

terminate:

— terminate:sender

Terminates the application. This method invokes appWillTerminate: to notify the
delegate that the application will terminate. If appWillTerminate: returns nil,
terminate: returns self; control is returned to the main event loop, and the application
isn’t terminated. Otherwise, this method frees the Application object and terminates
the application by using exit(). terminate: is the default action method for the
application’s “Quit” menu item. Note that you should not put final cleanup code in your
application’s main() function; it will never be executed.

See also: — stop, — appWillTerminate: (delegate), exit()

tryToPerform:with:
— (BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object tries to perform the
method selector aSelector using its inherited Responder method tryToPerform:with:.
If the Application object doesn’t perform aSelector, the delegate is given the
opportunity to perform it using its inherited Object method perform:with:. If either
the Application object or the Application object’s delegate accept aSelector, this
method returns YES; otherwise it returns NO.

See also: — tryToPerform:with: (Responder), — respondsTo: (Object),
— perform:with: (Object)

Application Kit Classes: Application — 2-97

2-98

unhide

— (int)unhide

Responds to an unhide message sent from Workspace Manager. You shouldn’t invoke
this method; invoke unhide: instead. Returns zero.

See also: — unhide:

unhide:

— unhide:sender
Restores a hidden application to its former state (all of the windows, menus, and panels
visible), and makes it the active application. This method is usually invoked as the

result of double-clicking in the icon for the hidden application. Returns self.

See also: — hide:, — unhideWithoutActivation:, — activateSelf:

unhideWithoutActivation:

— unhideWithoutActivation:sender
Unhides the application but does not make it the active application. You might want to
invoke activateSelf:NO after invoking this method to make the receiving application

active if there is no active application. Returns self.

See also: — hide:, — activateSelf:

unmounting:ok:

— (int)unmounting:(const char *)fullPath ok:(int *)flag

Replies to an unmounting:ok: message sent from the Workspace Manager. You
shouldn’t directly send unmounting:ok: messages. This method attempts to invoke
the app:unmounting: method of the Application object’s delegate or of the
Application object itself. If neither object implements app:unmounting:, and the
current working directory is on the same volume as fullPath, this method changes the
working directory to the user’s home directory. Returns zero.

updateWindows

— updateWindows

Sends an update message to the Application object’s visible Windows. If automatic
updating is enabled, this method is invoked automatically in the main event loop after
each event. An application can also send updateWindows messages at other times to
have Windows update themselves.

Chapter 2: Class Specifications

If the delegate implements appWillUpdate:, that message is sent to the delegate before
the windows are updated. Similarly, if the delegate implements appWillUpdate:, that

message is sent to the delegate after the windows are updated. Returns self.

v Uvivgalv Qs ANCLRIIIS A2

See also: — setAutoupdate:, — appWillUpdate: (delegate),
— appDidUpdate: (delegate)

updateWindowsltem:

— updateWindowsltem:win

Updates the item for aWindow in the Windows menu to reflect the edited status of
aWindow. You rarely need to invoke this method because it is invoked automatically
when the edited status of a Window is set. Returns self.

See also: — changeWindowsltem:title:filename:, — setDocEdited: (Window)

validRequestorForSendType:andReturnType:

— validRequestorForSend Type:(NXAtom)sendType
andReturnType:(NXAtom)returnType

Passes this message on to the Application object’s delegate, if the delegate can respond
(and isn’t a Responder with its own next responder). If the delegate can’t respond or
returns nil, this method returns nil, indicating that no object was found that could
supply typeSent data for a remote message from the Services menu and accept back
typeReturned data. If such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu. This method
might not be in the Application class header file at this time.

See also: — validRequestorForSendType:andReturnType: (Responder),
— registerServicesMenuSendTypes:andReturnTypes:,

— writeSelectionToPasteboard:types: (Object Method),
—readSelectionFromPasteboard: (Object Method)

windowList

— windowList

Returns the List object used to keep track of the Application object’s Windows.
windowsMenu

— windowsMenu

Returns the Application object’s Windows menu. Returns nil if no Windows menu has
been created.

Application Kit Classes: Application — 2-99

METHODS IMPLEMENTED BY THE DELEGATE

app:openFile:type:

— (int)app:sender openFile:(const char *)filename type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can
open another file. The method should attempt to open the file filename with the
extension alype, returning YES if the file is successfully opened, and NO otherwise.

This method is also invoked from within openTempFile:ok: if neither the delegate nor
the Application subclass responds to app:openTempFile:type:

See also: — openFile:ok:, — openTempFile:ok:

app:openTempPFile:type:
— (int)app:sender openTempkFile:(const char *)filename type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the
application can open another file. The method should attempt to open the file filename
with the extension aType, returning YES if the file is successfully opened, and NO
otherwise.

By design, a file opened through this method is assumed to be temporary; it’s the
application’s responsibility to remove the file at the appropriate time.

See also: — openTempFile:ok:

app:powerOffIn:andSave:
— app:sender powerOffIn:(int)ms andSave:(int)aFlag

Invoked when the Application object receives a power-off event through the
powerOffIn:andSave: method. This method is invoked only if the application was
launched from the Workspace Manager. ms is the number of milliseconds to wait
before powering down or logging out. aFlag has no particular meaning at this time.
You can ask for additional time by sending the extendPower OffBy:actual: message
to the Workspace Manager. The Workspace Manager will power the machine down (or
log out the user) as soon as all applications terminate, even if there’s time remaining on
the time extension.

See also: — extendPowerOffBy:actual: (Speaker)

2-100 Chapter 2: Class Specifications

app:unmounting:
— (int)app:sender unmounting:(const char *)fullPath
Invoked when the device mounted at fullPath is about to be unmounted. This method
is invoked from unmounting:ok: and is invoked only if the application was launched
from the Workspace Manager. The Application object or its delegate should do
whatever is necessary to allow the device to be unmounted. Specifically, all files on the

device should be closed and the current working directory should be changed if it’s on
the device.

appAcceptsAnotherFile:
— (BOOL)appAcceptsAnotherFile:sender
Invoked from within Application’s openFile:ok: and openTempFile:ok: methods, this
method should return YES if it’s okay for the application to open another file, and NO
ifisn’t. If neither the delegate nor the Application object responds to the message, then

the file shouldn’t be opened.

See also: — openFile:ok:, — openTempFile:ok:

appDidBecomeActive:

— appDidBecomeActive:sender
Invoked immediately after the application is activated.
appDidHide:
— appDidHide:sender
Invoked immediately after the application is hidden.
appDidInit:
— appDidlInit:sender
Invoked after the application has been launched and initialized, but before it has
received its first event. The delegate or the Application subclass can implement this

method to perform further initialization.

See also: — appWilllnit: (delegate)

appDidResignActive:
— appDidResignActive:sender

Invoked immediately after the application is deactivated.

Application Kit Classes: Application 2-101

appDidUnhide:
— appDidUnbhide:sender

Invoked immediately after the application is unhidden.
appDidUpdate:

— appDidUpdate:sender

Invoked immediately after the Application object updates its Windows.
applicationDefined:

— applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED)
event. See the description of this method under INSTANCE METHODS, above.

appWilllnit:
— appWillInit:sender

Invoked before the Application object is initialized. This method is invoked before the
Application object has initialized its Listener and Speaker objects and before any
app:openFile:type: messages are sent to your delegate. The Application object’s
Listener and Speaker objects will be created for you immediately after invoking this
method if they have not been previously created.

See also: — appDidlInit: (delegate), — appListener, — appSpeaker
appWillTerminate:
— appWillTerminate:sender
Invoked from within the terminate: method immediately before the application
terminates. If this method returns nil, the application is not terminated, and control is
returned to the main event loop. If you want to allow the application to terminate, you
should put your clean up code in this method and return non-nil.
See also: — terminate:
appWillUpdate:
— appWillUpdate:sender

Invoked immediately before the Application object updates its Windows.

2-102 Chapter 2: Class Specifications

powerOff:
— powerOff:(NXEvent *)theEvent

Invoked when the Application object receives a power-off event through the power Off:
method. Note that powerOff: (and so, too, this method) is invoked only if the
application wasn’t launched from the Workspace Manager.

CONSTANTS AND DEFINED TYPES

/* KITDEFINED subtypes */
#define NX WINEXPOSED 0
#define NX APPACT 1
#define NX APPDEACT 2
#define NX WINRESIZED 3
#define NX WINMOVED 4
#define NX SCREENCHANGED 8

/* SYSDEFINED subtypes */
#define NX POWEROFF 1

/* Additional flags */
#define NX JOURNALFLAG 31
#define NX JOURNALFLAGMASK (1 << NX JOURNALFLAG)

/* Thresholds passed to DPSGetEvent () and DPSPeekEvent (). */
#define NX BASETHRESHOLD 1
#define NX RUNMODALTHRESHOLD 5
#define NX MODALRESPTHRESHOLD 10

/%

* Predefined return values for runModalFor: and

* runModalSession:. All values below these (-1003, -1004, and
* so on) are also reserved.

*/

#define NX_RUNSTOPPED (=1000)

#define NX RUNABORTED (-1001)

#define NX RUNCONTINUES (-1002)

Application Kit Classes: Application 2-103

>*

The NXModalSession structure contains information used by the
system between beginModalSession:for: and endModalSession:
messages. This structure can either be allocated on the stack
frame of the caller, or by beginModalSession:for:. The
application should not access any of the elements of this
structure.

P S

typedef struct NXModalSession ({
id app:
id window;
struct _NXModalSession *prevSession;
int oldRunningCount;
BOOL oldDoesHide;
BOOL freeMe;
int winNum;
NXHandler *errorData;
int reservedl;
int reserved?2;
} NXModalSession;

2-104 Chapter 2: Class Specifications

Box

DECLARED IN

Niawr « Dagimei e o
V1w . NGdpuLact .

appkit/Box.h

CLASS DESCRIPTION

A Box is a View that visually groups other Views. A Box has one subview, its content
view, which is used to group the Box’s contents. A Box also typically displays a title
and a border around its content view. The Box class includes methods to change the

Box’s border style and title position, and to set the text and font of the title. In addition,
you can add subviews to the Box’s content view and then resize the Box to fit around

these subviews.

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct __vFlags vFlags;
Declared in Box id cell;
id contentView;
NXSize offsets;
NXRect borderRect;
NXRect titleRect;
struct _bFlags {
unsigned int borderType:2;
unsigned int titlePosition:3;
unsigned int transparent:1;
} bFlags;
cell The cell that draws the Box’s title.
contentView The Box’s subview that contains the Views that
are grouped within the Box.
offsets Offset of the content view from the Box’s border.
borderRect The Box’s border rectangle.

Application Kit Classes: Box 2-105

titleRect The location of the title cell.

bFlags.borderType Indicates the Box’s border type.
bFlags.titlePosition Indicates the Box’s title position.
bFlags.transparent Reserved. Do not use.
METHOD TYPES
Initializing a new Box object — initFrame:
Freeing a Box object — free
Modifying graphic attributes — setBorderType:
— borderType
— setOffsets::
— getOffsets:
Modifying the title —cell
— setFont:
— font
— setTitle:
— title
— setTitlePosition:
— titlePosition
Putting Views in the Box — addSubview:
— setContentView:
— contentView
Resizing the Box — setFrameFromContentFrame:
- sizeTo::
— size'ToFit
Drawing the Box — drawSelf::
Archiving — awake
—read:
— write:

2-106 Chapter 2: Class Specifications

INSTANCE METHODS

addSubview:
— addSubview:aView
Adds aView as a subview of the Box’s content view. Since the content view is a
subview of the Box, the frame rectangles of Views added to the Box should reflect their
position within the content rectangle rather than the Box’s bounds rectangle. After
you’ve added a subview, you’ll probably want to use the sizeToFit method to adjust the

Box’s size to accommodate its new subview. Returns self.

See also: — sizeToFit

awake

— awake

Lays out the Box during the unarchiving process so that it can be displayed. You should
never directly invoke this method.

borderType
— (int)borderType

Returns the Box’s border type, which is NX_LINE, NX_GROOVE, NX_BEZFEL, or
NX_NOBORDER.

See also: — setBorderType:

cell
—cell

Returns the cell used to display the title of the Box.

contentView

— contentView
Returns the Box’s content view.

See also: — setContentView:

Application Kit Classes: Box 2-107

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Box. You never invoke this method directly; it’s invoked from Box’s
inherited display methods. Returns self.

See also: — display (View)
font
— font
Returns the id of the font object used to draw the title of the Box.
See also: — setFont:
free
— free
Releases the storage for the Box and all its subviews.
See also: — free (View)
getOffsets:
— getOffsets:(NXSize *)theSize

Gets the horizontal and vertical distances between the border of the Box and the content
view, and places them in the structure indicated by theSize. Returns self.

See also: — setOffsets::

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes the Box, which must be a newly allocated Box instance. The Box’s frame
rectangle is made equivalent to that pointed to by frameRect. The title is “Title,” the
border type is NX_GROOVE, the title position is NX_ATTOP, and the offsets are
5.0-by-5.0. The Box’s content view is created, but it has no size; you will probably
want to set its size with the sizeToFit method. This method is the designated initializer
for the Box class, and can be used to initialize a Box allocated from your own zone.
Returns self.

See also: — initFrame (View), + alloc (Object), + allocFromZone: (Object),
— addSubview:, — sizeToFit

2-108 Chapter 2: Class Specifications

read:
—read:(NXTypedStream *)stream

Reads the Box from the typed stream stream. Returns self.
See also: — write:

setBorderType:
— setBorderType:(int)aType

Sets the border type to aType, which must be NX_LINE, NX_GROOVE, NX_BEZEL,
or NX_NOBORDER. The default is NX_GROOVE. Returns self.

See also: — borderType

setContentView:

—setContentView:aView

Replaces the Box’s content view with aView and recalculates the size of the Box based
on the size of the new content view. The old content view is returned.

See also: — addSubview:, — contentView, — sizeToFit

setFont:
— setFont:fontObj

Sets the title’s font to fontObj. By default, the title will be displayed using 12-point
Helvetica.

See also: + newFont:size: (Font)

setFrameFromContentFrame:

— setFrameFromContentFrame:(const NXRect *)contentFrame

Resizes the Box so that its content view lies on contentFrame. contentFrame is in the
coordinate system of the Box’s superview. Returns self.

See also: — setOffsets::, — setFrame: (View)

Application Kit Classes: Box 2-109

setOffsets::

— setOffsets:(NXCoord)w :(NXCoord)x

Sets the horizontal and vertical distance between the border of the Box and its content
view. w refers to the horizontal offset and A refers to the vertical offset; these offsets

are applied to both sides of the content view. After changing the offsets, you’ll want to
resize the Box using the setFrameFromContentFrame: method. This method returns
self. In the following example, the offsets are modified but the content view’s size and
location within the Box’s superview remain unchanged:

id contentView;
NXRect contentRect;

NXCoord w = 10.0, h = 10.0;

contentView = [myBox contentView];
[contentView getFrame:&contentRect];
[myBox convertRectToSuperview:&contentRect];

[myBox setOffsets:w :h];

[myBox setFrameFromContentFrame:&contentRect];

See also: — setFrameFromContentFrame:, — convertRectToSuperview: (View)

setTitle:

— setTitle:(const char *)aString

Sets the title to aString. The default title is “Title.” Returns self.

See also: — setFont:

setTitlePosition:

— setTitlePosition:(int)aPosition

Sets the title position to aPosition, which can be one of the values listed in the following
table. The default position is NX_ATTOP. Returns self.

aPosition value

NX_NOTITLE
NX_ABOVETOP
NX_ATTOP
NX_BELOWTOP
NX_ABOVEBOTTOM
NX_ATBOTTOM
NX_BELOWBOTTOM

2-110 Chapter 2: Class Specifications

Meaning

The Box has no title

Title positioned above the Box’s top border
Title positioned within the Box’s top border
Title positioned below the Box’s top border
Title positioned above the Box’s bottom border
Title positioned within the Box’s bottom border
Title positioned below the Box’s bottom border

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height

Resizes the Box to width and height. The Box is laid out to fit inside this new boundary.
If the new width or height of the Box is too small to accommodate its border or offsets,
the respective dimension of the content view will be zero. Returns self.
See also: — setFrameFromContentFrame:, — getOffsets:

sizeToFit
— sizeToFit
Calculates the appropriate size for the Box’s content rectangle so that it just encloses
all the content view’s subviews. A setFrameFromContentFrame: message is then
sent to resize the Box to enclose the new content rectangle. Returns self.
See also: — setFrameFromContentFrame:

title
— (const char *)title
Returns the title of the Box.
See also: — setTitle:

titlePosition

— (int)titlePosition

Returns an integer representing the title position. See the description for
setTitlePosition: for possible title position values.

See also: — setTitlePosition:
write:
— write:(NXTypedStream *)stream
Writes the receiving Box to the typed stream stream. Returns self.

See also: —read:

Application Kit Classes: Box 2-111

2-112

Button

INHERITS FROM Control : View : Responder : Object
DECLARED IN appkit/Button.h
CLASS DESCRIPTION

A Button is a Control subclass that intercepts mouse-down events and sends an action
message to a target object whenever the Button is pressed.

Button essentially provides the Control view needed to display a ButtonCell object.
Most of its methods simply delegate to the same method in ButtonCell. To change the
look or behavior of a Button, create a subclass of ButtonCell and use the method
setCellClass: to get the Button class to use it.

Buttons can display any NXImage object. The icon methods altIcon, icon,
setAltIcon:, and setlcon: are provided for use with named images. The corresponding
image methods altImage, image, setAltImage:, and setImage: are provided for use
with the ids of image objects.

The initFrame:icon:tag:target:action:key:enabled: method is the designated
initializer for Buttons that display icons. Buttons that display text have the designated
initializer initFrame:text:tag:target:action:key:enabled:. Override one of these
methods if you create a subclass of Button that performs its own initialization.

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct __vFlags vFlags;
Inherited from Control int tag;
id cell;
struct _conFlags conFlags;

Declared in Button

(none)

Application Kit Classes: Button

2-113

METHOD TYPES
Setting Button’s Cell Class

Initializing a Button Instance

Setting the Button Type

Setting the State

Setting Button Repeat

Modifying the Title

Modifying the Icon

Modifying Graphic Attributes

Displaying

+ setCellClass:

— init

— initFrame:

— initFrame:icon:tag:target:action:key:enabled:
— initFrame:title:tag:target:action:key:enabled:

- setType:

— setState:
— state

— getPeriodicDelay:andInterval:
— setPeriodicDelay:andInterval:

— altTitle

— setAltTitle:

— setTitle:

— setTitleNoCopy:
— title

— altlcon

— altmage

—icon

— image

— iconPosition

— setAltlcon:

— setAltImage:

- setlcon:

— setImage:

— setlcon:position:
— setlconPosition:

— isBordered

— isTransparent
— setBordered:

— setTransparent:

— display
— highlight:

Handling Events and Action Messages

2-114 Chapter 2: Class Specifications

— acceptsFirstMouse

— keyEquivalent

— performClick:

— performKeyEquivalent:
— setKeyEquivalent:

Setting the Sound — setSound:
—sound

CLASS METHODS
setCellClass:
+ setCellClass:classld
Initializes the Button to work with a subclass of ButtonCell. The classld will usually

be the value returned by the message [myButtonCell class], where myButtonCell is an
instance of the subclass. Returns self.

INSTANCE METHODS

acceptsFirstMouse

— (BOOL)acceptsFirstMouse

Returns YES. Buttons always accept the mouse-down event that activates a Window.
altlcon

— (const char *)altIcon

Returns the Button’s alternate icon by name. This icon will appear on the Button when
it’s in its alternate state.

altlmage
— altlmage

Returns the Button’s alternate icon by id. This image will appear on the Button when
it’s in its alternate state.

altTitle
— (const char *)altTitle

Returns the current value of the Button’s alternate title. This is the string that appears
on the Button when it’s in its alternate state.

display
— display

Overridden from View so that displayFromOpaqueAncestor::: is called if the Button
has some non-opaque parts. Returns self.

Application Kit Classes: Button 2-115

2-116 Chapter2:

getPeriodicDelay:andInterval:
— getPeriodicDelay:(float *)delay andInterval:(float *)interval

This method returns self explicitly and two values by reference. delay returns the
amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object. interval returns the amount of
time (also in seconds) between those messages.
See also: — setContinuous: (Control), — setPeriodicDelay:andInterval:
highlight:
— highlight:(BOOL)flag
If the highlighted flag of the cell is not equal to flag, the Button is highlighted and the
highlighted flag of the cell is set to flag. Issues a flushWindow after highlighting the
Button. Returns self.
See also: — performClick:
icon
— (const char *)icon
Returns the Button’s icon by name.
iconPosition

— (int)iconPosition

Returns a constant representing the position of the icon on the Button. See
setIconPosition: for the list of position constants.

image
— image
Returns the id of the Button’s icon.
See also: — altImage, — setAltlcon:, — setAltImage:
init
— init
Initializes and returns the receiver, a new Button instance. The new instance displays

the word “Button” and has no icon associated with it. You usually invoke
initFrame: { title,icon } :tag:target:action:key:enabled: to initialize a Button.

Class Specifications

initFrame:
— initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new Button instance, with default parameters in
the given frame. The default title is “Button,” the default action is NULL and the
default target is nil. You usually invoke

initFrame: {title,icon }:tag:target:action:key:enabled: to initialize a Button.

initFrame:icon:tag:target:action:key:enabled:

— initFrame:(const NXRect *)frameRect
icon:(const char *)aString
tag:(int)anlnt
target:anObject
action:(SEL)aSelector
key:(unsigned short)charCode
enabled:(BOOL)flag

Initializes and returns the receiver, a new Button instance that displays an icon. The
arguments and operation of this method are exactly like those of
initFrame:title:tag:target:action:key:enabled:, except that the Button displays the
named icon represented by aString rather than displaying a text string. This method is
the designated initializer for Buttons that display icons.

initFrame:title:tag:target:action:key:enabled:

— initFrame:(const NXRect *)frameRect
title:(const char *)aString
tag:(int)anlnt
target:anObject
action:(SEL)aSelector
key:(unsigned short)charCode
enabled:(BOOL)flag

Initializes and returns the receiver, a new Button instance that displays a text string.
anlnt is a unique tag to identify your Button View. frameRect is the rectangle the
Button will occupy in its superview’s coordinates. aString contains the title for the
Button. anObject is the target that will be notified via the action message aSelector
when the Button is successfully pressed. If anObject is nil, the target will default to the
Button’s superview. aSelector should be a valid selector. charCode is the key
equivalent for this Button. flag determines whether your Button is initially enabled.
This method is the designated initializer for Buttons that display text.

Application Kit Classes: Button 2-117

isBordered
— (BOOL)isBordered

Returns YES if the Button has a border, NO otherwise.
See also: — setBordered:
isTransparent
— (BOOL)isTransparent
Returns YES if the Button is transparent, NO otherwise.
See also: — setTransparent:
keyEquivalent
— (unsigned short)keyEquivalent
Returns the key equivalent character of the Button.

See also: — performKeyEquivalent:
performClick:
— performClick:sender
Highlights the Button, sends its action message to the target object, then unhighlights

the Button. Invoke this method when you want the Button to behave exactly as if the
user had clicked it with the mouse.

performKeyEquivalent:
— (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Simulates the user clicking the Button and returns YES if the character in the event
record matches the Button’s key equivalent. Otherwise, does nothing and returns NO.

See also: — keyEquivalent

2-118 Chapter 2: Class Specifications

setAltIcon:

— setAltlcon:(const char *)iconName

Sets the Button’s alternate icon by name; iconName is the name of an image to be
displayed. Does not display the Button even if autodisplay is on.

See also: — setlcon:
setAltImage:
— setAltImage:altimage

Sets the Button’s alternate icon by id; alt/mage is the id of the image to be displayed.
Does not display the Button even if autodisplay is on.

See also: — setImage:

setAltTitle:
— setAltTitle:(const char *)aString

Sets the alternate title of your Button to aString, the title that will display when the
Button is clicked. Does not display the Button even if autodisplay is on.

setBordered:
— setBordered:(BOOL)flag

If flag is YES, the Button displays a border; if NO, no border is displayed. This method
redraws the Button if the bordered state is changed. Returns self.

setlcon:

— setlcon:(const char *)iconName

Sets the Button’s icon by name; iconName is the name of an image to be displayed.
Returns self.

See also: — getBitmapFor: (Bitmap)

setlcon:position:

— setlcon:(const char *)iconName position:(int)aPosition

Combines setlcon: and setIconPosition: into one message. Returns self.

Application Kit Classes: Button 2-119

setlconPosition:

— setlconPosition:(int)aPosition

Sets the position of the icon when a Button simultaneously displays both text and an
icon. aPosition can be one of the following constants:

NX_TITLEONLY title only (no icon on the Button)
NX_ICONONLY icon only (no text on the Button)
NX_ICONLEFT icon is to the left of the text
NX_ICONRIGHT icon is to the right of the text
NX_ICONBELOW icon is below the text
NX_ICONABOVE icon is above the text
NX_ICONOVERLAPS icon and text overlap

If the position is top or bottom, the alignment of the text will be set to
NX_CENTERED. This behavior can be overridden with a subsequent setAlignment:.
Returns self.

setlmage:
— setlmage:image
Sets the Button’s icon by id; image is the id of the image to be displayed. Returns self.
See also: + findImageNamed:(NXImage)
setKeyEquivalent:
— setKeyEquivalent:(unsigned short)charCode
Sets the key equivalent character of the Button. Returns self.
See also: — keyEquivalent, — performKeyEquivalent:
setPeriodicDelay:andInterval:
— setPeriodicDelay:(float)delay andInterval:(float)interval
Sets two values that are in effect if the Button is set to continuously send the action
message to the target object while tracking the mouse. delay is the amount of time (in
seconds) that a continuous button will pause before starting to periodically send action
messages to the target object. interval is the amount of time (also in seconds) between

those messages. Returns self.

See also: — getPeriodicDelay:andInterval:, — setContinuous(Control)

2-120 Chapter 2: Class Specifications

setSound:
— setSound:soundObj

Sets the sound played when the Button is pressed. Returns self.
setState:

— setState:(int)value

Sets the Button’s state to value and redraws the Button. Returns self.
setTitle:

— setTitle:(const char *)aString

Sets the title of the Button to aString. Returns self.

setTitleNoCopy:
— setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTransparent:
— setTransparent:(BOOL)flag

Sets whether the Button is transparent. A transparent Button tracks the mouse and
sends its action, but it doesn’t draw anything. Returns self.

Application Kit Classes: Button 2-121

setType:
— setType:(int)aType

Sets the way the Button shows its state and highlighting, and returns self. aType can be
one of five constants:

NX_MOMENTARYPUSH (the default). States O and 1 are displayed in the same
manner. Highlighting is shown by the Button’s “pushing in” to the screen.

NX_MOMENTARYCHANGE. States 0 and 1 look identical. When the Button is
highlighted, the alternate icon or alternate text will be displayed. The miniaturize

Button in the window frame is a good example of this type of Button.

NX_PUSHONPUSHOFF. State 1 differs from state 0 by the fact that different colors
are used. Highlighting is achieved by “pushing in.”

NX_TOGGLE. State 1 uses the altContents and/or altlcon. Highlighting is performed
by “pushing in.”

NX_SWITCH. A variant of NX_TOGGLE that has no border, and that has a default
icon called “switch.”

sound

— sound

Returns the sound played when the button is pressed.
state

— (int)state

Returns the Button’s state (0 or 1).
title

— (const char *)title

Returns a pointer to the current string value of the Button’s title.

2-122 Chapter 2: Class Specifications

ButtonCell

INHERITS FROM ActionCell : Cell : Object
DECLARED IN appkit/ButtonCell.h
CLASS DESCRIPTION

The ButtonCell class is a subclass of Cell that is used to implement Button. Different
modes of button operation are distinguished according to the values of the changeXXX
and lightByXXX bitfields.

changeXXX refers to what changes when the state changes. Thus, if changeGray is
set, then, when a button is in state 1, all light gray areas in the button become white, and
all white areas become light gray. If changeBackground is set, then the background
in state 1 is white instead of the default light gray used in state 0. If changeContents
is set, then altContents and/or icon.bmap.alternate are used to draw the button when it
isin state 1. If both changeBackground and changeGray are set, then the ButtonCell
will use changeGray unless the ButtonCell has an icon and alpha values, in which case
it will use changeBackground. The lightByXXX flags have similar meanings, but are
used when the button is pressed to highlight the button. The pushln flag is used to
determine whether the button appears to “push in” to the screen when pressed. This
only has meaning when the bordered flag is set.

For all ButtonCells, the “default” icon is the keyEquivalent for the button. Therefore,
if you want the button to display its keyEquivalent, just use setIconPosition: to
determine where on the button the keyEquivalent should appear. MenuCells use this,
for example (by issuing a setlconPosition:NX_ICONRIGHT). If you set an icon (or
an altlcon) for the button, then the icon will be displayed instead of the keyEquivalent,
so if you want the keyEquivalent, don’t invoke setIcon:!

ButtonCells can display any type of image. The icon methods altIcon, icon,
setAltIcon:, and setlcon: work with named images. The corresponding image
methods altlmage, image, setAltlmage:, and setlmage: work with ids of image
objects.

The initIconCell: method is the designated initializer for ButtonCells that display
icons. The initTextCell: method is the designated initializer for ButtonCells that
display text. Override one of these methods if you create a subclass of ButtonCell that
does its own initialization.

Application Kit Classes: ButtonCell 2-123

INSTANCE VARIABLES
Inherited from Object

Inherited from Cell

Inherited from ActionCell

Declared in ButtonCell

2-124 Chapter 2: Class Specifications

Class

char

id

struct _cFlagsl
struct _cFlags2

int
id
SEL

char
union _icon {
struct _bmap {
id
id
}
struct _ke {
id
float
}
}
id
struct _bcFlags1 {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
}
struct _bcFlags? {
unsigned int
unsigned int
}
unsigned short
unsigned short

isa;

*contents;
support;
cFlagsl;
cFlags2;

tag;
target;
action;

*altContents;

normal;
alternate;
bmap;

font;
descent;
ke;
icon;
sound;

pushln:1;
changeContents:1;
changeBackground:1;
changeGray:1;
lightByContents:1;
lightByBackground:1;
lightByGray:1;
hasAlpha:1;
bordered:1;
iconOverlaps:1;
horizontal:1;
bottomOrLeft:1;
iconAndText:1;
lastState:1;
iconSizeDiff:1;
iconlsKeyEquivalent:1;
bcFlags1;

keyEquivalent:8;

transparent:1;
bcFlags2;
periodicDelay;
periodicInterval;

altContents

bmap.normal
bmap.alternate
ke.font

ke.descent

sound

bcFlags1.pushin

bcFlags1.changeContents
bcFlags1.changeBackground
bcFlags1.changeGray
bcFlags1.lightByContents
bcFlagsl.lightByBackground
bcFlagsl1.lightByGray
bcFlags1.hasAlpha
bcFlags1.bordered
bcFlags1.iconOverlaps
bcFlags1.horizontal
bcFlags1.bottomOrLeft
bcFlags1.iconAndText
bcFlagsl.lastState

bcFlagsl.iconSizeDiff

bcFlagsl.iconlsKeyEquivalent

bcFlags2.keyEquivalent

Alternate contents used instead of contents in
certain state configurations.

Name of the icon for this button.
Name of the alternate icon.
Font used to draw the key equivalent.

The descent of descenders in the key equivalent
font.

The button’s sound.

Button appears to push into the screen when
pressed.

Show alternate state by using alternate contents.
Show alternate state by changing the background.
Show alternate state by inverting the button.
Show highlighting by using alternate contents.
Show highlighting by changing the background.
Show highlighting by inverting the button.

Icon has alpha values.

Button has border.

Icon overlaps text.

Icon to side of text.

Icon on left or bottom.

Button has icon and text.

Last state drawn.

Alternate icon is a different size than the normal
icon.

The icon is the key equivalent.

The key equivalent.

Application Kit Classes: ButtonCell 2-125

bcFlags?2.transparent Whether to draw.

periodicDelay The delay before sending the first send by a
continuous button.
periodicInterval The interval at which a continuous button sends
its action.
METHOD TYPES

Copying, Initializing and Freeing a ButtonCell
— copyFromZone
— init
— initIconCell:
— initTextCell:
— free

Determining Component Sizes — calcCellSize:inRect:
— getDrawRect:
— getlconRect:
— getTitleRect:

Modifying the Title — altTitle
— setAltTitle:
— setFont:
— setTitle:
— setTitleNoCopy:
— title

Modifying the Icon — altlcon
— altlmage
—icon
— image
— iconPosition
— setAltlcon:
— setAltImage:
— setlcon:
— setlmage:
— setlconPosition:

Modifying the Sound — setSound:
- sound

2-126 Chapter 2: Class Specifications

Setting the State — doubleValue
— floatValue
—intValue
— setDoubleValue:
— setFloatValue:
— setIntValue:
— setString Value:
— setStringValueNoCopy:
— stringValue

Setting the Button Repeat — getPeriodicDelay:andInterval:
— setPeriodicDelay:andlnterval:

Tracking the Mouse — trackMouse:inRect:of View:
Setting the Key Equivalent — keyEquivalent

- setKeyEquivalent:

— setKeyEquivalentFont:

— setKeyEquivalentFont:size:

Setting Parameters — getParameter:
— setParameter:to:

Modifying Graphic Attributes — highlightsBy
— isBordered
— isOpaque
— isTransparent
— setBordered:
— setHighlightsBy:
— setShowsStateBy:
— setTransparent:
— setType:
— showsStateBy

Simulating a Click — performClick:
Displaying — drawlInside:inView:
— drawSelf:inView:

— highlight:inView:lit:

Archiving —read:
— write:

Application Kit Classes: ButtonCell 2-127

INSTANCE METHODS

altIcon

— (const char *)altIcon

Returns the ButtonCell’s alternate icon by name. This icon will appear on the Button
when it is in its alternate state. If there is no alternate icon, it returns NULL. This is
the icon that will be displayed if the iconPosition is not NX_TITLEONLY and the
changeContents or lightByContents flag is set.

altlmage
— altImage
Returns the ButtonCell’s alternate icon by id. This image will appear on the Button
when it is in its alternate state. If there is no alternate image, it returns nil. This is the

image that will be displayed if the iconPosition is not NX_TITLEONLY and the
changeContents or lightByContents flag is set.

altTitle
— (const char *)altTitle
Returns the ButtonCell’s alternate title. This is the text string that will appear on the

button if the iconPosition is not NX_ICONONLY and the changeContents or
lightByContents flag is set.

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns, by reference, the minimum width and height required for displaying the button
in aRect. The computation is done as follows:

1. The size of the contents instance variable is computed.
2. The size of the altContents is computed.
3. The maximum width and height are set in theSize.

4. If the button has an additional icon, its width and height are calculated; if either is
bigger than the contents size, the size is increased to accommodate the icon.

5. If the button has a border, then the width and the height are incremented by the
border width.

2-128 Chapter 2: Class Specifications

copyFromZone

— copyFromZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the ButtonCell. Allocates the copy from
zone.

doubleValue
— (double)doubleValue

Returns the ButtonCell’s state cast as a double (0.0 or 1.0).

drawlnside:inView:

— drawlInside:(const NXRect *)aRect inView:controlView

Draws the inside of the ButtonCell (the text and the icon and their background, but not
the bezel). This method is called by drawSelf:inView: and by the Control classes’
drawCelllnside: method. It is provided so that when a ButtonCell’s state is set (via
setState:, setIntValue:, and others), a minimal update of the ButtonCell’s visual
appearance can occur. If you subclass ButtonCell and override drawSelf:inView: you
MUST override this method as well (however, you are free to override only this method
and not drawSelf:inView: as long as your subclass draws inside the same area as
ButtonCell does). Returns self.

See also: — drawlnside:inView: (Cell)

drawSelf:inView:
— drawSelf:(const NXRect *)cellFrame inView:controlView
Displays the ButtonCell in the given rectangle of the given view. Focus must be locked

on controlView. It draws the border of the ButtonCell if necessary, then calls
drawlInside:inView:. Returns self.

floatValue
— (float)floatValue

Returns the ButtonCell’s state cast as a float (0.0 or 1.0).

free

— free

Disposes of the memory used by the ButtonCell and returns nil.

Application Kit Classes: ButtonCell 2-129

getDrawRect:

— getDrawRect:(NXRect *)theRect

Returns self and, by reference, the bounds of the area into which the text and/or icon
will be drawn. You must pass the bounds of the ButtonCell in theRect (the same bounds
passed to drawSelf:inView:). It assumes that the ButtonCell is being drawn in a

flipped view.

getlconRect:

— getlconRect:(NXRect *)theRect

Returns self and, by reference, the bounds of the area into which the icon of the
ButtonCell will be drawn. If the button has no icon, then theRect will not be touched.
You must pass the bounds of the ButtonCell in theRect (the same bounds passed to
drawSelf:inView:). It assumes that the ButtonCell is being drawn in a flipped view.

getParameter:

— (int)getParameter:(int)aParameter

Returns the state of a number of frequently accessed flags for a ButtonCell. The
following constants correspond to the different flags:

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE
NX_CHANGECONTENTS
NX_CHANGEBACKGROUND
NX_CHANGEGRAY
NX_LIGHTBYCONTENTS
NX_LIGHTBYBACKGROUND
NX_LIGHTBYGRAY
NX_PUSHIN
NX_OVERLAPPINGICON
NX_ICONHORIZONTAL
NX_ICONONLEFTORBOTTOM
NX_ICONISKEYEQUIVALENT

You don’t normally invoke this method since all of these flags are available via normal
querying methods (e.g., isEnabled, highlightsBy:, etc.).

2-130 Chapter 2: Class Specifications

getPeriodicDelay:andInterval:
— getPeriodicDelay:(float *)delay andInterval:(float *)interval

Returns two values: The amount of time (in seconds) that a continuous button will
pause before starting to periodically send action messages to the target object, and the
interval (also in seconds) at which those messages are sent. Returns self.

See also: — setContinuous: (Cell), — setPeriodicDelay:andInterval:

getTitleRect:
— getTitleRect:(NXRect *)theRect

Returns self and, by reference, a copy of the bounds of the area into which the text of
the ButtonCell will be drawn. You must pass the bounds of the ButtonCell in theRect
(the same bounds passed to drawSelf:inView:). It assumes that the ButtonCell is being
drawn in a flipped view.

highlight:inView:lit:
— highlight:(const NXRect *)cellFrame

inView:controlView
lit:(BOOL)flag

Highlights the ButtonCell if its highlighted flag is not equal to flag. You must
lockFocus on controlView before calling this method. If possible, this method tries to
use NXHighlightRect (i.e., if the button is not pushIn and changeContents and
lightByContents are not set). If it cannot use NXHighlightRect, then it simply calls
drawSelf:inView: or drawlInside:inView: dependent upon whether the border of the
button is involved in the highlighting process (e.g., in a pushln button). Does nothing
if the button is disabled or transparent. Returns self.

highlightsBy
— (int)highlightsBy

Returns the logical OR of one or more flags that indicate the way the ButtonCell
highlights when the button is pressed. See setHighlightsBy: for the list of flags.

icon
— (const char *)icon

Returns the ButtonCell’s icon by name.. If there is no icon displayed in the ButtonCell,
or if the icon is the key equivalent, then it returns NULL.

See also: — setlcon:

Application Kit Classes: ButtonCell 2-131

iconPosition

— (int)iconPosition

Returns the position of the ButtonCell’s icon. See setlconPosition: for the valid
positions. The default is NX_TITLEONLY if the ButtonCell is created with
newTextCell: or NX_ ICONONLY if created with newlconCell:.

image

— image

Returns the ButtonCell’s icon by id. If there is no image displayed in the ButtonCell,
or if the image is the key equivalent, then it returns nil.

See also: — setImage:

init

— init

Initializes and returns the receiver, a new ButtonCell, as a text cell with the word
“Button” on it.

initIconCell:

— initIconCell:(const char *)iconName

Initializes and returns the receiver, a new ButtonCell, with default size. By default, the
ButtonCell is bordered and is pushIn. None of the changeXXX flags is set. The
lightByGray and lightByBackground flags are set. This means that, when pressed,
the button will perform NXHighlightRect() if the icon has no alpha or will change the
background (from light gray to white) if the icon does have alpha values. Aniconisa
named NXImage; see the NXImage class for details. This is the designated initializer
for ButtonCells that display icons.

See also: — findImageNamed: (NXImage)

initTextCell:

— initTextCell:(const char *)aString

Initializes the receiver, a new ButtonCell, with default size, font, title, and centered
alignment. By default, the ButtonCell is bordered and is pushIn. None of the
changeXXX is set and the button will “light up” when pressed (lightByGray and
lightByBackground are set). This is the designated initializer for ButtonCells that
display text. '

2-132 Chapter 2: Class Specifications

intValue
— (int)intValue

Returns the ButtonCell’s state (0 or 1).

isBordered
— (BOOL)isBordered

Returns YES if the button has a border, NO if not.
isOpaque
— (BOOL)isOpaque

Returns YES if drawing the ButtonCell touches all the bits in its frame, NO if not. The
ButtonCell is opaque if it is not transparent and if it has a border.

isTransparent
— (BOOL)isTransparent

Returns YES if the ButtonCell is transparent, NO if not.
See also: — setTransparent:
keyEquivalent
— (unsigned short)keyEquivalent
Returns the key equivalent character of the ButtonCell.
performClick:
— performClick:sender

If this ButtonCell is contained in a Control, then invoking this method causes the
ButtonCell to act exactly as if the user had clicked the button.

read:
—read:(NXTypedStream *)stream

Reads the ButtonCell from the typed stream stream.

Application Kit Classes: ButtonCell 2-133

setAltIcon:

— setAltIcon:(const char *)iconName

Sets the ButtonCell’s alternate icon by name; iconName is the name of an image to be
displayed. This icon is displayed if the changeContents or lightByContents flag is
set; these are set by the setShowsStateBy: and setHighlightsBy: methods,
respectively. Note that no icon will be displayed in a ButtonCell unless setIcon: or
setImage: is invoked (thus, setAltIcon: by itself has no affect on the appearance of the
button). Returns self.

See also: — setIcon:

setAltImage:
— setAltImage:altimage

Sets the ButtonCell’s alternate icon by id; altImage is the id of the image to be
displayed. This image is displayed if the changeContents or lightByContents flag is
set; these are set by the setShowsStateBy: and setHighlightsBy: methods,
respectively. Note that no image will be displayed in a ButtonCell unless setIcon: or
setImage: is invoked (thus, setAltImage: by itself has no effect on the appearance of
the button). Returns self.

See also: — setImage:

setAltTitle:
— setAltTitle:(const char *)aString
Invoke this method to set the alternate title to a copy of aString. If the ButtonCell was
not an NX_TEXTCELL, it is automatically converted, in which case its support

instance variable is set to the default font. If there is an icon associated with this
ButtonCell, then the iconAndText flag is set. Returns self.

setBordered:
— setBordered:(BOOL)flag

If flag is YES, sets the ButtonCell to display a border; if flag is NO, it has none.
Redraws the ButtonCell if its bordered status changes. Returns self.

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the ButtonCell’s state to 1 if aDouble is nonzero, 0 otherwise. Returns self.

2-134 Chapter 2: Class Specifications

setFloatValue:
— setFloatValue:(float)aFloat

Sets the ButtonCell’s state to 1 if aFloat is non-zero, 0 otherwise. Returns self.
setFont:
— setFont:fontObj

Sets the font to be used when displaying text. Does nothing if the cell type is not
NX_TEXTCELL. Returns self.

setHighlightsBy:
— setHighlightsBy:(int)aType

Sets the way the button highlights itself. aType can be the logical OR of one or more
of the following constants:

NX_PUSHIN The button “pushes in” when pressed (default)
NX_NONE No difference when highlighted
NX_CONTENTS Use the alternate contents
NX_CHANGEGRAY Light gray -> white, white -> light gray

NX_CHANGEBACKGROUND Same as NX_CHANGEGRAY, but only
touches background

If you specify both NX_CHANGEGRAY and NX_CHANGEBACKGROUND, then a
choice will be made between the two based on whether the icon of your button (if any)
has any alpha. Ifit does, then NX_CHANGEBACKGROUND will be used; otherwise,
NX_CHANGEGRAY will be used. If your button has no icon, then
NX_CHANGEGRAY will be used. Returns self.

setlcon:
— setIcon:(const char *)iconName
Sets the ButtonCell’s icon by name; iconName is the name of an image to be displayed.
If there is no text associated with the ButtonCell, then it is converted to
NX_ICONCELL,; otherwise, the iconOverlaps flag is set. An icon is a named
NXImage. Returns self.

See also: — findImageNamed: (NXImage)

Application Kit Classes: ButtonCell 2-135

setlconPosition:

— setlconPosition:(int)aPosition

Sets the position of the icon for this ButtonCell. aPosition can be one of the following

constants:
NX_TITLEONLY = title only (iconAndText = 0, iconOverlaps = 0)
NX_ICONONLY = icon only (iconAndText = 0, iconOverlaps = 1)
NX_ICONLEFT = icon left of the text (iconAndText = 1, iconOverlaps = 0)
NX_ICONRIGHT = right of the text (iconAndText = 1, iconOverlaps = 0)
NX_ICONBELOW = below the text (iconAndText = 1, iconOverlaps = 0)
NX_ICONABOVE = above the text (iconAndText = 1, iconOverlaps = 0)

NX_ICONOVERLAPS = overlapping (iconAndText = 1, iconOverlaps = 1)

If the position is top or bottom, the alignment of the text will be set to
NX_CENTERED. This can be overridden with a subsequent setAlignment:. Returns
self.

setImage:
— setImage:image
Sets the ButtonCell’s icon; image is the id of an image to be displayed. Returns self.
setIntValue:
— setIntValue:(int)anlnt
Sets the ButtonCell’s state to 1 if anlnt is nonzero, 0 otherwise. Returns self.
setKeyEquivalent:
— setKeyEquivalent:(unsigned short)charCode
Sets the key equivalent character of the ButtonCell. The key equivalent will appear on
the button only if there is no icon set (with setIcon: or setAltIcon:) and the
iconPosition is not NX_TITLEONLY or NX_ICONONLY or NX_ICONOVERLAPS.
The canonical way to put the key equivalent character on your button is to invoke
setKeyEquivalent:, then invoke setIconPosition:NX_ICONRIGHT (or LEFT or
ABOVE or BELOW). Menu entries (which inherit from ButtonCell) are usually the
only ButtonCells with key equivalents. Returns self.

A ButtonCell’s key equivalent can be tested by sending it a keyEquivalent message.

See also: — keyEquivalent, — performClick: (Matrix, Button)

2-136 Chapter 2: Class Specifications

setKeyEquivalentFont:
— setKeyEquivalentFont:fontObj

Sets the font used to draw the keyEquivalent. Does nothing if there is already an icon
associated with this ButtonCell. The default font is the same as that used to draw the
text on the ButtonCell. Returns self.

setKeyEquivalentFont:size:
— setKeyEquivalentFont:(const char *)fontName size:(float)fontSize

Convenient form of setKeyEquivalent: that sets both the font and font size used to
draw the keyEquivalent. Returns self.

setParameter:to:

— setParameter:(int)aParameter to:(int)value

Sets the most usual flags of a ButtonCell. See getParameter: for the list of usual flags.
You do not usually invoke this method; instead use the appropriate set... methods to set
flags. Returns self.

setPeriodicDelay:andInterval:
— setPeriodicDelay:(float)delay andInterval:(float)interval
This method sets two values: The amount of time (in seconds) that a continuous button
will pause before starting to periodically send action messages to the target object, and
the interval (also in seconds) at which those messages are sent. The maximum delay

or interval 1s 60.0 seconds. Returns self.

See also: — setContinuous: (Cell)

Application Kit Classes: ButtonCell 2-137

setShowsStateBy:
— setShowsStateBy:(int)aType

Sets the way the button shows its alternate state. aType should be the logical OR of one
or more of the following constants:

NX_PUSHIN The button “pushes in” when pressed (default)
NX_NONE No difference when highlighted
NX_CONTENTS Use the alternate contents
NX_CHANGEGRAY Light gray -> white, white -> light gray

NX_CHANGEBACKGROUND Same as NX_CHANGEGRAY, but only
touches background

If you specify both NX_CHANGEGRAY and NX_CHANGEBACKGROUND, then a
choice will be made between the two based on whether the icon of your button (if any)
has any alpha. If it does, then NX_CHANGEBACKGROUND will be used, else
NX_CHANGEGRAY. If your button has no icon, then NX_CHANGEGRAY will be
used. Returns self.

setSound:
- setSound:aSound
Sets the sound that will be played when the mouse goes down in the ButtonCell. If you

use a sound on your button, you must link your application against the soundkit.
Returns self.

setStringValue:
— setStringValue:(const char *)aString

Sets the state of the ButtonCell. If aString is a non-null string, the state is set to 1; if
aString is null, the state is set to 0. Returns self.

setStringValueNoCopy:
— setStringValueNoCopy:(const char *)aString

Same as setString Value:.
setTitle:
— setTitle:(const char *)aString

Sets the text that is displayed on the button to aString. If there is already an icon
associated with the button, then the iconAndText flag is set to YES. Returns self.

2-138 Chapter 2: Class Specifications

setTitleNoCopy:
— setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTransparent:
— setTransparent:(BOOL)flag

Sets whether the ButtonCell is transparent. A transparent button never draws anything,
but it does track the mouse and send its action normally. This method is useful for
sensitizing an area on the screen so that an action gets sent to a target when the area
receives a mouse click. Returns self.

setType:
— setType:(int)alype
Sets standard button types. The ButtonCell does not record the type directly; instead,
this method sets the changeXXX and lightByXXX flags appropriately. The
NX_SWITCH and NX_RADIOBUTTON types also set the icon to the default icon for

that type of button (only if there is not already an icon set). aType can be one of the
following constants:

NX_MOMENTARYPUSH
NX_MOMENTARYCHANGE
NX_PUSHONPUSHOFF
NX_TOGGLE

NX_SWITCH
NX_RADIOBUTTON

This method is invoked by Button’s setType: method. It is very useful for creating
prototype cells in a matrix of radio buttons. Returns self.

See also: — setType: (Button)

showsStateBy
— (int)showsStateBy

Returns flags reflecting the way that the button shows its alternate state. See
setShowsStateBy: for list of appropriate flags. Returns self.

sound

— sound

Returns the sound object that is sent a play message on a mouse-down event in the
ButtonCell.

See also: — setSound:

Application Kit Classes: ButtonCell 2-139

stringValue

— (const char *)stringValue

Returns the ButtonCell’s state as a string. If the state is 1, “”” (empty string) is returned,
otherwise, NULL is returned. This is an unusual method to invoke (since the
stringValue of a button doesn’t make much sense) and is included only for
completeness.

title

— (const char *)title

Returns ButtonCell’s text if the receiving ButtonCell displays any text; otherwise it
returns NULL.

trackMouse:inRect:of View:

— (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse by starting the sound (if any) and calling
[super trackMouse:theEvent inRect:cellFrame of View:controlView]. Returns YES if
the mouse button goes up with the cursor in the cell, NO otherwise.

See also: — trackMouse:inRect:of View: (Cell)

write:
— write:(NXTypedStream *)stream

Writes the receiving ButtonCell to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Button Types */

#define NX MOMENTARYPUSH 0
#define NX PUSHONPUSHOFF 1
#define NX TOGGLE 2
#define NX SWITCH 3
#define NX RADIOBUTTON 4
#define NX MOMENTARYCHANGE 5

2-140 Chapter 2: Class Specifications

Cell

INHERITS FROM Object
DECLARED IN appkit/Cell.h
CLASS DESCRIPTION

Cell is an abstract super class that provides many useful functions needed for displaying
text or icons without the overhead of a full View subclass. In particular, it provides
most of the functionality of a Text class by providing access to a shared Text object that
can be used by all instances of Cell in an Application. Cell is used heavily by the
Control classes to implement their internal workings. Some subclasses of Control
(notably Matrix) allow multiple Cells to be grouped and act together in some
cooperative manner. Thus, with a Matrix, a group of radio buttons can be implemented
without needing a View for each button (and without needing a Text object for the text
on each button). Cells are also extremely useful for placing titles or icons at will in a
custom subclass of View.

The Cell class provides primitives for displaying text or an icon, editing text, formatting
floating point numbers, maintaining state, highlighting, and tracking the mouse. It has
several subclasses: SelectionCell, NXBrowserCell, and ActionCell (which in turn has
the subclasses ButtonCell, SliderCell, TextFieldCell, and FormCell). Cell’s
trackMouse:inRect:of View: method supports the target object and action method
used to implement controls. However, Cell implements these features abstractly,
deferring the details of implementation to ActionCell.

The initIconCell: method is the designated initializer for Cells that display icons. The
initTextCell: method is the designated initializer for Cells that display text. Override
one of these methods if you implement a subclass of Cell that performs its own
initialization.

Application Kit Classes: Cell 2-141

INSTANCE VARIABLES

Inherited from Object Class isa;
-Declared in Cell char *contents;
id support;
struct _cFlagsl {
unsigned int state:1;
unsigned int highlighted:1;
unsigned int disabled:1;
unsigned int editable:1;
unsigned int type:2;
unsigned int freeText:1;
unsigned int alignment:2;
unsigned int bordered:1;
unsigned int bezeled:1;

contents

support
cFlags1.state
cFlags1.highlighted
cFlags1.disabled
cFlags].editable
cFlagsl.type
cFlags1.freeText

cFlags1.alignment

2-142 Chapter 2: Class Specifications

}

unsigned int
unsigned int
unsigned int

struct _cFlags?2 {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

selectable:1;
scrollable:1;
entryType:3;

cFlagsl;

continuous:1;
actOnMouseDown:1;
floatLeft:4;
floatRight:4;
autoRange:1;
actOnMouseDragged:1;
noWrap:1;
dontActOnMouseUp:1;

} cFlags2;

String for a TextCell, name of the icon for an
IconCell.

Font for TextCell, NXImage for IconCell.
Current state of the Cell (0 or 1).

Whether Cell is highlighted.

Whether Cell is disabled.

Whether text in the Cell is editable.
NULLCELL, TEXTCELL, or ICONCELL.
Whether to free contents when freeing the Cell.

Text justification.

cFlags1.bordered

cFlags]1.selectable
cFlags1.scrollable
cFlagsl.entryType

cFlags2.continuous

cFlags2.actOnMouseDown

cFlags2.floatLeft

cFlags2.floatRight

cFlags2.autoRange

cFlags2.actOnMouseDragged
cFlags2.noWrap

cFlags2.dontActOnMouseUp

METHOD TYPES

Whether the Cell has a border.

Whether the

1RV 4 i

®!

ell has a bezeled border.
Whether the text is selectable.
Whether the text is scrollable.

Type of data accepted.

Sends action continuously to target while control is
active.

Sends action on the mouse-down (rather than the
mouse-up).

Digits to left of decimal when text is floating-point
number.

Digits to right of decimal when text is floating-point
number.

Autorange decimal when text is floating point
number.

Send action every time the mouse changes position.
0 = word wrap, 1 = character wrap.

Don’t send the action on the mouse-up event.

Copying, initializing, and freeing a Cell

Determining component sizes

— copy

— copyFromZone:
— init

— initIconCell:

— initTextCell:

— free

— calcCellSize:

— calcCellSize:inRect:
— calcDrawlInfo:

— getDrawRect:

— getlconRect:

— getTitleRect:

Application Kit Classes: Cell 2-143

Setting the Cell’s type - setType:
—type

Setting the Cell’s state — incrementState
— setState:
— state

Enabling and disabling the Cell — isEnabled
— setEnabled:

Modifying the Icon —icon
— setlcon:

Setting Cell values — doubleValue
— floatValue
— intValue
— setDouble Value:
— setFloatValue:
— setIntValue:
— setString Value:
— setString ValueNoCopy:
— setString ValueNoCopy:shouldFree:
— string Value

Modifying text attributes — alignment
— font
— isEditable
—1isScrollable
—isSelectable
— setAlignment:
— setEditable:
— setFont:
— setScrollable:
— setSelectable:
— setTextAttributes:
— setWrap:

Editing text — edit:inView:editor:delegate:event:

— endEditing:

— select:inView:editor:delegate:start:length:
Validating input — entryType

— isEntryAcceptable:

— setEntryType:

Formatting data — setFloatingPointFormat:left:right:

2-144 Chapter 2: Class Specifications

Modifying graphic attributes

Setting parameters

Interacting with other Cells

Displaying

Target and action

Assigning a tag

Handling keyboard alternatives

Tracking the mouse

Managing the cursor

Archiving

— isBezeled

— isBordered
— isOpaque

— setBezeled:
— setBordered:

— getParameter:

— setParameter:to:

— takeDouble ValueFrom:
— takeFloatValueFrom:

— takeIntValueFrom:

— takeStringValueFrom:

— control View

— drawlnside:inView:
— drawSelf:inView:
— highlight:inView:lit:

— isHighlighted

— action

— getPeriodicDelay:andInterval:

— isContinuous
— sendActionOn:
— setAction:

— setContinuous:
— setTarget:

— target

—setTag:
— tag

— keyEquivalent

— continueTracking:at:inView:

— mouseDownFlags

+ prefersTrackingUntilMouseUp

— startTrackingAt:in View:

— stopTracking:at:inView:mouselsUp:
— trackMouse:inRect:of View:

— resetCursorRect:inView:

— awake
— read:
— write:

Application Kit Classes: Cell

2-145

CLASS METHODS

prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilMouseUp

Returns NO by default. Override this method to return YES if the Cell should, after a
mouse-down event, track mouse-dragged and mouse-up events even if they occur
outside the Cell’s frame. This method is overridden to ensure that a SliderCell in a
matrix doesn’t stop responding to user input (and its neighbor start responding) just
because the knob isn’t dragged in a perfectly straight line.

INSTANCE METHODS

action
— (SEL)action

Returns a null selector. This method is overridden by Action Cell and its subclasses,
which actually implement the target object and action method.

alignment

— (int)alignment

Returns the alignment of text in the Cell. The return value can be one of three
constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

awake

— awake

Used during unarchiving; initializes static variables for the Cell class. Returns self.

calcCellSize:
— calcCellSize:(NXSize *)theSize

Returns self and, by reference, the minimum width and height required for displaying
the Cell. It’s implemented by calling calcCellSize:inRect: with the rectangle argument
set to a rectangle with very large width and height. This should be overridden if that is
not the proper way to calculate the minimum width and height required for displaying
the Cell (SliderCell overrides this method for that reason).

2-146 Chapter 2: Class Specifications

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self and, by reference, the minimum width and height required for displaying
the Cell in a given rectangle. If it’s not possible to fit, the width and/or height could be
bigger than the ones of the rectangle. The computation is done by trying to size the Cell
so that it fits in the rectangle argument (by wrapping the text for instance). If a choice
must be made between extending the width or height of aRect to fit the text, the height
will be extended.

calcDrawlnfo:
— calcDrawlInfo:(const NXRect *)aRect

Objects using Cells generally maintain a flag that informs them if any of their Cells has
been modified in such a way that the location or size of the Cell should be recomputed.

If so a method (usually named calcSize) is automatically invoked before displaying the
Cell; this method invokes Cell’s calcDrawlInfo: for each Cell. Subclasses of Cell can
override calcDrawlnfo: to cache some information that could speed up the drawing of
the Cell. In Cell, this method does nothing and returns self.

See also: — calcSize (Matrix)

continueTracking:at:inView:

— (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
inView:controlView

Returns YES if it’s OK to keep tracking. This method is invoked by
trackMouse:inRect:of View: as the mouse is dragged around inside the Cell. By
default, this method returns YES when the cFlags2.continuous or
cFlags2.actOnMouseDragged is set to YES. This method is often overridden to
provide more sophisticated tracking behavior.

controlView
— controlView
Returns nil. This method is implemented abstractly, since Cell doesn’t have an instance
variable for the view in which an instance is drawn. It’s overridden by ActionCell and
its subclasses, which use the controlView’s id as the only argument in the action

message when it’s sent to the target.

See also: — controlView (ActionCell)

Application Kit Classes: Cell 2-147

copy
— copy

Allocates and returns a copy of the receiving Cell. The copy is allocated from the
default zone and is assigned the contents of the receiver.

copyFromZone:

— copyFromZone:(NXZone *)zone

Allocates and returns a copy of the receiving Cell. The copy is allocated from zone and
is assigned the contents of the receiver. When you subclass Cell, override this method
to send the message [super copyFromZone:], then copy each of the subclass’s unique
instance variables separately.

doubleValue
— (double)doubleValue

Returns the receiver’s double value by converting its contents to a double using the C
function atof(). Returns O if the cell type is not NX_TEXTCELL.

drawlnside:inView:

— drawlnside:(const NXRect *)cellFrame inView:controlView

Draws the inside of the Cell; it’s the same as drawSelf:inView: except that it does not
draw the bezel or border if there is one. All subclasses of Cell which implement
drawSelf:inView: must implement drawlInside:inView:. drawlnside:inView:
should never invoke drawSelf:inView:, but drawSelf:inView: can invoke
drawlnside:inView: (in fact, it often does). drawlnside:inView: is invoked from the
Control class’s drawCellInside: method and is used to cause minimal drawing to be
done in order to update the value displayed by the Cell when the contents is changed.
This becomes more important in more complex Cells such as ButtonCell and
SliderCell. The passed cellFrame should be the frame of the Cell (i.e., the same
cellFrame passed to drawSelf:inView:), not the rectangle returned by getDrawRect:!
Be sure to lock focus on the controlView before invoking this method. If
cFlags1.highlighted is YES, then the Cell is highlighted (by changing light gray to
white and white to light gray throughout cellFrame). Returns self.

2-148 Chapter 2: Class Specifications

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the contents of a Cell in a given rectangle of a given view. Lock the focus on
the controlView before invoking this method. It draws the border or bezel (if any), then
invokes drawlInside:inView:. A text Cell displays its text in the rectangle by using a
global Text object, an icon Cell displays its icon centered in the rectangle if it fits in the
rectangle, by setting the icon origin on the rectangle origin if it does not fit. Nothing is
displayed for NX_NULLCELL. You can override this method if you want a display
that is specific to your own subclass of Cell. Returns self.

See also: — drawlnside:inView:

edit:inView:editor:delegate:event:

— edit:(const NXRect *)aRect
inView:controlView
editor:textObj
delegate:anObject
event:(NXEvent *)theEvent

Use this method to edit the text of a Cell by using the Text object textObj in response
to an NX_MOUSEDOWN event. The aRect argument must be the one you have used
when displaying the Cell. theEvent is the NX_MOUSEDOWN event. anObject is
made the delegate of the Text object textObj used for the editing: it will receive the
methods such as textDidEnd:endChar:, text WillEnd, textDidResize,
textWillResize, and others sent by the Text object while editing. If the cell type is not
equal to NX_TEXTCELL no editing is performed, otherwise the Text object is sized to
aRect and its superview is set to controlView, so that it exactly covers the Cell. Then
it’s activated and editing begins. It’s the responsibility of the delegate to end the
editing, remove any data from the textObj and invoke endEditing: on the Cell in the
textDidEnd:endChar: method. Returns self.

endEditing:
— endEditing:textObj

Use this method to end the editing you began with edit:inView:editor:delegate:event:
or select:inView:editor:delegate:start:length:. Usually this method is called by the
textDidEnd:endChar: method of the object you are using as the delegate for the Text
object (most often a Matrix or TextField). It removes the Text object from the view
hierarchy and sets its delegate to nil. Returns self.

entryType
— (int)entryType

Returns the type of data allowed in the Cell. See setEntryType: for the list of valid
types.

Application Kit Classes: Cell 2-149

floatValue
— (float)float Value

Returns the receiver’s float value by converting its contents to a float using the C
function atof(). Returns 0.0 if the cell type is not NX_TEXTCELL.

font

— font

Returns the font used to display text in the Cell. Returns nil if the Cell is not of type
NX_TEXTCELL.

free

— free

Frees all disposable storage used by the Cell. If cFlagsl.freeText is YES, then the
contents instance variable is freed. Returns nil.

getDrawRect:
— getDrawRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the Cell will draw its “insides.”
In other words, this method usually returns the rectangle which is touched by
drawlnside:inView:. Pass the bounds of the Cell in theRect.

getlconRect:
— getlconRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the icon will be drawn. Pass
the bounds of the Cell in theRect. If this Cell does not draw an icon, theRect is
untouched.

getParameter:

— (int)getParameter:(int)aParameter

Returns the most usual flags of a Cell. The following constants corresponds to the
different flags:

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE

It is, in general, much better to invoke the “is” methods (isEnabled, isHighlighted,
isEditable) rather than use getParameter:.

2-150 Chapter 2: Class Specifications

A LU

getPeriodicDelay:andInterval:

— getPeriodicDelay:(float*)delay andinterval:(float*)interval

Sets two values: the amount of time (in seconds) that a continuous button will pause
before starting to periodically send action messages to the target object, and the interval
(also in seconds) at which those messages are sent. Periodic messaging behavior is
controlled by Cell’s sendActionOn: and setContinuous: methods. (By default, Cell
sends the action message on mouse up events.) The default values returned by this
method are 0.2 seconds delay and 0.025 seconds interval. Can be overridden. Returns
self.

getTitleRect:

— getTitleRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the text will be drawn. Pass the '
bounds of the Cell in theRect. If this Cell does not draw any text, theRect is untouched.

highlight:inView:lit:

— highlight:(const NXRect *)cellFrame
inView:controlView
lit:(BOOL)flag

If cFlags1.highlighted is not equal to flag, it’s set to flag and the rectangle cellFrame
is highlighted in controlView. (You must lockFocus on controlView before calling this
method.) The default is simply to composite with NX_HIGHLIGHT inside the bounds
of the cellFrame. Override this method if you want a more sophisticated highlighting
behavior in a Cell subclass. Note that the highlighting that the base Cell class does will
not appear when printed (although subclasses like TextFieldCell, SelectionCell, and

ButtonCell can print themselves highlighted). This is due to the fact that the base Cell

class is transparent, and there is no concept of transparency in printed output. Returns
self.

icon

— (const char *)icon

Returns the name of the icon currently used by the Cell. Returns NULL if the cell type
is not NX_ICONCELL.

Application Kit Classes: Cell 2-151

incrementState

— incrementState

Adds 1 to the state of the Cell, wrapping around to O from maximum value (for the base
Cell class, 1 wraps to 0). Subclasses may want to change the meaning of this method
(for multistate Cells, for example). Remember that if you want the visual appearance
of the Cell to reflect a change in state, you must invoke drawSelf:inView: after altering
the state (and your drawSelf:inView: must draw the different states in different
ways—the default implementation of the Cell class does not visually distinguish
differences in state). Returns self.

init
— init

Initializes and returns the receiver, a new Cell instance, as type NX_NULLCELL. This
method is the designated initializer for null cells.

initIconCell:
— initIconCell:(const char *)iconName

Initializes and returns the receiver, a new Cell instance, as type NX_ICONCELL. The
icon is set to iconName. This method is the designated initializer for icon Cells.

See also: - findImageFor: (NXImage), — name (NXImage)
initTextCell:
— initTextCell:(const char *)aString

Initializes and returns the receiver, a new Cell instance, as type NX_TEXTCELL. The
string value is set to aString. This method is the designated initializer for text Cells.

intValue
— (int)intValue

Returns the Cell’s integer value by converting its contents to an integer using the C
function atoi(). Returns O if the cell type is not NX_TEXTCELL.

isBezeled
— (BOOL)isBezeled

Returns YES if the Cell has a bezeled border, NO otherwise. ;

2-152 Chapter 2: Class Specifications

isBordered
— (BOOL)isBordered

Returns YES if the Cell is surrounded by a 1-pixel black frame, NO otherwise. The
default is NO.

isContinuous
— (BOOL)isContinuous

Returns YES if the Cell continuously sends its action message to the target object when
tracking. This usually has meaning only for subclasses of Cell that implement target
and action instance variables (ActionCell and its subclasses), although some Control
subclasses will send a default action to a default target even if the Cell does not itself
have a target and action.

isEditable
— (BOOL)isEditable

Returns YES if the text in the Cell is editable, NO otherwise. The default is NO.

isEnabled
— (BOOL)isEnabled

Returns YES if the Cell is enabled, NO otherwise. The default is YES.

isEntryAcceptable:
— (BOOL)isEntryAcceptable:(const char *)aString

Tests whether aString matches the Cell’s entry type, set by the setEntryType: method.
Returns YES if it aString is acceptable by the receiving Cell, NO otherwise. This
method is invoked by Form, Matrix, and other Controls to see if a new text string is
acceptable for this Cell. This method doesn’t check for overflow. It can be overridden
to enforce specific restrictions on what the user can type into the Cell. If aString is
NULL or empty, this method returns YES.

See also: — setEntryType:
isHighlighted
— (BOOL)isHighlighted

Returns YES if the Cell is currently highlighted, NO otherwise. The Cell can be
highlighted by calling highlight:inView:lit:.

Application Kit Classes: Cell 2-153

isOpaque
— (BOOL)isOpaque
Returns YES if the Cell is opaque (i.e., it touches every pixel in its bounds), NO

otherwise. The base Cell class is opaque if and only if it has a bezel. Subclasses which
draw differently should override this appropriately.

isScrollable
— (BOOL)isScrollable

Returns YES if typing past the end of the text in the Cell will cause the Cell to scroll to
follow the typing. The default return value is NO.

isSelectable
— (BOOL)isSelectable

Returns YES if the text in the Cell is selectable, NO otherwise. The default return value
is NO.

keyEquivalent
— (unsigned short)keyEquivalent

Returns 0. Should be overridden by subclasses to return a key equivalent for the
receiver.

mouseDownFlags

— (int)ymouseDownFlags

Returns the flags (e.g., NX_SHIFTMASK) that were set when the mouse went down to
start the current tracking session. This is useful if you want to use these flags, but don’t
want the overhead of having to add NX_MOUSEDOWNMASK to the sendActionOn:
mask just to get those flags. This method is only valid during tracking and does not
work if the target of the Cell initiates another Cell tracking loop as part of its action
method (for example, like PopUpLists do).

read:
— read:(NXTypedStream *)stream

Reads the Cell from the typed stream stream.

2-154 Chapter 2: Class Specifications

resetCursorRect:inView:

—resetCursorRect:(const NXRect *)cellFrame inView:controlView

If the type of the Cell is NX_TEXTCELL, then a cursor rectangle is added to
controlView (via addCursorRect:cursor:).

See also: — addCursorRect:cursor: (View, Control)

select:inView:editor:delegate:start:length:

—select:(const NXRect *)aRect
inView:controlView
editor:textObj
delegate:anObject
start:(int)selStart
length:(int)sel/Length

Similar to edit:inView:editor:delegate:event: but you can invoke it in any situation,
not only on a mouse-down event. You must specify the beginning and the length of the
selection.

sendActionOn:

— (int)sendActionOn:(int)mask

Resets flags to determine when the action is sent to the target while tracking. Can be
any combination of:

NX_MOUSEUPMASK
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGEDMASK
NX_PERIODICMASK

The default is NX_MOUSEUPMASK. You can use the setContinuous: method to
turn on the bit in the NX_PERIODICMASK or the NX_MOUSEDRAGGEDMASK
(whichever is appropriate to the given subclass of Cell) in the current mask.
Returns the old mask.

setAction:

— setAction:(SEL)aSelector

Does nothing. Should be overridden by subclasses that implement target and action
instance variables (ActionCell and its subclasses). Returns self.

Application Kit Classes: Cell 2-155

setAlignment:

— setAlignment:(int)mode

Sets the alignment of text in the Cell and returns self. mode should be one of three
constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setBezeled:
— setBezeled:(BOOL)flag

If flag is YES, then the Cell is surrounded by a bezel, otherwise it’s not. setBordered:
and setBezeled: are mutually exclusive options. Returns self.

setBordered:
— setBordered:(BOOL)flag

If flag is YES, then the Cell is surrounded by a 1-pixel black frame, otherwise it’s not.
setBordered: and setBezeled: are mutually exclusive options. Returns self.

setContinuous:
-~ setContinuous:(BOOL)flag

Sets whether a Cell continuously sends its action message to the target object when
tracking. Normally, this method will simply add NX_PERIODICMASK or
NX_MOUSEDRAGGEDMASK to the mask set with sendActionOn:, depending on
which setting is appropriate to the subclass implementing it. In the base Cell class, this
method adds NX_PERIODICMASK to the mask. These settings usually have meaning
only for ActionCell and its subclasses which implement instance variables for the target
object and action method. However, some Control subclasses will send a default action

to a default target when the Cell itself doesn’t define target and action instance
variables.

See also: — sendActionOn:

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the receiver to represent aDouble, by replacing the contents with the character

string representing aDouble. Does nothing if the cell type is not NX_TEXTCELL.
Returns self.

2-156 Chapter 2: Class Specifications

setEditable:
— setEditable:(BOOL)flag

Sets the editable state of the Cell. If flag is YES, then the text is also set to be selectable.
If flag is NO, then the text is set not selectable. Returns self.

See also: — edit:inView:editor:delegate:event:

setEnabled:
— setEnabled:(BOOL)flag

Sets the enabled state of the Cell. Returns self.

setEntryType:
— setEntryType:(int)aType

This method sets the type of data allowed in the Cell. aType is one of these four
constants:

NX_ANYTYPE
NX_(POS)INTTYPE
NX_(POS)FLOATTYPE
NX_(POS)DOUBLETYPE

If the Cell is not of type NX_TEXTCELL, it’s automatically converted, in which case
its support instance variable is set to the default font (Helvetica 12.0), and its string
value is set to “Cell” (the default).

The entry type is checked by the isEntryAcceptable: method. That method is used by
Controls that contain editable text (such as Matrix and TextField) to validate that what
the user has typed is correct. If you want to have a custom Cell accept some specific
type of data (other than those listed above), you can override the isEntryAcceptable:
method to check for the validity of the data the user has entered.

See also: — isEntryAcceptable:, — setFloatingPointFormat:left:right:

Application Kit Classes: Cell 2-157

setFloatingPointFormat:left:right:

— setFloatingPointFormat:(BOOL)autoRange
left:(unsigned)leftDigits
right:(unsigned)rightDigits

Sets whether floating-point numbers are autoranged, and sets the size of the fields to the
left and right of the decimal point. leftDigits must be between O and 10. rightDigits
must be between 0 and 14. If leftDigits is 0, then the number is not formatted. If
rightDigits is 0, then the fractional part of the floating-point number is truncated (i.e.,
the floating-point number is printed as if it were an integer). Otherwise, leftDigits
specifies the number of digits to the left of the decimal point, and rightDigits specifies
the number of digits to the right. If autoRange is YES, the number will be fit into a field
that’s leftDigits + rightDigits + 1 spaces wide and the decimal point will be autoranged
to fit that field (the field will also be padded with zeros). To turn off formatting, simply
invoke this routine with leftDigits = 0. If the entryType of the Cell is not already
NX_FLOATTYPE, NX_POSFLOATTYPE, NX_DOUBLETYPE, or
NX_POSDOUBLETYPE, it’s set to NX_FLOATTYPE. Returns self.

setFloatValue:
— setFloatValue:(float)aFloat

Sets cell-specific float value, by replacing its contents by the character string
representing the float. Does nothing if the cell type is not NX_TEXTCELL. Returns
self.

setFont:
— setFont:fontObj

Sets the font to be used when displaying text in the Cell. Does nothing if the Cell is not
of type NX_TEXTCELL. Returns self.

setlcon:

— setlcon:(const char *)iconName

Invoke this method to set the icon of the Cell to the icon represented by iconName (an
icon is a named NXImage—see the NXImage class). If the Cell was not an
NX_ICONCELL, it’s automatically converted. Sets the support instance variable to
iconName, and sets the contents instance variable to the result of sending the name
message to that NXImage. If you specify an invalid NXImage name, you will get a
default icon (you can verify that the NXImage you requested was valid by checking the
result of sending the icon message to the Cell to be sure it matches the iconName you
supplied). Returns self.

See also: — findImageNamed (NXImage), — name (NXImage)

2-158 Chapter 2: Class Specifications

setIntValue:
— setIntValue:(int)anint

Sets cell-specific integer value by replacing its contents by the character string
representing anlnt. Does nothing if the cell type is not NX_TEXTCELL. Returns self.

setParameter:to:
— setParameter:(int)aParameter to:(int)value

Sets the most usual flags of a Cell. Calling this method could result in unpredictable
results in subclasses. It’s much safer to invoke the appropriate set... method to set a
specific flag. Returns self.

See also: — getParameter:, — highlightInView:lit:, — setEditable:, — setEnabled:,
— setState:

setScrollable:
— setScrollable:(BOOL)flag
Sets whether, while editing, the Cell will scroll to follow typing. Returns self.
See also: — edit:inView:editor:delegate:event:
setSelectable:
— setSelectable:(BOOL)flag

If flag is YES, then the text is selectable but not editable. If NO, then the text is static
(not editable or selectable). Returns self.

See also: — edit:inView:editor:delegate:event:

setState:
— setState:(int)value

Sets the state of the Cell to O if value is 0, to 1 otherwise. Returns self.

See also: — incrementState

Application Kit Classes: Cell 2-159

setStringValue:

— setString Value:(const char *)aString

Invoke this method to set the contents instance variable to a copy of aString. If the Cell
was not of type NX_TEXTCELL, it’s automatically converted, in which case its
support instance variable is set to the default font (Helvetica 12.0). If floating point
parameters have been set (via setFloatingPointParameters:left:right:) and the type
of the Cell is NX_(POS){FLOAT,DOUBLE}TYPE, then the string will be tested for
being a float or a double. Ifit’s a float or a double, then the appropriate
parameterization will be applied; otherwise, the string will be copied directly. Returns
self.

setStringValueNoCopy:
— setStringValueNoCopy:(const char *)aString

Similar to setStringValue: but does not make a copy of aString. The Cell records that
it does not have to dispose of its contents instance variable when it receives the free
message. Note that if you set a string this way, then the floating-point parameters will
not be applied (since no copy of the string is being made). Returns self.

setStringValueNoCopy:shouldFree:
— setStringValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Similar to setStringValueNoCopy:, but the caller can specify if the contents instance
variable will be freed when the Cell receives the free message. Note that if you set a
string this way, then the floating-point parameters will not be applied (since no copy of
the string is being made). If aString == contents, then if flag is NO, cFlags1.freeText
will be set to NO. Returns self.

setTag:
— setTag:(int)anlnt

Does nothing. This method is overridden by ActionCell and its subclasses to support
multiple-Cell controls (Matrix and Form). Returns self.

setTarget:
— setTarget:anObject

Does nothing. This method is overridden by ActionCell and its subclasses that
implement the target object and action method. Returns self.

2-160 Chapter 2: Class Specifications

setTextAttributes:
— setTextAttributes:textObj

Invoked just before any drawing or editing occurs in the Cell. It’s intended to be
overridden. If you do override this method you must invoke

[super setTextAttributes:zextObj] first. If you do not, you risk inheriting drawing
attributes from the last Cell which drew any text. You should invoke only the following
two Text instance methods:

setBackgroundGray:
setTextGray:

Do not set any other parameters in the Text object.

You should return textObj as the return value of this method. Therefore, if you want to
substitute some other Text object to draw with (but not edit, editing always uses the
window’s field editor), you can return that object instead of fextObj and it will be used
for the draw that caused setTextAttributes: to be called.

TextFieldCell, a subclass of ActionCell, allows you to set the grays without creating
your own subclass of Cell. You only need to subclass Cell to control the gray values if
you don’t want all of the functionality (and instance variable usage) of an ActionCell.

Defaults: If the Cell is disabled, its text gray will be NX_DKGRAY, otherwise it will
be NX_BLACK. If the Cell has a bezel, then its background gray will be NX_WHITE,
otherwise it will be NX_LTGRAY. The Text object does not paint the background gray
before drawing; it only uses the background gray to erase characters while editing. The
Cell class does paint the NX_WHITE background when it draws a bezeled Cell, but
does not paint any background (i.e., it’s transparent) otherwise.

Note that most of the other text object attributes can be set via Cell methods (setFont:,
setAlignment:, setWrap:) so you need only override this method if you need to set the
gray values. Returns self.

setType:
— setType:(int)aType

Sets the type of the Cell. It should be NX_TEXTCELL, NX_ICONCELL, or
NX_NULLCELL. If aType is NX_TEXTCELL and the current type is not
NX_TEXTCELL, then the font is set to the default font (Helvetica 12.0), and the string
value of the Cell is set to the default string, “Cell”. If aType is NX_ICONCELL and
the current type is not NX_ICONCELL, then the icon for the Cell is set to be the default
icon, “square16”.

Application Kit Classes: Cell 2-161

setWrap:
—setWrap:(BOOL)flag

If flag is YES, then the text (when displaying, not editing) will be wrapped to word
breaks. Otherwise, it will not. The default is YES.

startTrackingAt:inView:
— (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:controlView

This method returns YES if and only if the Cell is continuous, that is, if
cFlags2.continuous or cFlags2.actOnMouseDragged is YES. Called via
trackMouse:inRect:of View: the first time the mouse appears in the Cell needing to be
tracked. Default is to do nothing. Should return YES if it’s OK to track based on this
starting point, otherwise it returns NO. This method is often overridden to provide
more sophisticated tracking behavior.

state

— (int)state

Returns the state of the Cell (0 or 1). The default is 0.

stopTracking:at:inView:mouselsUp:

— stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
inView:controlView
mouselsUp:(BOOL)flag

Invoked via trackMouse:inRect:of View: when the mouse has left the bounds of the
Cell, or the mouse button has gone up. flag is YES if the mouse button went up to cause
this method to be invoked. The default method does nothing and returns self. This
method is often overridden to provide more sophisticated tracking behavior. Returns
self.

stringValue

— (const char *)stringValue

Returns a pointer to the contents instance variable.
tag

— (int)tag

Returns —1. Overridden by subclasses such as ActionCell to provide a way to identify
Cells in a multiple-Cell Control such as Matrix or Form.

2-162 Chapter 2: Class Specifications

takeDoubleValueFrom:

— takeDouble ValueFrom:sender

Sets the receiving Cell’s double-precision floating point value to the value returned by
sender’s doubleValue method. Returns self.

This method can be used in action messages between Cells. It permits one Cell
(sender) to affect the value of another Cell (the receiver). For example, a TextFieldCell
can be made the target of a SliderCell, which will send it takeDoubleValueFrom:
action message. The TextFieldCell will get the SliderCell’s double value, turn it into
a text string, and display it.

See also: — takeDoubleValueFrom: (Control), — setDoubleValue:, — doubleValue

takeFloatValueFrom:
— takeFloatValueFrom:sender

Sets the receiving Cell’s single-precision floating-point value to the value returned by
sender’s floatValue method. Returns self.

This is the same as takeDoubleValueFrom: except it works with floats rather than
doubles.

See also: — takeFloatValueFrom: (Control), — setFloatValue:, — floatValue

takeIntValueFrom:

— takeIntValueFrom:sender

Sets the receiving Cell’s integer value to the value returned by sender’s intValue
method. Returns self.

This is the same as takeDoubleValueFrom: except it works with ints rather than
doubles.

See also: — takeIntValueFrom: (Control), — setIntValue:, — intValue

takeStringValueFrom:

— takeStringValueFrom:sender

Sets the receiving Cell’s string value to the value returned by sender’s stringValue
method. Returns self.

This is the same as takeDoubleValueFrom: except it works with strings rather than
doubles.

See also: — takeStringValueFrom: (Control), — stringValue, — setString Value:

Application Kit Classes: Cell 2-163

target
— target

Returns nil. This method is overridden by ActionCell and its subclasses that implement
target and action instance variables. Returns self.

trackMouse:inRect:of View:

— (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
of View:controlView

This method is called by Controls to implement the tracking behavior of a Cell. It’s
generally not overridden since the default implementation provides a simple interface
to some other, simpler, tracking routines:

(BOOL)startTrackingAt:(NXPoint *)startPoint
inView:control View

(BOOL)continueTracking:(NXPoint *)lastPoint
at:(NXPoint *)currentPoint
inView:control View

stopTracking:(NXPoint *)lastPoint
at:(NXPoint *)endPoint
inView:control View
mouselsUp:(BOOL)flag

This method invokes startTrackingAt:inView: first, then, as mouse-dragged events
are intercepted, continueTracking:at:inView: is called, and, finally, when the mouse
leaves the bounds (if cellFrame is NULL, then the bounds are considered infinitely
large), or if the mouse button goes up, stopTracking:at:inView:mouselsUp: is called.
If this interface is insufficient for the needs of your Cell, you may override
trackMouse:inRect:of View: directly. It’s this method’s responsibility to invoke the
control View’s sendAction:to: method when appropriate (before, during, or after
tracking) and to return YES if and only if the mouse goes up within the Cell during
tracking. If the Cell’s action is sent on mouse down, then startTrackingAt:inView: is
called before the action is sent and the mouse is tracked until it goes up or out of
bounds. If the Cell sends its action periodically, then the action is sent periodically to
the target even if the mouse is not moving (although continueTracking:at:inView: is
only called when the mouse changes position). If the Cell’s action is sent on mouse
dragged, then continueTracking:at:inView: is called before the action is sent. The
state of the Cell is incremented (via incrementState) before the action is sent and after
stopTracking:at:inView: is called when the mouse goes up. Returns self.

type
— (int)type

Returns the type of the Cell. Can be one of NX_NULLCELL, NX_ICONCELL or
NX_TEXTCELL.

2-164 Chapter 2: Class Specifications

write:

— write:(NXTypedStream *)stream

Writes the Cell to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Cell Data Types */
#define NX ANYTYPE
#define NX INTTYPE
#define NX POSINTTYPE
#define NX FLOATTYPE
#define NX POSFLOATTYPE
#define NX DATETYPE
#define NX DOUBLETYPE
#define NX POSDOUBLETYPE

~ o O W NP O

/* Cell Types */

#define NX NULLCELL 0
#define NX TEXTCELL 1
#define NX ICONCELL 2

/* Cell & ButtonCell */
#define NX CELLDISABLED
#define NX CELLSTATE
#define NX CELLEDITABLE
#define NX CELLHIGHLIGHTED
#define NX LIGHTBYCONTENTS
#define NX LIGHTBYGRAY
#define NX LIGHTBYBACKGROUND 9
#define NX ICONISKEYEQUIVALENT 10
#define NX_ HASALPHA 11
#define NX BORDERED 12
#define NX OVERLAPPINGICON 13
#define NX ICONHORIZONTAL 14
#define NX ICONONLEFTORBOTTOM 15
#define NX CHANGECONTENTS 16

~ o U1 W K O

/* ButtonCell icon positions */
#define NX_ TITLEONLY

#define NX ICONONLY

#define NX ICONLEFT

#define NX ICONRIGHT

#define NX ICONBELOW

#define NX ICONABOVE

#define NX ICONOVERLAPS

o U W N O

Application Kit Classes: Cell

2-165

/* ButtonCell highlightsBy and showsStateBy mask */

#define NX_ NONE 0
#define NX CONTENTS 1
#define NX PUSHIN 2
#define NX CHANGEGRAY 4
#define NX CHANGEBACKGROUND 8

/* Cell whenActionIsSent mask flag */
#define NX PERIODICMASK (1 << (NX LASTEVENT+1))

2-166 Chapter 2: Class Specifications

ClipView

INHERITS FROM View : Responder : Object
DECLARED IN appkit/ClipView.h
CLASS DESCRIPTION

The ClipView class provides basic scrolling behavior by displaying a portion of a
document that may be larger than the ClipView’s frame rectangle. It also provides
clipping to ensure that its document is not drawn outside the ClipView’s frame. The
ClipView has one subview, the document view, which is the view to be scrolled. Since
a subview’s coordinate system is positioned relative to its superview’s origin, the
ClipView changes the displayed portion of the document by translating the origin of its
own bounds rectangle.

When the ClipView is instructed to scroll its document view, it copies as much of the
previously visible document as possible, unless it received a setCopyOnScroll:NO
message. The ClipView then sends its document view a message to either display or
mark as invalidated the newly exposed region(s) of the ClipView. By default it will
invoke the document view’s display:: method, but if the ClipView received a
setDisplayOnScroll:NO message, it will invoke the document view’s invalidate::
method.

The ClipView sends its superview (usually a ScrollView) a reflectScroll: message to
notify it whenever the relationship between the ClipView and the document view has
changed. This allows the superview to update any controls it manages to reflect the
change. You don’t normally use the ClipView class directly; it is used by Scroll View
which provides standard controls to allow the user to perform scrolling. However, you
might use the ClipView class to implement a class similar to Scroll View.

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct ___vFlags vFlags;
Declared in ClipView float backgroundGray;
id docView;
id cursor;

Application Kit Classes: ClipView

2-167

backgroundGray

docView

cursor

METHOD TYPES
Initializing the class object

Initializing and freeing a ClipView

Modifying the frame rectangle

Modifying the coordinate system

Managing component Views

The gray value used to fill the area of the
ClipView not covered by the opaque portions of
the document view.

The ClipView’s document view.

The cursor that’s used inside the ClipView’s
frame rectangle.

+ initialize

— initFrame:
— free

—moveTo::
—rotateTo:
— sizeTo::

— rotate:

— scale::

— setDrawOrigin::
— setDrawRotation:
— setDrawSize::

— translate::

— docView

— setDocView:

— getDocRect:

— getDocVisibleRect:
— resetCursorRects

— setDocCursor:

Modifying graphic attributes and displaying

Scrolling

Coordinating with other Views

2-168 Chapter 2: Class Specifications

— backgroundGray

— setBackgroundGray:
— backgroundColor

— setBackgroundColor:
— drawSelf::

— autoscroll:

— constrainScroll:
—rawScroll:

— setCopyOnScroll:

— setDisplayOnScroll:

— descendantFlipped:
— descendantFrameChanged:

Archiving — awake
—read:
— write:

CLASS METHODS

initialize
+ initialize

Sets the current version of the ClipView class. You never send an initialize message;
it’s sent for you when the application starts. Returns self.

INSTANCE METHODS

autoscroll:
— autoscroll:(NXEvent *)theEvent

Performs automatic scrolling of the document. This message is sent to the document
view when the mouse is dragged from a position within the ClipView to a position
outside it. The document view then sends this message to its ClipView. You never send
an autoscroll: message directly to a ClipView. Returns nil if no scrolling occurs;
otherwise returns self.

See also: — autoscroll: (View)

awake

— awake

Overrides View’s awake method to ensure additional initialization. After a ClipView
has been read from an archive file, it will receive this message. You should not invoke
this method directly. Returns self.

backgroundColor
— (NXColor)backgroundColor

Returns the color of the ClipView’s background. If the background gray value has been
set but no color has been set, the color equivalent of the background gray value is
returned. If neither value has been set, the background color of the ClipView’s window
is returned.

See also: — backgroundGray, — setBackgroundColor:, — setBackgroundGray:,
— backgroundColor (Window), NXConvertGrayToColor()

Application Kit Classes: ClipView 2-169

backgroundGray
— (float)backgroundGray

Returns the gray value of the ClipView’s background. If no value has been set, the gray
value of the ClipView’s window is returned.

See also: — backgroundColor, — setBackgroundGray:,
— backgroundGray (Window)

constrainScroll:

— constrainScroll:(NXPoint *)newOrigin

Ensures that the document view is not scrolled to an undesirable position. This method
is invoked by the private method that all scrolling messages go through before it
invokes rawScroll: or scrollClip:to:. The default implementation keeps as much of
the document view visible as possible. You may want to override this method to
provide alternate constraining behavior. newOrigin is the desired new origin of the
ClipView’s bounds rectangle and is given in ClipView coordinates. Returns self.

See also: — rawScroll:

descendantFlipped:
— descendantFlipped:sender

Notifies the ClipView that the orientation of the coordinate system of its document view
has changed (from unflipped to flipped, or vice versa). The orientation of the ClipView
is changed to match the orientation of its document view. You should not invoke this
method directly, or override it. Returns self.

See also: — notifyWhenFlipped: (View), — setDocView:
descendantFrameChanged:

— descendantFrameChanged:sender

Notifies the ClipView that its document view has been resized or moved. The Clip View

may then scroll and/or display the document view, and the Clipview may also notify its

superview to reflect the changes in the scroll position. You should not invoke this

method directly, or override it. Returns self.

See also: — moveTo:: (View), — sizeTo:: (View), — reflectScroll: (ScrollView),
— notifyAncestorWhenFrameChanged: (View), — setDocView:

2-170 Chapter 2: Class Specifications

docView
— docView

Returns the ClipView’s document view.

See also: — setDocView:

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Overrides View’s drawSelf:: method to fill the portions of the ClipView that are not
covered by opaque portions of the document view. If a color value has been set and the
ClipView is drawing itself on a color screen, the ClipView draws its background with
the color value, otherwise it draws its background using its background gray value.
Returns self.

See also: — backgroundColor:, — backgroundGray:, — drawSelf:: (View)

free

— free

Deallocates the memory used by the receiving ClipView. The ClipView is removed
from the view hierarchy, and all its subviews are also freed.

getDocRect:
— getDocRect:(NXRect *)aRect

Places the ClipView’s document rectangle into the structure specified by aRect. The
origin of this rectangle is equal to the origin of the document view’s frame rectangle.
The document rectangle’s height and width are set to the maximum corresponding
values from the document view’s frame size and the content view’s bounds size. The
document rectangle is used in conjunction with the ClipView’s bounds rectangle to
determine values for any indicators of relative position and size between the ClipView
and the document view. The ScrollView uses these rectangles to set the size and
position of the Scrollers’ knobs. Returns self.

See also: — reflectScroll: (ScrollView)

Application Kit Classes: ClipView 2-171

getDocVisibleRect:
— getDocVisibleRect:(NXRect *)aRect

Gets the portion of the document view that’s visible within the ClipView. The
ClipView’s bounds rectangle, transformed into the document view’s coordinates, is
placed in the structure specified by aRect. This rectangle represents the portion of the
document view’s coordinate space that’s visible through the ClipView. However, this
rectangle doesn’t reflect the effects of any clipping that may occur above the ClipView
itself. Thus, if the ClipView is itself clipped by one of its superviews, this method
returns a different rectangle than the one returned by the getVisibleRect: method,
because the latter reflects the effects of all clipping by superviews. Returns self.

See also: — getVisibleRect: (View)

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes the ClipView, which must be a newly allocated ClipView instance. The
ClipView’s frame rectangle is made equivalent to that pointed to by frameRect. This
method is the designated initializer for the ClipView class, and can be used to initialize
a ClipView allocated from your own zone. By default, clipping is enabled, and the
ClipView is set to opaque. A ClipView is initialized without a document view. Returns
self.

See also: — setDocView:, — initFrame: (View), + alloc (Object),
+ allocFromZone: (Object)

moveTo::
— moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the ClipView’s frame rectangle to (x, y) in its superview’s
coordinates. Returns self.

See also: — moveTo:: (View)

rawScroll:

— rawScroll:(const NXPoint *)newOrigin

Performs scrolling of the document view. This method sets the ClipView’s bounds
rectangle origin to newOrigin. Then, it copies as much of the previously visible
document as possible, unless it received a setCopyOnScroll:NO message. It then
sends its document view a message to either display or mark as invalidated the newly
exposed region(s) of the ClipView. By default it will invoke the document view’s
display:: method, but if the ClipView received a setDisplayOnScroll:NO message, it
will invoke the document view’s invalidate:: method. The rawScroll: method does
not send a reflectScroll: message to its superview; that message is sent by the method

2-172 Chapter 2: Class Specifications

that invokes rawScroll:. Note also that while the ClipView provides clipping to its
frame, it does not clip to the update rectangles.

This method is used by a private method through which all scrolling passes, and is
invoked if the ClipView’s superview does not implement the scrollClip:to: method. If
the ClipView’s superview does implement scrollClip:to:, that method should invoke
rawScroll:. The ClipView’s typical superview (Scrollview) doesn’t implement the
scrollClip:to: method. This mechanism is provided so that the ClipView’s superview
can coordinate scrolling of multiple tiled ClipViews. Returns self.

read:
—read:(NXTypedStream *)stream

Reads the ClipView and its document view from the typed stream stream. Returns self.
See also: — write:

resetCursorRects
—resetCursorRects

Resets the cursor rectangle for the document view to the bounds of the ClipView.
Returns self.

See also: — setDocCursor:, — addCursorRect:cursor: (View)

rotate:
— rotate:(NXCoord)angle
Disables rotation of the ClipView’s coordinate system. You also should not rotate the
ClipView’s document view, nor should you install a ClipView as a subview of a rotated

view. The proper way to rotate objects in the document view is to perform the rotation
in your document view’s drawSelf:: method. Returns self.

rotateTo:
— rotateTo:(NXCoord)angle

Disables rotation of the ClipView’s frame rectangle. This method also disables
ClipView’s inherited rotateBy: method. Returns self.

See also: — rotate:

Application Kit Classes: ClipView 2-173

scale::
— scale:(NXCoord)x :(NXCoord)y

Rescales the ClipView’s coordinate system by a factor of x for its x axis, and by a factor
of y for its y axis. Since the document view’s coordinate system is measured relative
to the ClipView’s coordinate system, the document view is redisplayed and a
reflectScroll: message may be sent to the ClipView’s superview. Returns self.

See also: — reflectScroll: (Scroll View)

setBackgroundColor:
— setBackgroundColor:(NXColor)color

Sets the color of the ClipView’s background. This color is used to fill the area inside
the ClipView that’s not covered by opaque portions of the document view. If no
background gray has been set for the ClipView, this method sets it to the gray
component of the color. Returns self.

See also: — backgroundColor, — backgroundGray, — setBackgroundGray,
NXGrayComponent()

setBackgroundGray:
— setBackgroundGray:(float)value

Sets the gray value of the ClipView’s background. This gray is used to fill the area
inside the ClipView that’s not covered by opaque portions of the document view. value
must lie in the range from 0.0 (black) to 1.0 (white). Returns self.

See also: — backgroundColor, — backgroundGray, — setBackgroundColor

setCopyOnScroll:
— setCopyOnScroll:(BOOL)flag

Determines whether the buffered bits will be copied when scrolling occurs. If flag is
YES, scrolling will copy as much of the ClipView’s bitmap as possible to scroll the
view, and the document view is responsible only for updating the newly exposed
portion of itself. If flag is NO, the document view is responsible for updating the entire
ClipView. This should only rarely be changed from the default value (YES). Returns
self.

2-174 Chapter 2: Class Specifications

setDisplayOnScroll:
— setDisplayOnScroll:(BOOL)flag

Determines whether the results of scrolling will be immediately displayed. If flag is
YES, the results of scrolling will be immediately displayed. If flag is NO, the ClipView
is marked as invalid but is not displayed. In either case, when a scroll occurs, the
ClipView first copies as much of its buffered bitmap as possible, assuming the default
case where setCopyOnScroll: YES was sent. This should only rarely be changed from
the default value (YES). Returns self.

See also: —rawScroll:, — display:: (View), — invalidate:: (View)

setDocCursor:

— setDocCursor:anObj

Sets the cursor to be used inside the ClipView’s bounds. anObj should be a NXCursor
object. Returns the old cursor.

setDocView:

— setDocView:aView

Sets aView as the ClipView’s document view. There is one document view per
ClipView, so if there was already a document view for this ClipView it is replaced. This
method initializes the document view with

notify AncestorWhenFrameChanged:YES and notifyWhenFlipped:YES
messages. The origin of the document view’s frame is initially set to be coincident with
the origin of the ClipView’s bounds. If the ClipView is contained within a ScrollView,
you should send the ScrollView the setDocView: message and have the Scroll View
pass this message on to the ClipView. Returns the old document view, or nil if there
was none.

See also: — setDocView: (Scroll View)

setDrawOrigin::
— setDrawOrigin:(NXCoord)x :(NXCoord)y
Overrides the View method so that changes in the ClipView’s coordinate system are
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView’s superview. Returns
self.

See also: — setDrawOrigin:: (View)

Application Kit Classes: ClipView 2-175

setDrawRotation:
— setDrawRotation:(NXCoord)angle

Disables rotation of the ClipView’s coordinate system. The proper way to rotate
objects in the document view is to perform the rotation in your document view’s
drawSelf:: method. Returns self.

See also: — rotate:
setDrawSize::
— setDrawSize:(NXCoord)width :(NXCoord)height
Overrides the View method so that rescaling of the ClipView’s coordinate system is

reflected in the displayed document view. This method may redisplay the document

view, and a reflectScroll: message may be sent to the ClipView’s superview. Returns
self.

See also: — setDrawSize:: (View)
sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height
Overrides the View method so that resizing of the ClipView’s frame rectangle is
reflected in the displayed document view. This method may redisplay the document

view, and a reflectScroll: message may be sent to the ClipView’s superview. Returns
self.

See also: — sizeTo:: (View)

translate::
— translate:(NXCoord)x :(NXCoord)y
Overrides the View method so that translation of the ClipView’s coordinate system is

reflected in the displayed document view. This method may redisplay the document

view, and a reflectScroll: message may be sent to the ClipView’s superview. Returns
self.

See also: — translate:: (View)

write:
— write:(NXTypedStream *)stream

Wirites the receiving ClipView and its document view to the typed stream stream.
Returns self.

See also: — write:

2-176 Chapter 2: Class Specifications

METHODS IMPLEMENTED BY CLIPVIEW’S SUPERVIEW

reflectScroll:

— reflectScroll:aClipView

Notifies the ClipView’s superview that either the ClipView’s bounds rectangle or the
document view’s frame rectangle has changed, and that any indicators of the scroll
position need to be adjusted. ScrollView implements this method to update its
Scrollers.

scrollClip:to:
— scrollClip:aClipView to:(const NXPoint *)newOrigin

Notifies the ClipView’s superview that the ClipView needs to set its bounds rectangle
origin to newOrigin. The ClipView’s superview should then send the ClipView the
rawScroll: message. This mechanism is provided so that the ClipView’s superview
can coordinate scrolling of multiple tiled ClipViews. Note that the default ScrollView
class does not implement this method.

See also: —rawScroll: (ClipView)

Application Kit Classes: ClipView 2-177

2-178

Control

INHERITS FROM View : Responder : Object

DECLARED IN appkit/Control.h

CLASS DESCRIPTION

Control is an abstract superclass that provides three fundamental features for
implementing user interface devices. First, as a subclass of View, Control has a bounds
rectangle in which to draw the on-screen representation of the device. Second, it
provides a mouseDown: method and a position in the responder chain; together these
features enable Control to receive and respond to user-generated events within its
bounds. Third, it implements the send Action:to: method through which Control sends
an action message to its target object. Subclasses of Control defined in the Application
Kit are Button, Form, Matrix, NXBrowser, NXColorWell, Slider, Scroller, and
TextField.

Target objects and action methods provide the mechanism by which Controls interact
with other objects in an application. A target is an object that a Control has affect over.
An action method is defined by the target class to enable its instances to respond to user
input; the id of the Control is the only argument to the action method. When it receives
an action message, a target can use the id to send a message requesting additional
information from the Control about its status. Targets and actions can be set explicitly
by application code. You can also set the target to nil and allow it to be determined at
run time. When the target is nil, the Control that’s about to send an action message
must look for an appropriate receiver. It conducts its search in a prescribed order:

« It begins with the first responder in the current key window and follows
nextResponder links up the responder chain to the Window object. After the
Window object, it tries the Window’s delegate.

+ If the main window is different from the key window, it then starts over with the
first responder in the main window and works its way up the main window’s
responder chain to the Window object and its delegate.

* Next, it tries the Application object, NXApp, and finally the Application object’s
delegate. NXApp and its delegate are the receivers of last resort.

Control provides methods for setting and using the target object and action method.
However, these methods require that Control’s cell instance variable be set to some
subclass of Cell that provides the instance variables target and action, such as
ActionCell and its subclasses.

Target objects and action methods demonstrate the close relationship between Controls
and Cells. In most cases, a user interface device consists of an instance of a Control
subclass paired with one or more instances of a Cell subclass. Each implements
specific details of the user interface mechanism. For example, Control’s mouseDown:

Application Kit Classes: Control 2-179

method sends a trackMouse:inRect:of View: message to Cell, which handles
subsequent mouse and keyboard events; Cell sends Control a sendAction:to: message
in response to particular events. Control’s drawSelf:: method is implemented by
sending a drawSelf:inView: message to Cell. As another example, Control provides
methods for setting and formatting its contents; these methods send corresponding
messages to Cell, which owns the contents instance variable.

A Control subclass doesn’t have to use a Cell subclass to implement itself; Scroller and
NXColorWell don’t. However, such subclasses have to take care of details that Cell
would otherwise handle. Specifically, they have to overwrite methods designed to work
with a Cell. What’s more, they cannot be used in a Matrix—a subclass of Control
designed specifically for managing multiple Cell arrays such as radio buttons. You
usually implement a unique user interface device by creating a subclass of Cell or
ActionCell rather than Control.

In general, Interface Builder is the easiest way to add both kit-defined and your own
subclasses of Control to an application.

The initFrame: method is the designated initializer for the Control class. Override this
method if you create a subclass of Control that performs its own initialization.

See also: ActionCell, Cell

INSTANCE VARIABLES
Inherited from Object Class isa;
Inherited from Responder id nextResponder;
Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct __vFlags vFlags;
Declared in Control int tag;
id cell;
struct _conFlags{
unsigned int enabled:1;
unsigned int editingValid:1;
unsigned int ignoreMultiClick:1;
unsigned int calcSize:1;
} conFlags;
tag An integer that identifies the Control; can be used

by View’s find ViewWithTag: method to find a
Control in a view hierarchy.

2-180 Chapter 2: Class Specifications

cell

conFlags.enabied

conFlags.editing Valid

conFlags.ignoreMultiClick

conFlags.calcSize

METHOD TYPES

Initializing and freeing a Control

Setting the Control’s Cell

Enabling and disabling the Control

Identifying the selected Cell

Setting the Control’s value

Formatting text

Managing the field editor

The id of the Control’s cell (if it has only one).

True if the Control is enabled; relevant for
multi-cell controls only.

True if editing has been validated.

True if the Control ignores double- or
triple-clicks.

True if the cell should recalculate its size and

location before drawing.

— initFrame:
— free

—cell
— setCell:
+ setCellClass:

— isEnabled
— setEnabled:

— selectedCell
— selectedTag

— setFloatValue:

— floatValue

— setDoubleValue:

— doubleValue

— setIntValue:

— intValue

— setString Value:

— setString ValueNoCopy:

— setString ValueNoCopy:shouldFree:
— stringValue

— setFont:

— font

— setAlignment:

— alignment

— setFloatingPointFormat:left:right:

— abortEditing

— currentEditor
— validateEditing

Application Kit Classes: Control

2-181

Managing the cursor — resetCursorRects

Interacting with other Controls — takeDouble ValueFrom:
— takeFloatValueFrom:
— takeIntValueFrom:
— takeString ValueFrom:

Resizing the Control — calcSize
— sizeTo::
— sizeToFit

Displaying the Control and Cell — drawCell:
— drawCellInside:
— drawSelf::
— selectCell:
— update
— updateCell:
— updateCelllnside:

Target and action — action
— isContinuous
— sendAction:to:
— sendActionOn:
— setAction:
— setContinuous:
— setTarget:
— target

Assigning a tag - setTag:
—tag

Tracking the mouse — ignoreMultiClick:
— mouseDown:
— mouseDownFlags
Archiving —read:

— write:

CLASS METHODS

setCellClass:
+ setCellClass:classld

This abstract method does nothing and returns the id of the receiver. It’s implemented
by subclasses of Control, which use this method to set their cell instance variable.

2-182 Chapter 2: Class Specifications

INSTANCE METHODS

abortEditing

— abortEditing
Terminates and discards any editing of text displayed by the receiving Control. Returns
self or, if no editing was going on in the receiving Control, nil. Does not redisplay the

old value of the Control—you must explicitly do that.

See also: — endEditingFor: (Window), — validateEditing

action

— (SEL)action

Returns the action message sent by the Control. To get the action message, this method
sends an action message to the Control’s cell.

See also: — setAction:

alignment

— (int)alignment

Returns the justification mode. The return value can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.

calcSize

— calcSize

Recomputes any internal sizing information for the Control, if necessary, by invoking
calcDrawlnfo: on its cell. This can be useful for caching any information needed to

make the drawing of a cell faster. Does not draw. Can be used for more sophisticated
sizing operations as well (for example, Form). This is automatically invoked whenever
the Control is displayed and something has changed (as recorded by the calcSize flag).

See also: — calcSize (Matrix, Form), — sizeToFit

—cell

Returns the Control’s cell. Should not be used by the action method of the target of the
Control (use selectedCell).

Application Kit Classes: Control 2-183

currentEditor

— currentEditor

If the receiving Control is being edited (that is, the user is typing or selecting text in the
Control), this method returns the editor (the Text object) being used to perform that
editing. If the Control is not being edited, this method returns nil.

doubleValue
— (double)doubleValue

Returns the value of the Control as a double-precision floating point number. If the
Control contains many cells (for example, Matrix), then the value of the currently
selectedCell is returned. If the Control is in the process of editing the affected cell, then
validateEditing is invoked before the value is extracted and returned.

See also: — setDoubleValue:

drawCell:
— drawCell:aCell
If aCell is the cell used to implement this Control, then the Control is displayed. This
is provided primarily in support of a consistent interface with a multiple cell Control’s
drawCell:. Returns self.
See also: — drawCell: (Matrix), — updateCell:

drawCelllnside:
— drawCelllnside:aCell
Same as drawCell: except that only the “inside” of the Control is drawn (using the
cell’s drawlnside:inView: method). This method is used by setStringValue: and
similar content-setting methods to provide a minimal update of the Control when its

value is changed. Returns self.

See also: — drawlnside:inView: (Cell), — drawCellInside: (Matrix),
— updateCelllnside:

drawSelf::

— drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Control. It simply invokes the Control’s cell’s drawSelf:inView: method.
Must override if you have a multi-cell control. Returns self.

2-184 Chapter 2: Class Specifications

floatValue
— (float)float Value

Returns the value of the Control as a single-precision floating point number (see
doubleValue for more details).

See also: — setFloatValue:
font

— font

Returns the font object used to draw the text (if any) of the Control.
free

—free

Frees the memory used by the Control and its cells. Aborts editing if the text of the
Control was currently being edited. Returns nil.

ignoreMultiClick:
— ignoreMultiClick:(BOOL)flag
Sets the Control to ignore multiple clicks if flag is YES. By default, double-clicks (and

higher order clicks) are treated the same as single clicks. You can use this method to
“debounce” a control.

initFrame:
— initFrame:(const NXRect *)frameRect
Initializes and returns the receiver, a new instance of Control, by setting frameRect as
its frame rectangle. Sets the new instance as opaque. Since Control is an abstract class,

messages to perform this method should appear only in subclass methods. initFrame:
is the designated initializer for the Control class.

intValue
— (int)intValue

Returns the value of the Control as an integer (see doubleValue for more details).

See also: — setIntValue:

Application Kit Classes: Control 2-185

isContinuous
— (BOOL)isContinuous

Returns YES if the Control continuously sends its action to its target during mouse
tracking.

See also: — setContinuous:

isEnabled
— (BOOL)isEnabled

Returns YES if the Control is enabled, NO otherwise.

mouseDown:

— mouseDown:(NXEvent *)theEvent

Invoked when the mouse button goes down while the cursor is within the bounds of the
Control. The Control is highlighted and the Control’s Cell tracks the mouse until it
goes outside the bounds, at which time the Control is unhighlighted. If the cursor goes
back into the bounds, then the Control highlights again and its Cell starts tracking
again. This behavior continues until the mouse button goes up. If it goes up with the
cursor in the Control, the state of the Control is changed, and the action is sent to the
target. If the mouse button goes up with the cursor outside the Control, no action is
taken.

mouseDownFlags
— (int)mouseDownFlags
Returns the event flags (for example, NX_SHIFTMASK) that were in effect at the
beginning of tracking. The flags are valid only in the action method that is sent to the
Control’s target.
See also: — mouseDownFlags (Cell), — sendAction:to:

read:

—read:(NXTypedStream *)stream

Reads the Control from the specified typed stream stream.

2-186 Chapter 2: Class Specifications

resetCursorRects

—resetCursorRects

If the Control’s cell is editable, then resetCursorRect:inView: is sent to the cell
(which will, in turn, send addCursorRect:cursor: back to the Control). Causes the
cursor to be an I-beam when the mouse is over the editable portion of the cell.

selectCell
—selectCell:aCell

If aCell is the receiving Control’s cell and is currently unselected, this method selects
aCell and redraws the Control. Returns self .

selectedCell
—selectedCell

This method should be used by the target of the Control when it wants to get the cell of
the sending Control. Note that even though the cell method will return the same value
for single cell Controls, it’s strongly suggested that this method be used since it will
work both for multiple and single cell Controls.

See also: — sendAction:to:, — selectedCell (Matrix)

selectedTag
— (int)selected Tag

The action method in the target of the Control should use this method to get the
identifying tag of the sending Control’s cell. You should use the setTag: and tag
methods in conjunction with findViewWithTag:. This is equivalent to [[self
selectedCell] tag]. Returns —1 if there is no currently selectedCell. The cell’s tag can
be set with ActionCell’s setTag: method. When you set a single-cell Control’s tag in
Interface Builder, it sets both the Control’s and the cell’s tag (as a convenience).

See also: — sendAction:to:

Application Kit Classes: Control 2-187

sendAction:to:
— sendAction:(SEL)theAction to:theTarget

Sends a sendAction:to: message to NXApp, which in turn sends a message to
theTarget to perform theAction. This method adds the Control’s id as the action
method’s only argument. If theAction is NULL, no message is sent.

This method is invoked primarily by Cell’s trackMouse:inRect:of View:.

If theTarget is nil, NXApp looks for an object that can respond to the message—that is,
for an object that implements a method matching the theAction selector. It begins with
the first responder of the key window. If the first responder can’t respond, it tries the
first responder’s next responder and continues following next responder links up the
responder chain. If none of the objects in the key window’s responder chain can handle
the message and if the main window is different from the key window, it begins again
with the first responder in the main window. If objects in neither the key window nor
the main window can respond, NXApp tries to handle the message itself. If NXApp
cannot respond, then the message is sent to NXApp’s delegate.

Returns nil if the message could not be delivered; otherwise returns self.

See also: — setAction:, — setTarget:, — trackMouse:inRect:of View: (Cell)
sendActionOn:

— (int)send A ctionOn: (int)mask

Sets a mask of the events that cause sendAction:to: to be invoked during tracking of
the mouse (done in Cell’s trackMouse:inRect:of View:). Returns the old event mask.

See also: — sendActionOn: (Cell), — trackMouse:inRect:of View: (Cell)
setAction:

— setAction:(SEL)aSelector

Makes aSelector the Control’s action method.

See also: — sendAction:to:

setAlignment:

— setAlignment:(int)mode

Sets the justification mode. The mode should be one of: NX_LEFTALIGNED,
NX_CENTERED or NX_RIGHTALIGNED.

2-188 Chapter 2: Class Specifications

setCell:
—setCell:aCell

Sets the cell of the Control to be cell. Use this method with great care as it can
irrevocably damage your Control. Returns the old cell.

setContinuous:
— setContinuous:(BOOL)flag

Sets whether the Control should continuously send its action to its target as the mouse
is tracked.

See also: — setContinuous: (ButtonCell, SliderCell), — sendActionOn:

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the value of the Control to be aDouble (a double-precision floating point number).
If the Control contains many cells, then the currently selectedCell’s value is set to
aDouble. 1f the affected cell is currently being edited, then that editing is aborted and
the value being typed is discarded in favor of aDouble. If autodisplay is on, then the

133

cell’s “inside” is redrawn.

See also: — doubleValue, — abortEditing, — drawlInside:inView: (Cell)

setEnabled:
— setEnabled:(BOOL)flag
Sets the flag determining whether the Control is active or not. Redraws the entire

Control if autodisplay is on. Subclasses may want to override this to redraw only a
portion of the Control when the enabled state changes (Button and Slider do this).

setFloatValue:
— setFloatValue:(float)aFloat

Same as setDouble Value:, but sets the value as a single-precision floating point
number.

See also: — floatValue

Application Kit Classes: Control 2-189

2-190

setFloatingPointFormat:left:right:

— setFloatingPointFormat:(BOOL)autoRange
left:(unsigned)/eftDigits
right:(unsigned)rightDigits

Sets the floating point number format of the Control. Does not redraw the cell. Affects
only subsequent settings of the value using setFloatValue:.

See also: — setFloatPointFormat:left:right: (Cell)
setFont:
— setFont:fontObj
Sets the font used to draw the text (if any) in the Control. You only need to invoke this

method if you do not want to use the default font (Helvetica 12.0). If autodisplay is on,
then the inside of the cell is redrawn.

setIntValue:

— setIntValue:(int)an/nt
Same as setDoubleValue:, but sets the value as an integer.
See also: — intValue
setStringValue:
— setString Value:(const char *)aString
Same as setDoubleValue:, but sets the value as a string.

See also: — stringValue, — setStringValueNoCopy:, — setIntValue:

setStringValueNoCopy:
— setString ValueNoCopy:(const char *)aString

Like setStringValue:, but doesn’t copy the string.

See also: — stringValue, — setStringValue:, — setStringValueNoCopy:shouldFree:

setStringValueNoCopy:shouldFree:
— setString ValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Like setStringValueNoCopy:, but lets you specify whether the string should be freed
when the Control is freed.

See also: — stringValue, — setStringValueNoCopy:

Chapter 2. Class Specifications

setTag:
— setTag:(int)anlnt

Makes anlnt the receiving Control’s tag.

See also: — tag, — selectedTag, — find ViewWithTag: (View)

setTarget:
— setTarget:anObject

Sets the target for the Control’s action message.
See also: — sendAction:to:

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height

Changes the width and the height of the Control’s frame. Redisplays the Control if
autodisplay is on.

sizeToFit
— sizeToFit
Changes the width and the height of the Control’s frame so that they get the minimum
size to contain the cell. If the Control has more than one cell, then you must override
this method.
See also: — sizeToFit (Matrix), — sizeToCells (Matrix)
stringValue
— (const char *)stringValue
Returns the value of the Control as a string (see doubleValue for more details).
See also: — setStringValue:, — setStringValueNoCopy:
tag
— (int)tag
Returns the receiving Control’s tag (not the Control’s cell’s tag).

See also: — setTag:, — selectedTag

Application Kit Classes: Control 2-191

takeDoubleValueFrom:

— takeDoubleValueFrom:sender

Sets the receiving Control’s double-precision floating-point value to the value obtained
by sending a doubleValue message to sender.

This method can be used in action messages between Controls. It permits one Control
(sender) to affect the value of another Control (the receiver) by sending this method in
an action message to the receiver. For example, a TextField can be made the target of
a Slider. Whenever the Slider is moved, it will send a takeDoubleValueFrom:
message to the TextField. The TextField will then get the Slider’s floating-point value,
turn it into a text string, and display it, thus tracking the value of the Slider.
See also: — setDoubleValue:, — doubleValue

takeFloatValueFrom:

— takeFloatValueFrom:sender

Sets the receiving Control’s single-precision floating-point value to the value obtained
by sending a floatValue message to sender.

See setDoubleValue: for an example.

See also: — setFloatValue:, — floatValue

takeIntValueFrom:

— takeIntValueFrom:sender

Sets the receiving Control’s integer value to the value returned by sending an intValue
message to sender.

See setDoubleValue: for an example.

See also: — setIntValue:, — intValue

takeStringValueFrom:

— takeString ValueFrom:sender

Sets the receiving Control’s character string to a string obtained by sending a
stringValue message to sender.

See setDoubleValue: for an example.

See also: — stringValue, — setStringValue:

2-192 Chapter 2: Class Specifications

target
— target

Returns the target for the Control’s action message.

See also: — setTarget:
update

— update

Same as View’s update, but also makes sure that calcSize gets performed.
updateCell:

— updateCell:aCell

If aCell is a cell used to implement this Control, and if autodisplay is on, then draws
the Control; otherwise, sets the needsDisplay and calcSize flags to YES.

updateCelllnside:
— updateCelllnside:aCell

If aCell is a cell used to implement this Control, and if autodisplay is on, draws the
inside portion of the cell; otherwise sets the needsDisplay flag to YES.

validateEditing
— validateEditing
Causes the value of the field currently being edited (if any) to be absorbed as the value
of the Control. Invoked automatically from stringValue, intValue, and others, so that

partially edited field’s values will be reflected in the values returned by those methods.

This method doesn’t end editing; to do that, invoke Window’s endEditingFor: or
abortEditing.

See also: — endEditingFor: (Window)

write:
— write:(NXTypedStream *)stream

Writes the Control to the specified typed stream stream.

Application Kit Classes: Control ~2-193

2-194

Font

INHERITS FROM Object
DECLARED IN Font.h
CLASS DESCRIPTION

The Font class provides objects that correspond to PostScript fonts. Each Font object
records a font’s name, size, style, and matrix. When a Font object receives a set
message, it establishes its font as the current font in the Window Server’s current
graphics state.

For a given application, only one Font object is created for a particular PostScript font.
When the Font class object receives a message to create a new object for a particular
font, it first checks whether one has already been created for that font. If so, it returns
the id of that object; otherwise, it creates a new object and returns its id. This system
of sharing Font objects minimizes the number of objects created. It also implies that
no one object in your application can know whether it has the only reference to a
particular Font object. Thus, Font objects shouldn’t be freed; Font’s free method
simply returns self.

A Font object’s fontNum instance variable stores a number (a PostScript user object)
that refers to the actual font dictionary within the Window Server. You shouldn’t
change the value of this variable.

INSTANCE VARIABLES
Inherited from Object Class isa;
Declared in Font char *name;
float size;
int style;
float *matrix;
int fontNum;
NXFacelnfo *facelnfo;
id otherFont;
struct _fFlags {
unsigned int usedByWS:1;
unsigned int usedByPrinter:1;
unsigned int isScreenFont:1;
} fFlags;
name The font’s name.
size The font’s size.

Application Kit Classes.: Font 2-195

style

matrix

fontNum

facelnfo

otherFont
fFlags.usedByWS
fFlags.usedByPrinter

fFlags.isScreenFont

METHOD TYPES

Initializing the Class object

Creating and freeing a Font object

Querying the Font object

Setting the font

Archiving

2-196 Chapter 2: Class Specifications

The font’s style.

The font’s matrix.

The user object referring to this font.

The font’s face information.

The associated screen font for this font.

True if the font is stored in the Window Server.
True if the font is stored in the printer.

True if the font is a screen font.

+ initialize
+ useFont:

+ newFont:size:

+ newFont:size:matrix:

+ newFont:size:style:matrix:
— free

— fontNum

— getWidthOf:
— hasMatrix

— matrix

— metrics

— name

— pointSize

— readMetrics:
— screenFont
— style

— set
— setStyle:

— awake

— finishUnarchiving
—read:

— write:

CLASS METHODS

alloc
Disables the inherited alloc method to prevent multiple Font objects from being created
for a single PostScript font. Create Font objects by using newFont:size:style:matrix:,
newFont:size:matrix:, or newFont:size:. These methods ensure that no more than
one Font object is created for any PostScript font. Returns an error message.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:, + newFont:size:

allocFromZone:
Disables the inherited allocFromZone: method to prevent multiple Font objects from
being created for a single PostScript font. Create Font objects by using
newFont:size:style:matrix:, newFont:size:matrix:, or newFont:size:. These
methods ensure that no more than one Font object is created for any PostScript font.
Returns an error message.
See also: + newFont:size:style:matrix:, + newFont:size:matrix:, + newFont:size:
initialize
+ initialize

Initializes the Font class object. The class object receives an initialize message before
it receives any other message. You never send an initialize message directly.

See also: + initialize (Object)
newFont:size:
+ newFont:(const char *)fontName size:(float)fontSize
Returns a Font object for font fontName of size fontSize. This method invokes the
newFont:size:style:matrix: method with the style set to 0 and the matrix set to

NX_FLIPPEDMATRIX.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:

Application Kit Classes: Font 2-197

newFont:size:matrix:

+ newFont:(const char *)fontName
size:(float)fontSize
matrix:(const float *)fontMatrix

Returns a Font object for font fontName of size fontSize. This method invokes the
newFont:size:style:matrix: method with the style set to 0.

See also: + newFont:size:style:matrix:, + newFont:size:

newFont:size:style:matrix:

+ newFont:(const char *)fontName
size:(float)fontSize
style:(int)fontStyle
matrix:(const float *)fontMatrix

Returns a Font object for font fontName, of size fontSize, and matrix fontMatrix.
fontStyle is currently ignored. If an appropriate Font object was previously created, it’s
returned; otherwise, a new one is created and returned. If an error occurs, this method
returns nil. This is the designated new... method for the Font class.

There are two constants available for the fontMatrix parameter:

+ NX_IDENTITYMATRIX. Use the identity matrix.

+ NX_FLIPPEDMATRIX. Use a flipped matrix. (Appropriate for a flipped View
like the Text object.)

The fontStyle parameter is stored in the Font object, and is preserved by the
FontManager’s convertFont: method, but is not used by the Application Kit. It can be
used to store application-specific font information.

Note: If this method is invoked from a subclass (through a message to super), a new
object is always created. Thus, your subclass should institute its own system for

sharing Font objects.

See also: + newFont:size:matrix:, + newFont:size:

2-198 Chapter 2: Class Specifications

useFont:

+ useFont:(const char *)fontName
Registers that the font identified by fontName is used in the document. Returns self.

The Font class object keeps track of the fonts that are being used in a document. It does
this by registering the font whenever a Font object receives a set message. When a
document is called upon to generate a conforming PostScript language version of its
text (such as during printing), the Font class provides the list of fonts required for the
% % DocumentFonts comment. (See Document Structuring Conventions by Adobe
Systems Inc.)

The useFont: method augments this system by providing a way to register fonts that
are included in the document but not set using Font’s set method. Send a useFont:

message to the class object for each font of this type. Returns self.

See also: — set

INSTANCE METHODS
awake
— awake

Reinitializes the Font object after it’s been read in from a stream. This method makes
sure that the Font object doesn’t assume it has data cached in the Window Server.

An awake message is automatically sent to each object of an application after all
objects of that application have been read in. You never send awake messages directly.
The awake message gives the object a chance to complete any initialization that read:
couldn’t do. If you override this method in a subclass, the subclass should send this
message to its superclass:

[super awake];
Returns self.
See also: —read:, — write:, — finishUnarchiving

finishUnarchiving

— finishUnarchiving
A finishUnarchiving message is sent after the Font object has been read in from a
stream. This method checks if a Font object for the particular PostScript font already

exists. If so, self is freed and the existing object is returned.

See also: — read:, — write:, — awake

Application Kit Classes: Font 2-199

fontNum
— (int)fontNum

Returns the PostScript user object that corresponds to this font. The Font object must
set the font in the Window Server before this method will return a valid user object.
Sending a Font object the set message sets the font in the Window Server. The
fontNum method returns O if the Font object hasn’t previously received a set message
or if the font couldn’t be set. '
See also: — set, DPSDefineUserObject()

free
— free
Has no effect. Since only one Font object is allocated for a particular font, and since

you can’t be sure that you have the only reference to a particular Font object, a Font
object shouldn’t be freed.

getWidthOf:
— (float)getWidthOf:(const char *)string

Returns the width of string using this font. This method has better performance than
the Window Server routine PSstringwidth().

hasMatrix
— (BOOL)hasMatrix

Returns YES if the Font object’s matrix is different from the identity matrix,
NX_IDENTITYMATRIX; otherwise, returns NO.

See also: + newFont:size:style:matrix:, — matrix

matrix

— (const float *)matrix
Returns a pointer to the matrix for this font.

See also: — hasMatrix

2-200 Chapter 2: Class Specifications

metrics
— (NXFontMetrics *)metrics

Returns a pointer to the NXFontMetrics record for the font. See the header file
appkit/afm.h for the structure of an NXFontMetrics record.

See also: — readMetrics:
name

— (const char *)name

Returns the name of the font.
pointSize

— (float)pointSize

Returns the size of the font in points.
read:

—read:(NXTypedStream *)stream

Reads the Font object’s instance variables from stream. A read: message is sent in
response to archiving; you never send this message.

See also: — write:, — read: (Object)

readMetrics:
— (NXFontMetrics *)readMetrics:(int)flags

Returns a pointer to the NXFontMetrics record for this font. The flags argument
determines which fields of the record will be filled in. flags is built by ORing together
constants such as NX_FONTHEADER, NX_FONTMETRICS, and
NX_FONTWIDTHS. See the header file appkit/afm.h for the complete list of
constants and for the structure of the NXFontMetrics record.

See also: — metrics
screenFont
— screenFont
Provides the screen font corresponding to this font. If the receiver represents a printer

font, this method returns the Font object for the associated screen font (or nil if one
doesn’t exist). If the receiver represents a screen font, it simply returns self.

Application Kit Classes: Font 2-201

2202 Chapter 2:

set

—set
Makes this font the current font in the current graphics state. Returns self.

When a Font object receives a set message, it registers with the Font class object that
its PostScript font has been used. In this way, the Application Kit, when called upon to
generate a conforming PostScript language document file, can list the fonts used within
a document. (See Document Structuring Conventions by Adobe Systems Inc.) If the
application uses fonts without sending set messages (say through including an EPS
file), such fonts must be registered by sending the class object a useFont: message.

See also: + useFont:

setStyle:

— setStyle:(int)aStyle
Sets the Font’s style. Setting a style isn’t recommended but is minimally supported—
a Font object’s style isn’t interpreted in any way by the Application Kit. You can use

it for your own non-PostScript language font styles (a drop-shadow style, for example).

Be very careful using this method since it causes the Font to stop being shared. You
must reassign the pointer to the Font to the return value of setStyle:.

font = [font setStyle:12];
Returns self.

See also: — style

style

— (int)style

Returns the style of the font. For Font objects created by the Application Kit, this
method returns 0.

See also: — setStyle:

write:

— write:(NXTypedStream *)stream

Writes the Font object’s instance variables to stream. A write: message is sent in
response to archiving; you never send this message directly.

See also: — read:, — write: (Object)

Class Specifications

CONSTANTS AND DEFINED TYPES

/* Flipped matrix */
#define NX_ IDENTITYMATRIX
#define NX FLIPPEDMATRIX

/* Space characters */
#define NX FIGSPACE

/* Font informati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>